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*

Abstract: Multi-contrast magnetic resonance imaging (MRI) is wildly applied to identify tuberous
sclerosis complex (TSC) children in a clinic. In this work, a deep convolutional neural network with
multi-contrast MRI is proposed to diagnose pediatric TSC. Firstly, by combining T2W and FLAIR
images, a new synthesis modality named FLAIRj3; was created to enhance the contrast between TSC
lesions and normal brain tissues. After that, a deep weighted fusion network (DWF-net) using a late
fusion strategy is proposed to diagnose TSC children. In experiments, a total of 680 children were
enrolled, including 331 healthy children and 349 TSC children. The experimental results indicate
that FLAIR;3 successfully enhances the visibility of TSC lesions and improves the classification
performance. Additionally, the proposed DWF-net delivers a superior classification performance
compared to previous methods, achieving an AUC of 0.998 and an accuracy of 0.985. The proposed
method has the potential to be a reliable computer-aided diagnostic tool for assisting radiologists in
diagnosing TSC children.

Keywords: tuberous sclerosis complex; children; convolutional neural network; multi-contrast MRI;
rare neurodevelopmental disorder

1. Introduction

Tuberous sclerosis complex (TSC) is a rare neurodevelopmental disorder caused by
mutations in the TSC1 and TSC2 genes [1,2]. It is characterized by angiofibromas of the
face, epilepsy, an intellectual disability, and hamartomas in multiple organs including the
heart, kidneys, brain, and lungs [3-5]. The majority of pediatric TSC patients experience
their initial seizure in the first year of life [6-8], which has a severe impact on the lives
of TSC children [9,10]. Therefore, it is urgent and valuable to develop valid and robust
classification models for TSC children in a clinic.

Neurological symptoms are prevalent in nearly all children with TSC, and multi-
contrast magnetic resonance imaging (MRI) is frequently employed for a clinical diag-
nosis [11]. To date, T2-weighted imaging (T2W) and fluid-attenuated inversion recovery
(FLAIR) have been commonly utilized in a pediatric TSC diagnosis, allowing for the iden-
tification of lesions and facilitating high lesion-to-brain contrast visualization. But, the
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cerebrospinal fluid (CSF) signal is strong in T2W, which severely interferes with the vi-
sualization of periventricular TSC lesions. FLAIR imaging can suppress cerebrospinal
fluid and sufficiently show the lesion-brain contrast clearly, and FLAIR also reduces the
signal-to-noise ratio while pressing CSF [12]. Currently, it is not possible for a single MRI
sequence to produce all the required tissue contrasts in a single contrast image due to the
trade-offs that need to be made when choosing MRI pulse sequence parameters [13]. In
recent studies, it has been demonstrated that a synthesized contrast that blends T2W and
FLAIR imaging can augment the contrast of multiple sclerosis (MS) lesions, leading to an
improved diagnostic efficacy [12,13]. However, to the best of our knowledge, there are
not studies on applying a synthesis contrast combining T2W and FLAIR for diagnosing
pediatric TSC so far.

Otherwise, deep learning has been studied as an advanced artificial intelligence
technology that can automatically learn from medical image data and extract a large number
of features [14]. Previously, deep learning models and multi-contrast MRIs have been
successfully used for automatically detecting strokes [15] and classifying brain tissues [16].
Until now, convolutional neural networks (CNNs) have been applied to assist in tuber
segmentation in TSC patients [17]. Sanchez et al. [18] used two types of contrast MRI,
T2W and FLAIR, for the detection task of TSC tubers and achieved the receiver operating
characteristic curve that can have an area under the curve (AUC) of 0.99. However, their
approach employed a 2D network and solely relied on handpicked MRI slices with evident
tubers as input to the network. This method failed to account for the spatial attributes of
MRI and neglected the fact that not all TSC patients exhibit visible lesions. Additionally,
their datasets were limited to merely 114 TSC patients and 114 controls. Alternatively,
recent research suggests that 3D CNNs excel at capturing the spatial characteristics of MRI
and effectively capitalize on the interplay between voxels. Consequently, they have been
reported to yield superior results in predicting chronological age [19].

To further raise the performance of identifying TSC children in a clinic, a novel deep
learning method, named the deep weighted fusion network (DWF-net), was proposed to
effectively diagnose pediatric TSC lesions with multi-contrast MRIs. The proposed method
has a synthesis contrast, named FLAIR3, from the combination of T2ZW and FLAIR that
can maximize the lesion-brain contrast of pediatric TSC lesions. Moreover, the proposed
method has a 3D CNN strategy of the weighted late fusion model combined with multi-
contrast MRI to automatically diagnose pediatric TSC. The experimental dataset has a total
of 680 children, including 331 healthy and 349 TSC children. Experiments intuitively show
that the new synthesis FLAIR3 contrast and the weighted 3D CNN strategy can effectively
improve the contrast saliency of pediatric TSC lesions, and the classification performance.

The proposed deep learning method is efficient in distinguishing TSC children from
healthy children and presently achieves the best performance. The proposed method has
great potential in helping clinical doctors diagnose TSC children and provides an effective
research tool for pediatric doctors.

2. Methods
2.1. Optimal Combination of T2ZW and FLAIR

Cortical and subcortical nodules are the most common lesions in TSC children. The
increased prominence of lesions is crucial for clinical doctors to diagnose pediatric TSC [20].
The T2W signal is related to water content, and most of the lesions have stronger T2W
signals than surrounding normal tissues, often exhibiting a bright state. Therefore, the
location and size of the pediatric TSC lesions can be seen from the T2W sequence. However,
the outline of the lesion is relatively vague in the T2W sequence, and it is difficult to clearly
outline the outline of the lesion. Moreover, there was a strong cerebrospinal fluid (CSF)
signal interference in T2W. FLAIR, also known as water-suppression imaging, suppresses
(darkens) CSF hyperintensity in T2W, thereby making lesions adjacent to CSF clear (bright-
ened). Compared with the T2W sequence, the FLAIR sequence can better represent the
surroundings of the lesion and clearly show the lesion area. FLAIR is a T2W scan that
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selectively suppresses CSF by reversing pulses. However, CSF signal suppression comes
at the expense of reducing the signal-to-noise ratio [12]. FLAIR, and FLAIR;3 have been
proposed to combine T2W and FLAIR to improve lesion visualization in MS disease [12,13].
Inspired by [12,13], we propose to optimize the combination of T2W and FLAIR as a new
modality named FLAIR; in pediatric TSC disease as follows [13]:

FLAIR; = FLAIR® x T2WF
_ @
st.a+p=3

where the optimized « is 1.55 and f is 1.45 based on the signal equations of FLAIR and
T2W [13], which can optimally balance the lesion contrast between FLAIR and T2W.

2.2. Late Fusion Strategies

Some recent studies [21] have shown that the late fusion model could grasp the data
distribution effectively and finally achieve the best classification performance. Inspired
by [22,23], a weighted late fusion strategy was used to combine multi-contrast MRI for
classification tasks in pediatric TSC patients. First, T2W, FLAIR, and FLAIR; were fed into
a feature extractor. We propose a deep weighted network (DWF net) that takes the scores
of the T2W, FLAIR, and FLAIR3 models as input, and outputs the final classification with a
simple and efficient weighted average integration method, as follows:

Spwr = Wi X Stow + W2 X Sprair + W3 X Sprairs @)
st Y2  Wi=1

where Stow, Srrair, and Sprairs represent the classification scores of T2W, FLAIR, and

FLAIR3 models, respectively. Spwr denotes the final output prediction scores of the pro-

posed DWE-net. Wy, Wy, and W3 are the weights of the prediction scores of the three

multi-contrast MRIs.

To explore the optimal fusion between multi-contrast MRI and to enhance the AUC of
the proposed DWF-net, the experiments were performed for values of W1 between 0 and
1, and W; from 0.1 to 1-W; with a step of 0.1; W3 is 1—W;—W,. The weight-searching
algorithm is shown in Algorithm 1.

Algorithm 1 The weight searching algorithm for fusion

Input: The prediction scores Stow, Srrar, and Sgpajrs of three input images and corresponding
ground truth y on testing set.

Output: The weight (W;, W, and W3) with best AUC on testing set.

1: Initialize AUC ppg; < 0.

2: fori: =0 to 10 do

3: for j: =0 to 10-i do

4: k < 10-i—j

5: S temp = (iXST2w + JXSpLAIR + kX SpLAIR3) X 0.1
6: AUC terp = Compare (Stemp, Y)
7: if AUC temp > AUC pegt then

8: AUC best < AUC temp

9: W « ix0.1

10: W, < jx0.1

11: W; < kx0.1

12: end for

13: end for

14: end for

Return Wy, W, and W3

2.3. Network Architectures

The proposed DWF-net method for pediatric TSC patients was implemented using two
different 3D CNN architectures. The following sections describe two different 3D CNN models.
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ResNet was proposed in 2015 and has been widely applied in detection, segmentation,
recognition, and other fields [24]. In addition, ResNet has demonstrated a stable and
excellent classification performance in image classification among different variants of
various 3D CNNs [24]. Therefore, the first 3D CNN model we consider is 3D-ResNet, which
uses a shortcut connection to make a reference for the input of each layer and learns to
form a residual function. The residual function is easier to optimize, making the number of
network layers much deeper, and can easily obtain a higher accuracy from deeper depths.

For the second 3D CNN model, we utilized the 3D-EfficientNet architecture [25] as
our feature extractor. This classification network is known for its efficiency in improving
accuracy and reducing the training time and network parameters. The EfficientNet was
designed using a neural architecture search and employs the mobile inverted bottleneck
convolution (MBConv) module as its core structure. This module, similar to depth-wise
separable convolution, minimizes parameters significantly. In addition, the attention idea
of the squeeze-and-excitation network (SENet) is also introduced [26] in EfficientNet. The
attention mechanism of SENet allows the model to focus more on channel features that
are most informative, while suppressing those unimportant channel features, thereby
improving the model performance.

As shown in Figure 1a, for the pediatric TSC identification tasks with one single
MRI modality, the 3D-ResNet34 and 3D-EfficientNet were used as a feature extractor.
When DWF-net was used, two or three modalities were applied as inputs, as shown in
Figure 1b. Table 1 displays the 10 models that were trained in this study, each with distinct
architectures and inputs.

P Single Modality Model E
| |
! |
| HC s
i H
i i
i H
i Prediction '
i T —— Classification E
! H
| i
1 |
| A
i i
i 1
i i
| i
L (a) J
Late Fusion Model

,f pomTTTTTEEEE . . ziuininiainini N '.‘
:' :' Feature I{xlmtnr‘:i Classifier| 1
\ i ! |
| | iaf |
s L L T W |
| : 1 i 1
b : pon :
| . i ]
| | W e . - g i
o 1
o ;
. HC |
| J r . i
| i Prediction W3 Weighted ]
| ! Scoreof ——— average " Classification 1
3 Vo FLAIR ensemble :
N o :
i o i
Coa ]
i | i
| ] i
i IR s mmmmmee mmmemees o i
I ' - " 9 '
i ] i | Feature Extrator i Classificr! E
Ryl 40 s
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| ot H —++  Scoreof  +— B

T ' m 1 FLAIR, W, HC; Healthy Children

TSC: Tubervus Sclerosis Complex

Figure 1. Overall network structure, (a) single modality model pipeline, (b) schematic of the proposed
DWF-net pipeline. The two dotted lines represent the optimal combination of T2ZW and FLAIR to
generate FLAIR3.
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Table 1. Detailed information on ten network structures.

Model Name Input Modality Method
Eff FLAIR FLAIR only 3D-EfficientNet
Eff T2W T2W only 3D-EfficientNet
Eff_FLAIR; FLAIR3 only 3D-EfficientNet
Eff FLAIR_T2W FLAIR + T2W DWEF_net
Eff DWF_net FLAIR + T2W + FLAIR; DWEF_net
Res_FLAIR FLAIR only 3D-ResNet34
Res_T2 T2W only 3D-ResNet34
Res_FLAIR3 FLAIR3 only 3D-ResNet34
Res_FLAIR_T2W FLAIR + T2W DWEF_net
Res_DWEF _net FLAIR + T2W + FLAIR;3 DWE_net

3. Materials and Experiments
3.1. Dataset

In this study, all pediatric volunteers were from Shenzhen Children’s Hospital. The
study was approved by the Ethics Committee of Shenzhen Children’s Hospital (N0.2019005).
Written informed consent was obtained from all pediatric volunteers and/or their parents.
In total, 349 TSC children and 331 healthy children (HC) were included in this study. Inclu-
sion criteria for pediatric TSC patients were (1) aged 0-20 years, (2) no other neurological
disorders, and (3) clinically diagnosed with TSC. (4) T2W and FLAIR images are complete
and clear. Inclusion criteria for healthy children were (1) aged 0-20 years, (2) without
any neurological disorder, (3) clinically defined normal or non-specific findings during
routine clinical care. (4) T2ZW and FLAIR images are complete and clear. Figure 2 shows the
exclusion and inclusion criteria of our study.

Figure 2. Study exclusion and inclusion criteria of the pediatric dataset.

The data were randomly split into train-validation-test sets in a 7:1:2 ratio. To ensure
that every group had the same class proportion, stratified random sampling was employed.
Training, validation, and testing datasets had no overlap of patients.



Bioengineering 2023, 10, 870

3.2. Data Processing

Firstly, a FMRIB Linear Image Registration Tool (FLIRT) of FSL (http:/ /fsl.fmrib.ox.
ac.uk (accessed on 1 January 2021.)) was used to register T2W into the FLAIR space, and
mutual information was used as the cost function. In neuroimaging studies, the lesions
are usually located in the brain tissue, and the skull part is an irrelevant site. When brain
MRI images are used for classification network research, the brain tissue of the region of
interest is often the input. HD-bet is an algorithm for extracting brain tissue [27], which
can remove irrelevant images such as of the neck and eyeball. Therefore, in the second step,
the deep learning tool HD-bet is used to strip the skull in MRI. Subsequently, all 3D MRI
images were resized to 128 x 128 x 128, and the image intensity was normalized to the
range of 0 to 1 using the min—-max normalization formula:

_ x— Min(x)
xNormalzzed - Mﬂx(x)—MiVl(x) (3)

where Max(x) and Min(x) represent the highest and lowest values of the brain-extracted
MRI images, respectively, and Xnppmalized refers to the normalized MRI images. Finally, T2W
and FLAIR were combined and transformed into FLAIRj3. The flowchart illustrating the
data preprocessing can be found in Figure 3.

Optimal combination of T3w JL
and FLA_IR

Figure 3. Flowchart of the data preprocessing.

3.3. Baseline and Effectiveness of Skull Stripping

In this study, we compared 10 different proposed 3D CNN models with a 2D-InceptionV3
model [18] (baseline model) to evaluate the effectiveness of the proposed deep learning
methods. The 2D-InceptionV3 model was exclusively trained on our FLAIR data, with the
maximum transverse slice of the FLAIR chosen as the input. Furthermore, we conducted a
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series of experiments on FLAIR images and T2W images with and without skull-stripping
preprocessing to assess the effectiveness of the skull-stripping methodology.

3.4. Comparison of Normalization Methods

Typically, normalization methods often have a significant impact on the performance
of deep learning models. The min-max normalization and Z-score normalization are most
used in medical image normalization. While the min-max normalization approach is
appropriate for most kinds of data and can effortlessly maintain the initial data distribution
structure, it is not ideal for handling sparse data and is prone to being affected by outliers.
The Z-score normalization method employs the mean and standard deviation of the original
data to normalize it. The following formula illustrates this:

x — Mean(x
XNormalized = std(x)() (4)

When Mean(x)= 0, std(x) = 1, that is, the mean is 0 and the standard deviation is 1,
meaning that the processed data conform to the standard normal distribution. This Z-score
method is suitable for most types of data, but it is a centralized method, which will change
the distribution structure of the original data, and it is also not suitable for the processing
of sparse data. To explore the effectiveness of the normalization operation, we conducted
three sets of experiments on both T2W and FLAIR images when using the same network,
which are without the normalization method, the Z-score normalization, and the min—max
normalization, respectively.

3.5. Model Training and Evaluation

For our experiments, we used the same partitioning for the training set, validation set,
and test set across all models. Each model was trained using a learning rate of 0.0001, SGD
optimization, a batch size of 4, and 50 epochs, with the binary cross-entropy loss function.
To implement the training, validation, and testing process, we used Python version 3.8.10
and PyTorch version 1.9.0 environments.

For each cohort, we calculated the area under the curve (AUC) of the receiver operating
characteristic (ROC), accuracy (ACC), sensitivity (SEN), and specificity (SPE) to evaluate
the classification performance of all models. These metrics rely on the true positive (TP),
which counts the total number of correct positive classifications, and the true negative (TN),
which represents the total number of accurate negative classifications. The false positive
(FP) accounts for the total number of positive classifications that are incorrect, while the
false negative (FN) represents the total number of negative classifications that are incorrect.
We obtained the ACC, SEN, and SPE through the following formulas:

Accuracy (ACC): The percentage of the whole sample that is correctly classified:

TP + TN

ACC = I T INTFP T EN ®)

Sensitivity (SEN): The percentage of the total sample that is true and correctly classified:
TP

SEN =75 FN ©

Specificity (SPE): The percentage of the total sample that is negative and correctly classified:
TN

SPE = IN TP @)

3.6. Statistical Analysis

For this research, categorical variables were presented using the frequency and per-
centage, while continuous variables were expressed as the mean =+ standard deviation.
Continuous variables were analyzed using the F-test, while categorical variables underwent
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a chi-square analysis. Statistical significance was defined as p < 0.05. All statistical analyses
were performed using the scikit learn, scipy, and stats libraries in Python 3.8.10.

4. Results
4.1. Clinical Characteristics of Patients

All of the 680 child subjects” primary clinical features are listed in Table 2. Among
the 349 TSC patients, 188 (53.9%) were identified as male, averaging 45.5 months in age.
Moreover, among the 331 HC, 183 (55.3%) were identified as male, averaging 733 months
in age. There was a significant difference in the average age between the HC group and the
TSC group, with a p-value less than 0.05. There was no significant difference in gender.

Table 2. The main clinical characteristics of all 680 child subjects.

TSC HC p-Value
Number 349 331 -
Male, number (%) 188 (53.9%) 183 (55.3%) 0.711
Age at imaging, mean &+ SD (months) 455 + 46.6 73.3 £49.2 <0.001

4.2. Visualization Results of FLAIR3

Figure 4 shows FLAIR, T2W, and FLAIR3 images of a TSC child and a healthy child. On
three MRI images of the TSC child, it can be observed that the contrast between the lesions
and brain tissue on FLAIR is not clear enough, there is a severe interference of cerebrospinal
fluid on T2W, and the contrast and clarity of the lesions on the newly generated FLAIR;
image are significantly improved (TSC lesion as shown by the red arrow). In addition,
FLAIR; inhibits cerebrospinal fluid and can clearly locate the TSC lesion.

FLAIR T2W FLAIR;

HC

TSC

Figure 4. Representative MRI from a TSC child and a healthy child, including T2W, FLAIR, and the
proposed FLAIR; (the red arrow highlights the TSC lesion).

4.3. Performance of the Models

The performance of DWF-net varies with the weight of Wy, W5, and W3 as shown
in Figure 5. The feature extractor in Figure 5a is 3D-EfficientNet, and the best AUC
performance of 3D-EfficientNet is 0.989 (W = 0.0, W, = 0.3, W3 = 0.7). Among the models
evaluated, Res_DWEF_net (with weight parameters Wy = 0.2, W, = 0.3, W3 = 0.5), which
employs 3D-ResNet as a feature extractor and a late fusion strategy as depicted in Figure 5b,
achieves the highest performance. This model has an accuracy of 0.985 and an AUC of
0.998, outperforming other models.
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Figure 5. The performance of DWF-net with different weights. The feature extractor in (a) is 3D-
EfficientNet, and the feature extractor in (b) is 3D-ResNet. The horizontal axis represents the weight
of W1, W, and W3, and the vertical axis represents the performance of AUC.

The results for all the compared models in the testing dataset are presented in Table 3.
When using 3D-EfficientNet, FLAIR;3 achieves an AUC performance of 0.987 and the AUC
of Eff FLAIR_T2W is 0.974, and the AUC of FLAIRj is higher than Eff FLAIR_T2W. FLAIR;
achieves an AUC performance of 0.997 when using 3D-ResNet as the feature extraction
network. When the feature extraction network is 3D ResNet, the AUC of Res_FLAIR_T2W
is 0.994, and the AUC of FLAIRj is higher than Res_ FLAIR_T2W.

Table 3. Detailed performance of different models in pediatric testing datasets.

Input Modality Model Name AUC ACC SEN SPE
FLAIR + T2W InceptionV3 [18] 0.933 0.851 0812 0.893
FLAIR only Eff_FLAIR 0.974 0.911 0.869 0.954

T2W only Eff_T2W 0.971 0.919 0869 0.970
FLAIR, Eff_FLAIR, 0.987 0.926 0.884 0.970

FLAIR + T2W Eff_ FLAIR_T2W 0.974 0.933 0.928 0.939
W00, W o e Eff_ DWF_net 0.989 0.963 0.942 0.985
FLAIR only Res_FLAIR 0.994 0.970 0.986 0.955

T2W only Res_T2W 0.983 0.956 0.913 0.999
FLAIR, Res_FLAIR, 0.997 0978 0957 0.999

FLAIR + T2W Res_FLAIR_T2W 0.994 0.970 0.942 0.999
FLAIR + T2W + FLAIR, Res_DWF_net 0.998 0.985 0.971 0.999

(W =02, W, =0.3, W; = 0.5)

When using the same single-modal MRI as inputs, 3D-ResNet outperforms 3D-
EfficientNet. Additionally, the AUC performance of the FLAIR3; model outperforms the
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T2W-only model and FLAIR-only model. The baseline network (InceptionV3) achieves an
AUC performance of 0.952, and the performance of our all-3D network exceeds the AUC
performance of the baseline network of InceptionV3.

ROC curves for all models of the testing cohort are shown in Figure 6a—c, and Figure 6d
shows the classification performance for all models of the testing cohort.

AUC of InceptionV3 AUC of 3D-EfficientNet AUC of 3D-ResNet
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Figure 6. (a—c) represent the ROC curves for all models of the testing cohort. (d) represents the
classification performance for all models of the testing cohort. The horizontal axis shows the model
name, while the vertical axis represents the performance regarding AUC, ACC, SEN, and SPE.

4.4. Results of Skull Stripping

The classification performance of FLAIR and T2W images, with or without skull
dissection, is presented in Table 4. The table demonstrates that if the network structure and
input modality remain constant and the skull dissection preprocessing is not carried out,
the classification performance of 3D ResNet and 3D EfficientNet will show a decline.

Table 4. The results of with/without skull stripping in T2W and FLAIR.

