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Large-Scale Mapping of Tree Species and Dead Trees in Šumava National Park and Bavarian
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Tree Species Diversity Mapping—Success Stories and Possible
Ways Forward

Markus Immitzer * and Clement Atzberger

Institute of Geomatics, Department of Landscape, Spatial and Infrastructure Sciences, University of Natural
Resources and Life Sciences Vienna (BOKU), Peter-Jordan-Straße 82, 1190 Vienna, Austria;
clement.atzberger@boku.ac.at
* Correspondence: markus.immitzer@boku.ac.at

Abstract: The special issue “Tree species diversity mapping” presents research focused on the remote
assessment of tree species diversity, using different sensor modalities and platforms. The special
issue thereby recognizes that the continued loss of biodiversity poses a great challenge to humanity.
Precise and regularly updated baseline information is urgently needed, which is difficult, using
field inventories, especially on a large scale. On such scales, remote sensing methods excel. The
work presented in the special issue demonstrates the great potential of Earth Observation (EO) for
addressing knowledge gaps, as EO provides rich (spectral) information at high revisit frequencies
and spatial resolutions. Many tree species can be distinguished well using optical data, in particular,
when simultaneously leveraging both the spectral and temporal dimensions. A combination with
other sensor modalities can further improve performance. EO approaches are, however, limited by
the availability of high-quality reference information. This complicates the task as the collection of
field data is labor and time-consuming. To mitigate this limiting factor, resources should be better
shared amongst the community. The reliance on in situ data also highlights the need to focus research
on the extraction of more permanent (i.e., species-inherent) properties. In this respect, we identify
and discuss some inherent limitations of current approaches regarding tree species discrimination. To
this end, we offer a more fundamental view on tree species classification based on physical principles.
To provide both a summary of the special issue and some stimulating thoughts about possible future
research directions, we structured the present communication into four parts. We first introduce the
need for biodiversity information, followed by a summary of all 19 articles published within the
special issue. The articles are ordered by the number of species investigated. Next, we provide a
short summary of the main outputs. To stimulate further research and discussion within the scientific
community, we conclude this communication by offering a more fundamental view on tree species
classification based on EO data and its biophysical foundations. In particular, we purport that species
can possibly be more robustly identified if we classify/identify them in the biophysical feature space
and not in the spectral-temporal feature space. This involves the creation and inversion of so-called
physically-based radiative transfer models (RTM), which take hyper/multispectral observations
together with their observation geometry (as well as other priors), and project these into biophysical
variables such as chlorophyll content and LAI etc. The perceived advantage of such an approach is
that the generalizability (and scalability) of EO based classifications will increase, as the temporal
trajectory of species in the biophysical parameter space is probably more robust compared to the
sole analysis of spectral data, which—amongst other perturbing factors—also depend on site/time
specific illumination geometry.

Keywords: tree species; classification; biodiversity; machine learning; feature extraction; optical data;
SAR; LiDAR; time series; radiative transfer model

1. Introduction

The IPBES report on Biodiversity and Ecosystem Services depicts an alarming and
shocking picture of the Earth [1]. With accelerating rates of species extinction, our environ-

Remote Sens. 2023, 15, 3074. https://doi.org/10.3390/rs15123074 https://www.mdpi.com/journal/remotesensing
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ment is declining globally at unprecedented rates. Transformative economic and societal
change is necessary, and will involve far-reaching alterations and actions at both local and
global levels. This issue was recently discussed at UN Biodiversity Conference COP15
in Montréal [2]. To cope with the pace of global change, amongst many other activities,
a rapid increase in knowledge about species numbers, compositions, and conditions is
required, as well as species interactions and environments [1]. This information should
possibly be condensed into quantitative measures of biodiversity [3].

Remote sensing provides the only feasible way to cost-effectively and repeatedly
measure and monitor land cover changes on large scale—while at the same time, allowing
a user to look as far back as the start of the space age, in the 1970s [4,5]. Today’s sensors on
platforms such as satellites, aircraft, and UAV provide a wide range of observational capa-
bility in terms of spatial, temporal, and spectral resolutions. Machine learning approaches
and computational capacity are improving quickly, offering huge potential for improved
data analysis, including “big data” and the development of powerful monitoring systems.
First efforts were undertaken to bridge gaps between Earth observation (EO) scientists on
one hand, and ecologists etc. on the other hand [3]. A first set of comprehensive essen-
tial biodiversity variables (EBVs) and how they can be monitored by EO technique were
defined [4,6,7].

2. Overview of Contributions

The special issue “Mapping Tree Species Diversity” aimed to collect scientific research
covering the following themes:

• biodiversity of forests, with respect to classical species diversity;
• the mapping of changes in diversity;
• the floristic composition of forests;
• invasive species;
• the functional diversity of forests.

In total, the special issue includes one review and 17 research articles. Despite the
limited number of studies, a wide range of different ecoregions could be covered. The
studies were conducted on all continents except Antarctica. With six studies each, there
is a focus on Europe and Asia, followed by Africa with three studies. One study each
was performed in North America, South America, and Oceania. As a result of the broad
geographical coverage, a relatively wide range of plant species and climatic zones were
examined, from boreal and temperate forests to tropical forests. It is also exciting that
numerous studies were carried out in forests that are subject to a certain protection category,
from biosphere parks to nature reserves and national parks, which shows the increasing
interest in monitoring such areas with EO data.

Most studies focused on the separation and classification of tree species or tree species
groups, using optical data from different platforms and sensors (Table 1). The review paper
summarized the current knowledge of LiDAR for tree species classification. Two studies
investigated the advantages of combining optical data with LiDAR and one with SAR
data. Most studies used spectral signatures or resultant spectral indices as discriminative
features, either derived from single scenes or multiple images. In addition to the well-
established Landsat and Sentinel-2 (S2) satellites, which provide high quality data free of
charge, commercial satellites with higher spatial resolution such as Worldview (WV)-2/3 or
Gaofen-1/2, were also used. Textural measures, and approaches borrowed from computer
vision, were used in the case of very high-resolution (sub-meter) data recorded by aircraft
and unmanned aerial vehicles (UAV). To separate and classify tree species, Random Forest
(RF) and Support Vector Machine (SVM) algorithms were most often used, in particular
when using (orbital) remote sensing data with metric to hecto-metric ground sampling
distance (GSD). A few neural network approaches were used when UAV data was analyzed.
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Table 1. Summary of the contributions to the special issue about tree species diversity mapping
describing the used data, location of the study, number of species considered (used for the order of
the table), used classifier, and achieved accuracy (GSD: ground sampling distance, MS: multispectral,
HS: hyperspectral, LS: Landsat, S1: Sentinel-1, S2: Sentinel-2, WV: WorldView, UAV: unmanned aerial
vehicle, ANN: artificial neural network, CNN convolutional neural network, RF: random forest, SVM:
support vector machine; OA: overall accuracy).

Data Type Platform Sensor Spectral Bands GSD
Temporal
Coverage

Location
Number of
Species *

Classifier OA (%) Ref.

LiDAR Review study 60–80 [8]

MS Satellite S2 10 10 m Multi-
temporal Senegal 1 ANN 91 [9]

RGB Airplane Different aerial
cameras 3 0.1 cm Bi-

temporal New Zealand 1 CNN &
XGBoost 83 [10]

MS Satellite LS 6 30 m Multi-
temporal Russia 2 RF 90 [11]

MS +
LiDAR

Airplane +
Helicopter

Xp-w/a|DMCIII;
RIEGL LMS Q 680i 4 55 pts/m2,

0.17/0.095 m
Mono-

temporal Germany 2–4 RF 87–98 [12]

MS Satellite LS8 6 30 m Multi-
temporal China 4 RF 79 [13]

RGB UAV RGB camera 3 0.003–0.5 m Serval flights Germany 4 CNN 92 [14]

MS Satellite Gaofen-1&2, S2,
LS8 2 (NDVI) 4, 10, 16, 30 m Multi-

temporal China 4 RF 85 [15]

MS Satellite WV-3 4 0.4 m Mono-
temporal China 6 CNN, SVM, RF 83 [16]

MS Satellite S2 10 10 m Multi-
temporal Serbia 8 RF 83 [17]

HS UAV 25 0.1 m 3 flights in 3 years Brazil 8 RF 50 [18]

MS Satellite WV-2 8 0.5 m Mono-
temporal Kenya 8 RF, SVM 70–73 [19]

MS Satellite WV-3 16 0.3 cm Mono-
temporal Canada 11 SVM, RF 75 [20]

MS +
LiDAR

Satellite +
Airplane

S2, RGB,
RIEGL LMS-Q680 3 + 10 3.6 pts/m2, 0.12 m,

10 m
Mono-/multi-

temporal China 11 SVM, RF 90–94 [21]

MS + SAR Satellite S2, S1 10 10 m Multi-
temporal Austria 12 RF 84 [22]

MS Satellite S2 10 10 m Multi-
temporal Austria 12 RF 89 [23]

MS Satellite Formosat-2 4 8 m Multi-
temporal France 13 SVM 48–60 [24]

HS Airplane AVIRIS 366 4 m Mono-
temporal India 20 SVM 86 [25]

* Sometimes, species were grouped into broader “classes”.

The review paper on LiDAR [8] pointed out that LiDAR data are currently often used
for the separation of only a few (2–4) tree species. In addition to geometry, the use of
the full-waveform and intensity features improves the classification performances. The
authors concluded that combinations with other data sources from the spectral domain are
promising, but also challenging.

Lu et al. [9] mapped Faidherbia albida, often used in Senegal’s agroforestry systems,
using multi-spectral S2 time series. The “reversed” phenology of this species, compared
to many other species in the region, did not show the expected clear signal. This was
explained by the spectral contribution of the herbaceous layer. Nevertheless, especially
with data from the senescence phase, the species could be detected very well, and thus, a
good data basis for management activities could be established.

Pearse et al. [10] highlighted the potential of deep learning approaches for the mapping
of one specific species (Metrosideros excelsa) based on RGB data from drones. Distinctive
phenological features like red flowers facilitate the recognition of the species but are not
mandatory. Higher spectral resolution and image quality would be helpful to distinguish
more species.

Tian and Fu [11] showed the possibility of EO data, in particular Landsat scenes, for
largescale mapping of the boreal forest cover in Siberia. They analyzed changes in the cover
of broadleaved and coniferous trees between 1985 and 2015. The quality of the 2015 map
was validated by using very high resolution (VHR) data (Gaofan-2).

Next to the separation of coniferous and broadleaved trees; the main aim in the study
of Krzystek et al. [12] was the mapping of standing dead trees which were separated in
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snags and among trees with crowns. Dead trees are often important habitats for fauna
and flora, and therefore, often a driver for biodiversity in forests. The work highlighted
the potential of ALS data for individual tree crown (ITC) approaches and the detection of
standing deadwood in a nature protected area (national parks) on the border Germany and
Czech Republic.

Well-executed topographic corrections are a prerequisite for the optimum analysis
of high-quality EO data. Dong et al. [13] found that the overall accuracy of classifications
models for four tree species in a mountainous area in the Shandong Province, China can be
improved by 4–13 percentage points by using better-suited topographic correction methods.
The use of vegetation indices (VI) can further reduce the influence of the topography and
can therefore improve the classification.

Egli and Höpke [14] analyzed UAV data acquired at different daytimes for tree species
classification with a convolutional neural network (CNN) and found that the models are
independent from illumination conditions. In contrast, the spatial resolution of the input
data has a strong impact on the classification accuracy. Decreasing the GSD/resolution
through resampling degraded the model results, however, the classification accuracy of a
human interpreter dropped much faster and earlier than the CNN models.

Xu et al. [15] analyzed the influence of the spatial resolution on tree species classifica-
tion in northeast China. They analyzed NDVI time series obtained by monthly data from
four different sensors with spatial resolution between 4 to 30 m for the separation of four
species. The 10 m data sets outperformed the other data sets. The use of additional metrics
describing the land surface phenology (LSP) improved the models. The study showed that
phenological parameters were not independent from spatial resolution.

Yan et al. [16] used WV-3 data with the four standard bands to distinguish tree species
in a park landscape in Beijing, China by using an ITC approach. They pointed out the
importance of high quality crown delineation for achieving good accuracies which is more
complicated in natural forests. The CNN outperformed traditional classifiers such as RF
and SVM while not needing a separate feature extraction step.

Kovačević et al. [17] used multi-temporal S2 data and analyzed different vegetation
types for the entire geography of Serbia. Their approach is based on a probability classifica-
tion model that considers the temporal information of the data sets and a spatial-temporal
aggregation. The authors also highlighted the challenges regarding reference data for the
classes of interest in terms of occurrence, recognizability, and demarcation.

Takahashi Miyoshi et al. [18] used UAV-borne hyperspectral data for their ITC ap-
proach in a study site in the Brazilian Atlantic forest. They found some differences in the
interpretability of the three flights, which were done in June/July of three consecutive
years. Different phenological stages and illumination conditions have an influence on the
models. They found that the added value of multi-temporal data has to be investigated in
detail with a more extensive reference data set.

Jackson and Adam [15] analyzed a WV-2 scene in a study area on Mount Kenia. They
highlighted the importance of the Red, RedEdge, and NIR bands for the separation of the
tree species. They used under and oversampling to generate a more balanced data set
which improved the classification accuracy slightly.

Varin et al. [20] combined WV-3 and LiDAR data to analyze ITC. Transferring the
canopy delineation done on the LiDAR canopy height model (CHM) to the WV-3 scene was
challenging. The different spatial resolutions of the bands, especially the SWIR bands, also
complicate the analyses. Therefore, they concluded that the 8-band data is preferable to the
16-band dataset. They also mentioned the problem of trees which were either not seen (too
small crown and/or located in the understory) or species which were not considered in the
reference data set.

Wan et al. [21] combined LiDAR data, aerial images, and S2 time series data in an hilly
forest in China. They found the data with higher spatial resolution were more important for
the species classification. However, the highest accuracies were achieved with the fusion
approach using all data sets.
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Lechner et al. [22] tested the combination of S2 and S1 data for the classification of
12 tree species in a biosphere reserve in Austria. A dense S1 time series (SAR) was able
to separate coniferous species quite well and also improved mono-temporal S2 models.
However, considerably higher accuracies were achieved by a multi-temporal S2 data set. In
this case, additional SAR data could not further increase the accuracy.

Immitzer et al. [23] analyzed, for the same study site, an extensive multi-temporal
S2 data set covering several years to identify the most important dates and bands to
distinguish 12 tree species. They showed the high importance of the Red band for the
separation of species in the coniferous group, the SWIR band for the broadleaved trees, and
the NIR for the separation between these two tree species groups. VIs further improved the
model performance when added to the spectral signatures. Spectral data sets with at least
5–7 scenes, covering the main phenological stages such as spring, summer, and autumn,
led to very good results.

Karasiak et al. [24] used multi-temporal, 4-band Formosat-2 data from several years
for tree species classification. The results showed that the usage of multi-temporal data
improves the model performance; however, the best dates for optical data acquisition
varied between years. They also tested different validation approaches and emphasized
the importance of the number and quality of reference samples.

Chaurasia et al. [25] used hyperspectral data to produce species abundance maps and
analyzed the intra- and inter-species spectral diversity for three test sites in India. They
found higher spectral diversity within abundant species and attributed this to improved
adaptation of these species to local conditions. Changes in species diversity over climatic
gradients were also observed, which can be important with respect to climate change.

3. Summary of Main Outputs and Findings

The work presented in this special issue re-confirmed a number of findings. For
example, no noticeable issues were reported in separating coniferous and broadleaved
trees, thus confirming many previous studies [26,27]. The main features permitting this
separation were located in the NIR, as in this spectral region the spectral differences are
largest (Figure 1).

Figure 1. Mean spectral signatures of tree crowns from seven Central European tree species using
airborne HySpex imaging spectrometer data. Species with reddish lines are broadleaved species;
green and blue lines indicate coniferous species. The data used for this illustration was also used in
the work of Maschler et al. [28].
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This points to an overwhelming impact of leaf optical properties, and in particular,
leaf anatomy (Figure 2a) [29,30]. Indeed, both empirical and physically-based leaf optical
properties models have demonstrated that the difference in leaf anatomy is the main
trait that makes needle leaves much less reflective in the NIR compared to leaves from
broadleaved trees [31]. All other conditions being identical, simulations using the forest
radiative transfer model INFORM [32,33] confirm this (Figure 2b).

Within the two broad tree species groups (broadleaved/coniferous trees), some species
can be distinguished relatively well, while others are more difficult to separate [26,34,35].
For example, some species are usually sufficiently separable in the VIS-NIR-SWIR optical
domain, while others are spectrally too similar to be distinguished. This overlap in spectral
signatures persists throughout the growing season and points to three main effects:

• Between several tree species, often only very small inter-class differences in leaf bio-
chemical and structural properties exist, leading to very similar leaf optical properties
(Figure 2a).

• Most species exhibit a relatively large intra-class variability of canopy properties [34,36].
Intra-class variability exist, for example in terms of differences in tree age, stem density,
growth form, and crown closure [37–39]. Additional intra-class variability results from
changes in weather and growth conditions.

• Even for relatively closed forests, the canopy reflectance is heavily impacted by the
optical properties of the forest floor, specifically, the type and amount of understory
vegetation [38,40,41]. This induces a large range of “background noise”, thus “widen-
ing” the spectral signature recorded by the sensor [42–44].

Figure 2. Cont.
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Figure 2. Impact of leaf/needle optical properties on canopy signatures. (a) Mean spectral signatures
of leaves/needles from seven Central European tree species measured in the laboratory with an
ASD FieldSpec Pro FR spectrometer following the method presented in Einzmann et al. [45]. Species
and colors are identical to Figure 1. (b) Simulations of forest canopy reflectance using the INFORM
radiative transfer model. For the simulations (n = 5000), leaf optical properties typical for broadleaved
species (red) and coniferous species (blue) were used. Other INFORM parameters were randomly
selected and kept identical for the two classes, so that solely differences resulting from the leaf optical
properties are shown.

Together, it is not surprising that the sometimes very strong and persistent overlap
of spectral-temporal signatures between two or more tree species cannot be untangled—
independent of which classifier is used [26,46–48].

With respect to the sole use of spectral vegetation indices (VI), the situation is even worse,
as spectral indices are only simple (equivariant) arithmetic combinations of 2–3 spectral bands
(e.g., with an infinite number of band combinations leading to the same VI value). VIs
should, therefore, never replace the spectral signatures, but should instead be added to the
predictive feature set, for example to provide some “correction” for undesired factors of
spectral variation [23].

In the same line of thinking, it is also unsurprising that accuracies obtained from
a limited band setting are usually not able to perform as well as using the full spectral
resolution [49]. Similar observations have been reported (Figure 3) when comparing single-
frequency SAR data in two polarizations to multi-spectral optical sensors [22].

As expected, spectral observations over multiple time steps facilitate species iden-
tification. As we will show later, multi-temporal (optical) time series inherently capture
and analyze the temporal (co)variation of the canopies’ structural characteristics and bio-
chemical composition. Analyzing such time series offer, therefore, strong improvements
compared to single date analyses. Similar findings were reported in other studies [50–53].
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Figure 3. Overall classification accuracy for 12 tree species based on Sentinel-2 (S2) and Sentinel-1
(S1) data: mono-temporal S2 data, two seasonal selections using the three worst and the three best-
performing S2 triples, and all available S2 data—alone and in combination with S1 phenological data
(adapted from Lechner et al. [22]).

As active sensor modalities, such as LiDAR and SAR, react primarily to canopy prop-
erties not/less strongly impacting the spectral signatures recorded by optical sensors (e.g.,
structural canopy properties other than LAI), the combination of optical data with the active
devices is generally beneficial. Similar findings have been reported in [27,54]. However,
the improvement is usually not overly strong, as the active data is often very noisy (in
particular, SAR) and/or focusing on a single vegetation trait (e.g., 3D structure/clumping
in the case of LiDAR). For the same reason, neither SAR nor LiDAR alone were able to
achieve the accuracies which can be achieved with optical (time series) data, confirming the
conclusion of the review paper by Fassnacht et al. [46]. The research studies in our special
issue also confirmed the importance of representative and comprehensive field samples [46].
When reference data are collected, foremost attention should be put on samples near the
decision boundaries in the respective feature space, as pointed out by Foody et al. [55].
Indeed, the “difficult cases” matter most when dividing the feature space into thematic
classes [56]. Compared to overly cleaned and curated data for training and evaluation,
these data generate more reliable error statistics. Several studies [47,50,57] highlighted the
fact that auxiliary variables such as altitude can help to improve the performance of tree
species classification models. Consequently, a representative distribution of reference data
for each class has to be ensured. Unlike spectral measurements, variables such as altitude
are not a true explanatory variable for actual occurrence of a species. A comprehensive
summary of the main findings and conclusions of our special issue, major limits, and
possible amendments, is provided in Figure 4.
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Figure 4. Summary of the special issue “Tree species diversity mapping”: main findings and conclu-
sions, limits, and possible amendments.
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4. A More Fundamental View Going Forward: Use of Physically-Based Approaches

The studies published in this special issue have in common the proposal of data-driven
machine-learning based approaches, in which the classification is performed in the spectral-
temporal feature space (e.g., based on spectral signatures and other spectral/temporal
metrics). We argue that this is possibly contributing to the reported difficulties, as spectral-
temporal features are not easily transferable across space and time, depend on observation
conditions, and are not necessarily species-inherent. As an alternative approach, we
propose instead, working in the feature space of biophysical variables retrieved using
appropriate forest RTMs. In our opinion, this has not yet been investigated enough.

To illustrate our statement, let us assume deca-metric, multi/hyper-spectral optical EO
data such as Landsat, S2, or EnMAP, where individual trees are not resolved. For simplicity,
we also ignore possible atmospheric perturbations and calibration issues in the EO data.
In this case, and under a more fundamental physical view, spectral signatures of trees
under a given illumination/observation geometry and at a given acquisition date (t), are
the expression of the biochemical composition and structural settings of the trees within
the IFOV of the sensor (see also discussion of Baret & Buis [58] with respect to agricultural
crops). If we denote the biochemical properties of the trees as Θbio, the canopy structural
properties as Θstruc, background properties as Θbg, and observation and illumination
geometry as Θview, this can be expressed as:

R(λ,t) = f(Θbiot, Θstruct, Θbgt, Θviewt). (1)

Important biochemical and structural variables are listed in Table 2. Note that the
tree-related variables themselves (short: Θtree = Θbio + Θstruc), and their temporal
(co)evolution within and across seasons, are the result of the growth and development of the
respective genotype under the historical/current environmental setting and management
practices (time-dependent notation here omitted for sake of clarity):

Θtree = f(gene, environment). (2)

In this context, it is also worth noting that the “growth form or habitus”, i.e., the
phenotypical expression of the genotype leading to the trees we literally see with our eyes
(Figure 5 right—examples of bark, branching, leaf form, growth form) is fundamentally
different compared to EO measurements. When we observe tree species with our eyes,
we tend to characterize and differentiate them based on leaf form, fruits and reproductive
organs, bark structure, habitus, tree growth form etc. (Equation (3)). The spectral signatures
of trees are predominantly influenced by factors other than the mentioned plant traits
(Equation (2)), unless specifically examining high-resolution data from centimeter-level
UAV and LiDAR analysis.

Human discernible plant traits (pheno-type) = f(gene, environment) (3)
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Table 2. Important biochemical and structural properties of trees. These biochemical and structural
variables determine the spectral signature of a tree canopy. In bold, the spectrally most important
variables. Note that understory/background variables are not included here.

Biochemical
Properties

Structural Properties

Micro-Scale Macro-Scale Meso-Scale

Chlorophyll A + B
content

Leaf structure Leaf Area Index Crown size

Leaf water
thickness

Leaf hairing Leaf angle
distribution

Gap size
distribution/gap fraction

Protein content Waxing Leaf clumping/
arrangement

Crown shape

Dry matter content/specific
leaf area Tree branching Stem density

Other photosynthetic
pigment content Leaf size

Non-photosynthetic
pigment content Leaf form

Figure 5. Tree species identification using (space-borne) EO measurements and human vision. Note
the fundamental differences resulting from the different perspectives: features that we literally see
from the ground (and partly from UAV and terrestrial sensors) (bottom right) and the spectral-
temporal signatures that we measure from space (top right).

Using remote sensing data at deca-metric spatial resolution, we thus capture a com-
pletely different expression of the tree’s geno-type, compared to computer/human vision
and centi-metric resolution UAV/LiDAR systems (Table 3).
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Table 3. Simplified enumeration of main traits and approaches used for the identification of tree
species using different sensor modalities from laboratory (genetics) to satellite-based Earth Observa-
tion. In the right-most column, our recommendation for future research.

Genetics
Botany &

Human Vision
Computer

Vision
LiDAR

EO
Current

EO
Recommended

DNS
analysis Leaf shape & size Crown

structure
Point-cloud

derived metrics
Spectral-temporal

features

Biophysical variables
(Table 2) extracted

using RTM

Bark structure
& color Crown shape Crown shape

Supervised
classification in spatial-

spectral-temporal
feature space

Learning of the temporal
co-evolution of derived

biochemical &
structural variables

Fruits and flowers Branching Branching
pattern

Branching pattern

Habitus/growth
form

From the above it is also evident that the link of tree species to the biochemical and
structural properties (Θtree) is inherently closer than the link to direct use of spectral
signatures, as the latter relation is shaped by external factors (Θbg and Θview) and sub-
jected to a strong time factor that limits generalization over large geographic regions. In
botany and human vision, on the other hand, one recognizes (more or less) permanent
and species-inherent properties (Table 4) that allow a trained observer to correctly classify
many different tree species as the observed traits are relatively invariant. Unfortunately,
the remote sensing literature is very short on attempts to retrieve the species-inherent
co-evolution of biochemical and structural properties (Θtree), even though this would
potentially lead to a more generalizable pattern.

Table 4. Important plant traits for human visual recognition of tree species.

Individual Tree Tree Components

Habitus/crown form/shape Size, shape, color, orientation of leaves/needles
Crown structure/branching Structure and color of bark

Color, shape, size, orientation of flowers
Color, shape, size, orientation of fruits

In our opinion, this idea amounts to more than a simple hypothesis. Indeed, the
fact that simple classifications of time series of spectral data are successful (at least to
some degree), provides strong evidence that such species-inherent structural/biochemical
pattern do indeed exist.

The relationships between the fundamental properties and the spectral signatures
have already been formalized and modeled using various kinds of RTMs (e.g., [31,59]).
Existing formalizations are mainly based on analytical expressions (e.g., SCOPE [60]),
3D geometric-optical models (e.g., FLIM [61]), and mixtures of both (e.g., INFORM [32];
PARAS [62,63]). In addition, ray-tracing models such as DART track the path of individual
photons as they interact with the canopy elements, where the canopy is discretized into
voxels with specific optical properties [64]. RTMs can be readily inverted using a panoply
of methods such as look-up-tables, numerical optimization, predictive equations, Bayesian
approaches and neural networks (e.g., [58,62,65]).

Existing radiative transfer models have definitively ample room for improvement, as
highlighted by systematic but irregular evaluations against each other, and some natural
and synthetic benchmark datasets (e.g., RAMI [31]). However, with some effort the models
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can certainly be improved so that the biophysical and biochemical traits can be derived
with sufficient accuracy, using remotely sensed data. This seems to be a more plausible
path towards robust and generalized models, compared to the current data-driven ap-
proaches. Indeed, as trees are living organisms embedded in their respective biotic/abiotic
environment, the spectral signatures will change over the course of the season and evolve
as trees age, as both the biochemical composition and the structural setting change/evolve.
Hence, instead of “viewing” the classification task in the wavelength and reflectance space,
(Figure 6a) one should, in our opinion, view species “living” in the space of Θbio and
Θstruc (Figure 6b).

Figure 6. Illustration of two hypothetical species (black and green) “living” in two different feature
spaces over the course of a growing season (t1 to t12): (a) shown in the 3-dimensional Red, NIR and
SWIR feature space; (b) temporal co-evolution of species in the 3-dimensional feature space of Leaf
area index (LAI), Chlorophyll A + B (Cab) and Water content (Cw).

Hence, from a physics-based deduction, as well as from an empirical inference, we
strongly believe that this under-researched area needs to be exploited in order to make EO
data analysis more generalizable across large geographic regions and more transferable
across time and space. This is needed not only for the classical applications of remote
sensing and biodiversity research, but also for more efficient implementations of financial
instruments such as nature-based solutions (NBS). The latter rely heavily on robust and
cost-efficient monitoring-reporting-verification (MRV) for supporting the development of
(voluntary) carbon markets, which progressively integrate attempts to protect/enhance
biodiversity.
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Abstract: Remote sensing techniques, developed over the past four decades, have enabled large-scale
forest inventory. Light Detection and Ranging (LiDAR), as an active remote sensing technology,
allows for the acquisition of three-dimensional point clouds of scanned areas, as well as a range of
features allowing for increased performance of object extraction and classification approaches. As
many publications have shown, multiple LiDAR-derived metrics, with the assistance of classification
algorithms, contribute to the high accuracy of tree species discrimination based on data obtained
by laser scanning. The aim of this article is to review studies in the species classification literature
which used data collected by Airborne Laser Scanning. We analyzed these studies to figure out the
most efficient group of LiDAR-derived features in species discrimination. We also identified the most
powerful classification algorithm, which maximizes the advantages of the derived metrics to increase
species discrimination performance. We conclude that features extracted from full-waveform data
lead to the highest overall accuracy. Radiometric features with height information are also promising,
generating high species classification accuracies. Using random forest and support vector machine as
classifiers gave the best species discrimination results in the reviewed publications.

Keywords: LiDAR; ALS; forestry; tree species; classification

1. Introduction

Forest inventories, consisting of the systematic collection of information about forests,
covers various spatial scales, from the stand level to the woodlot level, and from the
regional to national and global levels. Depending on the purpose of the inventory, different
scales require different levels of detail [1]. Getting complete information about a single
tree in traditional forest inventory is a challenging task. Inspecting large tracts of forest
areas is labor-, time-, and cost-intensive. Moreover, there exists a risk of not carrying out
a comprehensive assessment of all trees due to potentially limiting factors, such as the
area’s topography preventing entry to specific territories, a lack of access to protected areas,
or areas with dangerous wildlife [2]. Obtaining the spatial composition of tree species is
crucial for economic, ecological, and technical reasons, as well as being essential for forest
inventory. The importance of tree species maps has been highlighted in publications, as
standalone products for forest management and planning [3,4], as input for species-specific
growth and yields model, or for species-specific allometric models [5]. During the last four
decades, remote sensing (RS) techniques have developed into a standard in large-scale
forest inventory [1,6–14]. The acquisition of high-resolution data using RS techniques
with a relatively small set of field sample plots allows for the efficient and automated
forest inventory of large areas. Analysis on remote sensing data dedicated to forestry
have become an alternative to traditional inventory methods. Unfortunately, tree species
identification constitutes a bottleneck in remote sensing-based forest inventory. In optical
remote-sensed imagery, the differentiating features overlap, and bidirectional reflectance
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makes the analysis difficult. Recent developments in active remote sensing, particularly
Light Detection and Ranging (LiDAR) technology, have demonstrated great potential in
forest mapping, due to their capability to gather a three-dimensional point cloud of a forest
environment in a short time [15,16]. Laser scanning may be provided at:

1. Terrestrial level (Terrestrial Laser Scanning, TLS) for, among others, architectural
heritage [17,18], buildings [19–21], roads [22], and bridges [23,24]; or

2. airborne level (Airborne Laser Scanning, ALS), using a flying platform (aircraft, heli-
copter, or Unmanned Aerial Vehicle; UAV), for aerial objects such as forests [25–27] or
urban environments [28,29].

Airborne Laser Scanning systems consist of, among other things, a laser scanner, a
Global Positioning System (GPS) receiver, and an Inertial Measurement Unit (IMU). The
laser scanner uses laser light as an emission energy source and detects extremely minute
energy returns from distant surfaces. The laser scanner’s principle is to generate, release,
and capture reflected light radiation, as well as recording the associated data. The char-
acteristics of distant objects can be determined based on changes in the return energy
from object backscatter, while knowing the characteristics of the emitted laser light. The
3D positions of all measured points can be calculated when the laser scanner’s position
and orientation are known. This is why a GPS receiver is used to register the flying
platform’s position, while the IMU simultaneously records attitude parameters at every
measurement time [16,30]. Airborne laser scanning has gained acceptance as a rapid and
accurate method for collecting georeferenced data as a three-dimensional point clouds for
forest and urban environment surveying. Many publications have presented promising
results for determining tree parameters based on LiDAR data. The studies performed
so far have concerned the determination of parameters such as the location of the tree
trunk, height, crown size, crown base height [31–33], species [27,34,35], type of the tree [36],
stem volume [37–41], diameter at breast height [37], and biomass [42]. LiDAR data has
been found to be advantageous for tree detection, being less affected by occlusions and
shading than passive optical data [43–45]. Tree detection corresponds to the extraction
of data that represents a tree, or a group of trees, in an entire geospatial data set. There
are two commonly used approaches to relate source data to ground-measured response
variables: Area-based approach (ABA) and individual tree crown (ITC) methods [46–48].
ABA methods provide statistically calibrated maps of forest stand parameters, which are
useful for large-area inventories. ITC is referred to as single tree extraction, the smallest
unit in the forest inventory, to present the spatial distribution of a single tree and its basic
features (e.g., height, species, crown size) [48,49]. Latifi et al. (2015) emphasized that both
ABA and ITC methods are appropriate for forest inventory. Naturally, these methods have
some advantages over the others: ABA does not for allow the recognition of individual
tree characteristics, while ITC does not detect trees in the understory and young, dense
forest stands. A considerable group of raster-based approaches is available for single tree
extraction which uses a canopy height model (CHM), a raster surface interpolated from
LiDAR points hitting the tree canopy surface, as basic information. CHM methods have
been often used in commercial and business environments, due to the speed of processing
and format accessibility of the software. Unfortunately, these methods introduce errors
and uncertainties due to the interpolation methods, grid spacing [50], or CHM smoothing
filters [51,52]. These errors affect the subsequent estimation of tree metrics, leading to un-
derestimation or overestimation of tree height. Over the years, more sophisticated methods
for tree delineation on LiDAR data have been explored and described, with normalized-cut
segmentation, supervoxel algorithms, graph-based approaches, and others [46,53–57]. Tree
segmentation is an essential step in obtaining the characteristics of the specified object used
in the classification. Accurate and proper extraction of the object is a key to achieving high
accuracy in determining the object’s features, which have an impact on species classifica-
tion results [48,58,59]. To ensure and improve the correctness of tree extraction, manual or
semi-manual approaches for tree identification have been used in many studies [43,60,61].
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Unfortunately, manual and semi-manual tree extraction is time-consuming and challenging
to implement in large-scale data sets.

The motivation for writing this review was an interest in the commercial market for
species recognition based solely on LiDAR data. We reviewed research on tree species
classification based on LiDAR data acquired by ALS. The objective of this article answering
the following questions:

1. What LiDAR features are the most effective for tree species classification?
2. What is the most effective classification algorithm to take maximum advantage of the

information extracted from LiDAR data to potentially increase the accuracy of tree
species classification?

The remainder of this article is structured as follows: Section 2 describes the review
procedure, quantification of species classification efficiency, and LiDAR-derived features
and classifiers that might be used for species discrimination. Section 3 presents the results
of an analysis of the effectiveness of LiDAR metrics and classifiers in species classification.
Finally, in Section 4, our conclusions and discussions are drawn.

2. Materials and Methods

2.1. Review Approach

In this paper, we review recent publications about tree species classification performed
on ALS data, with LiDAR-derived features used for the classification. In total, 44 publica-
tions were reviewed. From these publications, we dismantled comparative studies into
sub-studies and treated them as individual cases. In this way, we obtained 97 study cases
in total. We would like to point out that some reviewed publications described experiments
based on LiDAR data combined with diverse sensor data (e.g., multispectral, hyperspectral,
satellite imagery). We have included them in this review, but only within the scope that
corresponds to LiDAR data [42,59,62–68].

The reviewed tree species classification studies presented many approaches to species
classification using LiDAR-derived metrics. Scanning data was acquired under various
conditions and using different sensors. There were different referenced data, very often
different species to be recognized, and different methods of tree segmentation. In this
paper, we focus only on verifying the effectiveness of groups of features and algorithms
in species discrimination. We analyzed their performance by comparing the accuracies
developed in every experiment.

2.2. Accuracy of Species Classification

The overall accuracy (OA) and, usually, the κ coefficient were calculated to quantify
the species classification capability in the studies. The overall accuracy is calculated from
the number of trees correctly classified relative to the total number of trees, while the κ
coefficient is the proportion of chance-expected disagreements that do not occur, or the
proportion of agreement after the chance agreement is removed from consideration. κ is
calculated by Equation (1) [69]:

κ =
N ∗ ∑m

i=1 Xii − ∑m
i=1(Xi+ ∗ X+i)

N2 − ∑m
i=1(Xi+ ∗ X+i)

, (1)

where:

N—the total number of samples,
Xii—the value on the diagonal of the confusion matrix,
m—the number of classes/species, and
Xi+, X+i—the sums of values on the ith row and ith column, respectively.

There is an agreed explanation for the κ coefficient, the value of which ranges from
−1 to 1. When κ is less than 0, it indicates less than chance agreement; κ from 0.01 to
0.20 indicates slight agreement; 0.21–0.40: fair agreement; 0.41–0.60: moderate agreement;
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0.61–0.80: substantial agreement; and κ from 0.81 to 0.99 indicates almost perfect agree-
ment [70]. Following Wang and Liu (2018), classification approaches that develop high
overall accuracy also produce a high κ coefficient. κ values can be significantly lower than
the overall accuracy. This might be observed in tree classification results, when the number
of delineated species is too small or when there is a dominant species with a vast sample
size [71].

Additionally, we analyzed the Number of Categories Adapted Index (NOCAI) to
compare the accuracy of species classification. We calculated NOCAI due to suggestions
that it is a more reasonable comparator than overall accuracy [71,72]. NOCAI is calculated
by Equation (2):

NOCAI = OA ∗ 1
k
∗ 100%, (2)

where:

OA—overall accuracy, and
k—the number of identified species ( 1

k is expected to be achieved if trees were randomly
assigned to a species).

NOCAI provides a more legitimate basis for comparison when different numbers of
species are identified, by excluding the influence of species number in a defined approach.
Higher NOCAI values suggest that the developed approaches for tree species classification
are more efficient [72].

2.3. Lidar Features for Tree Species Classification

LiDAR data represent scanned objects in point cloud form. Every measured point
stores additional information that might be used during the classification process. LiDAR-
derived features can be classified into three major groups: geometric, radiometric, and
full-waveform features. Geometric metrics describe the point cloud structure representing
an object (or part of it) in 3D space. Radiometric parameters relate to the point’s radiometric
characteristics, while full-waveform metrics are characteristics assigned to the backscatter
waveform [73].

All LiDAR-derived metrics can be determined based on a series of features derived
from laser scanning, referring to vertical and horizontal structure of the scanned objects
point cloud, the intensity of the backscattered signal, number of returns and return number,
and parameters from the full-waveform decomposition. Structure parameters with the
assistance of other LiDAR features, such as discrete-return intensity, return or echo types,
and full-waveform intensity response can help to obtain complex information for forest
inventory, especially for tree classification.

2.3.1. Geometric—Point Cloud

Laser scanning registers different tree foliage distribution and canopy branching struc-
tures, which are often typical for the specified species, thus helping with their recognition
during species classification [74,75]. Geometric features used for tree species classification rep-
resent the tree’s shape and geometry, or those of its parts [73]. Apart from height information,
more complex LiDAR-derived geometric metrics that represent tree spatial neighborhoods
in 3D or 2D (two-dimensional), such as grid, raster, voxel, or height layers of neighboring
points, are valuable. Geometric features are regularly expressed in statistics, such as the
arithmetic mean of the normalized height, standard deviation of normalized height, range of
normalized height of all points, ratios of crown base height to tree height, ratios of crown
volume to the crown area, and more. As well as a vast range of height statistics, there are
many features describing the point distribution, such as kurtosis, skewness, penetration,
percentiles of height distribution of points in the cluster, density, and number of points in
the 10th level layer of the tree height [34,35,59,76]. Geometric tree features that might be
obtained from LiDAR data, along with detailed definitions, are given in Table 1.
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Table 1. Geometric features extracted from normalized LiDAR data.

Feature Definition

Hmax Maximum of the normalized height of all points
Hmin Arithmetic mean of normalized height of all points above stated in meters

threshold
Hstd Standard deviation of normalized height of all points above stated in

meters threshold
Hmed Median of the normalized height of all points
Hrange Range of normalized height of all points above stated in meters threshold
HP10 to HP90 10% to 90% percentiles of normalized height of all points above stated in

meters threshold with a 10% increment
P Penetration as a ratio between number of returns below stated meter and

total returns
CA Crown area as the area of 2D convex hull
CV Crown volume as the 3D convex hull
CD Crown equivalent diameter calculated from crown area considering crown

as a circle
As Asymmetry as a difference between two crown diameters taken in two

directions
dns Canopy density
D1 to D10 Density at a fixed height. Di = Ni/Ntotal , where i = 1 to 10, Ni is the

number of points within ith layer when tree height was divided into 10
intervals starting from specified meter, Ntotal is the number of all points

The shape of the tree crown might be advantageous for species recognition, as it
is species-dependent. This has been confirmed, by Ørka et al. (2009), who pointed out
that the major difference between spruce and birch is the rounder crown of birch and the
conical shape of a spruce crown. Holmgren et al. (2008) indicated that Scots pine can be
separated from spruce and deciduous trees based on the tree’s relative crown base height,
as Scots pine has a higher crown base than other species. However, Holmgren et al. (2008)
emphasized that the height of the base crown varies in the group of species and may
depend on factors not included in the classification process. Axelsson et al. (2018), for
tree species classification, used geometric features to identify variations between species
with large leaves and a dense crown and other species with thinner leaves and a sparser
crown. Spheroid-type ellipsoid layers fitted to the tree’s crown points defined differences in
density and reflectance inside and outside the crown. This approach allowed the authors to
find structural and spectral combinations for species recognition. Their experiment results
indicated that the outer ellipsoid layers, as the highest horizontal layer of the tree crown,
were highly ranked as one of the most effective features for species discrimination [76].
The same conclusions have been reported in previous investigations by Heinzel and Koch
(2011) and Shi et al. (2018).

There have been many investigations in which the features of the crown’s internal
structure were identified and used for species classification. Li et al. 2013 developed
algorithms to describe the internal structure of an individual tree crown and to test the
effectiveness of those features for species recognition. LiDAR-derived features character-
ized the 3D texture, foliage clustering degree relative to tree envelope, foliage clustering
scale, and gap distribution of an individual tree in horizontal and vertical directions. The
approach developed an overall accuracy of 77.5% (κ = 0.7) for the classification of four
species. Li et al. 2013 emphasized that the extraction of trees performed in the experiment
needed improvement, such that the overall accuracy of classification could be even higher.
Harikumar et al. (2017) presented a method of conifer species classification based on in-
ternal and external crown structure features. They defined new internal crown features
using a novel internal branch structure model. This model uses a 3D region growing and
principal component analysis to precisely delineate the branch structure. The proposed
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approach developed an overall accuracy of 93.7% for species classification; its effectiveness
was also confirmed in conifer species recognition. Further experiments with the recom-
mended method are needed, to consider the effects on the modeling process of crown
overlap and understory vegetation, damaged trees with missing branches, or trees with
non-symmetrical crown shapes. Features that represent the internal crown structure are
useful in tree species classification [77–79]. Extraction of such features requires highly
dense LiDAR data. The reviewed studies confirmed that the species classification effective-
ness depends, among others, on the point cloud density [77,80,81]. Höfle et al. (2012) [82]
investigated the effect of data density on classification and showed that classification accu-
racies remain relatively stable for point densities higher than 5 points/m2. Li et al. 2013
investigated a positive linear correlation (R2 = 0.88) between the LiDAR data point density
and species classification accuracy. Their examination showed that higher overall accuracy
of species classification was developed on the dense point cloud: For a point density of
2–5 points/m2 the overall accuracy was approximately 50% while for over 50 points/m2,
the overall accuracy increased to 70%.

Some reviewed studies have shown that using geometric features solely for species
classification generates low overall accuracy, compared to the classification accuracy obtained
while using radiometric features, a combination of geometric and radiometric metrics, or
full-waveform metrics. Observed misclassifications while using only geometric features
might be due to many factors, such as similarities of morphology among different species,
structural variations within the same species, the point cloud density, and so on. LiDAR
height distribution might be useful for species discrimination for the forest tree species with
different heights, but ineffective for multi-layered forest stands with smaller trees below the
top-most canopy layer [83].

Therefore, species classification based on LiDAR-derived geometric features remains
a demanding task in different types of forests [59].

2.3.2. Radiometric—Intensity and Reflection Type

The maximum energy of the backscattered echo, which represents the reflectivity of
every point measured by the laser scanner as an intensity [16], has been demonstrated to be
a useful and very promising feature in the tree species classification process [36,74,75,83,84].
Intensity features that might be derived from single-channel ALS data, along with explana-
tions, are given in Table 2.

Table 2. Single-channel intensity features derived from LiDAR data.

Feature Definition

Imin Minimum of intensity
Imax Maximum of intensity
Im Mean of intensity
Istd Standard deviation of intensity
Icv Coefficient of variation of intensity
Imed Median of intensity
Isk Skewness of intensity
Irange Range of intensity
Ikut Kurtosis of intensity
I10to90 Intensity value at percentiles from 10% to 90% with 10% increment

The backscattered signal intensity is related to the foliage type, leaf size, leaf orientation,
and foliage density [43,80,85]. Many studies have presented that the combination of LiDAR
height information with radiometric features could achieve the complementary advantages
of different details and generate better results for species classification [34,76,79,80,83,86]. In-
tensity features generate a higher accuracy of tree species discrimination when used together
with geometric features, compared to the results generated with geometric or radiometric
features alone [34,76,79,83,86,87]. Zhang and Liu (2012), while researching the effectiveness
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of classifiers for tree species classification, analyzed three sets of LiDAR features—structural
features alone, intensity features alone, and a combination of structural and intensity
features—for the classification of three species. Their results showed that intensity fea-
tures alone generated lower overall accuracy (OA = 75.4%) of species classification than
structural features alone (OA = 88.6%), while a combination of both variables yielded
better overall accuracy (OA = 92.8%). You et al. (2020) also studied species classification
based on LiDAR height, intensity, and a combination of height and intensity parame-
ters. Their results showed that structural features generated the lowest overall accuracy
(OA = 87.54%), not the intensity features, as in the study of Zhang and Liu (2012). The
combination of both features gave the best overall accuracy (OA = 92.35%), in agreement
with the results of Zhang and Liu (2012). Lin and Hyyppä (2016) proposed a modular
framework for species classification based on deriving LiDAR data feature parameters of
point-distribution, laser pulse intensity, crown (internal), and tree (external) structures. The
accuracy of species classification based on point-distribution features generated the lowest
overall accuracy (65.0%), as in other studies [83]. Intensity features generated 80.0% overall
accuracy, crown-internal categorized 85.0%, while the integration of all individual optimal
parameters generated the highest classification overall accuracy of 92.5%. The approach
proposed by Lin and Hyyppä (2016) was presented as an effective tree species classification
framework that, among others, reduces the complexity of determining which combination
of feature parameters gives the best classification result.

In many studies, the type of reflection has been analyzed for species classification.
Ørka et al. (2010, 2012) analyzed LiDAR-derived intensity metrics and echo categories
to delineate tree species. Their results showed that first-returns provided the most in-
formation for species classification, single-returns the least information, and last-returns
offered additional information. Ørka et al. (2010), for two sets of LiDAR data, emphasized
that the most important classification features seemed to be normalized heights from the
last echoes, density features from the last echoes, and intensity features from the first
and last echoes. Different echo categories were affected differently by canopy conditions.
Reitberger et al. (2008) found that the mean intensity of laser echoes inside the tree led to a
higher classification of species accuracy than the mean intensity of the upper 10% of the
tree crown. Korpela et al. (2010) compared tree species classification based on data from
two laser sensors (data sets) with a one-year temporal mismatch using the first-or-only
echo intensity features. Their results suggested that leaf size, orientation, and foliage
density affect the intensity, therefore making it not affected only by reflectance. In their
experiment, intensity normalization improved the classification performance in the data
from each sensor (ALTM3100 sensor OA = 83.5%, improved by 1.8%; ALS50 OA = 88.5%,
improved by 5.9%), as well as in the combined data set (OA = 90.8%, improved by 5.7%).
Hovi et al. (2016) and Shi et al. (2018) confirmed the results of Korpela et al. (2010) that
only returns were informative of tree species and less sensitive to structural differences
within the species, compared to the first or single returns. Shi et al. (2018) emphasized
that the mean intensity of first or single returns and the mean value of echo width are
the most powerful LiDAR metrics for tree species classification, in agreement with the
previous studies of Yao et al. (2012), in which the results showed that the mean intensity in
the entire tree is the most crucial feature in the leaf-on case and the mean pulse width of
single and first reflections in an entire tree segment works better in the leaf-off condition.
Vauhkonen et al. (2010), in a study on spruce and pine classification based on laboratory
measurements with active hyperspectral LiDAR instrument data, tested whether these
species could be separated using combined range and reflectance measurements. The anal-
ysis focused on pulses that penetrated through the foliage, improving species classification
accuracy with very similar reflectance properties. Vauhkonen et al. (2010) found out that
species with highly similar reflectance properties can be better distinguished by analyzing
the reflectance values of the types of returns separately.

Most ALS systems use one wavelength scanner, either near-infrared or shortwave
infrared. The recently developed technique of Multispectral Laser Scanning (MLS) allows
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for the acquisition of a dense point cloud with additional spectral information of three
different wavelength channels: 1550 nm, 1064 nm, and 532 nm. As a single-sensor solution,
MLS is currently becoming an innovative tool for providing tree-specific valuable informa-
tion required for forest mapping (i.e., structure and reflectance). Having broader spectral
information could simplify the processing of data and facilitate its interpretation. However,
the cost of data acquisition with MLS is higher than acquisition with aerial spectral sensors
and ALS on the same flight. Nevertheless, it is expected that MLS acquisition costs will
decrease as MLS techniques advance [34]. MLS has a great potential for the species classifi-
cation process, which has been emphasized in many publications [34,35,76,88]. Features
derived from multispectral ALS data that might be used for species classification are given
in Table 3.

Table 3. Multi-channel intensity features derived from LiDAR data.

Feature Definition

Ii
min Minimum of intensity of ith channel

Ii
max Maximum of intensity of ith channel

Ii
m Mean of intensity of ith channel

Ii
std Standard deviation of intensity of ith channel

Ii
cv Coefficient of variation of intensity of ith channel

Ii
med Median of intensity of ith channel

Ii
sk Skewness of intensity of ith channel

Ii
range Range of intensity of ith channel

Ii
kut Kurtosis of intensity of ith channel

Ii
10to90 Percentiles of intensity of ith channel from 10% to 90% with 10%

increment
I1+2+3, I1+2, I1+3, I3+2 Intensity computed from combined set of echoes from different

channels
Ii
F/(I1 + I2 + I3) Ratios of intensity features, F refers to different single-channel

intensity features
I3/I2, I3/I1, I2/I1 Ratios of intensity features
(I2 – I3)/(I2 + I3) Index of intensity features

Yu et al. (2017) performed a study assessing tree classification using a different combi-
nations of features gathered by MLS: point cloud features alone, single-channel intensity
features, multi-channel intensity features, point cloud with single-channel intensity fea-
tures, and all features combined. The highest overall accuracy of 85.9% for three species
classification was generated using point cloud and single-channel intensity features. In
contrast, the lowest overall accuracy (OA = 76.0%) was produced by point cloud features
alone. The results showed that there is no significant difference in classification accuracy
while using single-channel features (OA = 85.42%), single-channel and point cloud features
(OA = 85.59%), or all features generated from the three channels (OA = 85.6%). This means
that the point cloud features did not improve the accuracy of the species classification.
Moreover, using multi-channel intensity features (OA = 81.60%) for species classification
did not provide more information than single-channel intensity features. Yu et al. (2017) em-
phasized that additional information provided by multispectral laser scanning might be a
valuable source of information. Still, as the results above showed, it cannot guarantee higher
accuracy of tree classification. In a recent study, Kukkonen et al. (2019) compared the results
of three main species classification using MLS with unispectral LiDAR (1064 nm wave-
length channel) and showed that multispectral LiDAR obtained better results (OA = 88.2%,
κ = 0.79) than unispectral LiDAR (OA = 85%, κ = 0.72). It should be noted that in the
study of Kukkonen et al. (2019), multispectral LiDAR predicted broadleaved trees much
better (PA = 51.1%) than unispectral LiDAR (PA = 16.8%). Yu et al. (2017) also confirmed
that multi-channel intensity features are powerful while classifying birch (point cloud
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features PA = 45.8%, MLS features in the best scenario PA = 70.99%). In the experiment
of Kukkonen et al. (2019), pine and spruce prediction for both multispectral and unispec-
tral LiDAR was comparable. Kukkonen et al. (2019) also compared the results of three
main species classification using multispectral LiDAR and unispectral LiDAR with 4-band
aerial images collected at a different times. Their results showed that the overall accuracy
of the classification performed on fused unispectral LiDAR data with aerial imaging is
comparable to the overall accuracy of species classification performed on multispectral
LiDAR data. Krüger geb. Amiri et al. (2018) simulated an MLS sensor by combining two
different LiDAR sensors providing three wavelength channels and marked that the third
spectral channel (532 nm) did not have any meaningful effect for tree species classification.
Budei et al. (2017) examined discrete-return MLS data for identifying species and concluded
that species identification accuracy could be improved by using MLS, mostly when the
number of species classes is relatively high (seven or more species).

LiDAR intensity data contain plenty of information about different forest tree species.
Unfortunately, it still has some limitations for tree species with similar canopy reflectances.
Some of the reviewed publications have presented that the combination of intensity and
height metrics could lead to complementary advantages in tree species classification, thus
generating better results [34,76,79,80,83,86].

2.3.3. Full-Waveform Metrics

Some studies have demonstrated the high potential of full-waveform data for tree
species classification by applying a set of LiDAR full-waveform features [4,36,37,60,84]. In
general, full-waveform LiDAR systems sample and record the entire backscattered signal
intensity at regular time intervals, unlike discrete-return LiDAR systems. To normalize
information and decrease sources of errors in further processing steps, pre-processing of the
signal is used. A cross-section profile can be directly derived from the recorded waveform
and mapped into 3D data using deconvolution techniques. Extraction of detection peaks
from the waveform can be also performed with a decomposition algorithm [89,90]. The
most commonly used method is Gaussian decomposition, which is used to fit a generalized
Gaussian function, according to the Levenberg–Marquardt algorithm [90]. Metrics that can
be derived from the full waveform include, among others, the height of median energy,
waveform extent, waveform distance, number of peaks, roughness of the outermost canopy,
front slope angle, and return waveform energy [91–93]. All these metrics have physical
explanations; for instance, waveform extent relates to maximum tree height, while return
waveform energy describes the canopy surface characteristics. Features that might be
derived from full-waveform decomposition for species classification are given in Table 4.

Table 4. Single waveform LiDAR metrics.

Feature Definition

WD Waveform distance–distance between waveform begin and the ground (last
peak)

WE Waveform extent–distance between waveform begin and end
HOME Height of median energy–distance from waveform centroid to the ground

(last peak)
HTRT Height of median energy/canopy height ratio
FS Front slope angle–vertical angle from waveform begin to the first peak of

canopy return energy
NP Number of peaks–number of detected peaks within each normalized com-

posite waveform
Hx x% quartile height from 25% to 100% with 25% increment–elevation at x%

of the returned energy subtracted by the ground elevation
ROUGH Roughness of outer canopy–distance from the waveform beginning to the

first peak
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Table 4. Cont.

Feature Definition

RWE Return waveform energy–the area below the waveform between beginning
and end

GE Ground energy–total intensity of the last mode
CE Canopy energy–difference between return waveform energy and ground

return energy
GRND Ground return ratio–ground return energy divided by canopy return energy

Hovi et al. (2016) studied four LiDAR data sets acquired within 4 years for the classifi-
cation of three species and concluded that waveform features outperformed the discrete-
return intensity data (OA = 74–85%, κ = 0.57–0.75 vs. OA = 84–91%, κ = 0.74–0.86 for
manually extracted trees; OA = 78–89%, κ = 0.64–0.82 vs. OA = 88–95% , κ = 0.79–0.91
for trees extracted by watershed segmentation). Improvements in this experiment were
ascribed to the total backscattered energy feature. Reitberger et al. (2008) presented an
approach for the decomposition of full-waveform data, using full-waveform features for
the classification of deciduous and coniferous trees. The full-waveform decomposition
provides additional attributes for the detected points, such as the intensity and pulse
width, which improved the classification results in general. Additionally, full-waveform
decomposition provided increased spatial point density, which allowed the internal tree
structure to be highly resolved. With the proposed approach, an OA = 85.4% of classi-
fication was generated in leaf-on condition, while OA = 95.7% was obtained in leaf-off
condition. In the study of Reitberger et al. (2008), the pulse width turned out to be the
feature that provided the best result in the leaf-on case. Yao et al. (2012) demonstrated
the usefulness of full-waveform features for tree segmentation and species classification
of deciduous and coniferous trees, achieving OA = 95%. Heinzel and Koch (2011) found
that the most important full-waveform parameter for species delineation was the mean
intensity (singular reflections have the highest impact), the median of the width, and the
mean total number of targets within a beam (all reflections). Heinzel and Koch (2012)
investigated five multiple data sources (full-waveform, height, texture, hyperspectral, and
CIR metrics) and showed that features derived from full-waveform data generated the
highest classification accuracy (OA = 79.22%) for four species. In contrast, LiDAR features
generated one of the lowest overall accuracies (OA = 47.27%). Their experiment showed
that using combined features from all groups for species classification generated the great-
est overall accuracy (OA = 88.03%). The combination of full-waveform backscattering
properties with other metrics has a high potential for tree species classification, which
has also been emphasized in other studies [81,94]. Yu et al. (2014) compared the results
of three tree species classification using low-density LiDAR data (average 1 pulse/m2)
obtained with full-waveform features for the classification, discrete-return features, and a
combination of those features. The best overall classification accuracy (OA = 73.4%) was
generated when full-waveform features were included in the classification with features of
discrete-return. Classification with solely full-waveform features developed OA = 71.5%,
while only discrete-return features developed OA = 62.1%. The results suggested that
full-waveform LiDAR data contains more information about structural and physical prop-
erties. Zhou et al. (2018) [95] investigated the capacity of full-waveform LiDAR data for
species identification through the integration of waveform metrics with random forest
and conditional inference forest methods and Bayesian multinomial logistic regression.
Their experiment showed that composite waveforms are more informative than raw wave-
forms and waveform-based point clouds for characterizing tree species in the study area.
Cao et al. (2016) indicated that full-waveform LIDAR data have significant potential for
classifying tree species in subtropical forests. In their study, full-waveform metrics were
extracted using a voxel-based composite waveform approach and tested to distinguish
species at three levels of discrimination. The applied approach ensured a relatively high
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accuracy of species classification: OA = 68.6% for six species, OA = 75.8% for the four
main species, and OA = 86.2% for conifers and deciduous trees. Full-waveform metrics,
based on the height of median energy, waveform distance, and several waveform peaks,
showed high classification importance and were stable across various voxel sizes. The
obtained results indicated that voxel-based approaches can alleviate some of the problems
associated with large scanning angles. Blomley et al. (2017) presented a novel methodology
to derive features for tree species classification by capturing the geometric distribution of
laser scanning returns or their waveform attributes. The spin image algorithm used in this
approach relies on spinning the image plane around a specific axis, collecting the number
of LiDAR returns or mean values of returns attributes per pixel as respective values. The
results showed that the used approach improved the classification of three species in almost
all test cases for two waveform LiDAR data sets that differed in footprint size, pulse width,
density, and laser wavelength. Although the basic classification accuracy given by the
non-spatial metrics was very high (OA = 90.1% for the LMS-Q680i data set, OA = 90.5% for
the ALS60 data set), the overall improvement in the combined case of a spin image with
non-spatial metrics was equal to 1.1% for LMS-Q680i data and 2.0% for ALS60 data.

