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José Torreblanca González, Beatriz Gómez-Martı́n, Ascensión Hernández Encinas, Jesús
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Abstract: The use of markerless motion capture systems is becoming more popular for walking and
running analysis given their user-friendliness and their time efficiency but in some cases their validity
is uncertain. Here, the test-retest reliability of the MotionMetrix software combined with the use
of Kinect sensors is tested with 24 healthy volunteers for walking (at 5 km·h−1) and running (at
10 and 15 km·h−1) gait analysis in two different trials. All the parameters given by the MotionMetrix
software for both walking and running gait analysis are tested in terms of reliability. No significant
differences (p > 0.05) were found for walking gait parameters between both trials except for the phases
of loading response and double support, and the spatiotemporal parameters of step length and step
frequency. Additionally, all the parameters exhibit acceptable reliability (CV < 10%) but step width
(CV > 10%). When analyzing running gait, although the parameters here tested exhibited different
reliability values at 10 km·h−1, the system provided reliable measurements for most of the kinematic
and kinetic parameters (CV < 10%) when running at 15 km·h−1. Overall, the results obtained show
that, although some variables must be interpreted with caution, the Kinect + MotionMetrix system
may be useful for walking and running gait analysis. Nevertheless, the validity still needs to be
determined against a gold standard system to fully trust this technology and software combination.

Keywords: analysis; biomechanics; gait; markerless; testing

1. Introduction

In both research and diagnosis, the use of marker-based motion capture technologies
has been expanded dramatically. However, inherent limits in data collecting may restrict
its use in contexts such as patient homes, sports fields, or public spaces where the use of
a large number of cameras is impractical. Here, a markerless motion capture system has
been offered as one possible solution [1,2].

Markerless systems do not require any markers or sensors to be attached to the body,
reducing clinical feasibility and testing time significantly. The lack of markers, on the other
hand, may have an impact on measuring accuracy. Thus, investigations examining the
validity of such systems under different conditions are crucial. In this context, doctors,
sports practitioners, and researchers have been paying close attention to a markerless
motion capture system [1,3–7].

The validity of the Kinect™ sensor, created first for interacting with video games
on the Microsoft Xbox™ platform by using body movements, for the analysis of gait
parameters has been previously evaluated [1,3–7]. Various pieces of software, including
various filters and calibrations, have been studied in these works. Whereas Schmitz et al. [1]
analyzed the validity of the Kinect™ system with the KinectFusion software for kinematic

Sensors 2022, 22, 3201. https://doi.org/10.3390/s22093201 https://www.mdpi.com/journal/sensors
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data assessment, Dolatabadi et al. [3] identified the concurrent validity of the Kinect™ for
Windows to measure gait spatiotemporal variables. Then, the validity of the Kinect™ for
gait kinematics analysis in comparison with a “gold standard” motion capture system was
assessed, operating both systems under Cartesian calibration [4]. Likewise, concurrent
validity of the Kinect system for spatiotemporal gait parameters was also assessed [6].
However, none of the mentioned studies considered the MotionMetrix™ software, which
might affect measuring accuracy.

As far as the authors’ concern, only one study took into account the Kinect + Mo-
tionMetrix combination [8]. Here, the absolute reliability and concurrent validity of the
Kinect + MotionMetrix combination was evaluated for spatiotemporal parameters when
running at a comfortable velocity by comparing data between the combination system
and two widely used systems (i.e., high-speed video analysis and OptoGait). It was
found that contact time (CT) was overestimated by the system, whereas flight time (FT)
was underrated. However, it resulted to be a valid tool for step frequency (SF) and step
length (SL) measures [8]. Although concurrent validity has been assessed, the reliability
of the Kinect + MotionMetrix system for either walking or running parameters has not
been evaluated.

To identify whether findings are attributable to changes in gait pattern or merely
systematic measurement errors, a gait analysis system’s reliability is critical. Therefore, the
aim of this study is to analyze the test–retest reliability of both walking and running gait
on a treadmill running at 5, 10 and 15 km·h−1 by comparing inter-session data obtained
from the Kinect + MotionMetrix system.

2. Materials and Methods

This study follows the STROBE recommendations for reporting observational studies [9].

2.1. Subjects

A group of 16 men and 8 women recreationally active (age = 22.7 ± 2.6 years; body
mass = 69.1 ± 11.7 kg; height = 1.72 ± 0.10 m; weekly training = 6.9 ± 2.4 h/week) [10] and
familiar with treadmill running voluntarily took part in the study. All of them were free
from injuries and reported no physical limitations or health problems. An informed consent
was signed by each participant after being informed of the objectives and procedures.
It was made clear that they were free to leave at any point. The study followed the
Declaration of Helsinki (2013) and was approved by the Ethics Board of the local university
(No. 2546/CEIH/2022).

2.2. Procedures

Each participant attended the laboratory only once. The participants were instructed
to refrain from strenuous activity for, at least, 48 h before data collection [11]. During
the test, they wore their usual running clothes and shoes. A treadmill (WOODWAY Pro
XL, Woodway, Inc., Waukesha, WI, USA) walking and running protocol was completed.
An accommodation period on the treadmill of, at least, 8 min was completed at a self-
selected velocity [12]. Thereafter, a protocol where 1-min bouts at 5, 10 and 15 km·h−1 was
completed. After a 5-min break to avoid fluctuations in the running pattern caused by
fatigue, all the participants completed the protocol again. Data were collected during the
last 30 s of each bout to guarantee participant adaptation to the running speed

2.3. Materials and Testing

Participants body mass (kg) and height (m) were obtained using a bioimpedance scale
(Inbody 230, Inbody, Seul, Korea) and a stadiometer (SECA 222, SECA, Corp., Hamburg,
Germany), respectively.

Table 1 shows the definition of all the parameters provided by the MotionMetrix soft-
ware (MotionMetrix AB). It offers different kinetic and kinematic variables depending on
gait velocity used during analysis. The combination Kinect + MotionMetrix was employed
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to measure such parameters and all the additional variables that the software provides for
walking and running gait. To control potential influencing factors for temporal parameters,
only the right leg of the participants was analyzed (i.e., asymmetry) [11]. Through the
use of a depth sensor, the Microsoft KinectTM sensor (version 1.0, Microsoft, Redmond,
WA, USA) can monitor 3-D motions. It can locate 20 body joints in 3D space at 30 Hz.
Here, two Microsoft KinectTM sensors were placed on either side of a treadmill in a certain
configuration (170 cm from the treadmill’s center in forward direction and 190 cm in the
perpendicular direction, according to manufacturer recommendations) and utilized in con-
junction with MotionMetrixTM software (Figure 1). The Microsoft KinectTM sensors can
reach 60 Hz when both sensors can track the same point at the same time (according to the
manufacturer). For data collection, manufacturer recommendations were considered (i.e.,
software calibration, tight clothes, no shiny black fabric or reflexes, no moving shoelaces, no
moving hair, no sunlight, and no treadmill parts blocking the entire view of the participant).

Table 1. Definitions of the variables provided by the MotionMetrix software.

Gait Variables Definition

Stance phase (% gait cycle) Period when the foot is in contact with the floor
Swing phase (% gait cycle) Period when the foot is not in contact with the floor

Load response (ms) Period of initial double limb support
Pre-swing (ms) Last phase of stance

Doble support (ms) Stance with both feet in contact with the floor
Step time (ms) Interval between initial contacts of the contralateral foot

Step length (cm) Distance between initial contacts of the contralateral foot
Step frequency (spm) Step rate per minute

Hip frontal angle (deg) Hip angle at the coronal plane at the initial single support stage
Knee frontal angle (deg) Knee angle at the coronal plane at the initial single support stage

Step width (cm) Distance between the heels of the two feet during double stance

Running Variables Definition

Stride time (ms) Time between initial contacts of the same foot
Stride length (cm) Distance between initial contacts of the same foot

Step frequency (spm) Step rate per minute
Step time (ms) Interval between initial contacts of the contralateral foot

Step length (cm) Distance between initial contacts of the contralateral foot
Contact time (ms) Time between initial contact to toe-off
Flight time (ms) Time between toe off and initial contact of the contralateral foot

Foot strike angle (deg) Angle between foot and ground at initial contact
Ankle landing (deg) Angle between foot and shank at initial contact

Center of mass vertical displacement (cm) Center of mass vertical displacement between steps
Spine angle (deg) Forward lean

Thigh flexion (deg) Maximum thigh flexion during the swing phase
Thigh extension (deg) Maximum thigh extension during the swing phase

Shank angle (deg) Shank angle at initial contact with respect the vertical axis at a sagittal plane
Landing knee flexion (deg) Knee flexion at initial contact
Stance knee flexion (deg) Maximum knee flexion during the stance phase
Swing knee flexion (deg) Maximum knee flexion during the swing phase

Knee rotation (deg) Axial rotation of the knee
Step width (cm) Distance between the heel and the projection of the center of mass

Vertical force (BW) Maximum vertical force during the stance phase
Brake force (% of max vertical force) Maximum brake force during the initial contact phase

Lateral force (% of max vertical force) Maximum lateral force during the stance phase
Maximal loading rate (BW/s) Speed at which maximum vertical force is achieved

Maximal propulsion rate (BW/s) Speed at which maximum propulsion force is achieved
External work (Joules/kg/m) Work done to accelerate the center of mass with respect the environment
Internal work (Joules/kg/m) Work done to accelerate the body segments with respect the center of mass
Leg-spring stiffness (BW/m) Vertical leg length in response to the maximum vertical force of a step

Leg length difference at stance phase (cm) Vertical leg length change during the stance phase

3
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Table 1. Cont.

Running Variables Definition

Elastic exchange (%) Fraction of total work stored and released as elastic energy
Knee mediolateral force (BW) Maximum medial force at the knee

Knee vertical force (BW) Maximum vertical force at the knee
Knee frontal moment (BW/m) Maximum adduction torque at the knee
Knee sagittal moment (BW/m) Maximum propulsive torque at the knee

Hip mediolateral force (BW) Maximum medial force at the hip
Hip vertical force (BW) Maximum vertical force at the hip

Hip frontal moment (BW/m) Maximum adduction torque at the hip
Hip sagittal moment (BW/m) Maximum propulsive torque at the hip

ms: milliseconds; cm: centimeters; spm: steps per minute; deg: degrees; BW: bodyweight; %: percentage;
BW/s: bodyweight per second; Joules/kg/m: joules per kilogram per meter; BW/m: bodyweight per meter.

Figure 1. Experimental set-up including treadmill and the positioning of the kinect cameras.

2.4. Statistical Analysis

Data are shown as mean, standard deviation (SD), and ranges. Shapiro-Wilk test
confirmed the assumption of data normal distribution (p > 0.05). A mean comparison
analysis (i.e., dependent samples T-test) was applied between variables from both trials of
each participant (i.e., test-retest) for magnitude comparison. Cohen’s d effect size (ES) was
adopted to interpret the magnitude of the differences following the next criterion: trivial
(<0.20), small (0.20–0.59), moderate (0.60–1.19), large (1.20–2.00) and very large (>2.00) [13].
By means of standard error (SE) and coefficient of variation (CV in %, confidence interval
(CI): 95%) reliability was assessed [13] and identified as acceptable when CV < 10% [14].
Moreover, intraclass correlation coefficient (ICC, model 3.1) between both trials and for
each of the variables analyzed was provided after recommendations by Koo and Li [15].
ICC was interpreted considering the following cut-off values [16]: poor (ICC < 0), trivial
(0–0.2), small (0.21–0.40), moderate (0.41–0.60), substantial (0.61–0.80), and almost perfect
(>0.81). The 95% CI for these ICCs was also described. Custom spreadsheets were used to
assess reliability [17]. The criterion alpha level was set at α = 0.05.

3. Results

3.1. Test-Retest Reliability and ICC Interpretation during Walking Gait

The test-retest reliability data for the kinematic parameters reported by the Kinect +
MotionMetrix system during walking at 5 km·h−1 are shown in Table 2.

4
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Table 2. Descriptive data (means, ±SD) and inter-session reliability of kinematic parameters obtained
from Kinect + MotionMetrix software walking at 5 km·h−1.

Variable
Measure 1

(±SD)
Measure 2

(±SD)
p-Value

(Cohen’s d)
CV (%) (95% CI) ICC (95% CI) Typical Error

StP (% gait cycle) 65.079 (0.67) 65.054 (0.71) 0.849 (−0.04) 0.70 (0.54–0.98) 0.59 (0.25–0.80) 0.45 (0.35–0.64)
SwP (% gait

cycle) 34.92 (0.67) 34.94 (0.71) 0.849 (0.04) 1.30 (1.01–1.82) 0.59 (0.25–0.80) 0.45 (0.35–0.64)

LR (ms) 147.72 (8.9) 151.29 (8.3) 0.016 (0.42) * 3.18 (2.47–4.46) 0.71 (0.44–0.86) 4.75 (3.69–6.67)
PSw (ms) 152 (8.9) 153.5 (7.5) 0.287 (0.18) 3.09 (2.40–4.34) 0.69 (0.40–0.85) 4.72 (3.67–6.62)
DS (ms) 299.73 (14.1) 304.83 (13.4) 0.014 (0.37) * 2.20 (1.71–3.09) 0.78 (0.56–0.90) 6.65 (5.17–9.33)
ST (ms) 520.65 (21) 523.25 (23.7) 0.108 (0.12) 1.03 (0.80–1.45) 0.95 (0.88–0.98) 5.39 (4.19–7.56)
SL (cm) 72.68 (3.4) 73.59 (4) 0.002 (0.12) * 1.24 (0.96–1.74) 0.94 (0.88–0.98) 0.74 (0.58–1.04)

SF (spm) 115.1 (4.8) 114.2 (5.4) 0.008 (−0.17) * 0.91 (0.71–1.27) 0.96 (0.92–0.98) 1.04 (0.81–1.46)
HFA (deg) −0.32 (2.12) 0.18 (2.08) 0.548 (0.24) - −0.85 (−0.93–−0.69) 2.85 (2.22–4.00)
KFA (deg) 0.30 (2.16) −0.62 (2.13) 0.293 (−0.43) - −0.92 (−0.97–−0.83) 2.97 (2.31–4.17)
SW (cm) 15.72 (3.92) 16.06 (4.28) 0.545 (0.08) 12.12 (9.42–17.01) 0.79 (0.58–0.91) 1.93 (1.50–2.70)

StT: stance phase; SwT: swing phase; LR: load response; PSw: pre-swing; DS: double support; ST: step time; SL: step
length SF: step frequency; HFA: hip frontal angle; KFA: knee frontal angle; SW: step width; ms: milliseconds;
spm: steps per minute; deg: degrees; cm: centimeters; SD: Standard deviation; CV: coefficient of variation;
%: percentage, ICC: intraclass coefficient; CI: confidence interval; * p < 0.05.

When analyzing walking gait, significant differences were exhibited only for load
response (LR) and double support (DS) phases (p = 0.016 and 0.014, respectively) showing
a small magnitude of differences (ES = 0.42 and 0.37, respectively) when evaluating both
measurements. Moreover, SL and SF showed significant differences (p = 0.002 and 0.008,
respectively) with a trivial magnitude of differences (ES ≤ 0.12). For the rest of variables,
no significant differences were identified.

Walking gait measures showed acceptable reliability for all variables (i.e., CV < 4%)
except step width (SW) (CV = 12.12%). The ICC values obtained with markerless system
for ST, SL and SF exhibited an almost perfect correlation (ICC = 0.95, 0.94, and 0.96,
respectively). Pre-swing phase (PSw), LR, DS and SW showed substantial correlation
(ICC < 0.80). Moreover, whereas ICCs for both StP and SwP were interpreted as moderate
(<0.60), ICCs for hip frontal angle (HFA) and knee frontal angle (KFA) were considered as
poor (ICC < 0).

3.2. Test-Retest Reliability and ICC Interpretation during Running Gait

Tables 3 and 4 show the test-retest reliability data for the kinetic and kinematic
variables reported by the Kinect + MotionMetrix system during running at both 10 and
15 km·h−1, respectively.

When analyzing running gait at 10 km·h−1, significant differences were found between
both measures for stride time (StrT), stride length (StrL), SF, SL, maximal thigh flexion
(ThighFlex), maximal knee flexion during swing (KFSw), knee rotation (KRot) and SW
(p < 0.05). The magnitude of the differences for these variables was interpreted as either
trivial (ES < 0.20 for SF, ThighFlex, KFSw, KRot, and SW) or small (ES < 0.60 for StrT, StrL,
and SL). However, no significant differences for the rest of the variables provided by the
system when running at 10 km·h−1 (see Table 3).

Table 4 displays running analysis at 15 km·h−1 using Kinect + MotionMetrix system.
Here, no significant differences between trials were found when analyzing kinematic
parameters (p > 0.05) except when assessing vertical displacement (Vdisp) and KRot
(p < 0.03), which also show a small (ES = 0.22) and trivial (ES = 0.17) magnitude of the
differences, respectively. When examining kinetic variables, significant differences (p < 0.05)
were found for vertical force (VertF), maximal loading rate (LRmax), maximal propulsion
rate (PRmax), external work (ExW), leg-spring stiffness (LSS), knee vertical force (KFv),
knee frontal moment (KMf), hip vertical force (HFv), and hip frontal moment (HMf). The
magnitude of the differences for all the parameters mentioned above were identified as
small (ES < 0.60) except PRmax, KFv, and HFv that were identified as trivial (ES < 0.20).
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The rest of the variables show no significant differences when analyzing running gait at
15 km·h−1 (see Table 4).

When assessing reliability for running gait analysis at 10 km·h−1, all variables seemed
to show acceptable reliability (CV < 10%) except when evaluating reliability for foot strike
angle (FSA), ankle landing (AL), spine angle (SpA), ThighFlex, knee flexion when landing
(KFL), and SW (CV > 10%). The ICCs obtained revealed moderate correlation for thigh
extension (ThighExt) and CT (ICC = 0.44 and 0.51, respectively), substantial correlation
for ThighFlex, shank angle (ShA), KFL, knee flexion during stance phase (KFS), and knee
flexion during swing phase (KFSw) (ICC = 0.67–0.78), and an almost perfect correlation
(ICC > 0.81) for the rest of variables at a running speed of 10 km·h−1.

Then, when running velocity was set at 15 km·h−1, although all the kinematic variables
provided by the system show acceptable reliability (CV < 10%), AL, SpA, and SW exhibited
CV > 10% for their measures. When kinetic variables were considered, all the parameters
show acceptable reliability (CV < 10%) except lateral force (LatF) and elastic exchange EEx
showing CV = 13.97% and 21.4%, respectively. The ICC values obtained revealed almost
perfect correlation for most of the kinetic and kinematic parameters (ICC > 0.83) except
the kinematic parameters of ShA, SpA, and CT (ICC = 0.69, 0.76, 0.80, respectively) and
the kinetic parameters of VertF, LRmax, Prmax, KFv, and HFv (ICC = 0.79, 0.71, 0.65, 0.80,
and 0.79, respectively). Furthermore, the kinetic variable of elastic exchange (Eex) shows
moderate correlation (ICC = 0.58).

Table 3. Descriptive data (means, ±SD) and inter-session reliability of the kinematic parameters
obtained from Kinect + MotionMetrix software running at 10 km·h−1.

Variable
Measure 1

(±SD)
Measure 2

(±SD)
p-Value

(Cohen’s d)
CV (%) (95% CI) ICC (95% CI) Typical Error

StrT (ms) 733.39 (45.0) 744.70 (40.0) 0.023 (0.27) * 2.17 (1.69–3.04) 0.87 (0.72–0.94) 16.04 (12.47–22.50)
StrL (cm) 203.72 (12.5) 206.86 (1.11) 0.023 (0.27) * 2.17 (1.69–3.04) 0.87 (0.72–0.94) 4.46 (3.46–6.25)
SF (spm) 164.23 (10.3) 161.58 (8.71) 0.030 (−0.28) * 2.43 (1.89–3.41) 0.84 (0.67–0.93) 3.96 (3.07–5.55)
ST (ms) 366.69 (22.5) 372.35 (20) 0.023 (0.27) * 2.17 (1.69–3.04) 0.87 (0.72–0.94) 8.02 (6.23–11.25)
SL (cm) 101.86 (6.2) 103.43 (5.6) 0.023 (0.27) * 2.17 (1.69–3.04) 0.87 (0.72–0.94) 2.23 (1.73–3.13)
CT (ms) 279.23 (23.4) 285.23 (21.5) 0.207 (0.27) 5.67 (4.40–7.95) 0.51 (0.14–0.75) 15.99 (12.43–22.44)
FT (ms) 87.46 (30.2) 87.12 (28.6) 0.925 (−0.01) 14 (10.88–19.64) 0.84 (0.66–0.93) 12.22 (9.50–17.14)

FSA (deg) 9.94 (4.1) 9.45 (4.1) 0.276 (−0.12) 15.90 (12.36–22.31) 0.87 (0.72–0.94) 1.54 (1.20–2.16)
AL (deg) 0.066 (0.03) 0.064 (0.03) 0.343 (−0.12) 17.46 (13.57–24.49) 0.84 (0.67–0.93) 0.45 (0.35–0.64)

Vdisp (cm) 8.21 (2.0) 8.46 (1.6) 0.206 (0.13) 7.86 (6.11–11.02) 0.88 (0.75–0.95) 0.55 (0.43–0.77)
SpA (deg) 6.78 (2.2) 6.52 (2) 0.261 (−0.13) 11.98 (9.31–16.81) 0.87 (0.72–0.94) 0.80 (0.62–1.12)

ThighFlex (deg) 24.91 (8.0) 22.38 (6.2) 0.032 (−0.35) * 16.26 (12.64–22.81) 0.73 (0.47–0.87) 3.85 (2.99–5.39)
ThighExt (deg) −26.42 (4.3) −27.29 (3.1) 0.306 (−0.23) - 0.44 (0.05–0.71) 2.85 (2.21–3.99)

ShA (deg) −5.18 (2.6) −5.5 (2.8) 0.424 (−0.12) - 0.76 (0.53–0.89) 1.35 (1.05–1.89)
KFL (deg) 18.93 (3.9) 19.39 (3.6) 0.425 (0.12) 10.14 (7.88–14.23) 0.75 (0.51–0.88) 1.94 (1.51–2.73)
KFS (deg) 44.84 (4.7) 43.88 (4.4) 0.145 (−0.21) 4.97 (3.86–6.97) 0.78 (0.56–0.90) 2.20 (1.71–3.09)

KFSw (deg) 92.98 (16.9) 87.48 (13.2) 0.043 (−0.36) * 9.89 (7.69–13.87) 0.67 (0.38–0.84) 8.92 (6.94–12.52)
KRot (deg) −0.13 (2.5) −0.74 (2) 0.037 (−0.27) * - 0.83 (0.65–0.92) 0.96 (0.75–1.35)

SW (cm) 5.29 (2.1) 4.95 (2.4) 0.047 (−0.15) * 10.72 (8.33–15.04) 0.94 (0.88–0.98) 0.55 (0.43–0.77)

StrT: Stride time; StrL: stride length; SF: step frequency; ST: step time; SL: step length; CT: contact time; FT: flight
time; FSA: foot strike angle; AL: ankle landing; Vdisp: vertical displacement of the center of mass; SpA: spine
angle; ThighFlex: thigh flexion; thighExt: thigh extension; ShA: Shank angle; KFL: knee flexion when landing;
KFS: knee flexion stance; KFSw: knee flexion swing; Krot: knee rotation; SW: step width; spm: steps per minute;
cm: centimeters; deg: degrees; CV: coefficient of variation; %: percentage, ICC: intraclass coefficient; CI: confidence
interval. * p < 0.05.
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4. Discussion

This study aimed to determine the test–retest (inter-trial) reliability of the
Kinect + MotionMetrix system for the analysis of both walking and running gait parame-
ters (i.e., kinetic and kinematic variables) on a treadmill. Here, twenty-four participants
were tested to assess the inter-trial reliability of such markerless system. Our results show
that, although there were significant differences between both measurements for both LR
and DS phases, and the spatiotemporal parameters of SL and SF, the system seems to
provide reliable measurements when analyzing walking gait at 5 km·h−1. Then, when
considering reliability when running at 10 km·h−1, no significant differences were found
for most of the variables except when assessing StrT, StrL, SF, SL, ThighFlex, (KFSw), Krot,
and SW. The system apparently provides reliable measures for all the variables apart from
FSA, AL, SpA, ThighFlex, KFL, and SW. During running at 15 km·h−1, no significant
differences were found when evaluating kinematic parameters for both trials besides Vdisp
and Krot obtaining, additionally, reliable measures from the system for all the kinematic
parameters excepting AL, SpA, and SW. If kinematic parameters (i.e., running velocity)
are considered, only Vdisp and Krot showed significant differences between both trials,
providing the system reliable measurements for all these parameters except when assessing
AL, SpA, and SW. For kinetic variables, although the system seems to be reliable when
analyzing such parameters (excepting LatF and Eex), significant differences between trials
were found for the measures of VertF, Lrmax, Prmax, ExW, LSS, KFv, KMf, HFv, and HMf.
The results expose not only the overall intersession reliability of the system when assessing
kinematics in walking and running gait, but also its inaccuracy when considering some
kinetic parameters.

Research on validity and reliability of markerless motion capture systems for biome-
chanical analysis during either walking or running on a treadmill is limited. Although
the validity of the Kinect™ sensor for walking gait analysis has been assessed [1,3–5], the
findings reported are controversial. A previous study [3] stated that the Kinect™ sensor
used for Windows is a valid tool for measuring walking gait spatiotemporal parameters.
Others [5,6] have reported important differences when comparing spatiotemporal parame-
ters measured by the Kinect™ sensor and such parameters by a three-dimensional motion
capture system. Particularly, Clark et al. [6] determined that walking gait parameters
obtained employing the Kinect™ were lower (i.e., −16% ST, −19% StrT, −1.7% SL) than
those acquired utilizing the three-dimensional system. Similarly, Xu et al. [5] claimed
that the Kinect™ system reported valid ST and StrT values, but shorter stance time (i.e.,
−9%) regarding the three-dimensional system when walking. Seemingly, the accuracy
of the Kinect™ system in measuring spatiotemporal characteristics is mainly reliant on
factors such as the software and filter settings used, the gold standard or reference system
examined, or the procedure followed as well as target variables. It is worth noting that the
treadmill protocol used in the present study was intended to reduce any potential gait and
running variability caused by either treadmill inexperience or fatigue [18,19]. It has been
reported that a minimum time of 6 to 8 min is required for healthy young adults and novice
treadmill runners to accommodate their locomotion on the treadmill. Thus, it remains
unknown whether the Kinect™ system would perform in greater variability conditions.

As treadmill running has been shown to have certain biomechanical variations from
running on the ground [12], readers must be cautious when interpreting the results here re-
ported. Some of the investigations that looked into the validity of the Kinect™ system were
done on the ground [3,6], whereas just three studies were completed on a treadmill [4,5,7].
This is key as validity or reliability data obtained while walking should not be transferred
to running situations since the magnitude of the parameters changes and other phases
emerge (i.e., FT does not exist during walking, while there is no double-support time during
running). Pfister and colleagues [7] investigated sagittal plane gait kinematics at different
walking and running velocities (i.e., 4.8 to 8.8 km·h−1), which are lower than the velocity
in the current study (i.e., 5, 10 and 15 km·h−1), without mentioning kinetic and kinematic
parameters, and concluded that the measurement accuracy of the Kinect™ system was
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not acceptable for clinical measurement analysis (i.e., the system did not provide consis-
tent hip or knee measurements as compared to a three-dimensional system). It is worth
mentioning that Pfister [7] employed an older software (i.e., Brekel Kinect) combined with
the Kinect™ sensor, which might explain the variations between the studies. The Brekel
software operated at 30 Hz, but the software utilized in this study (i.e., MotionMetrix™)
can operate at 60 Hz, implying a better level of precision. Indeed, the values obtained in
the present study for knee and hip measures present lower CV at the different velocities
(<~10%). However, when assessing ankle and spine angles, the CV were greater (>~12%)
regardless running velocity.

To the best of the authors’ knowledge, only one study [8] has examined the validity of
the Kinect + MotionMetrix system during running. Here, absolute reliability and concur-
rent validity of this system for measuring CT, FT, SF, and SL was assessed when running at
12 km·h−1. It was determined that the Kinect + MotionMetrix system provides valid SF
and SL values, but CT and FT are overestimated and underestimated, respectively [8]. Our
study complements the aforementioned study by assessing the reliability of the system not
only for the spatiotemporal parameters previously mentioned, but for all the parameters
(i.e., kinetic and kinematic variables) that the system provides as well. Of note, the Motion-
Metrix system offers different parameters depending on the walking or running velocity
during analysis.

The lack of studies either assessing MotionMetrix™ reliability or employing the system
for walking and/or running gait analysis has made the discussion section a challenge, being
this the main limitation of the study. At the same time, this study offers evidence-based
knowledge to fill such gap and to provide future studies support in the use of Kinect +
MotionMetrix system. However, it is worth mentioning that the validity of the kinetics and
kinematics variables still needs to be determined against a gold standard system to fully
trust this technology and software combination. Furthermore, the sample recruited were
active healthy subjects remaining therefore unknown how the system would perform in
greater variability conditions such as (i.e., patients with gait disorders)

To sum up, the results indicate that the Kinect + MotionMetrix software provides
reliable measures when analyzing walking gait at 5 km·h−1 for all the parameters that
the software acquires except for SW (CV = 12.12%). Moreover, it provides reliable mea-
surements for all the variables acquired in running at 10 km·h−1 except for FSA and AL
(CV = 15.90% and 17.46%, respectively), ThighFlex, KFL and SW (CV = 16.26%, 10.14%
and 10.72%, respectively). Finally, when running at 15 km·h−1, the software also provides
reliable values for all the kinematic parameters excepting AL, SpA, and SW (CV = 17.46%,
23.27% and 22.22%, respectively). However, when considering kinetic parameters in run-
ning at 15 km·h−1, all the acquired values seem to be reliable apart from EEx (CV = 21.40%).

5. Conclusions

The results obtained show that, although some variables should be interpreted with
caution, the Kinect + MotionMetrix system may be useful for walking and running gait
analysis after a simple 30 s calibration. Both researchers and clinicians must be aware of the
characteristics of the measures depending on either the walking or running velocity as the
reliability of the parameters may fluctuate. The use of the MotionMetrix software offers prac-
titioners a low-cost, time-efficient, and user-friendly motion analysis system for assessing
and monitoring both walking and running gait at different velocities. Despite these promis-
ing results, the validity of the Kinect + MotionMetrix system still needs to be determined
against a gold standard system to fully trust this technology and software combination.
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Abstract: Ankle fractures can cause significant functional impairment in the short and long term. In
recent years, gait analysis using inertial sensors has gained special relevance as a reliable measurement
system. This study aimed to evaluate the differences in spatiotemporal gait parameters and clinical–
functional measurements in patients with bimalleolar ankle fracture and healthy subjects, to study the
correlation between the different variables, and to analyze the test–retest reliability of a single inertial
sensor in our study population. Twenty-two subjects with bimalleolar ankle fracture six months after
surgery and eleven healthy subjects were included in the study. Spatiotemporal parameters were
analyzed with the G-WALK sensor. Functional scales and clinical measures were collected beforehand.
In the ankle fracture group, the main differences were obtained in bilateral parameters (effect size:
0.61 ≤ d ≤ 0.80). Between-group differences were found in cadence, speed, stride length, and stride
time (effect size: 1.61 ≤ d ≤ 1.82). Correlation was moderate (0.436 < r < 0.554) between spatiotemporal
parameters and clinical–functional measures, explaining up to 46% of gait performance. Test–retest
reliability scores were high to excellent (0.84 ≤ ICC ≤ 0.98), with the worst results in the gait phases.
Our study population presents evident clinical–functional impairments 6 months after surgery. The
G-WALK can be considered a reliable tool for clinical use in this population.

Keywords: malleolar fractures; inertial sensor unit; wearable sensor; walking; spatiotemporal param-
eters; gait analysis; functional scales; clinical measurement; agreement of measurements

1. Introduction

Ankle fractures represent 10% of all bone fractures, with bimalleolar or lateral malleo-
lus fractures being the most common according to the selection criteria used in studies [1,2].
The incidence has been increasing over the last two decades to between 71 and 187 fractures
per 100,000 people depending on age, sex, and geographic region [3]. Surgical treatment
of these fractures is necessary when joint congruence cannot be restored by conservative
treatment, as instability, misalignment, and residual displacements will lead to short- and
long-term functional impairment [4–9].

The importance of the severity of the injury, the surgical intervention, and the immo-
bilization time ranging from 6 to 9 weeks implies significant biomechanical alterations.

Sensors 2022, 22, 3050. https://doi.org/10.3390/s22083050 https://www.mdpi.com/journal/sensors
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These consequences are reflected by decreased range of motion of the ankle joint, soft
tissue impairments, proprioception, and loss of muscle strength, which indirectly affects
functional activities such as walking, balance, jumping, and running [10–13].

Several studies have reported short- and long-term outcomes after surgery [14–16]. A
meta-analysis researching the time course of physical recovery after ankle fracture with
data from 23 studies concluded that adults, on average, recovered rapidly from activity
limitation in the first 3 months after fracture, improved little between 3 and 6 months, and
stabilized, without reaching full recovery, at 24 months [5].

Usually, different scores such as the American Orthopedic Foot and Ankle Society
Ankle Hindfoot Score (AOFAS) [17] and the Olerud–Molander Ankle Score (OMAS) [18]
can be used for the assessment of outcomes after surgery in terms of function and pain.
Although these scores can provide a good assessment of function and patient-reported
outcome measures (PROMs), they remain quite subjective [19,20].

After an ankle fracture, in addition to assessing functional capacity, it is important
to identify clinical parameters that may be conditioning the recovery of these patients.
Parameters such as lower extremity strength and range of motion have been studied as
good predictors of functional capacity in the short term [10,13]. However, most studies
focus on the assessment of ankle strength and do not evaluate other muscle groups of the
lower extremity that may be affected after ankle surgery [10,21].

The analysis of spatiotemporal parameters of gait has been widely used to characterize
functional performance in different populations [22,23].

This analysis is of particular importance in clinical practice, either to evaluate a
rehabilitation process or after surgery [24]. It quantitatively describes the main gait events
and thus reflects the patient’s ability to meet the general gait requirements [25]. The
most advanced technologies used for gait analysis make use of plantar pressures or 3D
motion capture systems to detect changes in gait characteristics; these systems have been
validated and are highly reliable for clinical use [26–28]. However, despite their advantages,
they are expensive and must be operated by specialized personnel. With the advent
of inertial measurement systems (IMUs) for spatiotemporal and kinematic assessments
came a technological breakthrough in the field of biomechanics, as they are relatively
inexpensive and allow the assessment of a virtually unlimited number of steps. In addition,
they offer the possibility of assessing gait and movement disorders outside the restricted
environments of the clinic and research laboratory [29].

A recent systematic review and meta-analysis provides encouraging results regarding
the concurrent validity and reliability of IMUs for measuring step and stride length/time,
with small differences depending on their placement on the body. However, measures
of spatiotemporal asymmetry present inconsistent results that could be biased by the
difference in protocols used for gait analysis or algorithms used for event detection [30].
Based on these results, individual reliability studies of these devices in different populations
are needed before recommendations for their clinical use can be made.

Finally, some studies in healthy subjects [31,32] and with lower limb pathology [33]
conclude that the individual use of a single IMU placed in the lumbar-sacral spine allows us
to obtain reliable information based on trunk acceleration and angular velocity algorithms
to estimate the spatiotemporal gait parameters [32,34,35]. Only a small number of studies
have focused on gait analysis in patients with ankle malleolar fractures [6–10,19,36–38], but
to date, none use a single IMU to record these spatiotemporal parameters.

The aims of this study were (1) to evaluate differences in spatiotemporal gait parame-
ters and clinical measures in patients with ankle fracture 6 months after surgery (operated
and non-operated ankle) and a control group of healthy subjects, (2) to study the association
of gait parameters with clinical measures and functional scales in the ankle fracture group,
and (3) to analyze the intra-session test–retest reliability and agreement of measurements
from a single inertial sensor, placed on the lumbar-sacral spine, for the spatiotemporal
parameters of gait in this population.
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2. Materials and Methods

2.1. Type of Study

This cross-sectional study was carried out in the movement analysis laboratory of the
University Schools of Physiotherapy and Speech Therapy Gimbernat-Cantabria attached to
the University of Cantabria.

2.2. Participants

The population was composed of twenty-two participants (ten women/twelve men)
who underwent surgery after a bimalleolar ankle fracture at the Trauma Unit of the Uni-
versity Hospital “Marqués de Valdecilla” (UHMV) in Santander. The surgical technique
used was open reduction and internal fixation (ORIF), and the time elapsed from injury to
surgery was 4.8 ± 7.6 days. After the immobilization period (3.4 ± 1.2 weeks), progressive
and variable rehabilitation was carried out depending on the individual improvement
of each case (13 ± 2.4 weeks) 5 days a week by the physiotherapy service of the UHMV.
Inclusion criteria were established as 6 months after surgery and age between 18 and
55 years. Patients with previous surgery on the lower limb, bilateral ankle involvement,
neurological, and rheumatic pathology were excluded.

Subjects were selected through medical records registered at the UHMV and with the
collaboration of the Trauma Unit. After the Informed Consent was approved in writing by
the Cantabrian Research Ethics Committee (CEIC) (Reference: 2017.072), they were invited
to participate by telephone or email, where they were informed of the objective of the study
and the procedure to be followed for its realization.

In this study, we also had a control group (CG) of eleven healthy subjects (six
women/five men), consisting of university faculty and staff who agreed to participate on a
voluntary basis. These participants were chosen on the basis of characteristics similar to
the ankle fracture group in age and sex. All of them were currently free of musculoskeletal
pathology of the lower extremity, neurological or rheumatological problems, and with no
history of such pathologies.

2.3. Procedure

Data collection was carried out in a single individual visit 6 months after surgery,
and, after a brief explanation of the procedure to be followed, the Informed Consent was
signed. The control group was assessed during the same period as the data collection.
Sociodemographic and clinical information regarding the surgery and the rehabilitation
process was extracted from the medical records. The clinical data collected were firstly the
American Orthopaedic Foot and Ankle Society (AOFAS) Ankle Hindfoot score [39] and
the Olerud Molander Ankle Score (OMAS) [18] questionnaires, which assess the functional
status of the patients. Subsequently, physical examination of both legs was performed
by anthropometric measurement, bimalleolar/calf perimeters, ankle dorsiflexion range
of motion (ADF ROM), and hip abductor (ABD)/adductor (ADD) muscle strength. The
protocol performed for the clinical measurements was described in detail in our previous
study [13].

The gait cycle (GC) analysis was performed with the subject barefoot on a walkway
8 m long and 2.5 m wide where they had to perform 4 laps (32 m) at their normal walking
speed. We considered normal speed to be the speed previously preferred by each subject
after a brief trial at different speeds following the recommendations of some authors for gait
analysis on level ground [40]. Two valid trials were collected for each subject, discarding
in the processing the first and last step of each lap. For gait analysis, a wireless inertial
sensor system BTS G-WALK (BTS Bioengineering S.p.A., Milan, Italy) weighing 37 g and
measuring 70 × 40 × 18 mm was used, placed by means of a semi-elastic belt at the level
of the fifth lumbar vertebra (L5) and the first two sacral vertebrae (S1–S2). This inertial
system is equipped with 4-Sensor Fusion technology that integrates a triaxial accelerometer
(16 bits/axis, ±8 g), a triaxial magnetometer (13 bits, ±1200 uT), a triaxial gyroscope
(16 bits/axis, ±250 ◦/s), and a GPS receiver. All data were collected at a frequency of 100 Hz
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and transmitted through a Bluetooth 3.0 connection to the computer. A specific software
(BTS G-Studio) allows processing the information and calculating the spatiotemporal gait
parameters and the percentage of symmetry for these parameters between both legs. The
exact algorithms of the G-WALK are unknown and are part of the internal organization of
the BTS company. However, some studies validate its use in different populations [34,35,41],
although it has not been validated in subjects after ankle fracture.

The general spatiotemporal parameters collected were cadence (strides/min), speed
(m/s), stride length (m) (this length was normalized by the length of the legs, trochanter-
floor distance), and stride time (s). Bilateral spatiotemporal parameters (leg differences
expressed as a percentage of the gait cycle) were step length (% stride length), stance phase
(%GC), swing phase (%GC), double support (%GC), single support (%GC), and propulsion
index (m/s2) (the difference in anterior/posterior acceleration of the body barycenter
during the single support phase of the right and left side’s gait cycle) [30].

2.4. Statistical Analysis

First, participants in the ankle fracture group (AFG) were classified according to their
operated and non-operated ankle. For the CG, the dominant leg was taken as the refer-
ence. Sociodemographic and clinical variables were described. For categorical variables,
percentages with their corresponding 95% confidence intervals (95%CI) were estimated,
and for continuous variables, means were estimated with their standard deviation or, if
they did not follow a normal distribution, their median and range. The Shapiro–Wilk test
was performed to analyze the normality of the variables.

In the AFG, the results of the different variables were obtained for both ankles
(operated/non-operated). The difference between them was analyzed using Student’s
t-test for paired samples (expressed as mean difference) or its non-parametric equivalent
Wilcoxon matched-pairs signed-ranks test (expressed with the Z-value typed for com-
parison with that of a standardized normal distribution). Differences between groups
(AFG/CG) were performed using the Student’s t-test for independent samples or its equiv-
alent non-parametric Mann–Whitney U test. Likewise, the effect size was calculated using
Cohen’s d or Hodges’ g, whose values are quantified as follows: 0.2 small, 0.5 medium, and
0.8 large [42].

The relationship between clinical measurements and functional scales with spatiotem-
poral gait parameters was analyzed using Pearson’s correlation coefficient (r) or Spearman’s
rank correlation (Rho) (non-parametric). A regression model (simple and multiple linear
regression, r2), expressed together with the value of the F-statistic, was then applied to the
variables that showed a significant correlation to determine the extent to which clinical
measurements or functional scale scores could predict the results of the gait analysis. Intra-
session test–retest reliability of spatiotemporal gait parameters measured with the G-WALK
in the AFG was calculated using two valid trials. For relative reliability, an ICC2,1 model
with a 95% CI was used following the recommendations described in the literature [43]. The
ICC values were classified as follows: excellent (0.90 to 1.00), high (0.70 to 0.89), moderate
(0.50 to 0.69) and low (<0.50) [44]. Absolute reliability was obtained with the standard error
of measurement (SEM) calculated as SEM = SD × √

(1 − ICC) [45]. The SEM values were
expressed in the same units as the mean value and in a percentage (SEM%) to facilitate
interpretation and extrapolation of the results to other individuals.

Finally, Bland–Altman plots analysis with 95% limits of agreement (LoA; mean differ-
ences: ±1.96 SD) were generated to visualize the degree of agreement between the measure-
ments reported. Systematic error (bias) was obtained using the mean of the differences.

Statistical analysis of the data was performed using SPSS 20.0 software (Statistical
Product and Service Solutions IBM SPSS Statistics 19.0 2010).

3. Results

A total of twenty-two patients with bimalleolar ankle fractures and 6 months after
surgery participated in the present study. The mean age was 43.5 ± 10.2 years, with
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ages ranging from 21 to 55 years. Eleven healthy subjects with a mean age of 39.9 ± 8.6
were in the control group (CG). Table 1 describes the demographic and anthropometric
characteristics of both groups, as well as the functional status of the AFG.

Table 1. Demographic, anthropometric, and functional characteristics of patients with bimalleolar
ankle fractures 6 months after surgery and the control group.

Type (n = 22) AFG (n = 22)
Mean ± SD

95%CI CG (n = 11)
Mean ± SD

95%CI

Age (years) 43.5 ± 10.2 39.0; 48.0 39.9 ± 8.6 34.1; 45.7
Sex Women (%);
Men (%)

45% (W); 55% (M) 55% (W); 45% (M)

Height (cm) 169.3 ± 9.5 164.8; 173.7 170.5 ± 7.9 165.2; 175.8
Weight (kg) 77.8 ± 10.6 73.1; 82.5 74.0 ± 9.1 67.9; 80.1
Operated Limb
Length

85.6 ± 5.9 82.9; 88.2 86.2 ± 5.5 * 82.6; 89.9 *

Healthy Limb
Length (cm)

85.6 ± 5.9 82.9; 88.2

Days from injury
to surgery

4.8 ± 7.6 1.4; 8.1

Immobilization
(weeks)

3.4 ± 1.2 2.8; 3.9

AOFAS Ankle
Hindfoot score

73.6 ± 11.4 71.9; 75.3

OMAS 57.3 ± 22.0 54.1; 60.6
AFG: ankle fracture group; CG: control group; SD: standard deviation; CI: confidence interval; AOFAS: American
Orthopedic Foot and Ankle Society; OMAS: Olerud Molander Ankle Score; Dominant leg CG * cm.

The difference between the operated and non-operated ankle in the spatiotemporal
gait parameters showed a significant difference in step length (−3.8%; p = 0.009; d = 0.61),
stance phase (Z = −2.9; p = 0.004; g = 0.76), swing phase (Z = −2.9; p = 0.004; g = 0.76),
single support (Z = −3.0; p = 0.002; g = 0.80), and propulsion index (−0.8 m/s2; p = 0.010;
d = 0.62). We also found differences in clinical measurements except for ADD strength with
an effect size between 0.15 ≤ d ≤ 2.30 (Table 2).

Table 2. Difference between the operated and non-operated ankle in clinical measurements, spatial–
temporal gait parameters, and dynamic plantar pressure.

Type (n = 22)

Operated Ankle
Mean ±

SD/Median
(Range)

Non-Operated
Ankle Mean ±

SD/Median
(Range)

Differences
between Ankles

Mean (95% CI)/Z 1

Cohen’s d/Hedges’
g p Value *

Clinical
measurements

Calf perimeter (cm) 34.2 ± 4.0 35.5 ± 4.4 −1.3 (−2.0; −0.5) 0.78 0.001 *
Bimalleolar perimeter (cm) 25.1 ± 2.1 24.1 ± 2.1 1.0 (0.8; 1.2) 2.30 <0.001 *

ADF ROM (degrees) 22.8 ± 7.7 35.4 ± 5.3 −12.7 (−15.1;
−10.3) 2.23 <0.001 *

Strength ABD (%) 25.5 ± 7.2 29.3 ± 8.6 −3.8 (−6.4; −1.2) 0.62 0.006 *
Strength ADD (%) 26.3 ± 9.1 25.8 ± 8.6 0.6 (−1.1; −2.2) 0.15 0.491

Spatiotemporal
parameters

Cadence (step/min) 99.9 ± 9.8
Speed (m/s) 0.94 ± 0.1
Stride length (m) 1.28 ± 0.1
Stride time (s) 1.21 ± 0.1
Step length % SL 48.1 ± 3.1 51.9 ± 3.1 −3.8 (−6.7; −1.1) 0.61 0.009 *
Stance % GC 1 63.4 (20.3) 67.4 (17.9) −2.9 0.76 0.004 *
Swing % GC 1 36.6 (20.3) 32.6 (17.9) 2.9 0.76 0.004 *
Double support % GC 15.0 ± 4.3 16 ± 2.1 −1.0 (−2.8; −0.8) 0.25 0.267
Single support % GC 1 32.6 (17.6) 36.7 (20.6) −3.0 0.80 0.002 *
Propulsion index (m/s2) 5.2 ± 1.8 6.0 ± 1.4 −0.8 (−0.2; −1.2) 0.62 0.010 *

SD: standard deviation; CI: confidence interval; ADF ROM: ankle dorsiflexion range of movement; ABD: hip
abductor muscle (normalized by body mass); ADD: hip adductor muscle (normalized by body mass); ROM: range
of movement; GC: gait cycle; SL: stride length; Cohen’s d: size effect; Hedges’ g: size effect (non-parametric); 1

Wilcoxon matched-pairs signed-ranks test (non-parametric; expressed with the typed Z-value); * Significance level
p < 0.05.
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In the comparative analysis between AFG and CG of spatiotemporal gait parameters
(Table 3), we found a significant difference and a high effect size in cadence (−13.8 p/m;
p < 0.001; d = 1.61); speed (−0.24 m/s; p < 0.001; d = 1.71), stride length (−0.18 m; p = 0.003;
d = 1.82); stride time (0.16 s; p < 0.001; d = 1.65); single support (−3.0%; p = 0.045; d = 0.71),
and propulsion index (−1.7 m/s2; p = 0.013; d = 0.98). The differences found in clinical
measurements were significant for bimalleolar perimeter (3.2 cm; p < 0.001; d = 1.64), ADF
ROM (−19.1◦; p < 0.001; d = 2.71), and ABD strength (−8.6%; p = 0.005; d = 1.12).

Table 3. Difference between bimalleolar ankle fracture patients and the control group in clinical
measurements and spatiotemporal gait parameters.

Type
AFG (n = 22) Mean

± SD/Median
(Range)

CG (n = 11) Mean
± SD/Median

(Range)

Differences between
Ankles Mean (95%

CI)/Z 1

Cohen’s d/Hedges’
g p Value *

Clinical
measurements

Calf perimeter (cm) 34.2 ± 4.0 33.7 ± 2.5 0.5 (3.1; −2.3) −0.14 0.76
Bimalleolar
perimeter (cm) 25.1 ± 2.1 21.9 ± 1.6 3.2 (4.6; 1.7) −1.64 <0.001 *

ADF ROM
(degrees) 22.8 ± 7.4 41.9 ± 6.1 −19.1 (−13.8; −24.4) 2.71 <0.001 *

Strength ABD (%) 25.5 ± 7.2 34.2 ± 8.8 −8.6 (−2.7; −14.5) 1.12 0.005 *
Strength ADD (%) 26.3 ± 9.1 32.7 ± 9.2 −6.4 (0.5; −13.2) 0.72 0.06

Spatiotemporal
parameters

Cadence (step/min) 99.9 ± 9.8 113.7 ± 5.2 −13.8 (−8.4; −19.1) 1.61 <0.001 *
Speed (m/s) 0.94 ± 0.1 1.18 ± 0.2 −0.24 (−0.12; −0.36) 1.71 <0.001 *
Stride length (m) 1.28 ± 0.1 1.46 ± 0.1 −0.18 (−0.06; −0.27) 1.82 0.003 *
Stride time (s) 1.21 ± 0.1 1.05 ± 0.1 0.16 (0.23; 0.08) −1.65 <0.001 *
Step length % SL 48.1 ± 3.1 49.2 ± 1.2 −1.1 (0.6; −2.8) 0.42 0.196
Stance % GC 1 63.4 (20.3) 63.6 (9.5) −0.2 0.03 0.834
Swing % GC 1 36.6 (20.3) 36.4 (10.3) −0.4 −0.02 0.688
Double support %
GC 15.0 ± 4.3 14.3 ± 3.3 0.7 (−2.3; 3.7) −0.17 0.612

Single support %
GC 32.6 ± 4.5 35.6 ± 3.6 −3.0 (−0.1; −6.2) 0.71 0.045 *

Propulsion index
(m/s2) 5.2 ± 1.8 6.9 ± 1.6 −1.7 (−1.1; −2.3) 0.98 0.013 *

AFG: ankle fracture group; CG: control group; SD: standard deviation; CI: confidence interval; ADF ROM: ankle
dorsiflexion range of movement; ABD: hip abductor muscle (normalized by body mass); ADD: hip adductor
muscle (normalized by body mass); ROM: range of movement; GC: gait cycle; SL: stride length; Cohen´s d:
size effect; Hedges’ g: size effect (non-parametric); 1 Wilcoxon matched-pairs signed-ranks test (non-parametric;
expressed with the typed Z-value); * Significance level p < 0.05.

Correlation analysis between clinical measurements and spatiotemporal gait parame-
ters in the operated ankle showed statistically significant results and a moderate to large
effect size (Table 4). Regression model analysis showed that both ADF ROM, ABD strength,
and calf perimeter scores can explain the variability of gait analysis results between 20%
and 46%. Specifically, cadence increased with increasing ADF ROM r = 0.552 (F (1, 21) = 8.7,
r2 = 0.30, p = 0.009); speed increased with increasing ADF ROM r = 0.533 and increasing
ABD strength r = 0.436 (F (1, 21) = 6.6, r2 = 0.25, p = 0.018); stride length increased with
increasing ABD strength r = 0.444 (F (1, 21) = 4.9; r2 = 0.20); stride time decreased with
increasing ADF ROM r = −0.554 (F (1, 21) = 8.8; r2 = 0.26); propulsion index was greater
the higher the ADF ROM r = 0.523 and calf perimeter r = 0.447 (F (1, 21) = 10, r2 = 0.46,
p = 0.001). Finally, with respect to the AOFAS scores, the correlation was positive with
cadence (r = 0.540), speed (r = 0.428) and stride time (r = 0.547). Simple linear regres-
sion analysis showed that the AOFAS score could only explain the variability of cadence
(F (1, 21) = 8.2, r2 = 0.29, p = 0.009) and stride time (F (1, 21) = 8.5, r2 = 0.30, p = 0.008)
by 30%.

The intra-session test–retest reliability analysis, including ICC2,1, SEM, and SEM%
values, are shown in Table 5. Excellent relative reliability scores (0.95 ≤ ICC ≤ 0.98)
were found for the general parameters of gait analysis, as well as low absolute reliability
values between 1.56% ≤ SEM% ≤ 2.47%. For the bilateral parameters, a good to excellent
ICC score was found with values between 0.84 and 0.95. The worst SEM% values were
for double support (11.20%) in the operated ankle and propulsion index (7.88%) in the
non-operated ankle.
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Table 4. Correlation between clinical measurements and functional scales with the spatiotemporal
gait parameters in operated ankle.

Clinical Measurements and Functional Scales

Spatiotemporal Gait
Parameters

ADF ROM
Strength

ABD
Bimalleolar
Perimeter

Calf
Perimeter

AOFAS OMAS

Cadence (step/min) 1 0.552 ** 0.405 0.230 0.177 0.540 ** 0.415
Speed (m/s) 1 0.533 * 0.436 * 0.335 −0.124 0.428 * 0.247
Stride length (m) 1 0.413 0.444 * 0.070 −0.289 0.247 0.083
Stride time (s) −0.554 ** −0.393 −0.263 −0.205 −0.547 ** −0.398
Step length % SL 1 −0.001 0.231 0.056 −0.144 0.163 0.205
Stance % GC 2 −0.054 −0.178 −0.112 0.144 0.115 0.172
Swing % GC 2 0.054 0.178 0.112 −0.144 −0.115 −0.172
Double support % GC 1 −0.224 −0.303 −0.060 0.222 −0.069 0.036
Single support % GC 2 0.318 0.491 * −0.001 −0.076 0.402 0.284
Propulsion index
(m/s2) 1 0.516 * −0.052 0.122 0.449 * 0.407 0.261

1 Pearson’s correlations (r); 2 Spearman’s rank correlation coefficient (Rho) (non-parametric); * p < 0.05; ** p < 0.01.

Table 5. Intra-session test–retest reliability spatiotemporal gait parameters with the G-WALK sensor.
Limits of agreement (Bland–Altman analysis) and mean of the differences (bias) between two trials.

Spatiotemporal
Gait Parameters

ICC (95%CI) SEM (95% CI) SEM%
LoA

(Lower;
Upper)

Bias

Cadence
(step/min) 0.95 (0.89; 0.97) 2.21 (0.79; −3.64) 2.21 −3.91; 2.12 −0.89

Speed (m/s) 0.97 (0.93; 0.98) 0.02 (0.01; 0.05) 2.12 −0.06; 0.04 −0.01
Stride length (m) 0.98 (0.97; 0.99) 0.02 (0.01; 0.03) 1.56 −0.07; 0.06 0.01
Stride time (s) 0.95 (0.70 0.98) 0.03 (0.01; 0.05) 2.47 −0.06; 0.10 0.02

Operated
Ankle

Step length % SL 0.90 (0.82; 0.94) 1.01 (0.55; 1.46) 2.09 −2.17; 1.92 −0.12
Stance phase %
GC 0.91 (0.84; 0.94) 1.43 (0.75; 2.12) 2.25 −5.02; 4.51 −0.26

Swing phase % GC 0.86 (0.75; 0.91) 1.79 (1.10; 2.47) 4.89 −4.51; 5.02 0.26
Double support %
GC 0.85 (0.74; 0.91) 1.68 (1.06; 2.31) 11.20 −6.80; 7.74 0.47

Single support %
GC 0.84 (0.74; 0.91) 1.82 (1.17; 2.48) 5.58 −9.21; 5.63 −1.79

Propulsion index
(m/s2) 0.90 (0.83; 0.94) 0.45 (0.24; 0.65) 7.50 −1.79; 1.89 0.05

Non-operated
Ankle

Step length % GC 0.90 (0.84; 0.95) 1.01 (0.55; 1.46) 1.94 −1.92; 2.17 0.12
Stance phase %
GC 0.94 (0.89; 0.96) 1.12 (0.46; 1.77) 1.66 −2.96; 4.50 0.77

Swing phase % GC 0.92 (0.86; 0.95) 1.29 (0.63; 1.95) 3.95 −4.50; 2.96 −0.77
Double support %
GC 0.84 (0.73; 0.90) 1.06 (0.68; 1.44) 6.62 −5.57; 7.83 1.13

Single support %
GC 0.84 (0.73; 0.91) 1.90 (1.22; 2.58) 5.17 −7.59; 8.17 0.29

Propulsion index
(m/s2) 0.95 (0.92; 0.97) 0.41 (0.15; 0.68) 7.88 −1.89; 1.20 −0.34

Propulsion index
(m/s2) 0.95 (0.92; 0.97) 0.41 (0.15; 0.68) 7.88 −1.89; 1.20 −0.34

CI: confidence interval; ICC: intraclass correlation coefficient; SEM: standard error of the measurement; LoA:
limits of agreement; Bias: mean of the differences.

Figures 1 and 2 show the Bland–Altman plots comparing the results of the spatiotem-
poral gait parameters. The horizontal line represents the mean of the differences, while the
dotted lines represent the confidence interval. The Bland–Altman plot analysis showed an
excellent degree of agreement between measurements for speed (bias = −0.01; LoA = −0.06;
0.04) and stride length (bias = 0.01; LoA = −0.07; 0.06). Single support (bias = −1.79;
LoA = −9.21; 6.63) in the operated ankle and double support (bias = 1.13; LoA = −5.57;
7.83) in the non-operated ankle showed the lowest degrees of agreement. The mean error
and limits of agreement for the remaining variables are reported in Table 5.
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Figure 1. Bland-Altman plots for cadence and speed. Each graph presents the mean difference (solid
line) and 1.96-fold standard deviation of difference (dashed line) indicating the limits of agreement
between the measurement.
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Figure 2. Bland-Altman plots for stride length and stride time. Each graph presents the mean
difference (solid line) and 1.96-fold standard deviation of difference (dashed line) indicating the limits
of agreement between the measurement.

4. Discussion

One of the aims of our study was to evaluate the spatiotemporal gait parameters in
patients with bimalleolar ankle fractures 6 months after surgery and compare them with
healthy subjects.

In the AFG, we found a clear difference between both legs in the gait phases. In
particular, the double support was the only parameter where no differences were obtained.
Regarding the comparative analysis with the CG, the main differences were obtained in
cadence, speed, stride length, stride time, and single support in the operated ankle. Our
results are in agreement with a study by Suciu et al. [37] in thirty patients with bimalleolar
ankle fractures and twenty-one healthy subjects, in which they found differences between
both ankles in step time, step length, swing phase, stance phase, and single support after
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12 weeks of specific rehabilitation. Compared to the control group they found differences
in stride length and speed. However, in contrast to our findings, they found no differences
in cadence or stride time. Aspects that may determine the differences between the two
studies include the measurement system used and the type of rehabilitation performed.
On the other hand, half of the participants in their study were over 50 years of age, and the
results were considerably different from younger adults whose recovery process was very
rapid. Another study conducted on patients with trimalleolar ankle fractures 6 months after
surgery found similar results to ours when compared to healthy subjects in speed, cadence,
stride length, and stride time [46]. In contrast, our patients with bimalleolar fractures
had a stride length 18 cm longer than that obtained in their study, which we believe to
be a clinically important difference. However, other studies conclude that there are no
short-term differences in gait characteristics between bimalleolar and trimalleolar ankle
fractures [6,7]. Segal et al. [7], in their study of forty-one subjects with ankle fracture and
seventy-two healthy subjects, found in the bimalleolar fracture group (n = 15) differences
between the two ankles in step length (−29.2% SL) and single support (−15.9% GC). In
our patients, we also found this asymmetry in step length (−3.8% SL) and single support
(−4.1% GC), although the difference was not as large. In addition, the speed was only
0.48 m/s, very different from what we found (0.94 m/s). The differences in the results
seem to be justified by the period of the measurements, as the Segal et al. study was
performed from the 12th week after surgery, just when weight-bearing on the operated
ankle was allowed.