Modality Model Name Preprocessing AUC ACC SEN SPE
- Without skull stripping 0.898 0.829 0.754 0.909
3D-EfficientNet P

kull 0.974 0.911 0.869 0.954

FLAIR only Skull stripping
3D-ResNet Without skull stripping 0.959 0.881 0.855 0.909
-hesive Skull stripping 0.994 0.970 0.986 0.955
. Without skull stripping 0.968 0.916 0.881 0.951
W onl 3D-EfficientNet Skull stripping 0.971 0.919 0.869 0.970

Y

Without skull stripping 0.914 0.829 0.797 0.863
3D-ResNet Skull stripping 0.983 0.956 0.913 0.999

10
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4.5. Comparison of Normalization Methods

Table 5 and Figure 7 depict the classification performance of three normalization methods,
including without normalization, Z-score normalization, and min-max normalization on FLAIR
images and T2W images. The horizontal axis represents the different normalization techniques,
while the vertical axis represents their corresponding performance. In instances where the
input modality and network structure remain constant, it is worth noting that the without-
normalization method has the poorest AUC performance. Furthermore, the AUC performance
of the min-max normalization technique is better than the Z-score normalization technique.

Table 5. The classification performance of with/without skull stripping in FLAIR images and T2W images.

Modality Model Name Preprocessing AUC ACC SEN SPE
Without normalization 0.951 0.899 0.863 0.936
3D-EfficientNet Z-score 0.965 0.867 0.754 0.984
Min— 0.974 0.911 0.869 0.954
FLAIR only e

Without normalization 0.985 0.933 0.971 0.893
3D-ResNet Z-score 0.914 0.867 0.797 0.933
Min-max 0.994 0.970 0.986 0.955
Without normalization 0.950 0911 0.884 0.939
3D-EfficientNet Z-score 0.967 0.933 0.898 0.969
Min-max 0.971 0.919 0.869 0.970

T2W only
Without normalization 0.974 0.918 0.927 0.909
3D-ResNet Z-score 0.982 0.918 0.884 0.954
Min-max 0.983 0.956 0.913 0.999
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Figure 7. The classification performance of the without-normalization method, the Z-score normal-
ization, and the min-max normalization in FLAIR images and T2W images. (a) 3D-EfficientNet as a
network feature extractor, FLAIR as the network input. (b) 3D-ResNet as a network feature extractor,
FLAIR as the network input. (c) 3D-EfficientNet as a network feature extractor, T2W as the network
input. (d) 3D-ResNet as a network feature extractor, T2W as the network input.
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5. Discussion

The main objective of the proposed approach is to identify TSC children at an early
stage using a 3D CNN model in conjunction with multi-contrast MRI in an automated
manner. Initially, the approach incorporates FLAIR3 as a novel modality for diagnosing
pediatric TSC lesions and optimizes the T2W and FLAIR combination to enhance the
lesion—-brain contrast in a clinic. The findings indicate that FLAIR; has the ability to
enhance the prominence of TSC lesions, while also enhancing classification accuracy and
providing a more intuitive understanding of our deep learning model. Otherwise, the
proposed method used two networks as feature extractors; one is 3D-EfficientNet, which
is a parameter-efficient deep convolutional neural network framework, and the other
classification network is 3D-ResNet, which is a classical residual network. Previously, the
FLAIR3 modality was only used in MS disease [13], but the proposed methods generalized
it to pediatric TSC disease and demonstrated that FLAIR3 was able to better visualize
TSC lesions. Furthermore, a multi-modal fusion network for multi-contrast MRI data was
proposed, which can feed FLAIR3 as a new modality into the proposed DWF-net network,
finally achieving a state-of-the-art classification performance in identifying children with
pediatric TSC. And the dataset has no PET and EEG as input, and only has just the structural
MRI that can be easily and wildly collected at any hospital, which helpfully maximizes
the potential applicability of the proposed approach in clinical practice. In summary, the
proposed method also has innovations in the following aspects: 1) the use of a weighted
fusion algorithm to maximize the fusion multi-contrast MRI and optimize weights to
improve performance; 2) firstly proposes to use a FLAIR3 image to position and visualize
the lesions in a clinical diagnosis of TSC. 3) The utilization of FLAIR;3 as the complementary
imaging input to maximize the information extracted from the structure MRI.

In comparison to the 2D CNN model InceptionV3 discussed in [18], the proposed
3D CNN models exhibit an enhanced classification performance. Some previous studies
are also consistent with our conclusion that 3D networks perform better than 2D net-
works [19,28]. We believe that the performance improvement of the 3D network is mainly
due to the full use of the spatial features of MRI voxels, which can extract more information.
In this study, the proposed late fusion method can improve the classification performance
compared to a single modality using a 3D CNN approach, implying that combining mul-
tiple contrasting MRI can exploit complementary visual information between multiple
sequences. This result is consistent with a recent study by Han Peng et al. [29], which
demonstrated that combining models from diverse modalities with complementary infor-
mation leads to a superior performance. The success of the ensemble strategy is not only
attributed to the number of large models but also to independent information gathered
from different modalities. Additionally, recent research has revealed that the late fusion
method outperforms the early fusion technique [30,31]. In addition, Jonsson et al. used
a majority voting strategy to form the final predictions and achieved performance gains
with multimodal inputs [22]. In our experimental results, our findings indicate that when
utilizing the same MRI modality as network inputs, all models with 3D-ResNet feature
extractors outperform the 3D-EfficientNet model. One possible explanation is that 3D-
ResNet has more network parameters than 3D-Effectient, and the network structure is more
complicated. Therefore, 3D-ResNet can extract more high-level image feature information
than 3D-EfficientNet.

Surprisingly, our experiments have successfully demonstrated the effectiveness of
FLAIR; in a pediatric TSC diagnosis, and the AUC performance of the FLAIR3-only model
outperforms the T2W-only model and FLAIR-only model when using the same network.
We found that the use of 3D-EfficientNet results in a better AUC score for the Eff FLAIR;
model compared to the Eff FLAIR_T2W model and that the Res_FLAIR3 model outper-
forms the Res_FLAIR_T2W model when using the feature extraction network 3D ResNet.
This could imply that FLAIR3 can provide more information. When the late fusion strategy
is used, the weight W3 of FLAIR; is the largest. A reasonable note is that FLAIR3 can
enhance the lesion-to-brain contrast and the TSC lesion is clearer in FLAIR3 than in T2W

12
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and FLAIR, so FLAIR3 can offer more low-dimensional visual lesion information for deep
learning during the feature extraction stage. Such low-dimensional visual information may
be very helpful for our deep learning algorithms, which could increase the interpretability
of our deep learning algorithms [32].

Moreover, skull stripping plays a crucial role in computational neuro-imaging by being
a vital preprocessing step that has a direct impact on subsequent analyses [33-35]. In this
study, we found that both the 3D-ResNet and 3D-EfficientNet models perform better when
utilizing MRI with skull stripping applied as the input. This may be due to the fact that the
pixel value of the skull is significantly higher than that of the brain tissue [30,36], which
allows for more information to be extracted during the feature selection phase. However, it
is important to note that such information may be irrelevant for our deep learning methods
and may even reduce their performance [37].

Furthermore, image normalization is critical to develop powerful deep learning meth-
ods [38,39]. In this study, the experiments included normalization, no normalization,
min—max normalization, and Z-score normalization. All of the results showed that the
AUC performance without the normalization method is the worst; the AUC performance
of the min—max normalization is better than the Z-score normalization when the input
modality and network structure are the same. Therefore, we suggest that in future similar
studies, the min-max normalization method can be used as a primary choice to normalize
the MRI images.

Otherwise, many experts considered that tubers are stable in size and appearance after
birth and that the proportion to the whole brain will not obviously change with age [40].
The myelination process in a clinic has three stages, namely before 7-8 months of age,
7-8 months to 2 years of age, and after 2 years of age. So, the TSC situation of MRI after
2 years of age should be the same as before, but myelination after 2 years of age may not
have affected our MRI images [41]. But these are statistical results, and there are some
different situations for different TSC patients. In a clinic, MRI should be scanned several
times under the age of 2 to reflect dynamic changes in epileptic lesions. Here, we did not
exclude children under 2 years of age for being close to real clinical situations. The deep
learning method we proposed can be promoted in a clinic and only needs to collect FLAIR
and T2W images of a patient. Our method is simple and effective in a clinic and can be
used as a computer-aided tool to help doctors diagnose TSC patients. In the future, further
situations of TSC patients should be evaluated.

6. Conclusions

In summary, a novel deep learning method of the weighted late fusion model was
proposed to effectively diagnose pediatric TSC lesions with multi-contrast and synthesis-
contrast FLAIR; MRI. The collected dataset of pediatric TSC disease has a total of 680 children,
including 331 healthy and 349 TSC children. The current testing results illustrated that
the proposed approach can attain a state-of-the-art AUC of 0.998 and accuracy of 0.985.
As such, this method can act as a robust foundation for future studies regarding pediatric
TSC patients.
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Abstract: Teeth segmentation plays a pivotal role in dentistry by facilitating accurate diagnoses
and aiding the development of effective treatment plans. While traditional methods have primarily
focused on teeth segmentation, they often fail to consider the broader oral tissue context. This paper
proposes a panoptic-segmentation-based method that combines the results of instance segmentation
with semantic segmentation of the background. Particularly, we introduce a novel architecture for
instance teeth segmentation that leverages a dual-path transformer-based network, integrated with
a panoptic quality (PQ) loss function. The model directly predicts masks and their corresponding
classes, with the PQ loss function streamlining the training process. Our proposed architecture
features a dual-path transformer block that facilitates bi-directional communication between the pixel
path CNN and the memory path. It also contains a stacked decoder block that aggregates multi-scale
features across different decoding resolutions. The transformer block integrates pixel-to-memory
feedback attention, pixel-to-pixel self-attention, and memory-to-pixel and memory-to-memory self-
attention mechanisms. The output heads process features to predict mask classes, while the final mask
is obtained by multiplying memory path and pixel path features. When applied to the UFBA-UESC
Dental Image dataset, our model exhibits a substantial improvement in segmentation performance,
surpassing existing state-of-the-art techniques in terms of performance and robustness. Our research
signifies an essential step forward in teeth segmentation and contributes to a deeper understanding
of oral structures.

Keywords: teeth segmentation; panoramic radiographs; mask-transformer-based networks; panoptic
segmentation

1. Introduction

Teeth segmentation is pivotal in the clinical diagnosis of oral diseases, offering essential
precision in surgical planning through the accurate delineation of teeth boundaries [1,2]. In
orthodontics, real-time information regarding teeth movement and root depths is crucial for
immediate assessment of a patient’s dental alignment and for accelerating the orthodontic
treatment cycle [3]. The prerequisite for achieving this is the precise segmentation of
teeth in dental panoramic X-ray images [4], which has additional applications in forensic
identification [5], age estimation, and the analysis of hidden dental structures, including
benign or malignant masses [6]. Dentistry extensively utilizes radiographic images for
diagnosis, given their comprehensive visualization of the internal structure of the mouth [7].
Extra-oral radiographs, encompassing panoramic and cephalometric images, capture the
complete dentition and surrounding areas, providing critical insights into a patient’s
teeth, as demonstrated in Figure 1. However, manual and semi-automated segmentation
approaches for teeth and tissues in these radiographs often prove time consuming, tedious,
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and subjective, with their efficacy heavily reliant on the dentist’s expertise. Additionally,
segmentation in low-quality image settings presents even greater challenges. Given these
circumstances, the development of an automatic, accurate, and efficient teeth segmentation
method is paramount.

(b) (c)

Figure 1. Types of X-ray images: (a) periapical X-ray; (b) bitewing X-ray; (c) panoramic X-ray.

Traditionally, teeth segmentation has been approached through semantic and instance
segmentation techniques [8,9]. While semantic segmentation classifies each pixel into
predefined classes without distinguishing between object instances, instance segmentation
offers a more comprehensive understanding by segmenting objects and distinguishing
each tooth object instance. Both category and instance labels are crucial in this context,
which has become a focal point in dental research. However, both proposal-based and
proposal-free instance segmentation approaches have their limitations. They often struggle
with differentiating object instances within the same category, particularly when objects
overlap, and preserving pixel-wise location information, which often results in coarse
mask boundaries.

Numerous attempts have been made to develop a highly accurate automatic teeth
segmentation algorithm [10,11]. However, teeth segmentation remains challenging due to
fuzzy boundaries caused by low contrast and noisy dental panoramic X-ray images. The
diversity of teeth conditions across different patients and the presence of dental instru-
ments, such as metal racks and dental implants, pose significant obstacles to achieving
accurate teeth segmentation. Recognizing these challenges, this research introduces a novel
approach based on panoptic segmentation [12]. Panoptic segmentation unifies the typically
disjoint tasks of semantic segmentation (identifying and classifying objects in an image)
and instance segmentation (segmenting individual instances of each object), offering a more
holistic and precise tooth and oral tissue segmentation strategy [13,14]. Several studies
have shown the effectiveness of panoptic segmentation for optimizing the performance of
deep-learning-based models [15-18].

We propose a panoptic-segmentation-based approach for instance teeth segmenta-
tion and surrounding tissue semantic segmentation. Panoptic segmentation, a unified
framework for semantic and instance segmentation, yields better Dice scores for teeth
segmentation by providing an improved context understanding, better discrimination of
close or touching instances, and consistent pixel-level labeling. This approach reduces false
positives and negatives by correctly segmenting teeth instances and accurately labeling
non-teeth regions, enhancing the overlap between prediction and ground truth, which the
Dice score measures. Our model employs a mask transformer to predict non-overlapping
masks and their corresponding semantic segmentation labels directly. The panoptic quality
(PQ) style loss is utilized to optimize the output masks and classes. More specifically, we
design the similarity metric between consecutive teeth-labeled masks as the product of their
masks and class similarity, inspired by the PQ definition. Moreover, the innovative strate-
gies proposed by groundbreaking works that use attention mechanisms, such as [19,20],
motivated us to incorporate attention modules into our proposed network.

We introduce a novel architecture to effectively train and infer using the mask trans-
former. Unlike traditional architectures [21,22] where the transformer is placed on top
of a convolutional neural network (CNN) [23], we adopt a dual-path framework that
effectively merges CNNs with transformers [24-27]. This allows CNN layers to read and
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write into global memory by incorporating memory-to-pixel attention (M2P), memory path
self-attention (M2M), pixel-path axial self-attention (P2P), and pixel-to-memory attention
(P2M). As a result, the transformer can be inserted at any position in the CNN to enable com-
munication with the global memory at any layer. The proposed architecture also employs
a stacked hourglass-style decoder [28,29] to aggregate multi-scale features and produce a
high-resolution output, which is then multiplied with the global memory feature to predict
the mask. The proposed framework significantly improves segmentation performance
and demonstrates the potential to be employed for teeth numbering. Rigorously evalu-
ated on the publicly available UFBA-UESC dental image dataset, our experimental results
demonstrate that the proposed model significantly outperforms existing state-of-the-art
techniques in terms of segmentation performance and robustness.

This paper is organized as follows: Section 2 provides the background and related
work. Section 3 offers a detailed description of the network and dataset. Section 3.4 is
dedicated to the experimental setup, and then Section 4 presents the results and discussion.
Finally, Section 5 concludes the paper and provides the future directions.

2. Related Work

There have been numerous attempts by researchers to develop teeth segmentation
techniques that can be applied to various types of radiographic images, such as panoramic,
periodical, and bitewing imaging. Silva et al. [30] presented a comparison of various
segmentation techniques applied in dental imaging, categorizing solutions into five groups
and evaluating them based on accuracy, specificity, precision, recall, and F1-score. However,
all these techniques struggled to fully segment the teeth due to the presence of the bone
structure inside the buccal cavity.

Classic image processing techniques have been utilized to address these challenges.
For instance, to counteract the problem of low contrast, Lin et al. [31,32] first enhanced the
image to distinguish between teeth and gums before applying edge extraction methods
for segmentation. In a similar vein, Chandran et al. [33] improved the quality of dental
images by applying CLAHE, followed by the Otsu threshold method for teeth segmentation.
Level set methods have been utilized by studies [34,35] to enhance the root contrast, thus
improving segmentation. Horizontal and vertical integral projection methods have also
been deployed, although their performance was not satisfactory [36,37].

Recently, deep learning (DL)-based techniques have garnered attention across various
industrial applications due to their impressive performance [38—40]. These applications
span object classification [41], segmentation [42—44], counting [45], medical image enhance-
ment [46,47], and object detection [48]. Specifically, in tasks such as object detection and
segmentation, DL-based methods have revolutionized the field [49]. As a result, several DL-
based techniques have been employed to enhance teeth segmentation in dental panoramic
X-ray images. While some studies have focused solely on the semantic segmentation of
teeth, limiting the level of detail for further processing steps in most automatic dental
analyses [30,50,51], others have identified teeth alongside segmentation, providing more in-
formation for automatic analysis. However, these instance segmentation techniques, which
typically consist of two stages, ROI/fuzzy boundary detection and teeth segmentation,
increase the complexity and are more prone to errors due to their cascading nature. The
errors from the first stage can propagate to the second, limiting the performance of these
methods. Additionally, the information obtained from instance segmentation may not be
sufficient for a comprehensive teeth analysis, as apart from intra-teeth segmentation, it is
crucial to accurately segment the teeth from other oral tissues.

For instance, Jader et al. [11] employed the mask-region-based convolutional neural
network (Mask-R-CNN) for instance segmentation. Their method, evaluated on a diverse
set of 1500 images, achieved an accuracy of 98%, an Fl-score of 88%, a precision of 94%, a
recall of 84%, and a specificity of 99% over 1224 unseen images, considerably outperform-
ing 10 unsupervised methods. However, the method was limited to teeth detection and
did not account for other issues such as dentures and areas with missing teeth. Similarly,
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Zhang et al. [52] utilized deep-learning-based methods to detect and classify teeth, merging
the Faster R-CNN and region-based fully convolutional networks (R-FCN) to identify com-
mon patient issues such as tooth loss, decay, and fillings. Similarly, Koch et al. [50] employed
the U-Net architecture in conjunction with an FCN for semantic segmentation of dental
panoramic radiographs and explored ways to improve segmentation performance, such
as network ensembling, test-time augmentation, bootstrapping of low-quality annotations,
and data symmetry exploitation. In their study, Lee et al. [53] utilized data augmentation
techniques such as rotation, flipping, Gaussian blur, and shear transformation to generate
1024 training samples from 30 radiographs. They implemented a fully deep learning method
using the Mask R-CNN model through a fine-tuning process to detect and localize tooth
structures, achieving an F1 score of 0.875 and a mean IoU of 0.877. Muresan et al. [54]
proposed a novel approach for automatic teeth detection and dental problem classification
using panoramic X-Ray images. They utilized a CNN model trained on their collected data
and employed image pre-processing techniques to refine segmentation, resulting in an F1
score of 0.93.

Building upon previous efforts, Zhao et al. [55] introduced a dual-stage scheme, TSAS-
Net, to address specific issues like fuzzy tooth boundaries resulting from poor contrast
and intensity distribution in dental panoramic X-rays. The method, tested on a dataset of
1500 radiographs, achieved an impressive accuracy of 96.94%, a Dice score of 92.72%, and
a recall of 93.77%. Kong et al. [56] have made a substantial contribution to the scientific
community by introducing a publicly available dataset that includes 2602 panoramic dental
X-ray images. Each image in the dataset is paired with expertly annotated segmentation
masks, thereby significantly enriching this resource. Harnessing the power of this dataset,
they engineered a proficient encoder—decoder network named EED-Net. This network is
specifically designed for the autonomous segmentation of the maxillofacial region, demon-
strating their innovative application of the dataset. Arora et al. [57] recently introduced
a multimodal encoder-based architecture, designed to extract a variety of features from
panoramic radiographs. These extracted features were subsequently processed through
a deconvolutional block to generate the final segmentation mask. By achieving precision
and recall rates of 95.01% and 94.06%, respectively, this approach outperformed other
leading methods.

In a different approach, Almalki et al. [58] utilized self-supervised learning methods,
such as SimMIM and UM-MAE, to boost model efficiency in comprehending a limited num-
ber of available dental radiographs. Their SimMIM method yielded the highest performance,
achieving 90.4% and 88.9% in detecting teeth and dental restorations and instance segmen-
tation, respectively. This outperformed the random initialization baseline by an average
precision increase of 13.4 and 12.8. However, the method’s requirement for extensive pa-
rameter fine-tuning creates challenges in achieving optimal results. Recently, Hou et al. [59]
proposed the Teeth U-Net model. This model combines a Squeeze-Excitation Module in
both the encoder and decoder, supplemented by a dense skip connection, in an attempt to
bridge the semantic gap. The model also includes a Multi-scale Aggregation attention Block
(MAB) in the bottleneck layer to effectively extract teeth shape features and adaptively fuse
multi-scale features. To incorporate dental feature information from a broader field of view,
they devised a Dilated Hybrid self-Attentive Block (DHAB) at the bottleneck layer. This
block is designed to suppress irrelevant background region information without increasing
the network parameters. Although the study showcased competitive performance on a
private dataset, it has not yet been evaluated on publicly available datasets.

Table 1 summarizes the strides made by the aforementioned studies towards accurately
segmenting teeth in panoramic radiographs.
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3. Materials and Methods
3.1. Datasets

Silva et al. [30] released the UFBA-UESC Dental Images Dataset, which initially con-
tained 1500 panoramic images along with semantic segmentation of teeth. Jader et al. [11]
later introduced instance segmentation, leading to the creation of the UFBA-UESC Dental
Images Deep dataset. This new dataset comprises a total of 276 images designated for
training and validation. Further development by Silva et al. [7] involved the addition of
tooth number information, resulting in a cumulative dataset of 543 images, inclusive of
those from the UFBA-UESC Deep dataset. Named the DNS (Detection, Numbering, and
Segmentation) Panoramic Images, this dataset comes equipped with binary masks and
annotations in the COCO format. Detailed information about the UFBA-UESC Dental
Images Dataset’s characteristics is depicted in Table 2.

Table 2. UFBA-UESC Dental Images Dataset characteristics. Note that v'and — represent the presence
and absence of category, respectively.

Category Restoration Appliance Teeth Numbers Image Numbers

1 v v 32 73
2 v - 32 220
3 - v 32 45
4 - - 32 140
5 - - 18 120
6 - - 37 170
7 v v 27 115
8 v - 29 457
9 - v 28 45
10 - - 28 115
Total - - - 1500

For our study, we adjusted the annotations of the DNS Panoramic Images dataset for
panoptic segmentation. We achieved this by merging the provided semantic and instance
labels and converting them into TFRecords for our experiment. This dataset served for
both training and validation, with 500 images set aside for the training set and 43 images
allocated for validation. Testing images were sourced from the original UFBA-UESC Dental
Images dataset.

Our research utilized the UFBA-UESC Dental Images Deep dataset [7]. This dataset is
accessible through a reasonable request made to the corresponding author (https://github.
com/IvisionLab /dns-panoramic-images-v2 (accessed on 2 May 2023)). Table 3 provides
comprehensive details regarding the dataset, such as the presence of thirty-two teeth,
restorations, and appliances, as well as the total number of images used for numbering,
instance segmentation, and SS. We excluded images from categories 5 and 6 due to the
presence of implants and deciduous teeth.

Table 3. Dataset characteristics used in this work. Note that v'and — represent the presence and
absence of the corresponding category, respectively.