All studies presented above demonstrated the great potential of tree species classifica-
tion based on data from full-waveform LiDAR. It has been confirmed that attributes and
metrics derived from full-waveform data can improve tree species classification perfor-
mance, compared to the species classification based on geometric or radiometric features,
or their combination.

2.4. Seasonal Tree Condition

Tree species classification in all reviewed studies was carried out based on LiDAR
data acquired under leaf-on condition [60,81], leaf-off condition [94,96], or under both
conditions [37,61,84,86]. Seasonal changes in canopy leaf conditions influence the physical
structure of the vegetation and impact the penetration and concentration of ALS pulses near
the top of the canopy [97]. In some of reviewed studies, the authors concluded that the leaf-
off data set produced higher species classification accuracy than the leaf-on data set [84–86].
Reitberger et al. (2008), for broadleaved and coniferous species classification, obtained
OA = 95.7% for leaf-off condition, while the leaf-on condition LiDAR data generated
OA = 85.4%. In this study, the classification of deciduous trees worked better in leaf-off
condition. Kim et al. (2009), for eight broadleaved species and seven coniferous species,
obtained better results on the leaf-off data set, similar to Reitberger et al. (2008), with
leaf-off OA = 83.4%, while on the leaf-on data set gave OA = 73.1%. Shi (2018) reported
only a slight improvement in classification accuracy when using leaf-off data, compared
to leaf-on data. However, in the study of Shi et al. (2018), there was no statistically
significant difference in species classification accuracy between leaf-on and leaf-off LiDAR
features. The combination of features of both data sets significantly increased the overall
accuracy of species classification from OA = 58.2% (leaf-on) and OA = 62.0% (leaf-off) to
OA = 66.5% [86]. Other studies have confirmed that the integration of LiDAR data acquired
in two seasons under leaf-on and leaf-off conditions improves tree classification [61,85].
Sumnall et al. (2015) [98] concluded that both leaf-on and leaf-off data benefit greater
complementary information about the forest canopy profile than discrete-return or full-
waveform LiDAR data.

In summary, data acquisition in the leaf-off condition offers a higher potential for rep-
resenting the tree crown structure using radiometric features. All internal structure metrics
are more efficiently used for species classification when there is no foliage cover—the dense
canopy under leaf-on conditions fully intercepts the laser beam in the crown. It causes a
lower proportion of returns interacting with understory vegetation. The leaf-off condition
produces more intermediate returns, which provides more information of the vertical tree
structure, driving an improvement in the accuracy of species discrimination [61,81,86,97].
The combination of the two data sets of leaf-on and leaf-off conditions can increase the
overall accuracy of tree classification.
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2.5. Classification Algorithms

In recent years, machine learning techniques, due to the accuracy of the produced clas-
sifications, have received increasing interest and gained popularity in many applications.
Machine learning classifiers are algorithms that allow for the prediction of a class of input
data based on specific methods built into the algorithms based on the use of training data.
Combining machine learning techniques with remote sensing data creates possibilities for
solving complex problems, such as tree species classification [61].

All machine learning algorithms can be divided into three classes: classification tree
methods (e.g., decision trees, Random Forest—RF), grouping and separability methods (e.g.,
Support Vector Machine—SVM, k-nearest neighbors—kNN), and rule creation and applica-
tion methods (Convolutional Neural Network—CNN) [61]. Species classification based on
remote sensing data has evolved along with the methodological developments of statistical
learning. In the reviewed studies, the following species classifiers have been applied:
logistic regression [35,43,66], linear discriminant analysis [43,75,80,87], and kNN [43,66],
with the most popular methods recently being random forest [3,34,43,61,64,81,88,99–101]
and support vector machines [3,5,61,66,87,101–104].

2.5.1. Decision Trees and Random Forest

Decision trees are effective tools for prediction and are the most widely used methods
for supervised learning. Decision tree algorithms identify ways to split a set of data based
on every feature of the data set. The model obtains nodes—locations where the tree splits,
according to the value of some features—and edges—the outcome of a split to the next node.
Building a decision tree and specifying features that split the data might be challenging.
This is why many decision trees use a randomly selected, independently sampled feature
at every single split; this is called the Random Forest technique. It has been noted that
random inputs and random features produce good results in classification with the random
forest method [105].

2.5.2. Support Vector Machine

Support vector machine is a non-linear classification supervised machine learning
model, which analyzes data and recognizes patterns. An SVM uses geometry to make
a categorical prediction: it classifies input variables by finding an optimal separating
hyperplane that maximizes the margin width between categories in a data set. The training
points near the hyperplane are called support vectors. Support vector machines can be
used for regression and classification analysis [106].

Nguyen et al. (2019) performed a weighted SVM (WSVM) classifier for tree species
recognition using data from ALS as a strategy to correct the loss of SVM performance-
dependent distribution of tree species and the presence of unreliable data due to inaccurate
positions of field data and errors in tree extraction. The WSVM classifier extracts and uses
species weights and sample weights (i.e., high weights and reduced weights), as importance
is defined based on a strategy that relies on the distribution of unlabeled samples in the
feature space. Their experimental results showed an improved classification accuracy of
minority classes: WSVM provided 2.4% higher OA and 3.9% higher κ coefficient, compared
to traditional SVM.

3. Results

In this paper, we review publications investigating tree species classification per-
formed on ALS data with particular emphasis on LiDAR-derived features used for classifi-
cation. The reviewed studies were categorized into three LiDAR-derived metric groups,
which were used for species classification:

• geometry (G)—geometric features: statistics, point distribution, vertical profile, shape;
• intensity+ (I+)—radiometric features, intensity metrics combined with geometric

features, intensity features from three Multispectral Laser Scanning channels;
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• waveform (WF)—features extracted from the full-waveform decomposition, full-waveform
metrics combined with other metrics.

All generated results from the reviewed publications, along with information about
the number of discriminated species and the calculated NOCAI, are listed in Table A1 in
Appendix A, for studies where geometry features were assessed for species classification;
Table A2 for the intensity+ features group; and Table A3 for the waveform features group.

Most of the studies were conducted for the classification of three species (39 cases),
followed by studies for two species (21 cases), four species (18 cases), six species (10 cases),
and five species (5 cases). The classification results of seven, nine, and 15 species were
conducted only in one publication each. The number of publications and studies grouped
by the number of discriminated species is presented in Figure 1.

Figure 1. Number of reviewed publications and studies for specified numbers of classified species.

3.1. Effectiveness of the Features Groups in Species Classification

Of the reviewed publications, 39 studies were conducted equally for species classifica-
tion using intensity+ features and waveform features, while only 19 studies were conducted
on geometry features solely. The number of conducted studies, with their division into
feature groups used to classify a specified number of discriminated species, is presented in
Figure 2. The most common studies were processed to classify three species using intensity+
features (18 cases) and waveform features (15 cases).

It should be noted that in general, the overall accuracy of species classification can be
influenced by many factors, such as LiDAR data density, season of acquisition, number
of discriminated species, approaches for tree delineation from the point cloud, sampling
situations, features taken for the classification process, and so on. In this paper, the overall
accuracies of all reviewed studies were compared only based on the number of discrimi-
nated species and the feature group that was taken for the species classification. Figure 3
presents the relationship between the overall accuracy and the number of classified species
for studies where two, three, four, or six species were classified. Results for five, seven,
nine, and 15 species were excluded, due to not being representative for statistical analysis.
The overall accuracy of species classification declined with the number of classified species.
This was similar to the relationship between NOCAI and the number of species, which is
presented in Figure 4.
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Figure 2. The number of conducted studies with division into feature groups (geometry, intensity+,
waveform) used to classify a specified number of species.

Figure 3. Relationship between the overall accuracy and number of discriminated species in the
reviewed studies.

Studies with overall accuracy more significant than the median overall accuracy of all
studies for a discriminated number of species (2, 3, 4, and 6 species) are listed in Table A4.
Table A4 includes a description of which quartile the result of the study belonged to: QM-U
represents the range from the median to upper quartile (75%), while QU-UW represents
the range from upper quartile (75%) to the upper whisker. By the analysis of the number
of these studies, it was observed that the most numerous studies were those in which the
waveform feature group was used for species discrimination (see Figure 5). Investigations
proceeded with metrics from the full-waveform decomposition were useful for tree species
classification (10 cases in QM-U, 12 cases in QU-UW). The waveform group metrics were
followed by the intensity+ group (7 cases in QM-U, 6 cases in QU-UW) and geometry group
(4 cases in QM-U, 6 cases in QU-UW), respectively.
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Figure 4. Relationship between NOCAI and the number of discriminated species in the reviewed studies.

Figure 5. The number of studies with OA higher than median OA, grouped by feature groups
(geometry, intensity+, waveform) used for classification with a division into the range of quartiles;
QM-U—the range from the median to upper quartile, QU-U—the range from the upper quartile to
the upper whisker, and QM-UW—the range from the median to the upper whisker.

To compare the overall accuracy of classification generated when using the different
feature groups, the most relevant studies of three species classification with calculated κ
coefficient were analyzed. Figure 6 presents a comparison of the classification accuracy
using the overall accuracy, κ coefficient, and NOCAI for the two most relevant studies of
every feature group. Species classification using full-waveform features seemed to generate
better results in general (OA = 95.0–95.1%, κ = 0.91–0.912, NOCAI = 31.67–31.70%) than
geometry features (OA = 76.04–86.3%, κ = 0.84–0.82, NOCAI=25.35–28.77%) and intensity
features or their combination (OA = 90.80–89.00%, κ = 0.57–0.759, NOCAI = 29.67–30.27%),
corresponding to the previous conclusion. It should be emphasized that the intensity+
group features also produced high accuracy in species discrimination.
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Figure 6. Classification accuracy using overall accuracy, κ coefficient, and NOCAI value of the studies where three tree
species were classified with feature group; G—geometry group, I+—intensity+ group, WF—waveform group; the studies of
classification results are presented in the square bracket.

3.2. Effectiveness of the Classifiers in Species Classification

In several of the reviewed studies, tree species classification was carried out using
more than one classifier under each scheme to examine the performance of classifiers.
Table 5 presents a list of publications with overall accuracy and κ coefficient generated by
the following classifiers: k-NN, LDA, LR (Logistic Regression), MLC (Maximum-Likelihood
Classifier), RF, SVM, and DL (Deep Learning methods).

Based on the reviewed publication results, random forest and support vector ma-
chine classifiers generated the highest overall accuracy for species classification, com-
pared to other classifiers, while the differences in RF and SVM results can be treated as
marginal [61,67]. Nevertheless, in some of the studies, the SVM classifier has been proved
to be more effective in tree species discrimination than other classifiers [3,66,87,101]. De-
spite the high accuracy that random forest and support vector machine methods might
generate, it should be emphasized that using a particular classifier always has advan-
tages and disadvantages. Followed by Fassnacht et al. (2016), with a non-parametric SVM
approach, no distribution assumption is required and, so, it is appropriate when incor-
porating non-remote sensing variables into the classification for robustness to noise and
rapid prediction of high-dimensional data, where relatively few training data are needed;
meanwhile, the optimal design of multi-class SVM is demanding. There is a relatively
high computational cost for training due to its algorithmic complexity. For random forest,
no distribution assumption is required, the classifier is less sensitive to the number of
input variables and overfitting, and there is an intuitive derivation of the accuracy and
importance of the variable. At the same time, it may be overfitted in the presence of noisy
data and may be biased in the case of response classes that have a different number of
levels [107]. Fassnacht et al. (2016) emphasized that from the experience of the authors
of their review, the choice of the classifier itself is often of low importance if the data is
adequately preprocessed to match the requirements of the classifier.
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Table 5. List of reviewed studies where more than one classifier was used for tree species classification; results are presented
as overall accuracy and κ coefficient (if calculated); k-NN—k-Nearest Neighbors, LDA—Linear Discriminant Analysis,
LR—Logistic Regression, MLC—Maximum-Likelihood classifier, RF—Random Forest, SVM—Support Machine Vectors,
DL—Deep Learning methods.

Article kNN LDA LR MLC RF SVM DL

[61] 83.1% N/A 82.0% N/A

[43] 73.4% 0.639 77.1% 0.628 81.7% 0.690
76.0% 0.681 78.9% 0.656 83.5% 0.720
78.4% 0.644 79.6% 0.664 82.6% 0.706
85.1% 0.774 87.4% 0.785 88.5% 0.804
83.1% 0.715 82.2% 0.703 85.1% 0.750
89.0% 0.816 88.5% 0.805 89.3% 0.819
89.4% 0.840 90.0% 0.830 90.8% 0.844

[87] 83.2% N/A 88.6% N/A
74.6% N/A 75.4% N/A
86.4% N/A 892.8% N/A

[65] 60.3% 0.476 62.3% 0.513

[66] 83.6% 0.780 86.7% 0.822 84.7% 0.79 89.7% 0.863
49.0% 0.377 47.3% 0.364 46.3% 0.351 50.5% 0.393

[67] 79% 0.75 79% 0.74
78% 0.73 78% 0.74

4. Conclusions and Discussion

In this paper, we reviewed publications investigating tree species classification per-
formed on airborne laser scanning data, with particular emphasis on studies where LiDAR-
derived features were used for the classification. In total, 44 publications including tree
species classification were reviewed, for a total of 97 performed studies. All reviewed
studies were categorized into the three metric groups used for species discrimination: geom-
etry (geometric features), intensity+ (radiometric features, intensity metrics combined with
geometric features, intensity features from three Multispectral Laser Scanning channels),
and waveform (features extracted from the full-waveform decomposition, full-waveform
metrics combined with other metrics). It was observed that the most numerous studies
with high overall accuracy (greater than the median overall accuracy of the studies) were
those in which the waveform feature group was used for species discrimination. This cor-
responds to the conclusion that full-waveform data have great potential in the tree species
classification process [4,36,37,60,84]. The benefit of full-waveform features is derived from
the available waveform information, which can be directly accessed or derived by further
processing. Additionally, it has a higher point density and a theoretically unlimited number
of recorded returns for each emitted pulse [73]. It should be emphasized that radiometric
features (intensity+ group) also generated high accuracy. Radiometric features seem to be
useful and very promising features in the tree species classification process, as also demon-
strated in many studies [36,74,75,83,84]. Moreover, the combination of radiometric features
with LiDAR height information could lead to achieving the complementary advantages
of the different information needed in the species classification process to improve the
overall accuracy [34,76,79,80,83,86]. In this paper, studies where species classification was
carried out by more than one classifier under each scheme were reviewed, to examine the
performance of particular classifiers. Based on the gathered results, the random forest
and support vector machine classifiers generated the highest overall accuracy for species
classification. In some studies, the SVM classifier has been proved to be more effective
in tree species discrimination than other classifiers [3,66,87,101]; however, in other stud-
ies, the differences between RF and SVM results were marginal [61,67]. Unfortunately, a
specific group of features dedicated to species classification and the particular classifiers
used for the classification do not guarantee a high overall accuracy. Employing multiple
features for species classification is required to increase the discrimination accuracy. It is
recommended to exploit more features, especially using data fusion of active and passive
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optical systems, which is in common with the observed trend of an increasing number of
studies with the usage of more than one sensor type data for species classification [107].
LiDAR technology, which is valued for its unique capabilities for detecting 3D structural
information, is a great supplement to discrimination based on any optical remote-sensed
imagery. It has been proven, in many publications, that the combination of LiDAR data
with multispectral or hyperspectral imagery generates greater species classification accu-
racy than LiDAR data alone [42,59,62–68]. LiDAR data also complements imagery data
used for other purposes, such as mapping dead trees with crowns and snags (dead trees
without crowns) [108,109], analyzing forest structural complexity [110,111], and determin-
ing bird species habitats [112], where passive imagery alone would not be as efficient
as a set fused with LiDAR data. Fusion of data from different sensors deserves a great
attention, as it is a valuable data set to provide sophisticated analysis and get satisfactory
results. Although multispectral, hyperspectral, and LiDAR data provide complementary
information, the integration of these data into an information extraction procedure can be
challenging. Nevertheless, combining remote sensing data-derived features and machine
learning techniques creates possibilities for solving complex problems, such as tree classifi-
cation [61]. Although there are multiple features, different classifiers could be considered
simultaneously by exploiting the best processing chain for each specific tree class. Improve-
ment of accuracy of individual tree extraction and the optimization of feature selection for
discrimination could lead to higher classification accuracy.

Apart from all the algorithms and methods used in tree classification procedures,
the technological development of sensors plays an important role. As the technical pa-
rameters of the equipment increase, it will become possible to obtain more accurate data
and more powerful sensor-derived metrics; thus, the classification results could be more
accurately determined. In terms of classification algorithms, the fastest development has
been predicted for artificial intelligence-related algorithms; we have already seen their
application in tree classification. Future research should put more effort into the investi-
gation of species-specific feature characteristics and detailed analyses of the impacts of
technical factors, tree extraction methods, and various growing conditions on the feature
characteristics. Additionally, for different types of forests, simplified data sets combining
the most powerful significant tree species characteristics from different sensors could be
examined and developed. Approaches and algorithms that fuse different remote sensing
data sets in a more profound way should be developed, as multiple sources of remote
sensing data should be included in the classification attempts.
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ABA Area-Based Approach
ALS Airborne Laser Scanning
CHM Canopy Height Model
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CNN Convolutional Neural Network
DL Deep learning
G geometry features group
GPS Global Positioning System
I+ radiometric features group
IMU Inertial Measurement Unit
ITC Individual Tree Crown
kNN k-nearest neighbors
LiDAR Light Detection and Ranging
LR Logistic Regression
MLC Maximum-Likelihood Classifier
MLS Multispectral Laser Scanning
NOCAI Number of Categories Adapted Index
OA Overall Accuracy
QM-U quartile range from the median to upper quartile (75%)
QM-UW quartile range from the median to the upper whisker
QU-UW quartile range from upper quartile (75%) to the upper whisker
PA Producer’s Accuracy
RF Random Forest
RS Remote Sensing
SVM Support Vector Machine
TLS Terrestrial Laser Scanning
UAV Unmanned Aerial Vehicle
WF full-waveform features group
WSVM Weighted Support Vector Machine
2D two-dimensional
3D three-dimensional

Appendix A

Table A1. List of results of reviewed studies where species classification was performed with a geometry
feature group; list sorted by species number and overall accuracy; DM—additional information for
studies where trees were delineated manually.

Number of Species OA κ NOCAI Article

2 95.0% N/A 47.50% [75]
3 88.6% N/A 29.53% [87]
3 86.3% 0.759 28.77% [63]
3 85.4% (DM) 0.739 28.47% [63]
3 83.15% (DM) N/A 27.72% [61]
3 76.04% 0.57 25.35% [34]
3 62.1% N/A 20.70% [81]
4 93.7% N/A 23.43% [78]
4 89.7% 0.86 22.43% [66]
4 85% N/A 21.25% [79]
4 82.5% N/A 20.63% [79]
4 77.5% 0.7 19.38% [77]
4 68% N/A 17.00% [35]
4 65% N/A 16.25% [79]
4 47.27% N/A 11.82% [4]
5 87.54% 0.81 17.51% [83]
6 79% 0.75 13.17% [67]
7 50.5% 0.39 7.21% [66]
9 41.3% N/A 4.59% [76]
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Table A2. List of results of reviewed studies where species classification was performed an intensity+
feature group; list sorted by species number and overall accuracy; DM—additional information for
studies where trees were delineated manually.

Number of Species OA κ NOCAI Article

2 97.1% 0.94 48.55% [40]
2 97% N/A 48.50% [113]
2 90.6% N/A 45.30% [85]
2 90.0% 0.80 45.00% [40]
2 89% N/A 44.50% [113]
2 86.9% 0.74 43.42% [40]
2 86% N/A 43.00% [113]
2 83.4% N/A 41.70% [85]
2 83% N/A 41.50% [113]
2 78% N/A 39.00% [113]
2 73.1% N/A 36.55% [85]
3 92.8% N/A 30.93% [87]
3 90.8% (DM) 0.84 30.27% [43]
3 89% 0.82 29.67% [60]
3 88.2% 0.79 29.40% [27]
3 88% 0.82 29.33% [62]
3 88% 0.79 29.33% [60]
3 85.42% 0.75 28.47% [34]
3 85% (DM) 0.75 28.33% [60]
3 85.0% 0.72 28.33% [27]
3 83% 0.71 27.67% [60]
3 82% (DM) 0.71 27.33% [60]
3 81.60% 0.68 27.20% [34]
3 78.1% N/A 26.03% [100]
3 78% (DM) 0.64 26.00% [60]
3 78% 0.64 26.00% [60]
3 75.4% N/A 25.13% [87]
3 74.38% 0.56 24.79% [5]
3 74% (DM) 0.57 24.67% [60]
4 92.5% N/A 23.13% [79]
4 80% N/A 20.00% [79]
4 75% N/A 18.75% [35]
4 73% N/A 18.25% [35]
4 68.0% 0.56 17.60% [80]
5 92.35% 0.88 18.47% [83]
5 69.3% 0.58 13.86% [68]
5 65.1% 0.57 13.02% [59]
9 76.5% N/A 8.50% [76]
15 61% 0.58 4.07% [64]

Table A3. List of results of reviewed studies where species classification was performed with a waveform
feature group; list sorted by species number and overall accuracy; DM—additional information for
studies where trees were delineated manually.

Number of Species OA κ NOCAI Article

2 95.7% 0.92 47.85% [84]
2 93.45% 0.61 46.73% [114]
2 93.0% 0.72 46.5% [37]
2 92.96% 0.570 46.48% [114]
2 91.7% N/A 45.85% [36]
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Table A3. Cont.

Number of Species OA κ NOCAI Article

2 89.76% 0.389 44.88% [114]
2 86.2% 0.72 43.10% [91]
2 85.4% 0.71 42.70% [84]
2 84.4% 0.69 42.20% [91]
3 95.1% 0.912 31.70% [99]
3 95% 0.91 31.67% [60]
3 94.8% 0.905 31.60% [99]
3 94.5% 0.901 31.50% [99]
3 92% 0.86 30.67% [60]
3 92% 0.86 30.67% [60]
3 91% (DM) 0.86 30.33% [60]
3 88% (DM) 0.8 29.33% [60]
3 88% 0.79 29.33% [60]
3 87% (DM) 0.79 29.00% [60]
3 84% (DM) 0.74 28.00% [60]
3 85.0% 0.62 28.33% [94]
3 75.0% N/A 25.00% [115]
3 73.4% N/A 24.47% [81]
3 71.5% N/A 23.83% [81]
4 80.4% N/A 20.10% [36]
4 79.22% N/A 19.81% [4]
4 75.8% 0.68 18.95% [91]
4 73.2% 0.64 18.30% [91]
4 53% 0.44 13.25% [42]
5 85.4% 0.817 17.08% [103]
6 68.6% 0.62 11.43% [91]
6 66.5% 0.58 11.08% [86]
6 66.1% 0.59 11.02% [91]
6 62.4% 0.54 10.40% [86]
6 62.0% 0.51 10.33% [86]
6 60.0% 0.49 10.00% [86]
6 59.0% N/A 9.83% [36]
6 58.2% 0.47 9.70% [86]
6 57.1% 0.46 9.52% [86]

Table A4. List of studies with overall accuracy greater than the median overall accuracy of all studies
for each number of species with information about the quartiles; QM-U—the range from the median
to upper quartile, QU-UW—the range from the upper quartile to the upper whisker; list sorted by
species number and OA.

Number of Species Quartile Feature Group OA κ Article

2 QU-UW intensity+ 97.1% 0.94 [40]
2 QU-UW intensity+ 97% N/A [113]
2 QU-UW waveform 95.7% 0.92 [84]
2 QU-UW geometry 95.0% N/A [75]
2 QU-UW waveform 93.45% 0.61 [114]
2 QU-UW waveform 93.0% 0.72 [37]
2 QM-U waveform 92.96% 0.570 [114]
2 QM-U waveform 91.7% N/A [36]
2 QM-U intensity+ 90.6% N/A [85]
2 QM-U intensity+ 90.0% 0.80 [40]
2 QM-U waveform 89.76% 0.389 [114]
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Table A4. Cont.

Number of Species Quartile Feature Group OA κ Article

3 QU-UW waveform 95.1% 0.912 [99]
3 QU-UW waveform 95% 0.91 [60]
3 QU-UW waveform 94.8% 0.905 [99]
3 QU-UW waveform 94.5% 0.901 [99]
3 QU-UW intensity+ 92.8% N/A [87]
3 QU-UW waveform 92% 0.86 [60]
3 QU-UW waveform 92% 0.86 [60]
3 QU-UW waveform 91% 0.86 [60]
3 QU-UW intensity+ 90.8% 0.84 [43]
3 QU-UW intensity+ 89% 0.82 [60]
3 QM-U geometry 88.6% N/A [87]
3 QM-U intensity+ 88.2% 0.79 [27]
3 QM-U intensity+ 88% 0.82 [62]
3 QM-U waveform 88% 0.8 [60]
3 QM-U intensity+ 88% 0.79 [60]
3 QM-U waveform 88% 0.79 [60]
3 QM-U waveform 87% 0.79 [60]
3 QM-U geometry 86.3% 0.759 [63]
3 QM-U intensity+ 85.42% 0.75 [34]
3 QM-U geometry 85.4% 0.739 [63]

4 QU-UW geometry 93.7% N/A [78]
4 QU-UW intensity+ 92.5% N/A [79]
4 QU-UW geometry 89.7% 0.86 [66]
4 QU-UW geometry 85% N/A [79]
4 QU-UW geometry 82.5% N/A [79]
4 QM-U waveform 80.4% N/A [36]
4 QM-U intensity+ 80% N/A [79]
4 QM-U waveform 79.22% N/A [4]
4 QM-U geometry 77.5% 0.7 [77]

6 QU-UW geometry 79% 0.75 [67]
6 QU-UW waveform 68.6% 0.62 [91]
6 QU-UW waveform 66.5% 0.58 [86]
6 QM-U waveform 66.1% 0.59 [91]
6 QM-U waveform 62.4% 0.54 [86]
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Abstract: Multi-purpose Faidherbia albida trees represent a vital component of agroforestry parklands
in West Africa as they provide resources (fodder for livestock, fruits and firewood) and support water
lifting and nutrient recycling for cropping. Faidherbia albida trees are characterized by their inverse
phenology, growing leaf flowers and pods during the dry season, thereby providing fodder and
shedding leaves during the wet season, which minimizes competition with pastures and crops for
resources. Multi-spectral and multi-temporal satellite systems and novel computational methods
open new doors for classifying single trees and identifying species. This study used a Multi-Layer
Perception feedforward artificial neural network to classify pixels covered by Faidherbia albida canopies
from Sentinel-2 time series in Senegal, West Africa. To better discriminate the Faidherbia albida signal
from the background, monthly images from vegetation indices were used to form relevant variables
for the model. We found that NDI54/NDVI from the period covering onset of leaf senescence
(February) until end of senescence (leaf-off in June) to be the most important, resulting in a high
precision and recall rate of 0.91 and 0.85. We compared our result with a potential Faidherbia albida
occurrence map derived by empirical modelling of the species ecology, which deviates notably from
the actual species occurrence mapped by this study. We have shown that even small differences in dry
season leaf phenology can be used to distinguish tree species. The Faidherbia albida distribution maps,
as provided here, will be key in managing farmlands in drylands, helping to optimize economic and
ecological services from both tree and crop products.

Keywords: multi-layer perception; savanna; species distribution model

1. Introduction

Faidherbia albida (Del.) A. Chev. (synonym Acacia albida Del.) trees belong to the
mimosoideae sub family of the Fabaceae family and are a key component of West African
agroforestry parklands, where crops are grown under a discontinuous cover of scattered
trees. Faidherbia albida trees provide resources such as fodder for livestock, fruits, firewood,
wood products for construction and traditional medicine [1–6]. The deep-rooted trees
have access to deep water layers and mineral resources. In addition, Faidherbia albida trees
contribute to symbiotic nitrogen fixation, and thus serve multiple ecosystem services, such
as water lifting, nutrients recycling and carbon sequestration [7]. What makes Faidherbia
albida trees distinct is their unique leaf phenology, which is characterized by leafing out
during the dry season and shedding leaves in the rainy season. Due to this “inverse
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phenology” [8], the trees do not intercept rainfall and sunlight from crops growing below
the tree canopy during the rainy season, and the litter dropped by trees provides organic
matter and nutrients to the soil. Faidherbia albida trees are therefore kept within fields while
other woody species are often removed [9].

Faidherbia albida trees are found in parklands throughout the Sudano-Sahelian zone
of West Africa, as well as in eastern and southern Africa [10–14]. Several scholars have
demonstrated that Faidherbia albida trees improve crop yields as well as agricultural re-
silience and sustainability [15–19]. Roupsard [20] used unmanned aerial vehicles (UAV)
to derive detailed field data to quantify the radius where Faidherbia albida trees influence
crop yields in an agroforestry parkland in Senegal. Accurate mapping of Faidherbia albida
trees is therefore important for a better understanding and management of the interaction
of trees with crops within the agricultural system (species, density, planting design, etc.).
This has become even more important in recent times with increases in human population
driving agricultural intensification, and climate change threatening established agroforestry
systems. The effectiveness and optimal implementation of restoration plans in relation to
Farmer-Managed Natural Regeneration projects in Sub-Saharan Africa [21–24], also calls
for accurate mapping of the spatial distribution of Faidherbia albida as a prerequisite.

The intriguing question of how specific tree species are spatially distributed has
inspired many scholars within plant ecology. In addition to detailed and laborious field
inventories, species distribution modelling (SDM) has been the main method to predict
the spatial distribution of plant species. Since woody species are known to be highly
dependent on biotic and abiotic conditions, most SDM approaches use computer algorithms
to predict the spatiotemporal distribution of a species using geo-spatial data of the physical
environment combined with observed species distribution points [25]. Data used for
modelling are related to climatic, geomorphologic and pedologic variables like temperature,
precipitation, elevation and soil type as well as human management, like land use [26].
However, such empirical models generate maps of the probability or potential occurrence
rather than the actual distribution of particular species. The coarse resolution of gridded
input data, as well as difficulties regarding how to adequately account for anthropogenic
drivers, limits the prediction capacity of these models [27,28]. Species distribution points,
serving as input to the SDM model, still rely on field records of tree species data, and
accurate remotely sensed tree species mapping across large scales would provide valuable
complementary information. Large-scale actual distribution of Faidherbia albida generated
from remote sensing would thereby open new research avenues for data-driven SDM
approaches that allow studying the importance of input environmental variables on species
distribution for an improved variable parameterization of SDMs.

As an alternative to modelling the potential occurrence of a given species, recent
advances in remote sensing enable the mapping of actual species distributions, yet previous
studies remain at a local scale [29,30]. The principles behind the majority of the methods
are linked to an understanding that woody species have unique individual biochemical and
biophysical characteristics such as spectral reflectance, canopy structure, branch and foliage
density, as well as phenological cycles. Mapping attempts grounded in these characteristics
have been conducted along three separate pathways in relation to the use of satellite and
aerial data: the first pathway utilizes optical remote sensing data to capture the biochemical
character of tree species [31–34]. The second relies on the vertical structure of vegetation,
and here LiDAR [35,36] is an effective data source. A third approach integrates synthetic
aperture radar (SAR) with optical data [37–40]. The recent availability of high temporal
resolution optical data enables the capture of the seasonal phenology of tree leaves with the
timing of the images being the key for a successful classification [41]. Schriever et al. [42]
compared images from different periods and found that the period of leaf senescence is
most important for classifying tree species. Hesketh et al. [43] also found that inter-seasonal
spectral variation allowed the accurate discernment of species of trees using automated
classification methods. Moreover, several studies showed that the combination of images
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from the leaf-out (May/June) and senescence (October) phases provide a higher accuracy
as compared to the use of single image [44–46].

So far, most attempts to conduct tree species mapping from remote sensing have
focused on forest environments, and mapping tree species of scattered woody populations
in drylands on a large-scale remains a challenge. The scattered distribution of agroforestry
parkland trees in the Sahel makes the mapping different from trees in forest stands, as
the signal from a pixel can be influenced by the soil or herbaceous background, especially
when the pixel is at the edge of the canopy. Despite the improvement in spatial, temporal
and spectral resolution of sensor systems, remote sensing has not yet been widely applied
for the mapping of Faidherbia albida on a country scale. For instance, Triboulet et al. [47]
pioneered this area by using pixel value thresholding, but due to the lack of field data the
final result was not validated. Lelong [48] utilized WorldView-3 imagery to classify 7 tree
species including Faidherbia albida in Senegal. However, these studies were limited to a local
scale and a snapshot in time. It is still a challenging endeavour to achieve species-level
detection across large geographic areas due to restrictions related to data costs and the
workload associated with the data analysis.

Previous studies have demonstrated that large savanna trees can be identified with the
10-m resolution of Sentinel-2 [49]. Classification algorithms are rooted in computer science
and statistical learning [29], for example, machine learning algorithms like Random Forest
and neural networks [50–52]. Considering trade-offs between data cost and spatiotemporal
resolution requirements, this study investigates the possibility of mapping the distribution
of Faidherbia albida over Senegal based on publicly available Sentinel-2 time series data.
The constellation of Sentinel-2A and 2B multi-spectral satellite systems were launched
in 2015 and 2017 as a part of European Commission’s Copernicus Programme. This
system, with a 5-day revisiting time under the same viewing conditions [53], provides
an unprecedented opportunity for mapping Faidherbia albida trees. The high temporal
resolution may capture the inverse phenology of Faidherbia albida, contrasting with other
woody and herbaceous vegetation types in the semi-arid Sahel. Our specific objectives
are (1) to select dates and bands from Sentinel-2 images suited to map Faidherbia albida
trees, (2) to use a Multi-Layer Perception (MLP) artificial neural network fed with a number
of features to generate a 10-m resolution Faidherbia albida distribution map over Senegal
and (3) to compare this distribution map with a potential occurrence map derived from an
SDM model.

2. Materials and Methods

2.1. Study Area and Sample Data

Most of Senegal extends in the Sahelian and Sudanian regions with annual rainfall
ranging between 100 to 1000 mm (Figure 1). The western part of Senegal comprises a
vast area of subsistence rain-fed cultivation, called the peanut basin. Livelihoods are
based on traditional farming systems rotating millet grown for on-farm consumption and
groundnuts as cash crops. The peanut basin is the most important crop production area
in the country and is characterized by intensively cultivated parklands [54] comprising
randomly scattered trees and woody shrubs within cropped fields. The two major soil types
are arenosols and calcisols, according to the FAO classification [55]. They are characterized
by a high sand content and low organic matter. Among tree species forming the parklands,
Faidherbia albida is widely present across the peanut basin. Generally, the natural habitat of
Faidherbia albida species occurs throughout most areas in West, East and Southern Africa
where annual rainfall ranges between 400 and 900 mm [56]. As a leguminous nitrogen-fixing
tree species, Faidherbia albida adds nitrogen and organic matter through leaf fall, and hence
improves soil fertility and boosts crop productivity [57]. Consequently, Faidherbia albida
occurs widely in croplands as a result of human management promoting the presence of
this species on deep light sands or sandy clays [58], which is also the case for the peanut
basin in Senegal [11]. Faidherbia albida rarely occurs in pristine savannas but is mainly
disseminated by livestock in croplands.
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Figure 1. (A) Location of Senegal and land use/cover map of 2019 (Copernicus Global Land Service
at 100-m resolution). The precipitation data are derived from the CHIRPS long-term (1981–2019)
yearly average. The rainfall zones of 100–300 mm, 300–600 mm and 600–1000 mm are categorized
as arid area, semi-arid area and sub-humid area. The two grey boxes represent locations of data
sampling in Niakhar and Nioro. (B) Examples of Faidherbia albida trees (red dots) during the (I) dry
and (III) rainy season from Google Earth. Image (II) and (IV) represent the corresponding stretched
true colour images from Sentinel-2 at 10-m resolution. Blue points represent other tree species.

Field samples were collected in two different semi-arid regions of Senegal (Niakhar
and Nioro; Figure 1) in 2018 and 2019 using an optimized sampling strategy based on
a landscape heterogeneity classification [59,60]. At each sampling site, an exhaustive
inventory of all trees was conducted in a 1-hectare plot. The coordinates of each individual
tree were recorded with a GPS. The collection of tree species contains over 70 common
species, including 6612 sample points in the Nioro area where Faidherbia albida accounted
for 3.07% (203) of the samples. A total of 9258 trees were collected in Niakhar among which
Faidherbia albida accounted for 41.82% (3872). Since the spatial resolution of Sentinel-2 is
10 m, we only selected Faidherbia albida samples with a canopy diameter greater or equal
than the Sentinel-2 pixel size as the reference data used for the building the MLP model.
The individual tree canopy diameter information was derived from a previous study [61].
We further selected and added samples of other tree species, cropland, water, urban,
herbaceous vegetation, bare soil and shrubs. In total, 2310 samples were used as reference
points for a binary classification of two classes encompassing 516 points representing
Faidherbia albida, and 1794 point for the other class. The Sentinel-2 pixels that contain the
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reference points were sampled and used for building the model. Since the sampled pixels
are often a mixture of the tree canopy and the immediate surroundings of the tree, the
Faidherbia albida mapping is thus conducted at a canopy level with a tree canopy minimum
mapping unit of one pixel.

2.2. Sentinel-2 Data Pre-Processing

Sentinel-2 top of atmosphere data are available in the Google Earth Engine (GEE) cloud
computing platform. All available Sentinel-2 images from January 2017 to December 2019
with cloud cover less than 50% were fused to monthly composites. Cloud masking was
done according to the flags of the Sentinel-2 QA band. The spectral noise caused by scene-
specific illumination conditions and residual cloud effects is expected to be reduced by
using 3-year average values from the period 2017–2019. Vegetation indices and bands (next
section) in specific months and their dynamic changes were selected as feature collection
for the following image classification based on Recursive Feature Elimination. The detailed
Sentinel-2 data processing is described in the following sections.

2.2.1. Vegetation Indices

The Sentinel-2A and B instruments sample 13 spectral bands: visible and near-infrared
at 10-m, red edge and SWIR at 20-m and atmospheric bands at 60-m spatial resolution.
The bands with a resolution >20 m have been discarded from the current study due to
the mismatch between pixel resolution and tree size, and the six bands of 20-m resolution
were resampled to 10-m by the nearest neighbour, leaving 10 bands for the monthly
composites. To better isolate the signal inherent to photosynthetic activity from other
signals within spatially mixed pixels, 10 vegetation indices, which are widely applied to
Sentinel-2 imagery [62], were selected (Table S1). As some of those vegetation indices were
derived from the same spectral bands, considerable redundancy in information exists. To
determine the similarity of indices, the pair-wise correlation coefficient was calculated
(Table S2). Based on the high co-variability, those indices were categorized into 3 classes.
The first class is composed of NDVI, NDVI74, PSSRa, EVI, MCARI, S2REP and EVI2. The
second class is composed of NDI54 and GNDVI and the third class includes only MTCI.
To select only one of each group for feature collection, the correlation coefficient between
vegetation index values of Faidherbia albida and other species (Table S3) was taken into
consideration, with a lower coefficient value indicating a higher discrepancy between
Faidherbia albida and other tree species. Hence only NDVI and NDI54 were retained, and
the MTCI was omitted because its monthly values showed a high standard deviation
during the growing season (Figure S1H). The initial feature bands used to construct the
model are the monthly values of each band and 2 vegetation index bands, yielding in total
12 × (2 + 10) = 144 bands.

The foliage production of Faidherbia albida trees is high in the dry season and low in
the rainy season, and their foliage production reaches a peak in December (Figure 2). As
biochemical and structure properties of woody plants can influence the spectral signature,
the inverse phenology of Faidherbia albida potentially makes the tree distinguishable from
other deciduous or evergreen tree species. The green herbaceous layer and understory
impact the Faidherbia albida canopy pixels in Sentinel-2 images, so this study discriminates
Faidherbia albida trees not only based on monthly band/vegetation index values but also
uses seasonal dynamics. This was done by calculating all possible monthly image com-
binations (by subtraction of images) producing 792 dynamic images, leading to a total of
936 feature bands.
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Figure 2. Seasonal distribution of leaf mass depending on the phenological type of woody plants in
the Sahel [8]. The inverse deciduous type represents Faidherbia albida trees.

2.2.2. Feature Selection

A recursive feature elimination was then applied to reduce redundant features. The
Random Forest classifier ranks the importance of features through their impact on the
model accuracy. Recursive feature elimination can be used to rank the feature by looping
through Random Forest classifiers and removing the least important feature until the
accuracy remains stable. Here we generated collections of features and a 4-fold cross-
validation was utilized to test the performance of the various feature collections on the
MLP model. Cross-validation is a universal method for assessing the accuracy of a classifier
based on a limited data sample. The dataset was generated from the field-observed data in
combination with the Sentinel-2 imagery, and the whole dataset was split into 5 individual
sets. A test set was held out for final evaluation. Then, three of the remaining datasets
were used as training datasets, initially used to fit the model. The last dataset is used as a
validation dataset, which provides an unbiased evaluation of a model fit on the training
dataset while tuning the parameters. The process is repeated 4 times. The feature collection
including the fewest number of features achieving the same performance as using all
features was selected for the final model.

The performance metrics of recall and precision were used to evaluate models using
different feature collections [63]. Precision is defined as the fraction of relevant instances
among the retrieved instances, i.e., the number of true positives divided by the total number
of elements labelled as belonging to the positive class. Recall is defined as the fraction of
relevant instances that were retrieved, i.e., the number of true positives divided by the total
number of elements that actually belong to the positive class. The true positives refer to the
elements correctly labelled as belonging to the positive class, here, Faidherbia albida trees.
The elements labelled as belonging to the positive class is the sum of true positives and false
positives, the latter which are instances incorrectly labelled as belonging to the class. The
elements that actually belong to the positive class are the sum of true positives and false
negatives, which are the elements that were not labelled as belonging to the positive class
but should have been. Recall and precision scores are often inversely related. Taking the
harmonic average of precision and recall leads to the F-measure (a measure that combines
precision and recall):

F-measure = 2 × recall × precision/(recall + precision) (1)

Precision and recall weigh equally in F-measure and a higher F-measure represents a
superior model.
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2.3. Mapping Faidherbia albida Trees Using Artificial Neural Networks

The Multi-Layer Perception (MLP) model was adopted for the binary classification of
Faidherbia albida trees. MLP is an artificial neural network with multiple densely connected
layers between the input and output layers. The densely connected layers in MLP models
combine all the features of the previous layer, which is suitable for complex classification
tasks. We used the artificial neural network instead of other non-parametric classifiers, such
as Random Forests or Support Vector Machines, which have been applied in previous tree
species classifications, because of the irregular spectral signatures of the dataset and the
uneven composition of species in the data structure. Considering the image resolution and
the size of tree canopy, any given Faidherbia albida pixel will usually be a mix of reflectance
from Faidherbia albida canopies and background vegetation or bare soil. Therefore, even the
same tree species would show considerable intra-species spectral variability among training
and testing data. Neural networks as a general-purpose technique for classification hold the
potential to map Faidherbia albida in such a challenging case. The MLP model is created with
three layers, and the learning rate, batch size and epochs are fine-tuned through grid search.
The input of the MLP is the feature collection selected by cross-validation. The output
of the MLP is the probability that a pixel includes a Faidherbia albida canopy, with values
ranging from 0 to 1. Here, pixel values > 0.5 were mapped as Faidherbia albida canopies.

2.4. Post Processing

To comply with the nature of parklands and savanna ecosystems where Faidherbia albida
trees are predominantly scattered without forming a closed canopy, all clusters of predicted
Faidherbia albida pixels covering more than 1000 m2 were masked. This threshold was
selected based on Brandt et al. [61], where very high spatial resolution image analysis
revealed that <0.0001 of all single tree canopies surpass this size in the study area.

We combined the Faidherbia albida canopy map derived from MLP with the woody
canopy map produced by Zhang et al. [49], which is also based on time-series Sentinel-2 data.
A map representing the relative cover of Faidherbia albida related to all woody plant cover
was generated by calculating the fraction of the Faidherbia albida cover (per hectare) and
the woody canopy cover (per hectare) map. To explore the agreement between our remote
sensing based Faidherbia albida distribution map and the potential occurrence based on
ecological modelling, we obtained a Faidherbia albida potential occurrence map that was
provided by Kindt [64] at a 5-km resolution. The occurrence map was generated from
9 bioclimatic layers, 2 topographic layers and 3 soil maps by the R package BiodiversityR.
Details about the data sources and resolution of the layers can be found in Table S4. This
map consists of a unitless Faidherbia albida habitat suitability index varying from 0 (lowest)
to 910 (highest). The absence–presence threshold for suitability of Faidherbia albida was
provided by the SDM model as 534, meaning that suitability values above 534 correspond
to the likely presence of the species with increasing values associated with higher likelihood
of species presence.

3. Results

3.1. Intra-Annual Difference in Vegetation Indices

Monthly values of NDVI and NDI54 for pixels covering Faidherbia albida and other
tree species were analysed for Nioro and Niakhar. It is noticeable that even pixels covering
the same group of tree species show varying index values in the two study regions. This
is likely because the majority of the sampled pixels in Sentinel-2 images are mixed pixels,
and the index value is the result of the reflectance from the tree canopy and a complex
set of other covers underneath such as crops and herbaceous vegetation or bare soil,
especially in the wet season when the Faidherbia albida trees are defoliated. However, the
values of pixels with Faidherbia albida show the same seasonality in both regions different
to other tree species (Figure 3). Specifically, pixels with Faidherbia albida have a lower
NDVI value in the rainy season and a higher NDVI value in the dry season as compared
to the pixels representing other tree species (Figure 3A), which means that the relative
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difference of Faidherbia albida NDVI values between the dry and wet seasons is smaller as
compared to other tree species. While all tree species reach their NDVI peak in October, the
NDVI value of pixels with Faidherbia albida decrease much slower after the peak month as
compared to other tree species. As for NDI54 (Figure 3B), Faidherbia albida pixels have the
highest values in November while the pixels of other tree species show a peak in October.
Consequently, the mapping of Faidherbia albida ideally should not only depend on the
absolute index values of individual months, but also take the dynamics between different
months into consideration.

Figure 3. Averaged monthly (A) NDVI and (B) NDI54 values for sample pixels of Faidherbia albida
and other species in the regions of Nioro and Niakhar. Vertical lines represent the standard deviation
of the sample population. Overall, 1418 pixels were sampled and averaged over the study period,
including 57 Faidherbia albida pixels and 112 pixels with other tree species in the Nioro region, and
459 Faidherbia albida pixels and 790 pixels with other species in the Niakhar region.

3.2. Mapping Faidherbia albida Using the MLP Model

By conducting a recursive feature elimination on the original 936 features (Section 2.2)
we tested subsets of feature combinations as a function of the model mean accuracy
using a 4-fold cross-validation approach (Figure 4). The evaluation of the Faidherbia albida
mapping was performed by mean accuracy of all iterations using a test set. Using only
the seasonal dynamic feature of NDI54 between November and August, the classifier
achieves an average F-measure of 60%. When increasing the features to 40, the total
variability in the feature layers reaches the same level of accuracy (precision, recall and
the F-measure) as when using all features, indicating that 40 features are sufficient. Using
40 features, the model achieves an overall F-measure of 89%, with a fairly well-balanced
rate of 91% precision and 85% recall, showing that the pixels of Faidherbia albida canopies are
captured well (Table S5). The final selected features for the MLP model (Table 1) show that
the seasonal dynamic features account for more than 50% of all selected features, and the
typical span of the two months forming the difference feature is around 5 months, usually
representing one month in the start of the dry season and the other month at the end of
the dry season. The acquired times of the selected data by recursive feature elimination
are February (start of Faidherbia albida senescence), July (leaf-off) and October (leaf-out). In
terms of feature type (vegetation index or single band reflectance), the NDVI and NDI54
dominate the selected features.
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Figure 4. Relationship between mean accuracy and number of features fed to the MLP classifier. The
flat horizontal dashed line represents the accuracy from a model using all features.

Table 1. Feature information of the 40 features finally retained to feed the MLP model includ-
ing monthly features (band/spectral index and specific month) and seasonal dynamics features
(band/spectral index and related months).

Monthly Feature Seasonal Dynamic Feature
Band/Index Month Feature Importance Band/Index Month Feature Importance

NDI54 2 0.040 NDVI 2–6 0.063
Band12 6 0.035 NDI54 2–6 0.043
Band12 3 0.032 NDVI 2–5 0.041
Band11 6 0.031 NDI54 8–12 0.038
Band12 5 0.030 NDVI 4–6 0.031
NDI54 12 0.029 NDVI 7–12 0.031
NDI54 3 0.029 NDI54 2–5 0.029
Band2 10 0.026 NDI54 2–8 0.024

Band12 4 0.025 Band12 3–11 0.023
NDI54 4 0.025 NDVI 2–7 0.023
NDI54 6 0.025 NDVI 6–12 0.022
NDVI 6 0.023 NDI54 10–11 0.020
Band3 10 0.022 NDI54 3–8 0.020
Band8 10 0.019 NDI54 2–10 0.018
NDVI 10 0.017 Band12 3–10 0.018
NDVI 7 0.017 Band12 4–11 0.017

Band3 10–12 0.017
NDVI 4–7 0.015
Band4 10–11 0.014
NDI54 10–12 0.014
NDI54 1–8 0.014
Band4 6–12 0.014
NDVI 3–7 0.010

3.3. Comparing Faidherbia albida Canopy Cover Maps with Potential Occurrence Maps

A Faidherbia albida canopy map at 10-m resolution covering Senegal was generated
based on 3 years of Sentinel-2 data. To illustrate the mapping at the national scale, the per-
pixel mapping was aggregated to 1 hectare showing the percentage of Faidherbia albida cover
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(Figure 5A). Faidherbia albida trees are mainly distributed in the western cropland areas
(Figure 5A) where annual precipitation ranges from 300 to 600 mm. Faidherbia albida trees are
to a less extent also found in the croplands of the northern part of the country, where rainfall
is less than 300 mm/year. For most of the cropland areas, the percentage of Faidherbia albida
cover is in the range between 2–15%. Our remote sensing-based distribution agrees to some
extent with the potential occurrence map from ecological modelling (Figure 5B) in which
the potential occurrence is shown by SDM suitability values. While similar patterns are
shown in western Senegal, the southeast, the Cap Vert peninsula and the limited cropland
areas along the north-western coast do not match with our map.

 

Figure 5. (A) Faidherbia albida cover map (%) at 1-hectare resolution from our classification. Included
are close-up maps showing detailed Faidherbia albida classification maps of different regions as white
polygons superimposed on images from Google Earth. (B) Faidherbia albida potential occurrence map
provided by Kindt [64].

The remote sensing-based map of Faidherbia albida cover was directly compared with
the SDM suitability score within different land use/cover types (Figure 6). The SDM map
at a 5-km resolution was resampled to 1 ha using the nearest neighbour. Faidherbia albida
trees mainly occur in areas with suitability values above 560 and are almost absent be-
low this threshold except in croplands where they occur even with SDM values of 300.
Faidherbia albida trees were barely found in the north/north-eastern shrub and open for-
est areas of Senegal (Figure 5), even though the SDM suitability was around 600. When
suitability values exceed 680, we observe that the high suitability score relates to low
Faidherbia albida cover (<0.25%). This discrepancy is linked to the Senegal land cover, which
is related to the near coastal areas around the Dakar peninsula (Figures 1 and 5).

By combing the woody cover map from Zhang et al. [49] and our results, we calculated
the relative contribution of Faidherbia albida trees to the overall woody plant cover per
hectare (Figure 7). The map of this relative contribution shows the degree of dominance of
Faidherbia albida among woody plant cover. The higher the contribution of Faidherbia albida
to the woody plant cover, the lower is the woody plant diversity. Furthermore, in areas
where woody cover is nonzero, the contribution of Faidherbia albida to cover as a func-
tion of all woody species cover is illustrated in Figure 7B. The relative contribution of
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Faidherbia albida in croplands is on average 7.23%, with several areas being dominated by
Faidherbia albida.

Figure 6. Average Faidherbia albida cover (%) in relation to modelled suitability scores (intervals
of 20 units) for different land use/cover types. The land use/cover map of 2019 is provided by
Copernicus Global Land Service at 100-m resolution. Wetland, urban, water, bare vegetation and
closed forest types were not included in this comparison due to the limited number of observations.

Figure 7. (A) Map of relative contribution of Faidherbia albida canopy cover to the cover of all woody
plants shown as a percentage at the hectare scale. The rainfall zones are derived from the CHIRPS
long-term (1981–2019) yearly average. (B) Relation between the relative contribution of Faidherbia
albida to canopy cover in croplands. The land use/cover map of 2019 is provided by Copernicus
Global Land Service at 100-m resolution.
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4. Discussion

4.1. Mapping Faidherbia albida

This study presents a method to estimate Faidherbia albida cover across Senegal
from Sentinel-2 spatiotemporal signatures at 10-m resolution. Previously, only Lelong
et al. [48] used very high resolution Worldview-3 imagery to map 7 tree species including
Faidherbia albida. Our approach was based on the assumption that the classification could
take advantage of the distinct and inverse phenological behaviour of Faidherbia albida trees
as compared to other tree species. However, we found that this phenological behaviour
was not seen in satellite time series from Sentinel-2. A possible explanation is that the
herbaceous layer growing below the canopy of Faidherbia albida trees during the non-leaf
season dominates the signal. It impedes the capacity of satellite time series to capture the
inverse phenology during the leaf-off period. As for the leaf-on period, the difference is also
unexpectedly small and varies with location and time. Since most remote sensing applica-
tions in mapping forest types or tree species rely on the phenological differences in satellite
time series between the target and the background [45], the mapping of Faidherbia albida
trees is more challenging than initially assumed.

Given this situation, we maximized the input capacity by generating a total of 936 fea-
tures, which include monthly and seasonal features of both multiple vegetative indices
and bands. Instead of directly using sparse temporal features and single vegetation in-
dices [43,65], we made use of recursive feature elimination to reduce data redundancy. The
accuracy stabilized when 40 features were included, mainly from the senescence month of
Faidherbia albida and including both spectral bands and vegetation indices [44,45]. Features
related to seasonal dynamics were most important, which aligns with the results of [43,66].
NDVI, NDI54 and the second SWIR band of Sentinel-2 are often picked as high-ranking
features, indicating the importance of the red, red edge and SWIR bands for tree species
mapping [29]. Additionally, the background reflectance causes different values for different
regions with Faidherbia albida trees (Figure 3A). This effect can be mitigated by using images
of seasonal changes in addition to monthly composites (Table 1).

We did not use a convolutional neural network (CNN) because CNNs rely on features
which are extracted by sliding windows within an image, and the widow size N is usually
larger than the tree canopy pixel (usually one pixel). Thus, the importance from a given
tree canopy pixel might be diluted on the extracted window’s feature. Contrastingly, the
input for the MLP is the labelled feature collection, which is derived from single pixels in
an image, which is considered as more suitable when using Sentinel-2 imagery.

In the past decades, mapping forest cover and type have achieved satisfactory out-
comes globally and operationally using remote sensing techniques [37,39]. Mapping tree
species at large scale has however only progressed slowly, mainly because the required
remote sensing datasets are expensive to acquire, such as LiDAR and other very high-
resolution data [35,40]. Furthermore, the Faidherbia albida agroforestry multipurpose trees
studied here grow in drylands where trees grow as individuals, and such trees outside
of forest have been underestimated [61]. As such, our study represents a first attempt
to conduct a national scale mapping of scattered non-forest tree species. It would be
interesting to further map the distribution of Faidherbia albida trees using higher spatial
resolution images like PlanetScope, which are now provided as a pre-processed product
in an analysis-ready data format of monthly composites of 4.7-m spatial resolution free of
charge from the Norwegian International Climate & Forests Initiative (NICFI). However,
PlanetScope data has a lower spectral resolution (only four classical bands of R, G, B and
NIR) as compared to Sentinel-2. The degraded spectral information may thus decrease
the mapping capacity. With a monthly temporal resolution and spatial resolution of 4.7 m,
recurrent CNN techniques could boost the mapping by interpreting temporal and textural
information of individual tree canopies simultaneously [67].
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4.2. Comparison with Ecological Niche Modelling Products

Our results show that Sentinel-2 image time series are able to map the actual distribu-
tion of Faidherbia albida trees, which is a significant advance as compared to SDM-based
potential species occurrence maps [64]. Our results indicate that Faidherbia albida trees are
mainly found in croplands where they are the dominating tree species. The relation in
Figure 6 showed that when the land suitability exceeds the threshold defined by the SDM
model, there is indeed often an observed occurrence of Faidherbia albida trees. The average
Faidherbia albida cover is always higher in croplands than for other land use/cover types
because farmers are well aware of the benefits of Faidherbia albida trees being an integral part
of agroforestry systems [68–70]. In the sparsely populated south-eastern part of Senegal
where land cover is mainly open woodland and shrublands, we did not predict to find any
Faidherbia albida, while the SDM model predicts a high suitability, likely because human
management was not carefully considered in the applied model.

5. Conclusions

A 10-m resolution Faidherbia albida canopy map was generated for Senegal based on a
time series of Sentinel-2 images from the period of 2017 to 2019, used to form 12 monthly
composites covering the phenological phases of the Faidherbia albida tree. Ground observa-
tions of tree species from two different regions in Senegal were used to generate a robust
model mapping the occurrence of Faidherbia albida trees. Compared to an existing map
showing the potential occurrence of Faidherbia albida trees from a suitability modelling
approach (species distribution modelling; SDM), our study took advantage of the unique
phenology of Faidherbia albida trees to separate this tree species from other trees. We showed
that the actual distribution does not always agree with the potential distribution. We also
showed that Faidherbia albida dominates tree cover in some cropland areas, supporting the
well-known benefits of the tree in agroforestry systems of West Africa (termed parklands).
Faidherbia albida is managed and utilised by farmers in different ways as this multi-purpose
tree does not only provide fuel wood and fodder like other species, but also affects crop
traits for improved productivity and yield by shedding leaves in the crop growing season.
The derived 10-m map of Faidherbia albida occurrence could be used as a base-map in
support of an empirically based understanding of the role of Faidherbia albida in parkland
ecosystems in relation to crop yields. Ultimately, this could serve as a vantage point for
spatially explicit analyses of the extent to which the use/management of this tree resource
is optimally implemented.
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Abstract: The ability of deep convolutional neural networks (deep learning) to learn complex visual
characteristics offers a new method to classify tree species using lower-cost data such as regional
aerial RGB imagery. In this study, we use 10 cm resolution imagery and 4600 trees to develop a deep
learning model to identify Metrosideros excelsa (pōhutukawa)—a culturally important New Zealand
tree that displays distinctive red flowers during summer and is under threat from the invasive
pathogen Austropuccinia psidii (myrtle rust). Our objectives were to compare the accuracy of deep
learning models that could learn the distinctive visual characteristics of the canopies with tree-based
models (XGBoost) that used spectral and textural metrics. We tested whether the phenology of
pōhutukawa could be used to enhance classification by using multitemporal aerial imagery that
showed the same trees with and without widespread flowering. The XGBoost model achieved
an accuracy of 86.7% on the dataset with strong phenology (flowering). Without phenology, the
accuracy fell to 79.4% and the model relied on the blueish hue and texture of the canopies. The
deep learning model achieved 97.4% accuracy with 96.5% sensitivity and 98.3% specificity when
leveraging phenology—even though the intensity of flowering varied substantially. Without strong
phenology, the accuracy of the deep learning model remained high at 92.7% with sensitivity of 91.2%
and specificity of 94.3% despite significant variation in the appearance of non-flowering pōhutukawa.
Pooling time-series imagery did not enhance either approach. The accuracy of XGBoost and deep
learning models were, respectively, 83.2% and 95.2%, which were of intermediate precision between
the separate models.