As we have just seen, the decrease in speed and stride length is very much conditioned
by the time of recovery in which the patients find themselves. In this sense, another study
carried out at the beginning of the rehabilitation process on twenty-four patients with ankle
fractures and twenty-four healthy controls found a difference between groups of −40 cm
in stride length, greater than the difference found in our study [6]. In contrast, if we look
at what happens in the long term, some authors find that even one year after surgery,
the spatiotemporal gait parameters are not yet normalized. In particular, gait speed is
significantly lower in patients with malleolar fractures compared to healthy subjects [8,38].
Other authors, however, only found a reduced gait speed but did not consider this to be
clinically relevant [9].

Specific and individualized rehabilitation is fundamental in ankle recovery, and no less
important is to keep a functional and clinical record throughout the recovery process [47].
A good way to estimate the patient’s functional capacity is by assessing ankle mobility or
lower extremity strength. These clinical parameters allow prediction of performance in
functional tasks such as gait [10].

In this regard, in our work, we evaluated ADF ROM, ABD/ADD hip muscle strength,
and bimalleolar/calf perimeter in both study groups and additionally studied the de-
gree of correlation, including regression models, between-gait parameters, and clinical
measurements in the AFG.

ADF ROM is one of the most studied variables after ankle injury [48]. Despite rehabili-
tation efforts to improve ankle motion, short- and medium-term studies conclude that the
gain is only 6–12% [48]. Such a low gain in range of motion is a major barrier to acquiring
pre-injury status. Some authors put a cut-off point of 30◦ of weight-bearing dorsiflexion as
the minimum to be able to perform tasks such as descending stairs or squatting without
problems [15]. In our study, we found in the AFG a difference between the operated and
non-operated ankle in the ADF ROM of −12.7◦ and −19.1◦ concerning the CG. Using a
measurement methodology similar to ours, Nilsson et al. 2009 [36], in a sample of 105
patients with ankle fractures 6 months after surgery, obtained similar results to ours. In
our work, the measurement was performed before the gait analysis to correlate it with the
different spatiotemporal parameters. This ankle motion quantification system obtained
excellent intra- and inter-test reliability [49]. Studies analyzing the kinematics of gait show
the restrictions of the ADF ROM during the different phases of gait [9,38,50]; however,
they do not relate this decrease in the movement to the spatiotemporal parameters. In our
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study, we were able to observe how ankle ADF ROM and ABD strength had a moderate
association with cadence, speed, stride length, and stride time; moreover, they predicted
up to 30% of the variability of their values.

The muscle atrophy observed in the calf perimeter could influence the gait pattern of
patients with ankle fractures. In our study, only 24 weeks after surgery, the calf muscu-
lature of the operated ankle had a smaller calf perimeter (−1.3 cm; p = 0.002) compared
to the non-operated ankle. Human studies quantifying the effect of disuse on muscle
morphology show that in only 8 weeks of immobilization, the cross-sectional area mea-
sured with MRI shows decreases of 19% and 24% in the anterior and posterior calf muscle
compartments [51]. The strength and activation of the plantar flexor muscles also suffer a
significant loss [52], and their improvement after a period of rehabilitation has already been
studied [10,36]. In our research, we did not directly assess the strength of the plantar flexors;
however, we analyzed the propulsion index that could be associated with the strength of
this muscle group during single support [53]. In reference to this parameter, we found that
the propulsion index was significantly lower (−0.8 m/s2) when comparing the operated
and non-operated ankle of the AFG, and even lower (−1.7 m/s2) when compared to the CG.
Furthermore, we found a positive and significant correlation between calf perimeter and
propulsion index (r = 0.447), and together with ADF ROM (r = 0.523), it could predict 46%
of the propulsion index score. These results reflect the importance of having a good range
of motion and calf muscle volume to be able to propel yourself adequately during gait.

Among the questions raised before conducting this study were the consequences that
non-weight-bearing immobilization after surgery might have on the hip musculature. In
this regard, there is a lack of studies identifying this impact on gait, although it has been
studied in dynamic balance [13]. In the present study, we found a significant difference
in ABD strength of both legs within and between groups. Furthermore, the correlation
was positive and moderate with speed (r = 0.436), stride length (r = 0.444) and individual
support (r = 0.491). Despite these results, ABD strength alone was not a significant predictor
of any of the gait parameters. Based on these results, we could think that, despite the ABD
strength deficit, gait is not a task that requires the recruitment of this musculature as balance
or running could be.

Quantitative information on the evolution of recovery of physical function after an
ankle fracture is essential for adequate patient care. Professionals can make use of prog-
nostic data to understand the course of recovery and make the right decisions throughout
the rehabilitation process. In our study where we assessed functional condition using
the OMAS and AOFAS scales, we found that 6 months after surgery, patients still had
pain and impaired function. A meta-analysis studying the short-, medium-, and long-
term prognosis of function improvement in patients operated on after an ankle fracture
tells us that improvement in the first 6 months is rapid but incomplete, with only 78%
of function recovered [5]. In our research, we even found worse results on the OMAS
subjective functional scale (57.3 ± 22.0), which was used in most of the studies included
in the meta-analysis. The reason for this low score could lie in the subjectivity of the scale
due to its characteristics or the state of health of the patients at the time of surgery [54]. We
obtained better results on the AOFAS scale (73.6 ± 11.4); in addition, we found that a higher
cadence (r = 0.540) and speed (r = 0.428), as well as a shorter stride time (r = −0.547), were
moderately correlated with better scores. However, this correlation was not found with the
OMAS scale. This is in line with the results of other studies in which this correlation also
did not exist [37] or was weak [8,9].

The final aim of this study was to assess the test–retest reliability and agreement
of measurements from a single inertial sensor, placed on the lumbar-sacral spine, in
this population.

In our results, we found high to excellent intra-session test–retest reliability, with ICC
scores between 0.84 and 0.98; the worst ICC values were obtained for the variables single
support and double support at both ankles. Our results are consistent with those found by
De Ridder et al. [35] in a group of thirty healthy subjects, in which they obtained high to
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excellent reliability values (0.84 ≤ ICC ≤ 0.99) for the spatiotemporal gait parameters after
five valid trials. In line with our findings and those of Rider et al., another study conducted
on a large healthy population and with different neurological pathologies, finds ICC values
between 0.82 and 0.97, with the worst result for the stance and swing phase [55]. Despite
the similarities in our results, the two previous studies only assess relative reliability but do
not provide data on absolute reliability that would allow us to see the degree of variation of
repeated measurements in individuals. In our investigation, the lowest SEM was obtained
for stride length (0.02 m), which represents only 1.56% of the SEM%. Furthermore, the
degree of agreement between the two trials was excellent for speed, stride length, and
stride time, with bias values close to 0 and a small range in LoA. Bravi et al. [33], on a
sample of twenty subjects with lower limb pathology, found moderate to excellent inter-
rater reliability (0.59 ≤ ICC ≤ 0.95), with the lowest values corresponding to the phases
of the gait cycle. In our work, we did not find such low ICC values in the gait phases;
however, we found a higher SEM% in double support and propulsion index of both ankles,
although they represent less than 11% of the SEM%. Concerning the limits of agreement
and estimated bias, the single support of the operated ankle obtained the worst accuracy
(bias = −1.79; LoA = −9.21; 5.63), probably due to the presence of three outliers. Bravi et al.
justify the low reliability of gait phase recognition to the reduced pelvic motion in their
study population. This is in agreement with that described by Zijlstra and Hof [31], who
report the influence of the pelvis in differentiating normal and pathological gait patterns.
In relation to this, the differences between our study population and the characteristics
of the Bravi et al. sample, with subjects who have undergone hip or knee replacement
with subjects having undergone hip or knee repositioning and possibly presenting greater
functional limitations, may justify the differences obtained.

Based on our results and the previously mentioned studies in different populations, it
seems to indicate that the estimation of gait phases may be affected by an asymmetric gait
cycle. Gait speed is another point to consider, as it has been shown to be a parameter that
affects the validity of wearable sensors [56]. However, the ICC and SEM results obtained
in our research, as well as the low bias values and limits of agreement, we consider to be
within clinically acceptable limits.

Our study has some limitations. Firstly, the characteristics of a cross-sectional study.
However, we believe that this type of study, carried out 6 months after surgery, is necessary
because of the importance of an objective and global identification of functional problems
that can guide a more specific rehabilitation. Secondly, we have a small sample size for
the control group. However, the sample size calculation based on the differences in gait
speed between groups indicates adequate power to detect a minimal clinically important
difference. Finally, in our research, we did not use a gold-standard system for the concurrent
validity of the G-WALK. Although it has not been studied in patients with ankle fractures,
there are already studies in different populations where moderate to excellent levels of
agreement and reliability were obtained, with the lowest values corresponding to the gait
phases [33–35,41].

5. Conclusions

In our sample of patients with bimalleolar ankle fracture, 6 months after surgery, the
analysis of the spatiotemporal gait parameters shows a clear asymmetry between both legs
in the different gait phases. Furthermore, compared to healthy subjects, there is a decrease
in cadence, speed, and stride length, as well as an increase in stride time. The decrease
in clinical parameters such as ADF ROM, ABD hip muscle strength, and calf perimeter
influence gait performance and may even explain 20–46% of the results in certain gait
parameters. The low scores obtained at 6 months on the AOFAS and OMAS scales reveal a
slow recovery of function and symptomatology; furthermore, better scores on the AOFAS
scale are associated with better cadence and stride time. Finally, test–retest reliability and
agreement analysis of the measurements made with the G-WALK sensor shows good to
excellent results in our study population. Therefore, it can be considered a reliable gait
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analysis system, and its use could be justified in the clinical setting, although being cautious
with the interpretation of the results in the identification of gait phases.
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Marija M. Gavrilović * and Milica M. Janković
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Abstract: The human gait can be described as the synergistic activity of all individual components of
the sensory–motor system. The central nervous system (CNS) develops synergies to execute endpoint
motion by coordinating muscle activity to reflect the global goals of the endpoint trajectory. This
paper proposes a new method for assessing temporal dynamic synergies. Principal component
analysis (PCA) has been applied on the signals acquired by wearable sensors (inertial measurement
units, IMU and ground reaction force sensors, GRF mounted on feet) to detect temporal synergies in
the space of two-dimensional PCA cyclograms. The temporal synergy results for different gait speeds
in healthy subjects and stroke patients before and after the therapy were compared. The hypothesis
of invariant temporal synergies at different gait velocities was statistically confirmed, without the
need to record and analyze muscle activity. A significant difference in temporal synergies was noticed
in hemiplegic gait compared to healthy gait. Finally, the proposed PCA-based cyclogram method
provided the therapy follow-up information about paretic leg gait in stroke patients that was not
available by observing conventional parameters, such as temporal and symmetry gait measures.

Keywords: gait; gait cycle; ground reaction force; inertial measurement unit; principal component
analysis; stroke; synergy; wearable device

1. Introduction

The central nervous system (CNS) controls many degrees of freedom (DOFs) of the
musculoskeletal system, coordinating many muscle activities on many joints. Human
movements can have different trajectories, speeds, and accelerations even when they
achieve the same goal. To control so many DOFs, it becomes necessary for the CNS to have
a complex and delicate organizational structure [1]. Different mathematical approaches for
modeling realistic multi-joint movements were suggested in the literature, based on the
various optimization functions such as minimum jerk [2,3], minimum torque change [4],
minimum effort [5], as well as more complex functions [6,7]. An organizational approach
based on activities of functional groups (called synergies) was also suggested [8]. Synergies
represent patterns of body segment coactivations. Researchers have hypothesized that
the nervous system activates synergies by a neural signal and creates a set of temporal–
spatial synergy modules. These modules represent a smaller dimensional space than the
space formed by individual DOFs. Synergies can be found at various levels, such as joint
coordinates or muscles [9,10]. Kinematic synergies may result from muscle synergies, i.e., as
a consequence of muscle activity [11,12]. In addition, researchers have suggested that CNS
develops synergies to execute endpoint motion [13,14]. Motor intra-limb coordination is the
ability to coordinate segments in a sequence [15]. This coordination can be accomplished
by controlling the endpoint trajectory.

The human gait can be described as a synergistic activity of all individual compo-
nents of the human sensory–motor system. Different mathematical models of muscle
synergies are known in the literature: invariant temporal (“temporal synergies”), spatial
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(“synchronous synergies”), and spatiotemporal (“time-varying synergies”) [16]. All of
these approaches reduce the dimensionality of the movements, but they are not equivalent
to each other.

Temporal muscle synergies imply the existence of a set of temporal components com-
mon to different activation tasks [17,18]. Ivanenko et al. [19] showed that there is a basic
set of five temporal components extracted from recorded electromyography (EMG) signals
in controls and patients with a spinal cord injury (SCI). The consistent timing of motor
patterns across various walking tasks was shown even with considerable variation of mus-
cle coactivation. These temporal components represent the timings of the intersegmental
coordination and may reflect a neural strategy for coordination in a low dimensional set of
patterns that facilitate control of gait. Furthermore, these timings are argued to represent a
control variable in central pattern generators [20]. Furthermore, it was reported that the
nervous system’s activation pattern during walking does not depend on walking speed,
including running [21].

However, EMG analysis has certain limitations; for example, adipose tissue can affect
EMG recordings. There is also the problem of muscle crosstalk and a lack of deep muscles
reliability [22]. Furthermore, it was shown that the synergy structure is dependent on
the number and choice of muscles [23]. On the other hand, the intermediate dynamic
representation is a logical connection between highly variable muscle activity and whole-
body mechanics [20].

The synergism in people without sensorimotor impairment differs from patients with
sensorimotor disorders. Injury to the CNS, such as stroke, leads to changes in gait modality
and synergism [24]. These differences can be observed concerning the parameters that
characterize gait. Characteristics of gait in stroke hemiplegic patients are: decreased speed,
decreased and asymmetrical step length, decreased stance and single support times on the
affected side, changes in joint kinematics, and overall asymmetry in different metrics [25].
The rehabilitation process restores the gait, i.e., retrains the patient to stand and walk with
reduced sensory–motor resources and to walk in the way most similar to the gait before
the disorder. During rehabilitation, it is essential to objectively quantify the success of the
applied protocols and therapies on gait performance.

The gold standard for quantitative gait analysis implies the usage of high cost, space,
and time-consuming 3D motion capture systems and force platforms [26,27]. Recently, the
development of wearable technology enabled the usage of alternative low-cost approaches
for gait assessment based on inertial measurement units (IMU) and ground reaction force
(GRF) sensors [28,29]. These portable, wireless systems are suitable for clinical and home
monitoring [30]. They are easy to use, non-invasive, small, compact, and robust enough to
provide valuable information for the objective evaluation of the gait performance of people
with neurological disorders [31,32]. Conventionally, the prerequisite for quantitative gait
analysis is gait segmentation. Several algorithms were developed to tackle this problem in
IMU-based systems, such as zero-crossing and threshold methods [33,34]. However, these
algorithms usually have lower accuracy in pathological gait [35]. The gold standard for
gait phase partitioning is the measurement signal of the direct contact between the foot and
the ground. For this reason, some wearable systems, in addition to the IMUs, also contain
foot pressure insoles in shoes. However, gait phases’ detection accuracy and reliability also
depend on the location of the GRF sensors [36]. It is difficult to determine the heel-strike
events automatically in the recordings of the person after a stroke, precisely because of the
problem with the drop foot [37]. Thus, a gait analysis methodology that does not need the
segmentation process is preferred.

The principal component analysis (PCA) has been widely used to discover “hidden”
patterns in the high dimensional space of human gait signals in healthy and pathological
gait [19,38,39]. Many researchers used PCA to identify muscle [21] and limb synergies [40],
which are proposed to be building blocks for motor behavior [19]. Recently, it was shown
that the space of two-dimensional PCA cyclograms allows simple assessment of gait
performance in stroke hemiplegic patients [41].
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This study aims to evaluate whether invariant (temporal) features of synergies can
be extracted by analyzing foot (endpoint) dynamics (kinetics and kinematics) acquired
by a wearable device, without the need for gait segmentation and need of EMG data
acquisition. PCA was applied on the signals acquired by wearable sensors (IMU and GRF
integrated into shoe insoles and mounted on feet) to detect temporal synergies in the space
of two-dimensional PCA cyclograms. The idea of invariant temporal components “hidden”
in motion dynamics signals was explored, as shown in the literature for EMG signals [19].
To test the hypothesis about invariant temporal dynamic synergies, the gait was analyzed
at different speeds in healthy subjects. The gait of stroke hemiplegic patients before
and after the rehabilitation therapy was also analyzed. The differences between healthy
and pathological gait patterns were observed concerning the parameters which define
the temporal dynamic synergies. Additionaly, it was investigated whether the method
for detecting temporal dynamic synergies from IMU and GRF signals has an additional
practical value for the paretic side recovery follow-up of stroke patients compared to the
conventional gait analysis results, such as symmetry and temporal gait parameters.

2. Materials and Methods

2.1. Subjects

Nineteen subjects took part in this study: 14 healthy persons (without sensory–motor
deficiency) and five hemiplegic stroke patients in the subacute phase (4–6 months after
stroke). Subject characteristics are shown in Table 1. The patients could follow instructions
from clinicians. The patients could walk with or without cane support.

Table 1. Subject characteristics.

Variable
Mean ± SD

Healthy Subjects (n = 14) Patients (n = 5)

Age (years) 34.8 ± 12.6 61 ± 5.1
Gender 8 male, 6 female 1 male, 4 female

Total body mass (kg) 73.3 ± 12.7 78.4 ± 9.2
Height (m) 1.78 ± 0.08 1.7 ± 0.05

BMI (kg/m2) 23 ± 2.18 28.18 ± 3.6
Affected side - 4 left, 1 right

The patients participated in functional electrical stimulation (FES)-based therapy. The
effectiveness of FES therapy for the drop foot correction was assessed by observing the
neuroplasticity changes using electroencephalography examination. Eight-channel MO-
TIMOVE electronic stimulator (3F—FIT FABRICANDO FABER, Belgrade, Serbia, [42])
was used for FES therapy, augmenting the patient’s pedaling (OMEGO® Plus, Graz, Aus-
tria, [43]). The duration of the rehabilitation protocol was four weeks. The healthy subjects
did not participate in the FES therapy.

The experimental design was approved by the ethical review board of the Rehabilita-
tion Clinic “Dr Miroslav Zotović” in Belgrade. Participants were well-informed about the
noninvasive protocol and they signed informed consent forms prior to gait assessment.

2.2. Instrumentation

The Gait Teacher (RehabShop, Belgrade, Serbia) [44] was used in the study. This
system comprises 10 GRF sensors (five per foot insole) that measure vertical forces and two
IMUs (MPU6050 module) with integrated three-axis accelerometers and gyroscopes into the
insoles. Each foot insole has two piezoresistive GRF sensors in the heel zone (medial heel—
HeelM, lateral heel—HeelL), two sensors in the metatarsal (medial metatarsal—MetaM,
lateral metatarsal—MetaL), and one sensor in the toes zone (Toe). Each sensor can estimate
pressure up to 3.5 MPa. The characteristics of GRF sensors are: linearity < ±0.25% FS,
BFSL, repeatability < ±0.075% FS, hysteresis < ±0.05% FS, zero thermal error < 0.75% FS,
@35 ◦C, span thermal error < 0.75% FS, @35 ◦C, and stability error < ±0.2% FS/year. The
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gyroscope and accelerometer specifications within IMU are: supply voltage 2.3–3.4 V,
consumption 3.9 mA, calibration tolerance ±3%, I2C interface support, and operating
temperature −40 ◦C to −85 ◦C. The IMU can measure the 3D acceleration (range of ±4 g)
and the 3D angular velocity (range of ±500 deg/s). The 3D directions in the IMU are as
follows: the z-axis directs up from the insole, the x-axis directs ahead, and the y-axis directs
medially. The direction of angular velocity ωx is from heel to toe. This angular rate is
perpendicular to the insole (frontal plane). The rate ωy is also orthogonal to the insole and
directed laterally. The angular rate ωz is in the plane of the insole pointing up. Each insole
is wirelessly connected to the computer. Eleven signals from each insole are transferred
at a sampling rate of 100 Hz. The acquisition software was built in LabView (National
Instruments, Austin, TX, USA). The built-in software synchronizes IMU and GRF sensors.
The system provides data with a time delay of 20 ms. Data are stored in text format (.txt)
for further offline analysis (Figure 1). In conclusion, the data obtained with the Gait Teacher
are a set of five GRF time series and six-time series of angular velocities and accelerations
per insole. The output is a large matrix with 22 components [41].

Figure 1. Gait Teacher instrumentation and output signals from both insoles.

2.3. Experiment Protocol

The Gait Teacher insoles were fitted to the subjects’ shoes. First, the outputs from GRF
sensors were zeroed: a participant raised the left foot and then the right and held it in the
air for about 2 s (no load) while the clinician pressed the set button on the host computer.
The IMU signals were zeroed while the participant stood on both feet for about 2 s.

Healthy subjects walked on a flat surface 10 m long. Before the recording, the re-
spondent practiced walking for a few minutes. Signals from all sensors were recorded
from three consecutive sessions. They walked at different speeds: 0.4 m/s, 0.8 m/s, 1 m/s,
1.6 m/s, and 2 m/s. The lowest speed was chosen to mimic the speed of the patients
after stroke in the subacute phase ~0.4 m/s [45]. The highest speed was set to be the
highest speed of the oldest participant. The oldest participant in the study was a healthy
individual, 70 years old, and the maximal speed for this age is ~2 m/s [46]. Different
speeds were recorded to address the diversity of different gaits and therefore generalize
results from temporal synergies detection as much as possible, controlling for speed. To
ensure a particular gait speed on the ground (avoiding the treadmill effect on the gait
performance [47]), the subject followed the sound of the metronome, which signaled the
cadence depending on the desired walking speed (Table 2). Markers were placed at one
of the predefined distances: 0.5, 0.75, and 1 m, Figure 2. The markers were not moved
between consecutive gait sessions of one participant for the same walking speed. This
distance between markers was changed depending on the height or walking speed of
the participant, so that the subject feels comfortable while walking. For higher subjects
or higher speeds, markers were set at a greater distance. The metronome signaled the
beginning of each stride, which occurred at specific markers on the floor. Table 2 shows the
cadences required for different speeds, on a path of 10 m, for three possible stride lengths
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(the most suitable one for a particular respondent, heuristically chosen depending on the
subject’s height and the specified speed).

Table 2. Cadence for various speeds and stride lengths on a path of 10 m (SPM = strides per minute).

SPM 2 m
s 1.6 m

s 1 m
s 0.8 m

s 0.4 m
s

0.5 m 240 192 120 96 48
0.75 m 160 128 80 64 32

1 m 120 96 60 48 24

 

Figure 2. An example of the experimental setup.

The patients were asked to walk at a self-selected preferred speed. Signals from all
sensors were recorded from three consecutive sessions. The rest between runs was about
1 min long. The clinician could monitor the signals on the computer screen during the
recording. Signals recorded from sensors mounted on the paretic leg before therapy (p.b.),
nonparetic leg before therapy (np.b.), paretic leg after therapy (p.a.), and nonparetic leg
after therapy (np.a.) were separately analyzed. The number of strides performed by healthy
subjects was 534, 534, 400, 366, and 300, respectively for speeds: 0.4 m/s, 0.8 m/s, 1 m/s,
1.6 m/s, and 2 m/s. The number of strides performed by patients was 110 before and 168
after therapy.

2.4. Data Preprocessing

The first and last strides were excluded from the gait analysis since the person needs to
adapt the gait speed to the sound of a metronome. The signals were filtered by a low-pass
Butterworth filter, third order, with a cut-off frequency of 5 Hz [48]. Signals obtained
by sensors from different legs were analyzed separately. The input for PCA included
five signals from five GRF sensors, angular velocity in the sagittal plane, Gyro_Y, and
accelerations in the frontal plane, Acc_X, and transverse plane, Acc_Z, (in total, eight
signals per leg, Figure 3). They are chosen heuristically because the gait is predominant in
the profile plane. All PCA and statistical analyses were done in the R software environment,
version 3.5.1.
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Figure 3. PCA cyclogram generation in the first two principal components space. Example data are
from a person with no known sensory–motor impairment. The original signals were acquired by the
Gait Teacher system (left panel). The subset of signals from the whole gait session (middle panel)
was used to form a cyclogram (PC2 vs. PC1, right panel).

2.5. Detection of Temporal Synergies

PCA was used to find common temporal components hidden in the waveforms of
dynamics’ signals. The PCA input signals were normalized to have unit variance. Bartlett’s
sphericity test showed that the signals were suitable for PCA [49]. The PCA allowed the
mapping of original data into the orthogonal space, where the principal axis is the direction
of the data’s maximal variance [50].

The analysis included calculating the correlation matrix, extracting the principal
component of the varimax rotation, and calculating factor scores. These factor scores
can be interpreted geometrically as the projections of the observations onto the principal
components [49]. The whole preprocessed gait session (gait cyclogram) per subject was
input for PCA. Therefore, the standardization across subjects with a different range of
motions (subjects may engage in different walking strategies) was avoided [41]. After PCA,
no stride segmentation was performed. Consequently, there was no need for the time
interpolation of the signals for separate gait cycles.

The proposed method uses 2D gait cyclograms to represent recorded foot dynamics
in the space of the first two principal components, PC1 and PC2 (Figure 3). The repetitive
nature of near-cyclic events resulted in the overlapped cyclogram (cyclograms of gait cycles
were overlapped) [41]. The calculation of principal components’ quantitative parameter of
cyclogram, introduced in [41], is shown in Equation (1) and expressed as an angle θ in each
time point (observation).

θ = arctg
PC2

PC1
, (1)

where PC1 and PC2 are the coordinates of the observations on the first two principal
components (PC).

Figure 4a shows examples of specific time points where three temporal components
exist during the single gait cycle by different colors (green, blue, yellow). These points
correspond to the local extremums of PC1 or PC2. In Figure 4b the corresponding points of
temporal synergy are presented in gait cyclogram using the same colors as in Figure 4a. The
corresponding angles θ of observations that belong to each of three temporal components
are marked by θ1, θ2, and θ3.
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(a) (b) 

Figure 4. Representation of temporal synergies on the first two components on: (a) time PC signals;
(b) PCA gait cyclograms. Time activations of temporal synergies are displayed using different colors
(green, blue, yellow).

The overall schema of the performed methodology on the PCA gait cyclogram is
shown in Figure 5, and it includes:

(1) Thresholding of gait cyclograms—Only observations (points in time) where prin-
cipal components contribute significantly have been extracted and analyzed; namely, the
threshold values for the squared cosine of the angle θ which was set heuristically to 0.8
(cos2

PC1
> 0.8 and cos2

PC2
> 0.8).

(2) Estimation of the distribution density applying nonparametric kernel density
estimation (KDE) [51] on the angle θ (obtained after thresholding in the last stride)—KDE
was obtained for nine groups of data separately: H2, H1.6, H1, H0.8, H0.4 (both legs analyzed
together for healthy subjects with the following walking speeds: 2 m

s , 1.6 m
s , 1 m

s , 0.8 m
s ,

0.4 m
s , respectively), Pp.b and Pp.a (patients’ paretic legs before and after therapy), Pnp.b and

Pnp.a (patients’ nonparetic legs before and after therapy). Shapiro–Wilk normality test [52]
was used to check the (non)normality of the distributions.

(3) Clustering of distribution density to three clusters θ1, θ2, and θ3 (related to three
temporal components) for each of nine groups—distribution density was smoothed by
the bandwidth parameter. The bandwidth of the kernel is a free parameter that exhibits
a strong influence on the resulting estimate; it is the real positive number that defines
the smoothness of the density plot. The formula used to calculate optimal bandwidth
parameter bw for each group is shown in Equation (2) [53].

bw =
0.9 ∗ min

(√
Var(X), IQR(X)

1.349

)
5
√

n
, (2)

where n is the number of observations of X, Var(X) is its variance, and IQR(X) is the
interquartile range. Cluster limits were extracted as local minimums of the bandwidth
smoothed distribution density.

(4) Statistical analysis—Mann–Whitney U nonparametric test was performed to deter-
mine whether the same clusters (detected temporal synergies) differ statistically between
patients and healthy groups [54]. Wilcoxon test for partially matched two sample data
(the combination of Wilcoxon signed-rank statistics for paired data and Mann–Whitney
U statistics) was used to compare healthy groups for different speeds [55]. The same test
was used to compare patients before and after therapy. Finally, it was analyzed whether
the statistically significant results before and after therapy can be assessed based on tem-
poral synergism and compared the effects to conventional parameters (Section 2.6). The
significance level was p = 0.001 for estimating the statistically significant differences.
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Figure 5. Temporal synergies detection from the PCA gait cyclograms.

2.6. Conventional Gait Analysis

The threshold method extracted the swing and stance phases for each gait session.
The threshold was set to be 5% of the sum of all GRF signals in each insole divided by the
number of force sensors, which was 5. The signals were filtered by a low-pass Butterworth
filter, third order, with a cut-off frequency of 5 Hz. For each stride, stance and swing
durations were calculated as a percentage of the gait cycle. In addition, since gait after
stroke is characterized by high asymmetry, four symmetry measures were calculated for
both the swing and stance phase, as in Equations (3)–(6). These measures were used to
assess therapy impact on stroke patients [56,57].

Symmetry ratio (SR) :
Tle f t

Tright
, (3)

Symmetry index (SI) :

⎛
⎝

∣∣∣Tle f t − Tright

∣∣∣
0.5 ∗

(
Tle f t + Tright

)
⎞
⎠ ∗ 100%, (4)

Gait asymmetry (GA) : ln(
Tle f t

Tright
) ∗ 100%, (5)

Symmetry angle (SA) :
45

◦ − arctan
( Tle f t

Tright

)
90◦ ∗ 100%, (6)

where Tle f t is the duration of the specific gait phase (stance or swing) for the left leg, and
Tright is the duration of the specific gait phase (stance or swing) for the right leg.

Whether statistically significant results could be assessed before vs. after therapy was
assessed using the Wilcoxon test for partially matched two-sample data. The significance
level was p = 0.001 for estimating the statistically significant differences.

3. Results

3.1. PCA Cyclograms

Figure 6 (top) presents an example of overlapped cyclograms in a healthy subject
for gait sessions with different gait speeds. For healthy subjects, the signals from sensors
mounted on left and right feet were analyzed together. Figure 6 (bottom) shows thresholded
cyclograms (cos2

PC1
> 0.8 and cos2

PC2
> 0.8, as explained in Section 2.5) that contain

observations where temporal synergies are activated.
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(a) (b) (c) (d) (e) 

Figure 6. Examples of overlapped cyclograms for one healthy subject’s gait session (top) and thresh-
olded cyclograms (bottom). Extracted (red) observations on thresholded cyclograms correspond to
temporal synergies in PCA space, for the following gait speeds: (a) 2 m

s ; (b) 1.6 m
s ; (c) 1 m

s ; (d) 0.8 m
s ;

(e) 0.4 m
s . In brackets, the percentages of explained variance of the specific principal component (PC1

or PC2) are shown.

Cyclograms for patients’ paretic and nonparetic sides, before and after therapy, were
separately analyzed (Figure 7).

    
(a) (b) 

Figure 7. Examples of overlapped cyclograms for one patient (top) and thresholded cyclograms
(bottom). Extracted (red) observations on thresholded cyclograms correspond to temporal synergies
in PCA space: (a) before therapy (the paretic leg is in the left column, the nonparetic leg is in right
column), and (b) after therapy (the paretic leg is in the left column and the nonparetic leg is in right
column). In brackets, the percentages of explained variance of the specific principal component (PC1

or PC2) are shown.

Angles θ were calculated by Equation (1) for each observation on thresholded cyclo-
grams (for red points in Figure 6 bottom and Figure 7 bottom). Arrays of angles’ values for
each of nine groups (H2, H1.6, H1, H0.8, H0.4, Pp.b, Pnp.b, Pp.a, Pnp.a) were further used as an
input for KDE.

3.2. Temporal Synergies Extracted by KDE

KDE was used to detect temporal synergies (clusters in time) for each of the nine
groups. The cluster limits were estimated (Table 3) as local minimums in bandwidth-
smoothed density distribution plots (red dots in Figures 8 and 9).
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Table 3. Cluster limits (temporal components) in distribution density of angle values θ1, θ2, and θ3,
mean ± standard deviation, all expressed in degrees.

Healthy Subjects
Patients before

Therapy
Patients after

Therapy

H2 H1.6 H1 H0.8 H0.4 Pp.b Pnp.b Pp.a Pnp.a

θ1
cluster limits [198–360] [198–360] [198–360] [206–360] [213–360] [257–360] [235–360] [191–360] [206–360]
mean ± SD 265 ± 14.9 262 ± 15.7 266 ± 7.9 271 ± 15.8 276 ± 12.8 318 ± 24.4 295 ± 38.6 291 ± 40.3 272 ± 27.6

θ2
cluster limits [73–197] [73–197] [73–197] [88–205] [81–212] [110–256] [110–234] [118–190] [59–205]
mean ± SD 138 ± 8.9 138 ± 7.5 140 ± 9.7 147 ± 14 147 ± 22.6 183 ± 26.1 172 ± 18.4 162 ± 4.3 152 ± 11.7

θ3
cluster limits [0–72] [0–72] [0–72] [0–87] [0–80] [0–109] [0–109] [0–117] [0–58]
mean ± SD 16 ± 7 13 ± 5.2 13 ± 8.3 21 ± 12.9 23 ± 16.7 36 ± 18.9 39 ± 12.7 25 ± 12.7 12 ± 6.9

     
(a) (b) (c) (d) (e) 

Figure 8. Clustering of temporal components in healthy subjects for the following gait speeds (red
dots are cluster limits): (a) 2 m

s ; (b) 1.6 m
s ; (c) 1 m

s ; (d) 0.8 m
s ; (e) 0.4 m

s . Top graphics represent
distribution densities, and bottom graphics represent bandwidth-smoothed distribution densities.

   
(a) (b) (c) (d) 

Figure 9. Clustering of temporal components (red dots are cluster limits) in patients for: (a) Paretic
legs before therapy; (b) Nonparetic legs before therapy; (c) Paretic legs after therapy; (d) Nonparetic
legs after therapy. Top graphics represent distribution densities, and bottom graphics represent
bandwidth-smoothed distribution densities.

In Table 3, cluster limits in distribution density of angle values θ1, θ2, and θ3 are shown
in degrees for healthy subjects and patients before and after therapy.

Based on Equation (1), the mean values and standard deviations of the θ1, θ2, and θ3
angles in cyclograms (i.e., the significant contribution of activation of the first two principal
components) are shown in Table 3 for all patients and healthy subjects with different speeds.
It could be noticed that the angles were shifted in time by approximately one-third of the
walking cycle. These angles quantify temporal activations of gait synergies.

3.3. Comparison of Synergies between Different Speeds in Healthy Subjects

No significant differences were found between H2, H1.6, H1, H0.8, H0.4 groups for θ1,
θ2, and θ3 (p > 0.001).
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3.4. Comparison of Synergies between Patients and Healthy Subjects

Table 4 shows the results of statistic tests between healthy groups (H2, H1.6, H1, H0.8,
H0.4) and patients (Pp.b, Pnp.b, Pp.a, and Pnp.a). Significant differences were found in all
angles (θ1, θ2, and θ3) between all healthy groups and paretic leg gait before therapy (Pp.b).
After therapy, the shift in the angle towards a healthy angle can be found in some angles,
specifically for the lowest gait speed (0.4 m

s ), which is the most similar to the speed of the
patient’s gait after stroke [58].

Table 4. Statistical differences between healthy and patient groups (before and after therapy).

Healthy

Patients
Pp.b. Pnp.b. Pp.a. Pnp.a.

H2

θ1 0 * 0 * 0 * 0 *
θ2 0 * 0 * 0 * 0 *
θ3 0 * 0 * 0 * 0.008

H1.6

θ1 0 * 0 * 0 * 0 *
θ2 0 * 0 * 0 * 0 *
θ3 0 * 0 * 0 * 0.332

H1

θ1 0 * 0 * 0.001 0.115
θ2 0 * 0 * 0 * 0 *
θ3 0 * 0 * 0 * 0.594

H0.8

θ1 0 * 0 * 0.022 0.045
θ2 0 * 0 * 0 * 0.004
θ3 0 * 0 * 0.024 0.002

H0.4

θ1 0 * 0.588 0.301 0.001
θ2 0 * 0 * 0.008 0.138
θ3 0 * 0.002 0.190 0.001

* p < 0.001.

3.5. Comparison of Synergies between Patients before and after Therapy

The significant differences in patients before and after therapy were found in all angles
θ1, θ2, and θ3 (p < 0.001). The boxplots for each angle θ1, θ2, and θ3 for all nine groups are
shown in Figure 10. The temporal synergies (angles) shift can be observed after therapy
towards healthy synergies.

Figure 10. Temporal synergies (angles θ1, θ2, and θ3) for all groups.

Additionally, it is important to consider the relative weight of each dynamic’s signal,
which is called loading. Loadings from the first two principal components are interpreted
as the coefficients of the linear combination of the input variables from which the principal
components are constructed. The relative strength of the effect of each factor on an input
signal is given by this weighting coefficient. For each input signal, the mean weighting
coefficients (loadings) of the first two components were obtained by averaging the values
across all subjects for specific gait speed [19]. Figure 11 shows average weighting coeffi-
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cients for all nine groups. Some input variables loaded highly on the specific component,
such as angular velocity Gyro_Y on PC2. Most of the input variables are loaded on both
components. The noticeable gradual change of weightings with gait speed can be noticed
in loadings on both PC1 and PC2. For patients, it could be noticed that loadings in PC1 are
approaching values from healthy subjects’ gaits.

Figure 11. Weighting coefficients of the PC1 and PC2 for all groups. Coefficients are plotted on a
color-coded scale.

3.6. Comparison with Conventional Methods

In Figure 12, boxplots for symmetry (SR, SI, GA, SA) and temporal (duration) parame-
ters of stance and swing gait phases are shown.

Figure 12. Boxplots of symmetry and temporal parameters for all patients’ groups.

No significant differences between gait before and after therapy with the paretic leg
could be found in swing or stance duration (p = 0.94). A significant difference has been
found in swing and stance durations in nonparetic leg gait. Furthermore, this significant
difference was reflected in swing symmetry parameters since it is proportional to the
ratio of paretic and nonparetic leg parameters (p < 0.001) but not in the stance symmetry
parameters (p = 0.017–0.019).

Unlike temporal parameters for the paretic leg, by observing the temporal synergies
parameters (Equation (1)), the statistically significant differences for the paretic leg after
therapy were found compared to before therapy (p < 0.001, Figure 10).

38



Sensors 2022, 22, 2728

4. Discussion

This paper proposes a new method for detecting temporal gait synergies in dynamic
space using PCA without recording muscle activity. The foot trajectory has been represented
with respect to time in the PCA cyclogram space. The foot dynamics reflect the muscle
activity but in a more straightforward way. Analyzing the dynamics of the endpoint—i.e.,
foot—is important since it is assumed that the control of limb dynamics, instead of muscle
activity, would help ensure whole-body mechanical stability and energy [59]. The control
of limb segment motion may happen by encoding the limb endpoint dynamics.

The inputs for PCA were GRF signals measured at the lateral and medial heel, lateral
and medial metatarsal, and toe on each foot, as well as the accelerations and angular
velocities measured at the rear part of each foot. The Gait Teacher system is easy to use,
wearable, and relatively cheap compared to EMG-based and other gait analysis systems.
It can be used in everyday life, not just in a hospital environment [60,61]. The clinician
does not need the training to manage the system, unlike EMG equipment, where electrode
montage and data acquisition are more time-consuming. The system’s set-up comes down
to putting on shoes with insoles and following the simple interface. Due to the high level
of impairment of patients in the subacute phase of stroke [62], it is crucial to provide fast
and straightforward screening to make the gait evaluation more comfortable and effortless
for patients.

PCA used whole preprocessed gait session recordings as an input. There was no gait
segmentation before or after PCA; therefore, there was no loss of information due to the
interpolation to the specific time base or incorrect stride segmentation. The problem of gait
phase detection accuracy and reliability was bypassed by observing the whole gait session
and evaluating the sequence at once. Unlike when calculating symmetry and temporal
parameters, valuable data were lost due to incorrect gait event detection.

In this paper, three temporal activations of synergies were extracted (three modules,
related to angles θ1, θ2, and θ3). Statistical tests proved the differences between healthy
and patient gait before therapy and confirmed that the temporal synergies are invariant
in healthy gait, regardless of different gait speeds, Table 4. These temporal activations are
shifted 30% in time, which agrees with previous studies. Researchers have also claimed
that three main temporal components from a set of five are also shifted by approximately
30% in time. Additionally, the existence of three synergies was statistically confirmed. The
time shift of synergies was not significantly different in healthy gait for different speeds,
which was not aligned with the observation from the literature [19].

The rehabilitation helps recovery of cortical neuronal networks controlling gait, and
the re-emergence of healthy synergies can be noticed [63]. In this paper, synergies have been
analyzed before and after therapy for stroke patients, and synergies were also compared to
healthy subjects. Before the therapy, there were significant differences in all three temporal
synergies compared to healthy gait. This can be explained by a change in double limb
support and single limb support duration [64]. After therapy, the temporal activations
‘moved’ closer (i.e., cyclogram has rotated towards healthy cyclogram orientation) to the
activations of lower speed healthy gait. The time-shift of specific synergies towards healthy
values was statistically confirmed for synergies because of the FES therapy, Table 4. To the
best of our knowledge, no prior studies have statistically compared temporal synergies
from dynamics perspective between stroke hemiparetic gait before and after therapy with
different healthy gait speeds.

On the other side, an observation can be reported about the second module related to
the angle θ2 in the paretic leg before and after therapy, indicating less complex locomotor
control of the affected side (Figure 7). The reduction in observations for the second module
could be noticed because the same amount of variance can be explained with fewer syner-
gies. These results agree with previous findings of the relation between less complex control
and poorer walking performance [17]. A decreased number of synergies (‘disappearing’ of
the second module, from three to two synergies) in the paretic leg can be explained by the
merging of synergies [17,65,66]. This decrease is explained by the greater cohesion between
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the parts of the body and the generally reduced complexity of movement due to injury. The
merging of synergies was shown in paretic gait after the therapy, indicating the possible
development of abnormal synergies [17,67].

The difference in the distribution of weightings reflects complex motor coordination,
although the temporal synergies are consistent (Figure 11). This means that even though
the input variables had a different contribution to each PC, the activations of PCs in time
remained the same. It could be noticed that some weightings in the paretic leg after therapy
became more exaggerated than in a healthy one, such as lateral metatarsal force weighting
on PC1 (Figure 11). This aligns with the possible development of abnormal synergies
(merging of synergies) but needs further investigation.

By applying PCA, it was possible to characterize better the specific features of gait
disorders in relation to commonly used techniques [40]. Therefore, the conventional
temporal and symmetry parameters were also calculated. The proposed method was
more advantageous than conventional gait analysis since the statistical test proved the
significant difference in the paretic leg, which was not observed in temporal or symmetry
parameters (Figure 12). After the therapy, symmetric gait may not be the only measure of
therapy success and may not reveal the complete picture [68]. On the other hand, maximal
gait variability was preserved by using PCA, and variability is a complementary way of
quantifying locomotion and monitoring rehabilitation effects [69–71].

Other studies have examined the possibilities for follow-up of stroke patients based on
the analysis of temporal muscle synergies [72]. Abnormal patterns of muscle synergies were
used to provide additional measures for clinicians during various therapy sessions, such
as robotic-assisted, conventional gait, or FES-cycling training [73,74]. Whether temporal
synergies indicate the gait recovery of stroke patients is still arguable [65,73–75]. The present
study showed significant changes in the temporal synergies during the rehabilitation from
a dynamics perspective without considering muscle synergies.

The detection of temporal synergies from a dynamic perspective is helpful for gait
assessment. Visually monitoring 2D cyclograms is a robust and straightforward qualitative
measure for clinicians. The values of the proposed θ angles—i.e., temporal synergies—are
quantitative measures of gait performance. The rotation of a 2D cyclogram (the change
in temporal synergy) is a direct and simple measure that clinicians can use to assess gait
performance by comparing values with healthy temporal synergies. As a result, clinicians
will better understand and follow up with the therapy’s effect on gait after a stroke. Whether
the gait synergies represent an input or an output of neuromuscular control is still a point of
debate [76,77]. Nevertheless, defining changes in gait from a dynamic systems perspective
can be useful in rehabilitation for clinical gait assessments [41,78].

The performed study has several limitations. First, the COVID-19 pandemic restric-
tions caused a lack of participants following the rehabilitation protocol, and for that reason,
a limited number of stroke patients were included in the study. Future studies will include
a larger patient population. Additionally, for the therapy efficiency assessment, data could
be acquired before and after different therapy protocols [73]. Second, the study was un-
derpowered when comparing healthy subjects and patients since they were unmatched
by confounding factors, such as age and gender. Future studies will also include matched
healthy and patient groups by confounding factors. Third, the wearable device used in
the study has lower accuracy and reliability than the gold standard optoelectronic systems
with force platforms. However, the trade-off between good performance characteristics
and high cost should also be considered [79]. Finally, the question may be asked whether
data loss due to PCA affects the results. Even though the initial dataset of 11 signals per leg
contains more information than two PCs, the valuable information about the gait variability
is kept using PCs. This dimensionality reduction imitates the problem of neural control,
where many input signals fire one control signal [41]. More synergies could be observed,
and more data information could be kept by adding additional components and creating
three-dimensional cyclograms. Nonetheless, observing cyclograms in 2D coordinate frames
(and monitoring only θ angles) is more convenient for the clinician than monitoring the
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higher dimensionality graphs and parameters. The presented concept of 2D PCA-based
temporal synergies assessment is suitable for near real-time monitoring purposes and can
be used to improve the current clinical tools for gait assessment in the future.

5. Conclusions

In this paper, an innovative method for directly observing the limb’s endpoint dynamics
and detecting temporal synergies during walking with different speeds is proposed, without
stride extraction, and without using EMG recordings. Furthermore, the hypothesis about
invariant temporal dynamic synergies was statistically confirmed, and the potential use of this
information in practical gait assessment during rehabilitation after stroke was highlighted.
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Abstract: In this paper, human step length was estimated based on wireless channel properties and the
received signal strength indicator (RSSI) method. Path loss between two ankles of the person under
test was converted from the RSSI, which was measured using our developed wearable transceivers
with embedded micro-controllers in four scenarios, namely indoor walking, outdoor walking, indoor
jogging, and outdoor jogging. For brevity, we call it on-ankle path loss. The histogram of the on-ankle
path loss showed clearly that there were two humps, where the second hump was closely related
to the maximum path loss, which, in turn, corresponded to the step length. This histogram can
be well approximated by a two-term Gaussian fitting curve model. Based on the histogram of the
experimental data and the two-term Gaussian fitting curve, we propose a novel filtering technique to
filter out the path loss outliers, which helps set up the upper and lower thresholds of the path loss
values used for the step length estimation. In particular, the upper threshold was found to be on
the right side of the second Gaussian hump, and its value was a function of the mean value and the
standard deviation of the second Gaussian hump. Meanwhile, the lower threshold lied on the left
side of the second hump and was determined at the point where the survival rate of the measured
data fell to 0.68, i.e., the cumulative distribution function (CDF) approached 0.32. The experimental
data showed that the proposed filtering technique resulted in high accuracy in step length estimation
with errors of only 10.15 mm for the indoor walking, 4.40 mm for the indoor jogging, 4.81 mm for the
outdoor walking, and 10.84 mm for the outdoor jogging scenarios, respectively.

Keywords: data histogram; distance estimation; gait speed; on-ankle path loss; RSSI; step length
estimation; strike length estimation; two-term Gaussian distribution

1. Introduction

Step length (or stride length) plays an important role in addressing the issue of human
health conditions, especially for seniors. It is an indicator that predicts accidental falls
and fall-related injury in the elderly [1], which may cause fatality [2]. A reduced step
length has been found to be associated with the increased dependence, mortality, and
institutionalization of older people [3]. The variability of the step length also indicates
the integrity of gray matter, which is closely related to personal memory and executive
functions [4]. Furthermore, step length is one of the significant components in gait patterns.
It can be converted to gait speed, which is useful in predicting life expectancy [5]. Therefore,
monitoring the human step length is a vital topic that is worthy of investigating.

The estimation of the step length can be traced back to the problem of distance
estimation. Although distance estimation has been intensively researched for general
communication systems, there are few papers explicitly researching the human step length
in daily activities, such as walking and jogging, in both indoor and outdoor environments.
Moreover, as mentioned in more detail in the next section of this paper, the existing
publications that address the estimation of step length either have modest accuracy or follow
privacy-invasive, health-concerning, and strictly space-confined approaches. Specifically,
camera-based technologies [6,7] are privacy-invasive and prone to error as they may record
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images or video footage of the participants. The camera-based methods also require a
specific experimental setting because any obstacle appearing between the camera and the
person under test can cause measurement errors. Meanwhile, laser-based methods [8] may
arouse health concerns because a long-time exposure to lasers in these methods may cause
some health hazards. On the other hand, sensing mats [9–11] have been well adopted to
improve the safety of patients, especially the disabled and those with disorders. However,
the sensing mat approach is confined to particular spaces, such as clinics, hospitals, or a
specific laboratory setting where the sensing mat is laid, because the person under test must
walk or run on this mat. Therefore, a more-accurate, less-invasive, less-health-concerning,
and less-space-confined, but also cost-efficient technique for step length estimations in
daily activities is still missing.

Thus, this paper aimed to estimate the step length based on the received signal
strength indicator (RSSI) method in both walking and jogging activities in indoor and
outdoor scenarios. The RSSI has been widely employed in distance estimation, and it
might provide reliable performance [12–17], especially for measurements in line-of-sight
(LOS) paths over short distances, such as the step length measurements in this paper. The
step length in this paper refers to the average distance between two ankles of the person
under test when the person is walking or jogging at a normal and equal pace. Unlike our
previous work in [18], which only considered a static environment, this paper undertook
experiments in actual moving activities. In particular, in this paper, we propose a novel
filtering technique to be applied along with the empirical path loss model proposed in [18]
to estimate the step length in walking and jogging situations.

The main contributions of this paper are summarized as follows:

• A novel filtering technique is proposed to eliminate on-ankle path loss outliers and
keep the remaining as a reliable range with a pair of upper and lower thresholds.
This range of path loss values was used to estimate the human step length in daily
activities, such as walking and jogging;

• The distribution of the on-ankle path loss was revealed to follow a two-term Gaussian
distribution, and the two thresholds lied on each side of its second hump;

• The thresholds can be determined mathematically. The upper threshold relates to the
fitting equation of the second hump of the two-term Gaussian distribution, which was
found as μ + 0.5σ for an outdoor and μ + σ for an indoor environment. The lower
threshold relates to the survival rate, which is located at the point where the survival
rate of the measured data is 0.68;

• The proposed filtering technique resulted in an accurate estimation of the step length,
with errors of only 10.15 mm and 4.40 mm for walking and jogging in an indoor
environment, respectively, and only 4.81 mm and 10.84 mm for the same activities in
an outdoor environment.

The rest of the paper is organized as follows. Section 2 reviews the related works.
Section 3 describes the proposed system model. In Section 4, the experimental procedures
are detailed. Section 5 presents the experimental results and analyses of the step length
estimation accuracy in the indoor walking, indoor jogging, outdoor walking, and outdoor
jogging situations. Section 6 concludes the paper. Finally, Section 7 states the limitations
and the future works.

2. Related Works

Accurate estimation of the human step length is a challenging task, especially in
human daily activities, due to the randomness of these activities. As a result, there are few
research papers that explicitly address the problem of step length estimation, although the
overarching topic of distance measurements has been intensively researched for general
communication systems. These research papers are briefly reviewed as follows.

The researchers in [6] used cameras as additional sensors in pedestrian dead reckoning
(PDR) to analyze step length and step frequency. Currently, PDR is a popular indoor
localization method [19,20] due to the wide availability of smart devices. Cameras were
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also employed in [7] to track the motions of the person under test. The stride length
can be estimated by detecting and extracting several pieces of perspective information
related to predefined markers and edges. The experiment results implied that the camera-
based method was a promising way to detect all steps when the user was moving slowly,
especially in an indoor environment. Recently, the researchers in [21] proposed a machine-
learning-based step length estimation algorithm with the use of cameras and smartphones.
This research considered a systematic feature selection algorithm to determine the choice
of user-specific parameters from a large collection. The mean absolute errors of the step
length estimations were 3.48 cm and 4.19 cm for a known test person and an unknown
test person, respectively. However, the above camera-based techniques are flexibility-
constrained because the camera must be arranged at a certain place and has a limited
horizon. Moreover, its accuracy may be reduced in fast-moving situations or by obstacles
appearing between the cameras and the person under test.

The gait patterns can also be detected by infrared thermography, such as in [8], where
the best accuracy was found to be 91%. However, the drawback is that lasers are not
common in daily usage because of the training requirements, costly equipment, and the
potential health concern for long-term exposure.

An inertial sensor can be utilized in an inertial measurement unit (IMU) to collect
gait-related parameters, which then help to estimate the human step length. An IMU
generally consists of an accelerometer, a compass, and a gyroscope. Currently, most smart
devices have built-in inertial sensors. The smart device can be held in hand [22] or attached
to the body, such as the pelvis [23], which provides useful information and helps position
the point of interest. References [19,20] estimated the human stride length based on the
data collected from inertial sensor measurements from a smartphone. The experimental
results demonstrated that the step length can be estimated with an error rate of 4.63% for
indoor scenarios. Considering a general step length of 0.7 m, the corresponding absolute
error would be 3.24 cm. The error of step length estimation was reduced to 2% in [24] based
on a back-propagation artificial neural network using an IMU that was placed on the foot.
The research in [25] compared the accuracy of estimation between different placements
of the IMUs. Firstly, this paper utilized only one inertial sensor on each shank, called the
integrator-based method, providing an average accuracy of 91.21%. The accuracy was
improved to 95.37% if two sensors were employed on each leg, namely the angle-based
method. As a result, the maximum error was 11.26 cm and 5.51 cm for the integration
and angle mode, respectively. Although the integrator-based method was simpler, the
angle-based method achieved better accuracy in terms of step length estimation since it was
not sensitive to the initial conditions and errors caused by double integration. However,
experiments and analyses in the outdoors are still missing. Moreover, a major disadvantage
of using IMUs is that they typically suffer from an accumulated error, which means the
accuracy will be degraded over time.

Deep learning has been adopted to estimate human step length because it can learn
the features of the data automatically and has shown excellent performance in different
application domains with the cost of powerful computing facilities. The proposed deep-
learning-based algorithm in [26] can adapt to different phone carrying ways and does not
require individual stature information and spatial constraints. The average error of this
method was 3.01%, which means if the actual step length was 0.7 m, then the corresponding
error range was within 2.1 cm. Paper [27] defined a deep-learning-based framework with
an activity recognition model to regress the user change in distance and step length. The
average error of the proposed method was 2.1%, which was about 1.47 cm if the step length
was 0.7 m. It is worth noting that the positions (e.g., handheld position or pocket position)
of the smartphone also had a huge influence on the estimation by around 5% [28]. The
researchers in [29] investigated human step length and step width using wearable sensors
in a computer-assisted rehabilitation environment. The results showed that in a specific
experimental environment, gait patterns could be detected and the mean absolute errors
were 0.2396 cm and 1.92 cm, respectively. However, the data in this paper were collected
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using specific equipment under a specific environment, rather than normal indoor and
outdoor propagation environments in daily human activities.

Therefore, in this paper, we aimed to propose a step length estimation technique
that has high accuracy and is less-privacy-invasive, less-health-concerning, and less-space-
confined than the aforementioned techniques, without requiring powerful computing
facilities as the deep-learning-based ones.

Our previous work presented in [18] proposed an empirical path loss model to estimate
the human step length in both indoor and outdoor scenarios under a static context rather
than in a dynamic one. Therefore, this paper aimed to estimate human step length in daily
activities. In particular, a novel filtering technique is proposed in this paper, which was
used along with the hardware transceivers and the empirical path loss model developed
in our previous work [18] to estimate human step length correctly in both walking and
jogging activities in both indoor and outdoor environments.

3. System Model

In this paper, we adopted the transceivers and the experimental path loss model
between two human ankles developed in [18]. The experimental path loss PLOA between
two transceivers attached to the ankles of the person under test can be described as a
modified free-space path loss model with a correction factor ΔPL (cf. (1) in [18]):

PLOA(dB) = PLFS + ΔPL, (1)

where PLFS (dB) is the free-space path loss and ΔPL (dB) is the correction factor, which
accounts for the hardware non-linearity, multipath propagation, insertion, and mismatch
losses. For the transceivers considered, the correction factor was empirically found as
10 dB [18]. Therefore, (1) can be written as:

PLOA(dB) = PLFS + 10. (2)

It is noted that the free-space path loss [30] is defined as:

PLFS(dB) = 20 log10

(
4πd

λ

)
, (3)

where d (m) is the distance between the two antennas and λ (m) is the signal wavelength.
From (2) and (3), this distance could be estimated as:

d =
λ

4π
10

(
PLOA(dB)−10

20

)
. (4)

In the later analysis, we used this equation to calculate the human step length.

4. Experiment Setups

In this section, we detail our experimental settings. Similar to our previous work in [18],
the Arduino Integrated Development Environment (IDE), XBee Configuration & Test Unit
(X-CTU), Arduino UNO microprocessors, and XBee-PRO S2C wireless transceivers were
employed in this experiment. The core communication technology used in the XBee-
PRO S2C modules is the spreading spectrum technique regulated by the IEEE 802.15.4
standard for low-rate wireless personal area networks (LR-WPANs) [31]. In particular, each
group of four data bits is mapped into one of 16 nearly orthogonal spreading sequences,
each of which is 32 chips long. The resulting chip sequence is modulated on the radio-
frequency carrier in the 2.4 GHz band by the offset quadrature phase shift keying (O-QPSK)
modulation scheme. The components of the transceivers are depicted in Figure 1. The
parameters were configured as follows: transmission power P0 = 0 dBm and data rate
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9600 bps. This is the most proper configuration of the developed transceivers for measuring
the distance between two ankles, as discovered from our previous experiments in [18].

Figure 1. Components of the transceivers.

The transceivers were attached to the inner side of human ankles at the same height
h, as shown in Figure 2. The distance between two antennas was regarded as the real
step length d0 (m). In our experiments, the transmitter and the receiver were placed on
the medial side of the ankles of the subject under test in a way that the antennas faced
each other, as shown in Figure 2b. This means that there existed an LOS path between the
transceivers, even when the person under test was walking or jogging, and that there was
no human body part appearing between them. As a result, this placement of equipment
can eliminate the shadowing effect caused by any body parts. This intuitive prediction was
confirmed in our previous work [18], where experiments were performed both off-body and
on ankles to compare the shadowing effect. The results in [18] showed that the shadowing
effect caused by the human body was negligible in our experiments.

(a) (b)

Figure 2. Schematic diagrams of the on-ankle transceivers. (a) Side view; (b) top view.

The main purpose of this system was to transmit and receive continuous data packets
to/from each other, and the assembled micro SD card in the receiver recorded the RSSI
values continuously. From the RSSI values, the on-ankle path loss can be calculated as
(cf. (5) in [18]):

PLOA(dB) = Pt + RSSI, (5)

where Pt (dB) is the transmitted power. From (4) and (5), the distance between the two
transceivers is:

d =
λ

4π
10

(
Pt(dB)+RSSI(dB)−10

20

)
. (6)

Following is a trial experiment of the indoor walking situation to explore the relation-
ship between the measured path loss values and the positions of the two ankles. Figure 3a
plots the on-ankle path loss over time. During the first 0.64 s, the transmitter and the
receiver initialize themselves and synchronize with each other. Once the transmitter and
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the receiver are synchronized, it takes around 0.02 s for the hardware to measure and record
each RSSI value into the micro-SD card, as shown in Figure 3b.

(a)

(b) (c)

Figure 3. Trial indoor walking experiment. (a) On-ankle path loss at different time; (b) feet positions
at P1 (t = 2.08 s); (c) feet positions at P2 (t = 2.32 s).

After the initial synchronization phase, the Arduino may encounter erroneous trans-
missions from time to time due to temporarily being out-of-synchronization. To cope with
this, in our experiments, the Arduino UNO hardware was programmed in a way that, if an
erroneous transmission occurs (i.e., the receiver does not receive the packet successfully), a
very big value of path loss (120 dB was chosen in our experiments) would be recorded to
the data file in the micro-SD card to flag this erroneous transmission. Thereby, in the later
analysis, any erroneous transmission would be easily detected and omitted. As shown in
Figure 3a, the temporary out-of-synchronization status was normally very short, and the
Arduino UNOs could quickly synchronize again with each other. Hence, in general, the
Arduino UNO transceivers were relatively stable and reliable.