Category 32 Teeth Restoration Appliance Number and Instance Segmentation Segmentation

1 v v v 23 57
2 v v - 174 80
3 v - v 42 11
4 v - - 92 68
7 - v v 36 87
8 - v - 128 355
9 - - v 14 33
10 - - - 34 87
Total - - - 543 778
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3.2. Network Architecture

The proposed model employs a network architecture comprised of three primary
components: a Transformer block, a stacked decoder, and output heads. This end-to-end
instance segmentation model predicts masks and their corresponding classes directly. In
this study, we utilize Mask Transformer-Based Networks (M-TransNet) integrated with PQ
Loss [62]. These networks function as instance segmentation models inspired by panoptic
segmentation. The M-TransNet directly predicts class-labeled masks for panoptic segmen-
tation, with PQ-style loss employed to train the model. This section also introduces the
dual-path transformer architecture and the auxiliary losses that significantly facilitate the
model’s training. A complete network diagram is displayed in Figure 2.
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Figure 2. The structure of the proposed framework. An image and global memory are input into a
dual-path transformer, which directly generates a collection of masks and classes (excluding residual
connections). A dual-path transformer block is designed with all four types of attention (M2P, M2M,
P2M, and P2P) between the two paths. On the right bottom side, the structure of the axial-attention
block is illustrated. The axial attention mechanism decomposes the 2D attention into two 1D attentions;
one applied along the height axis of the image, and the other applied along the width axis. By doing so,
it significantly reduces the complexity from quadratic to linear, which makes it more computationally
efficient.

3.2.1. Architecture Formulation

The overarching goal of panoptic segmentation is to segment every object in an image
I € RH*W>3 and assign a class label to each mask. The ground truth for a panoptic
segmentation model can be expressed as:

{yity = {(mi,ci) 1y (1)

where K represents the total number of non-overlapping ground truth masks n; € 0, 17"
and c; denotes the class label for each m;. The output from our proposed network should
precisely mirror the ground truth, thereby predicting the mask of each object alongside the
class labels.

AN PO N
{9i}izy = { (i, pi(e)) iz 2
where N remains constant and is greater than K, with p;(c) representing the probability of
mask m; being associated with class c. The network is optimized to assign an empty class

to masks where N exceeds K. The class label for each mask can be predicted by taking the
argmax of class probabilities:
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¢ = argmax(pj(c)) ®)

c

Similarly, the mask-ID can be assigned to each pixel by applying argmax again:

2h,w = argmax (i, h,w)Vh € 1,2,...,H, Ywel,2,...,W )

1

Each argmax is filtered using a confidence threshold. Masks or pixels with a low
confidence score are removed.

3.2.2. Transformer Block

The dual-path transformer module comprises two paths: a CNN path and a memory
path. The CNN path processes the input image and extracts features, while the memory
path stores information about the objects and their relationships within the scene. The
two paths communicate through a set of attention mechanisms, which allows the model to
selectively attend to different parts of the input and memory.

The CNN path within the dual-path transformer module is a standard convolutional
neural network that processes the input image and extracts features. The features are
passed through a series of convolutional layers, followed by a set of axial-attention blocks
that implement pixel-to-pixel (P2P) self-attention. The output of the CNN path is a feature
map encoding information about the input image.

The memory path in the dual-path transformer module is a memory-augmented
transformer that stores information about the objects and their relationships within the
scene. The memory is initialized with a set of learned object queries, which are used to
attend to the input feature map and extract object features. These object features are then
stored in the memory, along with their corresponding object queries. The memory is updated
at each time step using a set of memory update operations, which enable the model to reason
about the relationships between different objects in the scene.

The two paths in the dual-path transformer module communicate through a set of
attention mechanisms. These mechanisms enable the model to selectively attend to different
parts of the input and memory, allowing the model to reason about the relationships
between different parts of the image and memory.

By using a dual-path transformer module, the architecture effectively combines the
strengths of both CNNs and transformers for panoptic segmentation. The CNN path
extracts rich visual features from the input image, while the memory path reasons about
the relationships between different objects in the scene. The attention mechanisms facilitate
communication between the two paths, allowing the model to selectively attend to the
most relevant information for the task at hand.

3.2.3. Attention Mechanisms

The attention module in the network is a key component of the memory-augmented
transformer. It allows the model to selectively focus on different parts of the input image
and memory, based on their relevance to the task at hand. Specifically, the attention module
computes a set of attention weights for each position in the input feature map or memory,
based on its similarity to other positions. These weights are then used to compute a weighted
sum of the feature map or memory, which is passed through a feedforward network to
produce the final output.

The dual-path transformer block employs four types of attention to facilitate commu-
nication between the CNN path and the memory path:

*  Memory-to-pixel (M2P) attention: This type allows the model to attend to the memory
from the pixel path. It computes attention weights for each position in the input
feature map, based on its similarity to the memory.

e Memory-to-memory (M2M) self-attention: This type allows the model to attend to the
memory from the memory path. It computes attention weights for each position in
the memory, based on its similarity to other positions in the memory.
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*  Pixel-to-memory (P2M) feedback attention: This type allows the model to attend to
the memory from the pixel path, but also allows the memory to attend back to the
pixel path. It computes attention weights for each position in the memory, based on
its similarity to the input feature map.

e Pixel-to-pixel (P2P) self-attention: This type allows the model to attend to the input
feature map from the pixel path. It computes attention weights for each position in the
input feature map, based on its similarity to other positions in the input feature map.
In the network, P2P self-attention is implemented as axial-attention blocks, which are
more efficient than global 2D attention on high-resolution feature maps.

3.2.4. Decoder Block and Output Heads

The decoder block is stacked L times, iterating through output strides (4, 8, and
16 [63,64]) multiple times at each decoding resolution. It merges features by performing
bilinear resizing, simple summation, and applying either convolutional blocks or trans-
former blocks before moving to the next resolution. While it shares similarities with feature
pyramid networks [65,66] designed for pyramidal anchor predictions [67], the purpose
of our decoder block is solely to aggregate multi-scale features without directly using
intermediate pyramidal features for prediction.

The output heads are designed to make predictions from the processed features.
Following the stacked decoder, two fully connected layers (2FC) and a softmax function
predict mask classes using the memory feature of length N. For mask prediction, the
decoder block is followed by 2FC to obtain a memory path mask feature (f). The decoder
output at stride 4 passes through two convolution layers (2Conv) to generate the normalized
pixel path feature (g). The predicted mask is then obtained from the multiplication of f and

g, where f € RN*D and g € RP* 4 x5

3.2.5. Combining Outputs for Panoptic Segmentation

The network directly predicts class-labeled masks using a mask transformer, which
outputs a set of instance masks and a semantic mask. The instance masks represent the
pixels belonging to each object instance in the scene, while the semantic mask represents
the pixels belonging to each semantic class.

To obtain the final panoptic segmentation, the instance masks and the semantic mask
are combined using a post-processing step. Specifically, the instance masks are first grouped
into object instances using a clustering algorithm, such as mean-shift or DBSCAN. The
resulting object instances are then assigned a unique instance ID, used to distinguish them
from other object instances in the radiographs.

Next, the semantic mask is merged with the instance masks to obtain the final panoptic
segmentation of teeth. This is achieved by assigning each pixel in the semantic mask to the
object instance to which it belongs, based on the instance ID of the corresponding pixel in
the instance masks.

3.3. Loss Function

For training, we used a main loss function and auxiliary losses. Panoptic segmentation
comprises two main tasks: segmentation and recognition. Therefore, an optimal loss
function should check the quality of both. Our main loss function is a product of recognition
quality (RQ) and segmentation quality (5Q). The loss function basically maximises a
similarity metric over matched masks. One-to-one bipartite matching between the predicted
and ground truth masks is performed first, followed by the computation of the similarity
metric that can be given as:

sim (y;, ;) = pj(c;) x Dice(m;, 1it;) ®)
where sim(-, ) is the mask similarity metric between class-labelled ground truth mask
y; = (mj, ¢;) and predicted mask 7; = (1fj, pj(c)). The similarity metric ranges between 0
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and 1. The value will be 0 when the class is wrong or the masks do not overlap, while it will
be 1 when both the classes and masks match precisely. For mask matching, each predicted
mask is matched with the ground truth until maximum total similarity is achieved using
one-to-one bipartite matching, which is given as:

K
& = argmax ) _ sim (yl-, 90(1’)) (6)

ceSN i=1

where {ﬁl}f\i ; and {]/i},K: ; are the prediction and ground truth sets, respectively, and
o € By is the permutation of N elements that best assigns the predictions to obtain
maximum similarity. Considering the similarity metric and the mask-matching process,
the loss function can be given as:

LS = f Poiy(ci) - [_ Dice <mi' mﬁ(i))]

i=1~—~—
weight Dice loss v
p @
+ Z Dice (Wll’, ﬁ’l[,(i)) . {— log ﬁﬁ(i) (C,’)}
i=1
weight Cross-entropy loss

Intuitively, we optimize the dice loss weighed by class correctness and the cross-
entropy loss weighted by mask correctness as we want both class and mask to be correct at
the same time. Apart from L'IIZOQS for positive masks, we define a cross-entropy term Egng for
negative (unmatched) masks:

N

Ly = ) {—log ﬁfr(i)(g)] ®)
i=K+1

This term trains the model to predict & for negative masks. We balance the two terms
by a as a common practice to weight positive and negative samples:

Lpg = aLyS + (1 —a)Lpd 9)
where Lpg denotes our final PQ-style loss. In addition to the PQ-style loss, we also use
three other losses: (1) Instance discrimination, used while learning feature maps. This
loss helps cluster decoder features into instances. (2) Mask ID cross entropy, helps classify
each pixel into N masks. (3) Semantic segmentation loss, helps in separating the final
mask features.

3.4. Experimental Setup
3.4.1. Training
All experiments were conducted using the UFBA-UESC dataset. The proposed net-

work was implemented with the Tensorflow framework. Training was performed on an
NVIDIA RTX Titan GPU for 500 epochs.

3.4.2. Evaluation Parameters

The following evaluation metrics were used to compare our results with state-of-the-
art segmentation models, where the F1 score was mainly used as a reference since it can
give a better estimation of overall performance.

TP+ TN
A = 1
Y = TP+ FN + TN + EP (10)
e TN
Specificity = TN+ FDP (11)

26



Bioengineering 2023, 10, 843

TP
Precision = ———— 12
recision TP+ EP (12)
TP

2 X Precision x Recall
F1 Score = Precision + Recall (14)

4. Results

We evaluate the performance of our proposed network on the UFBA-UESC Dental
Images dataset. Our analysis includes both quantitative and qualitative assessments, com-
paring our results to those of other state-of-the-art techniques. This section provides a
comprehensive discussion of our evaluation results. Figure 3 presents a visual comparison
of instance segmentation results produced by various networks (i.e., PANet, HTC, Mask
R-CNN, ResNet, and our approach) alongside the ground truth.
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Figure 3. Comparison of teeth instance segmentation results for various networks—PANet, HTC,
Mask R-CNN, ResNet, and our proposed approach—alongside the ground truth.
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4.1. Ablation Study

We also performed an ablation study to understand the contribution of different
components of our network better. This study focused on a subset of the dataset and
examined changes in the F1-score, Precision, and Recall as we removed different components.
We have summarized the results in Table 4.

Table 4. Ablation study results.

Component Removed Accuracy F1-Score Precision Recall
None (Full model) 97.25 93.47 95.13 93.92
Transformer Block 95.68 91.34 92.81 90.53
Stacked Decoder 95.04 90.12 91.57 88.84
Output Heads 94.12 88.90 90.36 87.66
Pixel-to-Memory 95.32 90.77 92.20 89.48
Memory-to-Pixel 95.56 91.22 92.62 89.97

The ablation study provides valuable insights into the performance impact of each net-
work component. For instance, the transformer block greatly enhances the performance by
enabling efficient bi-directional communication between the pixel path CNN and memory
path. Similarly, the stacked decoder, which plays a critical role in aggregating multi-scale
features, helps to improve the accuracy of the segmentation output. The output heads are
responsible for predicting mask classes and have a direct impact on the network’s perfor-
mance. The pixel-to-memory (P2M) feedback attention, a component of the transformer
block, allows for the selective aggregation of information from memory, enabling the model
to capture context-aware features, thus leading to improved teeth segmentation. Both
the memory-to-pixel (M2P) and memory-to-memory (M2M) self-attention mechanisms
demonstrated their significance by capturing long-range dependencies within the memory
path and providing global context information.

4.2. Qualitative Analysis

To further substantiate our comparison, we visualized the results from our proposed
model. Figure 3 displays the instance segmentation results of various networks compared
to the ground truth. Our method demonstrates closer alignment with the ground truth,
indicating better performance in teeth instance segmentation tasks compared to the other
methods. Notably, our proposed network maintains a consistent performance across all
teeth, unlike the other networks. The synergistic benefits of the two tasks, SS and affinity
pyramid, primarily drive the improvement in instance segmentation performance. Figure 4
depicts the results of panoptic segmentation with the background class (semantic segmen-
tation) and tooth classes (instance segmentation). Figure 5 presents the precision—recall
curve, which is the average of precision and recall for all classes. Panoptic segmentation
improves the Dice score by also considering the surrounding tissues of teeth; thus, the loss
also takes into account the background segmentation to yield better results.

4.3. Comparison with State-of-the-Art Models

Next, we compared our model with state-of-the-art approaches in the context of
instance segmentation and SS. Table 5 demonstrates that our proposed framework outper-
forms all previously proposed methods. Mask R-CNN [30] and the TSAS-Net [55] have
both been utilized for teeth segmentation, while PANet [7] has achieved state-of-the-art
results. However, our approach surpasses these existing methods by capturing hidden
patterns more effectively and providing more accurate segmentation of human teeth, even
in challenging scenarios like overlapping teeth masks.
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Figure 4. Showcasing the best panoptic segmentation results that encompass both the semantic

segmentation of the background class and the instance segmentation of the teeth classes.
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Figure 5. Precision—recall curve.

Table 5. Comparison with state-of-the-art methods, the best results are indicated in bold.

Method Accuracy Specificity Precision Recall F1-Score = mAvP AvP50 AvP75
Mask R-CNN [30] 92.08 96.12 83.73 76.19 7944  664+07 969+02 85110
TSAS-Net [55] 96.94 97.81 94.97 93.77 9272 70901 977+01 89.7+05
PANet [7] 96.7 98.7 94.4 89.1 91.6 71.3+03 975+03 88.0+0.2
HTC 96 98.5 93.7 85.9 89.6 637+14 97.0+00 822+20

UNet 96.04 97.68 89.89 90.18 89.33 67.0+05 963+02 87.7+0.9
Ours 97.25 97.65 95.13 93.92 93.47 71.5+£0.2 981+04 89.2+0.1

We further evaluated the performance of our proposed method in comparison to
previously published studies related to teeth segmentation in panoramic radiographs.
Table 6 summarizes the results, which underscore the remarkable performance of our
proposed scheme. Given the impressive performance of our framework, as substantiated
by our experimental results, we assert that our proposal has established a new state of the
art in teeth segmentation.
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Table 6. Comparison with previously published studies, the best results are indicated in bold.

Method Accuracy  Specificity =~ Precision =~ Recall =~ F1-Score
Wirtz et al. [51] - - 79 82.7 80.3
Lee et al. [53] - - 85.8 89.3 87.5
Arora et al. [57] 96.06 99.92 95.01 93.06 91.6
Fatima et al. [68] - - 86 87 84
Karaoglu et al. [69] - - 93.33 93.33 93.16
Proposed Method 97.25 97.65 95.13 93.92 93.47

4.4. Limitations

Our proposed method seeks to achieve instance segmentation of teeth in panoramic
radiographs by leveraging an end-to-end model specifically designed for panoptic seg-
mentation. This innovative approach unifies semantic and instance segmentation tasks,
introducing a dual-path architecture that adds a global memory path to the conventional
CNN path. This unique setup facilitates direct communication across all CNN layers.
The architecture explicitly crafted for panoptic segmentation leverages novel objectives,
providing equal treatment to both semantic regions and instance objects. As a result, the
proposed scheme significantly enhances the instance segmentation performance of teeth
in panoramic radiographs. Despite these notable advancements, the proposed approach
does introduce certain challenges. One key limitation lies in its additional computational
complexity, which may impede real-time clinical applications. Furthermore, our evaluation
of the proposed method relies solely on a single dataset. This limited scope constrains
a comprehensive assessment of the scheme’s generalization capabilities, restricting its
potential for a more universally applicable evaluation.

5. Conclusions and Future Directions

We have applied a panoptic segmentation strategy to conduct instance segmentation of
teeth in panoramic radiographs. Our approach uniquely intertwines the instance segmen-
tation of teeth with the semantic segmentation of the background, enhancing intra-teeth
classification and enabling our architecture to accurately distinguish teeth from oral tissue.
Our method incorporates an end-to-end deep learning model, which leverages a mask
transformer to predict class-labelled masks directly. This is accomplished via a dual-path
architecture that introduces an additional global memory path alongside the CNN path,
thus enabling direct communication with any CNN layer. We trained our model utilizing
a panoptic-quality-inspired loss through bipartite matching. As a result, our proposed
framework attains a significantly improved segmentation performance, which also proves
beneficial for teeth numbering. The proposed method underwent rigorous evaluation
on the publicly accessible UFBA-UESC Dental Image dataset. The experimental results
validate that our proposed model outstrips existing state-of-the-art techniques in terms of
segmentation performance and robustness.

Looking ahead, our future work aims to further enhance the dual-path-based mask
transformer architecture. A key focus will be enabling the numbering of teeth in panoramic
radiographs, a crucial factor for accurate tooth identification that significantly aids in
diagnosis, treatment planning, and effective communication among dental professionals.
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Abstract: Accurate noninvasive diagnosis of retinal disorders is required for appropriate treatment
or precision medicine. This work proposes a multi-stage classification network built on a multi-scale
(pyramidal) feature ensemble architecture for retinal image classification using optical coherence
tomography (OCT) images. First, a scale-adaptive neural network is developed to produce multi-
scale inputs for feature extraction and ensemble learning. The larger input sizes yield more global
information, while the smaller input sizes focus on local details. Then, a feature-rich pyramidal
architecture is designed to extract multi-scale features as inputs using DenseNet as the backbone. The
advantage of the hierarchical structure is that it allows the system to extract multi-scale, information-
rich features for the accurate classification of retinal disorders. Evaluation on two public OCT
datasets containing normal and abnormal retinas (e.g., diabetic macular edema (DME), choroidal
neovascularization (CNV), age-related macular degeneration (AMD), and Drusen) and comparison
against recent networks demonstrates the advantages of the proposed architecture’s ability to produce
feature-rich classification with average accuracy of 97.78%, 96.83%, and 94.26% for the first (binary)
stage, second (three-class) stage, and all-at-once (four-class) classification, respectively, using cross-
validation experiments using the first dataset. In the second dataset, our system showed an overall
accuracy, sensitivity, and specificity of 99.69%, 99.71%, and 99.87%, respectively. Overall, the tangible
advantages of the proposed network for enhanced feature learning might be used in various medical
image classification tasks where scale-invariant features are crucial for precise diagnosis.

Keywords: ensemble learning; OCT; pyramidal network; feature fusion; scale-adaptive

1. Introduction

Specialized non-invasive imaging techniques are extensively utilized in clinical re-
search to detect/diagnose retinal diseases that may lead to vision loss. In practice, different
image types are exploited for that purpose, including optical coherence tomography (OCT),
fundus photography, OCT angiography (OCTA), etc. The OCT-based imaging technique in
particular is widely exploited in clinical practice due to its ability to produce high-resolution
cross-sectional images of the retina, which greatly help in the assessment of several reti-
nal diseases [1,2]. However, due to the complexity and variability of the image features,
accurate classification of OCT images is challenging. Developing an accurate diagnostic
system for diseases is clinically essential for personalized medicine [3]. Furthermore, retinal
disease diagnosis is a critical target since it is almost entirely subjective and the appropriate
treatment path to effectively manage retina diseases relies on the accuracy of the diagnosis.

Retinal image diagnosis has shown an increased interest recently from various re-
search groups. A large volume of research work has shown promising results in improving
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the accuracy and efficiency of OCT-based image analysis [4]. The accuracy of OCT image
classification has shown considerable promise when using machine learning (ML) tech-
niques. Particularly, the use of deep learning (DL) can optimize solutions to several complex
classification problems [5]. DL-based techniques have the potential to perform efficient
classification as well as segmentation of various structures (e.g., drusen) and grading of
OCT images [6-9].

In recent years, several ML /DL research papers have been published on retinal image
classification for various diseases, e.g., age-related macular degeneration (AMD), diabetic
retinopathy (DR), diabetic macular edema (DME), and choroidal neovascularization (CNV).
A few papers have proposed ensemble methods to improve the overall accuracy of retinal
image classification tasks for macular diseases (e.g., AMD, CNV, DR, DME, etc.) by combin-
ing multiple DL models. For example, multi-step techniques for DR diagnosis using OCT
were proposed by Elgafi et al. [10]. The system sequentially segments the retinal layers, ex-
tracts 3D retinal features, and uses a multilayer perceptron (MLP) for classification using the
extracted features. In a leave-one-subject-out evaluation, their system achieved an accuracy
of 96.81%. A similar approach with the addition of a feature selection step using the Firefly
algorithm was proposed in Reference [11] by Ozdas et al. Multiple binary classifications
were conducted using two public datasets and achieved a mean accuracy of 0.957 and 0.954,
respectively. A multi-scale convolutional mixture of expert (MCME) ensemble models was
proposed in Reference [12] by Rasti et al. to separate the normal retina from DME and dry
AMD. The authors also introduced a new cost function for discriminative and fast learning.
The system has been evaluated on a total of 193 subjects and demonstrated a precision rate
and area under the curve (AUC) of 98.86% and 0.9985, respectively. Ai et al. [13] proposed
a fusion network (FN)-based disease detection algorithm for retinal OCT images. They
utilized InceptionV3, Inception-ResNet, and Xception DL algorithms as base classifiers,
each accompanied by an attention mechanism. Multiple prediction-fusion strategies were
employed to output the final prediction results. Comparison to other algorithms showed
improved accuracy in the classification of the diseases. A shallow network of only five
layers was introduced by Ara et al. in Reference [14] for OCT-B scan classification. The au-
thors investigated the effects of image augmentation as well as deeper networks on final
classification. The approach reduced computational time by 16.5% based on the model size,
and data augmentation yielded improved accuracy.