Keywords: tree species; classification; deep learning; convolutional networks; biosecurity; forest
pathology; myrtle rust; urban forestry; machine learning; aerial imagery

1. Introduction

The early stages of a biosecurity response to a newly arrived plant pathogen can have
a significant bearing on the final outcome and cost [1,2]. Once an unwanted pathogen has
been positively identified, mapping and identification of potential host species become
essential for managing the incursion [3]. Identification of host plants must be carried out
by trained personnel and the hosts may be located across a mixture of public and private
property or in hard to access areas. For these reasons, carrying out large-scale searches for
host plants can be very costly and challenging to resource.

The level of host detection and surveillance required in the face of an incursion is
usually defined by the response objective. Eradication of a pathogen necessitates exhaustive
detection of host species to monitor spread and enable the destruction of infected plants or
even hosts showing no signs of infection to limit future spread. A monitoring objective
may require only the identification of key indicator species to define the infection front and
monitor impacts and host range. Finally, long-term management strategies may require
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large-scale but inexhaustive host identification to locate resistant individuals within a
population for breeding programmes or other approaches to biological control [4,5].

Remote sensing can complement all of these objectives by offering an efficient and scal-
able means of identifying host species [6,7]. Imagery acquired from UAVs, aircraft or even
space-borne optical sensors can be used to identify both potential hosts as well as the symp-
toms of pathogen infection on susceptible host species [6,8]. However, the detection and
classification of species from remotely sensed data comprise a complex sub-discipline. Fass-
nacht et al. [9] carried out a comprehensive review of methods for tree species classification
using remotely sensed data and highlighted clear themes in the literature. Multispectral
and hyperspectral data were identified as being the most useful data sources for accurate
species classification with LiDAR data being highly complementary. Through capturing
reflected light outside the visible spectrum, the use of multi/hyperspectral data sources
increases the chance of observing patterns of reflectance related to structural or biochemical
traits that may be unique or distinctive to species or groups.

Multispectral data (4–12 bands) are relatively easy to capture and have been widely
used in combination with machine learning methods to perform species
classification [10–12]. However, accurate classification is often limited to broad groups
such as conifer vs. deciduous forest types [13]. Hyperspectral data contain many more
(>12) narrow spectral bands—enhancing the ability to observe small differences that may
be present between the spectra of tree species and has been well studied for fine-grained
species classification tasks [14,15]. The idea of unique spectral ‘signatures’ for species
has been present in the literature for several decades; however, [9] concluded that these
signatures appear to be rare in practice and, when present, require observation of a wide
portion of the spectrum using sophisticated sensors [16].

Although hyperspectral data have been successfully used to classify as many as
42 species [6,9,17], large-scale applications of hyperspectral-based species classification
face challenges related to practicality and cost. The increased spectral resolution usually
demands careful acquisition from expensive sensors and is constrained by illumination
and atmospheric requirements. The post-processing of these data can also be complex and
requires careful correction of atmospheric impacts and noise reduction. Finally, the substan-
tial volumes of data must often be subjected to dimensionality reduction before analysis
can proceed [13,18]. Classification is based on patterns in the calibrated reflectance spectra
from the canopy and differences in data sources and quality can reduce the transferability
of the classifiers [19]. Other information content, such as the structure, shape, texture and
other distinctive but hard to quantify characteristics are often neglected or partially utilised.
Efforts to characterise the texture or the shape of the crown or other attributes typically
rely on a small number of engineered features to summarise complex attributes [11,13].

In contrast, the human visual system allows experienced individuals to distinguish
many species by visual inspection alone. Some cryptic species remain hard to tell apart
visually, but trained experts (and even non-experts) can discriminate a surprising number
of species [20]. This has led to the development of sites such as iNaturalist, where members
of the public can upload images of species for experts to identify [21]. Recently, the advent
of deep learning models based on convolutional neural networks (hereafter referred to
as deep learning) has transformed the capability of machines to perform fine-grained
classification of images, often reaching or exceeding human-level accuracy [22,23]. The
architecture of these networks allows these networks to effectively learn the features
important for classification. This is an important contrast with other approaches as the
features are not engineered or pre-selected but rather learned by the network from labelled
training examples with little requirement for image pre-processing.

Deep learning has been used for tree species classification from various combinations
of LiDAR, hyperspectral and multispectral imagery [24–27]. Many studies have also
successfully used simpler RGB imagery for species detection and classification. Importantly,
these approaches have demonstrated a remarkable capacity to perform fine-grained species
classification from consumer-grade camera imagery that is poorly suited to traditional
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remote sensing [28,29]. However, these studies have mostly used RGB data collected from
UAV [30–32] and to a lesser extent high-resolution satellites [33,34], which constrains the
ability to scale predictions in the former case or limits the spatial resolution of predictions
in the latter case.

Although RGB imagery is routinely captured at regional levels by fixed-wing aircraft
in many countries, few studies have undertaken large-scale host species identification
using this ubiquitous data source. These data often include only RGB colour channels in
uncalibrated radiance values rather than reflectance. The simplicity of these data means
that large areas can be captured at high-resolution (<10 cm) for lower unit cost. Successful
application of deep learning for large-scale host species identification using aerial imagery
offers a scalable method to support biosecurity responses that bypasses many issues facing
ground-based surveillance such as permissions and safe accessibility.

Classification of tree species is generally enhanced when there is low spectral variabil-
ity within a species and high spectral variability between the target and other species [35].
Often there are times during the year when interspecies spectral variability is greater
because of variation in phenological attributes such as leaf flush, senescence, or flowering.
Little research has examined how phenological variation can be used by deep learning
to improve species classification in trees, although we are aware of one such study for an
invasive weed [36]. Collection of data from a species during a period of distinctive phenol-
ogy could assist the use of deep learning through both enhancing predictive precision and
providing a means to rapidly generate large training datasets.

Myrtle rust, caused by the fungal plant pathogen Austropuccinia psidii (G. Winter)
Beenken (syn. Puccinia psidii), affects a broad range of hosts in the Myrtaceae family, causing
lesions, dieback and, in some cases, mortality [37,38]. The pathogen is airborne and has
spread rapidly around the globe [39–42]. New Zealand is home to at least 37 native
myrtaceous species [43]. Of these, Metrosideros excelsa Sol. Ex Gaertn (pōhutukawa) has
very high cultural value and has been widely planted for amenity purposes. This coastal
evergreen tree has a sprawling habit of up to 20 m and produces dense masses of red
flowers over the Christmas period [44], earning it the name ‘the New Zealand Christmas
tree’. Observations from pōhutukawa growing in other countries where myrtle rust is
present indicate that the species is susceptible to myrtle rust [45,46].

In May 2017, myrtle rust was detected on the New Zealand mainland for the first
time [47]. The disease has spread rapidly and has established on numerous native and
exotic host species [48].

The overarching goal of this research was to test novel methods suitable for large-scale
identification of key Metrosideros host species focussing on pōhutukawa as a test case.
Specifically, the objectives of the research were to (1) test two state-of-the-art classification
methods (XGBoost and deep convolutional neural networks) applied to three-band aerial
imagery leveraging the strong phenology of pōhutukawa, i.e., distinctive flowering in
summer, (2) test classification of the same trees without the assistance of phenology by using
historical aerial imagery (3) test how practical and generally applicable these techniques
are in real-world conditions by creating a combined dataset from objectives 1 and 2 that
contained imagery captured using different sensors in different years and that showed a
mixture of flowering and non-flowering trees.

2. Materials and Methods

2.1. Ground Truth Data

New Zealand maintains an extensive biosecurity surveillance system and an estab-
lished incursion response protocol. During the first months after the incursion of myrtle
rust, sites that were confirmed to contain infected hosts received intensive ground-based
surveys to identify and inspect all potential host species within a fixed radius from the
infected site. New, confirmed infections triggered additional searches around the new site.
A mobile app used by trained inspectors was used to record the genus, GPS location and
infection status for every host inspected during the response. These efforts produced a
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substantial volume of ground surveillance data including GPS locations and positive identi-
fication of Metrosideros spp. by trained inspectors. Many of the trees inspected were present
within the coastal city of Tauranga (Figure 1), and nearly all the records for Metrosideros
spp. in this region were pōhutukawa.

Figure 1. The extent of aerial imagery datasets and location of sample trees around Tauranga in the
Bay of Plenty, New Zealand.

The extensive and distinctive red flowers of pōhutukawa are easily identifiable from
above in the summer which made this species an ideal candidate to test the potential to
utilise phenology to enhance species identification in RGB aerial imagery. For much of
the rest of the year, some degree of buds, flowers, or seed capsules are present but less
distinctive. However, the multi-leader crown shape and blueish hue of the large, waxy and
elliptical leaves are also distinctive and present all year round (Figure 2).

Aerial imagery captured over Tauranga during the 2018–2019 summer period (Table 1)
was overlaid with the ground surveillance locations in a GIS. Locations were collected
using consumer-grade GPS and could only be considered approximate.
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Figure 2. Images of pōhutukawa trees illustrating the distinctive features such as multi-stem form,
leaf colour and texture and extensive buds and flowers usually present in summer. The bottom row
shows aerial views from very high-resolution UAV imagery.

Table 1. Summary of multitemporal imagery used to develop classification models.

Imagery Dataset Phenology Resolution, Colour Channels

Tauranga—summer 2018–2019 Wide-spread flowering 10 cm/pixel, 3-band RGB
Tauranga—March 2017 Limited flowering 10 cm/pixel, 3-band RGB

For each inspection record, a trained analyst examined the GPS point and identified
the corresponding tree in the aerial imagery. If the tree showed at least some evidence
of flowering, then the imagery was annotated by delineating a bounding box around the
canopy extent. The distinctive features of the canopy and strong flowering observed in
the imagery greatly assisted identification and annotation; however, inspection records
were only at the genus level and other species with similar phenological traits such as
Metrosideros robusta (rātā) may occasionally be found within this region. In addition, some
cultivated Metrosideros excelsa ‘Aurea’ (‘yellow’ pōhutukawa) appeared to be present within
the dataset but these were removed due to the small number of samples available.

We assessed the purity of the training dataset by inspecting the majority of trees using
publicly available, street-level imagery followed by on-site inspections for a smaller subset
of trees. The results show that all study trees identified through combining the aerial
imagery and surveillance records were pōhutukawa. After completing this process, we
considered that the assembled training dataset consisted of only pōhutukawa and any
misclassifications would have been very small in number.

Development of the classifiers also required negative examples. The candidate neg-
ative examples were any tree other than Metrosideros spp., hereafter referred to as other
species. We once again leveraged the ground inspection efforts to develop this dataset.
The intensity of the initial surveillance efforts meant that within inspected areas, such as
streets or parks, the locations for nearly every pōhutukawa were recorded. We used these
areas to select negative examples and cross-referenced a substantial portion of the dataset
against other imagery and field inspections. This approach reduced the chances of acci-
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dentally including pōhutukawa or biasing the training set by excluding species that were
visually similar to pōhutukawa due to uncertainty. In addition, this provided a realistic
set of non-target tree canopies that the classifier might encounter in the areas surveyed for
the biosecurity response. Bounding boxes around the canopies were defined against the
aerial imagery and annotation proceeded until the dataset was balanced. Figure 3 shows
examples of typical and atypical pōhutukawa and other tree species as seen in the aerial
imagery.

Figure 3. Examples of canopy images used to train classification models. Pōhutukawa canopies
from the 2019 imagery are shown in panel (a) with strong phenology (flowering and buds) visible.
Panel (b) shows the same canopies in the 2017 imagery with less visible phenology. Examples of
non-Metrosideros spp. seen in the 2019 imagery, including some harder examples, are shown in panel
(c). The same canopies seen in the 2017 imagery are shown in panel (d).

2.2. Imagery Datasets

The aerial imagery datasets consisted of large orthomosaics generated from campaigns
carried out in 2017 and 2019 using different aerial cameras (Table 1). The imagery from
2017 showed lower levels of detail, probably due to poorer image matching, and the trees
had less visual detail (Figure 3). The bounding boxes were used to extract sub-images from
the larger orthomosaics and each image ‘chip’ showing a tree canopy was labelled with
the dataset year and class (pōhutukawa or other spp.). Very small trees (canopy radius
< ~1.5 m) were excluded as these canopies contained too few pixels.

The final datasets included 2300 images of tree canopies evenly split between
pōhutukawa and other spp. with images available for both 2017 and 2019 (Table 2).
Images of pōhutukawa from 2019 and 2017 were used, respectively, to test the classification
with and without the assistance of strong phenological features (Table 2). The imagery from
the 2017 and 2019 datasets was combined to assess how well the model would generalise
under real-world conditions (Table 2). The images of tree canopies were randomly split
into training data (70%) used to fit the models. Validation data (15%) were used to select
hyperparameters and evaluate model performance during training and a test set (15%)
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was used to assess final model performance on completely withheld data (Table 2). Trees
were assigned to the same splits in the 2017 and 2019 datasets for a fair comparison of the
models. For the combined dataset, data were re-shuffled at the tree level and the imagery
from both years was included in the assigned split to prevent data leakage.

Table 2. Summary of dataset splits used to train and validate classification models before testing on
withheld data.

Dataset Purpose
Tree Counts

(Pōhutukawa/Other spp.)
Data Splits

Training/Validation/Test

Tauranga 2019 Classification using phenology 2300 (1150/1150) 1610/345/345 (70/15/15%)

Tauranga 2017 Classification without
phenology 2300 (1150/1150) 1610/345/345 (70/15/15%)

Tauranga 2017 and
2019 combined

Combined classification with
and without phenology 4600 (2300/2300) 3220/690/690 (70/15/15%)

2.3. Deep Learning Models

We selected the ResNet model architecture [49] for classification of the tree canopies.
The ResNet model is made up of small building blocks called the residual block. Each
residual block is primarily made up of two to three convolution layers (this is dependent
on the depth of the network) stacked together. The convolution layers are designed to learn
and fit against the residual of the target function. The learned residual is then mapped back
to the learned function through a skip connection that connects the input of the residual
block to the output of the stacked convolution layers. By designing the neural network
to learn and optimise on the residual instead of the original function, ResNet can learn
the unknown original function more easily, thereby improving accuracy. We used the
ResNet-50 architecture, which comprises 49 convolution layers organised into residual
blocks and a fully connected layer for classification (Figure 4).

Figure 4. Overview of the architecture of ResNet-50. Adapted from [49].

A randomly initialized, fully connected layer was trained for 2 epochs to adapt a
model pre-trained on the ImageNet [50] task to the binary classification task in this study.
Thereafter, differential learning rates in the range 1 × 10−3–1 × 10−6 were used to adapt
deeper layers of the network at linearly decreasing learning rates for another 30 epochs. At
this point, the performance validation metrics showed no further benefits from additional
training. All deep learning models and metrics were implemented using the PyTorch
1.4 deep learning library [51] and the Scikit-Learn Python package [52]. Model training
was carried out using a Nvidia Tesla K80 GPU with 12 GB of memory.
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2.4. XGBoost Models

Approaches to species classification frequently use imagery to generate variables
(metrics), such as vegetation indices, to capture features or characteristics useful for dis-
criminating different species [9,13]. This may be done using rule-based methods [53] or
machine learning methods such as decision trees [54]. We chose variables that target the
distinctive properties of pōhutukawa canopies. These included spectral metrics aimed at
capturing the blueish hue of the leathery, elliptical leaves and the strong and distinctive
sprays of red flowers present in summer. The canopies also exhibit distinctive textural
properties arising from the multi-stem structure and leaf and bud arrangements inde-
pendent of the presence or absence of flowers (Figures 2 and 3). Texture analysis using
grey-level co-occurrence matrices (GLCMs) [55] was used to try and capture these char-
acteristics. Computation of the texture images was done using the ‘glcm’ package [56] in
R [57]. The GLCM metric classes and parameters were selected based on the analysis and
recommendations of [58]. The raw digital numbers (pixel radiance values) within each
canopy bounding box were used to generate patch-level mean values for the predictive
variables (Table 3). This was necessary because this type of imagery is optimised for visual
appearance and lacks the information required to calculate reflectance.

We selected the XGBoost algorithm to perform binary classification using the ‘xgboost’
package for R [59]. XGBoost is a tree-based machine learning algorithm that is scalable, fast
and has produced benchmark results on classification tasks [60]. The spectral and textural
variables were used to train the XGBoost classifier for a maximum of 400 iterations, with
early stopping based on validation set metrics used to prevent over-fitting. Subsampling of
variables and observations for individual tree learners was also implemented alongside
fine-tuning of the gamma hyperparameter to further guard against over-fitting.

Table 3. Vegetation indices and metrics computed from 3-band RGB aerial imagery of tree canopies for use in the XGBoost
classification model. All metrics used the raw image digital numbers (DNs) (0–255) from the input pixels.

Variable Name Description Definition Source

Mean red Mean of red channel DNs ∑ Red
Num Red NA

Mean green Mean of green channel DNs ∑ Green
Num green NA

Mean blue Mean of blue channel DNs ∑ Blue
Num blue NA

SD red Standard deviation of red channel DNs
√

∑(Red−Mean red)2

Num red−1
NA

SD green Standard deviation of green channel DNs
√

∑(Green−Mean green)2

Num green−1
NA

SD blue Standard deviation of blue channel DNs
√

∑(Blue−Mean blue)2

Num blue−1
NA

RG ratio Red green ratio index Red
Green [61]

Normdiff RG Normalised difference red/green ratio Red−Green
Red+Green NA

Scaled red Scaled red ratio Red
(Red+Green+Blue) NA

Scaled green (SG) Scaled green ratio Green
(Red+Green+Blue) NA

Scaled blue Scaled blue ratio Blue
(Red+Green+Blue) NA

SD GI Standard deviation of the scaled green index
√

∑(SG−Mean SG)2

Num SG−1
NA

GLCM correlation Textural metric computed on RGB channels Grey-level co-occurrence correlation [55]
GLCM homogeneity Textural metric computed on RGB channels Grey-level co-occurrence homogeneity [55]

GLCM mean Textural metric computed on RGB channels Grey-level co-occurrence mean [55]
GLCM entropy Textural metric computed on RGB channels Grey-level co-occurrence entropy [55]

2.5. Performance Metrics

The predictions made by the final models on the withheld test splits of the three
imagery datasets were used to compute the number of correct classifications (true positives)
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and incorrect classifications (false positives) for the pōhutukawa and ‘other spp.’ classes.
These values were used to compute the classification performance metrics shown in Table 4.

Table 4. Performance metrics used to assess classification models. TP = true positive, FP = false positive, TN = true negative,
FN = false negative.

Metric Description Definition

Accuracy A measure of how often the classifier’s predictions
were correct.

TP+TN
TP+FP+TN+FN

Error A measure of how often the classifier’s predictions
were wrong. 1 − Accuracy

Cohen’s kappa A measure of a classifier’s prediction accuracy that
accounts for chance agreement.

observedAgreement−chanceAgreemeent
1−chanceAgreement

Precision (Positive predictive value) A measure of the proportion of positive
predictions that were correct.

TP
TP+FP

Sensitivity (Recall) The proportion of actual positives (Metrosideros)
that were correctly identified by the classifier.

TP
TP+FN

Specificity The proportion of actual negatives (other species)
that were correctly identified by the classifier.

TN
TN+FP

3. Results

3.1. XGBoost Models

The results from the XGBoost and deep learning models applied to the withheld
portions of the datasets used to test classification with phenology (2019 imagery), without
phenology (2017 imagery) and classification of the combined datasets are shown in Table 5.
The XGBoost classifiers showed moderately high accuracy on all three datasets (Table 5).
The strong phenological traits of the pōhutukawa captured in the 2019 summer imagery
produced the model with the highest accuracy (86.7%). The sensitivity and specificity were
similar, reflecting nearly equal rates of false negatives and false positives. The variable
importance scores extracted from XGBoost are shown in Figure 5. The scaled green pixel
values and the RG ratio metric capturing the ratio of red to green pixels had the highest
importance in the 2019 model utilising phenology. These two metrics most likely captured
differences between the mostly green canopies of other spp. and the extensive showers of
red flowers present on many pōhutukawa. The misclassified pōhutukawa often showed
lower levels of flowering or were very small (Figure 6a). There were several hundred
non-pōhutukawa trees in the dataset with canopies that appeared red in colour. These
trees were often falsely classified as pōhutukawa (Figure 6b). This suggests that variables
capturing the strong flowering patterns drove the high performance of the XGBoost model
but struggled to separate other species with reddish or darker canopies.

Table 5. Classification results obtained by applying the trained models to the test split of the respective dataset.

Classification with
Strong Phenology (2019)

Classification without
Strong Phenology (2017)

Classification of Combined 2017 & 2019
Datasets with and without Phenology

XGBoost

Accuracy 86.7% 79.4% 83.2%
Error 13.3% 20.6% 16.8%
kappa 0.733 0.588 0.664

Precision (PPV) 0.861 0.793 0.831
Sensitivity (recall) 0.871 0.788 0.827

Specificity 0.863 0.800 0.837

Deep Learning

Accuracy 97.4% 92.7% 95.2%
Error 3.6% 7.3% 4.8%
kappa 0.948 0.855 0.904

Precision (PPV) 0.982 0.939 0.973
Sensitivity (recall) 0.965 0.912 0.932

Specificity 0.983 0.943 0.973
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Figure 5. Plots of scaled variable importance metrics from the XGBoost species classification models using 2019 imagery
with strong phenology (a), imagery from 2017 without strong phenology (b), and combined imagery from both years (c).
Variables are clustered into groups with similar importance scores.

Figure 6. Examples of errors from XGBoost models. (a) Pōhutukawa canopies incorrectly classified
as other species (false negatives) and (b) examples of other species canopies incorrectly classified
as pōhutukawa (false positives) using the 2019 imagery with strong phenology. False negatives (c)
and false positives (d) from the 2017 imagery with limited phenology. False negatives (e) and false
positives (f) from the XGBoost classifier trained on imagery from both years.
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3.2. Deep Learning Models

The deep learning models performed substantially better than the XGBoost models on
all three datasets. The classifier developed using the 2019 imagery with strong phenology
achieved an accuracy of 97.4%. The specificity of the model (98.3%) was slightly higher than
the sensitivity (96.5%). The false negatives often showed similarities to pōhutukawa with a
few exceptions (Figure 7a). The few false positives (Figure 7b) included a single relatively
obvious error and some examples with limited or irregular flowering. The classification
performance indicated that the model was highly effective at discriminating flowering
trees from most other species with reddish canopies or other flowering species present in
the data.

Figure 7. Examples of errors from deep learning models. (a) Pōhutukawa canopies incorrectly
classified as other species (false negatives) and (b) examples of other species canopies incorrectly
classified as pōhutukawa (false positives) using the 2019 imagery with strong phenology. False
negatives (c) and false positives (d) from the 2017 imagery with limited phenology. False negatives
(e) and false positives (f) from the deep learning classifier trained on imagery from both years.

Without using the strong flowering, the accuracy of the deep learning classifier
dropped to 92.7% (Table 5). The model appeared to struggle more with the canopies
affected by the lower quality of the imagery—small, blurry canopies without the character-
istic appearance visible in other images frequently appeared in the misclassified images
and the false negatives and false positives were visually similar to each other (Figure 7c,d).

As with the XGBoost models, the deep learning model trained on the combined
imagery from both 2017 and 2019 (with and without strong phenology) did not show
improved performance with a larger dataset. The model achieved 95.2% accuracy and
showed the largest difference between sensitivity (93.2%) and specificity (97.3%), reflecting
additional false negatives. Most of the misclassified canopies were from the 2017 dataset,
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and once again these images often showed blurry and indistinct features relative to other
correctly classified examples (Figure 7e,f).

4. Discussion

This study demonstrated that deep learning algorithms could classify pōhutukawa in
the study area with a very high level of accuracy using only three-band RGB aerial imagery,
with or without the use of phenology to enhance detection. Existing remote sensing
approaches to tree species classification rely extensively on calibrated multi or hyperspectral
data that can be expensive and complex to capture over larger areas [9,13,18,24,26,27]. In
contrast, RGB aerial imagery is routinely captured over large areas. Our results suggest
that combining deep learning with this type of imagery enables large-scale mapping of
visually distinctive species.

Significant gains in deep learning model accuracy were realised through leveraging
the visual distinctiveness of pōhutukawa flowering that was clearly identifiable in 2019
aerial imagery. This distinctive phenological attribute also greatly assisted the collation
of a robust number of samples (1150) that was large in comparison to many other tree
classification studies [9,24,62]. Although we had access to ground-truth data, the character-
istic flowering would have allowed most trees to be readily identified without the ground
inspections. Through linking these clearly visible tree locations to previously collected
imagery of pōhutukawa that were not flowering, it was possible to rapidly assemble data
and train deep learning models that could accurately classify pōhutukawa without the
strong phenology. Through combining these two sets of phenologically contrasting images
we were able to assemble and train a model from a dataset that more closely approximated
a real-world scenario where pōhutukawa exhibited variation in phenological expression.
This workflow highlights how imagery with clear phenological traits can be used to rapidly
assemble a more general dataset and through this approach mitigate a common bottleneck
for training deep learning models.

The phenology of tree species has previously been used to enhance remote sensing
classification [63,64]. However, attempting classification using only three-band imagery—
with or without phenology—is less common [9]. This imagery lacks the spectral bandwidth
required by most traditional methods to discriminate species. The few indices that can be
derived are not widely generalisable, as the imagery represents sensor radiance rather than
reflectance from the canopy and the imagery is manipulated to enhance visual appearance.
To overcome this limitation, we derived features such as textural metrics and simple band
ratios aimed at capturing the bright-red, extensive flowering of these species and the
characteristic blueish hue and textural properties of the canopies.

This approach was successfully used by the XGBoost classifier for classification in
the presence of phenology, and although not as accurate, the model without phenology
was still reasonably robust. The performance of both models was high compared to other
examples in the literature. For example, [62] achieved 68.3% classification accuracy of
pōhutukawa using multispectral satellite data from the Coromandel region in New Zealand.
The addition of LiDAR-derived features improved this result to 81.7% but pōhutukawa
were noted to be more difficult to detect than several other species targeted in that study.
It is likely that having multispectral and LiDAR data would have further improved the
XGBoost results in our study, but this would come with higher costs for data acquisition,
storage and processing.

The deep learning approach differed in fundamental ways to traditional remote
sensing methods. While the models will utilise the colour of the canopies, as demonstrated
by the accurate classification of flowering trees, the deep learning approach is also capable
of learning harder-to-quantify features. For example, the characteristic appearance of the
multi-stem canopy, distinctive canopy texture and extensive budding are relatively easy
for knowledgeable analysts to identify in the aerial imagery and the deep learning models
can ‘learn’ that these or similar features are important. This makes the models harder to
interpret but powerful for complex classification tasks [65].
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One key methodological limitation of our approach was the need to manually de-
lineate individual tree canopies before training and inference could be carried out. This
requirement is present in many traditional remote sensing approaches to species classi-
fication. A common workflow is to use LiDAR-derived elevation data alone [66] or in
combination with multispectral data (especially the vegetation-sensitive NIR band) to delin-
eate tree canopies [15,67]. While effective, this method introduces the need for costly LiDAR
data and substantial analysis to extract canopies. More complex deep learning frameworks
may offer an alternative option to perform both segmentation and classification, although
the training data are more expensive to collect [31,68].

The high classification accuracies observed in this study are likely subject to some
caveats. The models were exposed to the unique characteristics and properties of both
aerial imagery datasets. Deep learning approaches do not expect or require calibrated or
corrected imagery, but it is possible that subtle differences in resolution or other dataset
characteristics may reduce transferability to new, unseen aerial imagery. The level of
flowering seen in the 2019 dataset varied widely and many trees showed limited flowering.
However, the imagery was also sharper and many of the other characteristic features of
pōhutukawa were more easily visible in the imagery (e.g., buds, canopy form and hue,
e.g., Figure 3). This provided additional features for the deep learning models and likely
contributed to the high accuracy above and beyond the distinctiveness of the flowering.
The 2017 imagery had the same nominal resolution (10 cm) but had markedly lower quality
and detail (Figure 3). The pōhutukawa all exhibited a blueish hue in this imagery and some
of the textural attributes were still discernible—both of which are likely to have contributed
to the performance of the deep learning model. For predictions to work in new areas, the
features learned from these datasets would need to be discernible in the new imagery. A
brief test conducted by reducing the resolution of some of the imagery (bilinear resampling)
showed that the accuracy of the combined classifier declined rapidly as the distinctive
features were lost, with simulated 15 cm imagery showing only a 70% accuracy rate.

The resolution of the imagery also placed a limit on the size of the trees that could be
classified. Many canopies fell between 30 and 60 pixels in size. At this size, the characteristic
traits were difficult for a human observer to discern and the models would also have had
limited information to learn from. This problem was reduced when phenology could be
utilised, but smaller canopies were more frequently misclassified. It is very likely that
higher-resolution imagery would have improved the classification accuracy still further
and may enhance the transferability of the models. Outside of this domain, for example,
where only moderate to low resolution imagery is available, traditional multispectral or
hyperspectral methods may be more appropriate as they attempt to recover and utilise
the spectral attributes of the canopy that can persist at coarser resolutions or be retrieved
through unmixing.

Future work should explore expanding these methods to a greater number of species
and validate the transferability of deep learning models across multiple, regional datasets.
An extremely promising area of research is the potential for combined deep learning
architectures that offer localisation and segmentation as well as classification [31,33]. This
work could enable large-scale and repeatable mapping of tree species across a range of
environments from lower-cost RGB datasets. This would be useful for biosecurity as well
as many other applications.

5. Conclusions

In this study, we combined distinctive phenological traits and biosecurity surveil-
lance records to develop a high-quality dataset to train and test novel algorithms to detect
pōhutukawa from simple three-band (RGB) aerial imagery. Both modelling approaches
performed well when the dataset included distinctive phenological traits (extensive, bright
red flowers). However, the deep learning algorithm was able to achieve very high accu-
racies even in the absence of some key traits such as the distinctive flowers. The results
of this study suggest that deep learning-based approaches could be used to rapidly and
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accurately map certain species over large areas using only RGB aerial imagery. Candidate
species include those where classification is achievable by an experienced analyst using the
same input data. The deep learning approach did appear sensitive to image resolution and
quality and higher resolution imagery would likely expand the range of species suitable
for classification using this method.
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9. Fassnacht, F.E.; Latifi, H.; Stereńczak, K.; Modzelewska, A.; Lefsky, M.; Waser, L.T.; Straub, C.; Ghosh, A. Review of studies on
tree species classification from remotely sensed data. Remote Sens. Environ. 2016, 186, 64–87. [CrossRef]

10. Dash, J.P.; Watt, M.S.; Pearse, G.D.; Dungey, H.S. UAV Based Monitoring of Physiological Stress in Trees is Affected by Image
Resolution and Choice of Spectral Index. ISPRS J. Photogramm. Remote Sens. 2017, 131, 1–14. [CrossRef]

11. Ferreira, M.P.; Wagner, F.H.; Aragão, L.E.O.C.; Shimabukuro, Y.E.; de Souza Filho, C.R. Tree species classification in tropical
forests using visible to shortwave infrared WorldView-3 images and texture analysis. ISPRS J. Photogramm. Remote Sens. 2019,
149, 119–131. [CrossRef]
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Abstract: Boreal forest is a sensitive indicator of the influence of climate change. It can quantify the
level and spatial divergence of forest change for forest resources and carbon cycle research. This study
selected a typical boreal forest affected by few human activities as a research area, in Siberia, with a
latitude span of 51◦N–69◦N. A total of 150 Landsat images of this area acquired in 1985 and 2015
were collected. A hierarchical classification approach was first established to retrieve the information
of forest cover and species. The forested and nonforested lands were discriminated by the decision
tree method and, furthermore, the forested land was classified to broad-leaved and coniferous forests
by a random forest algorithm. The overall accuracy was 90.37%, which indicates the validity of the
approach. Finally, the quantitative information of the forest cover and species changes in each latitude
zone of every 2◦ was analyzed. The results show that the overall boreal forest cover increased by
5.11% over the past three decades, with broad-leaved forest increasing by 3.54% and coniferous
forest increasing by 1.57%. In addition, boreal forest increased in every latitude zone, and the spatial
divergence of the changes of the boreal forest cover and species in different latitude zones were
significant. Finally, broad-leaved forest increased more rapidly than coniferous forest, and the greatest
increase, of up to 5.77%, occurred in the zone of 55◦N–57◦N.

Keywords: boreal forest; forest cover and species; Siberia; Landsat; spatial divergence

1. Introduction

Forests cover more than one-third of the earth’s land surface. They are one of the critical biomes
globally and provide ecosystem services that benefit society at levels ranging from local to global [1,2].
Forests have been shown to strongly interact with climate change [3]. Furthermore, forests can modify
the global carbon budget by altering the sequestration and release of carbon to influence climate change.
Conversely, climate change has a profound impact on global forestry, and continues to accelerate with
increasing anthropogenic greenhouse gas (GHG) emissions [4]. Due to rapid climate change, forest cover
and species ranges continue to shift [5]. To a degree, the above coupling process balances climate change,
and these influences also cause changes in forest cover and abundance of species. Therefore, quantifying the
spatial changes of forest cover and species is important for improving carbon accounting, climate change
modeling, and biodiversity monitoring.

It is an indisputable fact that the global climate is now warming [6–10]. Recent years (2015–2018)
have been the warmest since 1850 [11,12]. In addition, higher latitudinal areas, such as boreal forest
areas, are expected to undergo the largest increases in temperature [13–16] and experience variable
shifts in precipitation regimes [17–19]. Global warming has influenced the suitable climate conditions
for different forest species, and studies have shown that climate zones in boreal forests are moving
northwards ten times faster than trees’ ability to migrate [20,21].
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Boreal forests, which span the northern hemisphere across three continents and ten different
countries, comprise about 30% of the total forest area globally [20,22] and are considered among
the most vulnerable to climate change [13]. The boreal forest is floristically simple and consists of
hardy genera of larch (Larix), pine (Pinus), spruce (Picea), and fir (Abies), interspersed with deciduous
hardwoods of birch (Betula), aspen (Populus), willow (Salix), and alder (Alnus). With temperatures in the
arctic and boreal domains recently warming, boreal forests have been shown as one of the ecosystems
most affected by climate change [23]. Furthermore, quantitative rates of the spatial changes of boreal
forest cover and species are important indicators for research of the influence of climate change and
are helpful for improving carbon accounting and biodiversity monitoring, which are not yet fully
understood. A practical solution to examining trends in forest cover change at a large scale is to employ
remotely sensed data [24]. Satellite-based monitoring can be implemented consistently across large
regions at annual and interannual intervals [25–27].

Numerous studies have investigated the effect of climate change on boreal forest by remote
sensing techniques. It has been observed that the growth of boreal forest was influenced by global
warming over the past decade using Moderate-resolution Imaging Spectroradiometer (MODIS) images;
however, there is obvious spatial divergence [28,29]. In practice, it is a challenge to quantify the
effects of climate change using remote sensing data with low spatial resolution because, due to the
low resolution, it is difficult to distinguish the subtle spatial distribution of different forest species.
Furthermore, significant uncertainties are attached to possible interactions among forests and climate
change, in addition to other land-use pressures [3].

Landsat images provide an ideal option for remote sensing with a medium spatial resolution of
30 m and temporal resolution of 16 days, thus allowing for monitoring of natural and human-induced
landscape changes at local or regional scales over years and decades [30,31]. Landsat satellite data
have been most widely adopted for studying vegetation phenology, agriculture and forestry, surface
temperature monitoring, and air pollution monitoring due to their high spatial resolution and global
coverage [32–35]. The long-term data record of nearly five decades allows it to be used for forest
investigations for any number of time periods. However, longer time series will require more data
processing and storage capacity [36].

In this work, we selected a typical study area in Siberia in which the boreal forests have been
affected primarily by natural factors to quantify the spatial changes and divergences of boreal forest
cover and species over the past three decades using the Landsat series dataset. The aim was to reveal
the latitude zones in which the forest cover and species were more sensitive to climate change, and to
provide quantitative information for climate change and ecosystem research.

2. Study Area and Datasets

2.1. Study Area

The boreal forest in Krasnoyarskiy Kray in Central Russia, located in the middle of Siberia
(Figure 1), was selected as the study area. The approximate latitude range of the area is 51◦N to
69◦N, and the longitude is 84◦E to 110◦E. This work concerns the spatial changes of forest cover and
forest species related to latitude in the context of climate change. We divided the study area into nine
latitude zones by every 2◦ from south to north. The information for every latitude zone is shown in
Table 1. The latitude range of this area is considered sufficiently large for sensitivity analysis of the
forest change.

The climate in the area is strongly continental, with large temperature variations from south to
north. The territory of the study area experiences the conditions of three climate belts: Arctic, Subarctic,
and moderate. For the central and southern regions, long winters and short hot summers are characteristic.
In the north, there are fewer than 40 days with temperatures above 10 °C, whereas, in the south, there
are 110–120 such days. The average temperature in January is −36 °C in the north and −18 °C in the
south, and in July it is 10 °C in the north and 20 °C in the south. The annual precipitation is 200–300 mm
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in the north and about 1000 mm in the south. Permafrost is widespread in this area, particularly in the
north. The south of the permafrost zone is covered by primeval forest, and the forest species are mainly
broad-leaved and coniferous. This area is sparsely populated, with a small number of towns and villages
spread throughout the south, surrounded by areas of farmland.

Figure 1. Location of the study area.

Table 1. The areas of each latitude zone.

Latitude Zones (◦N) Area (km2)

67–69 19,596.45
65–67 58,813.18
63–65 58,364.09
61–63 66,364.15
59–61 130,507.24
57–59 155,232.73
55–57 114,456.67
53–55 77,579.58
51–53 33,564.27
Total 714,478.36

2.2. Datasets

A total of 150 Landsat Thematic Mapper (TM) and Operational Land Imager (OLI) series scenes
with little to no cloud cover in the study area, collected from the United States Geological Survey (USGS)
(http://glovis.usgs.gov/), were used in this work. These images were acquired during 1985 and 2015,
respectively. Most of the images were acquired during summer, mainly between June and September.
To account for lacking data, three images with no snow over the south area acquired in October were also
used. Some data from adjacent years were used to make up the images due to data deficiencies in the
current years. The data product is L1T level with a spatial resolution of 30 m.
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3. Data Process

3.1. Data Preprocess

The dataset was preprocessed to eliminate radiometric and geometric distortions. Image preprocessing
includes radiometric and atmospheric corrections (Figure 2). To minimize the influence of cloud noise,
a haze optimized transformation (HOT) algorithm was used to identify and remove thin clouds [37–39].
Firstly, the clear line was determined according to the high correlation between the blue and red bands in
the clear region, and then the HOT value was calculated using the transform equation:

HOT = ρ1 sinθ− ρ3 cosθ− |I| cosθ (1)

where ρ1 and ρ3 are the reflectance of the blue and red bands of TM and OLI images, respectively.
I represents the intercept of the clear line, and θ is the inclination of the clear line.

The cloud images were classified by the HOT value which represented the cloud thickness,
and then the Landsat image in the cloud region and clear region was automatically classified using just
one near-infrared band and two shortwave infrared bands. The image in the cloud region of visible
bands was matched to the image in the clear region according to the cloud class and object classification
to remove the effect of the cloud.

Figure 2. Preprocessing of Landsat Thematic Mapper (TM)/Operational Land Imager (OLI) scenes.

3.2. Forest Classification Approach

This study focused on the changes of boreal forest coverage and species in Siberia, and a hierarchical
information extraction approach was established and used for the forest classification. Firstly, a simple
decision tree method was adopted to discriminate between forest and nonforest land in the Landsat
images, and then a random forest (RF) algorithm was employed to distinguish the broad-leaved and
coniferous species from forest land.

3.2.1. Forest and Nonforest Land Classification by Decision Tree Method

The decision tree algorithm is intuitive and flexible, and has high computational efficiency in
processing a large quantity of data. In this classification, two vegetation indices, normalized vegetation
index (NDVI) and ratio vegetation index (RVI), were used for the discrimination between forest and
nonforest land. NDVI can effectively weaken the effects of complex terrain in image information
extraction, and enhance the distinction between vegetation and other land types, which is helpful for
improving the accuracy and credibility of forest information extraction. The RVI can better reflect the
difference of vegetation growth and coverage, and is suitable for vegetation monitoring in areas with
vigorous vegetation growth and high coverage. The annual maximum NDVI (NDVImax) values of
built-up areas, barren lands, and sparsely vegetated lands are usually lower than 0.30, whereas forest
NDVImax values are usually higher than 0.50 [40]. Subsequently, we determined the decision tree
classification rules based on sample training: NDVI values greater than 0.62 and RVI values greater
than 6.0 were selected as vegetation land, otherwise land was regarded as nonvegetation land.
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Next, we distinguished the vegetation land between forest and other vegetation. We found that
different plants have different spectral reflectance peaks in the near-infrared band, which is highly
sensitive to the difference in reflectance caused by the internal structure of different leaves. Therefore,
the reflectance of the near-infrared band can be used to distinguish forest and other vegetation.
The vegetation objects classified in the upper layer with reflectance values in the near-infrared band of
less than 0.38 were selected as forest land, otherwise they were categorized as nonforest land. The first
layer of nonvegetation land and the second layer of nonforest land were combined as the final nonforest
land classification result, and the second layer of forest land classification as the final forested land
classification result (Figure 3).

 

Figure 3. TM/OLI scene classification based on the decision tree classification model.

3.2.2. Broad-Leaved and Coniferous Forest Classification by Random Forest Algorithm

The distinction of natural attributes within forest species is limited by the spectral resolution. It is
difficult to detect the subtle spectral differences between coniferous forest and broad-leaved forest
with a single image spectral feature. Therefore, it is necessary to use a combination of various spectral
features and vegetation indices to classify coniferous and broad-leaved forests. To avoid the impact of
other ground features, the nonforested lands were masked.

The random forest algorithm is an extension of the concept of the decision tree [41–43]. As a
common algorithm applied in the field of machine learning, RF is often used as a classification
method [44–47]. Representative training samples are one of the most critical components in the RF
algorithm. The quality and distribution of these samples are also important. In this work, we selected
the broad-leaved and coniferous forest sample points from Landsat images following the following
principles: (1) the training samples must avoid land-cover mixtures and heterogeneous areas; (2) the
sample points should be distributed in a scene that is as representative as possible; (3) the forest-cover
category must be interpretable using TM images. Additionally, Google Earth images of the same areas
were also used as a reference [48]. Six bands, Landsat TM bands 1–5 and 7, and Landsat OLI bands 2–7,
were selected as spectral characteristic variables; NDVI, normalized difference index (NDI) [49] and
RVI were selected as index characteristic variables for classification in RF. Additionally, in the RF
algorithm, the parameter ntree controls the growth number of decision trees, and another parameter
mtry represents the maximum number of features randomly selected from the above nine variables in
the individual tree. In this study, considering the computational efficiency and classification accuracy,
the values of ntree and mtry were set to 1000 and 3, respectively. Finally, the broad-leaved and coniferous
forests were classified using the above random sample points using the RF algorithm.
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3.2.3. Accuracy Assessment

In this study, four simultaneous Gaofen-2 (GF-2) satellite panchromatic band images acquired in
2015 were used to validate the classification results. The spatial resolution of GF-2 images was 0.81 m.
We selected 987 randomly distributed sampling points from GF-2 images for the validation, and the
overall accuracy (OA) and F1-score were calculated to evaluate the reliability of the classification
results [50], as shown in Table 2. The overall accuracy was 90.37%, and the F1-scores of broad-leaved,
coniferous and nonforest land were 0.85, 0.93, and 0.91, respectively. Considering the consistency of
the Landsat series images, the above validation result is still considered to be valid for 1985 because it
is difficult to obtain the measured data or the high-resolution satellite images of the study area for 1985.

Moreover, the tree-cover-2010 data from Global Forest Watch (GFW) was also used to validate
the classification results by spatial overlay analysis [51]. The GFW project is focused on developing
global tree cover change data products based on Landsat satellite imagery, and provides global tree
cover data with a resolution of 30 m [52]. The spatial consistency of the tree-cover-2010 data and our
classification results of forest land was 85.26%. Additionally, Figure 4 presents examples of classified
scenes from various areas.

Table 2. Accuracy assessment using Gaofen-2 (GF-2) images.

Land Classification
GF-2 Results

Broad-Leaved Forest Coniferous Forest Nonforest Land Total

Landsat
Results

Broad-leaved forest 202 12 22 236
Coniferous forest 29 421 24 474
Nonforest land 8 0 269 277

Total 239 433 315 987
F1-score 0.85 0.93 0.91

Overall accuracy = 90.37%

 
Figure 4. Typical classified scenes in various areas. (a) Images of forest increase; (b) classification
results of the images in (a); (c,d) forest classification results in different areas.
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4. Result and Analysis

4.1. Spatial Change of Boreal Forest Cover

Firstly, the forest and nonforest lands in the two periods of 1985 and 2015 were classified, and the
results are shown in Figure 5a,b. The spatial change of the boreal forest cover between the two years is
shown in Figure 5c, and the quantitative information is displayed in Table 3 and Figure 6.

  
(a) (b) 

 
(c) 

Figure 5. Forest and nonforest land classification: (a) in 1985; (b) in 2015; (c) the spatial change of the
forest and nonforest lands.
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From Figure 5 and Table 3, it can be seen that substantial change has occurred in the boreal forest
cover in the research area over the past three decades. Overall, the rate of forest cover Rfl, expressed as
the ratio between the area of forest land and the total land area, increased by 5.11% from 75.42% to
80.52%, and Rfl was high in the south and low in the north. In 53◦N–57◦N, human activities occurred
that slightly reduced the forest cover. In the region 57◦N–69◦N, the forest cover and change were
mainly influenced by natural factors, with little human activity taking place. The largest rate of forest
cover was in 57◦N–59◦N, of about 91.00%, in 2015. In the latitude zone 67◦N–69◦N, the north border of
the boreal forest, Rfl was as high as 34.35% in 2015.

In this research, we were particularly concerned about the quantitative spatial divergence of
the forest change in different latitude zones. Thus, we calculated the change of forest cover rate ΔRfl
between 1985 and 2015 for every latitude zone to reflect the absolute change velocity of forest cover
(Table 3). It can be seen that the rates of forest cover increased in all latitude zones from 1985 to 2015,
although with a clear divergence. Compared to other zones, the increase in forest cover was greatest
in the north region from 63◦N to 69◦N, and the greatest increase was up to 13.50% in 65◦N–67◦N,
indicating that the forest cover was more sensitive to climate change in this latitude zone. A relatively
slow increase of 1.00% occurred in the latitude zone from 57◦N to 59◦N, in which the forest cover was
up to about 91.00% (Figure 6).

Additionally, we also calculated ΔRfo, expressed as the ratio between the area of changed forest
cover and the original forest land, which can be used to reflect the relative increase rate of the forest
area itself. The result shows that the greatest ΔRfo was up to 24.61% in the latitude zone 65◦N–67◦N
(Figure 6), which indicates that the forest has the strongest regeneration ability in this region against
the background of global warming.

Table 3. Forest land area and ratio.

Latitude Zone (◦N)
1985 2015 1985–2015

Rfl Rfl ΔRfl ΔRfo

67–69 29.80% 34.35% 4.55% 15.28%
65–67 54.84% 68.34% 13.50% 24.61%
63–65 68.68% 77.52% 8.84% 12.87%
61–63 84.25% 85.82% 1.57% 1.86%
59–61 81.73% 84.97% 3.24% 3.96%
57–59 89.99% 90.99% 1.00% 1.11%
55–57 69.07% 77.03% 7.96% 11.52%
53–55 68.65% 74.93% 6.28% 9.14%
51–53 77.64% 82.66% 5.02% 6.47%
Total 75.42% 80.52% 5.11% 6.77%

 

Figure 6. Line chart of the rates and the changes of forest cover in different latitude zones.
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4.2. Spatial Changes of Boreal Forest Species

The broad-leaved and coniferous forests were distinguished from forest land, as shown in
Figure 7a,b, and the quantitative information of the two forest species is shown Table 4. The total
broad-leaved forest area in the research region increased by 39,341.30 km2 over the past three decades.
Overall, the broad-leaved and coniferous forest cover increased in the research area. First, we calculated
the ratio Rbl between the areas of broad-leaved forest and the total land, and Rcl for the coniferous
forest. These two ratios can be used to reflect the absolute cover of the two forest species of the total
land. The line charts of the cover and change of the forest species are shown in Figure 8. In the study
area, the broad-leaved forest cover increased by 3.54%, from 23.83% to 27.37%, and coniferous forest
increased by 1.57%, from 51.58% to 53.15%. It also can be seen that overall coniferous forest was more
dominant than broad-leaved forest during the study period; however, the broad-leaved forest increased
more rapidly than the coniferous forest.

We also analyzed the spatial divergence of the cover of each forest species in different latitude
zones. The largest Rbl was about 45.00%, and occurred in the latitude zone 55◦N–57◦N in 2015. It can
also be seen that, in 51◦N–65◦N, the change trend of Rbl and Rcl were almost contrary with the latitude
zones (Figure 8a). Rbl and Rcl were both lowest in the 67◦N–69◦N zone, which was the north border of
boreal forest in Siberia, with values of about 5.35% and 29.00% in 2015, respectively.

The ratio Rbo between the area of broad-leaved forest and the area of forested land, and Rco for
coniferous forest, can be used to reflect the abundances of the two forest species in the forested land. The
broad-leaved forest was the dominant species in 53◦N–57◦N (Figure 8b). However, in the 51◦N–53◦N
zone, the Rbo of broad-leaved forest was about 32.79% in 1985 and 35.59% in 2015, and significantly less
than that in 53◦N–57◦N. This is because the average altitude is over 1000 m in the 51◦N–53◦N zone,
which is significantly higher than that of about 450 m in 53◦N–57◦N. In the latitude zones from 57◦N
to 69◦N, coniferous forests were more abundant than broad-leaved forests, mainly due to the relatively
cold weather in this region. However, an abnormal phenomenon is that Rbl in the 59◦N–61◦N zone was
almost the lowest in the research area, and surprisingly was substantially lower than that in 63◦N–65◦N,
which may be due to the influence of multiple factors, such as climate and artificial logging.

It is important for carbon cycle research that the spatial divergence of the boreal forest species changes
in different latitude zones (Figure 8c,d). Here, we firstly calculated ΔRbl and ΔRbo, which represent the
changes of Rbl and Rbo over the past three decades, respectively (Table 4 and Figure 8c). It can be seen
that the broad-leaved forest cover Rbl increased in all latitude zones. The greatest increase was up to
5.77% in 55◦N–57◦N. The lowest was about 0.45% in 67◦N–69◦N, which can be considered to represent
no change in the broad-leaved forest cover in this zone considering the accuracy of the classification. We
also note that the change of Rbl was about 1.33% in 59◦N–61◦N, which is relatively low compared with
other latitude zones, with the exception of 67◦N–69◦N. The explanation for this phenomenon requires
further study. ΔRbo in 67◦N–69◦N was −0.89%, which indicates that the proportion of broad-leaved
forest decreased slightly in this zone, although Rbl increased.

In addition, ΔRcl was also calculated, and represents the change of Rcl over the past three decades
(Figure 8d). It can be seen that the coniferous forest cover decreased in the zones 57◦N–59◦N and
61◦N–63◦N; however, coniferous forest increased significantly in the latitude from 65◦N to 69◦N,
where broad-leaved forest increased relatively slowly.
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(a) (b) 

  
(c) (d) 

Figure 7. Broad-leaf forest and coniferous forest classification: (a) 1985; (b) 2015; (c) change in the
broad-leaved forest; (d) change in the coniferous forest.
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Table 4. Broad-leaved forest area.

Latitude Zone
(◦N)

Broad-Leaved Forest Coniferous Forest

1985 2015 1985–2015 1985 2015 1985–2015
Rbl Rbo Rbl Rbo ΔRbl ΔRbo Rcl Rco Rcl Rco ΔRcl

67–69 4.91% 16.47% 5.35% 15.59% 0.45% −0.89% 24.89% 83.53% 29.00% 84.41% 4.11%
65–67 14.08% 25.68% 17.97% 26.29% 3.89% 0.62% 40.76% 74.32% 50.37% 73.71% 9.61%
63–65 17.51% 25.50% 21.41% 27.61% 3.89% 2.11% 51.17% 74.50% 56.11% 72.39% 4.95%
61–63 14.47% 17.18% 18.22% 21.23% 3.74% 4.05% 69.77% 82.82% 67.60% 78.77% −2.18%
59–61 12.03% 14.71% 13.36% 15.72% 1.33% 1.01% 69.71% 85.29% 71.62% 84.28% 1.91%
57–59 28.20% 31.34% 31.92% 35.08% 3.72% 3.74% 61.79% 68.66% 59.07% 64.92% −2.72%
55–57 39.22% 56.78% 44.99% 58.41% 5.77% 1.63% 29.85% 43.22% 32.04% 41.59% 2.19%
53–55 36.50% 53.17% 39.98% 53.35% 3.47% 0.18% 32.15% 46.83% 34.96% 46.65% 2.80%
51–53 25.46% 32.79% 29.42% 35.59% 3.96% 2.79% 52.18% 67.21% 53.25% 64.41% 1.06%
Total 23.83% 31.60% 27.37% 33.99% 3.54% 2.39% 51.58% 68.40% 53.15% 66.01% 1.57%

  
(a) (b) 

  
(c) (d) 

Figure 8. Spatial divergence of the cover and change of forest species with different latitude zones:
(a) Rbl and Rcl in 1985 and 2015; (b) Rbo in 1985 and 2015; (c) ΔRbl and ΔRbo; (d) ΔRcl.

5. Conclusions

Boreal forests have been affected by climate change over the past three decades, which is
predominantly reflected in the changes of forest cover and species. This work selected a typical
area in central Siberia, and collected 150 Landsat TM/OLI images covering this area acquired in 1985
and 2015. A hierarchical classification process was established for the retrieval of boreal forest cover
and species. Finally, quantitative spatial information of the forest cover and species was compiled for
latitude zones for every 2◦. The results show that the impact of climate change on the boreal forest has a
significant spatial divergence. Compared with other zones, the increase in forest cover was greatest in the
region from 63◦N to 69◦N, indicating that the forest cover was more sensitive to climate change in this
region. Furthermore, the broad-leaved forest cover increased by 3.54% and coniferous forest increased
by 1.57%. Overall, coniferous forest was also more dominant than broad-leaved forest during the study
period, although broad-leaved forest increased more rapidly than coniferous forest. In 67◦N–69◦N,
the proportion of broad-leaved forest decreased slightly.

This study considered only two periods, i.e., 1985 and 2015. However, it will be necessary in
future work to study forest change during other periods. In addition, more research is required to
determine which climate factors, such as temperature or precipitation, are the main driving forces of
forest change.
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Abstract: Knowledge of forest structures—and of dead wood in particular—is fundamental to
understanding, managing, and preserving the biodiversity of our forests. Lidar is a valuable
technology for the area-wide mapping of trees in 3D because of its capability to penetrate
vegetation. In essence, this technique enables the detection of single trees and their properties
in all forest layers. This paper highlights a successful mapping of tree species—subdivided into
conifers and broadleaf trees—and standing dead wood in a large forest 924 km2 in size. As a novelty,
we calibrate the critical stopping criterion of the tree segmentation based on a normalized cut with
regard to coniferous and broadleaf trees. The experiments were conducted in Šumava National Park
and Bavarian Forest National Park. For both parks, lidar data were acquired at a point density of
55 points/m2. Aerial multispectral imagery was captured for Šumava National Park at a ground
sample distance (GSD) of 17 cm and for Bavarian Forest National Park at 9.5 cm GSD. Classification
of the two tree groups and standing dead wood—located in areas of pest infestation—is based on
a diverse set of features (geometric, intensity-based, 3D shape contexts, multispectral-based) and
well-known classifiers (Random forest and logistic regression). We show that the effect of under- and
oversegmentation can be reduced by the modified normalized cut segmentation, thereby improving
the precision by 13%. Conifers, broadleaf trees, and standing dead trees are classified with overall
accuracies better than 90%. All in all, this experiment demonstrates the feasibility of large-scale and
high-accuracy mapping of single conifers, broadleaf trees, and standing dead trees using lidar and
aerial imagery.

Keywords: classification; segmentation; single trees; forest structure analysis; dead wood

1. Introduction

Forest inventories based on remote sensing data vary in terms of scale, sensors, and calculated
forest structural attributes. For example, Latifi and Heurich [1] reported that lidar point clouds
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advantageously fused with optical imagery are the most prominent choices for inventory of forest
structural variables at the landscape and regional scales. Spatial distribution of trees and standing
or fallen dead trees are key forest variables for estimation of forest attributes such as aboveground
biomass and growing stock. Aside from area-based methods, tree-level approaches estimate forest
inventory parameters utilizing segmented single trees. The study of Latifi et al. [2] compared both
approaches for a temperate forest area of around 300 km2 in a large-scale experiment and showed that
the cost of data collection could be reduced by 90% compared to a conventional forest inventory.

For single tree detection, a huge set of raster-based approaches are available that use the canopy
height model (CHM) as basic information [3]. Aside from these low-level methods, more sophisticated
approaches operate on the point cloud instead of using the CHM. Strîmbu and Strîmbu [4] present
a three-dimensional approach in which a weighted graph is built from hierarchical topologies of
lidar data, thereby generating three-dimensional tree segments. The authors indicate an average
detection accuracy of 98% for simple, regular tree structures and 85% for complex tree structures.
The approach of Dai et al. [5] merges mean-shift clusters initially generated from different lidar-based
feature spaces to individual trees using both the spatial domain and the multispectral domain. In the
case of multispectral lidar data, this study reports a detection rate of 88%. Reitberger et al. [6] proposes
a novel segmentation method based on normalized cut [7] that detects single trees using a graph cut
approach. The study successfully shows a significant improvement of the single tree detection (up to
20%) in the lower forest layers.

Graph-cut based segmentation methods, such as normalized cut, partition the underlying
weighted graph that is being finished with a dependence on a static stopping criterion. The stopping
criterion controls the iterative segmentation and has no physical or object specific meaning. It must
be either defined based on practical experience or optimized by means of a sensitivity analysis using
reference data [8]. However, the stopping criterion is applied statically, without accounting for the
actual local tree species; therefore over- and under-segmentation occurs when using the stopping
criterion averaged over the reference data. Recently, Amiri et al. [9] improved the normalized cut based
tree segmentation by replacing the static stopping criterion with an adaptive classifier that analyzes the
point cloud of the cluster to be partitioned. However, this extension of the basic method only works
for conifers and fails for broadleaf trees.

Optical imagery has become a standard source to discriminate tree species [10,11]. Recently, dense
matching has emerged as a mature technique used for reconstructing objects from a series of highly
overlapping images at the pixel level [12]. When applied in a forest area, the dense point cloud of a
canopy surface can be used for tree species classification either at the tree level, or using an area-based
approach [13]. Moreover, the combination of multispectral images with lidar advantageously enriches
the limited radiometric range of lidar. Ullah et al. [14] demonstrated an improvement in the estimation
of forest structural parameters at the stand and forest compartment levels using point clouds generated
from aerial imagery.

Over the past decade, lidar has emerged as an excellent data source for classifying tree
species. Several studies have demonstrated the feasibility of tree species classification using structural
features, such as crown shapes, height distribution percentiles, and proportions of first/single returns,
obtained from lidar point clouds [15–18]. The application of the newly introduced full waveform lidar
systems has also improved accuracy by applying waveform features that use detailed backscattered
pulse information, such as the intensity and pulse width [19,20]. Reitberger et al. [6] also demonstrated
the advantages of full waveform lidar for tree species mapping in the Bavarian Forest National Park by
utilizing the intensity and pulse width. For the same forest area, Yao et al. [21] showed that broadleaf
trees and conifers could be classified with an overall accuracy of 78%. However, Shi et al. [22] found
that the classification accuracy decreases by 30% if the detailed tree species mapping (six different tree
species) is attempted for the same study area. The study in Hovi et al. [20] reported an overall accuracy
of 75% for the classification of three main tree species in Finland using lidar waveform features.
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The advent of high resolution lidar point clouds made possible the successful detection of
individual standing dead trees located in areas of pest infestation. Yao et al. [21] was able to detect
standing dead trees with crowns with an accuracy between 71% and 73%. The approach only used the
lidar intensity (single wavelength 1550 nm) and geometric features such as the crown shape and point
height distribution. Recently, Polewski [23] presented a method that combines single 3D tree segments
with multispectral aerial imagery for mapping of standing dead trees with crowns. A two-class
classification (dead tree and non-dead tree) led to an accuracy of around 88% using features generated
from the covariance matrix of three image channels. The detection of standing dead trees without
crowns (i.e., snags) was tackled in Polewski et al. [24]. The approach generates salient features by
free shape contexts suitable to describe the single snags in a lidar point cloud. The study reports a
classification accuracy between 71% to 73%. At present, these techniques for mapping dead trees have
only been applied to small control plots.

