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Abstract: Multi-contrast magnetic resonance imaging (MRI) is wildly applied to identify tuberous
sclerosis complex (TSC) children in a clinic. In this work, a deep convolutional neural network with
multi-contrast MRI is proposed to diagnose pediatric TSC. Firstly, by combining T2W and FLAIR
images, a new synthesis modality named FLAIR3 was created to enhance the contrast between TSC
lesions and normal brain tissues. After that, a deep weighted fusion network (DWF-net) using a late
fusion strategy is proposed to diagnose TSC children. In experiments, a total of 680 children were
enrolled, including 331 healthy children and 349 TSC children. The experimental results indicate
that FLAIR3 successfully enhances the visibility of TSC lesions and improves the classification
performance. Additionally, the proposed DWF-net delivers a superior classification performance
compared to previous methods, achieving an AUC of 0.998 and an accuracy of 0.985. The proposed
method has the potential to be a reliable computer-aided diagnostic tool for assisting radiologists in
diagnosing TSC children.

Keywords: tuberous sclerosis complex; children; convolutional neural network; multi-contrast MRI;
rare neurodevelopmental disorder

1. Introduction

Tuberous sclerosis complex (TSC) is a rare neurodevelopmental disorder caused by
mutations in the TSC1 and TSC2 genes [1,2]. It is characterized by angiofibromas of the
face, epilepsy, an intellectual disability, and hamartomas in multiple organs including the
heart, kidneys, brain, and lungs [3–5]. The majority of pediatric TSC patients experience
their initial seizure in the first year of life [6–8], which has a severe impact on the lives
of TSC children [9,10]. Therefore, it is urgent and valuable to develop valid and robust
classification models for TSC children in a clinic.

Neurological symptoms are prevalent in nearly all children with TSC, and multi-
contrast magnetic resonance imaging (MRI) is frequently employed for a clinical diag-
nosis [11]. To date, T2-weighted imaging (T2W) and fluid-attenuated inversion recovery
(FLAIR) have been commonly utilized in a pediatric TSC diagnosis, allowing for the iden-
tification of lesions and facilitating high lesion-to-brain contrast visualization. But, the

Bioengineering 2023, 10, 870. https://doi.org/10.3390/bioengineering10070870 https://www.mdpi.com/journal/bioengineering
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cerebrospinal fluid (CSF) signal is strong in T2W, which severely interferes with the vi-
sualization of periventricular TSC lesions. FLAIR imaging can suppress cerebrospinal
fluid and sufficiently show the lesion–brain contrast clearly, and FLAIR also reduces the
signal-to-noise ratio while pressing CSF [12]. Currently, it is not possible for a single MRI
sequence to produce all the required tissue contrasts in a single contrast image due to the
trade-offs that need to be made when choosing MRI pulse sequence parameters [13]. In
recent studies, it has been demonstrated that a synthesized contrast that blends T2W and
FLAIR imaging can augment the contrast of multiple sclerosis (MS) lesions, leading to an
improved diagnostic efficacy [12,13]. However, to the best of our knowledge, there are
not studies on applying a synthesis contrast combining T2W and FLAIR for diagnosing
pediatric TSC so far.

Otherwise, deep learning has been studied as an advanced artificial intelligence
technology that can automatically learn from medical image data and extract a large number
of features [14]. Previously, deep learning models and multi-contrast MRIs have been
successfully used for automatically detecting strokes [15] and classifying brain tissues [16].
Until now, convolutional neural networks (CNNs) have been applied to assist in tuber
segmentation in TSC patients [17]. Sanchez et al. [18] used two types of contrast MRI,
T2W and FLAIR, for the detection task of TSC tubers and achieved the receiver operating
characteristic curve that can have an area under the curve (AUC) of 0.99. However, their
approach employed a 2D network and solely relied on handpicked MRI slices with evident
tubers as input to the network. This method failed to account for the spatial attributes of
MRI and neglected the fact that not all TSC patients exhibit visible lesions. Additionally,
their datasets were limited to merely 114 TSC patients and 114 controls. Alternatively,
recent research suggests that 3D CNNs excel at capturing the spatial characteristics of MRI
and effectively capitalize on the interplay between voxels. Consequently, they have been
reported to yield superior results in predicting chronological age [19].

To further raise the performance of identifying TSC children in a clinic, a novel deep
learning method, named the deep weighted fusion network (DWF-net), was proposed to
effectively diagnose pediatric TSC lesions with multi-contrast MRIs. The proposed method
has a synthesis contrast, named FLAIR3, from the combination of T2W and FLAIR that
can maximize the lesion–brain contrast of pediatric TSC lesions. Moreover, the proposed
method has a 3D CNN strategy of the weighted late fusion model combined with multi-
contrast MRI to automatically diagnose pediatric TSC. The experimental dataset has a total
of 680 children, including 331 healthy and 349 TSC children. Experiments intuitively show
that the new synthesis FLAIR3 contrast and the weighted 3D CNN strategy can effectively
improve the contrast saliency of pediatric TSC lesions, and the classification performance.

The proposed deep learning method is efficient in distinguishing TSC children from
healthy children and presently achieves the best performance. The proposed method has
great potential in helping clinical doctors diagnose TSC children and provides an effective
research tool for pediatric doctors.

2. Methods

2.1. Optimal Combination of T2W and FLAIR

Cortical and subcortical nodules are the most common lesions in TSC children. The
increased prominence of lesions is crucial for clinical doctors to diagnose pediatric TSC [20].
The T2W signal is related to water content, and most of the lesions have stronger T2W
signals than surrounding normal tissues, often exhibiting a bright state. Therefore, the
location and size of the pediatric TSC lesions can be seen from the T2W sequence. However,
the outline of the lesion is relatively vague in the T2W sequence, and it is difficult to clearly
outline the outline of the lesion. Moreover, there was a strong cerebrospinal fluid (CSF)
signal interference in T2W. FLAIR, also known as water-suppression imaging, suppresses
(darkens) CSF hyperintensity in T2W, thereby making lesions adjacent to CSF clear (bright-
ened). Compared with the T2W sequence, the FLAIR sequence can better represent the
surroundings of the lesion and clearly show the lesion area. FLAIR is a T2W scan that
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selectively suppresses CSF by reversing pulses. However, CSF signal suppression comes
at the expense of reducing the signal-to-noise ratio [12]. FLAIR2 and FLAIR3 have been
proposed to combine T2W and FLAIR to improve lesion visualization in MS disease [12,13].
Inspired by [12,13], we propose to optimize the combination of T2W and FLAIR as a new
modality named FLAIR3 in pediatric TSC disease as follows [13]:

FLAIR3 = FLAIRα × T2Wβ

s.t. α + β = 3
(1)

where the optimized α is 1.55 and β is 1.45 based on the signal equations of FLAIR and
T2W [13], which can optimally balance the lesion contrast between FLAIR and T2W.

2.2. Late Fusion Strategies

Some recent studies [21] have shown that the late fusion model could grasp the data
distribution effectively and finally achieve the best classification performance. Inspired
by [22,23], a weighted late fusion strategy was used to combine multi-contrast MRI for
classification tasks in pediatric TSC patients. First, T2W, FLAIR, and FLAIR3 were fed into
a feature extractor. We propose a deep weighted network (DWF net) that takes the scores
of the T2W, FLAIR, and FLAIR3 models as input, and outputs the final classification with a
simple and efficient weighted average integration method, as follows:

SDWF = W1 × ST2W + W2 × SFLAIR + W3 × SFLAIR3
s.t. ∑3

i=1 Wi = 1
(2)

where ST2W, SFLAIR, and SFLAIR3 represent the classification scores of T2W, FLAIR, and
FLAIR3 models, respectively. SDWF denotes the final output prediction scores of the pro-
posed DWF-net. W1, W2, and W3 are the weights of the prediction scores of the three
multi-contrast MRIs.

To explore the optimal fusion between multi-contrast MRI and to enhance the AUC of
the proposed DWF-net, the experiments were performed for values of W1 between 0 and
1, and W2 from 0.1 to 1−W1 with a step of 0.1; W3 is 1−W1−W2. The weight-searching
algorithm is shown in Algorithm 1.

Algorithm 1 The weight searching algorithm for fusion

Input: The prediction scores ST2W, SFLAIR, and SFLAIR3 of three input images and corresponding
ground truth y on testing set.
Output: The weight (W1, W2, and W3) with best AUC on testing set.
1: Initialize AUC best ← 0.
2: for i: =0 to 10 do

3: for j: =0 to 10–i do

4: k ← 10-i–j
5: S temp = (i×ST2W + j×SFLAIR + k×SFLAIR3) × 0.1
6: AUC temp = Compare (Stemp, y)
7: if AUC temp > AUC best then

8: AUC best ← AUC temp
9: W1 ← i×0.1
10: W2 ← j×0.1
11: W3 ← k×0.1
12: end for

13: end for

14: end for

Return W1, W2, and W3

2.3. Network Architectures

The proposed DWF-net method for pediatric TSC patients was implemented using two
different 3D CNN architectures. The following sections describe two different 3D CNN models.

3
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ResNet was proposed in 2015 and has been widely applied in detection, segmentation,
recognition, and other fields [24]. In addition, ResNet has demonstrated a stable and
excellent classification performance in image classification among different variants of
various 3D CNNs [24]. Therefore, the first 3D CNN model we consider is 3D-ResNet, which
uses a shortcut connection to make a reference for the input of each layer and learns to
form a residual function. The residual function is easier to optimize, making the number of
network layers much deeper, and can easily obtain a higher accuracy from deeper depths.

For the second 3D CNN model, we utilized the 3D-EfficientNet architecture [25] as
our feature extractor. This classification network is known for its efficiency in improving
accuracy and reducing the training time and network parameters. The EfficientNet was
designed using a neural architecture search and employs the mobile inverted bottleneck
convolution (MBConv) module as its core structure. This module, similar to depth-wise
separable convolution, minimizes parameters significantly. In addition, the attention idea
of the squeeze-and-excitation network (SENet) is also introduced [26] in EfficientNet. The
attention mechanism of SENet allows the model to focus more on channel features that
are most informative, while suppressing those unimportant channel features, thereby
improving the model performance.

As shown in Figure 1a, for the pediatric TSC identification tasks with one single
MRI modality, the 3D-ResNet34 and 3D-EfficientNet were used as a feature extractor.
When DWF-net was used, two or three modalities were applied as inputs, as shown in
Figure 1b. Table 1 displays the 10 models that were trained in this study, each with distinct
architectures and inputs.

 

Figure 1. Overall network structure, (a) single modality model pipeline, (b) schematic of the proposed
DWF-net pipeline. The two dotted lines represent the optimal combination of T2W and FLAIR to
generate FLAIR3.

4
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Table 1. Detailed information on ten network structures.

Model Name Input Modality Method

Eff_FLAIR FLAIR only 3D-EfficientNet
Eff_T2W T2W only 3D-EfficientNet

Eff_FLAIR3 FLAIR3 only 3D-EfficientNet
Eff_FLAIR_T2W FLAIR + T2W DWF_net

Eff_DWF_net FLAIR + T2W + FLAIR3 DWF_net

Res_FLAIR FLAIR only 3D-ResNet34
Res_T2 T2W only 3D-ResNet34

Res_FLAIR3 FLAIR3 only 3D-ResNet34
Res_FLAIR_T2W FLAIR + T2W DWF_net

Res_DWF_net FLAIR + T2W + FLAIR3 DWF_net

3. Materials and Experiments

3.1. Dataset

In this study, all pediatric volunteers were from Shenzhen Children’s Hospital. The
study was approved by the Ethics Committee of Shenzhen Children’s Hospital (No.2019005).
Written informed consent was obtained from all pediatric volunteers and/or their parents.
In total, 349 TSC children and 331 healthy children (HC) were included in this study. Inclu-
sion criteria for pediatric TSC patients were (1) aged 0–20 years, (2) no other neurological
disorders, and (3) clinically diagnosed with TSC. (4) T2W and FLAIR images are complete
and clear. Inclusion criteria for healthy children were (1) aged 0–20 years, (2) without
any neurological disorder, (3) clinically defined normal or non-specific findings during
routine clinical care. (4) T2W and FLAIR images are complete and clear. Figure 2 shows the
exclusion and inclusion criteria of our study.

 

Figure 2. Study exclusion and inclusion criteria of the pediatric dataset.

The data were randomly split into train-validation-test sets in a 7:1:2 ratio. To ensure
that every group had the same class proportion, stratified random sampling was employed.
Training, validation, and testing datasets had no overlap of patients.

5
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3.2. Data Processing

Firstly, a FMRIB Linear Image Registration Tool (FLIRT) of FSL (http://fsl.fmrib.ox.
ac.uk (accessed on 1 January 2021.)) was used to register T2W into the FLAIR space, and
mutual information was used as the cost function. In neuroimaging studies, the lesions
are usually located in the brain tissue, and the skull part is an irrelevant site. When brain
MRI images are used for classification network research, the brain tissue of the region of
interest is often the input. HD-bet is an algorithm for extracting brain tissue [27], which
can remove irrelevant images such as of the neck and eyeball. Therefore, in the second step,
the deep learning tool HD-bet is used to strip the skull in MRI. Subsequently, all 3D MRI
images were resized to 128 × 128 × 128, and the image intensity was normalized to the
range of 0 to 1 using the min–max normalization formula:

xNormalized =
x − Min(x)

Max(x)–Min(x)
(3)

where Max(x) and Min(x) represent the highest and lowest values of the brain-extracted
MRI images, respectively, and xNormalized refers to the normalized MRI images. Finally, T2W
and FLAIR were combined and transformed into FLAIR3. The flowchart illustrating the
data preprocessing can be found in Figure 3.

 

Figure 3. Flowchart of the data preprocessing.

3.3. Baseline and Effectiveness of Skull Stripping

In this study, we compared 10 different proposed 3D CNN models with a 2D-InceptionV3
model [18] (baseline model) to evaluate the effectiveness of the proposed deep learning
methods. The 2D-InceptionV3 model was exclusively trained on our FLAIR data, with the
maximum transverse slice of the FLAIR chosen as the input. Furthermore, we conducted a
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series of experiments on FLAIR images and T2W images with and without skull-stripping
preprocessing to assess the effectiveness of the skull-stripping methodology.

3.4. Comparison of Normalization Methods

Typically, normalization methods often have a significant impact on the performance
of deep learning models. The min–max normalization and Z-score normalization are most
used in medical image normalization. While the min–max normalization approach is
appropriate for most kinds of data and can effortlessly maintain the initial data distribution
structure, it is not ideal for handling sparse data and is prone to being affected by outliers.
The Z-score normalization method employs the mean and standard deviation of the original
data to normalize it. The following formula illustrates this:

xNormalized =
x − Mean(x)

std(x)
(4)

When Mean(x)= 0, std(x) = 1, that is, the mean is 0 and the standard deviation is 1,
meaning that the processed data conform to the standard normal distribution. This Z-score
method is suitable for most types of data, but it is a centralized method, which will change
the distribution structure of the original data, and it is also not suitable for the processing
of sparse data. To explore the effectiveness of the normalization operation, we conducted
three sets of experiments on both T2W and FLAIR images when using the same network,
which are without the normalization method, the Z-score normalization, and the min–max
normalization, respectively.

3.5. Model Training and Evaluation

For our experiments, we used the same partitioning for the training set, validation set,
and test set across all models. Each model was trained using a learning rate of 0.0001, SGD
optimization, a batch size of 4, and 50 epochs, with the binary cross-entropy loss function.
To implement the training, validation, and testing process, we used Python version 3.8.10
and PyTorch version 1.9.0 environments.

For each cohort, we calculated the area under the curve (AUC) of the receiver operating
characteristic (ROC), accuracy (ACC), sensitivity (SEN), and specificity (SPE) to evaluate
the classification performance of all models. These metrics rely on the true positive (TP),
which counts the total number of correct positive classifications, and the true negative (TN),
which represents the total number of accurate negative classifications. The false positive
(FP) accounts for the total number of positive classifications that are incorrect, while the
false negative (FN) represents the total number of negative classifications that are incorrect.
We obtained the ACC, SEN, and SPE through the following formulas:

Accuracy (ACC): The percentage of the whole sample that is correctly classified:

ACC =
TP + TN

TP + TN + FP + FN
(5)

Sensitivity (SEN): The percentage of the total sample that is true and correctly classified:

SEN =
TP

TP + FN
(6)

Specificity (SPE): The percentage of the total sample that is negative and correctly classified:

SPE =
TN

TN + FP
(7)

3.6. Statistical Analysis

For this research, categorical variables were presented using the frequency and per-
centage, while continuous variables were expressed as the mean ± standard deviation.
Continuous variables were analyzed using the F-test, while categorical variables underwent
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a chi-square analysis. Statistical significance was defined as p < 0.05. All statistical analyses
were performed using the scikit learn, scipy, and stats libraries in Python 3.8.10.

4. Results

4.1. Clinical Characteristics of Patients

All of the 680 child subjects’ primary clinical features are listed in Table 2. Among
the 349 TSC patients, 188 (53.9%) were identified as male, averaging 45.5 months in age.
Moreover, among the 331 HC, 183 (55.3%) were identified as male, averaging 733 months
in age. There was a significant difference in the average age between the HC group and the
TSC group, with a p-value less than 0.05. There was no significant difference in gender.

Table 2. The main clinical characteristics of all 680 child subjects.

TSC HC p-Value

Number 349 331 -
Male, number (%) 188 (53.9%) 183 (55.3%) 0.711

Age at imaging, mean ± SD (months) 45.5 ± 46.6 73.3 ± 49.2 <0.001

4.2. Visualization Results of FLAIR3

Figure 4 shows FLAIR, T2W, and FLAIR3 images of a TSC child and a healthy child. On
three MRI images of the TSC child, it can be observed that the contrast between the lesions
and brain tissue on FLAIR is not clear enough, there is a severe interference of cerebrospinal
fluid on T2W, and the contrast and clarity of the lesions on the newly generated FLAIR3
image are significantly improved (TSC lesion as shown by the red arrow). In addition,
FLAIR3 inhibits cerebrospinal fluid and can clearly locate the TSC lesion.

 

Figure 4. Representative MRI from a TSC child and a healthy child, including T2W, FLAIR, and the
proposed FLAIR3 (the red arrow highlights the TSC lesion).

4.3. Performance of the Models

The performance of DWF-net varies with the weight of W1, W2, and W3 as shown
in Figure 5. The feature extractor in Figure 5a is 3D-EfficientNet, and the best AUC
performance of 3D-EfficientNet is 0.989 (W1 = 0.0, W2 = 0.3, W3 = 0.7). Among the models
evaluated, Res_DWF_net (with weight parameters W1 = 0.2, W2 = 0.3, W3 = 0.5), which
employs 3D-ResNet as a feature extractor and a late fusion strategy as depicted in Figure 5b,
achieves the highest performance. This model has an accuracy of 0.985 and an AUC of
0.998, outperforming other models.
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Figure 5. The performance of DWF-net with different weights. The feature extractor in (a) is 3D-
EfficientNet, and the feature extractor in (b) is 3D-ResNet. The horizontal axis represents the weight
of W1, W2, and W3, and the vertical axis represents the performance of AUC.

The results for all the compared models in the testing dataset are presented in Table 3.
When using 3D-EfficientNet, FLAIR3 achieves an AUC performance of 0.987 and the AUC
of Eff_FLAIR_T2W is 0.974, and the AUC of FLAIR3 is higher than Eff_FLAIR_T2W. FLAIR3
achieves an AUC performance of 0.997 when using 3D-ResNet as the feature extraction
network. When the feature extraction network is 3D ResNet, the AUC of Res_FLAIR_T2W
is 0.994, and the AUC of FLAIR3 is higher than Res_FLAIR_T2W.

Table 3. Detailed performance of different models in pediatric testing datasets.

Input Modality Model Name AUC ACC SEN SPE

FLAIR + T2W InceptionV3 [18] 0.933 0.851 0.812 0.893

FLAIR only Eff_FLAIR 0.974 0.911 0.869 0.954
T2W only Eff_T2W 0.971 0.919 0.869 0.970
FLAIR3 Eff_FLAIR3 0.987 0.926 0.884 0.970

FLAIR + T2W Eff_FLAIR_T2W 0.974 0.933 0.928 0.939
FLAIR + T2W + FLAIR3

(W1 = 0.0, W2 = 0.3, W3 = 0.7) Eff_DWF_net 0.989 0.963 0.942 0.985

FLAIR only Res_FLAIR 0.994 0.970 0.986 0.955
T2W only Res_T2W 0.983 0.956 0.913 0.999
FLAIR3 Res_FLAIR3 0.997 0.978 0.957 0.999

FLAIR + T2W Res_FLAIR_T2W 0.994 0.970 0.942 0.999
FLAIR + T2W + FLAIR3

(W1 = 0.2, W2 = 0.3, W3 = 0.5) Res_DWF_net 0.998 0.985 0.971 0.999

When using the same single-modal MRI as inputs, 3D-ResNet outperforms 3D-
EfficientNet. Additionally, the AUC performance of the FLAIR3 model outperforms the
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T2W-only model and FLAIR-only model. The baseline network (InceptionV3) achieves an
AUC performance of 0.952, and the performance of our all-3D network exceeds the AUC
performance of the baseline network of InceptionV3.

ROC curves for all models of the testing cohort are shown in Figure 6a–c, and Figure 6d
shows the classification performance for all models of the testing cohort.

Figure 6. (a–c) represent the ROC curves for all models of the testing cohort. (d) represents the
classification performance for all models of the testing cohort. The horizontal axis shows the model
name, while the vertical axis represents the performance regarding AUC, ACC, SEN, and SPE.

4.4. Results of Skull Stripping

The classification performance of FLAIR and T2W images, with or without skull
dissection, is presented in Table 4. The table demonstrates that if the network structure and
input modality remain constant and the skull dissection preprocessing is not carried out,
the classification performance of 3D ResNet and 3D EfficientNet will show a decline.

Table 4. The results of with/without skull stripping in T2W and FLAIR.

Modality Model Name Preprocessing AUC ACC SEN SPE

FLAIR only
3D-EfficientNet Without skull stripping 0.898 0.829 0.754 0.909

Skull stripping 0.974 0.911 0.869 0.954

3D-ResNet Without skull stripping 0.959 0.881 0.855 0.909
Skull stripping 0.994 0.970 0.986 0.955

T2W only
3D-EfficientNet Without skull stripping 0.968 0.916 0.881 0.951

Skull stripping 0.971 0.919 0.869 0.970

3D-ResNet Without skull stripping 0.914 0.829 0.797 0.863
Skull stripping 0.983 0.956 0.913 0.999

10
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4.5. Comparison of Normalization Methods

Table 5 and Figure 7 depict the classification performance of three normalization methods,
including without normalization, Z-score normalization, and min–max normalization on FLAIR
images and T2W images. The horizontal axis represents the different normalization techniques,
while the vertical axis represents their corresponding performance. In instances where the
input modality and network structure remain constant, it is worth noting that the without-
normalization method has the poorest AUC performance. Furthermore, the AUC performance
of the min–max normalization technique is better than the Z-score normalization technique.

Table 5. The classification performance of with/without skull stripping in FLAIR images and T2W images.

Modality Model Name Preprocessing AUC ACC SEN SPE

FLAIR only

3D-EfficientNet
Without normalization 0.951 0.899 0.863 0.936

Z-score 0.965 0.867 0.754 0.984
Min–max 0.974 0.911 0.869 0.954

3D-ResNet
Without normalization 0.985 0.933 0.971 0.893

Z-score 0.914 0.867 0.797 0.933
Min–max 0.994 0.970 0.986 0.955

T2W only

3D-EfficientNet
Without normalization 0.950 0.911 0.884 0.939

Z-score 0.967 0.933 0.898 0.969
Min–max 0.971 0.919 0.869 0.970

3D-ResNet
Without normalization 0.974 0.918 0.927 0.909

Z-score 0.982 0.918 0.884 0.954
Min–max 0.983 0.956 0.913 0.999

Figure 7. The classification performance of the without-normalization method, the Z-score normal-
ization, and the min–max normalization in FLAIR images and T2W images. (a) 3D-EfficientNet as a
network feature extractor, FLAIR as the network input. (b) 3D-ResNet as a network feature extractor,
FLAIR as the network input. (c) 3D-EfficientNet as a network feature extractor, T2W as the network
input. (d) 3D-ResNet as a network feature extractor, T2W as the network input.
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5. Discussion

The main objective of the proposed approach is to identify TSC children at an early
stage using a 3D CNN model in conjunction with multi-contrast MRI in an automated
manner. Initially, the approach incorporates FLAIR3 as a novel modality for diagnosing
pediatric TSC lesions and optimizes the T2W and FLAIR combination to enhance the
lesion–brain contrast in a clinic. The findings indicate that FLAIR3 has the ability to
enhance the prominence of TSC lesions, while also enhancing classification accuracy and
providing a more intuitive understanding of our deep learning model. Otherwise, the
proposed method used two networks as feature extractors; one is 3D-EfficientNet, which
is a parameter-efficient deep convolutional neural network framework, and the other
classification network is 3D-ResNet, which is a classical residual network. Previously, the
FLAIR3 modality was only used in MS disease [13], but the proposed methods generalized
it to pediatric TSC disease and demonstrated that FLAIR3 was able to better visualize
TSC lesions. Furthermore, a multi-modal fusion network for multi-contrast MRI data was
proposed, which can feed FLAIR3 as a new modality into the proposed DWF-net network,
finally achieving a state-of-the-art classification performance in identifying children with
pediatric TSC. And the dataset has no PET and EEG as input, and only has just the structural
MRI that can be easily and wildly collected at any hospital, which helpfully maximizes
the potential applicability of the proposed approach in clinical practice. In summary, the
proposed method also has innovations in the following aspects: 1) the use of a weighted
fusion algorithm to maximize the fusion multi-contrast MRI and optimize weights to
improve performance; 2) firstly proposes to use a FLAIR3 image to position and visualize
the lesions in a clinical diagnosis of TSC. 3) The utilization of FLAIR3 as the complementary
imaging input to maximize the information extracted from the structure MRI.

In comparison to the 2D CNN model InceptionV3 discussed in [18], the proposed
3D CNN models exhibit an enhanced classification performance. Some previous studies
are also consistent with our conclusion that 3D networks perform better than 2D net-
works [19,28]. We believe that the performance improvement of the 3D network is mainly
due to the full use of the spatial features of MRI voxels, which can extract more information.
In this study, the proposed late fusion method can improve the classification performance
compared to a single modality using a 3D CNN approach, implying that combining mul-
tiple contrasting MRI can exploit complementary visual information between multiple
sequences. This result is consistent with a recent study by Han Peng et al. [29], which
demonstrated that combining models from diverse modalities with complementary infor-
mation leads to a superior performance. The success of the ensemble strategy is not only
attributed to the number of large models but also to independent information gathered
from different modalities. Additionally, recent research has revealed that the late fusion
method outperforms the early fusion technique [30,31]. In addition, Jonsson et al. used
a majority voting strategy to form the final predictions and achieved performance gains
with multimodal inputs [22]. In our experimental results, our findings indicate that when
utilizing the same MRI modality as network inputs, all models with 3D-ResNet feature
extractors outperform the 3D-EfficientNet model. One possible explanation is that 3D-
ResNet has more network parameters than 3D-Effectient, and the network structure is more
complicated. Therefore, 3D-ResNet can extract more high-level image feature information
than 3D-EfficientNet.

Surprisingly, our experiments have successfully demonstrated the effectiveness of
FLAIR3 in a pediatric TSC diagnosis, and the AUC performance of the FLAIR3-only model
outperforms the T2W-only model and FLAIR-only model when using the same network.
We found that the use of 3D-EfficientNet results in a better AUC score for the Eff_FLAIR3
model compared to the Eff_FLAIR_T2W model and that the Res_FLAIR3 model outper-
forms the Res_FLAIR_T2W model when using the feature extraction network 3D ResNet.
This could imply that FLAIR3 can provide more information. When the late fusion strategy
is used, the weight W3 of FLAIR3 is the largest. A reasonable note is that FLAIR3 can
enhance the lesion-to-brain contrast and the TSC lesion is clearer in FLAIR3 than in T2W
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and FLAIR, so FLAIR3 can offer more low-dimensional visual lesion information for deep
learning during the feature extraction stage. Such low-dimensional visual information may
be very helpful for our deep learning algorithms, which could increase the interpretability
of our deep learning algorithms [32].

Moreover, skull stripping plays a crucial role in computational neuro-imaging by being
a vital preprocessing step that has a direct impact on subsequent analyses [33–35]. In this
study, we found that both the 3D-ResNet and 3D-EfficientNet models perform better when
utilizing MRI with skull stripping applied as the input. This may be due to the fact that the
pixel value of the skull is significantly higher than that of the brain tissue [30,36], which
allows for more information to be extracted during the feature selection phase. However, it
is important to note that such information may be irrelevant for our deep learning methods
and may even reduce their performance [37].

Furthermore, image normalization is critical to develop powerful deep learning meth-
ods [38,39]. In this study, the experiments included normalization, no normalization,
min–max normalization, and Z-score normalization. All of the results showed that the
AUC performance without the normalization method is the worst; the AUC performance
of the min–max normalization is better than the Z-score normalization when the input
modality and network structure are the same. Therefore, we suggest that in future similar
studies, the min–max normalization method can be used as a primary choice to normalize
the MRI images.

Otherwise, many experts considered that tubers are stable in size and appearance after
birth and that the proportion to the whole brain will not obviously change with age [40].
The myelination process in a clinic has three stages, namely before 7–8 months of age,
7–8 months to 2 years of age, and after 2 years of age. So, the TSC situation of MRI after
2 years of age should be the same as before, but myelination after 2 years of age may not
have affected our MRI images [41]. But these are statistical results, and there are some
different situations for different TSC patients. In a clinic, MRI should be scanned several
times under the age of 2 to reflect dynamic changes in epileptic lesions. Here, we did not
exclude children under 2 years of age for being close to real clinical situations. The deep
learning method we proposed can be promoted in a clinic and only needs to collect FLAIR
and T2W images of a patient. Our method is simple and effective in a clinic and can be
used as a computer-aided tool to help doctors diagnose TSC patients. In the future, further
situations of TSC patients should be evaluated.

6. Conclusions

In summary, a novel deep learning method of the weighted late fusion model was
proposed to effectively diagnose pediatric TSC lesions with multi-contrast and synthesis-
contrast FLAIR3 MRI. The collected dataset of pediatric TSC disease has a total of 680 children,
including 331 healthy and 349 TSC children. The current testing results illustrated that
the proposed approach can attain a state-of-the-art AUC of 0.998 and accuracy of 0.985.
As such, this method can act as a robust foundation for future studies regarding pediatric
TSC patients.

7. Patents

The work reported in this manuscript has resulted in a patent.
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Abstract: Teeth segmentation plays a pivotal role in dentistry by facilitating accurate diagnoses
and aiding the development of effective treatment plans. While traditional methods have primarily
focused on teeth segmentation, they often fail to consider the broader oral tissue context. This paper
proposes a panoptic-segmentation-based method that combines the results of instance segmentation
with semantic segmentation of the background. Particularly, we introduce a novel architecture for
instance teeth segmentation that leverages a dual-path transformer-based network, integrated with
a panoptic quality (PQ) loss function. The model directly predicts masks and their corresponding
classes, with the PQ loss function streamlining the training process. Our proposed architecture
features a dual-path transformer block that facilitates bi-directional communication between the pixel
path CNN and the memory path. It also contains a stacked decoder block that aggregates multi-scale
features across different decoding resolutions. The transformer block integrates pixel-to-memory
feedback attention, pixel-to-pixel self-attention, and memory-to-pixel and memory-to-memory self-
attention mechanisms. The output heads process features to predict mask classes, while the final mask
is obtained by multiplying memory path and pixel path features. When applied to the UFBA-UESC
Dental Image dataset, our model exhibits a substantial improvement in segmentation performance,
surpassing existing state-of-the-art techniques in terms of performance and robustness. Our research
signifies an essential step forward in teeth segmentation and contributes to a deeper understanding
of oral structures.

Keywords: teeth segmentation; panoramic radiographs; mask-transformer-based networks; panoptic
segmentation

1. Introduction

Teeth segmentation is pivotal in the clinical diagnosis of oral diseases, offering essential
precision in surgical planning through the accurate delineation of teeth boundaries [1,2]. In
orthodontics, real-time information regarding teeth movement and root depths is crucial for
immediate assessment of a patient’s dental alignment and for accelerating the orthodontic
treatment cycle [3]. The prerequisite for achieving this is the precise segmentation of
teeth in dental panoramic X-ray images [4], which has additional applications in forensic
identification [5], age estimation, and the analysis of hidden dental structures, including
benign or malignant masses [6]. Dentistry extensively utilizes radiographic images for
diagnosis, given their comprehensive visualization of the internal structure of the mouth [7].
Extra-oral radiographs, encompassing panoramic and cephalometric images, capture the
complete dentition and surrounding areas, providing critical insights into a patient’s
teeth, as demonstrated in Figure 1. However, manual and semi-automated segmentation
approaches for teeth and tissues in these radiographs often prove time consuming, tedious,
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and subjective, with their efficacy heavily reliant on the dentist’s expertise. Additionally,
segmentation in low-quality image settings presents even greater challenges. Given these
circumstances, the development of an automatic, accurate, and efficient teeth segmentation
method is paramount.

Figure 1. Types of X-ray images: (a) periapical X-ray; (b) bitewing X-ray; (c) panoramic X-ray.

Traditionally, teeth segmentation has been approached through semantic and instance
segmentation techniques [8,9]. While semantic segmentation classifies each pixel into
predefined classes without distinguishing between object instances, instance segmentation
offers a more comprehensive understanding by segmenting objects and distinguishing
each tooth object instance. Both category and instance labels are crucial in this context,
which has become a focal point in dental research. However, both proposal-based and
proposal-free instance segmentation approaches have their limitations. They often struggle
with differentiating object instances within the same category, particularly when objects
overlap, and preserving pixel-wise location information, which often results in coarse
mask boundaries.

Numerous attempts have been made to develop a highly accurate automatic teeth
segmentation algorithm [10,11]. However, teeth segmentation remains challenging due to
fuzzy boundaries caused by low contrast and noisy dental panoramic X-ray images. The
diversity of teeth conditions across different patients and the presence of dental instru-
ments, such as metal racks and dental implants, pose significant obstacles to achieving
accurate teeth segmentation. Recognizing these challenges, this research introduces a novel
approach based on panoptic segmentation [12]. Panoptic segmentation unifies the typically
disjoint tasks of semantic segmentation (identifying and classifying objects in an image)
and instance segmentation (segmenting individual instances of each object), offering a more
holistic and precise tooth and oral tissue segmentation strategy [13,14]. Several studies
have shown the effectiveness of panoptic segmentation for optimizing the performance of
deep-learning-based models [15–18].

We propose a panoptic-segmentation-based approach for instance teeth segmenta-
tion and surrounding tissue semantic segmentation. Panoptic segmentation, a unified
framework for semantic and instance segmentation, yields better Dice scores for teeth
segmentation by providing an improved context understanding, better discrimination of
close or touching instances, and consistent pixel-level labeling. This approach reduces false
positives and negatives by correctly segmenting teeth instances and accurately labeling
non-teeth regions, enhancing the overlap between prediction and ground truth, which the
Dice score measures. Our model employs a mask transformer to predict non-overlapping
masks and their corresponding semantic segmentation labels directly. The panoptic quality
(PQ) style loss is utilized to optimize the output masks and classes. More specifically, we
design the similarity metric between consecutive teeth-labeled masks as the product of their
masks and class similarity, inspired by the PQ definition. Moreover, the innovative strate-
gies proposed by groundbreaking works that use attention mechanisms, such as [19,20],
motivated us to incorporate attention modules into our proposed network.

We introduce a novel architecture to effectively train and infer using the mask trans-
former. Unlike traditional architectures [21,22] where the transformer is placed on top
of a convolutional neural network (CNN) [23], we adopt a dual-path framework that
effectively merges CNNs with transformers [24–27]. This allows CNN layers to read and
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write into global memory by incorporating memory-to-pixel attention (M2P), memory path
self-attention (M2M), pixel–path axial self-attention (P2P), and pixel-to-memory attention
(P2M). As a result, the transformer can be inserted at any position in the CNN to enable com-
munication with the global memory at any layer. The proposed architecture also employs
a stacked hourglass-style decoder [28,29] to aggregate multi-scale features and produce a
high-resolution output, which is then multiplied with the global memory feature to predict
the mask. The proposed framework significantly improves segmentation performance
and demonstrates the potential to be employed for teeth numbering. Rigorously evalu-
ated on the publicly available UFBA-UESC dental image dataset, our experimental results
demonstrate that the proposed model significantly outperforms existing state-of-the-art
techniques in terms of segmentation performance and robustness.

This paper is organized as follows: Section 2 provides the background and related
work. Section 3 offers a detailed description of the network and dataset. Section 3.4 is
dedicated to the experimental setup, and then Section 4 presents the results and discussion.
Finally, Section 5 concludes the paper and provides the future directions.

2. Related Work

There have been numerous attempts by researchers to develop teeth segmentation
techniques that can be applied to various types of radiographic images, such as panoramic,
periodical, and bitewing imaging. Silva et al. [30] presented a comparison of various
segmentation techniques applied in dental imaging, categorizing solutions into five groups
and evaluating them based on accuracy, specificity, precision, recall, and F1-score. However,
all these techniques struggled to fully segment the teeth due to the presence of the bone
structure inside the buccal cavity.

Classic image processing techniques have been utilized to address these challenges.
For instance, to counteract the problem of low contrast, Lin et al. [31,32] first enhanced the
image to distinguish between teeth and gums before applying edge extraction methods
for segmentation. In a similar vein, Chandran et al. [33] improved the quality of dental
images by applying CLAHE, followed by the Otsu threshold method for teeth segmentation.
Level set methods have been utilized by studies [34,35] to enhance the root contrast, thus
improving segmentation. Horizontal and vertical integral projection methods have also
been deployed, although their performance was not satisfactory [36,37].

Recently, deep learning (DL)-based techniques have garnered attention across various
industrial applications due to their impressive performance [38–40]. These applications
span object classification [41], segmentation [42–44], counting [45], medical image enhance-
ment [46,47], and object detection [48]. Specifically, in tasks such as object detection and
segmentation, DL-based methods have revolutionized the field [49]. As a result, several DL-
based techniques have been employed to enhance teeth segmentation in dental panoramic
X-ray images. While some studies have focused solely on the semantic segmentation of
teeth, limiting the level of detail for further processing steps in most automatic dental
analyses [30,50,51], others have identified teeth alongside segmentation, providing more in-
formation for automatic analysis. However, these instance segmentation techniques, which
typically consist of two stages, ROI/fuzzy boundary detection and teeth segmentation,
increase the complexity and are more prone to errors due to their cascading nature. The
errors from the first stage can propagate to the second, limiting the performance of these
methods. Additionally, the information obtained from instance segmentation may not be
sufficient for a comprehensive teeth analysis, as apart from intra-teeth segmentation, it is
crucial to accurately segment the teeth from other oral tissues.

For instance, Jader et al. [11] employed the mask-region-based convolutional neural
network (Mask-R-CNN) for instance segmentation. Their method, evaluated on a diverse
set of 1500 images, achieved an accuracy of 98%, an F1-score of 88%, a precision of 94%, a
recall of 84%, and a specificity of 99% over 1224 unseen images, considerably outperform-
ing 10 unsupervised methods. However, the method was limited to teeth detection and
did not account for other issues such as dentures and areas with missing teeth. Similarly,
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Zhang et al. [52] utilized deep-learning-based methods to detect and classify teeth, merging
the Faster R-CNN and region-based fully convolutional networks (R-FCN) to identify com-
mon patient issues such as tooth loss, decay, and fillings. Similarly, Koch et al. [50] employed
the U-Net architecture in conjunction with an FCN for semantic segmentation of dental
panoramic radiographs and explored ways to improve segmentation performance, such
as network ensembling, test-time augmentation, bootstrapping of low-quality annotations,
and data symmetry exploitation. In their study, Lee et al. [53] utilized data augmentation
techniques such as rotation, flipping, Gaussian blur, and shear transformation to generate
1024 training samples from 30 radiographs. They implemented a fully deep learning method
using the Mask R-CNN model through a fine-tuning process to detect and localize tooth
structures, achieving an F1 score of 0.875 and a mean IoU of 0.877. Muresan et al. [54]
proposed a novel approach for automatic teeth detection and dental problem classification
using panoramic X-Ray images. They utilized a CNN model trained on their collected data
and employed image pre-processing techniques to refine segmentation, resulting in an F1
score of 0.93.

Building upon previous efforts, Zhao et al. [55] introduced a dual-stage scheme, TSAS-
Net, to address specific issues like fuzzy tooth boundaries resulting from poor contrast
and intensity distribution in dental panoramic X-rays. The method, tested on a dataset of
1500 radiographs, achieved an impressive accuracy of 96.94%, a Dice score of 92.72%, and
a recall of 93.77%. Kong et al. [56] have made a substantial contribution to the scientific
community by introducing a publicly available dataset that includes 2602 panoramic dental
X-ray images. Each image in the dataset is paired with expertly annotated segmentation
masks, thereby significantly enriching this resource. Harnessing the power of this dataset,
they engineered a proficient encoder–decoder network named EED-Net. This network is
specifically designed for the autonomous segmentation of the maxillofacial region, demon-
strating their innovative application of the dataset. Arora et al. [57] recently introduced
a multimodal encoder-based architecture, designed to extract a variety of features from
panoramic radiographs. These extracted features were subsequently processed through
a deconvolutional block to generate the final segmentation mask. By achieving precision
and recall rates of 95.01% and 94.06%, respectively, this approach outperformed other
leading methods.

In a different approach, Almalki et al. [58] utilized self-supervised learning methods,
such as SimMIM and UM-MAE, to boost model efficiency in comprehending a limited num-
ber of available dental radiographs. Their SimMIM method yielded the highest performance,
achieving 90.4% and 88.9% in detecting teeth and dental restorations and instance segmen-
tation, respectively. This outperformed the random initialization baseline by an average
precision increase of 13.4 and 12.8. However, the method’s requirement for extensive pa-
rameter fine-tuning creates challenges in achieving optimal results. Recently, Hou et al. [59]
proposed the Teeth U-Net model. This model combines a Squeeze-Excitation Module in
both the encoder and decoder, supplemented by a dense skip connection, in an attempt to
bridge the semantic gap. The model also includes a Multi-scale Aggregation attention Block
(MAB) in the bottleneck layer to effectively extract teeth shape features and adaptively fuse
multi-scale features. To incorporate dental feature information from a broader field of view,
they devised a Dilated Hybrid self-Attentive Block (DHAB) at the bottleneck layer. This
block is designed to suppress irrelevant background region information without increasing
the network parameters. Although the study showcased competitive performance on a
private dataset, it has not yet been evaluated on publicly available datasets.

Table 1 summarizes the strides made by the aforementioned studies towards accurately
segmenting teeth in panoramic radiographs.
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3. Materials and Methods

3.1. Datasets

Silva et al. [30] released the UFBA-UESC Dental Images Dataset, which initially con-
tained 1500 panoramic images along with semantic segmentation of teeth. Jader et al. [11]
later introduced instance segmentation, leading to the creation of the UFBA-UESC Dental
Images Deep dataset. This new dataset comprises a total of 276 images designated for
training and validation. Further development by Silva et al. [7] involved the addition of
tooth number information, resulting in a cumulative dataset of 543 images, inclusive of
those from the UFBA-UESC Deep dataset. Named the DNS (Detection, Numbering, and
Segmentation) Panoramic Images, this dataset comes equipped with binary masks and
annotations in the COCO format. Detailed information about the UFBA-UESC Dental
Images Dataset’s characteristics is depicted in Table 2.

Table 2. UFBA-UESC Dental Images Dataset characteristics. Note that �and – represent the presence
and absence of category, respectively.

Category Restoration Appliance Teeth Numbers Image Numbers

1 � � 32 73
2 � – 32 220
3 – � 32 45
4 – – 32 140
5 – – 18 120
6 – – 37 170
7 � � 27 115
8 � – 29 457
9 – � 28 45

10 – – 28 115
Total – – – 1500

For our study, we adjusted the annotations of the DNS Panoramic Images dataset for
panoptic segmentation. We achieved this by merging the provided semantic and instance
labels and converting them into TFRecords for our experiment. This dataset served for
both training and validation, with 500 images set aside for the training set and 43 images
allocated for validation. Testing images were sourced from the original UFBA-UESC Dental
Images dataset.

Our research utilized the UFBA-UESC Dental Images Deep dataset [7]. This dataset is
accessible through a reasonable request made to the corresponding author (https://github.
com/IvisionLab/dns-panoramic-images-v2 (accessed on 2 May 2023)). Table 3 provides
comprehensive details regarding the dataset, such as the presence of thirty-two teeth,
restorations, and appliances, as well as the total number of images used for numbering,
instance segmentation, and SS. We excluded images from categories 5 and 6 due to the
presence of implants and deciduous teeth.

Table 3. Dataset characteristics used in this work. Note that �and – represent the presence and
absence of the corresponding category, respectively.

Category 32 Teeth Restoration Appliance Number and Instance Segmentation Segmentation

1 � � � 23 57
2 � � – 174 80
3 � – � 42 11
4 � – – 92 68
7 – � � 36 87
8 – � – 128 355
9 – – � 14 33

10 – – – 34 87
Total – – – 543 778
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3.2. Network Architecture

The proposed model employs a network architecture comprised of three primary
components: a Transformer block, a stacked decoder, and output heads. This end-to-end
instance segmentation model predicts masks and their corresponding classes directly. In
this study, we utilize Mask Transformer-Based Networks (M-TransNet) integrated with PQ
Loss [62]. These networks function as instance segmentation models inspired by panoptic
segmentation. The M-TransNet directly predicts class-labeled masks for panoptic segmen-
tation, with PQ-style loss employed to train the model. This section also introduces the
dual-path transformer architecture and the auxiliary losses that significantly facilitate the
model’s training. A complete network diagram is displayed in Figure 2.

Figure 2. The structure of the proposed framework. An image and global memory are input into a
dual-path transformer, which directly generates a collection of masks and classes (excluding residual
connections). A dual-path transformer block is designed with all four types of attention (M2P, M2M,
P2M, and P2P) between the two paths. On the right bottom side, the structure of the axial-attention
block is illustrated. The axial attention mechanism decomposes the 2D attention into two 1D attentions;
one applied along the height axis of the image, and the other applied along the width axis. By doing so,
it significantly reduces the complexity from quadratic to linear, which makes it more computationally
efficient.

3.2.1. Architecture Formulation

The overarching goal of panoptic segmentation is to segment every object in an image
I ∈ RH×W×3 and assign a class label to each mask. The ground truth for a panoptic
segmentation model can be expressed as:

{yi}K
i=1 = {(mi, ci)}K

i=1 (1)

where K represents the total number of non-overlapping ground truth masks mi ∈ 0, 1H×W

and ci denotes the class label for each mi. The output from our proposed network should
precisely mirror the ground truth, thereby predicting the mask of each object alongside the
class labels.

{ŷi}N
i=1 = {(m̂i, p̂i(c))}N

i=1 (2)

where N remains constant and is greater than K, with p̂i(c) representing the probability of
mask mi being associated with class c. The network is optimized to assign an empty class
to masks where N exceeds K. The class label for each mask can be predicted by taking the
argmax of class probabilities:
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ĉi = arg max
c

( p̂i(c)) (3)

Similarly, the mask-ID can be assigned to each pixel by applying argmax again:

ẑh, w = arg max
i

(m̂i, h, w) ∀h ∈ 1, 2, . . . , H, ∀w ∈ 1, 2, . . . , W (4)

Each argmax is filtered using a confidence threshold. Masks or pixels with a low
confidence score are removed.

3.2.2. Transformer Block

The dual-path transformer module comprises two paths: a CNN path and a memory
path. The CNN path processes the input image and extracts features, while the memory
path stores information about the objects and their relationships within the scene. The
two paths communicate through a set of attention mechanisms, which allows the model to
selectively attend to different parts of the input and memory.

The CNN path within the dual-path transformer module is a standard convolutional
neural network that processes the input image and extracts features. The features are
passed through a series of convolutional layers, followed by a set of axial-attention blocks
that implement pixel-to-pixel (P2P) self-attention. The output of the CNN path is a feature
map encoding information about the input image.

The memory path in the dual-path transformer module is a memory-augmented
transformer that stores information about the objects and their relationships within the
scene. The memory is initialized with a set of learned object queries, which are used to
attend to the input feature map and extract object features. These object features are then
stored in the memory, along with their corresponding object queries. The memory is updated
at each time step using a set of memory update operations, which enable the model to reason
about the relationships between different objects in the scene.

The two paths in the dual-path transformer module communicate through a set of
attention mechanisms. These mechanisms enable the model to selectively attend to different
parts of the input and memory, allowing the model to reason about the relationships
between different parts of the image and memory.

By using a dual-path transformer module, the architecture effectively combines the
strengths of both CNNs and transformers for panoptic segmentation. The CNN path
extracts rich visual features from the input image, while the memory path reasons about
the relationships between different objects in the scene. The attention mechanisms facilitate
communication between the two paths, allowing the model to selectively attend to the
most relevant information for the task at hand.

3.2.3. Attention Mechanisms

The attention module in the network is a key component of the memory-augmented
transformer. It allows the model to selectively focus on different parts of the input image
and memory, based on their relevance to the task at hand. Specifically, the attention module
computes a set of attention weights for each position in the input feature map or memory,
based on its similarity to other positions. These weights are then used to compute a weighted
sum of the feature map or memory, which is passed through a feedforward network to
produce the final output.

The dual-path transformer block employs four types of attention to facilitate commu-
nication between the CNN path and the memory path:

• Memory-to-pixel (M2P) attention: This type allows the model to attend to the memory
from the pixel path. It computes attention weights for each position in the input
feature map, based on its similarity to the memory.

• Memory-to-memory (M2M) self-attention: This type allows the model to attend to the
memory from the memory path. It computes attention weights for each position in
the memory, based on its similarity to other positions in the memory.
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• Pixel-to-memory (P2M) feedback attention: This type allows the model to attend to
the memory from the pixel path, but also allows the memory to attend back to the
pixel path. It computes attention weights for each position in the memory, based on
its similarity to the input feature map.

• Pixel-to-pixel (P2P) self-attention: This type allows the model to attend to the input
feature map from the pixel path. It computes attention weights for each position in the
input feature map, based on its similarity to other positions in the input feature map.
In the network, P2P self-attention is implemented as axial-attention blocks, which are
more efficient than global 2D attention on high-resolution feature maps.

3.2.4. Decoder Block and Output Heads

The decoder block is stacked L times, iterating through output strides (4, 8, and
16 [63,64]) multiple times at each decoding resolution. It merges features by performing
bilinear resizing, simple summation, and applying either convolutional blocks or trans-
former blocks before moving to the next resolution. While it shares similarities with feature
pyramid networks [65,66] designed for pyramidal anchor predictions [67], the purpose
of our decoder block is solely to aggregate multi-scale features without directly using
intermediate pyramidal features for prediction.

The output heads are designed to make predictions from the processed features.
Following the stacked decoder, two fully connected layers (2FC) and a softmax function
predict mask classes using the memory feature of length N. For mask prediction, the
decoder block is followed by 2FC to obtain a memory path mask feature ( f ). The decoder
output at stride 4 passes through two convolution layers (2Conv) to generate the normalized
pixel path feature (g). The predicted mask is then obtained from the multiplication of f and
g, where f ∈ RN×D and g ∈ R

D× H
4 ×W

4 .

3.2.5. Combining Outputs for Panoptic Segmentation

The network directly predicts class-labeled masks using a mask transformer, which
outputs a set of instance masks and a semantic mask. The instance masks represent the
pixels belonging to each object instance in the scene, while the semantic mask represents
the pixels belonging to each semantic class.

To obtain the final panoptic segmentation, the instance masks and the semantic mask
are combined using a post-processing step. Specifically, the instance masks are first grouped
into object instances using a clustering algorithm, such as mean-shift or DBSCAN. The
resulting object instances are then assigned a unique instance ID, used to distinguish them
from other object instances in the radiographs.

Next, the semantic mask is merged with the instance masks to obtain the final panoptic
segmentation of teeth. This is achieved by assigning each pixel in the semantic mask to the
object instance to which it belongs, based on the instance ID of the corresponding pixel in
the instance masks.

3.3. Loss Function

For training, we used a main loss function and auxiliary losses. Panoptic segmentation
comprises two main tasks: segmentation and recognition. Therefore, an optimal loss
function should check the quality of both. Our main loss function is a product of recognition
quality (RQ) and segmentation quality (SQ). The loss function basically maximises a
similarity metric over matched masks. One-to-one bipartite matching between the predicted
and ground truth masks is performed first, followed by the computation of the similarity
metric that can be given as:

sim
(
yi, ŷj
)
= p̂j(ci)× Dice

(
mi, m̂j

)
(5)

where sim(·, ·) is the mask similarity metric between class-labelled ground truth mask
yi = (mi, ci) and predicted mask ŷj =

(
m̂j, p̂j(c)

)
. The similarity metric ranges between 0
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and 1. The value will be 0 when the class is wrong or the masks do not overlap, while it will
be 1 when both the classes and masks match precisely. For mask matching, each predicted
mask is matched with the ground truth until maximum total similarity is achieved using
one-to-one bipartite matching, which is given as:

σ̂ = arg max
σ∈SN

K

∑
i=1

sim
(

yi, ŷσ(i)

)
(6)

where {ŷi}N
i=1 and {yi}K

i=1 are the prediction and ground truth sets, respectively, and
σ ∈ SN is the permutation of N elements that best assigns the predictions to obtain
maximum similarity. Considering the similarity metric and the mask-matching process,
the loss function can be given as:

Lpos
PQ =

K

∑
i=1

p̂σ̂(i)(ci)︸ ︷︷ ︸
weight

·
[
−Dice

(
mi, m̂σ̂(i)

)]
︸ ︷︷ ︸

Dice loss

+
K

∑
i=1

Dice
(

mi, m̂σ̂(i)

)
︸ ︷︷ ︸

weight

·
[
− log p̂σ̂(i)(ci)

]
︸ ︷︷ ︸
Cross-entropy loss

(7)

Intuitively, we optimize the dice loss weighed by class correctness and the cross-
entropy loss weighted by mask correctness as we want both class and mask to be correct at
the same time. Apart from Lpos

PQ for positive masks, we define a cross-entropy term Lneg
PQ for

negative (unmatched) masks:

Lneg
PQ =

N

∑
i=K+1

[
− log p̂σ̂(i)(∅)

]
(8)

This term trains the model to predict ∅ for negative masks. We balance the two terms
by α as a common practice to weight positive and negative samples:

LPQ = αLpos
PQ + (1 − α)Lneg

PQ (9)

where LPQ denotes our final PQ-style loss. In addition to the PQ-style loss, we also use
three other losses: (1) Instance discrimination, used while learning feature maps. This
loss helps cluster decoder features into instances. (2) Mask ID cross entropy, helps classify
each pixel into N masks. (3) Semantic segmentation loss, helps in separating the final
mask features.

3.4. Experimental Setup
3.4.1. Training

All experiments were conducted using the UFBA-UESC dataset. The proposed net-
work was implemented with the Tensorflow framework. Training was performed on an
NVIDIA RTX Titan GPU for 500 epochs.

3.4.2. Evaluation Parameters

The following evaluation metrics were used to compare our results with state-of-the-
art segmentation models, where the F1 score was mainly used as a reference since it can
give a better estimation of overall performance.

Accuracy =
TP + TN

TP + FN + TN + FP
(10)

Speci f icity =
TN

TN + FP
(11)
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Precision =
TP

TP + FP
(12)

Recall =
TP

TP + FN
(13)

F1 Score =
2 × Precision × Recall

Precision + Recall
(14)

4. Results

We evaluate the performance of our proposed network on the UFBA-UESC Dental
Images dataset. Our analysis includes both quantitative and qualitative assessments, com-
paring our results to those of other state-of-the-art techniques. This section provides a
comprehensive discussion of our evaluation results. Figure 3 presents a visual comparison
of instance segmentation results produced by various networks (i.e., PANet, HTC, Mask
R-CNN, ResNet, and our approach) alongside the ground truth.

Figure 3. Comparison of teeth instance segmentation results for various networks—PANet, HTC,
Mask R-CNN, ResNet, and our proposed approach—alongside the ground truth.
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4.1. Ablation Study

We also performed an ablation study to understand the contribution of different
components of our network better. This study focused on a subset of the dataset and
examined changes in the F1-score, Precision, and Recall as we removed different components.
We have summarized the results in Table 4.

Table 4. Ablation study results.

Component Removed Accuracy F1-Score Precision Recall

None (Full model) 97.25 93.47 95.13 93.92
Transformer Block 95.68 91.34 92.81 90.53
Stacked Decoder 95.04 90.12 91.57 88.84
Output Heads 94.12 88.90 90.36 87.66
Pixel-to-Memory 95.32 90.77 92.20 89.48
Memory-to-Pixel 95.56 91.22 92.62 89.97

The ablation study provides valuable insights into the performance impact of each net-
work component. For instance, the transformer block greatly enhances the performance by
enabling efficient bi-directional communication between the pixel path CNN and memory
path. Similarly, the stacked decoder, which plays a critical role in aggregating multi-scale
features, helps to improve the accuracy of the segmentation output. The output heads are
responsible for predicting mask classes and have a direct impact on the network’s perfor-
mance. The pixel-to-memory (P2M) feedback attention, a component of the transformer
block, allows for the selective aggregation of information from memory, enabling the model
to capture context-aware features, thus leading to improved teeth segmentation. Both
the memory-to-pixel (M2P) and memory-to-memory (M2M) self-attention mechanisms
demonstrated their significance by capturing long-range dependencies within the memory
path and providing global context information.

4.2. Qualitative Analysis

To further substantiate our comparison, we visualized the results from our proposed
model. Figure 3 displays the instance segmentation results of various networks compared
to the ground truth. Our method demonstrates closer alignment with the ground truth,
indicating better performance in teeth instance segmentation tasks compared to the other
methods. Notably, our proposed network maintains a consistent performance across all
teeth, unlike the other networks. The synergistic benefits of the two tasks, SS and affinity
pyramid, primarily drive the improvement in instance segmentation performance. Figure 4
depicts the results of panoptic segmentation with the background class (semantic segmen-
tation) and tooth classes (instance segmentation). Figure 5 presents the precision–recall
curve, which is the average of precision and recall for all classes. Panoptic segmentation
improves the Dice score by also considering the surrounding tissues of teeth; thus, the loss
also takes into account the background segmentation to yield better results.

4.3. Comparison with State-of-the-Art Models

Next, we compared our model with state-of-the-art approaches in the context of
instance segmentation and SS. Table 5 demonstrates that our proposed framework outper-
forms all previously proposed methods. Mask R-CNN [30] and the TSAS-Net [55] have
both been utilized for teeth segmentation, while PANet [7] has achieved state-of-the-art
results. However, our approach surpasses these existing methods by capturing hidden
patterns more effectively and providing more accurate segmentation of human teeth, even
in challenging scenarios like overlapping teeth masks.
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Figure 4. Showcasing the best panoptic segmentation results that encompass both the semantic
segmentation of the background class and the instance segmentation of the teeth classes.

Figure 5. Precision–recall curve.

Table 5. Comparison with state-of-the-art methods, the best results are indicated in bold.

Method Accuracy Specificity Precision Recall F1-Score mAvP AvP50 AvP75

Mask R-CNN [30] 92.08 96.12 83.73 76.19 79.44 66.4 ± 0.7 96.9 ± 0.2 85.1 ± 1.0
TSAS-Net [55] 96.94 97.81 94.97 93.77 92.72 70.9 ± 0.1 97.7 ± 0.1 89.7 ± 0.5

PANet [7] 96.7 98.7 94.4 89.1 91.6 71.3 ± 0.3 97.5 ± 0.3 88.0 ± 0.2
HTC 96 98.5 93.7 85.9 89.6 63.7 ± 1.4 97.0 ± 0.0 82.2 ± 2.0
UNet 96.04 97.68 89.89 90.18 89.33 67.0 ± 0.5 96.3 ± 0.2 87.7±0.9

Ours 97.25 97.65 95.13 93.92 93.47 71.5 ± 0.2 98.1 ± 0.4 89.2 ± 0.1

We further evaluated the performance of our proposed method in comparison to
previously published studies related to teeth segmentation in panoramic radiographs.
Table 6 summarizes the results, which underscore the remarkable performance of our
proposed scheme. Given the impressive performance of our framework, as substantiated
by our experimental results, we assert that our proposal has established a new state of the
art in teeth segmentation.

29



Bioengineering 2023, 10, 843

Table 6. Comparison with previously published studies, the best results are indicated in bold.

Method Accuracy Specificity Precision Recall F1-Score

Wirtz et al. [51] – – 79 82.7 80.3
Lee et al. [53] – – 85.8 89.3 87.5

Arora et al. [57] 96.06 99.92 95.01 93.06 91.6
Fatima et al. [68] – – 86 87 84

Karaoglu et al. [69] – – 93.33 93.33 93.16

Proposed Method 97.25 97.65 95.13 93.92 93.47

4.4. Limitations

Our proposed method seeks to achieve instance segmentation of teeth in panoramic
radiographs by leveraging an end-to-end model specifically designed for panoptic seg-
mentation. This innovative approach unifies semantic and instance segmentation tasks,
introducing a dual-path architecture that adds a global memory path to the conventional
CNN path. This unique setup facilitates direct communication across all CNN layers.
The architecture explicitly crafted for panoptic segmentation leverages novel objectives,
providing equal treatment to both semantic regions and instance objects. As a result, the
proposed scheme significantly enhances the instance segmentation performance of teeth
in panoramic radiographs. Despite these notable advancements, the proposed approach
does introduce certain challenges. One key limitation lies in its additional computational
complexity, which may impede real-time clinical applications. Furthermore, our evaluation
of the proposed method relies solely on a single dataset. This limited scope constrains
a comprehensive assessment of the scheme’s generalization capabilities, restricting its
potential for a more universally applicable evaluation.

5. Conclusions and Future Directions

We have applied a panoptic segmentation strategy to conduct instance segmentation of
teeth in panoramic radiographs. Our approach uniquely intertwines the instance segmen-
tation of teeth with the semantic segmentation of the background, enhancing intra-teeth
classification and enabling our architecture to accurately distinguish teeth from oral tissue.
Our method incorporates an end-to-end deep learning model, which leverages a mask
transformer to predict class-labelled masks directly. This is accomplished via a dual-path
architecture that introduces an additional global memory path alongside the CNN path,
thus enabling direct communication with any CNN layer. We trained our model utilizing
a panoptic-quality-inspired loss through bipartite matching. As a result, our proposed
framework attains a significantly improved segmentation performance, which also proves
beneficial for teeth numbering. The proposed method underwent rigorous evaluation
on the publicly accessible UFBA-UESC Dental Image dataset. The experimental results
validate that our proposed model outstrips existing state-of-the-art techniques in terms of
segmentation performance and robustness.

Looking ahead, our future work aims to further enhance the dual-path-based mask
transformer architecture. A key focus will be enabling the numbering of teeth in panoramic
radiographs, a crucial factor for accurate tooth identification that significantly aids in
diagnosis, treatment planning, and effective communication among dental professionals.
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Abstract: Accurate noninvasive diagnosis of retinal disorders is required for appropriate treatment
or precision medicine. This work proposes a multi-stage classification network built on a multi-scale
(pyramidal) feature ensemble architecture for retinal image classification using optical coherence
tomography (OCT) images. First, a scale-adaptive neural network is developed to produce multi-
scale inputs for feature extraction and ensemble learning. The larger input sizes yield more global
information, while the smaller input sizes focus on local details. Then, a feature-rich pyramidal
architecture is designed to extract multi-scale features as inputs using DenseNet as the backbone. The
advantage of the hierarchical structure is that it allows the system to extract multi-scale, information-
rich features for the accurate classification of retinal disorders. Evaluation on two public OCT
datasets containing normal and abnormal retinas (e.g., diabetic macular edema (DME), choroidal
neovascularization (CNV), age-related macular degeneration (AMD), and Drusen) and comparison
against recent networks demonstrates the advantages of the proposed architecture’s ability to produce
feature-rich classification with average accuracy of 97.78%, 96.83%, and 94.26% for the first (binary)
stage, second (three-class) stage, and all-at-once (four-class) classification, respectively, using cross-
validation experiments using the first dataset. In the second dataset, our system showed an overall
accuracy, sensitivity, and specificity of 99.69%, 99.71%, and 99.87%, respectively. Overall, the tangible
advantages of the proposed network for enhanced feature learning might be used in various medical
image classification tasks where scale-invariant features are crucial for precise diagnosis.

Keywords: ensemble learning; OCT; pyramidal network; feature fusion; scale-adaptive

1. Introduction

Specialized non-invasive imaging techniques are extensively utilized in clinical re-
search to detect/diagnose retinal diseases that may lead to vision loss. In practice, different
image types are exploited for that purpose, including optical coherence tomography (OCT),
fundus photography, OCT angiography (OCTA), etc. The OCT-based imaging technique in
particular is widely exploited in clinical practice due to its ability to produce high-resolution
cross-sectional images of the retina, which greatly help in the assessment of several reti-
nal diseases [1,2]. However, due to the complexity and variability of the image features,
accurate classification of OCT images is challenging. Developing an accurate diagnostic
system for diseases is clinically essential for personalized medicine [3]. Furthermore, retinal
disease diagnosis is a critical target since it is almost entirely subjective and the appropriate
treatment path to effectively manage retina diseases relies on the accuracy of the diagnosis.

Retinal image diagnosis has shown an increased interest recently from various re-
search groups. A large volume of research work has shown promising results in improving
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the accuracy and efficiency of OCT-based image analysis [4]. The accuracy of OCT image
classification has shown considerable promise when using machine learning (ML) tech-
niques. Particularly, the use of deep learning (DL) can optimize solutions to several complex
classification problems [5]. DL-based techniques have the potential to perform efficient
classification as well as segmentation of various structures (e.g., drusen) and grading of
OCT images [6–9].

In recent years, several ML/DL research papers have been published on retinal image
classification for various diseases, e.g., age-related macular degeneration (AMD), diabetic
retinopathy (DR), diabetic macular edema (DME), and choroidal neovascularization (CNV).
A few papers have proposed ensemble methods to improve the overall accuracy of retinal
image classification tasks for macular diseases (e.g., AMD, CNV, DR, DME, etc.) by combin-
ing multiple DL models. For example, multi-step techniques for DR diagnosis using OCT
were proposed by Elgafi et al. [10]. The system sequentially segments the retinal layers, ex-
tracts 3D retinal features, and uses a multilayer perceptron (MLP) for classification using the
extracted features. In a leave-one-subject-out evaluation, their system achieved an accuracy
of 96.81%. A similar approach with the addition of a feature selection step using the Firefly
algorithm was proposed in Reference [11] by Özdaş et al. Multiple binary classifications
were conducted using two public datasets and achieved a mean accuracy of 0.957 and 0.954,
respectively. A multi-scale convolutional mixture of expert (MCME) ensemble models was
proposed in Reference [12] by Rasti et al. to separate the normal retina from DME and dry
AMD. The authors also introduced a new cost function for discriminative and fast learning.
The system has been evaluated on a total of 193 subjects and demonstrated a precision rate
and area under the curve (AUC) of 98.86% and 0.9985, respectively. Ai et al. [13] proposed
a fusion network (FN)-based disease detection algorithm for retinal OCT images. They
utilized InceptionV3, Inception-ResNet, and Xception DL algorithms as base classifiers,
each accompanied by an attention mechanism. Multiple prediction–fusion strategies were
employed to output the final prediction results. Comparison to other algorithms showed
improved accuracy in the classification of the diseases. A shallow network of only five
layers was introduced by Ara et al. in Reference [14] for OCT-B scan classification. The au-
thors investigated the effects of image augmentation as well as deeper networks on final
classification. The approach reduced computational time by 16.5% based on the model size,
and data augmentation yielded improved accuracy.

A study by Tvenning et al. [15] utilized a DL-based method for AMD identification on
OCT scans. The neural architecture, so-called OptiNet, integrates classical DL networks
and different parallel layer-wise modules created from filter features. The systems have
been evaluated on 600 AMD cases and documented the ability of the deep network to
detect alterations in retinal scan regions that correspond to the retinal nerve fiber and
choroid layers, which can be linked to AMD. Another CNN-based approach for macu-
lar disease classification was proposed by Mishra et al. [16]. the authors introduced a
deformation-aware attention-based module to encode crucial morphological variations
of retinal layers. The proposed module was integrated into a transfer-learning(TL)-based
deep network. The main advantage of the proposed approach is that it is void of pre-
processing steps, and the results showed superior performance over competing methods.
Another attention-based architecture was proposed by Huang et al. in Reference [17].
Due to the ability of their global attention block (GAB) to focus on lesion locations in the
OCTs, the authors proposed a lightweight classification network model. Evaluation on
the public UCSD dataset has demonstrated superior classification compared to commonly
used attention mechanisms. S.-Paima et al. [18] developed a two-stage multi-scale method
for classifying AMD-related pathologies using different backbone models. Hierarchical
features were extracted from the input images. This end-to-end model employed a single
convolutional neural network (CNN) model to extract different-sized features which were
then fused for classification. Two sets of datasets were used: 12,649 images from NCH and
108,312 images from UCSD [19]. Using pre-trained ImageNet weights, the model accuracy
was 92.0% ± 1.6%, which was boosted 93.4% ± 1.4% in stage two by fine-tuning the model.
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A multi-scale deep feature fusion (MDFF) approach was introduced by Das et al. [20].
The model leveraged the fusion of features from multiple scales—thereby capturing the
inter-scale variations in images in order to introduce discriminative and complementary
features—and employed transfer learning to reduce training parameters. TL, however,
reduces dependence and has poor adaptation to the differences among different datasets.
Similarly, Li et al. [21] used a deep TL-based method to fine-tune the pre-trained VGG-16
in order to classify 109,312 images and thereby obtained a prediction accuracy of 98.6%.
The validation dataset was also used as the testing dataset, so the reported performance
could be biased, and training the model on inadequate amounts of data makes it susceptible
to overfitting.

Wang et al. tested and evaluated five neural network structures for OCT diagnosis [22]
(DenseNet121, ResNet50, DPN92, ResNext101, CliqueNet), and VGG16, VGG19, inception-
V3 neural networks, and support vector machine (SVM) methods were added in order to
improve experimental comparisons. The network was fine-tuned using features extracted
from the OCT dataset, and evaluation was carried out using two public datasets of 3231
and 5084 images, respectively. The dataset used for this experiment consists of eyeball
images, not just retina images from OCT; thus, the pre-processing required for the screening
of images and the size of the block is time-consuming, and training takes much longer.

Smitha et al. [23] introduced a GAN-based system for retinal disorder diagnosis in
which the discriminator classifies the image into normal or abnormal categories. Their
method employed denoising enhancement of the retinal layers as a pre-processing step.
Two datasets were used for evaluation. Overall accuracy was 83.12% on a small dataset
(3980 images: DME, dry AMD, and NORMAL) with low training parameters and 92.42%
on a larger dataset (83,605 images: CNV, DME, NORMAL, and Drusen) with larger train-
ing parameters. The shortcomings of this method are that segmentation output greatly
depends on the quality of the ground-truth images and that image denoising has a high
probability of overfitting and thus does not enhance the generalization ability of the classi-
fier. Tsuji et al. [24] constructed a network that utilized the capsule network to improve
classification accuracy. Their architrave was built on six convolutional layers (CL) and one
primary capsule network. Additionally, four CLs were added to the capsule network archi-
tecture of two CLs and one fully connected (FC) layer. Their method achieved an accuracy
of 99.6%. The network requires a fixed-input image of 512 × 512. Resizing utilized linear
interpolation, which causes some undesirable softening of details and can still produce
somewhat jagged images.

In order to detect and grade the severity of DR, Reddy et al. [25] introduced a hybrid
deep architecture that utilized a modified grey wolf optimizer with variable weights and
attention modules to extract disease-specific features. The hybrid system aided in the joint
DR–DME classification on the publicly available IDRiD dataset and achieved detection
accuracy rates of 96.0%, 93.2%, and 92.23% for DR, DME, and joint DR-DME, respectively.
Upadhyay et al. designed a cohesive CNN approach. The shallow-network (five-layered)
layers were cohesively linked to allow for a smooth flow of image features, and batch
normalization was instilled along with every activity layer. The approach obtained an
accuracy of 97.19% for retinal disease detection for four-class classification [26]. A hybrid
fully dense fusion CNN (FD-CNN) architecture was developed by Kayadibi et al. [27]
to detect retinal diseases. They first employed a dual hybrid speckle reduction filter to
diminish OCTs speckle noise followed by the FD-CNN to extract features. The classification
was performed by deep SVM (D-SVM) and deep K-nearest neighbor (D-KNN) classifiers.
The hybrid FD-CNN showed significant performance improvement compared to the single
performance of CNN.

In summary, the existing literature proposes various techniques, and it is important to
note that the results of these papers vary depending on the specific task, dataset, and the
DL technique used. Most of the existing literature used larger datasets while using pre-
trained models, and some methods employed direct fusion for multi-scale predictions.
Furthermore, features related to the higher-order reflectivity of the OCT images were
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not utilized in conjunction with deeper features, and cascaded classification was not
investigated. This paper proposes a multi-stage classification of OCT image features
that integrates discriminatory features through a multi-resolution feature pyramid with
a scale adaptation module. The proposed cascaded multi-stage classification system is
divided into two main steps (Figure 1). First, a scale adaptation network module is used to
obtain various image scales for ensemble learning. Second, a transfer learning approach is
utilized to extract features from OCT images using a pyramidal structure that allows for the
extraction of differently scaled features from the same image dataset. Finally, the extracted
features from three different scales of input images are fused to produce a single feature
for classification. This fused feature has a rich concentration of local and global features at
different levels. Using the one-vs.-rest (OVR) classifier, a binary classification of normal vs.
abnormal (CNV, DME, or Drusen) is trained at the first stage, and the abnormal outputs are
further passed through the same classification pipeline using different classifier algorithms
to differentiate the classes in the second stage.

Figure 1. Schematic of the proposed multi-stage (A) and multi-resolution deep architecture model
(B) for retinal disorders diagnosis using OCT scans.

The main contributions of this work are as follows: (i) we designed a multi-scale,
pyramidal, feature-rich input, as compared to single-scale, through the ensemble/fusion
of multi-resolution features for classification; (ii) in order to extract prominent features
from the input image, we adopted a scale-adaptive network architecture for generating
the multi-scale input images instead of using image resizing; (iii) we utilized a transfer
learning technique to extract the features in order to facilitate intermediate feature learning;
(iv) we used a two-stage classification approach for a global (binary: normal vs. abnormal)
and multi-disease classification overall pipeline fusing both lower- and higher-scale fea-
tures; (v) we improved classification accuracy for both binary and multi-class scenarios
using cross-validation despite the great overlap among the extracted features from the
OCT images.

This manuscript is partitioned into four sections. An introduction to OCT and its role
in retinal disease diagnosis in modern CAD systems is given in Section 1. This is followed
by a relevant review of the recent literature work on this topic as well as the paper’s
contributions. The materials and methods used along with specifics on the structure of
the developed pyramidal architecture are fully detailed in Section 2. The dataset used,
the employed performance criteria, the experimental design, the network parameters, the
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results, and a discussion are given in Section 3. At last, Section 4 provides work conclusions
and limitations and future work suggestions.

2. Materials and Methods

In order to obtain better predictive performance, we developed a two-stage framework
that includes pyramidal feature extraction, multiresolution feature ensemble, and classifica-
tion. The input to the designed system is retinal OCT images obtained from two publicly
available datasets. The proposed architecture provides both global (normal vs. abnormal)
and stratified abnormal classifications. The proposed network architecture is schematized
in Figure 1 with details described below.

OCT images that are collected from different imaging systems have different sizes,
and using TL for the pre-trained network requires downscaling of the input images to
fit the employed pre-trained model’s input. Unfortunately, downscaling exhibits the loss
of important information from images. In order to account for this, we developed an
autoencoder (AE)-based resizing module that accepts OCT images of any size and resizes
them for use with pre-trained backbones when applying transfer learning. AE networks
are considered unsupervised methods (no labels) that learn a latent-space (compressed)
representation of the training data. The main advantage of AE neural architecture is its
ability to filter out the noise and irrelevant information while reconstructing its output with
minimal information losses. In our design, the AE module aims to resize the input images
for use as an input in a pre-trained feature extraction ensemble architecture.

The AE module is used to generate three different image scales for the proposed
pyramidal feature extraction and ensemble learning (i.e., 224 × 224 × 3, 112 × 112 × 3 and
56 × 56 × 3). The module architecture is shown in Figure 2. The encoding path consists of
consecutive convolution and pooling layers, which produce the feature map FAE of size
224 × 224 × 3. FAE is then processed through CL, transposed convolutional, and reshaped
to 224 × 224 × 12. Original and processed FAEs are integrated using the concatenation layer
to produce both high and low-resolution images. The former is generated from FAE and
is fed to the pyramidal feature extraction network. The latter is required for the module
training phase in order to ensure that the reconstruction error between the module’s output
and the original input image is minimal, i.e., the network learns important features from
the inputs and discards redundancy and noise.

Figure 2. Illustration of the autoencoder-based size adaptation network.

For AE module training, a custom loss that combines two pseudo-Huber loss functions
and a log-cosh loss function for high resolution and low resolution, respectively, is used.
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Pseudo-Huber loss is more robust against outliers. Its behaviors for small and large errors
resemble squared and absolute losses, respectively, and are defined mathematically as [28]:

P Huber(x) = δ2

(√
1 +
( x

δ

)2 − 1

)
(1)

Here, x is the difference between the actual and predicted values and δ is a tunable
hyper-parameter. On the other hand, the log-cosh loss function logcosh(x) = log(cosh(x))
is similar to Huber loss, but it is double differentiable everywhere [29]. Again, x is the
difference between the actual and predicted values.

Following the AE-based resizing, the feature extraction step is performed for both
global or binary (normal vs. abnormal) as well as for multiclass (CNV vs. DME vs. Drusen)
classification of OCT images. At this stage, extraction of discriminating features from the
retinal images is performed using pyramidal DL-based architecture. In order to achieve
feature-rich classification as compared to single-level networks, a pyramidal DL system
is proposed to extract various information to help with multi-class classification tasks;
see Figure 1A. Namely, retinal images are resized using the AE module at three different
scales (224 × 224, 112 × 112 and 56 × 56). Then, each of the pyramidal CNNs constructs a
hierarchical representation of the input images that is then used to build a feature vector
which in turn is eventually fused as a feature for the classification task. Although encoders
in a wide variety of famous DL networks create a pyramidal feature that can be fused [18],
the performance depends on fusion techniques. Thus, we chose to fuse the features of
several networks in order to improve the semantic representation of the proposed model.

The proposed architecture, Figure 1, can be seen as a multiresolution feature ensemble
in which each CNN path utilizes transfer learning. Transfer learning is a great way to
obtain significant results in a classification problem with low data volume. We adopted
the pre-trained DenseNet201 model [30] in this work as the backbone of our pyramidal
network. DenseNet has performed brilliantly on a variety of datasets and applications
where direct connections from all previous layers to all following layers are established;
Figure 3. This not only provides ease of training by facilitating feature reuse by different
layers and improving connectivity but also increases the variance in later-layer inputs and
thus enhances performance [31].

Figure 3. layered dense block representing direct connections between layers.

Dense blocks are formed in the network design for downsampling purposes and are
separated by layers known as transition layers. The latter help the network to learn interme-
diate features and consists of batch normalization (BN), 1× 1 convolution layers, and finally,
a 2× 2 average pooling layer. The BN stabilizes and speeds up the training process. A given
feature map at layer l can be described mathematically as Y′ = R1

([
Y0, Y1, . . . . . . , Y1−1])

where: R1: is a non-linear transformation comprised of BN, a nonlinearity, and a convolu-
tion of 3 × 3.

[
Y0, Y1, . . . . . . , Yl−1

]
refers to the feature map concatenation corresponding

to layers 0 through (l − 1) that are incorporated in a single layer.
Another hyperparameter, k, specifies the growth rate, or the rate at which the layer’s

size in individual blocks of the network grows. It can be visualized as a regulator controlling

40



Bioengineering 2023, 10, 823

the flow of information in successive layers to reach state-of-the-art results. For instance,
when k = 11, a filter size of 11 is used at each layer in an individual block. Generally,
DenseNet performs well when smaller k are used, as the architecture considers feature maps
as the network’s global state. As a result, each subsequent layer has access to all previous
layers’ feature maps. Each layer adds k feature maps to the global state, with the total
number of input feature maps at the l-th layer (FM)I is defined as (FM)′ = k0 + k(l − 1),
where the channels in the input layer are determined by k0.

In order to enhance computational efficiency, a 1 × 1 convolution layer is added before
each 3 × 3 convolution layer (see Figure 4) to reduce the number of input feature maps,
which is often greater than the number of k output feature maps [32]. The global pooling
layer pools the input features’ overall spatial locations at the end of each DenseNet path.
The resulting vectors are then used to obtain the feature representations of the training and
testing images and are fused for classification.

Figure 4. Layered Architecture of DenseNet201.

Finally, once all feature vectors for all three CNNs are constructed, they are fused
(concatenated) to form predictor variables in a classification network. Features are extracted
from pyramidal CNNs at the last layer just before the fully-connected layer. Since we used
a pre-trained model, the number of features is typically fixed and is not affected by the
input image size or other factors during inference. The size of the feature vectors for the
three scales was 1920 individually (5760 after fusion). For classification, we used different
classifiers in the first stage (binary) to classify the dataset into normal and abnormal as
well as in the second stage (multiclass) to further differentiate the abnormal into three
different classes. Namely, we used multilayer perceptron (MLP), logistic regression (LR),
SVM, decision tree (DT), random forest (RF), and Naïve Bayes (NB) [33,34]. LR is a
predictive analysis classifier that uses the Sigmoid function to predict input features and
corresponding weight into a probabilistic output. SVM finds a hyperplane in N-dimensional
space (N is a number of features) that distinctly classifies the data points of classes using
the maximum margin. Although commonly used in data mining to reach a goal, DT is a
supervised learning tree-structured classifier that predicts the value of a target variable
by learning simple decision rules inferred from the data features. Similarly to DT, RF
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builds decision trees from various samples and takes the average to improve the predictive
accuracy of that dataset. Finally, NB is a probabilistic ML classifier built on the Bayes
theorem that predicts the probability of belonging to the “A” class given that “B” has
occurred. The features are independent of each other, bringing about the name Naïve.

3. Experimental Results and Discussion

Evaluation to assess the proposed system is performed using various experiments on
a UCSD dataset, and both binary and multi-class classification stages have been conducted.
The first classification stage (binary) classifies the image as either a normal or abnormal
retina, and the second (or the multi-class) stage stratifies the input image as either DME,
CNV, or Drusen. The pyramidal CNNs were trained on publicly available datasets [19].
The dataset contains OCT images (Spectralis OCT, Heidelberg Engineering, Germany) from
retrospective cohorts of adult patients provided by the Shiley Eye Institute of the Univer-
sity of California San Diego, the California Retinal Research Foundation, Medical Center
Ophthalmology Associates, the Shanghai First People’s Hospital, and Beijing Tongren Eye
Center [19]. About 108K OCTs in total for four classes (CNV: 37,206, DME: 11,349, Drusen:
8617, normal: 51,140) and the testing set containing 1000 retinal OCT images (250 from
each class) are available from Reference [35]. We used Jupyter Notebook to implement the
software on a Dell Precision 3650 Tower ×64-based workstation with an Intel Core(TM)
eight-core CPU running at 2.50 GHz, 64 GB RAM, and with NVIDIA RTX A5000 GPU.

The multilayer perceptron (MLP) pyramidal networks were trained over 50 epochs
with a batch size of 128. Additionally, a 5-fold cross-validation strategy was utilized as an
unbiased estimator to assess the performance of our ensemble model against other methods.
The use of cross-validation partially reduces problems of overfitting or selection bias and
also provides insights on how deep architecture will generalize to an independent dataset.
Both training and testing data were mixed and cross-validation was employed on the
total dataset. All of the dense layers for both the first and second stages used the rectified
linear unit (ReLU) as their activation function. Binary cross-entropy for the first stage and
sparse categorical cross-entropy for the second stage were utilized as the loss function. An
Adam optimizer was employed with a learning rate starting at 0.001, and this was reduced
automatically during the training phase in order to improve results whenever the loss
metric had stopped improving on both stages. Total network parameters of 1,665,197 out of
1,665,397 parameters were used for training in the first stage and 3,041,711 out of 3,041,911
for the second stage.