A study by Tvenning et al. [15] utilized a DL-based method for AMD identification on
OCT scans. The neural architecture, so-called OptiNet, integrates classical DL networks
and different parallel layer-wise modules created from filter features. The systems have
been evaluated on 600 AMD cases and documented the ability of the deep network to
detect alterations in retinal scan regions that correspond to the retinal nerve fiber and
choroid layers, which can be linked to AMD. Another CNN-based approach for macu-
lar disease classification was proposed by Mishra et al. [16]. the authors introduced a
deformation-aware attention-based module to encode crucial morphological variations
of retinal layers. The proposed module was integrated into a transfer-learning(TL)-based
deep network. The main advantage of the proposed approach is that it is void of pre-
processing steps, and the results showed superior performance over competing methods.
Another attention-based architecture was proposed by Huang et al. in Reference [17].
Due to the ability of their global attention block (GAB) to focus on lesion locations in the
OCTs, the authors proposed a lightweight classification network model. Evaluation on
the public UCSD dataset has demonstrated superior classification compared to commonly
used attention mechanisms. S.-Paima et al. [18] developed a two-stage multi-scale method
for classifying AMD-related pathologies using different backbone models. Hierarchical
features were extracted from the input images. This end-to-end model employed a single
convolutional neural network (CNN) model to extract different-sized features which were
then fused for classification. Two sets of datasets were used: 12,649 images from NCH and
108,312 images from UCSD [19]. Using pre-trained ImageNet weights, the model accuracy
was 92.0% =+ 1.6%, which was boosted 93.4% =+ 1.4% in stage two by fine-tuning the model.
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A multi-scale deep feature fusion (MDFF) approach was introduced by Das et al. [20].
The model leveraged the fusion of features from multiple scales—thereby capturing the
inter-scale variations in images in order to introduce discriminative and complementary
features—and employed transfer learning to reduce training parameters. TL, however,
reduces dependence and has poor adaptation to the differences among different datasets.
Similarly, Li et al. [21] used a deep TL-based method to fine-tune the pre-trained VGG-16
in order to classify 109,312 images and thereby obtained a prediction accuracy of 98.6%.
The validation dataset was also used as the testing dataset, so the reported performance
could be biased, and training the model on inadequate amounts of data makes it susceptible
to overfitting.

Wang et al. tested and evaluated five neural network structures for OCT diagnosis [22]
(DenseNet121, ResNet50, DPN92, ResNext101, CliqueNet), and VGG16, VGG19, inception-
V3 neural networks, and support vector machine (SVM) methods were added in order to
improve experimental comparisons. The network was fine-tuned using features extracted
from the OCT dataset, and evaluation was carried out using two public datasets of 3231
and 5084 images, respectively. The dataset used for this experiment consists of eyeball
images, not just retina images from OCT; thus, the pre-processing required for the screening
of images and the size of the block is time-consuming, and training takes much longer.

Smitha et al. [23] introduced a GAN-based system for retinal disorder diagnosis in
which the discriminator classifies the image into normal or abnormal categories. Their
method employed denoising enhancement of the retinal layers as a pre-processing step.
Two datasets were used for evaluation. Overall accuracy was 83.12% on a small dataset
(3980 images: DME, dry AMD, and NORMAL) with low training parameters and 92.42%
on a larger dataset (83,605 images: CNV, DME, NORMAL, and Drusen) with larger train-
ing parameters. The shortcomings of this method are that segmentation output greatly
depends on the quality of the ground-truth images and that image denoising has a high
probability of overfitting and thus does not enhance the generalization ability of the classi-
fier. Tsuji et al. [24] constructed a network that utilized the capsule network to improve
classification accuracy. Their architrave was built on six convolutional layers (CL) and one
primary capsule network. Additionally, four CLs were added to the capsule network archi-
tecture of two CLs and one fully connected (FC) layer. Their method achieved an accuracy
of 99.6%. The network requires a fixed-input image of 512 x 512. Resizing utilized linear
interpolation, which causes some undesirable softening of details and can still produce
somewhat jagged images.

In order to detect and grade the severity of DR, Reddy et al. [25] introduced a hybrid
deep architecture that utilized a modified grey wolf optimizer with variable weights and
attention modules to extract disease-specific features. The hybrid system aided in the joint
DR-DME classification on the publicly available IDRiD dataset and achieved detection
accuracy rates of 96.0%, 93.2%, and 92.23% for DR, DME, and joint DR-DME, respectively.
Upadhyay et al. designed a cohesive CNN approach. The shallow-network (five-layered)
layers were cohesively linked to allow for a smooth flow of image features, and batch
normalization was instilled along with every activity layer. The approach obtained an
accuracy of 97.19% for retinal disease detection for four-class classification [26]. A hybrid
fully dense fusion CNN (FD-CNN) architecture was developed by Kayadibi et al. [27]
to detect retinal diseases. They first employed a dual hybrid speckle reduction filter to
diminish OCTs speckle noise followed by the FD-CNN to extract features. The classification
was performed by deep SVM (D-SVM) and deep K-nearest neighbor (D-KNN) classifiers.
The hybrid FD-CNN showed significant performance improvement compared to the single
performance of CNN.

In summary, the existing literature proposes various techniques, and it is important to
note that the results of these papers vary depending on the specific task, dataset, and the
DL technique used. Most of the existing literature used larger datasets while using pre-
trained models, and some methods employed direct fusion for multi-scale predictions.
Furthermore, features related to the higher-order reflectivity of the OCT images were
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not utilized in conjunction with deeper features, and cascaded classification was not
investigated. This paper proposes a multi-stage classification of OCT image features
that integrates discriminatory features through a multi-resolution feature pyramid with
a scale adaptation module. The proposed cascaded multi-stage classification system is
divided into two main steps (Figure 1). First, a scale adaptation network module is used to
obtain various image scales for ensemble learning. Second, a transfer learning approach is
utilized to extract features from OCT images using a pyramidal structure that allows for the
extraction of differently scaled features from the same image dataset. Finally, the extracted
features from three different scales of input images are fused to produce a single feature
for classification. This fused feature has a rich concentration of local and global features at
different levels. Using the one-vs.-rest (OVR) classifier, a binary classification of normal vs.
abnormal (CNV, DME, or Drusen) is trained at the first stage, and the abnormal outputs are
further passed through the same classification pipeline using different classifier algorithms
to differentiate the classes in the second stage.
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Figure 1. Schematic of the proposed multi-stage (A) and multi-resolution deep architecture model

Classification
Network

(B) for retinal disorders diagnosis using OCT scans.

The main contributions of this work are as follows: (i) we designed a multi-scale,
pyramidal, feature-rich input, as compared to single-scale, through the ensemble/fusion
of multi-resolution features for classification; (ii) in order to extract prominent features
from the input image, we adopted a scale-adaptive network architecture for generating
the multi-scale input images instead of using image resizing; (iii) we utilized a transfer
learning technique to extract the features in order to facilitate intermediate feature learning;
(iv) we used a two-stage classification approach for a global (binary: normal vs. abnormal)
and multi-disease classification overall pipeline fusing both lower- and higher-scale fea-
tures; (v) we improved classification accuracy for both binary and multi-class scenarios
using cross-validation despite the great overlap among the extracted features from the
OCT images.

This manuscript is partitioned into four sections. An introduction to OCT and its role
in retinal disease diagnosis in modern CAD systems is given in Section 1. This is followed
by a relevant review of the recent literature work on this topic as well as the paper’s
contributions. The materials and methods used along with specifics on the structure of
the developed pyramidal architecture are fully detailed in Section 2. The dataset used,
the employed performance criteria, the experimental design, the network parameters, the
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results, and a discussion are given in Section 3. At last, Section 4 provides work conclusions
and limitations and future work suggestions.

2. Materials and Methods

In order to obtain better predictive performance, we developed a two-stage framework
that includes pyramidal feature extraction, multiresolution feature ensemble, and classifica-
tion. The input to the designed system is retinal OCT images obtained from two publicly
available datasets. The proposed architecture provides both global (normal vs. abnormal)
and stratified abnormal classifications. The proposed network architecture is schematized
in Figure 1 with details described below.

OCT images that are collected from different imaging systems have different sizes,
and using TL for the pre-trained network requires downscaling of the input images to
fit the employed pre-trained model’s input. Unfortunately, downscaling exhibits the loss
of important information from images. In order to account for this, we developed an
autoencoder (AE)-based resizing module that accepts OCT images of any size and resizes
them for use with pre-trained backbones when applying transfer learning. AE networks
are considered unsupervised methods (no labels) that learn a latent-space (compressed)
representation of the training data. The main advantage of AE neural architecture is its
ability to filter out the noise and irrelevant information while reconstructing its output with
minimal information losses. In our design, the AE module aims to resize the input images
for use as an input in a pre-trained feature extraction ensemble architecture.

The AE module is used to generate three different image scales for the proposed
pyramidal feature extraction and ensemble learning (i.e., 224 x 224 x 3,112 x 112 x 3 and
56 x 56 x 3). The module architecture is shown in Figure 2. The encoding path consists of
consecutive convolution and pooling layers, which produce the feature map Far of size
224 x 224 x 3. F4f is then processed through CL, transposed convolutional, and reshaped
to 224 x 224 x 12. Original and processed F4gs are integrated using the concatenation layer
to produce both high and low-resolution images. The former is generated from F4r and
is fed to the pyramidal feature extraction network. The latter is required for the module
training phase in order to ensure that the reconstruction error between the module’s output
and the original input image is minimal, i.e., the network learns important features from
the inputs and discards redundancy and noise.

Input Reconstruction Reconstructed
Image Error Minimization . Image
(high Resolution)
—

Encoder Decoder

>

AE-Resized Image
(Low Resolution)

Figure 2. Illustration of the autoencoder-based size adaptation network.

For AE module training, a custom loss that combines two pseudo-Huber loss functions
and a log-cosh loss function for high resolution and low resolution, respectively, is used.
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Pseudo-Huber loss is more robust against outliers. Its behaviors for small and large errors
resemble squared and absolute losses, respectively, and are defined mathematically as [28]:

pHuber(x) = &2 (1/1 n (g)z - 1) )

Here, x is the difference between the actual and predicted values and J is a tunable
hyper-parameter. On the other hand, the log-cosh loss function logcosh(x) = log(cosh(x))
is similar to Huber loss, but it is double differentiable everywhere [29]. Again, x is the
difference between the actual and predicted values.

Following the AE-based resizing, the feature extraction step is performed for both
global or binary (normal vs. abnormal) as well as for multiclass (CNV vs. DME vs. Drusen)
classification of OCT images. At this stage, extraction of discriminating features from the
retinal images is performed using pyramidal DL-based architecture. In order to achieve
feature-rich classification as compared to single-level networks, a pyramidal DL system
is proposed to extract various information to help with multi-class classification tasks;
see Figure 1A. Namely, retinal images are resized using the AE module at three different
scales (224 x 224,112 x 112 and 56 x 56). Then, each of the pyramidal CNNs constructs a
hierarchical representation of the input images that is then used to build a feature vector
which in turn is eventually fused as a feature for the classification task. Although encoders
in a wide variety of famous DL networks create a pyramidal feature that can be fused [18],
the performance depends on fusion techniques. Thus, we chose to fuse the features of
several networks in order to improve the semantic representation of the proposed model.

The proposed architecture, Figure 1, can be seen as a multiresolution feature ensemble
in which each CNN path utilizes transfer learning. Transfer learning is a great way to
obtain significant results in a classification problem with low data volume. We adopted
the pre-trained DenseNet201 model [30] in this work as the backbone of our pyramidal
network. DenseNet has performed brilliantly on a variety of datasets and applications
where direct connections from all previous layers to all following layers are established;
Figure 3. This not only provides ease of training by facilitating feature reuse by different
layers and improving connectivity but also increases the variance in later-layer inputs and
thus enhances performance [31].

d N

g ] g g
5] o o o

Input 5 5 5 5 To other
7 & & & layers
& & & &

Figure 3. layered dense block representing direct connections between layers.

Dense blocks are formed in the network design for downsampling purposes and are
separated by layers known as transition layers. The latter help the network to learn interme-
diate features and consists of batch normalization (BN), 1 x 1 convolution layers, and finally,
a 2 x 2 average pooling layer. The BN stabilizes and speeds up the training process. A given
feature map at layer | can be described mathematically as Y = Ry ([Y?, Y!,...... Y1)
where: Ry: is a non-linear transformation comprised of BN, a nonlinearity, and a convolu-

tionof 3 x 3. | YO, Y1,...... ,Y!~1| refers to the feature map concatenation corresponding

to layers 0 through (I — 1) that are incorporated in a single layer.
Another hyperparameter, k, specifies the growth rate, or the rate at which the layer’s
size in individual blocks of the network grows. It can be visualized as a regulator controlling
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the flow of information in successive layers to reach state-of-the-art results. For instance,
when k = 11, a filter size of 11 is used at each layer in an individual block. Generally,
DenseNet performs well when smaller k are used, as the architecture considers feature maps
as the network’s global state. As a result, each subsequent layer has access to all previous
layers’ feature maps. Each layer adds k feature maps to the global state, with the total
number of input feature maps at the I-th layer (FM)! is defined as (FM)" = k* + k(I — 1),
where the channels in the input layer are determined by k°.

In order to enhance computational efficiency, a 1 x 1 convolution layer is added before
each 3 x 3 convolution layer (see Figure 4) to reduce the number of input feature maps,
which is often greater than the number of k output feature maps [32]. The global pooling
layer pools the input features’ overall spatial locations at the end of each DenseNet path.
The resulting vectors are then used to obtain the feature representations of the training and
testing images and are fused for classification.

o
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Figure 4. Layered Architecture of DenseNet201.

Finally, once all feature vectors for all three CNNs are constructed, they are fused
(concatenated) to form predictor variables in a classification network. Features are extracted
from pyramidal CNNss at the last layer just before the fully-connected layer. Since we used
a pre-trained model, the number of features is typically fixed and is not affected by the
input image size or other factors during inference. The size of the feature vectors for the
three scales was 1920 individually (5760 after fusion). For classification, we used different
classifiers in the first stage (binary) to classify the dataset into normal and abnormal as
well as in the second stage (multiclass) to further differentiate the abnormal into three
different classes. Namely, we used multilayer perceptron (MLP), logistic regression (LR),
SVM, decision tree (DT), random forest (RF), and Naive Bayes (NB) [33,34]. LR is a
predictive analysis classifier that uses the Sigmoid function to predict input features and
corresponding weight into a probabilistic output. SVM finds a hyperplane in N-dimensional
space (N is a number of features) that distinctly classifies the data points of classes using
the maximum margin. Although commonly used in data mining to reach a goal, DT is a
supervised learning tree-structured classifier that predicts the value of a target variable
by learning simple decision rules inferred from the data features. Similarly to DT, RF
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builds decision trees from various samples and takes the average to improve the predictive
accuracy of that dataset. Finally, NB is a probabilistic ML classifier built on the Bayes
theorem that predicts the probability of belonging to the “A” class given that “B” has
occurred. The features are independent of each other, bringing about the name Naive.

3. Experimental Results and Discussion

Evaluation to assess the proposed system is performed using various experiments on
a UCSD dataset, and both binary and multi-class classification stages have been conducted.
The first classification stage (binary) classifies the image as either a normal or abnormal
retina, and the second (or the multi-class) stage stratifies the input image as either DME,
CNYV, or Drusen. The pyramidal CNNs were trained on publicly available datasets [19].
The dataset contains OCT images (Spectralis OCT, Heidelberg Engineering, Germany) from
retrospective cohorts of adult patients provided by the Shiley Eye Institute of the Univer-
sity of California San Diego, the California Retinal Research Foundation, Medical Center
Ophthalmology Associates, the Shanghai First People’s Hospital, and Beijing Tongren Eye
Center [19]. About 108K OCTs in total for four classes (CNV: 37,206, DME: 11,349, Drusen:
8617, normal: 51,140) and the testing set containing 1000 retinal OCT images (250 from
each class) are available from Reference [35]. We used Jupyter Notebook to implement the
software on a Dell Precision 3650 Tower x64-based workstation with an Intel Core(TM)
eight-core CPU running at 2.50 GHz, 64 GB RAM, and with NVIDIA RTX A5000 GPU.

The multilayer perceptron (MLP) pyramidal networks were trained over 50 epochs
with a batch size of 128. Additionally, a 5-fold cross-validation strategy was utilized as an
unbiased estimator to assess the performance of our ensemble model against other methods.
The use of cross-validation partially reduces problems of overfitting or selection bias and
also provides insights on how deep architecture will generalize to an independent dataset.
Both training and testing data were mixed and cross-validation was employed on the
total dataset. All of the dense layers for both the first and second stages used the rectified
linear unit (ReLU) as their activation function. Binary cross-entropy for the first stage and
sparse categorical cross-entropy for the second stage were utilized as the loss function. An
Adam optimizer was employed with a learning rate starting at 0.001, and this was reduced
automatically during the training phase in order to improve results whenever the loss
metric had stopped improving on both stages. Total network parameters of 1,665,197 out of
1,665,397 parameters were used for training in the first stage and 3,041,711 out of 3,041,911
for the second stage.

We first investigated the first stage for the global (i.e., binary) classification of the
retinal images as normal or abnormal. This step mimics human perception of separate
groups. Evaluation of the proposed pipeline performance is conducted using known
classification metrics, such as accuracy, sensitivity, specificity, and AUC of the receiver
operating curve (ROC). Those metrics are defined in terms of experiments” outcomes of
true positive (TP), true negative (TN), false positive (FP), and false negative (FN) as follows:

__TN+TP TP TN o
~ TN+TP+EN+FP” " = TP+FN’

Different ML classifiers were further employed for both stages, and our overall
MLP model accuracy performance for both stages is demonstrated in Table 1 for the
5 folds. For the ML classifiers, default parameters were used for the classification. SVM
(kernel = 'rbf” and decision function = "OVR’), DT (criterion = ‘gini’, splitter = ‘best’, none
for others), RF (criterion = 'gini’, estimator = "100"), NB (priors = 'none’, smoothing = "1e-9")
but for LR (solver = ‘liblinear’).

As can readily be seen, MLP performed best (97.79% accuracy in the first stage and
96.83% in the second stage) among the other classifiers. This is mainly due to its capability
to learn complex nonlinear patterns by amplifying relevant aspects of input data and
suppressing irrelevant information [36]. Additionally, confusion matrices were used as
an alternative quantitative evaluation. Figure 5 shows our network’s confusion matrix

Acc
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for different classifiers in the first stage using 5-fold cross-validation. Network evaluation
and monitoring benefit from confusion matrices. From the obtained confusion matrix,
other indices such as precision, f1 score, and recall can be derived. For the assessment
evaluation of classification models, both the confusion matrix and related metrics are
typically employed together.

Table 1. Performance of different classifiers for the proposed cascaded classifications all well as for
all-at-once (four classes) classification using 5-fold cross validation on the UCSD dataset. LR: logistic
regression; SVM: support vector machine; DT: decision tree, RF: random forest; NB: Naive Bayes,
and MLP: multilayer perceptron.

First Stage (Binary) Second Stage (3-Classes) 4-Classes
Classifiers Acc% Sen% Spc% AUC% Acc% Sen% Spc% Acc% Sen% Spc%
MLP 97.79 95.55 99.72 99.86 96.83 97.75 98.87 94.26 96.29 98.74
LR 89.23 87.00 95.77 97.47 89.34 88.69 93.99 85.95 86.08 9491
SVM 90.33 85.80 96.29 97.98 89.47 89.68 94.56 86.53 85.72 94.79
DT 80.14 69.72 89.32 78.80 69.92 67.15 81.67 65.22 65.55 85.15
RF 85.40 92.53 90.20 97.04 84.62 84.57 91.61 81.10 80.11 92.82
NB 73.71 54.04 94.70 87.90 67.46 67.46 81.00 63.82 63.75 84.35
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Figure 5. Confusion matrices for the first stage using 5-fold cross validation on the UCSD dataset.

Binary classification is an initial step in any treatment procedure by retina specialists.
However, personalized medicine would require the determination of the disease and,
more appropriately, its grade. Thus, the second set of experiments investigated multi-
class classification (DME vs. CNV vs. Drusen). The results for different classifiers are
summarized in the middle part of Table 1, and the second stage confusion matrices are
depicted in Figure 6. Moreover, in order to demonstrate the efficacy of the pipeline to
separate the four classes, we performed an additional experiment using cross-validation
on the UCSD dataset. The model accuracy using the evaluation metrics is given in the
right part of Table 1, and the confusion matrices are given in Figure 7. Besides accuracy
metrics, the system’s accuracy and robustness are confirmed using the receiver operating
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characteristics (ROC) curves in Figure 8. The figure depicts the ROCs for the proposed
cascaded classification network for the first stage (Figure 8a), the second stage (Figure 8b),
and all-at-once classification (Figure 8c).
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Figure 6. Confusion matrices for different classifiers for the second stage (i.e., three classes using
5-fold cross-validation on UCSD data set.
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Figure 7. Confusion matrices for the four classes using 5-fold cross-validation on the UCSD dataset.

44



Bioengineering 2023, 10, 823

True Positive Rate

ROC Curve Analysis (Second Stage)

1.0
ROC Curve Analysis (First Stage) f' ,,’/
1.04 /’
( ’
,/
0.9 0.8 - >
.
L
0.8 g e
© 4
0.7 4 & o6 e
(7] i
0.6 = %
-0 7 = ’
© ’/
[s] #
0.5 -
B g4 v
1] s
0.4 =] 4
—
isti i = ~
03 — Logistic Regression, AUC=0.975 e
’ — SVM, AUC=0.980 0.2 ,/
0.2 —— Decision Tree, AUC=0.788 /’ ROC curve for CNV (AUC = 1.00)
—— Random Forest, AUC=0.970 e ROC curve for DME {AUC = 1.00)
011 —— Naive Bayes, AUC=0.879 o —— ROC curve for DRUSEN (AUC = 1.00)
0.0 4 —— MLP, AUC=0.999 0.0 ——- ROC curve for chance level (AUC = 0.5)
T T T T T T
b0 01 ©02 03 04 05 06 07 08 09 10 0.0 0.2 04 06 0.8 1.0
False Positive Rate False Positive Rate
(a) (b)
ROC Curve Analysis (4 Classes) ROC Curve Analysis (4 Classes_Test Data)
1.0 4 1.0 4
” r‘ ’/
4 s,
4 ﬁ s
- '
4 n
’ s
4 ’
4 #
0.8 e 0.8 - S
s rd
’ s,
/’ ,I
8 4 B s
2 - ] e
0.6~ -~ < 06 e
] ,f o L
> e > S
= yd = S
wn S ‘n s
o s o] e
A 04 e B g4 -~
g /’ % ,/
4 s
= x = y
rd td
/’ /I
0.2 ’/ ROC curve for CNV (AUC = 0.99) 0.2 // ROC curve for CNV (AUC = 0.99)
- ROC curve for DME (AUC = 0.97) ,,’ ROC curve for DME (AUC = 1.00)
,/ —— ROC curve for DRUSEN (AUC = 0.96) 4 —— ROC curve for DRUSEN (AUC = 0.99)
R —— ROC curve for NORMAL (AUC = 0.98) e —— ROC curve for NORMAL (AUC = 1.00)
0.0 ——- ROC curve for chance level (AUC = 0.5) 0.0 q ——- ROC curve for chance level (AUC = 0.5)
0.‘0 0:2 0.‘4 0.‘6 0:8 l.‘O 0.0 0.2 0.4 0.6 0.8 10
False Positive Rate False Positive Rate
(c) (d)

Figure 8. The receiver operating characteristic (ROC) curves for the proposed cascaded framework
using cross-validation on the UCSD dataset: (a) binary classification using different classifiers;
(b) second-stage classification OVR using the MLP. Furthermore, the figure shows the ROCs for
all-at-once four-class classification using the MLP for (c) cross-validation and (d) test dataset only.