The structure of a forest is one of the most important variables for the future development
of forest stands [25] and has considerable impact on the presence of protected species [26].
For adequate management, the description of species composition, spatial structure, natural dynamics,
and various tree characteristics is mandatory. These forest characteristics are also needed as explanatory
variables for many research issues. Šumava National Park and Bavarian Forest National Park
are collecting forest structure data in the field on a permanent research plot, whose total area is
relatively small when compared with the size of the entire forest area [27]. So far, slightly different
measurement methodologies have been applied in both parks, such as update periods and plot size,
hence complicating forest data comparisons and cross-border mapping of forest structures. Lidar offers
the unique opportunity to describe the forest structure of both neighboring parks in a consistent data
set generated at the same time and based on identical methods.

In summary, tree segmentation based on normalized cut using a static stopping criterion generates
over- and undersegmentation effects depending on the distribution of tree species. Therefore, it appears
advantageous to apply a stopping criterion that is based on a tree species’s information obtained
from a preliminary classification of conifers and broadleaf trees. Moreover, the complete mapping of
conifers, broadleaf trees, as well as standing dead trees, has not yet been successfully demonstrated
in a large temperate forest area using lidar and multispectral imagery. Contrary to the experiments
normally conducted in small test areas, the results of a large-scale experiment are statistically more
relevant and more reliable. Finally, the area-wide mapping of individual trees—especially of dead trees
and snags—across the border allows for a seamless representation of the ecosystem that is important
for forest biodiversity conservation.

The main objectives and the novelties of the current study were (i) to optimise tree segmentation
based on normalized cut using two different stopping criteria for conifers and broadleaf trees and (ii)
to map conifers, broadleaf trees, standing dead trees, and snags in a large temperate forest 924 km2 in
size situated in Šumava National Park and Bavarian Forest National Park. Thereby, we verified the
statistical performance of the methods in a large-scale experiment and provided spatial information
about the distribution of trees usable for area-wide information on the abundance and distribution of
key habitat structures [28].

2. Materials and Methods

2.1. Study Area

Established in the Bohemian Forest in 1991 and 1970, respectively, Šumava National Park (49◦12′N,
13◦30′E) and Bavarian Forest National Park (49◦12′N, 12◦58′E) protect 92,464 ha of mountain spruce
forests. The forest cover more than 82% of this area, one of the largest complexes in central Europe.
Both parks are part of the Natura 2000 network, which was established to protect the most endangered
habitats and species in Europe, as defined in both the Habitats Directive (1992) and Birds Directive
(1979). This forest area comprises natural and secondary habitats with numerous rare and protected
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plant and animal species of exceptional natural value of European-wide significance [27]. Although
divided by the state border between Czech Republic and Germany, the forest nature is consistent for
the area of both parks.

Both parks are dominated by Norway spruce (Picea abies) with European beech (Fagus sylvatica),
silver fir (Abies alba) and larch (Larix). The parks also contain some other tree species, such as white
birch (Betula pendula), sycamore maple (Acer pseudoplatanus), and common rowan (Sorbus aucuparia)
[29]. Due to bark beetle infestation, large areas are now characterized by dead wood, comprising fallen
dead trees, standing dead trees, and standing dead trees without crowns (=snags). Note that we did
not focus on the detection of fallen dead trees. Moreover, we excluded dead trees located in windthrow
areas. Figure 1 shows a map of the two parks and the reference plots (see Section 2.4.1).

Figure 1. Map of Šumava National Park (green border) and Bavarian Forest National Park (yellow
border) superimposed with orthophotos. Reference areas measured by field measurements: Bioklim CZ
(orange circle), HTO (violet circle), Bioklim (green circle), LAI (red). Additional reference areas were
manually labelled: A1, A2, and A3 (blue pentagon) for dead trees and snags; B1, B2 (yellow diamond)
and C1 (purple diamond) for broadleaf trees and conifers.

2.2. Lidar Data

The airborne full waveform data were acquired in June 2017 (leaf-on condition) using a RIEGL
LMSQ 680i instrument, which was carried by a helicopter at a flying altitude of 550 m and at a speed
of 60 kts. Parallel flight strips were flown with side lap of 60%. Therefore, the resulting average point
density was 55 points/m2. In total, the area of the lidar campaign was 943 km2. The lidar data were
provided as LAS-files containing an amplitude value for each laser point. Table 1 summarizes the
parameters of the RIEGL LMSQ 680i scanner and the lidar flight campaign.

The raw amplitude values Iraw were corrected with regard to travelling distance s of the laser
beam assuming a mean flight height s0 = 400 m with

Icorr = Iraw × (
s
s0
)n. (1)

The parameter n was calibrated using the lidar data of a calibration flight that was conducted on
a near-by airfield. Following the procedure suggested by [6], we calculated for parameter n = 2.03.

Finally, the entire lidar set was geometrically checked in planimetry and height using enclosing
polygons for flat buildings and the mean height of small horizontal areas. On average, the mean
horizontal and vertical displacements were 5 cm and 6 cm, respectively.
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Table 1. Flight parameters of lidar campaign.

Scanner Type RIEGL LMS-680i

Platform Helicopter
D-HFCE/AS350

Spectral wavelength (nm) 1550
Beam divergence (mrad) 0.5
Flight speed (kts) 60
Flight height (m) 550
Side lap (%) 60
Point density (pts/m2) 55
Footprint size (mm) 275
Area (km2) 943
Number of raw laser points (Mio) 52.400

2.3. Aerial Multispectral Data

For both parks, the multispectral aerial imagery was acquired on October 2017 and June 2017 in
two separate aerial flight campaigns. In Šumava National Park, the fall foliage change had already
started for most of the broadleaf trees (see Figure 2a). Therefore, the spectral appearance was similar
for beeches and dead trees. Moreover, because of low solar altitude, the shadows of the trees were
fairly long. In Bavarian Forest National Park, the color infrared imagery was optimal because the
data were acquired in June 2017. Note that the acquisition time for the lidar campaign is almost the
same. Figure 2a,b show typical areas containing conifers, broadleaf trees, and dead wood. The ground
sample distance (GSD) was not identical for the two park areas and had values of 17 cm and 9.5 cm for
the Šumava and Bavarian Forest National Parks, respectively. In total, 669 images were captured for
Šumava and 2553 for Bavarian Forest. Additionally, Global Navigation Satellite System (GNSS) data
and Inertial Navigation System (INS) data were also acquired to provide initial information about the
exterior orientation. The mean above-ground flight heights were 3900 m and 2880 m for the Šumava
and Bavarian Forest National Parks, respectively. The images had end-laps of 80% and side-laps of
60%. They contained four spectral bands (blue, green, red, and near-infrared). The aerotriangulation
(AT) was calculated using the following input: the aerial images, the camera calibration model,
and the image measurements for the control points. As expected, the sigma naught of the AT was
excellent, with 0.22 GSD for Šumava and 0.3 GSD for Bavarian Forest. For the software packages,
ISAT [30] and MATCH-AT [31] were used for Šumava National Park and Bavarian Forest National
Park, respectively. The software packages OrthoMaster/OrthoVista [32] generated true orthophotos
utilizing the digital surface model of the total forest area. Table 2 shows the details of the aerial flight
campaigns and the subsequent photogrammetric processing of the aerial imagery.

Table 2. Flight parameters of aerial image acquisition, results of subsequent aerial triangulation, and
software packages used.

Park Area Šumava Bavarian Forest

Acquisition time October 2017 June 2017
Aerial camera Xp-w/a DMCIII
End lap/Side lap (%) 80/60 80/60
Focal length (mm) 100 92
Number of images 669 2553
MSL flight height (m) 3900 2880
GSD (cm) 17 9.5
Sigma naught AT (GSD) 0.22 0.3
Software for AT ISAT MATCH-AT
Software for Orthophotos OrthoMaster OrthoMaster
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(a) (b)
Figure 2. Cut-outs of two aerial images. (a) Šumava National Park. Approximate location is
49◦7.26′N, 13◦19.27′E. Approximate size is 514 m × 243 m. Note the spectral appearance of broadleaf
trees due to fall foliage. (b) Bavarian Forest National Park. Approximate location is 49◦6′N,
13◦18.61′E. Approximate size is 624 m × 377 m.

2.4. Reference Data

2.4.1. Field Measurements

Ground truth data for sample plots were acquired by field measurements in four reference
data set Bioklim CZ [33], HTO [34], Bioklim [33], and LAI Bioklim [35]. In both parks, tree height
measurements were carried out using the "Vertex" III system [36] considering trees with a diameter at
breast height (DBH) > 7 cm. In rectangular HTO plots, each stem position was precisely surveyed by
means of tacheometry and double-checked with differential GPS (DGPS) using the Leica GPS System
500 instrument. The coordinate differences indicated an excellent standard deviation of 5 cm [34].
The centers of all remaining circular plots were measured by means of differential GNSS (DGNNS).
In the case of Czech plots Bioklim CZ, the Leica ATX1230 GG instrument provided plot center locations,
reporting a position accuracy between 3 cm and 96 cm. For the Bioklim and LAI plots, a Leica GS 14
Professional GNSS receiver was used [33]. The range of the internal accuracy estimation was between a
few centimeters and several decimeters. In Czech plots Bioklim CZ, tree positions were collected with
a laser range-finder and a magnetic compass IFER-MMS from Field-Map Technology (see Zenáhlíková
et al. [27]). In Bavarian plots Bioklim and LAI, the distance was surveyed using a "Vertex" III system
and a compass for the azimuth (see Bässler et al. [33]). Table 3 gives an overview of the tree species
distribution in the four reference data sets.

The reference trees were further subdivided into three layers with respect to the top tree height
htop in the plot. The parameter htop is defined as the average height of the 100 highest trees per ha
[37]. The lower layer contains all trees below 50% of htop, the intermediate layer corresponds to all
trees between 50% and 80% of htop, and the upper layer contains the remainder of the trees.

2.4.2. Reference Trees by Manual Labelling

Additional reference data were collected by visual inspection using polygons of segmented
trees. In total, six different rectangular plots A1, A2, A3, B1, B2, and C1 (see Figure 1) were
selected. These reference plots are dominated by broadleaf trees, conifers, dead trees and snags,
thereby providing a varied composition of trees for classification. Table 4 gives an overview on the total
number of trees manually labelled. We used an interactive tool that displays polygons of tree segments
in the aerial image, as well as the segmented point cloud of tree segments. The point cloud can be
rotated in 3D, thereby aiding the expert in verifying the class of investigated tree objects. In detail,
we labelled samples for the classes ’conifer’ and ’broadleaf’, ’dead tree (with crown)’, ’non-dead tree’,
’snag’, and ’non-snag’. The identification of living and dead conifers in both parks was fairly easy (see
Figure 3a,e,g). The broadleaf trees in Bavarian Forest National Park could also be classified without
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problems (see Figure 3f). However, broadleaf trees in Šumava National Park were difficult to label
because many were already at the leaf-off stage and were therefore visually similar to dead trees (see
Figure 3b). For the same reason, the labelling of dead trees in Šumava National Park was also a fairly
difficult task (see Figure 3c,d). Instead, single dead trees were in many cases perfectly silhouetted
against the background in Bavarian Forest National Park (see Figure 3g). Some problems occurred
when they were overlapped with nearby spruces (see Figure 3h). In both parks, snags could only be
found using the point cloud of the tree segments because the snags were practically invisible in an
aerial image (see Figure 3i,j).

Table 3. Properties of reference plots from field measurements.

Plot Areas Bioklim CZ HTO Bioklim LAI

Park area Šumava Bavarian Forest Bavarian Forest Bavarian Forest
Number of plots 78 15 120 26
plot size (ha) 0.05 ∅=0.21 0.05 0.05
Accuracy of plot centers DGNSS DGPS DGNSS DGNSS
Year of acquisition 2017 2007 2016 2017
Fir 6 10 157 1
Larch 1 0 5 0
Pine 237 0 0 0
Spruce 1284 677 1397 6
Alder 12 0 16 0
Ash 2 0 2 37
Beech 354 883 1414 570
Birch 195 0 21 0
Elm 1 0 1 0
Norway Maple 0 2 0 0
Rowan 11 5 31 53
Sycamore 23 19 55 14
Number of conifers 1528 687 1559 7
Number of broadleaf trees 598 909 1540 674
Conifers (%) 72 43 50 1
Broadleaf trees (%) 28 57 50 99
Total 2126 1596 3099 681
Forest type coniferous mixed mixed deciduous
Stem density (stems/ha) 542 550 516 524

Table 4. Properties of reference plots manually labelled.

Area A1, A2, A3 B1, B2 C1

Year of acquisition 2017 2017 2017
Conifers - 4772 1796
Broadleaf trees - 813 141
Living trees 1345 - -
Dead tree 706 - -
Snag 131 - -

2.5. Outline of the Method

In our approach, we classifed tree groups ’conifers’ and ’broadleaf trees’ as well as standing
dead trees and snags using lidar and multispectral imagery. A fairly large feature set was generated
comprising geometric features, intensity features, features for snags based on 3D shape contexts, and
features generated from the multispectral images. Overfitting effects were reduced by automatically
selecting prominent features. In our study, the following methodology was applied. We segmented the
lidar point cloud into 3D segments representing single trees using the normalized cut algorithm [6,7]
(see Section 2.6). The procedure recursively partitioned the lidar cloud into single tree segments until
a predefined stopping criterion was achieved. The aim of the segmentation step was to provide tree
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segments that are used in the next steps to classify the segments with respect to the two tree groups,
dead trees and snags. Figure 4 illustrates the entire procedure, which is explained in detail in the
following subsections.

(a) (b) (c) (d)((((( ))))))

(e)

((((((((((((((((((((((((((((((bbbbbbb))))))))))))))))))))))))))

(f)

(((((((((( )))))))))))))

(g)

(((((((((( )))))))))))))

(h)

(i) (j) (k) (l)

Figure 3. Subfigures (a) to (d): Examples for living spruce, broadleaf tree, dead spruce, and difficult case
in National Park Šumava. (a) Living spruce. (b) Broadleaf tree. (c) Difficult example for a broadleaf tree
in fall. Leaf-off. (d) Difficult example for a broadleaf tree. Partly leaf-off. Subfigures (e) to (h): Examples
for living spruce, broadleaf tree, dead spruce, and difficult case in Bavarian Forest National Park.
(e) Living spruce. (f) Broadleaf tree. (g) Good example for a dead spruce with a crown. (h) Difficult
example for broadleaf tree. Overlapping with dead spruce. Subfigures (i) to (l): (i) Point cloud of snag.
(j) Snag from (i) not visible in aerial image. (k) Point cloud of snag. Fitted cylinder is green. (see also
Section 2.7) (l) Point cloud of non-snag. Fitted cylinder is green (see also Section 2.7).

Features

Geometric features

Intensity features

Channel means and covariance matrix

3D shape contexts

NCut
segmentation
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Figure 4. Overview of the approach for classification of conifers, broadleaf trees, standing dead trees,
and snags.

2.6. Single Tree Detection

For single tree detection, we used the normalized cut segmentation which is a top-down method
for segmenting objects over a discrete graph structure G = (V, E), with V as the node set, E as the
edge set, and wij(oi, oj) as the symmetric, non-negative pairwise object similarity function. W =

{wij(oi, oj)}i=1...N,j=1...N is the similarity matrix representing the pairwise weighted interrelationship
between N primitives O = {oi}i=1...N of a super-voxels, which is provided by a pre-segmentation with
k-means. The normalized cut algorithm [7] recursively bisects the graph into disjoint K subgraphs
representing clusters A and B by minimizing the objective function (=normalized nut)
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NCut(A, B) =
cut(A, B)
Assoc(A)

+
cut(A, B)
Assoc(B)

, (2)

where Assoc(A) = ∑u∈A,v∈V wij(A, V) is defined as the volume of subgraph A and is equivalent to
the sum of weights of all edges ending up in cluster A. Equation (2) maximizes the similarity within
clusters and minimizes the similarity between the disjoint clusters A and B.

The weighting matrix W is created from a similarity function

wij (oi, oj) =
M

∏
k=1

e
− dk(oi ,oj)

2

σ2
k , (3)

where dk(oi, oj)
2 denote the M features used as similarity measures. In this study, we used the feature

weights σi for the values recommended in [6] (see also Section 2.10).
The recursive splitting of graph G into disjoint K subgraphs must normally be terminated by

threshold value NCutmax. This parameter has no physical meaning and can be defined based on
practical experience or using a trial-and-error strategy. In this study, a sensitivity analysis using
training data was performed to find an optimum value for the objects to be segmented. However,
the optimal value for NCutmax turned out to be different for broadleaf and coniferous trees. Thus,
we modified the segmentation and used two different stopping values for NCutmax, thereby making
the segmentation dependent on the tree groups. In detail, we initially segmented the point cloud
using the larger value of both NCutmax parameters. In our case, this value was representative for
conifers. Next, we applied the tree classification (see Section 2.8) to all tree segments. Third, the tree
segments of the broadleaf trees were clustered with k-means clustering. Finally, the new tree segments
potentially formed by broadleaf trees were newly segmented using the other NCutmax parameter,
which was the best for broadleaf trees.

2.7. Feature Extraction

In this study, for each tree segment, we calculated the following feature set from the lidar data
and multispectral images. The feature set can be subdivided into four main groups.

(i) Geometric features:
Feature set Sg set includes (i) height-dependent variables at 10% intervals, (ii) density dependent
variables at 10 intervals, and (iii) the two axis lengths of a paraboloid fitted to a tree crown (see
Reitberger et al. [6]).

(ii) Intensity features:
The lidar point cloud contained, for each laser point, an amplitude value that was calibrated
in advance (see Section 2.1). Based on this laser point attribute, the mean amplitudes per tree
segment and in 10 tree layers were calculated to form feature subset SI .

(iii) 3D shape contexts:
For the snag classification, we followed the idea of Polewski et al. [24] and applied 3D shape
contexts, which are constructed as cylinders with radius rseg and length lseg along the tree
segments’ axis (see Figure 3k,l). Features S3DC are essentially histograms representing the spatial
distribution of the points within the cylindrical volume.

(iv) Covariance matrix:
For this feature subset, we projected the tree segments into the next aerial color infrared image
using the exterior orientation. Within the resulting enclosing polygon, we calculated the 3 ×
3 covariance matrix and the mean of the three channels. The six independent elements of the
covariance matrix and the mean channels form the nine elements of feature set Scov.
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2.8. Classification of Conifers and Broadleaf Trees

For classification of conifers and broadleaf trees, we used the feature sets Sg (= geometric features),
SI (= intensity feature), and Scov (= features from aerial images). We chose Random Forest (RF) [38] as
a binary classifier because of its robust ability to estimate the class probability. Note that RF provides a
probability for each classified object.

2.9. Classification of Standing Trees and Snags

To classify both types of dead trees based on features Scov and S3DC we applied a multinomial
logistic regression (MLR). We used a regularized-generalized model, which was implemented in the
glmnet function as an R source package. Similar to RF, MLR classifies each dead tree with a probability
pdead for dead trees and psnag for snags. Note that we also tested RF and Support Vector Machines
(SVM) as classifiers. However, MLR turned out to be the best option for this classification task.

2.10. Choice of Parameters

The 3D tree segmentation based on the normalized cut was controlled by parameters listed in
Table 5. According to Yao et al. [39], we introduced the quadratic distances D2

XYij
= (Xi − Xj)

2 +

(Yi − Yj)
2 and Z2

XYij
= (Zi − Zj)

2 between super-voxels i and j as features. These two features were
completed by parameter Fmax

XYij
, which defined the maximum distance of a super-voxel pair i and j to a

tree position provided by the watershed segmentation. The amplitude of the laser points processed
in Section 2.2 was neglected because this feature has practically no impact on the quality of the
segmentation. Therefore, the weighting matrix W can be specified as

wij =

{
e−X(i,j) × e−Z(i,j) × e−F(i,j) if DXYij < RXY

0 otherwise
(4)

with

X(i, j) = (
DXYij

σxy
)2, Z(i, j) = (

DZij

σz
)2 (5)

F(i, j) = (
Fmax

XYij

σF
)2, (6)

where RXY defines the vertical cylinder within which the weights wij are calculated. The control
parameters σxy, σz and σF weight the corresponding features in Equations (3) and (4). The values used,
which are listed in Table 5, follow the recommendations of Yao et al. [39].

To calculate the features S3DSC of the snag detection (see Section 2.7), we used the control
parameters listed in Table 6.

Table 5. Control parameters of single tree segmentation.

Parameter Symbols Values

Min. number of super-voxels NminV 2
Weight for horizontal distance σxy 1.35 m
Weight for vertical distance σz 11.0 m
Weight for stem position σF 3.5 m

Table 6. Control parameters of feature extraction with 3D shape contexts.

Parameter Symbols Values

Cylinder radius rseg 0.5 m
Cylinder length lseg 2.0 m
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2.11. Evaluation and Classifier Training

We conducted four groups of experiments. First, we segmented single trees using the modified
normalized cut segmentation. In this experiment, we showed that two different values NCutmax can
be successfully applied to segment trees in dependence on the tree classes "conifer" and "broadleaf
tree". Second, we classified conifers and broadleaf trees using different feature sets. The third and fourth
experiments focused on the classification of dead trees and snags, respectively. All four experiments
utilized the reference data from the field measurements and the visual inspection (see Section 2.4).

In experiment #1, recall and precision quantities were used to evaluate the quality of the detected
trees. The ratio of the reference tree numbers, which have at least one associated detected tree,
to the total number of reference trees is called ’recall’. The number of detected trees that were
successfully connected to a reference tree as a fraction of the total number of detected trees is
defined as the ’precision’. Both recall and precision are calculated depending on stopping criterion
NCutmax. Following the strategy proposed by Reitberger et al. [6], we considered two trees to be
matched trees, if (i) the distance between the segmented tree to the reference single tree is smaller
than 60% of the mean tree distance within the sample plot and (ii) the height difference between the
segmented tree and the reference tree is less than 20% of the top height of the plot. If a reference tree
was connected with more than one segmented trees, the tree position with the shortest distance to the
reference tree was selected. In cases where a segmented tree could not be combined with a reference
tree, we considered this to be a ‘false positive’ segment.

For classification of conifers and broadleaf trees (=experiment #2), we combined reference trees
from field measurements and visual inspection to train the classifier. As a classifier, we used the RF
classifier from Section 2.8. The reference data were split into two sets for training and testing. The RF
classifier was also validated with reference data provided only by field measurements. For dead
tree classification (=experiment #3 and #4), we only used reference trees determined from visual
inspection. In both cases, the classifier was logistic regression (see Section 2.9). For these two latter
experiments, the reference samples were also subdivided into two data sets for training and testing.
We used a five-fold cross-validation to obtain the overall classification accuracy, precision, and recall
as a compromise between the computational efficiency and reducing the effects of randomness.
All classifiers were evaluated with test data not being used for training. All results are presented with
confusion matrices calculated from reference data and test data.

3. Results

3.1. Single Tree Detection

A sensitivity analysis was conducted in the plots HTO, Bioklim, LAI, and Bioklim CZ to find the
best value for parameter NCutmax. First, we applied the same value for parameter NCutmax to conifers
and broadleaf trees. An analysis of Table 7 with Tables 8 and 9 let us conclude that data set HTO
was the best. In general, the recall of data set combination Bioklim, LAI, and Bioklim CZ was around
20% worse when compared with HTO data set (Table 8). When we compared the data set Bioklim CZ
(Table 9) with HTO data set (Table 7), we also found a significant discrepancy in the recall, especially
in the upper layer and, in general, for the total mean. The precision of this data set was 15% better than
HTO in total mean. In summary, data set HTO was the most reliable, also because of the high absolute
accuracy of the tree positions (see also Section 2.4.1). Thus, parameter NCutmax = 0.16 seemed to be
the best compromise for controlling the segmentation for both conifers and broadleaf trees.

We further analyzed the segmentation with respect to conifers and broadleaf trees. Because we
found that many broadleaf tree areas had a clear oversegmentation, we applied the new segmentation
scheme discussed in Section 2.6. After varying parameter NCutmax in a reasonable range, we found
optimized values for this control parameter. Tables 10 and 11 demonstrate clearly that NCutmax = 0.10
increases the precision by 13% at a small cost of deterioration in recall. Figure 5c–f show nicely the
reduction of oversegmentation with parameter NCutmax = 0.10 for the preclassified broadleaf trees.
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Table 7. Sensitivity analysis for tree detection in reference areas. HTO. Total number of trees is 1596.

Parameter Recall Precision

NCut Lower Middle Upper Total Lower Middle Upper Total
0.13 0.16 0.38 0.84 0.64 0.23 0.53 0.67 0.58
0.16 0.18 0.41 0.90 0.69 0.20 0.51 0.62 0.54
0.18 0.19 0.44 0.92 0.71 0.23 0.52 0.60 0.52
0.20 0.24 0.45 0.91 0.72 0.21 0.50 0.58 0.49

Table 8. Sensitivity analysis for tree detection in reference areas. HTO, Bioklim and LAI. Total number
of trees is 5736.

Parameter Recall Precision

NCut Lower Middle Upper Total Lower Middle Upper Total
0.16 0.16 0.38 0.67 0.48 0.30 0.48 0.57 0.58
0.18 0.17 0.39 0.68 0.49 0.30 0.45 0.56 0.56

Table 9. Sensitivity analysis for tree detection in reference areas. Bioklim CZ. Total number of trees
is 2126.

Parameter Recall Precision

NCut Lower Middle Upper Total Lower Middle Upper Total
0.16 0.13 0.37 0.67 0.51 0.29 0.56 0.70 0.73
0.18 0.13 0.36 0.67 0.52 0.28 0.53 0.69 0.72

Table 10. Sensitivity analysis of tree detection regarding conifers and broadleaf trees. The reference
area is HTO. Control parameter NCutmax = 0.16. Total number of trees is 1596.

Parameter Recall Precision

Layer Lower Middle Upper Total Lower Middle Upper Total
Conifers 0.10 0.53 0.89 0.69 0.27 0.66 0.85 0.82
Broadleaf trees 0.30 0.43 0.91 0.72 0.16 0.52 0.60 0.54

Table 11. Sensitivity analysis of tree detection regarding conifers and broadleaf trees. The reference
area is HTO. Control parameter NCut = 0.10. Total number of trees is 1596.

Parameter Recall Precision

Layer Lower Middle Upper Total Lower Middle Upper Total
Broadleaf trees 0.18 0.33 0.84 0.63 0.15 0.50 0.73 0.66
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(a) (b)

(c) (d)

(e) (f)
Figure 5. Impact of parameter NCutmax calibrated for conifers and broadleaf trees. Coniferous tree
segments are in blue; broadleaf tree segments are in yellow. (a) Cut-out of aerial image in forest area of
Šumava National Park. Approximate location is 48◦47′57′′N, 13◦51′27′′E. Approximate size is 655 m
× 310 m. (b) Cut-out of aerial image in forest area of Bavarian Forest National Park. Approximate
location is 48◦55′45′′N, 13◦20′15′′E. Approximate size is 456 m × 216 m. (c) Tree segments in area (a)
NCutmax = 0.16. (d) Tree segments in area (b) NCutmax = 0.16. (e) Tree segments in area (a) NCutmax =
0.10. (f) Tree segments in area (b) NCutmax = 0.10.

3.2. Classification of Conifers and Broadleaf Trees

For the Czech and German parts of the forest areas, we trained two separate classifiers for
classification of conifers and broadleaf trees because the aerial images were captured at various
times and with different cameras. We used 3D geometry features Sg describing crown shape and point
distribution per tree and feature set Scov generated from the aerial images (see Section 2.7). Interestingly,
the intensity features SI finally had to be ignored because, in some areas, the intensity distribution was
not consistent and showed severe tiling effects (see Figure 6a,b).

Tables 12 and 13 show the validation of the classifiers on test data taken from four reference
areas. In general, the classification results were excellent. For Šumava National Park, the overall
accuracy (OA) of 97.5% was better by 5–7%. Moreover, the confusion between conifers and broadleaf
trees was significantly lower, and broadleaf trees were better classified in terms of recall and
precision. Very likely, the fall foliage helped to discriminate among conifers and broadleaf trees
in Šumava National Park for this accuracy level.
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(a) (b)
Figure 6. Intensity issues in the mixed forest area. (a) Tile effect between neighboring laser strips (b)
Mis-classified broadleaf trees.

Table 12. Results for the classification of conifers and broadleaf trees. Bavarian Forest National
Park: Test data are from reference areas HTO and C1: 1637 conifers and 636 broadleaf trees for
training. 722 conifers, 253 broadleaf trees for testing (=Reference #1). 293 conifers, 236 broadleaf trees
for testing (=Reference #2 only from HTO).

Reference #1 Reference #2
Conifer Broadleaf Precision Conifer Broadleaf Precision

Pr
ed

ic
te

d

Conifer 687 15 0.98 269 44 0.85
Broadleaf 35 238 0.87 24 192 0.89
Recall 0.95 0.94 0.92 0.81
OA: 94.9% Kappa: 0.87 OA: 87.1% Kappa: 0.89

Table 13. Results for the classification of conifers and broadleaf trees. Šumava National Park: Test data
are from reference areas Bioklim CZ, B1 and B2: 3480 conifers and 712 broadleaf trees for training. 1493
conifers, 314 broadleaf trees for testing (=Reference #3). 138 conifers, 187 broadleaf trees for testing
(=Reference #4 only from Bioklim CZ).

Reference #3 Reference #4
Conifer Broadleaf Precision Conifer Broadleaf Precision

Pr
ed

ic
te

d

Conifer 1482 19 0.98 131 1 0.99
Broadleaf 11 295 0.96 7 186 0.96
Recall 0.99 0.94 0.95 0.99
OA: 97.5% Kappa: 0.94 OA: 97.5% Kappa: 0.95

3.3. Classification of Standing Dead Trees

For both parks, we trained two separate classifiers to classify dead trees using the feature data set
Scov because of the different acquisition times for the aerial imagery. Note that the training data set was
automatically balanced. Therefore, the number of dead trees and living trees in the confusion matrices
differed from the relevant numbers indicated for training and testing in Tables 14 and 15. Moreover,
a class probability pdead = 90% was used to classify a dead tree.

For Bavarian Forest National Park, the OA of 91.7% calculated from the training data with
five-fold cross validation was confirmed by the OA of 92.6% performed in the test area. Conversely,
the OA of 82.8% for Šumava National Park was slightly reduced for the training data. Very likely,
the classifier was influenced by the spectral similarity of the dead trees and the beeches. The OA
of 100% for the test data was certainly too optimistic. Presumably, manually labelled trees could be
classified easier.
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3.4. Classification of Snags

In experiment #4, only one classifier was trained because the used feature set S3DSC solely depends
on lidar data, and the 3D structure of snags was assumed to be the same for both parks. Balancing of
the training data and usage of class probability psnag were the same as for the classification of dead
trees. The excellent OA of 90.9% in the training area is in the same order of magnitude as the OA
calculated with the test data (see Table 16). Figure 7 shows examples for labelled snags that were
classified as snags with psnag > 90%. However, the analysis of the test reference revealed a significant
confusion between snags and living trees.

(a) (b) (c)

Figure 7. Verification of the snag classifier in Bavarian Forest National Park. (a) Small forest scene
with living trees, dead trees and snags. (b) Labelled snags for verification (green). (c) Classified snags
(orange) with threshold psnag > 90%.

Table 14. Classification results of dead trees. Labelled data are from areas A1, A2, and A3. Bavarian
Forest National Park: 124 dead trees, 186 living trees for training. 310 dead trees, 761 living trees for
testing. Confusion matrices for training (left): Number of living trees are reduced to the number of
dead trees. Numbers refer to the average of the five test sets of the five-fold cross-validation.

Training Reference Test Reference
Dead Living Precision Dead Living Precision

Pr
ed

ic
te

d

Dead 22 2 0.92 255 24 0.91
Living 2 22 0.92 55 737 0.93
Recall 0.92 0.92 0.93 0.86
OA: 91.7% Kappa: 0.93 OA: 92.6% Kappa: 0.81

Table 15. Classification results of dead trees. Labelled data are from areas A1, A2, and A3. Šumava
National Park: 163 dead trees with crowns, 356 living trees for training. 109 dead trees, 142 living trees
for testing. Tree segments are classified as dead trees if the threshold for class probability pdead > 90%.

Training Reference Test Reference
Dead Living Precision Dead Living Precision

Pr
ed

ic
te

d

Dead 27 6 0.82 109 0 1.0
Living 5 26 0.84 0 142 1.0
Recall 0.84 0.81 1.0 1.0
OA: 82.8% Kappa: 0.65 OA: 100.0% Kappa: 1.0
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Table 16. Results of the classification of snags for both parks. Labelled data are from areas A1, A2, and
A3. 55 snags and 524 living trees for training. 76 snags and 1513 living trees for testing. Confusion
matrices for training (left): Number of living are reduced to the number of snags. Numbers refer to the
average of the five test sets of the five-fold cross-validation. Tree segments are classified as snags if the
threshold for class probability psnag > 90%.

Training Reference Test Reference
Snag Living Precision Snag Living Precision

Pr
ed

ic
te

d

Snag 10 1 0.91 50 39 0.56
Living 1 10 0.91 26 1474 0.98
Recall 0.91 0.91 0.66 0.97
OA: 90.9% Kappa: 0.81 OA: 95.9% Kappa: 0.58

4. Discussion

4.1. Main Goals of the Study

The main goals of the current study were to classify two tree classes (coniferous and deciduous),
standing dead trees, and snags in a large forest area using lidar and multispectral imagery. We also
showed a novel calibration of a control parameter that stops the iterative normalized cut segmentation.

4.2. Single Tree Detection

The experiments clearly showed that the segmentation accuracy depends on conifers and
broadleaf trees. The best values for parameter NCutmax, which controls the stopping of the iterative
normalized cut method, were 0.10 for conifers and 0.18 for broadleaf trees. Reitberger et al. [6]
recommended an average value of 0.16 for both tree groups. Instead, we used two different parameters
for NCutmax and could improve the segmentation quality in terms of precision by 13%. However,
we had to rerun the segmentation for broadleaf trees again. Thus, the improvement in accuracy was
gained with an increased computation time of roughly one-third. Recently, Amiri et al. [9] replaced
control parameter NCutmax with an adaptive stopping criterion that analyses the remaining point
cloud of the segmented clusters and allows a classifier to determine the termination of bisecting of the
clusters. However, this method only works for conifers and is not applicable for broadleaf tree.

4.3. Classification of Conifers and Broadleaf Trees

In general, the results of tree classification were excellent, with values for OA beyond 95% for
both parks. The laser intensity, calculated as a mean value for the upper part of the tree crown, turned
out as useless. Very likely, the calibration parameter for intensity normalization was not representative
for the entire project area. Interestingly, the spectral information of CIR aerial imagery successfully
replaced the laser intensity as the salient feature in the tree classification process.

The OA in Tables 12 and 13 calculated from different test data sets (Reference #1 and #2 for
Bavarian Forest National Park; Reference #3 and #4 for Šumava National Park) also demonstrated the
transferability of the classifiers. For Bavarian Forest National Park, we noticed a difference of 7.8%,
whereas the OA for Šumava National Park was essentially the same for both test areas.

4.4. Classification of Dead Trees and Snags

In both parks, the classification of dead trees performed with excellent accuracy, better than 90%
in terms of recall and precision. In comparison, the accuracy in Šumava National Park was slightly
reduced because the fall foliage of broadleaf trees was spectrally similar to the crowns of the dead trees.

Finally, the training of the snag classifier showed a fairly good OA of 91%. Although the OA
for the test data was even better with 96%, the recall and precision for snags was only 66% and 56%,
respectively. Because of the smooth transition from dead spruces with crowns and without crowns
(=snags), we could not find an optimal classifier for snags. A detailed analysis revealed that some false
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positives were dead trees with only a few branches. Thus, they could also be considered snags in the
labelling process.

4.5. Comparison with Related Work

First, we contrasted our results for tree segmentation with the findings of Reitberger et al. [6],
which also investigated a forest site in Bavarian Forest National Park. In general, our recall for the upper
layer (89% for conifers and 84% for broadleaf trees) was in the same order of magnitude. However,
for the middle layer, we obtained a better recall of 43% (mean for conifers and broadleaf trees) compared
to 32% reported in [6]. For the lower layer, the mean recall of 14% corresponded well with 17% shown
in [6]. Our total precision of 74% was worse than the precision of 90% in [6].

Second, we compared the averaged results of the tree segmentation for the HTO data set with
four studies: see Strîmbu and Strîmbu [4], Li et al. [40], Holmgren and Lindberg [41] and Silva et al.
[42] (see Table 17). Note that two study areas are dominated by conifer pine trees, and that the stem
densities of three studies are by a factor of 1.4 to 3.2 lower. In Table 17, the results of our study are
presented with regard to (i) coniferous plots and (ii) all plots (=mixed) for the upper layer (see also
Table 10 and Table 11). Li et al. [40] demonstrated in a Sierra mixed conifer pine forest a detection
rate of 86% and precision of 94%. This method segmented trees using a top-to-bottom region growing
approach. Strîmbu and Strîmbu [4], using a three-dimensional approach in which a weighted graph
was built from hierarchical topologies, reported for a pine dominated forest a recall of 84% and
precision of 90%. Silva et al. [42], applying the method to an open canopy longleaf pine forest area,
segmented trees with a detection rate of 82% and precision of 85%. Recently, Holmgren and Lindberg
[41] demonstrated a new watershed-based tree detection method that used a tree crown density
model trained from the laser returns and some arbitrarily selected reference trees. The evaluation of a
managed hemi-boreal forest showed a recall of 85% and precision of 82%. Although the stem density
of our study was significantly higher in three cases, the tree segmentation detected coniferous trees
slightly better. However, the precision turned out to be somewhat worse. For all the reference plots
of our study, representing a mixed temperate forest, the recall was also still better or similar. Clearly,
the corresponding precision was lower by 7-16% because some of the deciduous trees, which are
generally more difficult to segment, could not be found in the point cloud.

Table 17. Parameters and accuracy performance of tree segmentations methods compared with our
study. Note that recall and precision values were evaluated from field measurements of HTO plots.

Study Recall Precision Points/m2 Trees/ha Coniferous (%) Deciduous (%)

Li et al. [40] 0.86 0.94 6 400 100 0

Strîmbu and Strîmbu [4] 0.84 0.90 10 206 63 37

Silva et al. [42] 0.82 0.85 5 170 100 0

Holmgren and Lindberg [41] 0.85 0.82 83 626 >50 <50

Our study (coniferous) 0.89 0.85 55 550 100 0

Our study (mixed) 0.86 0.78 55 550 43 57

Third, we focused on the quality of the classification of conifers and broadleaf trees and how it
compared to the results published in Yao et al. [21]. In this other study, which was also conducted
in Bavarian Forest National Park, the lidar point density was 25 points/m2. Several feature sets
were investigated, including height- and density-dependent features, as well as intensity features.
Very interestingly, our OA of 94.9% (see Table 12) obtained with feature sets Sg (=geometric tree features;
density- and height-dependent features) and Scov (=features from aerial images) was equivalent to
OA = 94% reported by Yao et al. [21]. Very likely, the radiometric content of aerial imagery could
successfully substitute for the lidar intensity in our case.
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Forth, we compared our classification of dead tree and snags with other approaches obtained from
the same forest site. Yao et al. [21] reported a classification accuracy between 71% to 73%, which was
significantly worse than ours. The study in Polewski [23] reported an accuracy of around 88%, which is
slightly worse than our findings. Although both of these other studies measured the reference data
manually using orthophotos superimposed on the tree crown polygons, the combination of lidar data
and multispectral optical imagery in a two-class classification made the classification of dead trees
possible with high accuracy. Lastly, our snag detection was better by more than 10% when compared
with the results presented in [24]. Again, we concluded that the increased point density of 55 points/m2

better reflects the 3D structure of a snag.
Finally, we concluded that all the main findings of our large-scale experiment confirmed the

results of several studies that were conducted in a temperate forest.

4.6. Practical Implementation

We present some interesting statistical numbers for this large-scale mapping of forest
parameters. All the methods of Section 2.4.2 and related algorithms are coded in C++ and run under
Windows (© Microsoft) and Ubuntu. The tree segmentation and the tree classification are parallelized,
thereby taking advantage of any multi core PC systems. In total, we used eight PC workstations in
parallel, each of them equipped with up to 22 cores and 128 GByte RAM. Therefore, we split up the
forest areas into 6 km × 6 km macro blocks. Each workstation processed one or two super macro
blocks comprising 2 × 2 macro blocks. In total, we processed 27.321.962 single trees on a forest area 924
km2 in size. Table 18 gives an overview of the number of tree types classified with respect to conifers,
broadleaf trees, dead trees, and snags. The time critical process was the tree segmentation due to the
time-consuming solving of the inherent general eigenvalue problem. Our most powerful workstation,
with 22 cores, 2.2 GHz performance, and 128 GByte RAM, processed the tree segmentation and tree
classification at 25 sec/ha and 0.38 sec/ha, respectively (see Table 19). By contrast, the processing times
of the other two processes are significantly higher because the code is not parallelized.

Table 18. Number of classified trees.

Tree Type Conifer Broadleaf Dead Trees Snag

Šumava 16.693.391 (=84%) 2.396.850 (=12%) 641.098 (=3%) 224.533 (=1%)
Bavarian Forest 4.446.373 (=60%) 2.453.498 (=33%) 312.058 (=4%) 154.161 (=2%)

Table 19. Time performance of implemented algorithms.

Process Speed (sec/ha)

Tree segmentation 25
Classif. of conifers/broadleaf trees 0.38
Dead tree classification 79
Snag classification 75

We also have to address the time and effort needed for manual interactions to label additional
tree samples, to train the classifiers, and to check the results of the individual processes. Interestingly,
we had to add the reference areas A1, A2, A3, B1, B2, and C1 because the other reference areas from
the original field measurements did not fully represent the forest characteristics and were somewhat
imprecise in parts. This entire project could be finalized by one single person within 11 months.
This included one month for data preprocessing (quality check of the lidar data, intensity calibration,
and structuring the data into a block structure (see Section 2.2) and around three months for the
manual editing part. The remaining seven months were dedicated to the processing of the remote
sensing data. Note that we had to process the segmentation twice on roughly half of the entire forest
because of another NCutmax value useful for broadleaf trees. Moreover, the retraining of relevant
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classifiers instigated a second run for the classification of conifers, broadleaf trees, and dead trees as
well. In addition, half the workstations were only equipped with processors using eight cores.

The tree segmentation and the classification of conifers and broadleaf trees were processed with
the TreeFinder software package [43]. The detection of dead trees and snags was performed with an
in-house software.

Finally, we show in Figure 8 the mapping of conifers, broadleaf trees, standing dead trees, and
snags for a small part of the Bavarian Forest National Park.

Figure 8. Mapping of conifers, broadleaf trees, dead trees, and snags superimposed with
orthophoto. Image source is from Bavarian Forest National Park.

5. Conclusions

In summary, we were able to demonstrate that tree segmentation based on normalized cut can be
successfully performed with a stopping criterion specifically calibrated for tree groups ’conifers’ and
’broadleaf trees’, thereby significantly reducing the effect of under- and oversegmentation. In our case,
the precision for tree segments of broadleaf trees could be improved by 13%. However, this concept
to calibrate parameter NCutmax regarding the tree groups bears the drawback that the segmentation
needs to be performed manifold in the case of multiple tree species. We further showed the successful
mapping of conifers, broadleaf trees, and standing dead trees (with and without crowns) on a large
forest 924 km2 in size. Conifers and broadleaf trees could be classified in both parks with an accuracy
better than 90%. Furthermore, the classification of standing dead trees was also possible with a
high accuracy of more than 90%. The large consistent data set can be used by both parks for future
preparation of cross-border management plans and studies on biodiversity [44].
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Abstract: Topographic correction can reduce the influences of topographic factors and improve the
accuracy of forest tree species classification when using remote-sensing data to investigate forest
resources. In this study, the Mount Taishan forest farm is the research area. Based on Landsat 8
OLI data and field survey subcompartment data, four topographic correction models (cosine model,
C model, solar-canopy-sensor (SCS)+C model and empirical rotation model) were used on the
Google Earth Engine (GEE) platform to carry out algorithmic data correction. Then, the tree species
in the study area were classified by the random forest method. Combined with the tree species
classification process, the topographic correction effects were analyzed, and the effects, advantages
and disadvantages of each correction model were evaluated. The results showed that the SCS+C
model and empirical rotation model were the best models in terms of visual effect, reducing the
band standard deviation and adjusting the reflectance distribution. When we used the SCS+C
model to correct the remote-sensing image, the total accuracy increased by 4% when using the
full-coverage training areas to classify tree species and by nearly 13% when using the shadowless
training area. In the illumination condition interval of 0.4–0.6, the inconsistency rate decreased
significantly; however, the inconsistency rate increased with increasing illumination condition values.
Topographic correction can enhance reflectance information in shaded areas and can significantly
improve the image quality. Topographic correction can be used as a pretreatment method for forest
species classification when the study area’s dominant tree species are in a low light intensity area.

Keywords: illumination correction; GEE; forest species; Mount Taishan

1. Introduction

Forests are among the important components of the global terrestrial ecosystem. Whether from
the perspective of forest ecology or from a service perspective in which the function of a forest is to
provide wood and other products, it is necessary to obtain information on forest resources over time.
Many countries around the world, such as Austria, Sweden and the United States, have carried out
regular forest resource surveys to provide data for sustainable forest management [1]. The content of
forest resource investigations includes various forestland area investigations, forest tree accumulation
and many other aspects, among which the identification and distribution of forest types are the basis
for and an important direction of forest resource monitoring.

Remote sensing is particularly useful for forest species classification, as it provides information on
large areas at a high level of detail [2]. There are many sensors that provide the image data required for
tree species classification, and these sensors typically feature either high spatial resolutions or multiple
spectral bands. High-resolution satellite images and synthetic aperture radar (SAR) data have recently
been used to classify forest tree species [3,4]. The results show that the classification works well but is
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only suitable for small areas due to its high cost. Although data from satellites such as Landsat have
lower spatial resolutions, they capture more spectral information. Spectral information from satellite
imagery can also be used to effectively identify forest tree species [5–8]. Such information is widely
used in the investigation of forest species resources because of its effectiveness in species classification
and low-cost advantages. Lu et al. [9] improved the accuracy of forest classification results based on
Thematic Mapper data and adjusted entropy. Schuck et al. [10] focuses on the approach of combining
the information from both remote sensing and forest inventory statistics in order to produce a forest
proportion map. Immitzer et al. [11] mapped seven different deciduous and coniferous tree species in
Germany based on Sentinel-2 data. Grabska et al. [12] evaluated the utility of the Sentinel-2 time series
for mapping tree species in the complex, mixed forests. Chiang et al. [13] suggested that integrating
topographic information and optical satellite image classification can improve mapping accuracy
for tree species. Remote-sensing technology reduces manpower and material resource consumption,
improves the quantitative description of resource information and improves survey timeliness better
than traditional field investigations. The key to such forest tree resource investigation work is the
analysis of spectral information from remote-sensing images and the determination of the tree species
category according to the different spectral characteristics of tree resources.

The influences of the atmosphere, electromagnetic waves and topography are inevitable when
remote-sensing satellites acquire information. Among these influences, the change in spectral reflectance
caused by topography is one of the main problems affecting the quality of satellite data. The method
of reducing these influences is referred to as topographic correction or terrain illumination correction.
Therefore, various models have been developed for topographic correction of remote-sensing satellite
data. Early models included cosine correction, Minnaert correction and C correction. After correction
with each model, the accuracy of land cover classification can be improved [14]. C correction and
Minnaert correction were excellent for land cover mapping, and the overall accuracy increased by
10% [15]. C correction introduced the semiempirical coefficient C to correct the overcorrection of the
cosine model. C correction established a connection between the original image and the corrected
image. This correction method also described the quantitative relationship between the spectral value
and incidence angle. Therefore, the correction effectiveness was improved [16,17]. Previous correction
models were based on a sun-surface-sensor scheme and did not consider the relationship between
vegetation and the ground after topographic correction. The improved solar-canopy-sensor (SCS)
correction makes the change in illumination direction more realistic during the process of reflectance
change from sloping to horizontal surfaces. SCS correction can also introduce C correction and
determine C parameters for each band. This correction method can markedly improve the effectiveness
of topographic correction [18,19]. Compared with cosine correction, C correction and Minnaert
correction, another method that is based on empirical statistics, have higher accuracies in forest
classification [20], and combined with the preclassification/layering method, these methods have good
robustness for topographic correction [21]. Many models are effective for the topographic correction of
remote-sensing images, and all of these models can improve the accuracy of land cover classification.
However, the topographic correction process is complex, and all of these models can only explain this
process to a certain extent. In forest tree species classification, it is difficult to classify different tree species
because of their high spectral similarity. Furthermore, machine learning methods, such as the support
vector machine (SVM) and random forest (RF) techniques, have been used to improve the classification
accuracy [22]. However, these methods have some problems, such as overfitting, and the models are not
easy to interpret. In terms of classifying tree species, the relationship between the impact of topography
and the classification results of remote-sensing images has not been studied. Consequently, the impact
of topographic correction on forest resource surveys in complex terrain, especially in forest tree species
resource surveys, is still unclear. Therefore, it is necessary to further research the relationship between
existing typical topographic correction models and forest tree species classification.

Given the above discussion, four typical topographic correction models were used to correct
Landsat satellite images, which were then used for tree species classification with the random forest
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method. The goal in this study is to determine the quantitative effects of topographic correction
on remote-sensing bands and associated indexes by analyzing the relationship between correction
effects and tree species. This study explores effective methods for accurate tree species classification in
mountainous areas.

2. Materials and Methods

2.1. Study Area

The study area was Mount Taishan, which is located in Tai’an City, Shandong Province, China. The
study area was delimited by the boundaries of the Mount Taishan forest farm (Figure 1). Mount Taishan
is in the central part of Shandong Province. This area represents one of China’s five great mountainous
regions and has an important ecological and cultural status [23]. This region features a warm-temperate
semihumid monsoon climate. The climate changes with elevation. The terrain tends to high in the
north and west and low in the south and east, and the topography is undulatory, with a height
difference between the plain and piedmont of over 1300 m. The forest coverage rate of Mount Taishan
is more than 80%, which is mainly composed of plantation and secondary forest, and the proportion
of pure forest is 55%. This area features coniferous forest and coniferous-broad-leaved mixed forest,
which is typical in warm-temperate mountain areas. The Taishan forest farm, which covers 11,730 ha,
was selected as the research area. The main tree species in the study area are pine, Chinese arborvitae
(Platycladus orientalis), oak (Quercus) and black locust (Robinia pseudoacacia). Pine can be divided into
Pinus tabulaeformis, Pinus thunbergii and Pinus densiflora, and oak can be divided into Quercus acutissima
and Quercus variabilis. Pinus tabulaeformis accounts for the largest proportion and is the dominant
vegetation species on Mount Taishan. Secondary forests of Pinus tabulaeformis are mainly distributed
in the upper part of Mount Taishan. Secondary forests of oak and Chinese arborvitae are mainly
distributed in the middle and lower parts of Mount Taishan [24,25].

Figure 1. Location map of the study area and tree species distribution of pure forest area (produced
from subcompartment data).

113



Remote Sens. 2020, 12, 787

2.2. Data

2.2.1. Satellite Data

Landsat data is suitable for long-term and large-scale resource exploration. This study used surface
reflectance (SR) data from Landsat 8 OLI (Landsat 8 OLI/TIRS surface reflectance) [26] Considering the
effects of weather conditions and forest phenology, the data were consistent with the ground survey
data. The dates of the images were March 26, 2016, September 2, 2016, October 4, 2016 and November
5, 2016. We chose Landsat 8 bands 2 through 7 for our analysis but focused our efforts on band 4
(red) and band 5 (near-infrared, NIR), as these bands are shown to respond most strongly to surface
vegetation conditions (Table 1). The research was based on the implementation of the Google Earth
Engine (GEE) platform [27], so all data were accessed on GEE.

Table 1. Spectral bands of Landsat 8 used for forest tree species classification.

Name Units Scale Wavelength (μm) Description

Band2 0.0001 0.452–0.512 blue
Band3 0.0001 0.533–0.590 green
Band4 0.0001 0.636–0.673 red
Band5 0.0001 0.851–0.879 near infrared (NIR)
Band6 0.0001 1.566–1.651 shortwave infrared 1 (SWIR1)
Band7 0.0001 2.107–2.294 shortwave infrared 2 (SWIR2)

2.2.2. Digital Elevation Model

Digital elevation model (DEM) data are important for topographic correction. The Shuttle Radar
Topography Mission (SRTM) [28] digital elevation data are an international research effort designed to
obtain DEM data on a near-global scale. The SRTM V3 product (SRTM Plus) is provided by NASA
JPL at a resolution of 1 arc-second (approximately 30 m). DEM data are the basic data for calculating
illumination conditions (ICs), and their accuracy directly affects the topographic correction effectiveness.
The slope data and aspect data in the correction model were accessed by calculating the DEM data.

2.2.3. Subcompartment Data

In China, the subcompartment is the basic unit of forest resource protection planning, investigation,
statistics and management [29]. The division of subcompartments should be based on obvious
topography and object boundaries as much as possible and should take into account the needs for
resource investigation and management. Based on the subcompartment map, a field investigation
was carried out in this study. The investigation included tree species and other information. In the
geographic information system (GIS), the study area is divided into many polygons representing
individual, homogeneous forest stands. The investigation results based on the polygon were imported
in the form of fields. The subcompartment map used in this study was the result of the 2016 survey,
which contains 1713 features and 68 fields. It was provided by the Mountain Tai Management
Committee. Field information included tree species, dominant tree species, composition of tree species
and other detailed survey data. The tree species field describes the tree species in the subcompartment
feature with a tree species code. We can also see whether the subcompartment feature is a single tree
species according to the number of tree species codes. There are many coniferous and broad-leaved
species in the Mount Taishan region, but pine, oak, Chinese arborvitae and black locust account for the
majority of the area. In this study, tree species were divided into these four categories. We created
training samples and verification samples based on subcompartment data.
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2.3. Methods

2.3.1. Topographic Correction Model

Four commonly used topographic correction models (cosine model [30], C model [31], SCS+C
model [32] and empirical rotation model [33]) were used in this study.

Illumination conditions (IC) are the basis of all reflectivity compensation correction models. The IC
has a proportional relationship that is determined by the cosine of the angle between the solar zenith
and the normal line of the slope, and the model is defined as follows:

cosγi = cosθz cosθs + sinθz sinθs cos(ϕz −ϕs), (1)

where θz is the solar zenith angle, θs is the topographic slope angle, ϕz is the solar azimuth angle and
ϕs is the slope direction of the topographic surface.

(1) Cosine model:
ρH = ρI(cos θz/ cosγi), (2)

where ρH is the reflectance of the horizontal surface or corrected reflectance, and ρI is the reflectance
of the slope surface, or observed reflectance. The model considers that the correction has nothing to
do with the wavelength, underestimating the reflectance of the topographic illumination surface and
overestimating the reflectance of the topographic backlight surface, resulting in abnormal values [31].

(2) C model:

ρH(λ) = ρI(λ)
cosθz + Cλ
cosγi + Cλ

(3)

where Cλ is the correction coefficient for the λ band, C = b/a, and a and b are the slopes and intercepts
of linear regression calculated between the IC data and this particular band, respectively.

ρI(λ) = a(λ) cosγi + b(λ), (4)

The C model avoids wavelength independence of the cosine model to a certain extent and avoids
overcorrection in lower cosγi value regions.

(3) The SCS+C model:
This is based on the relationship among the sun, canopy and sensor; because tree growth is

geotropic, the topography cannot affect the geometric relationship between the sun and the tree.
The topography affects the positional relationship between the tree and the surface. The SCS+C
model is a model based on the canopy, which enables a change in illumination direction that is more
consistent with practice during the process of light canopy correction from sloping to horizontal
surfaces. This model is defined as follows:

ρH(λ) = ρI(λ)
cosθz cosθS + Cλ

cosγi + Cλ
, (5)

(4) Empirical rotation model:
The model is defined as follows:

ρH(λ) = ρI(λ) − a(λ) ∗ (cosγi − cosθz), (6)

where a is the interception of the band linear regression calculated in Formula (5). This model eliminates
the linear dependence of reflectivity on cosγi. The results show that this model can accurately obtain
top-of-atmosphere and top-of-canopy reflectivities from Landsat data.

These four models can be used on the GEE platform. Topographic information was obtained by
SRTM, and satellite metadata were used to obtain information such as the angle of the satellite on the
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solar zenith. The Cλ parameters used in the model were calculated for each band in Landsat data,
which made the models more applicable [34].

2.3.2. Evaluation of the Topographic Correction

The evaluation involved the use of standard deviation (SD) and histograms to evaluate the
effectiveness of the topographic correction [35]. First, the SD of all bands before and after correction
were counted, and the contrast histogram of the NIR band before and after correction was created.
Based on all data from the whole image, the effectiveness of the correction model was evaluated.
Then, we chose a reservoir in the study area, which was very obvious in the remote-sensing image,
and drew the region of interest to evaluate the stability of the correction model by calculating the
reflectance changes before and after correction. Finally, the SDs of the NIR and red bands before and
after correction and the correlation coefficients of the NIR band, red band and IC before and after
correction were calculated according to each tree species by using the tree species survey data.

2.3.3. Method of Tree Species Classification

Tree species classification includes three parts: topographic correction of multitemporal
remote-sensing images, training data production and random forest algorithm classification (Figure 2).
First, according to the forest phenology and cloud amount factors, we chose four representative Landsat
images. Multiseasonal remote-sensing data help to improve classification accuracy [36]. We use the
four methods in the dotted box of Figure 2 to correct the remote-sensing image shadow and create
the correction dataset. Then, the training data were created as random points in the pure forest data,
which were extracted from the subcompartment data by forest structure fields. The field describes the
composition of forest species in the subcompartment data. These data are full-coverage training data.
To study the impact of training data distribution on classification, we created shadowless training
data that used the shadow region extracted by the IC data to mask the full-coverage training data.
We used these training data and a random forest algorithm to train classification models. The random
forest algorithm [37] is a machine-learning algorithm that contains multiple decision trees [3,38].
Model training is the process of establishing the relationship between remote-sensing images and tree
species labels. Since machine-learning algorithms have overfitting problems, shadowless training
data avoid the algorithm, covering up the effectiveness of topographic correction, because the correct
classification is based on spectral consistency, not by providing tree species information in shaded
areas to the classifier. Finally, the training dataset was used to train the random forest classifier. We use
a training model to classify the remote-sensing data.

2.3.4. Evaluation of the Effectiveness of Different Topographic Correction Models on Tree Species
Classification

The original data and tree species classification results after correction were visually evaluated, and
the accuracy was evaluated based on the validation data. Based on the area size of the subcompartment
data, 240 sampling points are generated by using the function of randomly generating points in GIS.
A total of 240 sampling points was randomly generated in the study area. Based on subcompartment
data and high-resolution Google Earth images, tree species labels were added to the sampling points.
Some sampling points were moved to the shaded area to evaluate the impact of the shaded area on tree
species classification. To study the influence of topography in topographic correction on tree species
classification, we used 1 to subtract the area ratio of correctly classified tree species in the pure forest
area to calculate the inconsistency rate, zonal statistics of the inconsistency rate and the IC data, and we
drew the distribution histogram of the inconsistency rate and evaluated the relationship between
topographic correction and tree species.
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Figure 2. Methodological framework for the classification accuracy of topographic correction on tree
species. IC: illumination conditions and RF: random forest.