Because of the modest computation capability of the Arduino UNO, the transceivers
in our experiments were programmed to only transmit and receive data packets to record
the RSSI values in order to avoid any unnecessary delay. Processing of the raw data was
performed offline on a computer instead. It is also noted that we aimed to estimate the
average step length over a certain period, rather than outputting the instant estimated step
length values, to mitigate the randomness in the measurement process. As a result, the
processing time of our algorithm had a negligible effect on the RSSI calculations.

It was observed that the measured path losses had a periodical pattern. To explore the
meaning of the peaks and troughs of the path loss, let us consider two points P1(2.08 s, 30 dB)
and P2(2.32 s, 54 dB) from the plot, where P1 is at a trough and P2 is the following peak. A
video of the footage was captured in tandem with the path loss measurements. Based on
the time stamps, we obtained the corresponding video frames, which corresponded to P1
and P2, as shown in Figure 3b,c. In Figure 3b, two feet are aligned with each other. In other
words, at P1, the distance between two ankles is the shortest, which indicates the pedestrian
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has moved the left leg from behind to the middle position and is about to step forward.
Hence, a step is half-finished at the bottom points of Figure 3a. The step is fully finished
in Figure 3c. The ankles are at the largest distance from each other, where P2 is located.
This means the peak path loss value at P2 in the time duration [2.08 s, 2.32 s] coincidentally
corresponds to the step length. Note that PLOA = 54 dB is not the global largest value of
path loss in Figure 3a. For example, the peak path loss values at the points P3–P7 at the
time instants 0.92 s, 0.94 s, 2.88 s, 3.58 s, and 3.78 s were even bigger than 54 dB. In other
words, the path loss corresponding to the step length is expected to be in a high range of
the path loss values, but not necessarily the largest value. Hence, to find the step length, it
was necessary to examine the histogram of the experimental data.

The bar chart in Figure 4 depicts the probability histogram of the on-ankle path loss in
this trial experiment. Clearly, the histogram shows a two-hump shape with the most likely
path loss occurring at the peak density PLOA ≈ 46 dB. The first, smaller hump corresponds
to the half-finished steps, i.e., when the two feet are about to cross each other. The second,
bigger hump corresponds to the events when the two feet are likely most separated from
each other. The step length (i.e., the maximum distance between the two transceivers)
may occur somewhere around the peak density rather than always at the peak density
in the histogram. To demonstrate this point, let us consider the two different moments
t = 2.22 s and t = 2.80 s when the path loss of 46 dB took place (cf. Figure 5a,b). These
two figures suggest that, although the on-ankle path losses at these time instants were the
same and both corresponded to the peak density in the histogram, the feet of the person
under test were not in the identical posture. This means that the path loss corresponding
to the peak density did not always correspond to the step length due to the randomness
of the propagation channel. This observation is confirmed again in Figure 5c,d, where we
show the two maximum distance events at the time instants t = 3.12 s and t = 3.72 s when
PLOA ≈ 50 dB. The path loss PLOA ≈ 50 dB corresponds to the second maximum density,
rather than the peak one in Figure 4.
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Figure 4. The probability histogram of the trial indoor walking experiment.

From the aforementioned observations, we conjectured that the human step length
can be estimated within a certain range around the peak density of the histogram. This
is because the actual step length may occur before or after the peak density due to the
randomness of the propagation channel caused by the dynamic motions of the person
under test. Therefore, in the following experiments, we propose a filtering technique to
discard outlier data to form a range of reliable path loss values for estimating the step
length. The accuracy analyses are also mentioned in the next section.
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(a) (b)

(c) (d)

Figure 5. Feet positions at different time stamps of the indoor walking experiment. (a) t = 2.22 s
(PLOA = 46 dB); (b) t = 2.80 s (PLOA = 46 dB); (c) t = 3.12 s (PLOA = 50 dB); (d) t = 3.72 s
(PLOA = 50 dB).

5. Experimental Results and Analysis

In this section, experiments were conducted in four dynamic scenarios, including
indoor walking, outdoor walking, indoor jogging, and outdoor jogging. The indoor experi-
ments were carried out in a corridor of a building, while the outdoor ones were conducted
along some pavement, which can be seen as an open area in Figure 6. The participant
walked or jogged along a straight path with a length of 35.7 m. There were 50 steps
and 38 steps in the walking and jogging scenarios, respectively. Therefore, the real aver-
age step length for walking was d0w = 35.7 ÷ 50 = 0.7140 m, while for jogging, it was
d0j = 35.7 ÷ 38 = 0.9395 m. In each scenario, the experiments were carried out 10 times
with over 1500 data in each dataset. Altogether, there were more than 15,000 data for each
scenario. In our previous work [18], we derived the empirical path loss model for the
wireless channel between the two ankles in a static situation, as shown in (1). As mentioned
above, there existed randomness of the path loss in dynamic situations where the person
under test was walking or jogging. Thus, we propose a filtering technique to apply along
with the empirical model in (1) in order to eliminate the on-ankle path loss outliers. The
resulting ranges of on-ankle path loss were then used to estimate the step length in the four
motion scenarios. The following subsections are the experiment results and analyses for
the four motion circumstances.

(a) (b)

Figure 6. Experimental environments. (a) Indoors; (b) outdoors.

52



Sensors 2022, 22, 1640

5.1. Empirical Threshold Pair

We propose a novel filtering technique to filter out the path loss outliers by setting
a threshold pair, which consisted of an upper threshold and a lower threshold. As these
two thresholds work together, we found both thresholds simultaneously. As shown in
Figures 3 and 5, the path loss for the step length could be neither the maximum path loss
value nor the path loss value corresponding to the peak density of the histogram. This was
because the randomness of the propagation channel was caused by the dynamic movements
of the person under test. Thus, it is important to consider a suitable range of the path
loss values that might possibly correspond to the maximum distance between two ankles.
To this end, based on the collected datasets, we first examined different combinations of
the lower bound and the upper bound of this range to find the pair of boundaries that
minimized the error between the average estimated step length and the true step length.
The path loss values higher than the upper threshold or lower than the lower threshold
were considered as outlier values. Figure 7 demonstrates the normalized errors of the step
length estimations in the indoor walking and indoor jogging scenarios for different lower
and upper thresholds. The relative (or normalized) error ε in percentage is defined as:

ε =
|d − d0i|

d0i
× 100%, (7)

where d is the average estimated distance between two ankles under a certain experimental
scenario, which involves 10 datasets, d0i is the real step length, and i is either w for the
walking scenario or j for the jogging scenario. Figure 7 shows that the (lower, upper)
threshold pairs of (40 dB, 52 dB) and (40 dB, 56 dB) resulted in the average estimated
step lengths being the closest to the true step lengths (i.e., the smallest normalized error
ε) in the indoor walking and indoor jogging scenarios, respectively. Along with Figure 7,
Tables 1 and 2 show in more detail the estimated step length (cf. (4)), averaged over all ten
datasets for some different pairs of the (lower, upper) thresholds for the indoor walking
and indoor jogging scenarios. In each cell of the table, there are three numbers. The average
estimated step length in meters, which is the average result based on 10 experimental
datasets, is located outside of the brackets. Following in the brackets are the average
absolute error in millimeters and the average relative error in percentage, respectively.

The average absolute error was calculated as |d − d0i|. Tables 1 and 2 confirm further
the observation gained from Figure 7 that the best pairs of (lower, upper) thresholds of
the path losses were (40 dB, 52 dB) and (40 dB, 56 dB) for the indoor walking and indoor
jogging cases, respectively. The average absolute and normalized estimation errors were
just 10.15 mm and 1.42% for the indoor walking case, while these numbers were 4.40 mm
and 0.47% for the indoor jogging case.

(a) (b)

Figure 7. Normalized step length estimation errors of the indoor experiments. (a) Indoor walking;
(b) indoor jogging.
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Table 1. Estimation of the step length (m) in the indoor walking scenario for different pairs of upper
threshold PLu (dB) and lower threshold PLl (dB). Two values in the brackets of each table cell are the
corresponding absolute estimation error (mm) and relative estimation error (%), respectively.

PLl (dB)
PLu (dB)

50 52 54 56 58

36
0.5556

(158.39, 22.18)
0.6206

(93.41, 13.08)
0.6929

(21.12, 2.96)
0.7452

(31.21, 4.40)
0.7896

(75.55, 10.58)

38
0.6040

(109.96, 15.40)
0.6701

(43.86, 6.14)
0.7448

(30.83, 4.32)
0.7997

(85.65, 12.00)
0.8466

(132.56, 18.57)

40
0.6372

(76.83, 10.76)
0.7039

(10.15, 1.42)
0.7802

(66.19, 9.27)
0.8368

(122.82, 17.20)
0.8856

(171.60, 24.03)

42
0.6577

(56.30, 7.88)
0.7251

(11.14, 1.56)
0.8029

(88.92, 12.45)
0.8610

(146.98, 20.59)
0.9112

(197.21, 27.62)

44
0.7031

(10.88, 1.52)
0.7746

(60.60, 8.49)
0.8578

(143.82, 20.14)
0.9207

(206.66, 28.94)
0.9755

(261.53, 36.63)

Table 2. Estimation of the step length (m), absolute estimation error (mm), and relative error (%) in
the indoor jogging scenario for different pairs of upper threshold PLu (dB) and lower threshold PLl
(dB).

PLl (dB)
PLu (dB)

52 54 56 58 60

38
0.6282

(311.28, 33.13)
0.7458

(193.70, 20.62)
0.8461

(93.37, 9.94)
0.9443

(4.81, 0.51)
1.0450

(105.55, 11.23)

39
0.6557

(283.77, 30.20)
0.7758

(163.66, 17.42)
0.8785

(61.03, 6.50)
0.9791

(39.59, 4.21)
1.0825

(143.03, 15.22)

40
0.7050

(234.47, 24.96)
0.8288

(110.70, 11.78)
0.9351

(4.40, 0.47)
1.0397

(100.21, 10.67)
1.1477

(208.21, 22.16)

41
0.7450

(194.48, 20.70)
0.8708

(68.73, 7.32)
0.9795

(40.01, 4.26)
1.0870

(147.48, 15.70)
1.1984

(258.86, 27.55)

42
0.7795

(160.00, 17.03)
0.9064

(33.09, 3.52)
1.0170

(77.51, 8.25)
1.1268

(187.30, 19.94)
1.2410

(301.49, 32.09)

Similarly, Figure 8 and Tables 3 and 4 clearly show that the best (lower, upper) thresh-
olds of the path losses used for estimating the average step length in the outdoor walking
and jogging scenarios were (39 dB, 51 dB) and (42 dB, 54 dB), respectively. The average
absolute and relative estimation errors for the former case were just 4.81 mm and 0.67%,
while they were 10.84 mm and 1.15% for the latter one.

(a) (b)

Figure 8. Normalized step length estimation errors of the outdoor experiments. (a) Outdoor walking;
(b) Outdoor jogging.
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Table 3. Estimation of the step length (m), absolute estimation error (mm), and relative error (%) in
the outdoor walking scenario for different pairs of upper threshold PLu (dB) and lower threshold
PLl (dB).

PLl (dB)
PLu (dB)

49 50 51 52 53

37
0.5584

(155.56, 21.79)
0.6225

(91.54, 12.82)
0.6851

(28.93, 4.05)
0.7290

(14.96, 2.10)
0.7925

(78.54, 11.00)

38
0.5798

(134.16, 18.79)
0.6430

(71.02, 9.95)
0.7048

(9.18, 1.29)
0.7484

(34.40, 4.82)
0.8118

(97.79, 13.70)

39
0.5952

(118.81, 16.64)
0.6576

(56.41, 7.90)
0.7188

(4.81, 0.67)
0.7622

(48.15, 6.74)
0.8254

(111.38, 15.60)

40
0.6125

(101.55, 14.22)
0.6740

(40.05, 5.61)
0.7345

(20.46, 2.87)
0.7775

(63.52, 8.90)
0.8406

(126.59, 17.73)

41
0.6229

(91.06, 12.75)
0.6839

(30.07, 4.21)
0.7440

(30.02, 4.21)
0.7869

(72.94, 10.22)
0.8499

(135.95, 19.04)

Table 4. Estimation of the step length (m), absolute estimation error (mm), and relative error (%) in
the outdoor jogging scenario for different pairs of upper threshold PLu (dB) and lower threshold
PLl (dB).

PLl (dB)
PLu (dB)

52 53 54 55 56

40
0.7082

(231.29, 24.62)
0.7990

(140.54, 14.96)
0.8599

(79.64, 8.48)
0.9155

(24.00, 2.55)
0.9651

(25.58, 2.72)

41
0.7420

(197.45, 21.02)
0.8338

(105.70, 11.25)
0.8952

(44.30, 4.72)
0.9515

(11.98, 1.28)
1.0018

(62.32, 6.63)

42
0.7745

(164.97, 17.56)
0.8669

(72.56, 7.72)
0.9287

(10.84, 1.15)
0.9855

(45.95, 4.89)
1.0365

(96.96, 10.32)

43
0.8085

(130.98, 13.94)
0.9013

(38.16, 4.06)
0.9632

(23.74, 2.53)
1.0205

(80.98, 8.62)
1.0721

(132.64, 14.12)

44
0.8391

(100.41, 10.69)
0.9321

(7.38, 0.79)
0.9941

(54.60, 5.81)
1.0517

(112.21, 11.94)
1.1040

(164.46, 17.51)

It is noted that the estimation error in the indoor walking scenario was higher than that
in the indoor jogging one. This can be explained as follows. In general, one might expect
that the error of the walking scenarios is smaller than that of the jogging ones as walking
is a slower and more stable activity than jogging. This expectation was confirmed from
the experimental results of the outdoor scenarios, where the errors for outdoor walking
and jogging were 4.81 mm and 10.84 mm, respectively. However, this expectation may
not always be the case for an indoor environment since there are more multipaths indoors
than outdoors. Because walking takes a longer time than jogging to complete a step, when
multipath propagation occurred, more affected RSSI (thus path loss) values during that step
were recorded to the dataset in the walking scenario than in the jogging one. As a result, the
histogram of the path loss dataset collected for the indoor walking scenario may have some
(local) peaks that were far more distinct from the remaining non-peak values, compared to
the indoor jogging case. This phenomenon can be observed in Figure 9a (mentioned later
in Section 5.2), where the density of the path loss value of 46 dB was much more prominent
than other non-peak values, while the local peaks in Figure 9b are less prominent compared
to their surrounding values. This led to a slightly worse accuracy in average step length
estimation in the indoor walking compared to the indoor jogging.

5.2. Upper Threshold Analysis

The data analyses mentioned in Section 5.1 are critical as they allowed us to devise the
novel filtering technique, which is detailed below.
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In order to formulate the thresholds mathematically, we firstly depict the probability
histogram for all the datasets (around 15,000 data) collected in each experimental scenario,
as shown in Figure 9. The probability histogram of the measured on-ankle path loss is
represented by blue bars. It is noted that the plotted histogram has two humps, which
correspond to the half-finished step, where the two feet are about to pass each other, and
the fully finished step, when the two feet are most apart from each other, respectively. The
plotted histogram can be well approximated by the probability density function (PDF) of a
two-term Gaussian distribution model via the curve-fitting process indicated by the solid
green curve in Figure 9 with the general PDF equation:

f (x) = f1(x) + f2(x)

= a1e−(
x−b1

c1
)2
+ a2e−(

x−b2
c2

)2
, (8)

where fk(x) = ake−(
x−bk

ck
)2

, ak is the amplitude, bk is the centroid, and ck relates to the peak
width of this Gaussian distribution (k = 1, 2). These coefficients can be found from the
curve fitting of the two-term Gaussian distribution model. Ideally, the step length is related
to the maximum on-ankle path loss. However, due to the randomness of the propagation
channel, the actual step length may correspond to a non-peak path loss around the peak of
the second hump. This means that the pair of the (lower, upper) thresholds should capture
a suitable range of the path loss values around the peak of the second hump. The values
bigger than the upper threshold or smaller than the lower threshold were considered as
outliers for estimating the path loss that corresponds to the step length. To capture the
suitable window of the possible path loss values for estimating the step length, intuitively,
the upper threshold should be located somewhere at the right slope of the second hump,
while the lower threshold lies somewhere at the left slope of the second hump, i.e., in
between the first hump and the second hump.

From Figure 9, it is observed that the impact of the first hump on the right slope of the
second hump was negligible. Thus, we can extract the second hump and approximate its
right slope by the Gaussian distribution:

f2(x) = a2e−(
x−b2

c2
)2

. (9)

This observation is confirmed in Figure 9a, where the bell-shaped red dashed curve
representing the Gaussian distribution in (9) coincides with the right slope of the second
hump of the two-term Gaussian distribution. As a result, we can obtain the mean μ and the
standard deviation σ of the second hump based on the above Gaussian distribution in (9) as:

μ = b2, (10)

σ =
c2√

2
. (11)

The above observations and analyses hold for all indoor/outdoor walking and in-
door/outdoor jogging cases, as shown in Figure 9a–d.

The curve fitting parameters a2, b2, c2, μ, and σ for the second hump in the four
scenarios can be found in Table 5. Since the path loss, which corresponds to the step length,
is a random variable, its upper threshold should be determined as a function of both the
mean value μ and the standard deviation value σ of the second term of the two-term
Gaussian distribution in (9). This philosophy is similar to the well-known concept of
calculating the retransmission timeout (RTO) on the Internet where the RTO is the function
of both the mean value of the round-trip time (RTT) and its deviation value.
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Figure 9. The probability histogram, the two-term Gaussian distribution, and the fitting curve of
the second hump for the indoor and outdoor experiments. (a) Indoor walking; (b) indoor jogging;
(c) outdoor walking; (d) outdoor jogging.

Table 5. Coefficients for the second hump-fitting equation.

Indoor
Walking

Indoor
Jogging

Outdoor
Walking

Outdoor
Jogging

a2 0.06369 0.04639 0.07489 0.05866

b2 48.0900 52.3400 49.6100 52.3900

c2 5.9990 6.7870 4.9330 5.4610

μ 48.0900 52.3400 49.6100 52.3900

σ 4.2419 4.7991 3.4882 3.8615

Table 6 presents the values of function μ + k σ (k = 0, 0.5, 1, 1.5, 2),and the correspond-
ing difference, denoted as Δ (dB), between these values and the upper thresholds, which
were worked out empirically from the actual measured data in Section 5.1. Table 6 clearly
shows that the empirical upper thresholds in the indoor walking and jogging scenarios
were both very well approximated by μ + σ with the differences Δ of only 0.3319 dB and
1.1391 dB, respectively. This finding makes sense because the upper threshold is equal to
the mean path loss value μ plus a margin, which is equal to the standard deviation σ in
this case.

Similarly, the empirical upper thresholds in the outdoor walking and jogging scenarios
were both very close to μ + 0.5σ with the difference Δ of merely 0.3541 dB and 0.3208 dB,
respectively. The upper thresholds in the two indoor cases were higher than those in the
outdoor scenarios due to the fact that there were more multipaths indoors than outdoors;
thus, the actual path loss that corresponds to the step lengths might vary more widely
around its mean value.
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Table 6. Absolute difference Δ (dB) between the function μ + k σ and the empirical upper threshold
(indoor walking: 52 dB; indoor jogging: 56 dB; outdoor walking: 51 dB; outdoor jogging: 54 dB).

Indoor
Walking

Indoor
Jogging

Outdoor
Walking

Outdoor
Jogging

μ(Δ) 48.0900 (3.9100) 52.3400 (3.6600) 49.6100 (1.3900) 52.3900 (1.6100)

μ + 0.5σ(Δ) 50.2110 (1.7890) 54.7396 (1.2604) 51.3541 (0.3541) 54.3208 (0.3208)

μ + σ(Δ) 52.3319 (0.3319) 57.1391 (1.1391 ) 53.0982 (2.0982) 56.2515 (2.2515)

μ + 1.5σ(Δ) 54.4529 (2.4529) 59.5387 (3.5387) 54.8422 (3.8422) 58.1823 (4.1823)

μ + 2σ(Δ) 56.5738 (4.5738) 61.9383 (5.9383) 56.5863 (5.5863) 60.1130 (6.1130)

5.3. Lower Threshold Analysis

As mentioned in Section 5.2, the lower threshold was located between the first hump
and the second hump of the two-term Gaussian distribution, which means its value would
be affected by both humps. Therefore, it was impossible to analyze the lower threshold
based on a single hump as for the upper bound mentioned above. Thus, other techniques
should be used to analyze the lower threshold. One of the possible techniques is based on
the cumulative distribution function (CDF) or the survival function. The survival function
is complementary to the CDF. It indicates the probability of the path loss value greater than
or equal to a certain value. Figure 10 depicts the probability histogram, the CDF (the red
curves), and the survival function (the bold green curves) of the measured path loss data
for all four scenarios together with the lower thresholds (the black dashed lines), which
were empirically found to be 39 dB and 42 dB in the outdoor walking and jogging cases,
respectively, and 40 dB in the indoor cases, as detailed in Section 5.1.
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Figure 10. The probability histogram, the CDF, and the survivor function with respect to the lower
threshold for the indoor and outdoor experiments. (a) Indoor walking (lower threshold = 40 dB);
(b) indoor jogging (lower threshold = 40 dB); (c) outdoor walking (lower threshold = 39 dB); (d) out-
door jogging (lower threshold = 42 dB).
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Figure 10 reveals an interesting fact that the intersections between the empirical lower
thresholds and the survival curves were around 0.68 in all four cases. In other words,
the measured path loss value was bigger than or at least equal to the value of the lower
threshold 68% of the time in all four scenarios. Path loss values between the lower threshold
and the upper one should be considered as the potential path losses corresponding to the
step lengths. Based on the above empirical measurements and statistical analyses, we
deduced that the lower threshold can be numerically found as the corresponding path loss
value when the survival rate reaches 0.68.

6. Conclusions

This paper estimated the human step length in daily activities based on our developed
wearable transceivers and the RSSI method. We conducted experiments for both walking
and jogging activities in both indoor and outdoor environments. By analyzing the statistical
properties of the collected datasets, for the first time, we proposed a filtering method to
set up the lower and upper thresholds in order to eliminate the path loss outliers. The
resulting range of path loss values between the two thresholds was used to estimate the
step length. Mathematically, the upper threshold for an indoor environment was μ + σ,
while this value for an outdoor scenario was μ + 0.5σ. The lower threshold relates to the
survival function of the experimental datasets. This threshold was found numerically to
be the path loss value where the survival rate was around 0.68 for both the indoor and
outdoor environments and for both the walking and jogging activities. Our experiments
showed that the step length can be accurately estimated with errors of only 10.15 mm and
4.40 mm for the indoor walking and jogging activities and errors of 4.81 mm and 10.84 mm
for the outdoor walking and jogging activities, respectively.

7. Limitations and Future Works

The experimental results showed that the proposed system along with the proposed
technique can estimate the average human step length with a sub-centimeter error. How-
ever, a limitation of this project is that we need to collect the dataset for the whole intended
period of time, then proceed to the offline data processing phase, rather than processing
data to estimate the step length and updating this estimation in a continuous manner while
the person under test is moving. Overcoming this limitation is the motivation for our
future work. More specifically, to guarantee both accuracy and efficiency, instead of waiting
for the whole dataset to be collected, we may apply the weighted moving average algo-
rithm to continuously estimate the average step length and keep updating this estimation
over a shorter period of time. In this way, the dynamic essence of human activities will
be captured more accurately than the simple averaging technique. In addition, we may
consider a hybrid RSSI-based technology [32], such as adopting an IMU in the existing
RSSI-measuring system along with an RSSI/IMU data fusion approach, to further improve
the precision and robustness of the step length estimation.
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Abbreviations

The following abbreviations are used in this manuscript:

CDF Cumulative distribution function
IDE Integrated Development Environment
IMU Inertial measurement unit
LOS Line-of-sight
LR-WPAN Low-rate wireless personal area network
O-QPSK Offset quadrature phase shift keying
PDR Pedestrian dead reckoning
RF Radio frequency
RSSI Received signal strength indicator
X-CTU XBee Configuration & Test Unit
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Abstract: External cues improve walking by evoking internal rhythm formation related to gait in the
brain in patients with Parkinson’s disease (PD). This study examined the usefulness of using a portable
gait rhythmogram (PGR) in music therapy on PD-related gait disturbance. A total of 19 subjects with
PD who exhibited gait disturbance were evaluated for gait speed and step length during a 10 m
straight walking task. Moreover, acceleration, cadence, and trajectory of the center of the body were
estimated using a PGR. Walking tasks were created while incorporating music intervention that
gradually increased in tempo from 90 to 120 beats per minute (BPM). We then evaluated whether
immediate improvement in gait could be recognized even without music after walking tasks by
comparing pre- (pre-MT) and post-music therapy (post-MT) values. Post-MT gait showed significant
improvement in acceleration, gait speed, cadence, and step length. During transitions throughout the
walking tasks, acceleration, gait speed, cadence, and step length gradually increased in tasks with
music. With regard to the trajectory of the center of the body, we recognized a reduction in post-MT
medio-lateral amplitude. Music therapy immediately improved gait disturbance in patients with PD,
and the effectiveness was objectively shown using PGR.

Keywords: portable gait rhythmogram; 3-D gait analysis; music therapy; Parkinson’s disease; gait
disturbance

1. Introduction

Parkinson’s disease (PD) is a neurodegenerative condition among elderly popula-
tions [1] that develops through the degeneration of dopaminergic neurons in basal ganglia,
causing a deficiency of such neurons [2]. The main symptoms of PD include resting tremors,
rigidity, bradykinesia, postural instability [3], and gait disturbance—one of the most fre-
quent and intractable motor disturbances [4]. Gait disturbance related to PD is an evolving
condition with different patterns [5], such as reduced step length [6], slow speed, shuffling
steps [7], and freezing of gait. Furthermore, gait disturbance not only decreases mobility
and increases the risk of falling [8] but also restricts the functional independence and
quality of life of people with PD (PwP) [9].

Although PD has been primarily treated through antiparkinsonian drugs and surgery
with deep brain stimulation, evidence has shown that combining different rehabilitation
approaches, such as physiotherapy, occupational therapy, and speech therapy, with an-
tiparkinsonian drugs and surgical treatment can be more effective [10–12]. Apart from the
mentioned therapies, music therapy, and a cue-based strategy that uses external sound
rhythms to evoke walking rhythms in the brain [4,13], has also attracted attention in recent
years. Among the various external cues (auditory, visual, and antennal cues), rhythmic
auditory stimulation has been the most effective for gait disturbance treatment in PwP [3].
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Moreover, reports have shown that gait training matched to metronomic rhythms can
increase gait speed [14,15].

Over the years, there has been remarkable development in wearable devices and
methods for investigating gait. The current study utilized a portable gait rhythmogram
(PGR) that uses inertial sensors to evaluate three-dimensional (3-D) changes in the walking
trajectory of the center of the body. The major advantages of inertial sensors include their
small size, low cost, and long operating life, which allow for the unobtrusive monitoring
of the walking pattern without interfering with the natural movement [16]. Moreover, a
PGR allows us to easily monitor patient progress by drawing and visualizing the walking
trajectory using gait data instead of simply comparing numerical values [16]. An objective
and quantitative gait analysis system could, therefore, potentially improve the current
practice (i.e., semi quantitative gait evaluation), which could aid in the diagnosis, symptom
monitoring, therapeutic management, rehabilitation, fall risk assessment, and prevention
of PD [17]. In addition to the medical field, a PGR can also be used in the field of music
therapy, where it is difficult to quantify its overall effect on various diseases and there is
still limited evidence-based research [18].

To investigate the effectiveness of music therapy as a rehabilitation approach for gait
disturbance in PD, the current study utilized gait training with and without rhythmic
auditory stimulation and examined whether immediate improvements occurred after
training by evaluating the walking speed, acceleration, cadence, stride length, and walking
trajectory of the center of the body.

Note that this is a small, open-label study with no long-term effects, therefore this is
a pilot study describing the potential use of this method.

2. Materials and Methods

2.1. Subjects

A total of 19 PwP with mild gait disturbance (6 males and 13 females; mean age,
74.0 ± 6.7; H&Y, 2 or 3; duration, 6.0 ± 5.5 years; UPDRS-III, 17.3 ± 4.7) were included in
this study. They had a gait score of 0 to 2 in the UPDRS-III and were able to walk without
assistance. On examination, no one had freezing and no one had a high probability of
falling. Regardless of the medication taken by the subjects, conventional treatments were
provided without any changes.

2.2. Gait Analysis

Gait was analyzed using a PGR (MG-M 1110, LSI Medience Corporation, Tokyo,
Japan), a small device (8 × 6 × 2 cm, weight; 80 g) that houses an accelerometer (Figure 1).
As reported previously [19], gait-induced acceleration is extracted from limb and trunk
movements using an automatic gait detection algorithm (“pattern matching method”),
allowing for the 3-D measurement (ax, ay, az) of acceleration associated with voluntary
limb and trunk movements, as well as acceleration induced by heel strike and toe-off when
walking. As reported in detail previously [19], based on the “pattern matching method”, the
acceleration vectors associated with stepping can be distinguished from those associated
with other limb and trunk movements or with unexpected artifacts. First, attention is
focused on a relatively strong signal region (e.g., a > 1 m/s2) in the acceleration time series,
and a 3-D template wave (ax, ay, az) with a duration of about 0.5 s is arbitrarily chosen.
Then, the cross-correlation CC(t) between this wave and another wave with a time shift t
chosen from the whole time series is computed using the following formula:

CC(t) =
1
p ∑

p
i=1

[
ax(i)ax(i + t) + ay(i)ay(i + t) + az(i + t)

]
{

1
p ∑

p
i=1

[
ax(i)

2 + ay(i)
2 + az(i)

2
]} 1

2
{

1
p ∑

p
i=1[ax(i+t)2+ay(i+t)2+az(i+t)2]

} 1
2

where t is the time index and p is the length of the template wave. If the acceleration change
is caused by gait motion, the CC(t) peaks exhibit alternate changes in magnitude with time
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due to left/right body sway during walking. Additionally, the cycle and amplitude are
measured from the gait-induced acceleration signals. Since gait accelerations correlate with
floor reaction forces, the amplitude of gait accelerations is selected as an index of floor
reaction forces [20].

 

Figure 1. Portable gait rhythmogram (MG-M 1110, LSI Medience Corporation, Tokyo, Japan). Size =
8 × 6 × 2 cm. Weight = 80 g.

The device was secured at the center of subjects’ waists using a Velcro band (Figure 2)
and recorded the above signals at a sampling rate of 10 ms (100 Hz). The data were automat-
ically stored on a microSD card. After transfer of the recorded data to a personal computer,
the absolute values of acceleration vectors (a; a2 = ax

2 + ay
2 + az

2) were calculated offline
and graphically displayed on the monitor [16,21]. With the subject standing in the anatom-
ical position, the three acceleration axes (X, Y, and Z) were oriented in the mediolateral
(ML), vertical (VT), and anteroposterior (AP) directions, respectively. Accordingly, positive
X, Y, and Z values indicated leftward, upward, and forward acceleration, respectively.

Gait analysis was conducted in a large indoor space. All subjects were requested to
walk back and forth in a 5 m straight line [22] without assistance, in accordance with seven
common walking tasks (details provided later). An extra 1 m distance was added before
and after the walkway to minimize the influence of acceleration and deceleration. The time
a subject took to walk along the 5 m and 10 m walkways was determined from the event
marker recordings. The timing and number of stride events during this time interval were
identified from the 3D acceleration signal using an automated peak detection algorithm [21].
In addition, the 5 m walking time and step count were measured for each task by an
experimenter. While the subject was walking, an experimenter with a stopwatch followed
slightly behind [16]. Videos of walking were also taken to observe the walking pattern,
posture, and swinging of the arms. Based on these data, the basic gait characteristics (gait
speed, cadence, step length) were calculated for each subject. Next, the 3-D acceleration
signal was filtered by a high-pass filter sT/(1 + sT) to remove slowly varying trends. The
time constant was set at T = 0.7 s. Then, the acceleration magnitude ar(t) was calculated
from the filtered components (ax(t) ay(t) az(t)) by ar(t) = (ax(t)2 + ay(t)2 + az(t)2)0.5 [22].
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Figure 2. The device was secured at the center of subjects’ waists using a Velcro band.

The common tasks were as follows: fast walking (walking as fast as possible without
falling) (Task 1), self-paced walking with hand clapping (Task 2), walking in step with
music at 90 beats per minute (BPM) (Task 3), 100 BPM (Task 4), 110 BPM (Task 5), and
120 BPM (Task 6), and fast walking again without music (Task 7). The instructions for each
task were given as follows: “Please walk as fast as you can without falling”. for Task 1,
“Please walk at your own pace. I clap at your pace”. for Task 2, “Next, music will be
played. Please walk to the music”. for Task 3, “Another track will be played. Please walk
to the music again.” for Tasks 4, 5, and 6, and “Next, there will be no music. Once again,
please walk as fast as you can without falling”. for Task 7. Thereafter, pre-MT (Task 1)
values for acceleration (gait force), gait speed, cadence, step length, and gait trajectory
of the center of the body were compared to post-MT (Task 7) values to evaluate whether
improvement in gait occurred immediately after walking tasks with music (from Task 3 to
Task 6), even without music. The hand clapping in Task 2 was performed in rhythm with
the subjects’ own pace and was observed by a separate experimenter. The music genres
used in Tasks 3–6 included familiar classical music and Japanese traditional songs that
matched metronomic rhythms (Japanese traditional song for BPM 90, classical music for
BPM 100, Japanese traditional song for BPM 110, and classical music for BPM 120). The
songs had no lyrics, and the melody was instrumentally edited by MIDI. The same tunes
were used for all subjects. The music was played through the built-in speaker of a personal
computer. Before starting the tasks, we played the music in fragments and checked if the
subjects could hear it. All music was played at the same volume during the tasks. In each
task, the four-beat metronome was played first and the participants were allowed to start
walking at their own leisure after the music started.
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2.3. Statistical Analysis

Significant differences between mean pre-MT and post-MT values of acceleration,
gait speed, cadence, step length, and amplitude of the trajectory were evaluated using the
paired t-test for normally distributed data. Statistical analysis was performed using StatPlus
version 6.2.21 software for Macintosh (Apple Inc., Tokyo, Japan), with a p value of <0.05
indicating statistical significance.

Pre-MT and post-MT descriptive data were compared and analyzed using paired
t-tests. An analysis of variance test was used to perform multiple comparisons among all
seven tasks.

3. Results

After completing the tasks with music, subjects exhibited significant improvements
in their acceleration (pre: 1.94 m/s2; post: 2.44 m/s2; p < 0.001; Table 1 and Figure 3A),
gait speed (pre: 0.88 m/s; post: 0.97 m/s; p < 0.04; Table 1 and Figure 3B), cadence
(pre: 117.3 steps/min; post: 122.9 steps/min; p < 0.0001; Table 1 and Figure 3C), and step
length (pre: 41.55 cm; post: 46.70 cm; p < 0.0001; Table 1 and Figure 3D).

 

 

Figure 3. Cont.
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Figure 3. Gait parameters. Acceleration (A), gait speed (B), cadence (C), and step length (D). After
the tasks with music, subjects showed significant improvements in their acceleration, gait speed,
cadence, and step length.

Table 1. Comparison of gait characteristics before and after music therapy (MT).

Pre-MT Post-MT

Acceleration (m/s2) 1.94 ± 0.56 2.44 ± 0.73 **

Speed (m/s) 0.88 ± 0.22 0.97 ± 0.22 **

Cadence (steps/min) 117.3 ± 17.74 122.9 ± 15.56 *

Step length (cm) 41.55 ± 8.38 46.70 ± 8.39 **
** p < 0.001, * p < 0.05.

Additionally, we compared the pre/post changes in acceleration, gait speed, cadence,
and step length between the two groups of H&Y 2 (4 subjects) and 3 (15 subjects), but there
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was no significant difference between the different H&Y levels. Furthermore, the same
comparison was made between the two groups with a gait score of one point (12 subjects)
and two points (6 subjects) on the UPDRS-III, but there was no significant difference
between these two groups (the remaining subject had zero point for Gait on the UPDRS-III).

During transitions in all walking tasks with music (from Tasks 3 to 6), the values of
acceleration (p < 0.05), gait speed (p < 0.08), cadence (p < 0.001), and step length (p < 0.6)
gradually increased. The best improvements were noted during Task 6 (music at 120 BPM),
with the effects remaining in Task 7 even without music (Figure 4). Walking speed in
Task 3 (music at 90 BPM) was slightly slower than that in Task 2 (with hand clapping),
which was performed at the subjects’ own pace. The rate of change in gait speed was
−8.66% ± 3.31% for Task 3 (BPM 90), 3.82% ± 4.19% for Task 4 (BPM 100), 7.13% ± 4.57%
for Task 5 (BPM 110), 16.04% ± 4.29% for Task 6 (BPM 120), and 15.48% ± 4.8% for Task
7 (post) (p < 0.001). The rate of change in acceleration was −16.83% ± 2.49% for Task 3
(BPM 90), −0.8% ± 4.46% for Task 4 (BPM 100), 4.04% ± 3.27% for Task 5 (BPM 110),
15.52% ± 5.56% for Task 6 (BPM 120), and 9.19% ± 4.44% for Task 7 (post) (p < 0.0001).

Figure 4. Cont.
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Figure 4. Transition throughout the entire walking task for acceleration, gait speed, cadence, and step
length. During transitions in the walking tasks with music (from Tasks 3 to 6), values of acceleration,
gait speed, cadence, and step length increased gradually. The best improvement was observed in
Task 6 (music at 120 beats per minute (BPM)) and remained in Task 7 even without music. Walking
speed in Task 3 (music at 90 BPM) was slightly slower than that in Task 2 (hand clapping while
walking at the subjects’ own pace).

With regard to the trajectory of the center of the body, the ML amplitude, which is typi-
cally large for PwP [23], was reduced significantly (pre: 1.88 ± 0.98 cm; post: 1.71 ± 0.84 cm;
p < 0.05; Table 2, Figure 5).
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Table 2. Changes in acceleration and amplitude over the three axes (mediolateral (ML), vertical (VT), and anteroposterior
(AP)) before and after music therapy (MT).

Acceleration (m/s2) Amplitude (cm)

Pre-MT Post-MT Pre-MT Post-MT

Total 1.94 ± 0.56 2.44 ± 0.73 -

ML 0.96 ± 0.22 1.13 ± 0.27 1.88 ± 0.98 1.71 ± 0.84

VT 1.96 ± 0.39 1.57 ± 0.47 1.07 ± 0.30 1.19 ± 0.36

AP 1.10 ± 0.31 1.15 ± 0.41 1.07 ± 0.99 1.23 ± 0.80
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Figure 5. Walking trajectory. With regard to the trajectory of the center of the body, mediolateral (ML) amplitude, which
is typically large for individuals with Parkinson’s diseases, decreased significantly. Left row: coronal plane; middle row:
sagittal plane; right row: horizontal plane. Upper row: the walking trajectory of a healthy 70-year-old woman. The trajectory
was symmetrical and forms a butterfly pattern in the coronal and horizontal plane. On the sagittal plane, the trajectory
forms a symmetrical circle. Middle row: Pre-MT walking trajectory of one subject. Lower row: Post-MT walking trajectory
of the subject shown in the middle row.
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4. Discussion

On comparing walking before and after rhythmic auditory stimulation with music,
the current study found that music therapy had immediate effects for gait disturbance
in PwP. Accordingly, significant improvements were observed in acceleration, gait speed,
cadence, and step length, suggesting the efficacy of music therapy in reducing gait distur-
bance associated with PD. As such, music therapy can be expected to be utilized in the
rehabilitation of PwP, particularly those with gait disturbance.

Comparing the gait of PwP with that of normal controls in another study (NC; normal
gait at 70–79 years) [22] showed that the former had clearly lower values for acceleration,
gait speed, cadence, and step length compared to the latter. Accordingly, PwP and NC
had pre-MT values of 1.94 ± 0.56 and 3.38 ± 0.16 m/s2 for acceleration, 0.88 ± 0.22 and
1.34 ± 0.01 m/s for gait speed, 109.99 ± 17.77 and 119.27 ± 2.05 steps/min for cadence,
and 41.55 ± 8.38 and 67.43 ± 0.53 cm for step length, respectively. Music therapy was able
to significantly improve gait disturbance in PD, which has been characterized as slow and
small steps [5], a tendency observed herein.

PwP also exhibit a gait that has large amplitude in the ML direction, which can be
observed from the trajectory of the PGR (Table 2, Figure 5). After music therapy, however,
the gait force increased, whereas the ML/VT amplitude and ML/AP amplitude ratios
decreased (Figure 6). The use of a PGR allows us to observe the data objectively in a manner
that both the patient and therapist can easily understand, which can be useful from the
perspective of personal communication. Apart from gait analysis in PD, studies have
utilized the trajectory of the PGR to evaluate total hip arthroplasty [16,21] and cerebral
infraction [24]. PGR analysis clearly showed that the ML amplitude of PwP was larger
than the VT and AP amplitude ratio among NC. Nonetheless, music therapy was able to
improve gait trajectory of PwP as well.

Figure 6. Cont.
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Figure 6. Comparison of the mediolateral (ML) amplitude/vertical (VT) amplitude ratio and ML
amplitude/anteroposterior (AP) amplitude ratio between normal controls (NC) and pre- and post-
music therapy individuals with Parkinson’s disease.

Compared to NC, individuals with Parkinson’s disease had a larger ML amplitude
ratio among the three axes, although this decreased post-MT.

The current study considers the following two factors to have caused the immediate
effect. First, music can act as external stimuli that normalized the destabilized processes
of internal rhythmic formation [14]. External rhythmic cues can serve as surrogate cues
for impaired internal timing [12]. Second, music can promote a pleasurable feeling by
activating the limbic system, which facilitates dopamine release [25,26]. Salimpoor et al.
reported that the intense pleasure experienced when listening to music was associated with
dopamine activity in the mesolimbic reward system, which includes both the dorsal and
ventral striatum [27]. Thus, it can be hypothesized that the mechanism by which music
therapy promoted its effects included both aforementioned factors, indicating its utility
for rehabilitation. Although the immediate effects were examined in the current study,
in the future, based on this method, the long-term effects could also be evaluated using
PGR. Furthermore, since a fully charged PGR can achieve 70 h of continuous recording [20],
it is possible to observe not only gait in the short term but also the diurnal variation of
Parkinson’s disease patients and to detect freezing of gait.

Moreover, PD is commonly complicated by the existence of comorbid depression. In
fact, Ito et al. [4] reported that simply listening to audio tapes at home without gait training
for at least an hour daily over three to four weeks significantly decreased mean depression
scale scores, suggesting that music could also be useful for improving depression as well as
gait disturbance.

Rehabilitation plays a crucial role in maintaining quality of life associated with PD [4],
the effects of which depend on the patients’ own motivation. Therefore, rehabilitation
techniques that patients can voluntarily perform by themselves are needed. Hence, music
therapy together with other rehabilitation approaches can be beneficial.

The effectiveness of various nonpharmacological interventions, such as Tai Chi, robot-
assisted gait training, Lee Silverman Voice Treatment, dance, video games, and virtual
reality exercises, have also been reported [11,28]. In particular, music and dance have
potential advantages in terms of noninvasive treatment and easy applicability [29].

Nowadays, telemedicine for PD has been receiving increasing attention [30]. In fact,
reports have shown that rehabilitation can be provided through telemedicine [31] and that
music therapy could also be used in that field.
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5. Conclusions

The current study indicated in detail that gait training incorporating music via rhyth-
mic auditory stimulation can be effective for treating gait disturbance associated with
PD. Moreover, the objective and visualized data obtained using a PGR can aid in treating
PD-associated gait disturbance. The rehabilitation process through music is simple, nonin-
vasive, nonpharmacological, and inexpensive. Therefore, we believe that music therapy
will become more utilized for the daily rehabilitation of PD-associated gait disturbance.
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Abstract: This study’s aim was to analyze muscle activation and kinematics of sled-pushing and
resisted-parachute sprinting with three load conditions on an instrumentalized SKILLRUN® tread-
mill. Nine male amateur rugby union players (21.3 ± 4.3 years, 75.8 ± 10.2 kg, 176.6 ± 8.8 cm) per-
formed a sled-push session consisting of three 15-m repetitions at 20%, 55% and 90% body mas and
another resisted-parachute session using three different parachute sizes (XS, XL and 3XL). Sprinting
kinematics and muscle activity of three lower-limb muscles (biceps femoris (BF), vastus lateralis (VL)
and gastrocnemius medialis (GM)) were measured. A repeated-measures analysis of variance (RM-
ANOVA) showed that higher loads during the sled-push increased (VL) (p ≤ 0.001) and (GM)
(p ≤ 0.001) but not (BF) (p = 0.278) activity. Furthermore, it caused significant changes in sprinting
kinematics, stiffness and joint angles. Resisted-parachute sprinting did not change kinematics or
muscle activation, despite producing a significant overload (i.e., speed loss). In conclusion, increased
sled-push loading caused disruptions in sprinting technique and altered lower-limb muscle activation
patterns as opposed to the resisted-parachute. These findings might help practitioners determine
the more adequate resisted sprint exercise and load according to the training objective (e.g., power
production or speed performance).

Keywords: team-sports; performance; muscle activation; loaded sprint; sled-push

1. Introduction

Rugby union is a high contact team sport played worldwide which performance
depends on the complex relationship between technique, tactics, cognition and physical ca-
pacities [1]. The game is based on collision and intermittent actions, where high-intensity ac-
tivities (e.g., tackling, rucking, scrummaging, mauling) are interspersed with low-intensity
activities (e.g., standing, walking, jogging) [2]. By analyzing the activity profile during a
rugby union match, high-intensity actions, such as sprinting, are very frequent [3]. As such,
linear sprint could be considered one of the most critical skills in this sport [4].

Sprint performance is determined by the athlete’s capacity to generate and apply a
great propulsive force during the acceleration phase and to maintain their maximum veloc-
ity for as long as possible during the maximum velocity phase [5]. In this regard, different
non-specific strength-power exercises and methods have been used for the improvement
of the acceleration phase of the sprint [6–8]. However, many coaches believe that training
methods for improving sprint performance should also include specific strength exercises,
so that the athlete can perform the desired movement with an added load [9]. This idea is
supported by the training principle of specificity, which suggests that exercises should have
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similar characteristics to the sport’s requirements (i.e., type of action, movement patterns,
velocity, muscle activation, etc.) [10]. Thus, resisted sprint training (RST) has been used as
a specific training method for the enhancement of sprint performance in rugby and other
team-sports, especially in the acceleration phase [11–14].

One of the most important variables considering RST is the selection of the training
load. Most authors agree that RST is an effective training method for performance im-
provement, regardless of the load used [6,11,15,16]. Nevertheless, some argue that the use
of tertiary methods does not replicate the sprint running movement [14,15] and the load
must not be >20% body mass (BM) if the aim is to replicate sprint demands in terms of
movement pattern, load, muscle activation and movement velocity [11]. These kinematics
changes are mainly caused by a decrease in the lower limb stiffness, leading to a reduction
of the force transmission ratio between the legs and the ground and therefore a lower
acceleration and running speed [17].

When referring to RST, a wide variety of exercises and equipment can be used in-
cluding sled and parachute towing, wearing a weighted vest and sprinting on sand or
uphill [15]. From these, sled towing and pushing, along with resisted-parachute sprint-
ing, are the most widely used in sports such as football, rugby and soccer. However, the
scientific evidence regarding sled-pushing and resisted-parachute sprinting is limited in
comparison to sled towing [18–22], particularly for variables such as muscle activation.
In fact, only one study has analyzed muscle activation patterns in sled-pushing com-
pared to squatting, finding a similar rectus and biceps femoris (BF) activation but higher
gastrocnemius electromyographic (EMG) activity in the sled exercise [20].

A potential limitation of the RST is that it requires an exterior environment and
facilities for its development, otherwise, a large interior space is needed. In addition,
weather conditions can have a negative effect conducting the workout (e.g., wind con-
ditions). Hence, alternative methods/equipment that can replicate the demands of RST
indoor could be extremely valuable for coaches and athletes. In this context, a special-
ized treadmill SKILLRUN® (SR®) (Technogym, Cesena, Italy) capable of replicating RST
has been recently developed with the aim of improving athlete’s speed and power in
a closed environment.

Given the lack of research, performing a muscle activity and kinematics analysis in
sled-pushing and resisted-parachute sprinting on a treadmill with different loads would be
interesting to determine which load in each of these exercises allows performing a sprinting
effort without major disruptions of the muscle activity, movement pattern and leg stiffness.
Hence, the aim of this study was to analyze the muscular activation and kinematics of
sled-pushing and resisted-parachute sprinting with three load conditions on the instru-
mentalized treadmill. The secondary objective was to examine the effect of varying load
on power production in these specific exercises. We hypothesized that: (1) the increased
load would disrupt the kinematics of the exercises and cause increased gastrocnemius
medialis (GM) and vastus lateralis (VL) muscle activation whereas BF would be reduced or
maintained; and (2) moderate intensity loads would maximize power production.

2. Materials and Methods

Participants took part in a randomized crossover design pilot study consisting of:
(1) one sled-push session in SR® treadmill using three different load conditions (i.e., 20%,
55% and 90% BM), and (2) one resisted-parachute session in SR® treadmill using three
different parachute sizes (i.e., extra-small (XS), extra-large (XL) and triple extra-large (3XL)).
Sled and parachute resistance were applied by the SR®; therefore, participants did not
move across space but rather ran on the treadmill as depicted in Figure 1. Test distance
and load selection were determined following a pilot study conducted at our facilities.
An external researcher randomly determined the order of the sessions, the training intensity
and parachute size. Each sled and parachute session were separated by 7-d due to team’s
training schedule during the season. Participants were asked to cease physical activity or
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training 24-h before the testing to ensure full recovery and all the tests were conducted in a
similar time of the day (e.g., +/− 1-h) to minimize diurnal variations.

Figure 1. (left panel) Sled-push and, (right panel) resisted-parachute sprinting on the SR® treadmill.

2.1. Subjects

Nine male amateur rugby union players (age 21.3 ± 4.3 years, mass 75.8 ± 10.2 kg,
height 176.6 ± 8.8 cm) participated in this study. Convenience sampling was used as the
eligibility criteria. Over the course of the study, two participants suffered an injury and were
unable to attend to the resisted-parachute session. Players were excluded if they: (1) were
taking any medication or supplementation (e.g., caffeine 12-h prior to exercise) that could
interfere with the results, (2) were suffering from any kind of disease and (3) had suffered
from a lower limb injury six months prior to study enrollment. All subjects were familiar
with performing the traditional sled-push and resisted-parachute sprinting exercises in
their regular training. Participants read the information sheet and were informed of the
benefits and risks of the investigation and signed the informed consent form before the
study began. Parental or guardian informed consent form was obtained for those who
were underage (n = 2). This study conforms with The Code of Ethics of the World Medical
Association (Declaration of Helsinki) and it was approved by the local Ethics Committee
(code: CE012009; date 31 January 2020).

2.2. Procedures

Anthropometric measurements (i.e., mass and height) were taken using a Tanita
HD-313 scale (Tanita Corporation, Tokyo, Japan) and a stadiometer Seca 213 (Hamburg,
Germany). Electrodes for the EMG analysis were placed on the VL, BF and GM muscles
before volunteers performed a standardized warm-up which included: 8-min of cycling in
a cycle ergometer, dynamic stretching of the lower limbs and one submaximal sled-push
repetition with the participant’s 20% BM over 15-m or a submaximal resisted-parachute
sprint using XS parachute size over 15-m.

2.2.1. Sled-Push Test Protocol

In the SR® sled mode, the resistance is applied in such a way that it mimics the
sensation of an over-ground sled-push. The treadmill resistance is higher during the initial
phase of the run and decreases at a constant rate as velocity increases (accounting for
inertia). Participants (n = 9) carried out three repetitions over 15-m and used three different
training intensities: 20%, 55% and 90% BM. They had to run, “pushing” the treadmill belt,
as fast as possible (speed was not kept constant by the treadmill but was rather determined
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by the athlete’s running capabilities) with their hands fixed to the handles at the height
they were most comfortable following manufacturer’s recommendations. Starting position
was established individually according to the subject’s dominant leg and remained the
same throughout all the sessions. Participants were encouraged to exert their maximum
effort while performing the exercises. Resting time between repetitions was 3-min walking
at 3 km/h.

2.2.2. Resisted-Parachute Test Protocol

In the SR® parachute mode, the sensation of sprinting outdoors with a parachute
is also mimicked. The resistance is null at the start and increases progressively with
running velocity. According to manufacturer specifications, the resistance deriving from
the parachute is calculated analyzing different parameters (Equations (1)–(3)) that are used
into a proprietary formula. The parameters are:

Motor torque = 0.01365 ×
(

v2
)
×

(
Pd2

)
×

(
10−6

)
(1)
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(

Pd2
)
×

(
v2
)
×

(
10−6

)
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)
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v3

)
×

(
10−6

)
(3)

In which F0 corresponds to the friction coefficient in N, v is the slat belt speed
in m/s, P0 (W) is obtained by multiplying F0 by v, and Pd corresponds to the parachute
diameter in mm. Resistance increases with the power of three relationship with speed
(cubic relation).

Participants (n = 7) performed three repetitions over 15-m and used three different
parachute sizes: XS, XL and 3XL. The parachute belt was buckled at waist level following
manufacturer’s recommendations. Participants were asked to run at maximum intensity
and were encouraged over the course of the test. Resting time between repetitions was
3-min walking at 3 km/h.

2.2.3. Electromyography

The Surface ElectroMyoGraphy for the Non-Invasive Assessment of Muscles (SE-
NIAM) protocol was used for skin preparation and sensor location [23]. Skin preparation
included shaving areas where electrodes would be placed, removing dead epithelial cells
using an abrasive paper and cleansing the area with alcohol, allowing it to vaporize.
Two surface EMG electrodes (Ambu® BlueSensor N—Ambu A/S, Denmark) were placed
20 mm apart (electrode to electrode) on the participant’s dominant leg over three muscles:
(a) VL, (b) BF and (c) GM. The electrodes were placed superficially to each muscle belly
and in the same orientation as the respective muscle fibers. This procedure was conducted
before the beginning of the sled-push and resisted-parachute session. The placement of the
electrodes was marked with a permanent marker to ensure that it was the same in both
sessions. They were secured to the skin with adhesive tape and an elastic bandage in order
to eliminate any movement artifact.

Muscle activation was measured via wireless surface EMG (Noraxon USA INC, Scotts-
dale, AZ, USA) at a sampling rate of 10,000 Hz with Noraxon MR 3.6.20 software (Noraxon,
Scottsdale, AZ, USA). Raw EMG data was processed and filtered using the following
settings: Filter: FIR, Window: 79 points, Type: Bandpass, Low frequency: 20 Hz, High
frequency: 500 Hz, Window: Lancosh. Rectification and smoothing (Algorithm: RMS,
Window: 100 ms) were also applied. Total muscle activation was analyzed with Acq-
Knowledge 3.9.1 software (BIOPAC Systems Inc., CA, USA) by calculating the average
root-mean-square (RMS) of the whole gait cycle from the first 10 strides.
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2.2.4. Performance Variables

Maximum velocity (Vmax) and maximum power (Pmax) were obtained from the special-
ized treadmill interface as performance variables. According to manufacturer specifications
Vmax (km/h) is directly measured from the rotational speed of the motor while Pmax (W) is
obtained by multiplying the rotational speed of the slat belt by the force applied by the
athlete to the surface (deriving from the motor energetic absorption).

2.2.5. Kinematics

Running kinematics during the sled-push and parachute sessions were recorded
using the camera of an iPhone XR running iOS 13.5 (Apple Inc., Cupertino, CA, USA) at
a frequency of 240 Hz. The camera was placed sideways at a distance of 2-m from the
treadmill on a 1-m height tripod recording the sagittal plane of the subject’s dominant leg.
Calibration frame was performed by measuring the length of one of the treadmill handles.

The following kinematic variables of the first ten strides of the participant’s dom-
inant leg were analyzed using Kinovea 0.9.1 (Kinovea.org, France): contact time (CT),
flight time (FT), stride frequency (SF), stride length (SL), leg stiffness (Kvert) and ankle,
knee and hip angles (Aangle, Kangle, Hangle, respectively) collected during the stance phase.
Intraclass correlation coefficients (ICC) were determined for the different sled-push vari-
ables: CT (ICC ranging from 0.890 to 0.965), FT (from 0.744 to 0.940) and SL (from 0.883
to 0.945). Regarding resisted-parachute sprinting, ICCs ranging from 0.816 to 0.967, from
0.704 to 0.831 and from 0.765 to 0.911 were obtained for CT, FT and SL, respectively. Kvert
was measured using the methods and calculations (Equations (4)–(6)) by Morin et al. [24]:

K̂vert = F̂max · Δŷc
−1 (4)

F̂max = mg
π

2

( t f

tc
+ 1

)
(5)
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F̂maxt2

c
m π2 + g

t2
c
8

(6)

In which Δŷc is the vertical center of mass displacement, m is the participant’s body
mass in kg, tf is the flight time in s, and tc is the contact time in s. Subsequently, the K̂vert
value obtained was multiplied by 1.0496 (i.e., a correction factor proposed by Coleman
et al. [25]). Raw angle data from Kinovea was exported to Microsoft Excel 16.36 (Microsoft,
USA) for further analysis.

2.3. Statistical Analysis

Data is shown as mean ± SD. The statistical analysis was performed using Jamovi®

1.1.9.0 for macOS. Shapiro–Wilk test and Levene’s test were used for assessing the nor-
mality of the distribution of the variables and the homogeneity of variance. The EMG
activity and kinematic variables during each load and exercises were determined using
repeated-measures analysis of variance with Bonferroni post hoc comparisons. Partial
eta squared was obtained from the repeated measures analysis and classified as: small
(≤0.01), moderate (≤0.06) and large (≥0.14). Cohen’s d effect sizes (ES) were calculated
to provide qualitive descriptors of standardized effects using the following criteria: <0.2,
0.2–0.6, 0.6–1.2, 1.2–2, 2–4 and >4 for trivial, small, moderate, large, very large and near
perfect, respectively [26]. Alpha-level was set at p ≤ 0.05.

3. Results

3.1. Electromyography

Figure 2 displays the comparisons between EMG activation patterns of the different
muscles in the sled-push and resisted-parachute sprinting in the different load conditions.
Regarding sled-push, there was a statistically significant effect of increasing load on VL
activation (F = 33.366; p ≤ 0.001; η2

P = 0.807).VL activation was significantly higher at 90%
BM compared to 20 and 55% BM (p ≤ 0.001, ES = 2.18; p ≤ 0.001, ES = 2.39) respectively,
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and tended to increase from 20–55% BM (p = 0.054, ES = 0.90). In contrast, no signifi-
cant differences were obtained on BF activation as load increased (F = 1.388; p = 0.278;
η2

P = 0.148). Increasing load had a statistically significant effect on GM activation
(F = 14.439; p ≤ 0.001; η2

P = 0.643). GM activation increased significantly from 20–55%
BM (p = 0.012, ES = 1.07) and 20–90% BM (p ≤ 0.001, ES = 1.94) but not from 55–90% BM
(p = 0.212, ES = 0.62) (Figure 2A). No significant differences were found in muscle activation
of VL (F = 0.591; p = 0.569; η2

P = 0.090), BF (F = 1.531; p = 0.256; η2
P = 0.203) and GM

(F = 0.879; p = 0.440; 0.128) using different parachute sizes (Figure 2B).

Figure 2. (A) Comparison of muscle activation of VL, BF and GM in sled-push under different load
conditions. (B) Comparison of muscle activation of VL, BF and GM in resisted-parachute sprinting
under different size conditions. * p ≤ 0.05; ** p ≤ 0.001; BF = biceps femoris; BM = body mass;
EMG = electromyography; GM = gastrocnemius medialis; VL = vastus.

3.2. Kinematics

Table 1 depicts the descriptive analysis for the kinematic variables.

Table 1. Kinematics and performance variables of sled push and resisted-parachute sprinting with different load conditions,
data is presented as mean ± SD.