According to Table 1 and the confusion matrices in Figures 5-7, binary classification
demonstrated the highest accuracy compared with the second stage and all-at-once clas-
sification. This is an important aspect of the presented cascaded classification structure
that aligns with clinical diagnostics and emulates the process of a physician’s diagnosis.
Specifically, the system is designed to initially classify patients into broad groups with a
high level of confidence, such as distinguishing between normal and abnormal cases or
identifying AMD versus DME. Once patients have been stratified and critical cases have
been identified, physicians can then conduct a more comprehensive evaluation using other
available clinical signs and biomarkers. This allows for a refined differential diagnosis,
moving beyond OCT-based signs alone and towards an accurate and specific diagnosis.
Although there is the recent advantage of multi-scale DL-based fusion workflows in many
applications, including retinal applications, separating a large number of classes (sub types
or grades) at once is a challenging task. This explains the slight reduction in accuracy
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when the system separates all four classes at once. This, however, can be enhanced in
practice by integrating other available clinical signs/biomarkers/images for challenging
and complicated retinal diseases, including other diseases.

Our ultimate goal was to design and evaluate a versatile system that can be extended
to detect various retinal diseases. In order to explore the benefits of TL, we conducted an
additional experiment in which we evaluated several well-known ImageNet-based pre-
trained feature extractor architectures as replacements for DenseNet201. The architectures
we tested included VGG16, VGG19, Xception, and InceptionV3. The features extracted
from these architectures were then fused and used for classification. The results of this
experiment are presented in Table 2. The accuracy of the different backbones showed
slight variations, with the VGG architectures performing particularly well. These findings
demonstrate the potential of our cascaded architecture to leverage various pre-trained
models, which can be further improved through fine-tuning. Consequently, our system can
be extended to detect other retinal diseases not covered by the datasets used in this study.

Table 2. Performance of different feature extractors for the proposed cascaded classifications all well
as for all-at-once (four classes) classification using 5-fold cross-validation on the UCSD dataset and
multilayer perceptron.

First Stage (Binary) Second Stage (3-Classes) 4-Classes
Classifiers Acc% Sen% Spc% Acc% Sen% Spc% Acc% Sen% Spc%
Xception 95.91 98.96 95.64 91.96 96.86 98.43 93.15 97.97 99.32
InceptionV3 95.34 89.16 99.50 9221 95.64 97.80 91.76 94.24 98.01
VGG19 95.94 97.57 99.31 93.88 95.40 97.67 93.39 97.01 99.67
VGG16 97.26 98.55 99.99 93.92 96.15 99.58 94.65 99.16 96.72
DenseNet201 ~ 97.79 95.55 99.72 96.83 97.75 98.87 94.26 96.29 98.74

All of the above experiments employed cross-validation for the cascaded as well as
all-at-once classifications for the four categories in the UCSD dataset. In addition to that,
we have further conducted an additional experiment for four-class classification using
the train/test data split of the UCSD dataset. The overall accuracies, confusion matrices,
and ROCs for the examined classifiers for the four-class classification on the test dataset are
given in Table 3, Figures 8d and 9. The results are consistent with the results in Table 1 with
a slight accuracy increase of 2%.

Table 3. Four-class classification performance using the UCSD test dataset only. LR: logistic regres-
sion; SVM: support vector machine; DT: decision tree, RF: random forest; NB: Naive Bayes; MLP:
multilayer perceptron.

Metric
Classifier Acc% Sen% Spc%
MLP 96.17 96.17 98.69
RF 95.45 94.83 98.22
LR 93.28 93.29 97.66
SVM 91.73 95.97 98.63
DT 75.92 78.51 91.64
NB 79.54 79.55 92.23
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Figure 9. Confusion matrices for different classifiers for the four classes using UCSD test data only.

Moreover, the advantage of our system for retinal diseases’/disorders” diagnosis
has been compared with standard and recent literature methods. All of the compared
networks were tested on the available images in order to compare their abilities for both the
multi-class and binary stages. For the first-stage classification, our network performance
was compared with traditional methods pre-well-trained on the Imagenet dataset [37]
mainly to show the effect of the ensemble learning and scale adaptation network on the
overall performance. The comparison included the DenseNet121 by Huang et al. [30],
the ResNet101 by Szegedy et al. [38], and the method by Haggag et al. [39], which was
designed for retinal image analysis. Since the UCSD dataset does not have ground truth
for the retinal layers to compute other local and global feature images, we only used the
grayscale images in Reference [39]. For the pre-trained network, the top layer was removed
and replaced by a fully connected layer with a dropout of 40% and a final node of the
sigmoid activation function for classification. A summary of the performance metrics is
given in Table 4. Statistical significance tests were performed using a paired Student’s
t-test to assess the accuracy of the proposed method in comparison to the other methods.
The results indicated that our method is statistically significantly better than the compared
methods (p-value < 10~%). Further, an ablation experiment was conducted to verify the
effect of the scale adaptation module on the classification performance. For the first- and
second-stage classification, our network showed and average accuracy of 95.76% and
94.93%. The overall enhancement (~2%) was promising, and future work should be
conducted to explore other module improvements.

For the four-class comparison, our architecture was compared with well-known CNN
models and multiple well-known classification frameworks that reported accuracy on the
UCSD dataset. The comparative accuracy is demonstrated in Table 5, and the confusion
matrices for the different classifiers are shown in Figure 7. As can readily be seen in Tables 1
and 5, the proposed pipeline showed improved performance compared to its counter and
off-the-shelf networks. This is also confirmed using Student’s t-test, (p-values < 107%)
similar to the binary classification.

To verify our system performance on other datasets in addition to the UCSD dataset,
we tested our approach on the Duke dataset [40], which contains a total of 3231 OCT
images for three classes: normal (1407), AMD (723), and DME (1101) patients. The dataset
does not have any training and testing splits, so we followed the same approach as was
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used by Kayadibi et al. in [27], where the train—test split was 90% and 10%, respectively.
The proposed pyramidal cascaded architecture results compared with other methods tested
on the same dataset are given in Table 6. The results document the better performance
of our architecture. These results are encouraging, and we ultimately plan to expand our
system in future work to be able to be even more specific, such that we identify not purely
signs (e.g., macular edema or CNV), but could actually distinguish between different causes
of cystoid macular edema (CME) based on OCT features, such as retinal vein occlusion,
diabetic macular, or uveitic macular edema.

Table 4. Comparisons with other related work for binary classification on the UCSD data set.

Method Acc% Sen% Spc%
Haggag et al. [39] 90.1 87.7 92.61
Huang et al. [30] 92.30 89.01 94.61
Szegedy et al. [38] 89.12 82.3 85.18
Proposed 97.79 95.55 99.72

Table 5. Comparisons with other related work for four-class classification using 5-fold cross-

validation.
Applied Method Acc% Sen% Spc%
Fang et al. JVCIR) [41] 87.3 84.7 95.8
Fang et al. [42] 90.1 86.8 96.6
S.-Paima et al. [18] 93.9 93.4 98.0
Proposed 94.3 96.3 98.7

Table 6. Overall accuracy in comparison with other works tested on the Duke data set.

Applied Method Acc% Sen% Spc%
Thomas et al. [43] 96.66 — —

Amaladevi and Jacob [44] 96.20 96.20 99.89
Kayadibi and Giiraksin [27] 97.50 97.64 98.91
Proposed 99.69 99.71 99.87

4. Conclusions

We have developed a multi-level, multi-resolution feature ensemble architecture for
the classification of retinal disorders. The proposed pipeline mimics the human perception
of global diagnosis followed by stratification of the suspected cases. The scale-adaptation
networks help to produce multi-scale inputs while retaining valuable information when
downscaling. Additionally, the pyramidal layout helps extract various information to
help with the binary and multi-class classification stages of the three retinal disorders.
In summation, the proposed architecture not only provides global diagnosis but also
automatically distinguishes between different retinal diseases, thus allowing for earlier
treatment of the patient’s condition. Despite promising results, some limitations of this
work should be addressed in future work. First, the proposed system should be evaluated
on more challenging retinal datasets with different diseases for rigorous evaluation. Second,
we used only pre-trained CNNSs for feature extraction, and thus, more evaluation using
visual transformers should be investigated.

Future research venues will explore integrating the architecture into more-complex
retinal disorders’ pipelines to include, for example, sub-grades of disease (such as dry
and wet AMD) for accurate and precision medicine. Further, integration of explainable Al
modules (e.g., Grad-CAM, LIME, etc.) to gain further insights into the reasoning behind
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the systems’” output will be explored. Finally, a weighted fusion of the multi-scale features
will be thoroughly investigated as well as the study of additional higher-order features
using spatial models.
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Abstract: Osteoarthritis (OA) is the most common arthritis and the leading cause of lower extremity
disability in older adults. Understanding OA progression is important in the development of patient-
specific therapeutic techniques at the early stage of OA rather than at the end stage. Histopathology
scoring systems are usually used to evaluate OA progress and the mechanisms involved in the
development of OA. This study aims to classify the histopathological images of cartilage specimens
automatically, using artificial intelligence algorithms. Hematoxylin and eosin (HE)- and safranin O
and fast green (SafO)-stained images of human cartilage specimens were divided into early, mild,
moderate, and severe OA. Five pre-trained convolutional networks (DarkNet-19, MobileNet, ResNet-
101, NasNet) were utilized to extract the twenty features from the last fully connected layers for both
scenarios of SafO and HE. Principal component analysis (PCA) and ant lion optimization (ALO) were
utilized to obtain the best-weighted features. The support vector machine classifier was trained and
tested based on the selected descriptors to achieve the highest accuracies of 98.04% and 97.03% in HE
and SafO, respectively. Using the ALO algorithm, the F1 scores were 0.97,0.991, 1, and 1 for the HE
images and 1, 0.991, 0.97, and 1 for the SafO images for the early, mild, moderate, and severe classes,
respectively. This algorithm may be a useful tool for researchers to evaluate the histopathological
images of OA without the need for experts in histopathology scoring systems or the need to train
new experts. Incorporating automated deep features could help to improve the characterization and
understanding of OA progression and development.

Keywords: osteoarthritis; histopathological; hematoxylin eosin; safranin O fast green; DarkNet-19;
MobileNet; NasNet; ResNet-101; ShuffleNet; PCA; ALO

1. Introduction

Osteoarthritis (OA) is the leading cause of pain and disability in working-age adults
and the elderly [1,2]. OA is not a process of mechanical wear and tear as previously thought;
instead, it is a whole-organ disease that is driven by the disruption of the balance of cartilage
homeostasis, inflammatory mediators, genetic factors, and innate immunity [3-5]. Joint
destruction in the knee can be severe in OA patients and can lead to total knee replacement
(TKR). A better understanding of the pattern and initiation of OA in the knee could help in
the understanding of OA progression and influence the selection of therapies.

The histopathology of cartilage is usually used to evaluate the in situ state of the
cartilage tissue. Microscopic histopathological grading of osteochondral tissue is usually
used to evaluate OA development ex vivo. The most common OA grading systems are the
Osteoarthritis Research Society International (OARSI) [6] and Histological-Histochemical
Grading System (HHGS) scoring systems [7]. Although the HHGS score system is the
most often used for the histological scoring of osteoarthritic cartilage, it is usually used to
evaluate the more severe OA specimens [8]. OARSI is the best choice for mild or earlier
phases of OA and for investigating the progression of OA. In general, a sensitive grading
system that is able to detect early OA and its progression could be of great interest for
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drug development and OA research [9]. Moreover, the identification of early OA and the
progression of OA is important in the development of early interferences and therapeutic
techniques that could prevent the progression of OA [10].

Manual histopathological scoring systems can be time-consuming and need pathol-
ogists with years of experience and/or the training of new scorers [11]. Automatic OA
evaluation and assessment based on histopathological image classification are very limited.
Manual scoring systems are widely used for evaluation of the OA histopathological images.
Machine learning and deep learning have aided massive data analyses, pattern identifica-
tion, decision-making, and the production of accurate predictions [12]. Machine learning
and deep learning were used for the histopathological grading of different tissues, using
magnetic resonance imaging (MRI) [13,14], optical microscopy [15], and ultrasound [16].

The prediction and classification of the OA progression of the osteochondral tissue
using machine learning and deep learning have been proposed in the literature; these
methods were based on magnetic resonance imaging (MRI) [17,18] and radiography [19].
A deep convolutional neural network (CNN) was used to automatically diagnose hip
OA using 420 hip X-ray images [20]. The results showed that the CNN model had 95%
sensitivity and 92.8% accuracy as compared to the conventional manual assessment by
physicians. In another study, deep learning was used for the automatic segmentation
and subregional assessment of MRI images of articular cartilage and compared to manual
segmentation [21]. Tiulpin et al. studied the use of deep learning and leveraged an ensemble
of residual networks with 50 layers to predict OARSI and Kellgren-Lawrence (KL) grades
of OA from knee radiographs [22]. The detection of the presence of OA using their model
yielded an average precision of 0.98 and an area under the ROC curve (AUC) of 0.98.

However, few studies have looked at automation in the grading of histopathological
samples. Rytky et al. used regularized linear and logistic regression models for the
histopathological grading of osteochondral specimens imaged with contrast-enhanced
microcomputed tomography (microCT) [23]. The models were trained against the manually
graded histopathological samples to predict the grades of degeneration for the articular
cartilage of the surface, deep, and calcified cartilage zone. They found that the model could
detect the degeneration in the surface zone with an average precision of 0.89 (AUC of
0.92) while the detection of degeneration in the deep zone was the lowest, with an average
precision of 0.46 (AUC of 0.62) [23]. Power et al. used supervised deep learning to automate
the grading system for the histological images of engineering cartilage tissue [24]. Safranin
O and fast green (SafO) was used for staining the engineered tissue; then, two experts
graded the images. Transfer learning using a pre-trained DenseNet model was used to
automate the scoring of the histological images; the scoring resulted in errors comparable
to inter-user errors [24].

In this study, we aim to automate the classification of histopathological grading
into early, mild, moderate, and severe OA using machine learning and deep learning
techniques. The histological images of the osteochondral specimens were obtained from
Venkata et al. [25]. The current methods could be improved with the development of
methods for the analysis and grading of osteochondral histological samples, particularly
as most researchers use manual grading for the histological samples. The developed
methods could be used not only for the OA histological samples harvested after total knee
arthroplasty but also for tissue engineering models of articular cartilage.

2. Materials and Methods

The method proposed in this paper is shown in Figure 1; then, each block is explained
in the following sections.

As is clear in Figure 1, the histopathological images passed through various stages:
from deep learning structures, the extraction of feature maps, and the employing of PCA to
the weighting optimization algorithm. The evaluation criteria are calculated in each stage.
The corresponding sections clarify the novelty of the proposed approach.
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Figure 1. The proposed method for distinguishing the severity levels for both hematoxylin and eosin
(HE) and safranin O and fast green (SafO) histopathological images.

2.1. Database

The osteochondral images were obtained from the database of Venkata et al. [25] (Available:
https://doi.org/10.18735/77ye-yh24 (accessed on 2 February 2023)). Briefly, the samples were
harvested from 90 patients undergoing total knee arthroplasty. Two osteochondral specimens
(4 x 4 x 8 mm) were obtained, one from the medial (CM) and one from the lateral
(CL), from the lateral femoral condyle. The specimens were stained with hematoxylin
and eosin (H&E) or safranin O and fast green (SafO). SafO staining is usually used for
staining glycosaminoglycans [26] and hematoxylin and eosin (H&E) staining is usually
used for staining nuclei and extracellular proteins [27]. The samples were previously
graded according to the OARSI grading system by three scorers 3 times (separated by at
least 3 months) [25]. According to the average grades of the scorers, we divided the images
of HE and SafO into early, mild, moderate, and severe OA, as shown in Figures 2 and 3.
In the OARSI scoring system, the score for early is less than 3.4, for mild it is 2.4-8.6, for
moderate it is 8.6-15.4, and for severe it is 15.4-24 [28].

Figure 2. Representative HE-stained images of cartilage specimens, indicating (a) early, (b) mild,
(c) moderate, and (d) severe OA.
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Figure 3. Representative SafO-stained images of cartilage specimens, indicating (a) early, (b) mild,
(c) moderate, and (d) severe OA.
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2.2. Deep Learning Features

Deep learning features represent the graphical descriptors for each class. They are
inherent to the categories themselves. In this paper, several pre-trained deep learning
models are employed to differentiate various levels of OA in two types of stained histologi-
cal images (HE and SafO). The utilization of pre-trained convolutional neural networks
(CNNs) to discriminate between two kinds of histological images does not provide accurate
results. Therefore, the proposed method combines deep learning, machine learning, and
optimization techniques to achieve high accuracy in predicting OA levels. The proposed
method depends mainly on extracting the most representative features from the last fully
connected model in each CNN. The deep learning structures were trained on the Ima-
geNet database to classify 1000 classes. The transfer learning technique that was utilized
to maintain the established structures is compatible with the desired problem statement,
which focused on anticipating four levels of histological OA images. The transfer learning
was made applicable by augmenting the input size of the image to make it suitable for
the input layer of each one. Moreover, removing the last fully connected layer reduced
it to four levels. The deep descriptors for each model were extracted from the last fully
connected layer. Each one supplied four representative attributes for four levels for both
types of stained images (HE and SafO) [29,30]. The utilized networks were ResNet-101,
MobileNet, ShuffleNet, NasNet, and DarkNet-19. The idea behind using various structures
is based on the ability of each one to extract features in a different manner and to learn in
various ways, either in deep or in multiscale resolution. This leads to the obtaining of more
representative features that can accurately represent the histopathological OA images.

2.2.1. DarkNet-19

The DarkNet-19 is a type of CNN that consists of 19 convolutional layers, followed by
a max-pooling layer and then two fully connected layers. DarkNet architecture is similar to
that of VGGNet but with fewer parameters. It is applied to computer vision tasks such as
object detection, image classification, and segmentation. Moreover, it was introduced as a
part of YOLO (You Only Look Once), which is designed for tracking real-time objects [31].

2.2.2. NasNet

NasNet stands for neural search architecture networks. This CNN is a well-known
predefined convolutional neural network, which is trained over the ImageNet dataset with
over 1000 classes from nature. The NasNet internal structure consists of a multi-series
of cells. There are two types of cells: normal and reduction cells. The normal cells are
responsible for extracting the graphical descriptors and producing the feature maps via
convolutional filters. On the other hand, the reduction cell is in charge of reducing the size
of the feature map’s width and height by a factor of 2. NasNet is ended by a SoftMax layer
that allows obtaining the probability of classification task [31].

2.2.3. ResNet-101

Residual neural networks are convolutional neural networks pre-trained over the
ImageNet database; there are various versions based on the number of convolutional layers
(Res-18,50, and 101). This kind of CNN is distinguished by its residual block property,
which overcomes the vanishing gradient that appears due to deep learning. The skip
connections lead to the bypassing of some of the neural layers and the feeding of the output
of one layer as the input to the next level, which provides a different path for the gradient
in backpropagation. That is the architecture of the residual block. ResNets consist of the
stacking of such blocks. By transfer learning, the input image must be augmented to be
compatible with ResNet input size 224 x 224 x 3, and the last fully connected layer must
be replaced by another one that is suitable for the intended classification task [31,32].
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2.2.4. ShuffleNet

ShuffleNet is one of the most well-known pre-trained CNNSs; it is appropriate for
mobile applications. ShuffleNet executes two types of convolution to achieve a high
level of accuracy. They are the point-wise convolution and the channel convolution; they
lead to reduced time computation and make the results more accurate. The ShuffleNet
structure consists of the stacking of shuffle netblocks; each one includes a point-wise
convolutional layer and a depth-wise layer. The resultant output is passed to the ReLU
layer for mapping purposes. The transfer learning is performed by augmenting the input
data to be 224 x 224 x 3 and replacing the last fully connected layer to make it compatible
with the number of intended classes [31].

2.2.5. MobileNet

MobileNet is a pre-trained CNN designed for mobile and embedded devices. It is
organized based on one depth-wise separable convolution that yields a reduction in the
number of required parameters to maintain a good performance. The idea behind the
depth-wise separable convolution is to split the convolution operation into two separate
operations: a depth-wise convolution and a pointwise convolution. In a depth-wise
convolution, each channel of the input is convolved with a separate filter, resulting in a set
of feature maps. Then, a pointwise convolution is devoted to combining the attribute maps
into the output by utilizing a 1 x 1 filter to convolve across all channels.

The MobileNet architecture consists of a series of convolutional layers, followed by
global average pooling and a fully connected layer. The depth-wise separable convolution
is performed in all these layers to obtain an efficient performance. The MobileNet structure
may be adjusted by modifying the number of layers, filter sizes, and other hyperparame-
ters [31,33].

2.3. Features Engineering

The features were extracted from each of the previously mentioned CNNs, four
features for each CNN; the total number of extracted features from each type of stained
image (HE or SafO) was 20 features. The extracted features underwent further processing
techniques: through reduction by choosing the most significant or by weighting them
using one of the most common optimization methods, which is known as the ant lion
optimization technique.

2.3.1. Principal Component Analysis

Principal component analysis (PCA) is well-known in data pre-processing and ma-
chine learning and is considered to be a feature selection algorithm. PCA transforms a
high-dimensional dataset into a lower-dimensional space by identifying the principal com-
ponents which explain the maximum variance in the datasets. PCA reduces the dimension
of that dataset by preserving the most important information and discarding the redundant
data task [29-32].

The principal components define the direction of the maximum variance in the
extracted features. The following steps describe the process required to perform the
PCA algorithm.

1.  Standardization: this step is performed by standardizing each column feature that
makes the mean for each feature zero, and the variance is unity.

2. Covariance matrix: this step is performed by constructing the covariance matrix,
which is a square matrix that reflects the variance between each pair of features; its
diagonal represents the variance for each feature and the off-diagonal represents the
covariance between each pair of features.

3. Computation of the principal components: this step is performed by computing the
eigenvector, which explains the direction of maxim variance, and the eigenvalue that
quantifies the amount of maximum variance.
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4. Selection of the principal components: the principal components are selected based
on 95% of the majority variance of the features.

5. Mapping between the selected principal components and the features: this is per-
formed by projecting the standardized features onto the best principal components.

2.3.2. Feature Weighting Using ALO

Feature weighting represents the features that are more important than others when
optimizing the classification problem; it reveals the role of each feature in the classification
pattern by distinguishing by weight. The linear weight is proposed for the feature space
to obtain a specific weight for the features; then, the new feature represents the original
feature multiplied by its weight, as shown in the following equation:

Newreatyre = Weight x Old_Feature 1)

Ant lion optimization (ALO) is a metaheuristic optimization algorithm that is used for
tuning the parameters to achieve high accuracy. In this paper, we explored feature weights
and the optimal value of k in the k-nearest neighbors (k-NN) algorithm; simultaneously,
we used the accuracy of k-NN as a fitness function. The difference between PCA and
ALO is that the former reveals the significant features and discards the less influential
features. All the selected attributes have the same weight, which leads to an equal impact
on the classification results. On the other hand, in this paper, the cascading of these
two optimization techniques was the key to improving and obtaining the highest accuracies.
The selected features were passed to the ALO algorithm to achieve an optimized weight
for each one that was significant.

The ALO algorithm can be updated to search for a combination of feature weights and
k values that optimize the performance of the k-NN model. The approach is performed
using the accuracy of k-NN as a fitness function [34].

The steps of ALO are as follows:

1. Initialize the population of ant lions randomly.

2. Evaluate the accuracy of each ant lion in the population based on both weight and
k-value.

3. Define the king ant lion based on the highest accuracy.

4. Move the ant lions towards the king ant lion using a certain formula that simulates
the hunting behavior of the ant lions.