3. Results

3.1. Effectiveness of the Topographic Correction Models

3.1.1. Visual Evaluation of the Topographic Correction

A qualitative evaluation was conducted by visual comparison of the correction effectiveness of
the topographic correction model in the study area. The visual comparison is mainly based on three
aspects: (1) the effectiveness of removing shadows, (2) whether the color is consistent before and after
and whether there is an overcorrection problem and (3) texture features of the images. Through color
synthesis, we can see the effect before and after correction (Figure 3). The original reflectance data have
three-dimensional characteristics because of topographic fluctuations. IC data can reflect the change in
brightness caused by the topographic influence. The comparison of the two pictures demonstrated that
the three-dimensional characteristics of the original data were consistent with the change in brightness
and shade of the ICs.

All four models can remove most of the topographic shadows and restore the reflectivity
information of the shaded areas, which was consistent with the visual impression of adjacent nonshaded
areas. The cosine model had many obvious bright spots in the ridge area, which was quite different
from the original data and had the problem of overcorrection. There was no obvious overcorrection in
the other models. However, after being stretched with SD enhancement, the color depth of the cosine
model was found to have decreased, and the color depth of the C model was found to have increased,
while the results of the SCS+C model and empirical rotation model were more consistent with and
closer to the original data. All images can retain the texture features of objects well, but the corrected
images were flatter, and the stereoscopic effect disappeared. Ridges, valleys and other topographic
features were difficult to recognize. In summary, from the visual effect, the SCS+C model and empirical
rotation model were better than the other models.
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Figure 3. Comparison of Landsat 8 surface reflectances before and after topographic correction.
The contrast area represents the region of Illumination conditions’ data and topographic correction
data (R: shortwave infrared 1 (SWIR1), G: near infrared (NIR) and B: red; data date: 26 March 2016).

3.1.2. Analysis of Band Information before and after Topographic Correction

The SD reflects the degree of data dispersion. Generally, the spectral value of the same ground
feature should be the same, but due to the influence of topography, there will be great variations.
We calculated the SD of different bands of the image before and after correction (Table 2). SWIR1 band
reflectance data had the largest SD. After correction, the cosine model and empirical rotation model
had the best correction effectiveness, and the SDs of the other two models were also reduced. The NIR
and red bands are important bands for vegetation monitoring. The smallest SD after the NIR band
correction was observed in the empirical rotation model, followed by the SCS+C model and C model,
and the worst SD was observed in the cosine model. The empirical rotation model had the smallest SD
after the red band correction, and the effectiveness of the four models was very close. All correction
models can effectively reduce the SD of each band, and the empirical rotation model (followed by the
SCS+C model) was the best in all bands.
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Table 2. Standard deviation statistics of spectral bands before and after topographic correction. SR
refers to “surface reflectance” and represents precorrected conditions. The model represents the
conditions after topographic corrected by the specify model.

SR Cosine Model C Model SCS+C Model
Empirical

Rotation Model

Blue 0.013 0.008 0.009 0.009 0.008
Green 0.016 0.012 0.011 0.011 0.009
NIR 0.042 0.037 0.030 0.029 0.027
Red 0.022 0.014 0.015 0.015 0.013
SWIR1 0.055 0.035 0.040 0.039 0.034
SWIR2 0.044 0.030 0.033 0.032 0.028

The NIR band responds well to the changes in vegetation. We obtained histogram statistics
before and after the NIR band correction (Figure 4). The graph shows that the NIR band reflectance
histogram of the remote-sensing image did not show a normal distribution due to topographic factors.
It formed two peaks: a low value (0.12) and a high value (0.20). This showed that due to the influence
of topographic slope and slope direction, some pixels received insufficient illumination, while the
other parts showed a saturation trend. After the treatment of the four correction models, the NIR band
histogram showed an approximate normal distribution, which was consistent with the random features
of natural phenomena, showing the reflection characteristics of objects in the real state. In the four
models, the cosine model greatly compressed the original data, gathered many values in the 0.15–0.2
reflectivity region and the left and right sides were not completely symmetrical. There were also data
outside the original range, which was considered to be the result of overcompressing. Compared
with the C model, the SCS+C model had the same area with values higher than 0.2. In the range of
0.12–0.17, the SCS+C model was smoother, which was related to the canopy correction rather than the
topographic correction of the SCS+C model. The empirical rotation model was smooth on both sides
of the peak. Compared with the former two models, the reflectance distribution was concentrated at
the peak. All models can correct the NIR band reflectivity to approximate a normal distribution. In
terms of comprehensive distribution morphology, continuity and deformation, the SCS+C model and
empirical rotation model had better correction effectiveness.

3.1.3. Effectiveness of Topographic Correction on Tree Species Reflectivity

Based on forest species composition information in pure forest data, we counted the SD changes
for pine, Chinese arborvitae, oak and black locust in the NIR and red bands before and after correction,
respectively (Figure 5). When we examined a single tree species, the SD of the cosine model increased,
and the pine species stretched abnormally in the NIR band. The empirical rotation model reduced the
SDs of all tree species. When we examined pines, the SD of the blue, green and red bands of the C
model was higher than the original SD of reflectance. The SD of the SCS+C model-corrected image
was higher than the original SD in the blue band for pines and the red band for oak. Statistical results
showed that different correction models had different effects on different tree species, which was
related to the distribution of tree species and the inconsistencies in the reflections of different bands.
The empirical rotation model was very stable, and the SD of all bands of all tree species was less than
the original SD of reflectance. The second-best results were obtained by the SCS+C model.
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Figure 4. Frequency histograms before and after topographic correction in the NIR band by four
models. Surface reflectance (SR)-NIR represents the precorrected conditions of the NIR band. The
topographic correction model by using (a) the cosine model, (b) C model, (c) SCS+C model and (d)
empirical rotation model.

Figure 5. Comparison of tree species NIR band (a) and red band (b) standard deviation before and after
topographic correction by the four models. SR represents the precorrected conditions of the spectral
band. The model represents the conditions after topographic corrected by the specific model.

3.1.4. Stability Analysis of Topographic Correction

Changes in the water body reflectance can be used to evaluate the validity of a topographic
correction model by statistical comparisons of this reflectance before and after correction has been
applied to the study area (Figure 6). Water bodies are horizontal, so the topographic correction model
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should not have a large impact on them. The change in reflectance of all models was less than 10%,
and the change in the SCS+C model was the smallest, at less than 2%. The empirical rotation model is
an experience-based rotation model. Compared with other models, the reflectivity of the water surface
changed greatly, especially in the NIR and short-wavelength infrared (SWIR) bands. The changes
induced by the other two correction models were between 3% and 5%.

Figure 6. Percent change in band reflectance over water bodies after topographic correction by each of
the four models.

In summary, compared with the other two models, the cosine model and C model did not perform
as well in terms of the correction effectiveness and stability. Therefore, the SCS+C model and empirical
rotation model were the main models used in the further study of tree species classification.

3.1.5. Analysis of Correlations among the IC, NIR Band and Red Band of Different Tree Species before
and after Correction

The tree species distributed in the shaded area will affect the remote-sensing image, resulting in
a correlation between the remote-sensing spectral value and topography. We used the tree species
information of subcompartment data to calculate the correlation between the remote-sensing spectral
value and the IC value in the region (Table 3). Before correction, both the NIR and red bands of the
image had a high correlation with the IC. The highest correlations were observed in the NIR bands
of pines and Chinese arborvitae, which were 0.58 and 0.69, respectively. The lowest correlations
were found for the red bands of Chinese arborvitae and oak, which were 0.29 and 0.30, respectively.
The correlation of the NIR band was higher than that of the red band. The correlation coefficients of
pines and Chinese arborvitae after SCS+C correction were lower than those of the empirical rotation
method, whereas those of oak exhibited the opposite pattern. For black locust, the SCS+C model was
better than the empirical rotation model in the NIR band, and vice versa in the red band. The correlation
reflects the degree of influence of the topography on the spectral reflectance of trees. Except for the
red band of Chinese arborvitae, the correlation of the NIR band and red band of all tree species was
significantly reduced by the models.
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Table 3. Correlation coefficient of spectral band and illumination conditions (IC) before and after
correction in the NIR band and red band. SR represents the coefficient before correction, SCS+C
represents the coefficient after correction by SCS+C model, and empirical rotation represents the
coefficient after correction by the empirical rotation model.

Tree Species NIR Red

SR SCS+C Empirical
rotation SR SCS+C Empirical

rotation
Pine 0.58 0.79 × 10−3 0.15 × 10−1 0.43 0.28 × 10−3 0.77 × 10−2

Chinese arborvitae 0.69 0.13 × 10−1 0.24 × 10−2 0.29 0.22 0.22
Oak 0.41 0.94 × 10−2 0.61 × 10−2 0.30 0.33 × 10−2 0.58 × 10−3

Black locust 0.47 0.80 × 10−5 0.85 × 10−2 0.44 0.13 × 10−2 0.60 × 10−3

By constructing density plots between the IC dataset and the individual bands for pine, we can
better understand the process of spectral value processing of the topographic correction method
(Figure 7). As shown in the Figure 7, IC values of 0.3–1.0 were distributed over a large area. The original
reflectance data were highly correlated with the IC values. After correction, the correlation coefficient
between reflectance and IC was significantly reduced. As shown in the Figure 7, both the SCS+C
model and empirical rotation model rotated the reflectance distribution of the original data from tilted
to nearly horizontal, while the empirical rotation model rotated the distribution only on the basis of the
original data, and its interior distribution was very close to that of the original data. The distribution
of points in the scatter plot for the SCS+C model changed obviously to different degrees. In the NIR
band, the density of red points with high densities was reduced after correction with the SCS+C
model. The ed band exhibited clear changes: the empirical rotation model rotated the data as a whole,
while the SCS+C model transformed one density center into two distinct density centers. Due to the
relatively small distribution area of other tree species, the rotation changes were not obvious.

3.2. Topographic Correction Effectiveness on Tree Species Classification

3.2.1. Classification Results of Tree Species and Accuracy Evaluation

Whether the training data were covered with shaded areas had a great impact on the accuracy
of the classification results (Table 4). The classification results of the full-coverage training data
showed little difference in terms of accuracy before and after correction; the SCS+C model performed
better, and the empirical rotation model showed slightly improved accuracy. The classification
results of shadowless training data had great differences before and after topographic correction.
The SCS+C model performed the best, and its accuracy was 13% higher than that before correction.
The performance of the empirical rotation model also improved significantly. Due to the inconsistency
in the reflectance of the original data in the shaded area, the accuracy was low. Therefore, when the
survey data in the study area are comprehensive, the influence of topography can be avoided to some
extent by including training sample points in shaded areas; when the amount of data in the study area
is not adequate, the classification must rely on visual or partial data, and the topographic correction of
the data should be included in the pretreatment step to improve the classification accuracy.
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Figure 7. Scatter density map of the spectral band and IC of pine. (a) NIR band before correction (b)
red band before correction, (c) NIR band corrected by SCS+C model, (d) red band corrected by SCS+C
model, (e) NIR band corrected by empirical rotation model and (f) red band corrected by empirical
rotation model.
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Table 4. Classification accuracy with different training data. SR represents the data before correction,
and SCS+C model and empirical rotation model represent the data after correction.

Shadowless
Training Data

Overall
Accuracy

Kappa
Full-Coverage
Training Data

Overall
Accuracy

Kappa

SR 0.65 0.52 SR 0.76 0.68
SCS+C model 0.74 0.67 SCS+C model 0.79 0.73
Empirical
rotation model 0.72 0.64 Empirical

rotation model 0.77 0.70

The random forest algorithm was used to classify the data before and after correction, and maps
of the resulting forest species distribution were created. As shown in Figure 8, Chinese arborvitae is
mainly distributed in the northwestern and southern parts of Mount Taishan. Oak species are mainly
distributed in the northern part of Mount Taishan, while a small amount is distributed in the central
and southern parts. Black locust covers the least area, and the distribution is fragmentary. Pines are
widely distributed throughout the whole area. The Landsat 8 data corrected by the four models can
effectively distinguish among these four tree species, but the classification results of the four models
differed in terms of specific distributions due to the different corrections of each model (Table 5).

Figure 8. Classification map of the tree species with full-coverage training data. (a) Classification result
with the precorrected data, (b) classification result with topographic correction data of the SCS+C
model and (c) classification result with topographic correction data of the empirical rotation model.
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Table 5. Area statistics derived from classification of the tree species. SR represents the data of the
precorrected data classification results. The SCS+C model and empirical rotation model represent the
data after topographic correction. The gradient represents the change rate between the before and after
correction data.

Tree Species
SR SCS+C Empirical Rotation

Area (m2) Area (m2) Gradient (%) Area (m2) Gradient (%)

Pines 57,028 58,647 2.84 58,981 3.424
Chinese arborvitae 27,515 26,101 −5.14 26,779 −2.67

Oak 21,438 22,631 5.56 21,801 1.69
Black locust 18,987 18,376 −3.22 20,535 8.15

3.2.2. Topographic Correction Effectiveness on Tree Species Classification in Shaded Areas

The tree species in the area with low ICs were entirely composed of Chinese arborvitae (Figure 9).
In the original SR data classification results, most of these trees were identified as pine species and
only the edges were identified as Chinese arborvitae. However, after correction, both the SCS+C
model and empirical rotation model correctly recognized most of the species as Chinese arborvitae
by recovering their reflectivities. Even so, there were still some errors in the two correction models.
On the one hand, the spectral characteristics of these two tree species are similar, which can easily lead
to errors. On the other hand, although the correction maintains the spectral information in shaded
areas, the information recovery is not complete due to DEM error and the influence of the distribution
of the vegetation itself. Complete restoration is only an ideal situation.

Figure 9. Contrast map of Chinese arborvitae classification in shaded areas by using shadowless
training data. SR represents the pre-corrected conditions of the classification result. The model
represents the classification result after topographic corrected by the specific model.
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The classification results for oak were slightly different from those for Chinese arborvitae.
The original data can be better distinguished by using training sample points in no-shadow areas.
Even in areas with low illumination values, the classification accuracy of oak was high (Figure 10).
The reason is that the spectral characteristics of oak are quite different from those of pine and Chinese
arborvitae and are therefore easy to distinguish. After the correction, the results of the SCS+C model
were better than those of the original image. After correction by the empirical rotation model, oak was
easily distinguished, and a few areas were recognized as other tree species.

Figure 10. Contrast map of oak classification in full-coverage areas by using shadowless training
data. SR represents the precorrected conditions of the classification result. The model represents the
classification result after topographic corrected by the specific model.

3.2.3. Effect of Topographic on Classification Inconsistency Rate

The black symbols in Figure 11 are the normalized values of the area of tree species in pure forests
in different intervals of the IC. The four types of tree species had different topographic distributions
based on observation of the standard IC distribution. Pine had two peaks at IC values of 0.6 and
1.0. Black locust had similar peaks at IC values of 0.6 and 0.9. Chinese arborvitae and oak were
mostly distributed in the IC range of 0.8–1.0. The red symbols in Figure 11 show the inconsistency
rate of tree species classification results by remote sensing. After correction, the inconsistency rate of
interval 0.4–0.6 increased and that of interval 0.7–0.9 decreased. After correction, the inconsistency
rate of Chinese arborvitae increased in the 0.5–0.7 interval and decreased in the 0.9–1.0 interval.
After correction, the inconsistency rate of oak increased in the 0.4–0.7 interval and decreased in the
0.7–0.9 interval. The inconsistency rate of black locust increased from 0.7 to 0.8 after correction.
The inconsistency rate of pine changed greatly after correction and was greatly affected by correction.
Black locust showed the opposite result. The relationship between the inconsistency rate and IC
was determined by the combination of tree species and their topographic distributions. Topographic
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correction mainly reduced the inconsistency rate in the 0.4–0.6 interval. Obviously, the correction
model maintained the reflectance information of the low IC area throughout the correction, but the
model also introduced uncertainty in the classification of the high illumination area.

Figure 11. Inconsistency rate distribution histogram with different tree species before and after
topographic correction. (a) Pine before correction, (b) Pine corrected by the SCS+C model, (c) Chinese
arborvitae before correction, (d) Chinese arborvitae corrected by the SCS+C model, (e) Oak before
correction, (f) Oak corrected by the SCS+C model, (g) Black locust in SR data and (h) Black locust
corrected by the SCS+C model.

127



Remote Sens. 2020, 12, 787

4. Discussion

Topographic correction can reduce the effects of varying topography/terrain surfaces and associated
shadowing on spectral reflectance. Although there is no effective method to completely remove this
effect, researchers have attempted to improve the effectiveness of topographic correction using various
methods. The influence on the topographic correction effectiveness is controlled mainly by the
selection of the correction model and the accuracy of the DEM. At present, none of the models can
fully explain the relationship between the illumination coefficient and the band reflectivity. Of the
four models discussed in this study, the cosine model is a simple optical function, the C model is
used to calculate the empirical relationship between the band reflectance and illumination coefficient,
the SCS+C model considers the relationship between the sun canopy and sensor and uses the C model
to avoid overcorrection and the empirical rotation model eliminates the linear relationship between
the band reflectance and illumination coefficient. Although these models all achieve the effectiveness
of topographic correction, they are not able to remove all illumination differences resulting from
topographic variability. This requires more in-depth research to find a model that fully explains the
relationship between reflectivity and the care factor.

The accuracy of the DEM data is another aspect that has a great influence on the correction
effectiveness. In the topographic correction model, the illumination coefficient is an important
parameter. The IC is calculated based on the slope and aspect, and the slope and aspect are calculated
based on the DEM. Thus, the accuracy of the DEM has a great influence on the parameters of the
topographic correction model. In this study, we used the elevation data provided by the SRTM,
which has a spatial resolution of 30 m. We also used the data of TanDEM-X 90 m for comparison [39].
For TanDEM-X, the overall accuracy and kappa coefficients of the classification results increased by
0.03–0.08 and 0.03–0.09, respectively, but the accuracy of the empirical rotation model results decreased.
Since TanDEM-X only obtains 90-m resolution data, the IC calculation involves both slope and aspect.
In addition to elevation, horizontal distance is also needed in the calculation. Hence, the spatial
resolution affects the accuracy. Although there is no in-depth study on how the DEM accuracy affects
the classification accuracy, the higher the DEM accuracy is, the better the correction effectiveness.
If the area is small, we can use photogrammetry technology to generate a more accurate surface.
We believe that if we can obtain accurate ground data, the topographic correction effectiveness will be
greatly improved. Topographic correction adjusts the value and distribution of the band reflectance
according to the relationship between the band reflectance and IC. After the four models are corrected,
the SD of the band reflectivity can be reduced. However, according to the histogram, the cosine
model with different methods has greatly changed the distribution of the band histogram, while the
changes associated with the other three models are more moderate. The difference in the histogram
after correction is the difference in the interpretation of the band reflectance and the illumination
coefficient by the correction method. Different topographic correction models produced different
patterns (Section 3.1.5). In the density maps rotated by the topographic correction models, the overall
structure of the graph has not changed, which shows that the models are based on the IC and adjust the
spectral values in a predictable fashion. Small changes in the form of different shapes and centers are
evident after adjustment. This is because both the SCS+C model and the empirical rotation model use
coefficients derived from IC data and band regression. In this way, the model adaptability is good, but
there are also problems. This regression value is only an empirical value, and there is great uncertainty.
The topographic corrections affect different bands differently, and the empirical coefficients of different
bands calculated by the C model can eliminate this difference. The empirical rotation model uses the
slope, and the SCS+C model uses the slope and intercept.

The distribution of training data and topographic distribution of tree species also affects the
accuracy of tree species classification. The spectra of objects in the shaded area definitely vary; thus,
training our model with this knowledge will certainly improve the classification accuracy. However, this
will also increase the uncertainty, as it may make the spectral values of a feature close to those of other
features. Therefore, the selection of training samples is always a process of regional applicability. This
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is also demonstrated by the influence of the distribution of tree species on the accuracy of tree species
classification. Different species have different IC intervals with good correction effects. This may be
related to the spectral reflection, canopy structure or canopy direction of the tree species. However,
the influence on the spectral reflectance of different tree species is more complicated. It is not always
possible to retain all the information. The best way is to eliminate the impact of the topography. In fact,
ratio indexes such as the normalized difference vegetation index (NDVI) can eliminate the influence
of topography [40,41]. However, the influence of topography on the spectral band is not completely
consistent, so we think that, although the index can reduce the influence, it cannot completely eliminate
the influence in the same way that system error can be eliminated. It is necessary to correct the band
reflectance. When we perform quantitative research on the band reflectance, we want to know the
absolute value of the band reflectance rather than the relative value. This value may be more useful in
revealing the influence of topography on the features.

5. Conclusions

Based on Landsat 8 data, we developed four topographic correction models on the GEE platform,
and their effectiveness on forest tree species classification were compared in detail. The SCS+C model
and empirical rotation model were the best models in terms of visual effects, reducing band SD and
adjusting the reflectance distribution. The empirical rotation model had the best effect on reducing the
SD of the tree species in the NIR and red bands, while the SCS+C model had a high level of consistency
with the original scatter density in adjusting the correlation between the NIR and red bands and the IC.
All of the corrected images were associated with improved tree species classification accuracy. When
using the full-coverage training areas, the accuracy increased by 4%, and when using the shadowless
training area, the total accuracy of the SCS+C model increased by nearly 13%. The inconsistency rate
distribution histogram showed that the relationship between the inconsistency rate and the IC was
determined by the comprehensive effect of tree species and topographic distribution. When forest
species were concentrated in the IC interval of 0.4–0.6, the inconsistency rate decreased significantly
after correction, whereas with increasing IC values, the inconsistency rate increased. In other words,
the corrected image significantly improved the quality and maintained the reflectance information of
the shaded area. This technique can be used as a pretreatment method for forest species classification
in mountain areas.

The change in the reflectance of forest areas shaded by topography is the result of complex and
multifactor interactions, so it is difficult to maintain an exact value with a single mathematical model.
The DEM data used in this study have a resolution of 30 m. In this study, it was found that there were
some dislocations between the DEM data and the remote-sensing data. Although the effect can be
reduced by resampling, DEM data with higher accuracy should provide better topographic correction
results. In addition, the complexity of the ground objects is another factor affecting the topographic
correction. The uncertainty in the mixed pixels caused by the 30-m resolution of the Landsat data also
led to a reduction in the classification accuracy.

In this study, the effectiveness of four commonly used topographic correction models on tree
species classification were analyzed. This work provides a basis for the use of satellite data topographic
correction in tree species classification. In future research, we will seek a more accurate model and a
more accurate DEM to eliminate the influence of the topographic to the greatest extent. The application
of topographic correction can produce more consistent spectral characteristics of ground objects,
reduce misclassifications and improve the accuracy of forest tree species investigations, which are very
important for the promotion of forest resource investigation methods using remote sensing.

Author Contributions: Data curation, C.D.; formal analysis, C.D.; funding acquisition, G.Z.; methodology, C.D.;
project administration, G.Z.; resources, Y.M.; validation, B.P.; visualization, B.P.; writing—original draft, C.D.
and writing—review and editing, G.Z. and Y.M. All authors have read and agreed to the published version of
the manuscript.

129



Remote Sens. 2020, 12, 787

Funding: This research was funded by the National Natural Science Foundation of China (41877003), the Chinese
Science and Technology Projects (2015BAD23B0202), and the Funds of Shandong “Double Tops” Program
(SYL2017XTTD02).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Scott, C.T.; Köhl, M.; Schnellbächer, H.J. A comparison of periodic and annual forest surveys. For. Sci.
1999, 45, 433–451.

2. Immitzer, M.; Atzberger, C.; Koukal, T. Tree species classification with random forest using very high spatial
resolution 8-band worldview-2 satellite data. Remote Sens. 2012, 4, 2661–2693. [CrossRef]

3. Yu, Y.; Li, M.Z.; Fu, Y. Forest type identification by random forest classification combined with spot and
multitemporal Sar data. J. For. Res. 2018, 29, 1407–1414. [CrossRef]

4. Ke, Y.; Quackenbush, L.J.; Im, J. Synergistic use of quickbird multispectral imagery and lidar data for
object-based forest species classification. Remote Sens. Environ. 2010, 114, 1141–1154. [CrossRef]

5. Iizuka, K.; Tateishi, R. Estimation of CO2 sequestration by the forests in Japan by discriminating precise tree
age category using remote sensing techniques. Remote Sens. 2015, 7, 15082–15113. [CrossRef]

6. Kozoderov, V.V.; Dmitriev, E.V.; Melnik, P.G.; Donskoi, S.A. Evaluation of the species composition and the
biological productivity of forests based on remote sensing data with high spatial and spectral resolution. Izv.
Atmos. Ocean. Phys. 2018, 54, 1374–1380. [CrossRef]

7. Liu, A. Study on the Theory and Method of Annual Monitoring of Forest Resources. Ph.D. Thesis, Nanjing
Forestry University, Nanjing, China, 2006.

8. Yu, X.Y.; Zhao, G.X.; Chang, C.Y.; Yuan, X.J.; Heng, F. Bgvi: A new index to estimate street-side greenery
using baidu street view image. Forests 2019, 10, 3. [CrossRef]

9. Lu, D. Integration of vegetation inventory data and Landsat Tm image for vegetation classification in the
Western Brazilian Amazon. For. Ecol. Manag. 2005, 213, 369–383. [CrossRef]

10. Schuck, A.; Päivinen, R.; Häme, T.; Van Brusselen, J.; Kennedy, P.; Folving, S. Compilation of a European forest
map from Portugal to the Ural Mountains based on earth observation data and forest statistics. For. Policy
Econ. 2003, 5, 187–202. [CrossRef]

11. Immitzer, M.; Vuolo, F.; Atzberger, C. First experience with Sentinel-2 data for crop and tree species
classifications in Central Europe. Remote Sens. 2016, 8, 166. [CrossRef]

12. Grabska, E.; Hostert, P.; Pflugmacher, D.; Ostapowicz, K. Forest stand species mapping using the Sentinel-2
time series. Remote Sens. 2019, 11, 1197. [CrossRef]

13. Chiang, S.-H.; Valdez, M. Tree species classification by integrating satellite imagery and topographic variables
using maximum entropy method in a Mongolian forest. Forests 2019, 10, 961. [CrossRef]

14. Vanonckelen, S.; Lhermitte, S.; Van Rompaey, A. The effect of atmospheric and topographic correction
methods on land cover classification accuracy. Int. J. Appl. Earth Obs. Geoinf. 2013, 24, 9–21. [CrossRef]

15. Moreira, E.P.; Valeriano, M. Application and evaluation of topographic correction methods to improve land
cover mapping using object-based classification. Int. J. Appl. Earth Obs. Geoinf. 2014, 32, 208–217. [CrossRef]

16. Zhu, X.Y.; Sun, M.W.; Wang, S.G.; Yu, L.; Chen, Q.; Wang, Y. Correction of false topographic perception
phenomenon based on topographic correction in satellite imagery. IEEE Trans. Geosci. Remote Sens.
2017, 55, 468–476. [CrossRef]

17. Galvao, L.S.; Breunig, F.M.; Teles, T.S.; Gaida, W.; Balbinot, R. Investigation of terrain illumination effects on
vegetation indices and Vi-derived phenological metrics in subtropical Deciduous forests. Gisci. Remote Sens.
2016, 53, 360–381. [CrossRef]

18. Vazquez-Jimenez, R.; Romero-Calcerrada, R.; Ramos-Bernal, R.N.; Arrogante-Funes, P.; Novillo, C.J.
Topographic correction to Landsat imagery through slope classification by applying the Scs plus C method
in mountainous forest areas. ISPRS Int. J. Geo Inf. 2017, 6, 287. [CrossRef]

19. Ghasemi, N.; Mohammadzadeh, A.; Sahebi, M.R. Assessment of different topographic correction methods in
alos Avnir-2 data over a forest area. Int. J. Digit. Earth 2013, 6, 504–520. [CrossRef]

20. Pimple, U.; Sitthi, A.; Simonetti, D.; Pungkul, S.; Leadprathom, K.; Chidthaisong, A. Topographic correction
of Landsat Tm-5 and Landsat Oli-8 imagery to improve the performance of forest classification in the
mountainous terrain of Northeast Thailand. Sustainability 2017, 9, 258. [CrossRef]

130



Remote Sens. 2020, 12, 787

21. Szantoi, Z.; Simonetti, D. Fast and robust topographic correction method for medium resolution satellite
imagery using a stratified approach. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 1921–1933.
[CrossRef]

22. Ba, A.; Laslier, M.; Dufour, S.; Hubert-Moy, L. Riparian trees genera identification based on leaf-on/leaf-off
airborne laser scanner data and machine learning classifiers in Northern France. Int. J. Remote Sens.
2020, 41, 1645–1667. [CrossRef]

23. Liu, S.; Peng, G.; Panwei, L.; Xiang, N.; Bing, W. An ecosystem services assessment of Tai mountain. Acta Ecol.
Sin. 2017, 37, 3302–3310.

24. Lian, X. Study on Natural Regeneration and Sapling Distribution of Platycladus Orientalis Plantation in
Mount Tai. Master’s Thesis, Shandong Agricultural University, Shandong, China, 2014.

25. Meng, Y.; Cao, B.H.; Dong, C.; Dong, X.F. Mount Taishan forest ecosystem health assessment based on forest
inventory data. Forests 2019, 10, 657. [CrossRef]

26. Schmidt, G.; Jenkerson, C.B.; Masek, J.; Vermote, E.; Gao, F. Landsat ecosystem disturbance adaptive
processing system (Ledaps) algorithm description. In Open-File Report; U.S. Geological Survey: Reston, VA,
USA, 2013.

27. Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google earth engine:
Planetary-Scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [CrossRef]

28. Farr, T.; Paul, G.; Rosen, A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.;
et al. The shuttle radar topography mission. Rev. Geophys. 2007, 45, 361. [CrossRef]

29. Meng, Y.; Cao, B.; Mao, P.; Dong, C.; Cao, X.; Qi, L.; Wang, M.; Wu, Y. Tree species distribution change study
in Mount Tai based on Landsat remote sensing image data. Forests 2020, 11, 130. [CrossRef]

30. Teillet, P.M.; Guindon, B.; Goodenough, D.G. On the slope-aspect correction of multispectral scanner data.
Can. J. Remote Sens. 1981, 8, 84–106. [CrossRef]

31. Duguay, C.; Ledrew, E.F. Estimating surface reflectance and albedo over rugged terrain from Landsat-5
thematic mapper. Photogramm. Eng. Remote Sens. 1992, 58, 551–558.

32. Gu, D.; Gillespie, A. Topographic normalization of Landsat Tm images of forest based on subpixel
sun-canopy-sensor geometry. Remote Sens. Environ. 1998, 64, 166–175. [CrossRef]

33. Tan, B.; Jeffrey, G.; Masek, R.W.; Gao, F.; Huang, C.; Eric, F.; Vermote, J.; Sexton, O.; Ederer, G. Improved forest
change detection with terrain illumination corrected Landsat images. Remote Sens. Environ. 2013, 136, 469–483.
[CrossRef]

34. Zhang, Z.M.; He, G.J.; Zhang, X.M.; Long, T.F.; Wang, G.Z.; Wang, M.M. A coupled atmospheric and
topographic correction algorithm for remotely sensed satellite imagery over mountainous terrain. Gisci.
Remote Sens. 2018, 55, 400–416. [CrossRef]

35. Zhong, Y.; Liu, L.; Wang, J.; Yan, G. Application and analysis of Scs + C topographic radiometric correction
model. Remote Sens. Land Resour. 2006, 14, 18–79.

36. Macintyre, P.; van Niekerk, A.; Mucina, L. Efficacy of multi-season Sentinel-2 imagery for compositional
vegetation classification. Int. J. Appl. Earth Obs. Geoinf. 2020, 85, 10. [CrossRef]

37. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
38. Li, M.; Im, J.; Beier, C. Machine learning approaches for forest classification and change analysis using

multi-temporal Landsat Tm images over Huntington wildlife forest. Gisci. Remote Sens. 2013, 50, 361–384.
[CrossRef]

39. Becek, K.; Akgül, V.; Inyurt, S.; Mekik, Ç.; Pochwatka, P. How well can spaceborne digital elevation models
represent a man-made structure: A runway case study. Geosciences 2019, 9, 387. [CrossRef]

40. Conese, C.; Gilabert, M.A.; Maselli, F.; Bottai, L. Topographic normalization of Tm scenes through the
use of an atmospheric correction method and digital terrain models. Photogramm. Eng. Remote Sens.
1993, 59, 1745–1753.

41. Becek, K.; Borkowski, A.; Mekik, Ç. A study of the impact of insolation on remote sensing-based landcover
and landuse data extraction. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 65–69. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

131





remote sensing 

Article

CNN-Based Tree Species Classification Using High
Resolution RGB Image Data from Automated
UAV Observations

Sebastian Egli 1,* and Martin Höpke 2

1 Laboratory for Climatology and Remote Sensing, Philipps-University of Marburg, Deutschhausstr. 12,
35032 Marburg, Germany

2 Map-Site, Rossweg 15b, 35094 Lahntal/Gossfelden, Germany; info@map-site.de
* Correspondence: eglis@staff.uni-marburg.de

Received: 26 October 2020; Accepted: 26 November 2020; Published: 27 November 2020

Abstract: Data on the distribution of tree species are often requested by forest managers, inventory
agencies, foresters as well as private and municipal forest owners. However, the automated
detection of tree species based on passive remote sensing data from aerial surveys is still not
sufficiently developed to achieve reliable results independent of the phenological stage, time of day,
season, tree vitality and prevailing atmospheric conditions. Here, we introduce a novel tree species
classification approach based on high resolution RGB image data gathered during automated UAV
flights that overcomes these insufficiencies. For the classification task, a computationally lightweight
convolutional neural network (CNN) was designed. We show that with the chosen CNN model
architecture, average classification accuracies of 92% can be reached independently of the illumination
conditions and the phenological stages of four different tree species. We also show that a minimal
ground sampling density of 1.6 cm/px is needed for the classification model to be able to make
use of the spatial-structural information in the data. Finally, to demonstrate the applicability of
the presented approach to derive spatially explicit tree species information, a gridded product is
generated that yields an average classification accuracy of 88%.

Keywords: tree species classification; CNN; UAV; RGB

1. Introduction

Forests provide crucial ecosystem services such as biomass production, air purification,
and carbon storage. However, their efficiency and resilience is closely linked to tree species richness [1].
Especially in the context of climate change and its potential impact on the distribution of forest
compositions [2–4], accurate mapping of tree species will remain a fundamental challenge for large
scale forest management as well as small scale local forest inventories and biodiversity assessments [5].

To meet the growing demand for spatially explicit data on the distribution of tree species, several
classification approaches based on a variety of satellite data were proposed [6–10]. Since these data
have a relatively coarse spatial resolution, they are, however, not well suited for classifying tree species
at single-tree-level in complexly structured species-rich forests.

Tree species classification approaches based on passive multispectral or hyperspectral imaging
data and active LiDAR or RADAR scans recorded with airplanes or unmanned aerial vehicles
(UAVs) reach higher resolution levels and thus perform better on single-tree-level [11–15]. For a
comprehensive overview of the latest advances in tree species classification methodologies based on
airborne observations, see Fassnacht et al. [5] and Parkan [16]. Despite the general success of these
approaches, they usually share the following insufficiencies: Most studies are based on the use of more
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than one data collection system which complicates data acquisition. As they are also often dependent
on expensive sensor technology, the economic viability of the approaches is not always guaranteed [5].

Although the collected data have a high spatial resolution, in most cases pixel-based-only
classification approaches are chosen. Hence, information on spatial patterns in the data are ignored.
Varying weather conditions and seasonal as well as diurnal variations in the solar inclination cause
changing illumination characteristics. This again, results in variations in the signal patterns reaching
the sensor during different data acquisition times. Unfortunately, pixel-based classification models
trained on data of passive collection approaches (e.g., multi- and hyperspectral data) cannot handle
these variations adequately as they can only make their classification decision on the spectral signal
of one single pixel at a time. This results in pixel-based models not being transferable to unstudied
regions or data collection times that differ from the acquisition time of the training data.

Another limitation results from the fact that the remote sensing data collection was often only
carried out at one or very few specific dates (often even temporally separated from the collection of
ground-based training and validation data). As the season-dependent phenological stage significantly
influences the spectral characteristics of forests, models trained on these data are therefore not directly
applicable to data collected at a different time of the year. A further critical aspect of recent classification
approaches concerns the acquisition of field data obtained during ground level site inspections for
training and validation of the classification models. Geolocating field data in forests is not trivial due
to poor GPS reception. Also, linking single-tree data obtained at ground level to canopy level (as seen
from a UAV/airplane/satellite) is complicated and time-consuming and thus makes co-locating
ground-based and remote sensing data even more difficult.

To carry out a tree species classification independent of the prevailing illumination conditions, it is
advantageous not to perform a pixel-based classification, but to use spatial patterns within the canopy
data, the recognition of which is essentially feasible independent of the illumination situation. We also
know that, to a large extent, species information is encoded within the leaf shape and branch structure
of a tree, which is why forest managers mainly use these features to identify tree species. Since these
characteristics are contained within the structural patterns of the canopy (provided the resolution
in the remote sensing data is sufficiently high), they can be used to improve the accuracy of tree
species classifications. Provided that the training data were collected appropriately, this approach also
largely avoids the problems of existing pixel-based methods and allows the training and application of
classification models independently of the phenological stage, time of day and year, tree vitality and
prevailing atmospheric conditions.

Spatially zero-dimensional machine learning models that were used in recent studies
(mainly random forests (RF) or support vector machines (SVM)) are not able to recognize the
spatial-structural patterns of leaves and branches in two-dimensional image data. On the other
hand, modern convolutional neural networks (CNN), which were developed within the research
field of computer vision, are capable of classifying image data on the basis of their spatial-structural
content with accuracies that exceed human capabilities [17]. These models can also be used profitably
in the classification process of plants in general. CNN-models were already trained on single-leaf
data sets such as Flavia [18] or ICL [19] and were shown to achieve good performance [20–23].
However, these models are not transferable to RGB image data automatically gathered over forests
as these are much more heterogeneous than the images from Flavia/ICL which were taken under
laboratory conditions (white background, just one leave per image, no complex illumination and
shadow conditions). Community based plant classification approaches on the basis of photos taken
with smartphones such as Pl@ntNet [24,25] or Flora Incognita [26] also showed to be very successful.
However, these approaches can only be used for selectively identifying plants but they cannot be used
directly to produce spatially explicit data on plant occurrence.

A few recent studies use the high spatial resolution of remote sensing data acquired by satellite [27],
airplane [28,29] or UAV [30,31] and apply CNNs in their classification process. Although all these
studies show convincing results, they share the insufficiencies of previous studies: As their classification
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approach is dependent on multi- or hyperspectral image data, expensive hardware has to be employed
during data acquisition. Also, the data dimensionality has to be decreased due to the Hughes
phenomenon preliminary to the classification process [32]. Furthermore, data was acquired only
on a single or very few dates and thus the models were not able to learn the characteristics of different
phenological stages and weather conditions. Due to the chosen flight altitudes, the resolution of
the data was also not sufficient to make leaf and branch structures recognizable. The only recent
UAV-based approach that does not depend on hyperspectral data and that takes into account different
phenological stages and changing illumination conditions is that of Natesan et al. [33]. Unfortunately,
only two coniferous tree species are distinguished here and the validation results of 51% accuracy
under strict temporal separation of training and test data set are in need of improvement.

Additionally, only very few studies have dealt with the examination of an optimal resolution in
the input data for the classification task so far [5]. This is problematic as a high image resolution is at
the expense of the flight altitude and thus the area that can be covered within a single flight mission.

In summary, we identified three main problems associated with tree species classification in
remote sensing: (1) Most studies are based on expensive sensor ensembles. (2) Very few studies have
dealt with changes in the spectral signal due to variations in the diurnal and seasonal illumination
conditions as well as due to phenological modifications. (3) The influence of the spatial resolution of
the input data on the classification result has not yet been investigated thoroughly.

To overcome these shortcomings, the aim of this study was to investigate the feasibility of a tree
species classification based on high-resolution photos (simple RGB data) obtained with a low-price
ready-to-fly UAV. In order to take into account different illumination conditions and phenological
stages, the photos were taken at different times of day and during different seasons throughout the
entire vegetation period. In order to be able to exploit the spatial-structural properties of the image
material, a CNN model was used for the classification procedure.

Two broadleaf and two coniferous tree species were investigated, namely Quercus robur and Fagus
sylvatica as well as Larix decidua and Picea abies. In the following, only the common English terms beech,
oak, larch and spruce will be used.

In the context of this work, the following two hypotheses were tested:

Hypotheses 1 (H1). It is possible to classify tree species on the basis of high-resolution RGB image data
independent of phenological stage, time of day, season and prevailing atmospheric conditions.

Hypotheses 2 (H2). With decreasing spatial resolution below the detectability of leaf and branch structures,
the quality of the classification result drops significantly.

Finally, the feasibility of our approach to create a gridded product for the distribution of tree
species was tested on an exemplary test site within the study area.

The paper is structured as follows: Section 2 describes the data acquisition and the applied
methodology in detail. In Section 3 the results are presented and discussed. A final conclusion is given
in Section 4.

2. Data and Methods

2.1. Study Area

This study was conducted in the Marburg Open Forest, a teaching and research forest of the
Philipps-University of Marburg, located in Central Germany (see Figure 1). The forest is a mixed
forest typical for this region. Besides occasional birches, ash trees and a few other rarely occurring
tree species, it mainly consists of the leading tree species beech, oak, larch, spruce, fir, and Douglas
fir. The forest is well mixed in terms of age, with average tree ages varying between 40 and 160 years.
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Although it is partly managed for the purpose of timber production, logging activities are compensated
for by appropriate sustainability measures.

Figure 1. Study area: The Marburg Open Forest - Teaching and Research Forest of the
Philipps-University of Marburg, State of Hesse, Germany. UAV photo locations of all conducted
flight missions are denoted as yellow points. Testing areas 1 to 9 are delineated by cyan-colored circles.
The area used for generating a gridded product is depicted as white raster box.

2.2. Data Collection

Image data were collected using a DJI Phantom 4 Pro UAV. A high-resolution RGB-camera
with a 1” CMOS sensor and effectively 20 mega pixels with an edge length of 5472 × 3648 pixels is
integrated into the vehicle. Although DJI has since expanded its consumer UAV series with additional
models, the camera sensor with its 20 mega pixel resolution is still at the top of the technical range
in the consumer drone market. The camera’s field of view is specified as 84°, which corresponds
approximately to the 35 mm format. With an initial aperture of 2.8, the camera is also relatively
light-sensitive [34]. Images were taken vertically (top-down perspective) in auto-mode to automatically
adjust to different illumination conditions and stored in JPEG format. No further image calibration
was conducted.

To be able to perform automated flights close to the canopy, in a preliminary step grid flights
were conducted at an altitude of 100 m. Using the open source software OpenDroneMap [35],
a digital surface model (DSM) was derived from the image data obtained in these flights via the
structure-from-motion approach. On the basis of the DSM, single tree locations were then manually
identified and marked with waypoints. These waypoints were subsequently used for the preparation
of automated flights close to the canopy level (10 m distance). In order to account for different
phenological stages as well as changing weather situations and thus altering illumination conditions,
image data were gathered during multiple flights in different forest divisions during most part of the
vegetation period of 2020.
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In total, 1556 photos were taken from 477 individual trees during six flight missions. Exemplary
photos of each tree species assessed are shown in Figure 2. For a detailed overview of all conducted
flight missions see Table 1 and Figure 1.

Figure 2. Exemplary UAV photos of the four tree species considered in this study. For each category
the same individual tree is shown at different flight dates, weather conditions and phenological stages.

Table 1. List of UAV flights conducted within the scope of this study. Photo counts indicate the amount
of all photos taken per flight date. Tile counts refer to the number of actually tagged tiles per category.

Date Local Time Weather Conditions Photo Count
Tile Count

Oak Beech Larch Spruce

3 May 2020 13:37–15:24 Sunny/cloudy (cumulus) 179 3745 2022 1663 1362
23 May 2020 14:31–16:09 Cloudy (low stratus) 250 2051 2383 1602 2921
23 June 2020 09:18–10:24 Sunny 217 1981 4254 2105 2036
3 July 2020 08:48–10:13 Sunny 292 2851 2186 2403 2743
9 July 2020 10:18–12:15 Cloudy (low stratus) 369 3253 2440 2403 2566

27 August 2020 09:44–13:18 Sunny/cloudy (cumulus) 249 2463 3408 2401 2745

2.3. Data Preparation

The performance of machine learning models at predicting space-time related properties is
often strongly overestimated due to spatial and temporal auto-correlation in the data when using
conventional cross-validation methods with simple random picks [36]. Thus, in order to evaluate
the true performance of the classification model and its generalizability, care was taken to ensure
that the training/validation data set was strictly separated from the testing data set both in time
and space, following the leave-location-and-time-out (LLTO) cross validation procedure as described
in Meyer et al. [36]. This means that image data used for testing the model performance was not
recorded in the same region nor at the same time as the training/validation data set. For this purpose,
nine different testing regions were defined (see Figure 1). During model training, successively data
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from all combinations of each of these areas and each flight date were completely excluded from the
training process and used exclusively for testing.

A complete pixel-accurate segmentation of tree species within the UAV photos is not necessary
from a remote sensing point of view, since a resolution in the cm range is not useful for the creation
of a spatially explicit product on tree species occurrence. Therefore, and in order to simplify the
manual tagging process, to keep the computational effort within limits and to be able to generate a
larger training data set, each photo was divided into 216 tiles with an edge length of 304 pixels prior
to further processing. An edge length of 304 pixels was chosen as a reasonable compromise for the
trade-off between recognizability of leaf and branch structure (smaller tile sizes would have resulted
in too few species-specific leaf and branch structures within a tile, especially in less leafy trees) and the
assignability of a tile to one specific tree (larger tile sizes would have resulted in many tiles containing
several different tree species).

It should also be mentioned here that, in contrast to existing classification approaches, we did not
first georeference the original data and then perform the classification task on the resulting orthophoto.
Instead, we classified the image data in its original resolution in order to exploit the maximum
information content of the original data and to avoid distortion effects during orthophoto generation.

The previously generated tiles were then manually grouped into the four tree species categories
oak, beech, larch and spruce. A complex and error-prone co-localization of training and remote sensing
data was virtually unnecessary during this process, since the tiles could be tagged almost exclusively
on the basis of the leaf and branch structures recognizable in the tiles themselves. Since individual tree
locations were also visited during the flight missions on site, the type of the centrally located tree of
each photo could explicitly be linked to the respective photo. Where a clear tree species assignment on
the basis of a single tile was not possible, the information from the photo belonging to the respective
tile could thus be used to tag the tile. Only at the tree crown edges a clear assignment of a tile to
one specific tree species was not always feasible. These tiles were excluded from the study. In total,
59,987 tiles were tagged with this approach. Detailed numbers per category and flight date are listed
in Table 1.

To assess the influence of the spatial resolution of the image data on the model performance,
all tiles were downsampled with bilinear interpolation to ten different resolution levels corresponding
to flight altitudes from 10 m to 2000 m above canopy level in logarithmic increments. These flight
altitudes correspond to ground sampling densities between 0.27 cm/px and 54.78 cm/px. With each
increment, the pixel count per sample decreases at a rate of 69%, starting from 92,416 px to 1 px.
At higher flight altitudes than 2000 m, the original tile contents at 10 m flight altitude would be smaller
than a single pixel in the image data which makes further downsampling pointless.

Differently sized dimensions in the input data require different CNN model architectures.
To ensure that differences in the model performance are not due to changes in the model architecture
but exclusively due to changes in the input data, the artificially downsampled tiles were thus scaled
to the original tile resolution of 304 × 304 on all levels. An overview of all data preparation steps
described here is shown in Figure 3.

138



Remote Sens. 2020, 12, 3892

Figure 3. Image data preparation steps: Schematic depiction of the tiling, tagging and downsampling
procedure of the image tiles.

2.4. Classification

Current state-of-the-art CNN-models such as VGG16/19, Inception or ResNet that are
widely used for general image classification tasks (>1000 classes) are overly complex and thus
unnecessarily computationally expensive when it comes to classification problems with very few
classes (4 in our case). Since it has also been shown that these large CNN models do not perform better
in classification tasks used in forestry applications than smaller models [37], a more compact model
architecture was designed for the classification of the UAV image tiles. After testing several different
architectures, a sequential model design with four consecutive convolution/pooling layers has proven
to be the one with the best performance based on the available data set. All convolutional layers as
well as the fully connected layer use ReLu activation functions whereas the last classification layer uses
a softmax activation function to classify the tiles into the four tree species. With 2,982,484 trainable
parameters, the model is much smaller and computationally less heavy than its large counterparts,
the smallest of which comprises more than 25 million trainable parameters. The model implementation
and its training were realized with the large-scale machine learning library TensorFlow [38] and the
deep learning API Keras [39]. The complete model architecture is shown in Figure 4.

For all model training/validation runs in this study, Adam optimization with a learning rate of
0.001 was used as gradient descent method. Kernel regularizers were used in each convolutional layer
to prevent the model from overfitting to the training data. Image tiles were augmented with horizontal
and vertical flips. Models were trained in batches of 128 tiles for 50 epochs. Further training did not
result in any enhancement of the validation accuracy.

The models were trained on a platform with twelve Intel(R) Xeon(R) CPU E5-1650 v4
units each with 3.60 GHz and four GeForce GTX TITAN X graphics cards. With this setup,
about 120 s of computing time were needed for one epoch which resulted in training times of about
100 min per model.

To be able to assess the generalizability of the model performance and to test hypothesis H1,
the model training and testing procedure was iteratively repeated for each combination of the nine
testing areas and all flight dates as described in Section 2.3. As photos were not taken for each
of all possible 54 area/date combinations, in total only 34 different training/testing runs were
conducted. In each run, a new model was trained using only data that was not collected within
the respective testing area nor at the respective testing date. Sample counts for the train/validation
data set were equally distributed and limited to 10,000 per category but could be lower for certain
area/date-combinations with a minimum value of 5875. Sample counts of the testing data set varied
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between 191 and 3039 tiles. Model weights were saved after every training epoch. Each model was
then tested using the data from within the respective testing area that was collected on the respective
testing date. For testing, the weights with the best performance in terms of validation accuracy
were loaded.
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Figure 4. Model architecture of the CNN used in this study. The model consists of four consecutive
convolution/pooling blocks (conv1 to conv4), one fully connected layer (fc) and a final output layer
with four classes that can be mapped to the four tree species considered in this study. (Plot generated
with the PlotNeuralNetwork software by Iqbal [40]).

To assess the influence of the spatial resolution of the image data on the accuracy of the
classification results and to test hypothesis H2, in a second step the model was iteratively trained,
validated and tested with artificially downsampled image data as described in Section 2.3. To this
end, the image data set was randomly split into training, validation and testing subsets of size 8000,
2000 and 1000 tiles for each category.

To get a benchmark for the model performance, a subset of the testing data set was also manually
classified by people who were not directly involved in the project. The subset consisted of 10 tiles
per resolution level per person. With a total of 20 participants this resulted in 200 tiles per resolution
level and 2000 tiles across all levels. During the manual tagging process, the participants did not
have any information about the geo-location of the tiles, nor did they get any information about the
original photos the tiles were clipped from. The only help was provided by showing 10 sample images
per tree species from the training data set for each resolution level to the participants prior to the
tagging process. To be able to compare the results of the human assessment directly with the model
performance, the model was additionally applied to the tiles of the subset only.

2.5. Grid Application

To demonstrate the usability of the presented approach for the derivation of spatially explicit
tree species information, a gridded product was generated for an exemplary region within the study
area (see Figure 1). The region was selected in such a way that all tree species considered in this study
occurred in it in sufficient abundance. Image data were recorded during an automated flight in a
5 m × 5 m grid 10 m above canopy level on 27 August 2020. An orthophoto of the region that was
recorded during a preliminary UAV survey on 2 July 2020 is shown in Figure 5 together with the
5 m × 5 m grid flight pattern.
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Figure 5. Orthophoto of the grid application region recorded on 2 July 2020. White dots mark points
where photos were taken during the automated 5 m × 5 m grid flight. Coordinates are given in UTM
zone 32N.

To minimize the offset between real-world coordinates and image pixels, the images were clipped
to the central 1216 pixel × 1216 pixel area which roughly corresponds to a 5 m × 5 m area at a flight
altitude of 10 m above canopy level. This central image area was then cut into 16 square tiles with the
previously chosen 304 pixel edge length. A CNN was trained using only image data that were not taken
on 27 August 2020 and outside the chosen region. This model was then applied to classify all 16 central
tiles of each image taken within the region. In this way, a final product with 120 pixel × 80 pixel at
1.25 m spatial resolution was generated. In order to be able to evaluate the quality of the product,
all tiles were also manually tagged and compared with the model predictions. Tiles that could not be
assigned to any of the four tree species under consideration were not included in this analysis.

3. Results and Discussion

3.1. Generalizability

The results of the model training and testing procedure for all testing area and flight date
combinations are shown in Figure 6. Validation accuracies of all 34 runs are depicted in the left plot.
After approximately 20 epochs, only slight accuracy enhancements could be observed. After 50 epochs,
average validation accuracy values peaked at 93% with the best model reaching 96% and the worst
model reaching 92%. It should be noted that the best model performance did not necessarily occur after
epoch 50, but often earlier with the earliest peak performance occurring after epoch 38. These results
show that the chosen model architecture is essentially very well suited to differentiate the tree species
treated in this study on the basis of simple RGB images. It can also be deduced from the plot that the
variation of the validation accuracy becomes increasingly smaller as training progresses. This means
that regardless of the date/area combination, the model was able to derive the essential information
for the differentiation of tree species from the data.
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Figure 6. Left: Validation accuracy after each epoch of the 34 different models that were trained during
the LLTO procedure. Right: Accuracy values reached during testing. Boxes range from the lower to the
upper quartile values of the data with a line at the median. Whiskers extend to 1.5 interquartile range.
Outliers are marked as circles.

Similar studies in the literature report highly varying accuracy results with values between 59%
and 95% [28]. With an average validation accuracy of 93% after 50 epochs our model thus lies in the
upper range. However, most of these study results cannot be directly compared with the results of this
study, as too little focus was put on spatial and temporal independence in the validation procedure.
The only work we are aware of, which is also based on RGB data collected with a UAV and which was
validated spatially and temporally independently, is the work of Natesan et al. [33]. Here an average
accuracy of 80% is reported.

To be able to assess the true spatiotemporal generalizability of the model, the testing accuracies
must be analyzed. The right plot shows the testing accuracy results which were generated by loading
the best weights for each model and then applying it to its respective testing data set. In comparison to
the validation accuracies, here a similar median value of 92% was observed. However, the value range
of the testing accuracies is much larger than the value range of the validation accuracies of the best
models with a minimum of 44% and a maximum of 100% .

The median value of 92% in the test accuracies is very promising and shows that trained models
can indeed be successfully applied in temporally and spatially independent areas where they are able
to achieve prediction accuracies of 92% on average. However, the large value range of 56 pp indicates
that in a few exceptional cases significantly higher/lower accuracy values are reached. The maximum
accuracy of 100% was achieved for testing area 8 on 27 August 2020. However, only 191 test tiles were
available here, all of which fell into the oak category, thus making this test sample unrepresentative.
The same applies to the three lower outliers with accuracy values between 44% and 63% . With average
tile counts of only 526 and a maximum of three tree species categories being represented, these test
samples are not representative either.

In summary, it can be stated that the presented method made it possible to differentiate between
the four tree species oak, beech, larch and spruce. Apart from a few non-representative test cases,
the CNN models were able to achieve promising classification accuracies temporally and spatially
independently. Hypothesis H1 is thus accepted.

3.2. Resolution Dependence

The model performance data collected during training of the model at different resolution levels
of the image data are shown in Figures 7 and 8. Figure 7 shows the model accuracies after each training
epoch. Starting from accuracy values between 50% and 60% after the first training epoch, all models
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were able to improve till the end of the training procedure. However, with increasing flight altitude and
thus with lower information content in the image data, it became increasingly difficult for the models
to classify the image data into the correct categories. This manifests itself in a successive flattening of
the learning curves with maxima being achieved after less training epochs but at considerably lower
levels. While for the original resolution at 10 m flight altitude a maximum validation accuracy of 95%
was achieved after 50 epochs, at a theoretical flight altitude of 2000 m a maximum validation accuracy
value of only 56% was reached already after 36 epochs.

Figure 7. Validation accuracy after each epoch of the ten different models that were trained with
successively decreased data resolutions corresponding to the flight altitudes listed.

Figure 8. Test accuracies of model and human classification results at different resolution levels
corresponding to the flight altitudes and ground sampling densities depicted on the horizontal axes
(logarithmically scaled). Lines denote model results. Boxplots show human results.

The reason for the early reaching of maximum performance on a low level for models with
low-resolution data is presumably the reduced information content in the data. This allows the models
to learn the complete information content that is still contained in the data more quickly. However,
this is also inevitably accompanied by a decrease in maximum accuracy values. On the other hand,
models based on high-resolution data need longer to reach maximum performance due to the larger
information content within the data. Nevertheless, the higher information content also allows the
models to achieve higher maximum accuracies.

It should be pointed out that even at the maximum theoretical flight altitude of 2000 m accuracy
values of 56% are still achieved. Since only one color value per tile remains, i.e., 3 features per sample
in contrast to 277,248 features in the original samples, it can be concluded that the mean spectral
values of the tiles already provide an explanatory content of 31%, assuming a base rate accuracy of 25%
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of a random model with 4 equally distributed classes. Beyond this level, another 39% of additional
explanatory content can be obtained from the spatial structure in the image data, resulting in maximum
accuracies of 95% at the highest resolution level.

In Figure 8 accuracy values are shown that were obtained by applying each run’s best model to
the test data together with the human performance results. The solid line depicts the performance
results of the models when they were tested against the complete testing data set of 4000 tiles per
resolution level. The dashed line marks model results when they were tested against the subset that
was used in the “human” tagging process (200 tiles per resolution level). With the only exceptions of
flight altitude levels 616 m and 1110 m which correspond to ground sampling densities of 16.87 cm/px
and 30.41 cm/px, the deviation between the two curves is minimal. These slight deviations can be
explained by the size of the subset with only 200 samples per altitude level compared to 4000 in the
complete testing data set. In general, both curves follow the same scheme:

The first four models trained with theoretical data acquisition altitudes of up to 58 m all reach
accuracy values above 90%, only showing a very slow accuracy decrease of about 1.6 pp per flight
altitude level increase. This can probably be explained by the fact that many images in the data
set at these high resolution levels contain redundant information regarding the determinability
of the four tree species investigated. For instance, the leaf shape is still “over-resolved” at these
levels. Thus, despite the absolute loss of information of 97.1% from the 10 m level to the 58 m level
(277,248 vs. 8112 features) the models are still able to distinguish between the four categories in
most cases.

Starting from 105 m theoretical flight altitude and above, which is equivalent to a ground sampling
density of 2.88 cm/px, accuracy values decrease more rapidly at a rate of about 5 pp per logarithmically
increased altitude level. A possible explanation for this is that from this resolution on, important
information in the image data required for the determination of tree species, such as the leaf and branch
structure of the trees, can no longer be recognized by the models. Thus, the models can only rely on
coarser structures and average spectral values, which do not allow for a clear identification anymore.
Nevertheless, the decrease of the model performance is much slower, than a decrease proportional to
the number of features per sample on all resolution levels. This again emphasizes the suitability of the
CNN application to the tree species classification problem investigated in this work which becomes
particularly obvious when comparing the model results with the results of the human classification:

Results of the manual tagging process are depicted as boxplots in Figure 8. Despite large variations
at each level, the same basic pattern as for the models can be observed: The human classification
results are at a similarly high level as the model results at the beginning and decrease with increasing
theoretical flight altitudes. However, there are some differences to the model performance: The human
classification accuracy significantly decreases already at the flight altitude level of 32 m (0.88 cm/px
ground sampling density) where it drops relatively abruptly from median accuracy values of 80%
over the 58 m level with 50% to 30% at level 105 m (2.88 cm/px ground sampling density). From this
flight altitude level up to the maximum flight altitude level of 2000 m the classification accuracy
then varies between median values of 45% and 25% with a slight downward trend towards coarser
resolution levels.