We first investigated the first stage for the global (i.e., binary) classification of the
retinal images as normal or abnormal. This step mimics human perception of separate
groups. Evaluation of the proposed pipeline performance is conducted using known
classification metrics, such as accuracy, sensitivity, specificity, and AUC of the receiver
operating curve (ROC). Those metrics are defined in terms of experiments’ outcomes of
true positive (TP), true negative (TN), false positive (FP), and false negative (FN) as follows:

Acc =
TN + TP

TN+TP+FN+FP
, Sen =

TP
TP+FN

, and Spc =
TN

TN+FP
(2)

Different ML classifiers were further employed for both stages, and our overall
MLP model accuracy performance for both stages is demonstrated in Table 1 for the
5 folds. For the ML classifiers, default parameters were used for the classification. SVM
(kernel = ’rbf’ and decision function = ’OVR’), DT (criterion = ’gini’, splitter = ’best’, none
for others), RF (criterion = ’gini’, estimator = ’100’), NB (priors = ’none’, smoothing = ’1e-9’)
but for LR (solver = ’liblinear’).

As can readily be seen, MLP performed best (97.79% accuracy in the first stage and
96.83% in the second stage) among the other classifiers. This is mainly due to its capability
to learn complex nonlinear patterns by amplifying relevant aspects of input data and
suppressing irrelevant information [36]. Additionally, confusion matrices were used as
an alternative quantitative evaluation. Figure 5 shows our network’s confusion matrix
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for different classifiers in the first stage using 5-fold cross-validation. Network evaluation
and monitoring benefit from confusion matrices. From the obtained confusion matrix,
other indices such as precision, f1 score, and recall can be derived. For the assessment
evaluation of classification models, both the confusion matrix and related metrics are
typically employed together.

Table 1. Performance of different classifiers for the proposed cascaded classifications all well as for
all-at-once (four classes) classification using 5-fold cross validation on the UCSD dataset. LR: logistic
regression; SVM: support vector machine; DT: decision tree, RF: random forest; NB: Naïve Bayes,
and MLP: multilayer perceptron.

First Stage (Binary) Second Stage (3-Classes) 4-Classes

Classifiers Acc% Sen% Spc% AUC% Acc% Sen% Spc% Acc% Sen% Spc%

MLP 97.79 95.55 99.72 99.86 96.83 97.75 98.87 94.26 96.29 98.74

LR 89.23 87.00 95.77 97.47 89.34 88.69 93.99 85.95 86.08 94.91

SVM 90.33 85.80 96.29 97.98 89.47 89.68 94.56 86.53 85.72 94.79

DT 80.14 69.72 89.32 78.80 69.92 67.15 81.67 65.22 65.55 85.15

RF 85.40 92.53 90.20 97.04 84.62 84.57 91.61 81.10 80.11 92.82

NB 73.71 54.04 94.70 87.90 67.46 67.46 81.00 63.82 63.75 84.35

Figure 5. Confusion matrices for the first stage using 5-fold cross validation on the UCSD dataset.

Binary classification is an initial step in any treatment procedure by retina specialists.
However, personalized medicine would require the determination of the disease and,
more appropriately, its grade. Thus, the second set of experiments investigated multi-
class classification (DME vs. CNV vs. Drusen). The results for different classifiers are
summarized in the middle part of Table 1, and the second stage confusion matrices are
depicted in Figure 6. Moreover, in order to demonstrate the efficacy of the pipeline to
separate the four classes, we performed an additional experiment using cross-validation
on the UCSD dataset. The model accuracy using the evaluation metrics is given in the
right part of Table 1, and the confusion matrices are given in Figure 7. Besides accuracy
metrics, the system’s accuracy and robustness are confirmed using the receiver operating
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characteristics (ROC) curves in Figure 8. The figure depicts the ROCs for the proposed
cascaded classification network for the first stage (Figure 8a), the second stage (Figure 8b),
and all-at-once classification (Figure 8c).

Figure 6. Confusion matrices for different classifiers for the second stage (i.e., three classes using
5-fold cross-validation on UCSD data set.

Figure 7. Confusion matrices for the four classes using 5-fold cross-validation on the UCSD dataset.
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(a) (b)

(c) (d)

Figure 8. The receiver operating characteristic (ROC) curves for the proposed cascaded framework
using cross-validation on the UCSD dataset: (a) binary classification using different classifiers;
(b) second-stage classification OVR using the MLP. Furthermore, the figure shows the ROCs for
all-at-once four-class classification using the MLP for (c) cross-validation and (d) test dataset only.

According to Table 1 and the confusion matrices in Figures 5–7, binary classification
demonstrated the highest accuracy compared with the second stage and all-at-once clas-
sification. This is an important aspect of the presented cascaded classification structure
that aligns with clinical diagnostics and emulates the process of a physician’s diagnosis.
Specifically, the system is designed to initially classify patients into broad groups with a
high level of confidence, such as distinguishing between normal and abnormal cases or
identifying AMD versus DME. Once patients have been stratified and critical cases have
been identified, physicians can then conduct a more comprehensive evaluation using other
available clinical signs and biomarkers. This allows for a refined differential diagnosis,
moving beyond OCT-based signs alone and towards an accurate and specific diagnosis.
Although there is the recent advantage of multi-scale DL-based fusion workflows in many
applications, including retinal applications, separating a large number of classes (sub types
or grades) at once is a challenging task. This explains the slight reduction in accuracy
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when the system separates all four classes at once. This, however, can be enhanced in
practice by integrating other available clinical signs/biomarkers/images for challenging
and complicated retinal diseases, including other diseases.

Our ultimate goal was to design and evaluate a versatile system that can be extended
to detect various retinal diseases. In order to explore the benefits of TL, we conducted an
additional experiment in which we evaluated several well-known ImageNet-based pre-
trained feature extractor architectures as replacements for DenseNet201. The architectures
we tested included VGG16, VGG19, Xception, and InceptionV3. The features extracted
from these architectures were then fused and used for classification. The results of this
experiment are presented in Table 2. The accuracy of the different backbones showed
slight variations, with the VGG architectures performing particularly well. These findings
demonstrate the potential of our cascaded architecture to leverage various pre-trained
models, which can be further improved through fine-tuning. Consequently, our system can
be extended to detect other retinal diseases not covered by the datasets used in this study.

Table 2. Performance of different feature extractors for the proposed cascaded classifications all well
as for all-at-once (four classes) classification using 5-fold cross-validation on the UCSD dataset and
multilayer perceptron.

First Stage (Binary) Second Stage (3-Classes) 4-Classes

Classifiers Acc% Sen% Spc% Acc% Sen% Spc% Acc% Sen% Spc%

Xception 95.91 98.96 95.64 91.96 96.86 98.43 93.15 97.97 99.32

InceptionV3 95.34 89.16 99.50 92.21 95.64 97.80 91.76 94.24 98.01

VGG19 95.94 97.57 99.31 93.88 95.40 97.67 93.39 97.01 99.67

VGG16 97.26 98.55 99.99 93.92 96.15 99.58 94.65 99.16 96.72

DenseNet201 97.79 95.55 99.72 96.83 97.75 98.87 94.26 96.29 98.74

All of the above experiments employed cross-validation for the cascaded as well as
all-at-once classifications for the four categories in the UCSD dataset. In addition to that,
we have further conducted an additional experiment for four-class classification using
the train/test data split of the UCSD dataset. The overall accuracies, confusion matrices,
and ROCs for the examined classifiers for the four-class classification on the test dataset are
given in Table 3, Figures 8d and 9. The results are consistent with the results in Table 1 with
a slight accuracy increase of 2%.

Table 3. Four-class classification performance using the UCSD test dataset only. LR: logistic regres-
sion; SVM: support vector machine; DT: decision tree, RF: random forest; NB: Naïve Bayes; MLP:
multilayer perceptron.

Metric

Classifier Acc% Sen% Spc%

MLP 96.17 96.17 98.69

RF 95.45 94.83 98.22

LR 93.28 93.29 97.66

SVM 91.73 95.97 98.63

DT 75.92 78.51 91.64

NB 79.54 79.55 92.23

46



Bioengineering 2023, 10, 823

Figure 9. Confusion matrices for different classifiers for the four classes using UCSD test data only.

Moreover, the advantage of our system for retinal diseases’/disorders’ diagnosis
has been compared with standard and recent literature methods. All of the compared
networks were tested on the available images in order to compare their abilities for both the
multi-class and binary stages. For the first-stage classification, our network performance
was compared with traditional methods pre-well-trained on the Imagenet dataset [37]
mainly to show the effect of the ensemble learning and scale adaptation network on the
overall performance. The comparison included the DenseNet121 by Huang et al. [30],
the ResNet101 by Szegedy et al. [38], and the method by Haggag et al. [39], which was
designed for retinal image analysis. Since the UCSD dataset does not have ground truth
for the retinal layers to compute other local and global feature images, we only used the
grayscale images in Reference [39]. For the pre-trained network, the top layer was removed
and replaced by a fully connected layer with a dropout of 40% and a final node of the
sigmoid activation function for classification. A summary of the performance metrics is
given in Table 4. Statistical significance tests were performed using a paired Student’s
t-test to assess the accuracy of the proposed method in comparison to the other methods.
The results indicated that our method is statistically significantly better than the compared
methods (p-value < 10−4). Further, an ablation experiment was conducted to verify the
effect of the scale adaptation module on the classification performance. For the first- and
second-stage classification, our network showed and average accuracy of 95.76% and
94.93%. The overall enhancement (∼2%) was promising, and future work should be
conducted to explore other module improvements.

For the four-class comparison, our architecture was compared with well-known CNN
models and multiple well-known classification frameworks that reported accuracy on the
UCSD dataset. The comparative accuracy is demonstrated in Table 5, and the confusion
matrices for the different classifiers are shown in Figure 7. As can readily be seen in Tables 1
and 5, the proposed pipeline showed improved performance compared to its counter and
off-the-shelf networks. This is also confirmed using Student’s t-test, (p-values < 10−4)
similar to the binary classification.

To verify our system performance on other datasets in addition to the UCSD dataset,
we tested our approach on the Duke dataset [40], which contains a total of 3231 OCT
images for three classes: normal (1407), AMD (723), and DME (1101) patients. The dataset
does not have any training and testing splits, so we followed the same approach as was
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used by Kayadibi et al. in [27], where the train–test split was 90% and 10%, respectively.
The proposed pyramidal cascaded architecture results compared with other methods tested
on the same dataset are given in Table 6. The results document the better performance
of our architecture. These results are encouraging, and we ultimately plan to expand our
system in future work to be able to be even more specific, such that we identify not purely
signs (e.g., macular edema or CNV), but could actually distinguish between different causes
of cystoid macular edema (CME) based on OCT features, such as retinal vein occlusion,
diabetic macular, or uveitic macular edema.

Table 4. Comparisons with other related work for binary classification on the UCSD data set.

Method Acc% Sen% Spc%

Haggag et al. [39] 90.1 87.7 92.61

Huang et al. [30] 92.30 89.01 94.61

Szegedy et al. [38] 89.12 82.3 85.18

Proposed 97.79 95.55 99.72

Table 5. Comparisons with other related work for four-class classification using 5-fold cross-
validation.

Applied Method Acc% Sen% Spc%

Fang et al. (JVCIR) [41] 87.3 84.7 95.8

Fang et al. [42] 90.1 86.8 96.6

S.-Paima et al. [18] 93.9 93.4 98.0

Proposed 94.3 96.3 98.7

Table 6. Overall accuracy in comparison with other works tested on the Duke data set.

Applied Method Acc% Sen% Spc%

Thomas et al. [43] 96.66 — —

Amaladevi and Jacob [44] 96.20 96.20 99.89

Kayadibi and Güraksın [27] 97.50 97.64 98.91

Proposed 99.69 99.71 99.87

4. Conclusions

We have developed a multi-level, multi-resolution feature ensemble architecture for
the classification of retinal disorders. The proposed pipeline mimics the human perception
of global diagnosis followed by stratification of the suspected cases. The scale-adaptation
networks help to produce multi-scale inputs while retaining valuable information when
downscaling. Additionally, the pyramidal layout helps extract various information to
help with the binary and multi-class classification stages of the three retinal disorders.
In summation, the proposed architecture not only provides global diagnosis but also
automatically distinguishes between different retinal diseases, thus allowing for earlier
treatment of the patient’s condition. Despite promising results, some limitations of this
work should be addressed in future work. First, the proposed system should be evaluated
on more challenging retinal datasets with different diseases for rigorous evaluation. Second,
we used only pre-trained CNNs for feature extraction, and thus, more evaluation using
visual transformers should be investigated.

Future research venues will explore integrating the architecture into more-complex
retinal disorders’ pipelines to include, for example, sub-grades of disease (such as dry
and wet AMD) for accurate and precision medicine. Further, integration of explainable AI
modules (e.g., Grad-CAM, LIME, etc.) to gain further insights into the reasoning behind
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the systems’ output will be explored. Finally, a weighted fusion of the multi-scale features
will be thoroughly investigated as well as the study of additional higher-order features
using spatial models.
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Abstract: Osteoarthritis (OA) is the most common arthritis and the leading cause of lower extremity
disability in older adults. Understanding OA progression is important in the development of patient-
specific therapeutic techniques at the early stage of OA rather than at the end stage. Histopathology
scoring systems are usually used to evaluate OA progress and the mechanisms involved in the
development of OA. This study aims to classify the histopathological images of cartilage specimens
automatically, using artificial intelligence algorithms. Hematoxylin and eosin (HE)- and safranin O
and fast green (SafO)-stained images of human cartilage specimens were divided into early, mild,
moderate, and severe OA. Five pre-trained convolutional networks (DarkNet-19, MobileNet, ResNet-
101, NasNet) were utilized to extract the twenty features from the last fully connected layers for both
scenarios of SafO and HE. Principal component analysis (PCA) and ant lion optimization (ALO) were
utilized to obtain the best-weighted features. The support vector machine classifier was trained and
tested based on the selected descriptors to achieve the highest accuracies of 98.04% and 97.03% in HE
and SafO, respectively. Using the ALO algorithm, the F1 scores were 0.97, 0.991, 1, and 1 for the HE
images and 1, 0.991, 0.97, and 1 for the SafO images for the early, mild, moderate, and severe classes,
respectively. This algorithm may be a useful tool for researchers to evaluate the histopathological
images of OA without the need for experts in histopathology scoring systems or the need to train
new experts. Incorporating automated deep features could help to improve the characterization and
understanding of OA progression and development.

Keywords: osteoarthritis; histopathological; hematoxylin eosin; safranin O fast green; DarkNet-19;
MobileNet; NasNet; ResNet-101; ShuffleNet; PCA; ALO

1. Introduction

Osteoarthritis (OA) is the leading cause of pain and disability in working-age adults
and the elderly [1,2]. OA is not a process of mechanical wear and tear as previously thought;
instead, it is a whole-organ disease that is driven by the disruption of the balance of cartilage
homeostasis, inflammatory mediators, genetic factors, and innate immunity [3–5]. Joint
destruction in the knee can be severe in OA patients and can lead to total knee replacement
(TKR). A better understanding of the pattern and initiation of OA in the knee could help in
the understanding of OA progression and influence the selection of therapies.

The histopathology of cartilage is usually used to evaluate the in situ state of the
cartilage tissue. Microscopic histopathological grading of osteochondral tissue is usually
used to evaluate OA development ex vivo. The most common OA grading systems are the
Osteoarthritis Research Society International (OARSI) [6] and Histological-Histochemical
Grading System (HHGS) scoring systems [7]. Although the HHGS score system is the
most often used for the histological scoring of osteoarthritic cartilage, it is usually used to
evaluate the more severe OA specimens [8]. OARSI is the best choice for mild or earlier
phases of OA and for investigating the progression of OA. In general, a sensitive grading
system that is able to detect early OA and its progression could be of great interest for
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drug development and OA research [9]. Moreover, the identification of early OA and the
progression of OA is important in the development of early interferences and therapeutic
techniques that could prevent the progression of OA [10].

Manual histopathological scoring systems can be time-consuming and need pathol-
ogists with years of experience and/or the training of new scorers [11]. Automatic OA
evaluation and assessment based on histopathological image classification are very limited.
Manual scoring systems are widely used for evaluation of the OA histopathological images.
Machine learning and deep learning have aided massive data analyses, pattern identifica-
tion, decision-making, and the production of accurate predictions [12]. Machine learning
and deep learning were used for the histopathological grading of different tissues, using
magnetic resonance imaging (MRI) [13,14], optical microscopy [15], and ultrasound [16].

The prediction and classification of the OA progression of the osteochondral tissue
using machine learning and deep learning have been proposed in the literature; these
methods were based on magnetic resonance imaging (MRI) [17,18] and radiography [19].
A deep convolutional neural network (CNN) was used to automatically diagnose hip
OA using 420 hip X-ray images [20]. The results showed that the CNN model had 95%
sensitivity and 92.8% accuracy as compared to the conventional manual assessment by
physicians. In another study, deep learning was used for the automatic segmentation
and subregional assessment of MRI images of articular cartilage and compared to manual
segmentation [21]. Tiulpin et al. studied the use of deep learning and leveraged an ensemble
of residual networks with 50 layers to predict OARSI and Kellgren–Lawrence (KL) grades
of OA from knee radiographs [22]. The detection of the presence of OA using their model
yielded an average precision of 0.98 and an area under the ROC curve (AUC) of 0.98.

However, few studies have looked at automation in the grading of histopathological
samples. Rytky et al. used regularized linear and logistic regression models for the
histopathological grading of osteochondral specimens imaged with contrast-enhanced
microcomputed tomography (microCT) [23]. The models were trained against the manually
graded histopathological samples to predict the grades of degeneration for the articular
cartilage of the surface, deep, and calcified cartilage zone. They found that the model could
detect the degeneration in the surface zone with an average precision of 0.89 (AUC of
0.92) while the detection of degeneration in the deep zone was the lowest, with an average
precision of 0.46 (AUC of 0.62) [23]. Power et al. used supervised deep learning to automate
the grading system for the histological images of engineering cartilage tissue [24]. Safranin
O and fast green (SafO) was used for staining the engineered tissue; then, two experts
graded the images. Transfer learning using a pre-trained DenseNet model was used to
automate the scoring of the histological images; the scoring resulted in errors comparable
to inter-user errors [24].

In this study, we aim to automate the classification of histopathological grading
into early, mild, moderate, and severe OA using machine learning and deep learning
techniques. The histological images of the osteochondral specimens were obtained from
Venkata et al. [25]. The current methods could be improved with the development of
methods for the analysis and grading of osteochondral histological samples, particularly
as most researchers use manual grading for the histological samples. The developed
methods could be used not only for the OA histological samples harvested after total knee
arthroplasty but also for tissue engineering models of articular cartilage.

2. Materials and Methods

The method proposed in this paper is shown in Figure 1; then, each block is explained
in the following sections.

As is clear in Figure 1, the histopathological images passed through various stages:
from deep learning structures, the extraction of feature maps, and the employing of PCA to
the weighting optimization algorithm. The evaluation criteria are calculated in each stage.
The corresponding sections clarify the novelty of the proposed approach.
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Figure 1. The proposed method for distinguishing the severity levels for both hematoxylin and eosin
(HE) and safranin O and fast green (SafO) histopathological images.

2.1. Database

The osteochondral images were obtained from the database of Venkata et al. [25] (Available:
https://doi.org/10.18735/77ye-yh24 (accessed on 2 February 2023)). Briefly, the samples were
harvested from 90 patients undergoing total knee arthroplasty. Two osteochondral specimens
(4 × 4 × 8 mm) were obtained, one from the medial (CM) and one from the lateral
(CL), from the lateral femoral condyle. The specimens were stained with hematoxylin
and eosin (H&E) or safranin O and fast green (SafO). SafO staining is usually used for
staining glycosaminoglycans [26] and hematoxylin and eosin (H&E) staining is usually
used for staining nuclei and extracellular proteins [27]. The samples were previously
graded according to the OARSI grading system by three scorers 3 times (separated by at
least 3 months) [25]. According to the average grades of the scorers, we divided the images
of HE and SafO into early, mild, moderate, and severe OA, as shown in Figures 2 and 3.
In the OARSI scoring system, the score for early is less than 3.4, for mild it is 2.4–8.6, for
moderate it is 8.6–15.4, and for severe it is 15.4–24 [28].

 

Figure 2. Representative HE-stained images of cartilage specimens, indicating (a) early, (b) mild,
(c) moderate, and (d) severe OA.

 

Figure 3. Representative SafO-stained images of cartilage specimens, indicating (a) early, (b) mild,
(c) moderate, and (d) severe OA.

53



Bioengineering 2023, 10, 764

2.2. Deep Learning Features

Deep learning features represent the graphical descriptors for each class. They are
inherent to the categories themselves. In this paper, several pre-trained deep learning
models are employed to differentiate various levels of OA in two types of stained histologi-
cal images (HE and SafO). The utilization of pre-trained convolutional neural networks
(CNNs) to discriminate between two kinds of histological images does not provide accurate
results. Therefore, the proposed method combines deep learning, machine learning, and
optimization techniques to achieve high accuracy in predicting OA levels. The proposed
method depends mainly on extracting the most representative features from the last fully
connected model in each CNN. The deep learning structures were trained on the Ima-
geNet database to classify 1000 classes. The transfer learning technique that was utilized
to maintain the established structures is compatible with the desired problem statement,
which focused on anticipating four levels of histological OA images. The transfer learning
was made applicable by augmenting the input size of the image to make it suitable for
the input layer of each one. Moreover, removing the last fully connected layer reduced
it to four levels. The deep descriptors for each model were extracted from the last fully
connected layer. Each one supplied four representative attributes for four levels for both
types of stained images (HE and SafO) [29,30]. The utilized networks were ResNet-101,
MobileNet, ShuffleNet, NasNet, and DarkNet-19. The idea behind using various structures
is based on the ability of each one to extract features in a different manner and to learn in
various ways, either in deep or in multiscale resolution. This leads to the obtaining of more
representative features that can accurately represent the histopathological OA images.

2.2.1. DarkNet-19

The DarkNet-19 is a type of CNN that consists of 19 convolutional layers, followed by
a max-pooling layer and then two fully connected layers. DarkNet architecture is similar to
that of VGGNet but with fewer parameters. It is applied to computer vision tasks such as
object detection, image classification, and segmentation. Moreover, it was introduced as a
part of YOLO (You Only Look Once), which is designed for tracking real-time objects [31].

2.2.2. NasNet

NasNet stands for neural search architecture networks. This CNN is a well-known
predefined convolutional neural network, which is trained over the ImageNet dataset with
over 1000 classes from nature. The NasNet internal structure consists of a multi-series
of cells. There are two types of cells: normal and reduction cells. The normal cells are
responsible for extracting the graphical descriptors and producing the feature maps via
convolutional filters. On the other hand, the reduction cell is in charge of reducing the size
of the feature map’s width and height by a factor of 2. NasNet is ended by a SoftMax layer
that allows obtaining the probability of classification task [31].

2.2.3. ResNet-101

Residual neural networks are convolutional neural networks pre-trained over the
ImageNet database; there are various versions based on the number of convolutional layers
(Res-18,50, and 101). This kind of CNN is distinguished by its residual block property,
which overcomes the vanishing gradient that appears due to deep learning. The skip
connections lead to the bypassing of some of the neural layers and the feeding of the output
of one layer as the input to the next level, which provides a different path for the gradient
in backpropagation. That is the architecture of the residual block. ResNets consist of the
stacking of such blocks. By transfer learning, the input image must be augmented to be
compatible with ResNet input size 224 × 224 × 3, and the last fully connected layer must
be replaced by another one that is suitable for the intended classification task [31,32].
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2.2.4. ShuffleNet

ShuffleNet is one of the most well-known pre-trained CNNs; it is appropriate for
mobile applications. ShuffleNet executes two types of convolution to achieve a high
level of accuracy. They are the point-wise convolution and the channel convolution; they
lead to reduced time computation and make the results more accurate. The ShuffleNet
structure consists of the stacking of shuffle netblocks; each one includes a point-wise
convolutional layer and a depth-wise layer. The resultant output is passed to the ReLU
layer for mapping purposes. The transfer learning is performed by augmenting the input
data to be 224 × 224 × 3 and replacing the last fully connected layer to make it compatible
with the number of intended classes [31].

2.2.5. MobileNet

MobileNet is a pre-trained CNN designed for mobile and embedded devices. It is
organized based on one depth-wise separable convolution that yields a reduction in the
number of required parameters to maintain a good performance. The idea behind the
depth-wise separable convolution is to split the convolution operation into two separate
operations: a depth-wise convolution and a pointwise convolution. In a depth-wise
convolution, each channel of the input is convolved with a separate filter, resulting in a set
of feature maps. Then, a pointwise convolution is devoted to combining the attribute maps
into the output by utilizing a 1 × 1 filter to convolve across all channels.

The MobileNet architecture consists of a series of convolutional layers, followed by
global average pooling and a fully connected layer. The depth-wise separable convolution
is performed in all these layers to obtain an efficient performance. The MobileNet structure
may be adjusted by modifying the number of layers, filter sizes, and other hyperparame-
ters [31,33].

2.3. Features Engineering

The features were extracted from each of the previously mentioned CNNs, four
features for each CNN; the total number of extracted features from each type of stained
image (HE or SafO) was 20 features. The extracted features underwent further processing
techniques: through reduction by choosing the most significant or by weighting them
using one of the most common optimization methods, which is known as the ant lion
optimization technique.

2.3.1. Principal Component Analysis

Principal component analysis (PCA) is well-known in data pre-processing and ma-
chine learning and is considered to be a feature selection algorithm. PCA transforms a
high-dimensional dataset into a lower-dimensional space by identifying the principal com-
ponents which explain the maximum variance in the datasets. PCA reduces the dimension
of that dataset by preserving the most important information and discarding the redundant
data task [29–32].

The principal components define the direction of the maximum variance in the
extracted features. The following steps describe the process required to perform the
PCA algorithm.

1. Standardization: this step is performed by standardizing each column feature that
makes the mean for each feature zero, and the variance is unity.

2. Covariance matrix: this step is performed by constructing the covariance matrix,
which is a square matrix that reflects the variance between each pair of features; its
diagonal represents the variance for each feature and the off-diagonal represents the
covariance between each pair of features.

3. Computation of the principal components: this step is performed by computing the
eigenvector, which explains the direction of maxim variance, and the eigenvalue that
quantifies the amount of maximum variance.
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4. Selection of the principal components: the principal components are selected based
on 95% of the majority variance of the features.

5. Mapping between the selected principal components and the features: this is per-
formed by projecting the standardized features onto the best principal components.

2.3.2. Feature Weighting Using ALO

Feature weighting represents the features that are more important than others when
optimizing the classification problem; it reveals the role of each feature in the classification
pattern by distinguishing by weight. The linear weight is proposed for the feature space
to obtain a specific weight for the features; then, the new feature represents the original
feature multiplied by its weight, as shown in the following equation:

NewFeature = Weight × Old_Feature (1)

Ant lion optimization (ALO) is a metaheuristic optimization algorithm that is used for
tuning the parameters to achieve high accuracy. In this paper, we explored feature weights
and the optimal value of k in the k-nearest neighbors (k-NN) algorithm; simultaneously,
we used the accuracy of k-NN as a fitness function. The difference between PCA and
ALO is that the former reveals the significant features and discards the less influential
features. All the selected attributes have the same weight, which leads to an equal impact
on the classification results. On the other hand, in this paper, the cascading of these
two optimization techniques was the key to improving and obtaining the highest accuracies.
The selected features were passed to the ALO algorithm to achieve an optimized weight
for each one that was significant.

The ALO algorithm can be updated to search for a combination of feature weights and
k values that optimize the performance of the k-NN model. The approach is performed
using the accuracy of k-NN as a fitness function [34].

The steps of ALO are as follows:

1. Initialize the population of ant lions randomly.
2. Evaluate the accuracy of each ant lion in the population based on both weight and

k-value.
3. Define the king ant lion based on the highest accuracy.
4. Move the ant lions towards the king ant lion using a certain formula that simulates

the hunting behavior of the ant lions.
5. Calculate the accuracy for the new position.
6. Repeat steps 3–5 until the stopping criterion is met.
7. The results are the optimized weights.

2.4. Support Vector Machine

Support vector machines (SVMs) are popular supervised machine learning algorithms
used in medical diagnosis. SVM is superior for both linear and non-linear separable data.
SVM is used in the medical diagnosis field for discriminating between various classes, such
as cancer, diabetics heart arrhythmia, cervical cancer, brain tumors, liver cancer, corneal
ulcer, etc.

It is based on finding the optimal margin region for different classes and mapping the
features to higher dimensional space using kernels to make the data separable in higher
dimensional space. The kernel choice function has a significant impact on the performance
of the classifier, in addition to the choosing of the relevant features. SVM is a powerful tool
for medical diagnosis, and it is applied for different applications due to its reliability and
high performance [35,36]. In this paper, we employed deep learning, feature engineering,
and an SVM machine learning classifier to predict OA levels in human osteochondral tissue
using histopathological images. The novel combination between them leads to build a
reasonable system that can infer significant deep features and can weight them to obtain a
reliable scoring diagnosis.
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3. Results

The two types of stained images were passed to five pre-trained CNN models. The
classification procedure was performed in four scenarios. First, deep learning classification
was used to classify the four levels of OA. Second, deep learning features were extracted for
each CNN and a support vector machine classifier was used to distinguish between the four
levels for each type of stained image. Third, feature engineering techniques were applied to
evaluate the most significant features from five CNNs using PCA. The last scenario reveals
the importance of the feature weighting method by applying the ALO algorithm to give
weight to each selected feature. The following subsections are devoted to discussing the
obtained results in each scenario. The evaluation criteria that were used in this paper are
those in [37].

accuracy =
TP + TN

TP + TN + FP + FN
(2)

Recall =
TP

TP + FN
(3)

Precision =
TP

TP + FP
(4)

Speci f icity =
TN

TN + FP
(5)

F1 − score =
2 × Precision × Recall

Precision + Recall
(6)

3.1. Pre-Trained Model Classification

Table 1 represents the accuracy for both the HE and the SafO images using DarkNet-19,
MobileNet, NasNet, ResNet-101, and ShuffleNet. As is clear from Table 1, the accuracy of
utilizing deep learning for HE images does not exceed 70.6% using NasNet. Moreover, the
sensitivity and precision are too low, which leads to the F1 score being too low. Therefore,
the deep convolution networks could not distinguish between various types of severity
levels. For the SafO images, the accuracy ranged between 73.3% and 80% for the different
CNN classifiers, among which DarkNet-19 had the highest accuracy. The obtained results
were not promising; therefore, a hybrid model is recommended to extract the deep features
and then pass them to a machine learning classifier to outperform the classification results.

Table 1. The accuracy using different CNN structures for HE and SafO images.

Images

CNN
DarkNet-19 MobileNet NasNet ResNet-101 ShuffleNet

HE 69.6% 61.8% 70.6% 69.6% 64.7%
SafO 80.2% 77.2% 73.3% 76.2% 74.3%

3.2. Deep Features with SVM

Four features were extracted from the last fully connected layer for each CNN. The
deep features were passed to the SVM classifier. Tables 2 and 3 show the performance of
the classification for the HE images; the performance was enhanced except in the case of
DarkNet-19. The enhancement comes from employing deep learning features and machine
learning classifiers. The reason behind the worst performance of DarkNet-19 was the failure
of DarkNet to extract the representative features for the four classes. The improved accuracy
was 96% for the ShuffleNet features with the 3rd polynomial SVM classifier. The recall was
the highest for the MobileNet features for the early class level. Moreover, the precision
was also the best in MobileNet. The highest precision that was obtained was 100% for the
severe class in MobileNet, NasNet, and ShuffleNet. On top of that, Figure 4 illustrates
the receiver operating curve for each classification procedure. Each figure represents the
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relation between the true positive and the false positive rates. As the area under the curve
(AUC) increases, the classifier has a high performance in distinguishing the particular
classes. All the suggested CNNs had the AUC in all the classes, except DarkNet, which
failed to extract the representative features for each class.

Table 2. The accuracy using different CNN structures with SVM classifier for HE and SafO images.

Images

CNN
DarkNet-19 MobileNet NasNet ResNet-101 ShuffleNet

HE 60.8% 99% 95.1% 94.1% 96.1%
SafO 95% 98% 95% 94.1% 95%

Table 3. The precision and sensitivity using different CNN features with SVM classifier for HE and
SafO images.

HE Images SafO Images

Class Sensitivity Precision Sensitivity Precision

Early

DarkNet-19 11.8% 16.7% 100% 85.7%
MobileNet 100% 100% 94.1% 94.1%

NasNet 89.9% 94.1% 88.2% 88.2%
ResNet-101 82.4% 100% 94.4% 94.4%
ShuffleNet 94.1% 94.1% 94.1% 88.9%

Mild

DarkNet-19 85.7% 69.2% 93.5% 98.3%
MobileNet 98.4% 100% 98.4% 98.4%

NasNet 95.2% 96.8% 96.8% 95.3%
ResNet-101 98.4% 95.4% 98.4% 92.4%
ShuffleNet 100% 95.4% 96.8% 96.8%

Moderate

DarkNet-19 29.4% 55.6% 94.1% 94.1%
MobileNet 100% 94.4% 100% 100%

NasNet 100% 98.5% 100% 100%
ResNet-101 88.2% 88.2% 76.5% 100%
ShuffleNet 83.3% 100% 94.4% 100%

Severe

DarkNet-19 20% 16.7% 100% 100%
MobileNet 100% 100% 100% 100%

NasNet 100% 100% 75% 100%
ResNet-101 100% 83.3% 100% 100%
ShuffleNet 100% 100% 100% 100%

The same procedure was applied for the SafO images; the performances of each
classifier with SVM are shown in Tables 2 and 3. The performance of the DarkNet was
much better than in the HE cases. The accuracy for all the CNN features with SVM ranged
from 94.1% to 98% for ResNet-101 and MobileNet, respectively. The worst sensitivity was
obtained for the ResNet-101 features for the moderate class. Nevertheless, the recall was
almost high in all the classes for each network descriptor. The lowest positive predictive
value for all the classes was greater than 85%. This indicates the ability of the extracted
features to help in differentiating between various levels of severity.

Moreover, for more analysis and clarification, the ROC curve (Figure 5) explains the
impact of applying a hybrid process between deep learning and machine learning. The
improvement of the AUC for each class, early, mild, moderate, and severe, reflects the
ability of the proposed procedure to determine the kind of severity level for osteochondral
tissue using SafO-stained images of human cartilage specimens, which imply cartilage
structure, cell glycosaminoglycan content, and tide-mark integrity for the four types of
severity levels, as we mentioned before: early, mild, moderate, and severe OA. To improve
the performance of the proposed procedure using feature engineering techniques, the
simplest method is to combine all the features from all the CNNs and then pass them to
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the kernel SVM to improve the results. The huge dimensions of using twenty features may
lead to an increase in the computation time cost, which leads to the use of the principal
component analysis (PCA). PCA is one of the most familiar methods for feature reduction
that indicate up to 95% variance of the features. The proposed approach is to mix the
benefits from all the CNNs and then find the significant features. The next section describes
the results for PCA.

Figure 4. ROC curves of HE images for (a) deep DarkNet-19 features with SVM, (b) deep DarkNet-19
features with SVM, (c) deep DarkNet-19 features with SVM (d) deep DarkNet-19 features with SVM,
and (e) deep DarkNet-19 features with SVM.

3.3. Principal Component Analysis (PCA)

All the features from the previous CNNs were fused and utilized to classify the
images; then, PCA was devoted to the prediction of the most significant features. The
twenty features from five CNNs were further processed under PCA to find the most
significant subset features. Then, the most significant features passed to the SVM. The best
obtained ten features for the HE images were:

1. Four features from MobileNet.
2. Three features from ShuffleNet.
3. Two features from NasNet.
4. One feature from ResNet-101.

The most significant features did not involve any features from the DarkNet which was
expected since the accuracy was low for the DarkNet. Figures 6 and 7 show the confusion
matrix of the PCA of all the features from all the convolution neural networks and the
corresponding ROC curve for the HE and SafO images, respectively. Figure 6 describes
the resultant confusion matrix and its corresponding ROC curve for the HE images. The
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accuracy was 98% for all the classes. On the other hand, the sensitivity for all the categories
was 100%, except for the moderate level, which was 89%. However, the precision was 100%
for the early and moderate levels, whereas it was 98.4% and 83.3% for the mild and severe
levels, respectively. The AUC was 1 for the early and severe classes. On the other hand, the
AUC was 0.995 for the mild class and 0.981 for the severe class. The obtained features using
MobileNet performed better than those using the ten features. Therefore, after applying
PCA for all the fused features, the most significant were the MobileNet features. They
improved the previous results obtained using MobileNet features only.

Figure 5. ROC curves of SaFO images for (a) deep DarkNet-19 features with SVM, (b) deep DarkNet-
19 features with SVM, (c) deep DarkNet-19 features with SVM (d) deep DarkNet-19 features with
SVM, and (e) deep DarkNet-19 features with SVM.

The same procedure was applied to the fused features that were extracted from
the SafO-stained images. The most significant features with 95% variance were ordered
as follows:

1. Three features from MobileNet.
2. Three features from ShuffleNet.
3. Two features from NasNet
4. Two features from DarkNet

The ordering of the significant features satisfied the obtained results that employed
features from each CNN individually. The highest accuracy appeared in MobileNet, then
ShuffleNet. The worst accuracy was obtained using the ResNet-101 features. Therefore,
they were not counted as significant features. Figure 7 describes the obtained results for
the SafO-stained images using the most significant ten features.
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Figure 6. Feature fusion for HE images with PCA: (a) confusion matrix and (b) ROC curve.

Figure 7. Feature fusion for SafO images with PCA: (a) confusion matrix and (b) ROC curve.

The obtained accuracy was 97%. The highest recall was in the moderate category,
whereas the lowest sensitivity was in the severe class. On top of that, the best precision
was maintained in the moderate and severe classes. The lowest positive predictive value
was in the early class. The area under the curve for all the classes was almost 1.

3.4. Ant Lion Optimization (ALO)

The ant lion optimization method combines the weights for each feature alongside
the objective function, which is the loss of the convergence. The iterative procedure is
performed to achieve the plateau of loss. This leads to the best weights for the features.
The range of weights for each feature is [0–1]. The algorithm was applied to both kinds of
images for all the extracted deep features. Figure 8 shows the convergence loss function
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versus the number of iterations for the HE images. As is clear from the figure, the maximum
iteration is 100, and the convergence is constant after 60 iterations. The corresponding
equation shows the optimized weight for each feature.

y = 0.522642 × F1 + 0.503514 × F2 + 0.093848 × F3 + 0.482934 × F4 + 0.11463 × F5 + 0.167205 × F6
+0.750722 × F7 + 0.770949 × F8 + 0.159337 × F9 + 0.364798 × F10

(7)

where y represents the label of the image, and F1–F10 are the ten most significant features.

Figure 8. ALO algorithm for HE images: (a) convergence of the algorithm, (b) confusion matrix, and
(c) ROC curve. Where # represents the number.

The confusion matrix of the obtained results is described in Figure 8b. The weighting
features enhanced the accuracy to 99%. The sensitivity and precision were almost 100% for
all the classes, except that the recall was 98.8% for the mild level and 94.4% for the early
class. The ROC curve is illustrated in Figure 8c. The area under the curve was 1 for all the
classes. The F1 score values were 0.97, 0.991, 1, and 1 for the early, mild, moderate, and
severe classes, respectively (Table 4). The specificity values were 98.8%, 100%, 100%, and
100% for the early mild, moderate, and severe classes, respectively. As is clear from Table 4
and Figure 8, ALO has a higher performance than PCA in all the classes.

Table 4. The performance of feature engineering on HE-stained images.

Class Feature Engineering Sensitivity Precision Specificity F1 Score

Early PCA 100% 100% 100% 1
ALO 100% 98.4% 98.8% 0.97

Mild
PCA 100% 98.4% 97.5% 0.991
ALO 100% 98.4% 97.5% 0.991

Moderate
PCA 88.9% 100% 100% 0.941
ALO 100% 100% 100% 1

Severe
PCA 100% 83.3% 99% 0.909
ALO 100% 100% 100% 1

The same procedure was applied for the SafO images; Figure 9a shows the number
of iterations for the ALO algorithm versus the loss function. After 80 iterations, the
loss function was constant, and the optimized weighted features were maintained. The
optimized weights were:

y = 0.216401 × F1 + 0.898295 × F2 + 0.92736 × F3 + 0.110877 × F4
+0.416086 × F5 + 0.749176 × F6 + 0.386958 × F7
+0.67024 × F8 + 0.030166 × F9 + 0.584659 × F10

(8)
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Figure 9. ALO algorithm for SafO images: (a) convergence of the algorithm, (b) confusion matrix,
and (c) ROC curve. Where # represents the number.

The achieved accuracy in the SafO images was the same as in the HE images (99%).
The highest sensitivity was 100% in the early, mild, and severe categories. However, the
highest precision was in the early, moderate, and severe levels. Figure 9c describes the
AUC for the weighted features and the SVM classifier. The AUC was 1 in both the early
and the severe classes, while the AUC was 0.979 in the moderate class and 0.988 in the mild
class. The specificity was computed for all the levels, as follows: 100%, 97.4%, 100%, and
100% for the early, mild, moderate, and severe classes, respectively (Table 5). Furthermore,
the F1 score values were 1, 0.971, 1, and 0.889 for the early, mild, moderate, and severe
categories, respectively, using the PCA classifier, while the F1 score values were 1, 0.991,
0.97, and 1 for the early, mild, moderate, and severe categories, respectively, using the ALO
classifier. As with the HE images, the ALO classifier performed better compared with PCA
for the SafO images.

Table 5. The impact of feature engineering on SafO images.

Class Feature Engineering Sensitivity Precision Specificity F1 Score

Early PCA 94.1% 94.1% 98.8% 1
ALO 100% 100% 100% 1

Mild
PCA 98.4% 96.8% 94.8% 0.971
ALO 100% 98.4% 97.4% 0.991

Moderate
PCA 100% 100% 100% 1
ALO 94.1% 100% 100% 0.97

Severe
PCA 80% 100% 100% 0.889
ALO 100% 100% 100% 1

4. Discussion

In this study, we showed that machine learning and deep learning can be used to auto-
matically classify the osteochondral histopathological images into early, mild, moderate,
and severe OA. The manual histopathological scoring systems are time-consuming and
need a trained scorer to grade the images. This study used five CNN models, including
ResNet-101, MobileNet, ShuffleNet, NasNet, and DarkNet-19, to extract features from HE
and SafO histopathological images of different levels of OA. As deep learning was insuffi-
cient to classify the OA images, we employed the deep features with a machine learning
classifier to enhance the classification results, and we then optimized these features using
various engineering methods, such as PCA and ALO. Although the deep learning method
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was first used in this manuscript to predict the severity of OA, the histopathological OA
images were very complex due to the many changes that happen in both the cartilage and
the subchondral bone during OA progression, such as the network of collagen fibers, the
subchondral bone structure, the proliferation of chondrocytes, the size of cartilage change,
and the proteoglycans loss, which results in surface cracking [38]. All of these make it very
difficult for deep learning procedures alone to classify histopathological OA images. So, in
this study, combinations of multiple algorithms were used with machine learning classifiers
and various engineering methods, such as PCA and ALO. Combinations of different feature
engineering approaches have been utilized in different studies due to the complexity of the
images, the tissue, the type of images, and the sizes [39–42].

The results showed that the F1 score values were 0.97, 0.991, 1, and 1 for the early,
mild, moderate, and severe classes, respectively, for the HE-stained images using the ALO
classifier. For the SafO images, the F1 score values were 1, 0.991, 0.97, and 1 for the early,
mild, moderate, and severe categories, respectively, using the ALO classifier. This study
had a limitation in the dataset in that there was a very small number of images for the
severe class. Only 14 images were available for the HE staining and another 14 images for
the SafO staining for the severe class. So, we focused on reporting the F1 score since the
data were imbalanced [43].

Few studies have utilized artificial intelligence to score or classify osteochondral or
cartilage histopathological images. In another study, a machine learning technique was
used to automatically grade 3D histopathological images of osteochondral samples to
predict the degeneration of surface, deep, and calcified cartilage zones [23]. The samples
were imaged using defect contrast-enhanced microCT. Transfer learning using a pre-trained
ResNet-34 encoder was used. The model was able to predict the degeneration in the surface
zone (AUC of 0.92 and AP of 0.89), followed by the calcified zone (AUC of 0.71 and AP of
0.65) and the deep zone (AUC of 0.62 and AP of 0.46) [23]. In another study, a deep learning
technique was used to automate the grading of the histological images of engineered
cartilage, in which the grading was classified into four categories [24]. Transfer learning
using a pre-trained DenseNet model was used for feature extraction to automatically score
the histological images of engineered cartilage. It was found that the RMSEs for the model
prediction were in a similar range as the inter-user of 0.71 [24]. In our study, using the
ALO algorithm for HE images, the specificity values were 98.8%, 100%, 100%, and 100%
for early mild, moderate, and severe classes, respectively, and the AUC was 1 for all the
classes. Using the ALO algorithm for the SafO images, the specificity values were 100%,
97.4%, 100%, and 100% for the early, mild, moderate, and severe classes, respectively,
and the AUC values were 1, 0.988, 0.979, and 1 for the early, mild, moderate, and severe
classes, respectively.

Machine and deep learning have recently been used to investigate OA development
and progression using MRI or X-ray images [44–47]. Ashinsky et al. used machine learning
to investigate the development of OA using the MRI images of 68 patients. A hierarchy of
algorithms representing morphology (WND-CHRM) was used to classify the development
of OA with 75% accuracy [17]. In another study, the T2 relaxation time of the MRI images of
the 4384 subjects with and without OA was analyzed using DenseNet and random forests
to distinguish OA [45]. The DenseNet training model attained a sensitivity equal to 74.53%
and a specificity equal to 76.13%, which was comparable to the random forest model with
a sensitivity of 67.01% and a specificity of 71.79%. Tolpadi et al. used a DenseNet CNN
to predict the total knee replacement (TKR) from the MRI images and the clinical and
demographic information of patients with OA and patients without OA [48]. Their model
was able to predict the TKR with the AUCs of 0.834 ± 0.036 and 0.943 ± 0.057 for patients
with OA and without OA, respectively.

In OA, the integrity of collagen and glycosaminoglycan, which give the cartilage the
mechanical properties, is compromised [49]. The articular cartilage has a complex structure
without blood vessels or nerves, making it difficult to repair or to treat the cartilage
defect. So, the progression of OA has been investigated by many researchers using a
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manual grading system [25,50,51]. Saarakkala et al. studied the collagen and proteoglycan
changes during OA progression using the OARSI histopathology grading system [52].
Then, a composition-based finite element (FE) model was employed to study the tissue
function. Mantripragada et al. investigated the scoring of polarized light microscopy (PLM)
images as a potential method to understand early OA as compared with the standard
histopathological methods [50]. They found that adding a PLM scoring system helped in
the characterization of early and mild OA. OA progression and development have also
been studied in many animal models of human OA [53–55]. A whole joint microCT image
scoring and histologic scoring systems of a Hartley guinea pig, which is considered a
model of human OA, were investigated to determine the changes in articular cartilage and
bone [55]. The grading was conducted by two experts using the OARSI guidelines. So,
automating the grading system of histopathological methods could help in understanding
OA progression and development.

5. Conclusions

The proposed methods revealed the ability of the integration between deep learning,
machine learning, and feature engineering in scoring the severity levels of OA. The deep
learning models help the researcher in the classification and extraction of the representative
features of each category. The feature engineering method enhanced the performance of the
classification results, which focused on obtaining the most important attribute in addition
to giving them a specific weight. The best results obtained in this study were obtained
by using PCA followed by ALO then SVM classifiers. To the best of our knowledge, this
is the first study that handles the combination between PCA and ALO to obtain the best
classification. Moreover, this is the first study that discusses the employment of artificial
intelligence in OA microscopic histopathological images. In this study, we were able to
build an artificial intelligence model that could distinguish the different stages of the
OA from the osteochondral histopathological images without the need of human experts,
which could be of great interest to the researchers and scientific community. Furthermore,
the model could be modified for the evaluation of tissue engineering cartilage formation
instead of using the manual grading system.
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Abstract: Medical image segmentation, whether semi-automatically or manually, is labor-intensive,
subjective, and needs specialized personnel. The fully automated segmentation process recently
gained importance due to its better design and understanding of CNNs. Considering this, we
decided to develop our in-house segmentation software and compare it to the systems of established
companies, an inexperienced user, and an expert as ground truth. The companies included in
the study have a cloud-based option that performs accurately in clinical routine (dice similarity
coefficient of 0.912 to 0.949) with an average segmentation time ranging from 3′54′′ to 85′54′′. Our
in-house model achieved an accuracy of 94.24% compared to the best-performing software and had
the shortest mean segmentation time of 2′03′′. During the study, developing in-house segmentation
software gave us a glimpse into the strenuous work that companies face when offering clinically
relevant solutions. All the problems encountered were discussed with the companies and solved,
so both parties benefited from this experience. In doing so, we demonstrated that fully automated
segmentation needs further research and collaboration between academics and the private sector to
achieve full acceptance in clinical routines.

Keywords: artificial intelligence; mandible; segmentation; 3D virtual reconstruction; CBCT; CT;
Convolutional Neural Networks; comparison; in-house; software; patch size; Cranio-Maxillofacial
surgery; DICOM

1. Introduction

The segmentation of anatomical structures is a process that virtually reconstructs
the region of interest from medical images in three dimensions. It helps the physician
prepare for surgical interventions and virtual surgical planning (VSP), visualize and inter-
act with the patient’s anatomy (through three-dimensional (3D) printing or augmented
and virtual reality (AR/VR)), and improve the medical outcome [1–6]. Until recently, the
segmentation process was either manual, where the anatomical structure was labeled
slice by slice, or semi-automatic, where the software identifies the region of interest and
excludes other anatomical structures based on the selected threshold, marked points, or
other user inputs [7–10]. Both segmentation types are subjective, time-intensive, and re-
quire specialized personnel. Artificial intelligence (AI)-based technologies are gradually
being integrated into the clinical routine, and some companies already offer fully auto-
mated cloud-based solutions [11,12]. The most common techniques used for automatic
segmentation are Statistical Shape Analysis [13] and Convolutional Neuronal Networks
(CNNs) [14]. The last-mentioned technique has proven itself to be especially helpful for
automatic segmentation [15–17]; for biomedical image segmentation, the U-Net architecture
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exhibits state-of-the-art performance [18]. In some cases, both techniques are combined to
further improve segmentation accuracy [19]. Especially in the Cranio-Maxillofacial (CMF)
field, due to the complex anatomy of the face, AI-based segmentation solutions could be
advantageous and lead to fully automated virtual surgical planning workflows.

Related Work

Previously conducted research has shown promising results for fully automated
segmentation using different Convolutional Neural Network (CNN) architectures. Verhelst
P.J. et al. [12] proposed a system for mandible segmentation in which two different 3D U-
Net CNNs were trained in two phases with 160 cone-beam computed tomography (CBCT)
images of the skull from orthognathic surgery patients. The automatically generated
mandibles were compared to user-refined AI segmentations and semi-automatic ones,
obtaining dice similarity coefficients of 0.946 and 0.944, respectively.

In a different approach, Lo Giudice A. et al. [20] proposed a fully convolutional deep
encoder–decoder network that was trained on the MICCAI Head and Neck 2015 dataset
and fine-tuned on 20 additional CBCT images. The segmentations were cut so that only the
mandibular bone was considered for the assessment. The achieved dice similarity coefficient
in comparison to the manual segmentations was 0.972. Apart from the mandibles, other
anatomical structures of the skull were also automatically segmented with CNNs. One
paper, which was published by Li Q. et al. [21], proposed a method that used a deep
Convolutional Neural Network to segment and identify teeth from CBCT images. Another
publication, from Kwak G.H. et al. [22], presented an automatic inferior alveolar canal
detection system with different U-Net variants (3D SegNet, 2D U-Net, and 3D U-Net),
where the three-dimensional U-Net performed best.

Deep learning technologies have improved in terms of performance and accuracy in
recent years due to the growing accessibility of new technologies and global digitalization.
This has encouraged the development of automatic diagnosis software in dentistry, as
shown by Ezhov M. et al. [16], who evaluated a deep learning-based system to determine
its real-time performance on CBCT images for five different applications (segmentation of
jaw and teeth, tooth localization, numeration, periodontitis module, caries localization, and
periapical lesion localization). The same researchers developed an AI-based evaluation tool
for the pharyngeal airway in obstructive sleep apnea patients [17].

Other researchers, such as Yang W.F. et al. [11], used Mimics Viewer (Materialise) to
segment the skull bones automatically. Compared to the ground truth, the segmented max-
illa and mandible achieved dice similarity coefficient scores of 0.924 and 0.949, respectively.
Although strenuous, Magnetic Resonance Imaging (MRI) segmentation of soft tissue has
gained importance for VSP, as shown by Musatian S.A. et al. [23], who presented solutions
for orbit and brain tumor segmentation based on CNNs. One software that is used in this
study for semi-automatic segmentation is Brainlab IPlan.

Considering the gains of the last decade’s affordable computing power and a better
understanding of AI programming, we decided to develop an automatic segmentation
software and assess its performance in the clinical routine. The main research question
was to determine how close non-professional medical personnel in the field of CMF/AI
for automated segmentation applications could achieve the level of established companies
(including the leading players and known start-ups). For that, we set up a research protocol
that included the development of in-house segmentation software, followed by comparing
an expert and an inexperienced user with a good anatomical understanding of the selected
companies.

We use brand names that are/can be protected but are not marked with ®.

2. Materials and Methods

Our research protocol consists of setting up a fully automatic in-house segmenta-
tion software and comparing it with segmentation applications developed by established
companies and manual segmentations performed by an inexperienced user with good
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anatomical understanding (surgeon with less than 50 segmentations) with regard to the
ground truth performed by an expert (researcher with over 500 segmentations). We selected
210 head and neck DICOM (Digital Imaging and Communications in Medicine) files, where
the mandibles were manually segmented. The comparison was made with twenty selected
and anonymized DICOMs (ten computed tomography (CT) and ten cone-beam computed
tomography (CBCT) images, with and without artifacts), where the expert provided the
ground truth. For the analysis, we used standard surface- and volume-based metrics. For
all segmentation steps, the time was measured (segmentation duration and postprocessing
time: filling, smoothing, and exporting). The CNN development timeline is shown in
Figure 1.

 

Figure 1. Timeline of the CNN development.

2.1. Statistical Analysis

The accuracy of the mandible segmentations was measured using the dice similarity
coefficient (DSC), average surface distance (ASD), Hausdorff distance (HD), relative volume
difference (RVD), volumetric overlap error (VOE), false positive rate (FPR), and false
negative rate (FNR). The formulas for the calculation of these metrics are shown in Table 1.

Table 1. List of the metrics used in this study and their formula.

Metric Formula Legend

Dice similarity coefficient
(DSC) DSC = 2|A∩B|

|A|+|B| =
2TP

2TP+FP+FN
The dice similarity coefficient measures the
similarity between two sets of data.

Average surface distance
(ASD)

ASD =

1
nA+nB

(
nA

∑
i=1

min
b∈B

||ai − b||2 +
nB

∑
j=1

min
a∈A

||bj − a||2
) The average surface distance is the average of all

the distances between the surfaces of the ground
truth and the volume.

Hausdorff distance (HD) dH = max
{

supx∈Xd(x, Y), supy∈Yd(X, y)
} The Hausdorff distance is the maximum distance

between the ground truth and the volume.

Relative volume difference
(RVD) RVD = |B|−|A|

|A|

The relative volume difference measures the
absolute size difference of the ground truth to
the volume as a fraction of the ground truth.

Volumetric overlap error
(VOE) VOE = 1 − DSC

2−DSC

The volumetric overlap error is the
corresponding error metric of the dice
similarity coefficient.

False positive rate (FPR) FPR = FP
FP+TN

The false positive rate is the probability that a
positive result is given when the true value
is negative.

False negative rate (FNR) FNR = FN
FN+TP

The false negative rate or miss rate is the
probability that the analysis misses a true positive.
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2.2. CNN Development
2.2.1. Training and Validation Data

For the training and validation of the Convolutional Neural Network (CNN), we
relied on open-source data containing 504 DICOMs (Fluorodeoxyglucose-Positron Emission
Tomography (FDG-PET) and CT images) of 298 patients that were diagnosed with cancer in
the head and neck area. The databank is offered by the McGill University, Montreal, Canada,
and the data acquisition took place between April 2006 and November 2014 [24]. A total
of 160 DICOM files were selected to obtain heterogeneity regarding gender distribution,
resolution, artifacts, and dentition, as shown in Table 2. The number of slices varies between
90 and 348, with an average of 170.5. The pixel spacing in the X and Y directions varies
from 0.88 × 0.88 mm to 1.37 × 1.37 mm, whereas the slice thickness varies from 1.5 mm
to 3.27 mm. The extended list is shown in Annex S1. The DICOM files were distributed
among two datasets: the training dataset with 120 samples (60 with artifacts and 60 without
artifacts) and the validation dataset with 40 samples (20 with artifacts and 20 without
artifacts). Exclusion criteria were images of patients with brackets and osteosynthesis
materials (screws and plates).

Table 2. List of characteristics of the images used for the training of the Convolutional Neural
Network.

Nr. Studies With Artifacts Without Artifacts—With Teeth Without Artifacts—Without Teeth (Edentulous)

Female 33 12 19
Male 47 28 21

Male and Female 80 40 40

2.2.2. Test Data

For the test dataset, 10 CT and 10 CBCT images from the University Hospital of Basel
were selected. Both subgroups contained five DICOM files with metallic artifacts and five
without. The number of slices ranges from 169 to 489, with a mean value of 378. The pixel
spacing in X and Y directions ranges from 0.25 × 0.25 mm to 0.59 × 0.59 mm, with a mean
value of 0.35 × 0.35 mm, and the slice thickness varies from 0.25 mm to 3.0 mm, with a
mean value of 0.71 mm. None of the CT images have an isotropic voxel spacing (voxel
spacing and slice thickness have the same value), whereas 9 out of 10 CBCTs have isotropic
spacing. These images are representative of the ones used in the clinical routine; therefore,
they differ greatly in aspects such as image dimension, voxel spacing, layer thickness, noise,
etc. The same exclusion criteria were applied for the test dataset as for the training dataset.
All images were anonymized.

2.2.3. Segmentation

The DICOMs for the training and validation were imported into Mimics Innovation
Suite (Version 24.0, Materialise NV, Leuven, Belgium), whereas the test samples were
imported later into Mimics Innovation Suite Version 25.0. A semi-automatic segmentation
workflow was applied using the Threshold, Split Mask, Region Grow, Edit Mask, Multiple
Slice Edit, Smart Fill, and Smooth Mask tools. The teeth were included in the segmentation,
and the masks were filled (i.e., they do not contain any voids). The mandible and the
inferior nerve canal were labeled as a single mask and exported as a Standard Tessellation
Language (STL) file.

2.2.4. Model Architecture

For the automatic segmentation of the mandible, the Medical Image Segmentation with
Convolutional Neural Networks (MIScnn) Python library, Version 1.2.1 to 1.4.0 [25], was
used. As architecture, a 3D U-Net, a Convolution Neural Network, was selected (Figure 2),
which was developed for biomedical image segmentation [26]. The number of filters in the
first layer (N filters) was set to 32, the number of layers of the U-Net structure (depth) was
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set to 4 as an activation function, the sigmoid function was used, and batch normalization
was activated. The dice cross-entropy function was chosen as a loss function, which is a
sum of the soft Dice Similarity Coefficient and the Cross-Entropy [27]. As normalization,
the Z-score function was applied, and the image was resampled using a voxel spacing of
1.62 × 1.62 × 3.22 mm. The clipping subfunction was implemented to clip pixel values in a
range between 50 and 3071 of the Hounsfield scale. The learning rate was set to 0.0001 at
the beginning of the training, but through the Keras Callback function, it was reduced to
0.00001 once no further improvement was observed, with a patience of 10 epochs. Scaling,
rotation, elastic deformation, mirroring, brightness, contrast changes, and Gaussian noise
were used for data augmentation (a method to increase the number of training samples by
slightly modifying/newly creating DICOMs from existing data to avoid overfitting and
to improve the performance of the CNN). The models were trained for 1000 epochs with
a NVIDIA RTX 3080 GPU (12 GB of VRAM), 64 GB of RAM, and an i9-11950H processor.
The training time was about 100 h per model.

 

Figure 2. Architecture of the Convolutional Neural Network.

The CNN was trained in a two-phase approach. Firstly, the model was trained using
five different cubical patch sizes (32 × 32 × 32, 64 × 64 × 64, 96 × 96 × 96, 128 × 128 × 128,
and 160 × 160 × 160). In the second phase, the height of the best-performing input volume
(96 × 96 × 96) was modified along the Z axis. Five further models with patch sizes of
96 × 96 × 32, 96 × 96 × 64, 96 × 96 × 128, and 96 × 96 × 160 were trained. The results are
displayed in Table 3. The model trained with the 96 × 96 × 96 patch size (Figure 3) was the
best-performing and, hence, was further improved by training it with 50 additional CT images
from the University Hospital, Basel, and its performance was tested on the test dataset.

Table 3. The patch sizes with which the CNNs were trained; the reached dice similarity coefficient
(DSC) and its standard deviation (SD); and the epoch when it was reached.

Patch Size Max. DSC SD Epoch

32×32 × 32 0.222 0.073 545
64 × 64 × 64 0.838 0.110 840
96 × 96 × 32 0.857 0.067 635
96 × 96 × 64 0.902 0.060 1000
96 × 96 × 96 0.916 0.033 975
96 × 96 × 128 0.878 0.087 995
96 × 96 × 160 0.852 0.147 810
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Table 3. Cont.

Patch Size Max. DSC SD Epoch

128 × 128 × 128 0.907 0.038 915
160 × 160 × 160 0.860 0.077 725

 

Figure 3. Graph of the evolution of the dice similarity coefficient (DCS) and its standard deviation
(SD) of the validation samples for different patch size.

2.3. Software Comparison
2.3.1. Relu

Relu (Figure 4) is an established start-up that offers fully automated cloud-based
segmentation for CBCT and CT images for applications in the Cranio-Maxillofacial field.
The segmented anatomical structures are the toothless mandible, the mandibular teeth
(each tooth individually), the inferior alveolar canal, the toothless maxillary complex, the
maxillary teeth (each tooth individually), the maxillary sinuses, the pharynx, and the soft
tissue. The bone segmentations include cortical and cancellous structures. Relu is ISO
13485 compliant and has a CE mark pending.

 

Figure 4. Relu’s user interface (CT w/A 1 displayed).
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For the segmentation of the mandible, the anonymized DICOM files of the test dataset
were uploaded onto the cloud system (the company names it web application) and the
segmentations were requested, but only for the mandible, mandibular teeth, and the inferior
nerve canal, since these are the analyzed structures. After the segmentation was completed,
these structures were combined directly in the cloud and downloaded as one STL file. This
was then imported into Mimics (Version 25.0) and transformed into a mask, which was
then manually filled with the “Smart Fill” tool. Afterward, the part was transformed into
an object using the “Calculate Part tool”, smoothed for 4 iterations with the “Smooth” tool
at a factor of 0.4, and finally exported as an STL file.

With Relu, we encountered problems in 3 of the 20 test DICOMs during the segmen-
tation process regarding voxel spacing, image orientation, and cropping. All transmitted
problems were solved by the support team.

2.3.2. Materialise Mimics Viewer

The Materialise Viewer (Figure 5) is a cloud-based platform for online visualization
and segmentation of DICOM files. Fully automatic segmentation can be requested for CMF
CBCT, heart CT, shoulder CT, hip CT, knee CT, knee MRI, and all bones CT. The Mimics
Automatic Algorithms are part of the FDA 510(k) of Mimics Medical and standalone
CE-marked medical devices.

 

Figure 5. Materialise Viewer’s user interface (CT w/A 1 displayed).

For the segmentation of the mandible, the CMF CBCT segmentation algorithm was
used, which was designed to segment both CBCT and CT. The anonymized DICOM files of
the test dataset were inserted into a Mimics file, which was then uploaded onto Mimics
Viewer and the segmentation was requested. The output of the fully automatic segmenta-
tion was a Mimics file containing five segmented parts, which are called “Upper skull”,
“Mandible”, “Teeth Maxilla”, “Teeth Mandible”, and “Neck”, containing the anatomy of
skull and maxilla, mandible, maxillary teeth, mandibular teeth, and neck, respectively.
Only the cortical bone was segmented in the Materialise Mimics Viewer, not the cancellous
bone. The inferior alveolar canal was not segmented.

The file was opened with Mimics (Version 25.0) and the parts were transformed into
masks using the “Mask from Object” tool. The mask containing the mandible and the
one containing the mandibular teeth were combined, and the holes inside the mandible
were filled manually with the “Smart Fill” tool in order to make volumetric comparisons
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possible. In the cases where there were some holes in the surface of the model, we filled
them without intervening in the segmentation of the cortical bone. Afterward, the part was
transformed into an object using the “Calculate Part tool”, smoothed for 4 iterations with
the “Smooth” tool at a factor of 0.4, and finally exported as an STL file.

With Mimics Viewer, we encountered problems in 2 of the 20 test DICOMs during the
segmentation process regarding image orientation and cropping. All transmitted problems
were solved by the support team.

2.3.3. Diagnocat

Diagnocat (Figure 6) is an established start-up that offers fully automated segmentation
for CBCT images and prediagnosis for 2D dental X-rays. The segmented anatomical
structures are the toothless mandible, the mandibular teeth (each tooth individually), the
inferior alveolar canal, the toothless maxilla, the maxillary teeth (each tooth individually),
the cranium, the airways, and the soft tissue. The bone segmentations include cortical and
cancellous structures. Diagnocat has a CE mark.

 

Figure 6. Diagnocat’s user interface (CT w/A 1 displayed).

For the segmentation of the mandible, the anonymized DICOM files were uploaded
onto the cloud system and the segmentations requested (all the structures as separated files
option). After the segmentation was completed, the mandible, the inferior alveolar canal,
and the mandibular teeth were downloaded and combined into a single file using Mate-
rialise 3-Matic (Version 17.0, Materialise NV, Leuven, Belgium). This was then imported
into Mimics (Version 25.0) and transformed into an object using the “Calculate Part tool”,
smoothed for 4 iterations with the “Smooth” tool at a factor of 0.4, and finally exported as
an STL file.

With Diagnocat, we encountered problems in all of the CT images and one CBCT
image out of the twenty test DICOMs during the segmentation process. All these images
had non-isotropic voxel spacing (CBCTs generally have isotropic voxel spacing, as shown
in Annex S1–S5), which needed to be adapted. All transmitted problems were solved by
the support team.

2.3.4. Brainlab

The Brainlab Elements application (Figure 7) consists of multiple applications and
backend services for image processing of medical data (data transfer and exchange, image
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co-registration, automatic image segmentation, manual contouring, object manipulation,
trajectory planning, etc.). The anatomical structures that can be automatically segmented
are the optic nerve, eye, midface, skull base, skull base anterior, skull base central, skull
base posterior, orbit volume, skull, ethmoid bone, LeFort I Template, LeFort II Template,
LeFort III Template, LeFort III-I Template, mandible, mandible body, mandible ramus,
frontal bone, maxilla, nasal bone, orbit, orbit floor, orbit wall medial, zygomatic bone,
occipital bone, parietal bone, sphenoid bone, and temporal bone. For all bony structures,
the cortical and cancellous bones are segmented by Brainlab. Teeth are not part of the
segmentation model.

 

Figure 7. Brainlab’s user interface (CT w/A 1 displayed).

The mandible was downloaded as an STL file and was then imported into Mimics
(Version 25.0) and transformed into a mask, which was then manually filled with the
“Smart Fill” tool. Afterward, the part was transformed into an object using the “Calculate
Part tool”, smoothed for 4 iterations with the “Smooth” tool at a factor of 0.4, and finally
exported as an STL file.

With Brainlab, no problems were encountered during the segmentation process.

2.4. Mandible Cutting

The following three comparisons were made: one of the mandible with teeth, one of
just the mandibular bone, and the last of just the mandibular teeth (as shown in Figure 8).
In order to split the mandible into the mandibular teeth and the mandibular bone, 3-Matic
was used. For each of the 20 mandibles in the test dataset, the ground truth was used to
manually insert three cutting planes (one horizontal and two vertical planes), which were
used to automatically cut and split the segmented mandibles for each company using the 3-
Matic scripting tool. Two different STL files were obtained, one containing the mandibular
bone and one containing the mandibular teeth.
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Figure 8. Cutting planes on mandible with teeth (left), mandibular bone (right), and mandibular
teeth (bottom).

3. Results

The main results after all the assessments were made are as follows:

- Overall, Relu performed best if the mean DSC for the mandible with teeth (mean DSC
of 0.938) and bone (mean DSC of 0.949) is taken into consideration, which was closely
followed by Diagnocat and then Materialise, as displayed in Tables 4 and 6.

- Brainlab was only included for the assessment of the mandibular bone, as it does not
offer teeth segmentation (mean DSC of 0.912), as displayed in Table 6.

- Materialise performed best over the other software in the assessment of the mandibular
teeth (mean DSC of 0.864), as displayed in Table 5.

- We could observe that in all assessments, our in-house-developed software performed
worst, obtaining the closest result in the mandibular bone comparison (mean DSC
of 0.894), but achieved an accuracy of 94.24% in comparison to the best-performing
software, as displayed in Tables 4–6.

- The segmentation performed by the inexperienced user with good anatomical under-
standing (CMF surgeon) had, for all assessments, the best mean DSC, as displayed in
Tables 4–6.

For better visualization and understanding of the results, we chose to display in each
category (CT with artifacts (Figure 9), CT without artifacts (Figure 10), CBCT with artifacts
(Figure 11), and CBCT without artifacts (Figure 12)) the first segmented mandible. For
that, we used the color mapping of the surface distance between the segmentation and
the ground truth (where the segmentation is visible and the ground truth is hidden), with
minimum and maximum ranges of −1.0 mm and +1.0 mm.

Table 4. Mean dice similarity coefficient (DSC) of the mandible with teeth comparison.

Manual
(Beginner)

In-House Relu Materialise Diagnocat Brainlab

Mean CT w/A 0.961 0.885 0.939 0.914 0.927 -
Mean CT w/o A 0.968 0.891 0.935 0.903 0.921 -

Mean CBCT w/A 0.951 0.863 0.938 0.947 0.941 -
Mean CBCT w/o A 0.958 0.899 0.939 0.956 0.947 -

Mean 0.960 0.884 0.938 0.930 0.934 -
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Table 5. Mean dice similarity coefficient (DSC) of the mandibular teeth comparison.

Manual
(Beginner)

In-House Relu Materialise Diagnocat Brainlab

Mean CT w/A 0.923 0.787 0.814 0.838 0.817 -
Mean CT w/o A 0.953 0.818 0.792 0.847 0.797 -

Mean CBCT w/A 0.838 0.762 0.858 0.837 0.853 -
Mean CBCT w/o A 0.935 0.841 0.889 0.935 0.903 -

Mean 0.912 0.802 0.838 0.864 0.842 -

Table 6. Mean dice similarity coefficient (DSC) of the mandibular bone comparison.

Manual
(Beginner)

In-House Relu Materialise Diagnocat Brainlab

Mean CT w/A 0.968 0.898 0.958 0.925 0.943 0.948
Mean CT w/o A 0.969 0.900 0.952 0.909 0.936 0.943

Mean CBCT w/A 0.963 0.873 0.944 0.959 0.948 0.852
Mean CBCT w/o A 0.962 0.905 0.943 0.958 0.950 0.903

Mean 0.966 0.894 0.949 0.938 0.944 0.912

Manual (beginner) vs. GT (0.948 
DSC) 

 

In-house vs. GT (0.882 DSC) 

 

Relu vs. GT (0.939 DSC) 

  

Materialise vs. GT (0.919 DSC) 

 

Diagnocat vs. GT (0.930 DSC) 

 

Brainlab vs. GT (0.924 DSC) 

 

Figure 9. CT with artifacts: Color mapping of the surface distance between the segmented mandibles
of the CT w/A 1 image and the ground truth (GT).

Timing: We calculated the mean values of the segmentation times for CT and CBCT
with/without artifacts (Figure 13). We have shown that our in-house model performed
best with the lowest mean time (2′03′′), followed by Brainlab (3′54′′) and Diagnocat (4′52′′).
The manually segmented mandibles (those from the expert and the inexperienced user)
showed similar timings (26′09′′ and 22′54′′, respectively). Materialise showed the highest
mean value (85′54′′).
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Manual (beginner) vs. GT (0.944 
DSC) 

 

In-house vs. GT (0.889 DSC) 

 

Relu vs. GT (0.939 DSC) 

 
 

Materialise vs. GT (0.909 DSC) 

 

Diagnocat vs. GT (0.926 DSC) 

 

Brainlab vs. GT (0.900 DSC) 

 

Figure 10. CT without artifacts: Color mapping of the surface distance between the segmented
mandibles of the CT w/o A 1 image and the ground truth (GT).

Manual (beginner) vs. GT (0.953 
DSC) 

 

In-house vs. GT (0.896 DSC) 

 

Relu vs. GT (0.936 DSC) 

 
 

Materialise vs. GT (0.955 DSC) 

 

Diagnocat vs. GT (0.944 DSC) 

 

Brainlab vs. GT (0.911 DSC) 

 

Figure 11. CBCT with artifacts: Color mapping of the surface distance between the segmented
mandibles of the CBCT w/A 1 image and the ground truth (GT).
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Manual (beginner) vs. GT (0.973 
DSC) 

 

In-house vs. GT (0.905 DSC) 

 

Relu vs. GT (0.943 DSC) 

 
 

Materialise vs. GT (0.961 DSC) 

 

Diagnocat vs. GT (0.950 DSC) 

 

Brainlab vs. GT (0.779 DSC) 

 

Figure 12. CBCT without artifacts: Color mapping of the surface distance between the segmented
mandibles of the CBCT w/o A 1 image and the ground truth (GT).

. 

Figure 13. Graph of the mean timing for the segmentations.

4. Discussions

In a clinical routine, three important factors stand out: segmentation accuracy, cost,
and time. The segmentation accuracy result was best for manual segmentation in all com-
parisons, followed by Relu, Diagnocat, and Materialise, which all performed very similarly
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to one another. Brainlab could only be included in the comparison of the mandibular bone
because the segmentation did not include the teeth, as its main activity offers intraoper-
ative navigation solutions. Our in-house-developed CNN performed worst in all of the
comparisons. We encountered the problem that the segmented mandibles of our in-house
CNN had a cubical surface, which was probably due to a too high voxel spacing parameter.
This problem could not be fixed and will require further training and improvements to the
model. The advantage of our system is that it has higher stability than the other software
included in our study. We could upload all the DICOM files without any modifications
and obtain a complete segmentation. The other software encountered some problems with
DICOMs containing not only the skull but also, e.g., the thorax, and needed preprocessing
(cropping) in order to obtain the segmentation. A further problem was with the handling of
CT images, because some systems were only trained on CBCT images, and in many cases,
images without isotropic voxel spacing were not supported and had to be modified. Addi-
tionally, it is worth mentioning that not all the DICOM file orientations were supported.
Figures 9 and 10 show that for CT images, the segmented mandibles from Materialise and
Diagnocat had a slight inaccuracy in the segmentation of the mandibular bone compared
to those from Relu or Brainlab, which was probably due to different thresholds used for
the clipping during the training. Finally, the manual segmentation may have performed
better than other automatic systems due to a similar segmentation protocol as the one for
the ground truth. The same could apply to our in-house-developed CNN, which may have
performed better because it was trained with a dataset prepared by following the same
segmentation protocol. Using Mimics, which is developed by Materialise, for the manual
segmentation (training and test data) and the filling process, could have had a positive
influence on the final outcomes. Furthermore, the filling process of the mandibles, which
was performed manually and was needed due to the different segmentation approaches,
could be subject to bias. Pricing is also a relevant factor that needs to be considered. As
we were offered the segmentations by the companies for research purposes, pricing was
not further investigated in this study. The timing may vary due to the fact that most of
the companies offer a cloud service, which, depending on the server load and internet
connection, affects the segmentation time. Additionally, our ground truth implies that a
manual segmentation process can differ from the anatomical specimen ground truth, which
implies a scanning process. Other studies are necessary to compare the segmentations with
laser-scanned mandibles (anatomical specimens) as the ground truth to improve accuracy.

5. Conclusions

In our study, we wanted to find out if non-professional medical personnel could
become close to segmentation software developed by established companies, following
a clearly defined research protocol. The results showed that our in-house-developed
model achieved an accuracy of 94.24% compared to the best-performing software. We also
conclude that the segmentation performed by an inexperienced user with good anatomical
understanding achieved the best result compared to all the other companies included in
the study.

The timing required to automatically segment a mandible was, for almost all of the
software, lower than the manual segmentation.

We can deduce that in order to obtain better quality segmentations, the CNN has to
be trained with a dataset containing a large number of highly variable images (e.g., older
and newer DICOM files, different types of DICOMs (CT and CBCT), and different image
sizes, including different regions of interest and from different centers) that is constantly
updated and enlarged due to the constantly improving image technologies.

To fulfill today’s expectations of personalized medicine, digital workflows, including
segmentation, need to offer stable solutions. Answers must be found for the current
problems that are often encountered during the segmentation process: artifacts, amount
of noise, voxel spacing, the size of the image, DICOM type, and image orientation. All
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these problems were reported to the companies so that solutions could be elaborated in the
future.

For the future, the first step for implementing fully automated digital workflows is
to generate accurate segmentations of the patient’s anatomy, which will be possible after
solving the above-mentioned issues.

Once the above-mentioned issues are solved, these software can be implemented in
fully automated digital workflows, allowing new clinical applications, such as intraopera-
tively 3D-printed patient-specific implants, even in emergency situations.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/bioengineering10050604/s1, Annex S1: Test data DICOM properties;
Annex S2: Dice similarity coefficient (DSC) of the mandible with teeth comparison; Annex S3: Dice
similarity coefficient (DSC) of the mandibular bone comparison; Annex S4: Dice similarity coefficient
(DSC) of the mandibular teeth comparison; Annex S5: Mean values for the comparison of the
mandible with teeth segmentations, mandibular bone and mandibular teeth to the ground truth by
using the dice similarity coefficient (DSC), average surface distance (ASD), Hausdorff distance (HD),
relative volume difference (RVD), volumetric overlap error (VOE), false positive rate (FPR), and false
negative rate (FNR).
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Abbreviations

3D Three-dimensional
AI Artificial Intelligence
AR Augmented Reality
ASD Average Surface Distance
CBCT Cone-Beam Computed Tomography
CMF Cranio-Maxillofacial
CNN Convolutional Neural Network
CT Computed Tomography
DICOM Digital Imaging and Communications in Medicine
DSC Dice Similarity Coefficient
FDG-PET Fluorodeoxyglucose-Positron Emission Tomography
GT Ground Truth
FNR False Negative Rate
FPR False Positive Rate
HD Hausdorff distance
MIScnn Medical Image Segmentation with Convolutional Neural Networks
RAS Right, Anterior Superior
RVD Relative Volume Difference
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SD Standard Deviation
STL Standard Tessellation Language
VOE Volumetric Overlap Error
VR Virtual Reality
VSP Virtual Surgical Planning
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Abstract: Bladder volume assessments are crucial for managing urinary disorders. Ultrasound
imaging (US) is a preferred noninvasive, cost-effective imaging modality for bladder observation
and volume measurements. However, the high operator dependency of US is a major challenge
due to the difficulty in evaluating ultrasound images without professional expertise. To address
this issue, image-based automatic bladder volume estimation methods have been introduced, but
most conventional methods require high-complexity computing resources that are not available
in point-of-care (POC) settings. Therefore, in this study, a deep learning-based bladder volume
measurement system was developed for POC settings using a lightweight convolutional neural
network (CNN)-based segmentation model, which was optimized on a low-resource system-on-chip
(SoC) to detect and segment the bladder region in ultrasound images in real time. The proposed
model achieved high accuracy and robustness and can be executed on the low-resource SoC at
7.93 frames per second, which is 13.44 times faster than the frame rate of a conventional network
with negligible accuracy drawbacks (0.004 of the Dice coefficient). The feasibility of the developed
lightweight deep learning network was demonstrated using tissue-mimicking phantoms.

Keywords: deep learning; semantic segmentation; automatic volume measurement; ultrasound
bladder scanner; edge computing; urinary disease

1. Introduction

Bladder volume measurements are commonly used in managing urinary diseases,
such as urinary incontinence and benign prostate enlargement. Urinary catheterization
is often used for measuring bladder volume in many cases, e.g., postoperative urinary
retention [1], but it yields a high risk of urinary tract infection. To minimize unnecessary
urinary catheterization, several studies have been conducted to analyze the impact and
proper cycles of urinary catheterization [2,3]. Measuring post-void residual urine (PVR) is
regarded as an effective way to reduce unnecessary catheterization. Additionally, PVR is a
useful predictor of various diseases, such as prostatism and urinary tract infection [4,5]. To
maximize the advantages of PVR measurements, a fast and accurate PVR measurement
method is needed.

Ultrasound imaging (US) is a noninvasive, cost-effective, and real-time imaging modal-
ity that has been shown to be one of the most accurate and effective methods for measuring
PVR [6–9]. Several studies have also demonstrated that US can potentially be used in
point-of-care (POC) settings [10–12]. Recently, the development of portable US imaging
devices for measuring bladder volume has been proposed [13,14]. Despite its usefulness,
US has several limitations for measuring PVR in POC settings. One of the most challenging
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problems is its high operator dependency, which makes interpreting ultrasound images
without professional experience and expertise difficult. Additionally, in POC settings,
limited resources such as computing power and less experienced clinicians (e.g., nurses
and care providers) can be problematic. As a result, the ultrasound image quality may be
degraded, leading to misinterpretation or difficulties in PVR analysis.

To decrease operator dependency, an automatic bladder volume measurement method
is needed. Traditionally, mechanical ultrasound scanning systems, such as a wobbling
probe, have been used for PVR measurements. However, these methods require a prescan
process to allocate the probe to the proper location before an actual volume measurement.
Additionally, with mechanical scanning systems, ultrasound images or bladder volume
measurements cannot be carried out in real time, resulting in inefficient repetitions of
measurements. Moreover, patient motion during long scanning times may cause errors in
PVR measurements. To address these issues, the need for a real-time image-based bladder
measurement system has emerged.

To measure bladder volumes in real time, several studies have introduced image-
based bladder volume measurements using various image analysis techniques, such as
segmentation. Recent advances in deep learning and computer vision techniques have
shown promising results for various tasks, including segmentation of regions of interest
(e.g., organs and masses) in ultrasound images. In addition, deep learning techniques have
been applied for analyzing urine in ultrasound images [15–17]. While these studies have
shown that deep learning models can accurately segment the bladder and measure PVR
volume, these tasks were primarily conducted on highly complex computing resources
such as graphic processing units (GPUs). Additionally, in previous studies, ultrasound
images were acquired by commercial cart-based ultrasound systems. In contrast, in POC
settings, ultrasound images are collected by portable ultrasound systems so the imaging
quality may be degraded due to the compactness and low computational power of these
systems. This may reduce the accuracy of PVR measurements with deep learning models.

In this study, to address this issue, a lightweight deep-learning model for a portable
bladder volume measurement system is proposed. Our proposed system was designed
to detect PVR and segment the bladder region in ultrasound images with much fewer pa-
rameters; subsequently, an algorithm was employed to automatically measure the bladder
volume using the segmentation results. Additionally, considering system integration, to
improve its execution time in portable settings, the developed deep learning model was op-
timized with a fixed-point quantization technique. As a result, the optimized model could
measure the bladder volume accurately with fewer than 1 million parameters on a low-
resource SoC at high frame rates. The feasibility of our proposed automatic bladder volume
measurement system was demonstrated by using various tissue-mimicking phantoms.

2. Materials and Methods

2.1. Data Acquisition from the Portable Ultrasound System

In this study, a system-on-chip (SoC)-based portable ultrasound system (EdgeFlow
UH10w, Edgecare Inc., Seoul, Republic of Korea) was used to acquire ultrasound bladder
images for training and validating the designed deep learning model. As shown in Figure 1,
the commercial ultrasound system includes a SoC, a front-end processing module, and a
power module and uses two 32-channel high-voltage (HV) pulsers and a transmit/receive
(T/R) switch to control the cross-array probe. Front-end processing involves low noise
amplification, time gain compensation, programmable gain amplification, and analog-to-
digital conversion. Back-end processing is performed using the programmable logics (PL)
on the SoC, with data transfer to the processing system (PS) via a direct memory access
(DMA) engine. The signal is then reconstructed into an image using digital scan conversion.
To acquire sagittal and transverse images simultaneously, a T-shaped array consisting of
two phased array probes was used with the portable ultrasound system. The received
radio-frequency signals were processed in PL in the SoC (Zynq Ultrascale+, Xilinx Inc., San
Jose, CA, USA) by performing receive beamforming, quadrature demodulation, envelope
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detection, and log compression. The processed signal was then reconstructed into an image
with a height of 330 pixels and a width of 570 pixels by the PS.