5. Calculate the accuracy for the new position.

6.  Repeat steps 3-5 until the stopping criterion is met.

7. The results are the optimized weights.

2.4. Support Vector Machine

Support vector machines (SVMs) are popular supervised machine learning algorithms
used in medical diagnosis. SVM is superior for both linear and non-linear separable data.
SVM is used in the medical diagnosis field for discriminating between various classes, such
as cancer, diabetics heart arrhythmia, cervical cancer, brain tumors, liver cancer, corneal
ulcer, etc.

It is based on finding the optimal margin region for different classes and mapping the
features to higher dimensional space using kernels to make the data separable in higher
dimensional space. The kernel choice function has a significant impact on the performance
of the classifier, in addition to the choosing of the relevant features. SVM is a powerful tool
for medical diagnosis, and it is applied for different applications due to its reliability and
high performance [35,36]. In this paper, we employed deep learning, feature engineering,
and an SVM machine learning classifier to predict OA levels in human osteochondral tissue
using histopathological images. The novel combination between them leads to build a
reasonable system that can infer significant deep features and can weight them to obtain a
reliable scoring diagnosis.
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3. Results

The two types of stained images were passed to five pre-trained CNN models. The
classification procedure was performed in four scenarios. First, deep learning classification
was used to classify the four levels of OA. Second, deep learning features were extracted for
each CNN and a support vector machine classifier was used to distinguish between the four
levels for each type of stained image. Third, feature engineering techniques were applied to
evaluate the most significant features from five CNNs using PCA. The last scenario reveals
the importance of the feature weighting method by applying the ALO algorithm to give
weight to each selected feature. The following subsections are devoted to discussing the
obtained results in each scenario. The evaluation criteria that were used in this paper are
those in [37].

accuracy = TP TN 2)
TP+ TN+ FP+FN

Recall = 7TPZPFN 3)

Precision = 7TPTFP 4

Specificity = TI\ITi—iI}TFP ®)

2 x Precision x Recall
F1 — =
score Precision + Recall ©)

3.1. Pre-Trained Model Classification

Table 1 represents the accuracy for both the HE and the SafO images using DarkNet-19,
MobileNet, NasNet, ResNet-101, and ShuffleNet. As is clear from Table 1, the accuracy of
utilizing deep learning for HE images does not exceed 70.6% using NasNet. Moreover, the
sensitivity and precision are too low, which leads to the F1 score being too low. Therefore,
the deep convolution networks could not distinguish between various types of severity
levels. For the SafO images, the accuracy ranged between 73.3% and 80% for the different
CNN classifiers, among which DarkNet-19 had the highest accuracy. The obtained results
were not promising; therefore, a hybrid model is recommended to extract the deep features
and then pass them to a machine learning classifier to outperform the classification results.

Table 1. The accuracy using different CNN structures for HE and SafO images.

CNN DarkNet-19 MobileNet NasNet ResNet-101 ShuffleNet
Images
HE 69.6% 61.8% 70.6% 69.6% 64.7%
SafO 80.2% 77 2% 73.3% 76.2% 74.3%

3.2. Deep Features with SVM

Four features were extracted from the last fully connected layer for each CNN. The
deep features were passed to the SVM classifier. Tables 2 and 3 show the performance of
the classification for the HE images; the performance was enhanced except in the case of
DarkNet-19. The enhancement comes from employing deep learning features and machine
learning classifiers. The reason behind the worst performance of DarkNet-19 was the failure
of DarkNet to extract the representative features for the four classes. The improved accuracy
was 96% for the ShuffleNet features with the 3rd polynomial SVM classifier. The recall was
the highest for the MobileNet features for the early class level. Moreover, the precision
was also the best in MobileNet. The highest precision that was obtained was 100% for the
severe class in MobileNet, NasNet, and ShuffleNet. On top of that, Figure 4 illustrates
the receiver operating curve for each classification procedure. Each figure represents the
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relation between the true positive and the false positive rates. As the area under the curve
(AUQC) increases, the classifier has a high performance in distinguishing the particular
classes. All the suggested CNNs had the AUC in all the classes, except DarkNet, which
failed to extract the representative features for each class.

Table 2. The accuracy using different CNN structures with SVM classifier for HE and SafO images.

NN
c DarkNet-19 MobileNet NasNet ResNet-101 ShuffleNet
Images
HE 60.8% 99% 95.1% 94.1% 96.1%
SafO 95% 98% 95% 94.1% 95%

Table 3. The precision and sensitivity using different CNN features with SVM classifier for HE and

SafO images.
HE Images SafO Images
Class Sensitivity Precision Sensitivity Precision
DarkNet-19 11.8% 16.7% 100% 85.7%
MobileNet 100% 100% 94.1% 94.1%
Early NasNet 89.9% 94.1% 88.2% 88.2%
ResNet-101 82.4% 100% 94.4% 94.4%
ShuffleNet 94.1% 94.1% 94.1% 88.9%
DarkNet-19 85.7% 69.2% 93.5% 98.3%
MobileNet 98.4% 100% 98.4% 98.4%
Mild NasNet 95.2% 96.8% 96.8% 95.3%
ResNet-101 98.4% 95.4% 98.4% 92.4%
ShuffleNet 100% 95.4% 96.8% 96.8%
DarkNet-19 29.4% 55.6% 94.1% 94.1%
MobileNet 100% 94.4% 100% 100%
Moderate NasNet 100% 98.5% 100% 100%
ResNet-101 88.2% 88.2% 76.5% 100%
ShuffleNet 83.3% 100% 94.4% 100%
DarkNet-19 20% 16.7% 100% 100%
MobileNet 100% 100% 100% 100%
Severe NasNet 100% 100% 75% 100%
ResNet-101 100% 83.3% 100% 100%
ShuffleNet 100% 100% 100% 100%

The same procedure was applied for the SafO images; the performances of each
classifier with SVM are shown in Tables 2 and 3. The performance of the DarkNet was
much better than in the HE cases. The accuracy for all the CNN features with SVM ranged
from 94.1% to 98% for ResNet-101 and MobileNet, respectively. The worst sensitivity was
obtained for the ResNet-101 features for the moderate class. Nevertheless, the recall was
almost high in all the classes for each network descriptor. The lowest positive predictive
value for all the classes was greater than 85%. This indicates the ability of the extracted
features to help in differentiating between various levels of severity.

Moreover, for more analysis and clarification, the ROC curve (Figure 5) explains the
impact of applying a hybrid process between deep learning and machine learning. The
improvement of the AUC for each class, early, mild, moderate, and severe, reflects the
ability of the proposed procedure to determine the kind of severity level for osteochondral
tissue using SafO-stained images of human cartilage specimens, which imply cartilage
structure, cell glycosaminoglycan content, and tide-mark integrity for the four types of
severity levels, as we mentioned before: early, mild, moderate, and severe OA. To improve
the performance of the proposed procedure using feature engineering techniques, the
simplest method is to combine all the features from all the CNNs and then pass them to
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(a)

the kernel SVM to improve the results. The huge dimensions of using twenty features may
lead to an increase in the computation time cost, which leads to the use of the principal
component analysis (PCA). PCA is one of the most familiar methods for feature reduction
that indicate up to 95% variance of the features. The proposed approach is to mix the
benefits from all the CNNs and then find the significant features. The next section describes
the results for PCA.
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Figure 4. ROC curves of HE images for (a) deep DarkNet-19 features with SVM, (b) deep DarkNet-19
features with SVM, (c) deep DarkNet-19 features with SVM (d) deep DarkNet-19 features with SVM,
and (e) deep DarkNet-19 features with SVM.

3.3. Principal Component Analysis (PCA)

All the features from the previous CNNs were fused and utilized to classify the
images; then, PCA was devoted to the prediction of the most significant features. The
twenty features from five CNNs were further processed under PCA to find the most
significant subset features. Then, the most significant features passed to the SVM. The best
obtained ten features for the HE images were:

1.  Four features from MobileNet.
2. Three features from ShuffleNet.
3.  Two features from NasNet.

4 One feature from ResNet-101.

The most significant features did not involve any features from the DarkNet which was
expected since the accuracy was low for the DarkNet. Figures 6 and 7 show the confusion
matrix of the PCA of all the features from all the convolution neural networks and the
corresponding ROC curve for the HE and SafO images, respectively. Figure 6 describes
the resultant confusion matrix and its corresponding ROC curve for the HE images. The
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accuracy was 98% for all the classes. On the other hand, the sensitivity for all the categories
was 100%, except for the moderate level, which was 89%. However, the precision was 100%
for the early and moderate levels, whereas it was 98.4% and 83.3% for the mild and severe
levels, respectively. The AUC was 1 for the early and severe classes. On the other hand, the
AUC was 0.995 for the mild class and 0.981 for the severe class. The obtained features using
MobileNet performed better than those using the ten features. Therefore, after applying
PCA for all the fused features, the most significant were the MobileNet features. They

improved the previous results obtained using MobileNet features only.
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Figure 5. ROC curves of SaFO images for (a) deep DarkNet-19 features with SVM, (b) deep DarkNet-
19 features with SVM, (c) deep DarkNet-19 features with SVM (d) deep DarkNet-19 features with
SVM, and (e) deep DarkNet-19 features with SVM.

The same procedure was applied to the fused features that were extracted from
the SafO-stained images. The most significant features with 95% variance were ordered
as follows:

1.  Three features from MobileNet.
2. Three features from ShuffleNet.
3.  Two features from NasNet

4 Two features from DarkNet

The ordering of the significant features satisfied the obtained results that employed
features from each CNN individually. The highest accuracy appeared in MobileNet, then
ShuffleNet. The worst accuracy was obtained using the ResNet-101 features. Therefore,
they were not counted as significant features. Figure 7 describes the obtained results for
the SafO-stained images using the most significant ten features.
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Figure 7. Feature fusion for SafO images with PCA: (a) confusion matrix and (b) ROC curve.

The obtained accuracy was 97%. The highest recall was in the moderate category,
whereas the lowest sensitivity was in the severe class. On top of that, the best precision
was maintained in the moderate and severe classes. The lowest positive predictive value
was in the early class. The area under the curve for all the classes was almost 1.

3.4. Ant Lion Optimization (ALO)

The ant lion optimization method combines the weights for each feature alongside
the objective function, which is the loss of the convergence. The iterative procedure is
performed to achieve the plateau of loss. This leads to the best weights for the features.
The range of weights for each feature is [0-1]. The algorithm was applied to both kinds of
images for all the extracted deep features. Figure 8 shows the convergence loss function
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versus the number of iterations for the HE images. As is clear from the figure, the maximum
iteration is 100, and the convergence is constant after 60 iterations. The corresponding
equation shows the optimized weight for each feature.

y = 0.522642 x F1 4 0.503514 x F2 + 0.093848 x F3 + 0.482934 x F4 + 0.11463 x F5 + 0.167205 x F6 %
+0.750722 x F7 4- 0.770949 x F8 4 0.159337 x F9 + 0.364798 x F10

(a)

where y represents the label of the image, and F1-F10 are the ten most significant features.
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Figure 8. ALO algorithm for HE images: (a) convergence of the algorithm, (b) confusion matrix, and
(c) ROC curve. Where # represents the number.

The confusion matrix of the obtained results is described in Figure 8b. The weighting
features enhanced the accuracy to 99%. The sensitivity and precision were almost 100% for
all the classes, except that the recall was 98.8% for the mild level and 94.4% for the early
class. The ROC curve is illustrated in Figure 8c. The area under the curve was 1 for all the
classes. The F1 score values were 0.97, 0.991, 1, and 1 for the early, mild, moderate, and
severe classes, respectively (Table 4). The specificity values were 98.8%, 100%, 100%, and
100% for the early mild, moderate, and severe classes, respectively. As is clear from Table 4
and Figure 8, ALO has a higher performance than PCA in all the classes.

Table 4. The performance of feature engineering on HE-stained images.

Class Feature Engineering  Sensitivity =~ Precision Specificity F1 Score

Earl PCA 100% 100% 100% 1

y ALO 100% 98.4% 98.8% 0.97

1d PCA 100% 98.4% 97.5% 0.991

Mi ALO 100% 98.4% 97.5% 0.991

Mod PCA 88.9% 100% 100% 0.941
oderate ALO 100% 100% 100% 1

S PCA 100% 83.3% 99% 0.909
evere ALO 100% 100% 100% 1

The same procedure was applied for the SafO images; Figure 9a shows the number
of iterations for the ALO algorithm versus the loss function. After 80 iterations, the
loss function was constant, and the optimized weighted features were maintained. The
optimized weights were:

y = 0.216401 x F1 + 0.898295 x F2 4 0.92736 x F3 + 0.110877 x F4
+-0.416086 x F5 + 0.749176 x F6 + 0.386958 x F7 (8)
+0.67024 x F8 4- 0.030166 x F9 4 0.584659 x F10
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Figure 9. ALO algorithm for SafO images: (a) convergence of the algorithm, (b) confusion matrix,
and (c¢) ROC curve. Where # represents the number.

The achieved accuracy in the SafO images was the same as in the HE images (99%).
The highest sensitivity was 100% in the early, mild, and severe categories. However, the
highest precision was in the early, moderate, and severe levels. Figure 9c describes the
AUC for the weighted features and the SVM classifier. The AUC was 1 in both the early
and the severe classes, while the AUC was 0.979 in the moderate class and 0.988 in the mild
class. The specificity was computed for all the levels, as follows: 100%, 97.4%, 100%, and
100% for the early, mild, moderate, and severe classes, respectively (Table 5). Furthermore,
the F1 score values were 1, 0.971, 1, and 0.889 for the early, mild, moderate, and severe
categories, respectively, using the PCA classifier, while the F1 score values were 1, 0.991,
0.97, and 1 for the early, mild, moderate, and severe categories, respectively, using the ALO
classifier. As with the HE images, the ALO classifier performed better compared with PCA
for the SafO images.

Table 5. The impact of feature engineering on SafO images.

Class Feature Engineering  Sensitivity =~ Precision Specificity F1 Score

Earl PCA 94.1% 94.1% 98.8% 1
Y ALO 100% 100% 100% 1

1d PCA 98.4% 96.8% 94.8% 0.971

Mi ALO 100% 98.4% 97.4% 0.991
Mod PCA 100% 100% 100% 1

oderate ALO 94.1% 100% 100% 0.97

S PCA 80% 100% 100% 0.889
evere ALO 100% 100% 100% 1

4. Discussion

In this study, we showed that machine learning and deep learning can be used to auto-
matically classify the osteochondral histopathological images into early, mild, moderate,
and severe OA. The manual histopathological scoring systems are time-consuming and
need a trained scorer to grade the images. This study used five CNN models, including
ResNet-101, MobileNet, ShuffleNet, NasNet, and DarkNet-19, to extract features from HE
and SafO histopathological images of different levels of OA. As deep learning was insuffi-
cient to classify the OA images, we employed the deep features with a machine learning
classifier to enhance the classification results, and we then optimized these features using
various engineering methods, such as PCA and ALO. Although the deep learning method
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was first used in this manuscript to predict the severity of OA, the histopathological OA
images were very complex due to the many changes that happen in both the cartilage and
the subchondral bone during OA progression, such as the network of collagen fibers, the
subchondral bone structure, the proliferation of chondrocytes, the size of cartilage change,
and the proteoglycans loss, which results in surface cracking [38]. All of these make it very
difficult for deep learning procedures alone to classify histopathological OA images. So, in
this study, combinations of multiple algorithms were used with machine learning classifiers
and various engineering methods, such as PCA and ALO. Combinations of different feature
engineering approaches have been utilized in different studies due to the complexity of the
images, the tissue, the type of images, and the sizes [39—42].

The results showed that the F1 score values were 0.97, 0.991, 1, and 1 for the early,
mild, moderate, and severe classes, respectively, for the HE-stained images using the ALO
classifier. For the SafO images, the F1 score values were 1, 0.991, 0.97, and 1 for the early,
mild, moderate, and severe categories, respectively, using the ALO classifier. This study
had a limitation in the dataset in that there was a very small number of images for the
severe class. Only 14 images were available for the HE staining and another 14 images for
the SafO staining for the severe class. So, we focused on reporting the F1 score since the
data were imbalanced [43].

Few studies have utilized artificial intelligence to score or classify osteochondral or
cartilage histopathological images. In another study, a machine learning technique was
used to automatically grade 3D histopathological images of osteochondral samples to
predict the degeneration of surface, deep, and calcified cartilage zones [23]. The samples
were imaged using defect contrast-enhanced microCT. Transfer learning using a pre-trained
ResNet-34 encoder was used. The model was able to predict the degeneration in the surface
zone (AUC of 0.92 and AP of 0.89), followed by the calcified zone (AUC of 0.71 and AP of
0.65) and the deep zone (AUC of 0.62 and AP of 0.46) [23]. In another study, a deep learning
technique was used to automate the grading of the histological images of engineered
cartilage, in which the grading was classified into four categories [24]. Transfer learning
using a pre-trained DenseNet model was used for feature extraction to automatically score
the histological images of engineered cartilage. It was found that the RMSEs for the model
prediction were in a similar range as the inter-user of 0.71 [24]. In our study, using the
ALO algorithm for HE images, the specificity values were 98.8%, 100%, 100%, and 100%
for early mild, moderate, and severe classes, respectively, and the AUC was 1 for all the
classes. Using the ALO algorithm for the SafO images, the specificity values were 100%,
97.4%, 100%, and 100% for the early, mild, moderate, and severe classes, respectively,
and the AUC values were 1, 0.988, 0.979, and 1 for the early, mild, moderate, and severe
classes, respectively.

Machine and deep learning have recently been used to investigate OA development
and progression using MRI or X-ray images [44—47]. Ashinsky et al. used machine learning
to investigate the development of OA using the MRI images of 68 patients. A hierarchy of
algorithms representing morphology (WND-CHRM) was used to classify the development
of OA with 75% accuracy [17]. In another study, the T2 relaxation time of the MRI images of
the 4384 subjects with and without OA was analyzed using DenseNet and random forests
to distinguish OA [45]. The DenseNet training model attained a sensitivity equal to 74.53%
and a specificity equal to 76.13%, which was comparable to the random forest model with
a sensitivity of 67.01% and a specificity of 71.79%. Tolpadi et al. used a DenseNet CNN
to predict the total knee replacement (TKR) from the MRI images and the clinical and
demographic information of patients with OA and patients without OA [48]. Their model
was able to predict the TKR with the AUCs of 0.834 &= 0.036 and 0.943 £ 0.057 for patients
with OA and without OA, respectively.

In OA, the integrity of collagen and glycosaminoglycan, which give the cartilage the
mechanical properties, is compromised [49]. The articular cartilage has a complex structure
without blood vessels or nerves, making it difficult to repair or to treat the cartilage
defect. So, the progression of OA has been investigated by many researchers using a
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manual grading system [25,50,51]. Saarakkala et al. studied the collagen and proteoglycan
changes during OA progression using the OARSI histopathology grading system [52].
Then, a composition-based finite element (FE) model was employed to study the tissue
function. Mantripragada et al. investigated the scoring of polarized light microscopy (PLM)
images as a potential method to understand early OA as compared with the standard
histopathological methods [50]. They found that adding a PLM scoring system helped in
the characterization of early and mild OA. OA progression and development have also
been studied in many animal models of human OA [53-55]. A whole joint microCT image
scoring and histologic scoring systems of a Hartley guinea pig, which is considered a
model of human OA, were investigated to determine the changes in articular cartilage and
bone [55]. The grading was conducted by two experts using the OARSI guidelines. So,
automating the grading system of histopathological methods could help in understanding
OA progression and development.

5. Conclusions

The proposed methods revealed the ability of the integration between deep learning,
machine learning, and feature engineering in scoring the severity levels of OA. The deep
learning models help the researcher in the classification and extraction of the representative
features of each category. The feature engineering method enhanced the performance of the
classification results, which focused on obtaining the most important attribute in addition
to giving them a specific weight. The best results obtained in this study were obtained
by using PCA followed by ALO then SVM classifiers. To the best of our knowledge, this
is the first study that handles the combination between PCA and ALO to obtain the best
classification. Moreover, this is the first study that discusses the employment of artificial
intelligence in OA microscopic histopathological images. In this study, we were able to
build an artificial intelligence model that could distinguish the different stages of the
OA from the osteochondral histopathological images without the need of human experts,
which could be of great interest to the researchers and scientific community. Furthermore,
the model could be modified for the evaluation of tissue engineering cartilage formation
instead of using the manual grading system.
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Abstract: Medical image segmentation, whether semi-automatically or manually, is labor-intensive,
subjective, and needs specialized personnel. The fully automated segmentation process recently
gained importance due to its better design and understanding of CNNs. Considering this, we
decided to develop our in-house segmentation software and compare it to the systems of established
companies, an inexperienced user, and an expert as ground truth. The companies included in
the study have a cloud-based option that performs accurately in clinical routine (dice similarity
coefficient of 0.912 to 0.949) with an average segmentation time ranging from 3'54” to 85'54”. Our
in-house model achieved an accuracy of 94.24% compared to the best-performing software and had
the shortest mean segmentation time of 2/03”. During the study, developing in-house segmentation
software gave us a glimpse into the strenuous work that companies face when offering clinically
relevant solutions. All the problems encountered were discussed with the companies and solved,
so both parties benefited from this experience. In doing so, we demonstrated that fully automated
segmentation needs further research and collaboration between academics and the private sector to
achieve full acceptance in clinical routines.

Keywords: artificial intelligence; mandible; segmentation; 3D virtual reconstruction; CBCT; CT;
Convolutional Neural Networks; comparison; in-house; software; patch size; Cranio-Maxillofacial
surgery; DICOM

1. Introduction

The segmentation of anatomical structures is a process that virtually reconstructs
the region of interest from medical images in three dimensions. It helps the physician
prepare for surgical interventions and virtual surgical planning (VSP), visualize and inter-
act with the patient’s anatomy (through three-dimensional (3D) printing or augmented
and virtual reality (AR/VR)), and improve the medical outcome [1-6]. Until recently, the
segmentation process was either manual, where the anatomical structure was labeled
slice by slice, or semi-automatic, where the software identifies the region of interest and
excludes other anatomical structures based on the selected threshold, marked points, or
other user inputs [7-10]. Both segmentation types are subjective, time-intensive, and re-
quire specialized personnel. Artificial intelligence (Al)-based technologies are gradually
being integrated into the clinical routine, and some companies already offer fully auto-
mated cloud-based solutions [11,12]. The most common techniques used for automatic
segmentation are Statistical Shape Analysis [13] and Convolutional Neuronal Networks
(CNNSs) [14]. The last-mentioned technique has proven itself to be especially helpful for
automatic segmentation [15-17]; for biomedical image segmentation, the U-Net architecture
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exhibits state-of-the-art performance [18]. In some cases, both techniques are combined to
further improve segmentation accuracy [19]. Especially in the Cranio-Maxillofacial (CMF)
field, due to the complex anatomy of the face, Al-based segmentation solutions could be
advantageous and lead to fully automated virtual surgical planning workflows.