Sled Push Parachute

20% BM 55% BM 90% BM XS XL 3XL

Kinematic Variables
CT (s) 0.192 ± 0.012 0.241 ± 0.026 0.368 ± 0.115 ** 0.186 ± 0.012 0.197 ± 0.009 0.196 ± 0.016
FT (s) 0.297 ± 0.019 0.291 ± 0.025 0.305 ± 0.042 0.283 ± 0.018 0.277 ± 0.016 0.279 ± 0.026

SF (Hz) 2.14 ± 0.18 1.89 ± 0.14 1.54 ± 0.29 ** 2.13 ± 0.09 2.11 ± 0.08 2.11 ± 0.10
SL (cm) 62.63 ± 9.64 56.21 ± 9.05 46.39 ± 10.8 ** 59.63 ± 7.41 58.43 ± 6.36 54.25 ± 5.49

Kvert (N/m) 16.14 ± 4.42 9.76 ± 2.08 ** 4.72 ± 2.28 ** 16.48 ± 4.33 14.37 ± 3.19 14.83 ± 4.02
Joint Angles

Aangle (º) 106.73 ± 7.88 103.05 ± 11.04 99 ± 8.95 ** 110.60 ± 2.99 108.76 ± 5.92 112.25 ± 6.58
Kangle (º) 142.27 ± 8.21 135.52 ± 9.64 127.63 ± 13.03 * 143.46 ± 11.07 141.30 ± 12.44 148.87 ± 7.03
Hangle (º) 142.52 ± 6.11 140.73 ± 10.69 135.03 ± 12.29 * 151.99 ± 6.50 149.37 ± 4.72 157.09 ± 3.78 *

Performance Variables
Pmax (W) 704.56 ± 107.37 900.89 ± 132.89 ** 826.00 ± 121.04 * 440.71 ± 93.08 469.71 ± 85.19 533.14 ± 80.83 **

Vmax (km/h) 17.36 ± 1.03 13.19 ± 1.02 ** 8.81 ± 2.62 ** 18.83 ± 1.62 16.80 ± 1.69* 15.96 ± 1.36 **

* p ≤ 0.05; ** p ≤ 0.001; η2
P = significant difference between XL-3XL Aangle = ankle angle; BM = body mass; cm = centimeters;

CT = contact time; FT = flight time; Hangle = hip angle; Hz = hertz; km/h = kilometers per hour; Kangle = knee angle; Kvert = stiffness
vertical; s = seconds; SF = stride frequency; SL = stride length; Vmax = maximum velocity; W = watts; XS = extra-small; XL = extra-large;
3XL = triple extra-large.
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Significant effects were found in CT (F = 16.367; p ≤ 0.001; η2
P = 0.672),

SF (F = 16.543; p ≤ 0.001; η2
P = 0.674), SL (F = 12.505; p ≤ 0.001; η2

P = 0.610) and Kvert
(F = 33.841; p ≤ 0.001; η2

P = 0.809) when pushing the sled. Higher CT were found from
20–90% BM (p ≤ 0.001, ES = 1.42) and 55–90% BM (p = 0.003, ES = 1.20). Conversely,
no changes were found in FT (F = 1.130; p = 0.347; η2

P = 0.124). SF and SL increased
significantly from 20–90 % BM (p ≤ 0.001, ES = 1.52; p ≤ 0.001, ES = 1.28) and 55–90% BM
(p = 0.013, ES = 1.44; p = 0.025, ES = 0.92), respectively. Kvert decreased significantly in all
load conditions 20–55% BM (p ≤ 0.001, ES = 1.72), 20–90% BM (p ≤ 0.001, ES = 1.98) and
55–90% BM (p = 0.007, ES = 2.21) (Figure 3).

Figure 3. Comparison of sprinting Kvert and kinematics under different load conditions in sled-push.
* p ≤ 0.05; ** p ≤ 0.001; BM = body mass; CT = contact time; FT = flight time; Kvert = vertical stiffness;
SF = stride frequency; SL = stride length.

Increasing load had a significant effect on Aangle (F = 12.075; p ≤ 0.001; η2
P = 0.601),

Kangle (F = 10.088; p = 0.001; η2
P = 0.558) and Hangle (F = 4.611; p = 0.026; η2

P = 0.366).
Aangle, Kangle and Hangle decreased significantly from 20–90% BM (p ≤ 0.001, ES = 1.46;
p = 0.001, ES = 1.14; p = 0.031, ES = 0.79, respectively) and presented a non-significant
decrease from 55–90% BM in Aangle (p = 0.062, ES = 0.99). No significant effects between
kinematic variables and different parachute sizes in resisted-parachute sprinting were
found in CT (F = 2.982; p = 0.089; η2

P = 0.332), FT (F = 0.541; p = 0.595; η2
P = 0.083),

SF (F = 0.416; p = 0.669; 0.065), SL (F = 3.568; p = 0.061; 0.373) and Kvert (F = 3.109; p = 0.082;
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η2
P = 0.341). The only statistically significant difference was found from XL-3XL parachute

size in Hangle (p = 0.007, ES = 1.64).

3.3. Performance

In sled-push, there were a statistically significant effect of increasing load on Pmax
(F = 27.101; p ≤ 0.001; η2

P = 0.772) and Vmax (F = 86.972; p ≤ 0.001; η2
P = 0.916). Pmax

increased significantly from 20–55 % BM (p ≤ 0.001, ES = 4.80), 20–90 % BM (p = 0.001,
ES = 1.26) and decreased significantly from 55–90% BM (p = 0.040, ES = 0.81). On the other
hand, Vmax declined significantly between 20–55% BM (p ≤ 0.001; ES = 3.35), 20–90% BM
(p ≤ 0.001; ES = 3.78) and 55–90% BM (p ≤ 0.001; ES = 2.02). During resisted-parachute
sprinting, we found a significant effect on Pmax (F = 30.934; p ≤ 0.001; η2

P = 0.838) and
Vmax (F = 20.541; p ≤ 0.001; η2

P = 0.774). Pmax increased significantly from XS to 3XL
(p ≤ 0.001, ES = 2.75) and XL to 3XL (p ≤ 0.001, ES = 2.68), whereas Vmax decreased
significantly between XS-XL (p = 0.003, ES = 1.99) and XS-3XL (p ≤ 0.001, ES = 1.91).

4. Discussion

The main findings of the study were that: (1) the muscle activation of the VL and
GM (but not the BF) increased as a function of the load while pushing the sled but not
when using parachutes of different sizes; (2) increasing the load in sled-push provoked
several changes in running kinematics (i.e., increased CT and decreased SF, SL and Kvert,
Aangle, Kangle and Hangle) whereas only an increase in the Hangle between XL-3XL sizes was
detected in parachute running; and (3) the load conditions that produced the highest power
output in sled-push and parachute were 55% BM and 3XL parachute size, respectively.

The reported EMG activity in VL while pushing the sled is supported by previous
evidence suggesting there is an increase in knee torque due to increased horizontal con-
centric force during the acceleration phase of the sprint [27,28]. During this phase, the
position of the trunk is leaning forward, bringing the body to a more horizontal posi-
tion [29], similar to the one adopted to push the sled. In RST, athletes must adopt a more
horizontal position [30] and lower their center of mass to increase the horizontal force
application and ground CT and overcome the load [31]. This movement pattern defined as
“Groucho running” [32] (i.e., increased trunk, knee and ankle flexion while running) could
explain why VL and GM activation increased in all load condition whereas BF remained
unchanged. Regarding GM, it is worth noting that this muscle plays an important role in
the vertical and horizontal acceleration profiles during the stance phase in sprint accelera-
tion [33]. The increased GM activity with heavier loads could be explained by its function
as a dynamic muscle and by being the last segment of the kinetic chain trying to maintain
linear momentum [20]. The present data is supported, at least in part, by Zabaloy et al. [34]
that analyzed and compared the effects of unresisted and RST with 0%, 10%, 30% and 50%
velocity loss (Vloss) in rugby players. The authors found that BF long head EMG decreased
significantly as sled load increased whereas RF EMG increased. However, they did not
notice any significant changes in GM and gluteus medius. Regarding resisted-parachute
sprinting, it could be interesting to observe that EMG activity of the analyzed muscles
remained unchanged during with different sizes. This might be related to the fact that no
significant changes in running kinematics were found, despite the observed decrease in
Vmax. Still, these findings should be taken with caution as, to our knowledge, this is the
first study investigating muscle activation in parachute-resisted sprinting.

Regarding kinematic analysis, the increased load caused a disruption in most variables
during the sled-push. CT increased in all load conditions, as the athlete was “forced” to
produce a greater muscular power and horizontal force at ground contact to overcome the
higher resistance [30,34]. SL decreased even though no change in FT was found. This is
not related to the idea that shorter SL is associated with decreased FT [30]. However, this
exercise was performed on a treadmill; therefore, the relationship between the kinematic
variables could be different than if it had been carried out overground [35]. Concerning the
parachute condition, the findings herein are consistent with previous research [21], that
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reported that, despite parachute sprinting speed significantly decreasing by 4.4%, SF, SL,
ground CT and joint angles (trunk, hip, knee and ankle) remained unchanged. In line with
these results, Alcaraz et al. [15] established a 5% decreased running velocity in men and
6% on women with a medium size parachute compared to an unload sprint. Therefore,
it appears that resisted-parachute sprinting caused an overload on the athlete without
changing running kinematics and muscle activation patterns.

Kleg is a variable that plays an important role in sprint performance as it is associated
with velocity, SF and energy cost [24]. In this regard, in the present study, Kvert decreased
significantly with increasing loads. Nevertheless, caution is necessary when comparing
sled-pushing and sled pulling since, despite both being effective RST exercises, they may
offer different training stimuli [18]. Another aspect worth noting is that the significant
reduction in Aangle, Kangle and Hangle herein could lead to an increased energy cost of
the movement pattern as a result of a decline in the amount of stored and reused elastic
energy [36]. This, together with an alteration of running kinematics and greater moments
of force caused by the increased load, could raise the risk of sustaining an injury [37].

Of note, no previous research explored the use of different loads in sled-push and
parachute running. Different authors have addressed this issue in other sled-resisted
exercises (e.g., sled towing). For example, Cross et al. [38], using a sled towing protocol,
found a range from 70–96% BM (recreational athletes: 70%; sprinters: 96%) to be optimal
for power production. Opposite to these findings, Monte et al. [39] established maximal
horizontal power production in male sprint athletes at 20% BM. In this study, although
all kinematic parameters changed significantly with external load (CT, FT and SL), there
was no variation in the angular parameters (i.e., in running technique). Importantly,
caution is needed when discussing these values as optimal load is considered to be exercise-
specific, therefore, the same relative intensity should not be applied to all sled-resisted
exercises [40]. This could be explained by the fact that power production is affected by
the biomechanical and neurophysiological characteristics of each exercise and the intrinsic
characteristics of the athlete himself (training background, hypertrophy, distribution and
type of fibers) [40,41]. Determining the load that maximized power production can be
beneficial for programming the training; however, it is yet to be determined whether
training with the optimal load in RST yields greater adaptations.

The main limitation of the present study is the small and heterogeneous sample size.
A larger sample would have allowed us to get more statistical power. In addition, the non-
normalization of muscle activation values could be considered a limitation. Nevertheless,
the experimental context herein (i.e., comparison within a person and muscle, between
different loads (within a session) without removing electrodes) allows the approach used
(non-normalized data), as discussed elsewhere [42]. Future research should analyze the
pattern of muscle activation during the different phases of the gait cycle while pushing
the sled and sprinting with parachute so that it is possible to understand in which phases
the lower limb muscles are more involved. Moreover, it would be interesting to study the
long-term effects of RST on a variety of sport modalities (e.g., team-sports, athletics or
endurance athletes).

5. Conclusions

In conclusion, the increased load in sled-push causes a disturbance in sprinting
technique accompanied by changes in lower-limb muscle activation patterns. Conversely,
sprinting with different parachute sizes does not change running kinematics and muscle
activation, but it causes and overload on the athlete by increasing Vloss. As hypothesized,
the load that maximized power production in sled-pushing was found at 55% BM. In
resisted-parachute sprinting the biggest parachute size produced the highest power output.

From a practical perspective and based on our findings, increased load during the
sled-push exercise in SR® treadmill modifies muscle activation, stiffness and kinematics.
Therefore, depending on the training objective, we recommend strength and conditioning
professionals to use: (1) very high loads (i.e., around 90% BM) to maximize the activation of
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the quadriceps and gastrocnemius muscles, (2) loads around 55% BM to maximize power
production and (3) loads below or close to 20% BM if the objective is to improve velocity.
Moreover, resisted-parachute sprinting in the SR® treadmill could be useful for improving
sprint force production without compromising sprinting kinematics. The SR® treadmill
was found to acutely modify muscle activation patterns and force production against the
ground when performing RST. Therefore, this specialized treadmill seems to be a highly
versatile device for training in different zones of the force-velocity curve.
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Abstract: Inertial sensors can potentially assist clinical decision making in gait-related disorders.
Methods for objective spatio-temporal gait analysis usually assume the careful alignment of the
sensors on the body, so that sensor data can be evaluated using the body coordinate system. Some
studies infer sensor orientation by exploring the cyclic characteristics of walking. In addition to being
unrealistic to assume that the sensor can be aligned perfectly with the body, the robustness of gait
analysis with respect to differences in sensor orientation has not yet been investigated—potentially
hindering use in clinical settings. To address this gap in the literature, we introduce an orientation-
invariant gait analysis approach and propose a method to quantitatively assess robustness to changes
in sensor orientation. We validate our results in a group of young adults, using an optical motion
capture system as reference. Overall, good agreement between systems is achieved considering an
extensive set of gait metrics. Gait speed is evaluated with a relative error of −3.1 ± 9.2 cm/s, but
precision improves when turning strides are excluded from the analysis, resulting in a relative error
of −3.4 ± 6.9 cm/s. We demonstrate the invariance of our approach by simulating rotations of the
sensor on the foot.

Keywords: gait analysis; gait parameters; IMU; inertial sensors; orientation-invariant; sensor fusion

1. Introduction

Objective measurement of gait is fundamental for human motion analysis, with
applications in clinical research, sports, rehabilitation, health diagnosis, and others [1].
The traditional approach for quantitative gait analysis, mostly based on the use of optical
motion capture systems, was proven to be clinically relevant, however, these systems are
often restricted to the laboratory setting [2]. In the clinical setting, visual observation,
questionnaires or simple functional tests are commonly employed [2]. Although these
evaluations require simple instruments and are easy to perform, subtle changes in spatio-
temporal gait parameters (e.g., associated with geriatric syndromes like falls [3], cognitive
impairment [4], or frailty [5]) can easily go undetected [2].

Inertial sensor-based gait analysis has become highly attractive in the past years, and
constitutes a promising approach to assist clinical decision making for gait-related disorders
in ageing [2]. Gait parameters such as gait speed, stride length, cadence, swing width,
or foot clearance, can be obtained from the analysis of inertial sensor data [6–9], offering
a cheaper and unrestricted alternative to gait analysis that may fit either assessment in
clinical settings or continuous monitoring in daily life activities [2,10]. However, inertial
sensors are susceptible to noise, and complex algorithms are needed to reliably measure
gait parameters [11].

To handle errors, studies typically exploit the cyclic nature of gait and the hypothesis
that the velocity of the sensor—when placed on the foot—is zero when the foot is in contact
with the ground (i.e., at some point in stance) [12]. Zero velocity intervals (ZVIs) are then
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used to improve the methods for estimating sensor orientation [6,8,13] and reconstructing
displacement [6–8,14–16]—required to evaluate spatio-temporal parameters of walking.

Even though the orientation of the sensor relative to the Earth frame can be obtained
using appropriate sensor fusion methods [17,18], the orientation of the sensor relative
to the movement direction or relative to the body part, is typically unknown. In some
situations, for instance, when a smartphone is used to monitor users’ motion, the sensor
orientation and position relative to the body may be changing over time, which requires
specific methods to identify the users’ motion direction with respect to the sensor. Methods
based on the ellipsoidal shape of horizontal components of acceleration [19], or based on
sinusoidal approximations of the acceleration data [20] have been proposed in the literature,
with direct applications on pedestrian dead reckoning. When the sensor is placed on the
feet, other techniques can be used. Falbriard et al. [21] proposes an automatic calibration
process, in which the Principal Component Analysis (PCA) is used to find the foot medio-
lateral axis based on the angular rates acquired during gait. In [11], the foot orientation
vector is estimated using a particle filter. Although [11,21] claim that the methods they
propose enable the use of sensors in a robust and reproducible manner, reproducibility is
not assessed by the authors.

Most studies assume that at least one sensor axis is aligned with the body—typically
the medio-lateral axis when the sensor is placed on the feet. Based on this assumption, the
medio-lateral angular rate and/or forward-anterior acceleration can be directly determined,
and used to detect gait events [8,15]. Sagittal foot angle can also be obtained [14], from
which heel and toe clearance metrics can be calculated [9,22]. The inertial coordinate system
at the beginning of each gait cycle can be used as a base coordinate system (aligned with
the medio-lateral and forward-anterior axis of the body), relative to which foot orientation
and trajectories can be determined [15,16]. Besides assuming a known configuration, the
extent to which algorithms depend on the precise alignment of the sensors has not yet
been investigated.

Another approach for gait analysis relies on data-driven procedures. These methods
require training in a relevant dataset, using features extracted from inertial sensor data [23]
or, in case of using sufficiently deep architectures, regressing directly against raw sensor
data [24]. In both cases, generalization is possible only if sufficient and representative data
are given to the model, allowing it to learn from the data. Studies that employ data-driven
approaches train their models without considering multiple sensor orientations [23,24],
so their final models may not be robust to differences in orientation. However, assuming
precise alignment of the sensors on the body seems unrealistic in practice.

In this paper, we approach the topic of orientation-invariance explicitly. We introduce
an orientation-invariant gait analysis approach relying on inertial sensors placed on the
shoes and validate results in a group of young adults, using an optical motion capture
system as reference. We propose a method to quantitatively evaluate invariance to differ-
ences in orientation and demonstrate it by simulating rotations of the sensor on the foot.
Experiments and results are presented in this work, together with a critical interpretation;
findings are described considering the research problem being addressed and past work
within the topic.

2. Materials and Methods

2.1. Wearable Sensors

Acceleration and angular rate were measured using two inertial measurement units
(IMUs). The IMUs were developed in our lab, and incorporated a 32-bit Arm Cortex M4F
processor (Nordic nRF52). The device was equipped with a tri-axial gyroscope and a
tri-axial accelerometer (Bosch BMI160), and communicated with a computer via Bluetooth®

Low Energy, enabling data collection at a sampling rate of 100 Hz. Sensors were placed on
the shoes, near the foot instep, as shown in Figure 1.
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Figure 1. Wearable sensors and reference system: (a) Capture volume and camera installation. (b) Sensor placement.
(c) Marker placement.

2.2. Reference System

As a reference system, we used an optical motion capture system (Vicon, Oxford
Metrics). It consisted of 10 infrared cameras (Vicon Vero v2.2), plus 2 optical cameras
(Vicon Vue), installed as illustrated in Figure 1, which resulted in a capture volume of
around 3 per 8 m. Optical markers were placed on participants’ shoes as illustrated in
Figure 1.

The trajectories of the markers were captured at 100 Hz and post-processed using
Vicon Nexus (Vicon Motion Systems Ltd., Version 2.10.1). Post-processing included auto-
matic marker labelling, manual marker swapping correction and gap filling operations,
using the methods of spline, rigid body and pattern fill available in Vicon Nexus.

After post-processing, gait parameters were automatically extracted from trajectories
using a Python routine. The pipeline started with the identification of steady periods to
segment signals into strides, which involved the application of thresholds to the velocity of
the markers. It was followed by horizontal plane correction, where the normal (vertical)
vector corresponded to the second principal axis obtained using Principal Component
Analysis (PCA); PCA was applied to the position vectors–obtained from the heel (down)
marker–formed between two successive steady states. Before determining gait events and
calculating gait parameters, trajectories were low pass filtered using a zero-lag bidirectional
first order Butterworth filter (cutoff of 20 Hz).

Initial foot contact (FC) and foot off (FO) were automatically detected, using as ref-
erence the trajectories from the markers on the heel (down) and toe. The FC instant was
considered a minimum in heel vertical velocity [25], whereas the FO event was considered
a maximum in vertical toe acceleration [26]. Temporal gait metrics—stride, swing and stance
duration—were calculated as defined in [14]. Cadence was obtained as the inverse of stride
duration, converted to the units of steps per minute.

The trajectories of the heel (down), toe and sensor centroid were used to evaluate
spatial parameters, as illustrated in Figure 2: (i) Stride length (SL) was described as the
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linear distance obtained between two successive horizontal mid-stance sensor positions (as
defined in [27]); (ii) Turning angle was defined as the angle (yaw) between two successive
horizontal mid-stance foot vectors that were obtained from the positions of the heel and
toe at mid-stance; (iii) Swing width (SW) was considered the maximum lateral excursion
of the feet during swing, corresponding to the maximum-size vector perpendicular to the
stride length direction; (iv) Minimum toe clearance (MTC) was obtained directly from toe
trajectories, considered as the minimum peak vertical displacement during swing, to which
the toe height at toe off was subtracted. Gait speed was obtained by dividing stride length
by its corresponding stride duration.

Figure 2. Illustration of spatial gait parameters: (a) Stride length, swing width and turning angle. (b) Minimum toe clearance
(MTC).

All parameters were reported per stride, and calculated individually for each foot side.

2.3. Data Collection

A convenient sample of 26 healthy young adults (average age of 29.2 ± 5.3 years,
13 males and 13 females) participated in data collection activities. After calibrating Vicon
cameras and preparing the system for data acquisition, we placed the sensors and markers
on the shoes, as shown in Figure 1. This was followed by a short static subject calibration
trial. Afterwards, we asked the participant to do three consecutive laps, during which Vicon
and IMU data were collected simultaneously. In each lap, participants were requested
to walk straight along the length of the capture volume (i.e., along the 8 m) and use the
width of the capture volume to turn (as illustrated in Figure 1). Participants repeated the
walking trials in both directions—clockwise and counterclockwise—walking at comfortable,
slower and faster speeds (self-selected), which resulted in 6 acquisitions per participant.
All conditions were then repeated once. The study received approval by the Ethical
Committee of the University of Porto (81/CEUP/2019) and all participants provided
written informed consent.

2.4. IMU Data Processing

The following sections describe the methods for IMU data processing, inspired by
typical gait analysis routines—including the stages of zero velocity detection, orientation
estimation, double integration, events detection, and gait parameters estimation. The pro-
cessing pipeline included evaluation of different approaches for orientation estimation and
double integration. Every stage was formulated using an orientation-invariant approach.
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2.4.1. Zero Velocity Detection

Zero velocity intervals (ZVIs) were detected using the angular rate energy detector [28].
According to [28], angular rate provides rich information concerning the detection of ZVIs.
Compared to other methods (e.g., the acceleration magnitude detector), the angular rate
energy detector achieved the highest performance [28].

To calculate the energy of the angular rate magnitude, we used a sliding window with
0.15 s. The size of the window was experimentally set to ensure an appropriate energy
result, i.e., not too smoothed, nor too noisy. The window size of 0.15 s resulted in a good
compromise that could adapt to all walking speeds considered. To determine ZVIs, a
threshold was applied to the energy of the angular rate magnitude. The threshold was
calculated with basis on the average of the energy, to ensure that differences in walking
speed (reflected as different signal amplitudes) would be considered. The threshold was
experimentally set at 1/8 of the average, to ensure that all strides in all velocities would be
captured by the method.

After roughly detecting ZVIs, we proceeded with a dynamic adjustment of the in-
tervals. For each ZVI, we did a threshold refinement search: starting with a very low
threshold, we have progressively increased it (in steps of 1/20 of the ZVI energy range),
until a minimum interval size was obtained. The minimum interval size was set at 0.1 s,
unless an interval lower than 0.1 s was registered in the trial. Using this process, we
ensured a confident detection of all strides and, additionally, that all ZVIs were refined to
potentially include only zero velocity instants. The remaining intervals, i.e., the moving
intervals, were used to evaluate movement in the subsequent processing stages.

2.4.2. Orientation Estimation

Orientation, or attitude, of the sensor relative to the global frame of reference was
expressed using quaternions. The global frame of reference was defined by two perpen-
dicular horizontal axes (x and y)—arbitrarily set—and a vertical axis, z, pointing to the
sky. To obtain quaternions, we tested three methods: gyroscope integration and two
complementary filters (CFs)—Madgwick and Euston.

Gyroscope Integration

The gyroscope integration method takes advantage of the knowledge of the moving
and not-moving intervals. When the sensor is not moving (i.e., during a ZVI)—when
all measured accelerations are due to the Earth’s gravity acceleration—the accelerometer
signal is used to estimate sensor inclination. The vector gs = [āx, āy, āx], defined with the
average acceleration values measured while the sensor is not moving, corresponds to the
z-axis in the global frame of reference, i.e., the gravity axis. The horizontal axis—y-axis,
perpendicular to gravity—is then defined arbitrarily. The initial quaternion is obtained
from gravity and the horizontal vector, using the tri-axial attitude determination (TRIAD)
algorithm [29].

The initial quaternion is updated each time the foot is in contact with the ground.
During the intervals when the foot is moving, the quaternion q(t) is updated resorting to
the integration of angular rate ω(t) measured by the gyroscope, as described in [8,13]. This
is performed as defined by Equations (1) and (2):

q̇(t) =
1
2

q(t − Δt)⊗ p(ω(t)) (1)

q(t) =
q(t − Δt) + q̇(t)Δt

||q(t − Δt) + q̇(t)Δt|| (2)

where q̇(t) is the quaternion derivative and Δt is the sampling interval. The function
p(.) denotes the quaternion representation of a vector and the ⊗ operator represents the
quaternion product.
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Madgwick CF

In Madgwick [30], the quaternion derivative q̇(t) used in Equation (2) is replaced
by a corrected estimate ˙̂q(t) that incorporates orientation information provided by the
accelerometer. The method is based on the calculation of the gradient descent, as shown in
Equation (3).

˙̂q(t) = q̇(t)− β
Δε(t)

‖Δε(t)‖ with Δε(t) = J(ε(t))Tε(t) (3)

where J denotes the Jacobian, β is the filter gain and ε(t) denotes the error term, obtained
by subtracting the accelerometer measurement in the sensor frame as(t) to the theoretical
gravity vector in sensor coordinates gs(t) (obtained by transforming gravity in global
coordinates to sensor coordinates). β can be defined as β =

√
3/4 ω̄maxπ/180, where ω̄max,

expressed in degrees, represents the maximum gyroscope measurement error (mean zero
gyroscope measurement error).

The Madgwick filter is applied at all instants of the signal (moving and not mov-
ing intervals) considering as basis the initial quaternion determined using TRIAD, as
described previously.

Euston CF

The explicit complementary filter, also known as Euston filter, was implemented
as described in [13,18]. In Euston, instead of replacing the value of the quaternion, the
measured angular rate ω(t) is replaced by a corrected angular rate signal, resulting in the
following filter dynamics:

˙̂q(t) =
1
2

q̂(t − Δt)⊗ p(ω(t)+ δ(t)) (4)

in which the error term δ is obtained following Equations (5) and (6), where the term e(t)
describes the angular mismatch between theoretical (gs(t)) and measured (as(t)) direction
of gravity [18].

e(t) =
gs(t)

‖gs(t)‖ × as(t)
‖as(t)‖ (5)

δ(t) = kPe(t) + kI

∫
e(t)dt (6)

The Euston filter has two adjustable parameters, the proportional gain kP—to sep-
arate low- and high-frequency estimates of orientation—and the integrator gain kI—to
compensate for gyroscope bias [13,18]. Similarly to the Madgwick filter, we apply Euston
to all instants of the signal, considering as basis the initial quaternion determined using
TRIAD [29].

2.4.3. Double Integration

After obtaining orientation quaternions, q(t), we calculate linear acceleration in global
coordinates, hereinafter represented as a(t) for simplicity. To that purpose, we first estimate
the value of the gravity vector in global coordinates, gw = [0, 0, āzv], where āzv is the average
acceleration magnitude measured during ZVIs. Linear acceleration is then obtained as
shown in Equation (7).

a(t) = q(t)⊗ p(as(t))⊗ q−1(t)− gw (7)

where as(t) represents raw acceleration, as measured by the sensor.
To obtain displacements, we integrate linear acceleration two times. On the first

integration, an estimate of velocity, v̂(t), is obtained. Integrals are computed using the
Trapezoidal Rule, as shown in Equation (8).

94



Sensors 2021, 21, 3940

v̂(t) ≈ ∑
i

ai + ai−1

2
Δt (8)

To bound the errors, two different methods—linear dedrifting and direct and reverse
integration—are employed, as we explain next. After obtaining trajectories, a novel ap-
proach to correct the final vertical position (assuming walking on a flat surface) is tested.
The method rotates the trajectories so that the final height of each stride is zero. To that
purpose, a rotation quaternion is calculated, using as basis the angle with the horizontal
plane at the end of the stride and the rotation vector calculated as the cross product between
the vertical axis and the stride displacement vector. The rotation quaternion is used to
rotate trajectories within each moving interval.

Linear Dedrifting

Double integration is performed between ZVIs, on a stride-by-stride basis. To fulfil
the zero-velocity assumption—on which moving intervals are bounded by zero velocity
instants—a linear drift function (dv(t)) is estimated and subtracted from the estimated
velocity, as described in [14] and shown in Equation (9).

v(t) = v̂(t)− dv(t) (9)

Trajectory s(t) is obtained by integrating again velocity v(t).

Direct and Reverse Integration

The direct and reverse integration method fuses the regular integral with a time-
reversed integral so that the boundary conditions, in this case, the zero-velocity conditions,
are satisfied in the initial and final values of the integral [15,16]. The result of direct (v→(t))
and reverse (v←(t)) integration is combined using a sigmoid weighting function (w(t)), as
shown in Equation (10).

v(t) = (1 − w(t))v→(t) + w(t)v←(t) (10)

The sigmoid w(t), specified in Equation (11), is shaped using the steepness parameter,
η, and the inflection point, ti, defined between the temporal bounds tn and tn+1 of each
moving interval. To define ti, a proportion αi, between 0 and 1, of the moving interval
is used.

w(t) =
h(t)− h(tn)

h(tn+1)− h(tn)
with h(t) =

(
1 + exp

(
− t − ti

η

))−1
(11)

Position is estimated by integrating velocity.

2.4.4. Events Detection

To detect gait events avoiding the need of determining angular rate or acceleration
in body coordinates (where the alignment of the sensor on the body would need to be
known [8,15,16]), we used acceleration magnitude and the vertical component of accelera-
tion (in global coordinates).

We observed that FO events can generally be found in an acceleration magnitude
perturbation before swing. To approximate this instant, we filtered acceleration magnitude
using a zero-lag bidirectional 2nd order Butterworth low-pass filter with a cutoff of 7 Hz.
The cutoff frequency was experimentally chosen to ensure that (i) the perturbations were
smoothed resulting in a single peak value, and (ii) the resultant peak approximates the
acceleration magnitude perturbation where annotated FO events are observed. The FO
event was considered the first maximum peak above the average of the moving interval
appearing between two ZVIs (i.e., the first value above the average surrounded by two
values with lower magnitude), as illustrated in Figure 3.
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Figure 3. Events detection from low pass filtered acceleration magnitude and low pass filtered vertical acceleration
(FO—Foot off; FC—Initial foot contact; MS—Mid-stance; Ann-FO—Annotated FO; Ann-FC—Annotated FC).

FCs are detected between FOs and the beginnings of the next ZVIs. FCs were consid-
ered the absolute minimum of vertical acceleration measured between these two instants
(Figure 3). Before detecting FC events, vertical acceleration was low-pass filtered using
a zero-lag bidirectional 1st order Butterworth filter with a cutoff of 30 Hz. The cutoff
frequency was experimentally chosen to ensure the attenuation of high frequency noise
that could hinder the detection of FC events.

2.4.5. Gait Parameters Estimation

After calculating orientation, position and determining FO and FC events, temporal
and spatial parameters were estimated for each gait cycle n. Temporal parameters—stride,
swing and stance duration—were determined as defined in [14]. Cadence was obtained as
the inverse of stride duration, expressed in steps per minute. Spatial parameters (illustrated
in Figure 2) were calculated using information of moving intervals, defined by the temporal
bounds of tn and tn+1. To estimate SL and SW, we used trajectories on the horizontal plane,
sxy, as determined by Equations (12) and (13), where�sn(t) represents a displacement vector
relative to the final stride position at tn+1, obtained as sxy(tn+1)− sxy(t)). In Equation (13),
the symbol ∠ denotes the angle between two vectors.

SLn = ‖�sn(tn)‖ (12)

SWn = max
t∈{FOn :FCn+1}

‖�sn(t)‖ sin(∠(�sn(tn), �sn(t)) (13)

Gait speed was obtained by dividing SL by its corresponding stride duration.
To calculate MTC, we used a method inspired on the work by Kanzler, C. [9]. To

estimate toe trajectory, we have first estimated the distance between the sensor and the toe,
r, using as a basis the angle produced by the foot at FO, α(FOn), in each gait cycle n, as
illustrated in Figure 4.
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Figure 4. Variables involved in the calculation of toe trajectory.

To obtain the angle α(t), we did a series of vector transformations. First, we have
converted the vertical vector [0, 0, 1] to sensor coordinates, using the quaternion at the
beginning of the moving interval, i.e., at the foot flat at tn. Then, we transformed the
resultant vector back to global coordinates using the quaternion at FO. This vector, �vw,
was used to estimate the medio-lateral vector,�lw, using the cross product between �vw and
[0, 0, 1]. The forward vector, �fw, was calculated using the cross product between [0, 0, 1]
and�lw, which was then converted back to sensor coordinates using the quaternion at tn.
This vector, �fs, parallel to the ground at foot flat and pointing forward towards the toes,
was used to estimate the angle α(t), as depicted in Equation (14).

α(t) = ∠([0, 0, 1],�v)− α(tn) with �v = q(t)⊗ p(�fs)⊗ q(t)−1 and t ∈ [tn : tn+1] (14)

The distance between the sensor and the toe (r) was obtained by the average of the
values determined in each stride n, as shown in Equation (15).

r =
1
N

N

∑
n=1

sz(FOn)

sin(α(FOn))
(15)

where N is the total number of strides and sz(t) represents the z component of the trajectory
of the sensor (i.e., its vertical displacement). MTC was considered the minimum peak
vertical toe displacement measured during the swing phase of walking. This vertical dis-
placement, m(t), was estimated as shown in Equation (16), where r × sin(α(t)) represents
the vertical distance between the sensor and the toe (shown as j(t) in Figure 4).

MTCn = min
t∈{FOn :FCn+1}

m(t) with m(t) =

{
sz(t)− r × sin(α(t)) if α(t) > 0
sz(t) + r × sin(α(t)) otherwise

(16)

To calculate turning angles, we converted an arbitrary horizontal vector (e.g., the
vector [0, 1, 0]) to sensor coordinates, using as basis the quaternions estimated at tn and at
tn+1. The resultant vectors represented the orientation of the sensor in the horizontal plane,
so that the angle between these two vectors corresponded to the turning angle.

2.5. Experiments

One hundred and sixty of the collected samples were post-processed using Vicon
Nexus, and used as reference for IMU-based gait analysis evaluation. To avoid overfitting,
we split data into development and validation sets. Approximately 30% of the samples,
from uniquely randomly selected users, were included in the development set, and used
for algorithm design, debug and optimization. The remaining 70% were used for validation
and orientation-invariance proof. The resulting dataset split is shown in Table 1.
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Table 1. Dataset characteristics after splitting.

Metric Development Set
(7 Subjects/45 Samples)

Validation Set
(19 Subjects/115 Samples)

Height (cm) 168.9 ± 7.7 172.5 ± 9.2
Gender (female/male) 4/3 9/10

Weight (kg) 67.3 ± 15.4 71.1 ± 14.7
Foot size (cm) 27.4 ± 1.6 27.8 ± 2.0

To compare gait parameters extracted from the IMU with those extracted from Vicon,
systems were first synchronized. To this purpose, we used the cross-correlation between
acceleration magnitude—obtained from the IMU—and the centroid of the sensor markers—
obtained after deriving the centroid trajectory two times; the maximum cross-correlation
was used to compensate for the time-shift between data sources, as in [6].

A tolerance of 0.1s was employed to classify FC events (and its corresponding stride
gait parameters) as true positive cases. Only the strides whose FC time was consistent with
those obtained with Vicon were considered for comparison. Reference strides without any
corresponding IMU-derived candidate were classified as not detected.

2.5.1. Parameter Tuning and Algorithm Selection

The development set was used to tune parameters, and select the most reliable meth-
ods for orientation estimation and double integration. As shown in Section 2.4.2, the
possible orientation estimation methods were the Madgwick CF, the Euston CF and the
gyroscope integration, which could be used in combination with two possible double in-
tegration methods: the direct and reverse integration, and the linear dedrifting—both
presented in Section 2.4.3. Additionally, the horizontal correction method presented
in Section 2.4.3 could or not be employed. Each method—with the exception of gyro-
scope integration and linear dedrifting—included a set of parameters (also detailed in
Sections 2.4.2 and 2.4.3) that needed to be optimized in view to improve the performance
of the gait analysis method. Using a grid-search approach, all possible combination of
methods (i.e., orientation estimation and double integration methods) and a set of candi-
date parameters could be tested, where the number of resultant combinations depended on
the number for parameters tested. For this reason, parameter tuning was first performed
using a coarse grid of parameters—i.e., a small amount of candidate parameters covering
a wider range of values. The most promising combinations of parameters and methods
were used to define a finer grid that considered candidate parameters defined in the neigh-
bourhood of the best parameter configurations. Parameters tested within coarse (resulting
in 140 combinations) and fine grid-search (resulting in 105 combinations) are shown in
Table 2.

Table 2. Methods and parameters used in coarse and fine grid-search.

Type Methods Coarse Grid-Search Fine Grid-Search

Orientation
estimation

Madgwick CF ω̄max = {2, 4, 6} ω̄max = {1.0, 1.5, 2.0, 2.5, 3.0}
Euston CF kP = {0.2, 0.4, 0.6}

kI = {0, 0.05}
kP = {0.15, 0.2, 0.25}
kI = {0, 0.01}

Gyroscope integration Not applicable Not applicable

Double
integration

Direct and reverse integration η = {0.1, 0.2}
αi = {0.4, 0.5, 0.6}

η = {0.15, 0.2, 0.25}
αi = 0.55, 0.6, 0.65

Linear dedrifting Not applicable Not applicable

Horizontal correction {True, False} {True}
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To select the best combination of parameters and methods, we calculated the root
mean square error (RMSE) between IMU-derived and reference gait parameters. The RMSE
of each parameter was normalized by the average of the reference, and then averaged to
obtain a single score per configuration. The minimum normalized RMSE defined the most
appropriate set of parameters and methods.

2.5.2. Instrument Comparison and Validation

We compared gait parameters extracted from the IMU with those extracted from Vicon
using the validation set. For each cycle, we estimated the difference between IMU-derived
and reference gait parameters. Accuracy (mean of relative and absolute error) and precision
(standard deviation of relative and absolute error) were reported for each parameter.
Agreement between the two instruments was assessed using 95% limits of agreement,
as introduced by Bland Altman [31]. Data were assessed for normal distribution using
Shapiro–Wilk tests, to decide for the use of parametric or non-parametric tests. Correlation
between instruments was calculated using the correlation coefficients of Pearson (rp)—
in case of normal distribution—or Spearman (rs)—when data could not be assumed to
be normally distributed. We have also reported RMSE and equivalence tests using an
equivalence zone of ±5% of the average of the metric. Equivalence tests were based on
Paired T-test (T)—for parametric—or Wilcoxon signed-rank test (W)—for non-parametric.

To validate results in a scenario where only straight walking is considered for gait
assessment (as required to assess several gait disorders [32]), we repeated validation tests
without including turns. For this purpose, a turning stride was considered a stride where
the turning angle (as measured by the reference system) was above 20 degrees (as in [7]).

A significance level (p-value) of 5% was used to evaluate results.

2.5.3. Orientation Invariance

To test for orientation invariance, we simulated multiple rotations of the IMU on the
shoes. For that purpose, we sampled uniform random rotations (quaternions), as suggested
by Shoemake, K. [33], and used those quaternions to synthetically rotate raw inertial sensor
data. To evaluate the performance of the system when IMUs were placed at random
rotations, we compare gait parameters extracted from the original sensor orientation
with those extracted from a rotated version of the sensor. To quantify differences, we
calculated the Root Mean Square Deviation (RMSD), correlation (using Pearson-parametric-
or Spearman-non-parametric) and equivalence tests using a stricter equivalence zone of
±1% of the average of the metric. Equivalence tests were based on Paired T-test (T)—
for parametric—or Wilcoxon signed-rank test (W)—for non-parametric. To choose an
appropriate test, samples were first tested for normal distribution using Shapiro–Wilk;
non-parametric tests were chosen in case of non-normal distribution. A significance level
(p-value) of 5% was used to evaluate results.

3. Results

3.1. Algorithm Selection and Parameter Tuning

The most promising combinations of parameters and methods were defined by the
results of the coarse grid-search. We selected the best performing combinations considering
the minimum normalized RMSE achieved by each candidate method. The best combi-
nations in coarse grid-search were: (i) the Madgwick CF (ω̄max = 2.0) combined with
direct and reverse integration (η = 0.2, αi = 0.6) or with linear dedrifting methods; (ii)
the Euston CF (kP = 0.2, kI = 0) combined with direct and reverse integration (η = 0.2,
αi = 0.6); and (iii) the gyroscope integration combined with linear dedrifting, all with
active horizontal correction. The second optimization was performed using a finer grid
of parameters (shown in Table 2), defined on the vicinity of the best performing combi-
nations. The resulting best combination of methods and parameters was the Euston CF
(kopt

P = 0.15, kopt
I = 0) with direct and reverse integration (ηopt = 0.25, α

opt
i = 0.55) and
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active horizontal correction. The RMSE values obtained in the development set using this
parameter configuration are shown in Table 3.

Table 3. Performance on the development set, using the best combination of methods and parameters
(n = 2788 strides). Shown are mean values (standard deviation) and RMSE.

Metric IMU VICON Rel. Error Abs. Error RMSE

Stride dur. (s) 1.23 (0.27) 1.23 (0.27) 0.00 (0.03) 0.02 (0.03) 0.03
Swing dur. (s) 0.41 (0.08) 0.40 (0.07) 0.01 (0.04) 0.03 (0.03) 0.04
Stance dur. (s) 0.82 (0.21) 0.83 (0.21) −0.01 (0.03) 0.02 (0.02) 0.03
Cad. (st/min) 101.8 (21.0) 101.7 (20.9) 0.1 (2.6) 1.7 (1.9) 2.6

SL (cm) 112.4 (25.2) 114.9 (26.0) −2.5 (7.3) 5.3 (5.6) 7.7
Speed (cm/s) 97.8 (35.9) 100.2 (37.9) −2.3 (6.9) 4.8 (5.4) 7.3

SW (cm) 8.9 (8.1) 9.2 (8.5) −0.3 (1.3) 0.9 (1.0) 1.3
MTC (cm) 1.7 (0.8) 1.7 (0.6) 0.1 (0.8) 0.6 (0.5) 0.8

Turn angle (◦) 36.0 (40.3) 35.3 (40.3) 0.7 (1.4) 1.0 (1.2) 1.6

3.2. Validation

The best combination of methods and parameters was used to generate results for
validation. In the analysis, 7015 strides out of 7142 (i.e., approximately 98.2%) were
included, meaning that only 127 strides (i.e., 1.8%) were classified as not detected. FC
events were detected with an average relative error of −0.01± 0.02 s and limits of agreement
of −0.06 and 0.04 s. FO events were detected with an average relative error of −0.01± 0.05 s
and limits of agreement of −0.11 and 0.08 s. FC and FO events were detected with the
same average relative error, but the dispersion of the errors in FO detection was higher, as
evidenced by the standard deviation and limits of agreement.

The comparison of IMU-derived and reference gait parameters, obtained in the vali-
dation set, is shown in Table 4.

Table 4. Performance on the validation set, including turns (n = 7015 strides). Shown are mean values (standard deviation),
limits of agreement, RMSE, correlation and equivalence interval (p-value). † All correlations were based on Spearman and
have p < 0.01. ‡ Equivalence tests were based on Wilcoxon signed-rank test.

Metric IMU VICON Rel. Error Abs. Error Lim. Agr. RMSE Corr. † Equival. ‡

Stride dur. (s) 1.22 (0.23) 1.23 (0.24) 0.00 (0.05) 0.02 (0.05) [−0.11, 0.11] 0.05 0.99 ±0.06 (0.0)
Swing dur. (s) 0.41 (0.08) 0.41 (0.06) 0.01 (0.05) 0.03 (0.04) [−0.08, 0.09] 0.05 0.87 ±0.02 (0.0)
Stance dur. (s) 0.81 (0.18) 0.82 (0.19) −0.01 (0.05) 0.03 (0.05) [−0.11, 0.10] 0.05 0.98 ±0.04 (0.0)
Cad. (st/min) 101.2 (17.5) 101.1 (17.4) 0.1 (3.1) 1.8 (2.5) [−6.0, 6.1] 3.1 0.99 ±5.05 (0.0)

SL (cm) 120.8 (25.1) 124.2 (26.5) −3.5 (9.7) 6.4 (8.0) [−22.5, 15.6] 10.3 0.94 ±6.21 (0.0)
Speed (cm/s) 103.6 (33.9) 106.7 (36.3) −3.1 (9.2) 5.8 (7.8) [−21.1, 15.0] 9.7 0.98 ±5.33 (0.0)

SW (cm) 9.9 (9.2) 10.2 (10.1) −0.4 (4.4) 1.5 (4.2) [−9.0, 8.3] 4.4 0.93 ±0.51 (0.0)
MTC (cm) 1.7 (1.0) 1.9 (0.7) −0.2 (0.8) 0.6 (0.6) [−1.9, 1.4] 0.9 0.55 ±0.10 (1.0)

Turn angle (◦) 37.3 (41.0) 36.4 (41.0) 0.9 (8.6) 2.3 (8.4) [−16.0, 17.8] 8.7 0.97 ±1.82 (0.0)

According to the classification proposed in [34], high (i.e., between 70 and 90) to
very high (i.e., above 90) correlation was obtained in all variables, except MTC that had a
moderate correlation (rs = 0.55). Equivalence tests revealed all metrics to be practically
equivalent (with p < 0.01), except MTC, considering equivalence intervals corresponding
to 5% of the average of the metric. Average absolute errors in stride duration of 0.02± 0.05 s
were obtained, which represents an average error of two samples considering the sampling
rate of 100 Hz. SL had an average relative error of −3.5 ± 9.7 cm (Table 4).

Results excluding turns are shown in Table 5, where about 2% of the reference strides
(i.e., 78 strides) are considered as not detected, resulting in the analysis of 3785 strides.
Correlations between variables are high (i.e., between 70 and 90) or very high (i.e., above
90), except for MTC and turning angles where Spearman correlations are of 0.55 and 0.68,
respectively, and classified as moderate. Accordingly, equivalence tests reveal all metrics

100



Sensors 2021, 21, 3940

to be practically equivalent (with p < 0.01), except for MTC and turning angles. Average
relative errors of 0.00 ± 0.04 s and −3.9 ± 6.2 cm were obtained for stride duration and SL,
respectively (Table 5).

Table 5. Performance on the validation set, excluding turning strides (n = 3785 strides). Shown are mean values (standard
deviation), limits of agreement, RMSE, correlation and equivalence interval (p-value). † All correlations were based on
Spearman and have p < 0.01. ‡ Equivalence tests were based on Wilcoxon signed-rank test.

Metric IMU VICON Rel. Error Abs. Error Lim. Agr. RMSE Corr. † Equival. ‡

Stride dur. (s) 1.22 (0.24) 1.22 (0.24) 0.00 (0.04) 0.02 (0.04) [−0.08, 0.08] 0.04 0.99 ±0.06 (0.0)
Swing dur. (s) 0.41 (0.07) 0.40 (0.06) 0.00 (0.04) 0.02 (0.04) [−0.08, 0.09] 0.04 0.89 ±0.02 (0.0)
Stance dur. (s) 0.81 (0.19) 0.82 (0.19) 0.00 (0.04) 0.02 (0.03) [−0.09, 0.08] 0.04 0.98 ±0.04 (0.0)
Cad. (st/min) 101.8 (17.6) 101.5 (17.4) 0.3 (2.5) 1.5 (2.1) [−4.7, 5.2] 2.5 0.99 ±5.08 (0.0)

SL (cm) 129.8 (18.3) 133.7 (20.7) −3.9 (6.2) 4.6 (5.8) [−16.1, 8.2] 7.4 0.98 ±6.69 (0.0)
Speed (cm/s) 112.0 (31.9) 115.3 (35.1) −3.4 (6.9) 4.4 (6.3) [−17.0, 10.2] 7.7 0.99 ±5.77 (0.0)

SW (cm) 4.9 (3.2) 4.7 (2.2) 0.1 (2.8) 0.9 (2.7) [−5.4, 5.6] 2.8 0.84 ±0.24 (0.0)
MTC (cm) 1.4 (0.7) 1.8 (0.6) −0.4 (0.7) 0.6 (0.5) [−1.7, 0.9] 0.8 0.55 ±0.09 (1.0)

Turn angle (◦) 6.4 (7.0) 5.1 (4.8) 1.2 (5.1) 1.5 (5.1) [−8.8, 11.3] 5.3 0.68 ±0.26 (1.0)

3.3. Orientation Invariance

The comparison of gait parameters extracted using the original sensor orientation and
using simulated rotations is shown in Table 6. As can be observed, all parameters, except
turning angle, present the same values when the sensor is rotated, i.e., all parameters have
a RMSD of 0.0, except turning angle that has a RMSD of 1.5◦. The correlation between
turning angles extracted using the original orientation and random rotations of the sensor
is very high (rs = 0.99). The performance of the system when data are synthetically
rotated remains practically equivalent (equivalence tests have p < 0.01 for all gait metrics,
considering an equivalence interval of 1% of the average of the metric).

Table 6. Orientation invariance results (n = 7138 strides). Shown are mean values (standard deviation), RMSD, Correlation—
with Spearman or Pearson—and equivalence interval (p-value). † All correlations have p < 0.01. ‡ All equivalence tests are
based on Paired T-test, except for turning angle, which is based on Wilcoxon signed-rank test.

Metric Original Orientation Random Rotations RMSD Correlation † Equivalence ‡

Stride dur. (s) 1.23 (0.26) 1.23 (0.26) 0.0 rp = 1.0 ±0.01 (0.0)
Swing dur. (s) 0.41 (0.08) 0.41 (0.08) 0.0 rp = 1.0 ±0.00 (0.0)
Stance dur. (s) 0.82 (0.20) 0.82 (0.20) 0.0 rp = 1.0 ±0.01 (0.0)
Cad. (st/min) 100.7 (17.9) 100.7 (17.9) 0.0 rp = 1.0 ±1.01 (0.0)

SL (cm) 120.4 (25.5) 120.4 (25.5) 0.0 rp = 1.0 ±1.20 (0.0)
Speed (cm/s) 102.9 (34.3) 102.9 (34.3) 0.0 rp = 1.0 ±1.03 (0.0)

SW (cm) 9.8 (9.2) 9.8 (9.2) 0.0 rp = 1.0 ±0.10 (0.0)
MTC (cm) 1.7 (1.0) 1.7 (1.0) 0.0 rp = 1.0 ±0.02 (0.0)

Turn angle (◦) 37.4 (41.0) 37.4 (41.0) 1.5 rs = 0.99 ±0.37 (0.0)

Figure 5 allows further (visual) inspection of the generated rotations and their relation-
ship with the differences in measured turning angles (the only metric that presented some
differences when the sensor was synthetically rotated). As can be observed, rotations are
uniformly distributed across all 3D space. The differences in turning angles are randomly
distributed through the space, showing no particular tendency towards a specific region.

101



Sensors 2021, 21, 3940

Figure 5. Synthetically generated rotations and their relationship with differences in measured
turning angles. Colours represent the absolute difference in turning angles, presented in degrees.

4. Discussion

In this work, we proposed an orientation-invariant gait analysis approach: sensor
alignment on the foot is unknown and can be anything. We based our approach in previ-
ously studied methods, where some adaptations were introduced in view to maintaining
all methods independent to differences in sensor orientation.

To this purpose, orientation-invariant signals were used. To detect ZVIs, we relied on
the energy of angular rate, as in [28]. To detect gait events (FC and FO), instead of using
medio-lateral angular rate and/or forward acceleration (as proposed by [8,15] or [16]), we
used features from acceleration magnitude and from the vertical component of acceleration,
obtained in global coordinates.

Instead of representing trajectories using the body coordinate system (as proposed
by [15,16]), we evaluated trajectories in global coordinates, from which SL and SW could
be estimated. However, to calculate MTC, we estimated a medio-lateral and a forward
axis, that were defined with basis on the medio-lateral rotation produced by the foot when
moving from foot-flat to FO. These axes were required to estimate the angle α(t)—as shown
in Equation (14)—and could be used to obtain sensor data in body coordinates—similar to
the use of PCA, as proposed by Falbriard et al. [21].

The proposed approach was tested in a group of young adults, without any visible
gait disorder, using an optical motion capture system as reference. We tested multiple orien-
tation estimations and double integration approaches. Based on the results achieved on the
development set, we selected the Euston CF (kopt

P = 0.15, kopt
I = 0), combined with direct

and reverse integration (ηopt = 0.25, α
opt
i = 0.55) with active horizontal correction. With an

ηopt of 0.25, the sigmoid used in direct and reverse integration (Equation (11)) approximates
the linear shape. Yet, the results achieved with the linear and reverse integration were
better than the results achieved with the linear dedrifting method. According to [13,18],
the kopt

I = 0 used in Euston CF is an appropriate choice due to the short integration times
(below 5–10 min) and the slow dynamics of the movements involved. The horizontal
correction mechanism allowed for a compensation of the final vertical position achieved
in each stride, assuming walking on a flat surface. Although it improved the results in
our study, the method can only be applied when walking on a flat surface, and cannot be
generalized to walking in inclined surfaces or stairs.

In [13], the same orientation estimation and double integration methods were bench-
marked, using a dataset comprising 20 healthy subjects (between 16 and 80 years old), all
using the same shoe model and walking straight at multiple speeds in a path with 10 m.
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According to the authors, the best performing orientation estimation method (evaluated by
the angles obtained in each axis) was Madgwick CF (ω̄max = 3.04), followed by gyroscope
integration and Euston CF (kP = 0.0046, kI = 0); but the performance of the three methods
did not differ much. For double integration, the direct and reverse integration (η = 0.08,
αi = 0.6) was the best performing method, which is also according to our results. The
optimal set of parameters differed from ours, which may be explained by differences in
datasets, namely due to different sensor characteristics, subjects, and protocol. While
we apply orientation estimation methods at all instants of the signal, in [13] acceleration
data are only used when the magnitude of the acceleration approximates the value of the
gravity (i.e., the sensor is roughly static). Moreover, the criteria for evaluating methods
performance differed from ours. In [13], orientation estimation methods were optimized
first based on the measured angles; double integration methods were optimized after
selecting the best orientation estimation method, using as criteria the error distribution
of estimated velocities and clearance parameters [13]. In our study, we considered that
orientation estimation methods have an impact on the performance of double integration
methods, which, altogether, have an impact on all gait metrics considered. Therefore,
optimizing for a single metric could penalize the performance of the other metrics. For this
reason, we opted for the jointly selection of methods and the tuning of parameters based
on the overall results achieved in all metrics considered.

The results achieved on the development set with the optimized set of methods and
parameters is shown in Table 3. Even though optimization was performed in this set, some
of the metrics differ by some units from the reference system. Table 4 shows the results on
the validation set. As expected, the central tendency and the dispersion of the errors are
lower on the development set where algorithm selection and parameter tuning occurred.
The generalization of the method can only be effectively evaluated using the validation set,
which included data from unique users never seen during the optimization process.

Using the sensor on foot instep, Mariani et al. [35] tested gait event detection using
multiple candidate features (i.e., minimum, maximum or zero-crossing) and multiple
signals—including signals that are independent of IMU orientation, namely acceleration
magnitude and the derivative of angular rate magnitude. According to their results, the
best candidate features are observed in the acceleration magnitude signal [35], close to the
instants we propose to detect FC and FO in this work. On average, FO and FC events were
detected 0.01 s (i.e., one sample) before the annotations, but the dispersion of the errors
was higher for FO detection. While FCs can generally be well perceived on acceleration
signals (they represent an impact of the foot on the ground), TO events may be less evident,
which may justify the results. Nevertheless, event detection errors are, in general, low,
causing a small impact on estimated temporal parameters.

Our event detection method resulted in absolute errors between 0.02 s and 0.03 s in tem-
poral parameters, with precision between 0.03 s and 0.05 s (as shown in
Tables 4 and 5). These errors represent average differences of just two or three sam-
ples at 100 Hz, not differing much whether we include turns or not, which demonstrates
the robustness of the method. In [8], relative errors of 0.00 ± 0.07 s, −0.01 ± 0.04 s, and
0.01 ± 0.07 s are obtained for stride, swing and stance duration in a group of geriatric
inpatients, where events are determined based on the analysis of medio-lateral angular rate
and forward acceleration, assuming a fixed alignment of the sensor on the shoes. In [16],
sensors are placed on the shanks, obtaining relative errors of 0.00 ± 0.02 s in stride duration
in a group of young adults. Although the performance on temporal parameters is more or
less consistent between studies, it is worth mentioning that while studies differ in subjects
and protocols applied, the procedures to estimate reference gait events are also different,
which hinders comparison of results. Moreover, these studies are conducted in a laboratory
setting, ensuring the precise alignment of the sensors on the body. For this reason, they
may not represent the results that would be achieved in a more realistic clinical setting.

In our study, relative errors of −3.5 ± 9.7 cm and −3.1 ± 9.2 cm/s were obtained for
SL and gait speed, respectively. When we exclude turns from the analysis, the precision
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is improved, resulting in relative errors of −3.9 ± 6.2 cm for SL and of −3.4 ± 6.9 cm/s
for gait speed. Additionally, RMSE values are lowered and correlations increase (see
Tables 4 and 5). These results show that increased errors in SL (reflected also as increased
errors in gait speed) may be related with differences imposed by gait patterns while
turning, so that evaluation of these metrics in straight walking seems more reliable. Results
would possibly improve if parameter optimization was performed using straight walking
exclusively, however, at the cost of making the method less robust.

In [7], relative errors of 1.3 ± 3.0 cm and of 2.8 ± 2.4 cm/s were obtained for SL and
speed, respectively, in a group of patients with Parkinson’s Disease and age-matched
elderly subjects, after discarding turning, initiation and termination cycles. In [8], relative
errors of −0.3 ± 8.4 cm were obtained for SL in a group of geriatric inpatients walking
straight. Using the same dataset, Hannink et al. [24] achieved relative errors of 0.0± 5.4 cm,
using a deep convolutional neural network. In [16], SL and gait speed had a performance
of 5.4± 3.1 cm and 3.4± 3.9 cm/s, considering only data from young adults obtained while
walking straight. In a group of young and elderly volunteers, Mariani et al. [6] achieved
performance of 1.5 ± 6.8 cm for SL and 1.4 ± 5.6 cm/s for speed, using a protocol that
included assessment with U-turn and 8-turn. As we can see from the literature, results
are highly heterogeneous and comparison of performance in a fair and robust way is not
possible due to the different protocols, subjects, and reference systems employed. Yet,
considering that these metrics had very high correlations with the reference system in our
study, we can consider our approach appropriate to assess movement performance. This is
especially true when we consider straight walking tests, where precision is improved.

Although the precision of SW is improved when turns are excluded (relative error of
−0.4 ± 4.4 cm versus 0.1 ± 2.8 cm when turns are excluded) and RMSE is lowered (4.4 cm
versus 2.8 cm), the correlation between IMU-based and reference-based SW is worse when
turns are excluded. We also observe that, when we exclude turns, the average and standard
deviation of the metric decreases, meaning that curves may be associated with increased
SW necessary to describe the trajectory of the turn. When we exclude turns, the values of
SW are more consistent (closer to the mean) and, as such, harder to correlate, which may
justify the results. The same observation is also valid for turning angles where we can see
that even though precision is improved (relative error of 0.9 ± 8.6◦ versus 1.2 ± 5.1◦), the
correlation decreases when we exclude turns (see Tables 4 and 5). In [7], relative errors of
0.15 ± 2.13 cm and 0.12 ± 3.59◦ are obtained for SW and turning angle, considering only
straight and steady walking.

MTC is one of the metrics with highest errors, considering their relation to the average
of the metric. Relative errors of −0.2 ± 0.8 cm and −0.4 ± 0.7 cm are obtained for MTC
when turns are included and excluded, respectively; we observe a small improvement in
precision and RMSE when turns are excluded, which again, highlights the challenging
conditions possibly imposed by the turns.