Figure 1. Block diagram showing the processing chains of the integrated system for ultrasound image
acquisition and analysis. The gray boxes indicate the original processing blocks of the device, and the
orange boxes denote the integrated processing blocks of this study. The deep learning model, trained
on biplane images, is implemented on the SoC for bladder segmentation and post-void residual (PVR)
detection, enabling automatic bladder volume measurement. To optimize performance, the deep
learning model is quantized.

The proposed bladder measurement method, based on deep learning, was developed
to be integrated into a portable ultrasound system using a system-on-chip (SoC). As
depicted in Figure 1, the deep learning network was designed to perform segmentation
and classification on the ultrasound images after digital scan conversion (DSC), identifying
regions of interest (ROIs) and detecting the bladder. Once the bladder is detected on the
image, the bladder volume is estimated by using the length of the axes.

To collect a dataset with high variability, various gain and depth settings were used.
The ultrasound bladder images were obtained from two tissue-mimicking phantoms: an
intravesical urine volume measurement phantom (US-16, Kyoto Kagaku, Kyoto, Japan)
with urine volumes of 50 mL, 150 mL, and 300 mL, and a multimodality pelvic phan-
tom (Model 048A, CIRS, Norfolk, VA, USA). A total of 1306 images with a bladder and
2095 images without a bladder were collected. The bladder images were randomly divided
into 1044 images for training and 262 images for validation, with each image labeled with a
corresponding mask for the segmentation task. The images without a bladder were divided
into 1675 images for training and 420 images for validation for the classification task. To
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capture ROIs of various sizes, the dataset was collected by randomly selecting locations
with a free hand on a static phantom. To validate the size and distribution of the dataset,
the accuracies on the training phase and validation phase are compared. Examples of the
dataset are shown in Figure 2.

Figure 2. Examples of the acquired dataset. The first and second rows show images with a bladder,
and the green line indicates the boundary of the mask label from human labelers. The third row
represents images without a bladder, indicating that the bladder was not observed.

2.2. Multitask Deep Learning-Based Bladder Volume Measurement

The aim of this study was to design a convolutional neural network (CNN)-based deep
learning model that is simple yet efficient for bladder volume measurement systems. The
model was designed to perform multiple tasks, including classification and segmentation,
as shown in Figure 3. This multitask approach can improve the model’s efficiency in SoC
environments and prevent unexpected measurement results from images without bladder
regions. The classification path of the model detects a bladder on the ultrasound image by
classifying the image into two classes, indicating the existence of the bladder in the image.
The segmentation path of the model aims to find the pixelwise accurate ROI of the bladder
in the image. The architecture of the model, including parameters such as the kernel size,
was optimized on the collected dataset. Starting from the large-size model, parameters
were gradually reduced by comparing the accuracy to the validation dataset.

To reduce the complexity of calculation and memory consumption, the input image
was resized to a height and width of 192 pixels. For the feature extraction stage, Mo-
bileNetv2 [18], known for its lightweight network architecture and efficiency with regard
to portable devices, was used to generate features with dimensions of 12 × 12 × 96. For
the classification path, the extracted features were optimized by global average pooling, a
dense layer, and classification head layers. For the segmentation path, the features were
further processed by quantizable squeeze-and-excitation (QSE) blocks, depthwise sepa-
rable convolution (DWC) blocks [19], upscaling layers, and a segmentation head. The
squeeze-and-excitation (SE) [20] block has been widely used to embed channel weights into
features. However, the SE block is not suitable for quantized networks due to elementwise
multiplications. Therefore, in this study, a QSE block was designed with a channel weight
operation using concatenation and convolution instead of elementwise multiplication. The
QSE block was used to capture the larger context of the image. In the SE block, the feature
was reduced to a small size vector (1 × 1 × 96) by averaging, and then the expanded feature
was weighted by the reduced vector. To merge detailed information with the features from
the QSE blocks, 3 × 3 convolution layers were placed parallel to the SE blocks. The features
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from the QSE blocks and convolution layers were merged by DWC blocks. The merged
features were reduced into a smaller channel by convolution layers and then upscaled
into the resized input size (192 × 192) with two channels (i.e., the number of pixel classes).
Then, the segmentation head classified each pixel into two classes (i.e., background and
bladder). Finally, the segmentation result was resized to the original size of the image.

Figure 3. Overall architecture of the deep learning network designed for ultrasound image analysis.
The original image is resized to a height and width of 192 pixels before feature extraction using
MobileNetv2. The extracted feature is processed through two paths: segmentation and classification.
The segmentation path uses squeeze-and-excitation and convolution to expand the features to a
dimension of 12 × 12 × 256, which are then concatenated to 12 × 12 × 512 dimensions. A depthwise
separable convolution is then applied to merge the gathered feature to a dimension of 12 × 12 × 256
before upscaling it to the 192 × 192 dimension using bilinear interpolation. The channel of the
upscaled feature is then reduced to match the number of classes before finalizing segmentation with
SoftMax. The classification path uses global average pooling to gather features that are reduced into
logits according to each class. The classification is then finalized using SoftMax function.

Bladder volume is typically estimated based on shape coefficients and measurements
of height, width, and depth on two different planes (i.e., sagittal and transverse). In this
study, as illustrated in Figure 4, depth was estimated on the sagittal plane, while height and
width were estimated on the transverse plane. The bladder volume was then calculated
using Equation (1), where c is a constant determined by the shape of the bladder region
(e.g., 0.52 for a spherical shape, 0.7 for an unknown shape [21]).

Volume ≈ c × Depth × Height × Width (1)

2.3. Network Compression and System Implementation

To train the multitask architecture model without any degradation in accuracy, the
classification path and the segmentation path were trained separately. Figure 5 illustrates
the three distinct training stages of the proposed network. In the first stage, the segmen-
tation path was trained with the initial weight of the model while the classification path
was kept frozen. Next, in the second stage, the segmentation path was frozen, and the
classification path was trained. Once the training of the classification path was completed,
the weights from the first and second stages were merged into a single model.
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Figure 4. Automated axes detection for estimating bladder height, width, and depth from biplane
ultrasound images. The bladder ROI dimensions were obtained by calculating the minimum enclosing
bounding box (yellow line). In the sagittal plane, the greater distance between two intersections
(blue dots) of the bounding box’s diagonal line (white dashed lines) with the bladder ROI contour
(green line) was used to estimate depth. The red arrow lines represent the estimated depth. In the
transverse plane, the maximum distances of the vertical and horizontal intersections were used to
estimate height and width, respectively.

Figure 5. Training process for the designed network. The segmentation path is first trained in a
quantization-aware training (QAT) setting with the classification path frozen. Once the segmentation
path training is complete, the classification path is trained in the same QAT setting with the segmen-
tation path frozen. Finally, the trained weights from both segmentation and classification paths are
combined into a single model.

Additionally, during the training process, the model was also subjected to quantization-
aware training (QAT) [22] to enhance execution speed while minimizing any drop in accu-
racy. The combo loss function [23], which combines the Dice loss and cross-entropy loss
functions, was used to train the segmentation path. Meanwhile, the classification path
was trained using the cross-entropy loss function. To avoid overfitting, data augmenta-
tion techniques, such as random intensity shift and random left–right flip, were applied.
Furthermore, early stopping criteria were implemented, with a patience of 20 epochs. The
Adam optimizer [24] was employed to train the network. To avoid local minimum and
overfitting problem, the learning rate scheduling and early stopping criterion were used.

The deep learning model is trained using the TensorFlow (Google Inc., Mountain View,
CA, USA) framework. After training, the model is compressed to enhance execution time
on low-resource SoC settings. Model weights are quantized into 8-bit fixed-point using
TensorFlow Lite (Google Inc., Mountain View, CA, USA). Inference is performed using the
C++ programming language. To handle the entire system, the Linux operating system is
utilized on the SoC with the Vitis (Xilinx Inc., San Jose, CA, USA) framework.

3. Results

3.1. Evaluation of the Trained Deep Learning Model

For the evaluation of the model’s performance, the segmentation was assessed using
the Dice coefficient metric, while accuracy was used to evaluate the classification per-
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formance. To compare the segmentation results with conventional models, U-Net [25],
Attention U-Net [26], and BiSeNetv2 [27] were implemented at the original image resolu-
tion of 570 × 330. U-Net and Attention U-Net were implemented with 64, 128, 256, and
512 channels. The same optimizer and loss function were used for both the proposed and
conventional methods. The conventional methods were trained and implemented using
a 32-bit floating point, while the proposed method was trained and implemented using
an 8-bit fixed point, as previously mentioned. The models were compared on the same
validation data. The results are presented in Table 1, where F and Q represent 32-bit floating
point and 8-bit fixed point implementation, respectively. The throughput in Table 1 was
measured in the integrated SoC setting.

Table 1. Comparison of the Segmentation Results.

Dice Coefficient # of Parameters Throughput (FPS)

U-Net 0.913 ± 0.124 8.56 M 1.33
Attention U-Net 0.944 ± 0.075 7.91 M 0.15

BiSeNetv2 0.958 ± 0.034 3.12 M 0.59
Ours 0.954 ± 0.045 0.97 M 7.93

Table 1 shows the comparison of the proposed segmentation path with conventional
CNN-based segmentation networks. U-Net, which is commonly used as a baseline for
medical image segmentation, achieved an average Dice coefficient of 0.913 with a standard
deviation of 0.124. The implemented U-Net had 8.56 million parameters and a throughput
of 1.33 frames per second (FPS) in the SoC environment. In comparison, the Attention U-
Net achieved a much higher Dice coefficient of 0.944 on average with a standard deviation
of 0.075 but had a slower throughput than the U-Net, despite having fewer parameters.
The recently introduced BiSe-Netv2 showed even higher Dice coefficients than both U-Net
and Attention U-Net (i.e., an average of 0.958 and a standard deviation of 0.034) with even
fewer parameters. However, BiSeNetv2 was slower than U-Net, running at less than 1 FPS.
In contrast, the proposed method had significantly fewer parameters (i.e., 0.97 million)
and could be executed at a much faster rate of approximately 8 FPS, which was 5.96x ,
52.87x, and 13.44x faster than the U-Net, Attention U-Net, and BiSeNetv2, respectively.
Although the proposed method had a slightly lower Dice coefficient than BiSeNetv2 (i.e.,
0.954 ± 0.045 vs. 0.958 ± 0.034, respectively), the segmentation results from the proposed
network are promising, as shown in Figure 6. The validation accuracy of the classification
path was over 0.99, indicating high accuracy in the classification results, as shown in the
confusion matrix in Figure 7.

Figure 6. Examples of the segmentation result. The ground truth is represented by the green line,
while the prediction from our proposed network is represented by the red line.
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Figure 7. The confusion matrix shows the classification results, with only 5 out of 628 samples being
incorrectly predicted, resulting in a 99.2% accuracy in predicting the correct classes.

3.2. Evaluation of the Bladder Volume Measurement

The bladder volume measurement results using the integrated system are depicted in
Figure 8. To evaluate the system, the volume of an intravesical urine volume measurement
phantom (US-16, Kyoto Kagaku, Kyoto, Japan) was measured using 30 separately acquired
sagittal and transverse images for 50 mL, 150 mL, and 300 mL targets. The segmentation
and classification paths were evaluated using the Dice coefficient and accuracy metrics,
respectively. To quantitatively evaluate bladder volume measurements, automatic measure-
ments were conducted five times on each phantom. The results in Table 2 show that the
volumes could be calculated with less than 10% error when appropriate shape coefficients
were selected. The coefficient of 0.72 was found to provide the most accurate measurement
for both the 50 mL and 150 mL phantoms, while for the 300 mL phantom, the coefficient of
0.66 was most accurate. However, it is worth noting that when using the coefficient of 0.72
for the 300 mL phantom, a 5.78% error was observed, which is comparable to the 3.45%
error observed when using the coefficient of 0.66. Therefore, using the coefficient of 0.72
resulted in measurements within tolerable error for all cases.

Table 2. Quantitative Evaluation Results of the Volume Measurement using Integrated System.

Coefficient 50 mL 150 mL 300 mL

Unknown 0.72 50.89 157.45 317.34
Triangular prism 0.66 46.57 141.86 289.66

Cylinder 0.81 56.85 171.06 350.57
Cuboid 0.89 61.69 184.34 402.86

Spherical 0.52 37.84 112.29 233.06
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Figure 8. (a) Overall experimental setup for bladder volume measurement. Bladder phantoms with
volumes of 50 mL, 150 mL, and 300 mL were measured using the integrated system, which combines
the proposed method with a T-shaped array portable ultrasound system. (b–d) Measurement results
for the 50 mL, 150 mL, 300 mL phantoms, respectively.

4. Discussion

An ultrasound-based bladder volume measurement is an effective method for detect-
ing and managing PVR. To enhance its efficacy, an automatic bladder volume measurement
method based on image analysis is necessary. Recent studies have demonstrated that
deep learning-based image analysis techniques can be employed on ultrasound images
for the management of urinary diseases [15,28]. However, conventional methods have
high computational complexity, making them unsuitable for adoption on portable devices.
As a result, it is challenging to integrate deep learning-based bladder volume measuring
algorithms into portable systems.

In this study, a lightweight deep learning network was developed as a multitask
network that performed classification and segmentation simultaneously. The multitask
network has several advantages compared to networks that perform only segmentation
or classification. In terms of computational complexity, the integrated device can save
power or resources by using the classification node. For example, when the classification
results show that images do not have ROIs, the post-processing algorithm for measurement
does not need to be executed. In terms of accuracy and user experience, the classification
node is also helpful. For instance, if the classification result indicates that an image does
not have an ROI, the segmentation result is invalid and inaccurate and should not be
presented to the users. These advantages make the multitask network more suitable for
real clinical situations.

The segmentation accuracy of this network was validated by comparing it with con-
ventional segmentation networks (U-Net, Attention U-Net, BiSeNetv2) using the Dice
coefficient as the evaluation metric. Compared to the baseline U-Net, the Attention U-Net
exhibited a significantly higher Dice coefficient of 0.944 with fewer parameters (7.91 M vs.
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8.56 M). Although the recently introduced BiSeNetv2 had an even higher Dice coefficient
with a smaller number of parameters, it still exhibited slow execution times in low-resource
SoC environments (0.59 FPS). The slow execution time of these conventional networks
could be problematic, particularly since two images (sagittal and transverse) were used to
measure bladder volume automatically.

Compared to conventional networks, the developed network had fewer parameters
(<1 M), and its Dice coefficient (0.954) was comparable to that of BiSeNetv2 (0.958) and
higher than that of Attention U-Net and U-Net at 0.944 and 0.913, respectively. The drop in
accuracy can be considered negligible, as the annotation process is performed by humans
and may have labeling noise. Moreover, the accuracy of the proposed network is sufficient
to be used for automatic volume calculation, as demonstrated in the previous section.

To efficiently implement the developed network on SoCs, further optimization based
on quantization was carried out. After quantization, the proposed network could execute
on SoCs at 7.93 FPS, enabling it to measure bladder volume approximately four times
per second. Moreover, the classification accuracy of the proposed network was over 0.99,
making it an efficient network with high accuracy for both PVR detection and bladder
segmentation. The proposed network was also used in an end-to-end automatic algorithm
to measure bladder volume. The algorithm accurately identified the axes (i.e., height, width,
and depth) of the bladder, and with the proper shape coefficient, the bladder volume could
be estimated within ±6% error of the actual volume. In addition, since the model was
trained on dataset with various size and location of ROIs, the model can estimate ROIs
regardless of their size or location.

While this study demonstrated the potential of the deep learning-based automatic
bladder volume measurements on an SoC, there are still several limitations that need to
be addressed. First, this study was focused on phantom studies and was not validated in
in vivo cases. In further works, data from in vivo cases will be collected, and the clinical
impact of the proposed method will be evaluated. Additionally, this study estimated
the bladder volume using shape coefficients, but as shown in Table 2, improper shape
coefficients can result in significant errors in volume estimations. To address this issue,
future studies may investigate automatic estimation of bladder volume or shape coefficient.
For example, a study may be conducted on deep learning methods that utilize prior
knowledge of bladder shape to perform end-to-end volume prediction.

5. Conclusions

In this study, a lightweight deep learning network was developed to measure bladder
volume on portable bladder ultrasound devices. The designed network showed comparable
accuracy to conventional deep learning methods in terms of the Dice coefficient. Addi-
tionally, the execution of the designed network was much faster than that of conventional
methods. An automatic axis detection algorithm was also utilized, and the bladder volume
could be end-to-end automatically measured with under ±6% error with proper shape
coefficients. Finally, the proposed network and algorithm were successfully integrated
into a low-resource SoC-based portable bladder ultrasound system. However, further
validation on in vivo cases and automatic estimation of shape coefficients may be necessary
for future studies.
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Abstract: Segmentation of the prostate gland from magnetic resonance images is rapidly becoming a
standard of care in prostate cancer radiotherapy treatment planning. Automating this process has
the potential to improve accuracy and efficiency. However, the performance and accuracy of deep
learning models varies depending on the design and optimal tuning of the hyper-parameters. In this
study, we examine the effect of loss functions on the performance of deep-learning-based prostate
segmentation models. A U-Net model for prostate segmentation using T2-weighted images from
a local dataset was trained and performance compared when using nine different loss functions,
including: Binary Cross-Entropy (BCE), Intersection over Union (IoU), Dice, BCE and Dice (BCE
+ Dice), weighted BCE and Dice (W (BCE + Dice)), Focal, Tversky, Focal Tversky, and Surface
loss functions. Model outputs were compared using several metrics on a five-fold cross-validation
set. Ranking of model performance was found to be dependent on the metric used to measure
performance, but in general, W (BCE + Dice) and Focal Tversky performed well for all metrics
(whole gland Dice similarity coefficient (DSC): 0.71 and 0.74; 95HD: 6.66 and 7.42; Ravid 0.05 and
0.18, respectively) and Surface loss generally ranked lowest (DSC: 0.40; 95HD: 13.64; Ravid −0.09).
When comparing the performance of the models for the mid-gland, apex, and base parts of the
prostate gland, the models’ performance was lower for the apex and base compared to the mid-gland.
In conclusion, we have demonstrated that the performance of a deep learning model for prostate
segmentation can be affected by choice of loss function. For prostate segmentation, it would appear
that compound loss functions generally outperform singles loss functions such as Surface loss.

Keywords: prostate cancer; prostate segmentation; U-Net; mp-MRI; loss function; medical imaging

1. Introduction

Multiparametric magnetic resonance imaging (mp-MRI) is increasingly being used in
the computer-aided diagnosis, computer-assisted surgery and radiation therapy planning
for prostate cancer [1,2]. Accurate prostate segmentation for radiation therapy treatment
planning is necessary to ensure the prostate receives an adequate amount of radiation for
tumor control whilst minimizing the amount of dose received by other organs, such as
the bladder and rectum [3]. Manual segmentation has been shown to demonstrate a high
degree of intra- and inter-variability, particularly at the base and apex of the prostate [4].
Additionally, manual segmentation is subjective, time-consuming and can be affected by
level of experience. In comparison, automatic segmentation is fast and can decrease human
bias and errors [5–7].

The U-Net [8] architecture has been successfully applied in prostate segmentation in
several studies [9–11]. However, applying deep neural networks for this task can result
in variable outcomes, as multiple factors can influence the model outcome. Firstly, per-
formance of auto-segmentation models are highly dependent on training dataset features,
quality and number of samples [9]. In particular, the small sample size typically used in

Bioengineering 2023, 10, 412. https://doi.org/10.3390/bioengineering10040412 https://www.mdpi.com/journal/bioengineering
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prostate segmentation models makes automatic segmentation very challenging. Prostate
shape and texture may vary widely between different patients and the heterogeneity of
the prostate tissue presents additional challenges for automated segmentation. In addition,
design and configuration of a deep-learning-based segmentation model requires careful
consideration. There are many parameters and hyper-parameters that need to be optimized
to achieve acceptable model performance. These include network architectures, training
schedules, data pre-processing, data augmentation (if used), data post-processing, and
several essential hyper-parameter tuning steps such as learning rate, batch size, number of
epochs, or class sampling [2]. In addition, hardware availability for training and inference
of these models should be considered in advance [12,13]. Model performance varies sub-
stantially with the training dataset’s properties and its size. Therefore, the applicability of
trained public models for unseen datasets is limited [2], and training a model from scratch
or retraining other models are popular solutions in medical image segmentation tasks.

One of the key parameters of deep-learning-based models that plays an important
role in model training and success of the segmentation model is the loss function, also
known as the cost function. The loss function is ultimately responsible for how the model’s
weights are adjusted for optimization goals, such as minimizing region mismatches between
predicted and ground truth segmentations. Various domain-specific loss functions have
been proposed and applied for segmentation of the prostate and other organs to improve
results for their datasets [9,14]. It can be challenging to know which loss function meets
the requirements of the task, and whether the right function for a specific dataset has been
chosen [14]. In the past ten years many loss functions have been proposed. Jadon [15], for
example, reported the performance of thirteen well known loss functions designed for fast
model convergence, and proposed a new loss function for skull segmentation from CT data.
Ma et al. [14] provided a comprehensive review of twenty loss functions based on four
CT-based publicly available data sets. For our study, we have chosen to complement these
works with a focus on nine loss functions, applied to a single MRI-based data set sourced
from an in-house study. This data set provides ground-truth prostate-gland segmentations
based on whole-mount histology (rather than clinician generated segmentations which
form the basis of many segmentation models). These nine loss functions are commonly
used in medical image segmentation models and are intended to be representative of the
many loss functions reported in the literature, and in particular, form a sub-set of those
reported by Ma et al. and Jadon [14,15] with at least one loss function from each of the four
categories defined in both studies and excluding those relevant to multi-class solutions that
are not relevant here. Whilst there are many applications of segmentation models, our study
was motivated by the need to develop a segmentation algorithm to analyze data collected as
part of a clinical trial investigating the ability of quantitative multiparametric MRI to assess
response to radiation therapy (ANZCTR UTN U1111-1221-9589). Our longitudinal data
set generated a large amount of data that required an objective delineation of the prostate
gland prior to the extraction of radiomic features to develop treatment response predictive
models. As part of this study we identified a lack of comprehensive comparisons of prostate
segmentation model performance using different loss functions. In this study, we compared
deep-learning-based prostate segmentations of T2-weighted (T2w) MR images, using nine
different loss functions for 2D U-Net with our locally acquired dataset.

2. Materials and Methods

Dataset: In vivo mp-MRI data were collected from 70 patients prior to radical prosta-
tectomy as part of a Human Research Ethics Committee (HREC)-approved project called
“BiRT” (HREC/15/PMCC125). These images were acquired using a 3T Siemens Trio Tim
machine (Siemens Medical Solutions, Erlangen, Germany). The first 37 cases imaged using
a standardized imaging protocol and free of major artifacts were available for analysis at
the time this study was performed [16]. Prostate segmentations were generated from the
whole-mount histology slides and subsequently co-registered with the mpMRI using a
sophisticated co-registration framework [16]. For quality control, the co-registered prostate
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masks were checked against an independent annotation by an experienced radiation oncol-
ogist (GS) on the in vivo 3D T2w images using RayStation v.8 (RaySearchLabs Stockholm,
Sweden). These contours were used as ground truth for automatic segmentation. Follow-
ing segmentation of the entire prostate gland, each prostate volume was mathematically
divided into sub-regions by thirds in the craniocaudal axis, with the most superior volume
labelled “base”, the inferior volume “apex” and the central volume “mid-gland”. T2w
images were acquired using a turbo spin echo sequence with two sets of resolutions. For
the first set, the in-plane resolution was 0.6 mm × 0.6 mm, the inter-plane distance was
6 mm. The volumes of the first set contained between 80 and 96 slices each, with each slice
resolution being 384 × 384 pixels. For the second set, the in-plane resolution was 0.8 mm ×
0.8 mm, and the inter-plane distance was 0.8 mm. The volumes of the second set contained
between 80 and 88 slices each, with each slice resolution being 256 × 256 pixels.

Pre-processing of the input data included bias field correction, resampling, and image
normalization. The intensity range of each image was normalized using minimum and
maximum intensity values of each single image before incorporation into the network. The
datasets were resampled into 128 × 128 × 64 voxels. A flow chart indicating the image
processing pipeline is shown in Figure 1. The full pelvic field of view was used without
cropping.

Figure 1. The image pre-processing for T2-weighted images. After acquisition, bias field correction
was applied using the N4 algorithm to correct for the magnetic field inhomogeneity. The images were
then normalized using the min–max approach before entering the segmentation network.

U-Net architecture and Loss Functions: The effect of various loss functions on the
performance of a basic 2D U-Net architecture [8] was investigated using the T2-weighted
MR images. Loss functions were selected from traditional distribution-based and region-
based categories, as well as more recent compound and boundary-based loss functions.
Most of the loss functions used in this study were selected based on their suitability for use
with strongly and mildly imbalanced data sets in segmentation tasks and those commonly
used in medical image segmentation models [14]. These include Binary Cross-Entropy
(BCE), Intersection over Union Loss (IoU), Dice Loss, combination of Dice and BCE loss
functions (BCE + Dice), weighted BCE and Dice Loss (W (BCE + Dice)), Focal Loss, Tversky
Loss, Focal Tversky Loss and Surface [9,14,17]. Table 1 summarizes the loss functions used
in this paper with loss function definitions based on those of Ma et al. [14], with details
included in Appendix A.

The U-Net architecture contains two main components: the encoder or contracting
path, which extracts the features of the image by applying a stack of convolutional and
max pooling layers (Figure 2, left), and the decoder or expanding path (Figure 2, right).
The U-Net architecture is an end-to-end fully convolutional network (FCN) and contains
only convolutional layers without any dense layers. This allowed the network to accept
images of any size.

The encoder of the network used in the current study had five convolutional layers
to extract high-level feature maps. In each convolutional layer, the input feature map was
convolved with a set of trainable filters, kernels of size 3 × 3 and a 2 × 2 max pooling
operation with a stride of 2. Max pooling operations or down-sampling reduced the feature
map size by a factor of 2 in each dimension. Then, a batch normalization operation was
applied, followed by rectified linear unit (ReLU) activation functions. ReLU performed the
thresholding operation (max (x,0)), used to introduce nonlinearity to the trained network.
The number of feature channels started at 16 for the first stage, and doubled after each
stage of the decoder to 32, 64, 128, and finally 256.

A decoder reverses the operations of the encoder to recover the original input size
and enable the network to perform a voxel-wise classification. Each stage of the decoder
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included two types of operations. Firstly, layers were up-sampled to increase the size of
the feature map gradually until it reached the size of the original input image. Secondly,
deconvolutional layers reduced the number of feature channels to half at each stage of the
decoder to match the number of channels with the corresponding encoder layers. Features
extracted from earlier stages were added to the encoder side (Figure 2) using short-circuit
layers to help recover the spatial information from the convolutions in the encoder.

The U-Net model applied in this study had nine convolutional layers. Model param-
eters, except the loss function, were fixed for all models. The Adam optimizer [18] was
selected as the optimization algorithm, with an initial learning rate α = 0.0001, a learning
rate drop factor of 0.1, and a patience of 10 (meaning that the learning rate dropped by a
factor of 0.1 when the validation loss did not improve for 10 epochs). The training was
performed for 10,000 epochs with an early stopping strategy and a batch size of 2 to avoid
overfitting. Model training was stopped when the validation loss did not improve for
10 epochs. Dropout was applied for each convolutional layer at a rate of 10% to avoid over-
fitting. Batch normalization was applied after each convolution layer to prevent gradient
vanishing/exploding [19]. The results for each model reported the best epoch based on
the validation set. The number of model parameters was 1,189,264, of which 1,187,792
were trainable. Sigmoid activation was used as the output layer for binary predictions. A
threshold value of 0.5 for the probability was applied to obtain the segmentation mask, this
value was found to be the optimal value that gave the highest Dice coefficient (DSC) and
fewer false positives.

Five-fold cross-validation was used to validate the results [20]. For model selection,
the best model was determined based on performance of the validation datasets [14]. Our
proposed network was implemented in Keras v2.3.1 [21], using TensorFlow v2.0.0 [22]
backend with Python. For each loss function, the network was trained by performing
a five-fold cross-validation using all 37 cases from the BiRT dataset. All calculations
were performed using the University of Sydney’s HPC service and GPU access, NVIDIA
V100 SXM2.

Figure 2. The U-Net architecture used in this study. The encoder contains four convolution layers
with pooling. The decoder is symmetrical as the encoder, expanding the in-plane resolution back to
the input image.
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Table 1. The family and individual loss functions used in this study.

Category Loss Functions/Use Case

Distribution-based

• Binary CrossEntropy (BCE) Loss:

� Balanced dataset
� Bernoulli distribution-based loss function

• Focal Loss: Suitable for highly imbalanced datasets

� Enables models to learn hard examples by
down-weighting simple samples

Region-based

• Intersection over Union (IoU) Loss

� Inspired from Jaccard similarity coefficient, a metric for
segmentation validation

• Dice Loss:

� Based on Dice coefficient

• Tversky Loss:

� Variant of Dice coefficient
� Adds weights to false positive and false negative

• Focal Tversky Loss:

� Suitable for highly imbalanced dataset
� Enables models to learn hard examples by

down-weighting simple samples

Boundary-based • Surface (Boundary) Loss

Compound

• Weighted BCE and Dice W(BCE + Dice) Loss:

� Combination of Dice Loss and Binary CrossEntropy Loss
� Used for lightly class imbalance
� Benefits from both BCE and Dice Loss properties

• BCE and Dice: (BCE + Dice) Loss

Evaluation Metrics: Models were compared and evaluated using commonly used
metrics for medical image segmentation [23]. These include the DSC, 95% Hausdorff
Distance (95HD), relative absolute volume difference (Ravd), precision, and sensitivity.
These metrics were selected to cover evaluations for region-based, contour-based and
volume-based similarities between the ground truth and auto-segmentation output. A
DSC score of 1 shows perfect agreement. The Hausdorff Distance measures the distance
between the borders of the ground truth and the auto-segmentation output. Lower values
of 95HD indicate a better performance of segmentation. Ravd is the difference between the
total volume of the segmentation and the ground truth divided by the total volume of the
ground truth. The Ravd value for a perfect segmentation is equal to zero.

3. Results

Table 2 provides a summary of the results of the different loss functions applied to the
nine models used in this study. Figure 3 shows box plots for each of the nine models and
evaluation metrics for the whole prostate. Supplementary material Figures S1–S3 contain
boxplots for these models for the prostate mid-gland, apex, and base, respectively. Figure 4
shows DSC box plots for different parts of the prostate. The mid-gland (Figure 4C) shows
a consistently high performance (except for Surface loss), followed by the base and the
apex (Figure 4B,D, respectively). Table 2 shows that the Focal Tversky loss function had
the highest average of DSC scores for the whole gland and the lowest standard deviation
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(0.74 ± 0.09). Models with IoU, Dice, Tversky and W (BCE +Dice) and BCE + Dice loss
functions obtained similar DSC scores of 0.73, 0.73, 0.72, 0.71, and 0.71, respectively. A high
DSC score was expected for these loss functions as they are variates of the Dice coefficient
and aim to minimize this metric during the training process. Additionally, the Dice loss
function and its variates perform better in class-imbalanced problems such as prostate
segmentation. Models with surface and BCE loss functions had the lowest whole gland
DSC, with values of 0.40 and 0.58, respectively. The maximum difference in DSC score
across all models’ performance was approximately 34%.

In considering DSC scores shown in Figure 4, it can be seen that all models achieved
the highest DSC score for the mid-gland (Figure 4C), which had a 20% (up to 93–94%)
higher accuracy compared to the whole prostate (Figure 4A), most likely because the whole
gland resembles the mid-gland, and it accounts for the majority of the prostate volume.
Model performance was lower in the apex (Figure 4B) when considering all parts of the
prostate and the prostate as a whole. Higher standard deviations of the DSC scores were
observed for the apex from all models (Table 2).

Regarding 95HD, the best performance was achieved by W (BCE + Dice), with a value
of 6.66 ± 2.82 for the whole prostate gland, followed by Tversky and Focal Tversky with
values of 7.17 ± 4.21 and 7.42 ± 5.81, respectively (Table 2). The worst performing model
was Surface, with a value of 13.64 ± 4.38, approximately double that of the best performing
model (W (BCE + Dice). When considering the base, mid-gland, and apex, as expected, the
mid-gland reported lower 95HD values, followed by the apex, with the best performance
achieved by W (BCE + Dice) and Dice, respectively.

Figure 3. Each box plot (A–D) represents metrics DSC, HD95, Ravid and sensitivity respectively for
the whole prostate on validation data from the five-fold cross-validation for models with different
loss functions. DSC: Dice similarity coefficient; HD95: 95% Housdorff Distance.
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Figure 4. Boxplots showing the Dice similarity coefficient (DSC) scores for different parts of the
prostate. The mid-gland (C) shows a consistent high performance (except for Surface loss), followed
by the base (D) and the apex (B). The whole gland’s performance resembles the mid-gland (A,C),
as it accounts for the majority of the prostate volume. Results are from the model trained using the
Dice loss.

Ravd is an appropriate metric for applications with an interest in accurate volume
estimation and similarity. An absolute value of Ravd approaching zero shows a better
model performance. The lowest absolute values of Ravd for the whole prostate were
obtained from W (BCE + Dice), BCE + Dice, Surface and Dice (0.05, 0.07, 0.09 and 0.09,
respectively) and the largest deviation from a score of zero was Focal with a value of −0.25
± 0.31 (Table 2). The standard deviations of Ravd for models with W (BCE + Dice) and
BCE + Dice were small, with values of 0.31 and 0.37, respectively.

The highest sensitivity value was achieved for the whole prostate gland using Focal
Tversky (80%), and the lowest using the Surface loss function (44%). Similar values of
precision were achieved for all loss functions for the whole gland (69–73%), with the
exception of Surface (51%). Focal Tversky, W (BCE + Dice) and Focal each have parameters
which can control trade-off between false positives and false negatives (FP and FN). These
parameters can be optimized based on segmentation task needs and data properties.

The surface loss function had the lowest DSC score and a higher 95HD. This model had
the lowest performance considering the majority of metrics used in this study. Furthermore,
models with a surface loss function required longer training times and higher numbers
of iterations.

There was a pattern of improved DSC score in slices that covered a larger area of
prostate, mainly in the mid-gland with cross sectional areas greater than 600 mm2 and
less than 2100 mm2. This is represented in Figure 5, where the data shown is based on the
prediction from the model using W (BCE + Dice) on the validation data. The same pattern
is seen in all models. Figure 6 presents the box plots for all loss functions.
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Figure 5. Dice score as a function of prostate area A reverse U shape is observed, indicating the
prediction at the mid-gland (500–2000 mm2) outperformed those at the base (>2000 mm2) and apex
(<500 mm2). The zeros at the bottom correspond to cases where the model totally missed the prostate
region (Dice score = 0). Data is based on the prediction from the model using W (BCE + Dice) on
the validation data. The same pattern is seen in all models. W (BCE + Dice): weighted binary
cross-entropy with Dice.

Within the Supplementary material, Figure S4 shows the DSC scores for individual
patients for each model. Box plots of the DSC scores of all the models for each patient on
the validation datasets in the five-fold cross validation are shown in Figure 7. DSC scores of
models varied between patients, but for each patient the results were generally consistent
across all three models (Tversky, Focal Tversky and W (BCE + Dice) (Table S1).

Model performance was generally lower in the apex and base compared with the
mid-gland. This was not surprising, as inter-observer variability has been reported to be
higher in these regions [4]. However, this may be an effect of the small cross-sectional areas
(Figures 5 and 6). Additionally, the DSC score was lower for the slices that covered small
areas or very large areas. We investigated the relationship between DSC score and prostate
volume (Figure 4). No clear trend was identified, possibly due to the limited number of
samples. However, in general, the model showed lower performance in DSC scores for
smaller volumes in comparison to the average volume.

Qualatative Comparison

A selection of cases representing high and low performance are shown in Figures 8
and 9 for the models’ outputs using two different loss functions, Focal Tversky and W (BCE
+ Dice). Samples with DSC scores higher than 0.80 were considered high-performance
cases, and lower than 0.70 were considered low-performance cases. Higher DSC scores
were achieved, for example in patients (cases) #2, # 16, #21, and #33. Cases #3, #8, and #22
are examples of lower performance.
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Figure 6. Box plots of DSC score vs. prostate area for each of the nine loss functions (A–I) listed in
Table 1. DSC: Dice similarity coefficient.
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Patient 

Figure 7. Box plots of Dice similarity coefficient (DSC) scores for all models for each patient in the
validation data set.

 

Figure 8. Outputs of two models (Focal Tversky and W (BCE + Dice)) in the axial (top image) and
coronal views (bottom image for each patient), demonstrating both high and low performances,
measured in Dice scores. The ground truth is represented by the red contour, the model’s prediction
contour is shown in purple.

Segmentation results show higher DSC scores from the model with Focal Tversky for
case # 33 compared to W (BCE + Dice), with values of 0.83 and 0.87, respectively. Both
models failed to capture the shape of the prostate at the apex and base. However, the
output of the model with Focal Tversky had a greater similarity to the shape of the prostate
than W (BCE + Dice) (Figure 9, case #2). This indicates that the model using Focal Tversky
was more effective in defining the prostate boundaries.

Both models failed to define the prostate boundary for cases #15 and #22, especially in
the apex and base regions. From the rectum shape in case #22, it is possible that there is
some gas in the rectum which can reduce the quality of the MRI image.

For case #16, the model using W (BCE + Dice), with a DSC score of 0.79, had a worse
performance compared with Focal Tversky (DSC score 0.85). The segmentation output of
the model with W (BCE + Dice) was rectangular in shape, which can be seen in the coronal
and sagittal views (Figure 9). Shapes of the segmentation outputs from Focal Tversky had
a closer shape to the prostate than those from models with W (BCE + Dice) loss function.

In general, the W (BCE + Dice) model under-estimated the prostate volume and the
Focal Tversky over-estimated the volume. Examples are cases #22, #15, #8, #16, and #2
(Figure 9).
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Figure 9. Outputs of two models (Focal Tversky and W (BCE + Dice)) for 6 patients (each patient
identified by a number, e.g., #21 represents patient 21) in the axial (top image) and coronal views
(bottom image for each patient), demonstrating both high and low performances, measured in Dice
scores (shown adjacent to each image set). The ground truth is represented by the red contour, the
model’s prediction contour is shown in purple.

4. Discussion

Finding the most appropriate loss function for prostate segmentation is challenging.
In this study we compared the performance of nine loss functions in a 37-patient data
set. These nine loss functions were chosen as they are commonly used in medical image
segmentation tasks [14]. The 37-patient data set included locally acquired data with
a common imaging protocol (two resolutions) and a single MRI scanner [16] to avoid
variations due to image acquisition. These data were co-registered with whole mount
pathology to provide ground truth delineations of the prostate [16] in contrast to many
publicly available datasets that rely on clinician-generated segmentations which are subject
to interobserver variation [4]. A limitation of the generalizability of our study is the small
sample size and homogeneity in the methods used to acquire the MRI data. We therefore
recommend that future studies that intend to use data from a variety of sources and
scanning protocols confirm the findings of our study using the methodology we describe,
and consider the most appropriate metric for their evaluation. Publicly available data can
be sourced from a variety of locations such as those described by Ma et al. [14], however,
the purpose of our study was to remove uncertainties due to heterogeneity in data source
and clinician contouring, and focus only on the relative performance of the loss functions
selected for our study and a range of metrics for their evaluation. Our study found the
proposed architecture performed with notable variations when different loss functions
were applied. As the base and the apex of the prostate are particularly challenging to

110



Bioengineering 2023, 10, 412

segment manually due to the lack of a clear boundary [1,17], we therefore also evaluated
the performance at the mid-gland, apex, and base of the prostate independently.

Focal Tversky had the highest scores for the whole gland in terms of DSC score and
sensitivity. However, W (BCE + Dice) outperformed all competing methods in precision,
followed by 95HD, Ravd, and Tversky. With performance measured by the median and
standard deviation, the best performance was achieved by applying W (BCE + Dice), Tver-
sky, and Focal Tversky loss functions. However, the performance of models with Focal
Tversky, Tversky, W (BCE + Dice), Dice, and IoU loss functions were very close for our
dataset. Lower performance was observed using Surface loss, BCE loss and Focal loss
functions. Focal Tversky and Tversky loss functions have been recommended by other
researchers as returning optimal results when their parameters are set to the correct val-
ues [15]. However, for challenging medical segmentation tasks, we suggest using Focal
Tversky and W (BCE + Dice), and by optimizing their parameters, the best solution can be
achieved in accordance with the application requirements. The loss function parameters
of W (BCE + Dice) allow the user to define the best trade-off between FNs and FPs. Addi-
tionally, Focal Tversky and W (BCE + Dice) have the advantage of adjustable parameters,
which make it possible to tune the loss function based on the application requirements.
For example, Focal Tversky and W (BCE + Dice) have parameters which can be tuned to
address under- and over-segmentation issues that may arise with other loss functions. As a
result, in the future, we plan to investigate the effectiveness of a combination of Tversky
and BCE loss functions for prostate segmentation.

Lower performance was observed using Surface loss, BCE loss and Focal loss functions.
All models achieved higher performance for mid-gland and lower performance in the apex
and base regions. When considering model performance for individual data sets, we
observed that all models had a similar performance for each image, but performance
varied across the patient cohort. This may be related to patient-specific image quality,
however, all models generalized the average shape of images and failed to perform well
for outlier shapes.

Intuitively, it can be expected that model performance will be affected by the choice
of the metric used to measure performance and the principal components driving the
loss function. For example, DSC measures the overlap between two regions. If the Dice
loss is used, the training process is exactly guided as the final metric, which theoretically
should achieve a good performance. This can be seen in Table 2; the Dice loss achieved
a consistently high DSC in the whole prostate gland (0.73) as well as the sub-volumes
(0.65–0.93). In addition, the close variants of the Dice loss, including Tversky, Focal Tversky,
and IoU loss, also obtained high performances (0.63–0.92), but slightly inferior to the Dice
loss. For losses that are not region-based, compound losses such as BCE + Dice and W (BCE
+ Dice) showed relatively higher DSC (0.62–0.93) as they consist of a Dice loss component.
In contrast, Surface loss (boundary-based) and BCE (distribution-based) demonstrated
the lowest DSC (0.38–0.75). However, this pattern is not shown between all metrics and
categories. For example, HD95 is a boundary-based metric and it was expected that Surface
loss would achieve a high performance. However, as shown in Table 2, Dice loss has the
lowest HD95, while Surface loss had the highest. One possible reason is that the Surface
loss is relatively hard to train, requiring more epoches for it to converge. Since the training
process was consistent across all loss functions, this may explain why some functions did
not perform as well as expected.

To overcome variability in performance of individual loss functions, compound loss
functions can be considered. For example, in the case of prostate segmentation, data
imbalance is a major problem, and loss functions, such as BCE, that are suitable for balanced
data are not suitable for this task. However, as shown in our study, weighted BCE combined
with Dice can improve model performance significantly.

Tuning hyper-parameters of U-Net, such as the learning rate and number of iterations,
requires significant computational time. To address this, we defined the best learning
rate for Dice and BCE loss functions, as most of the other loss functions are variations
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of these loss functions. We used a grid search for optimization of the learning rate and
defined the optimal value of loss function parameters in Focal, W (Dice + BCE) and Focal
Tversky loss functions on the validation data set. The optimal learning rate was selected as
α = 0.0001, from 0.001, 0.0001, 0.00001. The parameters of the W (Dice + BCE) loss function
allocated a higher contribution to the cross-entropy term, α equal to 0.6, in comparison to
the Dice term with a weight of 0.4. The optimum value of β for the weighted cross-entropy
term was found to be 0.7, which penalizes false negatives more. This aligned with other
recommendations for segmentation problems on MRI data [24]. Different values of α and
β can be applied to obtain the best model result and handle the imbalance problem of each
dataset appropriately.

Models were trained using the T2w axial data and performed better visually in the
axial view. Training a model using axial, sagittal, and coronal (or a 3D data set) might
improve the model performance. However, adding more inputs will also add complexity
and extra computation cost. In this study, we used the 2D U-Net model, which has a lower
number of components, to optimize in comparison to a 3D U-Net. In addition, 3D U-Net
models underfit when trained on a small number of datasets [6]. Furthermore, it is easier
to identify the loss function contribution to the model performance where there is less
model complexity. It has been shown that a simple network with a proper loss function can
outperform more complex architectures, including networks with specific up-sampling or
with skip connection [24].

Regarding implementation, Keras offers a number of tools to construct a U-Net with
its sequential and functional interface. Hence, the model itself can be constructed and set
up for training in a straightforward approach. However, for the loss function, a potential
challenge is to carefully choose the exact equation to implement. This is because even for
the same loss function, there are slight variations. For example, the denominator of a Dice
loss can be the sum of squared signal intensities, while another form will leave out the
square operation. Such subtle differences can add to confounding factors when comparing
model performance reported in the literature.

A model’s output can improve using post-processing methods that reduce false posi-
tives and false negatives in segmented images [25]. CNN segmentation results improve
using energy-based refinement post-processing steps [26]. We applied threshold-based
refinement to cope with false positives [27]. A threshold value of 0.5 was found to be the
optimal value to return the highest Dice score with the least number of false positives.

5. Conclusions

The performance of a 2D U-Net model with nine different loss functions for prostate
gland segmentation was compared. Ranking of model performance was found to depend
on the metric used to measure performance. Performance was also found to vary based on
the region within the prostate being considered, with the base and apex generally being
less compared with the mid-glad and entire prostate gland. There was some evidence that
performance was also affected by cross-sectional area of the image, with peak performance
in the range of 600–2100 mm2. The performance of models using different loss functions
varied by approximately 34% using the DSC score metric. Focal Tversky, Tversky, and W
(Dice + BCE) loss functions achieve better performance considering majority of metrics.
However, performance of models with Focal Tversky, Tversky, W (Dice + BCE), Dice,
and IoU were close. Lower performance was observed using the distribution-based and
boundary-based loss functions (Surface, BCE, and Focal loss functions). Based on this
37-patient data set, it is suggested that the Focal Tversky and W (Dice + BCE) loss functions
are most suitable for the task of prostate segmentation as their parameters allow the user to
modify the loss function for a specific dataset.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/bioengineering10040412/s1, Figure S1: Box plots of all metrics
used in this study for the prostate mid-gland on validation data from the five-fold cross-validation for
models with different loss functions. Figure S2: Box plots of all metrics used in this study for the apex
region on validation data from the five-fold cross-validation for models with different loss functions.
Figure S3: Box plots of all metrics used in this study for the prostate base region on validation data
from the five-fold cross-validation for models with different loss functions. Figure S4: Dice similarity
coefficient (DSC) score of all the models for each patient. Figure S5: DSC score vs. prostate volume
(mm3) for model using Focal Tversky loss. Table S1: W (BCE + Dice), Tversky and Focal Tversky
performances, DSC score, for each patient.
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Appendix A Definition of Loss Functions Used in This Study

Loss functions are important key drivers in determining the success of neural network
models. They define how neural network models calculate the overall error between the
prediction and the ground truth. During training, the loss is calculated for each batch and
minimized using optimization algorithms. Selecting an appropriate loss function has a
larger effect on model performance than using a complex architecture [17]. Loss functions
can generally be classified into four groups: distribution-based, region-based, boundary-
based, and compound loss [14]. Compound loss is the combination of different types of
loss functions. The main role of loss functions is to quantify the mismatch region between
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ground truth and segmentation. The main differences between them are the weighting
methods [14].

The following equations use these generic notations. Specific parameters will be
explained otherwise.

gi, si: voxels i in ground truth and segmentation output, respectively;
C: the number of classes;
c: notation for an individual class. If class c is the correct classification for voxel i, gi

c is
equal to 1 and si

c is the corresponding predicted probability;
N: the total number of samples.
Distribution-based loss functions: Distribution-based loss functions aim to minimize

dissimilarity between two distributions. We used binary cross-entropy (BCE) and Focal
loss from distribution-based loss functions. The fundamental function in this category is
cross-entropy and all functions were derived from cross-entropy function.

Cross-entropy loss: Cross-entropy (CE) loss is the most commonly used loss function
for training deep learning models. It measures dissimilarity between two distributions
using CE. Data distribution comes from the training set properties. The formulation for the
CE loss function is:

LossCE = − 1
N

N

∑
i=1

C

∑
c

gi
clog (si

c )

In this study the segmentation task was a binary classification, therefore, the loss
function is a binary cross-entropy (BCE).

A CE loss function can control output imbalance, false positive, and false negative
rates. However, model performance with a cross-entropy loss function is not optimal for
segmentation tasks with highly class-imbalanced input images [28]. There are several
different loss-function-based techniques using weighted cross-entropy [29].

A variation is the weighted cross-entropy (WCE):

LossWCE = − 1
N

N

∑
i=1

C

∑
c

wcgi
clog (si

c )

where wc is the weight for each class. This loss function penalizes majority classes by
weighting them inversely proportional to the class frequencies.

Focal loss: The focal loss function is one of the WCE loss functions shown to better
manage unbalanced classes in a dataset [30]. The Focal loss function reduces the loss
function corresponding to well-classified examples. It uses a scaling method to allocate
higher weights on the examples that are difficult to classify over easier cases.

Loss f ocal = − 1
N

N

∑
i=1

C

∑
c
(1 − s i)

γgi
clog (si

c )
where γ is a hyperparameter called focusing parameter.

Region-based loss: Region-based loss functions aim to minimize mismatch by maxi-
mizing the overlap regions between the output of segmentation (Ss) and ground truth (Gg).
Dice loss is the key element of this category.

Dice loss: Dice loss aims to directly maximize the Dice coefficient, which is the most
commonly used segmentation evaluation metric [31]. Segmentation models with Dice loss
functions have shown superior performance for binary segmentation [29,31,32]. The loss
function is formulated as the negative DSC:

LossDice = − 2∑N
i=1 sigi

∑N
i=1 si

2 + ∑N
i=1 gi

2 + ε

where ε is a small number to avoid division by zero. In this study, ε = 1 was used for
all models.
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IoU loss: The IoU loss function aims to maximize the intersection-over-union coeffi-
cient, known as the Jaccard coefficient. IoU is an evaluation metric for segmentation similar
to Dice loss [33]:

LossIoU = 1 − ∑N
i=1 sigi

∑N
i=1(si + gi − sigi)

Tversky: The Tversky loss function reshapes Dice loss and prioritizes false negatives
to achieve a better trade-off between precision and recall [33]. Background voxels that are
labelled as the target object are false positives. False negatives refer to the voxels of a target
object that are misclassified as background. Segmentation with fewer false positives and
false negatives are ideal, but it is not easy to decrease both at the same time.

LossTversky =
∑N

i=1 sigi

∑N
i=1 sigi + α∑N

i=1 si(1 − g i) + β∑N
i=1 gi(1 − s i)

where α and β are weighting factors to weight the contribution of false positives and false
negatives. For certain applications, reducing the false positive (FP) rate is more important
than reducing the false negative (FN) rate or vice versa [34].

Focal Tversky: Focal Tversky applies the concept of focal loss to improve model
performance for cases with low probabilities [35]:

LFTL = (1 − LTversky) 1/γ

where γ varies in the range [1, 3].
Boundary-based loss functions: Boundary-based loss functions are a new type of

loss function that aims to minimize the distance between two boundaries of the ground
truth and segmentation output.

Boundary (BD) loss (Surface loss): A boundary (BD) loss (or surface loss) function
aims to minimize the mean surface distance, Dist (∂G, ∂S), between two boundaries (sur-
faces) of the ground truth G and segmentation output S. The boundary of the ground truth
(G) is denoted as ∂G, and ∂S represents the boundary of segmentation (S). This means that
BD loss minimizes the mean of the distance between surface voxels in S and the closest
voxels in G.

Boundary loss uses an integral over the boundary between regions instead of integrals
within the regions.

Dist(∂G, ∂S) =
∫

∂G
||yas(p)− p||2dp

where p is a point on boundary ∂G and yas(p) is the corresponding point on segmentation
boundary ∂S.

Compound loss: Compound loss functions are a combination of different types of loss
functions, mostly cross-entropy and Dice similarity coefficient. This loss function comes
from both the WCE and the Dice loss functions.

LossCombo =α

(
− 1

N
[

N

∑
i=1

β(gilog si) + (1 − β)(1 − gi)log(1 − si)]

)
− (1

− α)

(
2∑N

i=1 sigi + ε

∑N
i=1 si

2 + ∑N
i=1 gi

2 + ε

)

where α controls the contribution of the WCE loss and the Dice terms; β controls the
contribution from positive voxels within WCE. Values of α and β can be defined from a grid
search. In this study, two configurations are used. One has equal weights on BCE and Dice,
referred to as BCE + Dice. The other uses grid search to determine the best combination
(α = 0.6, β = 0.7), known as weighted BCE and Dice, or W (BCE + Dice). The latter applies
more penalty to false negatives. This aligns with the observation that under-segmentation
(false negative) is a common problem for MRI data [23].
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Abstract: Primary Central Nervous System Lymphoma (PCNSL) is an aggressive neoplasm with a
poor prognosis. Although therapeutic progresses have significantly improved Overall Survival (OS),
a number of patients do not respond to HD–MTX-based chemotherapy (15–25%) or experience relapse
(25–50%) after an initial response. The reasons underlying this poor response to therapy are unknown.
Thus, there is an urgent need to develop improved predictive models for PCNSL. In this study, we
investigated whether radiomics features can improve outcome prediction in patients with PCNSL.
A total of 80 patients diagnosed with PCNSL were enrolled. A patient sub-group, with complete
Magnetic Resonance Imaging (MRI) series, were selected for the stratification analysis. Following
radiomics feature extraction and selection, different Machine Learning (ML) models were tested for
OS and Progression-free Survival (PFS) prediction. To assess the stability of the selected features,
images from 23 patients scanned at three different time points were used to compute the Interclass
Correlation Coefficient (ICC) and to evaluate the reproducibility of each feature for both original and
normalized images. Features extracted from Z-score normalized images were significantly more stable
than those extracted from non-normalized images with an improvement of about 38% on average
(p-value < 10−12). The area under the ROC curve (AUC) showed that radiomics-based prediction
overcame prediction based on current clinical prognostic factors with an improvement of 23% for
OS and 50% for PFS, respectively. These results indicate that radiomics features extracted from
normalized MR images can improve prognosis stratification of PCNSL patients and pave the way for
further study on its potential role to drive treatment choice.

Keywords: rare tumor; PCNSL; radiomics; image normalization; MRI

1. Introduction

Primary diffuse large B-cell lymphoma (DLBCL) of the central nervous system (CNS)
(PCNSL) is a rare form of aggressive extranodal non-Hodgkin’s lymphoma limited to
the CNS and, thus, potentially involving the brain, spinal cord, meninges, and eyes [1,2].
Magnetic resonance imaging (MRI) before and after contrast injection is the recommended
imaging modality in the case of PCNSL suspicion and for disease staging after diagnosis
confirmation by histopathological examination of a tumor biopsy [3]. The modern treatment
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of PCNSL is based on two phases, induction and consolidation [3,4]. The first one typically
consists of high-dose methotrexate (MTX)-based chemotherapy, while the second one may
include several options, among which high-dose chemotherapy, followed by autologous
stem cell transplantation (HCT–ASCT), is presently the golden standard [5–7]. Although
new therapeutic approaches have improved overall survival [5,8], about 30% of patients
<70 years are primary refractory to HD–MTX-based chemotherapy and nearly 25% of
patients relapse after consolidation [9]. Unfortunately, the reasons underlying this poor
response to therapy are not known. Nevertheless, being able to identify, in advance, patients
who are going to respond to the current treatment would be of the uttermost importance,
as it may help in driving clinical decision making and in tailoring treatment accordingly.

Radiomics is a computational technique to extract high-dimensional quantitative
features from medical images [10], which embed information about shape, intensity, and
texture of a particular Volume of Interest (VoI). It assumes that medical images reflect un-
derlying characteristics of disease-specific pathological processes and quantitative analysis
can objectively capture and describe such mechanisms [11]. In recent years, the appli-
cation of Artificial Intelligence (AI) techniques in the biomedical field[12,13] has been
rapidly expanding. Advanced analytical and machine learning (ML) tools with radiomics
features [14] have been used to improve diagnosis [15], or to allow prognostic stratifica-
tion [16] and customization of therapy in oncology [17]. In contrast to a traditional biopsy,
which is limited to the analysis of a small amount of tissue sample, one of the advantages of
Radiomics is the possibility to characterize the whole tumor volume, and, thus, capturing
extended lesion properties, such as size, shape and heterogeneity, or changes over time
on image series [18]. Several radiomics studies have so far been conducted for highly
prevalent common cancer types, such as lung [19], breast [20], and colon [21]. However, for
rarer cancer types, especially for PCNSL, the literature is still very limited. In this context,
studies have mainly focused on differentiating PCNSL from glioblastoma (GBM) [22–27]
starting from multi-parametric MRI [22,28]. On the other hand, the correlation between
radiomics features and therapy response or outcome has been barely investigated for
PCNSL [29]. Chen et al. [30] evaluated the prognostic value of radiomics features for
predicting Overall Survival (OS) in 52 PCNSL patients. However, the study was limited
only to the analysis of textural features on contrast enhanced MRI. Ale et al. [31] carried out
a predictive analysis on OS and Progression-Free Survival (PFS) considering a population
of 47 patients, respectively. Promising results were achieved, although few details about the
methodology and the patient cohort were provided. A schematic overview about the State
of Art (SoA) of PCNSL and Radiomics Analysis is given in Table S1 in the Supplementary
Data. A common problem for studies related to PCNSL is that recruiting patients with such
a disease in a single center may be difficult, due to the relatively low incidence of the tu-
mor [32]. Nonetheless, some issues must be taken into account for radiomics data deriving
from multiple institutions. Inter- and intra-scanner variability is a common problem for
multicenter MRI studies and, for this reason, the normalization of the intensity of the gray
level becomes of fundamental importance in radiomics analyses.

Herein, we report a machine learning-based approach for predicting one-year OS and
PFS in patients with PCNSL undergoing treatment with a high-dose methotrexate-based
chemotherapy regimen. The proposed method relies on extracting robust and stable ra-
diomics features from MRI scans. Such robustness and stability was assessed by comparing
different intensity normalization methods on patient images acquired at different time
points. To our knowledge, only a few studies have investigated the importance of image
normalization in radiomics studies, despite it constituting an important challenge when
using MRI data. In fact, the definition of a protocol is still missing [33–37]. Moreover, to
date, the role of image normalization for radiomics analysis of PCNSL tumors has not yet
been evaluated.
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2. Materials and Methods

2.1. Dataset Description

Clinical and MRI data from 80 patients with histological or cytological diagnosis of
PCNSL, as well as absence of extra-CNS disease as per international guidelines [38], treated
at San Raffaele Scientific Institute of Milano, Italy, between January, 2010, and November,
2019, were retrospectively collected. MRIs were acquired in different centers and with
different scanners. Patients were considered eligible for subsequent analyses based on
the following criteria (see Figure 1): (1) availability of T1-W, T2-W, Fluid Attenuated
Inversion Recovery (FLAIR) and T1-W with gadolinium (T1 gd) pulse sequences on MR
scans obtained before the start of therapy; (2) tumor contours clearly distinguishable for
manual segmentation. Overall, 56 patients were included for the OS classification (Group
A) and 47 patients (Group A2) for PFS. From Group A, 23 patients (Group A1) were
imaged at 3 different time points (before, during and after the treatment) and with different
scanners (described for each group in Table S2 in Supplementary Data) were selected for
feature stability analysis. The demographics and clinical features of the patient cohort are
summarized in Table 1. This observational study was approved by the Ethical Committee
of San Raffaele Hospital in Milan (Italy) with number 22/INT/2021 and conducted in
accordance with all international laws and rules, and in accordance with the national laws,
as well as in accordance with all applicable guidelines. Due to the retrospective nature of
this study and anonymized clinical data, ad hoc informed consent was waived.

Figure 1. Flowchart of the patient enrolment process. In the blue box, the initial number of patients
available for this study. In the red box, the reasons for exclusion of some patients (unavailability of
complete MRI sequences or missing clinical data). In the green box, the number of patients selected
for the specific task.
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Table 1. Description of the patient dataset (Group A).

Eligible Patients (#) 56/80 (70%)

Male:Female 0.56

Median Age 69 (41–85)

Multiple lesions 32 (58%)

Involvement of deep areas § 45 (80%)

Lactic dehydrogenase serum level >ULN 35 (52%)

Cerebrospinal-fluid protein concentration >ULN * 34(60%)

ECOG—Performance Status >2 30 (53%)

IELSG risk score
-Low 5 (9%)
-Intermediate 28 (50%)
-High 23 (41%)

Sites of disease
-Brain parenchyma 56 (100%)

Treatment details
Induction
MATRix 37 (66%)
MAT 2 (3%)
HD-MTX + HD-ARAC 10 (17%)
HD-MTX + Alkylators 4 (7%)
WBRT ± TMZ 4 (7%)
Rituximab 43 (77%)
Consolidations
ASCT 15 (27%)
WBRT 6 (11%)
DeVIC 5 (9%)
Oral Maintenance 3 (5%)
None 26 (46%)
Unknown 1(2%)

Treatment delay >20 gg 40 (71%)

Refractory to first line @ 22 (39%)

1-year PFS 24/47 (51%)

1-year OS 30/56 (54%)
* Lumbar puncture was contraindicated in 3 patients; CSF protein concentration was considered an unfavorable
feature in IELSG risk score in these patients. § At least one of the following brain structures: periventricular
regions, basal ganglia, corpus callosum, brainstem, and cerebellum. @ PD < 6 months from the end of first line
treatment; HD-ARAC: high dose Cytarabine; ASCT: autologous stem cell transplantation; DeVIC: Dexametha-
sone, Etoposide, Ifosfamide and Carboplatin; ECOG—PS: Eastern Cooperative Oncology Group—Performance
Status; HD-MTX: High dose Methotrexate; IELSG: International Extranodal Lymphoma Study Group; LDH:
Lactic dehydrogenase serum level; MATRix: High dose Methotrexate, high dose Cytarabine, Thiotepa and
Rituximab; pCSF: Cerebrospinal-fluid protein concentration; PFS: Progression free survival; OS: Overall Survival;
TMZ: Temozolomide; ULN: upper limit normal; WBRT: Whole brain radiation therapy.

2.2. Image Pre-Processing

All images were pre-processed according to the steps described below (see Figure 2), in
order to improve their quality and to increase the reproducibility of radiomics features [39]:

1. to correct the non-homogeneous intensity of the magnetic field present in MR images,
the module “N4ITK MRI bias correction” available in 3D Slicer [40] was used [41];

2. for each patient, all available MRI acquisitions were registered on the T1-gd image
(sequence where segmentation was performed);

122



Bioengineering 2023, 10, 285

3. skull stripping [42] was performed from images to remove extra brain tissue from the
brain volume and to increase the accuracy of subsequent MRI processing. The “Swiss
skull stripper” module of 3D Slicer was used[43];

4. normalization methods were applied for MRI intensities normalization (described in
detail in Section 2.2.1);

5. all sequences were resampled (voxels 1 mm3) [44].

2.2.1. Intensity Normalization of MR Images

Three gray level intensity normalization methods were tested on the MR images:
Z-score, WhiteStripe and Nyul.

The Z-score method normalizes the image I(x) by subtracting the mean of the image
μbrain and dividing by the standard deviation of all the voxel intensities σbrain:

IZscore(x) =
(I(x)− μbrain)

σbrain
(1)

The WhiteStripe method [45] was developed to bring raw image intensities to a
biologically interpretable intensity scale. The method applies a z-score transformation to the
whole brain using parameters estimated from a latent subdistribution of normal-appearing
white matter (NAWM). In detail, this method normalizes the image I(x) intensities by
subtracting μws, which corresponds to the mean intensity value of the (NAWM), from each
voxel intensity I(x) and dividing the result by the standard deviation of the NAWM σws:

Iws(x) =
(I(x)− μws)

σws
(2)

The method developed from Nyul et al. [46], also called piecewise linear histogram
matching normalization, learns a standard image histogram from a set of images, and
then linearly maps the intensities of each image to this standard image histogram. MRI
intensities are not standardized. For this reason, before carrying out Radiomics analyses,
the intensity normalization of the gray levels of images is essential.

The code used for this implementation is available at https://github.com/jcreinhold/
intensity-normalization (accessed on 19 February 2023).

2.3. Segmentation VOI (Volume of Interest) and Features Extraction

The hyperintense tumor lesion on post-contrast T1-W images was manually segmented
for each patient resulting in volume of interest (VOI). The same VOI was reported in
the other sequences for each patient applying the linear transformation identified by the
registration process. All segmentations were performed by R.L., a radiologist with 4 years of
experience, at the time of the study. Radiomics features were extracted from the VOI using
Pyradiomics 3.0.1 (https://pyradiomics.readthedocs.io/en/latest/features.html, (accessed
on 19 February 2023) [47]: 19 First Order (F0) features, 14 Shape features, 23 Gray Level
Co-I Matrix (GLCM) features, 16 Gray Level Run Length Matrix (GLRLM) features, 16 Gray
Level Size Zone Matrix (GLSZM) features and 14 Gray Level Dependence Matrix (GLDM)
features [48]. In total, 120 features (including radiological features) were extracted from
the tumor region of each MRI sequence from both non-normalized images and normalized
images with the chosen method.

2.4. Machine Learning Model Building

Given as input a set of radiomics features extracted from processed MRIs (Group A),
the goal was to train a machine learning model to predict the probability of survival of a pa-
tient with PCNSL. Since the prediction task had only two possible outcomes (survive/not
survive after 1 year), the task was modeled as a binary classification problem. A first
selection of the features was performed, using a high correlation filter to remove variables
having large absolute correlation. To overcome the curse of dimensionality issues and
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reduce overfitting, the Min–Max Normalization method was applied to linearly transform
radiomics features by using scikit-learn library (https://scikit-learn.org/stable/modules/
generated/sklearn.preprocessing.MinMaxScaler.html, accessed on 19 February 2023). Only
relevant features were selected in cross validation according to an ensemble of four se-
lection methods: (i) SelectKBest for the chi-square test method; (ii) the Recursive Feature
Elimination (RFE) using the Logistic Regression model; (iii) least absolute shrinkage and
selection operator (Lasso), and (iv) Select From Model using RandomForestClassifier model.
In detail, each method extracted k = 15 candidate features and only the ones selected by
at least three algorithms over four were chosen to feed the classification algorithm. Five
classifiers were tested, namely: Extra Tree Classifier (ETC), Support Vector Machine (SVM),
Logistic Regression (LR), Random Forest (RF), kNeighbors (KN). Feature selection methods
and ML classifiers were implemented, based on the scikit-learn library version 0.23. The
whole process, from the normalization of features to the selection and classification, was per-
formed in a repeated five-fold stratified cross-validation (https://scikit-learn.org/stable/
modules/generated/sklearn.model_selection.RepeatedStratifiedKFold.html, accessed on
19 February 2023) (10 repetitions) was adopted to assess overfitting and to evaluate the
stability of the results. The workflow of this study is described in Figure 2.

Figure 2. The workflow of the study was divided into two main sections: (1) Reproducibility analysis
of features extracted from pathological tissue of MR images normalized with three different methods
(Z-score, WhiteStripe and Nyul); (2) Radiomics Analysis for predictive OS and PFS of PCNSL patients
(features extracted from segmentation tumor). For both sections, the first step was to pre-process MRI
sequences. From the results of the reproducibility of features, the Z-score method was selected for
application to the MRI sequences.

2.5. Experiments
2.5.1. Feature Robustness

To determine which normalization method was best suited for our dataset, we studied
the effect of image intensity normalization on the reproducibility of the radiomics features. To
this aim, Group A1 (subgroup of Group A, as described in Section 2.1 and shown in Figure 1)
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was considered. Notice that the selected subgroup of patients was not considered during the
survival prediction analysis, in order to avoid any bias in the classification results.

Given a patient, all his/her longitudinal T1-W and T2-W sequences were, in turn,
normalized using three methods: Z-score, WhiteStripe and Nyul (described in Section 2.2.1).
Then, a region of the pons, where no pathological modifications were observed, was identi-
fied on the patient’s FLAIR image. From this region, a 1 cm diameter spherical segmentation
was extracted using the segmentation tool of 3D Slicer software. The segmentation was
reported for all the longitudinal sequences of the patient by applying the linear transfor-
mation of the registration between the images made previously. A total of 94 radiomics
features were extracted with the Pyradiomics library. Shape features were excluded as the
selected spherical VOI was equal for all patients. For the three longitudinal acquisitions of
each patient, we extracted features from images normalized with three methods previously
described and from the non-normalized images for sequences T1-W and T2-W.

The Interclass Correlation Coefficient (ICC) was calculated to evaluate the repro-
ducibility of each feature for each normalization method. Formally, the ICC is a descriptive
statistic that can be used when quantitative measurements are made on units organized
into groups [49]. It ranges between 0 and 1, indicating null and perfect reproducibility.
ICCs were calculated with IBM’s SPSS statistical software, using the two-way random mean
measurement ICC (2,k). We defined a matrix nxk, with n number of features extracted for
each patient and k, number of observers (i.e., MRI acquired with different scanners). Given
MSr the average square for rows, MSe the residual average, and MSc the average square
for columns:

ICC(2, k) =
(MSr − MSe)

MSr +
(MSc−MSe)

k

(3)

ICCs were computed to assess the stability of first-order and textural features across
the three acquisitions before and after normalization. The Kruskal–Wallis test and its post
hoc were used to compare the obtained ICCs for T1-w and T2-w sequences, under the
assumption that data were not normally distributed. The best normalization method was
applied to images of groups A/A2 for subsequent Radiomics analysis.

2.5.2. Overall and Progression Free Survival Prediction

Patients were dichotomized, based on OS or PFS greater than, or lower than, 12 months,
respectively. OS was defined as time from diagnosis until death due to any cause or date of
last follow-up visit, and PFS was defined as time from diagnosis until progression, relapse,
death or date of last follow-up visit [50].

Each of the selected ML algorithms was trained at classifying OS for patients in
Group A. Classification performances were evaluated in terms of F1-score (https://scikit-
learn.org/stable/modules/generated/sklearn.metrics.f1_score.html, accessed on 19 Febru-
ary 2023) and Area Under ROC curve (AUC) (https://scikit-learn.org/stable/modules/
generated/sklearn.metrics.auc.html, accessed on 19 February 2023). It is worth noticing
that machine learning model validation is a crucial step, especially in the biomedical do-
main. We also compared the performance of the classifiers using both radiomics features
alone as well as combined with clinical features. Age > 60, PS > 2, LDH > ULN, protein
CSF > ULN and deep lesion were considered as clinical features, these being considered as
available and validating PCNSL risk scores [51,52].

To better evaluate the impact of normalization on survival prediction, each algorithm
was trained and tested using radiomics features obtained either from raw or normalized
images. Only the Z-score method was used in these experiments since, as shown in
Section 3.1, it provided the most stable features.

3. Results

3.1. Impact of the Intensity Normalization Method on Radiomics Feature

Figure 3 shows median ± quartiles of ICCs computed on both original and normalized
images in T1-W and T2-W Sequences (Group A1). Z-score normalization determined the
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highest increase in ICC for features extracted from T1-W (30% average increase compared
with non-normalized sequences, p < 10−9). No statistically significant differences were
observed when comparing non-normalized T1-W sequences with Nyul or WhiteStripe
normalized sequences. All three normalization methods showed a clear increase of ICC
values in T2-W sequence (Kruskal–Wallis test, p < 10−12 (Z-score), p < 10−13 (WhiteStripe),
p < 10−15 (Nyul).

Figure 3. The distribution of ICC values computed from extracted features for non-normalized images
and for normalized images with Z-score, WhiteStripe and Nyul methods. *** (significant statical
difference).

3.2. Performance Comparison of Classification Models

The results of median and quartiles of the F1-scores obtained from the five selected
machine learning models for the OS and PFS prediction classification tasks are reported
in Table 2. For both tasks, we performed the classification with radiomics features alone,
radiomics features + clinical features and clinical features alone.

Table 2. median ± quartiles of the F1-Score (T1-W and T2-W and combination T1-W and T2-W),
obtained using all 5 test folds with 10 repeated of the cross-validation and 5 machine learning models.
The difference between the quartiles provided information on the distribution of results. Each result
was compared with features extracted from non-normalized images and normalized images using
only radiomics features, radiomics plus clinical features and only clinical features.

OS Radiomics Features ETC SVM LR RF KN

T1-W No Normalizazion 0.67 (0.61–0.79) 0.71 (0.70–0.71) 0.71 (0.67–0.71) 0.67 (0.61–0.72) 0.67 (0.61–0.73)
Intensity Normalization 0.75 (0.67–0.83) 0.77 (0.68–0.83) 0.77 (0.73–0.83) 0.73 (0.67–0.83) 0.73 (0.63–0.80)

T2-W No Normalization 0.67 (0.55–0.73) 0.67 (0.57–0.71) 0.71 (0.67–0.71) 0.59 (0.50–0.71) 0.57 (0.44–0.70)
Intensity Normalization 0.79 (0.73–0.86) 0.80 (0.77–0.86) 0.80 (0.75–0.86) 0.73 (0.67–0.830) 0.77 (0.72–0.80)

T1-W/T2-W No Normalization 0.67 (0.57–0.72) 0.67 (0.55–0.76) 0.67 (0.60–0.76) 0.61 (0.54–0.71) 0.61 (0.54–0.70)
Intensity Normalization 0.80 (0.77–0.86) 0.80 (0.72–0.83) 0.80 (0.73–0.83) 0.83 (0.77–0.86) 0.80 (0.72–0.83)

OS Radiomics + Clinical Features ETC SVM LR RF KN

T1-W No Normalizazion 0.72 (0.67–0.80) 0.73 (0.60–0.80) 0.73 (0.60–0.80) 0.67 (0.61–0.75) 0.73 (0.60–0.77)
Intensity Normalization 0.80 (0.73–0.83) 0.79 (0.68–0.83) 0.80 (0.68–0.83) 0.80 (0.71–0.83) 0.82 (0.73–0.86)

T2-W No Normalization 0.73 (0.66–0.80) 0.72 (0.60–0.825) 0.72 (0.66–0.77) 0.72 (0.60–0.77) 0.67 (0.60–0.77)
Intensity Normalization 0.77 (0.66–0.86) 0.77 (0.68–0.83) 0.77 (0.66–0.83) 0.73 (0.68–0.80) 0.77 (0.67–0.77)

T1-W/T2-W No Normalization 0.77 (0.67–0.86) 0.73 (0.66–0.83) 0.73 (0.66–0.83) 0.67 (0.60–0.72) 0.73 (0.60–0.80)
Intensity Normalization 0.80 (0.73–0.86) 0.80 (0.73–0.83) 0.80 (0.72–0.83) 0.77 (0.68–0.83) 0.80 (0.72–0.83)

OS Clinical Features ETC SVM LR RF KN

0.60 (0.44–0.67) 0.71 (0.66–0.79) 0.71 (0.66–0.77) 0.60 (0.54–0.67) 0.67 (0.60–0.77)
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Table 2. Cont.

PFS Radiomics Features ETC SVM LR RF KN

T1-W No Normalizazion 0.67 (0.54–0.72) 0.68 (0.58–0.75) 0.71 (0.66–0.79) 0.60 (0.50–0.72) 0.60 (0.54–0.73)
Intensity Normalization 0.60 (0.50–0.66) 0.68 (0.60–0.68) 0.68 (0.66–0.73) 0.60 (0.50–0.66) 0.67 (0.55–0.66)

T2-W No Normalization 0.67 (0.55–0.75) 0.67 (0.61–0.68) 0.67 (0.61–0.68) 0.60 (0.50–0.73) 0.67 (0.51–0.73)
Intensity Normalization 0.68 (0.57–0.76) 0.80 (0.67–0.88) 0.80 (0.67–0.86) 0.68 (0.55–0.76) 0.73 (0.67–0.83)

T1-W/T2-W No Normalization 0.67 (0.50–0.74) 0.67 (0.60–0.73) 0.67 (0.58–0.73) 0.60 (0.46–0.67) 0.67 (0.58–0.73)
Intensity Normalization 0.63 (0.50–0.75) 0.70 (0.60–0.80) 0.73 (0.62–0.80) 0.67 (0.58–0.75) 0.68 (0.60–0.75)

PFS Radiomics + Clinical Features ETC SVM LR RF KN

T1-W No Normalizazion 0.60 (0.44–0.67) 0.67 (0.60–0.71) 0.67 (0.55–0.71) 0.60 (0.51–0.73) 0.60 (0.47–0.72)
Intensity Normalization 0.60 (0.45–0.67) 0.68 (0.61–0.67) 0.68 (0.60–0.67) 0.60 (0.50–0.72) 0.60 (0.45–0.67)

T2-W No Normalization 0.60 (0.48–0.71) 0.61 (0.55–0.67) 0.67 (0.55–0.76) 0.60 (0.50–0.70) 0.62 (0.55–0.67)
Intensity Normalization 0.68 (0.50–0.76) 0.72 (0.60–0.80) 0.69 (0.60–0.75) 0.70 (0.60–0.77) 0.69 (0.60–0.73)

T1-W/T2-W No Normalization 0.64 (0.55–0.68) 0.67 (0.66–0.71) 0.67 (0.61–0.77) 0.61 (0.50–0.73) 0.61 (0.50–0.67)
Intensity Normalization 0.61 (0.44–0.68) 0.69 (0.60–0.73) 0.65 (0.55–0.68) 0.60 (0.50–0.67) 0.60 (0.45–0.62)

PFS Clinical Features ETC SVM LR RF KN

0.55 (0.41–0.60) 0.62 (0.51–0.67) 0.67 (0.63–0.71) 0.57(0.47–0.65) 0.55 (0.40–0.61)

3.2.1. OS Classification Task

For features extracted from T1-W, T2-W and the combination of T1-W and T2-W
features (T1-W/T2-W), classification results obtained from images normalized with Z-score
are presented in this section (providing the best results in terms of reproducibility and
stability compared to the other normalization methods, as reported in Section 3.1).

Considering only radiomics features, the best performances of T1-W sequence were
obtained from classifiers SVM and LR with the median and quartiles, respectively, F1 = 0.77
(0.68–0.83) and F1 = 0.77 (0.73–0.83). For T2-W sequence, the best performances were
obtained by the SVM classifier with F1 = 0.80 (0.77–0.86) and LR with F1 = 0.80 (0.75–0.86).
For T1-W/T2-W, the performance improved and we obtained a median of F1-score equal to
0.83 (0.77–0.86) with RF classifier. The best results were obtained from normalized images,
with a significant statistical difference from the results obtained using features extracted
from non-normalized images.

When introducing clinical features, the results did not significantly change. In this case,
the best performances were obtained with T1-W (KN = 0.82 (0.73–0.86) and T1-W/T2-W
(ETC = 0.80 (0.73–0.86)). Instead, The F1-score for predicting OS using only clinical features
was 0.71 (0.66–0.79) with the SVM classifier.

Figure 4 shows the ROC curves of the best performances of classifiers. The AUC
values of radiomics features alone, radiomics + clinical features and clinical features alone
for predicting OS were 0.86 ± 0.09, 0.83 ± 0.11 and 0.70 ± 0.14, respectively. In comparing
the best performance for OS prediction with clinical features, and with radiomics features a
significant statistical difference (p < 10−9) was found. There was no significant statistical
difference between performance with radiomics features alone, and with Radiomics plus
clinical features (p = 0.38).

3.2.2. PFS Classification Task

Patients of Group A2 were considered to assess PFS classification task. The patients’
characteristics are summarized in Section 2.1. Considering radiomics features alone, the
best performances were obtained from the sequence T2-W (SVM = 0.80 (0.67–0.88) and
LR = 0.80 (0.67–0.86)) and from T1-W/T2-W (LR = 0.73 (0.62–0.80)). For the PFS, the
combination of T1-W and T2-W sequences did not improve the performance of the model
(compared to single sequence) .

The addition of clinical features for PFS did not improve performances and, considering
only clinical features, the best result was LR = 0.67 (0.63–0.71). Compared to OS prediction,

127



Bioengineering 2023, 10, 285

in this case also the best performance was obtained with normalized images for the sequence
T2-W and T1-W/T2-W with a statistical difference with non-normalized images.

ROC curves of the best performances for PFS classification (Figure 4) also showed
the prediction of radiomics features (AUC = 0.84 ± 0.13) in respect to clinical features
(AUC= 0.56 ± 0.18) with a significant statistical difference (p-value < 10−12). There was
also a statistical difference between the prediction with radiomics features alone and with
the addition of clinical features (p = 0.002).

Figure 4. Roc curves of the best classifiers for each feature category: only radiomics features in blue,
radiomics + clinical features in green and only clinical features in red (currently validated).

3.3. Feature Importance

Beyond the classification scores, further analyses were conducted to better understand
the role of the features in the classification process. The study was performed for each
imaging modality, with and without intensity normalization. We considered the RF clas-
sifier, where the feature importance was computed as the mean and standard deviation
of accumulation of the impurity decreased within each tree of the forest. In more detail,
for each independent training in the cross-validation procedure, we ranked the features
according to importance score and selected the top 15 (top-15). Then, for each feature,
we calculated the frequency with which that feature was selected as top-15 and, from the
resulting distribution, we selected the top 13 features for analysis. Simply put, we selected
the top 13 features most often ranked as “most important" in each independent training of
the cross-validation procedure.

Figures 5 and 6 represent the selected clinical and radiomics features for T1-W, T2-
W sequences, and T1-W/T2-W sequences. As per the OS classification task, the most
selected clinical features were Age and Performance status (PS) (Figure 5), while for the
PFS classification task, LDH>ULN, deep lesion, and Age were almost always selected
(Figure 6). Considering the feature importance score, radiomics features seemed to give a
greater contribution to the outcome than clinical features.

For T1-W and T2-W sequences (without intensity normalization) in the OS classi-
fication, the most important contribution was given by shape features (Elongation and
Sphericity) and first order features (https://pyradiomics.readthedocs.io/en/1.1.1/features.
html#radiomics-firstorder-label, accessed on 19 February 2023) (Minimum, Maximum
and Skeweness). For T1-W and T2-W sequences (with intensity normalization), GLCM
features (Cluster Shade, Joint Average) and GLRLM features (Long Run Low Gray Level
Emphasis, Run Length Non-Uniformity and High Gray Level Run Emphasis ) received the
highest scores.
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Figure 5. Feature importance for all MRIsequences with and without normalization (OS classification
task). Features were grouped using different colors for shape features, texture features, first order
features and clinical features.

Considering the PFS classification task, an important role seemed to be played by
Elongation (shape feature), that shows the relationship between the two largest principal
components in the ROI shape, and its value, ranging from 0 (line-like object) to 1 (circle-
like object).

Elongation =

√
λminor
λmayor

(4)

Here, λmayor and λminor were the lengths of the largest and second largest principal
component axes. Amongst the selected, we also found Zone Percentage (GLSZM) and
Imc2 (GLCM) for non-normalized images, and, concerning normalized images, Large
Dependence High Gray Level Emphasis (GLDM) for T1-W and Gray Level Emphasis
(GLSZM) for T2-W.
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Figure 6. Feature importance for all MRI sequences with and without normalization (PFS classification
task). Features were grouped using different colors for shape features, texture features, first order
features and clinical features.

4. Discussion

To the best of our knowledge, this is the first study investigating the capability of
radiomics features as outcome predictors in patients with newly diagnosed PCNSL, while
also evaluating the impact of MR image normalization [53] on feature stability. To overcome
the curse of dimensionality issues and to reduce overfitting, feature selection was performed
by using multiple approaches and reaching consensus by a voting procedure. A post-hoc
analysis of the most salient features learned by the selected ML models was performed,
with the aim of trying to collect more insight about the pathology and to partially explain
the classification process.