Related Work

Previously conducted research has shown promising results for fully automated
segmentation using different Convolutional Neural Network (CNN) architectures. Verhelst
PJ. et al. [12] proposed a system for mandible segmentation in which two different 3D U-
Net CNNs were trained in two phases with 160 cone-beam computed tomography (CBCT)
images of the skull from orthognathic surgery patients. The automatically generated
mandibles were compared to user-refined Al segmentations and semi-automatic ones,
obtaining dice similarity coefficients of 0.946 and 0.944, respectively.

In a different approach, Lo Giudice A. et al. [20] proposed a fully convolutional deep
encoder—decoder network that was trained on the MICCAI Head and Neck 2015 dataset
and fine-tuned on 20 additional CBCT images. The segmentations were cut so that only the
mandibular bone was considered for the assessment. The achieved dice similarity coefficient
in comparison to the manual segmentations was 0.972. Apart from the mandibles, other
anatomical structures of the skull were also automatically segmented with CNNs. One
paper, which was published by Li Q. et al. [21], proposed a method that used a deep
Convolutional Neural Network to segment and identify teeth from CBCT images. Another
publication, from Kwak G.H. et al. [22], presented an automatic inferior alveolar canal
detection system with different U-Net variants (3D SegNet, 2D U-Net, and 3D U-Net),
where the three-dimensional U-Net performed best.

Deep learning technologies have improved in terms of performance and accuracy in
recent years due to the growing accessibility of new technologies and global digitalization.
This has encouraged the development of automatic diagnosis software in dentistry, as
shown by Ezhov M. et al. [16], who evaluated a deep learning-based system to determine
its real-time performance on CBCT images for five different applications (segmentation of
jaw and teeth, tooth localization, numeration, periodontitis module, caries localization, and
periapical lesion localization). The same researchers developed an Al-based evaluation tool
for the pharyngeal airway in obstructive sleep apnea patients [17].

Other researchers, such as Yang W.F. et al. [11], used Mimics Viewer (Materialise) to
segment the skull bones automatically. Compared to the ground truth, the segmented max-
illa and mandible achieved dice similarity coefficient scores of 0.924 and 0.949, respectively.
Although strenuous, Magnetic Resonance Imaging (MRI) segmentation of soft tissue has
gained importance for VSP, as shown by Musatian S.A. et al. [23], who presented solutions
for orbit and brain tumor segmentation based on CNNs. One software that is used in this
study for semi-automatic segmentation is Brainlab IPlan.

Considering the gains of the last decade’s affordable computing power and a better
understanding of Al programming, we decided to develop an automatic segmentation
software and assess its performance in the clinical routine. The main research question
was to determine how close non-professional medical personnel in the field of CMF/Al
for automated segmentation applications could achieve the level of established companies
(including the leading players and known start-ups). For that, we set up a research protocol
that included the development of in-house segmentation software, followed by comparing
an expert and an inexperienced user with a good anatomical understanding of the selected
companies.

We use brand names that are/can be protected but are not marked with ®.

2. Materials and Methods

Our research protocol consists of setting up a fully automatic in-house segmenta-
tion software and comparing it with segmentation applications developed by established
companies and manual segmentations performed by an inexperienced user with good
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anatomical understanding (surgeon with less than 50 segmentations) with regard to the
ground truth performed by an expert (researcher with over 500 segmentations). We selected
210 head and neck DICOM (Digital Imaging and Communications in Medicine) files, where
the mandibles were manually segmented. The comparison was made with twenty selected
and anonymized DICOMs (ten computed tomography (CT) and ten cone-beam computed
tomography (CBCT) images, with and without artifacts), where the expert provided the
ground truth. For the analysis, we used standard surface- and volume-based metrics. For
all segmentation steps, the time was measured (segmentation duration and postprocessing
time: filling, smoothing, and exporting). The CNN development timeline is shown in
Figure 1.

DATA TRAINING

PREPARATION

TRAINING EVALUATION  TRAINING EVALUATION RESULT
EVALUATION

Sept-Jan May-Aug
2021-2022 2022
Best patch size:

Patch sizes: Patch sizes: Fine-tuning of the CNN 96%96%96
* 32%32x32 * 96%96x32
* 64%64%64 * 96%96%64
* 96%96%96 * 96%x96x128
« 128%128%128 * 96%96x160

* 160%160%x160

Figure 1. Timeline of the CNN development.

2.1. Statistical Analysis

The accuracy of the mandible segmentations was measured using the dice similarity
coefficient (DSC), average surface distance (ASD), Hausdorff distance (HD), relative volume
difference (RVD), volumetric overlap error (VOE), false positive rate (FPR), and false
negative rate (FNR). The formulas for the calculation of these metrics are shown in Table 1.

Table 1. List of the metrics used in this study and their formula.

Metric Formula Legend
Dice similarity coefficient DSC — 2l4nBl _ oTP The dice similarity coefficient measures the
(DSO) ~ JA[+[B] T 2TP+FP+FN similarity between two sets of data.
Average surface distance ASD = The average surface distance is the average of all
(ASD) 1 %\‘ minl|a; — || + HZB‘, min[b: — al| the distances between the surfaces of the ground
maths \ 2 pep 2 Pt j 2 truth and the volume.

. The Hausdorff distance is the maximum distance

Hausdorff distance (HD) dy = max{supxex d(x,Y), supyeyd(X,y )} between the ground truth and the volume.
. . The relative volume difference measures the

Relative volume difference |B|—| Al . .
(RVD) RVD = Al absolute size difference of the ground truth to

the volume as a fraction of the ground truth.
Volumetric overlap error e The volume.tric overlap error is the .
(VOE) VOE =1- 53¢ corresponding error metric of the dice
similarity coefficient.
The false positive rate is the probability that a
False positive rate (FPR) FPR = Fl’i% positive result is given when the true value
is negative.
The false negative rate or miss rate is the
probability that the analysis misses a true positive.

False negative rate (FNR) FNR = %
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2.2. CNN Development
2.2.1. Training and Validation Data

For the training and validation of the Convolutional Neural Network (CNN), we
relied on open-source data containing 504 DICOMs (Fluorodeoxyglucose-Positron Emission
Tomography (FDG-PET) and CT images) of 298 patients that were diagnosed with cancer in
the head and neck area. The databank is offered by the McGill University, Montreal, Canada,
and the data acquisition took place between April 2006 and November 2014 [24]. A total
of 160 DICOM files were selected to obtain heterogeneity regarding gender distribution,
resolution, artifacts, and dentition, as shown in Table 2. The number of slices varies between
90 and 348, with an average of 170.5. The pixel spacing in the X and Y directions varies
from 0.88 x 0.88 mm to 1.37 x 1.37 mm, whereas the slice thickness varies from 1.5 mm
to 3.27 mm. The extended list is shown in Annex S1. The DICOM files were distributed
among two datasets: the training dataset with 120 samples (60 with artifacts and 60 without
artifacts) and the validation dataset with 40 samples (20 with artifacts and 20 without
artifacts). Exclusion criteria were images of patients with brackets and osteosynthesis
materials (screws and plates).

Table 2. List of characteristics of the images used for the training of the Convolutional Neural
Network.

Nr. Studies With Artifacts  Without Artifacts—With Teeth ~ Without Artifacts—Without Teeth (Edentulous)
Female 33 12 19
Male 47 28 21
Male and Female 80 40 40

2.2.2. Test Data

For the test dataset, 10 CT and 10 CBCT images from the University Hospital of Basel
were selected. Both subgroups contained five DICOM files with metallic artifacts and five
without. The number of slices ranges from 169 to 489, with a mean value of 378. The pixel
spacing in X and Y directions ranges from 0.25 x 0.25 mm to 0.59 x 0.59 mm, with a mean
value of 0.35 x 0.35 mm, and the slice thickness varies from 0.25 mm to 3.0 mm, with a
mean value of 0.71 mm. None of the CT images have an isotropic voxel spacing (voxel
spacing and slice thickness have the same value), whereas 9 out of 10 CBCTs have isotropic
spacing. These images are representative of the ones used in the clinical routine; therefore,
they differ greatly in aspects such as image dimension, voxel spacing, layer thickness, noise,
etc. The same exclusion criteria were applied for the test dataset as for the training dataset.
All images were anonymized.

2.2.3. Segmentation

The DICOMs for the training and validation were imported into Mimics Innovation
Suite (Version 24.0, Materialise NV, Leuven, Belgium), whereas the test samples were
imported later into Mimics Innovation Suite Version 25.0. A semi-automatic segmentation
workflow was applied using the Threshold, Split Mask, Region Grow, Edit Mask, Multiple
Slice Edit, Smart Fill, and Smooth Mask tools. The teeth were included in the segmentation,
and the masks were filled (i.e., they do not contain any voids). The mandible and the
inferior nerve canal were labeled as a single mask and exported as a Standard Tessellation
Language (STL) file.

2.2.4. Model Architecture

For the automatic segmentation of the mandible, the Medical Image Segmentation with
Convolutional Neural Networks (MIScnn) Python library, Version 1.2.1 to 1.4.0 [25], was
used. As architecture, a 3D U-Net, a Convolution Neural Network, was selected (Figure 2),
which was developed for biomedical image segmentation [26]. The number of filters in the
first layer (N filters) was set to 32, the number of layers of the U-Net structure (depth) was

72



Bioengineering 2023, 10, 604

set to 4 as an activation function, the sigmoid function was used, and batch normalization
was activated. The dice cross-entropy function was chosen as a loss function, which is a
sum of the soft Dice Similarity Coefficient and the Cross-Entropy [27]. As normalization,
the Z-score function was applied, and the image was resampled using a voxel spacing of
1.62 x 1.62 x 3.22 mm. The clipping subfunction was implemented to clip pixel values in a
range between 50 and 3071 of the Hounsfield scale. The learning rate was set to 0.0001 at
the beginning of the training, but through the Keras Callback function, it was reduced to
0.00001 once no further improvement was observed, with a patience of 10 epochs. Scaling,
rotation, elastic deformation, mirroring, brightness, contrast changes, and Gaussian noise
were used for data augmentation (a method to increase the number of training samples by
slightly modifying /newly creating DICOMs from existing data to avoid overfitting and
to improve the performance of the CNN). The models were trained for 1000 epochs with
a NVIDIA RTX 3080 GPU (12 GB of VRAM), 64 GB of RAM, and an i9-11950H processor.
The training time was about 100 h per model.

U-Net Standard
I

=
U-Net Residual

[—1]

U-Net Dense
E——

Custom

Standard Output Segmentation

>

3x3x3 Conv

Concatenate

2x2x2 MaxPooling
B 2x2x2 up-conv

1x1x1 Conv

Figure 2. Architecture of the Convolutional Neural Network.

The CNN was trained in a two-phase approach. Firstly, the model was trained using
five different cubical patch sizes (32 x 32 x 32, 64 x 64 x 64,96 x 96 x 96,128 x 128 x 128,
and 160 x 160 x 160). In the second phase, the height of the best-performing input volume
(96 x 96 x 96) was modified along the Z axis. Five further models with patch sizes of
96 X 96 X 32,96 x 96 x 64,96 x 96 x 128, and 96 x 96 x 160 were trained. The results are
displayed in Table 3. The model trained with the 96 x 96 x 96 patch size (Figure 3) was the
best-performing and, hence, was further improved by training it with 50 additional CT images
from the University Hospital, Basel, and its performance was tested on the test dataset.

Table 3. The patch sizes with which the CNNs were trained; the reached dice similarity coefficient
(DSC) and its standard deviation (SD); and the epoch when it was reached.

Patch Size Max. DSC SD Epoch
32x32 x 32 0.222 0.073 545
64 x 64 x 64 0.838 0.110 840
96 x 96 x 32 0.857 0.067 635
96 x 96 x 64 0.902 0.060 1000
96 X 96 X 96 0.916 0.033 975

96 x 96 x 128 0.878 0.087 995
96 x 96 x 160 0.852 0.147 810
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Table 3. Cont.

Patch Size Max. DSC SD Epoch
128 x 128 x 128 0.907 0.038 915
160 x 160 x 160 0.860 0.077 725
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Figure 3. Graph of the evolution of the dice similarity coefficient (DCS) and its standard deviation
(SD) of the validation samples for different patch size.

2.3. Software Comparison
2.3.1. Relu

Relu (Figure 4) is an established start-up that offers fully automated cloud-based
segmentation for CBCT and CT images for applications in the Cranio-Maxillofacial field.
The segmented anatomical structures are the toothless mandible, the mandibular teeth
(each tooth individually), the inferior alveolar canal, the toothless maxillary complex, the
maxillary teeth (each tooth individually), the maxillary sinuses, the pharynx, and the soft
tissue. The bone segmentations include cortical and cancellous structures. Relu is ISO
13485 compliant and has a CE mark pending.

»

& Anatomy Selector

Default Custom

BB Display

@=dB

Figure 4. Relu’s user interface (CT w/A 1 displayed).
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For the segmentation of the mandible, the anonymized DICOM files of the test dataset
were uploaded onto the cloud system (the company names it web application) and the
segmentations were requested, but only for the mandible, mandibular teeth, and the inferior
nerve canal, since these are the analyzed structures. After the segmentation was completed,
these structures were combined directly in the cloud and downloaded as one STL file. This
was then imported into Mimics (Version 25.0) and transformed into a mask, which was
then manually filled with the “Smart Fill” tool. Afterward, the part was transformed into
an object using the “Calculate Part tool”, smoothed for 4 iterations with the “Smooth” tool
at a factor of 0.4, and finally exported as an STL file.

With Relu, we encountered problems in 3 of the 20 test DICOMs during the segmen-
tation process regarding voxel spacing, image orientation, and cropping. All transmitted
problems were solved by the support team.

2.3.2. Materialise Mimics Viewer

The Materialise Viewer (Figure 5) is a cloud-based platform for online visualization
and segmentation of DICOM files. Fully automatic segmentation can be requested for CMF
CBCT, heart CT, shoulder CT, hip CT, knee CT, knee MRI, and all bones CT. The Mimics
Automatic Algorithms are part of the FDA 510(k) of Mimics Medical and standalone
CE-marked medical devices.
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Figure 5. Materialise Viewer’s user interface (CT w/A 1 displayed).

For the segmentation of the mandible, the CMF CBCT segmentation algorithm was
used, which was designed to segment both CBCT and CT. The anonymized DICOM files of
the test dataset were inserted into a Mimics file, which was then uploaded onto Mimics
Viewer and the segmentation was requested. The output of the fully automatic segmenta-
tion was a Mimics file containing five segmented parts, which are called “Upper skull”,
“Mandible”, “Teeth Maxilla”, “Teeth Mandible”, and “Neck”, containing the anatomy of
skull and maxilla, mandible, maxillary teeth, mandibular teeth, and neck, respectively.
Only the cortical bone was segmented in the Materialise Mimics Viewer, not the cancellous
bone. The inferior alveolar canal was not segmented.

The file was opened with Mimics (Version 25.0) and the parts were transformed into
masks using the “Mask from Object” tool. The mask containing the mandible and the
one containing the mandibular teeth were combined, and the holes inside the mandible
were filled manually with the “Smart Fill” tool in order to make volumetric comparisons
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possible. In the cases where there were some holes in the surface of the model, we filled
them without intervening in the segmentation of the cortical bone. Afterward, the part was
transformed into an object using the “Calculate Part tool”, smoothed for 4 iterations with
the “Smooth” tool at a factor of 0.4, and finally exported as an STL file.

With Mimics Viewer, we encountered problems in 2 of the 20 test DICOMs during the
segmentation process regarding image orientation and cropping. All transmitted problems
were solved by the support team.

2.3.3. Diagnocat

Diagnocat (Figure 6) is an established start-up that offers fully automated segmentation
for CBCT images and prediagnosis for 2D dental X-rays. The segmented anatomical
structures are the toothless mandible, the mandibular teeth (each tooth individually), the
inferior alveolar canal, the toothless maxilla, the maxillary teeth (each tooth individually),
the cranium, the airways, and the soft tissue. The bone segmentations include cortical and
cancellous structures. Diagnocat has a CE mark.

Figure 6. Diagnocat’s user interface (CT w/A 1 displayed).

For the segmentation of the mandible, the anonymized DICOM files were uploaded
onto the cloud system and the segmentations requested (all the structures as separated files
option). After the segmentation was completed, the mandible, the inferior alveolar canal,
and the mandibular teeth were downloaded and combined into a single file using Mate-
rialise 3-Matic (Version 17.0, Materialise NV, Leuven, Belgium). This was then imported
into Mimics (Version 25.0) and transformed into an object using the “Calculate Part tool”,
smoothed for 4 iterations with the “Smooth” tool at a factor of 0.4, and finally exported as
an STL file.

With Diagnocat, we encountered problems in all of the CT images and one CBCT
image out of the twenty test DICOMs during the segmentation process. All these images
had non-isotropic voxel spacing (CBCTs generally have isotropic voxel spacing, as shown
in Annex S1-S5), which needed to be adapted. All transmitted problems were solved by
the support team.

2.3.4. Brainlab

The Brainlab Elements application (Figure 7) consists of multiple applications and
backend services for image processing of medical data (data transfer and exchange, image
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co-registration, automatic image segmentation, manual contouring, object manipulation,
trajectory planning, etc.). The anatomical structures that can be automatically segmented
are the optic nerve, eye, midface, skull base, skull base anterior, skull base central, skull
base posterior, orbit volume, skull, ethmoid bone, LeFort I Template, LeFort II Template,
LeFort III Template, LeFort III-I Template, mandible, mandible body, mandible ramus,
frontal bone, maxilla, nasal bone, orbit, orbit floor, orbit wall medial, zygomatic bone,
occipital bone, parietal bone, sphenoid bone, and temporal bone. For all bony structures,
the cortical and cancellous bones are segmented by Brainlab. Teeth are not part of the
segmentation model.

L § @

Add Angtomy Load STL
o
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Ot Right

0 ©

Beck Done

£ BRAINLAB

Figure 7. Brainlab’s user interface (CT w/A 1 displayed).

The mandible was downloaded as an STL file and was then imported into Mimics
(Version 25.0) and transformed into a mask, which was then manually filled with the
“Smart Fill” tool. Afterward, the part was transformed into an object using the “Calculate
Part tool”, smoothed for 4 iterations with the “Smooth” tool at a factor of 0.4, and finally
exported as an STL file.

With Brainlab, no problems were encountered during the segmentation process.

2.4. Mandible Cutting

The following three comparisons were made: one of the mandible with teeth, one of
just the mandibular bone, and the last of just the mandibular teeth (as shown in Figure 8).
In order to split the mandible into the mandibular teeth and the mandibular bone, 3-Matic
was used. For each of the 20 mandibles in the test dataset, the ground truth was used to
manually insert three cutting planes (one horizontal and two vertical planes), which were
used to automatically cut and split the segmented mandibles for each company using the 3-
Matic scripting tool. Two different STL files were obtained, one containing the mandibular
bone and one containing the mandibular teeth.
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Figure 8. Cutting planes on mandible with teeth (left), mandibular bone (right), and mandibular
teeth (bottom).

3. Results

The main results after all the assessments were made are as follows:

Opverall, Relu performed best if the mean DSC for the mandible with teeth (mean DSC
of 0.938) and bone (mean DSC of 0.949) is taken into consideration, which was closely
followed by Diagnocat and then Materialise, as displayed in Tables 4 and 6.

Brainlab was only included for the assessment of the mandibular bone, as it does not
offer teeth segmentation (mean DSC of 0.912), as displayed in Table 6.

Materialise performed best over the other software in the assessment of the mandibular
teeth (mean DSC of 0.864), as displayed in Table 5.

We could observe that in all assessments, our in-house-developed software performed
worst, obtaining the closest result in the mandibular bone comparison (mean DSC
of 0.894), but achieved an accuracy of 94.24% in comparison to the best-performing
software, as displayed in Tables 4—6.

The segmentation performed by the inexperienced user with good anatomical under-
standing (CMF surgeon) had, for all assessments, the best mean DSC, as displayed in
Tables 4-6.

For better visualization and understanding of the results, we chose to display in each

category (CT with artifacts (Figure 9), CT without artifacts (Figure 10), CBCT with artifacts
(Figure 11), and CBCT without artifacts (Figure 12)) the first segmented mandible. For
that, we used the color mapping of the surface distance between the segmentation and
the ground truth (where the segmentation is visible and the ground truth is hidden), with
minimum and maximum ranges of —1.0 mm and +1.0 mm.

Table 4. Mean dice similarity coefficient (DSC) of the mandible with teeth comparison.

Ma.n ual In-House  Relu Materialise Diagnocat Brainlab
(Beginner)
Mean CTw/A 0.961 0.885 0.939 0.914 0.927 -
Mean CTw/0 A 0.968 0.891 0.935 0.903 0.921 -
Mean CBCT w/A 0.951 0.863 0.938 0.947 0.941 -
Mean CBCT w/o0 A 0.958 0.899 0.939 0.956 0.947 -
Mean 0.960 0.884 0.938 0.930 0.934 -
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Table 5. Mean dice similarity coefficient (DSC) of the mandibular teeth comparison.

Ma.n ual In-House Relu Materialise Diagnocat Brainlab
(Beginner)
Mean CT w/A 0.923 0.787 0.814 0.838 0.817 -
Mean CTw/o0 A 0.953 0.818 0.792 0.847 0.797 -
Mean CBCT w/A 0.838 0.762 0.858 0.837 0.853 -
Mean CBCT w/o0 A 0.935 0.841 0.889 0.935 0.903 -
Mean 0.912 0.802 0.838 0.864 0.842 -

Table 6. Mean dice similarity coefficient (DSC) of the mandibular bone comparison.

Ma.n ual In-House  Relu Materialise Diagnocat Brainlab
(Beginner)
Mean CT w/A 0.968 0.898 0.958 0.925 0.943 0.948
Mean CT w/o0 A 0.969 0.900 0.952 0.909 0.936 0.943
Mean CBCT w/A 0.963 0.873 0.944 0.959 0.948 0.852
Mean CBCT w/o0 A 0.962 0.905 0.943 0.958 0.950 0.903
Mean 0.966 0.894 0.949 0.938 0.944 0.912
Manual (beginner) vs. GT (0.948 In-house vs. GT (0.882 DSC) Relu vs. GT (0.939 DSC) 10000
DSC) |
-0.0000
-0.6667
-1.0000
Materialise vs. GT (0.919 DSC) Diagnocat vs. GT (0.930 DSC) Brainlab vs. GT (0.924 DSC)

U

Figure 9. CT with artifacts: Color mapping of the surface distance between the segmented mandibles
of the CT w/A 1 image and the ground truth (GT).

Timing: We calculated the mean values of the segmentation times for CT and CBCT
with /without artifacts (Figure 13). We have shown that our in-house model performed
best with the lowest mean time (2/03"”), followed by Brainlab (3'54”) and Diagnocat (4'52").
The manually segmented mandibles (those from the expert and the inexperienced user)
showed similar timings (26'09” and 22'54", respectively). Materialise showed the highest
mean value (85'54").
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Manual (beginner) vs. GT (0.944 In-house vs. GT (0.889 DSC) Relu vs. GT (0.939 DSC) 1.ouoo!

)

DSC 0.6667
03333
-0.0000
-0.3333
-0.6667
-1.0000

Materialise vs. GT (0.909 DSC) Diagnocat vs. GT (0.926 DSC)  Brainlab vs. GT (0.900 DSC)

L LY L

Figure 10. CT without artifacts: Color mapping of the surface distance between the segmented
mandibles of the CT w/o A 1 image and the ground truth (GT).