This shows that humans can keep up with the models in the beginning where they reach a median
accuracy value of 95% at the 10 m level. However, as soon as the visual characteristics essential for
humans to differentiate between tree species can no longer be recognized, the performance drops
abruptly and settles at values just above a random hit probability of 25%. Thus, humans are not
able to draw meaningful information from the mean spectral characteristics and the coarse spatial
structures, which are still recognizable at the coarser resolution levels, in order to make a meaningful
differentiation. Besides this, the trend of the human performance supports the assumption that at a
flight altitude level between 32 m and 105 m the recognition of important spatial-structural properties
for the differentiation of tree species is no longer possible, given the UAV setup used in this study.
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In summary, it can be stated that the predictive power of humans and the CNN models
continuously decreases with decreasing resolution in the image data. The fact that the model
performance decrease with logarithmically increasing flight altitudes is steeper for flight altitudes
above 58 m (1.59 cm/px ground sampling density) and that the human performance drops significantly
around this level too, indicates that essential spatial-structural information needed for the classification
of tree species can no longer be recognized above this level. Hypothesis H2 can thus also be accepted.
It can further be concluded that with the given UAV and camera sensor technology, acquisition
altitudes of about 58 m above canopy level are sufficient to still achieve very good accuracy results
with values of more than 90%. This is particularly noteworthy as at flight altitudes of around 58 m
above canopy a much larger area can be covered per flight than at 10 m flight altitudes.

While Fassnacht et al. [5] hypothesize that classification accuracies of non-pixel-based approaches
are likely to benefit from higher spatial resolutions, they emphasize that more systematic research is
needed in this area. Most importantly, until now it remained unclear, where a possible upper limit of
the resolution enhancement with respect to the classification accuracy improvement may be found.
With the help of the results of this study, this upper limit can now be assumed to be somewhere around
a ground sampling density of 1.6 cm/px which corresponds to flight altitudes of about 60 m with the
UAV setup used in this study.

3.3. Grid Application

The result of the grid-based application of the CNN approach to an exemplary region is shown in
Figure 9. Areas covered by oaks, beeches, larches and spruces are colored yellow, brown, coral and blue,
which are the colors used for these tree species in map illustrations of the Hessian forestry management.
White areas are regions that could not be assigned to one of the four categories either due to image
data deficiencies such as motion blur or because the respective image tile did not contain any of the
four tree species. This was the case when either no tree was visible in the tile at all (e.g., forest floor or
shrubs) or because the tile showed another tree species than the four considered here. Apart from the
white areas in the central part of the domain resulting from the presence of ash trees (Fraxinus excelsior),
the optical comparison with the orthophoto shows that the approach has produced reasonable results.
Beeches are relatively evenly distributed over the complete domain. Larch trees, on the other hand, are
concentrated in the northwestern part, while oak trees are most common in the southeast. Spruces
form a strip from the southern to the central part of the domain and show a few scattered occurrences
in the southwest.

Figure 9. Result of the grid application. Tree colors correspond to the colors used in map illustrations
of the Hessian forestry management. White areas mark regions where the model was not applicable.
Coordinates are given in UTM zone 32N.
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The validation against manually tagged tiles which were visually assignable to one of the four
tree species resulted in an accuracy of 88%. This is within the range of the third quartile of the testing
accuracies from the generalizability analysis in Section 3.1 and shows that the grid product achieves
a good overall spatially explicit classification accuracy. It must be mentioned, however, that the
geographical location of the individual pixels of the product is not very accurate. Although only the
central section of each UAV photo was used for the classification procedure, an exact assignment of
an image tile to a product pixel was not always unambiguously possible. This was due to optical
distortions towards the edge of the image, irregularities in the height of the canopy and because of
deviations between the measured and the actual position and orientation of the UAV.

Furthermore, due to the low flight altitude of the UAV, this approach cannot yet be applied on a
large spatial scale. Nevertheless, the procedure may be used to generate spatially explicit data on tree
species as seen from the aerial perspective for selected example areas or it can help to get an overview
of tree species distribution during local forest inventories. Independently validated spatially explicit
reference data on tree species occurrence are hardly available due to the difficulties in locating exact
tree positions and crown extensions [5]. Locally gathered and gridded products using the method
proposed in this study, could help to close this gap. These data sets could then also be used as “ground
truth” to support spatial upscaling procedures based on coarser satellite data in order to produce large
scale spatially explicit data on tree species occurrence.

4. Conclusions

In this study, we presented a novel CNN-employing tree species classification approach based on
low-cost UAV-RGB image data. It was shown that validation results of 92% could be achieved with
this technique on spatially and temporally independent data. This demonstrates that, in contrast to
existing pixel-based classification methods, this approach enables the determination of tree species
largely independent of the prevailing illumination conditions, i.e., independent of daytime and season,
phenological stage and prevailing weather conditions. However, since only four tree species were
classified in this work, a reasonable next step is to extend the data set by further tree species.

An analysis of the effect of the spatial resolution on the classification accuracy has shown that
human and model performance continuously decrease with decreasing spatial resolution. However,
it could be shown that up to a theoretical flight altitude of about 60 m, equivalent to a ground
sampling density of 1.6 cm/px, the model’s classification accuracy remained above 90% and that only
at higher flight altitudes or lower spatial resolutions the classification accuracy decreased significantly.
Although human performance shows large variances in the individual resolution levels, a clear trend
is discernible which shows that human classification accuracy drops faster and earlier than the model’s
accuracy at decreasing resolution in the input image data. It should be added that the resolution
analysis was only performed on the basis of artificially downsampled image data. Thus, to confirm
our results, they should be compared to classification results generated on the basis of original data
gathered in exemplary flights performed at the respective flight altitude levels.

Finally, it was shown that the presented approach can be used for the generation of gridded tree
species products, which in turn could be made available as ground truth reference data for various
further applications. A remaining deficiency of the grid generation is the inaccurate assignment
of image tiles to grid pixels. This assignment could be improved by using RTK-UAVs, which can
measure their location with high accuracy, or by including a simultaneously generated orthophoto in
the post-processing of the collected image data for automatic georeferencing.

As the RGB image data required for the classification can be obtained at reasonable costs and since
the UAV employed was an easy-to-use consumer model, the input data could potentially be directly
collected by people who do not need to have remote sensing expertise, e.g., forest managers or rangers.
This again increases the probability of a broad applicability of the approach in many different contexts.
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Abstract: The distribution of forest tree species provides crucial data for regional forest management
and ecological research. Although medium-high spatial resolution remote sensing images are widely
used for dynamic monitoring of forest vegetation phenology and species identification, the use of
multiresolution images for similar applications remains highly uncertain. Moreover, it is necessary
to explore to what extent spectral variation is responsible for the discrepancies in the estimation of
forest phenology and classification of various tree species when using up-scaled images. To clarify
this situation, we studied the forest area in Harqin Banner in northeast China by using year-round
multiple-resolution time-series images (at four spatial resolutions: 4, 10, 16, and 30 m) and eight
phenological metrics of four deciduous forest tree species in 2018, to explore potential impacts of
relevant results caused by various resolutions. We also investigated the effect of using up-scaled time-
series images by comparing the corresponding results that use pixel-aggregation algorithms with the
four spatial resolutions. The results indicate that both phenology and classification accuracy of the
dominant forest tree species are markedly affected by the spatial resolution of time-series remote
sensing data (p < 0.05): the spring phenology of four deciduous forest tree species first rises and then
falls as the image resolution varies from 4 to 30 m; similarly, the accuracy of tree species classification
increases as the image resolution varies from 4 to 10 m, and then decreases as the image resolution
gradually falls to 30 m (p < 0.05). Therefore, there remains a profound discrepancy between the results
obtained by up-scaled and actual remote sensing data at the given spatial resolutions (p < 0.05). The
results also suggest that combining phenological metrics and time-series NDVI data can be applied
to identify the regional dominant tree species across different spatial resolutions, which would help
advance the use of multiscale time-series satellite data for forest resource management.

Keywords: time series; trees species identification; phenological metrics; scale effect; up-scaling

1. Introduction

Accurate spatial distribution information of forest tree species is a precondition for
almost all questions dealing with regional forest ecology and is quite important for under-
standing the land-surface phenology (LSP) processes and the refinement of ecological and
atmospheric models [1–3]. In addition, accurate mapping of the dominant tree species is
critical for forest-environment monitoring, forest management, and associated decision-
making and planning [4,5]. In recent years, remote sensing images with medium to high
spatial resolution (≤30 m) have been widely used to map and classify dominant tree species
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in the different regional forest ecosystems, because the viewing field of the image is close
to the size of tree species and of tree stands [6–9]. However, given the limitations to a
few bands with wide central bandwidths, it remains challenging to map forests finely and
accurately by solving the common problem of foreign bodies with spectra similar to that of
tree species with multispectral images of differing resolution [10–13].

With today’s continuous improvement in multispectral satellite revisit cycles, temporal
characteristics have proven to have high application value for forest classification [14,15].
The time-series normalized differential vegetation index (NDVI) was generally considered
to be applicable for identifying vegetation and extracting phenological information [16–18],
which plays a key role in classifying the dominant tree species and overcoming the problem
of foreign bodies with similar spectra [19,20]. Given this advantage, some studies have
confirmed the use of time-series NDVI data and phenological characters would raise the
mapping accuracy of forest types in both urban areas [13,21] and rural areas [18,22–24].

MODIS and NOAA satellites can provide images with very short revisit intervals
(less than 2 days). Therefore, most previous researches have discussed the results of forest
composition mapping and dynamic detection based on time-series NDVI data from a
regional to global scale [5,25]. However, the spatial resolution of traditional time-series
images such as NOAA AVHRR [26], SPOT Vegetation [27], and MODIS imagery data [28]
generally range from hectometers to kilometers, resulting in poor spectral purity and
limited identification of broad forest types (such as coniferous or broad-leafed forests).
Hence, medium-to-low resolution remote sensing images were considered to be applicable
to classify general forest-cover types [29,30] in which finer tree species composition infor-
mation is not involved [9,31]. As a rule, medium-high resolution satellite images can be
used to produce more accurate results of forest species composition by providing detailed
spectral features of the canopy of dominant tree species [32,33].

An increasing number of medium- and high-resolution Earth-observation satellites
have now entered use in recent years (e.g., Sentinel-2, SPOT-6 and -7, Gaofen-1 and -2, etc.).
Some multitemporal medium-high-resolution NDVI images have proven to be applicable
to classify the dominant tree species in forests [11,34–36], but less attention has been focused
on spatial mapping [37]. In addition to the time-series spectral dynamics, plant phenology
should be equally considered for tree species mapping [38–41]. Therefore, it is essential
to use multiscale time-series data to explore the effect of image resolution and phenology
information on the accuracy of forest tree species classification. The study of vegetation-
phenology dynamics by remote sensing mainly involves extracting the corresponding key
time nodes and characteristic values by analyzing the significant variations in vegetation
index time series data, which are commonly called LSP metrics [11,17,42,43]. LSP metrics
are important status parameters for land-vegetation ecosystems, especially at the start
of spring (SOS) [44], also called the start of the growing season [45] or the green-up
date [46]. These parameters are the most commonly extracted because of their importance
in determining the growing season, and they are also powerful indicators of an ecosystem’s
response to climate change [44].

To date, LSP metrics have been used to identify different vegetation species. For
example, Liu et al. (2018) used the combination of fused 30 m time-series NDVI data
and phenological metrics to map rice paddies, and they found that using both of the
selected NDVI and phenological features could allow the highest accuracy in extracting
rice paddy areas [47]. Another recent study suggested that phenological metrics can help
improve the accuracy of remote-sensing recognition of different forest stands [17]. In
addition, Schwieder et al. (2018) demonstrated that adding phenological information
from multitemporal imagery improves the estimation of aboveground biomass through
modified discrimination of vegetation types [48]. However, few studies involving the
mapping and phenology of forest tree species have integrated different spatial observation
scales with multiscale satellite images, which is necessary to compensate for the lack of
research on higher-resolution time-series data.
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The mapping results of forest types or tree species through remote sensing would
be influenced by the spatial resolution of remote sensing data obviously [6,7,49,50]. In
addition, most previous studies have focused on single time-phase imagery, which led
to no results available on temporal data [51]. In fact, both species classification and
phenological metrics are affected by the spatial resolution of remote sensing data. For
example, Zhang et al. (2017) explored how spatial resolution affects the start of vegetation
season (SOS) by comparing observations obtained from images with 30 m and 500 m spatial
resolution, and found the difference of SOS at the high and low resolution was larger in
heterogeneous regions [52]. Tian et al. (2020) investigated how spatial resolution affects
the difference in spring phenology of rural-urban vegetation as detected by resampling
the satellite data from 30 m to 8 km spatial resolution. They found that coarser images
overestimate the urbanization effects and that the SOS obtained by coarser time-series
NDVI data would be earlier than that of the actual result [53]. It should be noted that
the multiresolution imagery data used in the above researches consists of resampled
multispectral images by using up-scaled algorithms (e.g., Nearest Neighbor (NN) and
pixel aggregation (PA)), which generate a set of lower spatial resolution images using the
high-resolution image through pixel resampling. However, the imaging mechanism of
these up-scaled images differs from that of satellite imagery data obviously, which may
lead to some uncertainty in the final results of relevant studies [51,54,55]. In consequence,
it could be assumed that the phenological monitoring results obtained by up-scaled time-
series NDVI data may differ from that detected from time-series satellite imagery, which
accounts for the necessity to re-evaluate the results associated with time-series resampled
images [53].

In this study, we systematically evaluate how temporal images with a medium-high
spatial resolution (4, 10, 16, and 30 m) affect the accuracy of forest tree species mapping
and the variability of spring phenological information. The multiscale time-series satellite
remote sensing data were obtained from Gaofen-2 (4 m), Sentinel-2 (10 m), Gaofen-1
(16 m), and Landsat-8 (30 m), respectively, acquired over seasonal deciduous forests in
2018 from a state forest farm region in Harqin Banner, China. In addition, we evaluate
the performances obtained by using up-scaled time-series images of different spatial
resolutions. Eight phenological metrics are extracted to classify forest tree species based on
the random forest (RF) algorithm combined with time-series NDVI data. Accordingly, we
tried to find out (1) what is the regular pattern for monitoring spring phenology within
the medium-high remote sensing spatial resolution range; (2) which scales of time-series
images most effectively reflect spectral differences in each forest tree species and the
relationship between these phenological metrics and tree species classification; and (3)
whether the spatial patterns in up-scaled images are competitive to map the distribution
of forest tree species from multiscale satellite datasets. Answers to these points should
improve the credibility of using time-series remote sensing images to monitor and map
forest tree species for use in forest resource management or regional eco-climate models.

2. Materials and Methods

2.1. Study Area

The study area is in northeast China near the city of Chifeng and has a size of approxi-
mately 55,100 ha of which over 45,500 ha are forested landscape. An overview of the area
is given in Figure 1. The study area belongs to the border area of the Greater Hinggan
Mountains and Yanshan Mountains within a range of 878 to 1890 m, and the climate here is
temperate monsoon. The dominant tree species occurring in the local forest are deciduous
forest dominated by Quercus mongolica (Qm), Populus davidiana (Pd), Betula platyphylla (Bp),
and Larix gmelinii (Lg), accounting for about 84% of the total forest area in 2018; there is
also an evergreen forest, which is dominated by Pinus tabulaeformis (Pt). The five dominant
tree species mentioned above account for over 95% of the total forest area in 2018 [19].
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Figure 1. The study area located in northeast China with major vegetation cover types in the background (a), and sampling
plots of the four deciduous tree species, including Betula platyphylla (Bp; n = 330), Larix gmelinii (Lg; n = 330), Quercus
mongolica (Qm; n = 331), and Populus davidiana (Pd; n = 329), overlaid on a Landsat-8 imagery (21 June 2018) in the
background (b).

2.2. Methods

The methodological workflow is illustrated by the flowchart presented in Figure 2.
The research process includes four main steps. First, the collection and preprocessing
of both remote sensing data and ground observation data were completed. Next, we
calculated forest phenological metrics based on multiscale time-series data and analyzed
the scale effect of spring phenology. Then, forest tree-species mapping was performed using
satellites and up-scaled time-series NDVI data and phenological metrics with different
spatial resolutions. Finally, comparisons of multiple considerations on the accuracy of
forest mapping were conducted to illustrate how spatial resolution affects tree-species
classification.

2.2.1. Data Resources and Preprocessing

We selected four sets of multiresolution remote sensing images acquired once per
month to make a series of spatial scale images respectively (Table A1 in Appendix A)
and acquired with cloudiness less than 15%. The main parameters of the images used in
this study can be seen in Table 1. This study used a total of 48 satellite remote sensing
images covering the entire study area; there were 46 of them acquired in 2018 while the
other two with poor imaging quality were replaced by the data of the same period in
2017, which was proven to be feasible [19]. All Sentinel-2 images were obtained from the
European Space Agency (ESA; https://scihub.copernicus.eu; accessed on 18 December
2019); Landsat-8 images were obtained from the United States Geological Survey (USGS;
http://glovis.usgs.gov; accessed on 15 January 2020); Gaofen-1 and Gaofen-2 images were
obtained from the China Center for Resources Satellite Data and Application (CCRSDA;
http://www.cresda.com/CN; accessed on 12 September 2020).
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Figure 2. The methodological framework developed in this study.

Table 1. The main parameters of satellite images used in this study.

Satellite Sensor
Revisit
Interval

(day)

Spatial
Resolution

(m)

Swath
Width
(km)

Radiometric
Resolution

(bit)
Blue (μm)

Green
(μm) Red (μm)

Near-
Infrared

(μm)

Gaofen-2 PMS 4 4 45 10 0.45–0.52 0.52–0.59 0.63–0.69 0.77–0.89
Sentinel-2 MSI 5 10 290 12 0.46–0.52 0.54–0.58 0.65–0.68 0.79–0.90
Gaofen-1 WFV 4 16 800 10 0.45–0.52 0.52–0.59 0.63–0.69 0.77–0.89
Landsat-8 OLI 16 30 185 12 0.45–0.52 0.53–0.60 0.63–0.68 0.85–0.89

Before analysis, the four sets of time-series datasets with different spatial resolutions
were carefully harmonized. A Savitzky–Golay (SG) algorithm served for polynomial fil-
tering of the time-series NDVI data because it better maintains the temporal vegetation
dynamics and minimizes atmospheric effects [56,57]. This also implied a smoothing and
filtering of the four time-series could remove undesired artifacts due to poor atmospheric
conditions and undetected clouds [58]. The four sets of multiscale time-series data pre-
processing by using a series of related models and algorithms in ENVI (Environment for
Visualizing Images; version 5.3) and IDL (Interactive Data Language; version 8.5) software
platform (Research Systems Inc., Boulder, CO, USA). The orthorectification, atmospheric
radiation correction, and geometrical rectification were carried out in sequence to prepro-
cess all images used in this study, to transform the digital value into the actual surface
spectral reflectance at different image resolutions (Figure 2). The radiometric correction
methods include the incident causational matrix (ICAM), and pseudo-invariant feature
(PIF) models [59], and the corresponding parameters of radiation correction of different
satellite remote sensing data were obtained from their official websites, that is CCRSDA,
ESA, and USGS, respectively. In addition, the geometric root means squared error (RMSE)
of all images was controlled within 0.5 pixels.

The PA algorithm was selected for up-scaled images (Figure 2). PA assigns different
weights to each pixel based on mapping distance which is integrated at the ENVI software,
and it is widely used in researches of multiscale remote sensing [46,53]. One related study
suggests that PA better maintains pixel values than do other up-scaled algorithms (e.g.,
nearest neighbor, bilinear, and cubic convolution) [51]. The NDVI data then were calculated
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as Equation (1). To ensure that different time series can be compared to each other, the
up-scaled datasets were smoothed in the same way as the satellite data. To better analyze
the timing of (phenological) events, the (smoothed) monthly NDVI series were saved as
30 daily values on the 15th of each month were assigned as DOY (day of the year; Julian
date) for the compositing period of the month.

NDVI =
ρNIR − ρred
ρNIR + ρred

(1)

where ρNIR and ρred are the surface reflectance of near-infrared (NIR) and red bands.

2.2.2. Collection of Forest Inventory Data

The field surveys in the study area were undertaken in July 2018 and May 2019. A total
of 1320 sample plots (30 m× 30 m) were selected randomly. Approximately 330 sample
sites for each deciduous dominant tree species (Table A2 in Appendix A) are shown in
Figure 1 (more than 85% of the tree population is single species). Then, 70% of these data
were randomly set as training samples and the rest as verification samples. Therefore, the
spectral reflectance of different dominant tree species was extracted from the center of each
stand plaque at each sample point in the imagery to guarantee the spectral purity of the
different image pixels.

2.2.3. Calculation of Forest Phenological Metrics

From the time series NDVI images with different spatial resolutions for related func-
tions in TIMESAT [60], eight typical phenological metrics were obtained: the start of growth
season (SOS), end of growth season (EOS), length of growth season (LOS), peaking time of
growth season (POS), length of the peak-time (LOP), middle of SOS (SOSm), middle of EOS
(EOSm), and amplitude (AMP). All the mentioned phenology-related metrics are noted as
the Julian date. Here, both the SOS and EOS were calculated from the fitting function when
the trees grow to a certain fixed time phase, e.g., the time position ranges from the position
where 10–30% of the left (right) minimum of the NDVI value and the maximum NDVI
value [61,62], which was indicated as a suitable time point. Nevertheless, the threshold of
the determined phenological time points ranged around 20% according to the geographical
locations and tree species selected [19,63,64]. The LOS is further calculated as the difference
between the EOS and SOS, the POS is identified as the date when the trees grew to the
maximum NDVI value at the fitted temporal dynamic curve, then the LOP is the length
between 80% of the left and right maximum NDVI of the temporal dynamic curve. The
amplitude (AMP) presents the maximum ranges of the tree photosynthetic dynamics across
the whole growing season, and SOSm and EOSm stand for the average days of the growing
season when the trees grow above their 80% level on the right and left side of the peaking
time. A more detailed description of the calculated metrics can be found in Schwieder et al.
(2018) [48] and Lebrini et al. (2019) [65].

2.2.4. Classification and Accuracy Assessment

Supervised classifiers are believed to be more clearly preferable while the prior knowl-
edge for ground objects is enough [66]. In this study, we used the Random Forest (RF)
classifier to identify deciduous tree species, and set its ntree to 500 and the mtry to the
square root of the number of input features, as suggested [67–69]. RF is derived from
statistical learning theory to process high-dimension datasets and reduce the overfitting
issues [69–71], which was considered to be one of the most robust classifiers compared with
other algorithms, such as maximum likelihood (ML), linear discriminant analysis (LDA),
support vector machine (SVM), and decision tree classifiers (DTC) [72–74]. Therefore, it
integrates hundreds of decision-making trees and encapsulates an important ranking pre-
dictor (the mean decreases of accuracy; MDA), which was designed to be used to evaluate
the importance of variables in the accuracy efficiently [75]. Then, we extracted the forest
boundary and used winter images to separate the dominant evergreen forest landscape.
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Based on this, we focused on the remote-sensing classification results for the four deciduous
forest tree species: Betula platyphylla (Bp), Populus davidiana (Pd), Quercus mongolica (Qm),
and Larix gmelinii (Lg) based on time-series NDVI data and the combination of NDVI and
phenological metrics.

In addition, we calculate the overall accuracy (OA), kappa, and the accuracies of
producer and user to examine and compare each result from different image datasets by
constructing corresponding error matrices [76]. By randomly selecting training samples
and validation samples, each set of classification results was cross-validated 10 times and
averaged. The one-way analysis of variance (ANOVA) was used to decide significant
differences in the classification results among the different spatial resolutions and methods.
This was followed by multiple comparisons using the least-significant difference (LSD) to
identify where the differences lay (p < 0.05).

3. Results

3.1. Multiscale Sequence NDVI Curve of Different Deciduous Forest Stands

The annual NDVI curves of the four deciduous forest species with spatial resolution
range from 4 to 30 m show obvious unimodal characteristics, with clear forest stand
growth stage characteristics (Figure 3). However, the mean NDVI values of four dominant
deciduous tree species in the study area were significantly different, in especial, the spectral
reflectance captured in 4 m high-resolution images is significantly less than that in lower-
spatial-resolution images (p < 0.05). In addition, the NDVI curves of different dominant
tree species differ, where the NDVI curve of Qm is higher than that of the other deciduous
tree species, and that of Pd is the lowest.

Figure 3. Time-series image training NDVI curves for different deciduous tree species of (a) Betula
platyphylla, (b) Larix gmelinii, (c) Quercus mongolica, (d) Populus davidiana. The symbol # refers to the
up-scaled images, the same below.

In terms of the up-scaled NDVI curves, there are no significant changes in almost
all NDVI data observed (p > 0.05), which is significantly below the NDVI value from
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multiscale satellite images at each given spatial resolution (p < 0.05), meaning the up-scaled
NDVI curves were underestimated compared to that obtained from actual satellite data at
the same resolution.

3.2. Multiscale SOS Results by Satellite Images

The SOS results of multiscale images of different dominant tree species differ signif-
icantly (p < 0.05; Figure 4). For different tree species, the mean SOS for Lg (109–121) is
the earliest, Bp (117–129) is relatively later than all species (including four deciduous tree
species; 116–128), and Pd (118–134) is slightly earlier than Qm (122–132), showing the
phenological difference among the four deciduous tree species in this study region. For
different spatial resolutions, almost all dominant deciduous tree species reveal a significant
difference in the mean SOS based on native multiscale images at the same spatial resolution
from 4 to 30 m (p < 0.05). Overall, the mean SOS increases from 4 to 16 m and then decreases
slightly to 30 m (p < 0.05). Similarly, the SOS results of all species first increase and reach
a peak at 16 m resolution and then begin to decrease as the resolution comes to 30 m
(p < 0.05), where the mean SOS delay time ranges from 8.02 to 11.95 days.

Figure 4. SOS of different forest species at multiscale time-series NDVI data. The letters’ differences
denote for a given image resolution significant differences (p < 0.05).

However, the SOS results for each tree species at different up-scaled spatial resolutions
are similar relatively, and an analysis of variance demonstrates that no significant difference
appears between image resolutions from 4 to 30 m (p > 0.05), whereas the SOS results
differ markedly from that of native multiscale satellite data at each same given resolution
(p < 0.05). Therefore, for SOS results of different dominant tree species across different
resolution images, the standard deviation incurred in up-scaled images is generally several
times greater than that of native satellite images with the same resolution, ranging from
1.33 to 3.39 (p < 0.05).

3.3. Multiscale Classification by Satellite Images and Up-Scaled Images

There were significant differences among the OA values of the dominant forest species
at different spatial resolutions (p < 0.05; Figure 5a), while the Kappa values show consistent
results (p < 0.05; Figure 5b). For multiscale satellite time-series NDVI images, the mean OA
(Kappa) first increases while image resolution goes from 4 to 10 m (p < 0.05) at the highest
accuracy of 83.63% (0.7825), and then decreases to the minimum accuracy of 78.60% (0.7154)
at 30 m resolution (p < 0.05). The classification accuracies of forest tree species are closely
related to the image resolutions, and an analysis of variance reveals significant differences
between classification accuracies based on time-series satellite data of differing resolution
(p < 0.05). Combining phenological metrics and time-series NDVI data can improve the
mapping of the regional dominant tree species at each given resolution (p < 0.05; Figure 5).
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When the contrast is integrated with time-series NDVI and LSP metrics, the best overall
accuracy (Kappa) of forested landscape identification with 10 m resolution increases to
86.05% (0.8147; p < 0.05).

 
Figure 5. The OA (a) and kappa (b) of classification results of deciduous species at different image
resolutions. The uppercase letters differences above the error bar refer to a significant difference be-
tween the two-given datasets, while lowercase letters differences denote for a given image resolution
significant differences (p < 0.05).

However, for up-scaled time-series images, the classification accuracy of the dominant
tree species decreases from 81.88% (0.7583) to 77.23% (0.7014) with the spatial resolution
ranging from 4 to 30 m# (p < 0.05). Therefore, there is no significant difference appears
between the classification accuracies of dominant tree species of up-scaled time-series data
at the resolution of 16 and 30 m (p > 0.05). Finally, combining phenological metrics and
time-series NDVI data does not increase the recognition accuracy but leads to the decline
from 10 to 30 m# resolution, which differs obviously from the results of native multiscale
satellite data at each same given resolution (p < 0.05).

3.4. Contributions of Different LSP Metrics to Multiscale Tree Species Classification

The feature importance for identifying forest tree species using the eight LSP metrics
of four image resolutions are different (Figure 6). Before analysis, each final feature
importance for variables was averaged after ten cross-verifications. The results show that
the LSP metrics are valuable for differentiating among forest tree species in the study region
(p < 0.05). The various LSP metrics produce different positive effects on the classification of
dominant tree species, although the magnitude of the influence varies (p < 0.05; Figure 6).
When considering the four different spatial resolutions, the importance of each LSP metric
turns out to be inhomogeneous (Figure 6). The phenological information such as SOSm,
EOS, and POS are more important at higher image resolution, whereas only the LOS
achieves the highest importance at lower spatial resolution. In addition, AMP and SOS
show roughly the same degree of importance at different resolutions.

Testing the cumulative importance of each LSP metric for individual spatial resolutions
reveals the importance of each variable from medium to high resolutions (Figure 6). At
first, the LSP metrics in AMP, SOSm, and SOS are by far the three most important features
(p < 0.05), showing the middle and early growth period account for the most important
contribution in tree-species phenological observations. They are followed by LOP and
LOS, which control the length of the growth period and the peak period. Subsequently, the
remaining EOSm and EOS metrics represent the period of declining growth which has less
importance. Finally, POS is the least important metric which indicates the peak time, and
the differences of POS among the different dominant tree species are small.
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Figure 6. Feature importance for the forest tree species identification using the eight LSP metrics
across different image resolutions. Cumulative bars on the side illustrate the sum of the importance
for each phenological metric.

3.5. Comparisons of Accuracy for Producer and User of Dominant Tree Species

In native satellite images, the PA of Bp, Lg, Qm, Pd, and the UA of Bp, Lg, Qm show a
downward trend on the whole with the decrease in spatial resolution goes from 4 to 30 m;
except for the UA of Pd which increases at first and then decreases (Figure 7). None of
the dominant classes of tree species have both a low UA and PA. The confusion matrix
shows that many Bp, Lg, and Qm are misclassified into Pd in different spatial resolutions,
which also leads to an over-mapping for Pd, so the UA of Pd is less than the PA from 4 to
30 m resolution, especially at 4 m. For the mapping results of forest tree species landscape
(Figure 8), the comparison shows that the worst classification result occurs in imagery
with 30 m resolution, where a portion of Qm and Lg is misclassified as Pd. In addition,
some Lg are misclassified as Qm at 16 m resolution and the overall forest mapping at 10 m
resolution is better than at 4 m resolution, which is mainly due to the higher mapping
accuracy of Qm and Bp.

Figure 7. Comparison of accuracy for the producer (a) and user (b) of four deciduous species
combining LSP metrics and NDVI from multiscale time-series images.
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Figure 8. The distributions of forest tree species landscape in the study region based on the combination of time-series NDVI
and LSP metrics in different resolutions, including (a) 4 m, (b) 10 m, (c) 16 m, and (d) 30 m. EG-forest means evergreen forest.

However, for up-scaled images, both PA and UA values of different deciduous species
change only slightly when the spatial resolution goes down (Figure 7). The UA of Bp, Lg,
and Qm and the PA of Pd change slightly from 4 to 30 m# resolution. At the same time,
the UA of Bp, Lg, and Qm are significantly higher than their PA, except for Pd, implying
over-mapping occurred. On the contrary, the forest tree species with high UA but low
PA refer to under-mapping [77]. In this study, low PA of Bp, Lg, and Qm show that large
areas of Bp, Lg, and Qm are not properly classified into their respective class, and their PA
decrease as the image resolution goes down (Figure 7). In general, PA and UA of the most
tree species for up-scaled data are often diminished and more unstable than that for real
satellite data, furthermore, almost all tree species reaching their maximum value at the
image resolution of 4 m.

4. Discussion

Spatial resolution significantly affects the identification of forest species and mapping
based on single-date images [7,12,50,78]. Some studies have indicated that the NDVI
temporal variation of stand canopy shows the detailed dynamics of timeline-based spectra
of different forest types [14,15]. However, less attention has focused on the spatial scale
of the uncertainty in the results. The present study confirms that the overall accuracy
gradually extends from 78.59% to 83.63%, while the kappa synchronously increases from
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0.7154 to 0.7825, which indicates that the classification accuracy of the dominant tree
species is strongly linked to the spatial resolution of the time-series satellite data (p < 0.05).
In this study, for a spatial resolution of 4 and 10 m, the classification accuracy is high
(>81.88%), where the forest landscape identification is apparent, and each dominant species
are classified correctly (p < 0.05). Overall, the time-series images with higher resolution
(4–10 m) providing higher and more stable OA and kappa perform better in identifying
the regional forest tree species than those with lower resolution (16–30 m). However, it
does not mean that images with finer resolution can always provide more accurate results
because it also depends on the selected feature datasets and classification methods.

The mean NDVI values of 4 m images are less than that of 10 m (p < 0.05; Figure 3),
which we attribute to the NDVI being prematurely saturated at the higher resolution
because a higher resolution correlates with less energy incident on the sensor, which
decreases the spectral resolution [51,79]. Hence, the annual peak NDVI is mostly below
0.7 for the various dominant deciduous species at 4 m resolution, which is significantly
less than the NDVI at the resolution of 10, 16, and 30 m, respectively (p < 0.05; Figure 3).
Furthermore, the result is also assisted by the narrower near-infrared band and higher
radiation resolution of Sentinel-2 image (12 bit, whereas 10 bit of the Gaofen-2 image),
which could provide a better capability of vegetation information monitoring. It actually
may overcome the negative effects of its coarser resolution to some extent. In addition,
the multiscale annual mean NDVI of the sample data for different forest land remains
essentially stable for up-scaled data (Figure 3). The spectral information in up-scaled images
has a strong dependence on the input high-resolution images, which leads to discrepancies
in comparison to actual imaging results at the given spatial resolution (Figure 3). As the
image resolution decreases, the spectral information related to the forest tree species was
smoothed which would increase omission and commission errors [80]. These results imply
that the resampled time-series data have different spectral reflectance in comparison to
native images acquired at the same resolution evidently (p < 0.05), which reduces the
susceptibility to spatial resolution and barely represents the satellite image features of
the same scale due to the spectral distortion [51]. Therefore, the classification results of
tree species based on up-scaled images differ from those of native images for a given
resolution (p < 0.05), indicating that native satellite data cannot be accurately replaced by
up-scaled images.

Satellite remote sensing imagery is widely applied to monitor forest phenology on
global and regional scales [42–44]. Plant phenology provides valuable information for
classifying vegetation types [43], and some studies use spectral and phenological param-
eters to map crops [52,65,81]. However, research on mapping forest tree species has not
considered the phenological metrics with images at a medium-high spatial resolution,
which might introduce uncertainties in identifying and mapping different tree species [19].
Our classification results combined with NDVI and LSP metrics increases the OA (Kappa)
by 2.24% (0.0322), 2.42% (0.0322), 1.89% (0.0258), and 1.94% (0.0243) at 4, 10, 16, and 30 m,
respectively. For the 10 m time-series data, all deciduous tree species are correctly classified
into their respective categories (Figure 8), and their UA and PA can reach more than 83.12%.
These results show that using spatial resolution NDVI data combined with temporal phe-
nological characteristics improves the accuracy of the results at each scale from 4 to 30 m
(p < 0.05), which indicates that combining the spectral curve and the LSP metrics is a good
way to identify and monitor the main forest ecosystem and may improve the precision of
spatial mapping in temperate regions from medium to high spatial resolution.

Although differences appear in the phenological metrics at different resolutions, to
some extent they have positive effects on the classification of forest tree species in this
study region (Figure 6). The three highest phenological variables are AMP, SOSm, and
SOS, based on the contribution of different phenological metrics and the classification of
tree species. This indicates that the growth stage from germination to maximum growth
and the amplitude of the growth spectrum contribute the most to the identification of
the tree species. In addition, after combining the phenology metrics, the accuracy of the
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classification results based on the up-scaled data decreases by different degrees compared
with the previous results (Figure 5). This is mainly contributed to the decrease in effective
spectral information after the smoothing of up-scaled NDVI data and the increase in
invalid band information, which would increase feature redundancy, leading to the further
degradation of classification results [51,82].

Considering the special significance of phenology in spring [38,44,53], many previous
studies were conducted to investigate the effects of forest spring phenology with different
resolutions. However, most of them used up-scaled images due to a lack of multiresolution
satellite data covering the area with a shorter revisit period [83]. Therefore, we investigate
herein how scaling affects spring phenology (SOS) via a comparison between results from
low- and high-resolution data. The results show that retrievals of SOS date reflect the
difference in spatial scale, resulting in a delay as the resolution worsens. In this study, the
SOS results of all species of Landsat-8 data (30 m) are earlier than that of Genfen-1 data
(16 m). This result is mainly attributed to the better radiometric precision of Landsat-8
OLI (12 bit, whereas 10 bit of the Genfen-1) and the spectral range refinement of the near-
infrared band (Table 1), which improves the overall signal to noise ratio for vegetation
monitoring [51] and somewhat avoid overestimation [44] and further reasons need to
be verified in follow-up studies. Relative to data with a medium-low resolution that
is commonly used to monitor vegetation phenology, medium-high resolution satellites
can achieve higher classification accuracy. This is because the observation of deciduous
vegetation phenological characteristics is vulnerable to the interference of the evergreen
forests or other background factors such as the stand age and topography [84,85]. As a
consequence, medium-high resolution satellites can observe more spatial detail information
and therefore capture the spectral variation of vegetation in phenology which is not
normally detectable in data from sensors with lower spatial resolution.

However, the results show that estimations of spring phenology from up-scaled
imagery have little noticeable change, corresponding less to the results derived from
multiscale satellite remote sensing data. These findings are consistent with related studies
based on up-scaled data. For example, Tian et al. (2021) resampled time-series images
with 10 m to a series of lower spatial resolution images from 30 m to 8 km and obtained
relatively stable vegetation SOS data in rural areas with a resolution ranging from 10 m
to 8 km [53]. Similarly, another study found that the overall SOS averaged from images
with a resolution ranging from 1 × 250 m to 35 × 250 m is generally similar but with
a difference of fewer than five days [44]. Therefore, Zhang et al. (2017) suggested SOS
datasets should be calculated from actual time-series images of different spatial scales
but not the time-series data up-scaled from finer resolution imagery data using simple
resampling methods [52].

In this study, both phenological monitoring and the classification of forest tree species
differ significantly when using multiscale satellite images and up-scaled images because of
the differences in the imaging mechanism. Related research revealed the difference between
the native satellite data and up-scaled data is determined by the mechanism of remote
sensing imaging, in which the most up-scaled results are spatial insensitive because of not
considering the spatial adjacent information of landscapes [51,86], nor adjusting as the
variation of spectral reflection properties at different spatial resolutions [87]. Therefore, the
up-scaled images cannot be directly used to replace remote sensing images in time-series
monitoring or quantitative analysis. Therefore, methods are gradually being developed to
scale-transformation model involving physical mechanism [86–89] and temporal–spatial
fusion algorithms [23,53,90], to ensure image features from different spatial resolutions can
be integrated into applications.

This study expands on previous work in two important ways: First, we continue to
compare tree species classification for multiscale time-series images and explore the appli-
cability of remote sensing images to the study of LSP metrics. Next, we discuss how spatial-
scale uncertainty affects phenological observations and the classification of dominant tree
species. In addition, we try to construct herein monthly time-series multiscale satellite
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images with resolutions ranging from 4 to 30 m. In fact, the monthly time-series data has
proven to suffice to describe the one-year spectral curve dynamics of forest tree species
when cloud-free imagery is available at specific phenological stages [17,24,70]. However,
some studies have shown that more intensive time-series images would be better at captur-
ing fine dynamic differences to separate information on similar forest tree species [19,91].
With recent breakthroughs in multispectral remote-sensing, the temporal-spatial resolu-
tion of satellite data is improved obviously. Using imagery from more advanced sensors
will enhance the precision of forest phenology monitoring and tree species classification.
Therefore, more intensive time-series multiscale images are required to extend the results
in this paper.

5. Conclusions

The spatial resolution of satellite remote sensing data has a major impact on forest
information extraction and dynamic monitoring, and it is critical to the success of regional
dominant tree species mapping. This study develops a process for reconstructing time-
series satellite images with medium-high spatial resolution and applies it to monitor forest
phenology and map tree species. The study also examines how time-series spectral data
responds to the scaling effect obtained from various spatial resolution satellites. Moreover,
we discuss how spatial resolution and LSP metrics affect the classification of dominant
tree species. The results indicate that remote sensing images with 10 m resolution are
more appropriate for the time-series-based forest tree-species classification with superior
performance in the study region. In addition, the use of additional LSP metrics further
improves the classification results, so they are highly recommended.

Nowadays, though the temporal resolution of remote sensing data is improving, few
pieces of research have been designed to investigate how up-scaled time-series images
affect forest mapping on landscapes. The present results elaborate the general pattern
of time-series remote-sensing tree species identification and spring phenology extraction
with medium-high spatial resolution. Therefore, a significant difference was found by
contrasting the forest landscape classification results obtained from real multiscale time-
series satellite data with that of up-scaled time-series images. This work thus provides a
primary understanding of how to use and compare time-series remote sensing images with
different spatial resolutions for forest monitoring.
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Appendix A

Table A1. The information of satellite images used in this study.

Month
Imaging Date

(Gaofen-2)
Imaging Date
(Sentinel-2)

Imaging Date
(Gaofen-1)

Imaging Date
(Landsat-8)

January 20180121 20180120 20180117 20180111
February 20180215 20180214 20180214 20180212

March 20180316 20180311 20180311 20180316
April 20180430 20180415 20180418 20180417
May 20180510 20180515 20180515 20180519
June 20180608 20180614 20180621 20180620
July 20180722 20180729 20180722 20180706

August 20180816 20180823 20180820 20180823
September 20170920 20170922 20180916 20180924

October 20181019 20181017 20181019 20181025
November 20181118 20181121 20181120 20181126
December 20181213 20181216 20181215 20181213

Table A2. Characteristics of the dominant tree species in this study.

Species Name Picture Main Characteristics

Larix gmelinii (Lg)

 

A deciduous tree (30 m), D.B.H. 90 cm or so. The barks are
taupe, and the branches consist of obvious long branches

and short branches. Light-loving, cold-resistant,
drought-resistant. Mainly distributed in Northeast China as
well as the mountainous areas from eastern Inner Mongolia

to eastern Siberia of Russia.

Populus davidiana (Pd)

 

A deciduous tree (25 m), D.B.H. 60 cm or so. The barks are
gray or gray-green, and the leaves are ovate or nearly round
with incised margin. Light-loving, cold-resistant, and soil

are adaptable. Mainly distributed in valleys of high
mountains in Northeast China, Northwest China, North

China and Southwest China.

Betula platyphylla (Bp)

 

A deciduous tree (27 m), D.B.H. 80 cm or so. The barks are
white and smooth or local cracking, and the leaves are ovate

with a jagged margin. Light-loving, cold-loving, and soil
adaptable. Mainly distributed in Northeast China, North

China and the mountainous areas on the outer edge of the
Qinghai-Tibet Plateau.

Quercus mongolica (Qm)

 

A deciduous tree (30 m), D.B.H. 60 cm or so. The barks are
dark taupe, the branches are purplish-brown, the leaves are
obovate with around margin. Light-loving, soil adaptable.

Mainly distributed in Northeast China and part of northern
North China.
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Abstract: Tree species surveys are crucial to forest resource management and can provide references
for forest protection policy making. The traditional tree species survey in the field is labor-intensive
and time-consuming, supporting the practical significance of remote sensing. The availability of
high-resolution satellite remote sensing data enable individual tree species (ITS) recognition at low
cost. In this study, the potential of the combination of such images and a convolutional neural
network (CNN) to recognize ITS was explored. Firstly, individual tree crowns were delineated
from a high-spatial resolution WorldView-3 (WV3) image and manually labeled as different tree
species. Next, a dataset of the image subsets of the labeled individual tree crowns was built, and
several CNN models were trained based on the dataset for ITS recognition. The models were then
applied to the WV3 image. The results show that the distribution maps of six ITS offered an overall
accuracy of 82.7% and a kappa coefficient of 0.79 based on the modified GoogLeNet, which used the
multi-scale convolution kernel to extract features of the tree crown samples and was modified for
small-scale samples. The ITS recognition method proposed in this study, with multi-scale individual
tree crown delineation, avoids artificial tree crown delineation. Compared with the random forest
(RF) and support vector machine (SVM) approaches, this method can automatically extract features
and outperform RF and SVM in the classification of six tree species.

Keywords: high-resolution remote sensing imagery; individual tree species recognition; individual
tree crown delineation; convolutional neural network

1. Introduction

Forests are among the most important terrestrial ecosystems and are essential for
human development [1]. Well-managed forests provide renewable resources, protect
biodiversity, maintain a stable energy cycle, and prevent soil degradation and erosion [2].
Precise tree species surveys are crucial to forest inventory and management because they
provide managers with a better understanding of forest species composition, changes
in forest species, quantity of forest resources, and references for the formulation and
adjustment of forestry policies [3]. However, traditional survey methods are inefficient and
their associated labor costs are high. Remote sensing-based methods are efficient when
mapping forest types in areas with rough terrain or that are difficult to reach, and can
significantly improve survey efficiency and reduce labor costs [4].

Many remote sensing-based forest classification studies have considered multi-scale
remote sensing data sources. Early developments used medium-spatial resolution satellite
remote sensing data, such as Landsat Thematic Mapper imagery, for regional-scale forest
classification [5,6]. However, because the spatial resolution of Landsat data is relatively low,
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individual trees cannot be precisely mapped. Spaceborne hyperspectral data have rarely
been used for individual tree species classification. Most applications of hyperspectral
data to date have been airborne [7–9]. The high spatial resolution of airborne data meets
the requirements for determining the locations of trees [10–13]; however, data acquisi-
tion costs are normally high and data processing is complex [14,15]. With the launch of
IKONOS, QuickBird, GeoEye, and WorldView satellites, high-resolution optical images
can be readily obtained and meet the requirements for locating individual trees. Using
such high-resolution images to precisely classify tree species saves time and costs in tree
distribution mapping.

Traditional classification methods, such as random forest (RF) and support vector
machine (SVM), have been widely used to classify tree species [16–19]. These approaches
generally require the artificial design and extraction of classification features, such as
spectra, texture, and vegetation indices, in addition to linear transformations [20,21]. The
classification accuracy depends largely on the rationality of the artificial feature design
and selection, which is highly subjective; therefore, extensive professional knowledge
is necessary.

The designed artificial features limit the information that can be used by the classi-
fier [22]. New classification technologies are necessary to improve classification efficiency
and accuracy. As a promising classification technology, convolutional neural networks
(CNNs) perform well in image classification tasks [23,24]. A CNN method does not require
feature engineering, and its multi-layer structure can fully use the information in the data
to automatically extract abstract and higher-level features for classification. As a result,
CNN methods tend to result in accurate classifications.

In recent years, CNNs have shown satisfactory results when applied to tree species
classification [25]. CNNs have been applied to classify three-dimensional point clouds
of trees [26,27], airborne hyperspectral data [28,29], and high-resolution data combined
with LiDAR data [30]. These studies were almost all based on airborne imaging systems
and multiple data sources, which are characterized by high data acquisition costs and
complex data processing, preventing their wide application. To date, CNNs have rarely
been applied to recognize individual tree species (ITS) from a single satellite data source.
A method is needed for using satellite data to classify ITS for mapping forest tree species
with a low data acquisition cost.

In this study, we explored the combination of high-resolution satellite remote sensing
imagery and CNNs to recognize ITS. A CNN-based multi-scale ITS recognition (CMSIR)
method was developed to improve the automation and accuracy of ITS mapping. In the
CMSIR method, a tree crown delineation approach is used to quickly build an individual
tree crown training dataset, and several popular CNN models are employed to auto-
matically extract classification features and recognize ITS from a high-resolution satellite
image. The multi-scale characteristic of different tree species was considered in tree crown
delineation and ITS recognition.

2. Materials and Methodologies

2.1. Study Area

The study area (Figure 1) is located in the Olympic Forest Park (116◦22′29′′E–116◦23′43′′E,
40◦0′30′′–40◦1′11′′N), Chaoyang District, Beijing, China. The total area of the park is
approximate 100 ha and the vegetation coverage rate is 95.6% [31,32]. The forests inside
were manually planted and arranged in rows, clusters, and groups with a large number of
single tree species. The study area was suitable for constructing a standard sample dataset
due to the similarity of trees within specific zones, including tree height, size, and species.
Shrubs were planted on the periphery of the arbor forest to act as a natural fence to separate
roads from trees. Artificial buildings are sparsely distributed in the forest, and occupy a
small portion of the area and have little impact on the forest.
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Figure 1. Location of the research area.

2.2. Data
2.2.1. Field Investigation Data

A field investigation of tree species in the study area was carried out in October 2018,
for several days. Trees in the study area were manually planted in a monoculture scheme;
thus, many zones in the study area had consistent tree species. The boundaries of zones
with consistent tree species were marked on images. The orange boundaries in Figure 2
are an example of the marked zones. On the first day, we entered each marked zone and
located 3–5 GPS points with a Trimble® Geo7X global positioning system (GPS) handheld
device (Trimble Inc., Sunnyvale, CA, USA). The points in Figure 2 show the located GPS
points in the marked zones. The position accuracy was improved by taking the mean
value of the measured real-time position 10 times. Simultaneously, the tree species of each
marked zone was identified by expert experience and recorded together with the located
GPS points. After the first day’s investigation, GPS points were overlaid on the image, and
we found that the points were almost all located in the marked zones. Therefore, the GPS
was accurate enough to locate the marked zones. The dominant tree species in the study
area were determined based on the first day’s investigation result, and the investigation
was continued over the next several days to obtain more samples. In addition, understory
trees in forests cannot be observed via remote sensing images and therefore were not
sampled. All of the samples were distributed as shown in Figure 3; the dominant tree
species included 175 ash (Fraxinus chinensis Roxb.), 132 poplar (Populus tomentosa), 128
cypress (Sabina chinensis), 127 pagoda (Sophora japonica), 127 willow (Salix babylonica L.),
and 110 pine (Pinus L.). The field investigation data supported the manual labeling of tree
crowns and the interpretation of tree species.

2.2.2. Remote Sensing Data and Pre-Processing

A cloud-free subset of a high-resolution WorldView-3 (WV3) Beijing scene acquired on
4 September 2014 was used in this study. The acquisition date of the image was within the
fully developed season, which provides good conditions for the classification of tree species.

The dataset consisted of four 3145 × 3145 multispectral bands with 1.6 m spatial resolu-
tion, including blue (0.450–0.510 μm), green (0.510–0.580 μm), red (0.630–0.690 μm), and near-
infrared (NIR; 0.770–0.895 μm) bands, and a corresponding 12,580 × 12,580 panchromatic
band (0.450–0.800 μm) with 0.4 m spatial resolution. Although the WV3 sensor provides
16 multispectral bands, the image collected over the study area only had four standard
bands. A digital elevation model (DEM) was used to orthorectify the panchromatic and
multispectral images, which were fused using the Gram–Schmidt method in the ENVI 5.3
(L3Harris Geospatial, Broomfield, CO, USA) package to obtain a four-band fused multi-
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spectral image with a cell size of 0.4 m. The pre-processed image showed good overall
geometric precision with less than 1 pixel offset compared with the control points in the
field investigation.

Figure 2. Example of marked investigation zones and located global positioning system (GPS) points.

Figure 3. Locations of tree species samples (red dots) identified during the field investigation. Training
sample collection regions (blue rectangles) and the test sample collection region (yellow rectangle).

2.3. Methodologies

As shown in Figure 4, the flowchart of the CMSIR method proposed in this study
includes seven steps: (1) data pre-processing; (2) individual tree crown (ITC) delineation
using the crown slices from imagery (CSI) tree crown delineation algorithm [33]; (3) tree
species labeling based on field investigation; (4) ITS training dataset construction; (5) RF,
SVM, and CNN model configuration and training; (6) ITS recognition using RF, SVM, and
CNN; and (7) accuracy assessment with field investigation data.
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Figure 4. The technical flowchart of the convolutional neural network (CNN)-based multi-scale
individual tree species (ITS) recognition (CMSIR) method. RF, random forest; SVM, support vec-
tor machine.

2.3.1. Training Dataset

The training samples were collected from five typical regions in the study area (blue
rectangles in Figure 3). These five regions were selected because they included patches
of consistent tree species, so it was easy to label tree species. The test sample collection
region (yellow rectangle in Figure 3) was used to construct the test dataset to evaluate the
performance of the trained models and generate the tree species classification maps. The
test region included all tree species in the training dataset and few non-vegetation features
and no grassland, so interference was reduced. In addition, we separated the training data
from test data to ensure independence of the training and testing samples.

A training dataset with labeled trees was needed to train classification models, so a
process was designed to quickly create an ITC training dataset. First, segmentation maps
obtained from the CSI tree crown delineation algorithm were overlaid on the image. Second,
tree species were labeled based on the field investigation data and manual interpretation.
We judged the quality of the delineation during manual labeling: tree crowns without
clearly visible appearances were discarded, and only the well-delineated tree crowns were
labeled. Thus, the error caused by the CSI delineation was reduced. Third, the minimum
outer cut rectangle of each labeled tree was taken to obtain the ITC slice images. Finally, the
sliced images with the same labels were grouped into the same category. Figure 5 shows
the training dataset construction process.

CSI Tree Crown Delineation Algorithm

To avoid manual delineation of tree crowns, the CSI tree crown delineation algo-
rithm [33] was used to extract ITCs. This algorithm was developed for multi-scale ITC
delineation from high-resolution optical imagery, and can effectively reduce image over-
segmentation and provide fine tree crown maps. It consists of 5 steps: (1) The three-
dimensional (3D) radiometric shape of a tree crown is considered as a half-ellipsoid. The
half-ellipsoid can be horizontally sliced into a series of slices from top to bottom, and the
slices represent multiple tree crown levels of different scales. The morphological opening
operations are used to measure dominant sizes of tree crowns. (2) Multiple Gaussian filters
are used to generate multi-scale representations of the forest image from the multiple tree
crown levels obtained in step 1. (3) The watershed segmentation method [34] is used on the
multi-scale representations of the forest image obtained in step 2 to generate multi-scale
segmentation maps. The multi-scale segmentation maps represent the target forest’s multi-
scale tree crown sizes. (4) The boundaries of segments generated in step 3 are adjusted
using the filtered image at a coarse scale based on the original image at the dominant size.
(5) The multi-scale segmentation maps obtained in step 4 are integrated to generate the final
tree crown map. In this study, the method of visual evaluation was adopted. Adjusting
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the parameters in the algorithm, the match between the delineation lines and the real tree
crowns was visually assessed to obtain the most accurate delineation map [35].

Figure 5. Schematic diagram of the training dataset construction. (a) Image of training sample
collection region, (b) crown slices from imagery (CSI) algorithm-generated individual tree crown
(ITC) map, (c) tree species labeled, (d) ITC slice images, (e) ITC training dataset.

Data Augmentation

Increasing the number of sample images can improve the generalization ability of
the model. Due to the limited number of available field samples, data augmentation was
used to increase the number of sample images. Data augmentation applies transformations
on labeled images to increase the number of samples. Commonly used transformations
include rotation, translation, random scaling, cropping, and flipping. Because the scale
of each sample image was small, random scaling and clipping methods were not applied.
Each labeled image was rotated by 90◦, 180◦, and 270◦, and was flipped horizontally and
vertically. After data augmentation, the number of samples increased by a factor of five.
The number of training samples for each species is shown in Table 1, and the total number
of training samples after augmentation was 14,976. Each image had the four R, G, B, and
NIR channels.

Features Extraction

Feature extraction was performed with RF and SVM methods to classify tree crowns.
Spectra, texture, and shape features were considered for extraction; they are described
in Table 2. Texture and shape features were considered in this study because crowns of
different tree species have various structures, shapes, and canopy densities [28,30].
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Table 1. The statistics of the training samples.

Tree Species
Number of Training

Samples

Number of Training
Samples After Data

Augmentation
Image

Pine 324 1944

Cypress 227 1362

Poplar 430 2580

Ash 491 2946

Pagoda 486 2916

Willow 538 3228

Total 2496 14,976

Table 2. Features used in this study.

Group Feature Name Description

Spectra Mean The average value of all pixels contained in the object in band n
Variance The variance value of all pixels contained in the object in band n

Maximum The maximum value of all pixels contained in the object in band n
Minimum The minimum value of all pixels contained in the object in band n

Texture Angular second moment (ASM) Measures the number of repeated pairs
Contrast Measures the local contrast
Entropy Measures the randomness of a gray-level distribution

Correlation Measures the correlation between pairs of pixels

Shapes Width Width of an object
Height Height of an object

Compactness Indicates compactness of an object
Boundary length The sum of pixels of an object boundary.

2.3.2. CNN Model Configuration

CNN models were used to classify tree species in this study. CNN models were
inspired by biological neural perception mechanisms, with the relationships between
layers being similar to those used by the human vision system [36]. When processing multi-
dimensional images, CNN models can automatically extract features that are beneficial
to image interpretation and processing. CNN models have been widely used in image
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classification tasks [37], and have become a popular research topic in the field of recognition
and classification [38,39]. A common CNN model is comprised of an input layer, stacks of
convolution and pooling layers, a fully connected layer, and an output layer [40]. Inspired
by the effects of CNN models on visual image classification, we considered several CNN
models that have demonstrated excellent performance in image classification in recent
years. ImageNet Large Scale Vision Recognition Challenge (ILSVRC) is a worldwide
influential platform used to evaluate computer vision and artificial intelligence algorithms.
Since 2010, several CNN-based deep learning models have won the image classification
challenge, significantly contributing to the development of CNN models. We selected some
models that won the ILSVRC to classify ITC images: AlexNet, GoogLeNet, and ResNet.
Other winning network models are not listed because their structures are too complex to
handle small-scale images.

AlexNet

AlexNet [23] was the first breakthrough CNN architecture and won the 2012 ILSVRC.
AlexNet firstly applies rectified linear units (ReLU) as the activation function to successfully
accelerate model convergence. The dropout function is used to prevent overfitting, and the
addition of a local response normalization (LRN) layer increases its generalization ability.
AlexNet has been widely used due to its relatively simple network structure and shallow
depth. The AlexNet model was originally used to classify the 224 × 224 × 3 ImageNet
dataset. For the dataset in this study, the convolution kernel and the output of the network
are both large, so the scale of the network needs to be reduced.

We modified AlexNet as follows: First, the input layer was altered from 227 × 227 × 3
to 15 × 15 × 4. Secondly, the first convolution layer was reduced from 11 × 11 to 5 × 5 to
prevent underfitting problems caused by an excessively large local receptive field. Next, all
of the strides of the pooling layers were decreased from 2 × 2 to 1 × 1 to avoid a feature
map that was too small. Then, the number of convolution filters was decreased by 6 to 7,
and the output of the fully connected layer was reduced from 4096 to 140 or 70 to prevent
overfitting. The modified AlexNet model structure is shown in Table 3.

Table 3. Modified AlexNet model structure. ReLU, rectified linear units.