Significant results were obtained for both OS and PFS prediction using all the selected
classifiers with a statistically significant difference (p-value < 10−4) between image intensity
normalization and no normalization (best median F1-score 0.83 vs. 0.71 for OS and 0.80
vs. 0.71 for PFS, respectively). Interestingly, it was observed that combining features from
both T1-W and T2-W sequences improved results in the OS classification task compared
to using features from a single sequence. On the other hand, the best performance for
PFS was obtained using only the T2-W sequence (median F1-score T1-W/T2-W = 0.73
(0.62–0.80) vs. T1-W = 0.68 (0.66–0.73) vs. T2-W = 0.80 (0.67–0.88)). Noteworthy was the
fact that introduction of clinical features commonly used to calculate the IELSG score (age,
PS, deep lesions, CSF protein, and LDH) marginally improved the performance of some
classifiers only in OS analysis. However, their contribution did not have a significant impact.
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AUC scores achieved by the best classifiers (RF for OS and SVM for PFS) were observed
to be significantly higher compared with scores obtained using only clinical features
(p-value < 10−9 and p-value < 10−12, respectively), showing that radiomics features better
contributed to the outcome prediction than clinical features. This work has some limitations
that are worth mentioning. First, the relatively small number of patients, mainly due to
the low incidence rate of PCNSL [32], which could highly impact the learning process
and might cause sub-optimal prediction performances and overfitting. Obviously, we
resorted to numerous techniques to mitigate the effect of the low number of patients, but,
in any case, our future goal is to increase the dataset in order to validate these promising
results. Furthermore, images from multiple centers were collected to mitigate the issue and
a repeated cross-validation approach was used to evaluate the robustness of our results.
Furthermore, up to 30% of the initial study population could not be considered eligible
for this study because of lack of MR sequences or delineable tumor. However, we believe
this number could be reduced in future radiomics studies in the PCNSL setting, given
increasing use of stereotactic biopsy instead of surgery for diagnosis, as well as the potential
availability of pre-biopsy MRI scans which could also reduce other technical problems,
such as bleeding. Moreover, the recent IPCG (International Primary CNS Lymphoma
Collaborative Group) recommendations for MRI imaging should, potentially, also impact
on the homogeneity of future studies [54]. Second, our models processed the radiomics
features representing the tumor, excluding the possible prediction capability of extra lesion
tissues as well as the association between radiomics features and pathological/molecular
characteristics, which might reveal hidden relations useful to better understand the history
of the disease. Third, information about the performed treatment was not included in the
prediction process of the final analysis, as it differed from the main focus of this study.
However, up to 93% of patients received an HD–MTX based treatment with a subsequent
consolidation/maintenance in nearly 50%, unless there was progression or death due to
lymphoma or other causes and, overall, all patients received the best available treatment
based on clinical stratification. Further investigation is needed to use this integrated clinical
and radiomics approach to stratify patients for therapy response prediction. This would
allow not only the division of patients into risk groups, but also definition of the better
potential treatment to be studied in future clinical trials.

Furthermore, some aspects of this trial merit discussion. The analyses were performed
on the features extracted from T1-W and T2-W sequence and not from the T1 as contrast, as
we did not want the radiomics features to be affected by the contrast. All analyses were
also carried out on the FLAIR sequence, but the data were not reported in this paper as
the results were not satisfactory. We plan to consider it again in future work where deep
learning-based models will be explored.

Almost all the work related to this rare tumor has been focused, to date, on the
differentiation of PCNSL from atypical glioblastoma [23,24,28]. Instead, in the present
study, we evaluated the prognostic value of images normalization to use radiomics features
for predicting OS and PFS in PCNSL. Indeed, for rare tumors, one of the limitations is
to collect a sufficient quantity of patient data to analyze; thus, assembling data from
different centers is usually a valid solution. However, in the case of MRI acquired in a
multicenter setting, inter- and intra-scanner variability can be an important limitation
in the radiomics analysis. Thus, the study of the effect of normalization on both task
prediction and reproducibility of radiomics features is of important value. To this end, a
subgroup of patients with three longitudinal acquisitions over time was selected and the
ICC for each radiomics features was computed in non-pathological tissue. Three state-of-
the-art normalization methods were tested (Z-score, WhiteStripe and Nyul), according to
many MR image harmonization studies [33,34,55]. While a similar study performed for
Glioblastoma [53] found the Nyul method to be the most robust for radiomics analysis, for
MRI of PCNSL patients we found that the Z-score normalization gave the highest number
of reproducible features (median and quartile values of all ICCs = 0.8 (0.74–0.90)) for both
the T1-W and the T2-W sequences, as shown in Figure 4. Furthermore, in contrast with [53],
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we performed a feature stability analysis on a portion of healthy tissue so that the results
were unaffected by disease progression or regression.

The normalization step had a significant impact on the learning process for both OS
and PFS (all results summarized in Table 2). Figures 5 and 6 show the feature importance
for each sequence at inference time. As is observable, first order features had the highest
importance among the features extracted from non-normalized images. By contrast, when
using normalized images, the classifiers seemed to rely more on textural features (GLCM
and GLRLM). First order statistics describe the distribution of individual voxel values
without concern for spatial relationships. Instead, textural features are obtained calculating
the statistical inter-relationships between neighbouring voxels (hence, they provide a
measure of intra-lesion heterogeneity) [17]. We speculate that the latter may contain more
robust and informative content for the survival prediction, therefore explaining the better
classification results. Indeed, textural analysis derived from conventional sequences reflects
histopathology features in solid cancer and has been proposed as a novel noninvasive
modality to further characterize tumors in clinical oncology [56,57]. Furthermore, it is worth
noticing that shape features may also act as confounding factors. If spurious correlation
exists (e.g., between tumor size and disease progression) the learning process may be
biased. In this case, elongation was the most important feature for almost all sequences and
there seemed to be no difference between normalized and non-normalized images, but that
was because the shape features were not affected by intensity normalization and depended
only on tumor segmentation. Furthermore, the performance improved significantly for
the prediction classification task, especially for the T2-W sequence. Probably, the other
textural features made the difference. Finally, for the OS survival classification, features of
both sequences (T1-W and T2-W) were equally important. The PFS features of the T2-W
sequence provided a greater contribution and, in fact, the performance results were better
than for the T1-W sequence.

5. Conclusions

This work presented the effect of normalization of MR images on a radiomic-based
approach to predict OS and PFS in PCNSL patients. Despite the limited number of cases
(mainly due to the rarity of the tumor), the proposed method made a breakthrough in
radiomics-based precision medicine for PCNSL patients.
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Abstract: The generation of synthetic CT for carbon ion radiotherapy (CIRT) applications is challeng-
ing, since high accuracy is required in treatment planning and delivery, especially in an anatomical
site as complex as the abdomen. Thirty-nine abdominal MRI-CT volume pairs were collected and a
three-channel cGAN (accounting for air, bones, soft tissues) was used to generate sCTs. The network
was tested on five held-out MRI volumes for two scenarios: (i) a CT-based segmentation of the MRI
channels, to assess the quality of sCTs and (ii) an MRI manual segmentation, to simulate an MRI-only
treatment scenario. The sCTs were evaluated by means of similarity metrics (e.g., mean absolute error,
MAE) and geometrical criteria (e.g., dice coefficient). Recalculated CIRT plans were evaluated through
dose volume histogram, gamma analysis and range shift analysis. The CT-based test set presented
optimal MAE on bones (86.03 ± 10.76 HU), soft tissues (55.39 ± 3.41 HU) and air (54.42 ± 11.48 HU).
Higher values were obtained from the MRI-only test set (MAEBONE = 154.87 ± 22.90 HU). The global
gamma pass rate reached 94.88 ± 4.9% with 3%/3 mm, while the range shift reached a median (IQR)
of 0.98 (3.64) mm. The three-channel cGAN can generate acceptable abdominal sCTs and allow for
CIRT dose recalculations comparable to the clinical plans.

Keywords: synthetic CT; MRI guidance; MRI-only; image-guided radiotherapy; carbon ion radiotherapy;
particle therapy; deep learning

1. Introduction

In the treatment of abdominal tumors such as those of the liver and pancreas, carbon
ion radiotherapy (CIRT) is considered a promising therapeutic option, thanks to its excellent
geometrical selectivity and radiobiological effectiveness [1,2]. However, tumors subject
to respiratory motion may suffer from inter- and intra-fraction motion that needs to be
properly accounted for during planning and delivery. So far, the repeated acquisition of
computed tomography (CT), in the form of respiratory-correlated 4DCT, is the clinical
routine for motion management, but concurrently exposes the patient to additional non-
therapeutic radiation [3].

The growing interest in magnetic resonance imaging (MRI) in recent years has fostered
the development of MRI-only workflows that would guarantee the absence of ionizing
radiation while exploiting the superior soft tissue contrasts of MRI scans. In this regard,

Bioengineering 2023, 10, 250. https://doi.org/10.3390/bioengineering10020250 https://www.mdpi.com/journal/bioengineering
137



Bioengineering 2023, 10, 250

online MR-guided radiotherapy (MRgRT) is a clinical reality in conventional radiother-
apy [4–6], while no integrated system is clinically available for online MR guidance in
particle therapy (PT), with only a few feasibility studies addressing protons but not carbon
ions [7,8]. Nonetheless, the off-line use of MRI in CIRT may support treatment planning and
adaptation through the generation of synthetic CT (sCT), used as alternatives to verification
CTs, and avoid non-therapeutic radiation along with CT-MRI registration errors that are
typically relevant in the abdominal site [9,10]. Different methods (i.e., bulk density override,
atlas based, voxel based) have been studied to generate sCTs starting from MRI scans [8,11].
As an alternative, deep learning (DL) methods have been largely investigated [11–17],
relying on their capability of autonomously learning hidden relationships among data [18].
In particular, deep convolutional neural networks (DCNN) showed promising results for
the generation of sCTs of the head and neck with respect to conventional methods, as they
are able to catch complex nonlinear relationships among MRI and CT [12,15]. Generative
adversarial networks (GAN), especially in the conditional form (conditional GAN—cGAN)
have been instead considered for more complex anatomical districts such as the abdomen,
thanks to the adversarial learning process, which provides great efficacy in image-to-image
translation applications [19–21]. The main limitation of these networks is the need for
paired MRI-CT samples to perform the training, which is a critical aspect when dealing
with multi-modal volumes. In recent years, new architectures have been proposed to
overcome the need for paired CT-MRI training datasets, with cycleGAN and fully bidirec-
tional networks showing great results in end-to-end synthetic image generation tasks [22].
Clearly, the use of such complex and multi-network architectures requires high dimensional
training datasets, which still remain an evident concern in most clinical realities. The use
of multiple MRI sequences (e.g., Dixon in-phase (IP), opposed-phase (OP), fat, and water)
has been also investigated to increase the quality of critical anatomical structures, but no
relevant improvements were shown [23].

The dosimetric evaluation of DL-based sCTs has been investigated for X-ray and
proton radiotherapy in most anatomical districts [20–28], while a similar analysis for CIRT
applications is still missing in the literature.

In the treatment of abdominal targets, the presence of inter- and intra-acquisition
motions, which mainly translate into the different dispositions of the air fillings in the
organs, highly affects the dose distribution for carbon ions plans [29]. An MRI-only
workflow for CIRT would thus require more stringent constraints and tolerances in terms
of accuracy in the definition of HU values, if compared to conventional radiotherapy, since a
precise knowledge of particle stopping power, estimated from HU values within the patient
anatomy, is essential for accurate treatment planning, to limit any range shift and damage
to healthy tissues [30,31]. Up to now, to the authors’ best knowledge, the application of sCT
to CIRT plans has been investigated only by Knäusl et al. [32] for head and neck imaging,
while no study has been performed on CIRT plans for abdominal tumors.

In this study, we focused on the generation of abdominal sCTs through a cGAN,
with the final aim of simulating an MRI-only workflow for CIRT, based on recalculation
of the clinical CIRT treatment plans for generated abdominal sCT volumes. This study,
therefore, was conducted to evaluate, for the first time, the feasibility of sCT in CIRT for
abdominal sites.

2. Materials and Methods

2.1. Patient Cohort

Image datasets were collected from 24 patients affected by liver or pancreatic cancer
and treated with CIRT at the National Centre for Oncological Hadrontherapy (CNAO,
Pavia, Italy) between 2017 and 2021. Standard clinical workflow comprised the acquisition
of a 4DCT followed by a 3D MRI on the same day, for contouring and planning preparation.
The same immobilization setup, consisting of customized pillows (MOLDCARE Cushion,
QFix, Avondale, PA, USA) and non-perforated body thermoplastic masks (Klarity Medical
Products, Heath, OH, USA), was used both for CT and MRI acquisitions and treatment
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delivery. Acquisition in two different scanners along with re-positioning of the patient
with the thermoplastic mask caused inter-acquisition motion. For 15 patients, re-evaluative
images (both CT and MRI) were acquired during the treatment course with the same
immobilizations setup and were considered independent from the first acquisition, leading
to a total of 39 CT-MRI volume pairs collected. The study was approved by the local ethical
committee, and all patients signed the informed consent (CNAO 37-2019 4D-MRI).

The 4DCTs were acquired during patient free breathing on a Siemens SOMATOM
Sensation Open CT scanner (resolution 0.98 × 0.98 × 2 mm3). Clinical plans were op-
timized at end-exhale for gated treatments; as such, only this phase was used in this
work to derive sCTs. CT acquisitions had a variable number of slices, resulting in a vol-
ume size of 512 × 512 × [96 − 145] voxels. MRI acquisitions were performed with a
Siemens Magnetom Verio 3T scanner. Three-dimensional breath-hold T1-weighted vol-
umetric interpolated breath-hold examination (VIBE) sequences were acquired at end-
exhale with 1.06 × 1.06 × 3 mm3 resolution (repetition time TR = 3.87 ms, echo time
TE = 1.92 ms). For two patients, MRI acquisitions had a voxel size of 1.25 × 1.25 × 3 mm3

and 1.125 × 1.125 × 3 mm3. Most of the MRI acquisitions had 320 × 260 × 64 voxels,
except for one having 88 transversal slices. Two CT-MRI volume pairs were discarded from
the study because of the low quality of the acquired images. Therefore, 37 volume pairs
were used: 32 pairs were exploited for cross-validation (CV) and training, while five pairs
were randomly selected and held out for testing (Table 1) for more details on the treatment
plans. All treatment plans were optimized with the RayStation (Raysearch Laboratories,
Stockholm, Sweden—version 10.B) Treatment Planning System (TPS) on the end-exhale
reconstructed CT phase and clinically approved. Corresponding organs at risk (OARs),
gross tumor volume (GTV) and clinical target volume (CTV) were segmented by radiation
oncologists. The relevant OARs included were kidneys, aorta, colon, duodenum, stomach
and spinal cord.

Table 1. CIRT plan details for the patients used in the test set.

Patient N of Beams
Prescribed

Dose [Gy(RBE)]
Fractions Position

Tumor
Location

P17 1 43 10 Prone Pancreas
P20 1 38.4 8 Prone Pancreas
P21 2 57.6 12 Supine Pancreas
P27 1 38.4 8 Prone Pancreas
P31 1 48 10 Prone Pancreas

2.2. Pre-Processing

Although CT and MRI scans were acquired the same day and with an immobilization
setup, inter-acquisition motion (i.e., anatomical changes between CT and MRI scans)
was present. A manual rigid registration was firstly performed to align CT and MRI
scans. The application of deformable image registration (DIR) was investigated but did
not show relevant improvements on the quality of sCTs; therefore, it was not applied
(Supplementary Material S1). Indeed, in most cases, the multi-modal DIR could hardly
compensate for air filling mismatches and caused large bone deformations and artefacts that
reduced the size of the training dataset, making it a less effective approach. Nonetheless,
given the lack of a real ground truth (i.e., a CT with MRI anatomical configuration), DIR
was applied for the generation of pseudo ground truths (see Section 2.4).

CT slices were resampled to the corresponding MRI spacing to guarantee the voxel con-
sistency among the two volumes and clipped to [−1000,+1047] HU as previously performed
by Maspero et al. [14] to reduce the discretization step, while background values were set
to −1000 HU. For MRI volumes, the pre-processing consisted of: (i) bias field correction
to reduce low frequency noise due to magnetic field inhomogeneities [33]; (ii) reduction
of Gaussian noise through a non-linear bilateral filter; (iii) contrast enhancement through
histogram clipping to 99th percentile of intensity [14,21,24]: (iv) setting of background
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values to zero; and (v) histogram matching to similarly distribute grey levels across all MRI
volumes [34].

CT and MRI preprocessed volumes were all resized to 256 × 256 to match the network
input dimensions [19]. Then, the input MRI and target CT transversal slices were segmented
in three channels by means of CT-based masks (i.e., air [−1000,−800] HU, bone [150,1047]
HU, soft tissues [−800,150] HU) and then linearly scaled to [−1,1].

As a final step, eight transformations were applied to each CT/MRI channel triplet
used for training, including horizontal or vertical flip, Gaussian noise adding, shear, rotation
and cropping. Thus, the initial training dataset composed of 2014 CT-MRI slice pairs was
enlarged to 16,112. Pre-processing was performed through Python scripts implemented
using SimpleITK modules (version 2.0.2).

2.3. Neural Network

The neural network used in this work consisted of a cGAN derived from the open-
source network “Pix2Pix” by Isola et al. [19], adapted to work on three channels (air, bone,
soft tissues) to better account for the anatomical complexity of the abdomen [35] and to
deal with the limited dataset of 39 volume pairs.

The net was trained on transversal slices and composed of a 256 × 256 × 3 U-net
generator (Figure 1a), used to generate sCTs, and a 70 × 70 × 3 PatchGAN discrimina-
tor (Figure 1b), used to judge the quality of the output with high resolution during the
training [19]. The U-net is composed of eight encoder blocks, each comprising convolu-
tion, batch normalization and leaky rectified linear unit (ReLU) layers, and seven decoder
blocks, each composed of transposed convolution, batch normalization, dropout and ReLU
layers. The PatchGAN architecture is made of four encoding blocks, such that each pixel
of the 30 × 30 output classifies a 70 × 70 pixel patch of the input image. For the detailed
architecture, refer to Figure 1a,b.

The loss function (Equation (3)) combined L1 norm (Equation (1)) and cGAN adversar-
ial cross-entropy loss (Equation (2)) to reduce blurring effects and artefacts [19]:

L1 = Ex,y,z[‖x − G(y, z)‖1] (1)

LcGAN = −[Ey,x[log D(y, x)] + Ey,z[log(1 − D(y, G(y, z)))]
]

(2)

Ltot = LcGAN
(
θg, θd

)
+ λ·L1(θg) (3)

where x is the target CT, y is the input MRI, z the noise, G(y,z) the sCT, D(y,x) the PatchGAN
output, θg, θd are the trainable parameters of generator and discriminator, and λ = 100 is a
weight for the L1 norm, as from Isola et al. [19]. The role of this additional loss is to have
the generator not only mislead the discriminator, but also generate synthetic images that
mimic the target CT in an L1 sense, reducing the blurring and improving the representation
of structures. The cGAN loss was evaluated on the channel triplets, while the L1 norm was
evaluated after reassembling the sCT slice.

The MRI represents the conditional input of the net, with the noise z being provided
in the form of dropout on several layers of the U-net generator during training and testing.
The training was performed by alternating one gradient descent step on the discriminator
and one on the generator, using ADAM optimizer with momentum parameters β1 = 0.5,
β2 = 0.999. The training was stopped after 20 epochs, which were sufficient to achieve
convergence thanks to data augmentation.

The cGAN was optimized through a six-fold cross-validation (CV), setting the batch
size to 1 and discriminator learning rate to 2 × 10−7 (Supplementary Material S2). This
confirmed that the instance normalization (i.e., the use of batch-normalization layers with
batch = 1) is well-suited for image generation tasks [36]. The network was trained on the
full dataset (i.e., 32 volumes) and tested on the remaining five volumes (Figure 1c). Before
stacking all of the output slices to rebuild the synthetic volumes, the values of each channel
were re-scaled to the corresponding HU range and re-assembled by means of the same
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masks used for the channels’ segmentation. The stacked volumes were finally resized to
the original MRI [320 × 260 × Nslices] size.

Figure 1. (a) U-net generator. (b) PatchGAN discriminator.

2.4. Experiments

The results were evaluated by means of similarity metrics such as mean absolute error
(MAE), root mean squared error (RMSE), normalized cross correlation (NCC), structural
similarity index (SSIM) and peak signal-to-noise ratio (PSNR) between sCT and target
CT (Supplementary Material S3), with the exclusion of the background, both within CV
and testing scenarios. All metrics were evaluated on the basis of reassembled volumes,
applying the corresponding tissue mask. Specifically, the five held-out patients were used
(i) to create the test set, where CT-based masks were used for the analysis, and (ii) to build
an MRI-only simulation set, where the use of CT-based masks was replaced by manual
segmentation of the three channels directly on MRI (Figure 1c).

Within the MRI-only workflow, the evaluation of similarity metrics was performed
between sCTs and reference volumes obtained by applying DIR between the target CT
and MRI (i.e., pseudo ground truths, CTPGT) to compensate for MRI-CT inter-acquisition
motion (Figure 2a).
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Figure 2. (a) Example of MRI, CT, sCT and pseudo ground truth (CTPGT) on axial plane. CTPGT still
shows visible discrepancies with MRI anatomical condition. (b) Example of inter-acquisition motion
in a CT-MRI pair and the resulted sCT in CV. (c) Example of MRI, planning CT and synthetic CT from
MRI-only scenario. In red, the segmentation of kidneys used for the geometrical analysis.

The MRI-only scenario was evaluated also through geometrical criteria: dice coefficient
(DSC), 95th percentile Hausdorff distance (HD) and the center of mass distance (CoMD)
were calculated on kidney segmentations of MRI, CT and sCT, to assess the quality of the
sCT in terms of correct reproduction of soft tissues with respect to the MRI anatomy. HD,
DSC and CoMD were assessed for each couple of segmented volumes (CT-MRI, sCT-CT,
sCT-MRI). sCTs were compared to MRIs since we expected the sCT to be representative of
the MRI anatomical condition; CT was compared to MRI to determine the initial mismatch,
while sCTs were compared to target CTs to confirm that sCT was far from matching
CT structures.

Due to the lack of a real ground truth, the net was also validated on a CT-MRI volume
pairs obtained through a computational phantom (i.e., XCAT [37] for CT and correspondent
ComBAT [38] for MRI) that guaranteed an improved match of anatomical structures between
the two volumes, avoiding any inter-acquisition motion (Supplementary Material S4).

The clinical CIRT plans were recalculated on the MRI-only sCT for each patient
through the TPS and evaluated on the basis of DVH-based metrics (GTV D95%, CTV D95%,
D2% on OARs) and dose difference maps with respect to the original plan. A two one-
sided test of equivalence for paired samples (TOST-P) was used to compare the DVH
metrics, considering a confidence interval of 95% and an equivalence interval of ±0.5%.
The global gamma analysis was also performed with 1 mm/1%, 2 mm/2%, 3 mm/3% as
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tolerance criteria, and three dose thresholds: 10%, 50%, and 90% on the prescription dose.
A range shift (RS) analysis was performed to take into account possible dose shifts, which
are generally averaged in gamma analysis [15,39]. In this regard, both range shift (RS)
and relative range shift (RRS) were evaluated on a beam-by-beam basis, considering an
acceptability threshold set to 5 mm, in accordance with clinical margins used at CNAO [40].
RS and RRS are defined as:

RS = (RsCT80 − RCT80) (4)

RRS =
(

RS/
RCT80

)
(5)

where RsCT80 and RCT80 are the beam ranges computed at 80% of the dose peak. This evalu-
ation was performed on the dose profile along the central axis of each beam, considering
10 transversal slices, for a total of 60 RSs.

All computational steps were performed on a Precision 5820 Tower DELL workstation
equipped with a 16 GB RAM Nvidia GPU (QUADRO P5000). A full training procedure
took around 12 h, while the generation of a synthetic volume took ~5 s.

3. Results

The similarity metrics from CV, testing and MRI-only simulation are presented in
Table 2. Comparable results were found between CV and test performance, with MAE
on soft tissues and air channels being lower than that on bone. Notwithstanding inter-
acquisition discrepancies (Figure 2b), the air channel showed an error of 54.42 ± 11.48 HU,
the soft tissues 55.39 ± 3.41 HU, and the bone structures 86.03 ± 10.76 HU.

Table 2. Average results for CV, test and MRI-Only procedures, compared to the literature. Average
(St. Dev.). * Soft tissue. ** Lungs. *** Vertebral bodies. **** Bidirectional network.

MAE_Body
[HU]

RMSE
[HU]

SSIM PSNR [dB] NCC
MAE_Air

[HU]
MAE_Bone

[HU]
MAE_Soft

[HU]

O
ur

w
or

k

CV 56.52
(8.31)

97.24
(17.56)

0.651
(0.043)

27.73
(1.23)

0.857
(0.054)

46.19
(6.30)

90.76
(7.86)

54.79
(8.98)

TEST 57.08
(2.79)

99.69
(4.90)

0.67
(0.06)

27.64
(0.68)

0.92
(0.02)

54.42
(11.48)

86.03
(10.76)

55.39
(3.41)

MRI-ONLY 88.22
(9.88)

181.10
(11.84)

0.59
(0.08)

20.99
(1.49)

0.76
(0.10)

279.01
(142.46)

154.87
(22.90)

75.00
(8.12)

Li
te

ra
tu

re

[20] 78.71
(18.46) - - - - - 152.71

(30.14) 53.89 (10.7)

[24] 62(13) - - 30.0
(1.8) - 104(38) ** 167

(22) 36 (8) *

[25] 72.48
(18.16) - - 22.65

(3.63)
0.92

(0.04)
108.06
(49.45)

216.81
(63.0)

58.62
(30.61)

[26] 55.56
(2.27)

106.43
(11.45) - - 0.87

(0.03) - -

[27] - - - - - - - 90
(29)

[28] - - - - - - 110.09
(29.23) *** -

[21] 89.8
(18.7) - - 27.4

(1.6) - - - -

[23] 60.42
(2.27) - - - 0.88

(0.03) - - -

[22] 6.30
(0.56) **** - 0.90

(0.42) - - - - -
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The results relative to the MRI-only evaluation were characterized by larger values
on all metrics. In particular, the errors grew to 279.01 ± 142.46 HU on the air channel,
154.87 ± 22.90 HU in the case of bone structures, and 88.22 ± 9.88 HU within the body.

The geometrical analysis of the MRI-only workflow (Figure 2c) showed the lowest
discrepancies between CT and MRI segmentation, confirming good accuracy in replicating
MRI anatomy. As an example, the average CoMD in sCT-MRI was 5.85 ± 4.87 mm versus
7.75 ± 5.92 mm in CT-MRI and 13.30 ± 10.42 mm for sCT-CT. Detailed results are reported
in Supplementary Material S5.

The validation performed on the phantom showed an MAE of 73.3 HU on the whole
volume, while the MAEs on the three channels were of 66.11 HU, 77.93 HU and 167.36 HU
for soft tissues, air, and bones, respectively (see Supplementary Material S4).

As for dose accuracy, Figure 3 shows the DVH comparison for patient and dose re-
calculations on P17 and P27 (complete results reported in Supplementary Materials S6–S8).
The GTV and CTV D95% as well as the D2% on the organs at risk (OARs) are displayed in
Figure 4, expressed in terms of dose difference Δ(sCT-CT), MAE and relative error (E[%])
with respect to the prescribed dose. For all five patients, good reproducibility was shown
relative to the dose to the GTV, with patients P20 and P21 being characterized by errors of
−2.04 Gy[RBE] and −1.88 Gy[RBE] respectively, corresponding to −5.3% and −3.3% of the
prescribed dose. The MAE on the GTV D95% was 0.86 ± 0.90 Gy[RBE].

Figure 3. (a) DVH comparison on patients P17 and P27; (b) original CIRT plan (RBE) and sCT-based
recalculation for patients P17 and P27.
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Figure 4. (a) D95% values for GTV and CTV in the original plan (CT) and the recalculated one (sCT).
For P17, PTV was considered in this comparison (shown in Green). The table contains the dose values
and the dose difference Δ[Gy[RBE]], as well as the error relative to the prescribed dose E [%]. (b) D2%
difference (sCT-CT) for the main OARs on each patient, and the D2% MAE over each OAR. The red
mark indicates the median, and edges of the box show the 25th and 75th percentiles.

Similarly, the values relative to the CTV showed the two dose distributions to have
comparable results, with a maximum error of −5.10 Gy[RBE] for P21 (−8.9% of the pre-
scribed dose). The MAE on the D95% CTV was 1.34 ± 1.33 Gy[RBE]. The D2% relative errors
on OARs lay in an interquartile range (IQR) of [−0.24,0.22]%, although the colon reached a
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peak relative error of 37.03% (14.22 Gy[RBE]), and the duodenum of 16.25% (7.8 Gy[RBE])
(Supplementary Material S6). The voxel-wise dose difference maps are shown in Figure
S5 in Supplementary Material S7, highlighting the worst-case slice for each test patient.
Regions with a high dose difference can be mainly seen with correspondence of air pocket
mismatches, while the overall distribution of dose to the body is comparable. Indeed, as in
Table S6 in Supplementary Material S7, all test patients showed a median dose difference
close to zero, with the widest IQR being 0.158 Gy[RBE] on patient P21. The maximum
errors were in the range [22.64,42.36] Gy[RBE]. In this regard, an incomplete reproduction
of the kidney affected the dose distribution in patient P27 (Figure S6), while the limited
field of view of MRI introduced dose artefacts on recalculation for patient P21 (Figure S7).

A peak gamma pass rate of 94.88% was obtained in the 3%/3 mm analysis
(Supplementary Material S9).

The range shift analysis showed a median (IQR) RS of 0.98 (3.64) mm and RRS of
0.61 (2.14)% (Figure 5). Considering each beam individually, as shown in Table S9 in
Supplementary Material S10, patient P27 was the one showing the highest errors, with a
median RS of 5.69 (6.97) mm.

Figure 5. Representative range shift analysis on patient P27. (a) The graph shows both dose and
HU profiles in CT (light blue) and sCT (red), evaluated along the yellow line shown in (b). The
80% reference is marked by the horizontal line. (b) Corresponding CT and sCT sagittal views are
compared. The yellow line is one of the 10 considered for each beam, on different transversal slices.
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4. Discussion

In this work, we investigated for the first time the feasibility of a cGAN in generating
sCTs of the abdominal site for applications in CIRT. The cGAN, trained with transversal
CT-MRI slice pairs, was optimized to work on three channels corresponding to air, bone
and soft tissues to better account for the anatomical complexity of the abdomen.

The performance of the network was firstly evaluated on the basis of similarity metrics
of the test set built with CT-based segmentation. Despite MRI to CT inter-acquisition
motion, the MAE on the body (57.08 ± 2.79 HU) was comparable to results obtained by
other works on the abdominal site that used multiple Dixon sequences and more complex
architectures (55.56 ± 2.27 HU [26] and 60.42 ± 2.27 HU [23]), as well as U-nets trained on
T1w–T2w MRI acquisitions (62 ± 13 HU) [24]. In addition, this work favorably compares
to other studies exploiting cGAN or cycleGAN in terms of MAEBODY [20,21,25], even if the
bidirectional network from Xu et al. achieved outstanding results, although working on
a much wider unpaired dataset [22]. The NCC (0.92 ± 0.02) was shown to be consistent
with those of other works [23,25,26], while the PSNR (27.64 ± 0.68 dB) was comparable to
the work by Fu et al. [21]. Optimal MAE metrics were obtained in the generation of bone
structures (86.03 ± 10.76 HU) and soft tissues (55.39 ± 3.4 HU), outperforming other works
in the literature [20,24,25,28].

The MAE on the air channel and bones was also low with respect to other approaches
with cycleGAN [25]. This could be due to the use of CT-derived masks on the test set,
which may have aided the replication of CT air pockets and bone structures on the sCTs.

In order to cope with this and to simulate a real-case scenario, the network was then
tested on an MRI-only simulation set, where the MRI segmentation was completely in-
dependent from the use of CT. Given the limited performance of multi-modal DIR on
the considered dataset, manual segmentation of the three channels on MRI was consid-
ered the most accurate approach, despite the time-consuming task for clinical purposes.
Nonetheless, DIR was applied between the target CT and MRI to overcome the lack of a
ground truth CT representative of MRI anatomical condition, notwithstanding the minor
contribution of such registration. Indeed, this process did not fully compensate for dif-
ferent air cavities and inter-acquisition motion; therefore, the volumes (i.e., CTPGT) used
as reference were still showing visible discrepancies with respect to the MRI, biasing the
evaluation of the performance of the network (Figure 2a). A similar consideration applied
by Florkow et al. highlighted errors in HU intensities caused by inter-acquisition variations
that were not compensated by the deformable registration [24]. Moreover, the manual
segmentation of MRI represented a complex step, especially for bones, since they are not
clearly visible on VIBE volumes. Nonetheless, the results were shown to still be acceptable
when compared to the literature, with MAE on soft tissues (75.00 ± 8.12 HU) being aligned
to results obtained with GAN (90 ± 29 HU) or cycleGAN (58.62 ± 30.61 HU) [25,27].

The geometrical analysis, performed on the MRI-only test set, was conducted to
support the good geometrical agreement between sCT and MRI: in general, sCT and MRI
segmentations showed the best match, confirming the expected performance of the net in
reproducing the MRI anatomy, while sCTs showed higher deviations with respect to the
target CT scans. This evaluation was performed on segmentations of the kidneys, which are
well contrasted organs, and can be considered representative of the geometrical accuracy
in the reproduction of soft tissues.

Due to the lack of a proper ground truth on patients’ data, we supported our results
with a validation performed on a single CT-MRI volume pair obtained through a com-
putational phantom (i.e., XCAT [37] for CT and correspondent ComBAT [38] for MRI).
This approach, which guaranteed the perfect anatomical match between the two volumes,
provided promising outcomes (i.e., MAE of 73.3 HU on the whole volume) aligned with the
presented results and the literature. The MAE on the three channels described a discrete
reproduction of the air fillings and soft tissues, with poorer performance on bones, as
noticed also in the literature. NCC reached 0.89, describing an acceptable reproduction of
the anatomical structures (see Supplementary Material S4).
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For dose analysis, most patients (Figure 4a and Supplementary Materials S6–S8)
presented DVH metrics within clinical tolerances (i.e., below 3% of the prescribed dose)
and aligned with studies in the literature on protons (relative error < 3% on PTV [25] and
relative error < 2% on ITV—the internal target volume [24]). Moreover, p-values gave
statistical evidence of the equivalence between the DVH metrics from sCT and CT (p < 0.05,
Table S7 in Supplementary Material S8); however, a larger test dataset would make these
considerations more solid.

Concerning DVH metrics, Liu Y. et al. for protons [25] as well as Liu L. for photons [28]
obtained promising results, with errors on the maximum dose on the PTV being in the
range [−1,+1] Gy[RBE], also thanks to the use of lateral beams that avoided most of the
air-filled organs. Florkow et al. [24] obtained acceptable errors on the OARs, with D2%
being in the range [−2.7,3.7]% of the prescribed dose. Notwithstanding the use of DIR, the
work by Florkow et al. suffered from inter-scan variations (i.e., air fillings), that may have
caused an overestimation of the actual differences between the planning CT and sCT [24].
In our work, the IQR on the D2% relative error was [−0.24,0.22]%, but high errors were
highlighted on the colon (37.03%) and the duodenum (16.25%, Figure 4c), which were
highly affected by inter-acquisition motion of air fillings between sCT (representative of
MRI anatomy) and planning CT. In this regard, the work by Knäusl et al. [32] showed that
the constraints on OARs are very challenging for compliance, presenting errors of up to
28%, mostly due to the incorrect representation of bones or air cavities. Discrepancies in the
dose distributions were also confirmed by the gamma analysis, which in our work showed
a peak value of 94.88 ± 4.9% against the 99.37 ± 0.99% reported in the literature [25]. Table
S8 in Supplementary Material S9 shows a comparison of gamma pass rates from relevant
studies on proton and photon applications, which were, therefore, not fully comparable to
our application and highlighted the need for more studies on CIRT. The range shift analysis
presented median RS within the clinical threshold (i.e., 5 mm), but with critical results
for patients P27 and P31 (median (IQR), 5.69 (6.97) mm and 3.09 (2.60) mm, respectively),
because of the presence of unmatched air pockets (Figure 5b). In proton plans, a maximum
RS value of 5.6 mm (5.68%) was reported [25], whereas in our case, the inconsistencies of
air cavities led to RS values of up to 15.37 mm (i.e., RRS = 9.09%, patient P27). This aspect
may be critical for CIRT application, and needs to be analyzed on a wider population.

Similarly, the highest dose discrepancies were mostly found in correspondence of the
different disposition of air pockets between sCT and planning CT (Figure S5 in Supple-
mentary Material S7). The maximum error for patient P27 was due to an incomplete repro-
duction of the kidney (Figure S6), which caused an overdose for duodenum (+5.7% D02)
with respect to the prescribed dose (Supplementary Material S6). The dose artefacts on
recalculation for patient P21 reported regions of high dose differences (Figure S7), but
this issue was not correlated with the quality of the sCT and could be easily overcome by
acquiring wider volumes.

The main limitation of the study was the lack of a proper ground truth to validate the
proposed approach, which could not be fully compensated due to the poor performance of
multi-modal DIR in the abdominal site. As such, the use of computational phantoms [37,38]
to ensure the correspondence between CT and MRI scans will be considered in the future
as an effective approach to validate the proposed network, as anticipated in this work
(Supplementary Material S4), and enlarge the training dataset. In addition, although the
three channel implementation allowed good performance of the net in such a complex
anatomical site with limited data, manual segmentation can be demanding, especially for
not well-contrasted structures in VIBE acquisitions, such as bone, and is definitely not
suited for clinical application. Further steps could be, therefore, to include the acquisition
of specific MRI sequences (e.g., ultrashort echo time, UTE) to facilitate bone segmentation
or avoid channel separation in an improved version of the net [26]. We also expect that
our results could be improved by increasing the dataset; in future analyses, we intend
to include different respiratory phases to (i) achieve higher accuracy and limit errors in
the reproduction of tissues, (ii) eliminate separation in the three channels, and (iii) derive
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synthetic respiratory-correlated 4DCT [10,41]. Finally, although our results were mainly
affected by air-filling effects, the absence of the thermoplastic mask on the sCT could
also have an impact [32]; as such, a uniform and pre-defined outline to the sCT could be
applied [32], although it would not be an optimal countermeasure.

Despite the above-mentioned limitations, this work showed that the three-channel
cGAN can generate accurate sCTs of the abdominal site that can support treatment planning,
evaluation, and adaptation in CIRT. To the authors’ best knowledge, this work is the first
analysis applied to the abdomen for CIRT, and thus represents a starting point for future
in-depth analyses of the feasibility of MRI-only workflows in CIRT.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/bioengineering10020250/s1, Figure S1: Average MAE values on the three
channels, for each batch tested; Figure S2: Coronal view of the XCAT phantom (A. original, B. with
gaussian noise), ComBAT phantom (C) and the resulting synthetic CT (D); Figure S3: A. Histogram
representing the HD 95th percentile. B. Histogram relative to the CoM distances. C. Histogram
of Dice coefficient; Figure S4: DVH graphs comparing original plan (solid line) with sCT-based
recalculations (dotted line); Figure S5: CT, sCT and dose difference maps for the test patients. The
transversal slice shown contains the pixel with maximum error (black dot). Red arrows show the
possible causes; Figure S6: Coronal view of P27, showing an error in the reproduction of the kidney,
that affects the dose distribution; Figure S7: Dose recalculation on patient P21, coronal view. The
discrepancy in the MRI-CT FoV causes dose artefacts in the recalculation; Figure S8: Representative
range shift analysis on patient P17. The graph shows the Dose and HU profiles evaluated along the
white line, as shown on CT and sCT below. The horizontal black line represents the 80% of the peak
of dose; Table S1: DIR vs No-DIR average metrics results on the test set (St. Dev.); Table S2: Cross
validation results, Table S3: Results of the network validation on the phantom; Table S4: Geometrical
evaluation of kidney’s segmentations; Table S5: D2% Relative errors on each OAR. The values are
referred to the prescribed dose; Table S6: Dose difference median values [IQR] for the test patients on
the whole plan; Table S7: TOST-P test of equivalence P-values; Table S8: Average Gamma pass rates
(St. Dev.) of this work and literature references; Table S9: Median (IQR) RS and RRS evaluated over
10 transversal slices for each beam. Ap = Anterior-posterior. L = Lateral.
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Abstract: Deep-learning methods for auto-segmenting brain images either segment one slice of the
image (2D), five consecutive slices of the image (2.5D), or an entire volume of the image (3D). Whether
one approach is superior for auto-segmenting brain images is not known. We compared these three
approaches (3D, 2.5D, and 2D) across three auto-segmentation models (capsule networks, UNets, and
nnUNets) to segment brain structures. We used 3430 brain MRIs, acquired in a multi-institutional
study, to train and test our models. We used the following performance metrics: segmentation accu-
racy, performance with limited training data, required computational memory, and computational
speed during training and deployment. The 3D, 2.5D, and 2D approaches respectively gave the
highest to lowest Dice scores across all models. 3D models maintained higher Dice scores when the
training set size was decreased from 3199 MRIs down to 60 MRIs. 3D models converged 20% to 40%
faster during training and were 30% to 50% faster during deployment. However, 3D models require
20 times more computational memory compared to 2.5D or 2D models. This study showed that 3D
models are more accurate, maintain better performance with limited training data, and are faster to
train and deploy. However, 3D models require more computational memory compared to 2.5D or
2D models.

Keywords: auto-segmentation; deep learning; neuroimaging; magnetic resonance imaging

1. Introduction

Segmentation of brain magnetic resonance images (MRIs) has widespread applications
in the management of neurological disorders [1–3]. In patients with neurodegenerative
disorders, segmenting brain structures such as the hippocampus provides quantitative
information about the amount of brain atrophy [4]. In patients undergoing radiotherapy,
segmentation is used to demarcate important brain structures that should be avoided
to limit potential radiation toxicity [5]. Pre-operative or intra-operative brain MRIs are
often used to identify important brain structures that should be avoided during neuro-
surgery [6,7]. Manual segmentation of brain structures on these MR images is a time-
consuming task that is prone to intra- and inter-observer variability [8]. As a result, deep
learning auto-segmentation methods have been increasingly used to efficiently segment
important anatomical structures on brain MRIs [9].

Compared to two-dimensional (2D) auto-segmentation tasks, the three-dimensional
(3D) nature of brain MRIs makes auto-segmentation considerably more challenging. There
have been three proposed approaches to handling auto-segmentation of 3D images: (1) an-
alyze and segment a two-dimensional slice of the image at a time (2D), [10] (2) analyze
five consecutive two-dimensional slices at a time to generate a segmentation of the middle
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slice (2.5D), [11] and (3) analyze and segment the image volume in three-dimensional
space (3D) [10]. Although each approach has shown some promise in medical image seg-
mentation, a comprehensive comparison and benchmarking of these approaches for auto-
segmentation of brain MRIs is lacking. Prior studies on comparing these auto-segmentation
approaches have often not evaluated their efficacy in segmenting brain MRIs, or have lim-
ited their comparison narrowly to one deep learning architecture [10,12–14]. Additionally,
previous studies have focused primarily on segmentation accuracy and failed to evaluate
more practical metrics such as computational efficiency or accuracy in data-limited settings.
As a result, it is difficult for clinicians and researchers to easily choose the appropriate auto-
segmentation method for a desired clinical task. There is a need to compare and benchmark
these three approaches for brain MRI auto-segmentation across different models and using
comprehensive performance metrics.

In this study, we comprehensively compared 3D, 2.5D, and 2D approaches to brain
MRI auto-segmentation across three different deep learning architectures and used metrics
of accuracy and computational efficiency. We used a multi-institutional cohort of 3430 brain
MRIs to train and test our models, and evaluated the efficacy of each approach across three
clinically-relevant anatomical structures of the brain.

2. Methods

2.1. Dataset

This study used a dataset of 3430 T1-weighted brain MR images belonging to 841 pa-
tients from 19 institutions enrolled in the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) study [15]. The inclusion and exclusion criteria of ADNI have been previously
described [16]. On average, each patient underwent four MRI acquisitions. Each patient un-
derwent MR imaging using a single scanner at each site. However, the diversity of scanners
in all study sites included nine different types of MR scanners. Supplementary Material S1
describes the details of MRI acquisition parameters. We downloaded the anonymized MRIs
of these patients from Image and Data Archive, which is a data-sharing platform [15]. The
patients were randomly split into training (3199 MRIs, 93% of data), validation (117 MRIs,
3.5% of data), and test (114 MRIs, 3.5% of data) sets at the patient level. Therefore, all
images belonging to a patient were assigned to either the training, validation, or test set.
Table 1 summarizes patient demographics. For external validation, we additionally trained
and tested a subset of our models on a dataset that contains 400 images of right and left
hippocampi. The details of these experiments are provided in Supplementary Material S2.

Table 1. Study participants tabulated by the training, validation, and test sets.

Data Partitions Number of MRIs Number of Patients Age (Mean ± SD) Gender † Diagnosis ††

Training set 3199 841 76 ± 7 42% F, 58% M 29% CN, 54% MCI, 17% AD
Validation set 117 30 75 ± 6 30% F, 70% M 21% CN, 59% MCI, 20% AD

Test set 114 30 77 ± 7 33% F, 67% M 27% CN, 47% MCI, 26% AD

† F: female; M: male. †† CN: cognitively normal; MCI: mild cognitive impairment; AD: Alzheimer’s disease.

2.2. Anatomic Segmentations

We trained our models to segment three representative structures of the brain: the
third ventricle, thalamus, and hippocampus. These structures represent varying degrees of
segmentation difficulty: the third ventricle is an easy structure to segment because it is filled
with cerebrospinal fluid (CSF) with a distinct image contrast compared to surrounding
structures; the thalamus is a medium-difficulty structure because it is bounded by CSF
on one side and is bounded by white matter on the other side, and the hippocampus is
a difficult structure because it has a complex shape and is neighbored by multiple brain
structures with different image contrasts. Preliminary ground-truth segmentations were
initially generated by FreeSurfer [4,17,18], and were manually corrected by a board-eligible
radiologist (AA).
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2.3. Image Pre-Processing

MRI preprocessing included corrections for B1-field variations as well as intensity
inhomogeneities [19,20]. The 3D brain image was cropped around the brain after removing
the skull, face, and neck tissues [21]. The input to the 3D capsule networks and 3D UNets
were image patches sized 64 × 64 × 64 voxels. The inputs to the 2.5D capsule networks
and 2.5D UNets were five consecutive slices of the image. The inputs to the 2D capsule
networks and 2D UNets were one slice of the image. The inputs to the 3D and 2D nnUNet
models were respectively 3D and 2D patches of the images with self-configured patch sizes
that were automatically set by the nnUNet paradigm [22]. Supplementary Material S3
describes the details of pre-processing.

2.4. Auto-Segmentation Models

We compared the 3D, 2.5D, and 2D approaches (Figure 1) across three segmentation
models: capsule networks (CapsNets) [23], UNets [24], and nnUNets [22]. These models
are considered the highest-performing auto-segmentation models in the biomedical do-
main [9,22,23,25–29]. The 3D models process a 3D patch of the image as input, all feature
maps and parameter tensors in all layers are 3D, and the model output is the segmented
3D patch of the image. Conversely, 2D models process a 2D slice of the image as input,
all feature maps and parameter tensors in all layers are 2D, and the model output is the
segmented 2D slice of the image. The 2.5D models process five consecutive slices of the
image as input channels. The remaining parts of the 2.5D model, including the feature
maps and parameter tensors, are 2D, and the model output is the segmented 2D middle
slice among the five slices. We did not develop 2.5D nnUNets, because the self-configuring
paradigm of nnUNets was developed for 3D and 2D inputs but not for 2.5D inputs. Notably,
the aim of training and testing nnUNets (in addition to UNets) was to ensure that our
choices of hyperparameters did not cause one approach (such as 3D) to perform better than
other approaches. The nnUNet can self-configure the best hyperparameters for the 3D and
2D approaches but not for the 2.5D approach. As a result, we did not train or test 2.5D
nnUNets. The model architectures are described in Supplementary Material S4.

2.5. Training

We trained the CapsNet and UNet models for 50 epochs using Dice loss and the Adam
optimizer [30]. Initial learning rate was set at 0.002. We used dynamic paradigms for
learning rate scheduling, with a minimal learning rate of 0.0001. The hyperparameters for
our CapsNet and UNet models were chosen based on the model with the lowest Dice loss
over the validation set. The hyperparameters for the nnUNet model were self-configured
by the model [22]. Supplementary Material S5 describes the training hyperparameters for
CapsNet and UNet.

2.6. Performance Metrics

For each model (CapsNet, UNet, and nnUNet), we compared the performance of 3D,
2.5D, and 2D approaches using the following metrics: (1) Segmentation accuracy: we used
the Dice score to quantify the segmentation accuracy of the fully trained models over the
test set.31 We compared Dice scores between the three approaches for three representative
anatomic structures of the brain: the third ventricle, thalamus, and hippocampus. The mean
Dice scores for the auto-segmentation of these brain structures are reported together with
their 95% confidence interval. To compute the 95% confidence interval for each Dice score,
we used bootstrapping to sample the 114 Dice scores over the test set, with replacement,
1000 times. We then calculated the mean Dice score for each of the 1000 samples, giving
us 1000 mean Dice scores. We then sorted these mean Dice scores and found the range
that covered 95% of them, which is equivalent to the 95% confidence interval for each
Dice score. (2) Performance when training data is limited: we trained the models using
the complete training set and random subsets of the training set with 600, 240, 120, and
60 MR images. The models trained on these subsets were then evaluated over the test
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set. (3) Computational speed during training: we compared the time needed to train
the 3D, 2.5D, and 2D models per training example per epoch until the model converged.
(4) Computational speed for segmenting an MR image: we compared how quickly each of
the 3D, 2.5D, and 2D models segment one brain MRI volume. (5) Computational memory:
we compared how much GPU memory is required, in units of megabytes, to train and
deploy each of the 3D, 2.5D, and 2D models.

Figure 1. We compared three segmentation approaches: 3D, 2.5D, and 2D. The 2D approach analyzes
and segments one slice of the image, the 2.5D approach analyzes five consecutive slices of the image
to segment the middle slice, and the 3D approach analyzes and segments a 3D volume of the image.

2.7. Implementation

Image pre-processing was carried out using Python (version 3.10) and FreeSurfer
(version 7). PyTorch (version 1.12) was used for model development and testing. Training
and testing of the models were run on GPU-equipped servers (4 vCPUs, 16 GB RAM,
16 GB NVIDIA GPU). The code used to train and test our models is available on our lab’s
GitHub page: https://github.com/Aneja-Lab-Yale/Aneja-Lab-Public-3D2D-Segmentation
(accessed on 4 November 2022).

3. Results

The segmentation accuracy of the 3D approach across all models and all anatomic
structures of the brain was higher than that of the 2.5D or 2D approaches, with Dice scores
of the 3D models above 90% for all anatomic structures (Table 2). Within the 3D approach,
all models (CapsNet, UNet, and nnUNet) performed similarly in segmenting each anatomic
structure, with their Dice scores within 1% of each other. For instance, the Dice scores of 3D
CapsNet, UNet, and nnUNet in segmenting the hippocampus were respectively 92%, 93%,
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and 93%. Figure 2 shows auto-segmented brain structures in one patient using the three
approaches. Likewise, our experiments using the external hippocampus dataset showed
that 3D nnUNets achieved higher Dice scores compared to 2D nnUNets. Supplementary
Material S2 details the results of our experiments with the external hippocampus dataset.

3D models maintained higher accuracy, compared to 2.5D and 2D models, when
training data were limited (Figure 3). When we trained the 3D, 2.5D, and 2D CapsNets using
the full training set containing 3199 MRIs, their Dice scores in segmenting the third ventricle
were respectively 95%, 90%, and 90%. When we trained the same models on smaller subsets
of the training set containing 600, 240, 120, and 60 MRIs, the performance of 3D, 2.5D,
and 2D CapsNets gradually decreased down to 90%, 88%, and 87% for the 3D, 2.5D, and
2D CapsNets, respectively (Figure 3). Importantly, the 3D CapsNet maintained higher
Dice scores (over the test set) compared to 2.5D or 2D CapsNets in all these experiments.
Similarly, when we trained 3D, 2.5D, and 2D UNets using the full training set, their Dice
scores in segmenting the third ventricle were respectively 96%, 91%, and 90%. Decreasing
the size of the training set down to 60 MRIs resulted in Dice scores of 90%, 88%, and 87%
for the 3D, 2.5D, and 2D UNets, respectively. Again, the 3D UNet maintained higher Dice
scores compared to 2.5D or 2D UNets in all these experiments. Lastly, when we trained
3D and 2D nnUNets using the full training set, their Dice scores in segmenting the third
ventricle were respectively 96% and 90%. Decreasing the size of the training set down to
60 MRIs resulted in Dice scores of 92% and 87% for the 3D and 2D nnUNets, respectively.
Once more, the 3D nnUNet maintained higher Dice scores compared to the 2D nnUNet in
all these experiments (Figure 3).

The 3D models trained faster compared to 2.5D or 2D models (Figure 4). The 3D,
2.5D, and 2D CapsNets respectively took 0.8, 1, and 1 s per training example per epoch
to converge during training. The 3D, 2.5D, and 2D UNets respectively took 1.6, 2.2 and
2.9 s per training example per epoch to converge during training. The 3D and 2D nnUNets
respectively took 2 and 2.9 s per training example per epoch to converge during training.
Therefore, 3D models converged 20% to 40% faster compared to 2.5D or 2D models. Sup-
plementary Material S6 also compares total convergence times between the 3D, 2.5D, and
2D approaches.

Table 2. Comparing the segmentation accuracy of 3D, 2.5D, and 2D approaches across three auto-
segmentation models to segment brain structures. The three auto-segmentation models included
CapsNet, UNet, and nnUNet. These models were used to segment three representative brain
structures: third ventricle, thalamus, and hippocampus, which respectively represent easy, medium,
and difficult structures to segment. The segmentation accuracy was quantified by Dice scores over
the test (114 brain MRIs).

CapsNet

Brain Structure 3D Dice (95% CI) 2.5D Dice (95% CI) 2D Dice (95% CI)

3rd ventricle 95% (94 to 96) 90% (89 to 91) 90% (88 to 92)
Thalamus 94% (93 to 95) 76% (74 to 78) 75% (72 to 78)

Hippocampus 92% (91 to 93) 73% (71 to 75) 71% (68 to 74)

UNet

Brain Structure 3D Dice (95% CI) 2.5D Dice (95% CI) 2D Dice (95% CI)

3rd ventricle 96% (95 to 97) 92% (91 to 93) 91% (89 to 91)
Thalamus 95% (94 to 96) 92% (91 to 93) 90% (88 to 92)

Hippocampus 93% (92 to 94) 86% (84 to 88) 88% (86 to 90)

nnUNet nnUNet nnUNet nnUNet

Brain Structure Brain Structure Brain Structure Brain Structure

3rd ventricle 3rd ventricle 3rd ventricle 3rd ventricle
Thalamus Thalamus Thalamus Thalamus

Hippocampus Hippocampus Hippocampus Hippocampus
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Figure 2. Examples of 3D, 2.5D, and 2D segmentations of the right hippocampus by CapsNet, UNet,
and nnUNet. Target segmentations and model predictions are respectively shown in green and red.
Dice scores are provided for the entire volume of the right hippocampus in this patient (who was
randomly chosen from the test set).

 

 
(a)  (b) (c) 

Figure 3. Comparing 3D, 2.5D, and 2D approaches when training data is limited. As we decreased the
size of the training set from 3000 MRIs down to 60 MRIs, the CapsNet (a), UNet (b), and nnUNet (c)
models maintained higher segmentation accuracy (measured by Dice scores).
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(a) (b) (c) 

Figure 4. Comparing computational time required by 3D, 2.5D, and 2D approaches to train and
deploy auto-segmentation models. The training times represent how much time it would take per
training example per epoch for the model to converge. The deployment times represent how much
time each model would require to segment one brain MRI volume. The 3D approach trained and
deployed faster across all auto-segmentation models, including CapNet (a), UNet (b), and nnUNet (c).

Fully-trained 3D models could segment brain MRIs faster during deployment com-
pared to 2.5D or 2D models (Figure 4). Fully-trained 3D, 2.5D, and 2D CapsNets could
respectively segment a brain MRI in 0.2, 0.4, and 0.4 s. Fully-trained 3D, 2.5D, and 2D
UNets could respectively segment a brain MRI in 0.2, 0.3, and 0.3 s. Lastly, fully-grained 3D
and 2D nnUNets could respectively segment a brain MRI in 0.3 and 0.5 s. Therefore, fully-
trained 3D models segmented a brain MRI 30% to 50% faster compared to fully-trained
2.5D or 2D models.

The 3D models needed more computational memory to train and deploy as compared
to the 2.5D or 2D models (Figure 5). The 3D, 2.5D, and 2D CapsNets respectively required
317, 19, and 19 megabytes of GPU memory during training. The 3D, 2.5D, and 2D UNets
respectively required 3150, 180, and 180 megabytes of GPU memory. The 3D and 2D
nnUNets respectively required 3200 and 190 megabytes of GPU memory. Therefore, 3D
models required about 20 times more GPU memory compared to 2.5D or 2D models.
Notably, CapsNets required 10 times less GPU memory compared to UNets or nnUNets.
Therefore, 3D CapsNets only required two times more GPU memory compared to 2.5D or
2D UNets or nnUNets (Figure 5).

  

(a) (b) (c) 

Figure 5. Comparing the memory required by the 3D, 2.5D, and 2D approaches. The bars represent
the computational memory required to accommodate the total size of each model, including the
parameters plus the cumulative size of the forward- and backward-pass feature volumes. Within
each auto-segmentation model including the CapsNet (a), UNet (b), and nnUNet (c), the 3D approach
required 20 times more computational memory compared to the 2.5D or 2D approaches.
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4. Discussion

In this study, we compared the 3D, 2.5D, and 2D approaches of auto-segmentation
across three different deep learning architectures, and found that the 3D approach is more
accurate, faster to train, and faster to deploy. Moreover, the 3D auto-segmentation approach
maintained better performance in the setting of limited training data. We found the major
disadvantage of 3D auto-segmentation approaches to be increased computational memory
requirement compared to similar 2.5D and 2D auto-segmentation approaches.

Our results extend the prior literature [10,12,13,31–34] in key ways. We provide the
first comprehensive benchmarking of 3D, 2.5D, and 2D approaches in auto-segmenting of
brain MRIs, measuring both accuracy and computational efficiency. We compared 3D, 2.5D,
and 2D approaches across three of the most successful auto-segmentation models to date,
namely capsule networks, UNets, and nnUNets [22,23,26,30,33–36]. Our findings provide
a practical comparison of these three auto-segmentation approaches that can provide
insight when attempting auto-segmentation in settings where computational resources are
bounded or when the training data are limited.

We found that the 3D approach to auto-segmentation trains faster and deploys more
quickly. Previous studies that compared the computational speed of 3D and 2D UNets have
concluded conflicting results: some suggested that 2D models converge faster, [10,13,32],
whereas others suggested that 3D models converge faster [22]. Notably, one training
iteration of 2.5D or 2D models is faster than 3D models because 2.5D and 2D models have
20 times fewer trainable parameters compared to 3D models. However, feeding a 3D
image volume into a 2.5D or 2D model requires a for loop that iterates through multiple
slices of the image, which slows down 2.5D and 2D models. Additionally, 3D models can
converge faster during training because they can use the contextual information in the
3D image volume to segment each structure [10]. Conversely, 2.5D models can only use
the contextual information in a few slices of the image [11], and 2D models can only use
the contextual information in one slice only [12]. Since the 3D approach provides more
contextual information for each segmentation target, the complex shape of structures such
as the hippocampus can be learned faster, and, as a result, the convergence of 3D models
can become faster. Lastly, each training iteration through a 3D model can be accelerated
by larger GPU memory, since the training of learnable parameters can be parallelized.
However, each training iteration through a 2.5D or 2D model cannot be accelerated by
larger GPU memory because iterations through the slices of the image (for loop) cannot be
parallelized. We propose that our findings, that 3D models converge faster, resulted from
using state-of-the-art GPUs and efficient 3D models that learn contextual information in
the 3D volume of the MR image faster. Our results also show that the 3D models are faster
during deployment since they can process the 3D volume of the image at once, while 2.5D
or 2D models must loop through 2D image slices.

Our results do highlight one of the drawbacks of 3D auto-segmentation approaches.
Specifically, we found that within each model, the 3D approach requires 20 times more
computational memory compared to the 2.5D or 2D approaches. Previous studies that
compared 3D and 2D UNets have found similar results [10,31]. This seems to be the
only downside of the 3D approach compared to the 2.5D or 2D approaches. Notably,
the 2.5D approach was initially developed to achieve segmentation accuracy similar to
the 3D approach while requiring computational resources similar to the 2D approach.
In brain image segmentation, however, our results show that the 2.5D approach could
not achieve the segmentation accuracy of the 3D approach. This raises the question
of which approach to use when computational memory is limited. Our results show
that 3D CapsNets outperformed all 2.5D and 2D models while only requiring twice more
computational memory than the 2.5D or 2D UNets or nnUNets. Conversely, 3D UNets and
nnUNets required 20 times more computational memory compared to 2.5D or 2D UNets
and nnUNets. Therefore, 3D CapsNets may be preferred in settings where computational
memory is limited.
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Our results corroborate previous studies showing that deep learning is accurate in
biomedical image auto-segmentation [9,22,26–29]. Prior studies have shown that capsule
networks, UNets, and nnUNets are the most accurate models to auto-segment biomedical
images [9,11,22,23,25,26,28,33,34,36–38]. Prior studies have also shown that the 3D, 2.5D,
and 2D versions of these models can auto-segment medical images [9,11,22,23,28,29,34].
However, evidence was lacking about which of the 3D, 2.5D, or 2D approaches would be
more accurate in auto-segmenting brain structures on MR images. Our results also provide
practical benchmarking of computational efficiency between the three approaches, which is
often under-reported.

Our study has several notable limitations. First, we only compared the 3D, 2.5D, and
2D approaches to the auto-segmentation of brain structures on MR images. The results of
this study may not generalize to other imaging modalities or other body organs. Second,
there are multiple ways to develop a 2.5D auto-segmentation model [11,39,40]. While
we did not implement all of the different versions of 2.5D models, we believe that our
implementation of 2.5D models (using five consecutive image slices as input channels)
is the best approach to segment the neuroanatomy on brain images. Third, our results
about the relative deployment speed of 3D models as compared to 2.5D or 2D models
might change as computational resources change. If the GPU memory is large enough
to accommodate large 3D patches of the image, 3D models can segment the 3D volume
faster. However, in settings where the GPU memory is limited, the 3D model should loop
through multiple smaller 3D patches of the image, eroding the faster performance of the
3D models during deployment. However, we used a 16 GB GPU to train and deploy
our models, which is commonplace in modern computing units used for deep learning.
Finally, we compared 3D, 2.5D, and 2D approaches across three auto-segmentation models
only: CapsNets, UNets, and nnUNets. While multiple other auto-segmentation models
are available, we believe that our study has compared 3D, 2.5D, and 2D approaches across
the most successful deep-learning models for medical image auto-segmentation. Further
studies comparing the three approaches across other auto-segmentation models can be an
area of future research.

5. Conclusions

In this study, we compared 3D, 2.5D, and 2D approaches to brain image auto-segmentation
across different models and concluded that the 3D approach is more accurate, achieves better
performance in the context of limited training data, and is faster to train and deploy. Our
results hold across various auto-segmentation models, including capsule networks, UNets, and
nnUNets. The only downside of the 3D approach is that it requires 20 times more computational
memory compared to the 2.5D or 2D approaches. Because 3D capsule networks only need
twice the computational memory that 2.5D or 2D UNets and nnUNets need, we suggest using
3D capsule networks in settings where computational memory is limited.
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Abstract: Diagnostic results can be radically influenced by the quality of 2D ovarian-tumor ultra-
sound images. However, clinically processed 2D ovarian-tumor ultrasound images contain many
artificially recognized symbols, such as fingers, crosses, dashed lines, and letters which assist artificial
intelligence (AI) in image recognition. These symbols are widely distributed within the lesion’s
boundary, which can also affect the useful feature-extraction-utilizing networks and thus decrease
the accuracy of lesion classification and segmentation. Image inpainting techniques are used for
noise and object elimination from images. To solve this problem, we observed the MMOTU dataset
and built a 2D ovarian-tumor ultrasound image inpainting dataset by finely annotating the various
symbols in the images. A novel framework called mask-guided generative adversarial network
(MGGAN) is presented in this paper for 2D ovarian-tumor ultrasound images to remove various
symbols from the images. The MGGAN performs to a high standard in corrupted regions by using an
attention mechanism in the generator to pay more attention to valid information and ignore symbol
information, making lesion boundaries more realistic. Moreover, fast Fourier convolutions (FFCs)
and residual networks are used to increase the global field of perception; thus, our model can be
applied to high-resolution ultrasound images. The greatest benefit of this algorithm is that it achieves
pixel-level inpainting of distorted regions without clean images. Compared with other models, our
model achieveed better results with only one stage in terms of objective and subjective evaluations.
Our model obtained the best results for 256 × 256 and 512 × 512 resolutions. At a resolution of
256 × 256, our model achieved 0.9246 for SSIM, 22.66 for FID, and 0.07806 for LPIPS. At a resolution
of 512 × 512, our model achieved 0.9208 for SSIM, 25.52 for FID, and 0.08300 for LPIPS. Our method
can considerably improve the accuracy of computerized ovarian tumor diagnosis. The segmentation
accuracy was improved from 71.51% to 76.06% for the Unet model and from 61.13% to 66.65% for the
PSPnet model in clean images.

Keywords: ovarian tumor; 2D ultrasound image; image inpainting; lesion segmentation; attention
mechanism; GAN; deep learning; medical image analysis

1. Introduction

Medical ultrasonography has turned out to be the preferred imaging technique for
many illnesses due to the fact of its simplicity, speed, and safety [1–5]. Two-dimensional
gray-scale ultrasound and coloration Doppler ultrasound has been broadly used in the
diagnostic tasks of ovarian tumors. Doctors can first perceive the benign and malignant
nature of tumors. With the non-stop development and improvement of deep learning [6,7],
AI, as a riding pressure for intelligent healthcare, has acquired a massive range of achieve-
ments in tasks such as clinical image classification and segmentation [8–11]. The accuracy
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of the model additionally relies upon the quality of the dataset [12,13]. There is exceedingly
little research on the current use of AI for lesion recognition and segmentation of ovarian
tumor diseases. In addition, the effectiveness of AI in processing ovarian-tumor images
depends on a large-scale AI dataset. Zhao et al. [14] proposed an ovarian-tumor ultrasound
image dataset for lesion classification and segmentation. The dataset consists of a complete
of 1469 2D ovarian ultrasound images which are divided into eight categories according to
tumor types. The giant majority of the images in the dataset contain annotated symbols,
which are overwhelmingly allotted to inside the lesion.

Nevertheless, hidden but crucial trouble has been recognized in practice: most 2D
ovarian-tumor ultrasound images incorporate extra symbols. Actually, in clinical opera-
tions where ovarian ultrasound images are acquired, the physician will mark the location,
size, and border of the tumor in the ovarian ultrasound image, and observe where the
lesion is positioned (left or right ovary). Due to equipment factors and the clinical prac-
tice environments, the artificially marked component of these aids to image recognition
(symbols such as fingers, crosses, dashes, and letters) cannot be separated from the original
image. This phenomenon is also widespread in different medical fields [15–18]. The ideal
situation would be to train and test deep learning models using clean images without any
symbols in lesion areas.

We observe that these symbols are centered in ovarian tumor lesions, which negatively
affects the training of the model to a positive extent, causing the network to focus more on
the symbols in the lesions, which in turn reduces the recognition accuracy of ovarian tumors
in the clean images and the segmentation accuracy of the lesions. The different types of
images in this paper are shown in Figure 1. The original images with symbols were used as
the training set, and two different test sets of clean images and original images with symbols
were used as a way to discover the impact of symbols on the segmentation accuracy of
the model. Figures 2 and A1 exhibit the effects of our experiments. Fewer training epochs
are required to segment more accurate lesion regions in images with symbols, and the
segmented regions targeted the yellow line roughly. The clean images, on the other hand,
required more epochs and reached lower segmentation accuracy. The results show that the
symbols in the images provide additional information to the model enhancing the accuracy
of segmentation, which is unrealistic in clinical practice. There is little research on this
issue, and it is certainly inappropriate to use the marked ovarian-tumor ultrasound images
directly to train the segmentation model. Thus, it is critical for the corrupted areas of the
images to be painted, so it is significant for healthcare professionals to use clean images for
the artificial intelligence-aided diagnosis of ovarian tumors.

Figure 1. (Clean Image) The clean images indicate images that are not clinically labeled. (Original

Image) The original images indicate clinical images that are labeled. The red-boxed areas show the
various marker symbols used by physicians. (Inpainting Image) The inpainting images indicate
images whose symbols are repaired.
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Figure 2. The accuracy graph of lesion segmentation of the Unet [19] model. The blue line represents
the accuracy of using the clean images as the testing set. The yellow line represents the accuracy of
using the original images with symbols as the testing set. The figure also shows the visualization of
the segmentation results for the 50th and 150th epochs.

Currently, image inpainting in medical images is in the process of booming and has a
lot of potential for development. Existing methods are primarily divided into traditional
methods and deep learning-based methods. Traditional methods make use of patch-based
or diffusion-based methods, the core of which is to use the redundancy of the image itself
to fill in the missing areas with low-level texture features of the image. The following four
methods are historically used for inpainting: interpolation [20], non-local means [21], diffu-
sion techniques [22], and texture-dependent synthesis [23]. However, ordinary methods
cannot learn the deep semantic features of medical images frequently and can not attain
excellent results.

Deep-learning-based methods use convolutional neural networks to extract and learn
high-level semantic features in the image to guide the model to fill the missing parts.
Inspired by EdgeConnect [24], Wang et al. [25] migrated the method using edge information
to medical images. This paper details the study of these methods and use of an attention
mechanism, a pyramid-structured generator, to enforce the inpainting of thyroid ultrasound
images, which automatically detects and reconstructs the cross symbols in ultrasound
images. However, this method has some limitations: the cross symbols in the thyroid
ultrasound images used in this approach are small and few, and the effect is negative
for ultrasound images containing many large symbols; the detected cross symbols are
labeled with rectangular boxes, and this approach does not apply to different symbols with
irregular shapes; the real background is covered by these symbols, and the restoration
areas have no real background, so how to guide the generative adversarial network for
training and evaluation, in this case, is a very necessary issue. Wei et al. [26] proposed
the MagGAN for face-attribute editing. The MagGAN does this by introducing a novel
mask-guided adjustment strategy to encourage the affected regions of each target attribute
to be positioned in the generator, using the corresponding attributes of the face (eyes,
nose, mouth, etc.). The method is applied to the face-attribute editing task, which requires
segmentation of the face’s attributes, which is different from our task. However, the
motivation of making the results more realistic by bootstrapping the model is similar.
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In addition, various attention mechanisms have been proposed and are broadly used
in image processing. These attention mechanisms have been steadily utilized in the image
inpainting task. Zeng et al. [27] expanded on this by proposing a pyramidal structure for
contextual attention. Yi et al. [28] proposed a contextual residual aggregation of attention
for high-resolution images. The spatial attention mechanism was utilized to solve this
problem. To acquire results with a clear structure and texture, the Shift-Net model proposed
by Yan et al. [29] replaced the fully detailed layer in the upsampling process with a shift-
connected layer, through which the features in the background region are shifted to fill in
the holes.

Due to the above issues, in this paper, a one-stage generation model based on GANs is
proposed, which swaps the regular convolution with fast Fourier convolutions to enhance
the image-wide acceptance field of the model and includes a channel attention mechanism
to minimize the model’s focus on symbols to fill the holes using effective features. To the
best of our knowledge, we are the first to accomplish image inpainting on 2D ovarian-
tumor ultrasound images with large and irregular masks, and our approach achieves more
convincing results than others.

Our contributions are as follows:

• We refined 1469 2D ovarian-tumor ultrasound images for irregular symbols and
obtained binary masks to establish a 2D ovarian-tumor ultrasound image inpaint-
ing dataset.

• We introduced fast Fourier convolution to enhance the model’s global perceptual field
and a channel attention mechanism to enhance the model’s attention to significant
features, and the model uses global features and significant channel features to fill
the holes.

• Our model achieved better results both subjectively and objectively compared to exist-
ing models while for the first time performing image inpainting without clean images.

• We use the restoration images for segmentation training, which significantly enhances
the accuracy of the classification and segmentation of clean images.

The rest of the paper is organized as follows: Section 2 describes our dataset and model
in detail. The associated experiments and results are detailed in Section 3. The conclusions
are introduced in Section 4.

2. Methodology

2.1. Dataset

In recent years, research about ovarian tumors has increased, and researchers have
combined ovarian tumor sonograms with deep learning for ovarian tumor classification
and lesion segmentation [30–33]. Most of the 2D ovarian-tumor ultrasound images used
in these studies contain symbols, which are broadly allotted to the edges or inner parts
of the lesions. We experimentally confirmed the negative effect of these symbols on
the classification accuracy and lesion segmentation accuracy of tumors. The MMOTU
dataset [14] is a publicly available ovarian ultrasound image dataset. We obtained a 2D
ovarian-tumor ultrasound image inpainting dataset based on the MMOTU dataset by
refining annotation processing. As shown in Figure 3, the green dashed line in the figure is
how the MMOTU dataset is annotated. We labeled the fingers and letters (brown boxes),
numbers (blue boxes), and yellow lines (yellow boxes) in the figure on this basis.

With annotation, a corresponding mask for each image is generated, which masks
the various symbols in the image. Figure 4 indicates our pipeline. With these annotations,
the corresponding mask for each image was generated to build an inpainting dataset
containing 1469 2D ultrasound images of ovarian tumors and masks. We performed
experiments about image inpainting on our dataset and the effect of image inpainting on
lesion segmentation accuracy in the MMOUT dataset.
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Figure 3. Original 2D ovarian-tumor ultrasound images and images with annotated symbols.

Figure 4. The pipeline of mask generation. (a) The original image. (b) The annotation. (c) The
boundary. (d) The mask.

2.2. Implementation Details

In this study, we used a complete, 2D ovarian-tumor ultrasound dataset with 1469 im-
ages that we produced, of which 1200 images were used for training and 269 images
were used for testing. Arbitrarily shaped masks were used during training and testing.
To make certain the equity of the experiments, we generated unique irregular masks for
the images used for testing. The inputs in our experiments had two specifications: one
specification was 256 × 256 (h × w), and the other specification was 512 × 512 (h × w).
We trained and tested our model with both image specifications. The Adam optimizer
was chosen to optimize the network. We set the initial learning rate to 0.0001, the batch
size for training to 16, and the epoch to 1000. In addition to generating masks using our
proposed mask generation strategy, we also performed data enhancement operations on the
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images during training. The framework was PyTorch, and the devices were two NVIDIA
GeForce RTX3090Ti.

2.3. Proposed Methods
2.3.1. Network Architecture

We propose an image inpainting model based on fast Fourier convolutions (FFCs) with
a channel attention mechanism. Figure 5 indicates the details of our model. The images
are downsampled by three convolutional layers and then encoded with the aid of nine fast
Fourier Convolution Residual Network Blocks. The decoder obtains the inpainting image
by predicting the output of the encoder. These inpainting and original images are fed into
the discriminator for adversarial training. Traditional fully convolutional models, such as
ResNet [34], suffer from slow perceptual-field growth due to a small convolutional kernel
size and limited receptive fields. Due to this reason, many layers in the network lack global
context, such that the result has a lack of global structural consistency. We replaced the
regular convolution with the fast Fourier convolution to solve this problem. In addition,
due to the presence of symbols such as yellow dashed lines in the images, we added a
channel attention layer to our model to permit the model to focus more on useful features
and make the results more realistic. Figure 6 suggests the specified architecture of the Fast
Fourier Convolution Block.

Figure 5. The overall architecture of our MGGAN model. The generator consists of 9 FFC Residual
Network Blocks with our mask to a priori guide the generator for image inpainting.

2.3.2. Fast Fourier Convolution Block

Regular convolution is mostly used in deep learning models; however, it cannot
capture the global features. Fast Fourier convolutions [35] can be an appropriate solution
to this problem. The FFCs divide the input channel into local and global paths: the local
path uses regular convolution to capture local information; the global path uses the real
fast Fourier transform to obtain information with a global receptive field. The fast Fourier
change consists of the following five steps:

• Transforming the input tensor to the frequency domain using the real fast Fourier

transform: RH×W×C → CH×W
2 ×C.

• Concatenating the real and imaginary parts in the frequency domain:

CH×W
2 ×C → RH×W

2 ×2C.
• Obtaining convolution results in the frequency domain through the ReLU layer, Batch-

Norm layer, and 1 × 1 convolution layer: RHand2×2C → RH×W
2 ×2C.
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• Separating the result of frequency domain convolution into real and imaginary parts:

RH×W
2 ×2C → CH×W

2 ×C.
• Recovering its spatial structure using Fourier inverse transform: CH×W

2 ×C → RH×W×C.

As shown in Figure 6, we add a squeeze-and-excitation (SE) layer after the spectral
transform block, which performs the squeeze, excitation, and reweight operations in turn.
The SE layer automatically acquires each feature channel’s weight via learning, then boosts
the beneficial features and suppresses the ones that are no longer beneficial according to
the weight. By using the SE layer, we make the model focus more on the useful features
rather than on the features of these symbols in the image. Finally, the output of the local
and global paths are merged.

Figure 6. The architecture of the Fast Fourier Convolution Block (FFC Block).

2.3.3. Generation of masks during training

The approach of mask generation during training has been extensively mentioned in
previous research, and it is crucial for the inpainting effect of the model. In early studies,
the generated masks are rectangular in shape [36], centered on the geometric center of the
image. Models trained with these masks have bad results for images with non-centered
rectangular masks. Therefore, the method of generating masks at random locations [37]
in the image during training was proposed, but this method fails to provide effective and
realistic inpainting of images with irregular masks. Subsequently, the strategy of randomly
generating irregular masks [38–40] at random locations in the image has emerged.

There are many symbols in the image that obscure the clean image. If these areas
are repaired, the results cannot be evaluated realistically due to the fact there is no clean
image. We need to guide the network to learn to use features of the non-symbolic regions
to fill holes. In our task, we propose a new mask generation strategy by generating
random irregular masks at random locations outside the symbolic regions in the image.
The generation formula for the masks is as follows:

m = mgen − mprior (1)

where mprior is the mask corresponding to the image in the dataset, mgen is the mask
generated by the mask generator, and m is the final mask.
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2.4. Loss Function

The loss function in the generation task is essential for the training of the model, and it
calculates the distinction between the ground truth and the inpainting image as the loss
value. The loss values are back-propagated, and the model is penalized to update the
parameters of each layer. In the end, the loss value is reduced, and the result is closer to the
ground truth.

Several extraordinary loss functions were used in our task. In our model, the input
uses the corrupted image Iin = Iori � (1 − m), where Iori denotes the original images and
m denotes the corresponding mask, for which one denotes the missing pixels and zero
denotes the existing pixels. The symbol � denotes the multiplication of the matrix. G
denotes the generator, Iinp denotes the final inpainting image generated by the model,
and the expressions for the inputs and outputs are shown in Equation (2).

Iinp = G(Iin) (2)

The perceptual loss [41] is derived by calculating the distance between features cap-
tured by the pre-trained network Ψ(.) from the generated images and the original images.
To enable the network to understand global contextual information, we compute high
receptive field perceptual loss [42] using a pre-trained ResNet with global receptive fields.
The calculation of LResNet can be expressed as follows:

LResNet(Iori, Iinp) = M
([

ΨResNet(Iori)− ΨResNet(Iinp)
]2) (3)

where Iori is the original image or the target image of the generator, Iinp is the generated
image, and M is the operation of calculating the inter-layer mean after calculating the
intra-layer mean. ΨResNet(.) is a pre-trained ResNet implemented with dilated convolution.

To make the generated inline images more realistic and natural in detail, we addi-
tionally use adversarial loss. The adversarial loss function Ladv is calculated as follows:

Ladv
(

Iinp, Iori, Iin
)
= max

D
Ex∈X [log(D(Iori, Iin)) + log(1 − D(Iinp, Iin))] (4)

where Iori is the target image, Iinp is the inapinting image, Iin is the corrupted image, and D
is the adversarial discriminator.

In our total loss, we also use the L1 loss and the perceptual loss of the discriminator
network LDisc [43]. The formula for the perceptual loss of the discriminator network LDisc
is similar to Equation (2). The L1 loss is calculated as follows:

L1 =
1
N ∑ |Iori(p)− Iinp(p)| (5)

where Iori denotes the original image, Iinp denotes the inpainting image, and p represents
the pixel at the same location in both images.

Our total losses are calculated as follows:

Ltotal = η1L1 + η2Ladv + η3LResNet + η4LDisc (6)

where η is the weight of each loss function. Following [36,39,42], we set η1 = 10, η2 = 10,
η3 = 30, and η4 = 100 in training.

2.5. Evaluation Criterion

We used the evaluation metrics of structural similarity (SSIM) [44], Frechet inception
distance score (FID) [45], and learned perceptual image patch similarity (LPIPS) [46] to mea-
sure the performance of our model. In addition, we used the mean intersection over union
(mIoU) evaluation metric to measure the accuracy of lesion segmentation results.
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The SSIM is calculated between two windows of size H × W. The value of SSIM
is between −1 and 1, where 1 means the two images are identical and −1 means the
opposite. The closer the value of SSIM is to one, the better the inpainting effect is. The SSIM
calculation formula is defined as follows:

SSIM =
(2μAμB + c1)(2σAB + c2)

(μA
2 + μB2 + c1)(σA

2 + σB2 + c2)
(7)

where μA and σA
2 are the mean and variance of image A, μB and σB

2 are the mean and
variance of image B, σAB is the covariance of the two images, and c1 and c2 are the constants
that maintain stability.

The Frechet inception distance score (FID) is a metric to calculate the distance between
the real image and the generated image feature vectors. It uses the 2048-dimensional vector
of Inception Net-V3 before full concatenation as the feature of the image to evaluate the
similarity of the two sets of images. The value of FID is greater than or equal to zero.
A lower score means that the two sets of images are more similar, and the FID score in the
best case is 0.0, which means that the two sets of images are identical. The FID calculation
formula is described as follows:

FID =
∥∥∥μgt − μpred

∥∥∥2
+ Tr
(

Σgt + Σpred − 2
(

ΣgtΣpred

)1/2
)

(8)

where μgt and Σgt are the mean and covariance matrices of the real image features, μpred
and Σpred are the mean and covariance matrices of the generated image features, and Tr is
the operation to calculate the matrix trace.

LPIPS is used to measure the difference between two images in terms of deep-level
features, and LPIPS is more consistent with human perception than traditional methods
such as �2, PSNR, and FSIM. The value of LPIPS is greater than or equal to zero. A lower
value of LPIPS indicates that the two images are more similar, and vice versa. The LPIPS
calculation formula is defined as follows:

d
(

Igt, Ipred

)
= ∑

l

1
HlWl

∑
h,w

∥∥∥wl �
(

ŷl
gt−hw − ŷl

pred−hw

)∥∥∥2

2
(9)

where l is the current computed layer; Hl and Wl are the sizes of the patches; and ŷl
gt−hw

and ŷl
pred−hw ∈ RHl×Wl×Cl are the outputs of the current layer. The feature stack is extracted

from the L layers and unit-normalized in the channel dimension. The vector wl is used to
deflate the number of active channels and calculate the �2 distance.

MIoU is a widely used standard metric in semantic segmentation, which calculates the
mean of the ratio of intersection and merges sets of all categories. The value is between zero
and one. Closer to one means better the segmentation, and closer to zero is the opposite.
Its calculation formula is defined as follows:

MIoU =
1

k + 1

k

∑
i=0

TP
FN + FP + TP

(10)

where k is the number of categories, TP is the number of true positive pixels, FP is the
number of false positives, and FN is the number of false negatives.

3. Experiments and Results

3.1. Results
3.1.1. Experiments on the Image Inpainting

Figure 7 indicates the effects of our model on the restoration of the symbolic regions in
the ovarian ultrasound images. The boundary, texture, and structure have high similarity
to those in the original image. The results show that we have flawlessly removed the
symbols from the images. Especially in the lesion area, we removed the yellow line while
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reconstructing the boundary of the lesion and the content filling of the yellow line area very
well. This proves the power of our model. Furthermore, we compare our approach with
robust baselines that are publicly available on FID, LPIPS, and SSIM metrics. We performed
statistical analysis of the inpainting results on 269 images of the test set.

Figure 7. The results of our model for the inpainting of the symbolic regions in the ovarian ultra-
sound images.