Manual (beginner) vs. GT (0.953 In-house vs. GT (0.896 DSC) Relu vs. GT (0.936 DSC) 1.0000
DSC) I [ I
Materialise vs. GT (0.955 DSC) Diagnocat vs. GT (0.944 DSC) Brainlab vs. GT (0.911 DSC)

R

Figure 11. CBCT with artifacts: Color mapping of the surface distance between the segmented
mandibles of the CBCT w/A 1 image and the ground truth (GT).
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Manual (beginner) vs. GT (0.973 In-house vs. GT (0.905 DSC) Relu vs. GT (0.943 DSC) 1.0000!

Y v

Materialise vs. GT (0.961 DSC) Diagnocat vs. GT (0.950 DSC) Brainlab vs. GT (0.779 DSC)

v Y

Figure 12. CBCT without artifacts: Color mapping of the surface distance between the segmented
mandibles of the CBCT w/o A 1 image and the ground truth (GT).
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Figure 13. Graph of the mean timing for the segmentations.

4. Discussions

In a clinical routine, three important factors stand out: segmentation accuracy, cost,
and time. The segmentation accuracy result was best for manual segmentation in all com-
parisons, followed by Relu, Diagnocat, and Materialise, which all performed very similarly
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to one another. Brainlab could only be included in the comparison of the mandibular bone
because the segmentation did not include the teeth, as its main activity offers intraoper-
ative navigation solutions. Our in-house-developed CNN performed worst in all of the
comparisons. We encountered the problem that the segmented mandibles of our in-house
CNN had a cubical surface, which was probably due to a too high voxel spacing parameter.
This problem could not be fixed and will require further training and improvements to the
model. The advantage of our system is that it has higher stability than the other software
included in our study. We could upload all the DICOM files without any modifications
and obtain a complete segmentation. The other software encountered some problems with
DICOMs containing not only the skull but also, e.g., the thorax, and needed preprocessing
(cropping) in order to obtain the segmentation. A further problem was with the handling of
CT images, because some systems were only trained on CBCT images, and in many cases,
images without isotropic voxel spacing were not supported and had to be modified. Addi-
tionally, it is worth mentioning that not all the DICOM file orientations were supported.
Figures 9 and 10 show that for CT images, the segmented mandibles from Materialise and
Diagnocat had a slight inaccuracy in the segmentation of the mandibular bone compared
to those from Relu or Brainlab, which was probably due to different thresholds used for
the clipping during the training. Finally, the manual segmentation may have performed
better than other automatic systems due to a similar segmentation protocol as the one for
the ground truth. The same could apply to our in-house-developed CNN, which may have
performed better because it was trained with a dataset prepared by following the same
segmentation protocol. Using Mimics, which is developed by Materialise, for the manual
segmentation (training and test data) and the filling process, could have had a positive
influence on the final outcomes. Furthermore, the filling process of the mandibles, which
was performed manually and was needed due to the different segmentation approaches,
could be subject to bias. Pricing is also a relevant factor that needs to be considered. As
we were offered the segmentations by the companies for research purposes, pricing was
not further investigated in this study. The timing may vary due to the fact that most of
the companies offer a cloud service, which, depending on the server load and internet
connection, affects the segmentation time. Additionally, our ground truth implies that a
manual segmentation process can differ from the anatomical specimen ground truth, which
implies a scanning process. Other studies are necessary to compare the segmentations with
laser-scanned mandibles (anatomical specimens) as the ground truth to improve accuracy.

5. Conclusions

In our study, we wanted to find out if non-professional medical personnel could
become close to segmentation software developed by established companies, following
a clearly defined research protocol. The results showed that our in-house-developed
model achieved an accuracy of 94.24% compared to the best-performing software. We also
conclude that the segmentation performed by an inexperienced user with good anatomical
understanding achieved the best result compared to all the other companies included in
the study.

The timing required to automatically segment a mandible was, for almost all of the
software, lower than the manual segmentation.

We can deduce that in order to obtain better quality segmentations, the CNN has to
be trained with a dataset containing a large number of highly variable images (e.g., older
and newer DICOM files, different types of DICOMs (CT and CBCT), and different image
sizes, including different regions of interest and from different centers) that is constantly
updated and enlarged due to the constantly improving image technologies.

To fulfill today’s expectations of personalized medicine, digital workflows, including
segmentation, need to offer stable solutions. Answers must be found for the current
problems that are often encountered during the segmentation process: artifacts, amount
of noise, voxel spacing, the size of the image, DICOM type, and image orientation. All
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these problems were reported to the companies so that solutions could be elaborated in the
future.

For the future, the first step for implementing fully automated digital workflows is
to generate accurate segmentations of the patient’s anatomy, which will be possible after
solving the above-mentioned issues.

Once the above-mentioned issues are solved, these software can be implemented in
fully automated digital workflows, allowing new clinical applications, such as intraopera-
tively 3D-printed patient-specific implants, even in emergency situations.

Supplementary Materials: The following supporting information can be downloaded at: https:/ /www.
mdpi.com/article/10.3390/bioengineering10050604/s1, Annex S1: Test data DICOM properties;
Annex S2: Dice similarity coefficient (DSC) of the mandible with teeth comparison; Annex S3: Dice
similarity coefficient (DSC) of the mandibular bone comparison; Annex S4: Dice similarity coefficient
(DSC) of the mandibular teeth comparison; Annex S5: Mean values for the comparison of the
mandible with teeth segmentations, mandibular bone and mandibular teeth to the ground truth by
using the dice similarity coefficient (DSC), average surface distance (ASD), Hausdorff distance (HD),
relative volume difference (RVD), volumetric overlap error (VOE), false positive rate (FPR), and false
negative rate (FNR).
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Abbreviations

3D Three-dimensional

Al Artificial Intelligence

AR Augmented Reality

ASD Average Surface Distance

CBCT Cone-Beam Computed Tomography

CMF Cranio-Maxillofacial

CNN Convolutional Neural Network

CT Computed Tomography

DICOM Digital Imaging and Communications in Medicine
DsC Dice Similarity Coefficient

FDG-PET  Fluorodeoxyglucose-Positron Emission Tomography
GT Ground Truth

FNR False Negative Rate

FPR False Positive Rate

HD Hausdorff distance

MIScnn Medical Image Segmentation with Convolutional Neural Networks
RAS Right, Anterior Superior

RVD Relative Volume Difference
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SD Standard Deviation
STL Standard Tessellation Language
VOE Volumetric Overlap Error
VR Virtual Reality
VSP Virtual Surgical Planning
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Abstract: Bladder volume assessments are crucial for managing urinary disorders. Ultrasound
imaging (US) is a preferred noninvasive, cost-effective imaging modality for bladder observation
and volume measurements. However, the high operator dependency of US is a major challenge
due to the difficulty in evaluating ultrasound images without professional expertise. To address
this issue, image-based automatic bladder volume estimation methods have been introduced, but
most conventional methods require high-complexity computing resources that are not available
in point-of-care (POC) settings. Therefore, in this study, a deep learning-based bladder volume
measurement system was developed for POC settings using a lightweight convolutional neural
network (CNN)-based segmentation model, which was optimized on a low-resource system-on-chip
(SoC) to detect and segment the bladder region in ultrasound images in real time. The proposed
model achieved high accuracy and robustness and can be executed on the low-resource SoC at
7.93 frames per second, which is 13.44 times faster than the frame rate of a conventional network
with negligible accuracy drawbacks (0.004 of the Dice coefficient). The feasibility of the developed
lightweight deep learning network was demonstrated using tissue-mimicking phantoms.

Keywords: deep learning; semantic segmentation; automatic volume measurement; ultrasound

bladder scanner; edge computing; urinary disease

1. Introduction

Bladder volume measurements are commonly used in managing urinary diseases,
such as urinary incontinence and benign prostate enlargement. Urinary catheterization
is often used for measuring bladder volume in many cases, e.g., postoperative urinary
retention [1], but it yields a high risk of urinary tract infection. To minimize unnecessary
urinary catheterization, several studies have been conducted to analyze the impact and
proper cycles of urinary catheterization [2,3]. Measuring post-void residual urine (PVR) is
regarded as an effective way to reduce unnecessary catheterization. Additionally, PVR is a
useful predictor of various diseases, such as prostatism and urinary tract infection [4,5]. To
maximize the advantages of PVR measurements, a fast and accurate PVR measurement
method is needed.

Ultrasound imaging (US) is a noninvasive, cost-effective, and real-time imaging modal-
ity that has been shown to be one of the most accurate and effective methods for measuring
PVR [6-9]. Several studies have also demonstrated that US can potentially be used in
point-of-care (POC) settings [10-12]. Recently, the development of portable US imaging
devices for measuring bladder volume has been proposed [13,14]. Despite its usefulness,
US has several limitations for measuring PVR in POC settings. One of the most challenging
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problems is its high operator dependency, which makes interpreting ultrasound images
without professional experience and expertise difficult. Additionally, in POC settings,
limited resources such as computing power and less experienced clinicians (e.g., nurses
and care providers) can be problematic. As a result, the ultrasound image quality may be
degraded, leading to misinterpretation or difficulties in PVR analysis.

To decrease operator dependency, an automatic bladder volume measurement method
is needed. Traditionally, mechanical ultrasound scanning systems, such as a wobbling
probe, have been used for PVR measurements. However, these methods require a prescan
process to allocate the probe to the proper location before an actual volume measurement.
Additionally, with mechanical scanning systems, ultrasound images or bladder volume
measurements cannot be carried out in real time, resulting in inefficient repetitions of
measurements. Moreover, patient motion during long scanning times may cause errors in
PVR measurements. To address these issues, the need for a real-time image-based bladder
measurement system has emerged.

To measure bladder volumes in real time, several studies have introduced image-
based bladder volume measurements using various image analysis techniques, such as
segmentation. Recent advances in deep learning and computer vision techniques have
shown promising results for various tasks, including segmentation of regions of interest
(e.g., organs and masses) in ultrasound images. In addition, deep learning techniques have
been applied for analyzing urine in ultrasound images [15-17]. While these studies have
shown that deep learning models can accurately segment the bladder and measure PVR
volume, these tasks were primarily conducted on highly complex computing resources
such as graphic processing units (GPUs). Additionally, in previous studies, ultrasound
images were acquired by commercial cart-based ultrasound systems. In contrast, in POC
settings, ultrasound images are collected by portable ultrasound systems so the imaging
quality may be degraded due to the compactness and low computational power of these
systems. This may reduce the accuracy of PVR measurements with deep learning models.

In this study, to address this issue, a lightweight deep-learning model for a portable
bladder volume measurement system is proposed. Our proposed system was designed
to detect PVR and segment the bladder region in ultrasound images with much fewer pa-
rameters; subsequently, an algorithm was employed to automatically measure the bladder
volume using the segmentation results. Additionally, considering system integration, to
improve its execution time in portable settings, the developed deep learning model was op-
timized with a fixed-point quantization technique. As a result, the optimized model could
measure the bladder volume accurately with fewer than 1 million parameters on a low-
resource SoC at high frame rates. The feasibility of our proposed automatic bladder volume
measurement system was demonstrated by using various tissue-mimicking phantoms.

2. Materials and Methods
2.1. Data Acquisition from the Portable Ultrasound System

In this study, a system-on-chip (SoC)-based portable ultrasound system (EdgeFlow
UH10w, Edgecare Inc., Seoul, Republic of Korea) was used to acquire ultrasound bladder
images for training and validating the designed deep learning model. As shown in Figure 1,
the commercial ultrasound system includes a SoC, a front-end processing module, and a
power module and uses two 32-channel high-voltage (HV) pulsers and a transmit/receive
(T/R) switch to control the cross-array probe. Front-end processing involves low noise
amplification, time gain compensation, programmable gain amplification, and analog-to-
digital conversion. Back-end processing is performed using the programmable logics (PL)
on the SoC, with data transfer to the processing system (PS) via a direct memory access
(DMA) engine. The signal is then reconstructed into an image using digital scan conversion.
To acquire sagittal and transverse images simultaneously, a T-shaped array consisting of
two phased array probes was used with the portable ultrasound system. The received
radio-frequency signals were processed in PL in the SoC (Zynq Ultrascale+, Xilinx Inc., San
Jose, CA, USA) by performing receive beamforming, quadrature demodulation, envelope
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detection, and log compression. The processed signal was then reconstructed into an image
with a height of 330 pixels and a width of 570 pixels by the PS.
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Figure 1. Block diagram showing the processing chains of the integrated system for ultrasound image
acquisition and analysis. The gray boxes indicate the original processing blocks of the device, and the
orange boxes denote the integrated processing blocks of this study. The deep learning model, trained
on biplane images, is implemented on the SoC for bladder segmentation and post-void residual (PVR)
detection, enabling automatic bladder volume measurement. To optimize performance, the deep
learning model is quantized.

The proposed bladder measurement method, based on deep learning, was developed
to be integrated into a portable ultrasound system using a system-on-chip (SoC). As
depicted in Figure 1, the deep learning network was designed to perform segmentation
and classification on the ultrasound images after digital scan conversion (DSC), identifying
regions of interest (ROIs) and detecting the bladder. Once the bladder is detected on the
image, the bladder volume is estimated by using the length of the axes.

To collect a dataset with high variability, various gain and depth settings were used.
The ultrasound bladder images were obtained from two tissue-mimicking phantoms: an
intravesical urine volume measurement phantom (US-16, Kyoto Kagaku, Kyoto, Japan)
with urine volumes of 50 mL, 150 mL, and 300 mL, and a multimodality pelvic phan-
tom (Model 048A, CIRS, Norfolk, VA, USA). A total of 1306 images with a bladder and
2095 images without a bladder were collected. The bladder images were randomly divided
into 1044 images for training and 262 images for validation, with each image labeled with a
corresponding mask for the segmentation task. The images without a bladder were divided
into 1675 images for training and 420 images for validation for the classification task. To
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capture ROIs of various sizes, the dataset was collected by randomly selecting locations
with a free hand on a static phantom. To validate the size and distribution of the dataset,
the accuracies on the training phase and validation phase are compared. Examples of the
dataset are shown in Figure 2.

Figure 2. Examples of the acquired dataset. The first and second rows show images with a bladder,
and the green line indicates the boundary of the mask label from human labelers. The third row
represents images without a bladder, indicating that the bladder was not observed.

2.2. Multitask Deep Learning-Based Bladder Volume Measurement

The aim of this study was to design a convolutional neural network (CNN)-based deep
learning model that is simple yet efficient for bladder volume measurement systems. The
model was designed to perform multiple tasks, including classification and segmentation,
as shown in Figure 3. This multitask approach can improve the model’s efficiency in SoC
environments and prevent unexpected measurement results from images without bladder
regions. The classification path of the model detects a bladder on the ultrasound image by
classifying the image into two classes, indicating the existence of the bladder in the image.
The segmentation path of the model aims to find the pixelwise accurate ROI of the bladder
in the image. The architecture of the model, including parameters such as the kernel size,
was optimized on the collected dataset. Starting from the large-size model, parameters
were gradually reduced by comparing the accuracy to the validation dataset.

To reduce the complexity of calculation and memory consumption, the input image
was resized to a height and width of 192 pixels. For the feature extraction stage, Mo-
bileNetv2 [18], known for its lightweight network architecture and efficiency with regard
to portable devices, was used to generate features with dimensions of 12 x 12 x 96. For
the classification path, the extracted features were optimized by global average pooling, a
dense layer, and classification head layers. For the segmentation path, the features were
further processed by quantizable squeeze-and-excitation (QSE) blocks, depthwise sepa-
rable convolution (DWC) blocks [19], upscaling layers, and a segmentation head. The
squeeze-and-excitation (SE) [20] block has been widely used to embed channel weights into
features. However, the SE block is not suitable for quantized networks due to elementwise
multiplications. Therefore, in this study, a QSE block was designed with a channel weight
operation using concatenation and convolution instead of elementwise multiplication. The
QSE block was used to capture the larger context of the image. In the SE block, the feature
was reduced to a small size vector (1 x 1 x 96) by averaging, and then the expanded feature
was weighted by the reduced vector. To merge detailed information with the features from
the QSE blocks, 3 x 3 convolution layers were placed parallel to the SE blocks. The features
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from the QSE blocks and convolution layers were merged by DWC blocks. The merged
features were reduced into a smaller channel by convolution layers and then upscaled
into the resized input size (192 x 192) with two channels (i.e., the number of pixel classes).
Then, the segmentation head classified each pixel into two classes (i.e., background and
bladder). Finally, the segmentation result was resized to the original size of the image.

Quantizable
Squeeze-and-Excitation

Feature Extraction

.. Concatenation

MobileNetv2

12x12x512

Original - 192x192

Classification Output
PVR Detected

PVR Not Detected

12x12%256

Classification Head

Segmentation Head

Segmentation OQutput |

=

== 12x12%256
192x192 -> Original

192x192x2 192x192x2

Figure 3. Overall architecture of the deep learning network designed for ultrasound image analysis.
The original image is resized to a height and width of 192 pixels before feature extraction using
MobileNetv2. The extracted feature is processed through two paths: segmentation and classification.
The segmentation path uses squeeze-and-excitation and convolution to expand the features to a
dimension of 12 x 12 x 256, which are then concatenated to 12 x 12 x 512 dimensions. A depthwise
separable convolution is then applied to merge the gathered feature to a dimension of 12 x 12 x 256
before upscaling it to the 192 x 192 dimension using bilinear interpolation. The channel of the
upscaled feature is then reduced to match the number of classes before finalizing segmentation with
SoftMax. The classification path uses global average pooling to gather features that are reduced into
logits according to each class. The classification is then finalized using SoftMax function.

Bladder volume is typically estimated based on shape coefficients and measurements
of height, width, and depth on two different planes (i.e., sagittal and transverse). In this
study, as illustrated in Figure 4, depth was estimated on the sagittal plane, while height and
width were estimated on the transverse plane. The bladder volume was then calculated
using Equation (1), where c is a constant determined by the shape of the bladder region
(e.g., 0.52 for a spherical shape, 0.7 for an unknown shape [21]).

Volume ~ ¢ x Depth x Height x Width (1)

2.3. Network Compression and System Implementation

To train the multitask architecture model without any degradation in accuracy, the
classification path and the segmentation path were trained separately. Figure 5 illustrates
the three distinct training stages of the proposed network. In the first stage, the segmen-
tation path was trained with the initial weight of the model while the classification path
was kept frozen. Next, in the second stage, the segmentation path was frozen, and the
classification path was trained. Once the training of the classification path was completed,
the weights from the first and second stages were merged into a single model.
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Transverse Plane

Sagittal Plane

Figure 4. Automated axes detection for estimating bladder height, width, and depth from biplane
ultrasound images. The bladder ROI dimensions were obtained by calculating the minimum enclosing
bounding box (yellow line). In the sagittal plane, the greater distance between two intersections
(blue dots) of the bounding box’s diagonal line (white dashed lines) with the bladder ROI contour
(green line) was used to estimate depth. The red arrow lines represent the estimated depth. In the
transverse plane, the maximum distances of the vertical and horizontal intersections were used to
estimate height and width, respectively.
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Figure 5. Training process for the designed network. The segmentation path is first trained in a
quantization-aware training (QAT) setting with the classification path frozen. Once the segmentation
path training is complete, the classification path is trained in the same QAT setting with the segmen-
tation path frozen. Finally, the trained weights from both segmentation and classification paths are
combined into a single model.

Additionally, during the training process, the model was also subjected to quantization-
aware training (QAT) [22] to enhance execution speed while minimizing any drop in accu-
racy. The combo loss function [23], which combines the Dice loss and cross-entropy loss
functions, was used to train the segmentation path. Meanwhile, the classification path
was trained using the cross-entropy loss function. To avoid overfitting, data augmenta-
tion techniques, such as random intensity shift and random left-right flip, were applied.
Furthermore, early stopping criteria were implemented, with a patience of 20 epochs. The
Adam optimizer [24] was employed to train the network. To avoid local minimum and
overfitting problem, the learning rate scheduling and early stopping criterion were used.

The deep learning model is trained using the TensorFlow (Google Inc., Mountain View,
CA, USA) framework. After training, the model is compressed to enhance execution time
on low-resource SoC settings. Model weights are quantized into 8-bit fixed-point using
TensorFlow Lite (Google Inc., Mountain View, CA, USA). Inference is performed using the
C++ programming language. To handle the entire system, the Linux operating system is
utilized on the SoC with the Vitis (Xilinx Inc., San Jose, CA, USA) framework.

3. Results
3.1. Evaluation of the Trained Deep Learning Model

For the evaluation of the model’s performance, the segmentation was assessed using
the Dice coefficient metric, while accuracy was used to evaluate the classification per-
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formance. To compare the segmentation results with conventional models, U-Net [25],
Attention U-Net [26], and BiSeNetv2 [27] were implemented at the original image resolu-
tion of 570 x 330. U-Net and Attention U-Net were implemented with 64, 128, 256, and
512 channels. The same optimizer and loss function were used for both the proposed and
conventional methods. The conventional methods were trained and implemented using
a 32-bit floating point, while the proposed method was trained and implemented using
an 8-bit fixed point, as previously mentioned. The models were compared on the same
validation data. The results are presented in Table 1, where F and Q represent 32-bit floating
point and 8-bit fixed point implementation, respectively. The throughput in Table 1 was
measured in the integrated SoC setting.

Table 1. Comparison of the Segmentation Results.

Dice Coefficient # of Parameters Throughput (FPS)
U-Net 0.913 £ 0.124 8.56 M 1.33
Attention U-Net 0.944 £ 0.075 791 M 0.15
BiSeNetv2 0.958 £ 0.034 312M 0.59
Ours 0.954 £ 0.045 0.97M 7.93

Table 1 shows the comparison of the proposed segmentation path with conventional
CNN-based segmentation networks. U-Net, which is commonly used as a baseline for
medical image segmentation, achieved an average Dice coefficient of 0.913 with a standard
deviation of 0.124. The implemented U-Net had 8.56 million parameters and a throughput
of 1.33 frames per second (FPS) in the SoC environment. In comparison, the Attention U-
Net achieved a much higher Dice coefficient of 0.944 on average with a standard deviation
of 0.075 but had a slower throughput than the U-Net, despite having fewer parameters.
The recently introduced BiSe-Netv2 showed even higher Dice coefficients than both U-Net
and Attention U-Net (i.e., an average of 0.958 and a standard deviation of 0.034) with even
fewer parameters. However, BiSeNetv2 was slower than U-Net, running at less than 1 FPS.
In contrast, the proposed method had significantly fewer parameters (i.e., 0.97 million)
and could be executed at a much faster rate of approximately 8 FPS, which was 5.96x ,
52.87x, and 13.44x faster than the U-Net, Attention U-Net, and BiSeNetv2, respectively.
Although the proposed method had a slightly lower Dice coefficient than BiSeNetv2 (i.e.,
0.954 £ 0.045 vs. 0.958 £ 0.034, respectively), the segmentation results from the proposed
network are promising, as shown in Figure 6. The validation accuracy of the classification
path was over 0.99, indicating high accuracy in the classification results, as shown in the
confusion matrix in Figure 7.

Figure 6. Examples of the segmentation result. The ground truth is represented by the green line,
while the prediction from our proposed network is rep