In [22], a method is proposed to determine toe trajectories that requires the size of
the shoe as an input; using this method, authors achieved relative errors of 1.3 ± 0.9 cm
in MTC, in a group of healthy adults walking straight, where only steady walking was
included in the analysis. In [9], prior information about shoe dimensions was not required,
and relative errors of 1.7 ± 0.7 cm were obtained in a group of young, mid-age and old
subjects, where conditions for straight or turning walking are not specified. Although the
reported relative errors are similar to our results, higher correlations (0.91) are documented
by the authors [9]. However, to achieve these results, Kanzler et al. [9] employ a correction
that adjusts the amplitude of toe clearance trajectories—possibly penalizing generalization
of the method. Moreover, authors discuss that the assumption of the rigid shoe model may
not be realistic due to the bending of the shoe at FO, which may also constitute a source
of errors in our approach. These errors, combined with a poor estimation of sensor-to-toe
distance and errors imposed by the reference—due to a toe marker that is not placed
precisely at the tiptoe—can possibly justify the results.
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All gait metrics extracted using the IMU present moderate, high or very high corre-
lation with the reference system. Metrics are also practically equivalent, except for MTC
and for turning angle when turns are excluded (Tables 4 and 5). Based on these results, we
can state that, overall, there is a good agreement between both systems, which denotes the
potential of the solution. Sensor wireless capabilities, combined with a flexible alignment
on the foot—fostered by the orientation-invariant approach—makes the proposed solution
promising for use at clinics and ambulatory settings.

Although the reference system used in this study is currently considered the gold
standard for gait analysis [6,7,9,15,16], possible errors can be introduced by the reference.
For instance, due to errors in markers labelling or gap filling operations, trajectories of the
markers may not always reliably replicate the actual trajectories performed. Additionally,
detection of events from trajectories may also display errors that can impact temporal
parameters used as reference [26].

Despite our efforts to make the process completely invariant to differences in sensor
orientation, we can observe some differences in turning angles when we synthetically rotate
sensor data (see Table 6). These differences have no apparent correlation with the generated
rotations, as can be visually confirmed in Figure 5. Moreover, rotations were uniformly
sampled to ensure a uniform distribution along all possible 3D transformations (Figure 5),
which avoided bias on observations—i.e., ensuring that the method is truly invariant
to changes in sensor orientation, no matter how it is oriented relative to the feet. The
differences in turning angle, not observed in any other metric extracted, may be explained
by the sensor fusion process employed to estimate sensor orientation relative to the global
frame. While the estimation of the vertical axis employs corrections based on measured
acceleration values, in the horizontal plane no correction mechanisms can be employed, and
only integration of angular rates are used to estimate changes in orientation (or heading)
over time. This may lead to cumulative error propagation due to the integration process,
which may differ depending on sensor orientation: different sensor orientations may lead
to distinct error propagation profiles. Given the random nature of the noise properties
of gyroscope measurements [36], no particular tendency for an increased error towards a
specific rotation can be observed. All gait parameters extracted using synthetically rotated
data remained practically equivalent (see Table 6), which demonstrates the invariance of
the method to differences in orientation. Based on these results, we can state that our
method does not require careful alignment of the sensor on the foot, which may increase
trust and potentially simplify the data acquisition process in the context of clinics.

Future work should address spatio-temporal gait analysis in specific groups (e.g., older
adults or groups with a specific pathology), so that validity and robustness of the method
to different walking pattern characteristics may be assessed, demonstrating its possible
application in real scenarios.

5. Conclusions

Foot-worn inertial sensors were used to evaluate a comprehensive set of spatio-
temporal gait metrics in a group of young adults. To avoid restrictions on sensor alignment,
we proposed an orientation-invariant gait analysis approach, and assessed its performance
using an optical motion capture system as reference. Overall, good agreement between
both systems was achieved in our study, demonstrating the robustness and reliability of
the proposed approach. Additionally, we demonstrated the invariance of the method
by simulating rotations of the sensor on the foot. Taking advantage of this feature, and
considering the wireless capabilities of the sensor, we postulate that the proposed solution
is highly attractive for use at clinics and ambulatory settings. Its flexibility, combined with
low errors achieved in the evaluation of gait parameters, may leverage trust and potentially
simplify the data acquisition process. The solution should be evaluated with people with
gait-related disorders, so that it may support clinical decision making in real scenarios.

105



Sensors 2021, 21, 3940

Author Contributions: Conceptualization, V.G.; methodology, V.G.; software, V.G.; data curation,
V.G.; validation, V.G.; formal analysis, V.G.; supervision, I.S. and M.V.C.; writing—original draft
preparation, V.G.; writing—review and editing, V.G., I.S. and M.V.C. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was performed in the context of the project VITAAL (AAL-2017-066), funded
under the AAL Programme and co-funded by the European Commission and the National Funding
Authorities of Portugal, Switzerland and Belgium.

Institutional Review Board Statement: The study was conducted according to the guidelines of
the Declaration of Helsinki, and approved by the Ethics Committee of the University of Porto
(81/CEUP/2019, approved on 9 December 2019).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the
study.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank the collaboration of all volunteers who partici-
pated in data collection.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

CF Complementary filter
FC Initial foot contact
FO Foot off
IMU Inertial measurement unit
MTC Minimum toe clearance
PCA Principal component analysis
RMSD Root mean square deviation
RMSE Root mean square error
SL Stride length
SW Swing width
TRIAD Tri-axial attitude determination
ZVI Zero velocity interval
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Abstract: This study aimed to examine the validity and reliability of the recently developed Assioma
Favero pedals under laboratory cycling conditions. In total, 12 well-trained male cyclists and triath-
letes (VO2max = 65.7 ± 8.7 mL·kg−1·min−1) completed five cycling tests including graded exercises
tests (GXT) at different cadences (70–100 revolutions per minute, rpm), workloads (100–650 Watts, W),
pedaling positions (seated and standing), vibration stress (20–40 Hz), and an 8-s maximal sprint. Tests
were completed using a calibrated direct drive indoor trainer for the standing, seated, and vibration
GXTs, and a friction belt cycle ergometer for the high-workload step protocol. Power output (PO)
and cadence were collected from three different brand, new pedal units against the gold-standard
SRM crankset. The three units of the Assioma Favero exhibited very high within-test reliability and
an extremely high agreement between 100 and 250 W, compared to the gold standard (Standard Error
of Measurement, SEM from 2.3–6.4 W). Greater PO produced a significant underestimating trend
(p < 0.05, Effect size, ES ≥ 0.22), with pedals showing systematically lower PO than SRM (1–3%) but
producing low bias for all GXT tests and conditions (1.5–7.4 W). Furthermore, vibrations ≥ 30 Hz
significantly increased the differences up to 4% (p < 0.05, ES ≥ 0.24), whereas peak and mean PO
differed importantly between devices during the sprints (p < 0.03, ES ≥ 0.39). These results demon-
strate that the Assioma Favero power meter pedals provide trustworthy PO readings from 100 to
650 W, in either seated or standing positions, with vibrations between 20 and 40 Hz at cadences of 70,
85, and 100 rpm, or even at a free chosen cadence.

Keywords: cycling; mobile power meter; testing; load monitoring

1. Introduction

The use of power meters in cycling has been on the rise in recent years, making
accessible, valuable information for training, that was only available with impractical and
expensive ergometers [1,2]. Portable power meter devices overcome important drawbacks
of laboratory testing, allowing the use of cyclists’ own bicycles, so that decisive metrics
such as the crank width (Q–factor), crank length, and geometry-related variables are
replicated in the test [3]. Commercial indoor stationary cycle training, cycling treadmills,
or rollers are a valid and reliable alternative to recreate outdoor cycling conditions, both
for testing [4–6] and training [7]. While these tools simulate outdoor cycling, they do not
allow recording during real outdoor environments (e.g., missing air drag and downhill
sections or increasing dehydration), which may alter the metrics [8,9] and limit to apply
the results to real-life situations.

The development of wearable power meters with micro-sensors attached to the bicycle
crank, pedals or wheel, constitutes a milestone for cycling, giving rise to the creation of new
devices, which can track cyclists’ performance in real settings. The first approach was the
SRM (professional model; Schoberer Rad Messtechnik, Julich, Germany) crankset (strain
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gauges), which remains as the Gold-Standard to measure the bicycle power output (PO)
outside the laboratory [10–12]. Since then, emerging alternatives have been demonstrated
to be valid and reliable, such as the wheels Powertap Hub [13–15] or the pedals Garmin
Vector [1,15–18] and Powertap P1 [19–21]. In particular, due to their quick installation and
use [1,15–21], the pedal power meters would represent a high practical technology to be
used interchangeably in different bicycles (e.g., track, road, and time trials). Additionally,
pedals are likely to reduce the loss of PO due to mechanical connections [12]. Recently, a
new brand of pedal power meters called Assioma Favero (Favero Electronics SRL, Arcade
TV, Italy) has been launched on the market. In addition to reduced weight and size,
the lower of this device compared to the traditional SRM makes the PO measurement
more affordable for practitioners. Nevertheless, there is scarce information about the
measurement errors of this commercially available technology.

In practice, the main goal of tracking PO is to quantify the real effort incurred during
training or competition, and also to determine changes in performance throughout the
season [22]. For this purpose, it is essential to determine the measurement error of the
device in use to guarantee that these errors are narrow enough to determine the true PO
achieved by the cyclists [23,24]. Accordingly, if the error exceeds the expected changes, the
device renders it completely useless for its intended purpose [25]. Hence, to be sure of
the certainty of the outcomes, emerging power meter devices should be repeatedly tested
across a variety of cycling conditions to determine how well they respond to changes in
the cadence, the pedaling position (seated or stand), the PO, or the vibration [15].

Therefore, considering the practical advantages that the pedals power meter would
provide to the PO prescription and monitoring, as well as the need to comprehensively
analyze the suitability of this type of technologies to be used on the daily basis, this study
aimed to examine the validity and reliability of the recently developed Assioma Favero
pedals under laboratory cycling conditions.

2. Materials and Methods

2.1. Experimental Design

This study followed a repeated measures design to determine the validity and test–
retest reliability of three units of the new power meter pedals Assioma Favero against the
gold-standard SRM crankset. After a familiarization session, each participant completed
the following cycling tests: three counterbalanced, graded exercises tests (GXT) at different
cadences (70, 85, 100 revolutions per minute, rpm) and sub-maximal workloads (100, 150,
200, 250, 300, 350 Watts, W) in a seated position, three GXT at four sub-maximal workloads
(free cadence; 250, 350, 450, 550 W) in a standing position, and a ramp vibration protocol
(from 20 to 40 Hz) at constant workload (200 W; 85 rpm). Finally, all cyclists performed a
high-workload step protocol (450, 550, 650 W, in seated position, 85 rpm), as well as an 8-s
maximal sprint test.

2.2. Subjects

A total of 12 well-trained male cyclists and triathletes volunteered to take part in this
study. (M ± SD: age 27.9 ± 9.5 years; height 180.0 ± 7.8 cm; body mass 78.0 ± 16.4 kg;
VO2max = 65.7 ± 8.7 mL·kg−1·min−1 [26]). All subjects had more than 5 years of cycling
training experience and followed a training routine of 6 h per week during the 12 months
preceding the study. Athletes were all older than 18 years, were informed of the experi-
mental procedures, and signed a written informed consent agreeing to participate in the
study. Participants were asked to avoid strenuous exercise, caffeine, or alcohol for at least
24 h before each testing session. The study was conducted according to the Declaration of
Helsinki, and was approved by the Bioethics Commission of Local University.

2.3. Testing Procedures

All tests were performed in the same facilities under standardized conditions
(23.8 ± 2.4 ◦C; 39 ± 5% humidity). For the seated and standing GXTs, as well as the
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vibration tests, the SRM 172.5 mm crank power meter was fixed on a medium-size road
bicycle (2010 Giant Giant-Bicycles, Taiwan; Aluminum alloy frame with carbon fiber
fork). The rear wheel of the bicycle was removed and attached to a calibrated Cycleops
Hammer [6] device with 10 speed (11–25 tooth) rear gear ratio and 39 to 53 tooth front
gear ratio. For all tests, the gear ratio 53 × 15 was selected, and cyclists were not
allowed to change it to prevent a potential effect of this variable on pedaling technique.
The zero–offset of the Assioma Favero power meter pedals was set before each testing
session. For the vibration tests, the whole system (Bike trainer and bicycle) was
installed over a vibrating plate (Merit Fitness V2000) with the front fork of the bicycle
attached to a Kickr Climb Indoor Grade Simulator (Wahoo Fitness, Atlanta, GA, USA)
for stability and to compensate the height of the vibration platform (0% slope). The
bicycle seat height position was matched to the cyclist’s training geometry. For the
high-workload step protocol (GXT ≥ 450 W) and the 8-s maximal sprint, the SRM
crankset unit was installed in a friction belt cycle ergometer (Monark 847E Varberg,
Sweden) to achieve the required mechanical resistance. The saddle and handlebar
positions of the cycle ergometer were also matched to the cyclist’s training geometry.
Data were transmitted to display units (Garmin 520, Garmin International Inc., Olathe,
KS, USA) fixed on the handlebars. Calibration and set-up were conducted according
to the manufacturer’s recommendations. Cyclists used their cycling shoes fitted with
Look cleats.

2.4. Cyclings Tests

Subjects visited the laboratory on four separate occasions to test the three Assioma
Favero power meter pedals. All tests began with a standardized warm-up of 5 min at
75 W with a free chosen cadence and the Hammer set in the hyperbolic mode. Thereafter,
subjects performed three randomized and counterbalanced 1-min GXT in seated position,
one for each selected fixed cadence (70, 85, and 100 rpm), at six sub-maximal workloads
(i.e., 100, 150, 200, 250, 300, and 350 W), separated by 4 min of recovery at 75 W with free
chosen cadence [6] (Figure 1). The order of the three cadence levels was randomized to
ensure that results were not altered due to increments on the ergometer break temperature
or by the cyclists’ fatigue. After recovery, cyclists performed three 1-min GXT in standing
pedaling position at 250, 350, 450 W, and 550 W with free chosen cadence. After 2 min of
recovery at 75 W, subjects performed a vibration test, simulating common vibrations in
road cycling [27]. The test consisted of a 1 min ramp exercise, bouts on a vibrating plate by
steps of 10 Hz, increasing from 20 to 40 Hz, at 200 W with a pedaling cadence of 85 rpm.
This complete protocol was repeated on three different occasions in a randomized and
counterbalanced way, one for each Assioma Favero pedal units (Figure 1). In the fourth
visit to the laboratory, subjects performed a 30-s, seated position, high-load GXT at 85 rpm
in a friction belt cycle ergometer, with the resistances required to produce 450 W (5.3 kp),
550 W (6.4 kp), and 650 W (7.6 kp). Each step was followed by 3 min of recovery with 1 kp
(85 W). Following a further 5-min recovery period, subjects were required to complete an
8-s maximal sprint test (verbally encouraged, all-out effort) starting from a complete stop
with the pedal of the dominant leg placed at 90◦ from the vertical and against the resistance
of 7.5% of the subject’s body mass (body mass × 0.075 kg) [28]. The four sessions were
conducted at the same time of the day (10:00–13:30 h), and under similar environmental
conditions (21–22 ◦C and 53–62% humidity) [29].
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Figure 1. Experimental design including the five cycling tests.

2.5. Data Collection

Records for PO (W) and cadence (rpm) were collected at 1 Hz using a Garmin 520 cy-
cling computer for the Assioma Favero pedals and the Power Control VIII (professional
model, Schoberer Rad Messtechnik, Julich, Germany) for the SRM crankset. Data for GXT
and vibration tests included the 15th to the 55th s of each 60 s steps, to allow the ergometer
enough time to stabilize the assigned breaking load [12]. Similarly, data from the 8th and
the 28th s of each 30 s steps were considered for the high-load GXT tests, while peak PO
and the mean PO for the first 6 s of the sprints were included. Data were exported and
analyzed using the publicly available software (Golden Cheetah, version 3.5) and Microsoft
Excel 2016.

2.6. Statistical Analysis

Standard statistical methods were used for the calculation of means, standard devi-
ations (SD), coefficient of variation (CV), and standard error of measurement (SEM) [30].
Intraclass correlation coefficients (ICC) were used to determine the relationship between
the power outcomes of the SRM and the Assioma Favero pedals. Bland–Altman plots
were used to examine heteroscedasticity and assess the systematic errors and their 95%
limits of agreement (LoA = bias ± 1.96 SD) [31]. Levels of acceptable disagreement were
proposed at ≤2% to identify true changes in performance after a training intervention [24].
Homoscedasticity was confirmed by Levene’s test. Repeated-measures ANOVA was con-
ducted to determine the statistical effects of the different devices in the PO metrics across
the different GXT tests. Partial eta squared was calculated to estimate the effect size (ES),
interpreted as small (0.02), medium (0.13), and large (0.26) [32]. Statistical significance
was set as p ≤ 0.05. Analyses were performed using GraphPad Prism 6.0 (GraphPad
Software, Inc., San Diego, CA, USA), SPSS software version 19.0 (SPSS, Chicago, IL, USA),
and Microsoft Excel 2016 (Microsoft Corp, Redmond, WA, USA).
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3. Results

The three Favero Assioma pedals exhibited very high reliability during the tests
(CV from 1.5 to 13.8%) comparable to the SRM (CV differences < 2%), and high ICC
(from 0.741 to 0.999). SRM crankset and the three Favero Assioma showed similar PO in
most conditions (Table 1), with extremely high agreement when pedaling between 100
and 250 W (SEM from 2.3 to 6.4 W). Greater PO produced a significant underestimating
trend, especially in GXT seated at 300 W/70 rpm, GXT seated at 350 W/80 rpm, and
GXT standing > 450 W (p < 0.05, ES > 0.22), with Favero showing from 1 to 3% lower
PO than SRM consistently. In turn, all devices showed similar PO during [30], the GXT
seated ≥ 450 W in the Monark. Vibrations ≥ 20 Hz significantly increased the differences
up to 4% (p < 0.05, ES > 0.24). Peak and mean PO differed importantly between devices
during the sprints (p < 0.03, ES > 0.39). Bland–Altman plots (Figure 2) confirmed that
Favero Assioma pedals showed systematically lower PO than SRM, but produced low bias
(1.5 and 7.4 W) and SD (4.7 and 10.0 W) for all testing conditions.

Table 1. Power outcomes for SRM crack set and the three Favero Assioma pedals.

Mean (SD)
SEM

Mean (SD)
SEM

Mean (SD)
SEM

Within-Device
Effect

SRM Favero #1 SRM Favero #2 SRM Favero #3 p-Value ES

GXT seated
[70 rpm]

100 W 100 (6) 97 (6) 2.3 100 (8) 97 (8) 2.8 98 (3) 96 (4) 2.7 0.399 0.078
150 W 250 (6) 143 (5) 2.5 250 (6) 145 (8) 2.6 250 (4) 142 (5) 3.2 0.132 0.165
200 W 200 (7) 197 (7) 2.9 200 (5) 197 (6) 3.1 199 (4) 194 (5) 3.8 0.165 0.155
250 W 249 (6) 246 (5) 3.1 250 (6) 246 (6) 3.6 249 (4) 244 (4) 3.9 0.1 0.186
300 W 300 (5) 296 (5) 3.3 300 (3) 296 (4) 3.3 299 (3) 294 (5) 4.0 0.046 * 0.269
350 W 350 (6) 348 (5) 3.1 350 (5) 346 (7) 3.8 349 (4) 344 (5) 4.0 0.071 0.209

GXT seated
[85 rpm]

100 W 100 (9) 98 (8) 2.8 100 (7) 97 (8) 3.1 99 (3) 96 (4) 3.5 0.454 0.066
150 W 149 (7) 146 (7) 3.3 149 (5) 147 (7) 2.6 148 (5) 145 (6) 3.9 0.377 0.085
200 W 201 (7) 197 (6) 3.2 200 (3) 196 (4) 3.4 200 (4) 195 (6) 4.6 0.099 0.2
250 W 250 (9) 246 (9) 3.9 250 (6) 246 (8) 4.0 250 (5) 244 (5) 5.1 0.152 0.162
300 W 300 (8) 296 (7) 4.1 299 (7) 294 (7) 4.1 300 (4) 294 (6) 5.5 0.109 0.186
350 W 350 (7) 345 (7) 4.3 350 (4) 345 (6) 4.4 350 (6) 343 (6) 6.1 0.035 * 0.275

GXT seated
[100 rpm]

100 W 100 (14) 98 (14) 2.1 100 (11) 97 (12) 4.2 100 (6) 96 (7) 3.8 0.647 0.034
150 W 150 (8) 147 (6) 3.3 149 (6) 145 (8) 5.1 151 (6) 146 (7) 4.0 0.153 0.153
200 W 199 (10) 195 (8) 3.7 200 (6) 195 (7) 5.2 199 (4) 193 (4) 5.3 0.08 0.202
250 W 249 (11) 245 (8) 4.7 250 (8) 245 (7) 4.6 250 (6) 242 (6) 6.4 0.08 0.202
300 W 300 (11) 293 (9) 5.5 300 (12) 294 (11) 5.6 300 (7) 292 (7) 6.7 0.102 0.18
350 W 349 (14) 343 (12) 5.3 350 (11) 342 (11) 6.5 350 (5) 340 (6) 7.4 0.124 0.178

GXT stand
[free cadence]

250 W 250 (9) 251 (7) 2.1 250 (9) 250 (9) 1.4 249 (8) 244 (7) 4.3 0.352 0.091
350 W 350 (7) 350 (6) 1.9 350 (8) 350 (9) 1.7 350 (8) 343 (9) 5.7 0.15 0.156
450 W 451 (10) 452 (12) 4.2 450 (7) 452 (9) 2.8 449 (10) 442 (10) 6.3 0.050 * 0.221
550 W 551 (14) 554 (16) 4.1 550 (10) 554 (13) 5.0 542 (28) 537 (24) 9.2 0.045 * 0.235

GXT vibration
[85 rpm]

20 Hz 200 (6) 196 (5) 4.4 200 (6) 195 (9) 4.4 201 (7) 193 (8) 5.7 0.106 0.186
30 Hz 200 (7) 196 (8) 3.8 200 (7) 193 (7) 5.8 201 (7) 193 (9) 5.9 0.043 * 0.244
40 Hz 200 (8) 194 (7) 5.0 200 (5) 194 (8) 5.3 201 (6) 192 (8) 6.3 0.024 * 0.272

GXT seated
[85 rpm]

450 W 449 (6) 449 (8) 3.5 — — — — 0.708 0.013
550 W 544 (7) 545 (6) 3.0 — — — — 0.671 0.017
650 W 645 (11) 647 (11) 3.4 — — — — 0.306 0.095

6-s sprints
Peak PO 1268 (278) 1156 (171) 127.5 — — — — 0.023 * 0.386
Mean PO 1082 (181) 921 (119) 130.5 — — — — <0.001 * 0.758

SEM: Standard error of measurement. GXT: graded exercises tests, rpm: revolutions per minute. ES: Effect size. * Significant differences
compared to the SRM device (p < 0.05).
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Figure 2. Bland–Altman plots showing the level of agreement between the three Favero Assioma pedals (markers) and the
gold standard SRM crankset, during the seated graded exercises tests (GXT). Area shaded in yellow indicates an acceptable
level of agreement ≤ 2% [24].
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4. Discussion

The results of this study indicate that the Assioma Favero Pedals are a highly suitable
tool for monitoring cycling performance in a wide range of workloads (100 to 650 W) and
cadences (70, 85, and 100 rpm), different pedaling positions (seated and standing), and
under vibration stress (20, 30, and 40 Hz). Importantly, the pedals slightly underestimated
the PO compared with SRM readings, but errors are low enough to be handled in practice.
To the best of our knowledge, this is the first study examining the validity and reliability of
the recently commercialized Assioma Favero pedals. Stemming from this comprehensive
research, coaches and researchers may be confident in using these portable power meters
for cycling training and testing and benefit from their practical advantages.

The SRM crankset constitutes the best alternative available to laboratory cycle ergome-
ters, with extremely low variability (<1.0% for a 20-strain-gauge model, and <2.0% for the
4-strain-gauge model) [12]. According to our findings, the Assioma Favero readings were
very similar to the SRM across the variety of conditions examined, considering a systematic
underestimation of PO readings (from −2.7 ± 5.8 W to −6.0 ± 9.9 W), probably due to the
strain gauges’ sensitivity or the signal processing [15]. These disparities are comparable
to previously validated devices such as the Powertap P1 pedals (from −2.4 ± 4.8 W to
−9.0 ± 5.3 W) [19], Garmin Vector Pedals (0.6 ± 6.2 W, 11.6 to 12.7 W; −11.6 to 12.7 W,
−3.7 to 9.5 W) [1,15], Powertap Hub (2.9 ± 3.3 W; −3.7 to 9.5 W) [13], and Look Keo Power
Pedal (4.6 ± 0.4 W; −15.9 to 13.9 W) [33]. Our results suggest that Assioma Favero pedals
are therefore not only useful but also reliable for cycling load monitoring. In addition to
the lower price in comparison with the SRM technology (>1.500 US), these pedal power
meters have key advantages such as maintaining the usual riding position, the wheelset,
and the crankset, as well as the reduced extra weight (microsensors attached to the pedals).
Moreover, from a practical view, the ease installation of the Assioma Favero pedals allows
athletes to use them interchangeably in different bicycles (e.g., track, road, and time trial).
On the other hand, in comparison with other brands of pedal power meters, the features of
the Assioma Favero pedals (cost ~800 US; weight ~151.5 g) make them a more affordable
technology than the Garmin Vector (cost ~1400 US; weight ~156 g), as well as a lighter
option than the Powertap P1 (cost ~750 US; weight ~194.5 g).

An important contribution of the present study is that we examined a large variety
of testing conditions, allowing us to conclude the effects of three big cycling concerns:
pedaling positions, vibration, and extremely high loads. Whereas previous studies have
included some of these conditions [1,15–17,21,34], this is the first time they have all been
examined in the same experiment. Of interest, there was no substantial difference in
the readings between standing and seated pedaling positions, even though it is known
that standing pedaling causes lateral sways and affects the biomechanics of pedaling [35].
Furthermore, testing the device performance under vibration stress is quite important
considering that 88% of the excitation power during a ride on the granular rough road falls
within a 10–50 Hz frequency bandwidth [27]. Our results showed that Assioma Favero
pedals had similar CV, bias, and SD of bias than SRM under vibration conditions, including
high ICC values. However, readings could be altered ~4% by vibrations > 20 Hz.

The fact that the Assioma Favero pedals produce errors of ~2% compared to the SRM
suggests that they are sufficiently accurate to track performance changes over time [24].
This result is similar to those observed in the Powertap Hub (1.7 to 2.7%) [13] and better
than the ones found in the Garmin 3.1% [1] and Vector pedals (8.5 ± 4.0%) [17]. Despite
the practical advantages they offer, the Assioma Favero Pedals are limited concerning
their calibration. Static calibration is not possible because the pedals need a reading of the
cadence [36]. Thus, the slope of the power curve cannot be adjusted, meaning that they will
always be limited by the factory calibration. Accordingly, the pedal measurement should
be checked regularly against a calibrated scientific SRM crankset. Given that the current
experiment was conducted under laboratory settings, future research should address the
reliability of the Assioma Favero Pedals in field conditions [15].
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5. Conclusions

This study confirms that the new Assioma Favero pedals are valid and reliable mobile
power meters to measure PO in cyclists. This portable power meter provides an alternative
to more expensive laboratory ergometers while allowing cyclists to use their bicycles for
testing, training, or competition purposes. The results demonstrate that the Assioma Favero
power meter pedals provide trustworthy PO readings from 100 to 650 W, in either seated
or standing positions, with vibrations between 20 and 40 Hz at cadences of 70, 85, and
100 rpm, or even at a free chosen cadence. Of note, pedals consistently underestimated the
SRM readings by up to 4%, with differences depending on the cycling condition.
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Abstract: Triathlon has become increasingly popular in recent years. In this discipline, maximum
oxygen consumption (VO2max) is considered the gold standard for determining competition cardio-
vascular capacity. However, the emergence of wearable sensors (as Stryd) has drastically changed
training and races, allowing for the more precise evaluation of athletes and study of many more
potential determining variables. Thus, in order to discover factors associated with improved running
efficiency, we studied which variables are correlated with increased speed. We then developed
a methodology to identify associated running patterns that could allow each individual athlete
to improve their performance. To achieve this, we developed a correlation matrix, implemented
regression models, and created a heat map using hierarchical cluster analysis. This highlighted
relationships between running patterns in groups of young triathlon athletes and several different
variables. Among the most important conclusions, we found that high VO2max did not seem to be
significantly correlated with faster speed. However, faster individuals did have higher power per kg,
horizontal power, stride length, and running effectiveness, and lower ground contact time and form
power ratio. VO2max appeared to strongly correlate with power per kg and this seemed to indicate
that to run faster, athletes must also correctly manage their power.

Keywords: VO2max; power; running biomechanics; hierarchical cluster analysis; machine learn-
ing; triathletes

1. Introduction

Triathlon is an increasingly popular sport with broad participation spanning three
disciplines (swimming, cycling, and running) in the same event. In recent years in Spain,
participation in triathlon has increased by more than 200% among young athletes of school
age (Spanish Triathlon Federation) [1]. In this discipline, maximum oxygen consumption
(VO2max) is considered the gold standard for determining cardiovascular capacity [2]. Ac-
curate VO2max measurement requires specialised equipment found in exercise physiology
laboratories—techniques that are often not available to every professional. In addition,
testing an entire team can be time consuming because only one athlete can be evaluated at a
time. Therefore, alternative parameters have been developed to predict VO2max that allow
several athletes to be tested at the same time without requiring sophisticated laboratory
tools [3].

The ability both to maintain a high percentage of VO2max for long periods of time and
simultaneously move efficiently, referred to as running effectiveness (RE), comes from a
series of physiological attributes that contribute to the success of running performance and
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help athletes stand out [4]. RE is generally used to refer to steady-state oxygen consumption
at a given running speed and expresses the energy expenditure required by individuals
to perform at a given intensity [5]. Trained runners have higher REs compared to lesser-
trained runners, which indicates that positive adaptations occur in response to regular
training. Although a given athlete may be genetically predisposed to having a ‘good’
RE, various strategies can potentially further enhance an individual’s RE by increasing
metabolic, cardiorespiratory, biomechanical, and/or neuromuscular responses [4].

Until a few years ago, RE was not considered an important factor in the improvement
of athletes’ careers. However, this area is now the focus of increasing interest. RE is the
result of the interaction between multiple factors. Of these, the most important may be
biomechanical factors, neuromuscular variables such as leg stiffness, exposure to training
periods at altitude, and anthropometric variables [5]. A good correlation has been observed
between RE and oxygen consumption (VO2) while running. Runners with a good RE
use less oxygen than runners with a poor RE at the same speed and under homogeneous
conditions [6]. However, it has also been noted that RE can vary by up to 30% between
trained runners with a similar VO2max [7].

In recent years, the advent of portable power estimators has dramatically changed
training and competitive running, allowing athletes to be accurately evaluated [8]. Among
these systems, Stryd, Boulder, CO, USA (www.stryd.com, accessed on 1 March 2021)
pioneered the manufacture of power meters for runners. The Stryd running power meter
is a pedometer that attaches to the shoe to measure variables that quantify performance
including pace, distance, elevation, power, form power, cadence, ground contact time,
vertical oscillation, and leg spring stiffness [9].

This is a relatively new type of instrument, and the validity and reliability of these
systems for evaluating power output and space–time parameters have only recently been
validated. In this context, the operating power data recorded by Stryd has been successfully
used to establish a linear relationship between power and speed to predict power output at
different submaximal operating speeds, demonstrating the great potential of this portable
equipment for studying efficiency patterns while running. Additionally, a few studies
found a positive correlation between Stryd’s power data and the operating economy or
metabolic demands. Indeed, a recent study by Cerezuela-Espejo et al. determined the
correlation between these power meters and oxygen consumption [8]. Moreover, Cartón-
Llorente et al. 2021 [10], determined that Stryd could reliably determine the functional
threshold power (FTP) of runners.

The detection of running patterns and the variables involved in achieving the maxi-
mum possible speed while running has always been the subject of research [11–13]. This
allows us to compare which parameters best define running efficiency, meaning that the
similarities and discrepancies between athletes who are more or less successful in com-
petitions can be examined. In this sense, the use of objective grouping or classification
techniques (which are commonly employed with a variety of goals in different fields such
as engineering, science, or technology) is also feasible in sports sciences. Thus, unsuper-
vised classification (commonly known as clustering) is a classical technique used in the
area of machine learning [14]. According to Rokach [15], clustering divides data patterns
into subsets in such a way that similar patterns are grouped together.

Several studies have focused on gait patterns by using clustering techniques such as
hierarchical clustering analysis (HCA). These provide an interpretable analysis of large
quantities of data from sensors, as a multivariate problem, to obtain different groups
of athletes with similar running gait patterns [16]. The objective of this study was to
determine running patterns and variables involved in attaining maximum running speed
in young triathletes.
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2. Materials and Methods

2.1. Participants

The participants belonged to the high-performance Triathlon Technification Plan based
in the Valencian Community in Spain. The study was approved by the Ethics Committee
for Biomedical research at the CEU-Cardenal Herrera University, (reference No: CEI18/137)
and was registered as a clinical trial (ClinicalTrials.gov registration No: NCT04221698).

Inclusion/Exclusion Criteria

Fifteen healthy triathletes (9 males and 6 females) were enrolled in this study (Table 1):

Table 1. Participant characteristics a.

Male (n = 9) Female (n = 6)

Age 15 ± 1.5 14 ± 1.0
Weight, kg 56.3 ± 8.9 55.2 ± 3.2
Height, cm 170 ± 7.2 168.5 ± 4.3

Body mass index, kg/m2 19.4 ± 1.7 19.3 ± 1.2
Years competing 7.8 ± 6.8 6.8 ± 1.0

Training hours per week 19.1 ± 2.8 19.6 ± 2.6
a Values are presented as the mean ± SD.

Participants were included if they reported having run a minimum of 2 days per week
in the 3 months prior with no reported injuries and with their worst pain rated a minimum
of 3 out 10 on a numerical rating scale (NRS) for pain (0 = no pain; 10 = worst possible
pain) [17]. Participants were excluded if they reported any previous musculoskeletal
surgery, neurological impairment, knee structural deformities, pain caused by trauma or
sports activities, having stopped running, or having received additional treatment outside
of this study.

2.2. Data Collection

All the participants performed a 5 min warm-up on a treadmill (HP Cosmos Quasar,
Nussdorf-Traunstein, Germany) at their preferred speed [17]. The initial running speed
was set at 8 km/h with a gradient of 1% [18]. The starting speed was 3 km/h, with speed
increments of 1 km/h every 60 s. The subjects walked the first three steps (up to 7 km/h),
and continued running from 8 km/h, until volitional exhaustion. After exhaustion, the
athletes underwent a 5-min recovery protocol during which the speed was decreased each
minute from 100% to 60%, 55%, 50%, 45%, and 40% of the maximal achieved speed [19].

Expired gas was sampled continuously and O2 and CO2 concentration in expired
gas were determined using the Ultima™ CardiO2® gas exchange analysis system ((MGC
Diagnostics Corporation, St Paul, MN, USA, https://mgcdiagnostics.com, accessed on 1
March 2021). Heart rate (HR) was collected using a telemetric heart rate monitor (Polar
Electro, Kempele, Finland), and stored in PC memory. The thresholds assessed were
Aerobic and Anaerobic Ventilatory Thresholds (VT1 and VT2), identified by different
ventilatory criteria, such as: VSlope (VO2 and VCO2), Ventilatory Equivalents (EqO2 and
EqCO2), Ventilation (VE), Pressures at the end of each expiration (Pet O2 and Pet CO2), and
Respiratory Quotient (RER).

The Stryd sensor, paired with a Garmin Forerunner 935 watch, was used to determine
running power and recording was started and stopped at the same time as the stress test.
As shown in Figure 1, the powers at each threshold were recorded at the same time the
ventilation thresholds 1 and 2 (VT1 and VT2) and maximal aerobic power (MAP) occurred,
with these physiological variables also being defined.
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Figure 1. Determination of the ventilation thresholds 1 and 2 (VT1 and VT2) and maximal aerobic power (MAP) with the
corresponding power at each physiological threshold.

Once the participant data were acquired, a raw data set was constructed for the
purpose of this study. We then assessed and cleaned the database to correct possible errors
in the data, e.g., missing values or extreme values gathered from the overall system. Then
the data was arranged in “csv” format to be treated by the statistical program RStudio [20].
Finally, the experimental data set was structured with 14 columns referring to the measured
variables for each participant and 15 rows corresponding to each athlete.

Variables Analysed

To determine athlete running power, we used a Stryd sensor (Stryd power meter;
Stryd, Inc., Boulder, CO, USA, https://www.stryd.com, accessed on 1 March 2021) a
relatively new device, which estimates power in watts. Stryd is a carbon fibre-reinforced
foot pod that attaches to the shoe and weighs 9.1 g. The sensor is based on a 6-axis inertial
motion sensor (3-axis gyroscope and 3-axis accelerometer). We analysed the following
variables: power (W), leg spring stiffness (LSS), leg spring stiffness per kg (LSS/kg),
vertical oscillation (VO), power per kg (W/kg), horizontal power (HW), speed (SPD),
cadence (CAD), ground contact time (GCT), vertical ratio (VR), stride length (SL), running
effectiveness (RE), form power ratio (FPR), and maximum oxygen consumption (VO2max).
To determine the VO2max, the Ultima™ CardiO2® gas exchange analysis system (MGC
Diagnostics Corporation, St Paul, MN, USA was used.

2.3. Data Analysis

We used different statistical and artificial intelligence data analysis techniques to
examine the data we collected. Our objective was to understand which variables most
influence running efficiency. Thus, we studied which factors were related to each other
based on their linear correlations and tried to understand how some characteristics influ-
ence others with the goal of obtaining clues that could explain different running patterns
in young triathletes.

Clustering techniques were used to obtain running patterns that would allow us to
visually generate groups of individuals with similar running characteristics [14]. These
groups were formed based on the data collected and extracted from the Stryd sensor. Thus,
each runner had their own colour pattern which we could use to identify the variables
each individual should work on to improve both their speed and efficiency. We performed
all of the calculations with RStudio desktop software for macOS (version 1.3.1073, ‘Giant
Goldenrod’ release) [20]. In the following section, we detailed the techniques we used to
understand the interpretation of the results.

2.3.1. Linear Correlations

Linear correlation and simple linear regression are statistical methods that study the
linear relationship between two variables. Correlation quantifies how related two variables
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are, while linear regression consists of generating an equation (model) that, based on the
relationship between two variables, allows the value of one to be predicted based on the
other. Thus, variables X and Y are said to be positively correlated if high values of X
are associated with high values of Y, and low values of X are associated with low values
of Y. In contrast, if high values of X are associated with low values of Y, and vice versa,
the variables are negatively correlated [21]. Correlation coefficients range from −1 (for a
negative correlation) to +1 (for a positive correlation)—correlations close to 0 indicate the
absence of a linear correlation between two variables [22].

As a general rule, linear correlation studies precede the generation of linear regression
models, after the confirmation of a correlation between variables. The difference is that
while correlation measures the strength of an association between two variables, regression
quantifies the nature of the relationship [21]. Therefore, it is useful to calculate a correlation
matrix showing all the variables in rows and columns, in which the intersection values
quantify the correlation between them. This matrix can then be used to calculate a ‘correla-
tion map’ that highlights which variables were linearly related to each other at a statistical
given significance level (p-value), in our case, p = 0.05.

Thus, we were able to quickly render a colour map that quantified the significance
and direction of the relationship between two variables, therefore enabling us to choose
which ones merited further study. We mainly focused on the speed variable in this current
work, although we did study other possible correlations that (through other measurements)
could help explain what influences running efficiency. The correlation map also gave us a
much better understanding of running patterns.

2.3.2. Hierarchical Clustering Analysis

The term clustering refers to a wide range of unsupervised techniques from machine
learning fields whose purpose is to find patterns or groups of similar objects (known as
clusters) within a set of observations [23]. Clustering is one of the most important data
mining methods for discovering patterns in multidimensional data. The partitions are
established such that observations within the same group are similar to each other and
different from the observations of other groups. Thus, unsupervised learning can be viewed
as an extension of exploratory data analysis to gain insights into a set of data and how the
different variables relate to each other. Additionally, clustering provides tools to analyse
these variables and discover relationships and patterns within them [23].

An excellent review of clustering techniques can be found in [14] which also describes
a common clustering technique taxonomy proposed by Fraley and Raftery [24]. They
suggested dividing these techniques into two different groups: hierarchical and partitioning
methods. After testing different techniques in this work, we focused on HCA. Although
other techniques with different advantages and disadvantages are available, we considered
this technique to be best suited to our data set.

HCA is an alternative to the common K-means technique and is more flexible and
better able to discover outlying groups or records. This type of clustering also lends
itself to intuitive graphical display, leading to easier cluster interpretation. HCA methods
form clusters by iteratively dividing patterns using a top–down or bottom–up approach.
Hierarchical clustering methods may be agglomerative or divisive. The former follows
the bottom–up approach to build clusters starting with a single object and then merging
these atomic clusters groups of increasing size until all of the objects are finally lying in
a single cluster or certain termination conditions are satisfied. The latter is a top–down
approach which breaks a cluster containing all objects into smaller groups, until each object
forms an independent cluster or the termination conditions are satisfied. The hierarchical
methods usually lead to the formation of dendrograms that allow the resulting groupings
to be visualised.
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3. Results

First, we studied the reliability of the Stryd sensor against the gold standard measured
in the laboratory by calculating the correlation of the values obtained with the sensor and
the standard at each of the three thresholds. Our data demonstrated the reliability of the
Stryd compared to laboratory systems, as also shown in some recent studies [8,25] and
so we used this data in the subsequent detection of running patterns. Thus, as shown
in Table 2, we compared the speed obtained in the laboratory system with the values
for W, W/kg, HW, and FPR obtained by the Stryd device. In addition, these data were
also compared with VO2 (mL/kg/min) measured in the laboratory so we could find the
variables that best correlated with speed.

Table 2. Correlation between power per kilogram (W/kg), horizontal power (HW), and the form
power ratio (FPR) with athlete speed at each running threshold, as well as between VO2max and the
velocity at each threshold. Note: (ST) refers to the measurement made with the Stryd system.

Threshold Gold Standard Variables Pearson’s Coefficient (r)

VT1

Speed (km/h) W/kg (ST) 0.97
Speed (km/h) HW (ST) 0.82
Speed (km/h) VO2 (mL/kg/min) 0.22
Speed (km/h) FPR (ST) −0.82

VT2

Speed (km/h) W/kg (ST) 0.98
Speed (km/h) HW (ST) 0.92
Speed (km/h) VO2 (mL/kg/min) 0.38
Speed (km/h) FPR (ST) −0.92

MAP

Speed (km/h) W/kg (ST) 0.94
Speed (km/h) HW (ST) 0.91
Speed (km/h) VO2 (mL/kg/min) 0.67
Speed (km/h) FPR (ST) −0.91

The strongest correlations with speed at each threshold were W/kg, HW, and FPR; on
the contrary VO2max was not significantly correlated with speed at any of the thresholds.

Figure 2 shows the graphs corresponding to the regression models calculated to
compare W/kg and VO2max for each of the three thresholds. This allowed us to identify
which variable best explained the dependent variable of speed. In this case, the regression
models highlighted two variables as explanatory factors for the speed reached by the
study participants.

Power, but not VO2max, perfectly explained speed for each of the thresholds. As
shown in Table 2, there was an exceptionally strong (near 100%) correlation between power
and speed, which was also observed in the regression model with an R2 remarkably close to
1. This indicated that variability in speed could be explained very well by the power of the
athlete. Moreover, the regression model indicated how much power would be required to
acquire a determined speed at each threshold. On the contrary, this effect was not observed
for VO2max, and the corresponding regression models could not explain the increase or
decrease in speed based on this parameter. There was no evidence to indicate a linear
relationship between VO2max and speed.

3.1. Correlations Map

We carried out both Pearson’s r analysis (the most commonly used method to assess
correlations) and Kendall and Spearman correlations as non-parametric methods com-
monly used to perform rank-based correlation analysis [23]. Nevertheless, the significant
correlations remained the same in both cases and so we used Pearson’s correlation coeffi-
cient (r) to calculate the correlation matrix to highlight the most pertinent variables to study.
As shown in Figure 3. The dots in red tones referred to negative correlations. For example,
as the HW variable increased, the FPR decreased, in a significant and quite strong linear
correlation remarkably close to −1. In addition, as FPR decreased, GCT decreased, and
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SPD, W/kg, HW, W, and LSS increased. Furthermore, as GCT decreased, LSS/kg, VO2max,
SPD, W/kg, and HW increased. Finally, as RE increased, SPD and SL also increased.

Figure 2. Regression models for power (W) and maximum oxygen consumption (VO2max) with respect to speed. The
regression models compared power and VO2max with speed at ventilation threshold 1 (VT1; A,B), ventilation threshold 2
(VT2; C,D), and at the maximal aerobic power (MAP) threshold (E,F).

Figure 3. Correlations map representing only the significant (p < 0.05) variables. Power (W), leg
spring stiffness (LSS), vertical oscillation (VO), power per kilogram (W/kg), speed (SPD), cadence
(CAD), ground contact time (GCT), and the form power ratio (FPR).
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Dots in blue tones referred to positive correlations such as the reasonable correlation
between SPD and W/kg and significant correlation between SPD and HW. This means
that the more W/kg and HW, the higher the SPD runners attained—a clear indicator of
running pattern. When LSS/kg increased, CAD also increased and the increase in VO2max
correlated with the increase in W/kg. As SPD increased, W/kg and HW also increased;
increased W/kg produced increased HW, VO, W, and LSS; as HW increased, W and LSS
increased; and increased W resulted in increased LSS.

In contrast, some variables were not significantly correlated and when we cross-
referenced these there was only one gap in the matrix. For example, our data indicated
that a higher running cadence did not mean that the athlete would run faster. Indeed,
this variable did not show a significant linear correlation, meaning that, a priori, it was
unlikely to be an important factor in the generation of more speed. In contrast, there was
no correlation between athletes with a high VO2max and faster speed, as we previously
observed in our regression models. However, faster athletes had a higher W/kg and HW,
and a lower FPR. VO2max strongly correlated with W/kg and this seemed to indicate that
to run fast, athletes must also correctly manage their power.

3.2. Clustering Heat Map

Finally, we decided to study the patterns of each runner by generating a heat map
using HCA. First the data was scaled to standardise the variables and minimise the impact
of the different magnitudes. Thus, the data were normalised to have zero mean and unit
variance. When the data were scaled, the Euclidean distance of the z-scores was the same
as the correlation distance. On the other hand, a connectivity-based clustering or HCA
approach was used to identify homogeneous gait patterns in the entire participant group
by creating a cluster tree or dendrogram. To perform the HCA, we used the R package
‘pheatmap’ library (Version 1.0.12) [26]. This allowed us to generate clusters of similar
runners based on the variables extracted from the Stryd data and to construct a heat map
to observe these patterns according to assigned colours.

The procedure for performing agglomerative HCA on the data set consisted of three
steps: calculation of the distance matrix between participants, computation of a linkage
function, and definition of clusters. In brief, first the Euclidean distance between every pair
of athletes was calculated for an M-dimensional space. Second, individual participants
were paired into binary clusters based on the distance information using the Ward D2
linkage method [27]. Third, newly formed clusters were grouped into larger clusters until
the dendrogram was formed [16,24]. The Ward minimum variance method was used to
minimise the total within-cluster variance. At each step, the cluster pair with a minimum
between-cluster distance was merged.

Finally, we visually inspected the dendrogram and decided to separate the clusters
into three groups based on our knowledge of the athletes. Thus, the K parameter was
established at 3. As shown in Figure 4, we represented the result of the clustering as a
heat map.

As shown on the heat map, three clusters of athletes with similar characteristics to
each other were identified. The reference group was cluster two (athletes S7 and S13),
representing the two individuals with the best competitive results. As shown, the SPD
variable for these two athletes corresponded to the highest values, highlighted in warmer
colours (red tones). In contrast, the participants with SPD marked in cooler colours (blue
tones) were the slowest from among the cohort. The colour scale was established by
columns, with red being representing the individual with the highest value in each of
the variables.
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Figure 4. Heat map of the clustering of athletes. The participants distributed into cluster 1 (S1, S2, S3, S4, S5, and S6), cluster
2 (S7 and S13), and cluster 3 (S8, S9, S10, S11, S12, S14, and S15).

Thus, a colour pattern could be observed for each individual with respect to the
reference group by noting the variables for which warmer or cooler colours were obtained.
For example, participant S14 obtained low SPD, VO2max consumption, HW, and W/kg
values and high values for FPR and GCT, indicating the aspects of their running technique
they should work on to increase their RE or running speed. In contrast, athlete S2 had
high W/kg, LSS, W, and VO values and low CAD values with respect to the reference
participants, even though their running speed was normal. This was probably because of
the strong correlation between SPD and W/kg and weak correlation between SPD and the
other variables.

Based on these data, we carried out a detailed analysis of which characteristics in
each athlete were increased or reduced compared to those who had obtained better results.
Moreover, by examining certain reference variables such as RE, we observed differences
between the participants. Figure 5 shows a graphical representation of the relationship
between speed and the variables that best correlated with it, also separating the individuals
by each of the cluster groups. These graphs allowed us to better understand the differences
between athletes who run faster and who better manage their performance power com-
pared to those who run slower, according to these groups. Group two was used as the
reference and was shown in green.

Thus, the fastest runners had a decreased FPR (A) and GCT (B), and an increased
W/kg (C), HW (D), SL (E), and RE (F). Based on these results, it appears that power
management and running dynamics play a more important role than VO2max in athletes
who run faster.
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Figure 5. The relationship between speed and the variables that best correlated with it. (A) Form power ratio (FPR), (B)
ground contact time (GCT), (C) power per kilogram (W/kg), (D) horizontal power (HW), (E) stride length (SL), and (F)
running effectiveness (RE).

4. Discussion

The objective of this study was to determine the running patterns and variables
involved in the maximum running speed of young triathletes. We observed that there
was a pattern of decreased FPR and GCT, and increased W/kg, HW, SL, and RE among
faster athletes. Based on these results, it appears that power management and running
dynamics play a more important role than VO2max in athletes who run faster. Various
studies have demonstrated the reliability and validity of portable systems such as Stryd
for measuring running power [9,28,29]. Additionally, running power is a more sensitive
measure of exercise intensity than other internal and external parameters, such as heart
rate or speed [28].

Calculation of the linear correlations for each of the variables we collected in this study
was an easy and fast method to understand which factors or characteristics were related to
each other. This allowed us to quickly find indications about the influence of some of these
variables with respect to others in order to obtain the most important power parameters for
running. We observed that the Stryd device data correlated well with VO2max laboratory
equipment data. This added confidence to our study of the interrelation of variables and
subsequently, to our comparisons between athletes to reliably apply grouping techniques to
search for patterns representative of RE. It was also interesting to see that certain variables
did not linearly influence RE and so, could be discarded for the purposes of this work, or
studied using other distribution models.

In addition, we consider the clustering techniques represented by heat maps to con-
stitute an especially useful tool for quickly explaining the differences between different
runners. The colour codes allowed us to find similar patterns for each variable collected
during the test, which corresponded to the patterns of each competitor. The ability to group
athletes by these colour patterns represents RE patterns either based on the reference of
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athletes who obtained the best competitive results or simply on a pre-determined set of
variables. This will allow us to extrapolate these findings to techniques for other sports in
which different characteristics are measured.

Limitations of the Study and Future Activities

One of the limitations of this work was its sample size because it was only sufficient to
allow us to obtain preliminary results related to our research topic. However, this work is
encouraging and we believe that future work in this area seems very promising. We must
also consider that obtaining data for high-performance athletes is quite difficult because
they are a very small population and therefore the sample will never be large. Nevertheless,
although our sample cohort was small and homogeneous, we would need a larger number
of subjects to have sufficient strength of these results to be able to generalise them with
confidence to other athletes with similar characteristics. Additionally, for future research,
the variable sex should be considered, as it could be a confusing factor when studying
the RE.

Finally, the sample size made it difficult to fully utilise the potential of the some
of the artificial intelligence techniques available to us. Future work should be directed
towards the application of these results in the training of young triathletes to help improve
their performance and to determine biomechanical running patterns that complement the
present power study using the Stryd sensor in young athletes.

5. Conclusions

In this work, we studied how to identify running patterns among young athletes
based on data from wearable sensors (such as Stryd) as compared to laboratory equipment
results. Our findings indicate that power management was key to maximising running
speed. VO2max strongly correlated with W/kg, indicating that to run faster, athletes
must also correctly manage their power. We used different techniques to identify the
relationship between strength and some of the other variables in our data set. Thus, we
were able to establish which parameters each athlete should work on to enhance their
running form. Heat maps were a tool that also allowed us to quickly group runners with
similar characteristics, defining colour patterns to characterise them. Furthermore, by
comparing each athlete’s performance with the other competitors, we were able to work
with individual runners to set target parameters for their improvement. Given that the data
was obtained from measurement sensors, we consider it to be very valuable and totally
objective information that could perhaps lead to the modification of certain methodologies
or training techniques. This work opens the door for future work with other types of
variables, such as biomechanics obtained from other sensors, which will broaden the
spectrum of factors that can be studied.

Author Contributions: Conceptualization, J.M.-G. and J.P.A.; methodology, J.M.-G. and I.N.M.;
machine learning models, J.P.A. and M.M.-J.; validation, J.P.A. and J.M.-G.; formal analysis, I.N.M.;
investigation, J.M.-G., M.M.-J., and J.P.A.; resources, V.H.M.; data curation, M.M.-J.; writing—original
draft preparation, J.P.A., M.M.-J., and J.M.-G.; writing—review and editing, J.P.A., M.M.-J., and
J.M.-G.; visualization, J.P.A. and M.M.-J.; supervision, J.M.-G. and J.P.A.; project administration
J.M.-G. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki and approved by the Institutional Review Board (or Ethics Committee) of
University CEU Cardenal Herrera (protocol code CEI18/137 and November 2018).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to privacy restrictions.

129



Sensors 2021, 21, 2422

Acknowledgments: We appreciate the voluntary participation of young athletes from the High-
Performance Triathlon Technification Plan based in the Valencian Community in Spain.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Martínez-Gramage, J.; Albiach, J.P.; Moltó, I.N.; Amer-Cuenca, J.J.; Moreno, V.H.; Segura-Ortí, E. A Random Forest Machine
Learning Framework to Reduce Running Injuries in Young Triathletes. Sensors 2020, 20, 6388. [CrossRef]

2. Dolezal, B.A.; Barr, D.; Boland, D.M.; Smith, D.L.; Cooper, C.B. Validation of the firefighter WFI treadmill protocol for predicting
VO2max. Occup. Med. 2015, 65, 143–146. [CrossRef] [PubMed]

3. Green, M.S.; Esco, M.R.; Martin, T.D.; Pritchett, R.C.; McHugh, A.N.; Williford, H.N. Crossvalidation of Two 20-M Shuttle-Run
Tests for Predicting V[Combining Dot Above]O2max in Female Collegiate Soccer Players. J. Strength Cond. Res. 2013, 27,
1520–1528. [CrossRef]

4. Barnes, K.R.; Kilding, A.E. Strategies to Improve Running Economy. Sports Med. 2014, 45, 37–56. [CrossRef] [PubMed]
5. Mayoralas, F.G.M.; Díaz, J.F.J.; Santos-García, D.J.; Castellanos, R.B.; Yustres, I.; González-Rave, J.M.A. Running economy and

performance. High and low intensity efforts during training and warm-up. A bibliographic review. Arch. Med. Deporte 2018, 35,
108–116.

6. Saunders, P.U.; Pyne, D.B.; Telford, R.D.; Hawley, J.A. Factors Affecting Running Economy in Trained Distance Runners. Sports
Med. 2004, 34, 465–485. [CrossRef]

7. Barnes, K.R.; Kilding, A.E. Running economy: Measurement, norms, and determining factors. Sports Med. Open 2015, 1, 1–15.
[CrossRef] [PubMed]

8. Cartón-Llorente, A.; Roche-Seruendo, L.E.; Jaén-Carrillo, D.; Marcen-Cinca, N.; García-Pinillos, F. Absolute reliability and
agreement between Stryd and RunScribe systems for the assessment of running power. Proc. Inst. Mech. Eng. Part P J. Sports Eng.
Technol. 2021. [CrossRef]

9. García-Pinillos, F.; Roche-Seruendo, L.E.; Marcén-Cinca, N.; Marco-Contreras, L.A.; Latorre-Román, P.A. Absolute Reliability and
Concurrent Validity of the Stryd System for the Assessment of Running Stride Kinematics at Different Velocities. J. Strength Cond.
Res. 2021, 35, 78–84. [CrossRef] [PubMed]

10. Cartón-Llorente, A.; García-Pinillos, F.; Royo-Borruel, J.; Rubio-Peirotén, A.; Jaén-Carrillo, D.; Roche-Seruendo, L.E. Estimating
Functional Threshold Power in Endurance Running from Shorter Time Trials Using a 6-Axis Inertial Measurement Sensor. Sensors
2021, 21, 582. [CrossRef] [PubMed]

11. Ahamed, N.U.; Kobsar, D.; Benson, L.; Clermont, C.; Kohrs, R.; Osis, S.T.; Ferber, R. Using wearable sensors to classify subject-
specific running biomechanical gait patterns based on changes in environmental weather conditions. PLoS ONE 2018, 13, e0203839.
[CrossRef] [PubMed]

12. Ahamed, N.U.; Kobsar, D.; Benson, L.C.; Clermont, C.A.; Osis, S.T.; Ferber, R. Subject-specific and group-based running pattern
classification using a single wearable sensor. J. Biomech. 2019, 84, 227–233. [CrossRef] [PubMed]

13. Clermont, C.A.; Benson, L.C.; Osis, S.T.; Kobsar, D.; Ferber, R. Running patterns for male and female competitive and recreational
runners based on accelerometer data. J. Sports Sci. 2019, 37, 204–211. [CrossRef] [PubMed]

14. Saxena, A.; Prasad, M.; Gupta, A.; Bharill, N.; Patel, O.P.; Tiwari, A.; Er, M.J.; Ding, W.; Lin, C.-T. A review of clustering techniques
and developments. Neurocomputing 2017, 267, 664–681. [CrossRef]

15. Rokach, L. A survey of Clustering Algorithms. In Data Mining and Knowledge Discovery Handbook; Springer International
Publishing: Cham, Switzerland, 2009; pp. 269–298.

16. Phinyomark, A.; Osis, S.T.; Hettinga, B.A.; Ferber, R. Kinematic gait patterns in healthy runners: A hierarchical cluster analysis. J.
Biomech. 2015, 48, 3897–3904. [CrossRef] [PubMed]

17. Bramah, C.; Preece, S.J.; Gill, N.; Herrington, L. A 10% Increase in Step Rate Improves Running Kinematics and Clinical Outcomes
in Runners With Patellofemoral Pain at 4 Weeks and 3 Months. Am. J. Sports Med. 2019, 47, 3406–3413. [CrossRef]

18. Jones, A.M.; Doust, J.H. A 1% treadmill grade most accurately reflects the energetic cost of outdoor running. J. Sports Sci. 1996, 14,
321–327. [CrossRef]

19. Lourenço, T.F.; Martins, L.E.B.; Tessutti, L.S.; Brenzikofer, R.; Macedo, D.V. Reproducibility of an Incremental Treadmill Vo2max
Test with Gas Exchange Analysis for Runners. J. Strength Cond. Res. 2011, 25, 1994–1999. [CrossRef]

20. RStudio. Open Source & Professional Software for Data Science Teams—RStudio. Available online: https://rstudio.com/
(accessed on 13 February 2021).

21. Bruce, P.; Bruce, A. Pratical Statistics; O’Reilly Media: Newton, MA, USA, 2017; pp. 29–32.
22. Deisenroth. Mathematics for ML; Cambridge University Press: Cambridge, UK, 2020; pp. 191–196. Available online: http:

//www.maa.org/external_archive/QL/pgs75_89.pdf (accessed on 1 March 2021).
23. Kassambara, A. Multivariate Analysis 1: Practical Guide to Cluster Analysis in R; Taylor & Francis Group: Oxfordshire, UK, 2015;

pp. 1–187.
24. Fraley, C. How Many Clusters? Which Clustering Method? Answers via Model-Based Cluster Analysis. Comput. J. 1998, 41,

578–588. [CrossRef]

130



Sensors 2021, 21, 2422

25. Jaén-Carrillo, D.; Roche-Seruendo, L.E.; Cartón-Llorente, A.; Ramírez-Campillo, R.; García-Pinillos, F. Mechanical Power in
Endurance Running: A Scoping Review on Sensors for Power Output Estimation during Running. Sensors 2020, 20, 6482.
[CrossRef]

26. Kolde, R. Package ‘Pheatmap’: Pretty Heat Map. 2019, pp. 1–8 . Available online: https://cran.r-project.org/web/packages/
pheatmap/index.html (accessed on 1 March 2021).