Table 1 suggests the overall performance of each baseline on our dataset, and the
values of the three metrics in the table are the means of the test samples. Smaller FID
and LPIPS indicate better performance of the model, and a larger SSIM indicates better
performance of the model. Table 2 presents the overall performance of each baseline on
our dataset, and the values of the three metrics in the table are the variance of the test
samples. The size of the input images in the experiment was 256 × 256. In the statistical
analysis, we observed that our model outperformed all other comparable models in SSIM,
FID, and LPIPS metrics. Our model achieved 0.9246 for SSIM, 22.66 for FID, and 0.07806
for LPIPS. Table 3 suggests that the upper and lower limits of our method surpass those of
the other methods for all three metrics at a confidence level of 95%.

Figure 8 indicates the inpainting results for different models (we show more results in
Appendix A). A clear distinction can be found in the blue box area. These baseline models
use the learned symbol features to generate the symbol regions, resulting in yellow pixels in
the restoration regions. In addition, the regions they generate show significant distortions
and folds, with unsatisfactory textures and structures. We address this problem by using
an attention mechanism for the model to focus on the features of the fee-symbolic region in
the image. Fast Fourier convolution allows the first few layers of the network to quickly
increase the receptive field, which allows the model to gain a global receptive field faster
and increase the connection between global and local features. The model can better use
the global and local features to fill the holes, and the results of the restoration will have the
same structural and textural features as the original image, including smoother boundaries
and more realistic content. By introducing the channel attention mechanism, our model
pays more attention to the features of non-symbolic regions rather than the features of
symbolic regions and chooses useful features for image inpainting. Thereby, the restored
image is closer to the original image in terms of content, and no yellow pixels appear in the
restoration region. In the qualitative comparison, our model showed the best authenticity
and details in the results, including smooth edges and high similarity to the original images.
Our method better reconstructed the edge structure and content of the lesion in the image,
which dramatically improved lesion segmentation accuracy.
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Figure 8. Comparison between the results of our proposed model and other models. (a) The original
image. (b) The mask for the original image. (c) The masked image. (d) Results from publicly
available code using the LaMa method. (e) Results from publicly available code using the GL method.
(f) Results from publicly available code using the DF 1 method. (g) Results from publicly available
code using our method. (h) Results from publicly available code using the PC method. (i) Results
from publicly available code using the DF 2 method.

Table 1. Means of the quantitative comparison of the proposed method with already publicly
available, robust baselines in FID, LPIPS, and SSIM metrics. The results of each model were derived
from its public code.

Model SSIM FID LPIPS

PC [39] 0.6847 79.42 0.13550
GL [38] 0.3026 170.69 0.29589

DF 1 [37] 0.6578 81.74 0.14090
Df 2 [40] 0.8932 54.38 0.10150

LaMa [42] 0.9209 25.54 0.08215
Ours 0.9246 22.66 0.07806

Table 2. Variances of quantitative comparison of the proposed method with already publicly available,
robust baselines in FID, LPIPS, and SSIM metrics. The results of each model were derived from its
public code.

Model SSIM FID LPIPS

PC [39] 1.47 × 10−5 0.2755 4.5 × 10−8

GL [38] 1.81 × 10−5 0.4878 9.7 × 10−8

DF 1 [37] 1.39 × 10−5 0.2801 4.3 × 10−8

Df 2 [40] 1.10 × 10−5 0.2311 2.1 × 10−8

LaMa [42] 9.90 × 10−6 0.1777 1.1 × 10−8

Ours 9.10 × 10−6 0.1373 8.1 × 10−9
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Table 3. The lower (left) and upper (right) limits of confidence are 95% of quantitative comparison of
the proposed method with an already publicly available, robust baselines in FID, LPIPS, and SSIM
metrics. The results of each model were derived from its public code.

Model SSIM FID LPIPS

PC [39] (0.6771, 0.6923) (78.17, 80.67) (0.13510, 0.13590)
GL [38] (0.2939, 0.3111) (169.81, 171.57) (0.29556, 0.29622)

DF 1 [37] (0.6502, 0.6654) (80.57, 82.40) (0.14050, 0.14130)
Df 2 [40] (0.8860, 0.9004) (53.46, 55.30) (0.10122, 0.10178)

LaMa [42] (0.9145, 0.9273) (24.72, 26.36) (0.08195, 0.08235)
Ours (0.9186, 0.9306) (21.96, 23.36) (0.07788, 0.07824)

3.1.2. Ablation Experiments

To verify that our approaches do reduce the capabilities of the model, we designed
ablation experiments for the baseline model. The dataset used for the experiments was our
inpainting dataset. We used solely FFCs as the baseline in this experiment.

• FFCs
Fast Fourier convolutions have a larger and more effective field of repetition, which can
effectively enhance the field of repetition of our model and improve its capability. We
performed quantitative experiments on fast Fourier convolution, dilated convolution,
and regular convolution. The convolution kernel size was set to 3 × 3, and the
expansion rate of the dilated convolution was set to 3. Table 4 shows the scores of
different types of convolution. FFC performed the best, and dilated convolution was
second only to FFC; however, dilated convolution depends on the resolution of the
image and has poor generalization.

• Mask generation
The types, sizes, and positions of the mask during training impact the generative and
generalization capabilities of the model. In our task, we focused on exploring the effect
of mask generation location on the model. Regular, irregularly shaped masks will
overlap with a variety of symbols in the image, and this part of the region was devoid
of realistic background for a realistic inpainting quality assessment. Additionally, we
avoided network learning to use the features of these symbols. We compare our mask
generation approach with the conventional method, and Tables 5 and 6 show that our
method effectively improves the SSIM, LPIPS, and FID.

• Attention mechanism
For the network to attenuate the focus on symbolic features in the image and enhance
the focus on other features in the real background, we introduced the SE layer. By in-
troducing the channel attention mechanism, our model pays more attention to the
features of non-symbolic regions rather than the features of symbolic regions and
chooses useful features. By this method, the restored image is more similar to the
original image in terms of content and no yellow pixels show up in the restoration
region. Tables 5 and 6 show the effects of the experiments.

Table 4. Effects of different convolutions.

Convs LPIPS FID

Regular 0.92230 30.84
Dilated 0.08447 26.77

Fast Fourier 0.08215 25.54
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Table 5. Results of experiments on input with a resolution of 256 × 256.

Model SSIM FID LPIPS

Base (only FFCs) 0.9209 25.54 0.08215
Base + Mask 0.9240 23.08 0.08044

Base + SE-Layer 0.9238 23.02 0.07987
Base + Mask + SE-Laye 0.9246 22.56 0.07806

Table 6. Results of experiments on input with a resolution of 512 × 512.

Model SSIM FID LPIPS

Base (only FFCs) 0.9170 28.58 0.08939
Base + Mask 0.9189 27.15 0.08842

Base + SE-Layer 0.9102 26.89 0.08769
Base + Mask + SE-Layer 0.9208 25.52 0.08300

3.1.3. Experiments on the Lesion Segmentation

As we noted in the introduction, our aim of inpainting of 2D ovarian-tumor ultrasound
images is to enhance the accuracy of currently popular segmentation models such as Unet
and PSPnet for the segmentation of ovarian lesions.

Figures 2 and A1 show the negative effect of symbols in the image on the segmentation
of the lesion: they make the model focus more on these symbols. These symbols provide
additional information such that the accuracy of segmentation of ovarian-tumor images that
are completely clean and without symbols is substantially reduced, which is unacceptable
in clinical practice. Therefore, we used the inpainting images and the original images as
two training sets, and the clean images as the common test set for experiments on lesion
segmentation. Figures 9 and A5 confirm that the segmentation accuracy was improved from
71.51% to 76.06% for the Unet [19] model and from 61.13% to 66.65% for the PSPnet [47]
model in clean images. Figure 10 indicates the segmentation results of the Unet model
using the clean images as a testing set. Our approach appreciably improves the accuracy of
lesion segmentation, and the visualization of segmentation is much better for experiments
on lesion segmentation with clean images. These experiments confirm our conjecture and
our original aim of performing image inpainting.

Figure 9. The accuracy graph of lesion segmentation of the Unet [19] model. The blue line represents
the accuracy of using the inpainting images as the training set. The yellow line represents the accuracy
of using the original images with symbols as the training set.

177



Bioengineering 2023, 10, 184

Figure 10. Visualization of the results of lesion segmentation of Unet. (a) The clean image. (b) The
ground truth image. (c) Segmentation result of the Unet model using the inpainting images as the
training set. (d) Segmentation result of the Unet model using the original images as the training set.

4. Conclusions

In this paper, we proposed a 2D ovarian-tumor ultrasound image inpainting dataset
to investigate the effect of prevalent symbols in images on ovarian-lesion segmentation.
Based on this image inpainting dataset, we proposed a 2D ovarian-tumor ultrasound image
inpainting model based on fast Fourier convolution and a channel attention mechanism.
Labeled images are used as a priori information to guide the model to focus on features
in the non-symbolic regions of the images, and fast Fourier convolution is used to extend
the receptive field of the model to make the texture and structure of the inpainting images
more realistic and the boundaries smoother. Our model outperformed existing methods
in both qualitative and quantitative comparisons. It received the highest scores in all
three metrics, LPIPS, FID, and SSIM, which proves the effectiveness of our model. We
used the inpainting images for training and validation with Unet and PSPnet models,
which appreciably enhanced the accuracy of lesion segmentation in clean images. This
additionally demonstrates the great significance of our study for computer-aided diagnosis
of ovarian tumors.

Our study in this paper did not currently use ground truth of lesion segmentation in the
dataset, which may further improve the similarity of lesion boundaries in inpainted images.
In future work, we will do further exploration on how to apply the edge information of the
lesion to the model to make the boundaries more similar to those in the original image and
extend our model to other types of medical images—CT, MRI, etc.
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Appendix A

Figure A1. The accuracy graph of lesion segmentation of the PSPnet [47] model. The blue line
represents the accuracy of using the clean images as the testing set. The yellow line represents
the accuracy of using the original images with symbols as the testing set. The figure also shows a
visualization of the segmentation results for the 50th and 150th epochs.

Figures A2–A4 show the results of different methods on images containing different
types of symbols.

Figure A2. Comparison between the results of our proposed model and those of other models. (a) The
ground truth image. (b) The mask for the ground truth image. (c) The masked image. (d) LaMa
method. (e) GL method. (f) DF 1 method. (g) Our method. (h) PC method. (i) DF 2 method.
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Figure A3. Comparison between the results of our proposed model and those of other models. (a) The
ground truth image. (b) The mask for the ground truth image. (c) The masked image. (d) LaMa
method. (e) GL method. (f) DF 1 method. (g) Our method. (h) PC method. (i) DF 2 method.

Figure A4. Comparison between the results of our proposed model and those of other models. (a) The
ground truth image. (b) The mask for the ground truth image. (c) The masked image. (d) LaMa
method. (e) GL method. (f) DF 1 method. (g) Our method. (h) PC method. (i) DF 2 method.
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Figure A5. The accuracy graph of lesion segmentation of the PSPnet [47] model. The blue line
represents the accuracy of using the inpainting images as the training set. The yellow line represents
the accuracy of using the original images as the training set.
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Abstract: Mass detection in mammograms has a limited approach to the presence of a mass in
overlapping denser fibroglandular breast regions. In addition, various breast density levels could
decrease the learning system’s ability to extract sufficient feature descriptors and may result in
lower accuracy performance. Therefore, this study is proposing a textural-based image enhancement
technique named Spatial-based Breast Density Enhancement for Mass Detection (SbBDEM) to boost
textural features of the overlapped mass region based on the breast density level. This approach
determines the optimal exposure threshold of the images’ lower contrast limit and optimizes the
parameters by selecting the best intensity factor guided by the best Blind/Reference-less Image
Spatial Quality Evaluator (BRISQUE) scores separately for both dense and non-dense breast classes
prior to training. Meanwhile, a modified You Only Look Once v3 (YOLOv3) architecture is employed
for mass detection by specifically assigning an extra number of higher-valued anchor boxes to the
shallower detection head using the enhanced image. The experimental results show that the use of
SbBDEM prior to training mass detection promotes superior performance with an increase in mean
Average Precision (mAP) of 17.24% improvement over the non-enhanced trained image for mass
detection, mass segmentation of 94.41% accuracy, and 96% accuracy for benign and malignant mass
classification. Enhancing the mammogram images based on breast density is proven to increase the
overall system’s performance and can aid in an improved clinical diagnosis process.

Keywords: breast density; CAD; image enhancement; breast cancer; deep learning; textural

1. Introduction

According to International Agency for Research on Cancer, an estimated 2.3 million
new cases of breast cancer has overtaken lung cancer as the most prevalent cancer di-
agnosed, with cancer death rates significantly higher in transitioning nations [1]. Breast
screening programs are a way to detect early signs of breast cancer and are dominated by
utilizing digital mammography as the primary tool for cancer detection [2]. Additional
modalities such as ultrasound are used in conjunction with mammography for denser
breasts, whereas magnetic resonance imaging (MRI) is used for more progressive breast
analysis for repeated and high-risk patients [3].

Breast density, as defined by the American College of Radiology (ACR), is used
during clinical diagnosis that classifies the breast into four categories with increasing
density: almost entirely fatty, scattered fibroglandular, heterogenous, and finally, extremely
dense breast [4].
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The heterogeneous dense breast as depicted in Figure 1A and the overlapped mass
(red region) (in Figure 1B) on the dense region (blue region) is visually harder to distinguish
compared to a non-dense breast that only contains mostly fatty (orange region) tissue.
Diverse breast tissue structures cause mixed-intensity variations and limited visibility
of breast features [5]. Due to this factor, the processed images may result in less accept-
able breast tissue segmentation and inconsistent diagnosis by compromising the system’s
sensitivity and specificity to detect abnormalities [6,7]. Past studies concluded that mass
detection decreased with increased density, due to the mass itself being similar to the
surrounding dense tissue of the breast [8–10]. Additionally, image quality conditions also
make it difficult to detect the lesion in dense breasts [11,12]. Specifying the edge of the mass
from its surrounding dense tissue requires image processing that enhances the textural
element of the image as one of the defining mass descriptors to assess a mammogram
visually [13]. The textural analysis identifies distinctive descriptors in the form of a chang-
ing pattern or pixel intensity with various spatial arrangements. Its refinement aims to
go beyond human-eye perception by defining semantic descriptors to extract quantitative
radiological data [14].

  

Figure 1. (A) Original mammogram image example. (B) Mapped tissue region for the image on
(A)—red: mass, green: dense tissue, orange: non-dense tissue.

To accommodate the analysis of mammographic mass, Computer-Aided Diagnosis
(CAD) systems are introduced to breast cancer diagnosis stages, from improving the
image quality [11,15], breast lesion detection, and segmentation [16], as well as benign
or malignant classification [16–19]. Moreover, CAD implementation in mammography
diagnostic could reduce the human rater’s false-positive rate by 5.7% and false negative
by 9.4%, as shown in a USA-based dataset [19], and an increase rate of 3% recall rate for
a radiologist’s mammogram analysis with CAD assistance for an expert radiologist [20].
CAD systems proved to aid radiologists in making a better diagnosis with the area under
the curve (AUC) of 0.896 from 0.850 without affecting diagnosis timing [21]. Since deep-
learning CAD systems performed best when trained using large datasets [22], it is harder
to apply suitable image quality improvements individually on the images, leading to a
need for special enhancement procedures and careful pre-processing for the images before
they can be trained on a deep-learning architecture.

Most Convolutional Neural Network (CNN) applications for CAD systems have
focused on direct mammogram images for detection and classification rather than the
need for specific enhancement based on breast density level and the quality of the input
images. This could unintentionally lead to reduced sensitivity for mass detection in
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dense mammograms, resulting from higher training weightage on non-dense breasts
because of dataset class imbalance [23]. Enhancement techniques based on histogram
manipulation, such as adaptive/histogram equalization (HE/AHE) and contrast-limited
adaptive histogram equalization (CLAHE), have been extensively used to enhance the
images before training. Nevertheless, the method’s adaptability for different densities of
the breast images and their effects needs to be paid attention. Several studies have included
the analysis of the impact of breast density on the post-training level rather than countering
its effect on the pre-processing level [10,18,24–26]. However, pre-processing analysis of the
mass surrounded by dense tissue is essential to verify that the established CAD system is
robust to dense breast images for accurate mass detection.

Based on this motivation, we proposed an enhancement technique that adapts non-
dense and dense breast categories by subtly changing the non-dense region appearance
within a mammogram image through textural refinement, mimicking the radiologist’s
manual contrast adjustment on individual images while maintaining the visual perceptual
of the original image. The textural refinement on the mass edges boosts its feature vector
representability during the convolutional process for detection and segmentation algorithm
for better classification performance.

In summary, this work’s contributions are focused on:

1. A breast density-based configuration is incorporated prior to the training detection
algorithm.

2. An enhancement technique that enhances the textural appearance of the background
and mass region by determining the threshold of the dense and non-dense region
through a buffer region by manipulating the images’ lower limit cap threshold value.

2. Past Literature

Image enhancement is required to optimize the image’s overall quality in preparation
for subsequent stages. Enhancements using histogram-based techniques have been proven
to enhance mammogram images, such as through histogram equalization [26,27] and the
widely used contrast-limited adaptive histogram equalization (CLAHE) [10,18,24,28,29].
Histogram-based image enhancement increases the contrast and dynamic range of the
grayscale image by adjusting an image’s contrast using its histogram and increases the
image’s contrast by dispersing the most common pixel intensity values by extending the
image’s intensity range [30]. Researchers also combined CLAHE with their proposed
method to improve their performance. For instance, CLAHE was utilized in conjunction
with unsharp masking filtering, with the effectiveness in demonstrating an enhancement
for mass region segmentation [31]. In addition, breast cancer detection using a modified
CLAHE method is used to sharpen the margins of the masses on three datasets [32].
Meanwhile, CLAHE, wavelet, and anisotropic diffusion combination were presented for
mammography enhancement in [33] and obtained a sensitivity of 93% when tested on a
limited number of abnormal and normal images from the mini-Mammographic Image
Analysis Society (mini-MIAS) dataset. The introduction of multilevel Otsu’s thresholding
with wind-driven optimization for mass detection utilizing CLAHE enhancement on mini-
MIAS and Digital Database for Screening Mammography (DDSM) mammogram datasets
is conducted with 96.9% and 96.2% detection sensitivity [29].

Additionally, a different approach using top-hat transform-based mammography en-
hancement is established to increase the contrast between the suspicious area and normal
breast tissues, increasing mass detection sensitivity using the proposed technique com-
pared to unenhanced images [34]. Moreover, grayscale transformation applied by [35] helps
reveal more information and increase contrast by selectively emphasizing or suppressing
undesirable elements in the image, hence uniformizing the pixel distribution. Recently, a
study to detect mass with its performance improved using contrast-based enhancement by
employing a hyperbolic tangent function with an adjustable Tunicate swarm algorithm as
optimization of the system via fitness function is demonstrated by [36] and shows improve-
ment when compared to the CLAHE method. The use of another optimization through
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hybridized fast and robust fuzzy c-means clustering (FRFCM) and particle swarm opti-
mization before mass detection was proposed on the mini-MIAS with 96.6% sensitivity [37].
A classification system for mammogram cancer by [38] using improved multi-fractal di-
mension features also included a pre-processing subsystem for denoising the mammogram
following the cancer region segmentation.

These methods produced good final performance. However, these studies applied
a straightforward object detection algorithm to analyze their method’s effectiveness for
the images to be trained in a full-scale CAD system. Moreover, the enhancement methods
did not take the effect of variation of breast density into consideration, with some methods
causing the final mass to be indistinguishable from the dense tissue [27,31], where the final
output is in the form of classification of mass and non-mass only. This could raise the issue
of losing crucial mass features if continued to the cancerous mass classification stage later.
The studies were also not tested against any image quality metrics as an essential aspect of
any image enhancement method proposal, by using metric performance such as applied
by [36], which is not considered the best in the analysis of enhancement for breast density
as it relies on the contrast and intensity of the images.

Existing state-of-the-art object identification techniques such as Faster Region-based
CNN (R-CNN) [39], You Only Look Once (YOLO) versions [40,41], and Single Shot Multi-
Box Detector (SSD) [42] have been implemented in many vision studies for detection,
following the image enhancement techniques. YOLO has been proven to be the most
beneficial in terms of accurate and fast detection rate [43,44] compared to the other de-
tection algorithms. For example, mass detection using the YOLO model was carried out
as proved by Al-Antari et al. [45] and resulted in a detection accuracy of 98.96%. Sim-
ilarly, [28] enhanced their approach by comparing feedforward CNN, ResNet-50, and
InceptionResNet-V2 for classification before implementing the YOLO model for detection.
Subsequently, this team [46] proposed a CAD system framework that classified breast
masses into malignant and benign using Fully Connected Neural Networks (F-CNNs). This
system framework first detected breast masses using the YOLO model with an overall accu-
racy of 99.7%. Meanwhile, [47] employed the YOLO fusion model for breast mass detection
by fusing the best feature representation from single-class mass-based and calcification-
based training models to a multiclass model that combined the feature maps. Their best
performance observed was 98.1% for mass lesion accuracy detection. In [48], fusion YOLO
was used for detection by introducing new classes of normal and architectural distortion
abnormality on final prediction with mass detection accuracy at 93% ± 0.118.

Based on the discussions, although different strategies were implemented to boost
mass detection performance, the study has severe limitations that have been conducted to
adapt the breast density variance effect through enhancement techniques before training
the system. A fully automated mass detection based on density through CAD is crucial,
especially with its link with 2.2-fold more cancer risk in clinical profiling for denser breasts
reported [49]. Studies conducted by [10,18,24,25] all pointed to a decrease in the model’s
performance when trained using denser breast images. One of the earliest studies of
mammograms that includes adaptation to breast density developed their model using
density-based spatial clustering of applications with noise (DB-SCAN), highlighting the
breasts’ internal structure before training [25]. Likewise, the same method was applied
by [24] on a different dataset to improve the method proposed by [25], where the author
introduces a two-stage false positive reduction process through bilateral breast analysis.
Even though it has good results in preparing the models based on breast density, limitations
include if only unilateral breast is available, and asymmetrical factors for both breasts might
affect the performance.

3. Proposed Methodology

This section discusses the overall methodology for completing the framework’s three main
phases, as shown in Figure 2. Each phase is discussed further in the following subsections.
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Figure 2. Overall Proposed Methodology for Breast Mammogram Mass Classification.

3.1. Experimental Setting
3.1.1. Dataset: INbreast

The INbreast dataset has been widely used in previous studies [18,28,50,51] and was
one of the first established datasets of full-field digital mammograms (FFDM) acquired in
2011 at Centro Hospitalar de S. Joo, Breast Centre, Porto [52]. A total of 410 images were
extracted with 115 abnormal lesion cases ranging from mass, calcification, and architectural
distortions, with both craniocaudal (CC) and mediolateral oblique (MLO) views. Subse-
quently, the extracted images were exclusively updated by the authors with permission,
along with the annotated ground truth range of interest (ROI) of the segmented mass region.
Note that 112 mass images were included for this study that ranges across four breast
density classifications, further classified based on their mass types: benign and malignant.
To avoid sampling bias, 80% of the images were randomly selected for training, with the
remaining 20% used for testing and validation for all stages, and were independent of the
breast mass types and density level. Finally, augmentation settings were set into degrees
of rotation of 30◦ to 300◦, horizontally flipped, and scaled to randomized 1.0 to 1.3 scale
factor. Augmentation settings that alter the hue, contrast, brightness, and saturation were
excluded to avoid unintentional intensity changes affecting the breast density.

3.1.2. Experimental Setup

This study focuses on the effect of the proposed SbBDEM enhancement technique
applied in the pre-processing to prepare the images for the subsequent stages. The per-
formance was measured by comparing the performance with the system trained using
original images and two established histogram-based enhancement techniques. The final
classification stage used only the handcrafted learning features to reduce the overall com-
putation, as the mass was already accurately detected and segmented from prior stages.
To compare the breast density-wise performance, the initially randomized labeled image
numbering was saved from the detection phase onto the following stages to make an unbi-
ased comparison among the same test images. Additionally, a 5-fold cross-validation was
performed on the classification stage to ensure the average of using all learning features to
compare performance. These experiments were visualized and executed on a workstation
equipped with CPU Intel(R) CoreTM i7-10870H 2.3 GHz with single GPU graphic card
NVIDIA GeForce RTX2060 6GB, 16 GB RAM, and trained and tested on MATLAB (Natick,
MS, USA).
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3.2. Stage 1: Proposed Image Pre-Processing for SbBDEM
3.2.1. Image Preparation

The overall process for Stage 1 is illustrated in Figure 3. Standard morphological
operations were applied to remove stray annotation marks to allow only the breast area
to maximize the processing image area. To unify features between CC and MLO views,
pectoral muscle was digitally removed from the MLO view images. To prepare the image
to accommodate the needs of different breast densities, the images were segregated based
on their supplied ACR density levels following the supplemented density scores to non-
dense (1 = almost entirely fatty, 2 = scattered dense) and dense (3 = heterogeneous dense,
4 = extremely dense) categories.

 

Figure 3. Stage 1: Proposed image SbBDEM technique as a pre-processing step.

3.2.2. Lower Limit Contrast Cap Determination

As the next stage of the proposed framework includes mass detection process, it is
essential to differentiate the mass from its background whether it is overlapped on the non-
dense or dense background. To reduce the non-dense image information while enhancing
features from the denser region (hence the mass), image modification was conducted
by selecting the best lower-limit contrast of the image. The final output will be a breast
image that have a less skin and non-dense region appearance and a pronounced textural
definition of the dense region. This includes the mass region while keeping the textural
features from the fibroglandular and vascular tissue of the lower-intensity fatty tissue in
the background. To achieve this, the higher limit of contrast adjustment was set to the same
as the original image.

3.2.3. Factorized Otsu’s Thresholding for Breast Density Group Segregation

Otsu’s thresholding calculates the point value of intensity based on the image’s in-
tensity spread on a bimodal histogram and separates the image into its foreground and
background [53]. Since the original mammogram was converted to a normalized grayscale
image consisting of two main tissue types that are closely related to its intensity and con-
trast (higher intensity = dense region, lower intensity = non-dense region), the Otsu’s value
was definitive in determining the middle-intensity value that separates these tissue groups.
Therefore, Otsu’s method has been implemented in this study as a reference point for deter-
mining the lower limit contrast to be clipped from the input image. However, direct Otsu’s
threshold separates tissue that might belong to the other side of the histogram, such as the
black background as a non-dense region and calcified vessels and the skin lining appearing
white in the image as a dense region. To properly lessen this imbalance effect, the threshold
value was interpolated on a scale of 1.0 to 1.9 for each non-dense and dense image group
that has been separated in the previous step to subtly adapt the sudden change of region
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foreground to background image as a buffer intensity region. Subsequently, the training
images were chosen based on their quality score, which is explained in the next stage.

3.2.4. Blind/Reference-Less Image Spatial Quality Evaluator (BRISQUE)

When an image is altered, it is vital to assess it through an image quality assessment
metric by referencing a gold-standard image for quality assessment in terms of its sharpness,
contrast, etc., for comparison [54]. Common examples of tests where the referenced image
must come from one of the images closely linked to the evaluated image include the mean-
square error (MSE) and peak signal-to-noise (PSNR). However, when dealing with deep
learning, possibly thousands of images are being trained, making it impossible to select
only one for reference quality perspective. This is especially true if the dataset consists
of multiple image acquisition techniques, which further vary the dataset’s measurement
range [55,56]. In this study, to separate the overlapped mass with its background, the
non-dense region becomes darker, hence enhancing the mass’s edge. This is expected to
cause substantial image alteration, with mild changes on the mass and dense regions of
the resulted image, causing noise to be increased in the final image. Hence, the MSE and
PSNR scores are likely to produce unsatisfactory performance. Moreover, using quality
assessments such as PSNR for reconstruction quality in determining the quality of an
image used for a detection algorithm is unwarranted since a detection algorithm relies
on its ability to separate a mass from its surroundings and, by extension, on the overall
image, regardless of the final quality of the image used for training. Therefore, we chose
the best Otsu’s threshold factor with an image perceptual quality evaluator known as the
Blind/Reference-less Image Spatial Quality Evaluator (BRISQUE) [57]. It performed as a
spatial feature image assessment metric that is commonly known as opinion-aware and
analyses images with similar distortion [57], similar to how visual perception is made.
As image distortions affect the quality in term of its textural features (texture signifying
the difference of pixel of dense region background and the overlapped mass), BRISQUE
was chosen as the primary evaluation metrics in this study. The BRISQUE score guided
in choosing the optimal quality factor that clearly defines the difference between non-
dense and dense breast images without using any reference image. It provides a rating
by generating matching differential mean opinion score (DMOS) values using a support
vector machine (SVM) regression model trained on a spatial domain image database [57].
During the training of BRISQUE, the database contained both the clean and edited versions
with different additive noise implementations such as Gaussian white noise and blur,
compression artifacts, and Rayleigh fast fading channel simulation, serving as the distortion
image version for comparison [57]. Besides that, BRISQUE uses scenic data from locally
normalized luminosity coefficients to measure any loss of naturalness due to distortion,
resulting in a holistic quality score compared to calculating user-defined quality, such as
ringing or blurring, as what is being measured when using PSNR [55]. Recent studies of
medical images such as mammogram [58–60], lung CT scans [15,58], kidney and brain
MRIs [15] have moved towards reference-less image quality evaluators to evaluate their
work with good results. In this study, the image group was ultimately selected as the
input for mass detection in the subsequent step once the best image score of BRISQUE
was obtained.

3.2.5. Evaluation and Analysis of the Proposed Enhancement Technique

We measured the proposed SbBDEM enhancement quality and its direct application
in the input of the detection stage based on both reference-less (BRISQUE) and referenced
(MSE) measurements. BRISQUE was calculated based on the method proposed by [57],
and MSE was given by Equation (1):

Mean Squared Error, MSE =
1

mn ∑m
0 ∑n

0 || f (i, j)− g(i, j)||2 (1)
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where m and n are the image’s height and width, i and j are elements from the enhanced
image, f, and referenced image, g, whereas additional textural features analysis was made
on the images based on the Gray-Level Co-occurrence Matrix (GLCM) for comparison.
The texture properties extracted from the produced matrix were four statistical feature
descriptors defined as contrast, correlation, energy, and homogeneity as mathematically
defined in Equations (2)–(5). For every element, P, it reflected the total number of occur-
rences of the pixel values of i and j respective to the number of gray levels where σ and μ
are the standard deviation and central moments derived in the form of means of variance
and skewness.

Contrast = ∑levels−1
i,j=0 Pi,j(i − j)2, (2)

Correlation = ∑levels−1
i,j=0 Pi,j

⎡
⎢⎢⎣ (i − μi)

(
j − μj

)√(
σ2

i
)(

σ2
j

)
⎤
⎥⎥⎦, (3)

Energy =

√
∑levels−1

i,j=0 P2
i,j, (4)

Homogeneity = ∑levels−1
i,j=0 Pi,j|i − j|, (5)

Additional analysis of the images’ mean intensity was evaluated for comparison. The
mean intensity is the normalized mean number of normalized pixel values in each RGB
channel, divided by the total number of pixels in the image, n, given in Equation (6).

Mean Intensity =
∑n

n=0(R + G + B)
n

, (6)

For pixel mapping evaluation, we assessed an example of True Positive (TP) and
False Positive (FP) from a sample of mass edge from the enhanced testing image using
the proposed SbBDEM technique. We assessed the probability of edge detection on the
next-best performed on the BRISQUE and MSE scores. Note that mass edge detection’s pixel
analysis is emulated based on the first layer of modified YOLOv3 based on convolution
process from Equation (7), zero padding, with a stride of two with maximum pooling
downsampling to reveal the effect of pixel change made during enhancement that affects
edge detection. On the other hand, diagonal edge analysis using kernel matrix K = [110, 10-1,
0-1-1] was chosen with a window size of 3-by-3, slides on the image using the convolution
process, where I is the cropped mass image with i, j element, K represents the kernel with
x, y element, and ηW , ηh and ηC are the number of heights, widths, and channels of I,
respectively. Consequently, the maximum pooling downsampled element was chosen to
represent both suspected mass and background area. The edge pixel difference of Mass and
Background edge detection is denoted as Δ in Equation (8). Higher Δ denotes the higher
pixel difference between the neighboring pixel encapsulating the mass.

Conv(I, K)x,y = ∑ηW
i=1 ∑ηW

j=1 ∑ηC
k=1 Ki,j,k Ix+i−1,y+j−1,k (7)

Edge pixel difference, Δ = Maxconv(mass) − Maxconv(background) (8)

3.3. Stage 2: Mass Detection Using Modified YOLOv3
3.3.1. You Only Look Once (YOLO)

Object detection is a process of detecting a specifically trained object within an image.
YOLO and its versions (v2, v3, and so on) implement a single forward-pass filter by splitting
the original image into a grid of s-by-s size. Subsequently, a bounding box prediction
will be made for each separated cell. The algorithm searches for the object’s midpoint
during training, where the specific cells containing the midpoint will be responsible for
determining the target object’s presence. The corresponding cells are linked to the cell
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with the midpoint, which is set up as the cell with the midpoints defined as the bounding
box, which is made of four components [x, y, w, h]. Here, x and y are the top left-most
coordinates of the bounding box with a value of 0 to 1.0, while w and h are the width and
height of the box, respectively. Both w and h could be greater than 1.0 if the final detected
box is wider than an entire s-by-s cell. In addition to the four components, each box has
a probability value that indicates the presence of an object in the cell and the number of
class predictions. Based on this prediction value, the trained network for each cell should
be able to output a specific box coordinate that contains the highest probability value for
the final detected output for class prediction.

3.3.2. YOLOv3 Modification for Mass Detection

This study utilized the simplest form of YOLOv3 using SqueezeNet [61] as its base net-
work and modified it to improve the overall detection result. Note that the SqueezeNet has
only 1.2 million learnable parameters as opposed to the original DarkNet-53 [40] network,
which has 41.6 million parameters. As a result, SqueezeNet-based YOLOv3 was chosen to
lessen the burden of weightage parameter training. Among the benefits of using a simpler
network architecture are more efficiently distributed training parameters, more use of spatial
information, which leads to shorter training times, less bandwidth for future model updates,
and the ability to be deployed with less memory configuration [62]. Aside from being
lightweight, using predefined anchors and detection heads introduced in YOLOv3 architec-
ture allows smaller objects to be detected [40]. Depending on the base network, the YOLOv3
could extract deep features to extract three-scale feature maps from the anchors used for
the final bounding-box calculation to predict the best confidence score (CS). YOLOv3 has
also been successfully implemented in recent mammogram studies [63,64], showing that
its implementation is reliable with good results. A comparison of YOLOv3 and YOLOv4
conducted by [65] shows that even though YOLOv4 is an improvement, it shows no sub-
stantial difference between the two models, leading the author to infer that the performance
of YOLO primarily depends on the features of the dataset and the representativity of the
training images.

Figure 4 illustrates the modified SqueezeNet CNN architecture for the mass detection
stage in this study. The input image size was set to 227-by-227, where the enhanced input
training images were trained with whole mammogram images. The image went through a
series of cascaded and parallel convolutions with concatenation along the nine repeated
layers, reducing the information and computation by compacting feature maps as the
network went deeper. Two detection heads were allocated when this architecture was
modified for detection purposes in YOLOv3. The second detection head was double the
size of the downsampled input (28-by-28) of the first detection head (14-by-14), causing
smaller masses to be better detected. Since the mass size ranged from the aspect ratio of
the breast size, with more than 50% of the training data containing mass with a size less
than a sixth of the overall images, we have tried to resolve this problem by devising this
architecture by modifying the input of the second detection head.

Hence, to improve the detection of small masses and overall detection performance,
we proposed two strategies to solve this problem.

Strategy One: Residual feature mapping for the second detection head: Features from
the shallower layer were included (depth concatenation four), containing higher spatial
features from the skip connection, and were elementwise added with the semantic features
from the deeper layer (depth concatenation nine), where the element-wise addition reduced
feature degradation that occurred during downsampling which enhanced feature contrast
and feature discrimination [51].
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Figure 4. Modified SqueezeNet CNN architecture used for YOLOv3 training. The modified layer is
in the Bold setting.

Strategy Two: An additional anchor box assigned to a smaller feature map: This
anchor box was introduced to the lower scale of the anchor box number of the second
detection head (ratio of 4:3 to first detection head). While simply increasing the number of
anchor boxes increased the predefined mean intersection over union (IoU), this could only
lead to lower performance due to overfitting the number of bounding boxes per image
mapping [66]. However, assigning an extra anchor box only for the smaller feature map
specifically will increase the bounding box refinement on the feature map allocated to
features coming from Strategy One, which increases the possibility of detecting smaller
mass sizes coming from the images’ semantic information.

The image gave seven predictions with their confidence level scores on every single
grid cell with the size of s-by-s. The network was trained on 80 epochs with 10 mini-batch
sizes. The learnable parameters were updated through a loop of stochastic gradient descent
momentum (sgdm) solver. The initial learning rate was set to 0.001, and a 0.5 confidence
score (CS) threshold value was defined for determining the overall mean Average Precision
(mAP) score for mass detection, with the largest CS bounding box score selected for final
prediction. It is important to note that the hyper-parameter tuning values were chosen
based on previous studies and this study’s repeated trial processes [67].

3.3.3. Performance Evaluation of the Modified YOLOv3 Using Enhanced Images

In this study, mass detection performance was correlated with the image enhancement
performance in the prior stage. Therefore, we assessed TP and FP, while the mAP was
calculated from the area under the curve of recall and precision, following Equation (9):

mean Average Precision, mAP =
1

|classes| ∑c∈classes
|TPc|

|FPc|+ |TPc| (9)

where c is the number of classes. The mAP is the current metric used by computer vision
researchers to evaluate the robustness of object identification models. It incorporates the
trade-off between precision and recall, which optimizes the influence of both metrics, given
that precision measures the prediction accuracy and recall measures the total number of
predictions concerning the ground truth.
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3.4. Stage 3: Mass Segmentation, Feature Extraction, and Classification
3.4.1. Mass Segmentation and Evaluation

Following Stage 2, the final evaluation of the system’s performance was based on its
mass segmentation and classification. To fully separate the mass from its surrounding tissue,
we utilized deep-learning-based semantic segmentation once the mass had been localized
using the bounding box location obtained from the previous stage. Here, the highest CS
was selected for more than one detection. Clearly, segmented mass is important in defining
the area in which the features are extracted from the images when classifying the mass into
benign or malignant in later stages. Therefore, the evaluation for segmentation performance
from the Jaccard index, J, of the IoU score was calculated based on Equation (10):

J(A, B) or Intersection over Union, IoU = |A
⋂

B|/|A
⋃

B| (10)

where A is the sample data being tested against sample data B (ground truth sample). A
higher J or IoU score brings better similarity between the two sets. The accuracy of the
segmentation was measured based on its testing performance on different input image
settings, based on Equation (11), utilizing TP, FP, TN, and FN.

Accuracy, Acc = (TP + TN)/(TP + FN + TN + FP) (11)

3.4.2. Feature Extraction

In the final stage, the segmented mass was used to classify whether the mass is benign
or malignant. Furthermore, handcrafted features were used to finally classify the mass into
benign or malignant using a well-known machine learning technique. In this study, textural
features were chosen as the main feature contributor. The segmented mass features were
extracted based on three primarily used radiomics handcrafted features for mammography:
textural feature (Gray-Level Co-occurrence Matrix (GLCM)), geometrical feature (mass
circularity), and first-order statistics (mean intensity).

Feature Extraction: Gray-Level Co-Occurrence Matrix (GLCM)

The GLCM can highlight specific properties of the spatial distribution of the gray
levels in the texture image. The proposed SbBDEM procedure was applied to increase the
textural refinement of the dense and mass region in the earlier stage. Since both benign
and malignant region segmented does not change in respect of illuminance when exposed
to light, textural analysis is also essential in extracting important features to differentiate
between two neighboring pixels [68]. The features were calculated based on Equations (2)–(5)
as previously discussed in Section 3.2.5.

Feature Extraction: Circularity and Mean Intensity

A malignant breast mass varies in that its edges are uneven and likely to expand
quicker, giving it a projecting look in a mammogram. In contrast, a benign mass differs
because its geometric limits are more clearly defined, smooth, and consistently formed [26].
These are some of the features selected by radiologists when making visual clinical mam-
mogram evaluations. As a result, one of the descriptors used in previous studies [25,26] is
the mass’s circularity characteristic, determined using Equation (12), that is implemented
using the segmented region’s area and perimeter.

Circularity =
4(Area)(π)

Perimeter2 (12)

Additionally, the inclusion of the supplementary characteristic of the mass’s mean
intensity is based on the notion that since malignant mass cells are more densely formed
than benign mass, it may appear to have a greater overall image intensity. The features
were calculated based on Equation (6).
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3.4.3. Mass Classification and Evaluation

All the features were trained with and without any feature selection or reduction
method using a supervised weighted k-nearest neighbor (k-NN) algorithm [69,70]. To
determine the proper k for the training images, we ran the k-NN algorithm with different
values of k and chose the k that minimizes errors while preserving the system’s capability
to make accurate predictions when given new testing data. To make an unbiased test
performance of the features, 5-fold cross-validation was applied during training, with the
final k-neighbors value set to 10, using Euclidean distance measurement, having inverse
distance weighting for the multivariate interpolation of the data points applied.

The mass abnormality classification’s performance was based on the testing accuracy
as in Equation (11) and the area under the Receiver Operating Characteristic (ROC) curve.
The ROC curve is a standard measuring the degree of separability of binary classification
between the mass and its background on a plot of sensitivity (TP Rate) against the specificity
(FN Rate), where the highest area under the ROC curve represents the model’s ability to
segregate the class better.

4. Results and Discussion

In this section, the results are discussed based on the stages of experimental procedures
explained in the previous section. Comparison of the result of the proposed SbBDEM
technique in the pre-processing stage is made based on the performance of the immediate
stage of mass detection and is compared between original, adaptive histogram equalization
(HE/AHE), contrast limited adaptive histogram equalization (CLAHE), and the proposed
SbBDEM technique in this study on all mammogram images.

4.1. Image Quality and Textural Elements

The performance of the proposed image enhancement in the pre-processing stage
before mass detection was investigated based on differently trained image input for the
models. Figure 5 shows an example of mammogram and its respective histogram for
comparison on the (A) original, (B) HE/AHE, (C) CLAHE, and (D) proposed SbBDEM
techniques images. Comparison of histogram for the original in Figure 5A shows similar
shape to the proposed SbBDEM in Figure 5D, however its pixel distribution has expanded
and shifted to the left side of the histogram. This suggested that the proposed SbBDEM
can retain the pixel distribution as similar as possible to the original image, but with the
decrease of intensity resulted to increasing the pixel belonging to the non-dense region.
More pixels of <0.5 are extrapolated causing non-dense area to be darkened, leaving the
dense and mass area lighter for better edge difference for the network to learn.

Meanwhile, Table 1 shows the average scores for mean-square error (MSE), Blind/
Reference-less Image Spatial Quality Evaluator (BRISQUE), image intensity, and GLCM
statistical features comparison between the proposed SbBDEM against other enhancement
techniques for all mammogram images. The BRISQUE score is improved from 43.5799 in
the original image to 42.3841 and the lowest amongst others, suggesting that using the
proposed SbBDEM produced an acceptable quality image in terms of better perceptual
ability. Additionally, the average correlation feature for the proposed SbBDEM is the
lowest at 0.9752. Since correlation measures how correlated a pixel is to its neighbor
over the whole image, it is easy to conclude that neighboring pixels within the proposed
SbBDEM image correlate the least with each other. This supports the better edge difference
between the pixels within the image for better textural perception. Meanwhile, the energy
property represents the estimated pixel attribute energy values that make up an image’s
energy properties [71,72]. The energy features combine to create an image weight model,
which is a collection of weights reflecting the importance of the image pixels from the
perspective of perception. The higher energy property in the proposed SbBDEM image
suggests the overall pixel carrying more weight is expected to be represented during
network training. Finally, the contrast and homogeneity properties show no reflection to

196



Bioengineering 2023, 10, 153

the proposed SbBDEM technique as neither shows the least or the most out scores to form
varying spatial pattern arrangements.

    

    
(A) Original (B) HE/AHE (C) CLAHE (D) SbBDEM 

Figure 5. Sample images and histogram plots from columns of (A) Original, (B) HE/AHE, (C) CLAHE
and (D) SbBDEM image enhancement techniques for comparison.

Table 1. Average Quality Tests and GLCM features on INbreast Images (N = 112) using Enhancement
Techniques.

No
Enhancement
Techniques

MSE BRISQUE
Mean

Intensity

GLCM Textural Features

Contrast Correlation Energy Homogeneity

1 Original N/A 43.5799 0.5914 0.0276 0.9957 0.3174 0.9876

2 HE/AHE 0.0214 42.4518 0.6584 0.0758 0.9901 0.2212 0.9640

3 CLAHE 0.0066 42.9427 0.3786 0.0856 0.9933 0.1709 0.9621

4 SbBDEM 0.1169 42.3841 0.2302 0.0399 0.9752 0.4339 0.9803

For breast mass analysis, the result from the CLAHE-enhanced image, the enhance-
ment technique used in most past studies [10,18,24,45,51,68] is selected to be compared
to the proposed SbBDEM method. Figure 6 illustrates sample images from the result of
mass detection for both non-dense (Rows 1 and 2) and dense (Rows 3 and 4) images with
the confidence score (CS) indicated in the yellow boxes obtained from the mass detection
stage in this study. Here, the original image on the first column Figure 6A–E with the
ground-truth labeled in red boxes is followed by its respective CLAHE-enhanced (second
column) and the proposed SbBDEM technique (third column) images.

Visual evaluation of the images demonstrates increased and interpolated contrast
stretching observed on the CLAHE-enhanced image in Figure 6F–J. Meanwhile, the pro-
posed SbBDEM images produced darker overall contrast, as seen in Figure 6K–O, especially
on the non-dense fatty tissue region, while preserving the mass and dense region intensity
from the original image. Maintaining the pixel information of the mass is essential in
feature extraction and convolution of the YOLOv3 algorithm, as this will also preserve the
edge of the mass during enhancement.
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Original CLAHE SbBDEM 

   
(A) (F) (K) 

   
(B) (G) (L) 

   
(C) (H) (M) 

   
(D) (I) (N) 

   
(E) (J) (O) 

Figure 6. Result of Mass Detection for comparison. Rows 1 and 2: non-dense breasts. Rows 3 and
4: dense breasts. Row 5: Example of image with True Positive mass (TP-M) and False Positive mass
(FP-M) detections. Yellow boxes indicate bounding boxes with a confidence score for mass detection.
(A–E): Original images. (F–J): CLAHE-enhanced images. (K–O): proposed SbBDEM images.
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Other than that, Row 5 of Figure 6E,J,O demonstrates an example of True-Positive Mass
(TP) (TP-M) and False-Positive Mass (FP) (FP-M) detections during the mass detection stage.
Further pixel analysis based on edge detection emulated by the network’s convolutional
process is extracted using an 8-by-8 grid window size on the edge of expected mass FP-M
corresponding to Figure 7A,B, and mass TP-M in Figure 7C,D.

 

Figure 7. (A) FP detected mass edge on CLAHE image. (B) Corresponding location of TN mass
location based on (A) on the proposed SbBDEM image result. (C) TP detected mass edge on the
CLAHE image. (D) Corresponding TP location of detected mass location based on (C) on the
proposed SbBDEM image result. The analysis is made from Figure 6E,J,O, where Δ is the pixel edge
difference. The lighter region above the red lines indicates the mass region.

The mass edge analysis is based on the difference of maximum pixel Δ in the region
where the region above the red line is the ground-truth-based mass, while the opposite
is the background based on the convolution filtering process using kernel K = [110; 1 0-1;
0-1-1] and maximum pooling (Max pooling) downsampling. This revealed that the FP-M
detected in Figure 7A on the CLAHE image has a higher probability of being detected based
on its pixel region difference, Δ = 35 compared to Δ = 23 on the same pixel location on the
proposed SbBDEM image in Figure 7B, as per the ground-truth in Figure 6E. Additionally,
TP-M was detected on the CLAHE image and the proposed SbBDEM image. However, even
though the proposed SbBDEM image is visually darker, the TP-M detected in Figure 7D for
the proposed SbBDEM has a far higher mass edge detection difference at Δ = 14 compared
to its counterpart in Figure 7C using CLAHE enhancement, having Δ = 1. This indicates
that the new intensity value replacing the original pixel during the proposed SbBDEM
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process lowers FP detection on non-mass locations, as high-level spatial image features
such as edge and coarse textures are extracted at the earliest learnable layer during YOLOv3
learning. At the same time, it increased the probability of detecting TP mass on the proposed
SbBDEM image.

The mass detection performance of the overall image enhancement is made through
the next stage. It is explained from the Recall-Precision Curves (RPC) in Figure 8 for models
trained with the original, HE/AHE, CLAHE, and the proposed SbBDEM images. High
recall and high precision are both represented as high areas under the RPC, where high
precision is correlated with a low false-positive rate, and high recall is correlated with a low
false-negative rate. Note that the proposed SbBDEM enhancement technique produced
the highest mean Average Precision (mAP) as area under the RPC of 0.8125, followed by
CLAHE images with mAP = 0.7496. In contrast, the HE/AHE images downgraded the
performance from using the original images, with mAP at 0.5430 compared to 0.6842 for
the original images. This result shows that refining the textural of the mass of the original
pixel that further apart the difference between the mass and its neighboring non-dense or
dense region background is important to preserve its edge without diminishing the mass
itself. The result also justifies that improving the images based on breast density before
extracting training features is essential to increase the final overall detection performance.

 
Figure 8. Graph of Recall-Precision Curves and mean Average Precision (mAP) from Mass Detection
using modified YOLOv3 on different enhancement techniques.

Figure 9 presents a bar chart showing the comparison of performance between dense
and non-dense breasts for mass detection on different image enhancement techniques.
On average, the ability of the model to detect mass per image is shown on the overall
performance showing the best mass detection when using the proposed SbBDEM images,
followed by CLAHE, the original images, and finally, HE/AHE shows lesser performance
compared to the original images. The lesser HE/AHE performance is in conformance with
previous research [25] where HE/AHE might benefit in its application on RGB to HSV
images in terms of gamma correction. Therefore, it is somewhat unsuitable in a grey-level
image such as a mammogram, as it can only raise the contrast of the background noise
while simultaneously reducing the amount of signal that can be utilized.
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Figure 9. Graph of Detection Rate and Confidence Score (CS) Accuracy based on Breast Density Level
for Mass Detection using modified YOLOv3 on different enhancement techniques.

As for CLAHE, although it improves mass rate detection by ±3%, the overall CS shows
slightly lower performance than in the original image. Compared to other techniques,
CLAHE operates on tiles rather than the overall image, in which the tiles are enhanced
individually, resulting in a locally stretched contrast masking on the homogeneous areas
that are limited to avoid amplifying any noise that might be present in the image [68]. This
might contribute to the effect of introducing FP cases on the unrelated dense region within
the image that was enhanced, giving a similar feature pattern to the mass. Meanwhile, an
improvement of 10% from the original image for detection rate and a slight improvement
of 2% for CS accuracy is observed when the proposed SbBDEM technique is applied for
mass detection. This supports the reason that contributed to its higher performance is its
ability to retain the mass and the denser region as it is while reducing the non-dense region
pixel value in the background. In return, a prominent spatial feature defining a mass, such
as its edge, is enhanced and contributed to the feature mapping extracted in the YOLO
layers, resulting to better detection rate and CS accuracy.

On average, the detection rate of the proposed SbBDEM improved to 92.61% using
the proposed SbBDEM technique, followed by CLAHE, original, and HE/AHE at 85.65%,
82.61%, and 73.91%, respectively. By standardizing all test images to only the detected
images for all enhancement techniques, the CS accuracy, which measures the bounding box
accuracy, is highest on average when the model is trained using the proposed SbBDEM
with 98.41% accuracy. Nevertheless, CLAHE-enhanced images have a lower CS accuracy
performance than the original image, which may be caused by additional FP detections
where the overlapping bounding box may contribute to a wider range of overlapping
intersections shared on the same image, resulting in a lower CS accuracy score.

On the other hand, non-dense breast exhibits better performance compared to dense
breast, as supported by previous studies [10,18,25] on all enhancement techniques for both
detection rate and CS. The highest CS accuracy using the proposed SbBDEM method is at
98.07%, showing a boost of 1.62% in performance from the original image for non-dense
breast and increase of 9.79% of CS for dense breast. Even though the detection rate for
dense breasts is slightly lower at 93.33% than non-dense breasts at 95.33%, the CS accuracy
is observed to be slightly better at 99.12% in the dense breast than in non-dense breasts at
98.07%. Additionally, note that the dense breast detection rate improvement is the best,
with an increase of 8.66% from the original image. The analysis of mass detection on the
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denser background proves that by using the proposed SbBDEM technique, the overlapped
mass detection could be improved.

4.2. Analysis of Modified YOLOv3 Performance

In this study, a modified convolutional neural network (CNN) for YOLOv3 is devel-
oped to evaluate the input images. Furthermore, the modification is utilized to detect the
mass’s location in the mammograms by improving its ability to receive spatial features
enhanced from the proposed SbBDEM technique. Table 2 presents the result of mAP per-
formance for mass detection on the original and other enhancement image input settings
with and without YOLOv3 modification for comparison.

Table 2. mAP performance for mass detection before and after YOLOv3 modification using different
image enhancement techniques.

Image Condition
Mean Average Precision (mAP) Using YOLOv3 (%)

Without Modification With Modification

Original 64.01 68.42
CLAHE 67.92 74.96

HE/AHE 57.40 54.35
Proposed 78.33 81.25

The result displays a pattern of increasing detection performance for all image input
settings on the modified YOLOv3 model, except the HE/AHE enhancement input image.
The highest mAP of 81.25% is observed using the proposed SbBDEM on the modified
model, with an increase in performance of 17.25% compared to using the original image
on the non-modified YOLOv3 model. In this study, the modification is crafted to focus
on the use of spatial features retained from the proposed SbBDEM training images. Its
textural features have been improved based on the result observed from using the proposed
SbBDEM technique discussed previously in Table 1. This textural refinement is further
taken advantage of as an essential higher-level spatial feature extracted during training by
adding the features from the earlier YOLOv3 layer to the second detection head specifically
used to detect a smaller object from its initial development setting [40]. Moreover, the
extra larger anchor box value that is assigned to these features gives extra weightage and
encapsulates the detected mass region through the overlapping of bounding box tiled across
the image, further improving the detection performance, resulting in better intersection
over union (IoU) placement, given the multi-sizes of the mass on the input images [49].

4.3. Performance of Mass Segmentation and Classification

After localizing the position of the mass on the image, the mass region is segmented for
the ease of feature extraction for classification in this study. Table 3 compares segmentation
results by applying the proposed SbBDEM against the original HE/AHE and CLAHE
enhancement techniques. A slight improvement in segmentation accuracy can be observed
when using the proposed SbBDEM technique by achieving a mean accuracy of 0.9437 from
0.9431 from the original image. Since the mass is well contained within the bounding-
box, less overlapping of mass and dense background issue needs to be resolved using
the proposed SbBDEM technique. Nevertheless, the proposed SbBDEM technique also
produces the highest accuracy along with IoU for both classes of mass and its background.
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Table 3. Result of semantic segmentation for mass using different image input settings.

No Image Input Mean Accuracy Mean IoU
IoU

Mass Background

1 Original 0.9438 0.8921 0.8873 0.8970

2 HE/AHE 0.9385 0.8830 0.8775 0.8885

3 CLAHE 0.9423 0.8891 0.8844 0.8938

4 SbBDEM 0.9441 0.8917 0.8878 0.8984

Meanwhile, we employed handcrafted features from the segmented mass region with
and without using the principal component analysis (PCA) feature reduction method for
benign and malignant classification. Comparison is also made using the chi-square-based
feature selection method by removing features having a chi-square score of less than 1.0
as correlated features during training. The result shows the highest testing accuracy for
benign vs. malignant mass of 96.0% is achieved on the training time at 0.670 s.

Additionally, a comparison of mass detection results of the past studies and similar
methods are listed in Table 4, with and without breast density consideration before or after
analysis performance, as well as the computational cost for each algorithm’s deployment.
In this study, the main objective is to validate the performance of object detection utilizing
the simplest CNN of SqueezeNet for a modified YOLOv3 using a differently enhanced
input image, specifically to improve the performance for the detection of mass in dense
breast mammograms. Similar works addressed the problem of mass detection while
disregarding the probable issue of class training imbalance caused by higher non-dense
images in the training images that could contribute to lower Computer-Aided Diagnosis
(CAD) establishment in clinical settings. In contrast, our study specifically brings the
breast density into the focus of the learned parameter of the training images to adapt the
class imbalance and improve the image before it can be trained to conduct mass detection,
consequently bringing a good mass abnormality classifier. Nonetheless, limited studies
have used metrics to compare their performance between non-dense and dense images
before and after implementing their proposed work, making it difficult to make a suitable
state-of-the-art analysis.

Table 4. Comparison of CAD for mammogram mass detection previous works.

No Authors
Enhancement
Technique

Dense Non-dense
mAP @0.5
Threshold

Overall
Detection
Acc (%)

Classification
Acc (%)

Segmentation
Acc (%)

Detection
Time per

Test Image

1 [10] CLAHE ROC = 0.902 ROC = 0.984 - - - - -
2 [24] CLAHE Acc = 91.00% Acc = 94.80% - - - - -
3 [25] HE/AHE Acc = 84.08% Acc = 88.69% - - - - -
4 [18] CLAHE - - - - 99.91 - -
5 [45] CLAHE - - - 98.96 95.64 92.97 12.3 s
6 [28] HE/AHE - - - 97.27 95.32 - 71 fps

7 [66] - - - 0.9420 1

0.8460 2 89.50 - - 0.009 s

8 This Study Proposed-
SbBDEM Acc = 93.33% Acc = 95.33% 0.8125 92.61 96.00 94.41 1.78 s

1 Benign, 2 Malignant, Acc = Accuracy, ROC = Area under ROC curve, fps = frame per second.

Although direct comparison is essentially incomparable between these works, both de-
tection accuracy rate and testing time indicate that we achieved a better overall performance,
which plays a significant role in showing that the proposed SbBDEM technique indeed
increases the density-based performance. Our method outperformed works by [24,25] in
terms of accuracy for non-dense and dense images. However, their work uses different
datasets for a fair comparison. To the best of our knowledge, no study has been conducted
using specifically the INbreast dataset with the metrics included for density-based mass
detection. Meanwhile, work by [18] achieves 99.91% accuracy for benign and malignant
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classification compared to our method at 96% accuracy based on different breast densi-
ties. However, since the study’s augmentation process brings almost 7000 images from,
originally, 112 images in INbreast, their work may cause unreliable results if the same
technique is applied to a newer dataset. In contrast, the work of [45] exceeded our detection
results for the same dataset. Nevertheless, it required more testing time than our approach
due to the simpler training architecture employed. Additionally, since most of the studies
listed applied CLAHE in their pre-processing stage, given that our enhancement method
improves the detection model by mAP of 13.33% for CLAHE compared to the proposed
SbBDEM technique as discussed in the result section, it is also expected to increase these
studies detection stage if our pre-processing method is applied beforehand. Indeed, low
accuracy limitations could be overcome by applying a more complex algorithm with more
sophisticated hardware for training, which is expected to further improve the currently
proposed SbBDEM technique for mass detection.

5. Conclusions

This work presents an image enhancement method according to the breast density
level for Computer-Aided Diagnosis (CAD) stages for mammogram image analysis. Based
on the result, the proposed SbBDEM technique could increase the performance for all
stages of mass detection, segmentation, and classification for mammogram images. An
improvement is observed when the proposed SbBDEM method is compared to the original
image and the most widely used enhancement technique, i.e., contrast-limited adaptive
histogram equalization (CLAHE) and histogram equalization (HE). The adjustment of the
lower limit cap acts as a threshold value to separate the dense and mass to non-dense
regions. This helps refine the textural information as a feature that represents both regions
and through textural feature extraction in the classification stage, boosting the accuracy
to 96% for the 5-fold cross-validation of benign vs. malignant classification experiment.
The result also presents an improvement of mass detection with mean Average Precision
(mAP) = 0.6401 to mAP = 0.8125, with mass detection in non-dense and dense accuracy of
93.33% and 95.33%, respectively. We achieved an increase of 98.41% confidence scores (CS)
as opposed to 91.84% in the original image and a slight improvement of 0.03% in the mass
segmentation using the proposed SbBDEM technique.

Meanwhile, in its original documentation, You Only Look Once v3 (YOLOv3) spe-
cializes in detecting smaller objects with the implementation of the second detection head.
We further utilize this by modifying the second detection head into receiving the textural
features that were already enhanced in the pre-processing stage through our proposed
SbBDEM technique by adding these features to the deeper learning layer that contains
more semantic information of the same image to improve the feature discrimination.

Our proposed method is limited by the unavailability of standardized image quality
metrics that can determine the best image for all training images based on textural ele-
ments while considering the need for thousands of images for deep-learning purposes.
While a high-quality image might be good for measuring accuracy, it is unnecessarily true
to measure its textural aspect. Although statistical information for textural analysis is
available, more suitable metrics can be investigated for more reliable metrics that relate
image quality and texture. Additionally, with a running GPU capability of only 6 GB, the
study is limited by the unavailability of a more sophisticated computing facility to employ
higher-functioned YOLO, such as versions 4, 5, 6, and 7 without affecting the performance
by reducing the mini-batches. However, the implementation of YOLOv3 in this study
is sufficient as a way to demonstrate the effectiveness of density-based enhancement on
the dataset before training and was modified based on its simplicity, which only runs on
5 MB or 1.2 million learnable parameters. Future studies could be explored by using other
breast mammogram datasets with validation from a trained radiologist to enable CAD
implementation in the medical field. Finally, the result obtained was comparable to the
state-of-the-art performance from other methods discussed and can work as a base model
for future updates by employing a more complex model on another dataset as well.
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Abstract: Two-dimensional (2D)/three-dimensional (3D) registration is critical in clinical applications.
However, existing methods suffer from long alignment times and high doses. In this paper, a non-rigid
2D/3D registration method based on deep learning with orthogonal angle projections is proposed.
The application can quickly achieve alignment using only two orthogonal angle projections. We tested
the method with lungs (with and without tumors) and phantom data. The results show that the Dice
and normalized cross-correlations are greater than 0.97 and 0.92, respectively, and the registration
time is less than 1.2 seconds. In addition, the proposed model showed the ability to track lung tumors,
highlighting the clinical potential of the proposed method.

Keywords: 2D/3D registration; orthogonal X-ray; deep learning

1. Introduction

Medical imaging has helped a lot with diagnosing and treating diseases as modern
medical technology has grown quickly. Image registration is crucial in medical image
processing because it helps predict, diagnose, and treat diseases. For the images to be
registered, three-dimensional (3D) medical images with rich anatomical and structural
information are an inevitable choice for clinical problems. Unfortunately, 3D images have a
higher radiation dose and a slower imaging speed, which inconveniences real-time clinical
problems, such as image-guided radiotherapy and interventional surgery. On the other
hand, two-dimensional (2D) images lack some spatial structure information, while the
imaging speed is very fast. Therefore, in recent years, 2D/3D image registration with
faster speed and simple imaging equipment has attracted much attention. The types of 2D
images are usually X-ray [1–4], fluoroscopic [5], digital subtraction angiography (DSA) [6,7],
or ultrasound [8], whereas 3D images are chosen from computed tomography (CT) [1–4] or
magnetic resonance imaging(MRI) [8].

2D/3D registration methods can be divided into traditional and deep learning-based
image registration. In traditional image registration, 2D/3D alignment usually translates
into the problem of solving for the maximum similarity between digitally reconstructed
radiographs (DRR) and X-ray images. Similarity metrics are usually based on intensity-
based mutual information [9–11], normalized cross-correlation (NCC) [12] and Pearson
correlation coefficients [13], or gradient-based similarity metrics [14]. To minimize the
dimensionality of the transformation parameters, regression models that rely on a priori
information are usually built using B-spline [15] or principal component analysis (PCA) [16–19].
However, organ motion and deformation can cause errors in regression models, which
rely too much on prior information. By incorporating finite element information into the
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regression model, Zhang et al. [18,19] obtained more realistic and effective deformation
parameters. However, adding finite element information makes the model-driven method
of finding the optimal solution iteratively more inefficient. Therefore, this process is a
constraint for developing real-time 2D/3D registration and tumor tracking algorithms.

With the development of artificial intelligence and deep learning, learning-based meth-
ods replace the tedious iterative optimization process with predicted values in the testing
process, greatly improving computing efficiency. Zhang [20] proposed an unsupervised
2D-3D deformable registration network that addresses 2D/3D registration based on finite
angles. Li et al. [4] proposed an unsupervised multiscale encode decode framework to
achieve non-rigid 2D/3D registration based on a single 2D lateral brain image and 3D CBCT
image. Ketcha et al. [21] used multi-stage rigid registration based on convolutional neural
networks (CNN) to obtain a deformable spine model. Finally, Zhang et al. [22] achieved
a deformable registration of the skull surface. Unfortunately, the above learning-based
approach evaluates the similarity between DRR and X-ray, a 2D/3D registration reduced
dimension to 2D/2D registration. Therefore, it is inevitable that spatial information will
be lost to some extent. In addition, even with Graphic Processing Unit (GPU) support,
forward projection, backward projection, and DRR generation involved in the above meth-
ods are computationally expensive. Then, the researchers completed end-to-end 2D/3D
registration by integrating the forward/inverse projection spatial transformation layer into
a neural network [3,23]. Frysch et al. [2] used Grangeat’s relation instead of expensive
forward/inverse projection to complete the 2D/3D registration method based on a single
projection of arbitrary angle, which greatly accelerated the computational speed. However,
this is a rigid transformation which is difficult to apply to elastic organs. Likewise, deep
learning researchers have attempted to use statistical deformation models to build deep
learning-based regression models. Using a priori information to build patient-specific de-
formation spaces, convolutional neural networks are used to accomplish regression on PCA
coefficients [1,24,25] or B-spline parameter coefficients [26,27] to achieve patient-specific
registration networks. Tian et al. [28] obtained the predicted deformation field based on
the regression coefficients. However, this deformation space, which is completely based
on a priori information, may lead to mistakes in the clinical application stage. In addition,
some researchers [29,30] also accomplished 2D/3D image registration by extracting feature
points. With the maturity of point cloud technology, many researchers have also built point-
to-plane alignment models by extracting global point clouds to complete 2D/3D alignment
models, but the anomaly removal for 2D/3D alignment models presents a challenge [31–33].
Graphical neural networks are also used for 2D/3D registration in low-contrast condi-
tions [34]. Shao et al. [35] tracked liver tumors by adding finite element modeling. Still,
the introduction of finite elements also brought some trouble to the registration time.

Therefore, we developed a deep learning-based method for non-rigid 2D/3D image
registration of the same subject. Compared with traditional algorithms based on iterative
optimization, this approach significantly improves the registration speed. Compared with
the downscaled optimization of DRR and X-ray similarity, we optimized the similarity of
3D/3D images, which can effectively moderate the loss of spatial information. Additionally,
only two projections based on orthogonal angles were chosen for 2D images to reduce the
irradiation dose further. The proposed method is used to study the process of changes in the
elastic organ as respiratory motion proceeds. More significantly, we also investigated the
change in tumor position with respiratory motion, which can be used to achieve tracking
of tumors based on orthogonal angular projections during radiotherapy.

The contributions of our work are summarized as follows:
1. We propose a 2D/3D elastic alignment framework based on deep learning, which

can be applied to achieve organ shape tracking at lower doses using only two orthogonal
angles of X-rays.

2. Our framework is expected to be used for tumor tracking with tumor localization
accuracy up to 0.97 and registration time within 1.2 s, which may be a potential solution for
image-guided surgery and radiotherapy.
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The organizational structure of this article is as follows. Section 2 describes the
experimental method. Section 3 describes the experiment setups. Section 4 shows the
Result. Section 5 is the discussion and Section 6 concludes the paper and the references.

2. Methods

2.1. Overview of the Proposed Method

The framework of this method is shown in Figure 1. We design a non-rigid 2D/3D
registration framework based on deep learning of orthogonal angle projection. Since it is
a deep learning-based model, a large amount of data is needed to participate in training.
The real paired 2D/3D medical images at the same time are very scarce, so the first
task that needs to be done is data augmentation. We chose 4D CT of the lungs as the
experimental subject. The expiratory end was used as a moving image MCT and hybrid
data augmentation [36,37] was used to obtain a large number of CT FCT representing
each respiratory phase of the lung (this procedure will be described in Section 3.1). Then,
the ray casting method obtains a pair of 2D DRRs of FCT with orthogonal angles. After that,
the orthogonal DRR and the moving image MCT are input into the 2D/3D registration
network. The network outputs a 3D deformation field φp. Then, the moving image MCT is
transformed by the spatial transformation layer [38] to obtain the corresponding predicted
CT image. The maximum similarity between the predicted CT image and the ground truth
FCT is calculated. Through continuous iterative optimization, we can complete the model
training. In the inference phase, only the X-ray projections or DRRs and the moving image
must be input to the trained network to get corresponding 3D images.

Figure 1. Overview of the proposed method. (a) Flowchart of the training phase of the method. First,
a large number of CT FCT and segmentation Fseg representing each phase are obtained by performing
hybrid data augmentation of the moving image MCT and the corresponding segmentation image
Mseg. Then, the FCT images are projected to obtain the 2D DRR90 and DRR00. After that, they are fed
into the registration network with the moving image MCT to obtain the predicted deformation field
φp. Finally, the moving image MCT and the moving segmentation map Mseg are transformed to obtain
the corresponding predicted images, PCT and Pseg. (b) The process of hybrid data augmentation.
The deformation field φinter is first obtained by inter-phase registration using traditional image
registration. The small deformation φintra is simulated by TPS interpolation. The hybrid deformation
field φhybrid is obtained by summing with random weights for data augmentation. (c) Inference stage.
The 2D projection and moving images are directly input to the trained network to get the prediction
φp, and then the registration can be completed by transformation.
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2.2. 2D/3D Registration Network

Figure 2 shows the registration network. For 2D/3D image registration, the first thing
to consider is the consistency of spatial dimension. As a result, we use the extracted feature
up-dimensional approach to transform the 2D/3D registration problem into the 3D/3D
registration problem. We used the residual network to get the 2D features. The most
important step is identity mapping, stopping the gradient from going away, and helping
train the network. Thus, when two DRRs with orthogonal angles are input to the network,
they are first concatenated in the channel layer as the input of the residual network and
then passed through the convolution layer, the max pooling layer, and two output channels
with 64 and 128 residual blocks in turn. The channel layer is the third dimension to form
a 3D feature map, which is input to the feature extraction network together with the
moving image.

We selected the 3D Attention-U-net [37,39] (3D Attu) as the feature extraction network
in this study. It can be called the 3D/3D matching network. The network 3D Attu adds an
attention gate mechanism to the original U-net, which can automatically distinguish the
target shape and scale, and learn more useful information. It also employs encoding and
decoding mechanisms and skips connection mechanisms. It effectively blends high- and
low-level semantic information while widening the perceptual domain. It has been used in
many medical image processing tasks with excellent results. As a result, in this model, we
feed the moving image MCT and the 3D feature map into the 3D Attu. The output is the
predicted deformation field.

Figure 2. 2D/3D registration network. First, 2D DRRs at orthogonal angles are processed by residual
blocks to obtain 3D feature maps. Then, the feature maps and moving images are fed into a 3D Attu-
based encode–decode network. The final output of this network is the predicted 3D deformation field.

2.3. Loss Function

The mutual information (MI) between the ground truth FCT and the predicted 3D CT PCT
obtained by the registration network constitute the loss function LMI(FCT , PCT). The other
part of the loss function is LDice(Fseg, Pseg), obtained by computing the Dice between the
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corresponding segmented images, which allows the model to focus more on the lung region.
Lastly is the regularized smoothing constraint LReg(φp) for the deformation field.

LDice(Fseg,Pseg) =
n

∑
i=0

1
n

2
∣∣∣Fi

seg ∩ Pi
seg

∣∣∣∣∣∣Fi
seg + Pi

seg

∣∣∣ (1)

L = λ1LDice(Fseg,Pseg) + λ2LMI(FCT , PCT) + λ3LReg(φp) (2)

where n denotes the number of categories in the image, i denotes the i-th category of the
image. ϕ denotes all elements in the entire deformation field. λ1, λ2, λ3 denote the weights
of LDice, LMI , LReg respectively, which were chosen as 0.5, 0.5, and 0.1 in this experiment.

3. Experiment Setups

3.1. Data and Augmentation

We conducted experiments on three different types of lung data, TCIA [40–43] patient
with a tumor, Dirlab [44] lung CT without tumor, and CIRS phantom. ITK-SNAP is used
for automatic segmentation to obtain labels. In the TCIA patient data, we selected one
of the patients for the experiment. In Dirlab, we selected the first five sets of data for the
experiment. In the CIRS phantom, we simulated the lung tumor with a water sphere. In the
experiment, we resampled the 3D CT image to 128 ∗ 128 ∗ 128 with a voxel spacing of
1 mm ∗ 1 mm ∗ 1 mm. Since our experiment is a 2D/3D registration, paired 2D projections
and 3D medical images of the same moment are rare. It is unethical to expose the human
body to additional radiation doses, so the first task is data augmentation. However,
for 2D/3D registration of the treatment phase (e.g., radiotherapy, surgical navigation), it is
obvious that the focus is more on the specific person. Therefore, we chose a hybrid data
augmentation approach to train a deep learning-based 2D/3D registration model for a
specific human body.

In the hybrid data augmentation shown in Figure 1b, we first selected the end-
expiratory phase of 4D CT as the moving image MCT and the remaining phases as the
fixed image CT1,...,i,j,9. Then, we used the conventional intensity-based image registration
method to obtain nine deformation fields in the order of φ1,...,i,j,9. The deformation fields
used for data augmentation were arbitrarily selected from two of the nine deformation
fields and superimposed with random weights to obtain many inter-phase deformations.
The lung may also change during respiratory motion. Therefore, we use thin plate spline
(TPS) interpolation to simulate small changes in specific phases. The number of control
points N was randomly chosen between 20 and 60. The movement distance of control
points was chosen between 0 mm and 20 mm to obtain many phase-specific random defor-
mations. To obtain more morphologically diverse images, we combined inter-phase and
intra-phase specific deformation with random weights to obtain many hybrid deformation
fields. Spatial warping of the moving and segmented images was performed to obtain CT
and segmented images representing each respiratory phase of the lung.

3.2. DRR Image Generation

The orthogonal angle X-ray projection system in this experiment is shown in Figure 3.
Two-point light sources at orthogonal angles emit rays through the object and project them
on two detectors perpendicular to the central axis. We assume that the initial intensity of
I0 at the light source, μ is the internal attenuation coefficient of the object to the rays, I is
the thickness of the ray through the object, and In is the intensity of the ray after passing
through the object. The formula In = I0e−

∫
μ(l)dl arises. After the projection of one ray is

finished, the attenuation coefficient obtained by accumulating the whole path and then
converting it to CT value is the X-ray image. In this experiment, like most researchers,
DRR images with the same imaging principle are used instead of X-ray. Virtual X-rays
were used to pass through the CT images, and after attenuation, they were projected onto
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the imaging plane to reconstruct the DRR images. The 3D CT images representing each
respiratory phase after data augmentation are projected using this method to obtain the
DRR images at the corresponding moment. This technique has been widely used for 2D/3D
registration methods.

Figure 3. Schematic diagram of DRR image generation.

3.3. Experiment Detail

We used hybrid data augmentation to obtain 6000 samples from the three types of
experimental data. Of these, 5400 were used as the training set, 300 as the validation
set, and 300 as the test set. Our experiment was implemented using the deep learning
framework Pytorch 1.10 on a NVIDIA A6000 GPU with 48 G of memory, and an AMD
Ryzen 7 3700X 8-core processor with 128 GB of internal memory. The learning rate is set to
10−4. For all datasets, the batch size was set to 8 and the optimization algorithm is Adam.

3.4. Experiment Evaluation

In order to verify that our model can achieve 2D/3D registration by two orthogonal
angular projections, we selected the end of expiration as the moving image and aligned
it toward the remaining phases. We evaluated the three-lung data using NCC, MI, 95%
Hausdorff surface distance, and Dice. In addition, to explore the tracking of lung tumors
that can be achieved by our model, we compared between predicted and ground truth
values for the dataset with tumors and quantitatively evaluated using Dice and the tumor
center of mass.

4. Result

4.1. Registration from the Expiratory End to Each Phase

Here, we demonstrate the registration results of each phase from the end of expiration
to the end of inspiration for the TCIA, Dirlab, and phantom. For the qualitative assessment,
Figure 4a shows the results of our selected experiments on patients with tumors on TCIA,
Figure 4b shows a randomly selected set of experiments from Dirlab, and Figure 4c shows
the effect of registration of the phantom data. The odd rows are the unaligned ones, and the
even rows are the aligned results. Based on the results, both TCIA patients with tumors and
without tumors in Dirlab, as well as the phantom model with water balloons that simulate
tumors, can achieve registration from the end of expiration to the rest of the stages.

For the quantitative analysis, we used Dice of the segmentation map, 95% Hausdorff
surface distance, NCC, and MI of grayscale images to evaluate our scheme separately.
The results are shown in Table 1. It can be seen that good registration results are obtained
for all three types of data, not only on the grayscale images, but also on the lung of interest.
The Dice values of all three data types are above 0.97, the Hausdorff surface distances
are below 2 mm, NCC are above 0.92 and MI are above 0.90. Compared with the real
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human lung, the NCC and MI of the phantom data are relatively small because the lung
of the phantom itself does not change. Only the internal water sphere changes, which is
more rigidly transformed relative to the real patient, so the NCC and MI are relatively
small at higher Dice. However, the total accuracies are still above 0.92 and 0.90. Therefore,
quantitative and qualitative results show that the proposed method can achieve non-rigid
2D/3D registration for a specific subject by two orthogonal angular projections.

Figure 4. Registration from the exhalation end to the other stages. (a) shows the results of our
registration on TCIA, (b) a randomly selected set of experiments from Dirlab, and (c) the registration
results of the phantom data. The odd-numbered rows are the unregistered contrast images, and the
even-numbered rows are the registered contrast images.

Table 1. The accuracy of subjects’ registration from the expiratory end to each phase.

Dice Hauf (95%) NCC MI

TCIA

[0%,10%] 0.9814 1.1210 0.9846 0.9796
[0%,20%] 0.9791 1.3811 0.9846 0.9760
[0%,30%] 0.9795 1.3811 0.9847 0.9540
[0%,40%] 0.9785 1.3811 0.9846 0.9578
[0%,50%] 0.9806 1.4196 0.9848 0.9650

Dirlab

[0%,10%] 0.9857 1.8839 0.9762 0.9590
[0%,20%] 0.9857 1.8620 0.9723 0.9535
[0%,30%] 0.9853 1.8280 0.9691 0.9511
[0%,40%] 0.9853 1.8290 0.9680 0.9424
[0%,50%] 0.9854 1.8290 0.9753 0.9608

CIRS

[0%,10%] 0.9862 0.9043 0.9338 0.9135
[0%,20%] 0.9907 1.6713 0.9291 0.9023
[0%,30%] 0.9888 2.0000 0.9360 0.9064
[0%,40%] 0.9885 1.9087 0.9348 0.9065
[0%,50%] 0.9894 1.9087 0.9349 0.9178
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4.2. Tumor Location

Both TCIA patient and the phantom contained tumors. The accuracy of tumor local-
ization was evaluated qualitatively and quantitatively.

Figure 5 shows the qualitative evaluation of the 3D tumor with two types of data,
where (a) is a 3D visualization image of the patient’s overall lung and tumor and (b) is
of the phantom data. Table 2 presents the quantitative results, where we evaluated the
tumor center mass and Dice. The tumor center of mass deviation is within 0.15 mm for the
real patient. The phantom tumor center of mass is less than 0.05 mm. The Dice of both
are above 0.88. It can be seen that the proposed method can achieve registration both for
the whole lung and for the tumor. In addition, the fact that local tumors are well aligned
suggests that our model could be useful for clinical applications such as tracking tumors.

Figure 5. Tumor registration results from the exhalation end to other stages. Where (a) is the 3D
presentation of the results before and after a real patient’s lung and tumor registration, and (b) is of
the phantom data of the 3D results of the tumor display. The odd rows are the unregistered images,
and the even rows are the post-registered images. The red image indicates the ground truth. Blue is
the moving image, and green is the predicted result obtained by the model.

Table 2. The accuracy of tumor location from the expiratory end to each phase.

Center Mass (mm) Dice
X(LR) Y(AP) Z(LR) Center Tomor

TCIA

[0%,10%] 0.0003 0.0473 0.0844 0.0968 0.9440
[0%,20%] 0.0117 0.0133 0.0260 0.0315 0.9434
[0%,30%] 0.0031 0.0023 0.0473 0.0022 0.9023
[0%,40%] 0.0032 0.0078 0.0339 0.0350 0.9080
[0%,50%] 0.0227 0.0510 0.1251 0.1370 0.8984

CIRS

[0%,10%] 0.0224 0.0011 0.0270 0.0351 0.9717
[0%,20%] 0.0061 0.0025 0.0081 0.0104 0.9764
[0%,30%] 0.0086 0.0018 0.0158 0.0181 0.9609
[0%,40%] 0.0174 0.0177 0.0084 0.0262 0.9702
[0%,50%] 0.0022 0.0043 0.0477 0.0479 0.8826
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5. Discussion

5.1. Traditional Registration in Data Augmentation

We used traditional intensity-based image registration for data augmentation to com-
plete the registration between phases. Here we present the two most distorted parts of the
three data, the end of expiration and the end of inspiration, for evaluation. The experimental
results are shown in Figure 6.

Figure 6 shows the results from three directions before and after the registration.
The odd columns are the unregistered images. The even columns are the results after the
traditional registration method. Conventional image registration can be accomplished for
real patients and models from exhalation to the end of inspiration, ensuring that our aug-
mentation data encompasses all respiratory phases of the lung. In addition, the registration
covers the larger deformations at both ends.

Figure 6. The traditional registration method results from the end of exhalation to the end of
inhalation. The first two columns are the registration results on the patient, the middle two are the
registration results on the normal human lung, and the last two are the registration results on the
phantom. The odd columns are the unregistered images, and the even columns are the results of the
registered images.

5.2. Landmark Error

For the Dirlab data, the landmark points and the deformation field for performing
data augmentation are known. Thus, the landmark points of the image generated after data
augmentation are also known and used as our ground truth. The mean target registration
error (mTRE) is evaluated with our model-predicted images.

The data obtained from the evaluation are shown in Table 3. The corresponding box
plot is shown in Figure 7, in which green indicates the data before registration, yellow is
the data after registration of the proposed method, and purple represents the data after
3D/3D registration using Demons [45]. The results show that the proposed model can
achieve effective 2D/3D registration, but the accuracy is lower than the existing advanced
3D/3D registration models because the experimental data are only two 2D X-rays with
orthogonal angles. Although the proposed method transforms 2D/3D registration into a
3D/3D registration problem, some image details are indeed lost compared with the 3D
images, resulting in the loss of information on tiny details, such as capillaries, leading to a
lower accuracy of landmark error based on detailed information. However, in the 2D/3D
registration mission, more attention is paid to the global overall changes in the lung and the
tumor location. The proposed method greatly reduces the irradiation dose and improves
the registration speed.
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Table 3. Mean target registration error of landmarks in Dirlabs.

(mm) Initial Proposed (2D/3D) Demons (3D/3D)

Dirlab1 3.9776 (1.8616) 2.0065 (0.6748) 1.6297 (0.3196)
Dirlab2 6.3989 (2.1719) 4.0079 (1.0077) 3.3807 (0.5089)
Dirlab3 6.2138 (1.7843) 2.9219 (0.7237) 2.1556 (0.2991)
Dirlab4 7.6437 (2.3978) 4.0682 (0.9898) 3.2525 (0.3918)
Dirlab5 6.6075 (2.1448) 2.6253 (0.7719) 1.6408 (0.4824)

Figure 7. Box plot of landmark points in Dirlab; green indicates the data before registration, yellow
is the data after registration of the proposed method, and purple represents the data after 3D/3D
registration using Demons.