Layer Input Size Output Size Parameter

Conv1 15 × 15 × 4 8 × 8 × 16 kernel 5 × 5, filter 16, stride 2
Max pooling1 8 × 8 × 16 6 × 6 × 16 pool size 3 × 3, stride 1

Conv2 6 × 6 × 16 6 × 6 × 48 kernel 5 × 5, filter 48, stride 1
Max pooling2 6 × 6 × 48 4 × 4 × 48 pool size 3 × 3, stride 1

Conv4 4 × 4 × 48 4 × 4 × 54 kernel 3 × 3, filter 54, stride 1
Conv5 4 × 4 × 54 4 × 4 × 54 kernel 3 × 3, filter 54, stride 1
Conv6 4 × 4 × 54 4 × 4 × 36 kernel 3 × 3, filter 36, stride 1

Max pooling3 4 × 4 × 36 2 × 2 × 36 pool size 3 × 3, stride 1
Fully connected1 2 × 2 × 36 140 ReLU, dropout 0.5
Fully connected2 140 70 ReLU, dropout 0.5

Output 70 6 Softmax

GoogLeNet

GoogLeNet [41] was established by Szegedy’s team, who won the title of ILSVRC
classification task champion in 2014. The original GoogLeNet model was used to classify
the ImageNet image set at 224 × 224 × 3. Thus, it was necessary to modify the network to
adapt to the small-scale samples in this study.

The modified GoogLeNet consisted of one input layer, one convolutional layer, eight
inception modules, two downsample modules, one pooling layer, and the classification
layer (Table 4). The fully connected layer was replaced by the global average pooling layer
to greatly reduce the number of parameters. Therefore, there were far fewer training param-
eters for the modified GoogLeNet, and the memory allocation was significantly reduced.
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Table 4. Modified GoogLeNet model structure.

Layer Name Input Size Output Size Parameter

Convolutional 15 × 15 × 4 15 × 15 × 96 kernel 3 × 3, filter 96, stride 1
Inception module 1a 15 × 15 × 96 15 × 15 × 64 I: filter 32, II: filter 32
Inception module 1b 15 × 15 × 64 15 × 15 × 80 I: filter 32, II: filter 48

Downsampling module1 15 × 15 × 80 7 × 7 × 160 III: filter 80, IV: maxpooling
Inception module 2a 7 × 7 × 160 7 × 7 × 160 I: filter 112, II: filter 48
Inception module 2b 7 × 7 × 160 7 × 7 × 160 I: filter 96, II: filter 64
Inception module 2c 7 × 7 × 160 7 × 7 × 160 I: filter 80, II: filter 80
Inception module 2d 7 × 7 × 160 7 × 7 × 144 I: filter 48, II: filter 96

Downsampling module2 7 × 7 × 144 3 × 3 × 240 III: filter 96, IV: maxpooling
Inception module 3a 3 × 3 × 240 3 × 3 × 336 I: filter 176, II: filter 160
Inception module 3b 3 × 3 × 336 3 × 3 × 336 I: filter 176, II: filter 160

Average Pooling 3 × 3 × 336 1 × 1 × 336 pool size 3 × 3
Fully connected 1 × 1 × 336 336 dropout 0.5

Output 336 6 Softmax

In the inception module, the output of the previous layer is passed to two parallel
paths, called path I and path II. The two paths contain a convolution layer, a normalization
layer, and an activation layer. The convolutional layer filter size in path I is 1 and 3 in
path II. The inception module learns the 1 × 1 and 3 × 3 filters (which are computed in
parallel) and concatenates the resulting feature maps along the channel dimensions. In
general, this process allows the network to learn local features with small convolutions
and abstract features with large convolutions. Table 5 lists the structure of the inception
module 1a, which has 32 filters in the convolution layer and uses batch normalization in the
normalization layer and ReLU in the activation layer. The other inception modules differ
only in the number of filters. In the downsampling module, the output of the previous
layer is passed into two parallel paths: path III and path IV. Path III is composed of a
convolution layer, a normalization layer, and an activation layer, where the convolution
layer filter size is 3, the stride is 2, and the downsampling module1 has 80 filters. Path
III uses batch normalization in the normalization layer and ReLU in the activation layer.
Path IV is a maxpooling layer with a pooling size of 3 × 3 and a stride of 2. Table 6 shows
the structure of the downsampling module 1. The only difference in the downsampling
module 2 is that it has 96 filters in the convolution layer. The output feature maps of paths
III and IV are concatenated along the channel dimensions.

Table 5. Inception module 1a structure.

Path I Path II

conv_1: kernel 1 × 1, filter 32, stride 1 conv_2: kernel 3 × 3, filter 32, stride 1
Batch normalization Batch normalization

ReLU ReLU
Concatenation

Table 6. Downsampling module1 structure.

Path III Path IV

conv: kernel 3 × 3, filter 80, stride 2
Maxpooling size 3 × 3, stride 2Batch normalization

ReLU
Concatenation

ResNet

ResNet [42] was proposed to solve the problem of gradient disappearance after in-
creasing the network depth and won first place at the 2015 ILSVRC. This model divides
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the output of the neurons into H(x) and F(x) in a certain layer and establishes a shortcut
between convolution layers to form a residual unit (Figure 6). H(x) is the expected output
after the input x passes through the convolution layers. The residual F(x) is the difference
between the expected output H(x) and the input x, so F(x) = H(x) − x. The shortcut passes
the input information to the subsequent layer to protect the integrity of the information and
converts the learning object into residuals. The network only needs to learn the residuals
F(x) rather than the complete output, and does not increase the network parameters or
the computational complexity, but can greatly reduce the difficulty of network optimiza-
tion and simplify the learning objectives. ResNet maintains training accuracy when the
network depth is increased. Because our training image size was generally smaller than
20 × 20 pixels, the feature map would shrink after pooling. ResNet has only two pooling
layers but has a deep network structure, making it suitable as a feature extractor for small
images. The structures of the 18-, 34-, and 50-layer ResNet models are shown in Table 7. We
changed the parameters of conv1 to make the network suitable for small sample training,
and the other structures are consistent with those in He [42].

Figure 6. Building residual block. F(x), residual; x, input.

Table 7. ResNet model structures.

Layer Name 18-Layer 34-Layer 50-Layer

Conv1 kernel 5 × 5, filter 32, stride 2

Max pooling Pool size 3 × 3, stride 2

Conv2_x
[

3 × 3, 64
3 × 3, 64

]
× 2

[
3 × 3, 64
3 × 3, 64

]
× 3

⎡
⎣ 1 × 1, 64

3 × 3, 64
1 × 1, 256

⎤
⎦× 3

Conv3_x
[

3 × 3, 128
3 × 3, 128

]
× 2

[
3 × 3, 128
3 × 3, 128

]
× 4

⎡
⎣ 1 × 1, 128

3 × 3, 128
1 × 1, 512

⎤
⎦× 4

Conv4_x
[

3 × 3, 256
3 × 3, 256

]
× 2

[
3 × 3, 256
3 × 3, 256

]
× 6

⎡
⎣ 1 × 1, 256

3 × 3, 256
1 × 1, 1024

⎤
⎦× 6

Conv5_x
[

3 × 3, 512
3 × 3, 512

]
× 2

[
3 × 3, 512
3 × 3, 512

]
× 3

⎡
⎣ 1 × 1, 512

3 × 3, 512
1 × 1, 2048

⎤
⎦× 3

Average pooling Pool size 2 × 2, stride 1

Output Softmax
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2.3.3. Model Training

The training dataset was split randomly into training (75%) and validation (25%)
samples. Each image was resized to 15 × 15 to ensure all of the sizes of images input
into network were the same. The batch size was set to 60, which was the total number of
training images used to train the model at each update. The deep learning platform was
based on Tensorflow1.6 and Keras2.1.

A maximum of 500 epochs was set and an early stopping approach was used to avoid
overfitting. The loss was calculated based on the validation samples after the operation
of each epoch. If the loss did not decrease after 10 epochs, the training was stopped and
the weights that provided the best validation accuracy were saved. Models in the actual
training process usually converged within 150 epochs. The initial learning rate was set
to 10−4. The learning rate decay was set to ensure that the network could automatically
reduce the learning rate based on the loss situation. The learning rate would decay when
the loss was not reduced after the operation of five epochs. The learning rate factor for
each reduction was 5 × 10−3, with a lower limit of the learning rate of 5 × 10−6.

Several models were trained by adjusting the parameters during the training process.
The CNN model that had the highest validation accuracy was saved for later testing.

To verify the classification performance of CNN, two machine learning classifiers
were tested for comparison: RF and SVM. These are widely used to classify tree species
because they can accurately handle high-dimensional data [30]. RF is an ensemble learning
algorithm that trains a classifier composed of multiple decision trees through a bagging
strategy [43]. The training samples of each decision tree are obtained by random sampling,
and the classification result is the majority classification result of all decision trees. During
the test, we found that when the number of trees exceeded 500, the accuracy did not
increase significantly. To save computing time, the number of trees was set to 500. SVM
creates a model that is based on a user-defined kernel function and transforms the data
into classes. Then, an optimal hyperplane that maximizes the margin distance between
classes can be found [44]. The radial basis function was used as the kernel function, with a
grid search method [45] to determine optimal classifier parameters in the study.

2.3.4. Accuracy Assessment

The test image in Figure 7 was used to assess the generalization error of the models.
The test image was cropped by the yellow rectangle in Figure 3, and was completely
independent of training samples. The separation of testing from training data is important
to evaluate the classification results. Each tree crown in the test image was extracted
using the CSI tree crown delineation algorithm, and the minimum outer cut rectangle
of each crown was extracted as a test sample. The test samples were predicted with the
CNN models as described in Section 2.3.2. Simultaneously, RF and SVM were used for
comparison. The label and location of each test sample were combined to generate tree
species classification maps by assigning the predicted labels to the delineated tree crowns.
The test points were based on the field investigation and were used as true values to
calculate the following indexes: (a) confusion matrices; (b) producer accuracy (PA); (c) user
accuracy (UA); (d) average accuracy (AA); (e) overall accuracy (OA); (f) kappa coefficient.
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Figure 7. The test image used for the accuracy assessment.

3. Results

Table 8 shows confusion matrices and statistical measures of RF, SVM, AlexNet,
GoogLeNet, and ResNet for ITS classification. Table 9 shows the classification accura-
cies and kappa coefficients for six species based on different models. For CNN models,
GoogLeNet achieved the best OA (82.7%) with the highest kappa coefficient (0.79), and
was the only model that achieved an OA over 80%. It was followed by ResNet-18 (74.8%),
ResNet-50 (71.7%), ResNet-34 (70.9%), and AlexNet, which achieved the lowest OA (52.0%)
and kappa coefficient (0.41). GoogLeNet achieved the highest OA for each tree species,
with almost all exceeding 80%. AlexNet misclassified almost all pines as poplars, and its
classification accuracy for cypress (58.3%), pagoda (45.1%), and willow (34.9%) was about
30% lower than those of GoogLeNet and ResNet. All ResNet misclassified many ashes
into willows; its classification accuracy for ash was significantly lower (20%) than that of
GoogLeNet. ResNet-18 outperformed ResNet-34 and ResNet-50 of OA by 3.9% and 3.1%,
respectively (74.8% > 70.9% > 71.7%).

Compared with RF and SVM, the OA of GoogLeNet (82.7%) was significantly higher
than that of RF (44.1%) and SVM (48.8%); even AlexNet had higher OA (52.0%) than RF
(44.1%) and SVM (48.8%). Likewise, CNN models all achieved higher kappa coefficients
than RF (0.32) and SVM (0.40). RF classified almost all pines as cypresses, making pines
almost invisible in the classification map. The classification accuracy of RF for pine, cypress,
poplar, and ash ranged from 20% to 30%, which is much lower than that of GoogLeNet. The
classification accuracies of RF for pagoda and willow were only about 20%. SVM classified
almost all willows as pagodas, making willows almost invisible in the classification map.
The classification accuracy of SVM for pine, poplar, ash, and pagoda ranged from 20% to
30%, much lower than that achieved by GoogLeNet.
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Table 8. Confusion matrix and statistical measures of RF, SVM, AlexNet, GoogLeNet, and ResNet
for individual tree species classification. PA, producer accuracy; UA, user accuracy; AA, average
accuracy; OA, overall accuracy.

RF

Classified as Pine Cypress Poplar Ash Pagoda Willow

Pine 2 0 0 0 0 0
Cypress 12 13 4 0 2 0
Poplar 1 1 14 0 4 1

Ash 0 0 0 18 0 13
Pagoda 0 1 4 4 4 10
Willow 0 0 0 6 8 5
PA (%) 13.3 86.7 63.6 64.3 22.2 17.2
UA (%) 100.0 41.9 66.7 58.1 17.4 26.3
AA (%) 56.7 64.3 65.2 61.2 19.8 21.8
OA (%) 44.1 Kappa 0.32

SVM

Classified as Pine Cypress Poplar Ash Pagoda Willow

Pine 9 1 5 0 2 1
Cypress 1 14 0 0 0 0
Poplar 5 0 14 0 1 0

Ash 0 0 0 11 0 2
Pagoda 0 0 3 17 14 26
Willow 0 0 0 0 1 0
PA (%) 60.0 93.3 63.6 39.3 77.8 0.0
UA (%) 50.0 93.3 70.0 84.6 23.3 0.0
AA (%) 55.0 93.3 66.8 62.0 50.6 0.0
OA (%) 48.8 Kappa 0.40

AlexNet

Classified as Pine Cypress Poplar Ash Pagoda Willow

Pine 0 0 0 0 0 0
Cypress 3 7 0 0 0 0
Poplar 10 7 20 0 4 0

Ash 0 0 0 26 2 21
Pagoda 1 0 2 0 5 0
Willow 1 1 0 2 7 8
PA (%) 0.0 46.7 90.9 92.9 27.8 27.6
UA (%) 0.0 70.0 48.8 53.1 62.5 42.1
AA (%) 0.0 58.3 69.9 73.0 45.1 34.9
OA (%) 52.0 Kappa 0.41

GoogLeNet

Classified as Pine Cypress Poplar Ash Pagoda Willow

Pine 13 2 1 0 0 0
Cypress 0 13 0 0 0 0
Poplar 0 0 17 0 0 2

Ash 0 0 0 22 1 3
Pagoda 1 0 4 0 16 0
Willow 1 0 0 6 1 24
PA (%) 86.7 86.7 77.3 78.6 88.9 82.8
UA (%) 81.3 100.0 89.5 84.6 76.2 75.0
AA (%) 84.0 93.3 83.4 81.6 82.5 78.9
OA (%) 82.7 Kappa 0.79
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Table 8. Cont.

ResNet-18

Classified as Pine Cypress Poplar Ash Pagoda Tree Willow

Pine 13 3 1 0 0 0
Cypress 0 12 0 0 0 0
Poplar 0 0 16 0 0 1

Ash 0 0 0 16 4 4
Pagoda 0 0 5 0 14 0
Willow 2 0 0 12 0 24
PA (%) 86.7 80.0 72.7 57.1 77.8 82.8
UA (%) 76.5 100.0 94.1 66.7 73.7 63.2
AA (%) 81.6 90.0 83.4 61.9 75.7 73.0
OA (%) 74.8 Kappa 0.69

ResNet-34

Classified as Pine Cypress Poplar Ash Pagoda Willow

Pine 13 3 2 0 0 0
Cypress 0 12 0 0 0 0
Poplar 0 0 15 0 1 2

Ash 0 0 0 13 2 4
Pagoda 1 0 5 0 14 0
Willow 1 0 0 15 1 23
PA (%) 86.7 80.0 68.2 46.4 77.8 79.3
UA (%) 72.2 100.0 83.3 68.4 70.0 57.5
AA (%) 79.5 90.0 75.8 57.4 73.9 68.4
OA (%) 70.9 Kappa 0.65

ResNet-50

Classified as Pine Cypress Poplar Ash Pagoda Willow

Pine 12 3 1 0 0 0
Cypress 0 12 0 0 0 0
Poplar 0 0 13 0 0 1

Ash 0 0 0 16 5 2
Pagoda 2 0 8 1 12 0
Willow 1 0 0 11 1 26
PA (%) 80.0 80.0 59.1 57.1 66.7 89.7
UA (%) 75.0 100.0 92.9 69.6 52.2 66.7
AA (%) 77.5 90.0 76.0 63.4 59.4 78.2
OA (%) 71.7 Kappa 0.65

Table 9. Classification accuracies for six tree species using RF, SVM, AlexNet, GoogLeNet, and
ResNet. All values except for kappa coefficient, are percentages.

Species RF SVM AlexNet GoogLeNet ResNet-18 ResNet-34 ResNet-50

Pine 56.7 55.0 0.0 84.0 81.6 79.5 77.5
Cypress 64.3 93.3 58.3 93.3 90.0 90.0 90.0
Poplar 65.2 66.8 69.9 83.4 83.4 75.8 76.0

Ash 61.2 62.0 73.0 81.6 61.9 57.4 63.4
Pagoda 19.8 50.6 45.1 82.5 75.7 73.9 59.4
Willow 21.8 0.0 34.9 78.9 73.0 68.4 78.2
Kappa 0.32 0.40 0.41 0.79 0.69 0.65 0.65

OA 44.1 48.8 52.0 82.7 74.8 70.9 71.7

Figure 8 shows the ITS maps predicted by RF, SVM, and CNN. RF misclassified almost
all pine as cypress. SVM did not separate willow from ash and pagoda. AlexNet classified
many pines as poplars or cypresses.
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Figure 8. (a) The test image. Individual tree species map obtained by (b) RF, (c) SVM, (d) AlexNet,
(e) GoogLeNet, (f) ResNet-18, (g) ResNet-34, and (h) ResNet-50.

The CSI tree crown delineation produced inevitable errors due to under- and over-
segmentation, which are common problems in tree crown delineations [35], especially
when only two-dimensional information is used. Some non-crown segments produced by
the under- and over-segmentation affected the classification map and reduced classification
accuracies. Some tree crowns were misclassified, especially on both sides of the road and
the edge of the image, because some non-crown pixels were included in test samples when
taking the minimum outer cut rectangles, which changed the classification features of the
test samples.

4. Discussion

4.1. Classification Results of Different CNN Models

GoogLeNet achieved the best classification accuracy, followed by ResNet. In addition,
AlexNet achieved the lowest accuracy. AlexNet is sequential, in which the output of the
previous layer is directly input into the next layer. In contrast, GoogLeNet and ResNet
have micro-architecture modules that enable networks to learn faster and more efficiently
with increasing depth. The micro-architectural building blocks are stacked together with
traditional layers, such as convolution and pool layers, to form the macro-architectures.
The results showed that the micro-architecture can improve the classification accuracy.
GoogLeNet achieved the highest classification accuracy (82.7%) and similar accuracies for
each tree species, which were all higher than 80%, because GoogLeNet uses multi-scale
convolution filters to extract features. Coniferous and deciduous tree crowns have different
sizes; multi-scale features can be extracted by multi-scale convolution filters in GoogLeNet.
The findings suggest that GoogLeNet, with a multi-scale feature extractor, is well-suited
for tree species classification. As a comparison, Hartling et al. [30] used WV2/3 and LiDAR
data and DenseNet to classify eight tree species; the maximum OA was 82.6%, which is
similar to the accuracy in this study. However, the accuracy of different tree species varied
greatly. Cypress and oak can be accurately classified with accuracy above 90%, but ash
classification accuracy is only 60%. The GoogLeNet used in our study can provide similar
accuracies, which were all higher than 80% for each tree species. Sothe et al. [28] used
hyperspectral and photogrammetric data for classifying fourteen tree species in a rain
forest; the forest environment was more complicated compared to our study area. The best
result was achieved by the CNN with an OA of 84.4%, which outperformed SVM and RF.
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Fricker et al. [29] used high-spatial resolution airborne hyperspectral imagery to identify
tree species in a mixed-conifer forest and the OA reached 87% for the hyperspectral CNN
model. However, the study area in Fricker et al. [29] was located in the Southern Sierra
Nevada Mountains, CA, USA, so the distribution of trees across an elevation gradient could
be analyzed and dead trees were recognized as an individual category. Our study area was
located in a park with flat terrain, where trees were manually planted and taken care of by
gardeners. In addition, compared with natural forests with abundant and disorganized
species, the distribution of trees in our study had a certain pattern that was easy to classify.
Thus, higher accuracies would be expected in the manually planted forest.

4.2. Classification Results of Different Tree Species

The ResNet classification results showed that the classification accuracy of different
tree species varied widely. The classification accuracies of conifers (pine, cypress) and
poplar were above 80%, whereas the classification accuracies of ash, pagoda, and willow
were lower than 70%. The test image shows that the texture and shape of the pine, cypress,
and poplar are unique and show obvious differences. However, the differences among
ash, pagoda, and willow are not obvious. The unique crown shape of cypress creates clear
boundaries among trees. Furthermore, accurate segmentation of the crown means that
ITC images have large inter-class differences and small intra-class differences, which is
conducive to feature extraction and classification. Therefore, the classification accuracy
of cypress was highest, reaching 90%. Liu et al. [46] also concluded that the classification
accuracies of conifers, which have obvious crown structures, are higher. Differences in
the crowns among ash, pagoda, and willow are small; thus, the features extracted by the
network are similar, which results in the misclassification of ash, pagoda, and willow.
Liu et al. [46] concluded that if two species have similar crown structures, they are prone
to misclassification, a finding that is supported by the results of our study. Deciduous tree
crowns are dense and the gaps between crowns are small, which complicates delineat-
ing deciduous tree crowns. Inaccurate tree crown delineation would reduce differences
between tree species and reduce classification accuracy.

4.3. Comparison with Other Machine Learning Models

Spectra, texture, and shape features were extracted for tree species classification based
on machine learning methods such as RF and SVM; these features and classifiers have been
widely used in other research related to tree species classification [28,30,47]. The methods
based on RF or SVM require manual feature extraction, which is usually complicated and
requires researchers to design a large number of features based on professional knowledge
and experience. Conversely, the methods based on CNN use multi-layer neural networks
to abstract from low- to high-level features, avoiding manual feature extraction, thus simpli-
fying the process of feature extraction [22,48]. The results of this study also showed that the
CNN obtained higher OA than RF or SVM. The OA of GoogLeNet for six species reached
82.7%, whereas those of RF and SVM were 44.09% and 48.82%, respectively. GoogLeNet
significantly outperformed RF and SVM. Many studies compared the classification effects
of CNN, RF, and SVM. For example, Hartling [30] showed that DenseNet, RF, and SVM for
the classification of eight tree species had an OA of 82.6%, 51.8%, and 52%, respectively,
with CNN showing higher accuracy. Sothe et al. [28] used CNN to achieve 22% and 26%
higher OA than SVM and RF for hyperspectral data, respectively. The outstanding perfor-
mance of CNN is due to its ability to enhance the texture, shape, and spatial information in
images, and to use that information to detect generic structures in other images [49].

5. Conclusions

Based on practical application requirements, the CMSIR method focuses on two key
issues in ITS recognition: fast and accurate construction of a training sample dataset and ITS
classification methods. We proposed a method to construct ITC training samples suitable
for CNN models. This method combines a multi-scale ITC delineation method, manual
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labeling of tree species, and sample enhancement techniques to build a training sample
dataset. The CSI tree crown delineation algorithm was used to automatically describe tree
crowns, which avoided manual sketching.

A method for ITS classification was explored using different CNN methods and
high-resolution satellite remote sensing imagery. The data source was readily obtained
and was low in cost and wide in scope. The CNN used in this study avoids manual
feature extraction and its structures are relatively common, easy to build, and have a low
training difficulty and fast training speed. GoogLeNet, which achieved the highest OA,
can use multi-scale convolution filters to extract features in multi-scale tree crowns. The
classification accuracies for tree crowns in different scales were very high (greater than
80%). Compared with other commonly used machine learning models, such as RF and
SVM, the CNN models do not require manual feature extraction and achieve higher OA.

Our study area was located in a park, where trees were manually planted and pruned
regularly by gardeners. The distribution of trees had a certain pattern. The crowns of the
same trees were similar in size. There were intervals between the crowns, which made it
easier to delineate the crowns. Thus, we expected higher accuracies in the manually planted
forest. The CMSIR method could be improved in future research in the following ways:
(1) Natural forests have a larger number of tree species and the distribution of tree species
is more random. The tree crown delineation significantly influences the accuracy of the
subsequent classification. Researchers need to effectively delineate tree crowns, especially
in dense natural forests. (2) We used some classic CNN models, which were originally
used for the ILSVRC dataset. Compared with ILSVRC images, tree crown images have
smaller scales and multiple bands. Therefore, a network model suitable for small-scale and
multiband images should be constructed for ITS classification.
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Abstract: The inventory of woody vegetation is of great importance for good forest management.
Advancements of remote sensing techniques have provided excellent tools for such purposes,
reducing the required amount of time and labor, yet with high accuracy and the information
richness. Sentinel-2 is one of the relatively new satellite missions, whose 13 spectral bands and
short revisit time proved to be very useful when it comes to forest monitoring. In this study,
the novel spatio-temporal classification framework for mapping woody vegetation from Sentinel-2
multitemporal data has been proposed. The used framework is based on the probability random
forest classification, where temporal information is explicitly defined in the model. Because
of this, several predictions are made for each pixel of the study area, which allow for specific
spatio-temporal aggregation to be performed. The proposed methodology has been successfully
applied for mapping eight potential forest and shrubby vegetation types over the study area of
Serbia. Several spatio-temporal aggregation approaches have been tested, divided into two main
groups: pixel-based and neighborhood-based. The validation metrics show that determining the
most common vegetation type classes in the neighborhood of 5 × 5 pixels provides the best results.
The overall accuracy and kappa coefficient obtained from five-fold cross validation of the results
are 82.97% and 0.75, respectively. The corresponding producer’s accuracies range from 36.74% to
97.99% and user’s accuracies range from 46.31% to 98.43%. The proposed methodology proved to be
applicable for mapping woody vegetation in Serbia and shows a potential to be implemented in other
areas as well. Further testing is necessary to confirm such assumptions.

Keywords: classification; Sentinel-2; woody vegetation; probability random forest; forest inventory; Serbia

1. Introduction

Forests represent the most dominant land ecosystem, which covers about 31 percent of the Earth’s
total land area [1]. The forests can be sorted into number of different types, commonly defined using
information about the composition of species, productivity or crown closure [2]. Mapping woody
vegetation is of crucial importance to properly understand forest ecosystems. Providing accurate
and cost-efficient information about the forest is critical for proper forest management, ecosystem
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preservation and climate change mitigation [3–5]. Traditional field survey methods provide highly
accurate forest inventory, yet these methods are highly time-consuming and a lot of manual labor is
required. The advancements of the remote sensing techniques try to fill such gaps by reducing the
required amount of time and labor, yet with the preservation of the accuracy and the information
richness [6–8].

Optical sensors are widely used to identify woody vegetation, although this type of forest
inventory remains a challenge. In addition to common problems that affect all optical remote sensing,
such as weather conditions, illumination and cloud cover, there are also some issues that particularly
affect forest inventory. The spectral separability between the tree species can be influenced by forest
maturity and tree density in combination with leaf biochemical properties and canopy structure.
Thus, the spectral variability within species may be higher than the variability between species [7].
Furthermore, a continuous transition between vegetation types is characteristic for some tree species,
making it difficult to spectrally differentiate such changes [9]. Sentinel-2 is a relatively new satellite
mission equipped with MultiSpectral Instrument (MSI). Sentinel-2 collects data in 13 spectral bands,
with spatial resolution from 10 m to 60 m, depending on the spectral channel. With constellation of two
twin-satellites, Sentinel-2 has a very short revisit time, ideally providing land cover observations every
5 days under cloud-free conditions [10]. Such characteristics proved to be very useful when it comes to
vegetation monitoring, with many studies specifically aiming at forest monitoring and inventory [11–13].
Multiple studies proved that the use of time-series improves the tree species identification compared
to using only single date satellite images [12,14,15]. This way, the species phenology can be exploited,
but it also induces some new problems, such as increasing the dimensionality of the data and the
requirements for more complex algorithms, and longer processing times [16,17].

Machine learning (ML) techniques proved to be very useful when it comes to mapping woody
vegetation from remotely sensed data [6,18]. Random forest (RF) is one of the vastly popular
ML algorithms, which yields very high accuracy of results even with high-dimensional, noisy,
and multi-source data [19]. Unfortunately, RF does not account for spatial and temporal characteristics
per se, and therefore such information needs to be taken into account in some other way. A number
of approaches have been proposed in order to adapt to the spatio-temporal aspects in the RF model.
Temporal aspects are commonly accounted for implicitly by defining a separate set of variables for
each timestamp [6,7], or explicitly by including such information as one or more variables (day of year,
cumulative day of year, etc.) [20]. Spatial aspects can also be taken into account in the same way by
including coordinates as variables in the model [20,21]. There are also more complicated solutions
such as the one proposed by Sekulić et al., where the spatially and temporally nearest observations are
included explicitly as variables [22]. In the case of land cover and land use classification problems,
the neighborhood of the pixels proved to be very important. Aonpong et al. improved land cover
prediction by involving the neighboring pixels [23]. Samardžić-Petrović et al. used the most common
class in the Moore neighborhood for predicting the short term land-use changes, which proved
to be one of the most informative variables in the created model [24]. To the best of the authors’
knowledge, the applicability of neighborhood-based approaches has not yet been tested for woody
vegetation mapping.

The more common approach to defining a woody vegetation prediction model is to omit temporal
variables from the model and instead include temporal information implicitly by creating separate sets
of variables of all spectral bands for each timestamp [6,7]. This means that the number of variables
in the model grows as there are more timestamps available. For too many timestamps, this can
lead to computational and performance issues. However, the bigger problem is that this approach,
in most cases, requires that each part of the study area has observations available for all timestamps
used. Therefore, especially in the case of using optical data, the timestamps with clouds must be
avoided. As the study area increases, it becomes more difficult to obtain cloud-free data with similar
timestamps. For some large areas, it is even impossible to have completely cloud-free data. There are
several solutions for this problem, each with its pros and cons. One way is to decrease the temporal
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resolution and use monthly or yearly timestamps. Such generalization introduces additional errors
in the model and can miss the fine phenological vegetation patterns. There have also been various
attempts to build methods specifically to fill missing data gaps due to cloud cover using different kinds
of techniques [25–27]. These approaches add an extra layer of complexity, reduce spatial resolution
and/or are not good enough when the cloud gaps are too large.

In this study, the new spatio-temporal classification framework has been proposed for mapping
woody vegetation from multi-temporal Sentinel-2 imagery. The method exploits the benefits of
explicitly defining temporal variables in the model and the use of pixels’ neighborhoods to determine
the most probable class of woody vegetation. This was done by using each pixel’s class probability
prediction obtained from the RF model together with its neighboring pixels’ prediction to improve
output class estimation. The framework has been tested for mapping forests over Serbia, using a
classification scheme with eight potential forest and shrubby vegetation types.

2. Materials and Methods

2.1. Study Area

The study area is the complete area of the Republic of Serbia, which covers 88,361 km2 (Figure 1).
The northern part of the country belongs to the Pannonian Plain, where elevation in most part is
less than 200 m. The central parts of Serbia are dominated by hills, which turn into mountains in
the south, with more than 30 mountain peaks higher than 2000 m. The humid continental climate is
present throughout most of the country, whereas the alpine climate can be found in higher mountains.
The average amount of precipitation is 896 mm.

Figure 1. The location of study area—Republic of Serbia.

The land cover is in accordance with the relief of Serbia, where agricultural land covers most of
the Pannonian Plain and the plains around larger rivers. The rest of the area is mainly covered by
forests and grasslands. Wetlands and barren land area are also present in certain parts of the country.
Forests cover more than a third of the area, with species of oak, beech, pines and firs being the most
common [28]. According to Bohn et al. [29] the most common forest types in Serbia are thermophilous
mixed deciduous broadleaved forests (G.1, G.2, G.3—forest dominated by Quercus cerris, Q. frainetto,
Q. petraea, Q. pubescens, Carpinus orentalis, Ostrya carpinifolia) and mesophytic broadleaved deciduous
(F.3, F5—forest dominated by Fagus sylvatica, F. moesiaca, Carpinus betulus). In addition, significant
areas are covered with mesophytic coniferous forests (D.4, D.5, D.6—forest dominated by Abies alba,
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Picea abies, P. omorika, Pinus sylvestris, Pinus peuce); xerophytic coniferous forests, coniferous woodland
and scrub (K.1—forest dominated by P. nigra agg., P. heldreichii); forest steppes (L.1, L.2—forest
dominated by Quercus pubescens, Q. robur, Q. pedunculiflora, Acer tataricum) and softwood alluvial
forests (U.5—forest dominated by Populus nigra, P. alba, Salix alba).

2.2. Data

2.2.1. Sentinel-2 Imagery

The Sentinel-2 mission is a part of the Copernicus Programme developed by the European Space
Agency (ESA) [10]. It is equipped with a MultiSpectral Scanner that has 13 spectral bands—4 bands
with 10 m spatial resolution, 6 with 20 m spatial resolution and the remaining 3 bands with 60 m
spatial resolution. In this research, Level-2A Sentinel-2 products have been used. They represent
orthorectified Bottom-Of-Atmosphere (BOA) reflectance [30]. The product was disseminated as
100 × 100 km granules, with bands resampled to 10 m, 20 m and 60 m spatial resolution with a
corresponding Scene Classification map (SCL). The SCL map differentiates several basic classes (cloud,
cloud shadows, vegetation, soils/deserts, water, snow, etc.) [30]. All of the available 60 m resampled
bands (B01, B02, B03, B04, B05, B06, B07, B08a, B09, B11 and B12) and 60 m SCL maps have been used
in this research.

A total of 88 Sentinel-2 granules from the year of 2019 have been obtained from Copernicus Open
Access Hub (https://scihub.copernicus.eu/). Only the year 2019 was chosen in order to reduce the
ambiguities caused by forest changes, which occurred over multiple years. At the same time, this made
the woody vegetation map very recent and applicable to other ongoing studies/research over the
study area. Granules were selected to have less than 20% cloud cover and so that each part of the
study area was covered by at least one granule in each of the time intervals: (1) June–July, (2) August,
(3) September and (4) October. The months before June and after October were severely influenced by
cloud contamination and snow cover at higher altitudes, which made them not particularly useful for
the study area of interest. In addition, these four periods were selected in order to take advantage of
phenological patterns for differentiating the types of woody vegetation. All types of woody vegetation
were in full vegetation in June and their vegetation type specifically reduced as the colder period
approached. The model aimed to capture these patterns to detect different types of woody vegetation.
The timestamps and spatial coverage of the acquired granules can be seen in Figure 2.

  

(a) (b) 

Figure 2. The used Sentinel-2 granules over the study area: (a) Timestamps the granules; (b) Number
of Sentinel-2 observations available over the study area.
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2.2.2. Woody Vegetation Polygons

The “Database on the distribution of potentially endangered species and habitats of Serbia” [31],
created through extensive field campaign and over multiple seasons, was used as a base source for the
delineation of woody vegetation types. The locations of species were extracted from the database and
used to create buffers with a radius of 500 m. These buffers were used as a “base map” to help in the
manual vectorization of woody vegetation polygons using Google Earth software and high-resolution
satellite imagery. The woody vegetation polygons were created using sufficiently large zoom to
reduce vectorization errors and to be as homogenous as possible. The historical imagery (representing
different seasons) was also used where necessary to solve ambiguities. The 8 potential forest and
shrubby vegetation types classes have been chosen for this research, as they represent the main woody
vegetation classes present in the study area. The resulting dataset consists of 549 polygons representing
7 forest and 1 shrubby vegetation classes. The definition of classes and their individual representation,
expressed as number of polygons and covered area, are given in Table 1. For an easier interpretation
of the results and discussion, informal phytosociological names, without a syntaxonomic meaning,
were assigned to each class. The corresponding European Nature Information System (EUNIS) [32]
and SrbHab code [33] was determined for each class (Appendix A).

Table 1. The definition of classification scheme and the number of vectorized training polygons for
their representation.

Class ID Vegetation Type
Informal

Phytosociological
Name

EUNIS
Code

SrbHab Code
Number of
Polygons

1 Thermophytic broadleaved deciduous
(Carpinus orientalis–Ostrya carpinifolia) forests Ostryo-Carpinion G1.7C A2.9 40

2 Thermophytic broadleaved deciduous
(Quercus) forests

Quercion
frainetto G1.76 A2.1 63

3 Thermo–Mesophytic broadleaved deciduous
(Quercus) forests

Quercion
petraea-cerris G1.76 A2.5 107

4 Mesophytic and hygromesophytic
broadleaved deciduous (Quercus) forests

Quercion
roboris G1.2 and G1.A A1.3 and A1.4 116

5 Mesophytic broadleaved deciduous
(Fagus) forests Fagion G1.6 A3.2 93

6 Xerophytic relic coniferous (Pinus) forests Pinion nigrae G3.5 A5.1 55

7 Psychrophytic boreomontane coniferous
(Picea) forests Vaccinio-Piceion G3.1 A6.1 50

8 Psychrophytic subalpine coniferous
krummholz (Pinus) scrub Pinion mugo F2.4 B6.1 25

It was not possible to create the woody vegetation polygons with a specific spatial distribution,
nor with a distribution that would respect the flat and mountainous areas in the study area. This is
because the northern flat part of the study area has only a small portion of forest cover with only
certain types of woody vegetation. Thus, some types of woody vegetation are found only in certain
parts of the study area. In addition, the locations for woody vegetation polygons were limited by data
available in the “Database on the distribution of potentially endangered species and habitats of Serbia”.
Although a number of clusters of polygons are present, there is no class that is represented by a single
polygon cluster (Figure 3).
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Figure 3. The overview of created woody vegetation polygons’ locations over the study area.

2.2.3. Forest Mask

The Copernicus Land Monitoring Service—High Resolution Layer Forest product has been used
in order to create a forest mask. This was necessary in order to remove non-forest areas from the
study area. High Resolution Layer Forest consists of multiple products, which are created from
the multitemporal Sentinel-2A and Landsat 8 data [34]. These products are: (1) Tree Cover Density,
(2) Dominant Leaf Type, (3) Forest Type and (4) Forest Additional Support Layer. All of these products
are available over the complete area of Europe in 20 m and 100 m spatial resolutions for the years 2012
and 2015.

From several available products, the Forest Type product and the Forest Additional Support
Layer have been acquired, both in the spatial resolution of 20 m and for year 2015. All types of forest
areas available in the Forest Type product have been reclassified into a binary mask. Trees in urban or
agricultural contexts have been excluded from such a mask. This has been done by using information
on such areas that is available in Forest Additional Support Layer products.

2.3. Synthetic Minority Oversampling TEchnique (SMOTE)

The unbalanced classes in the dataset, representing a situation where one class in the training set
dominates the others, is a common classification problem that can severely influence the performance
of the classification model. The Synthetic Minority Oversampling TEchnique (SMOTE) is a popular
approach for dealing with unbalanced datasets [35]. This method works by artificially creating
additional examples of the minority class using the nearest neighbors’ examples. Some SMOTE
implementations simultaneously undersample the majority classes, which produces a more balanced
dataset in the end and reduces the amount of data. The SMOTE algorithm implemented in the DMwR
R package has been used in this research for balancing the extracted dataset of woody vegetation
classes [35,36].

2.4. Probability Random Forest

Random forest (RF) is a non-parametric supervised machine learning technique proposed by
Breiman [37] that works for both classification and regression problems. The main idea behind RF is to
build a set of decision trees in the training phase. Each tree is created by bootstrap sampling part of the
input data while the rest of the input data is used to evaluate performance and adjust the building
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process of the trees. When the forest of decision trees is created, the final prediction is determined as
mean prediction of all created decision trees in case of a regression, or as a most common predicted
class in classification [37].

Probability random forest is an enhancement of the random forest method that provides consistent
probability estimation [38]. In case of binary classification, this is done by using the proportion of
“1s” in the output of the trained classification forest. Such an approach is generalized for multiclass
classification problems as well. In this research, the probability random forest method implemented in
the Ranger R package has been used [36,39].

The RF method was chosen over other ML techniques because of its simple implementation,
robustness and interpretability of the results. Additionally, it has been proven to perform well for tree
species and forest vegetation detection in similar studies [6,40,41]. Unlike the standard random forest
classifier where the output is a plain class label, probability RF also provides the probabilities for every
class to be voted. These probability estimates allow for more realistic representation of the ambiguity
of phenomena and are suitable to perform the spatio-temporal aggregation.

3. Methodology

There are several processing steps of the proposed spatio-temporal framework for woody
vegetation classification (Figure 4). First, the training polygons are overlaid with available Sentinel-2
granules in order to extract spectral information and to calculate the Normalized Difference Vegetation
Index (NDVI) value for each observation. This was done for each pixel over the study area. The classes
of the extracted dataset are then balanced using the SMOTE algorithm. Next, the probability random
forest model is grown and used to predict the class probabilities for each pixel. The spatio-temporal
aggregation was done in the final step in order to determine the most probable woody vegetation classes
over the study area. The obtained results were assessed using five-fold and 10-fold leave-location out
cross-validation (LLOCV), by calculating the parameters from the confusion matrix. These calculated
parameters are user’s accuracy, producer’s accuracy, overall accuracy and kappa coefficient of
agreement [42]. All these steps are further explained in the following sections.

Figure 4. The flowchart diagram of the proposed spatio-temporal classification framework.
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3.1. Extraction of Spectral Information, NDVI Calculation and Balancing of Classes

The spectral information was extracted, overlaying the woody vegetation polygons with the
acquired Sentinel-2 granules. The extraction was done per granule, where all pixels within the training
polygons were considered as independent observations. The spectral information of all resampled 60 m
bands was extracted in this way for all pixels that were labeled as vegetation class on the Sentinel-2
scene classification map. Since the vegetation class did not represent only forest areas, the forest
mask was additionally applied to filter out the non-forest pixels. Although there were many different
vegetation indices (VI), the Normalized Difference Vegetation Index (NDVI) was chosen as it is one
of the most widely used vegetation indices. Other spectral indices might have improved the model
performance, but they would have required considerations regarding the selection criteria and their
effect on the methodology performance. However, the conclusion was that this would extend the paper
significantly, so it was decided to leave this topic for future studies. Therefore, only the corresponding
NDVI value has been calculated for each observation using the following formula:

NDVI =
B08a− B04
B08a + B04

(1)

where B08a and B04 represent the narrow NIR and Red Sentinel-2 spectral bands, respectively. Band
B08a was chosen instead of band B08 because it came already resampled in 60 m spatial resolution in
the Level-2A Sentinel-2 product distribution. Additionally, the narrower spectral width of band B08a
should help to better distinguish woody vegetation classes compared to the use of spectrally wider
band B08.

In order to deal with the unbalanced classes, SMOTE has been applied. The SMOTE has been
used in such a way that no under sampling was performed at all and that the balancing was only done
by creating the examples of the minority classes. This was repeated until there were no more than 10%
differences between the amounts of class examples.

3.2. Growing Probability Forest and Determination of the Probability for Each Class

The probability random forest for woody vegetation classification has been grown using the
previously generated balanced dataset. In order to avoid data leakage in the time series data, the RF
model was defined for each S2 observation (not per pixel) with the following formula:

WOODYVEGETATION = day + month + B01 + B02 + B03 + B04 + B05 + B06 + B07+
B08a + B09 + B11 + B12 + NDVI

(2)

where day and month represent the timestamp of the granule that each observation belongs to, Bxx is
the corresponding Sentinel-2 spectral band and NDVI is the previously calculated vegetation index.
The same reasons for choosing band B08a over band B08 previously stated for NDVI calculation also
apply to the RF model. Two variants of defining timestamps in the model were tested. The first one
assumed the use of two variables (day and month) and the second one only one variable (Day of
Year—DOY) in order to make model more robust. The test indicated that the first variant provides
slightly better model performances, so it was selected as the final model in the study. Currently,
the authors cannot provide a plausible explanation for this behavior of the model.

3.3. Spatio-Temporal Aggregation

Since each part of the study area was covered with multiple Sentinel-2 granules, there were several
class probability predictions available for each pixel of the study area. Such multiple predictions per
pixel had different timestamps and allowed for temporal aggregation. Spatial aspects were also taken
into account, since the corresponding pixels and their neighborhoods had been used. All these aspects
were taken into account in the last step and the aggregated woody vegetation class predictions were
produced for every pixel of the study area.
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Several types of spatio-temporal aggregations have been tested. They were separated into
two main groups: pixel-based and neighborhood-based. The pixel-based method means that the
aggregation function is applied using all available class probability predictions per pixel of the study
area. The neighborhood-based aggregation uses the class probability predictions of the surrounding
pixels together with predictions for the central pixel. In this research, the neighborhood-based method
was implemented using focal raster operation with 3 × 3 and 5 × 5 kernels, for which the appropriate
aggregation function was used. Several aggregation functions were tested, where the final woody
vegetation class was determined using some of the following rules:

1. Most common class (MC);
2. Class with the highest probability—simple mean (SM);
3. Class with the highest probability—geometric mean (GM).

The most common class rule means that each prediction from the set of multiple predictions
casts a vote to the class with highest probability. The final class is then set to the class that has the
highest number of votes. The other two approaches are based on averaging expert predictions [43].
In these cases, each probability prediction was considered as a single expert prediction, which were
then averaged by calculating the simple mean or geometric mean. No transformation on predictions
was performed and no weights were used in the averaging. The final class was then set to the class
that had the highest averaged probability.

3.4. Validation

The performance of the final woody vegetation class predictions was validated using K-fold
leave-location out cross-validation (LLOCV). Leave-location-out was implemented in a way that the
entire woody vegetation polygon (with all corresponding observations) was assigned to the same
fold. The complete dataset was therefore randomly split into K groups, or folds, of similar size.
The number of folds was chosen to be 5 and 10, according to the common practice, providing objective
accuracy assessment and reasonable computational requirements [44]. The original proportion of
the classes in the complete dataset was also preserved within the created folds. Once the folds
were created, the first fold was treated as a validation set, and the remaining K-1 folds were used
for training. The class balancing and growing of the probability forest was performed only on the
training set. The grown probability forest was then applied to obtain class probability predictions
and later to perform spatio-temporal aggregation only on the validation set. This procedure was
repeated K times; each time, a different fold was treated as a validation set. In order to suppress errors
introduced by creating folds, the K-fold cross-validation procedure was performed 10 times, each time
randomly creating new folds. Random folds were preferred over spatially independent folds because,
for some classes, woody vegetation polygons had to be clustered, due to the specific environment and
climate conditions required for these types of vegetation. Having in mind the structure of the input
dataset, it would be difficult to create spatially independent folds. Therefore, although such a random
split was not implicitly spatially independent, the authors believe that the same objective accuracy
assessment was obtained due to the randomization and leave-location-out procedure. The evaluation
was performed on the final merged dataset by creating the confusion matrix and calculating the overall
accuracy (OA), producer’s accuracy (PA), user’s accuracy (UA) and kappa coefficient of agreement
(Kappa). These metrics are considered good practices commonly used for evaluation of land cover
classification results [42].

4. Results

The available woody vegetation polygons have been used to extract spectral information for each
of the woody vegetation class. This resulted in 115,059 pixels representing all eight woody vegetation
classes (Table 2). Since the classes in the created dataset are very unbalanced, the SMOTE method has
been applied. The resulting dataset has almost perfectly balanced classes.
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Table 2. The definition of classification scheme and the number of vectorized training polygons for
their representation.

Class ID Informal Phytosociological Name Extracted Number of Vegetation Pixels

1 Ostryo-Carpinion 2299
2 Quercion frainetto 6705
3 Quercion petraea-cerris 11,152
4 Quercion roboris 65,561
5 Fagion 14,971
6 Pinion nigrae 3235
7 Vaccinio-Piceion 10,871
8 Pinion mugo 265

The probability forest has been grown using the created balanced dataset. The output model
was then used to the predict class probability of each woody vegetation class for all Sentinel-2 forest
pixels. This was done for both pixel-based and neighborhood-based approaches and for all three tested
aggregation functions. The validation metrics show that the performance of the proposed woody
vegetation classification method depends both on the aggregation function, as well as on the number of
pixels used for the prediction (Table 3). All tested pixel-based aggregation functions achieved almost
the same performance, where simple mean and geometric mean functions slightly outperformed
the approach based on the most common class rule. The neighborhood-based performances were
always higher than the performances of matching pixel-based methods. Increasing the size of the
neighborhood had a limited effect, with only marginal improvements. Among the tested aggregation
functions, the most common class rule provided the best performance of all tested combinations,
but only in combination with the neighborhood-based approach. This suggests that this approach
most successfully recognizes the situations of wrong predictions where the central pixel prediction is
different from the predictions for the surrounding pixels.

Table 3. Validation metrics obtained after 5-fold and 10-fold leave-location out cross-validation.

Aggregation Rule
5-Fold LLOCV 10-Fold LLOCV

OA [%] Kappa OA [%] Kappa

pixel-based
MC 81.02 0.72 80.63 0.72
SM 81.92 0.74 81.67 0.74
GM 81.94 0.74 81.87 0.74

3 × 3
MC (3 × 3) 83.09 0.76 82.89 0.75
SM (3 × 3) 82.27 0.74 81.68 0.74
GM (3 × 3) 82.39 0.74 81.87 0.74

5 × 5
MC (5 × 5) 82.97 0.75 83.10 0.76
SM (5 × 5) 82.30 0.74 81.98 0.74
GM (5 × 5) 82.41 0.74 82.05 0.74

The supremacy of the most common class rule as an aggregation method is confirmed also by
inspection of the Producer’s and User’s accuracy barplots (Figure 5). Tables with complete PA and UA
values are available in the Appendix B.
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(a) 

(b) 

 
(c) 

 
(d) 

Figure 5. Producer’s accuracy and user’s accuracy barplots after K-fold leave-location out
cross-validation (a) PA with K = 5 (b) PA with K = 10 (c) UA with K = 5 (d) UA with K = 10.
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For most classes, the MC rule with either 3 × 3 or 5 × 5 neighborhood provides the best metrics
or close to the best metrics. For half of the modeled types of woody vegetation, the difference in
the performance of this approach is much greater than the rest of the methods. This is evident for
coniferous woody vegetation (Pinion nigrae, Vaccinio-Piceion and Pinion mugo) with PA being higher
from 2% up to 40% and with the preservation of high UA (greater than 80%). Improvement is also
present for Fagion woody vegetation, although it is not as large as for coniferous woody vegetation.
These four woody vegetation classes represent more than a third of the total forest area, which suggests
that such improvements have a major impact on the final classification map. It is important to note
that these improvements are obtained even with a considerable disproportion of classes in the original
training dataset. This highlights the importance of class balancing using SMOTE, as some of these
classes are minority classes (Pinion mugo) and some have a very large number of training observations
(Fagion). This suggests that the improvements of this approach are mainly due to the ability to capture
the specifics of these types of woody vegetation growing in large, homogenous and dense groups,
without “small islands” of different types of woody vegetation. It should be noted that for some
other woody vegetation classes, the neighborhood-based MC rule does not perform the best (like for
Ostryo-Carpinion), where it provides the highest PA, but fails to provide the best UA.

The differences between five-fold and 10-fold LLOCV validation metrics are least noticeable for
the MC rule in combination with the neighborhood approach. In contrast, performances of all other
methods change with different numbers of folds. This is particularly evident for the Pinion mugo
class. The MC rule with both neighborhoods provides the best metrics for its prediction, indicating
significantly higher accuracy than other neighborhood-based aggregations in case of five-fold LLOCV.
In case of 10-fold LLOCV, it is still the best approach, but without large differences in performances.
This can be explained by the amount of data used for model training. In every step, 10-fold LLOCV
uses ≈90% of the data of each class for model training, compared to ≈80% used by five-fold LLOCV.
Even though the SMOTE is applied, this shows that such reduction can severely influence the model
performances, particularly for minority classes (as Pinion mugo). This shows that the MC rule in
combination with the neighborhood approach is the most robust regarding the amount of training
data necessary for proper modeling of minority classes.

All validation metrics indicate that the best results are achieved by using the MC rule, with
almost the same performance of both neighborhoods. Individually per woody vegetation class,
the 5 × 5 neighborhood outperforms the 3 × 3 neighborhood for most of the classes for both PA
and UA. Confusion matrix after five-fold and 10-fold LLOCV are given in Appendix C. Therefore,
this approach can be considered to be the best one for woody vegetation classification using the
proposed spatio-temporal framework. Consequently, the final classification map has been produced
using the 5 × 5 neighborhood with the MC rule (Figure 6). The covered areas of each woody class are
given in the Table 4.

Table 4. Area and share in the total forest area for each woody vegetation class after classification using
the MC rule and 5 × 5 neighborhood for aggregation.

Class ID Informal Phytosociological Name Area [km2] Area [%]

1 Ostryo-Carpinion 4411 12.42
2 Quercion frainetto 1104 3.11
3 Quercion petraea-cerris 11,707 32.95
4 Quercion roboris 5528 15.56
5 Fagion 10,768 30.31
6 Pinion nigrae 949 2.67
7 Vaccinio-Piceion 907 2.55
8 Pinion mugo 153 0.43
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Figure 6. Final classification map of woody vegetation coverage over the study area.

5. Discussion

5.1. Final Classification Map of Woody Vegetation

The previously explained LLOCV procedure can give information about the model accuracy,
but the accuracy metrics are generally biased for mapping the entire study area. Unfortunately,
no comparable external data source is available for the purpose of assessing the accuracy of the final
woody vegetation map. In addition, creating a validation set based on probability sampling requires
extensive resources and field work, which are beyond the scope of this research. Therefore, validation
of the final classification map of woody vegetation has been performed by using visual inspection and
comparison with available statistical reports.

By visual inspection and comparison, the final classification map of woody vegetation produced
in this paper corresponds to the existing general vegetation maps: Map of the Natural Vegetation of
Europe (scale 1:2,500,000) [29] and the Map of Natural Potential Vegetation of SFR Yugoslavia (scale
1:1,000,000) [45]. Additionally, the proportional relationships of the analyzed vegetation types for most
of the classes fit into the results obtained by the first National Forest Inventory of Serbia in the period
2004–2006, which was done using traditional field survey methods that provide a highly accurate
forest inventory [46,47]. Significant deviations were obtained only in the proportions of thermophytic
broadleaved deciduous forests and mesophytic and hygromesophytic broadleaved forests. The share
of Ostryo-Carpinion forests in this research is 12.42%, compared to the share of Carpinus orientalis and
Ostrya carpinifolia forests in [47], which is 3.9%. The results of this research show that Quercion roboris
forests cover 16% of the area, while the corresponding forest stand category in [47] Quercus robur forests
has the coverage of 1.4%.
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In the first case (Ostryo-Carpinion), the discrepancy can be explained by the fact that the data
from the National Forest Inventory of Serbia refer primarily to forests and do not include data on
shrubs and lower degradation forms of forest vegetation. Since in the thermophilic forest zone,
the degradation forms of forest vegetation are mainly represented by shrub vegetation belonging to the
Ostryo-Carpinion type, the increased share of this type of vegetation in our research can be explained
by the assumption that different degradation forms of thermophytic broadleaved were recognized in
this class. In the second case (Quercion roboris), the deviation is explained by the fact that our class
Quercion roboris is much wider than the class Quercus robur forests presented in the first National
Forest Inventory of Serbia (Appendix A).

Since the spatial distribution of the training polygons cannot be considered ideal, it is possible
that some discrepancies in the area assessments are also caused as a result. Therefore, additional
woody vegetation polygons in the forest areas sparsely covered by polygons (like southern part of
the study area) can significantly benefit in better modeling classes in RF model and more accurate
area assessment.

5.2. Variable Usefulness and Importance

The usefulness and importance of variables used for the woody vegetation classification is
determined first by inspection of the temporal phenological spectral patterns. Temporal phenological
spectral patterns are created by plotting the average spectral responses of all woody vegetation types
per each available date (Figure 7). This was done for all used Sentinel-2 spectral bands and the
calculated NDVI value.

The created temporal phenological spectral plots show that patterns vary per woody vegetation
type and per spectral band. The decreasing pattern can be observed across most of the bands. This is as
expected, since all woody vegetation classes are in full vegetation at the start of the observation period,
which later decreases as autumn and winter approach. This decreasing pattern is particularly noticeable
for deciduous tree species, while it is less present for coniferous tree species. The separability between
species also follows such a pattern, with the highest separability being in the June–August period.
This separability highly depends on the type of woody vegetation. Independently per band, Bands
B11 (Short-wave infrared 1) and B12 (Short-wave infrared 2) visually show the highest separability
between types of woody vegetation. Deciduous and coniferous woody vegetation groups can be
clearly observed across these spectral bands. All three red edge bands (B05, B06 and B07), as well as
the NIR band, also show high spectral separability between vegetation types. Individual vegetation
types also show specific distinguishing patterns on certain bands, such as Fagion woody vegetation on
bands B02 (Blue) and B04 (Red) or Ostryo-Carpinion on band B03 (Green). These can be potentially
used to subset spectral bands and further relieve the model complexity. Ottosen et al. also highlighted
that the classification results are improved by using only subsets of Sentinel-2 spectral bands [48].
This was not taken into account in this research, even though it is important to understand how the
classification results obtained by this methodology are influenced by the subset of used spectral bands.
This needs to be addressed in the future.

The variable importance is additionally assessed through the Mean decrease Gini measure
(Figure 8). The Mean decrease Gini is a measure of how much the Gini impurity metric is reduced
by a variable for each class. The Mean decrease Gini metric was chosen as the importance measure
because it was also used for growing the probability random forest. The scaled variable importance
based on the Mean decrease Gini measure is produced and plotted. The results correspond to the
observed temporal phenological spectral patterns. Bands B11 and B02 are the most important spectral
variables, followed by B12. The day and month temporal variables turned out to be very important,
being the second and third most important variables of all. This highlights the model’s ability to
capture woody vegetation phenological patterns. The other spectral variables are of approximately the
same importance.
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Figure 7. Temporal phenological patterns for the used Sentinel-2 spectral bands and NDVI values.
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Figure 8. Variable importance barplot expressed through the Mean decrease Gini measure.

5.3. Spatio-Temporal Framework for Woody Vegetation Classification

The spatio-temporal framework proposed in this research defines the timestamp of the observation
explicitly in the model through day and month variables. Such change in the model means that, in order
to determine the woody vegetation class, the methodology requires only one cloud-free pixel available
for each part of the study area. This change in the model allows timestamps to be freely combined
and enables the entire methodology to be easily adjusted to any area of interest, regardless of its size.
Additionally, the model is lighter, as every spectral band is represented only once through a single
variable, as an alternative to multiple timestamp–spectral band variable combinations. There is also no
data-wrangling and only the original observations are used for both training and prediction phases.
As the number of cloud-free pixels over the study area increases, there will be multiple predictions
for each pixel of the study area. This enables the full potential of spatio-temporal aggregation to
be exploited. The spatio-temporal aggregation is not only pixel-based, but is expanded to take into
account the neighboring pixel predictions as well. The main idea behind the neighborhood-based
approach is to solve situations where surrounding pixels show strong probability of belonging to a
certain class, which is different from the class probability of the central pixel. In these cases, there is a
strong reason to believe that the central pixel should also belong to the class of surrounding pixels.
It is more likely that the prediction based solely on spectral information for the central pixel is wrong,
which is a consequence of some noise present in the spectral information for that pixel, than the
probability that the central pixel’s class differs from the class of its neighbors.

Applied spatio-temporal aggregation can be affected by temporal and/or spatial homogeneity.
For areas with no temporal and spatial heterogeneity over the time period covered with satellite
observations and the used neighborhoods, the prediction results should be very reliable. In other cases,
the proposed methodology can deal with such heterogeneity up to a certain amount. This is because
each of the used S2 observation influences the decision on the final woody vegetation class and any
temporal or spatial change can potentially suppress other observations. Temporally, this means that
changes that last longer within the used time interval are more likely to be recognized by the model.
Similarly, only spatial changes that have larger spatial extents compared to the neighborhood size will
be recognized. This means that the minimum mapping unit gets coarser as the size of neighborhood
increases. At the same time, the neighborhood approach achieves smoothing effects, where isolated
pixels are classified into the class of pixels in the neighborhood. Therefore, it is not advised to extend
both the observation period and the neighborhood size more than necessary. A shorter observation
period reduces the amount of changes that occur in the first place, and the appropriate neighborhood
size limits the amount of smoothing which occurs.