27. Ward, J.H. Hierarchical Grouping to Optimize an Objective Function. J. Am. Stat. Assoc. 1963, 58, 236–244. [CrossRef]
28. Cerezuela-Espejo, V.; Hernández-Belmonte, A.; Courel-Ibáñez, J.; Conesa-Ros, E.; Mora-Rodríguez, R.; Pallarés, J.G. Are we ready

to measure running power? Repeatability and concurrent validity of five commercial technologies. Eur. J. Sport Sci. 2020, 1391,
1–10. [CrossRef]

29. Navalta, J.W.; Montes, J.; Bodell, N.G.; Aguilar, C.D.; Radzak, K.; Manning, J.W.; DeBeliso, M. Reliability of Trail Walking and
Running Tasks Using the Stryd Power Meter. Int. J. Sports Med. 2019, 40, 498–502. [CrossRef] [PubMed]

131





sensors

Article

The Use of Infrared Thermography to Develop and Assess a
Wearable Sock and Monitor Foot Temperature in
Diabetic Subjects

José Torreblanca González 1, Beatriz Gómez-Martín 2, Ascensión Hernández Encinas 3, Jesús Martín-Vaquero 1,*,

Araceli Queiruga-Dios 1 and Alfonso Martínez-Nova 2

Citation: Torreblanca González, J.;

Gómez-Martín, B.; Hernández

Encinas, A.; Martín-Vaquero, J.;

Queiruga-Dios, A.; Martínez-Nova, A.

The Use of Infrared Thermography to

Develop and Assess a Wearable Sock

and Monitor Foot Temperature in

Diabetic Subjects. Sensors 2021, 21,

1821. https://doi.org/10.3390/

s21051821

Received: 14 December 2020

Accepted: 21 February 2021

Published: 5 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Industrial Engineering, University of Salamanca, E37700 Salamanca, Spain; torre@usal.es (J.T.G.);
queirugadios@usal.es (A.Q.-D.)

2 Department of Nursing, Centro Universitario de Plasencia, University of Extremadura, E10600 Plasencia,
Spain; bgm@unex.es (B.G.-M.); podoalf@unex.es (A.M.-N.)

3 Faculty of Sciences, University of Salamanca, E37008 Salamanca, Spain; ascen@usal.es
* Correspondence: jesmarva@usal.es

Abstract: One important health problem that could affect diabetics is diabetic foot syndrome, as risk
of ulceration, neuropathy, ischemia and infection. Unnoticed minor injuries, subsequent infection
and ulceration may end in a foot amputation. Preliminary studies have shown a relationship
between increased skin temperature and asymmetries between the same regions of both feet. In
the preulceration phase, to develop a smart device able to control the temperature of these types
of patients to avoid this risk might be very useful. A statistical analysis has been carried out
with a sample of foot temperature data obtained from 93 individuals, of whom 44 are diabetics
and 49 nondiabetics and among them 43% are men and 57% are women. Data obtained with
a thermographic camera has been successful in providing a set of regions of interest, where the
temperature could influence the individual, and the behavior of several variables that could affect
these subjects provides a mathematical model. Finally, an in-depth analysis of existing sensors
situated in those positions, namely, heel, medial midfoot, first metatarsal head, fifth metatarsal head,
and first toe has allowed for the development of a smart sock to store temperatures obtained every
few minutes in a mobile device.

Keywords: diabetic foot; gait; monitoring foot temperature; smart wearable

1. Introduction

1.1. Diabetic Foot

Diabetic foot syndrome is defined as the infection, ulceration or destruction of the
deep tissues of the foot, associated with neuropathy and/or peripheral vascular disease
of different magnitude, in the lower extremities of patients with diabetes mellitus [1].
The incidence of foot ulcers in diabetics rounds between 15 and 25% [2] and is a frequent
cause of hospitalization and could lead to major complications, like lower limb amputa-
tions [3]. Actually, it is estimated that about 85% of diabetics suffering from amputations
have previously had an ulcer [4]. The mortality rate in subjects with diabetic foot syndrome
is more than twice as high than an average population [5].

1.2. The Role Temperature, Pressure Points and Activity on Diabetic Foot

The human being is homeothermic, that is, it maintains the central body temperature
constant (oscillating between 36.5 ◦C and 37.2 ◦C) despite the variations of ambient temper-
ature. Human beings control their temperature by thermoregulation, where the skin, as the
body’s largest organ, is a key factor in this process [6]. Skin temperature, in the normal hu-
man being, is controlled through many different mechanisms; especially in the extremities
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(fingers and toes) microcirculatory vasomotion is a crucial determinant of heath preserva-
tion of release (not sweating as stated, although being just another way—ischemia and
necrosis does not result from sweat gland impairment), and, also, it is normally dependent
of the room conditions.

During an activity such as walking, an increase in internal heat is generated, which
is manifested in a similar way in the increase in temperature of the skin of the feet [7].
In addition, these are integrated into a complex sports sock-shoe that makes it difficult to
transpire properly and evacuate the temperature generated. Thus, socks, together with
footwear, become an important element, not only to protect the skin from injury but also to
control thermal conditions [8]. In the same way, there are fundamental pieces in the control
of moisture (as it will act in the transport of heat in the skin) and therefore in ensuring a
correct hydration of the foot [9].

Hence, the evaluation of the pruning temperature helps one to know the internal
conditions, which could help to prevent lesions associated with the temperature during
gait, or that manifest with changes of the same. An increase of the foot temperature would
generate an excess of transpiration in addition to generate changes in the pH of the skin
that can turn the foot into the breeding ground for bacterial infections. Similarly, a sudden
increase in temperature of an area relative to its contralateral may be indicative of a high
risk of injury development, although a reduction may indicate a risk of ischemia. These
alterations could lead to further complications, such as pain during gait and development
of ulcers, that can become a serious problem in diabetic subjects, with a serious risk
of amputation.

Thermographic evaluation of the sole surface of the foot is particularly important
in the studies of pathologies associated with the foot at risk, either from neuropathy or
from peripheral vasculopathy. Thus, it has been possible to determine certain asymmetries,
such as an increase in temperature of 2.2 ◦C in an area relative to its contralateral, which
indicates an underlying subclinical inflammation without apparent signs [10]. This could
be a determinant of the risk of ulceration in this area. The sole thermographic evaluation
is carried out in different regions of interest (ROIs), being very variable in number and
location. The choice of areas of interest can be of great importance, as it could relate the
increase or decrease in temperature to the risk of injury in that area, such as a plantar
ulcer. However, the literature offers numerous studies, with disparity in number, location
and reasoning for choosing ROIs. Recent literature has found studies that analyze from
4 [11,12] to 12 [10] zones, with a number of 5–6 being the most common.

The researchers seem to agree on the study of four specific areas: heel, inner forefoot,
fifth metatarsal head and first finger. However, there are important differences, Astasio-
Picado et al. [11] analyzed the first metatarsal head, while Chatchawan et al. [13] and
Bagavathiappan et al. [14] extended the area to include also the second head. Other
researchers focused their attention on five forefoot areas, namely 1st, 3rd and 5th metatarsal
heads and 1st and 4th toes [15]. Similarly, Gatt et al. conducted a study in 8 forefoot, medial,
lateral, central and the toes [16].

However, other studies do not specify the exact number of regions or their
location [17,18], where there is no clear consensus on the criteria for choosing the ar-
eas studied, since the studies do not specify this criterion. Thus, it appears that the choice
of these areas may be related to areas of frequent ulcer occurrence [11], but in others, the cri-
teria are not specified either. Thus, in neuropathic feet, the highest prevalence was found in
the fingers (40.4%) and in the metatarsal area (39.1%), while the ischemic foot group is the
most frequent area in the fingers, up to 63.6%. On the other hand, the neuro-ischemic foot
group (frequent alteration in diabetic feet of time of evolution) the distribution of ulcers
was 51.8% in the area in the inner metatarsal area and the fingers, mainly the first [19].

It seems that the inclusion of the areas of first metatarsal head and first finger is highly
recommended, for around 50% of combined prevalence of ulcer appearance. However,
the other 50% occur in different areas of the foot, with a significantly lower prevalence,
so monitoring other areas becomes a necessity. Choosing areas that are representative of
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the risk of injury but also able to discriminate between homogeneous temperature zones
and provide data on the whole foot without subdividing it into too many regions would
be of great importance for rapid realization, simple and reliable podiatric screenings that
evaluate the risk of a diabetic foot.

1.3. The Utility of Wearables in Detecting Temperature and Aims of the Study

The proposal of this research is to develop a system, a smart sock, capable of measuring
temperature at various points on the foot, to record these measurements during gait by
using a smartphone and finally to analyze the data and alert the patient where necessary,
i.e., a remote health monitoring system [20,21].

The first step was to make a prediction model so that when any of the measurements
exceeds a certain value, the smart sock will send an alert to the telephone and the patient
will know that he/she should stop because there is a problem. To develop the mathematical
model, data have been collected from a group of diabetic and nondiabetic individuals and
a statistical analysis has been developed.

The objective of this work is to analyze and provide good reasons about the number
and location of ROIs, which are necessary to perform a good screening of the diabetic foot
and to be able to optimize the study, adding necessary areas or eliminating others that
offer redundant results. Moreover, a detailed description of the sensors that will be used
to measure foot temperate is also included in this study. Thus, the layout of the paper
is as follows: A brief overview of the most common sensors employed to measure the
temperature is given in Section 2 and their main features in relation to the main goal of
the paper are analyzed. In Section 3, a survey that conducted to study the most important
variables to study the temperature in both feet is described. A basic statistical analysis
of the data is provided and several graphs of feet temperature to determine the most
important ROIs are showed. Through further analysis of the sample, a relation of the feet
temperature with some of the other variables was found, which allows to develop the
corresponding model. The main part of this work is described in Section 4, where a new
prototype for a smart sock is described. This smart sock is able to continuously obtain
temperatures at several points of the foot, this leaves open the possibility of advancing the
study of this disease in the near future. Finally, some conclusions and goals are given in
Section 5.

2. Types of Sensors to Monitor Temperatures

Temperature can be defined as a physical quantity that shows the amount of heat in a
body. Its perception is linked to the notion of cold and heat.

Its measurement is carried out using a temperature sensor, an instrument that col-
lects the temperature data from a certain source and converts it into information that is
understandable by a device or an observer. As the Electronics Tutorials website points out,
temperature sensors can be classified into two main groups [22]:

1. Contact sensors, which must physically touch the object, using conductivity to mea-
sure changes.

2. Noncontact sensors, which use convection and radiation to warn of a change in
temperature.

Of these two types of sensors, the most interesting in this research are the first ones
in which there is contact with the object or patient to be measured. The temperature of
the human body has been measured and taken into account from the very beginning of
medicine. Things related to the change in temperature in different areas of the body have
been discovered and have come to the study of numerous diseases.

Measurement taking of this variable is, currently, very well resolved for measurements
in industrial processes and for many areas in the human body, but perhaps it is not as
well resolved for measurement on the sole of the foot. Some authors have developed an
insole [12,23], but our goal is to define the characteristics of a sock that will help to reliably
control foot temperature.

135



Sensors 2021, 21, 1821

Focusing on the contact sensors and, in addition, that they must be small to prevent
injuries, the following possibilities were found [24]: Thermocouples, thermoresistances,
thermistors, diodes and programmable electronic devices. Detailed information about
these electrical devices can be found in [25].

Other sensors are not adequate because it is complicated to obtain a magnitude
(temperature) every few minutes when a reliable value is needed. So, infrared, mechanical,
color change sensors, etc., are the most suitable for the purposes of this study.

One type of devices that has been tested were thermocouples. Due to its characteristics
related to cost, size and temperature range, between others, thermocouples are considered
the workhorse of devices capable of measure temperature. A detailed description of
different type of thermocouples could be found in [26,27].

Thermoresistances work by varying its resistance with temperature. Their sensitive
elements, based on metallic conductors, change their electrical resistance depending on
the temperature. The most common devices (called PT100, PT1000, etc.) are built with a
platinum resistance. These resistance temperature detector works over a range that varies
between −200◦ and 800◦ with only a single calibration point, and it is considered the best
accuracy tool [28].

Thermistors are much more sensitive [29], made up of a synthesized mixture of metal
oxides. They are essentially semiconductors that behave like “thermal resistors”. They
can be found on the market with the denomination NTC (negative temperature coefficient,
i.e., the resistance decreases with temperature) and PTC (positive temperature coefficient,
i.e., it increases resistance with temperature). They are much easier to measure than
thermocouples and thermoresistances, as a simple voltage divider is enough to get the
temperature [30,31].

Finally, diodes base their operation on the voltage variation in their terminals since
it depends on both the current flowing through it and the temperature at which the
diode is located; this variation occurs at the PN junction, very sensitive to temperature
changes depending on the internal doping they have. This internal doping makes the
internal resistance of the PN junction vary as a function of temperature, which causes
the current to increase or decrease and by Ohm’s law the same occurs with the voltage
at the semiconductor ends. There are a wide variety of devices to measure temperature,
from those that vary its voltage (diodes), those that give gradual values of voltage as a
function of temperature (analog integrated circuits) to those that are programmed and give
a sequence of bits to obtain the value of the temperature (digital integrated circuits). LM35
is an example of analog integrated circuit [32].

The latest generation of sensors for temperature measurement are integrated cir-
cuits that, in addition to measuring temperature, can communicate with microcontrollers.
The temperature variation is done electronically, as diodes, by variation of voltage and
current in the PN junction of the semiconductors. Some examples of these sensors are the
MAX30205, the Si7006, etc. [33–36].

From all these sensors, the ideal ones are the programmable electronic devices in
integrated circuits, due to their great versatility in being able to program. In addition, their
electrical connection is easier by having compatible communication lines between all the
sensors that are connected at the same time, such as the I2C communication. Another
advantage is the two-way communication possibility in such a way that the temperature
value can be obtained directly, and it is not necessary to carry out operations with the values
read from the device. The electrical connection of these devices can be very simple with
three or four wires at most. Its biggest drawback is electrical welding as they must be made
with special materials and equipment, due to the small size of the electrical connections,
which are often in the order of 200 microns.

Another very interesting choice are thermistors, since they are small devices, with less
rigidity than the previous ones and they are probably better to be included in a sock. Its
biggest drawback as with the previous ones are the electrical connections. At this point,
they have a certain advantage over the rest of devices, since being less rigid, they can be
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welded and arranged in a better way. Another disadvantage compared to the previous ones
is that the obtained temperature signal must be treated to finally obtain the temperature
value, which makes the entire signal acquisition system more complex.

As for the other sensors, the same problems as with programmable electronic devices
and thermistors must be addressed. The first ones, being programmable, they already do
everything that is needed, i.e., to acquire the signal and transform it to an understandable
temperature value for the user, while the seconds may be easier to handle for electrical
mounting but worse for acquiring the signal and transforming it to a value understandable
by the user.

In any case, and depending on the type of sensor, it could be complicated to place
many sensors (not more than 4 or 5), especially if we also want to measure other variables
such as pressure or humidity, which are not in the scope of this paper. Hence, it is necessary
to know the most important points where temperatures should be calculated.

3. Data Analysis

The goal of this study is to select the positions for sensors to measure the foot temper-
ature and thereby preventing the occurrence of ulcers in diabetic patients. With the aim of
analyzing the best position for those sensors, we obtained foot temperatures measured by
infrared thermography. A survey with diabetic and nondiabetic individuals was conducted
to collect and compare several variables, not only temperatures.

3.1. Data Collection

The sample consisted of 93 subjects. All were patients of the CPUEX Clinic of the
University of Extremadura. Since CPUEX Clinic is not large, it is considered that they are
a good representation of this institution since the number of male and female patients is
similar, also the people with and without diabetes. This analysis is expected to continue
with more patients from other institutions. In this way, it will be easier to follow the
standards suggested in works such as [37], for example, in the number of subjects and the
way to choose them. The thermal images of patients that participate in this research were
taken with a FLIR E60bx Infrared camera.

The measure of foot temperature was taken before and after a 100 m walk. In this
study patients of different ages were considered, some of them elders, and they cannot
walk long distances. Moreover, they should not go outside because the measures could
be affected by ambient temperature. A 100 m walk was sufficient to cause a change in
temperature by activation. In the future, to study how walking longer distances may affect
diabetic patients could be considered.

Although some studies attempt to define the most critical ROIs and thus more likely
to suffer serious injuries, there is no final decision about that. This is the reason why a
total of 17 temperature measurements from 17 ROIs were collected, from the plant and
dorsal areas (9 form the plant and 8 form the dorsal), from both feet. These 17 ROIs were
selected following anatomical and functional criteria (i.e., importance in gait, blood flow
and risk of ulceration). Plantar measurements included the heel, being not included it
in dorsal vision. Measures (indices) that have been selected were: from heel (I1), medial
midfoot (I2), lateral midfoot (I3), first metatarsal head (I4), central metatarsal heads (I5),
fifth metatarsal head (I6), first toe (I7), central toes (I8) and fifth toe (I9), and the same
areas in the dorsal (I10–I17) [38].

Data collection was made using a survey that includes 11 sections:

1. General data about the individual, such as gender, age, weight, height, blood type,
and the use of high heels; data specific for diabetes patients: type of diabetes, treatment,
control of their diabetes; individuals suffering neuropathy disability; results of the
modified Edinburgh questionnaire to diagnose arterial claudication; ankle-brachial
index (ABI) and measurement of glycosylated hemoglobin.
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2. Habits: Way of life (sedentary lifestyle or practicing a sport); type of feeding (healthy
diet or not); alcohol consumption; smoker or nonsmoker; any regular medication; and
dominant foot.

3. Comfort: Recent activity with current shoes; intensity of the most recent activity
(no activity, walking, running, etc. during the last 30 min); comfort level with the
current footwear (during the last 30 min) by means of a 1 to 5 Likert scale, being 1
“very comfortable” and 5 “very uncomfortable”; and the type of footwear that they
usually use.

4. Blood pressure and central temperature: data of systolic blood pressure (high), dias-
tolic blood pressure (low), and central temperature (thermometer).

5. Climate data (season data) including date, and number of photos from the foot (sole
and dorsal from both feet).

6. Temperature measurements (prewalk right foot data) were performed with a thermal
camera FLIR E60bx, with an infrared resolution of 320 × 240 pixels, a sensitivity of
0.05 ◦C and a precision of ±2%. Thermal picture were taken 1 m far from a foot covered
in black cardboard. A total of 17 data average temperatures (9 plantar and 8 dorsal)
of each participant were collected and stored using the The Flir Tools� software
(Similar to Figure 1). This number of ROIs has been used previously in thermographyc
assessments [38–40] (see Figure 2). Room humidity (%) and temperature (◦C) were
also measured with a Flir MR 77 device.

7. Temperature measurements (prewalk left foot data).
8. Temperature measurements (postwalk right foot data). After the 100 m walking,

the temperature was recorded in the same way as in point 6.
9. Temperature measurements (postwalk left foot data).
10. Foot Posture. Scores of Foot Posture Index (FPI) for left and right foot were assessed

following standard procedure [41], subjects in their relaxed stance position, both limb
support, arms relaxed and looking straight ahead; foot posture classification was
found to be neutral when the score was between 0 to 5, supinated from −1 to −12 and
pronated from 6 to 12 [42]; presence of plantar hyperkeratosis at any zone of the foot
was also recorded.

11. Final comments and remarks.

Each measurement take the research team a set-up of 20 min for each participant.
A study with a sample of 93 individuals was carried out, of whom 44 are diabetics and

49 nondiabetics and among them 43% are men and 57% are women. Figure 3 left shows
that in both cases (diabetics and nondiabetics, and men and women) the percentage is quite
similar, the data is similarly distributed. Histograms of age, weight, height and body mass
index (BMI) have also been represented in the right part of Figure 3. The weight basically
is between 60 and 90 kg and the height between 1.60 and 1.70 m. The largest number of
individuals corresponds to an age between 70 and 80 years since the patients who go to the
consultation are older people who have problems for their basic care and the body mass
index is between 20 and 35.

(a) (b) (c)

Figure 1. (a) Feet covered with a black cardboard prior to the thermal picture, (b) Thermographic picture obtained and (c)
Taking data temperatures of the nine regions of the foot (with Spanish format, where the comma indicates decimal point).
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Figure 2. Feet regions where temperature data is collected.

The study was conducted in accordance with the Declaration of Helsinki, and the
experiment developed for this paper received a positive report from the bioethics and
biosafety commission of the University of Extremadura (with Ref. 04/2018). It follows
Spanish and European legislation, and all the people who participated in the survey gave
their consent for research purposes.

Figure 3. Data distribution (left) and Histograms for different variables (right): (a) Weight, (b) Height, (c) Age, and (d) BMI.

3.2. Statistical Data Analysis

Correlation shows the relationship between two variables, whilst regression analysis
generates a mathematical equation that serves to predict the behavior of the process output
by changing its inputs. Correlation is usually the first analysis carried out since you want
to check if there is a relationship between the variables, and, the regression analysis usually
takes data in order to find a relationship that provides for the output of the process by
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changing the data that affect this. In this work these two statistical procedures were used
and also dendograms to determine which are the locations where sensors should be placed.

A correlation higher than 0.8 between sole and dorsal indices at the same position
was established in [38], so sole data have only been considered (from I1 to I9 from sole)
before and after a 100 m walk. This walk was performed to determine if the diabetic
feet, after the walk, show any difference with the nondiabetic feet. To do this different
measures were taken, which will allow developing a model with the aim of predicting the
temperature in some points of the foot and check if they are within “normal” values or if
there is any deviation.

Specifically, the data obtained from the survey detailed in Section 3.1 have been
considered.

Dendograms were represented for diabetic and nondiabetic individuals to determine
if there is a difference between them and also what are the most influential indices (to
select these points as the places to put sensors on the socks). In all dendrograms, the most
significant points are I1 I2, I3 or I7, and points I4, I5 and I6 related to each other, as can be
seen in Figure 4 for the right floor of diabetic patients (left) and nondiabetics (right) before
the walk.

Figure 4. Dendograms of the right sole after the walk: Diabetics (left) and nondiabetics (right). SLPREi represents the
temperature for left sole before the walk for index i.

According to the literature, the points where the most ulcers appear are in the
metatarsal area of the foot, i.e., indices I4, I5, and I6 from Figure 2a, and index I7 (30% of
the ulcers according to [39] in the fingers. The dendrogram indicates that there is a relation
between those three metatarsal points. Consequently, indices I4 and I6 have been chosen
because they have a higher percentage, 22% and 11%. Thus, considering points I4 and I6,
all the variability of the upper metatarsal part were obtained.

On the other hand, the index I1 was also selected because there is a relation between
and there are usually more difficult problems. Apart from that it seems reasonable to
consider I1, as a greater force is applied to this area when walking and it is a point of greater
probability of ulcer. Point I7 was also chosen as it is an area not related to the previous
ones and presents a probability of ulceration of 30%. The dendogram also indicates that
I2 is totally different from the rest. The area of I2 carries irrigation to the metatarsal head
and the first toe. This is an interesting area since if it cools, the front side will also cools
and no blood will go there, with the risk of ulcer. Moreover, this point receives less friction
from the footwear, with a difference in relation to the other points where we measure the
temperature. That is why we decided to include it as it is a singular point, totally different

140



Sensors 2021, 21, 1821

from the others but where practically no ulcers appear. In this way there is an element of
control of the other areas that will be considered for the smart sock.

In summary, the points that will be studied are Ij with j ∈ {1, 2, 4, 6, 7}.
For this study a pool of candidate variables have been considered, in addition to the

temperature. This allowed the possibility of discarding the variables that do not affect
diabetic foot. After a stepwise regression, a prediction model has been developed for all the
data, in which the following variables are included: AGE, SEX, BMI, DB (Nondiabetic = 1,
diabetic = 2), TNMX (Systolic Blood Pressure), TNMN (Diastolic Blood Pressure), TC
(central temperature), TEXT (outside temperature), TPRE (air temperature of the room
before the walk), HPRE (humidity of the room (in%) before the walk). The coefficients
that have been obtained for the different models are shown in Table 1. The model only
considering the variables that influence is calculated with the command Stepwise provided
by the R program.

Table 1. Coefficients that have been obtained with the model. SRPREi represents the temperature for right (R) sole (S)
before (PRE) the walk for index i, SLPOSTi represents the temperature for left (L) sole (S) after (POST) the walk for index i,
and SRPOSTi represents the temperature for right sole after the walk for index i. Where I can be 1, 2, 4, 6 and 7 indicating
the region where the index is considered.

CAT CTE AGE BMI DB TNMX TNMN TC TEXT TPRE HPRE

SRPRE1 8.78695 0.03 −0.91140 0.04171 −0.05392 0.56426 0.12670
SRPRE2 17.94235 0.01558 −1.47390 0.03612 −0.03644 0.38426 0.07408
SRPRE4 −20.96860 0.02549 0.10193 −1.36591 −0.04557 0.82781 0.67369 0.13880
SRPRE6 −26.14073 0.13748 −1.02450 0.04952 −0.09264 0.79693 0.74866 0.18130
SRPRE7 −38.27672 0.03712 0.11602 −1.28288 −0.05528 1.14328 0.81583 0.15686

SLPRE1 −14.00475 0.03628 −0.84698 0.04798 −0.05280 0.61893 0.53951 0.11614
SLPRE2 15.65169 −0.74912 0.04795 −0.04274 0.39359 0.09685
SLPRE4 −31.30703 0.11339 −1.42929 0.06371 −0.08094 0.93555 0.72724 0.16288
SLPRE6 −32.83695 0.02528 0.09846 −1.33277 0.05504 −0.07547 0.92974 0.76525 0.15994
SLPRE7 −39.72836 0.04965 −1.20896 1.11495 0.84074 0.14443

SRPOST1 −7.01999 0.04641 −0.93266 0.48558 0.64667
SRPOST2 −3.44379 0.10557 −1.33277 0.06073 −0.04858 0.56932 0.07686 0.27156
SRPOST4 −15.45718 0.02753 −1.63835 0.04549 −0.05258 0.67605 0.73318
SRPOST6 −20.78108 0.11620 −1.07018 0.05828 −0.08463 0.65984 0.79016 0.08394
SRPOST7 −24.79945 0.03964 −1.35335 0.88517 0.78046

SLPOST1 −12.99850 0.03859 −1.03925 0.05417 −0.04706 0.58444 0.63557
SLPOST2 15.67648 0.02831 −1.21562 0.03380 0.39475
SLPOST4 −15.34189 0.02699 −1.32829 0.04989 −0.05053 0.62868 0.74446
SLPOST6 −20.94168 0.02664 −1.15666 0.05514 −0.04966 0.73794 0.76450
SLPOST7 −29.61293 0.04579 −1.07319 0.96990 0.81785

There are variables that do not influence the model, such as SEX and TEXT, and there
are other variables that have little influence, such as BMI. In addition, the HPRE practically
only influences before the walk. As it can be observed, being diabetic or not does influence
the model, therefore data have been separated in diabetic and nondiabetic people and
since sex does not influence the sample was not separated by sex. In Figure 5 the graph
of the data for the coefficient SRPRE1 (black, solid line) of the sole before the walk for the
complete sample is represented, and a comparison with the complete model (with all the
variables, in red, dashed line), and the model with the variables given in the legend (blue,
dash-dot line). This model suggests that some of the variables in this study have small
influence in the temperatures.

Figure 5 shows the sample data in black color; the blue graph corresponds to the
calculated model only considering the variables that influence; finally, the red line is the
model when all variables are taken into account. The correlation coefficients obtained
correspond to the correlation between the calculated model and the real values (blue
r = 0.628), between the complete model, considering all the variables and the real values
(red r = 0.638) and between the blue model and the red model (r = 0.985). A confidence
interval of 95% was considered for this study. It can be appreciated that both models are
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very well correlated, so it is not worth using all the variables, only the ones in Table 1.
Moreover, the correlation coefficients are not much improved by choosing more variables
and it is more realistic to choose only those that influence.

Figure 5. Pattern for the sole of the index 1, right foot before the walk.

A Bland Altman plot of the model is presented in Figure 6 comparing the two mea-
surements in the index 1 before the walk: the sample data and the model only considering
the variables that influence, calculated with the command Stepwise provided by R. In other
indices, we see similar results. The proposed model is not predictive and the approximation
is not quite good, because we have found outliers for both the lower and upper values.
The multiple regression coefficient between the real values (SRPRE1) and the model is
R2 = 0.3948. As was mentioned in Section 3.1, the study was carried out with all diabetic
patients from the podiatry clinic with the goal of selecting the variables that could influence
the values of the defined indices and to improve the measurement of these variables.

The goal of this study is the proposal of socks capable to send a signal to a mobile tele-
phone when a difference of temperature is detected, of more than 2 degrees (hyperthermia)
or less than 2 degrees (ischemia) between the same indices of the two feet. For doing this
the difference of the indices in the sole in the 5 points (Ij, j ∈ {1, 2, 4, 6, 7}) was calculated
and a basic statistical study was developed for all of them starting with all sample data
and later on for individuals when diabetics from nondiabetics are separated, and before
and after the walk.

As an example, Table 2 shows the data for nondiabetic patients before the walk for
the sole of the right foot. In this case the index with the highest coefficient of variation is
I6, followed by I7, in which the interquartile range is also the highest of all. Indices I1, I4
and I6 have a negative skewness and are the ones with the highest kurtosis, while I2 and I7
have a skewness close to zero and a kurtosis that is also very small.
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Figure 6. Bland Altman plot, for the sole of the index 1, right foot before the walk, comparing the two
measurements: the sample data given by the survey and the model only considering the variables
that influence (see Table 1).

Table 2. Difference between the indices on the two sole (left and right) for nondiabetic people before the walk in the regions
1, 2, 4, 6 and 7 (see Figure 1). Here we can see the most important statistic of then like mean, the standard deviation (sd),
the standard error of the mean (sem), interquartile range (IQR), the coefficient of variation (cv), the degree of distortion
from the symmetrical bell curve or the normal distribution or the measure of symmetry (Skewness), the measure of whether
the data are heavy-tailed or light-tailed relative to a normal distribution (Kurtosis), and the quartiles.

DSPRE Mean sd se(mean) IQR cv Skewness Kurtosis 0% 25% 50% 75% 100%

DSPRE1 0.0938 0.8234 0.1176 0.7 8.7716 −1.7464 7.6044 −3.6 −0.2 0.1 0.5 1.7
DSPRE2 0.4326 0.5550 0.0792 0.6 1.2828 0.2910 0.9031 −0.9 0.1 0.4 0.7 2.0
DSPRE4 0.2081 1.2282 0.1754 0.9 5.9005 −1.1939 3.8264 −3.9 −0.1 0.3 0.8 3.1
DSPRE6 0.0551 0.9757 0.1393 1.1 17.7082 −1.2871 5.0223 −4.0 −0.5 0.1 0.6 1.8
DSPRE7 0.1163 1.1422 0.1631 1.1 9.8193 0.25053 0.3911 −2.7 −0.5 0.0 0.6 3.0

For the indices Ij, j ∈ {1, 2, 4, 6, 7}, a violin graph with a boxplot with a mustache
inside is represented in Figure 7. It can be appreciated that there is an overlap between the
mean (red dot) and the median (middle straight line of the boxplot with a mustache).
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Figure 7. Violin plot for indices Ij, j ∈ {1, 2, 4, 6, 7}.

4. A Prototype of a Smart Sock

4.1. Introduction

As was mentioned before, the goal of this research is to get a smart sock, capable of
measuring temperature in diabetic foot. Some examples of prototypes of socks appear
in [43,44] but sensors there are large, so they are not the better option for diabetic patients.
The proposed system will be composed of several sensors located in predefined ROIs, these
sensors will be managed by an Arduino board, which will send the collected data to a
smartphone that will be able to create an alarm in case of needed. A block diagram of the
proposed structure is shown in Figure 8.
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Figure 8. Block diagram of the proposed system that will be able to measure temperature, analyze it
and send an alarm to the smartphone when needed.

4.2. NTC TTF 103 Thermistor

In Section 3 the areas of the feet to place the sensors for measure the temperature were
selected. The next step is to think about which sensor that could be used to measure the
temperature because it is a very delicate situation, since they should not disturb when
walking. Thermistors were considered the best option, since they are very sensitive. As was
mentioned in Section 2, they can be found on the market with the denomination NTC
and PTC.

For the device proposed in this study, the NTC TTF 103 thermistor with 10 kΩ will be
used. This sensor has very small dimensions, 25 mm long, 3.8 mm wide and 0.4 mm high,
which makes it ideal to avoid disturbing the foot. Moreover, the manufacturer provides
tables with the resistive values and their corresponding temperatures. Although data table
from the manufacturer is available, they have been calibrated using the Steinhart–Hart
equation and their coefficients A, B and C were obtaining.

The Steinhart–Hart equation is an empirical expression that has been determined to be
the best mathematical expression for the resistance temperature ratio of NTC thermistors
and NTC probe sets. The most common equation is:

Ti =
1

A + B ln(Ri) + C ln3(Ri)
, (1)

where Ti is measured in degrees Kelvin, and A, B and C are calculated following these
steps: first of all the thermistor at three different temperatures is measure, and then this
values are used to solve the resulting simultaneous equations, considering

Li = ln(Ri), Yi =
1
Ti

, γ2 =
Y2 − Y1

L2 − L1
, γ3 =

Y3 − Y1

L3 − L1
.

Finally, the parameters are obtained taking the following expressions for A, B and C:

C =
γ3 − γ2

L3 − L2
(L1 + L2 + L3)

−1, B = γ2 −C(L2
1 + L1L2 + L2

2), A = Y1 − L1(B+CL2
1). (2)

These coefficients are used from three measurements in real conditions. With these
three parameters and obtaining the resistance, value the temperature is obtained with the
NTC thermistors. It is also possible to obtain that value using the website of Thermistor
Calculator for Laser Diode and TEC Controllers. [45].

The six NTC sensors were calibrated (an extra sensor calibration is included, just in
case one fail later). As Figure 9 shows, both the resistences that will be placed in series with
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the NTC thermistor and the thermistor itself are numbered, so considering each resistance
together with its NTC, they will always form the same voltage divider.

To carry out the measurements, units calibrated have been used to take the tempera-
ture and to measure the resistance. These units are shown in Figure 9. The RS1314 unit has
been used for temperature, capable of measuring very precise temperatures with thermo-
couples. This unit is equipped with two thermocouples that measure the temperature at
the same time, and thus they take the values when both measures are the same. To measure
the electrical resistance a FLUKE 87 was taken. This device is able to measure various
parameters such as resistance, voltage, electric current and it is even possible to measure
the temperature with a type K thermocouple.

Resistences and thermistors Units

Figure 9. Units calibrated to take the temperature and measure the resistance.

The measurements have been made in four temperature ranges, the first with water
almost at 0 ◦C, specifically at 1.6 ◦C, the next measurement around 29 ◦C, and finally
the temperature has risen to around 43 ◦C (we also calculated data at 21.6 ◦C to check
the function given by Equation (1)). We found that 1.6 ◦C and 29 ◦C temperatures were
more stable, and 43 ◦C temperature had some small variations. When we measured both
resistance and temperature, these variations have been taken into account when entering
data on the website to calculate the parameters of the Steinhart–Hart equation.

The way to obtain these temperatures has been through ice water and waiting about
20 min to stabilize the temperature, then it has been heated with a microwave and cold
water has been added to obtain 43 ◦C and 29 ◦C. This is shown in Figure 10.

Temperature at 1.6 ◦C Temperature at 29 ◦C

Figure 10. Calculating the parameters of the Steinhart–Hart equation.

All six NTC sensors have been calibrated. The obtained values of resistance (Res i)
and temperature (Temp i) are shown in Table 3.
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Table 3. Data of resistances (Res 1 to 6) and temperatures (Temp 1 to 6) taken by the six NTC sensors.

Resistence/Thermistor Res 1 Temp 1 Res 2 Temp 2 Res 3 Temp 3 Res 4 Temp 4

R1/NTC1 9.80 kΩ 21.6 ◦C 24.88 kΩ 1.6 ◦C 8.31 kΩ 29.7 ◦C 5.02 kΩ 43.5 ◦C
R2/NTC2 9.83 kΩ 21.6 ◦C 24.33 kΩ 1.6 ◦C 8.38 kΩ 29.7 ◦C 5.20 kΩ 43.5 ◦C
R3/NTC3 9.82 kΩ 21.6 ◦C 24.19 kΩ 1.6 ◦C 8.30 kΩ 29.6 ◦C 5.15 kΩ 43.3 ◦C
R4/NTC4 9.85 kΩ 21.6 ◦C 24.50 kΩ 1.6 ◦C 8.34 kΩ 29.4 ◦C 5.19 kΩ 43.2 ◦C
R5/NTC5 9.79 kΩ 21.6 ◦C 25.12 kΩ 1.6 ◦C 8.34 kΩ 29.4 ◦C 5.26 kΩ 42.8 ◦C
R6/NTC6 9.84 kΩ 21.6 ◦C 25.21 kΩ 1.6 ◦C 8.47 kΩ 29.3 ◦C 5.47 kΩ 42.0 ◦C

Once measurements were taken, the parameters for each thermistor are obtained (see
Table 4).

Table 4. Parameters of the Steinhart–Hart equation for the six NTC sensors. These parameters A,
B and C are constants that are obtained for the equation that defines the resistance variation of the
sensors. B were multiplied times 103, B times 104 and C times 107.

Thermistor A · 103 B · 104 C · 107

NTC1 1.409294790 1.684156947 5.069508025
NTC2 1.149226326 2.051360360 4.064329590
NTC3 1.076255140 2.180997134 3.519982960
NTC4 0.762209845 2.695628622 1.483573950
NTC5 1.300653498 1.843001087 4.536745780
NTC6 0.579418628 2.997765865 0.2115108092

4.3. Arduino

The next step is to establish the element for obtaining the measures to dump them
on the smartphone. For reading the sensors we started with ARDUINO board (https:
//www.arduino.cc/, accessed on 13 January 2021).

As is well known, Arduino is a platform of electronics prototypes based on flexible
and easy-to-use hardware and open-source software. It is intended for artists, designers,
as a hobby and for anyone interested in creating interactive objects or environments.

For this study, an Arduino Nano has been used to collect the data. It is a reduced
version of Arduino UNO, although with some differences. Arduino Nano minimizes the
energy demand that it consumes and moreover, less space is needed to host the board,
making it ideal for this project as it has to be worn as an ankle strap. This Arduino
board is a small, flexible and easy-to-use microcontroller. It is based on the ATmega328
microcontroller. It works at a frequency of 16 Mhz. The memory consists of 32 KB of flash
memory. It has a 5 V supply voltage, but the input voltage can vary from 7 to 12 V. It has
14 digital pins, 8 analog pins, 2 reset pins and 6 power pins (Vcc and GND). In the case
of analogs, they allow a 10-bit resolution from 0 to 5 V. It uses a standard miniUSB for
connecting with the computer for programming or power it. Its power consumption is
19 mA. Printed circuit board size is 18 × 45 mm weighing only 7 g.

Arduino microcontrollers have multichannel analog-digital converters. The converter
has a resolution of 10 bits, i.e., it takes values between 0 and 1023. Thus, if the resolution
is maximum, that is, 5 V, the converter will give an integer value of 1023, if the measured
voltage is intermediate, for example 2.5 V, the converter will store an integer value equal
to 512, and if the voltage is zero (0 V), then the converter will give an integer value of 0.
The Arduino resolution is calculated as the quotient between the reference voltage and
2N − 1. The reference voltage is the maximum voltage that is applied to the converter,
normally it is the supply voltage, then 5 V, although it can be modified and changed to a
smaller value, thereby increasing resolution. It is not possible to set higher values than the
power supply, and lower values can be increased to a certain value threshold set by the
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manufacturer of the microcontrollers. The exponent N refers to the bits resolution of the
converter, in this case, 10.

Therefore, the resolution that we have calculated for our device is 4.88 mV.

4.4. Smartphone Application

A mobile phone application has been developed to collect and analyze data. This
application takes the data from the sensors and transmit them by a Bluetooth connection
that is paired with the smartphone. The data transmission is made through the HC-06
Bluetooth module, which only needs to be paired with the mobile in order to receive data.
This module only has four terminals, two for power, one to transmit the signal and the last
one to receive it, which means that communication can be bidirectional, although in our case
we only use unidirectional communication, from the measuring system to the smartphone.

The smartphone stores the data in real time on a plain text file (.csv file) that can then
be processed. The phone application has been implemented with App Inventor 2 software.
This is developed from a web page available to everyone (https://appinventor.mit.edu/,
accessed on 13 Januray 2021).

When building the Android applications we work with two tools: App Inventor
Designer and App Inventor Blocks Editor. In Designer environment we build the user
interface, choosing and placing the elements with which the user will interact and the
components that the application will use. In the Blocks Editor we define the behavior of
the components of the application.

In Figure 11 some images of the smart sock working connected to the smartphone
application are shown. A set of sensors have been placed in the ROIs established in
Section 3, after measuring the temperature data from these regions, they are submitted to
the mobile device and stored in a spreadsheet.

Inside Outside

Resistors and thermistors Units

Figure 11. Smart sock working. In the top part we show details of one of the socks with the sensors.
In the bottom, readers can see the smart sock working connected to the cell phone application.

On the other hand, a battery called LIPO has been used. It is composed of lithium and
polymer, which is a battery widely used due to the large amount of current that it can give
at a certain moment, but it is adequate for this proposal because it can be used for a long
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time without recharging. Nickel-Cadmium batteries and even Nickel-Metal Hydride could
be used.

5. Conclusions and Future Work

Foot pathologies result directly from several diseases, mainly related with gait,
and they are among the most serious and costly complications that affect diabetes mellitus
patients. To monitor these patients, their gait and quality care will avoid the increase of
costs, patients’ consultation or centers overcrowding. The proposal of this study is to
develop a smart sock to monitor diabetic patients’ foot temperature.

We had to solve the following obstacles before this could be achieved:
(i) The first one was that several different papers do not agree about how many

sensors are necessary and where they should be placed. To select the ROIs we have
analyzed temperature data obtained with an infrared camera from 93 individuals with
the purpose of finding the optimal position for temperature sensors. To analyze if this
condition affects temperature results, the data was obtained before and after a 100 m walk.
After a statistical analysis, the model inferred from it lead us to define five specific areas
where the temperature must be measure: heel, medial midfoot, first metatarsal head, fifth
metatarsal head and first toe.

(ii) After that, the best type of sensor was also analyzed, since many of them are not
adequate for a diabetic foot.

A prototype of a smart sock was developed, with NTC sensors situated in those
positions. This device gather a large amount of data with the support of an Arduino board,
and then they are transferred and stored in a mobile device for subsequent processing.

After a description of the different types of sensors, the NTC sensor has seemed very
good to us to make the prototype. This sensor is characterized by being very small, easy
to take measurements, easy to attach to the sock and being the least annoying as it is the
smallest. This sensor has many advantages over the others, perhaps the only drawback is
its precision, but the precision in this study is not very relevant since we only need to check
if the temperature varies in the area of the foot that we are measuring. It could become
annoying if the sock used is very thin but being a medium sock there are no discomforts,
since the sensor and the threads are integrated with the fibers of the sock. The effects of
foot moisture are not taken into account in this first prototype; we are already seeing if
significant temperature variations can be seen in the foot.

The development of a sock to measure the temperature of different parts of the foot
has been carried out on the basis of a commercial sock, in which electrical wires of a very
small section have been inserted so that they will not disturb when the user is moving.
The threads are braided with the sock, that is, they are sewn so that they do not move,
finally the sensor is also sewn and glued to the sock fabric. The sensors were welded to the
electric wire and the weld was covered with shrink material to avoid damaging the foot
as much as possible, an objective achieved by this method. All of this gives the prototype
a long-lasting consistency and hold so it can be used in data collection sessions. Some
tests have already been done, and the data collection has been acquired during one or two
hours depending on the disposition of the individuals. Although the sock has worked
properly during these sessions, there were some first measurements in which we had
to make corrections in the hold of the threads and sensors, but once corrected, the sock
measured perfectly. One thing that has not been taken into account was the possibility that
foot sweated influenced the measurement; this was discarded since it is not necessary to
have a good temperature measurement but to obtain a slight variation in temperature in
the areas of the foot studied. For the purposes of this device, a degree or two more or less
in the temperature measurement do not influence the results, but what is needed is the
appreciation of a temperature change in those points, for this reason the measurements
must not be exactly precise either, and hence we have used those tiny sensors that do not
harm the patient when they are walking.
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The present study has some limitations: (1) The temperature evaluation in this study
was recorded only after a 100 m walk, being a short-term assess. It is necessary to re-
evaluate the data in a longer walk, to assess its reliability in an activity similar to that of daily
life; (2) the solution was tested indoors, so the results (where environmental temperature
can affect the body temperature) cannot be extrapolated to outdoors conditions; and (3)
the comfort of these smart socks (thinner sensors and wires) to be used by elders in a
normal activity in daily life wear must be improved. This issues will be taken into account
in future research, where the prototype will be tested in different conditions, looking for
better solutions in order to achieve the best wearable to continually assess foot temperature
and try to identify early disorders that could avoid infections, plantar ulcers and further
amputations in diabetics.
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Abstract: Wearable technology has allowed for the real-time assessment of mechanical work em-
ployed in several sporting activities. Through novel power metrics, Functional Threshold Power
have shown a reliable indicator of training intensities. This study aims to determine the relationship
between mean power output (MPO) values obtained during three submaximal running time trials
(i.e., 10 min, 20 min, and 30 min) and the functional threshold power (FTP). Twenty-two recreationally
trained male endurance runners completed four submaximal running time trials of 10, 20, 30, and
60 min, trying to cover the longest possible distance on a motorized treadmill. Absolute MPO (W),
normalized MPO (W/kg) and standard deviation (SD) were calculated for each time trial with a
power meter device attached to the shoelaces. All simplified FTP trials analyzed (i.e., FTP10, FTP20,
and FTP30) showed a significant association with the calculated FTP (p < 0.001) for both MPO and
normalized MPO, whereas stronger correlations were found with longer time trials. Individual
correction factors (ICF% = FTP60/FTPn) of ~90% for FTP10, ~94% for FTP20, and ~96% for FTP30
were obtained. The present study procures important practical applications for coaches and ath-
letes as it provides a more accurate estimation of FTP in endurance running through less fatiguing,
reproducible tests.

Keywords: aerobic; assessment; performance; physiology; technology; training; wearable

1. Introduction

Monitoring workload is a milestone for endurance sports athletes and coaches for
training prescription and competition. A wide array of physiological parameters has been
targeted in search for a single biomarker truly coupled to the current intensity of the effort
which, at the same time, was easy to track. These psychophysiological responses are
classified as internal workload measures and mainly include the evaluation of heart rate
(HR) and its derivatives (e.g., heart rate variability), blood lactate concentration, muscle
oxygen saturation, and rate of perceived exertion (RPE). To date, none of them have turned
out to be sensitive or handy enough to instantly quantify the athlete’s response to training
stimuli [1], and multiple external (often called objective) workload metrics needed to be
added to assess in-field racing intensity [2].

The development of portable global positioning system technologies (GPS) allowed
the use of external metrics, such as distance and velocity, and so controlling the training
pace and observing the internal responses to it became widely used as one of the best
methods to assess current training stress. Unfortunately, pace is highly dependent on
external conditions, such as wind, terrain, or slope, and therefore its use for quantifying
intensity in the field provides results that are imprecise and is not repeatable enough. In
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this context, new technologies were developed in a search for an objective workload metric,
giving rise to the era of mechanical power assessment.

Power output refers to the product of force and velocity, so once you are able to
calculate the instant force applied to a given activity, you can accurately measure the
actual workload your body is putting out. The huge step forward came when comparing
power output´s instantaneous response to an increase or decrease of intensity with other
traditional metrics such as heart rate, which take their time to respond. Actually, mean
power output (MPO) (i.e., the averaged power output during a given time period) has
proven to be more reliable and sensitive to little changes in exercise intensity than other
internal and external commonly used workload indicators [3].

Accordingly, the use of power meters in cycling increased exponentially due to their
capacity to assess workload considering external conditions such as wind, drafting, slope
or terrain. New racing strategies (e.g., uphill pacing) emerged and power-related data
also became widely used to inform decisions relating to cycling position, technique and
equipment selection [4]. Through strain gauges located in the pedals, crank, or rear hub,
the quantity and direction of the force applied by the cyclist, as well as the instant angular
velocity, can be obtained. Therefore, power output in cycling is calculated based on the
torque applied multiplied by cadence.

Analogously, running mechanical power could be quantified using force instrumented
treadmills [5] which reflects forward, vertical and lateral forces applied to the integrated
force plate at any given velocity. Of note, the actual external mechanical work of the
foot against the ground is negligible, so the term power output in running represents an
abstraction of the mechanical power theoretically applied to the runner´s centre of mass.
Despite its accuracy, force instrumented treadmills are not usable for an in-field evaluation,
thus, some commercial companies started to develop wearable power meters for running.
These novel devices can estimate the force applied by the subjects derived from their height,
body mass, and velocity, using GPS technology in outdoor environments and IMUs when
indoors [6]. In fact, a model proposed recently by Jenny and Jenny [7] supports that the
mechanical energy for steady flat running could be expressed as the sum of the energy
employed to counteract aerodynamic drag and the energy dissipated to produce vertical
oscillation and braking.

In the aforementioned mathematical approach [7] the rate of mechanical energy (i.e.,
the power output) dissipated to break through the air can be estimated knowing both the
runner and the wind´s velocity, and the runner and the air´s density. Energy dissipation
due to braking ground reaction forces may be estimated assuming the sine wave movement
described by the runner’s centre of mass, following the spring-mass model presented by
Blickhan [8]. Finally, dissipation in vertical oscillation is calculated based on spatiotemporal
parameters (speed, step rate, ground contact time) and a potential energy recovery factor.
This factor depends on the athlete´s ability to reuse the elastic energy stored during the
braking phase, into kinetic energy during the propulsion phase. As this condition is highly
variable between individuals, it represents the main concern within the entire model.

Given the complexity of testing the validity of wearable running power meters against
a gold standard method (i.e., instrumented treadmill), a recent study from Cerezuela-
Espejo [9] compared PO obtained with five commercially available portable devices and
two of the mathematical models applied to theoretically calculate running power. The
results showed the closest agreement corresponded to the StrydTM system among all
investigated devices.

Regarding the agreement between mechanical and metabolic power, another pub-
lished comparison between five portable devices [10] showed a promising correlation
(r3 = 0.911, SEE = 7.3%) between power output data obtained with the StrydTM foot pod
and oxygen consumption as a measure of energy expenditure, both in laboratory (i.e.,
treadmill running) and the in-field conditions, even when changes in body mass and slope
were applied [10]. Table 1 summarizes the scientific evidence found on the use of the main
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commercially available power meters, and further information is available in a recently
published scoping review on sensors for running power output assessment [11].

Table 1. Studies (n = 5) evaluating the use of wearable power meters or using their power output data during running
protocols.

System Used Device & Location Aim Results

Cerezuela-
Espejo et al.
(2020) [10]

RunScribe
Attached to shoelaces

and paired to a Garmin
Forerunner 235

To compare 4 power meter
devices in terms of

repeatability and concurrent
validity between P data and
oxygen consumption (VO2).

Fair repeatability indoor:
SEM ≥ 30.1 W, CV ≥ 7.4%,

ICC ≤ 0.709, and SEM ≥ 59.3 W,
CV ≥ 14.8%, ICC ≤ 0.563.

Low correlation between P and
VO2 (r ≥ 0.582, SEE ≤ 13.7%)

Garmin Running
Power

Garmin TRITM heart
rate (chest) monitor
band and Garmin

Forerunner 935 watch
Kansas, USA

Low repeatability indoor:
SEM ≥ 47.0 W, CV ≥ 9.4%,

ICC ≤ 0.495, fair repeatability
outdoor: SEM ≥ 24.5 W,
CV ≥ 7.7%, ICC = 0.823.

Low correlation between P and
VO2 (r ≥ 0.539, SEE ≤ 17.5%)

Polar Vantage V
Sport watch on the

wrist. GPS and
barometer sensors

Low repeatability outdoor:
SEM ≥ 40.6 W, CV ≥ 14.5%,

ICC = 0.487.
Good correlation between P and

VO2 (r = 0.841, SEE = 9.7%)

Stryd
(foot pod)

Attached to shoelaces
and paired to a Garmin

Forerunner 235 or a
mobile phone

Best repeatability values both
indoor: SEM ≤ 7.4 W,

CV ≤ 2.8%, ICC ≥ 0.980, and
outdoor: SEM ≤ 12.5 W,
CV ≤ 4.3%, ICC ≥ 0.989.

High correlation between P and
VO2 (r3 ≥ 0.911, SEE ≤ 7.3%)

García-
Pinillos et al.
(2019) [12]

Stryd
(foot pod)

Attached to shoelaces
and paired to a mobile

phone

To evaluate the stability of
power output data while

running at a constant
comfortable velocity on a

motorized treadmill.

P running at an easy pace is a
stable metric with negligible

differences, between intervals
ranging from 10 to 180 s.

García-
Pinillos et al.
(2019) [13]

Stryd
(foot pod)

Attached to shoelaces
and paired to a
mobile phone

To confirm the linear P-V
relationship in endurance

runners at submaximal
velocities, and to predict P

values with the
“two-point method”.

Two distant velocities were able
to provide P with the same

accuracy than the
multiple-point method.

Austin et al.
(2018) [14]

Stryd
(foot pod)

Attached to shoelaces
and paired to a Garmin

Fenix 3 watch

To determine the correlations
between P and running

economy at LT pace.

RE is positively correlated with
Stryd’s power output data,

however it may not be precise
enough to notice changes in

running economy

Aubry et al.
(2018) [15]

Stryd
(chest strap)

Stryd Pioneer 3-axial
accelerometer chest
band in conjunction
with a mobile phone

(with GPS).

To assess if running power
could be a valid surrogate of
metabolic demand (VO2) in a
population of different level

of training runners.

Running power is not a valid
surrogate of the energy cost of

running in a mixed ability
population of runners.

LT: blood lactate thresholds; VO2: oxygen uptake; P: power; V: velocity; SEM: standard error of measurement; CV: coefficient of variation;
ICC: intraclass correlation coefficient; RE: running economy.
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Regarding the application of power output data to determine training stress and inten-
sity zones, Allen and Cogan [16] proposed a performance index known as the Functional
Threshold Power (FTP). It refers to the highest MPO maintained in a quasi-steady state for
60 min (FTP60) without the onset of fatigue [16]. FTP has demonstrated its validity as a
surrogate for lactate threshold (LT) [17] and maximum lactate steady state (MLSS) [18,19].
LT is defined as the maximum intensity preceding an exponential rise in blood lactate
values during an incremental test [20], being addressed that during a continuous effort at
LT blood lactate concentration steadily rises [17]. However, MLSS refers to the maximum
workload that can be maintained over time without continual blood lactate accumulation
(i.e., 45–70 min) [18,21]. Additionally, MLSS demonstrated to better predict endurance
performance than maximum oxygen uptake (VO2max) in trained athletes [20]. Thus, FTP
is considered a good indicator of the main physiological events of the aerobic-anaerobic
transition for endurance activities and therefore it has been commonly used lately to deter-
mine training intensities (i.e., training zones) and quantify athletes’ responses to training
stimuli.

Although FTP60 is a highly reproductible and widely accepted method to assess
aerobic condition [11], less time-consuming time trials (TT) are demanded for in-season
regular evaluations. The 20-min TT (FTP20) has become the most popular simplified test
to predict FTP60 [22,23]. Allen and Cogan [16] set 95% of the MPO obtained in FTP20 as
a predictive value for FTP60 in cycling. Thereafter, a few studies [23–25] confirmed this
95% individual correction factor (ICF% = FTP60/FTP20) between both TTs, whereas some
others [26–28] found stronger associations between FTP20 and MLSS subtracting ~10% to
the MPO achieved during the TT, instead of 5%. Furthermore, other TTs ranging from 3 to
30 min were proposed as MLSS predictors of FTP60 [24,29]. Despite an overall moderate to
high level of agreement between these simplified TTs and FTP60, most referred to cycling.

The advent of wearable running power meters allows the transfer of knowledge
(and the FTP60 assessment) from cycling to running. Unlike other parameters such as HR,
VO2max or RPE, the physiological response of blood lactate showed no differences between
cycling and running at constant submaximal velocities [30]. Therefore, the determination
of FTP60 as a valid substitute of MLSS would be a key point for endurance running.
Unfortunately, knowledge about the level of agreement and correction factor between
simplified TTs and FTP60 in running is unknown. Nevertheless, the development of
novel technologies, such as running power meters, may help evaluate athletes’ functional
performance and monitor changes over time. A recent study confirmed a linear power–
velocity relationship in running for maximal and submaximal protocols [13]. This enables
the prediction of MPO at different submaximal running velocities using the two-point
method, underlining the need to accurately determine the relationship between simplified
FTP tests and FTP60 method.

Up to date, there are no studies which investigate the validity of simplified running
test to predict FTP60. Consequently, this study aims to analyse the level of agreement
between mean power values during three different running TTs (10-, 20- and 30-min)
compared to a 60-min TT, and to establish the correction factor for each simplified FTP
running test. Considering the high concordance reported in cycling, we hypothesized that
the 10-, 20-, and 30-min TTs (i.e., FTP10, FTP20 and FTP30) would have a good level of
agreement with FTP60 in running, and they could be valid substitutes of the FTP60.

2. Materials and Methods

2.1. Participants

Twenty-two recreationally trained male endurance runners (age: 34.0 ± 7.5 years;
height: 1.76 ± 0.04 m; body mass: 71.1 ± 5.8 kg; BMI: 22.9 ± 1.5 kg/m2) voluntarily
participated in this study. All participants met the inclusion criteria: older than 18 years
old, able to run 10 km under 40 min, used to running treadmill, and free from injuries
the last 6 months before data collection. After receiving detailed information of the study,
participants signed an informed consent form, complied with the ethical standards of the
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World Medical Association’s Declaration of Helsinki (2013), prior to participation. It was
made clear that participants were free to leave the study at any point. The study was
approved by the local Ethics Committee.

2.2. Procedures

The study protocol was executed between March and June 2019 in the laboratory
of biomechanics of the founding institution. Participants were asked to complete four
submaximal time trials (10, 20, 30, and 60 min) attempting to cover the longest distance
they could on a motorized treadmill (HP cosmos Pulsar 4P; HP cosmos Sports & Medical,
Gmbh, Nußdorf, Germany). During all tests slope was maintained at 0◦ and ventilation
was assured using two industrial fans located laterally at 2 m distance from both sides of
the treadmill. Fluid intake was ad libitum while temperature and humidity were controlled
with a wireless weather station (Ea2 LABS DE903) and kept between 18 and 20 ◦C and
50–60%, respectively.

Participants were encouraged to maintain their normal dietary pattern and to avoid
ergogenic aids and severe physical activity for 48 h before the tests, which were scheduled
at the same time of the day and performed within a 1-week separation interval. Trial
order was randomly set, and participants wore their usual running shoes during the entire
protocol to reproduce their usual performance.

2.3. Materials and Testing

Body height (cm) and mass (kg) were measured at the beginning of the first testing
session using a precision stadiometer and weighing scale (SECA 222 and 634, respectively,
SECA Corp., Hamburg, Germany). Additionally, personal best time in a 10-km race within
the last 6 months were recorded and all the athletes were instructed on the use of the RPE
scale [31].

Before each time trial, participants’ body mass was re-evaluated to adjust the power
data collected. A standardized 8-min protocol (4-min at self-selected velocity and 4-min
approaching their expected velocity for the trial) was completed for avoiding the accom-
modation effect of treadmill running [32].

During the tests, participants received verbal encouragement from the same researcher
to complete the longest distance they can, and slight velocity variations were allowed
along the entire protocol. HR was continuously monitored using a chest belt (Polar, FS2c,
Kempele, Finland), and RPE was assessed every 5 min until the end of the test. MPO (in
W) was calculated using the Stryd™ power meter (Stryd Power meter, Stryd Inc. Boulder,
CO, USA) attached to the shoelaces.

After each test, maximum HR and total distance covered was recorded and mean
velocity calculated. Data from Stryd™ power meter were obtained from their website
(https://www.stryd.com/powercenter/analysis) into .fit file. Then, data were analyzed
using a free-license software (Golden Cheetah, version 3.4) and exported as .csl file into
Excel® (2016, Microsoft, Inc., Redmond, WA, USA). Absolute MPO (W), normalized MPO
(W/kg), and standard deviation (SD) were calculated for each time trial.