In addition, our method can complete 2D/3D registration in 1.2 s. In contrast, other
data-driven 2D/3D registration models, such as [20], may take a few seconds. On the other
hand, traditional image registration methods may take tens of minutes or even hours. Our
method also only needs two different angles of X-rays, which greatly reduces the amount
of radiation and makes the hardware in the clinic easier to use. Of course, our method
also has some limitations. First of all, since real medical images do not exist at the same
moment of paired orthogonal angles of X-ray and corresponding 3D CT, we use 2D DRR.
Although DRR and real X-ray use the same imaging way, it is undeniable that there are
some grayscale and noise differences between the two. However, it can be corrected by
using existing methods, such as histogram matching [24], network of GAN [25], etc., which
is not the main focus of our study. We will also make some improvements to the program
to speed up the processing speed for radiotherapy or interventional procedures that require
more real-time, etc. In addition, since there are few non-rigid 2D/3D registration articles,
the code is not open source. We have yet to choose a suitable comparison experiment,
and we will continue to look for it in the future.
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6. Conclusions

This study proposes a deep learning-based 2D/3D registration method using two
orthogonal angular X-ray projection images. The proposed algorithm has been verified
on lung data with and without tumor and phantom data, and obtained high registration
accuracy, where Dice and NCC are greater than 0.97 and 0.92. In addition, we evaluated
the accuracy on the data containing tumor, and the tumor center-of-mass error was within
0.15 mm, which indicates the promising use of our model for tumor tracking. The registra-
tion time is within 1.2 s, and this is promising for clinical applications, such as radiotherapy
or surgical navigation, to track the shape of organs in real time. Moreover, we only need
to use two orthogonal angles of X-rays to achieve 2D/3D deformable image registration,
which can greatly reduce the extra dose during treatment and simplify the hardware
system required.
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The following abbreviations are used in this manuscript:

2D Two-dimensional
3D Three-dimensional
DSA Digital Subtraction Angiography
CT Computed Tomography
MRI Magnetic Resonance Imaging
DRR Digitally Reconstructed Radiographs
NCC Normalized cross-correlation
PCA Principal Component Analysis
CNN Convolutional Neural Network
GPU Graphic Processing Unit(GPU)
3D Attu 3D Attention-U-net
MI Mutual Information
TPS Thin plate spline
mTRE Mean Target Registration Error
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Abstract: Feature fusion techniques have been proposed and tested for many medical applications
to improve diagnostic and classification problems. Specifically, cervical cancer classification can be
improved by using such techniques. Feature fusion combines information from different datasets into
a single dataset. This dataset contains superior discriminant power that can improve classification
accuracy. In this paper, we conduct comparisons among six selected feature fusion techniques to
provide the best possible classification accuracy of cervical cancer. The considered techniques are
canonical correlation analysis, discriminant correlation analysis, least absolute shrinkage and selection
operator, independent component analysis, principal component analysis, and concatenation. We
generate ten feature datasets that come from the transfer learning of the most popular pre-trained
deep learning models: Alex net, Resnet 18, Resnet 50, Resnet 10, Mobilenet, Shufflenet, Xception,
Nasnet, Darknet 19, and VGG Net 16. The main contribution of this paper is to combine these
models and then apply them to the six feature fusion techniques to discriminate various classes of
cervical cancer. The obtained results are then fed into a support vector machine model to classify four
cervical cancer classes (i.e., Negative, HISL, LSIL, and SCC). It has been found that the considered
six techniques demand relatively comparable computational complexity when they are run on the
same machine. However, the canonical correlation analysis has provided the best performance in
classification accuracy among the six considered techniques, at 99.7%. The second-best methods
were the independent component analysis, least absolute shrinkage and the selection operator, which
were found to have a 98.3% accuracy. On the other hand, the worst-performing technique was the
principal component analysis technique, which offered 90% accuracy. Our developed approach of
analysis can be applied to other medical diagnosis classification problems, which may demand the
reduction of feature dimensions as well as a further enhancement of classification performance.

Keywords: cervical cancer; feature fusion; feature selection; deep learning structures; support vector
machine; disease discrimination accuracy; performance comparisons

1. Introduction

In 2020, 604,000 new cases of cervical cancer were estimated, and 342,000 deaths were
reported; 90% of the new cases and deaths were reported in middle- and low-income
countries [1]. These cases were due to the lack of health awareness as well as the limited
access to screening methodologies. According to the World Health Organization (WHO),
appropriate screening reduces morbidity and mortality among women [2]. In this regard,
a pap smear is the most common early screening and diagnostic tool for cervical cancer.
Hundreds of sub-pap smear images are examined under a microscope by a cytopathologist.
This makes such manual analysis a subjective, error-prone, and time-consuming process.

Computer-aided design (CAD) tools can play an important role in overcoming the
inconsistency, inaccuracy, and time-consuming problems of manual analysis. In the last
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few decades, automated methods have been developed and then approved by the food
and drug administration (FDA) to diagnose and classify cervical cancer [3–6].

The recent advances in computing and the large growing data repository have sup-
ported efficient machine learning (ML) and deep learning (DL) algorithms to aid medical
decisions. In recent years, pap smear images have been efficiently processed by adequate
machine learning algorithms for cervical cancer classification [7–12]. One of the first steps
in building such models is to identify the features that best describe the input data.

In this paper, we mainly focus on providing comprehensive testing results for the
estimation accuracy of various data fusion techniques when they are applied to cervical
cancer classification. It is noted that data fusion can occur at different levels, such as the
feature level, matching score level, or the decision level [13]. The main aim of feature
fusion is to combine information from two or more feature sets into a single dataset that
has more discriminant power than each feature vector. Accordingly, in this paper, we are
interested in utilizing this discriminant power in separating classes more efficiently. We
are conducting a comparative analysis to test the effectiveness of selected feature fusion
techniques in enhancing the accuracy of cervical cancer classification. These techniques are
applied on the feature level, which reduces the dimensionality of the feature datasets while
enhancing the accuracy of classification.

The following literature review highlights recent studies that show the effectiveness of
data fusion techniques for cervical cancer detection. However, due to the limited number
of studies that use feature-level fusion for cervical cancer classification, which is the main
purpose of this paper, the literature review is followed by other related studies that use
feature fusion on other medical images for diagnostic and classification purposes.

2. Related Work

In this section, we have selected the most recent studies that use feature engineering
specifically on cervical cancer classification. In each article, the authors used a
different fusion technique and showed how this improved the classification accuracy.
Alquran et al. [14], proposed a computer-aided diagnosis of cervical cancer classification
based on feature fusion between the well-known Shuffle Net DL structure and a novel
Cervical Net structure. The novel Cervical Net structure was proposed by Alquran. The
authors used a principal component analysis (PCA) and canonical correlation analysis
(CCA) as the feature reduction and fusion techniques. The resultant features were fed
into different ML classifiers. The best accuracy of 99.1% was obtained using a support
vector machine (SVM) to classify between five classes of pap smear images. On the other
hand, Liu et al. [15] proposed a framework to classify cervical cancer cell classification
based on DL. Specifically, they extracted local and global features using a convolutional
neural network (CNN) module and a visual transformer module, respectively, from cer-
vical cancer cell images. Then these features were fused using a multilayer perceptron
module. The framework proposed by Liu et al. obtained an accuracy of classification
of 91.72% by combining two datasets (CRIC and SIPaKMeD datasets) for an 11-class
classification problem.

Rahman et al. [16] proposed a method for enhancing computer-aided diagnosis of
cervical pap smear images using a hybrid deep feature fusion (HDFF) method. This method
was tested on the SIPaKMeD dataset and performance was compared with multiple DL
models alongside the late fusion method. The late fusion, sometimes called decision-level
fusion, leverages predictions from multiple models to make a final decision. In their paper
using the SIPaKMeD dataset, they obtained a classification accuracy of 99.85%, 99.38%,
and 99.14%, for a 2-class, 3-class, and 5-class classification. They also tested their model
on the Herlev dataset and achieved an accuracy of 98.32% for a 2-class and 90.32% for a
7-class classification. Moreover, Hussain et al. [17] proposed a computer-assisted screening
system based on DL. The paper explored six deep learning structures, namely Alexnet,
Vggnet (vgg-16 and vgg-19), Resnet (resnet-50 and resnet-101), and Googlenet architectures,
for a four-class diagnosis of cervical cancer lesions. The authors fused the best three DL
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models yielding the best accuracy for class classification. The output of each deep learning
structure mentioned above was evaluated based on performance, then the best three models
(Resnet-50, Resnet-101, and Googlenet) were combined (fused) to generate their ensemble
classifier. Their results showed that the proposed classifier achieved the highest area under
curve (AUC) = 97% between two positive and negative classes.

The above articles applied some sort of data fusion method to enhance the decision
accuracy from cervical cancer pap smear images. However, not all the above studies
used feature-level fusion. Rahman et al. and Hussain et al. used decision-level fusion.
Alquran et al. used CCA to fuse features from two datasets, and finally, Lui et al. used a
multilayer perceptron model. Due to the limited number of studies that use feature fusion
for cervical cancer classification, we listed other studies that highlight the effectiveness of
using feature fusion and reduction analysis to improve other medical image classification
problems. In the below references, we have selected articles that used feature analysis CCA,
discriminant correlation analysis (DCA), least absolute shrinkage and selection operator
(LASSO), independent component analysis (ICA), PCA, and others. Most of the feature
fusion techniques mentioned in the below articles were selected in our comparative study.

Zhang et al. [18] studied four different feature fusion and reduction techniques be-
tween two independent feature sets, namely, LungTrans features and PrRadomics features.
In their paper, the authors proposed a method for feature fusion named the ‘risk score based’
feature fusion method. Their paper showed that the proposed risk score-based feature
fusion method improves the prognosis performance for predicting the survival of pancre-
atic ductal adenocarcinoma patients, yielding an increase of 40% of AUC compared with
AUC without fusion. The feature fusion and reduction techniques used were PCA, LASSO,
Boruto, Univariant Cox proportional-hazards CPH, and the proposed risk score-based
technique. The latest was performed by feeding each feature set to two different random
forest classification models, and the resulting most significant features were fed into another
random forest-based prognosis model. In summary, Zhang et al. compared five different
feature fusion techniques on two feature datasets (lungtrans features and PrRadomics) to
improve the prognosis of PDAC. Moreover, Fan et al. [19] integrated dynamic contrast-
enhanced magnetic resonance imaging and T2-weighted imaging radiomic features by a
CCA. The paper aimed to provide related complementary information between the fused
feature datasets to improve breast cancer prediction. After fusing the two datasets, they
used SVM-based recursive feature elimination (SVM-RFE) to identify the optimal features
for prediction. They noticed an enhancement in the AUC after using fused features. More-
over, they reported that using CCA was more beneficial than using concatenation-based
feature fusion or classifier fusion methods. Another method for feature-level fusion is
the DCA, which was proposed by Haghighat et al. [20] where they introduce DCA as an
effective feature fusion method to enhance class separation. They tested DCA on multiple
biometric datasets showing the effectiveness of this approach. Using DCA combines the
information from more than one feature dataset into a single dataset that has more discrim-
inant power. This was applied to different medical diagnostic applications, for example,
Wang et al. [21] extracted features from four datasets for COVID-19 CCT images using a
novel feature learning algorithm. Then, they proposed a selection algorithm to select the
best two models. Finally, they used the DCA to fuse the two features from the two models.
The final determined model was named CCSHNET. Their proposed CCSHNET model
based on fusing features using DCA showed high-performance measures when compared
to other COVID-19 detection methods.

In this paper, we focus on the existing feature engineering techniques. The utilization
of pre-trained DL structures to extract features from whole-slice pap smear images is a
promising idea, alongside exploiting feature fusion and reduction techniques to obtain the
highest level of confidential computer-aided diagnosis system for colposcopy images. To
our knowledge, this is the first paper that employs ten deep-learning models to extract
representative descriptors, which can be utilized for the recognition of pap smear image
diseases via feature engineering algorithms. The novelty in our approach is using existing
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feature-level fusion to extract the most representative features from ten DL models to
enhance classification accuracy.

3. Materials and Methods

The method that is proposed in this paper is illustrated in Figure 1.

 

Figure 1. The proposed method. Showing all sequential steps of the proposed methodology in
this paper.

The methodology followed in this paper consists of six steps. Step one: collect the
cytology dataset that consists of 1000 samples for 4 different cervical cancer classes. Step
two: perform image augmentation. Step three: extract features using CNN from ten
deep learning structures (4 features for each DL structure total of 40 features). Step four:
concatenate all the features from the ten DL structures to be fed into the feature fusion step.
Step five: apply different feature fusion techniques to fuse or select features. Step six: feed
the features into an SVM to measure classification performance. The details of each step are
described in detail in the following section. Cytology dataset acquisition and augmentation
are described in Sections 3.1 and 3.2. Extracting features using deep learning structures are
described in Section 3.3. The theoretical background of the six selected fusion techniques is
described in Sections 3.4 and 3.5. Finally, the SVM method is described in Section 3.6.

3.1. Image Acquisition

One of the cervical screening tests is liquid-based cytology (LBC). A total of 963 LBC
images are separated into four sets to reflect the four classes, namely, NILM, LSIL, HSIL,
and SCC, that make up the whole repository. It includes cervical cancer-related precancer-
ous and cancerous lesions that meet the Bethesda System requirements (TBS). A total of
460 patients visited the obstetrics and gynecology (O&G) department of the public hospital
with varied gynecological issues and were examined using the ICC50 HD microscope to
take the images at a magnification of 40×. The pathology department’s professionals then
examined and categorized the images [22].

3.2. New Image Augmentation

Data augmentation is a strategy used to expand the amount of data by adding slightly
changed copies of either existing data or freshly created synthetic data from existing data.
It serves as a regularizer and helps minimize overfitting. This paper used rotation images at
random angles in the range of [−45, 45] degrees, image resizing with random scale factors
between [0.2, 1], and translation in both directions X and Y are [−3, 3], to accomplish image
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augmentation for the abnormal cases [23]. Table 1 describes the number of images before
and after augmentation.

Table 1. The number of images before and after augmentation for abnormal cells. After augmentation
the number of images becomes equal.

Abnormal Cells Before Augmentation After Augmentation

1. Low-grade squamous
intraepithelial lesion (LSIL) 113 250

2. High-grade squamous
intraepithelial lesion (HSIL) 163 250

3. Squamous cell carcinoma (SCC) 74 250

3.3. Deep Learning Features

Several pre-trained deep learning models are employed to extract the most representa-
tive features from the last fully connected model in each one. The selected deep-learning
structures were trained on the ImageNet database to distinguish between 1000 classes from
nature. Transfer learning techniques were used to make these structures compatible with
the designed problem statement, which focused on classifying four types of whole-slice
cervical cells. The transfer learning appeared by augmenting the input size of the image
to be appropriated with the input layer of each one and removing the last fully connected
layer to make it four neurons for four classes. The represented features for each model
are extracted from the last fully connected layer. Each one provides four distinguished
features for four classes. The networks that are utilized for feature extractions are AlexNet,
ResNet18,50, and 101, Mobile Net, Shuffle Net, Xception Net, Nasnet, Dark-19, and VGG16.

3.3.1. AlexNet

AlexNet is one of the most popular convolutional networks. It was first introduced in
2012 for ImageNet recognition of 1000 nature classes. AlexNet architecture consists of five
convolutional layers, three max-pooling layers, two normalization layers, and two fully
connected layers with a softmax layer beside input and output layers. Each convolutional
layer is composed of convolutional filters, which are responsible for extracting the graphical
features, and a nonlinear activation function named ReLU. Max pooling is in charge
of the down sampling of activated extracted features. The image input size should be
227 × 227 × 3 to accommodate the parameters of the following layers [24].

3.3.2. ResNets

Residual neural networks (18, 50, and 101) are pre-trained convolutional neural net-
works. They are distinguished by their residual block property. This feature solves the
problems of vanishing or exploding gradients due to deep learning. ResNets allow the
formation of a skip connection, which enables the activation of a layer to further layers by
skipping some layers in between. That is the architecture of the residual block. ResNets
consist of stacking such blocks. Several versions of ResNet have existed that depend mainly
on the number of connected layers, such as ResNet 18, ResNet50, and ResNet101. The input
size of these networks is 224 × 224 × 3 [25].

3.3.3. Mobile Net

Mobile Net is a pre-trained convolutional neural network. It was designed for mobile
and computer vision applications. One of the most prominent properties is depth-wise
separable convolution, which reduces the number of parameters that contain problems
in the existing convolutional layers in the existing networks. That depends mainly on
depth-wise convolution, which is named channel-wise spatial convolution, followed by
pointwise convolution, with a kernel size of 1 × 1 that combines the resultant features from
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the depth-wise convolution. On the other hand, it reduces the dimension of generated
feature map. Their advantages are low latency and a low number of parameters [26,27].

3.3.4. Shuffle Net

Shuffle Net is one of the most efficient networks that is designed for mobile appli-
cations. To maintain a high level of accuracy, Shuffle Net performs point-wise group
convolution and channel convolution. These distinguished properties make Shuffle Net
more accurate, while reducing the complex time computation. It consists of a stacking
of shuffle netblocks, each one consisting of two grouped convolutional layers, channel
shuffle layer, in addition to depth-wise convolutional layers. The process within one block
considers depth-wise convolutional and point-wise convolution as well. The output from
each block passes to the ReLU layer for mapping purposes. The designed input layer is
compatible with image size 224 × 224 × 3 [28].

3.3.5. Xception Net

The insight behind the 3D convolutional layer is the capability to allow the filter to
learn within the 2D spatial domain alongside the depth via channel dimension. Therefore,
the output is obtained by the correlation between the spatial and the channel convolu-
tions. The idea behind the inception blocks makes the process easy and forward by using
several explicit series of operations ended by cross-channel correlation and spatial correla-
tions. The process operation starts with cross-channel correlation to reduce the dimension
via 1 × 1 convolution that maps the input data into 3 or 4 spaces that are lower dimen-
sional than the original input space. After that, the process proceeds via regular 3 × 3 or
5 × 5 convolutions.

The new version of the inception module is called the “extreme”. The Xception
module performs the channel convolution and obtains a spatial convolution for each
channel separately. The Xception architecture consists of 36 convolutional layers forming
the feature extraction base of the network. Moreover, the Xception structure is formed as
linear stacking of inception modules [29].

3.3.6. NasNet

Neural search architecture (NAS) networks stand for NASNET. It is a predefined
architecture that is trained over an ImageNet database of over 1000 categories from nature.
It consists of a series of cells. These cells are the normal and reduction cell, where the
normal cell is responsible for constructing the feature map via convolutional filters, and
the reduction cell oversees the reduction of the size of the feature map in terms of width
and height by factor two. Moreover, the structure of NASNET ended by the softmax layer
yields the probability for the last classification layer [30].

3.3.7. Dark-19 Net

Darknet is one of the most known deep learning structures that is used to detect objects
from images in the available dataset. Dark Net-19 consists of 19 layers, which yields to its
name. The Darknet has various applications in object detection, alongside counting as the
most known algorithm in YOLO, which stands for you only look once [31].

3.3.8. VGG-16 Net

VGG stands for visual geometry group convolutional network, which is trained on
the ImageNet database. VGG16 consists of 16 layers: thirteen are convolutional layers, and
the rest are fully connected layers. The input layer is compatible in design with image size
224 × 224 × 3. The VGG network has a small perspective field where the convolutional
filter size is 3 × 3, which influences capturing more details in the image in both left-right
and up-down directions. Moreover, the convolution of 1 × 1 acts as a linear transformation
for the input data. This network utilizes transfer learning techniques to extract the most
significant features for four pap smear image classes [25].
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3.4. Feature Fusion

Feature extraction is the genesis of the recognition between various classes in machine
learning algorithms. However, the leverage of most representative features may appear
in the performance of the designed classifier. Therefore, looking for the most influential
attributes is a crucial challenge in computer-aided diagnosis systems. This paper compares
techniques in engineering features to classify whole-slice images with highly confidential
results. Employing deep learning semantic descriptors alongside one of the most known
feature processing methods is a hot topic presented in this paper. This paper applies two
types of fusion algorithms: CCA and DCA.

3.4.1. Canonical Correlation Analysis

CCA is one state-of-art statistical analysis of multivariate data that measures the linear
relationship between two datasets. It is one of the most commonly used methods in data
fusion. CCA focuses on maximizing the correlation between the variables of the two
datasets and ignores the relationship between the variables within the same datasets [32].

CCA is defined as two sets of basis feature vectors, where x and y, the correlation of
the features between these bases, are mutually maximized.

These two datasets x and y can be written as linear combinations of their
internal features:

x = xTŵx
y = yTŵy

To maximize the above two functions, the corresponding function should be maximized

ρ =
E[xy]√

E[x2] E[y2]

The maximum values of ρ in respect to the weights of subsets x and y are called
canonical variates.

3.4.2. Discriminant Correlation Analysis

Feature fusion aims to find the highly correlated features between two separate
datasets. In DCA, the class is considered a membership of correlation analysis that enhances
the fusion process. DCA needs low computational complexity, which leads to minimizing
time in real-world applications. Moreover, it reduces the number of features that best
describes the original ones [21]. The corresponding equations illustrate the process of DCA.
The training features are:

E = {(x1, y1), (x2, y2), . . . , (xn, yn)} , where yi = {1, . . . , k}

where k is the number of classes, x, and y are features and their corresponding class.
The first step is calculating the mean of each class separately:

xi =
1

mi

mi

∑
j=1

xi
j,

where mi is the number of samples in each class. Then, evaluate the overall mean of the
training set by:

x =
1
n

k

∑
v=1

mvxv

The covariance matrix is calculated by the following equation:

sigma = ϕT ϕ,

where ϕ =
√

m1(x1 − x), . . . ,
√

mk(xk − x).
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The singular value matrices (SVD):

sigma = UΛUT ,

where Λ is the diagonal of eigenvalues λi, U donates to eigenvectors. The eigenvectors
are ordered in ascending form with their corresponding eigenvectors. The transformation
matrix is given by:

R = ϕUtΛ−1/2
t×t

All previous steps are performed on each set separately. Then, data points are trans-
formed as:

Z1 = RT
1 X1

Z2 = RT
2 X2

After that, the covariance matrix of transformed features between two sets:

Sb = Z1ZT
2

Then, SVD is calculated for Sb:

Sb = VΣVT

Then, the transformation matrix is given by:

T = VΣ− 1
2

Then, the data are generated by the following equation:

X′
1 = TTZ1

X′
2 = TTZ2

Finally, the output features are generated according to the equations:

X′ = X′
1 + X′

2

3.5. Feature Selection

Feature selection is one of the prominent topics in machine learning, processing, and
data analysis. The mean goal of attributes selection maintains that the best representative
attributes have high variance, which reduces the dimensionality of the feature maps and
reduces the time computation and complexity. Various feature selection techniques are
proposed in the literature. In this paper LASSO, PCA, and ICA are used. Below is a
description of each method.

3.5.1. Least Absolute Shrinkage and Selection Operator

LASSO is one type of penalized logistic regression, where a penalty is imposed on the
logistic model for having too many variables. This leads to shrinking the coefficients of the
least contributive variables to zero. Specifically, LASSO forces the less contributive variables
to become exactly zero. For LASSO regression, a constant lambda should be specified
to adjust the amount of the coefficient shrinkage. The best lambda can be defined as the
lambda that minimizes the cross-validation mean square error rate. The mean squared
error (MSE) measures how close a regression line is to a set of data points. In our method,
we have chosen the one standard deviation lambda λ1se to select the final model [33].

3.5.2. Principal Component Analysis

The PCA is well known as an unsupervised learning algorithm used to obtain the
most significant features using dimensionality reduction. First, the dataset is standardized
using the Z score a
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zi =
xi−μc

σc
, where xi is the feature value for each sample, μc the mean of each feature

column, and σc is the standard deviation for each column as well.
Then, the covariance matrix is built for all standardized features, where the diagonal

represents the variance of each feature, and the off-diagonal describes the covariance be-
tween two features in the whole dataset. Then, calculate the eigenvector and eigenvalues
that represent the 95% variation for the constructing covariance matrix. Finally, the eigen-
values are ascended from the highest to lowest principal components. The projection is
calculated to find the original significant features from the original dataset [34,35].

3.5.3. Independent Component Analysis

ICA is a statistical technique that reveals hidden factors (sources) from sets of random
variables, or signals [36], and these sources are maximally independent. ICA has been
used in unsupervised learning classification problems. Many studies have shown the
utility of ICA to extract independent features from the original feature dataset to reduce the
feature space and thus, improve classification accuracy [37–39]. Mathematically speaking,
assuming that x(t) = x1(t); x2(t); . . . ; xn(t) are the set of observed variables that are a
combination of the original and mutually independent sources (original features), source
s(t) = s1(t); s2(t); . . . ; sn(t), the relation can be expressed by x(t) = As(t), where A is called
the mixing matrix. In other words, the equation can be written as y = Wx, where W is the
demixing matrix W = A−1, and y = y1; y2; . . . ; yn, are the independent components. The
demixing matrix and the independent variables can be found from mixed observations
using one of the ICA algorithms such as fastICA [40], which was used in this paper.
Furthermore, the set of extracted components (y = y1; y2; . . . ; yn) are non-Gaussian and
maximally independent. One way to measure this is using the kurtosis [41] measure, which
was adopted in this paper to rank the extracted independent components.

3.6. Support Vector Machine Classifier

SVM classifier is a well-known supervised machine learning algorithm, which was
developed in 1963 by Vladimir N. Vapnik. SVM selects the extreme training points from
different classes to specify the boundary region between various labels, which is called the
margin region. If the training points are linearly separable, then the discrimination between
them is an easy task. If it is not linearly separable, then the SVM has a distinguished
property to represent this feature into higher space using the kernel trick to be linearly
separable in higher space. These kernels are radial basis functions, polynomial-Gaussian,
and many forms of kernels.

4. Results & Discussion

The whole-slice images are passed independently to ten pre-trained deep learning
structures. Each pre-trained CNN is modified using transfer learning so that the last fully
connected layers become compatible with four classes. Four features were extracted from
each CNN. The generated feature map consists of 40 features from 1000 samples. Each
class consists of 250 samples; 250 slices of the normal class; 250 samples for HISL; samples
for 250 LSIL; and samples for 250 SCC.

The generated maps are passed to different feature selection and fusion methods. The
resultant feature map is divided into a 70% training set for the SVM classifier and a 30%
to test the generated SVM model. The corresponding results describe the performance of
the SVM in discriminating four colposcopy whole-slice images using feature fusion and
selection techniques.

4.1. CCA

The whole mapped features were passed to the CCA, which resulted in the six most
correlated attributes. These were then split into 70% as a training set and 30% as a test
set for the SVM classifier. The resultant confusion matrix shown in Figure 2a shows
the performance of the trained model. The HSIL samples are classified correctly with a
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sensitivity of 100% and a precision of 98.7%. Moreover, the LSIL achieves 100% positive
predictive value (PPV) and 100% recall. The same prominent results are obtained in the
normal class, with a true positive rate of 100% and precision of 100%. For the lowest
sensitivity obtained in the SCC, the PPV is 100%. Finally, the overall accuracy achieved is
99.7. Figure 3 illustrates the receiver operating characteristics (ROC), which defines the
area under the curve (AUC) for each feature selection technique. The AUC represents the
relation between the false positive rate (specificity) on the x-axis and the true positive rate
(sensitivity or recall) on the y-axis for each class. As is clear from Figure 3a, the AUC for all
classes in the case of the CCA is one.

Figure 2. Six confusion matrices of the SVM model when considering six feature fusion techniques.
(a) Using CCA, (b) DCA, (c) LASSO, (d) concatenation, (e) PCA, and (f) ICA. The matrices show the
performance of the SVM after using different fusion techniques.
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Figure 3. Six receiver operating characteristic curves of the SVM model when considering six feature
fusion techniques. (a) Using CCA, (b) DCA, (c) LASSO, (d) concatenation, (e) PCA, and (f) ICA. The
figure shows the performance of the SVM via AUC after using different fusion techniques.
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4.2. DCA

The same procedure was performed for the discriminant correlated analysis. Forty
DL-labeled features were passed to the DCA. The performance of the trained SVM model
reached 98.7% for sensitivity to the HISL category, with a low PPV of 96.1%. However, the
prominent results appear in both the LSIL and normal classes, where recall and precision
reach 100%. The behavior of the designed classifier in the SCC samples is similar to the
HSIL, with the lowest sensitivity of no more than 96%, and a precision of 98.6%. The overall
accuracy of the SVM using the DCA feature fusion method is 98.7%. The confusion matrix
is shown in Figure 2b. On the other hand, the performance of the combination between
the DCA and SVM is represented in Figure 3b. Almost all classes have the highest level
of AUC.

4.3. LASSO

The feature set was passed to the LASSO algorithm to select the most representative
features. Figure 4 shows the cross-validated mean square error (MSE) for the LASSO model.
Each red dot represents a lambda (λ) value with confidence intervals for the error rate.
Two vertical lines are drawn between the lambda that achieves the lowest MSE (λmin)
and the lambda that indicates the highest value of MSE within one standard deviation of
the minimum lambda (λ1se). The numbers at the top of the plot represent the number of
features of the model at a given lambda value.

Figure 4. MSE of LASSO model. Showing how the number of features selected is affected by the
MSE value.

In our methodology, we have selected λ1se = 0.004 to be fed into the LASSO model,
which resulted in the extraction of 19 features from a total of 40. Therefore, the selected
features that passed to the SVM were 19. The corresponding confusion matrix is shown in
Figure 2c, which clarifies the performance of the SVM model using the 19 selected features
by the LASSO algorithm. The SVM correctly distinguishes LSIL, with higher sensitivity
and precision reaching 100%. However, the lowest true positive rate in the HISL class and
its PPV do not exceed 97.3%. The performance of the normal class is 98.7% and 100% for
recall and precision, respectively. Furthermore, the SCC has the lowest precision of 96.1%
and a moderate value sensitivity of 97.3%. Moreover, the AUC for all classes is almost
equal to one. This shows the effectiveness of the proposed method.

4.4. Feature Concatenation

The feature concatenation is performed by unionizing all features into a single dataset.
All deep learning features are concatenated to obtain 40 attributes, which are split into 70%
for SVM training and the rest to evaluate the classifier. The corresponding confusion matrix
shown in Figure 2d illustrates the outputs of the test data using the fused 40 features. It is
clear from the confusion matrix of the fused 40 features, that 72 cases of HSIL are classified
correctly among the 75 cases, with recall reaching 96% and precision reaching 94.7%. For the
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LSIL 75 samples, they are classified correctly with a sensitivity and precision of 100%. The
same applies for the normal classes, where the performance is 100% in both the TPR and
PPV. The worst behavior appeared in the SCC category, with the lowest sensitivity reaching
94.7% and a precision of 95.9%. The overall accuracy is 97.7%, and the misclassification
rate is 2.3%. Furthermore, Figure 3d describes the AUC for each class, which is nearly one
for all categories.

4.5. PCA

The principal component analysis is employed to select the most significant features
that represent the four classes. Depending on a 95% variance among features, the most
independent features are selected. As shown in the corresponding Figure 5, three principal
components describe most of the variability in the data. However, the rest features have
low significance in class representation.

Figure 5. Percentage variance of each feature according to PCA. The first three features contribute
the most to the variability of the data.

Figure 6 shows the relationship between two principal components. The scatter
representation visually shows how these two principals are capable of discriminating
between classes. The clustering describes the classification capability of these two PCAs,
where the red cluster indicates HSIL, the dark green cluster indicates normal, the cyan
color represents LSIL, and the purple grouping distinguishes the SCC. The three significant
features are exploited to train polynomial SVM. The corresponding confusion matrix in
Figure 2e shows the performance of the classifier using the three independent features. The
capability of the SVM to discriminate HSIL is low in terms of sensitivity and precision.
On the other hand, recall and precision are low for LSIL. The normal class is the best
distinguished, with a sensitivity and PPV of 100%. The precision of the SCC class is
lower, at 87.2%, whereas the sensitivity is a moderate value that does not exceed 90%. The
overall accuracy of the designed SVM using the most significant features is 90%, and the
misclassification rate reaches 10%, which is too high. Moreover, Figure 3e illustrates the
AUC for each class, which is the lowest in the SCC class with 0.95, and the highest in the
normal class where the AUC is one.
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Figure 6. Scatter plot showing the first two principal components and how they visually discriminate
between the four classes. The figure shows the effectiveness of separation between classes after
selecting the most representative components using PCA.

4.6. ICA

Forty features are passed to the independent component analysis algorithm to achieve
the best independent and representative features among all. The best six features are a
candidate. Figure 7 illustrates the scatter representation between the best two independent
components. The grouping of the scattered points indicates the capability of the ICA to
select the best representative features. According to Figure 6, the red group represents
the HSIL class, the dark green cluster illustrates the normal (negative) class, the cyan
bunch shows the LSIL class, and the purple color describes the SCC category. The best
six independent features are passed to the third polynomial SVM. The corresponding
confusion matrix shown in Figure 2f illustrates the output of the test phase. The best results
were obtained in the LSIL class, with the sensitivity and precision reaching 100%. However,
the lowest recall values in both the HSIL and the SCC classes were 97.3%. Furthermore, the
lowest precision value in the SCC was 96.1%. On the other hand, the precision value of the
LSIL was 100%. The overall accuracy using the ICA and SVM is 98.3% for all four classes,
with a misclassification rate of 1.7%. Finally, Figure 3f shows the AUC for all the classes
that are almost equal to one.

Figure 8 shows the comparison between the features engineering algorithm and its
impact on the accuracy of the SVM classifier in discriminating whole-slice cervical images.
The same data are shown in tabular form in Table 2. As illustrated in Figure 7, the highest
accuracy achieved was by the CCA feature fusion, with a maximum accuracy reaching
99.7%. However, the performance of the other algorithms is almost the same with slight
differences, apart from PCA, which exhibits the lowest accuracy value. These results show
the influence of various feature processing algorithms on obtaining accurate computer-
aided diagnosis systems.
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Figure 7. Scatter plot showing the first two independent components and how they discriminant
between the four classes. The figure shows the effectiveness of separation between classes after
selecting the most representative components using ICA.

Figure 8. Bar plot showing the accuracy of the SVM when using different feature fusion techniques.

Table 2. Comparison between various scenarios. Showing the SVM accuracy for the six different
feature analysis techniques.

Data Fusion Method
Number of Features Selected or

Fused from the Original 40
SVM Accuracy

Concatenation 40 97.7%
LASSO 19 98.3
DCA 6 97.3%
CCA 6 99.7%
PCA 3 90%
ICA 3 98.3%

Table 3 shows the study comparison for the most recent studies that used data fusion
on cervical cancer images. All mentioned studies showed the effectiveness of data fusion
in improving the classification accuracy of cervical cancer. Comparing the previous studies
that focused on cervical cancer diagnosis, the proposed approach in this paper achieves
the highest accuracy with automated features. This paper deals with whole-slice cervical
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images, ignoring the overlapping and non-overlapping issues for cells. On top of that, all
the previous studies focused on the diagnostics of single cells, whereas this paper deals
with the whole-slice image, which is more practical for physicians and medical fields. Due
to the limited work on feature-level fusion in cervical cancer, other studies with different
medical diagnostic problems were shown in Table 4. These studies were selected based on
the feature fusion technique used. All of the studies in Table 4 used data fusion analysis
on the feature level. All the studies showed an improvement in classification accuracy
when using feature-level fusion or selection. In our paper, we have adopted some of these
existing methods. The studies listed in Tables 3 and 4 have different perspectives on dealing
with data fusion. They could be grouped into two perspectives: The first perspective is the
data level that is being fused (feature level, matching score, or decision-level fusion) listed
in Table 3. The second perspective is on the method used for fusion, the approaches mainly
used either feature reduction techniques (such as PCA, ICA, and LASSO), or feature fusion
techniques (such as CCA and DCA) listed in Table 4. These approaches have been used to
fuse different types of data to enhance diagnostic decisions.

Table 3. Comparison with literature study used on cervical cancer images. The mentioned study
focuses on using a fusion technique for the cervical cancer classification problem.

Study Author (Year)
Feature Fusion

Method
Number of Fused

Datasets
Best Accuracy

Alquran et al. (2022) CCA
Two datasets from

Shuffle Net and novel
Cervical Net

99.1 (four-class
classifications)

Liu et al. (2022) Multilayer perceptron
module

Two (CRIC and
SIPaKMeD)

91.7 (eleven-class
classifications)

Rahman et al. (21) Late fusion SIPaKMeD dataset 99.14 % (five-class
classification)

Hussain et al. (2020)
Ensemble classifier

based on selecting the
best three DL models

Six datasets from
(Alexnet, Vgg-16,

Vgg-19, Resnet-50,
Resnet-101, and

Googlenet)

97% (two classes)

This paper LASSO, CCA, DCA,
PCA, and ICA

Ten datasets from
(Alex Net, Resnet 18,
50, and 10, Mobilenet,
Shufflenet, Xception,
Nasnet, Darknet 19,
and VGG Net 16)

99.7% (four classes)

Table 4. Most recent studies show the effectiveness of data feature fusion in improving classification
accuracy on other medical diagnostic problems. Most of the mentioned feature fusion methods were
selected as a part of our comparative study.

Study Author (Year) Classification Problem Feature Fusion Method

Fan et al. (2019) Breast cancer prediction CCA

Zhang et al. (2021) Pancreatic ductal
adenocarcinoma prediction

PCA, LASSO, Boruto, and
proposed feature fusion
method by Zhang et al.

Wnag et al. (2021) COVID-19 classification DCA

Haghighat et al. (2016) Multimodal biometric
recognition DCA

This paper Cervix cancer images four
classes

LASSO, CCA, DCA, PCA, and
ICA
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4.7. Computational Complexity

As explained above, extracting the features using DL models has demanded substan-
tial time, which took hours of computation. Thereafter, feature fusion and SVM analyses
have required seconds of computational time for each of the considered techniques. There-
fore, the considered six techniques have demanded relatively comparable computational
complexity when they are run on the same machine.

4.8. Future Work and Real-Life Applications

To the best of our knowledge, this paper presents a unique approach of using ten
pre-trained DL models with the most common feature selection techniques to diagnose
whole-slice cervical images. The relatively high level of accuracy obtained herein can act
as a background to building robust and reliable computer-aided detection and diagnosis
systems for assessing colposcopy images. These findings can help reduce the mortality
rate and enhance the chances of survival among women. Further enhancement on the
proposed approach of analysis can be implemented in future works to expand the extracted
features and to provide more robust results for medical diagnosis under different deep
learning models.

5. Conclusions

This paper has focused on employing feature fusion techniques to enhance the classifi-
cation accuracy of cervical cancer. It involved the generation of a new, uncorrelated dataset
of features while faithfully conveying the output information. Using the new dataset of
features, we have been able to reduce the dimension of feature space without degrading
the performance of disease classification. This paper constructed a comparative analysis of
the existing feature fusion techniques to extract the best representative features from ten
independent datasets. These datasets came from ten pre-trained DL models, which were
trained on a huge ImageNet database. Our approach to this analysis involved applying
six sequential steps. The first step consisted of collecting a cytology dataset that contained
1000 samples for four different cervical cancer classes. The second step performed image
augmentation, which was then followed by extracting features using CNN from ten DL
models (4 features for each DL model for a total of 40 features). The next step concatenated
all features from the ten DL models to be fed into the feature fusion step. Step five applied
six different feature fusion techniques to extract features. Finally, the extracted features
were input into an SVM to test the classification performance. The approach of this analysis
revealed the highest accuracy of 99.7% using CCA fusion. The key benefit was reducing the
number of features introduced to SVM and obtaining state-of-the-art accuracy. Therefore,
the use of data fusion at the feature level, which was proposed in this paper, can indeed
enhance classification accuracy for colposcopy images. The presented approach herein can
be used as a guideline for other CAD medical applications to aid diagnostic decisions.
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Abstract: Recently, artificial intelligence (AI) is an extremely revolutionized domain of medical image
processing. Specifically, image segmentation is a task that generally aids in such an improvement.
This boost performs great developments in the conversion of AI approaches in the research lab
to real medical applications, particularly for computer-aided diagnosis (CAD) and image-guided
operation. Mitotic nuclei estimates in breast cancer instances have a prognostic impact on diagnosis
of cancer aggressiveness and grading methods. The automated analysis of mitotic nuclei is difficult
due to its high similarity with nonmitotic nuclei and heteromorphic form. This study designs an
artificial hummingbird algorithm with transfer-learning-based mitotic nuclei classification (AHBATL-
MNC) on histopathologic breast cancer images. The goal of the AHBATL-MNC technique lies in the
identification of mitotic and nonmitotic nuclei on histopathology images (HIs). For HI segmentation
process, the PSPNet model is utilized to identify the candidate mitotic patches. Next, the residual
network (ResNet) model is employed as feature extractor, and extreme gradient boosting (XGBoost)
model is applied as a classifier. To enhance the classification performance, the parameter tuning of
the XGBoost model takes place by making use of the AHBA approach. The simulation values of the
AHBATL-MNC system are tested on medical imaging datasets and the outcomes are investigated in
distinct measures. The simulation values demonstrate the enhanced outcomes of the AHBATL-MNC
method compared to other current approaches.

Keywords: breast cancer; mitotic nuclei classification; histopathology images; artificial hummingbird
algorithm; medical imaging

1. Introduction

Mitosis can be defined as a process of cell cycle where a replicated chromosome is split
into dual new nuclei that produce genetically identical cells which retain the chromosome
number. This method can be split into four phases: telophase, prophase, metaphase, and
anaphase. It culminates into two daughter nuclei that are genetically identical [1]. Then,
the cell might perform division by cytokinesis to produce dual daughter cells. Producing
more than three daughter cells rather than two normal cells is a mitotic fault that might
tempt mutations or apoptosis, initiating specific kinds of cancer [2]. In the tissue samples,
haematoxylin and eosin (H&E)-stained slides lead to histopathology images where mitosis
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rate is a significant parameter to determine the tumor aggressiveness, especially breast
tumor, and recognition of a typical way of mitosis is utilized as a prognostic and diagnostic
marker. Breast tumor is the main factor that leads to higher mortality amongst women and
is a frequently diagnosed tumor amongst females; if diagnosed at earlier stages, tit can be
the most curable form of tumor [3]. Breast tumor, where survival rate is under 40% in lower-
income nations, is the primary tumor type in females globally that costs a great number
of lives per annum. As stated by the National Tumor Institution, up to 20% of each breast
tumor fails to be found by X-ray mammography (using ionizing radiation) [4]. Mitosis
count assists in tumor diagnosis and provides an assessment of tumor aggressiveness
that assists in tumor grading. The high number of mitotic cells in a region represents
fast-growing or higher-grade tumor.

The visual detection of mitotic nuclei through pathologists is a time-intensive and sub-
jective job with poor reproducibility because of many difficulties. Mitotic nuclei are hyper-
chromatic objects having different morphological sizes and shapes [5]. Furthermore, the
occurrence of mitotic nuclei differs according to tumor stage and tumor grade. In aggressive
tumors, generally, mitotic nuclei are nondifferentiable and appear in smaller sizes with higher
frequency. The accurate detection of mitotic nuclei depends on the experience and knowledge
of the pathologist [6]. Object-level interobserver analysis exposes pathologist disagreement on
individual objects. The limitation of manual workflows generates the necessity to automate
the count of mitotic nuclei to enhance the decision of the pathologist [7]. For the development
of the detection of mitotic nuclei in histopathology images, thus far, various methods have
been introduced based on segmentation, classification, and detection methods [8]. The current
approaches frequently exploit data balancing methods, namely, rotation, translation, and
mirror imaging-oriented techniques for augmenting mitotic examples. Likewise, various
researchers implemented a two-step recognition technique to reduce class imbalance and
enhance precision [9]. With regard to the complicated nature of mitoses, several research
workers used the method of ensemble learning, while few approaches simultaneously trained
two deep learning (DL) models to make the concluding decision.

This study designs an artificial hummingbird algorithm with transfer-learning-based
mitotic nuclei classification (AHBATL-MNC) on histopathologic breast cancer images. The
goal of the AHBATL-MNC technique lies in identification of mitotic and nonmitotic nuclei
on histopathology images (HIs). For HI segmentation process, the PSPNet model is utilized
to identify the candidate mitotic patches. Next, the residual network (ResNet) model is
employed as feature extractor, and the extreme gradient boosting (XGBoost) model is
applied as a classifier. To enhance the classification performance, the parameter tuning of
the XGBoost model takes place, utilizing the AHBA algorithm. The simulation values of
the AHBATL-MNC approach are tested on a medical imaging dataset and the results are
investigated in distinct measures.

2. Related Works

Shwetha and Dharmanna [10] modeled a new technique for automatic identification
and detection by DL model. In this presented technique, the work can be split into five
phases. In the initial phase, histopathological images are preprocessed to boost the contrast
of the nonmitotic and mitotic cells through image adjustment method. In the next phase,
using Otsu segmentation method, the background and foreground are divided. In [11], the
author devised a new structure called SmallMitosis for identifying mitotic cells that are
very small in size undergoing mitosis out of the H&E-stained breast histological images.
SmallMitosis structure has a deep multiscale (MS-RCNN) detector and an atrous fully
convolution-oriented segmentation (A-FCN) method. In the A-FCN technique, the atrous
convolution concept aids in predict bounding box annotations and mitosis masks of very-
small-sized mitotic cells.

Sohail et al. [12] devised an innovative deep convolutional neural network (DCNN)-
related heterogeneous ensemble method, “DHE-Mit-Classifier”, for examining mitotic
nuclei in breast histopathological imageries. Sebai et al. [13] proposed an accurate and
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robust algorithm for detecting mitoses automatically from histology breast cancer slides
by making use of the multitask DL structure for instance segmentation mask region-based
convolutional neural network (RCNN) and object detection. Lei et al. [14] devised an
accurate and fast approach to automatically identify mitosis from histopathology images.
This presented algorithm is capable of detecting the mitotic candidates automatically
from histological units for mitosis screening. In particular, this technique uses DCNN for
extracting high-level features of mitosis to find mitotic applicants. After that, the author
employed spatial attention elements to re-encode mitotic features that enabled the method
to very effectively study features.

Das and Dutta [15] introduced an innovative technique for mitotic cell recognition in
breast histology images, exploiting wavelet decomposed image patches and DCNN. In this
method, Haar wavelet is used to formulate a DCNN technique for automatic recognition of
mitotic cells. The decomposition step reduces convolutional period for mitotic cell recognition
related to the usage of raw image patches in traditional DCNN approaches. Beevi et al. [16]
explored the feasibility of transfer learning (TL) for mitosis recognition. A pretrained convolu-
tional neural network (CNN) was shown by merging RF method with the initial FC layers for
deriving discriminant features from nuclei patches and to accurately prognosticate class labels
of cell nuclei. The altered CNN precisely categorizes the identified cell nuclei with limited
trained datasets. This structure would establish maximum classifier accuracy by prudently
preprocessing the extracted features and fine-tuning the pretrained methods.

3. The Proposed Mitotic Nuclei Classification Model

In this study, we develop a new AHBATL-MNC technique for effective identifica-
tion of mitotic and nonmitotic nuclei on HIs. The presented AHBATL-MNC technique
encompasses a series of processes, namely, PSPNet segmentation, ResNet feature extraction,
XGBoost classification, and AHBA parameter tuning. Figure 1 defines the overall work
flow of the AHBATL-MNC system.

 

Figure 1. Overall working process of AHBATL-MNC system.
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3.1. Segmentation Process

In the AHBATL-MNC technique, the PSPNet model is utilized for segmentation
process. PSPNet is the renowned network architecture for semantic segmentations [17].
The PSPNet was initially introduced for scene parsing. To aggregate multiscale contextual
datasets, one pyramid pooling network (PPM) was introduced in PSPNet. At first, max
pooling is enforced to generate a feature map using three pyramid scales that can be attained
by Equation (1), wherein FDS and λ, correspondingly, signify input and downsampling
method through max pooling, and stride of max pooling layer can also be attained using
Equation (2):

Fj = DS
(

F, λj.
)

j = 1, 2, 3 (1)

w − λj

λj
+ 1 = 0j ⇒ λj =

w
oj

(2)

whereas w and 0 signify input and output size of feature maps.
After applying convolution method to these multiscale feature maps, bilinear interpola-

tion can be performed to resize feature maps, whereas WT
j and bj, correspondingly, denote the

weight and bias of j-th 1 × 1 convolutional layer, and BI(.) denotes the bilinear interpolation.

Oj = BI
(

WT
j ⊗ Fj + bj

)
j = 1, 2, 3 (3)

Likewise, the feature maps having the new input and pyramid scale were concatenated,
and 1 × 1 convolution was implemented to reduce channel number of output, whereas WT

j
and bj demonstrate weight and bias of the 1 × 1 convolution layer.

C = WT
rd(concat(F, O1, O2, O3)) + brd (4)

Dissimilar to the original PPM, feature maps having four pyramid scales, which
include 1, 2, 3, and 6, are constructed by the new PPM, whereas feature maps having three
pyramid scales, including 1, 2, and 6, are constructed by max pooling.

Furthermore, the 1 × 1 convolution layer is interconnected with the concatenation
layer for dimensionality reduction.

Based on the UNet structure, a multilevel PSPNet is introduced as the decoder. The
1, 2, and 3 attention gates are enforced to correspondingly generate initial convolutional
layer and the attention maps of third and fifth identity blocks. In addition, to incorporate
multilevel features, the attention gate and the output of PPM are concatenated densely
with the following equation:

Yj = concat
(
US
(
Cj, 3
)

M−outputj
)

j = 1, 2, 3 (5)

3.2. Feature Extraction Process

In this study, the ResNet model was employed as feature extractor. We adapted the
CNN, ResNet50, to characterize the image, and the deep network has 50 layers [18]. The
depth of network was crucial for neural network (NN), but a deep network can be tough
to train. The ResNet50 infrastructure facilitates the network training and permits it to be
deeper which leads to enhanced efficacy in diverse tasks. ResNet50 is deeper than simple
counterparts, but parameter count of these networks is smaller. A DCNN resulted in a series
of breakthroughs for image classification. Many nontrivial visual detection techniques have
benefitted from deep methods. Once the network depth rises, performance of the network
degrades quickly (saturated) and rapidly increases. Meanwhile, deep networks have large
representation power. It can be possible for ResNet50 to accomplish a deep model that
is not worse than lesser deep networks. It is implemented by adding numerous identity
layers, viz., levels that skip signal without further amendment. ResNet50 deep level has to
predict variations amongst the main function and outcome of the previous layer.
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The method considers the image and generates the caption, encrypted as a series of
1 − K codewords.

y = {y1, y2, · · · , yc}, yj ∈ RK (6)

From the expression, K indicates the dictionary size and c represents caption length. The
extractor will produce L-vectors, each having D-dimensional representation of the image.

The hyperparameter tuning of the ResNet model is performed by the Adamax opti-
mizer [19]. It is an amended form of the Adam optimizer where the distributed variance is
projected ∞. In addition, the maximized weight can be determined as follows:

wi
t = wi

t−1 −
η

vt + ε
× m̂t (7)

whereas
m̂t =

mt

1 − βt
1

(8)

vt = max(β2 × vt−1, |Gt|) (9)

mt = β1mt−1 + (1 − β1)G (10)

G = ∇wC(wt) (11)

From the expression, η denotes the rate of learning, wt refers to the weights at steps
t, C(.) signifies the cost function, and ∇wC(wt) suggests the gradient of weight variable
wt x and equal label y. βi is employed to select the data needed for older upgrades, when
βi ∈ [0, 1]. mt and vt are the first and second moments as explained in Algorithm 1.

Algorithm 1: Pseudocode of Adamax

η: Rate of Learning
β1, β2 ∈ [0 , 1): Exponential decomposed values to moment candidate
C(w): Cost function with w variable
w0: parameter vector
m0 ← 0
u0 ← 0
i ← 0 (Implement time step)
while w does not converge do

i ← i + 1
mi ← β1 × mi−1 + (1 − β1)× ∂C

∂w (wi)

ui ← max
(

β2 × ui−1,
∣∣∣ ∂C

∂w (wi)
∣∣∣)

wi+1 ← wi −
(

η/
(

1 − βi
1

))
× mi/ui

end while
show wi (end parameter)

3.3. Optimal Classification Process

Finally, the XGBoost model is exploited for classification purposes. XGBoost is used to
classify the regression tree model that comes from the gradient lifting decision tree (DT) [20].
The presented algorithm is used for the pedestrian detection classifier. Firstly, it learns
a tree from a sample to attain the initial assessment outcome Y1, and then learns with y
based on the variance between the predictive and the real labels in the prior step. Likewise,
the model error can be reduced successfully. Equations (4)–(8) provide the assessment flow
of XGBoost training. The subsequent formula is to evaluate the target of n − th tree models.
The primary behavior determines a regularization term that could decrease overfitting to
enhance the generalization ability. Taylor’s expansion has first and second derivatives and
constant terms.

Among them, the objective function of every round is evaluated as follows, and ft can
be selected for minimizing the main function, viz., the error between actual outcome and
the predictive outcome is decreased after adding ft. Here, l represents the error function
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and Ω denotes a regularization term, the error function tries to fit the training dataset, and
the regularization term encourages a simple method. The randomness of the outcomes of
the finite data fitting is very small, which is not easy for overfitting, making the prediction
of the concluding model more stable.

Obj(t) = ∑n
i=1 l
(

yi, ŷ(t−1)
i + ft(xi)

)
+ Ω( fi) + constant (12)

Once the error function l is not a square error, the first three terms of the Taylor
equation are utilized for approximating original objective function.

Obj(t) = ∑n
i=1[l(yi, ŷ(t−1)) + gi ft(xt) +

1
2

hl f 2
t (xi)] + Ω( ft) + constant (13)

where gi and hi refer to the initial and second derivatives of the error function.

gi = ∂
ŷ(t−1)

i
l(yi, ŷ(t−1)) (14)

hi = ∂2
ŷ(t−1)

i
l(yi, ŷ(t−1)

i ) (15)

Next, we eliminate the constant terms, such as the variance between real value and
predicted value of the previous round.

Obj(t) = ∑n
i=1[gl ft(xi) +

1
2

hι f 2
t (xi)] + Ω( ft) (16)

According to the realization of XGBoost, the model initially ranks the eigenvalue,
since the tree model should define the better segmentation points and later store them in
numbers of blocks. This architecture is reutilized in later iterations, which significantly
decreases the computation difficulty. Furthermore, the data gain of every feature should
be evaluated in the procedure of node splitting, hence the computation of data gain is
parallelized through the data structure.

For improving the classification performance, the parameter tuning of the XGBoost
model is performed by the AHBA technique. AHBA is a population-related metaheuristic
approach that primarily simulates three foraging behaviors of hummingbirds (HB): mi-
gratory, guided, and territorial foraging [21]. In the foraging process, the three flight skills
include axial, diagonal, and modeled-omnidirectional flights. Simultaneously, an access
table simulating HB remarkable memory capability is created for guiding HB to carry out
global optimization. The three flying skills are described in the following: the flight skill
simulation is expanded to d-D space with axial flight and can be given in Equation (17):

D(i) =

{
1 if i = randi([1, d])i = 1, · · · , d
0 else

(17)

Diagonal flight can be determined by Equation (18):

D(i) =

{
1, i f i = p(j)P = randperm(k), k ∈ [2, �r1(d − 2)�+ 1]
0, else.

(18)

Omnidirectional flight is defined below:

D(i) = 1i = 1, · · · , d (19)

In Equation (19), randi([1, d]) creates a random number from 1 to d, randperm(k)
generates a random permutation of integer from 1 to k, and r1 indicates a random integer
that ranges from zero to one. First, the AHA initializes a visiting table and a set of random
solutions. In all the iterations, territorial or guided foraging can be carried out 50% of the
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time. Hummingbirds move toward the food sources using guided foraging, viz., depending
on a visiting table and nectar filling rate. Territorial foraging enables HBs to find new food
sources as candidates and easily move toward the neighboring region within their territory.
Migration foraging can be performed in each of two iterations. Until the stopping condition
is met, each operation and calculation are interactively performed. At last, the food source
with the maximum rate of nectar refilling is returned as near-global optimal.

(1) A population of n HBs is initialized at random to n food source in the following:

χj = Low + r × (Up − Low)i = 1, · · · · · · n (20)

In Equation (20), Low and Up indicate the lower and upper limitations for d-dimension
problems, correspondingly; r refers to a random integer within the range of zero and one;
xi signifies the location of the i-th food sources.

VTi,j =

{
0 i f i �= j
null i = j

(21)

where i = j, VTi,j = null shows that an HB takes food from a certain food source; i �= j,
VTi,j = 0 denotes that the j-th food sources were visited by i-th HB in the present iteration.

(2) Guided foraging: With the abovementioned flight abilities, an HB could access its tar-
geted food sources to attain candidate food source, hence the following mathematical
expression simulates candidate food source and guiding foraging behaviors:

vi(t + 1) = xi,tar(t) + a × D × (xi(t)− xi,tar(t)) (22)

a ∼ N(0, 1) (23)

From the expression, xi(t) and xi,tar(t) are the position of i-th hummingbird food
and target source at t time; a is distributed uniformly, with standard deviation of 1 and
mean = 0.

The location updating of i-th food sources is given below:

xi(t + 1) =

{
χi(t) f (χi(t)) ≤ f

(
vj(t + 1)

)
vi(t + 1) f (xi(t)) > f (vi(t + 1))

(24)

In Equation (24), f (·) denotes function fitness value. Equation (24) represents that if
the nectar refilling rate of candidate food sources is superior to the present one, the HB will
abandon the existing food source and stay at a candidate one for feeding.

(3) Territorial foraging: After attaining targeted food sources where nectar was eaten, an
HB seeks innovative food sources. Thus, an HB could move towards a neighboring
region within its own territory whereby a novel food source is found that is the best
candidate solution. The mathematical expression to stimulate local search of an HB
for territorial foraging strategy and candidate food source is shown below:

vi(t + 1) = xi(t) + b × D × xi(t) (25)

b ∼ N(0, 1) (26)

Now, b is distributed uniformly, with a standard deviation of 1 and mean = 0.

(4) Once food becomes frequently scarce in a territory visited by an HB, the bird frequently
migrates to more distant food sources for foraging.

4. Results and Discussion

The proposed model is simulated using Python 3.6.5 tool on PC i5-8600k, GeForce
1050Ti 4 GB, 16 GB RAM, 250 GB SSD, and 1 TB HDD. The parameter settings are given
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as follows: learning rate: 0.01, dropout: 0.5, batch size: 5, epoch count: 50, and activation:
ReLU. The experimental validation of the AHBATL-MNC method on mitosis cell classifica-
tion is tested using a dataset [22] that has 150 images and two classes, as represented in
Table 1. Figure 2 depicts some sample images of mitosis and nonmitosis.

Table 1. Dataset details.

Class No. of Images

Mitosis 75

Nonmitosis 75

Total Number of Images 150

 
Figure 2. Sample images of (a) mitosis; (b) nonmitosis.

The binary classification outcomes of the AHBATL-MNC method on the applied
dataset are portrayed in the form of confusion matrix in Figure 3. On 60% of the training (TR)
database, the AHBATL-MNC model detected 39 samples into mitosis class and 42 samples
into nonmitosis class. Meanwhile, on 40% of the testing (TS) database, the AHBATL-
MNC method detected 29 samples into mitosis class and 29 samples into nonmitosis class.
Eventually, on 70% of the TR database, the AHBATL-MNC system detected 42 samples
into mitosis class and 55 samples into nonmitosis class. Finally, on 30% of the TS database,
the AHBATL-MNC algorithm detected 22 samples into mitosis class and 19 samples into
nonmitosis class.
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Figure 3. Confusion matrices of AHBATL-MNC system. (a,b) TR and TS databases of 60:40; (c,d) TR
and TS databases of 70:30.

In Table 2, overall mitosis classification results of the AHBATL-MNC model under 60%
of TR and 40% of TS databases are given. Figure 4 exhibits the detailed classifier outcome
of the AHBATL-MNC model on 60% of the TR database. The outcomes depict that the
AHBATL-MNC model properly classified mitosis and nonmitosis class images. It is noted
that the AHBATL-MNC model attained average accubal of 89.97%, precn of 90.03%, recal of
89.93%, Fscore of 89.99%, MCC of 80%, and Gmeasure of 89.99%.

Table 2. Mitosis classification outcome of AHBATL-MNC approach under 60:40 of TR/TS databases.

Class Accuracybal Precision Recall F-Score MCC G-Measure

Training Phase (60%)

Mitosis 88.64 90.70 88.64 89.66 80.00 89.66

Nonmitosis 91.30 89.36 91.30 90.32 80.00 90.33

Average 89.97 90.03 89.97 89.99 80.00 89.99

Testing Phase (40%)

Mitosis 93.55 100.00 93.55 96.67 93.55 96.72

Nonmitosis 100.00 93.55 100.00 96.67 93.55 96.72

Average 96.77 96.77 96.77 96.67 93.55 96.72
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Figure 4. Average analysis of AHBATL-MNC approach under 60% of TR database.

Figure 5 reveals a comprehensive classifier outcome of the AHBATL-MNC system on
40% of the TS database. The outcomes show that the AHBATL-MNC approach properly
classified the mitosis and nonmitosis class images. It can be seen that the AHBATL-MNC
method reached average accubal of 96.77%, precn of 96.77%, recal of 96.77%, Fscore of 96.67%,
MCC of 93.55%, and Gmeasure of 96.72%.

Figure 5. Average analysis of AHBATL-MNC approach under 40% of TS database.
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In Table 3, the overall mitosis classification outcome of the AHBATL-MNC algorithm
under 70% of the TR and 30% of the TS databases is given. Figure 6 demonstrates the
detailed classifier outcome of the AHBATL-MNC method on 70% of the TR database. The
outcomes represent that the AHBATL-MNC system properly classified the mitosis and
nonmitosis class images. It is clear that the AHBATL-MNC methodology obtained average
accubal of 92%, precn of 93.65%, recal of 92%, Fscore of 92.26%, MCC of 85.63%, and Gmeasure
of 92.54%.

Table 3. Mitosis classification outcome of AHBATL-MNC approach under 60:40 of TR/TS databases.

Class Accuracybal Precision Recall F-Score MCC G-Measure

Training Phase (70%)

Mitosis 84.00 100.00 84.00 91.30 85.63 91.65

Nonmitosis 100.00 87.30 100.00 93.22 85.63 93.44

Average 92.00 93.65 92.00 92.26 85.63 92.54

Testing Phase (30%)

Mitosis 88.00 95.65 88.00 91.67 82.51 91.75

Nonmitosis 95.00 86.36 95.00 90.48 82.51 90.58

Average 91.50 91.01 91.50 91.07 82.51 91.16

Figure 6. Average analysis of AHBATL-MNC approach under 70% of TR database.

Figure 7 shows a brief classifier outcome of the AHBATL-MNC approach on 30% of
the TS database. The outcome demonstrates that the AHBATL-MNC algorithm properly
classified the mitosis and nonmitosis class images. It can be stated that the AHBATL-MNC
algorithm accomplished average accubal of 91.50%, precn of 91.01%, recal of 91.50%, Fscore
of 91.07%, MCC of 82.51%, and Gmeasure of 91.16%.
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Figure 7. Average analysis of AHBATL-MNC approach under 30% of TS database.

The training accuracy (TACC) and validation accuracy (VACC) of the AHBATL-MNC
system are inspected on breast cancer performance in Figure 8. The figure reveals that the
AHBATL-MNC approach shows improved performance with improved values of TACC
and VACC. It is noticeable that the AHBATL-MNC system gained higher TACC outcomes.

Figure 8. TACC and VACC analysis of AHBATL-MNC approach.

The training loss (TLS) and validation loss (VLS) of the AHBATL-MNC methodology
are tested on breast cancer performance in Figure 9. The figure points out that the AHBATL-
MNC algorithm revealed better performance with lower values of TLS and VLS. It is
observable that the AHBATL-MNC methodology resulted in minimal VLS outcomes.
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Figure 9. TLS and VLS analysis of AHBATL-MNC approach.

Table 4 reports an overall comparative inspection of the AHBATL-MNC method with
recent approaches [13]. Figure 10 offers a comparative inspection of the AHBATL-MNC
method in terms of accuy and Fscore. The outcomes indicate that the AHBATL-MNC method
achieved improved performance. For instance, based on accuy, the AHBATL-MNC model
obtained higher accuy of 96.77%. In contrast, the DHE-Mit, DenseNet-201, and ResNet-18
models attained lower accuy of 85.23%, 83.96%, and 82.01%, respectively. Eventually, with
respect to Fscore, the AHBATL-MNC approach gained maximal Fscore of 96.67%. In contrast,
the DHE-Mit, DenseNet-201, and ResNet-18 systems obtained decreased Fscore of 77.33%,
76.38%, and 74.05%, correspondingly.

Table 4. Comparative analysis of AHBATL-MNC system with other approaches.

Methods accuy precn recal Fscore

AHBATL-MNC 96.77 96.77 96.77 96.67

DHE-Mit model 85.23 84.45 75.26 77.33

DenseNet-201 model 83.96 83.20 73.85 76.38

ResNet-18 model 82.01 81.26 71.73 74.05

Inception-V3 model 78.54 77.51 68.18 70.64

ResNext-50 model 77.48 76.20 66.73 69.49

ResNet-101 model 76.03 74.83 65.89 68.65

VGG-16 model 74.72 73.93 65.00 67.66
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Figure 10. Accuy and Fscore analysis of AHBATL-MNC system compared with other approaches.

Figure 11 provides a comparative examination of the AHBATL-MNC approach with
respect to precn and recal . The outcomes state that the AHBATL-MNC approach gained
enhanced performance. For example, in terms of precn, the AHBATL-MNC model obtained
higher precn of 96.77%. In contrast, the DHE-Mit, DenseNet-201, and ResNet-18 models
attained lower precn of 84.45%, 83.20%, and 81.26%, correspondingly. Finally, with respect
to recal , the AHBATL-MNC model gained enhanced recal of 96.77%. In contrast, the DHE-
Mit, DenseNet-201, and ResNet-18 methods accomplished lower recal of 75.26%, 73.85%,
and 71.73%, respectively.

Figure 11. Precn and Recal analysis of AHBATL-MNC system compared with other approaches.

256



Bioengineering 2023, 10, 87

Table 5 offers a detailed computation time (CT) examination of the proposed model
with existing models. The experimental results indicate that the proposed model shows
better performance with minimum CT of 12.34 s. On the contrary, the existing models
attained increased CT values compared to the AHBATL-MNC model. These results confirm
the improvement of the AHBATL-MNC model over other models. The proposed model
accomplished superior performance to other existing techniques due to the hyperparameter
selection of ResNet using Adamax optimizer and AHBA for XGBoost classifier.

Table 5. Comparative CT analysis of AHBATL-MNC system with other approaches.

Methods Computational Time (s)

AHBATL-MNC 12.34

DHE-Mit model 25.17

DenseNet-201 model 42.58

ResNet-18 model 41.03

Inception-V3 model 59.67

ResNext-50 model 39.36

ResNet-101 model 44.60

VGG-16 model 56.14

5. Conclusions

In this study, we developed a new AHBATL-MNC technique for effective identification
of mitotic and nonmitotic nuclei on His. Primarily, in the AHBATL-MNC technique, the
PSPNet model is utilized for segmentation process, which identifies the candidate mitotic
patches. Followed by this, the ResNet model is employed as feature extractor, and the
XGBoost model is applied as a classifier. For improving the classification performance,
the parameter tuning of the XGBoost model was performed by the AHBA technique. The
performance evaluation of the AHBATL-MNC technique was tested on medical imaging
datasets and the outcomes were examined in distinct measures. The simulation values
validated the improved outcomes of the AHBATL-MNC algorithm over other recent
approaches. In future, the performance of the AHBATL-MNC method can be improved by
the use of ensemble learning methodologies. In addition, the proposed model needs to be
tested on large-scale databases and can be extended to detect other kinds of cancer.
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Abstract: Dual-energy CT (DECT) with scans over limited-angular ranges (LARs) may allow reduc-
tions in scan time and radiation dose and avoidance of possible collision between the moving parts
of a scanner and the imaged object. The beam-hardening (BH) and LAR effects are two sources of
image artifacts in DECT with LAR data. In this work, we investigate a two-step method to correct
for both BH and LAR artifacts in order to yield accurate image reconstruction in DECT with LAR
data. From low- and high-kVp LAR data in DECT, we first use a data-domain decomposition (DDD)
algorithm to obtain LAR basis data with the non-linear BH effect corrected for. We then develop and
tailor a directional-total-variation (DTV) algorithm to reconstruct from the LAR basis data obtained
basis images with the LAR effect compensated for. Finally, using the basis images reconstructed,
we create virtual monochromatic images (VMIs), and estimate physical quantities such as iodine
concentrations and effective atomic numbers within the object imaged. We conduct numerical studies
using two digital phantoms of different complexity levels and types of structures. LAR data of low-
and high-kVp are generated from the phantoms over both single-arc (SA) and two-orthogonal-arc
(TOA) LARs ranging from 14◦ to 180◦. Visual inspection and quantitative assessment of VMIs ob-
tained reveal that the two-step method proposed can yield VMIs in which both BH and LAR artifacts
are reduced, and estimation accuracy of physical quantities is improved. In addition, concerning
SA and TOA scans with the same total LAR, the latter is shown to yield more accurate images and
physical quantity estimations than the former. We investigate a two-step method that combines the
DDD and DTV algorithms to correct for both BH and LAR artifacts in image reconstruction, yielding
accurate VMIs and estimations of physical quantities, from low- and high-kVp LAR data in DECT.
The results and knowledge acquired in the work on accurate image reconstruction in LAR DECT may
give rise to further understanding and insights into the practical design of LAR scan configurations
and reconstruction procedures for DECT applications.

Keywords: dual-energy CT; two-step method; limited-angular range; directional total variation

1. Introduction

Dual-energy computed tomography (DECT) has found applications in clinical and
industrial settings. In current DECT, one generally acquires data of low- and high-kVp
X-ray spectra over a full-angular range (FAR) of 2π, or over at least a short-scan angular
range [1–4]. Interest remains in the development of DECT imaging over limited-angular
ranges (LARs) that are considerably less than the FAR of 2π (or than the short-scan angular
range,) because such LAR scans may bear implications for radiation dose reduction, scan
time minimization, and collision avoidance between the scanner and the imaged object.
Inspired by the directional-total-variation (DTV) work on image reconstruction from LAR
data in conventional single-energy CT (SECT) [5], we have investigated image reconstruc-
tion previously from LAR data in DECT [6,7] by focusing on the correction only for LAR
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artifacts and using DTV constraints in the reconstruction of kVp images followed by an
image-domain decomposition. Other methods have also been developed for DECT with
LAR data, but the angular ranges are generally not smaller than 90◦ [8,9].

In this work, we propose a two-step method to reconstruct quantitatively accurate im-
ages in DECT from LAR data by correcting for both BH and LAR artifacts, thus improving
the quantitative accuracy of images reconstructed and physical quantities estimated. In
the method, from LAR data of low- and high-kVp, a data-domain decomposition (DDD)
algorithm [10] is used first for obtaining LAR basis data in which the BH artifacts are
compensated for; and a DTV algorithm [5] is then developed and tailored to reconstruct
basis images from LAR basis data obtained. The reconstructed basis images can be com-
bined to form virtual monochromatic images (VMIs), i.e., the X-ray linear attenuation
coefficients, for visual inspection, and can be used also for estimating physical quantities
such as iodine-contrast concentrations and effective atomic numbers within the imaged
object [11–14]. We hypothesize that images and physical quantities with both BH and LAR
artifacts corrected for in LAR DECT are quantitatively comparable with those obtained in
FAR DECT. Therefore, in this work the results obtained for LAR DECT are compared with
those obtained from FAR data in DECT in which BH artifacts are corrected for by using the
DDD algorithm.

Numerical studies are conducted with a chest phantom [15] and a suitcase phantom [6]
containing distinct anatomies and structures of potential relevance in medical and security
applications [11,16–19]. Low- and high-kVp data are collected with single-arc (SA) or
two-orthogonal-arc (TOA) scans of LAR [6], ranging from 14◦ to 180◦. Using the DDD and
DTV algorithms, we estimate basis data and then reconstruct basis images, followed by the
formation of VMIs at energies of interest from the basis images reconstructed. In addition
to visual inspection and quantitative analysis of VMIs obtained, we also estimate iodine-
contrast concentrations in chest images and effective atomic numbers in suitcase images
from data of different LARs. Furthermore, we investigate image reconstructions from data
acquired with SA and TOA scans of possible implications for potential non-diagnostic
imaging applications involving, e.g., C-arm DECT, in which workflow or safety concerns
may limit the scan angular range. The two-step method and the study design in the
work can also be applied to investigations concerning image reconstruction in DECT and
multi-spectral CT using techniques with sandwiched detectors [2], sequential scans [20], or
advanced photon-counting detectors [21,22]. DECT with fast-kVp-switching X-ray tubes
can also collect approximately overlapping rays [4].

2. Materials and Methods

2.1. Scans of Limited-Angular Ranges

In this work, we consider single-arc (SA) or two-orthogonal-arc (TOA) scans in a
fan-beam DECT, as shown schematically in Figure 1a,b. The SA scan includes a pair
of completely overlapping arcs of LAR ατ , whereas the TOA scan includes two pairs of
completely overlapping arcs of LARs α1 and α2. For each pair of the completely overlapping
arcs in the SA and TOA scans, low- and high-kVp data are collected over one of the paired
arcs. In this work, we assume that the x- or y-axis intersects with the middle point of each
pair of the completely overlapping arcs, and that the tangential directions at the middle
points of the two pairs of completely overlapping arcs in the TOA scan are orthogonal with
each other in Figure 1b. We use ατ to denote the LAR of an SA scan and investigate image
reconstruction from data collected over SAs of LARs ατ = 14◦, 20◦, 30◦, 45◦, 60◦, 90◦, 120◦,
150◦, and 180◦. For an SA of LAR ατ , we also consider a TOA scan with two arcs of equal
LARs satisfying α1 = α2 = 0.5ατ . (The work can readily be generalized to a TOA scan with
two arcs of different LARs [23]).

Dual-energy data are generated from a chest phantom and a suitcase phantom in
Figure 2 with two different fan-beam geometries used in the numerical study: for the chest
phantom, the source-to-rotation distance (SRD) and source-to-detector distance (SDD) are
100 cm and 150 cm, with a linear detector of 70 cm comprising 896 bins, whereas for the
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suitcase phantom, the SRD and SDD are 100 cm and 150 cm, with a linear detector of 32 cm
including 512 bins. The imaged objects are assumed to be completely within the field-of-
view of the scan configurations, resulting in no truncation. In the studies involving both
phantoms, the angular interval is fixed at 0.25◦ between two adjacent views. Dual-energy
data are also collected over two full rotations, or the FAR of 360◦, and images reconstructed
from FAR data may be used as references in the work.

Figure 1. Schematics of SA (a) and TOA (b) scans of LARs in fan-beam DECT. The SA scan includes a
pair of completely overlapping arcs of LAR ατ , and the x-axis intersects with the middle point of the
two arcs, whereas the TOA scan includes two pairs of completely overlapping arcs of LARs α1 and
α2, and the x- and y-axis intersect with the middle points of the two pairs of arcs. For each pair of the
completely overlapping arcs in the SA and TOA scans, low- and high-kVp data are collected over
one of the paired arcs. In this work, we consider α1 = α2 = 0.5ατ .

(a) (b) (c)

Figure 2. Row 1: (a) water and (b) iodine basis images and (c) VMI at 100 keV of the chest phantom;
and row 2: (a) photoelectric effect (PE) and (b) Compton scattering (KN) basis images and (c) VMI
at 40 keV of the suitcase phantom. Display windows for the chest phantom are [0, 1.2] for the two
basis images and [0, 0.22] cm−1 for the VMI, while those for the suitcase phantom are [0, 0.22] and
[0.1, 0.65] cm−1, respectively.

2.2. Imaging Model

In DECT, data are collected at ray j with two distinct spectra, referred to as low- and
high-kVp spectra, and an imaging model can be expressed as [8]

gL
j = − ln

M

∑
m

qL
jm exp

(
−

I

∑
i

aji fmi

)
,

gH
j = − ln

M

∑
m

qH
jm exp

(
−

I

∑
i

aji fmi

)
,

(1)
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where gL
j and gH

j denote model data of the low- and high-kVp scans; qL
jm and qH

jm the low-
and high-kVp spectra after normalization (including possibly filtered tube spectra and
detector response) at energy bin m; aji the contribution of image pixel i to data of ray j; and
fmi the image value at pixel i within energy bin m of the monochromatic image, i.e., the
linear attenuation coefficient.

In the absence of the basis-decomposition error, fmi can be written as the combination
of two basis images, i.e.,

fmi = μ0mb0i + μ1mb1i, (2)

where bki denotes basis image k at pixel i and μkm the linear attenuation coefficient at energy
bin m for basis material k (k = 0 or 1). Image fm, with fmi as its elements, obtained with
Equation (2) is referred to also as the virtual monochromatic image (VMI).

In the work, assuming μkm, qL
jm, and qH

jm are known, the two-step method is proposed
for accurately reconstructing basis images bki, or, equivalently, VMI fmi, from data collected
over an SA or TOA of LARs in fan-beam DECT.

2.3. Numerical Phantoms Studied

We consider in the work two phantoms, i.e., the chest phantom [15] and suitcase
phantom [6] shown in Figure 2, motivated by their possible implications in medical and
security imaging, two distinct DECT imaging applications, and their distinctly different
anatomic structures for evaluating algorithm performance. The chest phantom contains
four regions of interest (ROIs) 1–4 with iodine-contrast agents at concentrations of 5 mg/mL,
10 mg/mL, 15 mg/mL, and 20 mg/mL, respectively, and other ROIs with mixed materials,
such as muscle, lung tissue, and bone; whereas the suitcase phantom includes three ROIs
0–2 of single-element calibration materials, i.e., carbon, aluminum, and calcium, and four
more ROIs 3–6 of mixed materials, corresponding to water, ANFO (Ammonium Nitrate
and Fuel Oil [11]), teflon, and PVC, respectively.

In DECT, basis images may be selected according to the task considered. For the
chest phantom, to estimate iodine concentrations, we select material-based basis images of
water and iodine concentration of 20 mg/mL, with the corresponding μkm’s obtained from
the NIST database [24]. For the suitcase phantom, in order to estimate effective atomic
numbers, we select interaction-based basis images of the photoelectric effect (PE) and
Compton scattering (KN) with μkm’s that are 1/E3, where E denotes X-ray energy, and
obtained with the Klein–Nishina formula [1], respectively. The basis images and VMIs of the
chest and suitcase phantoms are formed on image arrays of 200× 256 and 150 × 256 square
pixels of size 0.7 mm, as displayed in rows 1 and 2, respectively, in Figure 2.

2.4. Image Reconstruction Approach

In an attempt to compensate for the BH effect inherent in gL
j and gH

j , we rewrite
Equation (1) as

gL
j = − ln

M

∑
m

qL
jm exp

(−μ0ml0j − μ1ml1j
)
,

gH
j = − ln

M

∑
m

qH
jm exp

(−μ0ml0j − μ1ml1j
)
,

(3)

where lkj = ∑I
i ajibki, k = 0 or 1, denotes the sinogram of basis image k, also referred to as

basis data, which is independent of energy m. Therefore, applying the DDD algorithm [10]
to Equation (3), we can obtain basis sinograms lkj from knowledge of gL

j and gH
j for each

ray j. It has been shown empirically [25] that the DDD algorithm can recover accurately
basis sinograms from gL

j and gH
j . Using existing algorithms such as the FBP algorithm, one

can reconstruct readily accurate basis images from full knowledge of basis sinograms lkj in
a FAR or short scan. In the work, because knowledge of lkj can be available only over a
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SA or TOA of LARs, the FBP algorithm yield basis images of significant artifacts. We thus
develop and tailor the DTV algorithm to reconstruct basis images with minimized LAR
artifacts from knowledge of lkj’s available only over a SA or TOA of LARs.

Using vectors bk and Lk (k = 0 or 1) of sizes I and J, respectively, to denote basis images
and their sinograms with elements bki and lkj in concatenated forms, we formulate the recon-
struction problem of basis images from their sinograms as a convex optimization problem

b�
k = argmin

bk

1
2
‖ Lk −A bk ‖2

2

s.t. ||Dxbk||1 ≤ tkx, ||Dybk||1 ≤ tky, and bki ≥ 0,
(4)

where matrix A of size J × I denotes the discrete fan-beam X-ray transform with element
aji; ‖ · ‖2 the �2-norm of a vector; and ||Dxbk||1 and ||Dybk||1 are the image’s directional
total variations (DTVs) [5] of the basis image bk along the x- and y-axis, respectively.

The DTV algorithm used to reconstruct basis images from knowledge of the basis
sinograms in DECT through solving Equation (4) shares the same general structure as that
of the algorithm for image reconstruction from LAR data in conventional SECT [5]. The
pseudo-code is thus summarized in Appendix A for clarity.

2.5. Visual Inspection and Quantitative Analysis of Images

As VMIs are of visualization interest in DECT, we first obtain VMIs at energy lev-
els of interest from basis images reconstructed by using Equation (2) and then visually
inspect LAR artifacts in the VMIs. Additionally, two quantitative metrics, normalized
root-mean-square error (nRMSE) and Pearson correlation coefficient (PCC) [5,26,27] are
calculated. Metric nRMSE evaluates quantitative difference, while metric PCC assesses
visual correlation, between a VMI obtained from LAR data and a reference image obtained
from FAR data. In particular, higher PCCs suggest better visual correlation between the
VMI and its reference image. The VMI and its reference are identical when PCC → 1 and
nRMSE → 0.

In the chest phantom study, we seek to estimate iodine-contrast concentration within
ROIs 1–4 shown in the basis images in row 1 of Figure 2. Using the estimated basis image
of 20-mg/mL iodine-contrast agent, we estimate the concentration of iodine-contrast agent
within ROIs 1–4 with a linear fitting [6]. Constants in the linear relationship are determined
by using pixel values within iodine-contrast ROIs 1–4 in the reference image of the chest
phantom obtained from the FAR data by use of the two-step method, and fitting into the
corresponding known concentrations. In the work, the calibrated slope and intercept of
the linear fitting were computed as 19.3 mg/mL and −0.0074 mg/mL. In general, the
linear fitting, as compared to the default setting of 20 and 0 as slope and intercept, yields
more accurate estimation of the iodine concentration, because the mean pixel values within
ROI 0 in the 20-mg/mL iodine basis image could be non-zero. This occurs as a result
of the incomplete basis set in the material decomposition model by using 2 materials.
On the other hand, in the study involving the suitcase phantom, we seek to estimate the
effective atomic number of materials [11]. As the basis images are estimated as PE and KN
components, their ratios are used in an affine transform with the effective atomic number
in the log-log domain [6]. The effective atomic numbers are then computed for ROIs 3–6 of
the suitcase phantom, as shown in row 2 of Figure 2. Constants in the affine transformation
are determined by using the pixel values within single-element ROIs 0–2 in the reference
image of the suitcase phantom obtained from the FAR data by use of the two-step method,
and fitting into the corresponding known atomic numbers.

3. Results

3.1. Numerical Study Design and Data Generation

In our numerical studies with noiseless and noisy LAR data, the TASMIC model [28]
was used for generating filtered tube spectra of given low- and high-kVps. Taking into
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account the detector’s energy-integrating response, we then obtain qL
jm and qH

jm by multiply-
ing the filtered tube spectra with corresponding X-ray energies E. For both phantoms, the
low- and high-kVp spectra are set at 80 and 140 kVp, with a 5-mm Al filter used in both.

For each of the chest or suitcase phantom in an SA or TOA scan described in Section 2.1
above, basis sinograms lkj are first generated from basis images shown in Figure 2, and
noiseless low- and high-kVp data gL

j and gH
j can be generated subsequently by use of

Equation (3) with lkj, and knowledge of μkm, qL
jm, and qH

jm determined. The aims of the
noiseless data study are (1) to verify that the two-step method, including the DDD and DTV
algorithms, can recover numerically accurate basis images and VMIs first from FAR-scan
data and (2) to use the two-step method verified to explore empirically its performance
upper bound , i.e., the performance in the best case scenario without any inconsistencies,
such as noise and decomposition error, in the data, as a function of LARs for yielding
accurate reconstruction of VMIs and physical quantity estimation in DECT with LAR scans.

Table 1. NEQs per detector bin in air scans of either the low- or high-kVp scans for the chest and
suitcase phantoms with LARs ranging from 14◦ to 180◦, as well as with the FAR of 360◦.

LAR 14◦ 20◦ 30◦ 45◦ 60◦
NEQ 9.64 × 105 6.75 × 105 4.5 × 105 3 × 105 2.25 × 105

LAR 90◦ 120◦ 150◦ 180◦ 360◦
NEQ 1.5 × 105 1.125 × 105 9 × 104 7.5 × 104 3.75 × 104

Using noiseless data as the means of the Poisson noise model, we obtain noisy data
containing Poisson noise. For both chest and suitcase phantoms, Table 1 shows the noise-
equivalent quanta’s (NEQs) of each detector bin for the SA or TOA scans studied, which
are determined such that the means in SA or TOA scans studied have a fixed total number
of quanta of ∼6.9 × 109 in an air scan, amounting to 75% of that in a FAR scan with
360 projection views, 512 detector bins, and ∼5 × 104 NEQs per detector bin [23]. The
purpose of the noisy data study is to yield some preliminary insights into the reconstruction
robustness of the two-step method. Clearly, its reconstruction accuracy depends not only
on the LAR extent but also on the characteristics and level of data noise. No additional
data or image processing is applied in the study with noisy data, although such processing
may improve the quality of VMI visualization and physical quantity estimation.

Constraint parameters tkx and tky have an impact on image reconstruction by defining
the feasible solution set of Equation (4). In the study below with consistent noiseless data,
the DTV values of the phantom basis images in Figure 2 are selected as the values of
parameters tkx and tky, in order to form the tightest feasible solution set that still contain the
desired solution (i.e., the truth basis images in this case). In the study with noisy data, the
values of parameters tkx and tky are selected in terms of visual evaluation of reconstructed
VMIs with minimum artifacts [5,6]. In general, parameter selection is accomplished through
surveying the parameter space within relevant ranges and optimizing a well-defined image-
quality metric, e.g., image visualization for artifact reduction or quantitative estimation
of iodine-contrast concentration, for studies with inconsistent data, including those with
real data where the truth images are not available. In our experience, tkx and tky selected in
the noisy data studies are generally smaller than those in the corresponding noiseless data
studies. In the work, the tkx values selected are in general smaller than tky in the SA scans,
so as to suppress horizontal streaks along the y-axis, while both tkx and tky selected in the
TOA scans are slightly larger than those in the SA scans, as the improved conditioning of
the system matrix leads to fewer artifacts overall. Basis images are also reconstructed from
Lk estimated by using the FBP algorithm with a Hanning kernel and a cutoff frequency at
0.5, which are then combined into the VMIs with Equation (2). The FBP algorithm is used
only for demonstrating the LAR artifacts associated with the phantoms and data conditions
in the work.
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3.2. Image Reconstruction of the Chest Phantom
3.2.1. Verification Study with the Chest Phantom

A study is performed to first verify that (1) the DDD algorithm can invert the non-
linear model in Equation (3) and numerically accurately recover the basis sinogram lkj from
noiseless low- and high-kVp data of the chest phantom acquired with the FAR scan of 360◦;
and (2) the DTV algorithm developed and tailored can reconstruct numerically accurate
basis images and VMIs from noiseless basis sinogram. In Figure 3a, we display the VMI at
100 keV [29], along with a zoomed-in view, and show in Figure 3b their differences from
the truth counterparts in Figure 2c (top row). The result confirms that the two-step method
can yield accurate reconstructions from noiseless FAR data. In an attempt to demonstrate
possible LAR artifacts associated with the phantom, we apply both the DTV and FBP
algorithms to reconstructing images from noiseless basis sinogram acquired with a SA scan
of LAR ατ = 30◦, and display them in Figure 3c,d, respectively. It can be observed that the
two-step method can significantly reduce the LAR artifacts observed in the FBP image.

(a) (b) (c) (d)

Figure 3. Row 1: (a) VMI of the chest phantom at 100 keV obtained with the two-step method from
FAR data, (b) difference between the VMI in (a) and its truth in Figure 2c, and VMIs at 100 keV
obtained with (c) the two-step method and (d) the FBP algorithm from noiseless data acquired over a
SA of LAR 30◦; Row 2: zoomed-in views of their corresponding images in row 1. The zoomed-in area
is enclosed by the rectangular box depicted in the VMI in (a). Display windows [0, 0.22] cm−1 for
columns (a,c,d), and [−10−4, 10−4] cm−1 for column (b).

3.2.2. Image Reconstruction from Noiseless Data Acquired with SA and TOA Scans of LARs

We subsequently apply the two-step method verified to reconstructing basis images
of water and iodine from noiseless data of the chest phantom collected in SA or TOA
scans of ατ = 20◦, 30◦, 45◦, 60◦, 90◦, 120◦, 150◦, and 180◦. In Figure 4, we display VMIs
at 100 keV, along with their zoomed-in views within the ROI, reconstructed for the SA
(rows 1&2 and 5&6) and TOA (rows 3&4 and 7&8) scans. It can be observed that the
two-step method yields visually comparable images for these scans of LARs, revealing
quantitatively possible performance upper bounds of the two-step method in accurate
image reconstruction, i.e., numerically accurately inverting Equation (3), for SA and TOA
scans of LARs studied in the work.

From VMIs in Figure 4, we compute nRMSEs and PCCs, which are displayed in
row 1 of Figure 5. Using the method described in Section 2.5, we also estimate iodine
concentrations in ROIs 1–4 indicated in the top row of Figure 2c, and plot them as functions
of LARs in row 1 of Figure 6. These results reveal that, from the chest phantom noiseless
data collected over the range of LARs as low as 20◦, the two-step method can yield VMIs
visually and quantitatively close to the reference VMIs from FAR data of 360◦ in terms of
PCC and estimated iodine concentrations. Regarding metric nRMSE, it increases as LAR
decreases, mainly due to the increasing null spaces present in the system matrices of the
LAR scans, while TOA scans can lower nRMSE by an order of magnitude especially for
small LARs as compared to SAs of the same LAR.
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Figure 4. VMIs (rows 1, 3, 5, and 7), along with their respective zoomed-in views (rows 2, 4, 6, and
8), of the chest phantom at 100 keV obtained from noiseless data over SAs (rows 1&2 and 5&6) and
TOAs (rows 3&4 and 7&8) of LAR 20◦, 30◦, 45◦, 60◦, 90◦, 120◦, 150◦, and 180◦, respectively, by use of
the two-step method. Display window: [0, 0.22] cm−1.

266



Bioengineering 2022, 9, 775

Figure 5. Metrics nRMSE and PCC, computed over VMIs of the chest phantom from noiseless data in
Figure 4 (row 1) and those from noisy data in Figure 7 (row 2) as functions of LARs ατ for SA (blue,
dashed) and TOA (red, solid) scans. The horizontal lines (black, dotted) indicate the reference values
from FAR data of 360◦.

Figure 6. Iodine concentrations, along with their respective error bars, in ROIs 1–4 (from left to right)
within the chest phantom, as functions of LARs ατ for SA (blue, dashed) and TOA (red, solid) scans,
estimated from basis images reconstructed from noiseless (row 1) and noisy (row 2) data by use of
the two-step method.

3.2.3. Image Reconstruction from Noisy Data Acquired with SA and TOA Scans of LARs

We repeat the study by applying the DTV algorithm to noisy data of the chest phantom
for SA and TOA scans considered in the noiseless study above. In Figure 7, we display
VMIs at 100 keV, along with their zoomed-in views. For the noise levels considered, it can
be observed that (1) LAR artifacts can be amplified by noise, (2) LAR artifacts are reduced
substantially in VMIs for SA and TOA scans of LARs ατ ≥ 120◦, and (3) TOA scans can
more effectively suppress LAR artifacts than SA scans for the chest phantom and noise level
studied in the work. Such observations may provide insights into the design of practical
procedures for image reconstruction from LAR data that contain additional inconsistencies.
We note that no processing is applied to the data or images reconstructed in our study.
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Figure 7. VMIs (rows 1, 3, 5, and 7), along with their respective zoomed-in views (rows 2, 4, 6, and 8),
of the chest phantom at 100 keV obtained from noisy data over SAs (rows 1&2 and 5&6) and TOAs
(rows 3&4 and 7&8) of LAR 20◦, 30◦, 45◦, 60◦, 90◦, 120◦, 150◦, and 180◦, respectively, by use of the
two-step method. Display window: [0, 0.22] cm−1.

Similar to the noiseless-data study, we compute nRMSEs and PCCs from VMIs in
Figure 7, and plot them as functions of LARs in row 2 of Figure 5. We also estimate iodine
concentrations and plot them as functions of LAR in row 2 of Figure 6. In the noisy-data
study, error bars, i.e., standard deviations, are calculated over the chest-phantom ROIs
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indicated in Figure 2c, and they are plotted in row 2 of Figure 6. The horizontal lines (black,
dotted) indicate the reference values from FAR data of 360◦. Quantitative results of PCC
appear consistent with the visual inspection, suggesting that VMI images for ατ ≥ 120◦ in
SA and ατ ≥ 90◦ in TOA scans visually resemble the reference VMI obtained from noisy
FAR data, and the degree of resemblance drops understandably as LAR decreases. The
estimation accuracy of iodine concentration for ατ ≥ 90◦ remains comparable to those
obtained from the reference images reconstructed from noisy FAR data.

3.3. Image Reconstruction of the Suitcase Phantom

Next, we repeat the studies in Section 3.2 with the suitcase phantom. We show in
Figure 8a the VMI and its zoomed-in view reconstructed from FAR data and in Figure 8b
their differences from the truth counterparts in Figure 2c (bottom row). The result again
confirms the reconstruction accuracy of the two-step method using the suitcase phantom,
which is of different complexity and structure to the chest phantom. To reveal the LAR
artifacts associated with the suitcase phantom, we apply the DTV and FBP algorithms to
reconstruct images from noiseless basis sinogram over an SA of ατ = 30◦ and display them
in Figure 8c,d, respectively. It can be observed that the LAR artifacts in the FBP image are
almost eliminated in the image reconstructed by use of the two-step method.

(a) (b) (c) (d)

Figure 8. Row 1: (a) VMI of the suitcase phantom at 40 keV obtained with the two-step method from
FAR data, (b) difference between the VMI in (a) and its truth in Figure 2c, VMIs at 40 keV obtained
with (c) the two-step method and (d) the FBP algorithm from data acquired over a SA of LAR 30◦;
and row 2: zoomed-in views of their corresponding images in row 1. The zoomed-in area is enclosed
by the rectangular box depicted in the VMI in (a). Display windows [0.1, 0.65] cm−1 for columns
(a,c,d), and [−10−4, 10−4] cm−1 for column (b).

3.3.1. Image Reconstruction from Noiseless Data Acquired with SA and TOA Scans
of LARs

Next, we apply the algorithm verified to reconstructing basis images of PE and KN
from noiseless data of the suitcase phantom collected in SA or TOA scans of
ατ = 14◦, 20◦, 30◦, 60◦, 90◦, 120◦, 150◦, and 180◦. The lowest LAR studied for the suit-
case phantom, 14◦, is smaller than that for the chest phantom, 20◦. In Figure 9, we display
the VMIs at 40 keV, along with their zoomed-in views, reconstructed from data collected
with SA (rows 1&2 and 5&6) and TOA (rows 3&4 and 7&8) scans. It can be observed that
the two-step method yields almost visually identical images for these LARs, revealing
possible performance upper bounds of the method in numerically accurately inverting
Equation (3) for scans with SA and TOA of LARs.

From VMIs in Figure 9, we compute nRMSEs and PCCs, and display them in row 1
of Figure 10. Using the method described in Section 2.5, we also estimate effective atomic
numbers in ROIs 3–6 indicated in bottom row of Figure 2c, and plot them as functions of
LARs in row 1 of Figure 11. These results reveal that, from the suitcase phantom noiseless
data collected over the range of LARs as low as 14◦, the two-step method can yield VMIs
visually and quantitatively close to the reference VMIs from FAR data of 360◦ in terms of
PCC and estimated effective atomic numbers. With regard to metric nRMSE, it increases as
LAR decreases, largely due to the increasing null spaces in the system matrices of the LAR
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scans, while TOA scans can lower nRMSE by an order of magnitude especially for small
LARs as compared to SAs of the same LAR.

3.3.2. Image Reconstruction from Noisy Data Acquired with SA and TOA Scans of LARs

We apply the two-step method to reconstructing images from noisy data of the suitcase
phantom collected over the same LARs in SA and TOA. In Figure 12, we display the VMIs
at 40 keV, along with their zoomed-in views. For the suitcase phantom, LAR artifacts are
substantially reduced in VMIs from data collected over ατ ≥ 90◦ in SA and ατ ≥ 60◦ in
TOA scans. Similar to the chest phantom results, TOA configurations can more effectively
suppress LAR artifacts than SA ones, especially recovering the distorted edges around the
circular and elliptical disks, for the suitcase phantom under noise level studied in the work.

14◦ 20◦ 30◦ 60◦

S
A

T
O
A

90◦ 120◦ 150◦ 180◦

S
A

T
O
A

Figure 9. VMIs (rows 1, 3, 5, and 7), along with their respective zoomed-in views (rows 2, 4, 6, and 8),
of the suitcase phantom at 40 keV obtained from noiseless data acquired over SAs (rows 1&2 and
5&6) and TOAs (rows 3&4 and 7&8) of LAR 14◦, 20◦, 30◦, 60◦, 90◦, 120◦, 150◦, and 180◦, respectively,
by use of the two-step method. Display window: [0.1, 0.65] cm−1.
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Figure 10. Metrics nRMSE and PCC, computed over VMIs of the suitcase phantom from noiseless
data in Figure 9 (row 1) and those from noisy data in Figure 12 (row 2) as functions of LARs ατ for SA
(blue, dashed) and TOA (red, solid) scans. The horizontal lines (black, dotted) indicate the reference
values from FAR data of 360◦.

Figure 11. Effective atomic numbers of (a) water, (b) ANFO, (c) Teflon, and (d) PVC, along their
respective error bars, within the suitcase phantom estimated as functions of LAR ατ for SA (blue,
dashed) and TOA (red, solid) scans, computed from basis images reconstructed from noiseless (row 1)
and noisy (row 2) data by use of the two-step method.

We compute nRMSEs and PCCs from VMIs in Figure 12, and plot them as functions of
LARs in row 2 of Figure 10. We also estimate effective atomic numbers and plot them as
functions of LAR in row 2 of Figure 11. In the noisy-data study, error bars, i.e., standard
deviations, are calculated over the suitcase-phantom ROIs indicated in Figure 2c, and they
are plotted in row 2 of Figure 11. The quantitative results suggest that VMI images visually
resemble the reference VMI from FAR data for noisy LAR data collected over ατ ≥ 60◦ in
SA and ατ ≥ 14◦ in TOA scans, and the resemblance decreases understandably as LAR
decreases and that the estimation accuracy from noisy LAR data collected over ατ ≥ 60◦ is
comparable to those from the FAR data.
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Figure 12. VMIs (rows 1, 3, 5, and 7), along with their respective zoomed-in views (rows 2, 4, 6, and
8), of the suitcase phantom at 40 keV obtained from noisy data acquired over SAs (rows 1&2 and
5&6) and TOAs (rows 3&4 and 7&8) of LAR 14◦, 20◦, 30◦, 60◦, 90◦, 120◦, 150◦, and 180◦, respectively,
by use of the two-step method. Display window: [0.1, 0.65] cm−1.

4. Discussion

In this work, we have investigated and developed a two-step method for image
reconstruction from low- and high-kVp data collected with SA and TOA scans of LARs in
DECT. The method combines the DDD and DTV algorithms to effectively compensate for
both BH and LAR artifacts, yielding accurate VMIs and physical-quantity estimation. For
the study conditions such as phantoms and noise levels considered, visual inspection of
VMIs at energies of interest indicates that the method can yield from noiseless LAR data
VMIs that are visually comparable to the reference VMI from FAR data, and from noisy
LAR data VMIs with reduced BH and LAR artifacts; and quantitative observations can
be made that the accurate estimation of physical quantities such as iodine concentrations
and effective atomic numbers can be obtained for noiseless data of LAR as low as 20◦ and
for noisy data of LAR as low as 60◦. For the SA and TOA scans of the same total angular
range studied, the latter appear to yield more accurate images and estimations of physical
quantities than the former, due to the improved conditioning of the system matrix.
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We used two distinct phantoms, i.e., chest and suitcase phantoms, of varying com-
plexity levels and structures of different application interest. The chest phantom contains
lung tissue, airways, and blood vessels within the pulmonary anatomy, while the suit-
case phantom contains various materials of interest in baggage screening. Results of the
numerical study indicate that the effectiveness of the two-step method, like any other
algorithm, is understandably dependent on the anatomic complexity of an object imaged
with varying contrast and spatial resolution. Results from the suitcase phantom are less
impacted, in terms of image artifacts and quantitative accuracy of the estimated physical
quantities, by the decreasing LAR than the chest phantom, possibly due to its structure and
the noise levels in the data. We have studied additional phantoms of different anatomies,
and corroborative observations can be made.

In the work, we have investigated the DTV algorithm for numerically accurately
solving the optimization program in Equation (4) with DTV constraints. Additionally,
we have conducted noisy data studies to provide some preliminary insights into the
stability of the two-step method in the presence of data inconsistencies. While a fixed
total number of quanta is used for Poisson noise simulation, the visualization of VMIs and
estimation accuracy of physical quantities obtained can be dependent on the noise levels
and characteristics of different applications. In addition, other sources of inconsistency, such
as metal, scatter, imperfect spectra, low- and high-kVp X-ray mismatch, and decomposition
error, may also impact the reconstruction quality and estimation accuracy. Blooming
artifacts usually stem from highly attenuating materials present in the patient, such as metal
implants and calcification plaques. While it is important to investigate the effectiveness
of the two-step method in studies containing these physical effects, such an investigation
nevertheless is beyond the scope of this work, and the proposed method may be used as
the basis for future investigative efforts that focus on correcting other physical factors in
DECT with LAR data.

The studies and results in this work may provide insights into the possible develop-
ment for practical approaches to reducing radiation dose and scanning time and to avoiding
collision between the moving gantry of the scanner and the imaged object in clinical and
industrial applications. One limitation of the proposed two-step method is the requirement
of completely overlapping arcs of low- and high-kVp scans, imposed by the data-domain
decomposition step. This can be avoided by performing the image-domain decomposition
in a two-step method [30]; however, linear data models are usually assumed and the non-
linear BH effect is not explicitly corrected for, which may impact the quantitative accuracy
of the reconstruction. On the other hand, one-step methods [25] may accommodate LAR
scanning configurations with partially or non-overlapping arcs of low- and high-kVp scans,
while using the non-linear data model and correcting for the BH effect. Therefore, future
investigations will include studies on one-step methods for DECT reconstruction with LAR
data. It is worthy of a separate, comprehensive investigation, since existing studies on
one-step methods focus largely on full- or short-angular-range scans and leverage image
constraints, such as TV, not specifically designed for LAR data [15,25].

5. Conclusions

In this work, we investigated and developed a two-step method to reconstruct images
accurately from low- and high-kVp LAR data by correcting for both BH and LAR effects
in DECT. Numerical studies conducted reveal that the two-step method can yield VMIs
with reduced BH and LAR artifacts, and estimation of physical quantities with improved
accuracy, and that for SA and TOA scans with identical total LARs, the latter generally
yields more accurate image reconstruction and physical-quantity estimation than the former.
Results and knowledge acquired in the work on accurate image reconstruction in LAR
DECT may give rise to further understanding and insights into the practical design of
LAR scan configurations and reconstruction procedures for DECT applications. Future
works will investigate the impact of additional inconsistencies and the one-step method for
accommodating non-overlapping scans in DECT with LAR data.
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Abbreviations

The following abbreviations are used in this manuscript:

DECT Dual-energy computed tomography
LAR Limited angular range
BH Beam hardening
DDD Data-domain decomposition
DTV Directional total variation
VMI Virtual monochromatic image
SA Single-arc
TOA Two-orthogonal-arc
FAR Full angular range
nRMSE Normalized root-mean-square error
PCC Pearson correlation coefficient
PE Photoelectric
KN Klein–Nishina
NEQ Noise-equivalent quanta

Appendix A. Pseudo-Code of the DTV Algorithm

Algorithm A1 Pseudo-code of the DTV algorithm for solving Equation (4)

1: INPUT: Lk , tkx , tky, A, ρ

2: L ← ||K||2, τ ← ρ/L, σ ← 1/(ρL), ν1 ← ||A||2/||Dx ||2, ν2 ← ||A||2/||Dy||2, μ ← ||A||2/||I||2
3: n ← 0
4: INITIALIZE: b(0), w(0), p(0), q(0), and t(0) to zero
5: b̄(0) ← b(0)

6: repeat

7: w(n+1) = (w(n) + σ(Ab̄(n) − L))/(1 + σ)

8: p′(n) = p(n) + σν1Dx b̄(n)

q′(n) = q(n) + σν2Dyb̄(n)

9: p(n+1) = p′(n) − σ p′(n)
|p′(n) | �1ballν1tkx (

|p′(n) |
σ )

q(n+1) = q′(n) − σ q′(n)
|q′(n) | �1ballν2tky (

|q′(n) |
σ )

10: t(n+1) = neg(t(n) + σμb̄(n))

11: b(n+1) = b(n) − τ(A�w(n+1) + ν1D�
x p(n+1) + ν2D�

y q(n+1) + μt(n+1))

12: b̄(n+1) = 2b(n+1) − b(n)

13: n ← n + 1
14: until the convergence conditions are satisfied
15: OUTPUT: b(n) as the estimate of bk
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In the pseudo-code of the derived algorithm instance, the definitions of the auxiliary
variables, including matrices K and I and vectors w(n), p′(n), q′(n), p(n), q(n), and t(n), and
operators, including || · ||2, neg(·), �1ballβ(·), and |q′(n)|, are intentionally kept consistent
with those used in Ref. [6]. In each reconstruction from a set of basis data in an SA and
TOA scan, the DTV algorithm reconstructs the basis images through solving Equation (4)
until the convergence conditions described in Ref. [5] are satisfied numerically.

References

1. Alvarez, R.E.; Macovski, A. Energy-selective reconstructions in X-ray computerised tomography. Phys. Med. Biol. 1976,
21, 733–744. [CrossRef] [PubMed]

2. Carmi, R.; Naveh, G.; Altman, A. Material separation with dual-layer CT. In Proceedings of the IEEE Nuclear Science Symposium
Conference Record, 2005, Fajardo, PR, USA, 23–29 October 2005; Volume 4, p. 3.

3. Flohr, T.G.; McCollough, C.H.; Bruder, H.; Petersilka, M.; Gruber, K.; Süβ, C.; Grasruck, M.; Stierstorfer, K.; Krauss, B.;
Raupach, R.; et al. First performance evaluation of a dual-source CT (DSCT) system. Eur. Radiol. 2006, 16, 256–268. [CrossRef]

4. Xu, D.; Langan, D.A.; Wu, X.; Pack, J.D.; Benson, T.M.; Tkaczky, J.E.; Schmitz, A.M. Dual energy CT via fast kVp switching
spectrum estimation. In Proceedings of the SPIE Medical Imaging 2009: Physics of Medical Imaging, Lake Buena Vista, FL, USA,
7–12 February 2009; Volume 7258, p. 72583T.

5. Zhang, Z.; Chen, B.; Xia, D.; Sidky, E.Y.; Pan, X. Directional-TV algorithm for image reconstruction from limited-angular-range
data. Med. Image Anal. 2021, 70, 102030. [CrossRef] [PubMed]

6. Chen, B.; Zhang, Z.; Xia, D.; Sidky, E.Y.; Pan, X. Dual-energy CT imaging with limited-angular-range data. Phys. Med. Biol. 2021,
66, 185020. [CrossRef]

7. Chen, B.; Zhang, Z.; Xia, D.; Sidky, E.Y.; Pan, X. Dual-energy CT imaging over non-overlapping, orthogonal arcs of limited-angular
ranges. J. X-ray Sci. Technol. 2021, 29, 975–985. [CrossRef] [PubMed]

8. Chen, B.; Zhang, Z.; Sidky, E.Y.; Xia, D.; Pan, X. Image reconstruction and scan configurations enabled by optimization-based
algorithms in multispectral CT. Phys. Med. Biol. 2017, 62, 8763. [CrossRef]

9. Sheng, W.; Zhao, X.; Li, M. A sequential regularization based image reconstruction method for limited-angle spectral CT. Phys.
Med. Biol. 2020, 65, 235038. [CrossRef]

10. Zou, Y.; Silver, M.D. Analysis of fast kV-switching in dual energy CT using a pre-reconstruction decomposition technique.
In Proceedings of the SPIE Medical Imaging 2008: Physics of Medical Imaging, San Diego, CA, USA, 17–19 February 2008;
Volume 6913, p. 691313.

11. Ying, Z.; Naidu, R.; Crawford, C.R. Dual energy computed tomography for explosive detection. J. X-ray Sci. Technol. 2006,
14, 235–256.

12. Goodsitt, M.M.; Christodoulou, E.G.; Larson, S.C. Accuracies of the synthesized monochromatic CT numbers and effective
atomic numbers obtained with a rapid kVp switching dual energy CT scanner. Med. Phys. 2011, 38, 2222–2232. [CrossRef]

13. Chandarana, H.; Megibow, A.J.; Cohen, B.A.; Srinivasan, R.; Kim, D.; Leidecker, C.; Macari, M. Iodine quantification with
dual-energy CT: Phantom study and preliminary experience with renal masses. Am. J. Roentgenol. 2011, 196, W693–W700.
[CrossRef]

14. Faby, S.; Kuchenbecker, S.; Sawall, S.; Simons, D.; Schlemmer, H.P.; Lell, M.; Kachelrieß, M. Performance of today’s dual energy
CT and future multi energy CT in virtual non-contrast imaging and in iodine quantification: A simulation study. Med. Phys. 2015,
42, 4349–4366. [CrossRef] [PubMed]

15. Barber, R.F.; Sidky, E.Y.; Schmidt, T.G.; Pan, X. An algorithm for constrained one-step inversion of spectral CT data. Phys. Med.
Biol. 2016, 61, 3784–3818. [CrossRef] [PubMed]

16. Iwano, S.; Ito, R.; Umakoshi, H.; Ito, S.; Naganawa, S. Evaluation of lung cancer by enhanced dual-energy CT: Association
between three-dimensional iodine concentration and tumour differentiation. Br. J. Radiol. 2015, 88, 20150224. [CrossRef]

17. Koonce, J.D.; Vliegenthart, R.; Schoepf, U.J.; Schmidt, B.; Wahlquist, A.E.; Nietert, P.J.; Bastarrika, G.; Flohr, T.G.; Meinel, F.G.
Accuracy of dual-energy computed tomography for the measurement of iodine concentration using cardiac CT protocols:
Validation in a phantom model. Eur. Radiol. 2014, 24, 512–518. [CrossRef]

18. Pelgrim, G.J.; van Hamersvelt, R.W.; Willemink, M.J.; Schmidt, B.T.; Flohr, T.; Schilham, A.; Milles, J.; Oudkerk, M.; Leiner, T.;
Vliegenthart, R. Accuracy of iodine quantification using dual energy CT in latest generation dual source and dual layer CT. Eur.
Radiol. 2017, 27, 3904–3912. [CrossRef]

19. Mouton, A.; Breckon, T.P. A review of automated image understanding within 3D baggage computed tomography security
screening. J. X-ray Sci. Technol. 2015, 23, 531–555. [CrossRef] [PubMed]

20. McCollough, C.H.; Leng, S.; Yu, L.; Fletcher, J.G. Dual- and multi-energy CT: Principles, technical approaches, and clinical
applications. Radiology 2015, 276, 637–653. [CrossRef]

21. Taguchi, K.; Iwanczyk, J.S. Vision 20/20: Single photon counting x-ray detectors in medical imaging. Med. Phys. 2013, 40, 100901.
[CrossRef]

22. Danielsson, M.; Persson, M.; Sjölin, M. Photon-counting x-ray detectors for CT. Phys. Med. Biol. 2021, 66, 03TR01. [CrossRef]
[PubMed]

275



Bioengineering 2022, 9, 775

23. Zhang, Z.; Chen, B.; Xia, D.; Sidky, E.Y.; Pan, X. Image reconstruction from data over two orthogonal arcs of limited-angular
ranges. Med. Phys. 2022, 49, 1468–1480. [CrossRef]

24. Hubbell, J.; Seltzer, S. Tables of X-ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients (Version 1.4).
Available online: http://physics.nist.gov/xaamdi (accessed on 12 March 2016).

25. Chen, B.; Zhang, Z.; Xia, D.; Sidky, E.Y.; Pan, X. Non-convex primal-dual algorithm for image reconstruction in spectral CT.
Comput. Med. Imaging Graph. 2021, 87, 101821. [CrossRef] [PubMed]

26. Pearson, K. Notes on Regression and Inheritance in the Case of Two Parents. Proc. R. Soc. Lond. 1895, 58, 240–242.
27. Bian, J.; Siewerdsen, J.H.; Han, X.; Sidky, E.Y.; Prince, J.L.; Pelizzari, C.A.; Pan, X. Evaluation of sparse-view reconstruction from

flat-panel-detector cone-beam CT. Phys. Med. Biol. 2010, 55, 6575–6599. [CrossRef] [PubMed]
28. Hernandez, A.M.; Boone, J.M. Tungsten anode spectral model using interpolating cubic splines: Unfiltered X-ray spectra from

20 kV to 640 kV. Med. Phys. 2014, 41, 042101. [CrossRef] [PubMed]
29. Delesalle, M.A.; Pontana, F.; Duhamel, A.; Faivre, J.B.; Flohr, T.; Tacelli, N.; Remy, J.; Remy-Jardin, M. Spectral optimization of

chest CT angiography with reduced iodine load: Experience in 80 patients evaluated with dual-source, dual-energy CT. Radiology
2013, 267, 256–266. [CrossRef]

30. Maass, C.; Baer, M.; Kachelriess, M. Image-based dual energy CT using optimized precorrection functions: A practical new
approach of material decomposition in image domain. Med. Phys. 2009, 36, 3818–3829. [CrossRef]

276



Citation: Chuo, Y.; Lin, W.-M.; Chen,

T.-Y.; Chan, M.-L.; Chang, Y.-S.; Lin,

Y.-R.; Lin, Y.-J.; Shao, Y.-H.; Chen,

C.-A.; Chen, S.-L.; et al. A

High-Accuracy Detection System:

Based on Transfer Learning for

Apical Lesions on Periapical

Radiograph. Bioengineering 2022, 9,

777. https://doi.org/10.3390/

bioengineering9120777

Academic Editors: Paolo Zaffino and

Maria Francesca Spadea

Received: 3 October 2022

Accepted: 23 November 2022

Published: 6 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

bioengineering

Article

A High-Accuracy Detection System: Based on Transfer Learning
for Apical Lesions on Periapical Radiograph

Yueh Chuo 1, Wen-Ming Lin 1,†, Tsung-Yi Chen 2,†, Mei-Ling Chan 1,3,*,†, Yu-Sung Chang 2, Yan-Ru Lin 2,

Yuan-Jin Lin 4, Yu-Han Shao 2, Chiung-An Chen 5,*, Shih-Lun Chen 2,* and Patricia Angela R. Abu 6

1 Department of General Dentistry, Chang Gung Memorial Hospital, Taoyuan City 33305, Taiwan
2 Department of Electronic Engineering, Chung Yuan Christian University, Taoyuan City 32023, Taiwan
3 School of Physical Educational College, Jiaying University, Meizhou City 514000, China
4 Department of Electrical Engineering and Computer Science, Chung Yuan Christian University,

Chungli City 32023, Taiwan
5 Department of Electrical Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan
6 Department of Information Systems and Computer Science, Ateneo de Manila University,

Quezon City 1108, Philippines
* Correspondence: lynn321630@gmail.com (M.-L.C.); joannechen@mail.mcut.edu.tw (C.-A.C.);

chrischen@cycu.edu.tw (S.-L.C.)
† These authors contributed equally to this work.

Abstract: Apical Lesions, one of the most common oral diseases, can be effectively detected in daily
dental examinations by a periapical radiograph (PA). In the current popular endodontic treatment,
most dentists spend a lot of time manually marking the lesion area. In order to reduce the burden
on dentists, this paper proposes a convolutional neural network (CNN)-based regional analysis
model for spical lesions for periapical radiographs. In this study, the database was provided by
dentists with more than three years of practical experience, meeting the criteria for clinical practical
application. The contributions of this work are (1) an advanced adaptive threshold preprocessing
technique for image segmentation, which can achieve an accuracy rate of more than 96%; (2) a
better and more intuitive apical lesions symptom enhancement technique; and (3) a model for
apical lesions detection with an accuracy as high as 96.21%. Compared with existing state-of-the-art
technology, the proposed model has improved the accuracy by more than 5%. The proposed model
has successfully improved the automatic diagnosis of apical lesions. With the help of automation,
dentists can focus more on technical and medical diagnoses, such as treatment, tooth cleaning, or
medical communication. This proposal has been certified by the Institutional Review Board (IRB)
with the certification number 202002030B0.

Keywords: PA; CNN; tooth disease recognition; image segmentation; image preprocessing

1. Introduction

X-rays have been used in medical images since 1896, and they also help doctors
determine whether a patient is healthy. X-rays are widely used in dental treatments [1],
such as periapical radiographs (PA), bitewing radiographs (BW), and panoramic radio-
graphs (PANO). The PA film is important in routine dental X-ray examinations because it
requires lower radiation dose exposure and could identify periapical pathology efficiently.
Periapical radiographs are commonly the result of trauma, caries, or tooth wear. These
conditions will bring out root canal infection if the dental treatment has no intervention,
and pulp necrosis may occur [2,3]. Numerous studies have confirmed that this oral prob-
lem requires prompt and thorough treatment. Otherwise, it may lead to tooth loss and
repeated inflammation [4–6]. Detection of the peri-apical lesion and opportune endodontic
procedure intervention can treat root canal infection caused by these problems. The PA
film can capture local teeth, which can effectively and quickly enable dental professionals
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to find local details of tooth lesions [7,8] and undertake the treatment [9]. Despite advances
in treatment and access to extensive care, the prevalence of apical lesions remains high [10].
Dentists use PA to find diseased areas, but it is very time-consuming to find lesions that do
not contrast well with normal areas. In addition, the dentist may become tired after long
working hours, thereby ignoring subtle differences. In a day, a dentist must review hun-
dreds of X-rays of a patient and diagnose and document the patient. However, the current
method for detecting periapical noise still needs to be judged by the dentist. Dentists may
inevitably make mistakes as the length and number of consultations increase.

With the continuous advancement of technology, artificial intelligence has shined in
many industries, such as vehicle image recognition [11], smart city [12], product recommen-
dation systems [13], and emotion recognition [14]. The development of medical imaging is
also changing with each passing day. More and more cases have shown that the combina-
tion of artificial intelligence and medical imaging has good results, such as breast cancer
(BC) [15], arrhythmia [16], and lung function prediction [17]. There are also related studies
in dentistry, for example, adding machine learning to the color recognition of dentures [18]
or adding deep learning to the detection of tooth decay [19]. Artificial intelligence was
used to improve the apical lesion detection accuracy rate of the dental Panoramic Radio-
graph Identification System to about 75.53% in [20], while the accuracy rate of CT image
identification is about 82% [21]. For clinical use, there is still a lot of room for improvement.
Therefore, in order to reduce the workload of dentists and provide more objective data,
this study proposes an automatic detection system for periapical radiographs using CNN
transfer learning. The purpose is to improve the symptom enhancement technology in the
existing technology and to analyze and compare the final research results. In [22], a system
combining PA and CNN was proposed. The authors improved the classification accuracy
of batch normalization by adjusting the parameters such as the layers of convolutional
blocks in the CNN. The accuracy rate obtained was as high as 92.75%. This article will
use this as the main reference. However, its image enhancement improvements are not
outstanding. Therefore, in this proposal, the focus is on improving image segmentation
and image enhancement. In order to increase the reference value of the data obtained
from the Alexnet classification model, three different CNN models are constructed, namely
Googlenet, Resnet50, and Resnet101 which are trained, tested, and verified through the
same database. During this period, the parameters of each model were kept consistent
by the control variable method which was convenient for subsequent comparison. The
research in this paper also utilizes CNN technology for dentists to diagnose symptoms
and ultimately provide patients with more effective and better adjuvant treatment. The
innovations of this method are as follows:

1. In the image cropping preprocessing part, this study adds the adaptive threshold
and angle rotation technology. Compared with the existing methods, this method
significantly improves the image clarity and accuracy of a single tooth image.

2. This study proposes an advanced image enhancement technique for apical lesions.
It adds raw grayscale images and Gaussian high-pass filtered images to highlight
the possible lesion areas and changes the color of the possible lesion area to green.
Experiments show that the accuracy of the model is improved by more than 10%
which proves that the proposed method is intuitive and effective.

3. The innovation of this work is to realize the classification of various diseases. It can
simultaneously judge a variety of different types of dental diseases (such as apical
lesions, fillings, etc.), and the obtained final accuracy of the model proposed in this
paper is as high as 93%. AlexNet even improves the accuracy up to 96.21% which is
4% higher than the state-of-the-art in [23].

The presentation structure of this proposal is as follows: Section 2 introduces the
materials and methods for apical lesion detection on periapical radiographs based on
transfer learning. Section 3 mainly describes and analyzes the evaluation method of the
model and the experimental results. The results of the study are discussed in Section 4.
Finally, the conclusions and future prospects are given in Section 5. The purpose of

278



Bioengineering 2022, 9, 777

this paper is to predict root apical lesions located at the base of a tooth by means of a
convolutional neural network (CNN).

2. Materials and Methods

This study is divided into three parts: image cropping, image preprocessing and
CNN training. The image cropping part extracts a single tooth which helps model training
more efficiently. In addition, through a series of image preprocessing techniques, possible
lesion areas can be highlighted, resulting in more accurate detection. The output of these
image preprocessing steps is saved in the CNN database. The clinical images used in this
research were collected by attending physicians with more than three years of experience
in hospital dentistry. All clinical images utilized in this research had been approved by the
Institutional Review Board Statement (permission number 202002030B0). For enhancement,
the most challenging problem is that after image segmentation, there is too much noise
in the original apical slice and the resected part of the lesion area. Therefore, the angle of
cutting or image noise reduction became the challenge of this project. This proposal uses
the same Gaussian high-pass filter as that of [23] to achieve the best noise reduction result.
The flow chart of this study is shown in Figure 1.

Figure 1. The flow chart of this research.

2.1. Image Segmentation and Retouching

In order to build a high-precision model and conform to the judgment of dentists, this
research uses a single tooth image to build a clinical image database. However, since the
original image is a PA composed of about three to four separate vertical teeth, segmentation
of individual teeth must be performed on the original image. In [24], the vertical cutting
method of dividing the image is a very good idea. However, its target image is a BW
film; there would be some flaws in the process of cutting the PA film. Therefore, the
segmentation method that this proposal focuses on is improved on the basis of [24] to make
the segmentation more accurate. The next step is to retouch the segmented photo by adding
a technique to block non-target areas on the segmented image.

2.1.1. Vertical Cutting

The core concept of vertical cutting is to calculate the sum of the horizontal pixels of the
image and find the point with the smallest sum making that point the segmentation point.
Before performing the calculation, the image is first converted from an RGB image to a
grayscale image for easier calculation. In this research, the method of iterative thresholding
in [23] is improved and adaptive thresholding is used for transformation. The feature
of adaptive threshold processing is that each image behaves differently from RGB to
grayscale which means that each image has its own most suitable adaptive threshold. In
this proposal, the most appropriate adaptive threshold is selected for each image and image
transformation is performed. Figure 2 is the image result applying the conversion method
using [23], and Figure 2b is the image result of the improved adaptive threshold. From a
data point of view, this method can effectively improve the accuracy of image segmentation.
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Figure 2. The result of the images. (a) image binarization, (b) adaptive threshold processing.

This proposal summarizes the range of the sum of pixels where the appropriate
threshold is located by calculating the sum of the pixels of each grayscale image. However,
the calculation cannot be performed immediately after converting the image because not
every interdental gap is vertical. Therefore, rotating the image is a necessary step before
calculation. Additionally, image rotation is performed by rotating the image 12 degrees
clockwise and 12 degrees counterclockwise [24]. After rotating the image, the 24 positions
and value of the minimum pixel sum for each angle can be computed. The 24 values are
then compared with the smallest value being the most suitable position and angle for
segmentation. Since the number of PA image teeth in the database is at most four teeth, a
maximum of four cutting lines are required. This means that the above steps need to be
repeated four times. However, the number of teeth in the PA images is not always four
and some images have only three. In this case, the redundant dividing line needs to be
removed. Therefore, this study designed two methods to address this problem. The first
method is based on the relative position of the fourth cutting line to the other cutting lines.
Assuming that the distance between the fourth cutting line and the other cutting lines is
less than the width of one tooth, the fourth cutting line should be removed. The second
method is that if the value of the fourth row is greater than the average, it means that the
fourth row is very likely not on the tooth. Thus, the fourth row can be removed by this
feature. Figure 3a shows the result of finding all the dividing lines. Figure 3b is the result
of removing the redundant dividing lines. When the cutting line is inclined, the image
segmented by the cutting line is not rectangular. However, for the subsequent training of
CNN when normalized, the target in this step is a rectangular one. Therefore, this proposal
adds a green vertical line to the far right and a blue vertical line to the far left of each cutting
line. Moreover, it segments the first segmented image with the leftmost position of the
original image and the first green vertical line as the boundary. The second segmented
image is bounded by the first blue vertical line and the second green vertical line. The third
and fourth cut images are similarly divided.
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Figure 3. The result of cutting lines. (a) all cutting lines, (b) removed unnecessary cutting lines.

2.1.2. Image Masks

The inclination of the cutting line is designed to match the inclination of the teeth.
However, most of the cutting lines have oblique angles which means that most segmented
images will contain a small fraction of adjacent teeth as shown in Figure 4a. This leads
to disturbances in the accuracy of the CNN model. In view of this, this study retouches
the segmented images according to the cutting line (red line in Figure 3). It sets the mask
template according to the clipping line and the mask template will be superimposed with
the original clipping image. This can effectively mask the non-target area as shown in
Figure 4b. The modified image will be the final output and result. The retouched image
will optimally preserve the desired feature areas.

Figure 4. The results of the masking image. (a) original segmented, (b) retouched segmented.

2.2. Enhancing Lesion

In the collected original images, the root apical lesions will be affected by factors such
as shooting angle, dose, and operator, thus, the lesions are sometimes inconspicuous. In
this regard, this research proposes an advanced and intuitive enhancement method that
can highlight the lesions. The first work is converting the RGB image to a grayscale image
using a conversion formula. It then uses the Gaussian high-pass filter to filter out the noise.
In order to make the lesion more obvious, the result of the Gaussian high-pass filter is used
to superimpose it back to a grayscale image. Finally, the simple enhancement technique is
used to change the color of the possible lesion area to green. In this way, clinical images for
efficient training of CNN models can be obtained.
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2.2.1. Grayscale Image

The original apical section is an RGB image. However, this is not very friendly to the
subsequent image processing step. To make image processing easier and accelerate the
subsequent CNN training, the first step in lesion enhancement is to convert the image from
an RGB three-channel image to a grayscale single-channel image. This step generates all
the points needed for the subsequent steps described by the x- and y-axes of the grayscale
image and at the same time achieves a more efficient process.

2.2.2. Gaussian High Pass Filter

The biggest challenge in judging symptoms is the noisy points in the image. Therefore,
attribute filters that reduce these noisy points are crucial. In the existing technology, there
are many different filters. How to choose the most suitable filter is the key. Gaussian
filters are used in two different ways. The Gaussian low-pass filter on the other hand is
used to reduce certain noise points while the Gaussian high-pass filter is used to enhance
dark areas. For the purpose of preprocessing to make possible apical lesions as evident as
possible, the Gaussian high-pass filter is clearly the most suitable filter. This filter is able to
pass high-frequency pixels and block low-frequency terms. Marginal and possibly apical
lesion areas belong to high frequencies in the frequency domain. Hence, these pixels will
remain in the resulting image as shown in Figure 5. The Gaussian high-pass filter [25] can
be represented by Equation (1).

Figure 5. The results of the Gaussian high-pass filter. (a) original apical lesion image, (b) image after
Gaussian filtering.

H(u, v) = 1 − e−D2(u,v)/2D2
0 (1)

Although the image lesions after applying Gaussian high-pass filtering are obvious, the
results are not as expected after model training. Therefore, other methods must be explored
to enhance the lesions. In [23], in order to obtain better edges, the image preprocessing
is performed by taking the grayscale image array minus the Gaussian high-pass filtered
films array. The reason is that the filtered image will preserve the noisy areas and the result
may not be significantly different from the input image. Therefore, by subtracting the
filtered film from the input array, a clear tooth outline image can be obtained. Based on the
above method, this study attempts to improve it by adding a film array to the grayscale
image array after passing through a Gaussian high-pass filter to increase the likelihood of
the lesion area. After applying a Gaussian high-pass filter, the filtered image retains the
high-frequency pixels thus including the noise points, edges and possible lesion pixels.
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After superimposing this filtered image, the contrast between the light and dark areas of
the grayscale original image and the filtered image becomes evident as shown in Figure 6.

Figure 6. The image after adding the result of the Gaussian high-pass filter. (a) before, (b) after.

2.2.3. Lesion Heightened

The last step of feature enhancement is to adjust the color of the suspected lesion area
where the color of the root tip is darkened. The biggest challenge for this step is how to lock
the dark area of the suspected lesion. The filtered film makes it easier to find dark areas
than the original image because bright areas have much larger pixel values than dark areas.
However, directly using the threshold to adjust the whole block will cause other non-lesion
areas in the image to be adjusted at the same time. Hence, this proposal calculates the pixel
average and selects the threshold range. It can be simply reserved for possible lesions and
excluded for bright areas as shown in Figure 7a. Moreover, this research used the method
of calculating the pixel value difference between each pixel and its upper and lower pixels
to ensure that possible lesion areas were determined. If the pixel value difference between
the pixel and the pixel above or below is higher than the standard pixel value, it means
that the pixel may be a point in the lesion area or just a noise point. At this time, a standard
pixel value is selected. Figure 7b shows the experimental results. After using the above
method of calculating the mean and calculating the difference in pixels, an AND operator
is performed on the processed film to keep the points where the result is true after the
AND operator. MATLAB programming provides a function to find several large regions
in an image which this project uses to get the three regions that are larger than the others.
Figure 7c presents the superimposed image. Finally, comparing these regions with their
position in the film and their distance from the center pixel of the film, the regions that
meet the above conditions will be changed into a green color and overlap with the original
image. The final result is shown in Figure 7d.
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Figure 7. The image in different computing methods. (a) computed average image, (b) calculated
pixel value difference for every pixel to the upper pixels and to the lower pixels, (c) superimposed
image after going through the previous methods, (d) the final preprocessed image.

2.3. Image Identification

In order to obtain a more scientific and reliable experimental model, the project first
divides the original tooth images into a training set and a validation set according to the
ratio of 4:1, as shown in Table 1. According to the transfer learning theory, the separated
tooth images are cut and preprocessed according to symptoms and are then classified into
the database. After that, the number of diseased teeth in the training set was expanded
using horizontal and vertical mirror flips to increase the number of datasets and make
it consistent with the number of normal teeth in the training set as listed in Table 2. The
expanded dataset is only used to train various classification network models of CNN. It
would not be used in the validation set data.

Table 1. Data Classification of the periapical image after preprocessing.

The Number of Periapical Images after Classification

Training Set Validation Set Total

Normal 332 83 415
Lesion 330 (Expanded) 15 345
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Table 2. Data distribution of the original periapical image from clinical.

The Number of Original Periapical Images

Normal Lesion Total

Quantity 415 75 490

2.3.1. CNN Model

In terms of deep learning, this proposal uses the tools in Matlab that support transfer
learning for software development. The software environments and the hardware environ-
ments used in the proposal are listed in Table 3. To speed up the training efficiency of the
CNN model, this study uses AMD R7-5800H CPU, Nvidia GeForce RTX 3070 GPU and
DDR4 3200 16GB DRAM in terms of hardware performance. The architecture of each layer
of the model takes AlexNet as the example of this research, as shown in Table 4. In the
input stage of the model, the real training set and test set are put into the ratio of 4:1. The
CNN model is trained through the classified dataset. Then, the purpose of adding a test set
is to check whether the training effect deviates from the subsequent validation accuracy,
thus making the experimental results more rigorous.

Table 3. The hardware and software platform.

Hardware Platform Version

CPU AMD R7-5800H
GPU GeForce RTX 3070

DRAM DDR4 3200 16GB
Software platform Version

MATLAB R2021a
Deep Network designer 14.2

Table 4. The input and output of AlexNet model.

Type Activations

1 Image Input 227 × 227 × 3

2 Convolution 55 × 55 × 96

3 ReLU 55 × 55 × 96

4 Cross Channel Normalization 50 × 55 × 96

5 Max pooling 27 × 27 × 96

6 Grouped Convolution 27 × 27 × 256

7 ReLU 27 × 27 × 256

8 Cross Channel Normalization 27 × 27 × 256

9 Max pooling 13 × 13 × 256

10 Convolution 13 × 13 × 384

11 ReLU 13 × 13 × 384

12 Grouped Convolution 13 × 13 × 384

13 ReLU 13 × 13 × 384

14 Grouped Convolution 13 × 13 × 256

15 ReLU 13 × 13 × 256
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Table 4. Cont.

Type Activations

16 Max pooling 6 × 6 × 256

17 Fully-Connected 1 × 1 × 4096

18 ReLU 1 × 1 × 4096

19 Dropout 1 × 1 × 4096

20 Fully-Connected 1 × 1 × 4096

21 ReLU 1 × 1 × 4096

22 Dropout 1 × 1 × 4096

23 Fully-Connected 1 × 1 × 2

24 Softmax 1 × 1 × 2

25 Classification Output 1 × 1 × 2

After deep learning, images from the validation set are randomly imported into the
model. The model classifies the images according to the feature results obtained from the
previous training and creates a confusion matrix by calculation to get the classification
results and the accuracy of the model.

2.3.2. Adjust Hyperparameter

In the training phase, the setting of hyperparameters determines the success of the
model. Each parameter represents a different meaning such as the number of layers of the
neural network, the loss function, the size of the convolution kernel and the learning rate.
This study describes the three modified parameters, including Initial Learning Rate, Max
Epoch and Mini Batch Size. In addition, the detailed information of each parameter is listed
in Table 5.

Table 5. Hyperparameters in CNN model.

Hyperparameters Value

Initial Learning Rate 0.0001
Max Epoch 50

Mini Batch Size 64
Validation Frequency 10
Learning Drop Period 3

Learning Rate Drop Factor 0.02

A. Initial Learning Rate

In machine deep learning, the learning rate is a tuning parameter in the optimization
algorithm. This means that the model needs an appropriate parameter which is the learning
rate to get the best point of convergence. If the model has difficulty converging, it is most
likely caused by the use of a too large learning rate. On the contrary, the convergence rate is
too slow, which makes the model easy to overfit. Therefore, it is very important to choose
an appropriate learning rate. After multiple tests on tooth images, the ideal learning rate
is 0.0001.

B. Max Epoch

When an integrated database has passed through the CNN and has returned once,
the whole process is referred to as an Epoch. However, if the Epoch is too large, it needs
to be broken up into smaller pieces. With the increase of Epoch, the number of weight
updates in the neural networks is also increased. The curve changed from under-fitting
to over-fitting in the process of training. In general, if a CNN model has an appropriate
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increase in Epoch, it will lead to a better accuracy and in turn will also add training time.
After repeated testing, choosing 50 as the Epoch value in each CNN model was determined
by the control variable method.

C. Mini Batch Size

Mini Batch Size is a subset of the training set. Usually, the weights are updated and the
gradient which is from the loss function is evaluated. In general, it affects the convergence
of the optimization algorithm and how much memory is used in the calculation. Within a
reasonable range, when the Batch Size is larger, the descending direction is more accurate
and the oscillation is smaller. However, if it exceeds this range, the Batch Size is too large
and local optimization or memory overflow may occur. Mini Batch Size introduces larger
randomness making it difficult to achieve convergence. In this research, adjusting the
approximate Mini Batch Size value to 64 can produce an ideal training result.

3. Results

This chapter presents the performance results of the proposed CNN model algorithm
and compares it with the methods proposed in [20,23]. The proposed method for advanced
symptom enhancement is also analyzed. The comparison of the image processing effect of
the dataset with the results of the three CNN networks is presented for further discussion
of the results.

One significant goal of this research is to enable the system to be employed in thera-
peutic settings. Figure 8 depicts the most common clinical workflow nowadays. Manual
identification by doctors and the establishment of cumbersome medical records is a time-
consuming process. The purpose of the system in this proposal is to obtain objective data
for physicians prior to diagnosis and therapy after the patient takes the PA film, as shown
in Figure 9.

Figure 8. The original flow chart of clinical medicine.

Figure 9. The flow chart of using this system.

In terms of model accuracy, this study uses the network input validation set for
evaluation. The predictions obtained from the monitoring model are compared with the
correct answers from the images to obtain the accuracy of the CNN. Table 6 presents
the detailed training process of AlexNet and this is illustrated in Figures 10 and 11. The
confusion matrix and truth table according to the network model are shown in Table 7.
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Table 6. AlexNet training process.

Epoch Iteration
Time

Elapsed
Mini-Batch
Accuracy

Validation
Accuracy

Mini-Batch
Loss

Validation
Loss

1 1 00:00:02 48.44% 53.03% 1.4716 0.7940

5 40 00:00:15 70.31% 81.82% 0.5114 0.4379

10 80 00:00:27 90.62% 85.61% 0.2726 0.3277

15 120 00:00:39 90.62% 88.64% 0.2668 0.2648

20 160 00:00:42 89.06% 90.91% 0.2776 0.2422

25 200 00:01:03 87.50% 91.67% 0.3722 0.2230

30 240 00:01:16 90.62% 93.94% 0.1955 0.1787

35 280 00:01:28 95.31% 95.31% 0.1313 0.1883

40 320 00:01:41 90.62% 95.45% 0.2768 0.1585

45 360 00:01:53 96.88% 95.45% 0.0896 0.1424

50 400 00:02:05 93.72% 96.21% 0.1520 0.1201

Figure 10. The accuracy of Alexnet model in test set which is black line and training set which is blue
line during training process.

Figure 11. The accuracy of Alexnet model in test set (black line) and training set (orange line) during
loss training process.
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Table 7. The confusion matrix of AlexNet training result.

Target Class

Category Name Lesion Normal Subtotal

Output Class
Lesion 49.2% 3.0% 94.2%

Normal 0.8% 47.0% 98.4%
subtotal 98.5% 93.9% 96.2%

Figure 12 shows the training process of this paper using the symptom enhancement
technique at different stages. From the results, it can be seen that when the number of
iterations increases, the three curves representing different preprocessing methods all show
an upward trend in accuracy. The blue line is using the Gaussian high-pass filter and dis-
coloration at the suspected lesion, the gray line is only discoloring the lesion without using
the filter, and the orange line is the no enhancement technique. The experimental results
show that although all three curves show an upward trend, the results of the enhanced
two curves, the blue line and the gray line, are significantly higher than the unprocessed
curves. This means that preprocessing has a significant impact on the verification accuracy.
In addition, the model accuracy of the technique combining the Gaussian high-pass filter
with discoloration at the lesion is about 1% and 5% higher than the other two methods.
These results show that the method proposed in this paper can improve the final accuracy
of the model.

Figure 12. Comparison of the accuracy of AlexNet’s training process for the unprocessed image,
applied Gaussian high pass filter and without filter.

The technology proposed in this study is applied to clinical image judgment. Figure 13
shows the image used as the target image for clinical image judgment of symptoms.
Figure 13 shows the two tooth X-rays in the red frame. The left side is the normal healthy
tooth while the one on the right side is the apical diseased tooth. After implementing this
technology, the classification accuracy results obtained according to the model are listed in
Table 8. The accuracy of the image classification results after enhancement in this work is
higher than that before disease enhancement. In clinical medicine, excellent medical quality
requires high-precision judgment. The image recognition ability of CNN is exceptional.
The results show that the recognition using the proposed method in this study are all
above 90%.
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Figure 13. The example for validation with cropping image.

Table 8. Comparison of the clinical data and the resulting image.

Tooth Position in Figure 13 Left Right

Clinical Data Normal Lesion

This Work Before Enhancement 90.91% Normal 94.70% Lesion

This Work After Enhancement 93.93% Normal 97.35% Lesion

From the research results listed in Table 9, the diagnostic accuracy of AlexNet for apical
lesions can reach 96.21% which is higher than the other three models in the literature. This
presents a significant improvement of more than 3% compared with 92.91% in [23] which
also uses the same AlexNet architecture. Furthermore, the results of the apical lesion detec-
tion technique proposed in this paper are in stark contrast to the 75.53% accuracy reported
in the tooth identification study in [20]. The research results show that the method proposed
in this work is very effective and successful for apical lesions. Furthermore, it can be shown
that enhancing symptoms through image preprocessing improves classification accuracy.

Table 9. Image recognition accuracy obtained from a different CNN model.

Method in
[20]

Method in
[23]

This Work

AlexNet ResNet101
ResNet

50
Google

Net

Accuracy 75.53% 92.91% 96.21% 94.70% 93.94% 87.88%

4. Discussion

In this proposal, the apical slices of multiple teeth are cut into pictures of a single
tooth before training to improve the accuracy of these models. However, in the process of
image cropping, this study discovered that the cutting accuracy obtained for the image by
adaptive thresholding is higher than the one obtained by simple binary processing which
reduces the possibility that many images contain non-target areas. The improvement of the
cutting accuracy can make the effect of symptom enhancement more and thus improve the
accuracy of the model. In addition, this paper uses a different method in the preprocessing
of image symptoms to increase the dark area of the possible lesion area which actually
helps the model accuracy to increase to more than 96%. Compared to other papers, the
Gaussian high-pass filter is a tool for residual noise area to reduce noise in other projects.
Changing the color of the lesion area is a different approach, and learning the features in the
movie is instinctive and easy in the machine learning step. In addition, this paper proposes
a hypothesis, that is the enhancement of apical lesions. The lesion area was preprocessed
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before importing the images into training. It can be found that the preprocessed images
can further improve the recognition accuracy of CNN which is based on the premise of the
quantity and quality of models and databases. The accuracy of the AlexNet model used in
this research can reach up to 96.21%. Furthermore, the system’s sensitivity and specificity
on clinical apical radiographs were 98.5% and 93.9%, respectively.

5. Conclusions

The main purpose of this study is to achieve automatic and accurate diagnosis of
apical teeth, and to help dentists improve treatment efficiency. The final experimental
results show that the accuracy of AlexNet can reach 96.21% which provides confidence
for this project to expand the research scope, improve the accuracy and realize the clinical
medical application. In the future, the research team has formulated three objectives. Firstly,
the project will continue to explore the possibility of identifying multiple symptoms and
achieving the classification of different symptoms. Secondly, it will try to make the model
more comprehensive and improve its accuracy. Thirdly, it will develop a GUI interface
integrating the functions of picture cutting, disease strengthening and disease detection
which can simplify the operation process and enhance the practicability of the plan at the
same time.
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Abstract: Cervical cancer, a common chronic disease, is one of the most prevalent and curable cancers
among women. Pap smear images are a popular technique for screening cervical cancer. This
study proposes a computer-aided diagnosis for cervical cancer utilizing the novel Cervical Net deep
learning (DL) structures and feature fusion with Shuffle Net structural features. Image acquisition
and enhancement, feature extraction and selection, as well as classification are the main steps in our
cervical cancer screening system. Automated features are extracted using pre-trained convolutional
neural networks (CNN) fused with a novel Cervical Net structure in which 544 resultant features are
obtained. To minimize dimensionality and select the most important features, principal component
analysis (PCA) is used as well as canonical correlation analysis (CCA) to obtain the best discriminant
features for five classes of Pap smear images. Here, five different machine learning (ML) algorithms
are fed into these features. The proposed strategy achieved the best accuracy ever obtained using
a support vector machine (SVM), in which fused features between Cervical Net and Shuffle Net is
99.1% for all classes.

Keywords: pap smear; cervical net; shuffle net; canonical correlation analysis (CCA); support vector
machine (SVM); random forest (RF); k-nearest neighbour (KNN); artificial neural network (ANN)

1. Introduction

According to the World Health Organization (WHO), cervical cancer is the fourth
most common cancer among women globally, with an estimated 604,000 new cases and
342,000 deaths in 2020. About 90% of the new cases and deaths in 2020 occurred in low-
and middle-income countries worldwide [1,2]. Cervical cancer begins with no overt signs
and has a long latent period, making early detection through regular checkups important.
Cancer is a disease in which the body’s cells grow rapidly, generally termed after the
part where it originates, even if it spreads to other parts of the body [3–5]. Cervical
cancer denotes cancer that begins in the cervix [6,7]. In the year 2018, an estimation of
more than 500,000 women worldwide were diagnosed with cervical cancer, resulting in
approximately more than 300,000 women dying due to cancer. Infection with high-risk
human papillomaviruses (HPV), an immensely prevalent virus spread via sexual contact,
is associated with almost all cervical cancer cases (99%). Therefore, cervical cancer may
be prevented via screening tests and getting a vaccine that defends against HPV infection.
In addition, cervical cancer is usually detected with a Pap smear test. It is a painless, fast
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screening test for precancer or cancer of the uterine cervix. Moreover, the regular Pap test
system lowers the cervical cancer incidence rate [8–11].

Cervical cancer is a fatal condition of which individuals who possess a low level of
awareness. Thus, although it is a life-threatening condition, early diagnosis and treatment
may assist in its prevention [12]. Nevertheless, most nations lack efficient screening tech-
niques to encounter this kind of cancer. Hence, in this study we provide a comparison of
performance indicators. For example, in terms of accuracy, several machine learning (ML)
and deep learning (DL) models for cancerous and normal cervical cells were categorised,
including their subtypes. The following literature reviews are related to prior studies on
classifying cervical cancer cells.

2. Review of Study

In 2015, Mbaga et al. [13] explained cervical cancer detection classification utilising a
support vector machine (SVM) classifier gaining around 92.961% accuracy. Furthermore,
Win et al. [14] suggested a technique for computer-assisted screening of Pap smear images
utilising digital image processing. They utilised texture, shape, and colour features to
classify Pap smear images with an accuracy of 94.09%. An investigation by Plissiti et al. [15]
found a new method for cervical cancer detection using handcrafted cell features and
deep learning (DL) features utilising multi-layer perceptron (MLP) and an SVM classifier,
which resulted in the best accuracy obtained, 95.35%. On the other hand, Basak et al. [16]
found that a fully automated framework that employs feature selection and DL utilising
evolutionary optimisation for cytology image classification obtains an accuracy of 97.87%.
With the same objective of recognising cervical cancer’s indications utilising cervicography
images, Park et al. [17] examined the performance of two distinct models, DL and ML.
Applying the ResNet-50 DL, Random Forest (RF), XGboot (XGB), and SVM and ML models,
4119 cervicography images were identified as negative or positive for cervical cancer
by employing square images by omitting the vaginal wall areas. Note that the ResNet-
50 model outperformed the average (0.82) of the three ML techniques by 0.15 points
(p < 0.05). Since this process necessitates segmentation and the acquisition of handcrafted
characteristics, a mix of ML and DL techniques is the most efficient. Furthermore, the
findings of Tripathi et al. [18] are congruent with the findings of this research. They
demonstrated DL classification methods utilising the SIPaKMeD Pap smear image dataset
to provide a foundation for new classification strategies. The ResNet-152 architecture
achieved the greatest classification accuracy of 94.89% utilising this technique.

Alternatively, Al Mubarak et al. [19] used a hybrid, fusion-based, localised imag-
ing and DL technique to categorise squamous epithelium into cervical intraepithelial
neoplasia (CIN) grades, utilising a dataset of 83 digitised histology images. For each
segment, 27 handmade image features and a rectangular patch comprising sliding window-
based convolutional neural network (CNN) features were computed after partitioning
the epithelium region into ten vertical segments. Meanwhile, the DL and imaging patch
characteristics are merged and utilised as inputs to a secondary classifier for the individual
segment and total epithelium classification. With an accuracy of 80.72% in terms of the
whole epithelium CIN classification, the hybrid technique outperformed the imaging and
DL techniques alone by 15.51% and 11.66%, respectively. On the other hand, Alyafeai and
Ghouti [20] discovered variances, proposing that the suggested pipeline comprises two
pre-trained DL models for cervix identification and cervical tumour categorisation. The
first model discovers the cervix region 1000 times quicker compared to current data-driven
algorithms, with a detection accuracy of 0.68 with respect to the intersection of the union
(IoU) scale. The second model utilises self-extracted characteristics to categorise cervi-
cal cancers. Here, two lightweight models relying on CNN are employed to learn these
characteristics. Moreover, the suggested DL classifier outshines prior models in terms of
speed and classification accuracy. The area under the curve (AUC) score of our classifier is
0.82, classifying every cervical region 20 times more quickly. In the most recent published
research, Alquran et al. [21] proposed an automated system to classify cervical cancer into
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seven classes on the Harvel dataset. Their approach exploited the benefits of DL with a
model of a cascading SVM classifier to achieve the highest accuracy among all previous
studies working on a similar dataset, namely, up to 92% for seven classes. Moreover, their
method is fast because the image preprocessing step is skipped.

Missed diagnoses and misdiagnoses often occur due to the high similarity in pathologi-
cal cervical images, the large number of readings, the long reading time, and the insufficient
experience levels of pathologists. In addition, existing models have insufficient feature
extraction and representation capabilities, and they suffer from insufficient pathological
classification. In 2021, Park et al. [17] mentioned the significant differences between two
different models, ML and DL, in identifying signs of cervical cancer using cervicography
images. They concluded that the ResNet-50 DL algorithm could perform better than current
ML models in identifying cervical cancer using cervicography images. This is supported by
Dhawan et al.’s [22] study, which reveals improved techniques for cervical cancer predictive
models based on DL and transfer learning techniques. They classify the cervix images
into three classes (Type1/Type2/Type3) by creating a Con-vet structure from combinations
between pretrained models (InceptionV3, ResNet-50, and VGG19) were used to create
ConvNet that can classify the cervix images. The result of the experiment revealed that the
InceptionV3 model performs better than VGG19 and ResNet-50, with an accuracy of 96.1%
on the cervical cancer dataset.

In another study, Huang et al. [23] suggest extracting deep convolutional features
by fine-tuning pre-trained deep network models, including ResNet-50V2, DenseNet-121,
InceptionV3, VGG19 Net, and Inception ResNet, and then local binary patterns and a
histogram of the oriented gradient are used to extract traditional image features. The serial
fusion effect of the deep features extracted by ResNet-50V2 and DenseNet-121 (C5) is the
best, with the average classification accuracy reaching 95.33%, which is 1.07% higher than
ResNet-50V2 and 1.05% higher than DenseNet-121. Furthermore, the recognition ability
is significantly improved to 90.89%, which is 2.88% higher than ResNet-50V2 and 2.1%
higher than DenseNet-121. Thus, this method significantly improves the accuracy and
generalisation ability of pathological cervical whole slice image (WSI) recognition by fusing
deep features [23]. Mulmule and Kanphade [24] proposed method that employs adaptive
fuzzy k-means clustering to separate cell from the unwanted background of the pathological
Pap smear image. The 40 features are extracted from the segmented images based on the
shape, size, intensity, orientation, colour, energy, and entropy of the nucleus and cytoplasm
individually. Finally, the performance of the supervised classification approach utilising an
MLP with three kernels and an SVM with five different kernels as the classifiers to predict
the cancerous cells is on par with the existing techniques. The classifier is trained and tested
on a benchmark database with 280 Pap smear images. Furthermore, the performance of
these two classifiers are evaluated and it is found that the MLP classifier with hyperbolic
tangent activation function outperforms the SVM classifier in all the performance criteria,
with a classification accuracy of 97.14%, sensitivity of 98%, specificity of 95%, and positive
predictive value (PPV) of 98% [24].

A particular image can be used by computer-aided diagnosis (CAD) systems that
are trained using artificial intelligence (AI) algorithms to predict the possibility of cervi-
cal cancer, which has been highlighted in several cervical cancer studies. For example,
Nikookar et al. [25] found that a cervical cancer predictor model, which incorporates the
result of different classification algorithms and ensemble classifiers, is more effective for
cervical cancer stages. They investigated different aggregation strategies to find the best
formula for the aggregation function. They then evaluated our method using the quality
assessment of the digital colposcopies dataset. Our approach, performing with 96% sen-
sitivity and 94% specificity values, yields a significant improvement in the field. It can
now be used in a supporting clinical decision-making strategy by providing more reliable
information to the clinical decision makers. With the same objective, Yaman and Tuncer [26]
performed a comprehensive review to classify cervical cells in Pap smear images based on
two datasets, SIPaKMeD and Mendeley Liquid Based Cytology (LBC). The 1000 features
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selected by neighbourhood component analysis (NCA) were classified with the SVM algo-
rithm. Both five-fold cross-validation and hold-out validation (80:20) have been utilised as
validation techniques. The best accuracies for the SIPaKMeD and Mendeley LBC datasets
have been computed as 98.26% and 99.47%, respectively. The obtained results illustrate
that the proposed exemplar pyramid model successfully diagnoses cervical cancer using
Pap smear images [26].

According to literature reviews, cancer detection in the early stages is crucial for the
treatment process. Therefore, early diagnosis/detection is essential for the treatment of
cervical cancer. Note that the gold standard for diagnosing cervical cancer is the Pap
smear test. In recent years, there has been an increasing interest in artificial intelligence
approaches in medical imaging, such as ML, DL, and CNN [27]. ML is a good solution
to automatically diagnose cervical cancer, and many computer vision/DL-based models
have been presented in the literature. However, the morphological changes and their
entanglement in the structural sections of the cells is one of the constraints. DL and ML
algorithms possess a substantial improvement in the healthcare industry. Furthermore,
advances in deep learning have led to the development of neural network algorithms that
today rival human performance in vision tasks, such as image classification or segmentation.
The translation of these techniques into clinical science has also significantly advanced
medical image analysis [28]. Research has shown that machine learning can improve the
effectiveness of medical image analysis. Algorithms can be developed and trained to
remove image noise, improve quality, and gather image data in greater quantities and
at a faster rate than standard techniques [29]. Moreover, these algorithms enhance the
consistency and accuracy of cancer diagnoses. They also aid medical practitioners in terms
of work complexity, minimising labour time, and prognosis.

This study aimed to build a highly accurate computer-aided diagnosis model for
cervical cancer. We obtained features from pre-trained CNN models utilising Shuffle Net,
applying different classifiers to discriminate the Pap smear images. Subsequently, we
created our DL model called Cervical Net with a simple and light structure, in which its
features are passed to different ML classifiers. The key point of this paper is not only the
novel DL model but the fusion features between the DL descriptors from various structures
to obtain a high level of accuracy. The remainder of this article is structured as follows:
Section 3 is devoted to the materials and methods, Section 4 focuses on the results and
discussion, and the last section concludes.

3. Materials and Methods

The proposed method of cervical cytology is displayed in the system flow diagram in
Figure 1.

3.1. Image Acquisition

For multi-cell classification, SIPaKMeD datasets were utilised for image acquisi-
tion [13]. There were 966 photos in the multi-cell dataset, while 4049 cells were cropped
from these images. Note that cells were separated into three stages: normal, benign, and
abnormal. Dyskeratotic cells, metaplastic cells, parabasal cells, superficial–intermediate
cells, and koilocytotic cells were the five cell types. Table 1 has been created to describe
the specifics of each dataset. Table 1 and Figure 2 represent a Pap smear image from the
SIPaKMeD dataset.
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Figure 1. Design of the proposed method.

Table 1. Specification of five classes of cells obtained from the SIPaKMeD (multi-cell) dataset.

Class Number of Images Number of Cells

Normal Class
1. Superficial–Intermediate Cells 126 831

2. Parabasal Cells 108 787
Benign Cell

3. Metaplastic Cells 271 793
Abnormal Cells

4. Dyskeratotic Cells 223 813
5. Koilocytotic Cells 238 825

Total 966 4049

(a) (b) (c) (d) (e) 

Figure 2. Example images from each class: (a) superficial, (b) parabasal, (c) metaplastic, (d) dyskera-
totic, (e) koilocytotic.

3.2. Image Enhancement

As shown in Figure 3a, most Pap smear images were low-contrast and noisy. As a
result, image processing was required to reduce noise and raise contrast [30]. To eliminate
the noise, a median filter was utilised. The median filter used here is more effective than
convolution filters because it removes the noise while preserving the edges. The kernel
size in this paper was 3 × 3. Figure 3b shows the image after applying a median filter.
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Histogram equalisation and normalisation are some of the most common techniques used
to enhance the contrast of images, which stretches the histogram of the intensity values into
wider ranges. Increasing the contrast leads to extracting more representative features for
each class. Figure 3c shows the image after median filtering and histogram equalisation.

(a) (b) (c) 

Figure 3. Image enhancement: (a) original image, (b) noise removal via the median filter, and
(c) contrast enhancement via histogram equalisation.

3.3. Cervical Net

Cervical Net is a novel DL structure that was designed in this study. Figure 4 shows
the layout of its layers with distinguished group convolutional layers. The structure starts
with an input layer of an image size of 224 × 224 × 3. Consequently, the coloured image
is passed to a convolutional layer with 64 filters, kernel size 7 × 7 and stride 2 × 2. The
output is passed to the rectified linear unit (ReLU) layer, which maps the resultant output
from the convolutional layer into 1 or -1. To downsample the image feature, it is passed
to the average pooling layer with size 3 × 3 and stride 2 × 2. The output is passed to a
two-dimensional (2D) grouped convolutional layer, which separates the input into groups
and then is applied to slide convolutional filters. The convolution is performed vertically
and horizontally, combining the layer of each group independently. In this layer, two
groups are used and 94 filters with size 5 × 5 and padding size 2 × 2 × 2 × 2 for all groups.
Note that the main goal behind grouping convolutional layers is to obtain higher accuracy
than traditional ones. The grouped output is then passed to the ReLU layer and average
pooling layer to downsample it with kernel size 3 × 3 and padding 2 × 2. The output
is passed to the second convolutional neural network (CNN) for extracting more depth
features using 128 filters, kernel size 3 × 3, and padding size 1 × 1 × 1 × 1. Subsequently,
the output is passed to the ReLU layer to map it into 1 or −1. The grouped convolutional
network is applied to the resultant output with two groups of convolutions using 196 filters,
and the kernel size is 3 × 3. The combined output from the depth-wise separable channel
is mapped to -1 and 1 using another ReLU function. For extracting depth features and
obtaining a higher accuracy, another two groups of the convolutional layer are applied
to the mapping output with 128 filters and kernel size 3 × 3. The output is passed to the
ReLU layer. The downsampling is performed on the resultant mapping output using the
global average pooling layer. The fully connected layer is added to the last output with
five neurons compatible with the number of classes, and the softmax layer ends the fully
connected layer. This can be defined by the corresponding equation [31–33].

f(xi) =
exp(xi)

∑j exp
(
xj
) ,

where x refers to the input vector of the layer with size K, denoted by j, in the range of
1 : K. Further, xi indicates the ith individual input. The output of this layer is expressed as
probabilities commonly used in multi-classification tasks. Here, the proposed network is
terminated by the classification layer. The detailed information regarding the proposed
Cervical Net is displayed in Table 2.
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Table 2. Structure summaries of Cervical Net.

Layer Information

Input Layer Size: 224 × 224 × 3

conv1

Number of Filters: 64
Kernel Size: 7 × 7

Stride: 2 × 2
Padding: 0

Activation Layer ReLU

Pooling Layer

Type: Average Pooling
Kernel size: 3 × 3

Stride: 2 × 2
Padding: 0

Grouped Convolutional Layer

Number of Groups: 2
Number of Filters: 94

Kernel Size: 5 × 5
Padding: 2 × 2 × 2 × 2

Activation Layer ReLU

Pooling Layer

Type: Average Pooling
Kernel Size: 3 × 3

Stride: 2 × 2
Padding: 0

Convolutional Layer
Number of Filters: 128

Kernel Size: 3 × 3
Padding: (1 × 1 ×1 × 1)

Activation Layer ReLU

Grouped Convolutional Layer

Number of Groups: 2
Number of Filters: 192

Kernel Size: 3 × 3
Padding: (1 × 1 × 1 × 1)

Activation Layer ReLU

Grouped Convolutional Layer

Number of Groups: 2
Number of Filters: 128

Kernel Size: 3 × 3
Padding: (1 × 1 × 1 × 1)

Activation Layer ReLU
Pooling Layer Type: Global Average Pooling

Fully connected Layer 5 neurons
Softmax Layer

Classification Layer

Figure 4. Cervical Net structure.
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3.4. Pre-Trained Shuffle Net

Convolutional, pooling and fully linked layers are components of traditional CNN
models. The use of large pooling layers and convolution kernels increases the computa-
tional complexity of the model. The model’s size and depth increase to enhance the model’s
accuracy [34]. Because of the limited performance of some specific applications, the model
demands a small size and high accuracy.

Shuffle Net V2 tackles the aforementioned issues without resorting to large pooling
layers or convolution kernels. A depth-wise convolution and a 1 × 1 tiny convolution kernel
replace the traditional convolutional layer. Since one convolution kernel is accountable
for one input channel with a depth-wise convolution kernel size of 3 × 3, the number of
convolution kernels is the same as the number of input channels. To combine characteristics
of the depth-wise convolution output, a 1 × 1 convolution is utilised. This increases the
network’s expressiveness and nonlinearity without increasing the size of the output feature
graph. Furthermore, Shuffle Net downsamples the feature via modifying the depth-wise
convolution step instead of utilising the traditional pooling layer [34]. Figure 5 describes
the structure of the Shuffle Net basic unit.

Figure 5. Shuffle Net basic unit [28].

After the convolutional layer, a new layer known as a pooling layer is added. Specifi-
cally, after a nonlinearity is employed for the feature map output via a convolutional layer,
the pooling layer functions on each feature map independently to construct a new set of
pooled feature maps with the same number of characteristics. Moreover, global pooling [35]
is another type that occasionally utilises downsamples of the entire feature map to a single
value rather than downsampling sections of the input feature map. In our study, we extract
features from global pooling and employ them in the classification task.
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3.5. Deep Features Extraction

Traditional machine learning (ML) algorithms for handcrafted or manual feature ex-
traction have limitations in terms of the correlations and their feature number. With the
introduction of artificial intelligence (AI) and deep learning (DL) in the domains of health-
care and the medical sciences, it has become rather common to rely on the findings projected
via this decision support system to prevent issues of observer bias. Backpropagation is
utilised in DL models to determine the key features, which removes the time-consuming
procedure of employing handmade features [36,37].

We utilised both our own structure—Cervical Net—and the pre-trained model to alter
the CNN by employing our data, allowing each image to propagate across the layers in a
forwarding manner, finishing at the pre-final layer and extracting the output of this layer
as the feature vector. Because biological data are inadequate and sparse for DL models
to perform effectively if trained from the beginning, we employed pre-learned weights
(transfer learning) in this research. For the present study, we have used Cervical Net and
Shuffle Net for feature extraction from the model’s global average pooling layer.

3.6. Feature Selection

The major goal of utilising a feature selection approach was to determine the crucial
features while improving the classifier’s accuracy. Note that the feature selection technique
may help ML algorithms train faster by reducing the complexity of the classification
model [14]. There are plenty of feature selection algorithms to choose from, and principal
component analysis (PCA) is one of them. It is known as a linear dimensionality reduction
technique that maximises the variance of the lower dimension into higher dimensional
data [16]. PCA is used in this paper to reduce the extracted features of Cervical Net from
1024 to 544 most significant features.

The number of components in the down-selection stage is chosen based on the number
of extracted features from the pre-trained Shuffle Net structure. This procedure is performed
using PCA with 95% variance between the selected components.

3.7. Feature Fusion

Canonical correlation analysis (CCA) is a standard tool in statistical analysis that mea-
sures the linear relationship between two datasets. CCA is an unsupervised representation
learning technique for correlating multi-view data by learning a set of projection matri-
ces. The analysis and methods based on CCA are often used in traditional feature fusion
methods. It only considers the correlated information of the paired data but ignores the
correlated information between the samples in the same class. Furthermore, these methods
generally have great deficiencies in exploring the influence of non-negative constraints,
feature dimensions, sample size, and noise power. Being complementary to CCA, many
discriminant methods have been proposed to extract discriminative features of multi-view
data by introducing the supervised class information. However, the learned projection
matrices in these methods are mathematically constrained to be of equal rank to the class
number and thus cannot represent the original data comprehensively [38]. Canonical
correlation analysis (CCA ) considers intraclass and interclass correlations and solves the
problem of computation and information redundancy with simple series or parallel feature
fusion [39]. Deep CCA based on the encoder–decoder network is designed to extract
cross-modal correlations by maximising the relevance between multimodal data [40]. More-
over, CCA is an important method for multiple feature extraction and fusion in which the
canonical projective vectors in the classical CCA method satisfy conjugated orthogonality
constraints. Class information is useful for CCA, but there is little class information in the
scenarios of real applications.

3.8. Machine Learning Classifiers

DL features extracted from Cervical Net are passed to various ML classifiers to obtain
the best classifier’s accuracy. The same experiment is performed using the pre-trained
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Shuffle Net features. The combined features between the novel Cervical Net and Shuffle
Net are fused using CCA. The resultant fused features are passed to various ML classifiers
to obtain the highest level of accuracy. Subsequently, a comparison is performed between
different classifiers for the same features and methods, such as Cervical Net features, Shuffle
Net features, or using CCA techniques.

3.8.1. Support Vector Machine (SVM)

A support vector machine (SVM) refers to a supervised learning model that appropri-
ately labels distinct classes in a set of training samples. The feature plane plot representation
of the training data in the SVM model denotes a distinction between the prominent in-
stances representing various classes. A curve that fits in the space between two classes and
maintains maximum distances from each class point and SVM can be seen [41,42].

3.8.2. Artificial Neural Networks (ANN)

An artificial neural network (ANN) is a well-known ML technique based on the
biological neural network found in the human brain. For example, feedforward neural
networks are a typical form of ANN. Once the inputs from neurons are processed in
the previous layer, it yields the weight values of each artificial neuron to the proceeding
layer. Note that the backpropagation algorithm is the most extensively utilised multi-layer
perceptron (MLP) training technique. To reduce inaccuracy, the weights between neurons
are altered. Hence, when it comes to learning patterns, this model performs excellently. It
can quickly adjust to new data values, but it might be sluggish to converge and runs the
risk of a local optimum [43,44].

3.8.3. Naive Bayes

The Naive Bayes technique is a basic probability classifier that calculates probabilities
by counting the number of different value and frequency combinations in a dataset. The
technique focuses on Bayes’ theorem and assumes that all variables are unaffected by the
class variable’s value. Since this conditional independence assumption is hardly valid in
real-world applications, it is labelled Naive. Nevertheless, the algorithm learns swiftly in
various controlled classification situations [45].

3.8.4. k-Nearest Neighbour (KNN)

Fix and Hodges invented the supervised k-nearest neighbour (KNN) classification tech-
nique in 1951 [46], which categorises a data point depending on the class of its neighbours.
Moreover, the classification findings are provided depending on the nearest neighbour’s
k-value, which was set to 1. Here, the closest k-samples from the training set are cho-
sen to categorise the new sample depending on its attribute vector. As a result, the new
vector is directed at it via examining the classes into which the candidate’s samples are
categorised [47].

3.8.5. Random Forest (RF)

The random forest (RF) classifier comprises numerous decision trees [48], where every
node in the tree contains a set of training cases and a predictor. At each attribute split,
a random selection of features is chosen depending on the bagging approach. The trees
continue to grow until they attain a certain depth, where a class voting system is established
when a large number of trees have been generated [47].

4. Results and Discussion

The SIPaKMeD (multi-cell) dataset was utilised to test the efficiency of our suggested
method. There was a total of 996 images, with 4049 cells cropped. These cells were
categorised into five classes: class 1, superficial–intermediate cells; class 2, parabasal cells;
class 3, metaplastic cells; class 4, dyskeratotic cells; and class 5, koilocytotic cells. After

302



Bioengineering 2022, 9, 578

processing the images using the convolutional neural network (CNN) architectures, deep
features were extracted from global pooling layers.

4.1. Shuffle Net Features

Utilising the extracted features from the global pooling layer, different classifiers were
used to classify the images into five classes, including support vector machine (SVM),
random forest (RF), k-nearest neighbour (KNN), Naive Bayes, and artificial neural network
(ANN). At the same time, we utilised 70% of the data as training and 30% as testing.
Figure 6 illustrates the confusion matrices result of classifiers, where the test accuracy
reaches 98.9%, 96.5%, 97.3%, 89.7%, and 98.7%, respectively, and the training accuracy
reaches 100% for all the different classifiers.

Figure 6. Confusion matrix with respect to Shuffle Net features for different ML classifiers. (a) SVM,
(b) RF, (c) KNN, (d) Naïve Bays, (e) ANN.
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In Figure 6a, the diagonal represents the correctly classified observations, whereas the
off-diagonal cells indicate incorrectly classified observations. Note that the column on the
far right of the plot shows the precision or positive predictive value (PPV). The row at the
bottom of the plot refers to the recall or true positive rate (TPR) or sensitivity. Meanwhile,
the cell in the bottom right of the plot shows the overall accuracy. The overall accuracy here
is 98.9%, and metaplastic benign cells obtain the highest sensitivity and precision of 100%.