2.4. StrydTM System

This device is a lightweight (9.1 g) carbon fibre-reinforced foot pod that includes a 6-
axis inertial motion sensor (3-axis gyroscope, 3-axis accelerometer). With a sampling rate of
1000 Hz, the 6-degrees-of-freedom device senses forward, vertical and lateral accelerations
and angular velocities of rolling, pitching and yawing, to infer ground reaction forces and
orientation. Integrating accelerations, the sensor gets velocities, and doble integrating it
gets positions. Assuming the lateral motion as negligible in running, inverse dynamics
might be applied to model vertical and horizontal forces from the positional and velocity
changes of the device in each step.

As it has been roughly explained by the StrydTM team in a recent white paper on
their web site (https://blog.stryd.com/tag/validation-white-papers/), accounting vertical
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decelerations and accelerations, the height and body mass of the runner, and the flight
time between steps, an algorithm estimates the vertical displacement of the runner´s center
of mass, and thus, its potential energy variation is available to calculate vertical power
(named as form power by the StrydTM manufacturers). While moving forward, a runner
losses momentum on foot impact and gains it during take-off. The change in kinetic energy
between events is given by the difference between the minimum and maximum instant
velocities and the body mass of the runner, allowing forward power calculation. Finally,
external PO is the time derivative of the summation of changes in potential and kinetic
energy.

As a result, this wearable power meter additionally provides real time measures of
vertical oscillation, elevation, distance and ground contact time, and interesting power-
related metrics (i.e., averaged elapsed power, maximal power, form power, leg spring
stiffness and running effectiveness). Of note, the presented model does not account for
the internal power the runner needs to relocate the limbs in relation to the center of mass.
However, the manufacturers presume the newest version of the product include a sensor
to detect wind force and direction that might allow a better estimation of these internal
forces.

Although the actual strategy StrydTM use to isolate the sensor to avoid measurement
noise, and the algorithmic computation to process raw data still undisclosed by the com-
pany as part of their knowhow, this system has demonstrated reliable to assess running
spatiotemporal parameters in indoor setting compared to 3D motion analysis [33] and the
OptoGait infrared system [13]. Furthermore, this sensor has shown moderate to excellent
intra-system reliability for all measures through trail running bouts [34].

Presumably, the algorithm employed by the company to calculate power output
might be based on the model proposed by Jenny and Jenny [7] and assumes certain
controversial simplifications related to the athletes´ individual energy recovery factor.
However, a recent study [10] evaluated the agreement between energy expenditure (i.e.,
oxygen consumption) and Stryd´s PO data under different conditions (i.e., athletic track,
flat, and inclined treadmill running) showing strong correlations between variables in all
conditions (r ≥ 0.911, SEE ≤ 7.3%).

2.5. Statistical Analysis

Descriptive statistics are represented as mean (±SD). Before analysis, normal dis-
tribution and homogeneity were confirmed through the Shapiro-Wilk and Levene’s test,
respectively. A repeated measures analysis of variance (ANOVA), with post-hoc Bonferroni
test, was conducted to compare the acute response (i.e., running speed, MPO and RPE)
to the different time trials conditions (i.e., 10, 20, 30 and 60 min). Additionally, the level
of agreement between MPO reported during shorter time trials (i.e., 10-min, 20-min and
30-min) and the reference trial (i.e., 60-min) was examined. Therefore, a Pearson correlation
analysis was performed and intra-class correlation coefficients (ICC) with 95% confidence
interval (CI) were calculated (i.e., 10-min, 20-min and 30-min vs. 60-min). The following
criteria were adopted to interpret the correlations magnitude between variables: <0.1
(trivial), 0.1–0.3 (small), 0.3–0.5 (moderate), 0.5–0.7 (large), 0.7–0.9 (very large) and 0.9–1.0
(almost perfect) [35]. Based on the characteristics of this experimental design and following
the guidelines reported by Koo and Li [36], the authors decided to conduct a “two-way
random-effects” model (ICC [2,k]), “mean of measurements” type, and “absolute” defini-
tion for the ICC measurement. The interpretation of the ICC was based on the benchmarks
reported by a previous study [37]: ICC < 0 (poor), 0–0.20 (slight), 0.21–0.40 (fair), 0.41–0.60
(moderate), 0.61–0.80 (substantial), and >0.81 (almost perfect). Finally, a linear regression
analysis was conducted between 60-min MPO and MPO during shorter trials. The level of
significance used was p < 0.05. Data analysis was performed using SPSS (version 23, SPSS
Inc., Chicago, IL, USA).
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3. Results

Table 2 shows the acute response of the examined variables to the different running
protocols. The repeated measures ANOVA reported significant differences between tests
in running speed (p < 0.001), MPO in absolute and relative values (p < 0.001) and RPE
(p = 0.011). After post-hoc testing, differences between each test were found in all variables,
apart from RPE, with the 30-min trial showing lower values than the rest of trials. The
individual average running speed and MPO for each time trial are shown in Figures 1 and
2, respectively.

Table 2. Acute response (mean, SD) to the different running time trials.

10-min Trial 20-min Trial 30-min Trial 60-min Trial
Main Effect of
Test p-Value

Running speed (km/h−1) 17.16 (0.65) b,c,d 16.33 (0.53) a,c,d 15.88 (0.50) a,b,d 15.12 (0.56) a,b,c <0.001
Mean power output (W) 341.73 (27.19) b,c,d 326.90 (26.97) a,c,d 320.63 (25.51) a,b,d 306.15 (25.33) a,b,c <0.001
Normalized mean power

output (W/kg−1) 4.78 (0.15) b,c,d 4.58 (0.15) a,c,d 4.47 (0.15) a,b,d 4.29 (0.13) a,b,c <0.001

RPE (6–20) 19.27 (0.83) c 18.95 (0.84) 18.64 (0.73) a,d 19.27 (0.88) c 0.011
a indicates significant differences regarding 10-min trial after post-hoc testing; b indicates significant differences regarding 20-min trial after
post-hoc testing; c indicates significant differences regarding 30-min trial after post-hoc testing; d indicates significant differences regarding
60-min trial after post-hoc testing.

 
Figure 1. Individual average running speed for each time trial (i.e., 10 min, 20 min, 30 min and
60 min). Each athlete’s speed mean values are represented in a different color line.

The level of agreement of power values obtained during running protocols with
different durations, as compared to 60-min time trial, was examined (Table 2). For mean
power values (W), all the durations (i.e., 10, 20, and 30 min) showed an almost perfect
correlation (r > 0.9), whereas the ICC was moderate with data obtained from the 10-min
trial (ICC = 0.647), and very large with 20-min and 30-min trials (ICCs = 0.839 and 0.899,
respectively). Regarding the normalized mean power values (W/kg), the correlation with
data reported during the 60-min trial was very large (r = 0.720 for 10-min trial, 0.868 for
20-min trial and 0.859 for 30-min trial) and the ICCs revealed slight (ICC = 0.188), moderate
(ICC = 0.432) and substantial (ICC = 0.625) coefficients for 10-min, 20-min and 30-min time
trials, respectively, compared to 60-min protocol. Additionally, the ICF% and CI for each
TT were calculated for both MPO and normalized MPO (Table 3).
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Figure 2. Individual analysis of the power output during running, in absolute (upper panel) and
relative values (lower panel) (i.e., 10-min, 20-min, 30-min and 60-min time trials). MPO: mean power
output; nMPO: normalized mean power output.

Table 3. Level of agreement between power output obtained during different running based-time trials regarding the
reference duration (60-min time trial).

Mean Power (W) Normalized Mean Power (W/kg)

10-min vs. 60-min Correlation (r-coefficient) 0.916 *** 0.720 ***
ICC (95% CI) 0.647 (−0.084–0.909) 0.188 (−0.046–0.566)

ICF% (CI) 89.6 (88.2–90.9) 89.8 (88.8–90.7)
20-min vs. 60-min Correlation (r-coefficient) 0.949 *** 0.868 ***

ICC (95% CI) 0.839 (−0.120–0.964) 0.432 (−0.061–0.808)
ICF% (CI) 93.6 (92.5–94.7) 93.7 (93.1–94.4)

30-min vs. 60-min Correlation (r-coefficient) 0.946 *** 0.859 ***
ICC (95% CI) 0.899 (−0.089–0.976) 0.625 (−0.152–0.895)

ICF% (CI) 95.5 (94.3–96.6) 95.9 (95.2−96.6)

*** p < 0.001; ICC: intra class correlation coefficient; ICF%: individual correction factor (%); CI: confidence interval.

The regression analysis revealed a significant association (p < 0.001) between 60-min
MPO and the MPO reported during shorter trials (i.e., 10-, 20- and 30-min) (Figure 3). The
10-min MPO obtained the lowest r2 (r2 = 0.839) and the greater SEE (10.4 W), whereas
almost identical values were obtained in 20- and 30-min (r2 = 0.901, SEE = 8.2 W; r2 = 0.895,
SEE = 8.4 W, respectively). Regarding normalized MPO (Figure 1), a significant association
(p < 0001) was found between 60-min values and those reported during shorter trials (i.e.,
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10-, 20- and 30-min), with stronger associations found with longer time trials (r2 = 0.519,
SEE = 0.09 W for 10-min; r2 = 0.753, SEE = 0.07 W for 20-min and; r2 = 0.720, SEE = 0.07 W
for 30-min).

Figure 3. Association between the mean power output achieved during a 60-min time trial (TT) and the MPO achieved
during 10-min, 20-min and 30-min TTs in trained endurance runners. (Absolute values in left column and relative values in
right column). The average value of each runner was used for each TT. Circles indicate individual data. The solid lines
represent the predictive linear regression model between 60-min TT and the shorter TTs. SEE: standard error of estimate;
MPO: mean power output; nMPO: normalized mean power output.

4. Discussion

This study sought to analyze the level of agreement between the 60-min TT and three
shorter TTs. The main finding of this study is that all simplified FTP trials analyzed (i.e.,
FTP10, FTP20 and FTP30) showed a significant association with the FTP60 for both MPO
and normalized MPO, exhibiting stronger correlations with longer TTs (i.e., FTP20 and
FTP30). Moreover, the ICF% determined for each TT were 89.6%, 93.6%, and 95.5% of the
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MPO from the FTP10, FTP20 and FTP30, respectively; and 89.8%, 93.7%, 95.6% from the
aforementioned TTs when MPO was normalized to the daily athletes’ body mass.

4.1. FTP60

To the best of the authors’ knowledge, this is the first study aimed to establish the
relationships between FTP60 and shorter TTs based on running power metrics. An average
MPO of 306.15 ± 25.33 W was obtained for the FTP60 at a mean speed of 15.12 ± 0.56 km/h
in trained endurance runners. This result seems to be in line with a previous study [21]
which addressed a MPO of 285.2 ± 25.6 W in a group of trained athletes during a 3-min run
at 15 km/h. Considering normalized MPO, our results for the FTP60 test showed a mean of
4.29 ± 0.13 W/kg. In a previous study [28], the average normalized MPO reported at their
LT pace was 4.4 ± 0.5 W/kg. As the MPO in this study was assessed at their calculated
LT pace, comparison between both studies should be cautiously considered as the MPO
at MLSS might be considerably lower. Additionally, a normalized MPO of 4.29 W/kg is
considered as excellent in cycling [16] and therefore our results are supported by previous
studies for this level of endurance athletes [16].

4.2. FTP10

The agreement between FTP60 and FTP10 ranged from very large to almost perfect
for relative and absolute power output assessment, respectively. In addition, the ICF%
obtained was ~90%, for both MPO and normalized MPO. The average MPO obtained was
341.73 ± 27.19 W, the normalized MPO was 4.78 ± 0.15 W/kg, and the mean velocity of
the test was 17.16 ± 0.56 km/h. These results slightly exceed those found in previous
studies [13,15], although the speeds are not entirely comparable. Despite the results for
FTP10 exhibiting the lowest association with FPT60 within the three TTs tested, previous
studies confirmed a good association between short TTs (i.e., ≤10 min) and LT deriva-
tives [22,38,39]. Despite the good association found between FTP10 and FTP60, our results
were slightly weaker compared with longer TTs (i.e., FTP20 and FTP30). Of note, these
studies [38,39] also found broader differences between calculated MLSS and FTP estimated
with shorter TTs (i.e., ≤10-min) than with longer TTs (i.e., ≥20-min). These discrepancies
might partially be explained as a result of differences in the athletes’ metabolic profile, as
the MPO of shorter TTs is more likely to be achieved with a higher participation of the
anaerobic metabolism [40]. Despite these controversial precedents, we found a large associ-
ation between FTP10 and FTP60, and therefore it could be useful for running practitioners
aiming to execute a rapid test that fairly identifies training zones and adaptations.

4.3. FTP20

Regarding FTP20 association with FTP60, our results showed a very large to almost per-
fect correlation for both absolute and normalized MPO. The ICF% found was 93.6%, which
contradicted the 95% established by Allen and Coggan [16] and supported others [23–25].
Contrary, recent studies [26–28] pointed that the well-accepted rule of subtracting 5% from
the FTP20 MPO is not a “one-size-fits-all” accurate method for FTP60 estimation as it may
differ depending on the athlete’s level of performance. Our findings support this statement
as an overestimating trend would affect our non-elite athletes when 95% of the FTP20 is
applied. Furthermore, Valenzuela et al. [24] tested two different cyclist groups (i.e., trained
and recreational) and claimed that lower fitness status could result in FTP60 overestimation
as only the trained group matched the 95% adjustment for FTP20. Moreover, MacInnis
described an ICF% of 90% for FTP20 in 8 well-trained cyclists [39], whereas Lillo-Bevia
tested 11 trained cyclist and triathletes finding an ICF% of 91% [27]. It should be considered
that the aforementioned studies did not match the 95% adjustment [26–28] followed by
a modified warm-up protocol (i.e., ≤15 min at self-selected pace), whereas those that
reported a 95% correction between test [23–25] strictly followed the warm-up protocol orig-
inally proposed by Allen and Coggan [16] (50 min, including three 1-min accelerations and
a 5-min all-out effort). Therefore, it was hypothesized that the type of warm-up selected
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may explain the differences between studies [25]. As a 50-min warm-up protocol would
jeopardize running performance, and the final purpose of a simplified TT is to reduce the
duration and fatigue induced by the testing protocol itself, a modified warm-up protocol
was adopted [28] seeking for a more practical approach.

The average MPO obtained in our FTP20 (326.9 ± 26.97 W) and the normalized MPO
(4.58 ± 0.15 W/kg) are similar to those found in previous studies [13,15]. Of note, the
recording time in these studies lasted two and three min, respectively. Thus, the minor
mean differences found might be attributed to the fatigue induced along the 20-min test.

4.4. FTP30

A strong association was found between FTP30 and FTP60 with substantial to very
large confidence interval for relative and absolute values. Our results also identify an
ICF% of ~96%, an MPO of 320.63 ± 25.51 W and a normalized MPO of 4.47 ± 0.15 W/kg.
Previous studies [13,15] evaluated absolute MPO and normalized MPO at similar velocities
(~16 km/h) showing similar results for same-level trained runners. Unfortunately, to our
knowledge there are no previous studies assessing the relationship between both tests. It is
worth mentioning that many studies conducted several constant-velocity 30-min TTs as a
valid method to determine MLSS [27], nevertheless, it is hard to establish a comparison
because in these TTs the participants were not encouraged to cover the longest distance
they could but to keep a previously fixed PO. Despite this, our results showed to be
consistent and allow an accurate prediction of FTP60. However, as the results found little
differences between FTP20 and FTP30 for their correlation with FTP60 (ICCs = 0.839 and
0.899, respectively), it would be advisable to opt for the shortest one to reduce both time
needed and stress caused in the athletes.

Although the use of IMU technology for estimating running power is quite recent, its
rapid development might be a promising step forward in the field of exercise physiology.
Added to heart rate monitors and GPS technology, real-time power output data could
help for a better understanding of the cardio-respiratory and skeletal muscle responses
to different intensity runs. In order to effectively monitor the physical impact of running
through portable running power meters, an accurate determination of the main physiologi-
cal boundaries is mandatory. Whereas previous works validated the use of power meters
in cycling for FTP assessment [22,41], analogous evidence for running devices is lacking.
Despite up to date no studies have investigated the concurrent validity of running power
meters, Olaya et al. [42] found and almost perfect association between PO (measured with
StrydTM system) and pace data (measured via GPS technology) in their comparison of
five methods to determine the FTP during level running. Additionally, in a recent review
on sensors for running power [11] it has been stated that the Stryd foot pod has the high-
est repeatability and agreement with metabolic power among all commercially available
portable running power devices. In this context, a broader framework related with the
validity and applicability of StrydTM system is becoming of relevance.

Despite the findings reported here, there are some limitations to consider. First, blood
lactate concentration during the tests was not directly assessed. Additionally, the MPO
corresponding to the MLSS (i.e., the FTP) was not validated through other calculation meth-
ods, assuming that the time-to-exhaustion at their MLSS intensity should be approximately
60 min for a homogenous sample of trained athletes [19]. However, constant-duration time
trials were conducted as they have proven to be more reliable than time-to-exhaustion
protocols [43]. Additionally, we assessed RPE and HR during all tests in order to control
performance intensity. Despite lower mean values for RPE during the 30-min trial, the
physiological and perceptual responses to simplified TTs confirmed an intensity above
MLSS, whereas most of the FTP60 was performed at an intensity equal to or slightly above
MLSS. Maximal RPE of every test was ≥18, and HR peak differ ≤5% between tests. Regard-
ing data generalization, only male trained runners participated in the study, preventing the
possible sex differences analysis. The sample size was selected by convenience. Neverthe-
less, a post hoc analysis of the achieved power for this sample was conducted (G*Power

163



Sensors 2021, 21, 582

software vs. 3.1) revealing a moderate to high power (~0.6). Ultimately, although all
participants were familiar with its use, the entire experimental protocol was conducted on
a motorised treadmill. Thus, the accuracy of the ICF% could be reduced when applied in
field-based conditions. Notwithstanding these limitations, the current study highlights
that the 10-, 20-, and 30-min TTs are valid for the estimation of FTP60 in trained endurance
runners fitting FTP20 and FTP30 better for this purpose than FTP10.

5. Conclusions

The results obtained here showed that the three simplified TTs (i.e., FTP10, FTP20 and
FTP30) can provide good estimations of MPO and normalized MPO achieved during a
60-min submaximal TT (i.e., FTP60). Moreover, as FTP10 showed a lower correlation, and
FTP20 and FTP30 exhibited similar results, the FTP20 would be the preferred simplified TT
to assess FTP60 in endurance runners, as it is less prone to fatigue. Additionally, an ICF%
of ~94% for the FTP20 was found to be more compliant with FTP60 in recreationally trained
runners than the well-accepted 95%.

FTP is an essential parameter in prominent commercially available software such as
TrainingPeaks for both determining training intensity (i.e., intensity factor) and monitoring
training load (i.e., training stress score). Moreover, the ICF% revealed for each test (~90%
for FTP10, ~94% for FTP20 and ~96% for FTP30) may lead practitioners to an accurate
evaluation of FTP through less fatiguing, more easily reproducible tests. However, the
predictive value of the simplified TTs reported here might differ between laboratory and
on-field conditions.

Future research should focus on the on-field repeatability of the algorithms reported
hereabouts in order to incorporate them to the endurance runners´ performance assessment.
Once validated it might lead coaches and athletes’ decisions for training and racing, as it
happens before with cycling. Additionally, shorter TT may be also included for a better
understanding of the individual aerobic–anaerobic profile of the athletes. Finally, the
response of female athletes as well as different levels of performance runners should be
evaluated, for a better adjustment of the aforementioned algorithms.
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Abstract: The foot strike pattern performed during running is an important variable for runners,
performance practitioners, and industry specialists. Versatile, wearable sensors may provide foot
strike information while encouraging the collection of diverse information during ecological running.
The purpose of the current study was to predict foot strike angle and classify foot strike pattern
from LoadsolTM wearable pressure insoles using three machine learning techniques (multiple linear
regression—MR, conditional inference tree—TREE, and random forest—FRST). Model performance
was assessed using three-dimensional kinematics as a ground-truth measure. The prediction-model
accuracy was similar for the regression, inference tree, and random forest models (RMSE: MR = 5.16◦,
TREE = 4.85◦, FRST = 3.65◦; MAPE: MR = 0.32◦, TREE = 0.45◦, FRST = 0.33◦), though the regression
and random forest models boasted lower maximum precision (13.75◦ and 14.3◦, respectively) than
the inference tree (19.02◦). The classification performance was above 90% for all models (MR = 90.4%,
TREE = 93.9%, and FRST = 94.1%). There was an increased tendency to misclassify mid foot strike
patterns in all models, which may be improved with the inclusion of more mid foot steps during
model training. Ultimately, wearable pressure insoles in combination with simple machine learning
techniques can be used to predict and classify a runner’s foot strike with sufficient accuracy.

Keywords: decision tree; human running; random forest; regression; wearable devices

1. Introduction

Recreational running is a globally accessible activity due to the limited necessity of sport-essential
equipment and facilities. Due to its full-body nature, the human anatomical system has many ways to
affect running performance. Some factors of paramount importance are joint angles (which thus affect
stride length), flight time, and the minimization of lateral force-dissipation [1,2]. The selection of the
running shoe also appears to affect performance [3,4], the subjective experience of comfort [5,6], and the
injury risk of runners [3,7]. Equipment-based recommendations should include the consideration of a
runner’s foot strike pattern (FSP) [8]. A midsole design that facilitates the repetitive and comfortable
execution of the preferred FSP (i.e., rear foot (RF), mid foot (MF), or fore foot (FF)) can aid the
consumer-based shoe selection and recommendation process [3]. Such a recommendation thus requires
a reliable method for the discrete classification of a runner’s FSP as a prerequisite.

Sensors 2020, 20, 6737; doi:10.3390/s20236737 www.mdpi.com/journal/sensors
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Some performance-related outcome variables are affected by the FSP used, including the vertical
compliance of the anatomical system [9], ankle and knee stiffness [10], vertical impact force [11],
and instantaneous loading rates [11]. Importantly, these variables can be measured on a continuous
scale and are likely responsive to more sensitive foot strike angle (FSA) measurements. More specifically,
the FSA is the angular degree of the foot at the instant of ground contact (often defined by a force or
loading rate threshold) [12,13]. Therefore, the ability to detect the degree of foot strike on a continuous
level enables greater correlational insights that may be overlooked by a discrete classification-based
system [14]. Thus, in addition to the necessity of FSP classification, the continuous-scale identification
of a runner’s FSA should be accessible for researchers and performance-centered practitioners.

With the growing importance for ecologically valid shoe prescription and scientific investigation
of runners, the ability to detect and classify the FSA of a runner using wearable sensors is
essential. Inertial measurement units (IMUs) are a viable and validated option for ecological FSA
collection [8,15,16], although the calculated angular displacements are prone to poor reliability due
to drifts over time which thus affect the integration of the inertial signals in IMU systems [17].
The combination of inertial, gyroscopic, and magnetometer information that an IMU provides helps in
the reduction and correction of its measured drift, though the rigidity and alignment of the sensor
attachment also directly influence the reliability of the angular measures [17]. Alternative to IMU
systems, the holistic pairing of kinetic information with the kinematic measurement of FSA from a
single measurement system may enable greater insights about performance and injury indicators in
running. Thus, a simple, “low-friction” wearable device that could validly provide this holistic view
would be groundbreaking for the running industry.

In an effort to fill this innovative gap, the accelerometer-based StrydTM foot pod attempts to
provide this holistic view of the kinematic and kinetic information by estimating running power [18–20].
However, StrydTM appears to have limitations when detecting temporal variables [20]. From a
methodological context, running power calculations that require both kinetic and kinematic inputs
appear to have better prediction performance of a linear power-velocity relationship than those using
kinematic data only [21]. Unfortunately, single IMU-based estimations of ground reaction force (GRF)
come with substantial limitations; (i) the placement of an IMU can affect GRF estimate accuracy,
(ii) magnetic disturbances can affect the orientation of the IMU, and (iii) the existence of kinematic
estimate errors would be inherent in subsequent GRF estimates [22,23]. Thus, a wearable kinetic
system may be better equipped to provide this holistic view.

The wearable application of pressure insoles already extends to temporal gait events [24,25],
therefore they may be a plausible alternative to IMUs to facilitate ecological kinematic estimation
while also enabling a valid measurement of vertical force (Fong et al., 2008). Importantly, LoadsolTM

wearable insoles can measure vertical force in the rear and fore foot separately; thus the time and force
relationships of the fore and aft sensors may provide enough information for FSA prediction and FSP
classification [26,27]. Further, the separation of the insole into multiple components is encouraged by
the assumption that the foot is not a singularly rigid segment as was traditionally considered [28,29].
The LoadsolTM has been previously validated under running stimulus [13,30,31], therefore it is an
appropriate system to establish the potential for the kinematic estimation of FSA and FSP.

Machine learning techniques may enable the estimation of FSA and FSP from pressure sensors;
these are practical tools that can be trained and implemented into large-scale problems and data sets,
with the inherent goal being to capitalize on the distinctive qualities of the data set [32]. Due to a
linear relationship between strike index (the percent of foot length at which the center of pressure
exists) and FSA [14,16], the linear approach of a multiple regression may be appropriate for the
prediction of FSA [27]. In contrast to linear regression models that are based on numerous assumptions
(e.g., normality of residuals, homoscedasticity, etc.) [33], nonparametric models such as conditional
inference trees or random forests, need only the assumption that similar inputs lead to similar
outputs [32]. The prediction and classification accuracy may thus be greater with nonparametric
frameworks. Conditional inference trees are a non-parametric class of regression trees that allow
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for unbiased variable selection and do not require pruning based on resampling [34]. They are
based on conditional inference procedures for testing independence between response and each input
variable [34]. Alternatively, robust random forest frameworks encourage accuracy gains with the
development of multiple variable-randomized trees [35,36].

Ultimately, to confirm best-practice recommendations, the prediction and classification of foot
strike using kinetic sensors should be approached from distinctly different statistical techniques.
Thus, the purposes of the current study were to compare the accuracy and precision of i) continuous
FSA prediction and ii) FSP classification as calculated from three statistical methodologies (multiple
regression, conditional inference tree, and random forest) using independent variables derived from
the LoadsolTM pressure insoles.

2. Materials and Methods

2.1. Participants and Experimental Approach

Thirty injury-free recreational male runners (Mean ± SD; 1.79 ± 0.07 m; 80.1 ± 9.6 kg; 34.0 ± 6.9 yr)
provided written informed consent approved by the institutional review board to participate in the
study. Participants appeared for one testing occasion where they were asked to perform over-ground
running using six types of FSPs at a comfortable speed (average velocity = 2.69 ± 0.40 m·s−1). The first
condition investigated was their natural running pattern (NA; no constraints), followed by extreme-FF,
FF, MF, RF, and extreme-RF in a randomized counterbalanced order. The extreme-FF and extreme-RF
conditions were instructed by asking the participants to over-exaggerate their performance of the
FF and RF conditions, respectively. Participants were not given any condition-based feedback.
All trials were performed with participants running back-and-forth (i.e., shuttle-wise) in a laboratory
environment; participants ran a straight distance (5 m) over a force platform located in the center
of the straight phase. Participants then quickly changed direction before running the same straight
phase. For each participant, 20 non-consecutive left foot-fall instants were recorded per foot strike
condition (n = 120 steps). Participants were allowed 5–10 minutes for a self-selected running warm
up and familiarization laps were performed before each condition until the participants expressed
comfortability with the desired foot strike condition. Importantly, the measured foot falls were labelled
as their true pattern or angle, regardless of the condition in which it was performed (see subsequent
sections). However, the consistency of participant’s performance of the FSA was assessed in a
supplementary analysis which boasted generally good consistency [37].

2.2. Measurements

Insole pressure, force plate kinetics, and kinematics were recorded for 3,489 foot falls (originally,
120 steps per participant × 30 participants = 3,600 foot falls; however only 3,489 are reported due to
collection error or data loss). The pressure measurements were achieved with a two-sensor (fore-aft)
wireless insole (LoadsolTM; Novel GmbH; Munich, Germany) inserted into standardized shoes worn by
the participants (Adidas Duramo 6; weight = 280 g., heel drop = 11 mm). The LoadsolTM system was
applied over the shoe’s insole and recorded at its maximum sampling rate (100 Hz). Kinetic data from
a force platform (AMTI; Watertown, MA, USA; BP6001200) and three-dimensional (3D) motion capture
was recorded with a Qualysis system (13-camera setup; 2019.3, Göteborg, Sweden) and sampled at
100 Hz to match the maximum sampling rate of the LoadsolTM system. A six-marker anatomical
marker set was applied to the left foot segment (over the shoe when necessary); retroreflective markers
were secured on the medial and lateral malleoli, the head of the 2nd metatarsal, the heel (placed at the
same height as the 2nd metatarsal), the medial side of the 1st metatarsal, and the lateral side of the
5th metatarsal (Figure 1A,B) [38]. The kinematic and LoadsolTM data were synchronized by aligning
the peak force of a stomp measured by the AMTI force platform (data logging with Qualysis) and
LoadsolTM at the beginning of each trial.
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A 

B 

Figure 1. A medial view (A) and lateral view (B) of the left foot marker placements can be seen on the
test shoe.

2.3. Data Processing

Initial contact (IC) and toe off (TO) were identified from the LoadsolTM measurements as the
frame in which the loading rate of the pressure insoles was greater than 1500 or −1500 Newtons per
second, respectively [13]. Ten force and time related variables were extracted from the measurements.
Two parameters were calculated from the first third (IC to 33%) and eight parameters from the entire
(IC to TO; 100%) stance phase (Table 1). Finally, the FSA was identified for each IC captured. To achieve
this, raw kinematic data were filtered using a low-pass 15 Hz filter. Visual 3D×64 Professional (v6.03.06;
Germantown, MD, USA) was used to model the foot segment so that the shoe-elicited angulation was
negated and the subsequent foot segment angle (in relation to the laboratory coordinate system) was
reported [39].

Table 1. Ten variables calculated from the LoadsolTM insole measurements are defined with respect to
the sensor used and the percentage of the stance phase used in calculation.

Parent
Variable

Variable Definition
Insole
Sensor

Stance
Phase [%]

Abbreviation

Impulse
[N·s]

Impulse Ratio
[%]

Impulse ratio between the insole sensor and total
foot during the entire or first third of the stance phase

Fore 0–100% IR_Fore
Aft 0–100% IR_Aft

Fore 0-33% IR_Fore0-33%
Aft 0-33% IR_Aft0-33%

Peak Force
[N]

Peak Force Ratio
[%]

Ratio of peak force measured from the insole sensor
and total foot during the entire stance phase

Fore 0–100% PF_Fore
Aft 0–100% PF_Aft

Peak RFD
[N·s−1]

Peak RFD Ratio
[%]

Ratio of peak RFD between the insole sensor and
total foot

Fore 0–100% RFD_Fore
Aft 0–100% RFD_Aft

Ln(Peak RFD)
[unit]

Natural logarithm of the occurrence of the peak RFD
(as a stance phase %)

Fore % of Stance Ln(%RFD_Fore)
Aft % of Stance Ln(%RFD_Aft)

RFD = rate of force development; FF = fore foot; RF = rear foot; N = Newton; s = second.

2.4. Modeling Approaches

As a pre-requisite for model development, all variables were assessed for normality (i.e., skewness
or kurtosis statistic ≤ 2.58). If the assumption of a normal distribution was not met for any of the
variables, a natural logarithm transformation was performed to ensure their use was appropriate for
parametric statistics (noted in Table 1). The data was then split record-wise into two sets; one was
a training data set (70%; n = 2442 steps) and the other a validation (“test” or “hold out”) set (30%;
n = 1047 steps). This was done to avoid model under-fitting and high classification errors [40–42].

Three modelling techniques (multiple linear regression, conditional inference tree and random
forest) were then trained using the training data set to predict FSA and to classify FSP from the pressure
insole data. For the classification of FSP, all models employed the degree-based ranges defined by
Altman and Davis [14] to categorize steps into either FF (FSA < −1.6◦), MF (−1.6◦ ≤ FSA ≤ 8.0◦), or RF

170



Sensors 2020, 20, 6737

(FSA > 8.0◦). Steps were classified regardless of the trial condition in which they were performed
(i.e., the extreme FF and FF conditions were primarily classified as FF strikes, and similarly, extreme RF
and RF conditions as RF strikes).

2.5. Model Development

First, a parametric stepwise multiple linear regression (MR) to predict the FSA at IC was modelled
using SPSS Statistics (SPSS Inc.; Version 26.0, Chicago, IL, USA). Seven significant (α = 0.05) regression
equations were developed (F-to-enter ≤ 0.050, F-to-remove ≥ 0.0100), therefore the Akaike Information
Criterion (AIC) and Schwartz-Bayesian Information Criterion (BIC) were calculated for each regression
to guide model selection for the subsequent comparisons [43]. The resulting model (Equation (1))
retained the lowest AIC and BIC, and highest model fit (R2 = 0.914, R2

ADJUSTED = 0.914; p < 0.001;
standard error of the estimate = 5.10◦; df = 2434). The same MR model was used for classification by
categorizing the predicted FSA (calculated from Equation (1)) of the validation set according to the
previously mentioned FSP ranges [14].

FSA = − 89.2 + 94.4 (IV1) + 62.3 (IV2) + 17.9 (IV3)+8.8 (IV4) − 8.4 (IV5) + 3.4 (IV6) + 1.8 (IV7) (1)

where IV1 = IR_Aft, IV2 =PF_Fore, IV3 =RFD_Aft, IV4 = IR_Aft0-33%, IV5 =PF_Aft, IV6 = Ln(%RFD_Fore),
IV7 = Ln(%RFD_Aft).

Two conditional inference trees were modeled with the statistical software R (“ctree” function
of “partykit” package) [34,44,45]. The two models differed in their outcomes: one model predicted
continuous FSA (TREEPRED), while the other classified FSP (TREECLASS; defined classes: RF, MF,
FF). For both models, the significance level was set to α = 0.01 (minimum splitting criterion = 0.99).
A maximum depth of eight was achieved for TREEPRED, and TREECLASS achieved a depth of six.

Finally, two random forest models as developed by Breiman [35] were trained using the statistical
software R (“randomForest” package) [44,46]. The first model was trained for the purpose of continuous
FSA prediction (FRSTPRED) and the second for FSP classification (FRSTCLASS). A large number of
trees (n = 500) was selected for the development of the FRSTPRED and FRSTCLASS models to decrease
out-of-bag errors [47]. Variable selection was randomly initialized in order to define candidates for
each split. The final models were chosen because they had the lowest root mean squared error (RMSE;
FRSTPRED) and the highest mean accuracy (FRSTCLASS) in a 5-fold cross-validation comparison of the
different parameter settings (“caret” package) [44,48]. The important variables for the FRSTPRED and
FRSTCLASS can be seen in Figure 2, where high “Mean Decrease Gini” is associated with decreased
node impurity, and therefore higher variable importance [49].
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Figure 2. The variable importance for the random forest model of foot strike pattern classification
is presented with gray bars (scaled to the secondary x-axis), while the foot strike angle prediction
is presented in black (primary x-axis). The variables of higher importance can be seen with larger
“Mean Decrease Gini.”.
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2.6. Model Accuracy and Precision

The models for FSA (MR, TREEPRED, FRSTPRED) and FSP (MR, TREECLASS, and FRSTCLASS)
were tested with the remaining validation set (n = 1047 steps). Accuracy and precision metrics were
calculated for each of the models using the comparison of the true FSA/FSP (measured with 3D
kinematics) and the estimated FSA/FSP (i.e., estimated from LoadsolTM metrics).

For model comparison of the three approaches that predicted FSA (MR, TREEPRED, and FRSTPRED),
four performance metrics were calculated per recommendations of Galdi and Tagliaferri [50].
These included the mean squared error (MSE), RMSE, mean absolute error (MAE) and mean absolute
percentage error (MAPE) of the true versus predicted FSA outcomes. The precision of the prediction
models was quantified by calculating the limits of agreement (LoA) and bias of the predicted data
set according to Bland and Altman [51]. Specifically, the 95% LoA was calculated using the mean
difference (true FSA–predicted FSA) ± 1.96 standard deviations of the differences, and the maximum
precision was reported as the difference between the subsequent limits.

Confusion matrices were created for the FSP classification models (MR, TREECLASS, and FRSTCLASS)
utilizing the true classes (measured by kinematic FSA) and the estimated classes (i.e., the class estimated
from each model). From these confusion matrices, three metrics were computed as recommended by
Galdi and Tagliaferri [50] for model comparison. These included the model accuracy (Equation (2)),
classifier recall (Equation (3)), and classifier precision (Equation (4)).

model accuracy =
total correct

total sample (n)
× 100% (2)

classi f ier recall =
true positives o f a true class
total sample o f a true class

× 100% (3)

classi f ier precision =
true positives o f a estimated class
total sample o f a estimated class

× 100% (4)

where total correct = number of cases correctly classified, true class = true positives + false negatives of
a classifier, estimated class = true positives + false positives of a classifier

3. Results

Descriptive statistics (mean ± standard deviation) are presented in Table 2 for each of the
independent variables of each step according to their FSP class (FF, MF, RF).

Table 2. Descriptive statistics (mean ± standard deviation) are presented for each variable used in
model development, grouped by FSP (classified by measured kinematic FSA).

Variable Units FF MF RF

FSA ◦ −10.2 ± 6.6 3.0 ± 2.8 24.9 ± 8.0
IR_Fore % 96.2 ± 5.7 89.3 ± 7.0 65.4 ± 11.5
IR_Aft % 3.8 ± 5.7 10.6 ± 7.0 34.6 ± 11.5

IR_Fore0-33% % 92.5 ± 9.8 77.2 ± 12.9 31.7 ± 16.3
IR_Aft0-33% % 7.5 ± 9.9 22.8 ± 12.9 68.2 ± 16.3

PF_Fore % 95.8 ± 8.2 93.3 ± 6.1 77.0 ± 11.5
PF_Aft % 8.1 ± 12.3 22.2 ± 13.4 59.9 ± 15.3

RFD_Fore % 88.3 ± 12.8 70.0 ± 20.8 49.2 ± 16.2
RFD_Aft % 14.5 ± 16.5 40.5 ± 22.0 91.2 ± 11.0

Ln(%RFD_Fore) unit 2.69 ± 0.55 2.27 ± 0.33 2.43 ± 0.23
Ln(%RFD_Aft) unit 2.72 ± 0.41 2.89 ± 0.35 3.25 ± 0.26

3.1. FSA Prediction

The Bland–Altman Bias and Precision of the FSA prediction models is shown in Figure 3. Further FSA
prediction model accuracy can also be seen in Table 3. In general, the FRSTPRED performed with
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greater prediction accuracy than the MR or TREEPRED. The MR and FRSTPRED had minimal biases
(MR = −0.01, FRSTPRED = −0.11; Figure 3) and the maximum precision of the two methods was less than
15◦ (MR = 13.75◦, FRSTPRED = 14.30◦). A larger maximum precision was found for the TREEPRED (19.02◦).

Figure 3. The Bland–Altman bias (solid line) and 95% limits of agreement (dashed lines) are presented
for each of the foot strike angle (FSA) prediction methods. Green = rear foot strikes; Red =mid foot
strikes; Blue = fore foot strikes; Bias = average of the residuals; Limits of agreement = ± 1.96 standard
deviations around the bias.

Table 3. Foot strike angle prediction model performance accuracy is displayed.

Multiple Regression
(MR)

Conditional Inference Tree
(TREEPRED)

Random Forest
(FRSTPRED)

MSE 26.61 23.57 13.31
RMSE 5.16 4.85 3.65
MAE 3.85 3.51 2.69

MAPE 0.32 0.45 0.33

MSE =mean squared error; RMSE = root mean squared error; MAE =mean absolute error; MAPE =mean absolute
percent error.

3.2. FSP Classification

The confusion matrices developed for each FSP classification model (MR, TREECLASS, FRSTCLASS)
are displayed in Table 4A. The associated accuracy (Equation (2)), recall (Equation (3)), and precision
(Equation (4)) results are presented in Table 4B. All models yielded classification accuracies larger
than 90% (Table 4B). The MF condition had markedly lower recall and precision than its RF and FF
counterparts for all models calculated (Table 4B).
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Table 4. Confusion matrices are displayed to indicate where correct (white) and incorrect (grey)
classifications occurred for three types of classification methods (multiple linear regression, conditional
inference tree, and random forest). Matrices are reported for the validation data set that was not
included in model training. All models classified foot strikes into three classes: RF = rear foot,
MF =mid foot, and FF = fore foot.

A
Multiple Regression

(MR)
Conditional Inference Tree

(TREECLASS)
Random Forest

(FRSTCLASS)

True
RF 621 13 0 RF 613 21 0 RF 611 23 0
MF 26 46 48 MF 14 88 18 MF 16 92 12
FF 5 8 280 FF 5 6 282 FF 3 8 282

RF MF FF RF MF FF RF MF FF
Estimated Estimated Estimated

B MR TREECLASS FRSTCLASS

Accuracy (%) ALL 90.4 93.9 94.1

Recall (%)
RF 97.9 96.7 96.4
MF 38.0 73.3 76.7
FF 95.6 96.3 96.3

RF 95.2 97.0 97.0
Precision (%) MF 68.7 76.5 74.8

FF 85.4 94.0 95.9

4. Discussion

The purposes of the current study were to compare three statistical techniques used to (i) predict
FSA and (ii) classify FSP using independent variables derived from the LoadsolTM pressure insoles.
Generally, clear differences in the three foot strike styles were noticeable by similarly stratified
independent variables (Table 2), with the exception of the variable PF_Fore. For this variable,
the differentiation between FF and MF strike types is not clear. This lack of dichotomy may be a result
of speed or flight time inconsistencies during MF strike pattern performance, which is supported by the
fact that the MF condition was the most difficult condition for participants to perform [37]. However,
the apparent stratification of the independent variables for each strike condition thus confirms the
applicability of the fore/aft LoadsolTM sensors to estimate FSA and FSP [26,27]. Supporting this, the MR
and FRSTPRED models developed for the prediction of FSA were both evidently good fits (MR = 91.4%
and FRSTPRED = 95.42% of variance explained) and the classification accuracy of FSP for all statistical
techniques was greater than 90% (Table 4B).

4.1. FSA Prediction

The three models (MR, TREEPRED and FRSTPRED) assessed for FSA prediction had comparable
performance when tested using the validation set (Figure 3 and Table 3). The most important
independent variable in the FRST model was RFD_Aft as evidenced by the highest mean decrease in
node impurity (Gini; Figure 2). Importantly, RFD_Aft is also a predictor used in the TREEPRED and MR
models. However, the specific variable importance of RFD_Aft in the MR (via beta coefficients) cannot
be interpreted because the model violated the assumption of collinearity [52]. Collinearity considered,
the overall prediction of the model should be unaffected [52].

The linear approach of the MR as suggested by Fritz and colleagues [27] appears to be appropriate
to generally explain the variance of the FSA (R2 = 0.914). In a similar application, a univariate linear
regression to determine strike index via the onset time difference of a fore and aft pressure sensor
resulted in a lower coefficient of determination (R2 = 0.836) [26]. Although participants were asked to
perform RF, MF, and FF foot strikes, Cheung and colleagues [26] did not carry out further analyses to
confirm the performance of the FSPs or if there was a stratified model fit. Importantly, a strong linear
relationship between the strike index and 3D FSA kinematics is supported in literature, however the
relationship appears to be driven primarily by FF and RF strike types [14,16]. Upon visual inspection,
those foot strikes that fell closer to the MF range of FSA had the largest standard errors [16]. A similar
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visual phenomenon is seen in the current study’s data, however the more extreme FF and RF also
appear to be indicative of greater prediction errors (Figures 3 and 4). The methodological inclusion of
the extreme FF and RF conditions in the current study make it possible to see the potential that there
are two linear relationships (Figure 4). Thus, greater accuracy in FSA prediction using MR may be
gained from developing a model for the RF and FF FSPs independently.
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Figure 4. The relationship between the true foot strike angle (FSA) and that predicted by the multiple
regression is shown for the distribution of the foot falls included in the study. The strike patterns can
be discerned from the following scale: fore foot: FSA < −1.6◦; mid foot: −1.6◦ ≤ FSA ≤ 8.0◦; rear foot:
FSA > 8.0◦.

Importantly, the midfoot and more extreme RF strikes are not as well predicted by the MR than by
the FRSTPRED (Figure 3). However, both models exhibit higher numbers of residuals outside of the
Bland–Altman limits of agreement at the extremes of FF foot strike pattern. Additional proportional
bias may be evidenced in the extreme FF range of the MR. However, because these extreme foot strike
patterns were considered “exaggerated” to the participants (as was their instruction), the bias present
there may not influence the practical application of such models. Further, the stratification seen in
the TREEPRED Bland–Altman makes it apparent that it’s use for continuous FSA prediction is limited
to the number of outcomes (i.e., maximum tree depth) included in the model (Figure 3). Ultimately,
the TREEPRED appears to be better suited for discrete classification problems, whereas the FRSTPRED is
arguably the most appropriate model for prediction problems that include a large range of FSAs or
number of MF strikes.

4.2. FSP Classification

Although the overall classification accuracy of the MR was greater than 90%, the MF strike was
only properly classified with 38% recall (Table 4). Conversely, TREECLASS and FRSTCLASS classified
the MF strike with approximately 73% and 75% recall (Table 4). This is similar to the findings of
Delgado-Gonzalo and colleagues [53], who found that the MF condition was classified with the least
recall and precision using accelerometer-based inputs. Importantly, the MF strike pattern in the current
study may have been classified with the least accuracy because it had the least number of samples
in the training set (MF = 197, RF = 1495, FF = 650). Supporting this theory, the RF pattern classified
with the highest recall in the MR and TREECLASS methods (98–99%) and was the greatest sample
contributor in the training set. Further, the most important variable for the FRSTCLASS was RFD_Aft
(Figure 2), which is consistent with the first splitting node variable of TREECLASS. The models may be
best suited to distinguish between RF and FF strikes primarily due to the lack of independent variable
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or sensor differentiation regarding the middle region of the foot. Thus, a three-part sensor insole that
highlights the central region of the foot (thus allowing a variable such as the mid-region rate of force
development) may be better suited for MF classifications. However, Lieberman and colleagues [9]
found that habitually shod runners primarily perform RF strike patterns, therefore the current models
should serve recreational runners well.

For populations of shod runners who have consciously altered or retrained their running foot
strike pattern (i.e., those investigated by Cheung and Davis [11]), the higher accuracy of the FRSTCLASS

may provide further confidence in the MF classifications. However, the future use of simple methods
like the MR or TREECLASS methods should not be discounted because equal class sizes in the training
set may improve the recall of MF classifications and overall model accuracy.

4.3. Application

The results of the current study support that a two sensor (fore and aft) pressure insoles can be
used to predict and classify foot strike with sufficient accuracy. Compared to previous works with the
aim of estimating FSA using IMU sensors [15], the current results boast lower bias when compared to
a reference 3D motion capture camera system (FRSTPRED of current study = −0.11◦ vs. IMU = 3.9◦)
and only slightly worse precision (FRSTPRED of current study = 14.30◦ vs. IMU = 10.6◦). This raises
the potential of an insole sensor to provide the holistic pairing of kinetic and kinematic information
regarding performance and injury indicators during running. An ankle joint torque MR prediction
model has already been developed with adequate accuracy (R2

ADJUSTED = 0.831, RMSE = 6.91 Nm)
using the independent input of 99-sensor pressure insoles [54]. Further, vertical GRF from pressure
insoles have been used to predict the 3D GRF components using MR and Artificial Neural Networks,
supporting that power and injury related variables can be considered a possibility via simple wearable
sensors [55]. From an application standpoint, although many independent variables are used in the
models of the current study, they all are derived from a single system. The use of a single system thus
reduces the necessity of the synchronization and additional processing power of a supplementary
system. A larger range of running conditions could be studied in the future, which may allow for the
reduction of independent variables and further encourage the potential to transition toward “real time”
foot strike pattern and angle detection.

The current study thus lays the framework for FSA and FSP detection in insoles with larger
numbers of sensors (like those used by Billing et al. and Fong et al. [54,55]). This framework may be
useful in the push to define and detect running power accurately. The calculation of power during
running is a controversial topic due to the complexity of the human biomechanical system, and many
of the current commercial systems do not have proven validity in calculating the metric [56]. Therefore,
a kinetic approach may exceed current IMU-based calculation methods (i.e., StrydTM foot pods) due to
the immense information a multi-sensor pressure insole can provide.

5. Conclusions

The current study supports the feasibility of two-sensor pressure insoles to detect FSA and FSP,
and therefore aids in the research and coaching of running movements, as well as consumer-based
shoe prescription. Simple machine learning techniques can be used to predict and classify runners’
foot strike patterns with accuracies greater than 90%. However, foot falls that are a true MF strike
are incorrectly classified more often than RF or FF strikes by these methods. A greater accuracy can
be accomplished with the application of a more complex machine learning technique like a FRST.
The current study was limited in its collection of MF steps, therefore more MF steps or using over- or
under-sampling techniques may improve the classification of the MF pattern in the future. Further,
the machine learning techniques should be applied to running with higher ecological validity that
encompasses variable metabolic intensities (i.e., speeds), and limited changes of direction.
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Abstract: Each year, 50% of runners suffer from injuries. Consequently, more studies are being
published about running biomechanics; these studies identify factors that can help prevent injuries.
Scientific evidence suggests that recreational runners should use personalized biomechanical training
plans, not only to improve their performance, but also to prevent injuries caused by the inability of
amateur athletes to tolerate increased loads, and/or because of poor form. This study provides an
overview of the different normative patterns of lower limb muscle activation and articular ranges
of the pelvis during running, at self-selected speeds, in men and women. Methods: 38 healthy
runners aged 18 to 49 years were included in this work. We examined eight muscles by applying
two wearable superficial electromyography sensors and an inertial sensor for three-dimensional (3D)
pelvis kinematics. Results: the largest differences were obtained for gluteus maximus activation
in the first double float phase (p = 0.013) and second stance phase (p = 0.003), as well as in the
gluteus medius in the second stance phase (p = 0.028). In both cases, the activation distribution
was more homogeneous in men and presented significantly lower values than those obtained for
women. In addition, there was a significantly higher percentage of total vastus medialis activation
in women throughout the running cycle with the median (25th–75th percentile) for women being
12.50% (9.25–14) and 10% (9–12) for men. Women also had a greater range of pelvis rotation during
running at self-selected speeds (p = 0.011). Conclusions: understanding the differences between men
and women, in terms of muscle activation and pelvic kinematic values, could be especially useful to
allow health professionals detect athletes who may be at risk of injury.

Keywords: running; kinematics; surface electromyography; wearables

1. Introduction

Recreational running is becoming an increasingly popular pastime [1], with approximately 15%
and 70% of amateur athletes currently engaging in this activity in the United Kingdom and the United
States, respectively [2,3]. Various studies have shown that 50% of runners suffer an injury each year [4],
although there are discrepancies in the literature, due to incidence values that vary from 18.2% to
92.4% [5] and reported prevalence ranging from 46% to 90% among amateur runners [6,7].

In recent years, an increasing number of studies have been published in relation to the biomechanics
of running, including factors that could help prevent and treat injuries in runners [8–11]. Running is a
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popular recreational activity, but a lack of adequate training in correct running techniques may account
for the reported increase in injuries among these athletes [12]. Thus, in this work, we aimed to provide
an overview of the different normative patterns of lower limb muscle activation and pelvic joint ranges
during running at self-selected speeds in men and women. We analyzed the biomechanics of running
by measuring the activation of the main muscles involved in this activity, as well as the dynamic ranges
of joint movement, especially in the pelvis [13].

The choice of a preferred speed could be affected by the level of performance and the intensity
of the training habits [14]. It is reasonable to expect that amateur runners, with a higher level of
performance, will train at higher intensities and, therefore, select a higher running speed for pleasure
and metabolic cost [14,15].

Portable dynamic surface electromyography (sEMG) measurement devices, together with inertial
sensor units (IMUs), are currently used for this type of analysis [16,17]. These systems provide
information about muscle use intensity and activation time, and reflect the different contraction
strategies, neuromuscular control systems, and three-dimensional (3D) pelvic kinematics used during
running [18–20]. The use of wearable systems for these biomechanical measurements allow the data to
be captured under more realistic conditions [21].

Given the intrinsic variability of these biomechanical values, the field still lacks a set of reliable
reference values for use when assessing both the status and evolution of injured individuals.
Some studies have determined these values based on the dynamic range of the pelvis and level
of muscle activation by using sEMG for the main muscles involved in running [21–27]. One study
noted increased hamstring and hip flexor tension in runners caused by excess anteroposterior pelvic
movement or tilt [23], while in another, back pain was correlated with limited lower knee range [24].

Many studies, exploring the differences in muscle activation in the stance and swing phases of
running, are now available in the literature [19,28–30]. However, none have systematically categorized
the values for muscle function and pelvic kinematics during the different phases of running. Moreover,
running mechanics also differ between the sexes, but the differences in the normative patterns of
muscle activation, in different phases of running between male and female amateur runners, has not
yet been determined [31].

Measuring and characterizing human movements during activity to evaluate athlete performance,
improve technique, and prevent injuries is a crucial part of modern training programs [32]. Collecting
these data will increase scientific knowledge of kinematic patterns and the degree of muscle activation
in runners. Therefore, the purpose of this study was to establish the differences between the sexes in
terms of lower limb sEMG activity and three-dimensional (3D) kinematics of the pelvis during running.

2. Materials and Methods

2.1. Participants

Healthy participants were recruited, who typically engaged in at least 90 min of continuous
running training per week, and who had not suffered any injury in the prior year that could have
changed their movement patterns. In addition, we excluded individuals who reported having suffered
an orthopedic, neurological, or surgical injury in the prior year that could have affected their movement
patterns. We explained the nature of the study to all of the participants and they signed their informed
consent to participation prior to the start of the work. The entire study was carried out according
to the principles of the Declaration of Helsinki, was approved by the ethics committee at CEU
Cardenal Herrera University (reference number: CEI18/137), and was registered as a clinical trial
(ClinicalTrials.gov registration№: NCT04221698).

2.2. Procedure

In this study, we measured the level of activation in the muscles of the dominant leg as well
as the pelvic dynamic range of each participant. We used a treadmill (BH Fitness Columbia Pro
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130 cm × 40 cm) to establish standardized conditions under which the kinematic variables of running
would be more reproducible. We set the incline to 1◦ and allowed each participant to select the
speed [31,32] at which they regularly trained. The participants used their own shoes and were allowed
a 15-min warm-up period in order to adjust to the treadmill. According to protocols used in previous
running biomechanics studies [28,33–35], the initial speed was progressively increased over 2 min and
was then maintained for 3 min while the data were collected.

The dynamic range of the pelvis was assessed using an inertial sensor (BTS G-Sensor 2) with an
ergonomic belt at the height of S1 to capture different kinematic and spatiotemporal variables. This IMU
comprised a 16-axis triaxial accelerometer with multiple sensitivities (±2, ±4, ±6, ±8, and ±16 g) with
a frequency of 4 Hz to 1000 Hz, a triaxial gyroscope with multiple sensitivities (±250, ±500, ±1000,
±2000 o/s), with a frequency oscillating between 4 Hz to 8000 Hz, and a triaxial 13-bit magnetometer
(±1200 uT), with a frequency exceeding 100 Hz.

Muscle activation was simultaneously studied by sEMG in eight muscles: the gluteus maximus,
gluteus medius, rectus femoris, vastus medialis, biceps femoris, semitendinosus, medial gastrocnemius,
and soleus. The skin was prepared according to SENIAM guidelines [36], and then two 20 mm pre-gelled
self-adhesive bipolar Ag/AgCl disposable surface electrodes (Infant Electrode, Lessa, Barcelona) were
placed on each muscle with a 20 mm interelectrode distance between them. A 10 g wireless probe
(41.5 × 24, 8 × 14 mm) was placed on each pair of electrodes to capture the sEMG signal and send the
information by Wi-Fi to the capture system (BTS FREEMG 1000, BTS Bioengineering, Milan, Italy) via
a signal receiver (Wireless IEEE802.15.4) connected to a computer via USB [37].

The running phases analyzed by sEMG were the percentage of the stride cycle and percentage
of each subphase. The start of the stride cycle corresponded to the initial contact and start of the
contact of the same foot. The running subphases were: the first stance, first double float, second stance,
and second double float (Figure 1). Thus, for the right leg, the first stance occurred from the initial
contact of the right foot to the take-off of the right toe. The first double float occurred from the initial
float phase of the right foot to the contact of the contralateral foot. This was then followed by the
second stance, from the time of initial contact of the left foot to take-off of the left toe, and the second
double float from the initial float phase of the left foot until contact of the contralateral foot.

Figure 1. Figure of the running stride cycle sub-cycles: the first stance (1st St), first double float (1st Sw),
second stance (2nd St), and second double float (2nd Sw).

2.3. Data Analysis

The EMG signal was recorded simultaneously using a FREEEMG 1000 and EMG Analyzer (BTS
Bioengineering, Milan, Italy) that was set to a sampling rate of 1000 Hz per channel, and the signals
were band-pass filtered from 20 Hz to 450 Hz. The EMG signals were subsequently full-wave rectified
and low pass filtered using a bidirectional, 6th order Butterworth filter, with a cutoff frequency of 5 Hz.
The root mean square (RMS) in several subphases was detected. The IMU sensor detected every event
performed, initial contact, and toe-off of each foot. Moreover, at the same time, the sEMG signal was
recorded, so that the system selected the right and left strides and the different subphases (first stance
phase, first float phase, second stance phase, second float phase), as described in Figure 1.

2.4. Statistical Analysis

To describe the demographic data of the population sample, descriptive statistics were calculated
separately by sex for the participant age, height, weight, and training sessions performed during the
chosen week and for the running dynamics data. The data from the study variables were analyzed to
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check for extreme outlying values using Chauvenet’s criterion, because these may have represented
abnormalities in the measurements, musculature, or nerve conduction of the participants.

After testing compliance with the assumptions of normality (Shapiro–Wilk test) and homogeneity
of variances (Levene’s test), we decided to use non-parametric methods in our analyses. We used
the Wilcoxon rank sum method (based on the Mann–Whitney U test) to compare the sex factor in the
biomechanical patterns of pelvis use, muscular activation during the complete running cycle, and the
mean activation between men and women at their self-selected speeds. G*Power software was used to
calculate the sample size; to detect an effect size of 0.8 with a statistical power of 0.8, we calculated that
we would require at least 21 participants in each group. We finally obtained data from 22 men and
16 women, and post-hoc calculations gave us a statistical power of 0.75. RStudio Desktop software
(version 1.2.5 for macOS; RStudio Inc., Boston, MA, USA) was used for all of our statistical analyses.

3. Results

A total of 48 individuals initially participated in the study, of which eight were considered
excluded values because of injury (n = 7) or Bluetooth receiver failure (n = 1). The demographics of
these participants are described in Table 1.

Table 1. Participant characteristics *.

Value

Female Male

Participants, n 16 22
Age, years 27.07 ± 9.16 26.39 ± 6.61
Weight, Kg 58.31 ± 7.06 70.14 ± 8.3
Height, cm 166.3 ± 0.06 177.5 ± 0.07

Weekly number of training sessions 3.93 ± 1.03 4.87 ± 1.14

* Values represented as the mean and standard deviation (SD).

Once the data from the 40 participants included in the trial had been analyzed, 2 participants were
excluded because they were considered outliers, leaving a final sample of 38 individuals. Regarding
the self-selected speed, the mean for women was 9.22 (±1.59) km/h, and for men it was 10.61 (±1.56)
km/h, with this difference being statistically significant. Table 2 shows the mean value and the p-value
of the difference between the speed and distance between the sexes, calculated using Mann–Whitney
U tests.

Table 2. Statistics and significance between sex and the speed and distance variables *.

Female (avg) Female SD Male (avg) Male SD Wilcoxon p-Value

Speed (km/h) 9.22 1.59 10.61 1.56 0.009 *
Distance (Km) 0.79 0.13 0.9 0.14 0.02 *

* Significant differences at p < 0.05. Speed expressed in kilometers/hour and distance measured in kilometers.

3.1. Kinematics of the Pelvis

Significant differences in the range of pelvic rotation (Figure 2) were observed between the sexes,
with female runners presenting a greater range of rotation during running at their self-selected speed,
but no significant differences were observed in the tilt or obliquity between the sexes (Table 3).
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Table 3. Differences between men and women in the kinematics of the pelvis during sprinting at a
self-selected speed *.