The same Shuffle Net features are fed to the RF classifier. The overall accuracy reaches
96.5%, and parabasal malignant cells reach the highest PPV, which is 100%. However,
dyskeratotic normal cells obtain the highest sensitivity, which reaches 97.8%, as shown in
Figure 6b.

The accuracy of the hybrid model between Shuffle Net features and KNN does not
exceed 97.3%. Meanwhile, the highest precision is in parabasal malignant cells, and the
highest recall is in superficial malignant cells, which is represented in Figure 6c.

Naive Bayes is exploited to classify five cells whose highest accuracy does not exceed
89.7%, and the best sensitivity is obtained by metaplastic benign cells, reaching 95.2%. The
parabasal PPV is 99.5%. This is clearly shown in Figure 6d.

An ANN was used in this study and was fed with Shuffle Net features to obtain the
second highest accuracy, reaching 98.7%. Dyskeratotic cells have the highest sensitivity,
and parabasal cells the highest precision. This is shown in Figure 6e.

Previous confusion matrices have shown that the SVM has the highest accuracy for
all five classes. Other than that, numerous cervical cell classification models have been
developed in the literature using the same datasets. However, this study differs from
previous ones in that it focuses on handcrafted features, such as shape, texture, and colour,
to classify Pap smear images into five classes.

4.2. Novel Cervical Net Features

The proposed network was utilised to extract features from the global average pooling
layer, in which the number of extracted features was 1024 graphical features. These features
were fed to various machine learning (ML) classifier models to obtain the best model using
the novel features. Furthermore, the time taken to extract the features for all test images
did not exceed 60 s. The corresponding confusion matrices clarify the test phase for each
classifier using novel Cervical Net features.

An SVM was fed with 1024 features to discriminate between various classes. The
overall accuracy reached 96%, with higher sensitivity for parabasal normal cells and high
precision for parabasal malignant cells. The lowest sensitivity is appeared in malignant
cells, namely, dyskeratotic and koilocytotic malignant cells, and it is found in the cells that
are very similar in shape and colour, as well. Moreover, the same features were used to
design an RF classifier, and the results are clearly shown in Figure 7a. The overall accuracy
for the whole system does not exceed 94.2%. The sensitivity of the malignant cells is the
lowest in the case of the SVM and the highest in normal cells. Therefore, investigating other
methods to enhance the classification process is necessary to discriminate between various
classes, either normal or abnormal.

The KNN classifier was utilised in this study for testing its performance in distinguish-
ing between five classes using the extracted features from Cervical Net. Figure 7b shows
that the overall test accuracy is 93.7%. The highest sensitivity was obtained by superficial
normal classes. On the other hand, the lowest sensitivity appears in the koilocytotic abnor-
mal class. The highest precision appears in the parabasal normal class, and the lowest PPV
is in the koilocytotic abnormal cell. As shown in the KNN confusion matrix, the koilocytotic
cell has the lowest TPR and precision.
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Figure 7. Confusion matrix with respect to Cervical Net features for different ML classifiers. (a) SVM,
(b) RF, (c) KNN, (d) Naïve Bays, (e) ANN.
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In Figure 7, the green color indicates to the correctly classified cells. Furthermore, the
red color represents the misclassified cases.

The lowest accuracy and sensitivity, and even precision, are obtained using the Naive
Bayes classifier, in which the accuracy does not exceed 85%. The sensitivity is poor in all
classes, as well as the precision. Figure 7c clarifies the confusion matrix generated using
test features with the lowest sensitivity appearing among malignant cells. On top of that,
the precision of malignant cells is also low.

An ANN was used in this paper to evaluate the efficiency of the extracted features
from the global average pooling from Cervical Net for classifying the five classes. The
highest accuracy obtained here does not exceed 90.4% for all classes. Figure 7d describes
the test confusion matrix, showing that the two abnormal classes have the lowest sensitivity
and PPV.

Utilising the extracted features from Cervical Net shows that the SVM has the highest
accuracy for all five classes and behaves the best among all classifiers.

4.3. Feature Fusion (CCA)

Feature fusion is a technique used for combining features from various structures,
which strengthens the capability of the designed classifier to discriminate between different
classes. The extracted features from the global average pooling layer are reduced to
544 features using the principal component analysis (PCA) algorithm to find the most
significant features and then combine the resultant descriptors with the graphical features
extracted from the global average pooling layer in Shuffle Net. Note that the total number
of features after fusion is 544. These features are used to design different ML classifiers.
Figure 8 illustrate the confusion matrices for the most known classifiers (SVM, RF, KNN,
NB, ANN). Figure 8a shows the maximum accuracy obtained using the SVM’s fusion
features, 99.1%. The sensitivity for all classes is elevated to almost 100% for all classes,
which helps clinicians in diagnosing even abnormal classes.

The same features are used to design the RF classifier, and the overall accuracy is
94.7%. The achieved accuracy is higher using the fusion features than the DL descriptors
alone. Figure 8b shows that the sensitivity and precision for abnormal classes are enhanced.

The maximum accuracy obtained using fusion features and the KNN classifier is
91.1%, as shown in Figure 8c. Nevertheless, the sensitivity in the normal superficial class is
the lowest among all cell types, and abnormal koilocytotic cells have the lowest precision
among all classes.

The same procedure is applied to design the Naive Bayes classifier, and the overall
accuracy for the test phase is 93.3%. Although the accuracy is not high, it is better than using
DL features solely. Figure 8d shows that the highest recall appears in metaplastic benign
cells, which reaches 95.5%, and the highest PPV value appears in koilocytotic abnormal
cells. However, the TPR for all abnormal and normal classes exceeds 90%, and the precision
is also higher for abnormal and normal classes.

An ANN classifier was designed with the proposed fusion features, and the accuracy
was enhanced to 94.9%, with the best precision obtained is in parabasal normal cells almost
100%. The sensitivity is the best for normal classes discrimination. Note that the sensitivity
for all classes exceeds 90%, as shown in Figure 8e.

Figure 9 illustrates the accuracies of all the ML classifiers using various scenarios (Shuf-
fle Net features only, novel Cervical Net features only, and the feature fusion from Shuffle
Net and Cervical Net). The highest accuracy is obtained by the SVM with feature fusion.
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Figure 8. Confusion matrix with respect to CCA features for different ML classifiers. (a) SVM, (b) RF,
(c) KNN, (d) Naïve Bays, (e) ANN.
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Figure 9. Comparison between various scenarios.

When the proposed method is compared with all previous studies, the obtained results
are significant because 99.1% is the highest accuracy achieved using the same dataset. This
accuracy was obtained using the CCA method with an SVM classifier. Even though the
literature has focused on traditional methods, this study proposed a new structure and
utilised the existing method to enhance the resultant accuracy, sensitivity, and precision
for all classes. Moreover, the proposed method is fast and accurate. The time needed
for testing one new image does not exceed milliseconds, which is acceptable in medical
applications, and the proposed structure is simple, unique, and accurate. Table 3 and
Figure 10 summarise the results for all the methods.

Table 3. The results obtained for all proposed methods.

Shuffle Net Cervical Net Feature Fusion (CCA)

SVM 98.90% 96.00% 99.10%
RF 96.70% 94.20% 94.70%

KNN 97.40% 93.70% 91.10%
Naïve Bayes 90.20% 84.30% 93.30%

ANN 98.60% 90.40% 94.90%

 

Figure 10. The proposed method with the highest accuracy that has been obtained.
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This method is now compared with previous studies. The proposed method is distin-
guished from literature due to its simplicity beside to exploiting new features to obtain the
highest accuracy for the SIPaKMeD dataset for five classes. Table 4 summarises the results
of all previous studies.

Table 4. Comparison of the proposed method with previous studies.

Study Method Dataset Classes Accuracy

Mbaga et al. [11] SVM Herlev dataset 7 classes 92.96%

Win et al. [12] SVM, KNN, boosted trees, bagged
trees, and major voting SIPaKMeD dataset 2 classes

5 classes
98.27%
94.09%

Plissiti et al. [13] MLP and SVM SIPaKMeD dataset 5 classes 95.35%
Basak et al. [14] feature selection and DL SIPaKMeD dataset 5 classes 97.87%
Park et al. [15] ResNet-50 and SVM Cervicography images 2 classes 82.00%

Tripathi et al. [16] ResNet-152 SIPaKMeD dataset 5 classes 94.89%
Al Mubarak et al. [17] Fusion based and CNN 4 classes 80.72%

Alquran et al. [19] DL and cascading SVM Herlev dataset 7 classes Up to 92%
Dhawan et al. [20] InceptionV3 Kaggle dataset 3 classes 96.10%
Huang et al. [21] ResNet-50V2 and DenseNet-121 Tissue biopsy image dataset 4 classes 95.33%

Mulmule and
Kanphade [22] MLP with three kernels and SVM Benchmark database 97.14%

Nikookar et al. [23] Artificial intelligence Digital colposcopy dataset 2 classes
96% for sensitivity

and 94%
for specificity

Yaman and
155 Tuncer [24] SVM SIPaKMeD

Mendeley 2 classes 98.26%
99.47%

This study
Cervical Net and feature fusion

with ML classifiers
SIPaKMeD 5 classes 99.1%

The highest accuracy obtained for the same dataset is given in [14]. Nevertheless, this
study achieved the highest accuracy in the literature and proposed a novel DL structure that
can extract a new feature. Feature engineering is employed here to find the most significant
features and combine them with existing features from the pre-trained DL structure.

5. Conclusions

Cervical cancer is the second most frequent cancer among women globally, with a
60% mortality rate. Cervical cancer has no outward symptoms and a long latent period.
Therefore, early identification via frequent examinations is critical to counter the high death
rate and necessitates using automation in cervical cancer detection. This paper proposed an
automated system for cervical cancer using a novel deep learning (DL) structure to extract
the features and find the most significant ones. Subsequently, it fused these features with
existing pre-trained structures’ graphical descriptors. We suggested a system comprising six
steps: image acquisition, image enhancement, feature extraction, feature selection, feature
fusion, and classification. This system reached the highest accuracy for five classes at
99.1% in the support vector machine (SVM) classifier after selecting the 544 most significant
features from the novel Cervical Net and combining them with 544 from Shuffle Net.
The key benefit of our technique is its improved prediction performance in separating
classes of Pap smear images and showing better classification accuracy. Furthermore, the
obtained result is the best among all previous studies, with the largest dataset for single
cells. To summarise, a novel DL structure with modifications to the extracted features can
outperform existing machine learning (ML) models when detecting cervical cancer from
cervicography images.

The presented study can be applied in medical fields because it is built based on a
huge dataset, making the results more reliable and confidential. Furthermore, this method
combines deep learning features and machine learning classifiers, making it easy, fast,
and reliable.
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Abstract: Nuclei identification is a fundamental task in many areas of biomedical image analysis
related to computational pathology applications. Nowadays, deep learning is the primary approach
by which to segment the nuclei, but accuracy is closely linked to the amount of histological ground
truth data for training. In addition, it is known that most of the hematoxylin and eosin (H&E)-
stained microscopy nuclei images contain complex and irregular visual characteristics. Moreover,
conventional semantic segmentation architectures grounded on convolutional neural networks
(CNNs) are unable to recognize distinct overlapping and clustered nuclei. To overcome these
problems, we present an innovative method based on gradient-weighted class activation mapping
(Grad-CAM) saliency maps for image segmentation. The proposed solution is comprised of two steps.
The first is the semantic segmentation obtained by the use of a CNN; then, the detection step is based
on the calculation of local maxima of the Grad-CAM analysis evaluated on the nucleus class, allowing
us to determine the positions of the nuclei centroids. This approach, which we denote as NDG-CAM,
has performance in line with state-of-the-art methods, especially in isolating the different nuclei
instances, and can be generalized for different organs and tissues. Experimental results demonstrated
a precision of 0.833, recall of 0.815 and a Dice coefficient of 0.824 on the publicly available validation
set. When used in combined mode with instance segmentation architectures such as Mask R-CNN,
the method manages to surpass state-of-the-art approaches, with precision of 0.838, recall of 0.934
and a Dice coefficient of 0.884. Furthermore, performance on the external, locally collected validation
set, with a Dice coefficient of 0.914 for the combined model, shows the generalization capability of
the implemented pipeline, which has the ability to detect nuclei not only related to tumor or normal
epithelium but also to other cytotypes.

Keywords: nuclei segmentation; histopathology; deep learning; Grad-CAM; semantic segmentation;
instance segmentation; nuclei detection

1. Introduction

In the healthcare scenario, artificial intelligence is exploited in medical imaging as a
powerful tool with which to characterize objects of interest and lesions in anatomical regions
under consideration. Traditionally, pathologists manually analyze numerous biopsies or
tissue samples to diagnose complex pathologies, such as cancer. Even though it is tedious
and time-consuming, this approach remains the gold standard [1,2].
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Computational pathology attempts to overcome the main challenges arising from
manual histological image evaluation, such as inter- and intraobserver variability or the
inability to evaluate the smallest visual features and the time required to examine whole
slide images (WSIs) [1,3,4].

The nuclei of cells provide a great deal of information for the analysis of histopatho-
logical tissue. For instance, immunohistochemistry-marked nuclei can be exploited for the
estimation of cellular proliferation in cancer (e.g., Ki-67). Hence, nuclei segmentation is a
fundamental first step toward the automated analysis of WSIs [5]. However, the difficulties
associated with variable coloring arising from hematoxylin and eosin (H&E)-stained im-
ages, overlapped nuclei, the presence of artifacts, and differences in cell morphology and
texture, represent obstacles for computer-based segmentation algorithms [2,3]. Moreover,
WSIs have very high resolutions and contain an enormous number of nuclei, adding pecu-
liarity to the task [6]. A critical aspect in several computational pathology pipelines is to
achieve accurate segmentation of nuclei both for subsequent extraction and classification of
nucleus features, but also for analyzing cellular distribution, useful for classifying tissue
subtypes and identifying abnormalities [3].

Several studies focused on nuclei detection because of its importance in the pathologic
diagnostic pipeline, in particular in the field of oncology. As an example, nuclei detection
could be helpful to distinguish nuclei undergoing changes, indicating a progression of
squamous epithelium cervical intraepithelial neoplasia [7]. Moreover, the estimation of
tumor cellularity is very important, particularly in the era of precision medicine. Indeed,
bioinformatic pipelines for copy number variation analysis require tumor cellularity as
input and for a correct evaluation of variant allelic frequency [8].

Machine learning-based nuclear segmentation methods are typically the most efficient,
as they can learn to identify variations in the shape and coloration of nuclei. In the semantic
segmentation [9,10] approach, all image pixels are labeled as nuclear or background through
a deep learning model. Nevertheless, these methods often fail to distinguish the different
instances of objects of interest, i.e., nuclei, which then need to be addressed with ad hoc
post-processing techniques, such as clustering [11].

The detection task can be approached by exploiting morphological features. CRIm-
age [12] profits from thresholding as the first step for nuclei detection. Centroids of
segmented nuclei are used as the point of detection. Then, a list of statistics for each
segmented nucleus is utilized as a feature vector, and classification involves a support
vector machine with radial basis kernel. Finally, spatial density smoothing is used to correct
false detections.

LIPSyM [13] introduces the local isotropic phase symmetry measurement, designed to
give high values to cell centers and nearby pixels; on the other hand, it cannot precisely
detect spindle-like and other irregularly shaped nuclei such as fibroblasts and malignant
epithelial nuclei.

In the last several years, convolutional neural networks (CNN) are emerging as the
most effective way to tackle the nuclei detection task. In particular, the spatially constrained
convolutional neural network (SC-CNN) [14] uses spatial regression for localizing the nuclei
centers; the regression in SC-CNN is model-based, which explicitly constrains the output
form of the network.

Xu et al. [6] used a stacked sparse autoencoder (SSAE) to learn a high-level representa-
tion of nuclear and non-nuclear objects by means of a softmax classifier.

Finally, the R2U-Net-based regression model named “UD-Net” [4] is proposed for end-
to-end nuclei detection from pathological images. The recurrent convolutional operations
help the model learn and represent features better than the feed-forward convolutional
operations, and the robustness of the R2U-Net model has been demonstrated previously in
several studies [15].

Methodologies prior to the advent of deep learning demonstrate worse performance
on the nuclei detection task. Moreover, handcrafted feature extraction is a tedious and
complex process, which can lead to different results depending on the experience of the

314



Bioengineering 2022, 9, 475

feature engineers and domain experts. It is worth noting that CNN-based approaches
require datasets with a distinct label for every nucleus, based on observations made in the
last several years. Simple existing semantic segmentation methods, trained without the
knowledge of different instances, cannot be reliably adopted for nuclei detection.

Many cell nuclei detection methods share a basic approach that includes generating
an intermediate map through a CNN that indicates the presence of a nucleus, called the
probability or proximity map (P-Map) [3,16], or have specialized architectures that are
trained to individuate the centers of the nuclei, such as SC-CNN [14]. Indeed, the P-Map
represents proximities as a monochromatic image: the intensities have high values near the
centroid of the nucleus, and gradually lower going toward the boundaries.

By following the idea of determining a structure similar to a P-Map, we propose a novel
method for nuclei detection, without the need for specialized architectures or handcrafted
feature extraction; rather, only semantic segmentation networks and explainable artificial
intelligence (XAI) techniques are used. The proposed method is quick to train, and is
extensible because it can be plugged on top of existing semantic segmentation networks.

The presence of clustered or overlapped nuclei with semantic segmentation models
can be spotted on visual inspection of the images. In order to overcome this issue, we
exploited the potentialities of the gradient-weighted class activation mapping (Grad-CAM)
for segmentation, which made it possible to highlight the activation of the nucleus class
(compared to the background class), thus obtaining a saliency map with properties similar
to the classic P-Map. The locations of the nuclei are subsequently determined by looking
for local maxima in the activation map. Starting from the identified centroids, it is possible
to associate all the pixels belonging to the considered nucleus, with a proximity criterion.
This model alone, which we denote as nuclei detection with Grad-CAM (NDG-CAM),
was capable of achieving performance in line with state-of-the-art methods. Because the
Mask R-CNN [17] instance segmentation architecture is widely employed and constitutes a
standard baseline for these tasks, we also realized a combined model for further enhancing
the results, surpassing the state of the art.

To summarize, our contributions can be considered as follows: (i) we introduce a
novel detection method for nuclei—NDG-CAM—which exploits Grad-CAM for semantic
segmentation; (ii) we collected and annotated a local dataset of patients diagnosed with
colorectal cancer to show the applicability of the proposed method in a local hospital;
(iii) we examined and compared different state-of-the-art techniques to show the effective-
ness of the proposed approach; (iv) we trained and evaluated an instance segmentation
architecture as the baseline; and (v) we proposed a combined model which, exploiting both
NDG-CAM and Mask R-CNN, can surpass the current literature performance concerning
nuclei detection.

The remainder of the manuscript is organized as follows. Section 2 first describes
the datasets adopted for the analysis. Then, semantic segmentation configurations and
architectures are presented. The NDG-CAM is proposed, and its workflow is delineated.
An instance segmentation is also considered as the baseline. Lastly, implementation details,
the combined model, and the evaluation metrics employed for the analysis are presented.
Results are portrayed in Section 3 and discussed in Section 4. A comparison with other
state-of-the-art approaches is considered here. Lastly, final remarks, conclusions, and ideas
for future works are drawn in Section 5.

2. Materials and Methods

2.1. Datasets

For the tasks of nuclei segmentation and detection, different datasets were considered
in order to find the best-performing model. In particular, we considered the latest and
largest publicly available datasets for nuclei detection and segmentation. Moreover, a local
dataset has been collected, to prove the feasibility of the proposed system on new data
from a local hospital.
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• MoNuSeg [1,18,19]. The cell nucleus segmentation dataset used in this work is pub-
licly accessible from the 2018 Data Science Bowl challenge [20]. The dataset contains
a large number of segmented nuclei images and includes different cell types; there
are 30 training H&E images containing 21,623 hand-annotated nuclear boundaries
from the breast, kidney, prostate, liver, colon, bladder, and stomach. Moreover, there
are also 14 H&E test images containing 7000 nuclear boundary annotations from the
breast, kidney, prostate, colon, bladder, lung, and brain. All images, each of size
1000 × 1000 , were captured at 40× magnification. The nuclear contour annotations
are provided through XML files.

• CRCHistoPhenotypes: Labeled Cell Nuclei Data [14,21]. This publicly available
dataset contains 100 H&E-stained histology images of colon cell nuclei obtained from
WSI of 10 patients with a magnification factor of 20×. Tiles have a size of 500 × 500.
Nuclear annotations are provided through the coordinates of the centroids in .mat
format, resulting in a total of 29,756 annotated nuclei for detection purposes.

• NuCLS [22]. The dataset contains over 220,000 labeled nuclei from breast cancer
images from TCGA, obtained from 125 patients with breast cancer (1 slide per patient)
and captured with a magnification factor of 40×. These nuclei were annotated through
the collaborative effort of pathologists, pathology residents, and medical students.
Data from both single-rater and multi-rater studies are provided. For single-rater data,
there are both pathologist-reviewed and uncorrected annotations. For multi-rater
datasets, there are annotations generated with and without suggestions from weak
segmentation and classification algorithms. We used only the single-rater dataset,
which is already split into train and test sets. The annotations for the single-rater
dataset include 59,485 nuclei and 19,680 boundaries, extracted from 1744 H&E image
tiles of variable dimensions between 200 and 400 pixels.

• Local dataset from Pathology Department of IRCCS Istituto Tumori Giovanni Paolo
II [23]. This consists of 19 H&E image tiles which overall contain more than 6378 nuclei
from patients with colorectal cancer. Images have a size of 512 × 512 and were captured
at 40× magnification. Annotations have been provided by a biologist with experience
in analyzing histopathological data.

Hereafter, we will denote with T1 and V1 the training and test sets of MoNuSeg (D1),
and with D2 the overall dataset of CRCHistoPhenotypes. The Mask R-CNN model has
been trained on the NuCLS (D3) dataset, being the largest publicly available dataset with
annotations formatted for instance segmentation. Because D1 already includes a validation
set, we have used that one for the first validation stage. As an independent external
validation set, we collected other image tiles from the Pathology Department of IRCCS
Istituto Tumori Giovanni Paolo II [23], which will be denoted as V4, in order to assess
the generalization capability of the best semantic segmentation network configuration
individuated with the D1 and D2 datasets, and the Mask R-CNN model trained on the
D3 dataset. Figure 1 summarizes the pipeline implemented for training and validating
the models.

A summary of the details for the employed datasets is reported in Table 1, whereas
sample images are depicted in Figure 2.
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Figure 1. Pipeline adopted for training and validation. D1 and D2 datasets have been used to train
and select the best semantic segmentation network. D3 dataset has been exploited to train the Mask
R-CNN instance segmentation architecture. Finally, external validation has been conducted on the
local validation dataset V4.

Figure 2. Sample images of datasets for nuclei detection. (First column) D1—MoNuSeg [18]; (second
column) D2—CRCHistoPhenotypes [21]; (third column) D3—NuCLS [22]; (fourth column) V4—local
dataset [23].
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Table 1. Summary of datasets for nuclei.

Dataset
Publication

Year
Organs Resolution

Number of
H&E images

Number of
Nuclei

Size
(pixels)

Annotations
Format

MoNuSeg—Train (T1) [1]

2017

breast, kidney, prostate,
liver, colon,

bladder, stomach
40×

30 21,623

1000 × 1000 Nuclei Contours

MoNuSeg—Test (V1) [1]
breast, kidney, prostate,

colon, bladder,
lung, brain

14 7000

CRCHistoPhenotypes (D2) [14] 2016 colon 20× 100 29,756 500 × 500 Nuclei Centroids

NuCLS (D3) [22] 2019 breast 40× 1744 59,485 200–400
per side

Nuclei Contours or
Bounding Boxes

Local (V4) 2022 colon 40× 19 6378 512 × 512 Nuclei Centroids

2.2. NDG-CAM

In this section, we introduce the methodology adopted for NDG-CAM. Several steps
have been carried out. As the first step, a semantic segmentation architecture trained for
nuclear segmentation is required. Different experimental configurations of the datasets
and network architectures have been compared in order to find the most suitable model,
with details reported in Sections 2.2.1 and 2.2.2. Then, the Grad-CAM technique for seman-
tic segmentation, which is still underexplored if compared to Grad-CAM for classification,
has been employed to obtain saliency maps of the nuclei, with higher values of intensity
corresponding to positions nearest to the centroids. Subsequently, a search for local maxima,
combined with post-processing and clustering, allowed for the detection and eventually
instance segmentation of the nuclei. This process is presented in Section 2.2.3. Compared to
specialized architectures, such as those used for instance segmentation, semantic segmen-
tation networks are simpler and faster to train. In addition, our system can be trained if
labels do not distinguish between different nuclear instances, which would not be possible
for instance segmentation models.

2.2.1. Semantic Segmentation Workflow

Starting from the datasets described in the previous sections, the following experi-
ments were carried out, all with images at a size of 512 × 512:

a Train on D2 and validation on V1 at 20× resolution.
b Train on T1 and validation on V1 at 20× resolution.
c Train on T1 and validation on V1 at 40× resolution.

In the first two experiments, images were padded from 500 × 500 to 512 × 512 exploit-
ing the mirror padding. Instead, in the last experiment, the images were padded from
1000 × 1000 to 1024 × 1024 with mirror padding and subsequently divided into 4 tiles of
512 × 512. For each experiment, different deep network architectures were trained and
compared: U-Net [24], SegNet [25], and DeepLab v3+ [26] in three different backbone con-
figurations, namely ResNet18, ResNet50 [27], and MobileNet-v2 [28]. The aforementioned
experiments were carried out in MATLAB R2021a.

2.2.2. Network Architectures

The segmentation phase is a milestone for the detection phase; this step aims to
discriminate between cell nuclei and the background. semantic segmentation architectures
play a role of pivotal importance in deep learning-based medical image analysis [9,29–31].
It is a process that associates a label or a category to each pixel of an input image, thus
allowing the pixelwise spatial localization of each object category appearing in the scene.

In the specific case under analysis, the goal was to segment the cell nuclei in a robust
way, so as to provide satisfactory results even when the algorithm would have been applied
to different images of the same type. For this reason, it was decided to carry out the same
experiments with several convolutional architectures.
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The considered architectures include:

• U-Net [24]. It is a fully convolutional network to perform the semantic segmentation
task. The U-Net architecture consists of a series of encoding layers and contractions
that are used to extract the context of the image, followed by a sequence of symmetrical
decoding layers and expansions to recover the spatial information. In our MATLAB
setting, the network is characterized by 58 convolutional layers; the first layer deals
with a z-score normalization of the inputs, whereas the last one presents the Dice
function as a loss function.

• SegNet [25]. This is another encoder–decoder architecture. In this case, the decoding
blocks exploit max pooling indices received from the corresponding contraction block
to perform the oversampling, instead of using trainable upsampling layers as trans-
posed convolutions. In our MATLAB setting, this CNN consists of 31 layers with a
cross-entropy loss function.

• DeepLab v3+ [26]. This architecture features atrous spatial pyramid pooling (ASPP)
and the encoder–decoder paradigm. The first aspect concerns a particular way of
combining layers of atrous and depthwise convolution, with which the model cap-
tures and concatenates features at different scales. For this network, the backbone is
customizable. Three different basic CNN encoders were used: ResNet18, ResNet50,
and MobileNet-v2. The DeepLab v3+ has 100 layers, of which the last is a softmax
layer that is used to obtain the probabilities that each pixel belongs to the nucleus or
background class; in this case, the chosen loss function is the Dice loss.

An example of semantic segmentation prediction from DeepLab v3+ with backbone
ResNet18 is shown in Figure 3.

Figure 3. Semantic segmentation output for nuclei images. (Left) Original image. (Middle) Ground
truth. (Right) Prediction of experiment (b) with DeepLab v3+ and backbone ResNet18.

2.2.3. Nuclei Detection with Grad-CAM

After the best performing network has been identified, the output returned by the
semantic segmentation was a mask in which the pixels of the input image were classified
into pixels belonging to the foreground, i.e., nucleus, or background class. As mentioned
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previously, this did not allow us to distinguish multiple instances of the same object and
therefore to distinguish multiple nuclei adjacent to each other.

In this scenario, the detection phase begins. In fact, after the semantic segmentation,
post-processing was carried out in order to solve this problem. The first step was to calculate
the Grad-CAM of the input image according to the chosen network. A CNN is often seen
as a black box, or rather, as a model with parameters W that, given an image of input X,
through a function f (X, W), is able to map to the related output y. XAI techniques have
been designed in order to unveil the underlying mechanisms involved in the processing
stages of deep neural networks, and are recently gaining a lot of attention in medical
imaging and clinical decision support systems [32–35].

During the training phase, even if we are capable of achieving high performance
according to the considered metrics, we do not know which image features are more
determinant for the network to make its choices. One of the ways to visually solve this
problem is Grad-CAM [35].

Grad-CAM is typically used in image-classification scenarios [36], but it can also be
extended to semantic segmentation problems [37]. In general, the heatmap Lc for class
c is generated by using ak

c (as defined in Equation (1)) to sum the feature maps Ak, as in
Equation (2).

ak
c =

1
N ∑

u,v

∂yc

∂Ak
uv

(1)

Lc = ReLU

(
∑
k

ak
c Ak

)
(2)

N is the number of pixels and (u, v) are the indices. ReLU is applied pixelwise to clip
negative values at zero, to only highlight areas that positively contribute to the decision
for class c. The difference with the classification task is that for semantic segmentation yc,
the scalar class score, is obtained by reducing the pixelwise class scores for the class of
interest to a scalar [37], as in Equation (3).

yc = ∑
(u,v)∈P

Yc
(u,v) (3)

P is a set of pixel indices of interest in the output layer: in our case, the softmax layer
before the pixel classification layer. Higher values of Lc map indicate which areas of the
image are important for the decision to classify pixels.

In the proposed approach, the activation of the network for the nucleus class was
analyzed, obtaining a probability map with values that we denote as CAM-Map. Therefore,
activations greater in correspondence with the centroids of the nuclei (even when adjacent
to each other) are visible from Figure 4C.

From CAM-Map, we applied a morphological grayscale dilation operator with a
spherical shape factor of radius 7. The result is depicted in Figure 4D. This step allowed
the enlargement of the activation areas so that no false nuclei were identified in the nearby
regions where activations were not high enough compared to the maximum point.

Then, as portrayed in Figure 4E, we proceeded with the calculation of the local
maximum of the regions and the localization of all the connected components, with the
related geometric centroids, which correspond to the identified nuclei.

Once the centroids were found, K-means clustering, with K equal to the number of
connected components, has been exploited to associate the adjacent pixels to each nucleus,
so as to have the overall predicted mask of the original starting image. The final mask is
reported in Figure 4F.
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Figure 4. NDG-CAM Detection workflow. (A) Zone with multiple neighboring instances of nuclei.
(B) Failure to recognize adjacent nuclei. (C) Grad-CAM for semantic segmentation. (D) Dilated image.
(E) Connected components. (F) Detection prediction.

2.3. Instance Segmentation

Object detection involves the detection, with a bounding box, of all the different objects
of interest present in a scene. Instance segmentation further extends this task, by also
considering the problem of delineating a precise mask around each object. Architectures
for object detection are usually divided into one-stage and two-stage models, with the
first being faster and the former being more accurate. Inside the realm of methods for
two-stage object detectors, a pivotal role has been played by architectures from the R-CNN
family [38].

Mask R-CNN evolves the R-CNN family by adding a semantic segmentation branch,
making the model capable of performing instance segmentation [17]. The overall Mask
R-CNN architecture is composed of two parts: the backbone architecture, which performs
feature extraction, and the head architecture, which performs classification, bounding box
regression, and mask prediction.

We employed the Detectron2 [39], a platform powered by the Pytorch framework, that
provides state-of-the-art detection and segmentation algorithms. It includes high-quality
implementations of the most popular object detection algorithms, comprising different
variants of the pioneering Mask R-CNN model. Detectron2 has an extensible design so that
it can be easily employed to implement cutting-edge research projects.

The NuCLS dataset [22] was chosen to train the network, the instance segmentation
model mask_rcnn_R_50_DC5_1x. Annotations were converted into the COCO annotation
format for adoption in the Detectron2 framework.

2.4. Implementation Details

All the semantic segmentation networks have been trained on a laptop with a GeForce
GTX960M. For carrying out the training, the chosen optimizer was SGDM, with a starting
learning rate of 0.05. The learning rate schedule was piecewise with a drop factor of 0.94
and a drop period of 2. L2 regularization parameter was set to 0.0005. With a batch size
of 2, 15 epochs lasted roughly 105 min for the best performing architecture, DeepLab v3+
with ResNet18 as the backbone.
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The Mask R-CNN model, being heavier, has been trained on a Google Colab Pro
environment. With a Tesla P100, 20,000 iterations were carried out in roughly 110 min.
The chosen optimizer was SGDM, as set by default in the Detectron2 environment, with a
starting learning rate of 0.00025.

2.5. Combined Model

In order to obtain the advantages of both approaches, a combined model has
been developed.

It exploits a criterion for obtaining merged outputs from NDG-CAM detection and
Mask R-CNN. In detail, a distance criterion was used to check if a nucleus was found by
only one of the approaches. In that case, the nucleus was simply retained. Instead, if more
nuclei centroids are found in proximity, only the ones found by Mask R-CNN are retained.
The combined methodology has the idea to increase the recall, which is very important
because nuclei detection is the first stage for further analyses.

2.6. Evaluation Metrics

Each semantic segmentation architecture described in Section 2.2.1 was tested in all
three experimental configurations mentioned. In order to assess the goodness of pixelwise
classification performed by semantic segmentation networks, the pixelwise precision, recall,
and Dice coefficient were considered as performance indices. Given pixelwise true positives
(TP), false positives (FP) and false negatives (FN), then precision, recall, and Dice coefficient
can be defined as in Equations (4)–(6), respectively:

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

Dice =
2 · TP

2 · TP + FP + FN
. (6)

For all these metrics, a higher value denotes a better segmentation result; that is,
predicted masks are more similar to ground truth ones.

Instead, for assessing the detection procedure, we considered two kinds of metrics. The
first is based on the simple calculation of the number of detected nuclei with respect to the
ground truth. The error (ea), defined in Equation (7), is given by the difference in absolute
value between the number of nuclei found and the real number, divided by the latter.
An example of the prediction vs. ground truth result, which is the basis for enumerating
nuclei, is depicted in Figure 5A. Because we were also interested in understanding if our
algorithm was more prone toward overdetection or underdetection, a signed error (es),
defined in Equation (8), was also evaluated:

ea =
|d − g|

g
(7)

es =
d − g

g
. (8)

In these two equations, d denotes the number of detected nuclei, whereas g is the
number of ground truth nuclei.
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Figure 5. Example of calculation of evaluation metrics for object detection. (A) Prediction vs ground
truth. Yellow, ground truth; green, prediction; (B) Differences between prediction and ground truth.
Yellow, detection FN; red, detection FP.

The second category of metrics includes Dice coefficient, precision, and recall for object
detection, which can provide more information about the quality of the detection results.
In this case, we are not simply rewarding our prediction of as many nuclei as are present
in the ground truth, but we also want to ensure that detected nuclei are in the right place.
In order to achieve this result, we need to discover object detection FP and FN, as can be
seen in Figure 5B. In order to determine these quantities, as the first step, we computed the
distance matrix between the centroids of the detected nuclei and the real ones. In order to
decide whether a detection actually corresponds to a nucleus centroid, a distance threshold
ξ was considered, equal to the mean radius of the nuclei of each image [16]. If the distance
between a prediction and a ground truth annotation is less than or equal to ξ, the prediction
is counted as a TP. If more than one detection verifies this condition, the one closest to the
ground truth position is counted as TP and the others as FP. The detections further than ξ
from any ground truth location are counted as FP, and all ground truth annotations without
close detections are marked as FN. Lastly, the following control condition was added. If the
distance between an FP and an FN is less than an ε threshold, set to 6 (a value close to
the nuclear radius), the count of FP and FN will each be decreased by one, whereas TP
will be increased by one. The pseudocode for determining TP, FP, and FN is reported in
Algorithm 1.

In order to assess the statistical significance of the obtained results calculated per case,
we determined the p-value with the two-tailed Wilcoxon signed-rank test. The threshold
for significance has been set to 0.05.

323



Bioengineering 2022, 9, 475

Algorithm 1: Object Detection TP, FP, FN calculation.
input : gt, the ground truth nuclei centroids, an array of g coordinate pairs

pred, the predicted nuclei centroids, an array of d coordinate pairs
ξ, the mean radius of the ground truth nuclei
ε, the distance threshold // set to 6

output : TP, the true positives
FP, the false positives
FN, the false negatives

g = size(gt)
TP = 0
FP = 0
FN = 0
idxFP = list() // a list of false positive indexes
idxFN = list() // a list of false negative indexes
δ = distance(gt, pred) // the distance matrix
i = 0
while i < g do

v = δ[:, i]
idx = where(v < ξ) // a (possibly empty) array of indexes
if size(idx) == 1 then

TP = TP + 1
else if size(idx) > 1 then

TP = TP + 1
FP = FP + (size(idx)− 1)
idxFP.extend(idx)

else if size(idx) == 0 then

FN = FN + 1
idxFN .append(i)

end

i = i + 1
end

arrFN = f ilter(gt, idxFN) // extract the false negatives
p = 0
while p < size(idxFP) do

a = 0
while a < size(arrFN) do

Δ = distance(pred[p], arrFN [a])
if (Δ ≤ ε) then

FP = FP − 1
FN = FN − 1
TP = TP + 1

end

a = a + 1
end

p = p + 1
end

3. Results

The automatic segmentation of cell nuclei attracted significant interest from the sci-
entific community, as their identification is an important starting point for many medical
analyses based on histopathological images. In this work, for the semantic segmentation
phase, different architectures were elaborated and tested on different datasets, for a total of
15 experiments. For each of them, performance indices were calculated to identify the best
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model with which to proceed for the subsequent phases. From this comparison, it emerged
that the best performance can be obtained by referring to the experimental configuration
(b) defined in Section 2.2.1.

Table 2 reports the results obtained for each network architecture in the seman-
tic segmentation task. For DeepLab v3+, the backbone architecture is included within
square brackets.

Table 2. Performance comparison between considered network architectures for semantic segmentation.

Network Metric Experiment (a) Experiment (b) Experiment (c)

U-Net
DICE

PRECISION
RECALL

66.74 ± 3.44
57.13 ± 8.15
83.56 ± 10.61

65.71 ± 8.57
52.69 ± 11.96
91.65 ± 6.57

60.74 ± 11.65
45.43 ± 11.77
96.46 ± 2.44

SegNet
DICE

PRECISION
RECALL

56.44 ± 9.31
67.09 ± 8.01
52.60 ± 16.20

65.05 ± 6.32
58.93 ± 14.23
81.35 ± 17.69

62.02 ± 12.28
51.67 ± 14.96
85.05 ± 13.24

DeepLab v3+ [ResNet18]
DICE

PRECISION
RECALL

52.21 ± 11.99
76.78 ± 6.60
41.76 ± 13.55

74.23 ± 4.85
76.42 ± 8.69
74.25 ± 11.23

72.17 ± 8.03
62.76 ± 11.78
87.17 ± 5.64

DeepLab v3+ [ResNet50]
DICE

PRECISION
RECALL

57.87 ± 6.88
59.70 ± 6.35
57.10 ± 10.43

61.68 ± 8.75
63.69 ± 7.51
60.71 ± 11.94

65.98 ± 7.84
54.14 ± 13.81
90.95 ± 10.02

DeepLab v3+ [mobilenetv2]
DICE

PRECISION
RECALL

56.64 ± 6.60
66.49 ± 5.56
50.66 ± 10.50

73.01 ± 7.56
73.50 ± 11.76
75.07 ± 10.38

66.31 ± 13.80
57.52 ± 16.31
85.35 ± 9.43

It therefore emerges that the best solution coincides with experiment (b) conducted
with DeepLab v3+ using the ResNet18 network as the backbone. It allowed us to obtain
a pixelwise Dice coefficient of 74.23 ± 4.85%, a precision of 76.42 ± 8.69%, and a recall of
74.25 ± 11.23%.

DeepLab v3+ was hence chosen as the base model to be exploited in the detection
phase. By exploiting the Grad-CAM for semantic segmentation, it was possible to retrieve
nuclei centroids via local maxima of the obtained saliency maps.

On the V1 dataset, the experimental results demonstrated an ea of the identified nuclei
equal to 2.11%, 2.43%, and 11.50% for the NDG-CAM, Mask R-CNN, and combined method,
respectively. When calculated per case, the values for es were 1.84 ± 13.05%, 3.46 ± 6.15%,
and 14.45 ± 11.22%, indicating that the models generally tend to overdetect on this dataset.

In the V4 dataset, the ea had a value of 15.26%, 59.22%, and 14.10% for the NDG-CAM,
Mask R-CNN, and combined method, respectively. When calculated per case, the values for
es were −16.86 ± 13.79%, −60.13 ± 13.88%, and −14.88 ± 12.86%, showing that the models
have a tendency to underdetect on this dataset. In particular, it was noticed that very
small nuclei, such as those of lymphocytes, and elongated ones, such as those of fibrocytes,
were underdetected.

For the detection task, the results are reported in Table 3. In the V1 dataset, NDG-CAM,
Mask R-CNN, and the combined method were capable of achieving a Dice coefficient of
0.824, 0.878, and 0.884, respectively. Thus, the combined method obtained slightly better
results than the other methods. As for the recall, the combined method decisively surpasses
the other approaches, with a value of 0.934.

In the V4 dataset, the combined method proves to be the best, achieving a recall of
0.850 and a Dice coefficient of 0.914. Mask R-CNN performs poorly in this case, with a
recall of 0.403 and a Dice coefficient of 0.573.
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Table 3. Comparison of detection methods, extending the one proposed by Alom et al. [4] and
Sirinukunwattana et al. [14].

Method Precision Recall Dice

CRImage [12] 0.657 0.461 0.542

CNN [12] 0.783 0.804 0.793

SSAE [6] 0.617 0.644 0.630

LIPSyM [13] 0.725 0.517 0.604

SC-CNN (M = 1) [14] 0.758 0.827 0.791

SC-CNN (M = 2) [14] 0.781 0.823 0.802

UD-Net [4] 0.822 0.842 0.828

NDG-CAM (V1) 0.833 0.815 0.824

NDG-CAM (V4) 0.992 0.841 0.910

Mask R-CNN (V1) 0.867 0.888 0.878

Mask R-CNN (V4) 0.989 0.403 0.573

Combined (V1) 0.838 0.934 0.884

Combined (V4) 0.986 0.850 0.914

The violin plots calculated per tile are reported in Figure 6 for the V1 and V4 datasets,
comparing the NDG-CAM detection method, Mask R-CNN, and the combined approach.
It is worth noting that the Mask R-CNN model works very well on the V1 dataset but
performs poorly on the V4 one. On the other hand, the NDG-CAM and the combined
methods maintain high levels of performance in all scenarios.

Figure 6. Violin plots for the detection metrics calculated per case. (Left) V1 dataset. (Right) V4
dataset. In the figure, ns stands for nonsignificant; * denotes p-value < 0.05; ** indicates p-value < 0.01;
and *** means p-value < 0.001.

In the V1 dataset, the combined model does not show a Dice coefficient that is higher
in a statistically significant way than the Mask R-CNN approach, with a p-value of 0.07.
On the other hand, the recall was much higher for the combined method, resulting in a
p-value < 0.001 for both NDG-CAM and Mask R-CNN. In the V4 dataset, both the NDG-
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CAM and the combined method showed much stronger results than Mask R-CNN, with a
p-value less than 0.001 in both cases for Dice coefficient and recall. Moreover, the combined
approach shows a statistically significant advantage over NDG-CAM (p-value = 0.048) for
the Dice coefficient.

4. Discussion

In order to show the effectiveness of the proposed method, we compared it with
existing state-of-the-art approaches. It has to be noted that our method allows exploiting
semantic segmentation architectures to realize nuclei detection, whereas other approaches
usually involve networks specialized for this task. Several approaches proposed in the
literature try to localize centers of the nuclei or proximity maps to those centers [3,14,16].
These approaches require instance-level annotations, although the results are promising.
On the other hand, the proposed method exploits an XAI technique, Grad-CAM for seman-
tic segmentation, to reconstruct post hoc saliency maps that are related to the centers of the
nuclei, showing that semantic segmentation networks can perform detection tasks without
specialized modifications.

The most widespread metrics employed for assessing algorithms for object detection
involve precision, recall, and Dice coefficient. Namely, they are the metrics that are also
related to the position of the detected nuclei, and not only on the counts.

A quantitative comparison between considered approaches and existing ones from
the literature is presented in Table 3.

From this comparative analysis, it emerges that the proposed method is perfectly
aligned with the state of the art, without the need to implement specific kinds of specialized
loss functions [24] or architectures for detection [17,40].

Indeed, the NDG-CAM method alone was capable of achieving a Dice coefficient for
object detection of 0.824, whereas the UD-Net [4] method, the top-performing method
among the selected from the literature, had a Dice coefficient of 0.828. When the proposed
NDG-CAM detection method is used in combined usage with Mask R-CNN, the recall
increases to 0.934, and the Dice coefficient to 0.884, surpassing the current state-of-the-art
methods for nuclei detection. On the collected external validation set, metrics are even
higher, with a Dice coefficient of 0.914, showing the generalization capabilities of the
proposed workflow.

Qualitative results for the the object detection pipeline involving semantic segmen-
tation and Grad-CAM on the images of the independent external validation set V4 are
depicted in Figure 7. Instead, Figure 8 shows the final detection results on the validation
datasets V1 and V4 with the NDG-CAM method, the Mask R-CNN architecture, and the
combined adoption of both methods.

It can be seen from the images of Figure 7, taken from the V4 dataset, that precision is
very high. Indeed, virtually all detected nuclei are real. Some small or elongated nuclei,
such as lymphocytic or fibrocytic nuclei, are underdetected. This may be due to a lack of
proper training datasets with a large variety of nuclear shapes.
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Figure 7. Examples of the NDG-CAM method on the data from the Pathology Department of IRCCS
Istituto Tumori Giovanni Paolo II. Results are shown for the best architecture (DeepLab v3+ with
ResNet18 backbone). (First row) Original images. (Second row) Semantic segmentation. (Third row)
Instance segmentation after detection of centroids of the nuclei, with each color denoting a different
nuclear instance.

The two methods show similar performance on the V1 dataset, as can be observed
from Figure 8. Mask R-CNN achieves slightly better performance on this dataset, and
considering that it has been trained on a larger training set, the combined method proved
to be superior. From the same figure, it is possible to observe that, in the V4 dataset, Mask
R-CNN does not properly generalize, resulting in the missing of many nuclei (low recall).
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Figure 8. Examples of centroid detection on the validation sets V1 and V4. (Top row) Green, NDG-
CAM method detections; red, Mask R-CNN detections. (Bottom row) Blue, combined method
detections. First and second columns show data from V4, whereas the third and fourth columns
depict data from V1.

5. Conclusions and Future Works

In this work, a novel method was presented with the aim of nuclei identification from
histological H&E images. In our multi-stage pipeline, the first phase involved semantic
segmentation. After various experiments, DeepLab v3+ (ResNet18 backbone) emerged
as the best-performing architecture. Subsequently, because this analysis did not allow
the distinction of multiple instances of the same object, we proposed a novel detection
algorithm, NDG-CAM, which exploited Grad-CAM to solve the problem of separating
the instances. Even without the need to use specialized loss functions or architectures, it
allowed us to achieve satisfactory results in the detection task, comparable to or even better
than more sophisticated training setups [3,6,12,16]. When the method is combined with
the Mask R-CNN instance segmentation architecture, results exceed the state-of-the-art
methods for nuclei detection.

Even though the local validation set includes only colorectal cancer H&E slides, it
has to be considered that in each slide there are several tissue types present (e.g., stroma,
immune infiltration) and the proposed method has the ability to detect nuclei not only
related to the tumor or normal epithelium of colon but also to other cytotypes.

Indeed, we noticed underdetection of lymphocytic or fibrocytic nuclei, and this could
be explained by a lack of datasets enriched in these nuclei subtypes. For such a reason,
a direction for future works includes the collection of a dataset with multiple and balanced
nuclei annotations.

On the clinical side, the proposed workflow could be a valid tool to support patholo-
gists in the detection and reporting of histological samples, thus allowing a considerable
saving of time and resources, besides providing an objective tool that is more reliable than
manual assessment. Future works will concern the classification of the detected nuclei, in or-
der to estimate how many are malignant or subjected to specific lesions, so that important
clinical parameters, such as neoplastic cellularity, can be determined quantitatively.
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Abstract: In ophthalmology, the registration problem consists of finding a geometric transformation
that aligns a pair of images, supporting eye-care specialists who need to record and compare images of
the same patient. Considering the registration methods for handling eye fundus images, the literature
offers only a limited number of proposals based on deep learning (DL), whose implementations use
the supervised learning paradigm to train a model. Additionally, ensuring high-quality registrations
while still being flexible enough to tackle a broad range of fundus images is another drawback faced
by most existing methods in the literature. Therefore, in this paper, we address the above-mentioned
issues by introducing a new DL-based framework for eye fundus registration. Our methodology
combines a U-shaped fully convolutional neural network with a spatial transformation learning
scheme, where a reference-free similarity metric allows the registration without assuming any pre-
annotated or artificially created data. Once trained, the model is able to accurately align pairs of
images captured under several conditions, which include the presence of anatomical differences and
low-quality photographs. Compared to other registration methods, our approach achieves better
registration outcomes by just passing as input the desired pair of fundus images.

Keywords: fundus image; image registration; deep learning; computer vision applications

1. Introduction

In ophthalmology, computing technologies such as computer-assisted systems and
content-based image analysis are indispensable tools to obtain more accurate diagnoses
and detect signals of diseases. As a potential application, we can cite the progressive moni-
toring of eye disorders, such as glaucoma [1] and diabetic retinopathy [2], which can be
conveniently performed by inspecting retina fundus images [3]. In fact, in follow-up exam-
inations conducted by eye specialists, a particularly relevant task is image registration [4,5],
where the goal is to assess the level of agreement between two or more fundus photographs
captured at different instants or even by distinct acquisition instruments. In this kind of
application, issues related to eye fundus scanning, such as variations in lighting, scale,
angulation, and positioning, are properly handled and fixed when registering the images.

In more technical terms, given a pair of fundus images, IMov and IRe f , the registration
problem comprises determining a geometric transformation that best aligns these images
and maximizing their overlap areas while facilitating the visual comparison between
them. As manually verifying with the naked eye possible changes between two or more
fundus photographs is arduous and error-prone, there is a necessity to automate such a
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procedure [6,7]. Moreover, the difficulty in comparing large fundus datasets by a human
expert and the time spent by ophthalmologists to accomplish manual inspections are
commonly encountered challenges in the medical environment.

In recent years, machine and deep learning (DL) have paved their way into image reg-
istration and other related applications, such as computer-aided diagnosis [8,9], achieving
very accurate and stable solutions. However, despite the existence of several proposals in
the image registration literature, Litjens et al. [10], and Haskins et al. [11] recently indicated
that there is a lack of consensus on a categorical technique that benefits from the robustness
of deep learning towards providing high-accuracy registrations regardless of the condition
of the acquired image pair. In addition, among methods specifically developed to cope
with eye fundus registration, there is only a limited number of proposals that apply DL
strategies, and most of them are focused on the supervised learning paradigm, i.e., the
methods usually assume ground-truth reference data to train an alignment model. As
reference data can be automatically generated by specific techniques or acquired through
manual notes by an eye professional, both cases may suffer from the following drawbacks:
(a) synthetically generating benchmark data can affect the accuracy of the trained mod-
els [12], and (b) manually annotating data are prone to failure due to the high number of
samples to be labeled by a human agent, which includes the complication of creating full
databases, large and representative enough in terms of ground-truth samples to be used to
train a DL model effectively [11,13]. Lastly, dealing with ethical issues is another difficulty
imposed when one tries to collect a large database of labeled medical images.

Aiming to address most of the issues and drawbacks raised above, in this paper,
we propose a new methodology that combines two DL-based architectures into a fully
unsupervised approach for retina fundus registration. More specifically, a U-shaped fully
convolutional neural network (CNN) [14] and a spatial-transformer-type network [15] are
integrated, so that the former produces a set of matching points from the fundus images,
while the latter utilizes the mapped points to obtain a correspondence field used to drive
geometric bilinear interpolation. Our learning scheme takes advantage of a benchmark-free
similarity metric that gauges the difference between fixed and moving images, allowing for
the registration without taking any prelabeled data to train a model or a specific technique
to synthetically create training data. Once the integrated methodology is fully trained, it
can achieve one-shot registrations by just passing the desired pair of fundus images.

A preliminary study of our learning scheme appears in our recently published ICASSP
paper [16]. Going beyond our previous investigation, several enhancements are put for-
ward. First, we extend our integrated DL framework to achieve more accurate outcomes,
leading to a more assertive and stable registration model. We also provide a comprehensive
literature review classifying popular and recent DL-based registration methods according
to their network types, geometric transformations, and the general category of medical
images (see Section 2). An extensive battery of new experiments and assessments are now
given, in particular, the analysis of two additional fundus databases, the inclusion of new
registration methods in the comparisons, and an ablation study covering the refinement
step of our registration framework (see Section 3). Lastly, we also show that our learning
registration pipeline can succeed with multiple classes of eye fundus images (see Section 4),
a trait hard to be found in other fundus image registration methods.

In summary, the main contributions introduced by our approach are:

• A fully automatic learning strategy that unifies a context-aware CNN, a spatial transfor-
mation network and a label-free similarity metric to perform fundus image registration
in one-shot without the need for any ground-truth data.

• Once trained, the registration model is capable of aligning fundus images of sev-
eral classes and databases (e.g., super-resolution, retinal mosaics, and photographs
containing anatomical differences).

• The combination of multiple DL networks with image analysis techniques, such as
isotropic undecimated wavelet transform and connected component analysis, allow-
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ing for the registration of fundus photographs even with low-quality segments and
abrupt changes.

2. Related Work

The literature covers a large number of DL-driven applications for clinical diagnosis
in ophthalmology. Recently, several studies have been conducted on deep learning for the
early detection of diseases and eye disorders, which include diabetic retinopathy detec-
tion [17,18], glaucoma diagnosis [19,20], and the automated identification of myopia using
eye fundus images [21]. All these DL-based applications have high clinical relevance and
may prove effective in supporting the design of suitable protocols in ophthalmology. Going
deeper into DL-based applications, the image translation problem has also appeared in
different ophthalmology image domains, such as image super resolution [22], denoising of
retinal optical coherence tomography (OCT) [23], and OCT segmentation [24]. For instance,
Mahapatra et al. [22] introduced a generative adversarial network (GAN) to increase the
resolution of fundus images in order to enable more precise image analysis. Aiming at
solving the issue of image denoising in high- and low-noise domains for OCT images,
Manakov et al. [23] developed a model on the basis of the cycleGAN network to learn a
mapping between these domains. Still on image translation, Sanchez et al. [24] combined
two CNNs, the Pix2Pix and a modified deep retinal understanding network, to achieve the
segmentation of intraretinal and subretinal fluids, and hyper-reflective foci in OCT images.
For a comprehensive survey of image translation applications, see [25].

We now focus on discussing particular approaches for solving the image registration
task. We split the registration methods into two groups: those that do not use DL (traditional
methods), and those that do. Since our work seeks to advance the DL literature, we focus
our discussion on this particular branch.

Considering the general application of image registration in the medical field, the
literature has recently explored DL as a key resolution paradigm, including new approaches
to obtain highly accurate results for various medical image categories, as discussed by
Litjens et al. [10], Haskings et al. [11], and Fu et al. [26]. Most of these approaches rely on
supervised learning, requiring annotated data to train a model. For example, Yang et al. [27]
introduced an encoder–decoder architecture to carry out the supervised registration of
magnetic resonance images (MRI) of the brain. Cao et al. [28] covered the same class of
images, but they employed a guided learning strategy instead. Eppenhof and Pluim [29]
also applied a supervised approach, but for registering chest computed tomography (CT)
images through a U-shaped encoder-decoder network [30]. Still concerning supervised
learning, several works attempted to compensate for the lack of labeled data by integrating
new metrics into an imaging network. Fan et al. [31] induced the generation of ground-truth
information used to perform the registration of brain images. Hering et al. [32] utilized
a weakly supervised approach to align cardiac MRI images, and Hu et al. [33] took two
networks: the former applied an affine transformation, while the latter gave the final
registration of patients with prostate cancer.

More recently, new registration methods were proposed to circumvent the necessity
of annotated data when training neural networks [15,34–38]. Jun et al. [34] presented a
registration method that relied on a spatial transformer network (STN) network and a
resampler for inspiration or expiration images of abdominal MRI. Zhang [35] covered the
specific case of brain imaging, implementing two fully convolutional networks (FCNs),
one to predict the parameters of a deformable transformation to align the fixed image to
the moving image, and the other to proceed with the opposite alignment from moving
image to a fixed one. Kori et al. [36] proposed a method that focused on exploring spe-
cific features of multimodal images by using a pretrained CNN followed by a keypoint
detector, while the framework designed by Wang et al. [37] learn a modality-independent
representation from an architecture composed of five subnets: an encoder, two decoders,
and two transformation networks. Still on the registration of nonretinal cases, the method
developed by Vos et al. [15] aligned cardiac images by comparing similar pixels to optimize
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the parameters of a CNN applied during the learning process. The method presented by
Balakrishnan et al. [38] is another example of nonretinal registration, where the authors
took a spatial transformation and U-Shaped learning scheme to explore brain MR data.

Concerning the DL-based methods specifically designed to handle retinal fundus
images, Mahapatra et al. [39] presented a generative adversarial network (GAN) to align
fundus photographs formed by two networks, a generator and a discriminator. While the
former maps data from one domain to the other, the latter is tasked with discerning between
true data and the synthetic distribution created by the generator [11]. Wang et al. [40] intro-
duced a framework composed of two pretrained networks that perform the segmentation,
detection, and description of retina features. Recently, Rivas-Villar et al. [41] have proposed
a feature-based supervised registration method for fundus images where a network is
trained using reference points transformed into heat maps to learn how to predict these
maps in the inference step. The predicted maps are converted back into point locations and
then used by a RANSAC-based matching algorithm to create the transformation models.
Despite their capability in specifically solving the fundus registration problem, the methods
described above employ reference data to compose the loss function.

In summary, most registration methods rely on supervised learning or take syntheti-
cally generated data in order to be effective. While generating new labels can overcome
the scarcity of reference data, it also introduces an additional complication in modeling
the problem, raising the issue of the reliability of artificially induced data in the medical
image domain [42]. Another common trait shared by most DL registration methods is that
they only produce high-accuracy outputs for a certain class of medical images or even
subcategories of fundus photographs, such as super-resolution and retinal mosaics.

Table 1 summarizes the main DL registration methods discussed above.

Table 1. Survey of DL studies. Blue lines refer to works that specifically cover fundus registration.

Papers Ref. Images Type Network Architecture Transformation

Yang et al. [27] Brain MRI (3D) Supervised Encoder + Decoder Affine + Nonrigid
(LDDMM)

Cao et al. [28] Brain MRI (3D) Supervised Network preparation +
network learning Affine + Nonrigid (TPS)

Eppenhof and Pluim [29] Chest CT (3D) Supervised Adapted U-Net Nonrigid (B-Spline)
Fan et al. [31] Brain MRI (3D) Weakly supervised BIRNet Nonrigid
Hering et al. [32] Cardiac MRI (3D) Weakly supervised Adapted U-Net Nonrigid (B-Spline)
Hu et al. [33] TRUS and prostate MRI (3D) Weakly supervised Global Net + Local Net Affine + Non-rigid

Mahapatra et al. [39] Retinal FA images + cardiac
MRI (2D) Weakly supervised GAN Nonrigid

Wang et al. [40] Multimodal retinal image Weakly supervised

Segmentation network +
feature detection and
description network + outlier
rejection network

Affine

Rivas-Villar et al. [41] Color fundus images Weakly supervised U-Net + RANSAC Similarity transformation

Jun et al. [34] Abdominal MRI (2D and
3D) Unsupervised CNN + STN Nonrigid (B-Spline)

Zhang [35] Brain MRI (3D) Unsupervised Adapted U-Net + 2 FCN Nonrigid (B-Spline)

Vos et al. [15] Cardiac MRI and chest CT
(3D) Unsupervised CNN Affine + CNN nonrigid Affine + Nonrigid

(B-Spline)

Wang et al. [37] Brain MRI (2D and 3D) Unsupervised Encoder + decoders +
transformation networks Affine + Nonrigid

Kori et al. [36] Brain MRI (3D) Unsupervised VGG-19 + transformation
estimator Affine

Balakrishnan et al. [38] Brain MRI (3D) Unsupervised Adapted U-Net + STN (+
information optional auxiliary) Nonrigid (linear)

3. Materials and Methods

3.1. Overview of the Proposed Approach

The proposed framework seeks to align a pair of fundus images, IMov and IRe f , with-
out the need for any labeled data. First, we extract the blood veins, bifurcations, and
other relevant compositions of the eye, producing images BMov and BRe f that are passed
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through a U-shaped fully convolutional neural network that outputs a correspondence
grid between the images. In the next learning step, a matching grid is taken as input by
a spatial transformation layer that computes the transformation model used to align the
moving image. In our integrated architecture, the learning occurs through an objective
function that measures the similarity between the reference and transformed images. As a
result, the unified networks learn the registration task without the need for ground-truth
annotations and reference data. Lastly, as a refinement step, we apply a mathematical
morphology-based technique to remove noisy pixels that may appear during the learning
process. Figure 1 shows the proposed registration approach.

Figure 1. Overview of the proposed registration workflow.

3.2. Network Input Preparation

This step aims to handle the image pairs, IRe f and IMov, to improve the performance
of the networks. In our approach, the images were resized to 512 × 512 to reduce the total
number of network parameters related to the image sizes, thus leveraging the process of
training the registration model. Next, a segmentation step was performed to obtain the
eye’s structures that may be more relevant to the resolution of the registration problem.
These include the blood vessels and the optic disc, as we can see from images BRe f and
BMov in the leftmost frame in Figure 1. To maximize the segmentation accuracy, we applied
the isotropic undecimated wavelet transform (IUWT) [43] technique, which was developed
specifically for the detection and measurement of retinal blood vessels.

3.3. Learning a Deep Correspondence Grid

As mentioned before, the first implemented learning mechanism assumes a U-Net-
type structure whose goal is to compute a correspondence grid for the reference and moving
images. The network input is formed by the pair Bre f and BMov, which is passed through
the first block of convolutional layers. This network comprises two downsample blocks:
a max pooling layer and two convolution layers, as illustrated in Figure 2. In each block,
the size of the input is decremented in half according to the resolution of the images, while
the total number of analyzed features doubles.

In the second stage, two blocks are added as part of the network upsampling process.
These are composed of a deconvolution layer, which accounts for increasing the input size
while decreasing the number of features processed by the network, and two convolutional
layers. The resultant data from the deconvolution are then concatenated with the data
obtained by the output of the convolution block at the same level from the previous step
(see the dashed arrows in Figure 2). In our implementation, the ReLU activation function
and a batch normalization layer were used in each convolutional layer except for the last
one. The last convolutional layer enables to return a correspondence field compatible with
the dimension of the input data.
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The network outputs a grid of points (i.e., the correspondence grid), which is used
to drive the movement of each pixel when aligning the pair of images. The rightmost
quiver plot in Figure 2 displays the correspondence grid, where the arrows moved from the
coordinates of the regular grid to the positions produced by the network, while the purple
and yellow maps show the points of highest and lowest mobility, respectively.

Figure 2. The implemented network architecture, used to obtain a correspondence grid. Each layer is
represented by a block with a distinct color. Below each block, the data resolution is described, while
in the upper-right corner, the number of kernels per layer is shown. The correspondence grid is the
network’s output, as displayed in the rightmost corner.

3.4. Learning a Spatial Transformation

In this step, we took an adaptation of the spatial transformer network architecture [44]
to obtain a transformation model for mapping BMov. Particularly, the STN structure allows
for the network to dynamically apply scaling, rotation, slicing, and nonrigid transforma-
tions on the moving image or feature map without the requirement for any additional
training supervision or lateral optimization process.

The STN network incorporated as part of our integrated learning scheme consists
of two core modules: grid generator and sampler. The goal of the grid generator is
to iterate over the matching points previously determined by the U-shaped network to
align the correspondence positions in target image BMov. Once the matches are properly
found, the sampler module extracts the pixel values at each position through a bilinear
interpolation, thus generating the definitive transformed image BWarp. Figure 1 (middle
frame) illustrates the implemented modules of STN.

3.5. Objective Function

Since registration is performed without using any set of labeled data, the objective
function used to train our approach consists of an independent metric that gauged the
similarity degree between the images. In more mathematical terms, we took the normalized
cross-correlation (NCC) as a measure of similarity for the objective function:

NCC(x, y)=
∑m

i=0 ∑n
j=0 Ti,jRi,j√(

∑m
i=0 ∑n

j=0 T2
i,j

)(
∑m

i=0∑n
j=0 R2

i,j

). (1)

In Equation (1), Ti,j = t(x + i, y + j) − t̄x,y, Ri,j = r(i, j) − r̄, and t(i, j) and r(i, j)
are the pixel values at (i, j) regarding the warped and reference images, BWarp and BRe f ,
respectively, while r̄ and t̄ give the average pixel values w.r.t. BRe f and BWarp [45]. In
Equation (1) the objective (fitness) function is maximized, as the higher the NCC is, the more
similar (correlated) the two images are.
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The NCC metric can also be defined in terms of a dot product where the output is
equivalent to the cosine of the angle between the two normalized pixel intensity vectors.
This correlation allows for standard statistical analysis to ascertain the agreement between
two datasets, which is frequently chosen as a similarity measure due to its robustness [46],
high-accuracy and adaptability [47].

3.6. Refinement Process

Since our approach allows for nonrigid registrations, transformed image BWarp may
hold some noisy pixels, especially for cases where the images to be aligned are very different
from each other. In order to overcome this, we applied a mathematical morphology
technique called connected component analysis (CCA) [48].

CCA consists of creating collections of objects formed by groups of adjacent pixels
of similar intensities. As a result, eye fundus structures are represented in terms of their
morphologically continuous structures, such as connected blood vessels. We, therefore, can
identify and filter out small clusters of noisy pixels (see the yellow points in the rightmost
frame in Figure 1) from a computed set of connected morphological components.

3.7. Datasets and Assessment Metrics

In order to assess the performance of the registration methodology, we took three
retina fundus databases. The specification of each data collection is described below.

• FIRE—A full database containing several classes of high-resolution fundus images,
as detailed in [49]. This data collection comprises 134 pairs of images, grouped into
three categories: A, S, and P. Categories A and S covers 14 and 71 pairs of images,
respectively, whose fundus photographs present an estimated overlap of more than
75%. Category A also includes images with anatomical differences. Category P, on the
other hand, is formed by image pairs with less than 75% of estimated overlap.

• Image Quality Assessment Dataset (Dataset 1)—this public dataset [50] is composed
of 18 pairs of images captured from 18 individuals, where each pair is formed by a
poor-quality image (blurred and/or with dark lighting with occlusions), and a high-
quality image of the same eye. There are also pairs containing small displacements
caused by eye movements during the acquisition process.

• Preventive Eye Exams Dataset: (Dataset 2)—a full database containing 85 pairs of
retinal images provided by an ophthalmologist [7]. This data collection gathers real
cases of acquisitions such as monitoring diseases, the presence of artifacts, noise, and
excessive rotations, i.e., several particular situations typically faced by ophthalmolo-
gists and other eye specialists in their routine examinations with real patients.

Aiming at quantitatively assessing the registration results, four validation metrics were
adopted: mean squared error (MSE) [36,39], structural similarity index measure (SSIM) [36],
Dice coefficient (Dice) [15,28,31,37,40,51] and gain coefficient (GC) [7,52].

The MSE is a popular risk metric that computes the squared error between expected
and real values, as shown in Equation (2):

MSE(BRe f , BWarp) =
1

H × W

W

∑
x=0

H

∑
y=0

(BRe f(x,y)
− BWarp(x,y)

)2 , (2)

where H and W represent the dimensions of the images BRe f and BWarp. The values of the
MSE range from 0 to infinite. The closer MSE is to zero, the better.

The SSIM metric takes the spatial positions of the image pixels to calculate the so-called
similarity score, as determined by Equation (3):
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SSIM(BRe f , BWarp) =
(2μBRe f μBWarp + c1)(2σBRe f BWarp + c2)

(μ2
BRe f

+ μ2
BWarp

+ c1)(σ
2
BRe f

+ σ2
BWarp

+ c2)
. (3)

In Equation (3), μ represents the mean value of the image pixels, σ is the variance, σ2

gives the covariance of BRe f and BWarp, and c1 and c2 are variables used to stabilize the
denominators. The results are concentrated into a normalized range of 0 and 1, with 0
being the lowest score for the metric, and 1 the highest.

The Dice coefficient is another metric extensively used in the context of image registra-
tion, which varies between 0 and 1, where 1 indicates an overlap of 100% . Equation (4)
rules the mathematical calculations of this metric:

Dice(BRe f , BWarp) =
2 × BRe f ∩ BWarp

BRe f ∪ BWarp
. (4)

The GC metric, as described by Equation (5), compares the overlap between the
images BRe f and BWarp, and the pair of images BRe f and BMov [52]. Thus, if the number of
pixels aligned after the transformation is equal to the number of pixels before the image is
transformed, the result is equal to 1. The more pixels are aligned compared to the original
overlap, the greater the overlapping value.

GC(BRe f , BMov, BWarp) =
|BRe f ∩ BWarp|
|BRe f ∩ BMov| . (5)

3.8. Implementation Details and Training

Our computational prototype was implemented using Python language with the sup-
port of libraries for image processing and artificial intelligence routines such as OpenCV [53],
Scikit-learn [54] and Tensorflow [55].

The module of integrated networks was trained with batches of eight pairs of images
for 5000 epochs. The plot in Figure 3 shows the learning curve of the integrated networks.
The curve exponentially increased with a few small oscillations, converging in the first
2000 epochs and remaining stable towards the end of this phase. The learning process was
optimized with the ADAM algorithm [56], a mathematical method based on the popular
stochastic descending gradient algorithm. The training was performed on a cluster with
32GB of RAM and two Intel(R) Xeon(R) E5-2690 processors.

Figure 3. Network learning curve after 5000 epochs. The vertical axis represents the fitness value,
which is maximized during training, for each epoch on horizontal axis.
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The images used in the training step were taken from the category S testing set of the
FIRE database, which gathers fundus images of 512 × 512 pixels. This particular category
was chosen for training because it comprised the largest and most comprehensive collection
of images in the FIRE database, covering pairs of retina images that are more similar to each
other (see Figure 4 for an illustrative example). An exhaustive battery of tests showed that
this full dataset is effective for training, as the conducted tests revealed that the presence of
images with low overlapping levels avoids oscillations in the learning curve of the network,
leading to a smaller number of epochs for convergence.

Figure 4. Fundus image pairs typically used for training.

Another observable aspect when using our approach is that the registration model
was trained by taking a moderately sized dataset of fundus images—a trait that can also be
found in other fundus photography related applications, such as landmark detection [41]
and even for general applications of DL-type networks [57].

4. Results and Discussion

In this section, we present an ablation study concerning the refinement stage of our
methodology, which includes the analysis of different settings to increase the quality of the
registration results. We also provide and discuss a comprehensive experimental evaluation
of the performance of our approach by comparing it with recent image registration methods
from both quantitative as well as qualitative aspects.

4.1. Ablation Study

We start by investigating whether the CCA technique can be applied to improve the
registration results. We thus incorporated CCA as part of our framework, verifying its
impact quantitatively and visually. We compared the application of such a technique by
taking three distinct threshold values used to discard clusters with noisy pixels. We also
compared the submodels derived from CCA + registration networks against two popular
digital image processing techniques: opening and closing morphological filters.

Table 2 lists the average of the evaluation metrics for each submodel and database.
The standard deviation is also tabulated in parentheses. By verifying the scores achieved
by the morphological transformations (network + opening and network + closing), one can
conclude that they did not lead to an improvement in quality for the registered image pairs,
even for those containing noise. Moreover, the application of these morphology-based
filters may alter the contour of the structures present in the images, as shown in Figure 5a,c.

On the other hand, by comparing the results output by submodels network + CCA,
we noticed that they clearly contributed to a substantial gain in registration quality in all
examined datasets, as one can see from the scores highlighted in bold in Table 2.

In Figure 5, the image registered by the integrated networks without any refinement
process appears in green (Figure 5a), while the others are comparisons between these and
the images after applying each denoising technique, and they assume a magenta color
so that when added to the green image lead to white pixels. In this way, the noise data
in green indicate the pixels that were treated in these images. Visually speaking, when
comparing the results in Figure 5e,f, the noise was substantially reduced after applying the
CCA technique.

From the conducted ablation analysis, we included as part of our full registration
framework the application of CCA algorithm with a threshold value of 20 pixels.
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Table 2. Comparison of registration submodels created as variations of our framework. Values in
bold indicate the best scores, and values in italics the second best.

Metrics Methods FIRE A FIRE S FIRE P Dataset 1 Dataset 2

MSE (↓)

Network 0.0080 (0.0017) 0.0074 (0.0019) 0.0143 (0.0026) 0.0095 (0.0034) 0.0093 (0.0039)
Network + Opening 0.0287 (0.0030) 0.0319 (0.0023) 0.0343 (0.0031) 0.0324 (0.0037) 0.0268 (0.0035)
Network + Closing 0.0284 (0.0029) 0.0316 (0.0023) 0.0337 (0.0030) 0.0321 (0.0035) 0.0265 (0.0034)
Network + CCA 10 0.0068 (0.0015) 0.0062 (0.0017) 0.0121 (0.0027) 0.0079 (0.0034) 0.0071 (0.0038)
Network + CCA 20 0.0068 (0.0014) 0.0062 (0.0017) 0.0120 (0.0027) 0.0079 (0.0035) 0.0071 (0.0038)
Network + CCA 30 0.0069 (0.0015) 0.0063 (0.0017) 0.0121 (0.0027) 0.0080 (0.0035) 0.0071 (0.0038)

SSIM (↑)

Network 0.9586 (0.0086) 0.9638 (0.0104) 0.9290 (0.0080) 0.9539 (0.0130) 0.9572 (0.0162)
Network + Opening 0.8928 (0.0110) 0.8807 (0.0094) 0.8773 (0.0107) 0.8797 (0.0130) 0.9001 (0.0118)
Network + Closing 0.8923 (0.0103) 0.8818 (0.0092) 0.8752 (0.0104) 0.8800 (0.0124) 0.8998 (0.0119)
Network + CCA 10 0.9731 (0.0055) 0.9749 (0.0068) 0.9575 (0.0076) 0.9682 (0.0128) 0.9733 (0.0106)
Network + CCA 20 0.9732 (0.0053) 0.9748 (0.0068) 0.9585 (0.0075) 0.9681 (0.0133) 0.9734 (0.0103)
Network + CCA 30 0.9727 (0.0054) 0.9744 (0.0068) 0.9580 (0.0073) 0.9678 (0.0133) 0.9733 (0.0102)

Dice (↑)

Network 0.9399 (0.0121) 0.9484 (0.0143) 0.8915 (0.0237) 0.9363 (0.0268) 0.9295 (0.0425)
Network + Opening 0.7814 (0.0101) 0.7743 (0.0121) 0.7367 (0.0173) 0.7807 (0.0359) 0.8046 (0.0382)
Network + Closing 0.7874 (0.0090) 0.7798 (0.0117) 0.7465 (0.0171) 0.7860 (0.0331) 0.8086 (0.0369)
Network + CCA 10 0.9502 (0.0100) 0.9579 (0.0120) 0.9103 (0.0238) 0.9476 (0.0265) 0.9466 (0.0404)
Network + CCA 20 0.9505 (0.0097) 0.9580 (0.0122) 0.9109 (0.0238) 0.9477 (0.0270) 0.9467 (0.0404)
Network + CCA 30 0.9496 (0.0100) 0.9573 (0.0123) 0.9097 (0.0236) 0.9471 (0.0270) 0.9463 (0.0404)

GC (↑)

Network 3.4237 (0.9921) 3.2125 (1.3424) 6.7499 (0.8029) 3.4786 (0.9630) 3.0494 (1.6853)
Network + Opening 2.8025 (0.8065) 2.5910 (1.0920) 5.4621 (0.6265) 2.8544 (0.7680) 2.6075 (1.4265)
Network + Closing 2.8733 (0.8394) 2.6515 (1.1326) 5.6395 (0.6508) 2.9203 (0.7960) 2.6565 (1.4714)
Network + CCA 10 3.5511 (1.0343 ) 3.3379 (1.3973) 7.0506 (0.8443) 3.5963 (0.9943) 3.1755 (1.7625)
Network + CCA 20 3.5520 (1.0361) 3.3378 (1.3965) 7.0410 (0.8410) 3.5956 (0.9940) 3.1716 (1.7571)
Network + CCA 30 3.5443 (1.0345) 3.3321 (1.3920) 7.0160 (0.8373) 3.5892 (0.9888) 3.1672 (1.7517)

(a) (b) (c)

(d) (e) (f)

Figure 5. Visual comparison for several denoising strategies applied on transformed images generated
by the integrated networks. (a) Network – SSIM: 0.9338; (b) Opening – SSIM: 0.8640; (c) Closing –
SSIM: 0.8625; (d) CCA 10 – SSIM: 0.9613; (e) CCA 20 – SSIM: 0.9611; (f) CCA 30 – SSIM: 0.9598.
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4.2. Comparison with Image Registration Methods

We compare the outputs obtained by our approach against the ones produced by
four modern image registration methods. Within the scope of keypoint-based techniques,
the algorithms proposed by Wang et al. [58] and Motta et al. [7], called GFEMR and VOTUS,
were considered in our analysis. For comparisons covering DL-based methods, we ran
the techniques proposed by Vos et al. [59], DIRNet, and the weakly supervised strategy
introduced by Hu et al. [33]. These DL-driven algorithms were tuned following the same
experimental process performed by our approach, i.e., they were fully trained with the
same group of training samples, taking into account the same amount of epochs.

Figure 6a–d show box plots for each validation metric and registration dataset. The
generated plots show that the proposed framework outperformed both conventional and
DL-based techniques in all instances, demonstrating consistency and stability for different
categories of fundus images. The MSE, SSIM and Dice metrics exhibited similar behavior
while still holding the smallest variation in the box plots, thus attesting to the capability
of our approach in achieving high-accuracy registrations regardless of the pair of fundus
images. Lastly, concerning the GC metric (Figure 6d), since such a measure gauges the
overlap segments before and after the registration, the datasets holding more discrepant
images were the ones that produced higher scores, as one can check for Category P of FIRE
database. DIRNet and VOTUS remain competitive for Category S of FIRE, but they were
still outperformed by the proposed methodology. A similar outcome was found when
DIRNet was compared to our approach for Dataset 2.

A two-sided Wilcoxon test at 5% significance level was applied to verify the statistical
validity of the registrations produced by our approach against the ones delivered by other
methods. From the p-values in Table 3, the results from our approach were statistically
more accurate than others in all datasets for at least three of the four evaluation metrics
(MSE, SSIM and DICE). Moreover, we can check that our approach was statically superior
(p < 0.05) in 96 of the 100 tests conducted, thus attesting to the statistical validation of the
obtained results.

Table 3. p-values from two-sided Wilcoxon test at 5% significance level applied to compare the
proposed approach against other registration methods.

Metric Method Fire A FIRE S FIRE P Dataset 1 Dataset 2

MSE

Before <10−7 0.0 0.0 <10−9 0.0
GFEMR <10−7 0.0 0.0 <10−9 0.0
VOTUS <10−7 0.0 0.0 <10−9 0.0
DIRNet <10−7 0.0 0.0 <10−9 0.0
HU et al. <10−7 0.0 0.0 <10−9 0.0

SSIM

Before <10−7 0.0 0.0 <10−9 0.0
GFEMR <10−7 0.0 0.0 <10−9 0.0
VOTUS <10−7 0.0 0.0 <10−9 0.0
DIRNet <10−7 0.0 0.0 <10−9 0.0
HU et al. <10−7 0.0 0.0 <10−7 0.0

DICE

Before <10−7 0.0 0.0 <10−9 0.0
GFEMR <10−7 0.0 0.0 <10−9 0.0
VOTUS <10−7 0.0 0.0 <10−9 0.0
DIRNet <10−7 0.0 0.0 <10−9 0.0
HU et al. <10−7 0.0 0.0 <10−9 0.0

GC

Before <10−7 0.0 0.0 <10−9 0.0
GFEMR 0.0017 0.0028 0.0 0.0001 0.0253
VOTUS 0.0058 0.1206 0.0 0.0224 0.0
DIRNet 0.0 0.0 0.0 0.0 0.0
HU et al. 0.1139 0.1994 0.0 0.0037 0.1594
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(a)

(b)

(c)

(d)

Figure 6. Box-plot charts for each evaluation metric and dataset. Symbols (↓) and (↑) indicate that
“lower is better” and “higher is better”, respectively. (a) Box-plot distribution for MSE metric (↓); (b)
box-plot distribution for SSIM metric (↑); (c) box-plot distribution for Dice metric (↑); (d) box-plot
distribution for GC metric (↑).
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In addition to the four registration methods already assessed in our validation study,
we provide new assessments involving two new methods: the recent registration through
eye modelling and pose estimation (REMPE) technique [60], and the well-established scale-
invariant feature transform (SIFT) algorithm [61]. Figure 7 shows the box-plot distribution
for each validation metric applied to categories A, S and P from FIRE database. The plotted
box plot shows that our framework outperformed the REMPE and SIFT methods, achieving
the smallest variations between outputs, which are visually represented by the tightest
clusters in each plot.

Figure 7. Sample distribution analysis for REMPE, SIFT, and our framework for the FIRE datasets.

A visual qualitative analysis of the registrations produced by the competing methods
is presented in Figure 8. Here, we followed [7,16,52] to represent the aligned images in
terms of color compositions to increase the visual readability and interpretation of the
results. More specifically, images BRe f and BWarp were rendered in green and magenta,
while the overlap of both images is in white, giving the level of agreement between them.

Keypoint-based approaches GEEMR and VOTUS produced acceptable results for most
image pairs, but they are not yet able to satisfactorily deal with the blood veins located
farther away from the eye globe. DL-based methods DIRNET and Hu et al. performed
nonrigid registrations, causing deformations in the output images (e.g., see the misalign-
ment and distortions in the first, third, and fourth images from Figure 8). Our framework
also performs nonrigid registration; however, the implemented networks ensure that the
transformation applied to moving image BMov uniformly distorts the image structures,
rendering BMov closer to the reference image BRe f . Lastly, one can verify that our registra-
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tion model and that of Hu et al. were the ones that were capable of aligning the very hard
images from Category P of the FIRE database.

Another relevant observation when inspecting Figure 8 is the role of vessels in our
framework. Indeed, such a procedure allows for the method to carry out the registration
under the most diverse conditions. For instance, the fundus images from Dataset 1 are
composed of dark lighting, blur, and smoky occlusions. By handling the eye’s vessels, it
is possible to highlight the vascular structure of these images, accurately performing the
registration while avoiding the need for new exams to replace poorly captured photographs.

Figure 8. Visual analysis of the results. Lines 1 and 2: original images from each examined database,
Line 3: the images before the registration process, Lines 4-9: the overlapping areas between BRe f (in
green) and BWarp (in magenta) produced by each registration method.

5. Conclusions

This paper introduced an end-to-end methodology for fundus image registration
using unsupervised deep learning networks and morphological filtering. As shown by
the conducted experiments, our approach was able to operate in a fully unsupervised
fashion, requiring no prelabeled data or side computational strategy to induce the creation
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of synthetic data for training. After being trained, the current model produced one-shot
registrations by just inputting a pair of fundus images.

From the battery of conducted experiments, it was verified that the proposed method-
ology produced very stable and accurate registrations for five representative datasets of
fundus images, most of them covering several challenging cases, such as images with
anatomical differences and very low-quality acquisitions. Furthermore, the methodology
performed better than several modern existing registration methods in terms of the accu-
racy, stability, and capability of generalization for several datasets of fundus photographs.
Visual representations of the registration results also revealed a better adherence achieved
by the introduced framework in comparison with keypoint-based and DL-based methods.

As future work, we plan to: (i) analyze the effects of applying other fitness functions
beyond NCC; (ii) investigate the use of other DL neural networks, for example, SegNet,
X-Net and adversarial networks; and (iii) extend our framework to cope with specific
clinical problems, including its adaptation for domain transformation, from fundus images
to ultra-wide-field fundus photography [25], and 3D stereoscopic reconstruction of retinal
images, which is another application related to the context of diagnostic assistance.
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