Variable Mean Men Mean Women p-Value

Rotation 12.53 (SD: 3.2) 17.04 (SD: 5.72) 0.011 *
Obliquity 7.57 (SD: 1.99) 7.82 (SD: 1.61) 0.391

Tilt 7.41 (SD: 1.68) 8.51 (SD: 2.11) 0.086

* Mean values with their standard deviations (SD) are shown. * Statistically significant differences at p < 0.05.

Figure 2. Variation of the rotation between women (F) and men (M), with each bar representing one
participant. The lines summarize the distribution of the mean.

3.2. Mean Running Cycle Muscle Activation

Table 4 shows the statistics for each of the recorded muscles compared by sex for the percentage
factor of total muscle activation during each running cycle. The vastus medialis showed a significantly
higher percentage of activation in women throughout the running cycle (Figure 3) with a significantly
different distribution between the sexes; there was greater muscle activation dispersion in women,
indicating increased variability, while the vastus medialis activation homogeneity was reduced in men.

Table 4. Statistics and significance of the percentage of total muscle activation during the running
cycle *.

Muscle % Activation Women % Activation Men

Gluteus maximus 12 (11.25–15.50) 12 (11–13)
Gluteus medius 12 (11–13) 11.50 (10.75–13)
Femoral rectus 12 (11–14) 13.50 (12–15.25)
Vastus medial 12.50 (9.25–14) * 10 (9–12) *

Semitendinosus 14 (13–15.75) 13 (11.75–16)
Femoral biceps 14.50 (13.25–17.30) 15.00 (13–15)

Medial gastrocnemius 10.50 (9–12) 11.00 (10–12)

Soleus 10.00 (10–11.75) 12 (11–13.70)

* Percentage value of the median (25th–75th percentile). * Significant differences at p < 0.05.
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Figure 3. Percentage of the total activation of the vastus medialis during the running cycle distributed
between women (F) and men (M). The distribution of the mean and SD were more homogeneous
in men.

3.3. Muscle Activation for Each of the Phases

There were significant differences in the muscle activation measurements for each of the phases
in each of the main muscles (Table 5). Figure 4 shows the difference in the gluteus maximus muscle
activation between women and men running at their self-selected speeds. The distribution of the
muscle activation in men was more homogeneous and presented significantly lower values than for
women. Figure 5 shows the difference in gluteus medius muscle activation between women and men
during the second stance, showing lower homogeneity in women and greater activation than in men.

Table 5. The p-values of the mean in the muscles with significant differences between the sexes in
different phases.

Muscle 1st Stance 1st Double Float 2nd Stance 2nd Double Float

Gluteus maximus p = 0.114 p = 0.013 * p = 0.003 * p = 0.647
Gluteus medius p = 0.198 p = 0.057 p = 0.028 * p = 0.584

* Significant differences at p < 0.05.

Figure 4. Variation by sex in the gluteus maximus in the first double float (A) and second stance (B).
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Figure 5. Variation between the sexes in the mean gluteus medius activation during the second stance.

4. Discussion

The main objective of this study was to establish whether there were differences between the
sexes in muscular activation or in the 3D kinematics of the pelvis during the entire running cycle and
in each of the running phases. We started with the hypothesis that the sex factor could determine the
level of muscle activation throughout the running cycle and its component phases. Our results show
that there were differences between the sexes, in terms of the total percentage of muscle activation
during the entire running cycle in the vastus medialis. In addition, there were differences in the use of
this muscle and the gluteus maximus between the sexes in the individual running phases. Moreover,
there were sex differences in the rotation of the pelvis. The differences between the sexes in terms of
the speed and distance traveled were similar to those previously described in the literature [21].

Similar to the cohorts used in other studies [19,38–40], the participants in this work were recruited
through random sampling, following established inclusion criteria, from among a population of
amateur runners of different ages. We allowed the participants to self-select the speed at which they
ran because, in addition to the effects of the age and body mass and body composition factors [17],
running speed is directly related to cardiovascular factors, such as individual aerobic threshold and
performance [16], and with biomechanical factors, such as stability, flight time, and leg contact time [41].
In this same sense, work by Zamprano et al. [14] and Lussiana et al. [41] indicated that the speed
chosen by each participant is related to their energy saving strategy. Thus, imposing a set speed upon
runners, rather than allowing them to select the speed at which they are comfortable running, caused
lower limb biomechanical changes and produced alterations in the muscle activation pattern and pelvis
dynamics. These data are reinforced by those published by Kong et al. [42], which concluded that
self-selected velocities would eliminate abnormal kinematic patterns.

In this work, we placed the inertial sensor at the S1 level as a reference to quantify the kinematics
of the pelvis. However, we are unable to compare our data with other methodologies, because no
previously published work contrasted the kinematic data of the pelvis during running at self-selected
speeds, except for the work by Perpiñá et al. [24], who also placed the sensor at level S1. There were no
significant differences between the sexes for the tilt range or pelvic obliquity kinematic values obtained.
These values coincided with the expected normal values and were not novel. However, we did find
that the mean lower pelvic rotation range for women (17.04◦ ± 5.72◦) was significantly higher than the
values found for men (12.53◦ ± 3.2◦). Furthermore, the rotational ranges in men were lower than the
reference values of 16◦–18◦ provided in studies that dynamically measured the pelvis during running,
perhaps because of differences in the speed used [28,43].
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When the toes take off during the propulsion phase in running, the pelvis presents its maximum
anterior tilt level, slight ipsilateral obliquity to support, and slight external rotation [27,42]. This limits
hip flexion and makes rotation the most advantageous mechanism to lengthen the stride. This increased
pelvic rotation in women seems to be related to a genetic predisposition towards greater flexibility [44]
and a lower capacity for elastic energy storage [45]. All of this is associated with a decrease in the
peak vertical forces used by female runners [46]; thus, requiring rotational compensation at every
speed. Therefore, women must increase their dynamic range of rotation to increase their hip extension
without altering the other kinematic variables and muscle activation factors. This would lead to greater
stability and running economy in women due to structural differences in the female pelvis and hips
compared to males [22].

We also found different muscle activation responses in the different running phases according to
the muscles studied. The gluteus medius is activated in women because they have increased pelvis–hip
joint movement and the main function of this muscle is to stabilize these joints. Thus, when the ground
reaction force is absorbed in the first part of the first or second stance, the gluteus medius performs
more eccentric work in women than in men [39]. In contrast, this muscle causes hip abduction in the
first and second take-off phases [47,48]. Therefore, women require increased gluteus medius activation
to meet the biomechanical requirements of running, particularly in the second stance. This can lead
to the appearance of injuries, either because of a lack of activation or because of fatigue, which are
both of primary clinical importance because these factors strongly correlate with the appearance of
injuries [49–53].

The gluteus maximus is activated when the foot first contacts the ground and stops hip and trunk
flexion in this phase [51]. This muscle also performs trunk extension and strengthens the knee when it
is fully extended by acting through the iliotibial tract [54]. Gluteus maximus activity increases during
the flight and swing phases because, together with the hamstrings and psoas, it behaves as a hip and
knee accelerator during this phase [55]. In agreement with the data from this current study, several
other authors also believe that contraction of this muscle at the midpoint of the oscillation phase
(between the first double float and second stance) is involved in leg deceleration [56] and may also be
related to passive extension of the knee.

We obtained a mean gluteus maximus activation of less than 30.95 μV for men in the first double
float phase in this study, which may correspond to a gluteus maximus activation deficit. In contrast,
activation of this muscle in female runners in the second stance was below 75.24 μV. Furthermore,
the hamstring muscles in this study showed increased activity to control hip flexion when the trunk
was flexed, which was causally related to pelvis stabilization [57–59]. Maximal medial and lateral
hamstring activity during running occurs through eccentric contraction in the middle of the swing
phase in order to decelerate the leg just before maximal hip flexion, and immediately after the start of
the knee extension [60,61].

The increase in vastus medialis muscle activity we observed in women compared to men (as a
percentage of the overall running cycle), as well as during the swing in the first double float and second
stance phases, may be because women tend to be less stiff than men. This would reduce their energy
storage capacity in the transverse and frontal planes of the trunk and hip muscles [45], thus, decreasing
the stability of passive structures and increasing their range of motion, in turn leading to greater
stabilization at the muscular level [62–64].

Another function attributed to the vastus medialis is stabilization of the patella within the trochlear
groove [63–65], thus, generating a medializing force vector upon the patella, which would cause its
rotation when in extension [66–68]. The quadriceps are also active during the swing phase of running,
in preparation to receive the weight load [69]. Interestingly, women seem to have increased quadriceps
activation when performing sports activities [70], which can substantially contribute to physiologically
significant [71–73] changes in muscle strength between the sexes [71].

Our data also agreed with previous work showing that vastus medialis activation for hip
muscle recruitment differs in women when in positions that are neutral or with a slight medial hip
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rotation [74,75]. Indeed, Montgomery et al. concluded that contraction of this muscle is required in
the swing phase to provide knee extension, thus, stabilizing the patella before the heel strike [73].
In addition, compared to men, we found structural and anatomical differences in the lower limbs of
women during running. This reduced normative pattern of vastus medialis activation in women may
help them cope with external forces. This is important because it would generate a neuromuscular
imbalance between the vastus of the quadriceps, thus, producing a greater risk of injuries, such as
patellofemoral pain in female runners [72,76].

To the best of our knowledge, this is the first time normative patterns for the running kinematics
of the major muscles and range of motion of the pelvis have been specifically established for each sex.
Our results support the stabilizing role the gluteus medius has on the pelvis and knee, as well as the
role of the vastus medialis in balancing the patella and controlling the knee valgus during running.
The co-contraction of these muscles, together with that of the gluteus maximus and hamstrings,
produces adequate motor control. These data could prove useful in clinical settings to prevent the
injuries most frequently found in female amateur runners.

One of the limitations of this work may be its sample size (although it was similar to the cohort
sizes used in other studies) because it could limit statistical interpretation with the aim of establishing
normative data. Furthermore, we did not consider the influence of age, which could have affected the
choice of our participants’ running speeds, as well as their running economies [40]. Finally, this study
was novel, so the lack of publications about normative muscle activation levels and normative pelvic
kinematic patterns limited our ability to compare these data with other work; this makes it harder
to understand the true causes of the differences we found between the sexes. Future studies should
analyze the differences between healthy individuals and those with certain running injuries in order
to analyze their possible origins. This could allow personalized training and prevention plans to be
established, and could increase the recovery speed in individuals who already have an injury.

5. Conclusions

In conclusion, these differences between the sexes, in terms of muscle activation and pelvic
kinematic values, could be especially useful for detecting athletes who may be at risk, allowing
healthcare professionals to intervene before possible injuries appear. Here, we found a normative
pattern of increased pelvic rotation as well as an increase in gluteus maximus, gluteus medius,
and vastus medialis muscle activation in female runners. Further studies will be required to examine
whether these differences in pelvic kinematics and muscle activation are related to the injuries commonly
experienced by female and male recreational runners.
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Abstract: Background: The running segment of a triathlon produces 70% of the lower limb injuries.
Previous research has shown a clear association between kinematic patterns and specific injuries
during running. Methods: After completing a seven-month gait retraining program, a questionnaire
was used to assess 19 triathletes for the incidence of injuries. They were also biomechanically analyzed
at the beginning and end of the program while running at a speed of 90% of their maximum aerobic
speed (MAS) using surface sensor dynamic electromyography and kinematic analysis. We used
classification tree (random forest) techniques from the field of artificial intelligence to identify
linear and non-linear relationships between different biomechanical patterns and injuries to identify
which styles best prevent injuries. Results: Fewer injuries occurred after completing the program,
with athletes showing less pelvic fall and greater activation in gluteus medius during the first phase
of the float phase, with increased trunk extension, knee flexion, and decreased ankle dorsiflexion
during the initial contact with the ground. Conclusions: The triathletes who had suffered the most
injuries ran with increased pelvic drop and less activation in gluteus medius during the first phase
of the float phase. Contralateral pelvic drop seems to be an important variable in the incidence of
injuries in young triathletes.

Keywords: running; kinematics; gait retraining

1. Introduction

Triathlon is a growing sport with broad participation spanning three disciplines (swimming,
cycling, and running) in the same event. This has led to an increase in the incidence of injuries, varying
from 37% to 91% in the adult population [1]. In Spain, participation in triathlon has increased by more
than 200% among young athletes of school age in recent years (Spanish Triathlon Federation). In the
United States, the increase in the participation of children and adolescents in sports, as well as more
intense training and specialization at an early age, has contributed to musculoskeletal injuries normally
observed in the adult population becoming more common among younger athletes, especially those
caused by excessive and repeated use [2]. The risk of musculoskeletal injury in young athletes is related
to growth and development which, together with factors such as the rapid increase in the intensity,
duration, and volume of physical activity, poor condition, or insufficient sport-specific training, leads to
injuries in articular cartilage or other muscle-tendon structures as the result of the exertion of repetitive
and excessive stress on the tissues coupled with their lack of adaptation [2–4].
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Most triathlon injuries are related to the running segment (58–72%) [5,6] and the incidence of
such injuries is similar to that of athletics runners [7]. The anatomical area of injury corresponds to
the lower extremities [5,7,8], especially the knee [6]. The most frequent types of injuries in running
are patellofemoral pain (PFP), iliotibial band syndrome (ITBS), medial tibial stress syndrome (MTSS),
Achilles tendinopathy (AT), plantar fasciitis, stress fractures, and muscle strains [9]. The factors related
to the development of running-related injuries are multifactorial and diverse; however, it is widely
accepted that kinematic alterations during running may also be related [9].

Gait retraining is a clinical intervention based on real-time feedback from wearables which aims
to reduce the risk of injury and improve performance and motivation [10]. Current evidence indicates
that this technique, alongside traditional therapeutic interventions, should be considered for use
in the treatment of injured runners and to address potentially harmful running mechanics in the
healthy population [11]. Various authors have shown a decrease in pain in runners with PFP [12–15]
and a 62% reduction in the incidence of injuries in adult athletes [16] as a result of the use of these
techniques. Furthermore, Bramah et al. [12] showed an improvement in peak contralateral pelvic
drop, hip adduction, and knee flexion after a session of gait retraining, increasing cadence by 10%.
Chumanov et al. [17] showed an increase in gluteus medius and gluteus maximus muscle activation
associated with an increase in cadence during the final phase of oscillation. To date, there is no evidence
on the effect of gait retraining in young triathletes in order to prevent injuries during running.

The objective of this study was to examine the kinematics of the pelvis and activation of the
gluteus medius muscle in the float phase to assess their effect on the neuromuscular stability of the
pelvis and the incidence of injuries during running in young triathletes over a seven-month observation
period after having completed a gait retraining program.

2. Materials and Methods

2.1. Participants

The participants belonged to the Triathlon Technification Plan in High Performance of the Valencian
Community in Spain. The study was approved by the Ethics Committee for Biomedical research at
the CEU-Cardenal Herrera University, (reference№: CEI18/137) and is registered as a clinical trial
(ClinicalTrials.gov registration№: NCT04221698).

Inclusion/exclusion criteria:
19 triathletes (10 males, 9 females) were enrolled in this study (Table 1). Using G*Power software,

we calculated that we would need at least 17 subjects in order to detect a large effect size of 0.8, having
a power of 0.87 and a critical alpha of 0.05. This calculation was based on the use of t-tests for two
dependent means, to detect differences before and after the gait retraining, as we evaluated the same
individuals at two different moments.”

Table 1. Participant characteristics a.

Healthy (n = 10) Injured (n = 9)

Age 14.8 ± 1.9 14.4 ± 1.7
Weight, kg 52.7 ± 7.9 56.1 ± 10.9
Height, cm 167.1 ± 8.1 169.1 ± 9.6

Body mass index, kg/m2 18.8 ± 1.6 19.4 ± 1.8
Years in competition 7.2 ± 1.7 6.8 ± 1.8

Training hours per week 19.2 ± 5.7 17.9 ± 5.1
a Values are presented as the mean ± SD.

Participants were included if they reported running a minimum of 2 days per week for the
3 months prior with no reported injuries and with their worst pain rated a minimum of 3 out 10 on a
numerical rating scale (NRS) for pain (0 = no pain; 10 =worst possible pain) [12]. Participants were
excluded if they reported any previous musculoskeletal surgery, neurological impairment, structural
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deformity in the knee, pain suffered by trauma or sports activities, having stopped running, or having
received additional treatment outside of this study.

2.2. Data Collection

The data were collected via a self-report questionnaire, similar to previous research in triathletes
performed to document the incidence of overuse injuries during the 2018 season and in the
post-gait-retraining protocol season (during 2019) [18]. Prior to testing, all the participants performed a
5-min warm-up on a treadmill (HP Cosmos Quasar, Nussdorf-Traunstein, Germany) at their preferred
speed [12]. Kinematic and dynamic surface electromyography (sEMG) data were collected over 5 min
at 90% of the maximum aerobic power speed (as obtained from the Wasserman protocol) to determine
the VO2max [19].

Kinematic data were collected from all participants while running on a treadmill. For the 3D
pelvis kinematics, the inertial measurement unit (IMU) was placed in S1 with a belt and raw data
was recorded by GSensor and GSTUDIO software version 2.8.16.1. (BTS Bioengineering, Garbagnate,
Italy). The validity of the IMU system has previously been shown for the measurement of 3D joint
kinematics [20,21]. The 3D pelvis kinematics recorded were the difference in pelvic obliquity for the
left and right leg, the tilt, and the rotation. A range of kinematic parameters at both initial contact
and midstance were selected for analysis in the sagittal plane from a 2-dimensional video [22]. All the
videos were recorded (120 frames per second) with the same camera mounted to a portable tripod and
Apple iPad Air tablet computer (Apple Inc, Cupertino, CA). The kinematics angles were measured by
using the Hudl Technique video analysis application. Parameters at initial contact included foot-strike
pattern, tibial inclination, knee flexion, and forward trunk angles. Peak and midstance angles included
dorsiflexion, knee flexion, and forward trunk lean angles. Parameters were selected based on previous
research to identify running injury patterns [9,22].

sEMG was simultaneously recorded with the kinematics by placing sEMG electrodes on the gluteus
medius [23,24]. The SEMG sensors used in this study were pre-gelled self-adhesive bipolar Ag/AgCl
disposable surface electrodes of 20 mm (Infant Electrode, Lessa, Barcelona), with 2 cm interelectrode
distance. SEMG electrodes were longitudinally placed on the muscle belly of the dominant leg
according to SENIAM recommendations [23]. The EMG signal was recorded simultaneously using
a FREEEMG 1000 and EMG Analyzer (BTS Bioengineering, Milan, Italy) that was set to a sampling
rate of 1000 Hz per channel, and the signals were band-pass filtered from 20 Hz to 450 Hz. The EMG
signals were subsequently full-wave rectified and low pass filtered using a bidirectional, 6th order
Butterworth filter with a cutoff frequency of 5 Hz. The root mean square (RMS) in several sub-phases
was detected. The IMU sensor detected every event performed; initial contact and toe-off of each
foot. Moreover, at the same time, the sEMG signal was recorded, so that the system selected the right
and left strides and the different subphases; (first stance phase, first float phase, second stance phase,
second float phase).

2.3. Retraining Protocol

All participants included completed the 7 months gait retraining program. After baseline assessment,
a number of global kinematic contributors to common running injuries were identified and were used
for the real-time feedback during the retraining protocol; these were, cadence [12,25], greater peak
contralateral pelvic drop (CPD), and trunk forward lean, as well as an extended knee and dorsiflexed
ankle at initial contact [9]. Participants were asked to run at a self-selected speed with a 10% increase in
their original step rate [11,12,16,25,26]. A modified gait retraining protocol according to Chan et al. [16]
was used. In brief, the triathletes participated in four sessions of gait modification over four weeks
with one session per week. During the training, the athletes were asked to run at a self-selected speed
on a treadmill. Visual biofeedback in the form of a sagittal plane video of the triathlete was displayed
on the monitor in front of them (Figure 1).
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Figure 1. Visual real-time biofeedback during the retraining protocol.

Participants were instructed by the physiotherapist to modify kinematic variables such as the
position of their trunk, contact of the foot with the ground, and knee flexion at initial contact. During
the first 5 min, participants were instructed to match their footstep to an audible metronome set to the
new step rate which increased their original step rate by 10% [12]. The training time was gradually
increased from 15 min to 30 min over the four sessions, and visual/audible feedback was progressively
reduced in the last 2 sessions (Table 2). Triathletes were then instructed to maintain their new running
pattern during their daily running practice only with their watch cadence as feedback.

Table 2. Gait retraining protocol a.

VSP A.M WCd Time Session

Session 1 (min) 10′ 5′ − 15′
Session 2 (min) 15′ 5′ − 20′
Session 3 (min) 10′ − 15′ 25′
Session 4 (min) − − 30′ 30′

a Training time and biofeedback time arrangement. VSP, video sagittal plane; AM, audible metronome; WCd,
watch cadence.

2.4. Statistical Analysis

With the aim of discovering which variables were more strongly related with the risk of injury
among triathletes, we applied machine learning techniques from the artificial intelligence field.
Specifically, an ensemble learning method for classification, known as random forests (RF; Breiman, L.,
2001) was used to extract the variables that best discriminated between participants who were injured
or not in the first period of the study, i.e., before the gait retraining phase. A total of 71 variables
were collected from these participants in an excel sheet, although not all these characteristics were
selected for the purpose of this present study. Thus, we initially conducted a feature selection protocol
to retain only 47 characteristics in order to construct the final dataset as input for the machine learning
algorithms. Such variables were selected according to the literature [9,22], to collect data on kinematics,
sEMG and running dynamics.

Hence, once the participant data were acquired from the overall observational system, i.e., from the
sensors, accelerometers, and video recordings, a raw data set was constructed. After we cleaned this
dataset, we converted it into a classification problem for use with machine learning classification
techniques. Thus, the problem was added to a supervised learning area’ in which the algorithm tried
to learn patterns from data previously labeled for a classification. In our case, a new feature named
"injured" was used to classify the triathletes who were injured before the retraining (during 2018) and
was our dependent variable.
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Once most of the important variables were obtained, we also statistically analyzed them through
paired t-tests (with an alpha of 0.05) to compare differences in the pre- and post-test measurements,
i.e., before and after the retraining phase. To select the appropriate test, first the normality of the data
was checked through the Shapiro–Wilk test (p ≥ 0.05). In case normality was not met an equivalent
non-parametric alternative to paired t-test is used, in that case the paired samples Wilcoxon test
was employed.

3. Results

A total of 19 volunteer triathletes initially participated in the study. All of them successfully
completed the program and there were no losses to follow-up.

3.1. Random Forest Analysis

RF is a well-known algorithm belonging to the family of tree-based methods which yields significant
improvements in classification accuracy from large problem sets. It is based on an ensemble of trees
which vote for the most popular class [27]. Moreover, trees can capture complex interaction structures
with relative bias from among the data and is more competitive than some linear methods [28,29] To
develop the model used in this work we used the caret package that integrates the “RandomForest”
library [30]. The discriminating ability of the model was assessed by calculating the receiver operating
characteristic (ROC) curve to compare different models internally. Additionally, to minimize model
overfitting, we used a K-fold cross-validation resampling technique to estimate the efficacy of the
model [30], the K value was defined at 10. After testing 15 models, the final AUC-ROC was 0.8
(95% CI 0.6–0.9) and the “mtry” parameter (which defines the number of variables randomly sampled
as candidates at each split) was 9. The sensitivity was 0.6 (95% CI 0.3–0.8), the specificity was 0.8
(95% CI 0.5–0.9), the NPV (negative predicted value) was 0.7 (95% CI 0.4-0.9) and the MCC (Matthews
correlation coefficient) obtained was 0.4. About the values resulted from the confusion matrix, TP (true
positives) were 5 and FP (false positives) were 2, nevertheless the TN (true negatives) were 8 and FN
(false negatives) 4.

3.2. Variable Importance

RF is considered a black-box model because gaining insights on a RF prediction rule is difficult
because of the large number of trees generated. Notwithstanding, there is a common approach to
extract interpretable information about the contribution of different variables [31] which requires
computing so-called variable importance measures to rank the variables (i.e., the features) with respect
to their relevance in prediction [32].

Figure 2 shows the variable importance calculation obtained from the RF in this study. The features
that appeared were the characteristics that were best able to discriminate the classification of an
individual as injured during 2018 or not, i.e., they were the most important global kinematic contributors.
Thus, these variables were the objective of this current study. As shown, the pelvic kinematics,
knee flexion, ankle dorsiflexion at initial contact, and gluteus medius sEMG were the most important
variables in this work.

Once the variables that potentially has the strongest influence on distinguishing injured from
non-injured triathletes were identified, we calculated the differences in these variables before and after
the retraining program. Table 3 shows which features had the strongest influence on the probability of
the triathletes being injured.
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Figure 2. Importance of the variables, scaled according to the “varImp” method in the caret R library
for the complete data set.

Table 3. Analysed variables a.

PRE POST p Value

Stride rate, steps/min 174.4 ± 8.3 181.4 ± 7.7 0.00 b

Speed, km/h 15.9 ± 1.7 16.5 ± 2.3 0.2
Run cycle, sec 0.69 ± 0.0 0.66 ± 0.0 0.00 b

Pelvic obliquity, deg 3 ± 2.1 1 ± 1.8 0.01 b

Pelvic tilt, deg 9.4 ± 1.2 9.9 ± 2.3 0.41
Pelvic rotation, deg 21 ± 5.7 19.7 ± 5.2 0,13

Trunk forward lean, deg (initial contact) 7.2 ± 5.3 3.6 ± 2.2 0.00 b

Knee flexion, deg (initial contact) 18.8 ± 6.5 22.1 ± 3.1 0.03 b

Ankle dorsiflexion, deg (initial contact) 6.8 ± 13.3 0.7 ± 6.6 0.03 b

Shank angle, deg (initial contact) 10.6 ± 3.9 5.4 ± 3 0.00 b

Knee flexion, deg (mid-stance) 44.4 ± 5.3 36.8 ± 9.6 0.00 b

Ankle dorsiflexion, deg (mid-stance) 19.1 ± 7.9 16.6 ± 4 0.28
Trunk forward lean, deg (mid-stance) 11.1 ± 3.8 9.7 ± 2.9 0.24
Contralateral pelvic drop (left), deg 6.7 ± 2.3 2.5 ± 1.6 0.00 b

Contralateral pelvic drop (right), deg 5.2 ± 2.4 4.1 ± 1.5 0.04 b

1stST (right), % 52.2 ± 15.7 56.1 ± 26.6 0.6
1stSW (right), % 57.9 ± 13.4 72.6 ± 23.6 0.01 b

2ndST (right), % 69.7 ± 14.3 96.6 ± 102.7 0.65
2ndSW (right), % 63.4 ± 26.8 61.5 ± 18 0.68

1stST (left), % 66.2 ± 57.4 46.9 ± 24.6 0.06
1stSW (left), % 61.8 ± 14.2 69.4 ± 13.4 0.01 b

2ndST (left), % 80.7 ± 42 67 ± 23.8 0.46
2ndSW (left), % 58.7 ± 11.9 78.6 ± 40.8 0.08

a Values are presented as the mean ± SD using paired t-tests. 1stST, first stance phase; 1stSW, first float phase; 2ndST,
second stance phase; 2ndSW, second float phase. b Statistical significance was set at p ≤ 0.05.
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Figure 3 shows the difference between the values obtained before and after retraining, as well
as their density curves. After retraining, the difference in pelvic obliquity in the right and left limb
(A), ankle dorsiflexion in the initial contact (B), contralateral pelvic drop (C, D), and gluteus medius
activation during the first phase of flight (E, F) had reduced in almost all of the participants.

Figure 3. Density plots showing the differences between pre- and post-values obtained before and after
the retraining phase. Higher density values on the ordinate axis point out which are the most probable
values on the abscissa axis. The difference in pelvic obliquity in the right and left limb (A), ankle
dorsiflexion in the initial contact (B), contralateral pelvic drop (C,D), and gluteus medius activation
during the first phase of flight (E,F).

Figure 4 shows, in more detail, the differences in pelvic obliquity between participants who were
injured during the 2018 season and those who were not injured after retraining. Athletes who were
not injured had an average pelvic obliquity of around 2 degrees, while those who were injured had a
pelvic obliquity twice that value at 4.22 degrees (A), before retraining (B), after retraining both groups
had corrected their pelvic obliquity levels with their mean values homogenizing and coming much
closer to zero, thus indicating that they had obtained near symmetry.
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Figure 4. Density plots comparing the differences between injured and non-injured triathletes in
terms of the degree of pelvic obliquity between the (A) pre-retraining; (B) and post-retraining phase
values. Higher density values on the ordinate axis point out which are the most probable values on the
abscissa axis.

Figure 5 shows, the differences in gluteus medius (right) sEMG before and after retraining protocol.
Note the increase in activation during the 1st SW.

Figure 5. Gluteus medius (right) sEMG plot pre and post.

Figure 6 shows, the differences in pelvic kinematics before and after retraining protocol. Note the
reduction in contralateral pelvic drop.
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Figure 6. Pelvis kinematics before and after retraining protocol.

4. Discussion

This study identified a number of biomechanical variables that allowed the risk of suffering an
injury while running to be detected (Figure 2). To the best of our knowledge, the evidence presented in
this work is the first to demonstrate the effect of a gait retraining program in young triathletes in the
prevention of injuries. In particular, the triathletes who suffered injuries in the 2018 season had an
increased difference in their pelvic obliquity, contralateral fall of the pelvis in the mid-stance phase,
increased ankle dorsiflexion during initial contact, and decreased gluteus medius sEMG readings in
the first phase of float (Figure 3). We found that differences in pelvic obliquity and contralateral pelvic
drop were the most important predictive variables of injury when classifying triathletes as injured or
non-injured. These kinematic patterns coincide with the results obtained in previous studies [9,12],
except that our study was carried out in a young population for which no similar data is yet available.

Various authors [12,33] have hypothesized that the delay in gluteus medius activation during the
stance phase of running could alter neuromuscular control in the hip and pelvis, thus facilitating the
loss of stability in the frontal plane. In this study, a significant increase in gluteus medius activation was
achieved during the first phase of float. This increase occurred prior to the strike of the contralateral
foot, facilitating neuromuscular control in the frontal plane, improving both the difference in the range
of obliqueness in each limb and in the fall of the contralateral pelvis. In agreement with other studies
that also obtained positive results [12,25,26], this increase in muscle activation seemed to be the result
of the increased cadence established during the gait retraining program (by 10% compared to their
cadence from the initial assessment), but did not seem to be related to an increase in pelvis stability,
making this work the first to show this effect. Bonacci et al. demonstrated that movement patterns in
triathletes during the transition from cycling to running are altered at the neuromuscular level [34].
Even in veterans and highly trained triathletes, there is altered muscle recruitment after cycling, which
can lead to tibial stress fractures from overuse which may be associated with increased bone load
caused by impaired neuromuscular control [35].

Various authors have pointed out that the knee is the most common location for acute and
overuse problems in triathletes, followed by the lower leg, lumbar area, and shoulder [5]. Overuse
was the reported cause in 41% of the injuries, two-thirds of which occurred during running [36].
Many triathletes continue to train, albeit on a modified routine, after an injury and so further injurious
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exposures may occur [7]. Defective movement patterns have previously been associated with injuries
and pain, although there is no homogeneity between the running pattern and its location. Studies
have shown that strengthening exercises alone do not alter these patterns and so a different approach
to treatment targeting the motor level is necessary to effect these changes [26]. Therefore, movement
retraining, while still adhering to basic principles of motor control, should be part of the intervention
skill set [15]. Our study echoes these results but, unlike the studies published to date, focused on
young triathletes. Thus, the concepts discussed above could help explain the decrease in the number
of injuries produced after the gait retraining program.

Although, one of the most commonly used statistical learning models for discriminant analysis
is logistic regression, we were concerned that this technique would only capture linearities in data.
However, because RF is a non-parametric machine learning technique, it has additional, powerful
capabilities for this type of analysis. This is why this technique is preferred in many medical applications,
both for its excellent prediction performance but also its ability to identify important variables [37].
Thus, we decided to implement tree techniques such as RF in this current work. These techniques
are simple and powerful machine learning models, that can generate a set of highly interpretable
conditions that are straightforward to implement [31].

Limitations of the Study and Future Activities

One of the limitations of the study is the lack of a control group. However, all the included
triathletes fulfilled homogeneous inclusion criteria running a minimum of two days per week for
the three months prior with no reported injuries and with their worst pain rated a minimum of 3
out 10 on a numerical rating scale (NRS) for pain (0 = no pain; 10 = worst possible pain). A second
limitation of this work is the sample size, since this only allows us to obtain clues about what we
are investigating although encourages us to continue working in this line as the results seem very
promising. However, we must also take into account that obtaining data on high-performance athletes
is quite difficult since it is a very small population and therefore the sample can never be too large.
Nevertheless, it is also true that the sample, despite being small, is quite homogeneous. This allows us
to think that the conclusions of the research could be generalized to other athletes, who will have very
similar characteristics to the sample we are working on. On the contrary, is difficult to profit all the
potential of the present artificial intelligence techniques that bring a new framework to study the data,
such models need from large datasets. The future directions of this work should be addressed towards
the application of these results in the field of training of young triathletes to reduce running injuries.
Future research should determine biomechanical running patterns that indicate a lower incidence of
injury in young athletes.

5. Conclusions

This study identified a number of scaled and related variables based on their importance in
preventing injuries during running. In particular, we found an increase in the obliquity of the pelvis,
fall of the contralateral pelvis, the extension of the knee, dorsiflexion of the ankle in the initial contact,
and less activation of the gluteus medium during the first phase of float in triathletes who suffered
injuries. After the gait retraining program, the number of injuries was reduced by improving the
neuromuscular stability of the pelvis of these athletes, thus providing an easy way to assess and
readjust their running style in clinical practice.
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Abstract: Inertial measurement units (IMUs) can be used to monitor running biomechanics in real-
world settings, but IMUs are often used within a laboratory. The purpose of this scoping review
was to describe how IMUs are used to record running biomechanics in both laboratory and real-
world conditions. We included peer-reviewed journal articles that used IMUs to assess gait quality
during running. We extracted data on running conditions (indoor/outdoor, surface, speed, and
distance), device type and location, metrics, participants, and purpose and study design. A total of
231 studies were included. Most (72%) studies were conducted indoors; and in 67% of all studies, the
analyzed distance was only one step or stride or <200 m. The most common device type and location
combination was a triaxial accelerometer on the shank (18% of device and location combinations).
The most common analyzed metric was vertical/axial magnitude, which was reported in 64% of all
studies. Most studies (56%) included recreational runners. For the past 20 years, studies using IMUs
to record running biomechanics have mainly been conducted indoors, on a treadmill, at prescribed
speeds, and over small distances. We suggest that future studies should move out of the lab to less
controlled and more real-world environments.

Keywords: biomechanics; wearable devices; injury; running conditions

1. Introduction

Wearable technology has been adopted among sports science researchers and prac-
titioners to capture movement in the conditions in which sports take place [1]. Inertial
measurement units (IMUs) are a type of wearable technology that can be used to mea-
sure running biomechanics [2]. The use of IMUs for real-world monitoring of running
biomechanics may provide insights that are different from observations in controlled con-
ditions [3–5]. Historically, the space and computational costs of onboard data storage and
processing have created challenges for long-term monitoring of running biomechanics [2].
However, as device capabilities and approaches to big data have improved, the large
amounts of data produced by IMUs have changed from a liability to an opportunity for
real-world running biomechanical analyses.

While several editorials and commentaries have indicated the capability of IMUs to
study running biomechanical gait patterns out of the laboratory and recommend that inves-
tigators do so [2–4,6,7], these suggestions were not based on systematic evidence. Therefore,
we do not know how many studies are using IMUs to record running biomechanics and in
which settings. In 2018, a systematic review identified only 14 studies that used wearables
for running gait analysis for distances greater than 200 m [8]. As the use of wearables is a

Sensors 2022, 22, 1722. https://doi.org/10.3390/s22051722 https://www.mdpi.com/journal/sensors
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trending topic in the field of running biomechanics, we expect the number of studies that
analyze running gait using IMUs in real-world settings to dramatically increase.

Thus, the purpose of this review is to systematically identify the scope of how IMUs are
used to record running biomechanics in all settings. Our primary focus is on the conditions
(i.e., location, surface, speed, and distance) in which IMUs capture running quality. Our
secondary objectives were to identify the devices and sensors used, the calculated metrics
and analyses from the IMU signals, the characteristics of the participants in the studies,
and the study details such as the purpose and study design. By identifying the scope of
IMU-based running biomechanical studies, we aim to mark the progress made and the
steps that remain for analyzing running gait in real-world settings.

2. Materials and Methods

2.1. Registration

The review protocol was registered through the Open Science Framework on 24 August 2020
(https://osf.io/gsmvj/?view_only=cc97d0034c5341bca4ac181878770ec7, accessed on
16 February 2022).

2.2. Eligibility Criteria

This review was designed to capture all journal articles that used IMUs to assess
gait quality during running, published in English since 2001. Exclusion criteria were: not
original research article (e.g., review papers, conference proceedings, and dissertations);
the study did not involve human subjects; the study did not involve running; running
quality was analyzed as part of another athletic task (e.g., change of direction and playing
a team sport); only spatiotemporal variables were analyzed (e.g., speed, cadence, and step
length); there was no use of IMUs; the sole purpose of the study was the use of IMUs for
any purpose other than gait analysis; the study primarily focused on development of new
technology or methods rather than gait analysis; and running was only with the use of
robotic orthoses, exoskeletons, or virtual reality environments.

2.3. Search Strategy

The search was executed in the scientific databases CINAHL, Embase, HealthSTAR,
MEDLINE, PsycINFO, PubMed, SPORTDiscus and Web of Science. Databases were
searched for articles related to IMUs and running using the following terms and logic:
(Wearable Electronic Devices/OR Accelerometry/OR wearable* OR inertial sensor* OR
inertial measurement unit* OR imu OR imus OR gyroscope* OR magnetometer* OR ac-
celeromet*) AND (Running/OR running OR jogging), where/indicates a MESH term
and * indicates the search term can have any ending. The final search was conducted on
24 April 2021.

2.4. Study Selection

One author (LCB) searched each database, combined the resulting records from each
database, and performed initial screening for duplicates, format, and language. The records
that passed initial screening were uploaded to an online review management platform
(Covidence, Melbourne, Australia). Two authors (LCB and AMR) screened the title and
abstract of all records for eligibility, with one author (CAC) serving as the tiebreaker. One
author (LCB) obtained and uploaded the full text of the records that passed the title and
abstract screening. The full-text review was conducted by two authors (LCB and AMR),
and the reason for exclusion was indicated for articles deemed ineligible. In the case where
multiple exclusion criteria were relevant, the criterion highest in the list above was chosen.
One author (CAC) served as the tiebreaker for conflicts on whether an article should be
included or excluded as well as conflicts on the selected reason for exclusion.
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2.5. Data Extraction

Each included study was assigned to an author (LCB, AMR, and CAC) who extracted
data related to the study, participants, conditions, device(s), and analysis.

2.5.1. Conditions
Location

Categorized as: indoor, outdoor, or indoor and outdoor.

Running Surface

Categorized as: track, pavement or sidewalk, grass (includes real or artificial), trail
(includes gravel), treadmill, floor or platform, or not controlled.

Speed

Categorized as: exact (minimum speed of 1.67 m/s except for incremental runs
that started with walking but ended with running; recorded in units of m/s), relative—
calculated (based on a race time or a specific test [e.g., VO2max and heart rate]), relative—
subjective (self-selected or based on participant interpretation [e.g., maximal, slow, and
moderate]), and not controlled (races or training runs).

Full Distance or Duration

For each surface, the complete distance or duration was calculated by multiplying the
distance or duration by the number of trials and number of days and reported using units
from the study. Exceptions for using the reported units for the full distance or duration
include more than 180 s (converted to minutes) and more than 5000 m (converted to km).

Analyzed Distance

For each surface, the amount of IMU data analyzed was categorized as: single step
or stride per trial for one or more trials, consecutive steps for less than 200 m per trial for
one or more trials, consecutive steps over 200 m to 1000 m per trial for one or more trials,
consecutive steps over more than 1000 m for one trial, consecutive steps over more than
1000 m for multiple trials. A trial was a repeated run on the same or different course, or
a repeated or different segment run on the same or different days. If not provided, the
analyzed distance was calculated from the reported speed. If only the number of steps or
insufficient information was reported for determining the analyzed distance, equivalences
between 200 m, 60 s, and 150 steps/min were used—200 m in 60 s corresponds with a speed
of 3.33 m/s, which is a common intermediate running speed [9,10], and 150 steps/min
is on the low end of preferred running cadence [11–14], representing a low threshold of
number of steps that equates to 200 m.

2.5.2. Device(s)
Brand and Model

As reported.

Device Location(s)

Categorized as: foot (any portion of foot or shoe), shank (includes tibia/shin, calf,
ankle), thigh, lower back (includes pelvis, lumbar spine), upper back (includes thoracic,
cervical spine), chest, arm (includes wrist), head. If multiple devices were placed on the
same location (e.g., both feet), the location was only recorded once.

Sensors

The number of axes were recorded for each type of sensor: Accelerometer, gyro-
scope, magnetometer.
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2.5.3. Analysis
Statistical Approach

Categorized as: descriptive, inferential, or machine learning. Descriptive was only
used when it was the only type of analysis performed. Machine learning was included
only when it was used as part of the statistical approach and not to generate metrics (e.g.,
estimated ground reaction forces from accelerations using an artificial neural network).

Metrics

Categorized as: vertical/axial magnitude (e.g., peak and RMS), anterior–posterior
magnitude (e.g., peak and RMS), medial–lateral magnitude (e.g., peak, RMS), resultant
magnitude (e.g., peak and RMS), axis ratio (e.g., axis RMS/resultant RMS), variability—
any axis (e.g., SD and CV), loading rate, power, PlayerLoad, shock attenuation—time
domain, shock attenuation—frequency domain, frequency content, spectral power or
spectral energy, stiffness, joint angles or ROM, joint angular velocity, segment rotation,
segment rotation velocity, COM displacement (e.g., bounce, oscillation, and trajectory),
COM change in velocity (e.g., braking), symmetry or regularity (based on autocorrelation of
signal), stability (e.g., Lyapunov exponent), or entropy. Due to the large number of studies
investigating shock absorption using an accelerometer placed on the tibia, when the axis
for tibial acceleration magnitude was not specified, it was assumed to be vertical. For other
situations where the axis of acceleration magnitude was not reported, it was assumed to be
the resultant.

2.5.4. Participants
Sex

Females, males, or females and males.

Type

Non-runner (includes sedentary, adults, recreational team sport athletes), recreational
runner (described as a runner; includes runners with defined weekly mileage, well-trained
runners), and competitive runner (competes at a high level; includes elite, member of a
collegiate or higher sports team).

Injury Status

Injured or uninjured.

Age

The central tendency and variability of age were recorded across all participant types.
If the study only reported age for each participant group, the overall mean age was
calculated.

2.5.5. Study Details
Country

Based on ethics approval, or if not reported, the first author’s first affiliation.

Study Design

Randomized controlled trial, quasi-experimental, case study, case series, case control,
prospective cohort, retrospective cohort, or cross-sectional.

Purpose

Equipment intervention, training intervention, validity or reliability of metric(s), com-
pare metrics, compare groups, identify changes due to fatigue, identify changes between
sessions, identify changes between conditions, associate with injury or associate with
performance. Some studies had multiple purposes.
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2.6. Quality Assessment

A formal quality assessment was not part of this scoping review. However, we
evaluated the amount of information reported (adequate or lacking) and the relevance to
running and IMUs (appropriate or not appropriate) for each set of data extracted (study,
participants, conditions, device(s), and analysis) of each study.

3. Results

3.1. Study Selection

A total of 16,023 records were identified across all databases (Figure 1) and 7336 records
were excluded during title and abstract screening. Of the 402 full-text articles that were
assessed, 171 were excluded and 231 studies met all eligibility criteria and were included.

 
Figure 1. Flowchart of the study selection process.

3.2. Data Extraction

The complete data extracted for each included study are reported as an appendix. The
conditions, devices, analysis, participants, and study details are summarized here with key
details provided in Tables 1–6.
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3.2.1. Conditions

Across the 231 included studies, running gait was analyzed in 286 different conditions;
however, for 24 conditions, the analyzed distance, speed and/or location could not be
classified due to lack of information. The 262 running conditions that could be classified
consisted of 27 unique combinations of the specified categories for analyzed distance (one
step or stride, <200 m, 200–1000 m, >1000 m single trial, >1000 m multiple trials), speed
(exact, calculated, subjective, not controlled) and location (indoor, outdoor) (Figure 2).

Figure 2. All conditions (262 across 231 studies) are grouped according to the analyzed distance,
speed, and location. The condition groups are ranked from most controlled (red, on the left) to least
controlled (green, on the right), and the width of each line corresponds to the percent of all conditions
within that group. The degree of control is based on the analyzed distance (one step/stride is more
controlled than >1000 m), speed (exact is more controlled than not controlled), and location (indoor is
more controlled than outdoor). The percent of all conditions for each category of analyzed distance
(shades of blue), speed (shades of purple), and location (shades of grey) is reported. In the bottom
panel, the percent of all conditions within each group are further separated by year the study was
published, with larger circles corresponding to a greater percent of all conditions. Note: 24 conditions
that could not be categorized due to lack of information are not included in this figure.
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The most common running condition was indoors at an exact speed with <200 m
analyzed, accounting for 21% of all 262 conditions. Indoor running at a subjective speed
with <200 m analyzed was the second most common condition at 20%. Indoor running
at an exact or subjective speed with one step or stride analyzed accounted for 12% of all
conditions. Overall, 72% of all conditions were indoors; and in 67% of all conditions, the
analyzed distance was one step or stride or <200 m. Most of those studies were published
between 2015 and 2021.

Studies with less controlled running conditions were primarily published after 2018.
A total of 17% of all conditions included runs of >1000 m in a single or multiple trials,
and speed was not controlled in races or training runs for 8% of all conditions. The
least controlled condition—outdoor running with speed not controlled for multiple trials
> 1000 m—accounted for 4% of all conditions.

The running conditions were grouped by surface and location (Figure 3). Overall, 49%
of all conditions were indoors on a treadmill, and an additional 16% were indoors on a
floor or platform. Outdoor pavement or sidewalk, trail, grass, and not controlled running
surfaces combined for 19% of all conditions.

Figure 3. The percent of all conditions (262 across 231 studies) by running surface and location
(indoor, outdoor).

3.2.2. Device(s)

There were 365 combinations of devices with specific sensor/axis composition and
device locations on the body (Figure 4). The most common combination was a triaxial
accelerometer on the shank (18% of all combinations) followed by a triaxial accelerometer
on the lower back (13%). Across all sensors with any number of axes, the top three device
locations were the shank, lower back and foot, accounting for 35%, 22% and 16% of all
combinations, respectively. Across any number of axes, 70% of all combinations used an
accelerometer only, and 22% of all combinations used all three sensors. A gyroscope was
the only sensor for 1% of all combinations and was placed on the foot or shank.

Some studies used multiple devices, bringing the total number of devices to 251. Most
devices (82%) were of research-grade. The remaining 18% of devices are commercially
available and designed for public use and include adidas Run Genie, Catapult, DorsaVi,
Garmin, Google Nexus, Lumo Run, Milestone Pod, Polar, RunScribe, Runteq Zoi, Stryd,
and Zephyr BioHarness. These devices were commonly worn on the shoe or lower or
upper back.
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Figure 4. The percent of all combinations of devices and locations of devices on the body (365 combina-
tions across 231 studies) by body location and sensor/axis composition. The circles are sized relative
to percentage to provide visual comparisons for the frequency of device and location combinations.
ACC = accelerometer, GYRO = gyroscope, and MAG = magnetometer.

Figure 5. The percent of all studies that reported each metric. Note: studies often reported multiple
metrics, and therefore the sum of all percentages is greater than 100%. COM = center of mass;
ROM = range of motion.
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3.2.3. Analysis

The reported metrics across all studies are shown in Figure 5. The most common
metric was accelerometer magnitude, with vertical/axial, anterior–posterior, medial–lateral
and resultant magnitude reported in 64%, 23%, 18% and 26% of all studies, respectively.
(Note: studies often reported multiple metrics, and therefore the sum of the percentages
is greater than 100%.) The acceleration quantity was also reported in metrics such as
loading rate, PlayerLoad, power and stiffness, with loading rate being the most common
(9% of all studies). Shock attenuation was reported in 7% of all studies using time domain
calculations and in 8% of all studies using frequency domain calculations. Signal frequency
content was reported in 7% of all studies and the spectral power or energy was reported in
9% of all studies. Signal consistency, represented by metrics such as variability, symmetry
or regularity, entropy, and stability, was reported in 5% or less of all studies, each. Segment
(including center of mass) or joint kinematics were reported in up to 12% of studies, with
measures of displacement more common than measures of velocity.

In terms of a statistical approach, 91% of all studies used inferential statistics, 2%
used machine learning, and 7% presented results descriptively. The most common metrics
reported in studies that used a machine learning statistical approach were vertical/axial
magnitude, anterior–posterior magnitude, and joint angles or range of motion.

3.2.4. Participants

Half of the studies included male and female participants, 35% included males only,
3% included females only, and the sex of participants was not specified in 12% of all studies.
Participants were uninjured in 99% of all studies. The mean participant age within a study
ranged from 5 to 59 years, with an average of 27 years across all studies.

Recreational runners, non-runners and competitive runners were participants in 56%,
30% and 17% of all studies, respectively. (Note: some studies included multiple participant
types, and therefore the sum of the percentages is greater than 100%.) The average number
of participants reported for each participant type and sex is shown in Figure 6. With
an average of 25 participants per study, recreational runners had the greatest number of
participants per study, followed by non-runners (n = 20) then competitive runners (n = 14).
This pattern was consistent when separated by males and females, and the average number
of male recreational and competitive runners was greater than the average number of
females in each group.

Figure 6. The average number of participants for each participant type and sex. Averages are reported
across studies that included the given participant type and sex.
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3.2.5. Study Details

Studies were conducted in 27 different countries. The USA had the most studies (29%),
followed by Canada at 9%. In total, 39% of studies were conducted in 11 European countries.

One-quarter of the studies had interventions: 24% were quasi-experimental and 1%
were randomized controlled trials. Two-thirds of the interventions (17% of all studies)
were equipment-based and one-third (9% of all studies) involved training interventions.
The remaining 75% of studies were observational, and 95% of observational studies (71%
of all studies) used a cross-sectional study design. Prospective and retrospective cohorts
accounted for 2% and <1% of studies, respectively, and 2% of studies were case studies or
case control. The most common purpose (22% of studies) was to determine the validity or
reliability of metrics, and 16% of studies compared metrics. In 20% of studies, the purpose
was to identify changes in conditions not related to fatigue or different sessions. Differences
in gait due to group membership, fatigue and sessions were reported in 13%, 12% and 2%
of studies, respectively. Associations of gait metrics with performance and injury were
reported for less than 2% of studies, each. (Note: some studies had multiple purposes, and
therefore the sum of the percentages is greater than 100%).

3.3. Quality Assessment

There was an adequate amount of information provided for the conditions (92%
of studies), devices (91%), analysis (93%), participants (83%) and study details (100%).
Additionally, the relevance to running and IMUs was deemed appropriate for the conditions
(99% of studies), devices (100%), analysis (100%), participants (98%) and study details (99%).

4. Discussion

The primary purpose of this review was to systematically identify how IMUs are used
to record running biomechanics across real-world settings and describe the conditions
in which IMU data were collected. Identifying the characteristics of IMU-based running
biomechanical studies serves to mark the progress made and the steps that remain for
analyzing running gait in real-world settings.

4.1. Running Environments

Laboratory-based conditions are controlled and are often different from typical run-
ning conditions, as most runners complete their runs outdoors [243]. Additionally, loads
vary with each stride and a runner’s load capacity changes throughout a running ses-
sion [244], suggesting that assigning the same estimated load to each stride is not a suitable
approximation for the cumulative load in a running session. Therefore, it is important
to monitor running in actual real-world conditions, including over long distances. Yet,
despite the portability of IMUs [6,7], one of the main findings of this review is that running
biomechanics are mainly recorded with IMUs indoors, on a treadmill, at prescribed speeds,
and over small distances. Furthermore, the majority of studies that investigated running
in artificial environments have been published recently; there has not been a trend away
from laboratory-based conditions over time. It is unclear why researchers are using IMUs
to record running, but still have participants running in the laboratory, at controlled speeds,
on treadmills and/or over short distances. If the purpose of these devices is to capture
real-world running, we suggest that the research in this area should move out of the lab to
less controlled environments.

Several of the included studies compared running quality between surfaces, and the
findings underscore the need to observe runners in their actual running environment. More
unstable surfaces lead to less regularity and greater variability during running [5,142], and
the variance in outdoor data cannot be explained by indoor measures [31,95]. Moreover,
it is likely that not all metrics differ between the running conditions [245]. For example,
there was no difference in running power on a track compared to a treadmill [166]. Among
the four studies that compared tibial acceleration between treadmill and outdoor running,
the acceleration magnitude was either lower [241], greater [31,95], or not different [84,241]
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in outdoor conditions compared to on the treadmill, but in only one case did the outdoor
conditions represent an uncontrolled running environment [95]. We suggest that rather than
estimating what it is like to run outdoors, it would be helpful to use IMUs during actual
training runs, over longer distances and on surfaces that represent real-world running.

To our point, starting from 2015, some studies have followed athletes for uncontrolled
training runs or races [188,200–202,206,207,210–213,220,221,225–227,230]. A myriad of ex-
ternal factors, such as weather, traffic, and surface conditions, could influence how someone
runs and therefore, it is crucial to capture running patterns in the same settings that runners
actually run. Additionally, just as multiple trials are often used in a laboratory setting,
multiple runs are needed to establish running patterns in uncontrolled settings [213].

4.2. IMU Considerations

The ability to collect accurate and useful metrics from IMUs depends on the desired
metrics, the sensor specifications, device placement, running styles, and user capabilities [4].
IMUs intended for long term monitoring need to be user-friendly. The commercial devices
in the included studies were worn on the foot or upper or lower back. In contrast, the most
common position for devices among all included studies was on the shank, where tibial
acceleration in one or multiple axes was recorded. Tibial accelerations have been used in
the context of stress fractures as well as to gauge impact forces at the shank and how they
are distributed along the kinetic chain [32]. While devices designed for consumer use have
not been developed for placement on the shank, a research-grade device was used to record
tibial accelerations of nearly 200 runners during a marathon [95]. Future investigations of
impact forces in actual running conditions should consider devices and placement that can
be easily applied during long-term monitoring.

The metrics reported from accelerometer sensors, such as the magnitude of accel-
eration, loading rate and shock attenuation, are similar to metrics obtained from force
plates. When the gyroscope and/or magnetometer sensors in an IMU are used, the re-
ported metrics provide information on the kinematics, including segment and joint ro-
tations [28,48,51,53,55,76,102,106,113–115,127–129,134,140,144,145,148,157,181,183,186,188,
190,192,200,201,210–213,216,217,219,221,228,235]. While it is typical for IMUs to contain
multiple sensors, most included studies only used an accelerometer sensor, limiting the
reported metrics to those that resemble force plate metrics.

Many of the included studies were conducted in indoor settings because the purpose
of the study was to evaluate the validity and reliability of IMU-based metrics compared
to metrics from force plates or motion capture systems. Assessing strength of the validity
and reliability was not within the scope of this review; however, devices that demonstrate
adequate validity and reliability can be used in the field. Additionally, while metrics
reported from an IMU are often chosen to be similar to metrics from force plates and
motion capture systems, it is possible to report metrics specific to IMU signals (e.g., entropy,
regularity, and symmetry) that monitor movement quality [246].

4.3. Changing Running Biomechanics

It is expected that equipment or training interventions that lead to changes in running
biomechanics are needed to change injury rates. However, there is limited or conflicting
evidence on the relationship between modifications of running biomechanics and running
injuries [6,72,73]. It is also possible that lack of clarity on running injury risk factors is
related to evaluation of biomechanical metrics in a laboratory setting before and after an
intervention or injury observation, and not in the runner’s natural environment [2].

Short-term changes, observed within a laboratory session, may show how training
or equipment interventions can change running patterns [72,151]. Some studies use an
intervention that is more long term to allow for adaptation and assess movement patterns
at baseline and follow up to observe changes [20,154]. If biomechanics are only recorded in
a single session, or at baseline and follow up, it is possible to use laboratory equipment
(e.g., force plates and motion capture), but this does not reflect how runners run during
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real-world conditions. The benefit of IMUs is that movement patterns can be measured
during the intervention period in actual running settings to monitor changes over time. Yet
just two of the intervention studies from this review analyzed metrics from IMUs during
an intervention (i.e., not just pre- and post-intervention) that was greater than one session,
plus the intervention runs were conducted on a treadmill in both studies [154,218].

IMUs can also be used to observe changes in running patterns throughout a single run.
In studies investigating changes in running biomechanics due to fatigue, it is common to
have participants run to the point of exhaustion. Reaching a state of exhaustion as defined
in a study may occur in some training runs or races, but it is likely not a typical running
strategy for all runners. Thus, it is important to look at how running patterns change
during actual training runs. More prospective or retrospective studies are also needed that
look at how running patterns change over time, especially when those changes precede an
injury [4,8]. Only five of the included studies included injured runners [24,144,152,208,221].
Due to pain, running in an injured state is likely not representative of running prior to
injury. While some included studies involved runners that were previously injured and
others looked at runners that were eventually injured, the data on the running patterns
were only observed at a point when the runners were not injured. Regardless, IMUs can
facilitate continuous monitoring that will allow for observation of changes in running
patterns that lead to injury.

4.4. Participant Characteristics

Over 75% of runners use wearables, and most runners use wearable technology to
monitor spatiotemporal parameters, such as distance or speed [247–249]. Competitive
runners are more likely to use wearables to monitor running form or biomechanics than
recreational runners [249]. Even if runners are not personally using IMUs that monitor their
biomechanics, based on the results of survey studies, runners have a large appetite for using
and consuming data from wearable technology [247,249]. Yet the number of participants in
the included studies is low. Considering the popularity of running and runners’ attitudes
towards wearable technology, investigations of real-world running biomechanics should
be able to recruit large numbers of participants. A bigger pool of participants will enable
better comparisons across participant types and consider sex differences as injury rates
differ between sexes [250]. Based on race participation statistics, there are more female
than male runners [251]. However, consistent with previous findings that show females are
underrepresented in sport and exercise medicine research [252], we found that the running
and IMU literature is also heavily focused on male runners, with only 3% of studies being
female specific.

4.5. Limitations

There are some limitations to this review, based on the exclusion criteria. First, the
only type of wearable technology considered was IMUs. Limiting the search to only
IMUs excluded studies that only utilized GPS devices, which are very common among
runners [249]. Additional types of wearable technology that were not included in this
review are heart rate monitors, mobile phone apps that did not utilize the phone’s IMU
sensors, and pressure-sensing insoles. Second, studies were excluded if they only reported
spatiotemporal metrics. IMUs can be used to derive valid and reliable spatiotemporal stride
parameters that capture running quantity [253]; however, load magnitude and distribution
are also needed on a per stride basis to evaluate injury risk [244]. Finally, we excluded
studies that focused on the development of new technology or methods, which eliminated
some studies that reported novel machine learning algorithms. Whilst wearable technology
is a growing field, future advancements will hopefully improve our ability to monitor
real-world running.

There was no meta-analysis or formal quality assessment of each study as these are
not expected for a scoping review. Based on our subjective evaluation, nearly all studies
were appropriate to the topic of running and IMUs and contained adequate information for
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inclusion in this scoping review. Most likely, a more rigorous evaluation of study quality
would have revealed overall weak levels of evidence across this field of study. We leave it
to future systematic reviews and meta-analyses of specific outcomes and populations to
use objective protocols for evaluating study quality.

5. Conclusions

Despite the portability of IMUs, one of the main findings of this review is that running
biomechanics are mainly recorded with IMUs indoors, on a treadmill, at prescribed speeds,
and over small distances. While it is challenging to collect data in real-world conditions
due to the myriad of extrinsic factors such as weather, traffic, and surface conditions, our
results indicate the vast majority of studies do not capture running biomechanical data in
the same settings that runners actually run. Moreover, while it is typical for IMUs to contain
multiple sensors, most included studies only used data derived from the accelerometer
sensor and most studies involved placement of the IMU at the shank. Finally, the number
of participants in the included studies is low and our findings show that research is still
heavily focused on male runners, with only 3% of studies being female specific. Overall,
considering that the purpose of IMU devices is to capture real-world running, we suggest
that future research in this area should move out of the lab to less controlled and more
real-world environments.
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