The proposed methodology is applied using resampled 60 m Sentinel-2 bands. This spatial
resolution may be too coarse, since the increase in neighborhood size has a limited effect on the
performance. It is expected that using the original spatial resolution of 10 m and 20 m for available
bands, should reduce the effects of mixed pixels and further increase the classification accuracy.
In addition, this should help the previously discussed heterogeneity issues, where smaller changes
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could be modelled. Stronger neighborhood effects can also be expected to occur for higher spatial
resolutions, so the neighborhood size could become a more important parameter in the proposed
methodology. However, there are several motivations for choosing a coarser spatial resolution of
60 m for all bands. Firstly, this is done in order to match the chosen classification scheme, designed
for country-wide woody vegetation mapping. The used classification scheme is defined according
to the “Database on the distribution of potentially endangered species and habitats of Serbia” and
the increase in spatial resolution would require the introduction of new woody vegetation classes for
which the proper training data are lacking. Secondly and more importantly, the proposed methodology
aims to be used on large areas and this way the computation and performance issues are reduced.
At a spatial resolution of 60 m, the used dataset comprises more than 160 million S2 observations,
which would increase about nine or 36 times in the case of 20 m and 10 m spatial resolutions, respectively.
One solution to deal with such an increase in size of data is to select only more informative spectral
bands. Since the proposed methodology has advantages and applicability, especially over larger areas,
this can become a very important issue.

The results of this research match those obtained by other similar studies, which were based on
high- or medium-resolution optical data. Grabska et al. have achieved an OA greater than 90% on
the study area of 305 km2 for nine tree species using 18 cloud-free sentinel-2 images [6]. Liu et al.
identified forest types using Sentinel-1A, Sentinel-2A, Landsat-8 and DEM Data with OA of 82.78%.
They extracted the four single-dominant forests and the four mixed forest types over the area of
2261 km2 [40]. Lu et al. implemented Spatial–Spectral–Temporal Integrated Fusion to identify six tree
species and two mixed forest types with an OA of 83.6% over the area of 1610 km2 [49]. In addition
to covering a significantly larger study area, this research and the proposed solution also completely
relies only on optical satellite sources. Therefore, there is a potential for further improvement by using
other data sources such as radar satellite data, LiDAR, multiple optical sources and/or other auxiliary
data (topography, etc.).

This proposed spatio-temporal framework relies on Sentinel-2 scene classification maps and a
forest mask to properly identify forest areas. This is potentially the weak point of the method, because
the output quality is in a way limited by the quality of the used forest mask. It is important to use the
most recent available forest mask as possible, especially in the areas of rapid forest change. The forest
mask used in this research is from 2015, which creates a 4-year gap with the used Sentinel-2 data. Such a
forest mask can be considered outdated since there is an active forest management over the study area,
with the forest area being influenced by felling of trees, forest growing and silviculture. Additionally,
some forest fires occur annually, usually in the warm summer period. However, these changes are
not extensive and do not have large spatial extents. Visual inspection of forest mask showed that the
misrepresentations happen only in a few local areas, so the authors believe that these errors do not
significantly affect the overall results. The methodology can also be further expanded to address this
issue, with the same spatio-temporal framework being used to firstly identify the forest and non-forest
pixels. This issue was beyond the scope of this research due to the lack of proper training data for
good representation of non-forest areas. This issue needs to be addressed in the future. Another
setback of the proposed approach is that each pixel is always assigned to some class. In a situation
where all woody vegetation types are well represented by training polygons, this does not pose a
problem; however, when the study area is very complex or insufficiently researched in terms of woody
vegetation, it might not be possible to represent all the woody vegetation types in the study area.

The study has revealed several problematic cases in which predictions do not achieve a satisfactory
level of accuracy and reliability. Some of them are problems with: (1) identification of sufficiently
representative learning polygons within the complex and mosaic area, such as alluvial forests in
riparian and swamp galleries and woodland in alluvial plains; (2) insufficiently researched natural
vegetation types, such as forests of birch (Betula pendula), common aspen (Populus tremula) or
rowan (Sorbus aucuparia); (3) the natural absence of clear boundaries between ecologically and
physiognomically close vegetation types that build phylogenetically close tree species (e.g., gradual
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transition between thermophytic (Quercion frainetto), thermo-mesophytic (Quercion petraea-cerris)
and mesophytic to hygromesophytic (Quercion roboris) forests in which all three main oak species
have such a wide ecological valence that their populations occur within all three types of oak forests);
(4) a priori classification of mixed deciduous and coniferous woodlands in which a large number of tree
species have different parts in the general coverage; (5) an absence of data on areas with highly artificial
tree plantations or naturalized forest of alien species(e.g., black locust forests (Robinia pseudoaccacia),
american ash (Fraxinus spp.) and maple (Acer spp.) forests, poplar plantations (Populus spp.), etc.

Given that eight analyzed woody vegetation classes cover a large portion of the study area, it can
be expected that the omission of other classes should not significantly affect the spatial coverage of
woody vegetation in the study area. Since there are multiple predictions for each pixel of the study
area, as well as the probability of each prediction, there is a possibility to use this information to
identify the weak pixels, which probably do not belong to any of the classes. This is also something to
be considered in future research.

6. Conclusions

The novel spatio-temporal classification framework has been presented in this paper. The proposed
methodology has been successfully applied for mapping eight potential types of woody vegetation
over the study area of Serbia. This was done using 88 Sentinel-2 multitemporal granules dating from
the June–October period of 2019. The method relies on forest mask to exclude non-forest areas and on
training polygons to represent each woody vegetation class of interest. The used framework is novel
because it includes temporal information explicitly in the probability random forest model that has
been grown, which produces several probability predictions for each pixel of the study area. Multiple
predictions enable specific spatio-temporal aggregation to be performed in order to determine most
probable woody vegetation class for each pixel of the study area.

Several spatio-temporal aggregation approaches have been tested within this research. They can
be divided into pixel-based and neighborhood-based methods. According to the validation metrics,
the most common class rule together with the neighborhood of 5 × 5 pixels provided the best results.
The most common class rule means that from the set of multiple predictions, each prediction casts a
vote to the class with the highest probability. The final class is then set to the class that has the highest
number of votes. The overall accuracy and kappa coefficient of agreement obtained from five-fold cross
validation by this approach are 82.97% and 0.75, respectively. The corresponding producer’s accuracies
range from 36.74% to 97.99% and user’s accuracies range from 46.31% to 98.43%. Such results match
the performances of other similar studies, although most of them have been done for much smaller
study areas.

Given the obtained accuracy, it can be said that the proposed methodology is applicable for woody
vegetation mapping in Serbia. The classification scheme and the corresponding training polygons are
prerequisites for its implementation. The methodology has been tested over the territory of Serbia,
but it has the potential to be transferred to other areas if appropriate adjustments to the classification
scheme are introduced and new training polygons are made available. Further testing is necessary to
confirm such assumptions. It is implemented in such a way that it can be easily integrated into existing
operational programs intended for forest inventory and mapping. The identified weak points of the
framework are its reliability on the forest mask and the fact that each pixel of the study area is always
assigned to some class. The second issue is more complex and maybe it can be overcome by using the
probability of each prediction to identify the weak probability pixels, indicating that they probably do
not belong to any of the classes. These two things are planned to be addressed in future research.
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Appendix A

Table A1. Analyzed types of forests and shrubs according to the national classification of habitats
in Serbia.

Class ID SrbHab Code Habitat Type Name

1

A2.9 Forests of Oriental hornbeam (Carpinus orientalis) and hop-hornbeam (Ostrya carpinifolia)

A2.91 Forests of Oriental hornbeam (Carpinus orientalis)
A2.92 Forests of hop-hornbeam (Ostrya carpinifolia)

2

A2.1 Forests of Hungarian (Quercus frainetto) and Austrian oak (Quercus cerris) forests

A2.11 Forests of Hungarian (Quercus frainetto) and Austrian oak (Quercus cerris) forests
A2.12 Forests of Hungarian oak (Quercus frainetto)

3

A2.5 Forests of sessile (Quercus petraea) and Austrian oak (Quercus cerris)

A2.51 Forests of sessile oak (Quercus petraea)
A2.52 Forests of Austrian oak (Quercus cerris)

4

A1.3 Forests of pedunculate oak (Quercus robur) and field ash (Fraxinus angustifolia)

A1.31 Forests of pedunculate oak (Quercus robur)
A1.33 Forests of pedunculate oak (Quercus robur) and field ash (Fraxinus angustifolia)
A1.35 Forests of pedunculate oak (Quercus robur), hornbeam (Carpinus betulus) and field ash (Fraxinus angustifolia)

A1.4 Forests of pedunculate oak (Quercus robur) and hornbeam (Carpinus betulus)

A1.41 Forests of pedunculate oak (Quercus robur) and hornbeam (Carpinus betulus)
A1.42 Forests of pedunculate oak (Quercus robur), hornbeam (Carpinus betulus) and Austrian oak (Quercus cerris)

5

A3.2 Beech forests (Fagus moesiaca)

A3.22 Submontane beech forests (Fagus moesiaca)
A3.23 Mountain beech forests (Fagus moesiaca)
A3.27 Subalpine beech forests (Fagus moesiaca)

6

A5.1 Forests of black (Pinus nigra) and white pine (Pinus sylvestris)

A5.11 Black pine forest (Pinus nigra)
A5.12 Forest of black (Pinus nigra) and white pine (Pinus silvestris)

7

A6.1 Spruce (Picea spp.) and fir (Abies spp.) Forests

A6.11 Spruce (Picea abies) and fir (Abies alba) forests
A6.12 Spruce forests (Picea abies)

8 B6.1 Krummholz (Pinus mugo) scrub

Appendix B

Table A2. Producer’s accuracy for all woody vegetation classes for 5-fold LLOCV.

Vegetation Type MC SM GM MC (3 × 3) SM (3 × 3) GM (3 × 3) MC (5 × 5) SM (5 × 5) GM (5 × 5)

Ostryo-Carpinion 80.12 81.93 80.84 86.88 76.18 75.26 88.48 76.22 75.24
Quercion frainetto 35.59 37.17 36.31 37.73 30.41 29.29 36.74 29.87 28.73

Quercion petraea-cerris 45.25 46.34 50.04 49.70 48.65 53.00 48.54 49.13 53.44
Quercion roboris 95.17 95.32 94.94 94.92 96.55 96.30 94.88 96.59 96.33

Fagion 76.15 78.88 78.12 82.82 80.54 79.45 83.61 80.51 79.37
Pinion nigrae 82.46 84.06 83.29 86.58 79.82 79.40 86.12 79.85 79.43

Vaccinio-Piceion 97.18 97.57 97.48 98.53 98.21 98.02 97.99 98.20 98.00
Pinion mugo 87.16 88.69 84.25 91.44 55.96 52.75 91.98 54.17 51.54

Table A3. Producer’s accuracy for all woody vegetation classes for 10-fold LLOCV.

Vegetation Type MC SM GM MC (3 × 3) SM (3 × 3) GM (3 × 3) MC (5 × 5) SM (5 × 5) GM (5 × 5)

Ostryo-Carpinion 80.23 82.16 81.11 86.88 82.16 81.15 87.35 82.24 81.44
Quercion frainetto 37.81 39.29 38.57 40.60 39.30 38.58 38.42 37.80 36.83

Quercion petraea-cerris 40.95 42.22 46.32 44.52 42.45 46.49 46.61 44.23 48.01
Quercion roboris 95.59 95.97 95.60 95.43 95.95 95.58 95.25 95.75 95.35

Fagion 76.76 79.48 79.33 84.51 79.45 79.29 84.15 79.67 79.23
Pinion nigrae 81.17 82.93 82.10 84.67 82.93 82.10 85.81 82.79 81.82

Vaccinio-Piceion 97.13 97.42 97.52 98.63 97.42 97.51 98.48 97.68 97.58
Pinion mugo 80.65 83.04 77.61 85.87 83.04 77.61 84.83 82.07 78.39

209



Remote Sens. 2020, 12, 2845

Table A4. User’s accuracy for all woody vegetation classes for 5-fold LLOCV.

Vegetation Type MC SM GM MC (3 × 3) SM (3 × 3) GM (3 × 3) MC (5 × 5) SM (5 × 5) GM (5 × 5)

Ostryo-Carpinion 71.90 73.29 74.12 72.56 85.39 86.50 67.54 85.39 86.44
Quercion frainetto 46.21 50.35 50.06 53.11 56.84 55.60 53.17 56.09 54.84

Quercion petraea-cerris 43.79 44.55 43.83 47.18 44.94 44.45 46.31 45.17 44.58
Quercion roboris 97.02 97.27 97.95 98.29 96.30 97.23 98.43 96.27 97.20

Fagion 70.46 72.25 73.62 73.09 71.79 73.18 73.32 72.05 73.46
Pinion nigrae 76.96 77.87 78.95 80.90 79.84 81.01 80.07 80.02 81.13

Vaccinio-Piceion 93.57 94.25 94.33 96.27 92.25 92.48 97.86 92.30 92.53
Pinion mugo 89.20 95.39 95.00 98.36 98.12 98.01 97.39 98.04 97.66

Table A5. User’s accuracy for all woody vegetation classes for 10-fold LLOCV.

Vegetation Type MC SM GM MC (3 × 3) SM (3 × 3) GM (3 × 3) MC (5 × 5) SM (5 × 5) GM (5 × 5)

Ostryo-Carpinion 71.56 73.51 74.71 72.72 73.47 74.65 69.19 74.18 74.96
Quercion frainetto 43.75 48.88 49.45 50.63 48.85 49.40 52.89 50.20 50.43

Quercion petraea-cerris 43.67 44.69 44.33 47.61 44.82 44.43 46.80 44.98 44.26
Quercion roboris 96.97 97.13 97.90 98.22 97.18 97.94 98.30 97.30 97.98

Fagion 69.86 71.51 72.64 72.39 71.47 72.58 72.76 71.31 72.47
Pinion nigrae 75.93 76.14 77.92 80.43 76.14 77.89 81.67 77.59 78.59

Vaccinio-Piceion 93.36 94.13 94.20 95.70 94.12 94.20 97.07 93.57 93.84
Pinion mugo 86.89 94.79 93.46 99.50 94.79 93.46 96.60 95.45 95.25

Appendix C

Table A6. Confusion matrix after the 5-fold LLOCV using the MC rule and 5 × 5 neighborhood for
aggregation (Legend for Class ID: 1 Ostryo-Carpinion, 2 Quercion frainetto, 3 Quercion petraea-cerris,
4 Quercion roboris, 5 Fagion, 6 Pinion nigrae, 7 Vaccinio-Piceion, 8 Pinion mugo).

Reference

Class ID 1 2 3 4 5 6 7 8 Total

Pr
ed

ic
ti

on

1 4309 190 858 15 288 676 27 17 6380
2 9 4495 2989 339 621 0 0 1 8454
3 215 4589 11,442 4442 3765 206 48 3 24,710
4 1 621 796 88,903 0 1 0 0 90,322
5 336 2121 6247 0 23,979 0 22 0 32,705
6 0 218 1024 0 5 5710 154 20 7131
7 0 0 205 0 20 34 12,347 11 12,617
8 0 0 11 0 0 3 2 596 612

Total 4870 12,234 23,572 93,699 28,678 6630 12,600 648 182,931

PA [%] 88.48 36.74 48.54 94.88 83.61 86.12 97.99 91.98

UA [%] 67.54 53.17 46.31 98.43 73.32 80.07 97.86 97.39

Table A7. Confusion matrix after the 10-fold LLOCV using MC rule and 5 × 5 neighborhood for
aggregation (Legend for Class ID: 1 Ostryo-Carpinion, 2 Quercion frainetto, 3 Quercion petraea-cerris,
4 Quercion roboris, 5 Fagion, 6 Pinion nigrae, 7 Vaccinio-Piceion, 8 Pinion mugo).

Reference

Class ID 1 2 3 4 5 6 7 8 Total

Pr
ed

ic
ti

on

1 4254 157 702 8 343 637 27 20 6148
2 16 4606 2980 353 753 0 0 1 8709
3 260 4123 10,485 3921 3379 191 41 5 22,405
4 0 681 801 85,803 2 2 0 0 87,289
5 340 2207 6394 1 23,916 0 10 1 32,869
6 0 216 826 0 7 5257 113 18 6437
7 0 0 295 0 22 37 12,408 21 12,783
8 0 0 10 0 0 2 1 369 382

Total 4870 11,990 22,493 90,086 28,422 6126 12,600 435 177,022

PA [%] 87.35 38.42 46.61 95.25 84.15 85.81 98.48 84.83

UA [%] 69.19 52.89 46.80 98.30 72.76 81.67 97.07 96.60
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Abstract: The monitoring of forest resources is crucial for their sustainable management, and tree
species identification is one of the fundamental tasks in this process. Unmanned aerial vehicles
(UAVs) and miniaturized lightweight sensors can rapidly provide accurate monitoring information.
The objective of this study was to investigate the use of multitemporal, UAV-based hyperspectral
imagery for tree species identification in the highly diverse Brazilian Atlantic forest. Datasets were
captured over three years to identify eight different tree species. The study area comprised initial
to medium successional stages of the Brazilian Atlantic forest. Images were acquired with a spatial
resolution of 10 cm, and radiometric adjustment processing was performed to reduce the variations
caused by different factors, such as the geometry of acquisition. The random forest classification
method was applied in a region-based classification approach with leave-one-out cross-validation,
followed by computing the area under the receiver operating characteristic (AUCROC) curve. When
using each dataset alone, the influence of different weather behaviors on tree species identification
was evident. When combining all datasets and minimizing illumination differences over each tree
crown, the identification of three tree species was improved. These results show that UAV-based,
hyperspectral, multitemporal remote sensing imagery is a promising tool for tree species identification
in tropical forests.

Keywords: tree species classification; semideciduous forest; hyperspectral multitemporal information; UAV

1. Introduction

Forests play an important role in biodiversity, carbon stocks, the water cycle, and feedstock,
but they are rapidly being degraded. Knowledge about the tree species of a forest is fundamental
information. Tree species mapping can be performed through fieldwork campaigns, but generally,
this practice has limitations, since it is expensive and laborious. Remote sensing, together with
automatic analysis techniques, has become a prominent tool for tree species mapping.

Satellite sensors [1] and airborne passive and/or active sensors [2,3], combined with the use of field
spectroscopy [4], provide valuable information for the identification of tree species. Support vector
machine (SVM) [5] and random forest (RF) [6] are examples of machine learning algorithms that have
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been successfully applied to identify tree species in urban environments [7], savannas [2], and different
types of forests, including northern, boreal, temperate, and tropical forests [1,8–12]. Recently, these
algorithms, with images acquired using unmanned aerial vehicles (UAVs), have become a powerful
tool for forest monitoring [13–15].

UAVs enable fast information acquisition, and despite their constraints regarding the trade-off
between resolution and coverage, they are low-cost alternatives for capturing information in areas that
are endangered or need constant monitoring, such as mines or agricultural crops. UAVs can fly over
many areas that are challenging for field data acquisition, such as water surfaces or dense forest areas.
UAV missions can be quickly configured according to the user’s needs. Furthermore, in the past few
years, UAVs have been rapidly developed to fly for several hours; an example of such a platform is the
fixed-wing Batmap II UAV, which is able to fly for more than 2 h [16]. UAVs can capture very high
or ultrahigh spatial resolution data with ground sampling distances (GSD) ranging from centimeters
to decimeters [17–20] using small-format multispectral or hyperspectral cameras, such as MicaSense
RedEdge-MX [21], Rikola hyperspectral imager [22], and Cubert FireflEYE [21]. Beyond that, UAVs can
repeatedly acquire information through surface targets, such as trees, which is a highly promising
option in forest monitoring, since it can measure dynamic phenological behavior according to seasons
and tree characteristics.

Although most of the previous studies conducted with multiseasonal information have not
employed UAVs, they have shown spectral differences within tree species and reported whether the tree
species classification was improved [7,23–30]. Moreover, most of them have been performed in northern
forests [31]. There is a lack of studies in forests such as the Brazilian Atlantic forest, which encompasses
different ecosystems, such as mixed ombrophilous, dense ombrophilous, open ombrophilous,
semideciduous seasonal, and deciduous seasonal forests [32]. Sothe et al. [14] studied a mixed
ombrophilous forest whose characteristics differ from those of other types of Brazilian Atlantic forest,
especially the semideciduous and deciduous seasonal forests. Their floristic compositions and forest
structure are different [32], which highlights the importance of studying them separately.

In addition to their application in northern forests in which coniferous tree species are predominant,
most studies have investigated well-developed forests or forests in which trees with different heights
are spatially distinguished. Plots containing tree species in different development stages can present
similar heights, and thereby cause spectral mixing due to leaf mixture and the effect of neighborhood
spectra, since the number of emergent trees is smaller. Notwithstanding the importance of monitoring
mature forests, monitoring fragments that are in the initial regeneration process is considered a key
element in the connection of forest patches, and contributes to the maintenance of biodiversity [33,34].

The objective of this study was to develop and assess UAV-based remote sensing techniques
to improve tree species identification in Brazilian Atlantic forest areas with vegetation stages that
range from initial to advanced restoration. A further objective was to study whether multitemporal
spectral information acquired over multiple years in the same season but under different moisture
conditions could improve tree species classification. UAV-based hyperspectral images were acquired
over three years during the winter season. Additionally, the classification performance of two different
spectral features was compared. The findings in this paper are expected to provide information
about the use of spectral features with minimized effects from illumination differences to classify
tree species in the highly diverse Brazilian Atlantic forest, and demonstrate the use of hyperspectral
multitemporal information.

2. Materials and Methods

2.1. Study Site

The transect forest sample used in this study is centered at 22◦23′55.21”S, 52◦31′18.31”W, in the
municipality of Euclides da Cunha Paulista, western part of São Paulo State, Brazil (Figure 1). The
transect has an approximate length and width of 500 m × 130 m, and comprises a variety of tree species
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in different successional stages. The study area was established inside the Ponte Branca forest fragment,
a protected area belonging to the Black Lion Tamarin Ecological Station. According to the Brazilian
Institute for Geography and Statistics (IBGE), it is an area of the submontane, semideciduous seasonal
forest [35]. The regional climate is considered a tropical zone with dry winters (Aw), according to the
Köppen classification [36]. The mean temperature during the dry season is 21 ◦C, with less than 60 mm
of total precipitation [37]. The weather patterns differed between the years 2017, 2018, and 2019 and
the flight campaigns (Figure 2). The season was wetter in 2017, with precipitation of 69 mm before
the flight campaign, whereas the precipitation was 18.6 mm before the flight campaign of 2018 and
51 mm before the flight campaign of 2019; however, rain did not occur for at least 8 days before image
acquisition [37].

 

Figure 1. Study area and tree species recognized in the field in the 2017 dataset. The red rectangle
represents the imaged area, and the yellow rectangle is a zoom of the study area.

 

Figure 2. Climograph of Paranapoema station from the National Institute of Meteorology. Bars
represent the accumulated rainfall per month (mm), and dashed lines represent the mean monthly
temperature (◦C).
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2.2. Reference Data

More than 25 tree species with a diameter at breast height (DBH) greater than 3.8 cm were detected
during fieldwork [38]. Tree species were in different successional stages, with the northernmost part
of the study area containing trees in the initial stage of succession and the southernmost in a more
advanced stage [39]. Moreover, we located 90 trees of eight species that emerged from the canopy
(Tables 1 and 2). Their crowns were manually delineated through visual interpretation of RGB image
composites of each dataset (R: 628.73 nm; G: 550.39 nm; B: 506.22 nm). Figure 1 shows examples
of delineated individual tree crown (ITC) polygons in the 2017 dataset, and Figure 3 shows canopy
examples of each tree species in the mosaic of images acquired during the 2017 flight campaign. These
tree species were chosen because they are important for characterizing the successional stage of the
forest, e.g., Syagrus romanzoffiana (SR), which can be associated with the faunal composition [40]. It is
important to note that smaller tree species were excluded from analysis because the lianas that cover
and mix among individuals negatively affect the classification accuracy. From now on, tree species will
be called by their abbreviations from Tables 1 and 2.

Table 1. The number of samples recognized in the field and the average number of pixels per crown for
each tree species and its sum.

Abbreviation Specie ITCs
Average

Pixels/Crown
Sum of Pixels

AL Apuleia leiocarpa 10 2328 23,278
CL Copaifera langsdorffii 17 2148 36,520
EP Endlicheria paniculata 7 1254 8776
HA Helietta apiculata 10 1669 16,689
HC Hymenaea courbaril 11 2800 30,799
IV Inga vera 8 1288 10,302
PP Pterodon pubescens 7 2715 19,007
SR Syagrus romanzoffiana 20 1315 26,293

 

Figure 3. Canopy examples of each tree species identified in the field and delineated in the images
acquired in 2017 (R: 780.49 nm; G: 565.10 nm; B: 506.22 nm; automatic contrast from QGIS software,
version 3.0.0). (a) Apuleia leiocarpa (AP), (b) Copaifera langsdorffii (CL), (c) Endlicheria paniculata (EP),
(d) Helietta apiculata (HA), (e) Hymenaea courbaril (HC), (f) Inga vera (IV), (g) Pterodon pubescens (PP),
(h) Syagrus romanzoffiana (SR).
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The number of samples was low for some species because of challenges in acquiring reference
data. First, our study area comprised different successional stages; thus, the species composition varied
over the area. Second, we used tree samples that emerged from the canopy. In tropical forests, the tree
heights can be modeled by the DBH, which can be related to the number of trees per hectare [43–45].
According to Lima et al. [44] and d’Oliveira et al. [45], the relationship between the DBH and the
frequency of trees in tropical forests has an “inverted J shape”, because the number of trees per hectare
decreases substantially as the DBH increases, so the number of taller trees also decreases.

2.3. Remote Sensing Data

Hyperspectral images were acquired with a 2D-format camera based on the tunable Fabry–Pérot
Interferometer (FPI) from Senop Ltd, model DT-0011 [46–48]. The camera has two sensors, both of
which have 1017 × 648 pixels with a pixel size of 5.5 μm. The total weight of the camera is around 700 g
with its accessories, which include an irradiance sensor and a Global Positioning System (GPS) receiver.
Spectral bands can be selected from the visible (VIS) to near-infrared (NIR) region (500–900 nm),
which are acquired sequentially, i.e., the air gap of the FPI moves to acquire the different spectral bands
of the same image. The spectral range of the first and second sensors are 647–900 nm and 500–635 nm,
respectively. A total of 25 spectral bands were chosen, with the Full-Width at Half Maximum (FWHM)
varying from 12.44 to 20.45 nm (Table 3 and Figure 4). For this spectral setting, each image cube needs
0.779 s to be acquired. The exposure time was set to 5 ms, and the image blocks were divided into two
flight strips, ensuring more than 70% and 50% forward and side overlaps, respectively.

Table 3. Spectral settings of an FPI camera, model DT-0011, with the respective FWHM, both in nm (λ
represents the central wavelength of the band).

Band
λ

(nm)
FWHM
(nm)

Band
λ

(nm)
FWHM
(nm)

Band
λ

(nm)
FWHM
(nm)

Band
λ

(nm)
FWHM

(nm)

1 506.22 12.44 8 609.00 15.08 14 679.84 20.45 20 740.42 17.98
2 519.94 17.38 9 620.22 16.26 15 690.28 18.87 21 750.16 17.97
3 535.09 16.84 10 628.73 15.30 16 700.28 18.94 22 769.89 18.72
4 550.39 16.53 11 650.96 14.44 17 710.06 19.70 23 780.49 17.36
5 565.10 17.26 12 659.72 16.83 18 720.17 19.31 24 790.30 17.39
6 580.16 15.95 13 669.75 19.80 19 729.57 19.01 25 819.66 17.84
7 591.90 16.61

 

Figure 4. Normalized sensitivities of each spectral band set in the FPI camera. Responses were
calculated from the central wavelength and FWHM.

The FPI camera was mounted onboard the UX4 UAV, which is a rotary-wing quadcopter developed
by the company Nuvem UAV. The UX4 UAV is almost 90 cm in diameter and 30 cm in height without
counting the GPS antenna, which is approximately 15 cm. It is controlled by a PixHawk autopilot. The
energy source for the UAV system and its sensors is one six-cell battery of 22 volts and one smaller
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three-cell battery of 11 volts, which allow the UAV to fly for up to 30 min, depending on payload,
battery, and weather conditions. A flight speed of 4 m/s was used to limit the maximum gap between
the first and last band of the hyperspectral imager to 3.1 m in a single cube.

During the field campaigns, three radiometric reference targets were placed in the area to enable
reflectance calibration. Flight campaigns were performed over the study area (Figure 1) on 1 July 2017,
16 June 2018, and 13 July 2019, with an above-ground flight height of approximately 160 m and flight
speed of 4 m/s. The flight height was selected so that a GSD of 10 cm was obtained. This ensured a
good representation of tree crowns that were predominantly over 3 m in diameter. Table 4 provides
more details about the flight time of each campaign and the mean zenith and azimuth angles of the
Sun during the image acquisitions.

Table 4. Details of the image acquisition in each flight campaign.

Flight Campaign Time (UTC-3) Sun Zenith Sun Azimuth

1 July 2017 10:14–10:24 56.35◦ 38.46◦
16 June 2018 11:47–11:54 46.75◦ 12.55◦
13 July 2019 14:27–14:34 52.32◦ 325.61◦

Images were geometrically and radiometrically processed to obtain hyperspectral image
orthomosaics. First, the images were radiometrically corrected from the dark current and nonuniformity
of sensors using a dark image acquired before each flight and laboratory parameters [47,49].

The geometric processing was performed using the Agisoft PhotoScan software (version 1.3)
(Agisoft LLC, St. Petersburg, Russia). In the orientation process, for each year, the exterior orientation
parameters (EOPs) of four reference bands (band 3: 550.39 nm; band 8: 609.00 nm; band 14: 679.84
nm; and band 22: 769.89 nm) were estimated in the same Agisoft PhotoScan project in order to reduce
misregistration between the datasets. The EOPs of the other bands were calculated using the method
developed in [49,50]. Positions from the camera GPS were used as initial values and refined using
a bundle block adjustment (BBA) and ground control points (GCPs). The number of GCPs varied
between datasets, with 3, 3, and 4 used in 2017, 2018, and 2019, respectively. GCPs were placed outside
the forest since it was not possible to see the ground from imagery acquired over the forested area.
Initially, the base station was defined near the study area, and the global navigation satellite system
(GNSS) observations from GCPs were collected and processed in differential mode.

A self-calibrating bundle adjustment was used to estimate the interior orientation parameters
(IOPs) of each sensor and for each year of the dataset. After initial image alignment, parameter
estimation was optimized with automatic outlier removal using a gradual selection of tie points based
on reconstruction uncertainty and reprojection error, together with the manual removal of points. The
final products of this step were the calibrated IOPs, EOPs, sparse and dense point clouds, and digital
surface model (DSM) of the area with a GSD of 10 cm. These were used in the following radiometric
block adjustment and mosaic generation.

Radiometric adjustment processing aims to correct the digital number (DN) of pixels of images
from the bidirectional reflectance distribution function (BRDF) effects and differences caused by the
different geometries of acquisition due to the UAV and Sun movements. Thus, nonuniformities among
images were compensated for by the radBA software, developed at the Finnish Geospatial Research
Institute (FGI) [49,50]. Equation (1) shows the model used in the software to extract the reflectance
value from the DN of each pixel.

DNjk = arel j
(
aabs·Rjk(θi,θr,ϕ) + babs

)
, (1)

where DNjk is the digital number of pixel k in image j; Rjk(θi,θr,ϕ) is the corresponding reflectance
factor with respect to the zenithal angle θ of the incident and reflected light, i and r, respectively, and
with the relative azimuthal angle ϕ (ϕr −ϕi), where ϕr refers to the reflected azimuthal angle, and ϕi
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denotes the incident azimuthal angle; arel j is the relative correction factor of illumination differences
with respect to the reference image; and aabs and babs are the empirical line parameters for the linear
transformation between reflectance and DNs.

According to a previous study by Miyoshi et al. [47], for the study area, the best initial relative
correction factor (arel j) was one (1), with a standard deviation equal to 0.05. It is worth noting that
an exception was necessary for the dataset from 2018 because of higher density differences in cloud
covering. The 2017 and 2019 flights were carried out in almost blue-sky conditions, with slight
differences compensated for by the radiometric block adjustment. The radiometric block adjustment
was performed in two steps for the 2018 dataset. First, an initial radiometric block adjustment was
performed using initial values of arel j = 1. In sequence, the final values of arel j were used as the initial
values for the second radiometric block adjustment. Then, the reflectance factor values were estimated
using the empirical line method [51]. The empirical line parameters (aabs and babs) were estimated
from the linear relationship between the DN values of three radiometric reference targets with a mean
reflectance of 4%, 11%, and 37%. Radiometric reference targets were 90 cm × 90 cm and composed
of light-gray, gray, and black synthetic material. Thus, the mosaics of hyperspectral images for each
dataset representing the reflectance factor values were obtained.

Additionally, point cloud data from airborne laser scanning (ALS) were provided by the company
Fototerra. ALS data were acquired in November 2017 using a Riegl LMS-Q680i laser scanner (RIEGL,
Horn, Austria) onboard a manned aircraft at a flight height of 400 m, which resulted in an average
density of 8.4 points/m2. The canopy height model (CHM) was obtained by extracting the digital
terrain model (DTM) from the DSM. The processing was performed using the LAStools software
(Martin Isenburg, LAStools—efficient tools for LiDAR processing) [52]. First, the lasnoise tool was
applied to withdraw possible noises in the point cloud. Then, the CHM was extracted using the
lasheight tool to obtain tree heights in the study area.

Figure 5 shows the mean height of each tree sample recognized in the field; most of the observed
samples fell within a similar height range. Additionally, taller trees were found in the more developed
successional stage of the area. Trees of the same species varied in age and were found in regions of
different successional stages. For example, PP trees had crown areas of around 25 m2 and mean heights
of 10–20 m. Similarly, HC samples had a mean height of almost 14 m, with tree crown areas ranging
from 16 to 90 m2. It is important to highlight that the ALS data were not used in the classification step,
since the objective of this research was to evaluate hyperspectral multitemporal data to improve tree
species identification.

 

Figure 5. Mean tree height versus the tree crown area for all samples identified in the field. Data are
from the 2017 dataset.
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2.4. Extraction of Spectral Features

Spectral features were extracted using manually delineated crown polygons. We used spectral
features taken from the reflectance mosaics and normalized features extracted after pixel normalization.
The normalization reduced the differences between the sunlit and shadowed pixels, assuming a
uniform distribution across the crown [13,53]. The normalization process was performed to reduce the
spectral variability of spectra from the same tree species (within-species). The normalized pixel value
was calculated by dividing the pixel value of a band by the sum of values of this pixel in all bands [53].
The mean values of normalized and nonnormalized pixels in each polygon were extracted for use in the
region-based classification method. These values are referred to as MeanNorm and Mean, respectively.

Despite performing joint geometric processing, there were differences in the spatial position
of trees, especially when using very high spatial resolution imagery. These differences are mainly
caused by tree growth, changes in leaves with changing seasons, and weather conditions or projection
differences due to the characteristics of the surface used. Figure 6 shows the slight difference in the
spatial distribution of the leaves of SR trees.

 

Figure 6. The spatial difference in the leaves of one sample of SR tree in each dataset (R: 690.28 nm; G:
565.10 nm; B: 519.94 nm; automatic contrast from QGIS software, version 3.0.0): (a) 2017, (b) 2018, and
(c) 2019.

2.5. Tree Species Identification with RF

The RF method was used for tree species identification using only the spectral information,
since the objective was to verify whether the use of temporal information could improve tree species
detection. This method is based on multiple decision trees, and the class is determined by the most
popular vote [6]. Decision trees are composed of different samples, which are drawn with replacement,
i.e., one sample can belong to more than one tree [54]. The RF has been successfully applied for
image classification when working with high-dimensional data [8,13], and it is less sensitive to feature
selection [54]. The RF was applied using the default parameters of the Weka software version 3.8.3
(The University of Waikato, Hamilton, New Zealand) [55].

The classification process was carried out five times with four different datasets: (i) the 2017
spectral information (D17); (ii) the 2018 spectral information (D18); (iii) the 2019 spectral information
(D19); (iv) the combination of the 2017, 2018, and 2019 spectral information (Dall). For the D17, D18, and
D19 datasets, we used the normalized pixel values to extract the spectral features, which are referred
to as cases D17_MeanNorm, D18_MeanNorm, and D19_MeanNorm, respectively. Additionally, in
the case of the combined dataset (item (iv) in the previously described datasets), the classification
was performed using both the normalized and nominal values, referred to as Dall_MeanNorm and
Dall_Mean, respectively. Table 5 summarizes the number of features used in each case.

The number of samples of different species is relatively low and also unbalanced. The leave-one-out
cross-validation (LOOCV) method was used to circumvent this problem. LOOCV is a particular case
of k-fold cross-validation, where k is equal to the total number of samples of the dataset [13,56]. The
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classification model is trained k times, followed by testing with one subset and training with the
remaining subsets. In each iteration, the model is trained using k − 1 samples and tested with the
remaining sample. The final accuracy values are obtained by averaging the accuracy values of each
iteration [56]. LOOCV has been successfully applied in tree species classification studies with a small
sample size (e.g., less than 10 samples per class [14]) or an unbalanced number of samples per class [13].

Table 5. The number of features used in each test.

Cases
Spectral Data From

Number of Features
2017 2018 2019

D17_MeanNorm X 25
D18_MeanNorm X 25
D19_MeanNorm X 25

Dall_Mean X X X 75
Dall_MeanNorm X X X 75

The results were evaluated through the area under the receiver operating characteristic curve,
known as AUC (area under the curve) ROC (receiver operating characteristics) or AUCROC [57–59].
ROC is the relationship between the false positive rate (FPR), or “1-specificity”, and the true positive rate
(TPR), or sensitivity, and it is useful when working with unbalanced classes because it is independent
of the class distribution [59,60]. When using classifiers such as RF that provide probabilities or scores,
thresholds can be applied to acquire different points in the ROC space to form an ROC curve [60].
AUCROC is the area under the ROC curve, and represents the probability of the classification model
correctly classifying a random sample in a specific class. AUCROC varies from 0 to 1 for each
class, where a value of 0.5 indicates that the specific classification model is no better than a random
assignment, and a value of 1 represents perfect discrimination of a class from the remaining ones [59].
To the best classification (i.e., the one with highest value of average AUCROC value), the overall
accuracy (i.e., the percentage of correctly classified instances of the total number of samples), the user
accuracy, and the producer accuracy [61] were calculated as well.

3. Results

3.1. Spectral Response of Each Tree Species Recognized in the Field

The spectral variability within samples of the same tree species was verified through the mean,
minimum, and maximum values of Mean and MeanNorm (defined in Section 2.3). The mean values
are presented in Figure 7, showing similar spectral responses in the VIS region for both Mean and
MeanNorm. In the NIR region, the Mean spectra are visually similar between IV, HA, HC, and AL.
Despite smaller differences among the MeanNorm spectra, which may lead to higher classification
confusion, the spectral variability within the samples of Mean had a higher range (Figure 8). In Figure 8,
the range between the minimum and maximum values is visually the same for both the Mean and
MeanNorm spectra of all tree species in the VIS part of the electromagnetic spectrum. It is noted
that the number of samples of each tree species can affect this range of variation, as observed for SR
with 20 samples. However, this behavior was not observed for AL (10 samples) and HC (11 samples).
The range variation in the Mean values from the red-edge (700 nm) to near-infrared region (820 nm)
had a higher variability when compared with the MeanNorm values, leading to the conclusion that a
higher variability may influence classifier performance. Moreover, in Figure 7, an unusual peak may
be noticed at the spectral response at 650 nm, probably due to the fact that this spectral band is located
near the edge of the first sensor from the FPI, which acquires information from 647 nm to 900 nm.
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Figure 7. Mean spectra of each tree species considering the: (a) Mean, and the (b) MeanNorm.
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Figure 8. Values for each tree species considering the mean reflectance factor spectra (Mean) and the
mean normalized spectra (MeanNorm) calculated using pixels in the delineated crown polygons. The
blue line represents the Mean, the red line represents the MeanNorm, and the shaded area represents the
minimum and maximum values. (a) Apuleia leiocarpa (AP), (b) Copaifera langsdorffii (CL), (c) Endlicheria
paniculata (EP), (d) Helietta apiculata (HA), (e) Hymenaea courbaril (HC), (f) Inga vera (IV), (g) Pterodon
pubescens (PP), (h) Syagrus romanzoffiana (SR).

3.2. Identification of Tree Species Results

Table 6 provides the AUCROC values after applying the RF with LOOCV to each dataset.
Dall_MeanNorm presented the highest average AUCROC value (0.807), and thus, it can be considered
the best dataset with which to identify the tree species. Average AUCROC values for Dall_Mean,
D17_MeanNorm, D18_MeanNorm, and D19_MeanNorm were 0.783, 0.746, 0.754, and 0.682, respectively.
Next, a more detailed analysis was performed using AUCROC values of Dall_MeanNorm.
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Table 6. AUCROC values for each tree species identified in each dataset. AUCROC values are from
imagery data of (i) only 2017 (D17_MeanNorm); (ii) only 2018 (D18_MeanNorm); (iii) only 2019
(D19_MeanNorm); (iv) all years and the mean spectral values (Dall_Mean); and (v) all years and the
mean normalized values (Dall_MeanNorm).

Tree Species 1 AUCROC

D17_MeanNorm D18_MeanNorm D19_MeanNorm Dall_Mean Dall_MeanNorm

AL 0.608 0.438 0.313 0.754 0.613
CL 0.821 0.678 0.517 0.742 0.768
EP 0.818 0.827 0.664 0.743 0.836
HA 0.594 0.576 0.899 0.798 0.846
HC 0.800 0.809 0.847 0.699 0.847
IV 0.627 0.886 0.622 0.837 0.824
PP 0.713 0.817 0.680 0.758 0.723
SR 0.986 0.997 0.915 0.936 0.999

Average AUCROC 0.746 0.754 0.682 0.783 0.807
1 AL: Apuleia Leiocarpa; CL: Copaifera Langsdorffii; EP: Endlicheria Paniculata; HA: Helietta Apiculata; HC:
Hymenaea Courbaril; IV: Inga Vera; PP: Pterodon Pubescens; SR: Syagrus Romanzoffiana.

Compared with the other datasets, Dall_MeanNorm had the highest AUCROC values for three of
the eight tree species, namely, EP, HC, and SR. HA was better modeled in the D19_MeanNorm
dataset, with an AUCROC value of 0.899, and it was worst modeled in the D18_MeanNorm
dataset (AUCROC = 0.576). In contrast, IV was best and worst identified in D18_MeanNorm
and D19_MeanNorm, respectively. Additionally, no significant differences were obtained when using
normalized pixels compared with unnormalized ones for this tree species since the AUCROC values
were 0.837 for Dall_Mean and 0.824 for Dall_MeanNorm. The identification of CL was similar between
Dall_Mean (AUCROC = 0.742) and Dall_MeanNorm (AUCROC = 0.768), and it was best modeled in
D17_MeanNorm (AUCROC = 0.821). AL had the lowest AUCROC value in D19_MeanNorm (0.313),
which probably affected its identification in the Dall_MeanNorm dataset, in which its AUCROC
was 0.613.

Since Dall_MeanNorm generated the best results in general, its ROC curves are shown in Figure 9,
and its confusion matrix and user and producer accuracies are presented in Table 7. Figure 9 reveals
different threshold values for each tree species, which are related to predictive probabilities [62].
For AL, which had the lowest AUCROC value (0.613), the FPR was higher than 0 (0.088), even when
the TPR was equal 0, which indicates that the RF performed poorly in identifying this tree species,
as confirmed by the confusion matrix, since none of AL were correctly identified. PP had the second
lowest AUCROC value (0.723), and its threshold varied from 0 to 0.46, i.e., similar to AL. As shown in
Figure 9 and in the confusion matrix of Table 7, only one tree species was correctly identified, and the
TPR was only higher than 0 (TPR = 0.143) when the FPR was 0.024 to a threshold of 0.4. The highest
AUCROC value, 0.999 for SR, corresponded to the tree species with the fewest false positives; that is,
it was less frequently confused with the other tree species. The ROC curve of SR in Figure 9 shows
that a TPR of 1 was obtained when the FPR was 0.014. This fact indicates that samples of this tree
species will always be correctly identified; however, even with a low degree of variation, they could be
confused with other tree samples, even in small proportions. Interestingly, for IV, that was not among
the highest AUCROC values, the FPR is equal to 0 until a threshold of 0.44, when the TPR is 0.375. This
fact is associated with the confusion matrix of Table 7, which has few false positives for this tree species.

227



Remote Sens. 2020, 12, 244

  

Figure 9. ROC curves of the identification of each tree species from the application of RF to all imagery
datasets (Dall_MeanNorm). (a) Apuleia leiocarpa (AP), (b) Copaifera langsdorffii (CL), (c) Endlicheria
paniculata (EP), (d) Helietta apiculata (HA), (e) Hymenaea courbaril (HC), (f) Inga vera (IV), (g) Pterodon
pubescens (PP), (h) Syagrus romanzoffiana (SR).

Table 7. Confusion matrix of the classification of 8 tree species and all datasets (Dall_MeanNorm) and
its user accuracy and producer accuracy.

Tree Species 1 AL CL EP HA HC IV PP SR User Accuracy (%)

AL 0 2 0 1 3 0 0 0 0
CL 3 8 2 3 0 2 2 0 40
EP 0 1 4 1 1 0 0 0 57.1
HA 2 2 0 3 0 0 2 0 33.3
HC 4 2 1 0 6 2 2 0 35.3
IV 0 2 0 0 0 3 0 0 60
PP 0 0 0 2 0 0 1 0 33.3
SR 1 0 0 0 1 1 0 20 87

Producer accuracy (%) 0 47.1 57.1 30 54.5 37.5 14.3 100 Overall Accuracy = 50%

1 AL: Apuleia Leiocarpa; CL: Copaifera Langsdorffii; EP: Endlicheria Paniculata; HA: Helietta Apiculata; HC:
Hymenaea Courbaril; IV: Inga Vera; PP: Pterodon Pubescens; SR: Syagrus Romanzoffiana.

Spectral Feature Importance

The feature importance in the Dall_MeanNorm dataset, which had the best classification results,
is given in Figure 10. The feature importance was scaled from 0 to 1, where 0 represents the least
important feature, and 1 represents the most important feature. The least important feature was band
21, centered at 750.16 nm, in the 2019 dataset, and the most important was band 10, centered at 628.73
nm, in the 2017 dataset. Additionally, in general, the most important features in the 2017 dataset were
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from the VIS part to the beginning of the red-edge part of the electromagnetic spectrum. In the 2018
dataset, an exception in feature importance may be observed at bands 15, 19, and 23, centered at 690.28
nm, 729.57 nm, and 780.49 nm. These bands were more important than most of the NIR bands in the
2018 dataset. In the 2019 dataset, bands 3, 6, and 12, centered at 535.09 nm, 580.16 nm, and 659.72 nm,
respectively, were highlighted because of the peak in the feature importance value when compared
with the other bands from 2019. These bands are in the VIS part of the electromagnetic spectrum; this
is related to the leaves’ pigment, e.g., chlorophyll and carotenoids, content.

 

Figure 10. Feature importance when using the RF for 8 tree species and all datasets (Dall_MeanNorm).
The x-axis represents the spectral bands in each year. Wavelengths in nm.

4. Discussion

Our study area is located in the highly diverse Brazilian Atlantic forest and comprises a great
number of tree species at varying successional stages, which makes tree species identification in the
field challenging. Most of the study area is in the initial stage of regeneration [39], which indicates that
the tree heights have a low degree of variation, as verified in Figure 5. The southernmost part of the
study area is more preserved and exhibits a medium degree of regeneration [39], as supported by the
existence of taller trees in Figure 5. Monitoring this type of vegetation is a feasible way to increase the
knowledge of forest composition and development, especially when the structural data do not have
enough variation among classes to identify the tree species. The importance of regenerating forest
paths is directly related to the maintenance of biodiversity.

The use of joint spectral normalized features (i.e., Dall_MeanNorm) increased the AUCROC
values of three tree species (EP, HC, and SR). In general, when using the mean spectral features together
(i.e., Dall_Mean), variations in the AUCROC values were more apparent compared with the use of
spectral information from each dataset separately. The exception in the Dall_Mean results is to AL,
whose AUCROC value increased with the use of temporal spectral information without normalization.
Moreover, it was observed that weather conditions directly affected most of the trees’ phenology and,
consequently, their spectral response, thus affecting RF performance on each dataset.

All the AUCROC values for SR were higher than 0.90, leading to the conclusion that the
identification of this tree species did not depend on multitemporal information or the use of normalized
spectra. A similar analysis can be applied to HC, which had similar AUCROC values in all tests,
without counting the normalized spectra. CL had similar AUCROC values in Dall_Mean and
Dall_MeanNorm and was better identified in D17_MeanNorm. Therefore, the weather pattern in 2017
was related to the identification accuracy of CL. There was a higher volume of rain before the 2017
flight campaign (Figure 2). Similarly, the weather influenced the detection of other tree species when
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using a single spectral dataset. The dry weather before the 2018 and 2019 flight campaigns hindered
the ability to identify the AL tree species when using the spectral data of these years.

These tree species have different structures, such as the leaf format, and they have different
blossom and fruit sets [41,42]. SR is a palm tree with leaves that are 2–3 m in length and spadices that
are 80–120 cm in length [41]. HC has pinnate leaves and requires sunlight to grow and emerge from
the canopy; blooming occurs in the dry season, and fruit appears after 3–4 months [42]. AL blooms
without leaves, usually in September, and its flowers are white [42]. Thus, the use of multitemporal
data influenced the detection of tree species. Of the previous works in the literature, the research of
Ferreira et al. [28] is highlighted. They acquired WorldView images during the wet and dry seasons
of a well-developed Brazilian semideciduous forest to classify tree species; no improvement in the
classification results was observed when using the combined data. On the other hand, Somers and
Asner [24], Deventer et al. [25], and Hill et al. [26] found that tree species classification improved when
using multitemporal data because of the different spectral changes in the data.

As supported by previous research, VIS bands were among the most important features in tree
species classification at the crown scale [10,13,63,64]. Vegetation spectra are characterized by the
peak and absorption in the green and red parts of the electromagnetic spectrum, which is helpful
for differentiating tree species. Similarly, the use of CHM has been shown to improve classification
accuracies [13,14,65]. CHM data were not applied in our study since the focus was on the usefulness of
temporal spectral information. The use of CHM data, combined with the use of tree crown segments,
is highly recommended for future studies on the classification of tree species in the area.

This study was the first to investigate tree species classification using multitemporal hyperspectral
UAV data acquired over the Atlantic forest. The previous studies that used multitemporal data
acquired datasets from different seasons, and they did not use UAVs or consider a semideciduous
forest with different development stages. Deventer et al. [25] simulated WorldView and RapidEye
data from the leaf spectra of a subtropical forest in South Africa. Hill et al. [26] used the Daedalus
1268 AirborneThematic Mapper (ATM) sensor to acquire data over a deciduous forest in England.
Using WorldView images, Li et al. [7] studied the multitemporal information of tree species in urban
environments. When using UAVs, image acquisition depends on several factors (such as wind
conditions since a UAV is a lightweight platform), and there are safety requirements to fulfill. During
the spring and summer, when some trees may be blooming, the rainfall is higher; for example, summer
rains may occur every day. Although images were acquired in the same season in this study, annual
differences in tree phenology provided additional information and enhanced the classification accuracy.

The utilization of multitemporal data introduces some challenges to the data processing and
classification processes. As shown in Figure 6, there are small differences in tree positions due to
tree growth and probably also due to geometric projection characteristics; thus, trees were delineated
separately in each dataset. When using structural features, the use of different polygons in the same
point cloud might affect the classifier. Furthermore, these variations are challenging when working
with very high spatial resolution imagery. Ferreira et al. [28] used resampled WorldView images
at 0.30 and 1.2 m and needed to adjust the polygons of each ITC. Special attention must be paid to
the radiometric processing of multitemporal spectral datasets. In this study, the datasets from each
year were first processed to ensure that reflectance mosaics were uniform using the radiometric block
adjustment, and further normalization of the shadows was shown to be advantageous.

Classification accuracies are always affected by the forest characteristics, the existence of several
classes, and dataset characteristics, which should be considered for a reliable comparison of studies.
Tuominen et al. [65] used multisource data to classify 26 different tree species of a Finnish forest into
species and genus. They had more than 650 samples and achieved accuracies from 59.9% (when
classifying tree species using the RF classifier and DN values of the shortwave infrared range) to 86.9%
(when using selected features and the k-NN algorithm to classify the genus). Dalponte et al. [66]
classified three types of trees in a boreal forest with more than 2300 samples and obtained an overall
accuracy of 93.5% using manually delimited ITCs. Sothe et al. [14] used hyperspectral imagery and
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structural features to classify 12 tree species of a mixed ombrophilous forest, and achieved a maximum
overall accuracy of 72.4%.

The number of samples affects the classification results and, thus, the analysis results, especially
when using an unbalanced number of samples and statistics that consider the overall accuracy rather
than the class accuracy. Therefore, the use of LOOCV followed by AUCROC analysis is extremely
important because AUCROC values are specific to each class. In this study, the number of samples
was quite low because of challenges in detecting the training data of a complex forest.

The delineation of the tree crown is equally important. When working with different successional
stages and, thus, trees of potentially similar heights, correct spatial identification and tree crown
delineation are crucial to the performance of any classifier. Since the region-based classification method
provides better classification accuracy of tree species, future studies will be performed to fulfill this
need. Approaches using ALS data have been successfully applied in boreal forests or pulpwood
forests [67]. Wagner et al. [11] segmented the semideciduous Atlantic forest in a well-developed
stage using imagery information only. Automating the delineation of the tree crown with acceptable
accuracy would enhance the production of tree species maps to supplement forest monitoring.

5. Conclusions

The objective of this investigation was to develop hyperspectral unmanned aerial vehicle (UAV)
imaging-based methods for tree species classification in an area of the Brazilian Atlantic forest that has
great species diversity and a multitude of successional stages. An objective further was to assess the
contribution of temporal spectral information to classification accuracy.

Temporal spectral information improved random forest performance for three of the eight tree
species analyzed, indicating that promising accuracy could be obtained when using temporal spectral
information. Separately analyzing single-date datasets showed that the weather patterns directly
influenced the classification performance of some of the tree species. The analysis of datasets from
several years of the same season showed that differences in weather conditions in different years
resulted in some changes in the species spectra; these changes were useful for differentiating between
tree species. The use of multitemporal spectra did not improve the identification of Inga vera, which
had the highest area under the receiver operating characteristic curve (AUCROC) value when using
only the dataset from 2018, and for Copaifera langsdorffii, which was better identified when using only
the dataset from 2017. However, it is important to note that the AUCROC value for Apuleia leiocarpa
resulting from the use of all the datasets (i.e., Dall_MeanNorm) might have been affected by the poor
identification resulting from the use of the 2018 and 2019 datasets (AUCROC values equal 0.438 and
0.313, respectively). Weather conditions were observed to directly affect the tree species bloom because
some species, such as Apuleia leiocarpa, bloom only in the dry season in trees that are completely without
leaves. The normalization of spectra was necessary.

To the authors’ knowledge, this is the first work to use hyperspectral UAV images acquired over
several years to classify the highly diverse Atlantic Forest. Improvements should be applied regarding
the number of samples per class and the automated segmentation of individual tree crowns to enhance
the applicability of the methodology, in addition to the use of tree height information. Moreover,
care should be taken when using very high spatial resolution and automatic tree crown segmentation
because of the slightly different positions of tree leaves caused by tree development.
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Abstract: Accurate maps of the spatial distribution of tropical tree species provide valuable insights
for ecologists and forest management. The discrimination of tree species for economic, ecological,
and technical reasons is usually necessary for achieving promising results in tree species mapping.
Most of the data used in tree species mapping normally have some degree of imbalance. This study
aimed to assess the effects of imbalanced data in identifying and mapping trees species under threat
in a selectively logged sub-montane heterogeneous tropical forest using random forest (RF) and
support vector machine with radial basis function (RBF-SVM) kernel classifiers and WorldView-2
multispectral imagery. For comparison purposes, the original imbalanced dataset was standardized
using three data sampling techniques: oversampling, undersampling, and combined oversampling
and undersampling techniques in R. The combined oversampling and undersampling technique
produced the best results: F1-scores of 68.56 ± 2.6% for RF and 64.64 ± 3.4% for SVM. The balanced
dataset recorded improved classification accuracy compared to the original imbalanced dataset.
This research observed that more separable classes recorded higher F1-scores. Among the species,
Syzygium guineense and Zanthoxylum gilletii were the most accurately mapped whereas Newtonia
buchananii was the least accurately mapped. The most important spectral bands with the ability to
detect and distinguish between tree species as measured by random forest classifier, were the Red,
Red Edge, Near Infrared 1, and Near Infrared 2.

Keywords: tropical forests; endangered tree species; selective logging; imbalanced data; pixel-based
classification; machine learning algorithm

1. Introduction

Tropical forests comprise woody, evergreen vegetation, cover 47% of the world’s total
forest area [1], and host the highest proportion of global tree diversity, i.e., with more than
53,000 tree species, compared to approximately 124 in temperate Europe [2]. The height
of the tree crowns forming the forest canopy is in the range of 30 to 50 m, but emergent
trees may attain heights of approximately 70 m. Tropical forests cover approximately 7%
of the globe, and they are home to more than half of all earth’s biodiversity [1]. Vital
environmental processes such as the water cycle, soil conservation, carbon sequestration,
and habitat protection are immensely regulated by tropical tree species [1], therefore, those
forests maintain the ecosystem services and mitigate climate change [3]. Information on
key parameters such as tree species, tree diameter, and height, crown size, and location
are important for resource management, biodiversity assessment, ecosystem services as-
sessment, and conservation [3]. Ecologists have long been interested in explaining species’
distribution in ecosystems [2], as it can drive the exploitation and management policies of
forests. In tropical forests, the maintenance of a canopy composed of emergent trees of fun-
damental species has been shown to provide conditions favorable to ecological processes,
playing an essential role in the forest community’s resilience and perpetuation [4].
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Traditionally, detailed tree species identification is obtained in relatively small areas
with time-consuming, high levels of manpower and the associated high costs and often
operationally prohibitive field inventories [4,5]. Tropical rainforests are characterized by
very high species richness and lack of access to some parts of the forests [5]. Therefore,
obtaining exact information about the occurring species using field inventories is almost
impossible [5], thus, they have difficulty resolving large geographic patterns. Remote
sensing captures information over extensive areas in fine detail [6]. Plant species mapping
with remote sensing is linked to an understanding that species have unique spectral
signatures associated with characteristic biochemical and biophysical properties [7].

Several studies have assessed the potential of multispectral data in tree species map-
ping in tropical forests. The earliest study by Clark et al. [7] attempted a classification of
seven species of emergent trees in a tropical rain forest in Costa Rica using hyperspectral
digital collection experiment (HYDICE) imagery. Spectral-based species classification
was performed using linear discriminant analysis (LDA), maximum likelihood (ML), and
spectral angle mapper (SAM) classifiers applied to combinations of bands from a stepwise-
selection procedure. Zhang et al. [8] selected five species to assess intra- and inter-class
variability of tree species using a high spectral and spatial resolution imagery acquired
using the airborne sensor HYDICE data. Trichon and Julien [9] used two sets of aerial pho-
tographs to identify tree species through air photo interpretation. Somers and Asner [10]
performed hyperspectral time series analysis of two native and two invasive species
in Hawaiian rainforests, using the separability index (SI). Féret and Asner [11] applied
semi-supervised support vector machine classification using tensor summation kernel to
identify individual crowns using imaging spectroscopy and light detection and ranging
(LiDAR). Clark and Roberts [12] mapped seven tropical rainforest tree species using hy-
perspectral data. Narrowband indices, derivative- and absorption-based techniques, and
spectral mixture analysis were used to derive metrics that respond to vegetation chemistry
and structure. The random forest (RF) classifier was used to discriminate species with
minimally-correlated, importance-ranked metrics. Papeş et al. [13] used Earth Observing-1
Hyperion satellite hyperspectral imagery to spectrally discriminate between crowns of
42 individual trees of 5 taxa using linear discriminant analysis, and they also evaluated
seasonal variation in species discriminations related to phenology. Féret and Asner [14]
applied supervised classification to identify canopy species using airborne hyperspectral
imagery acquired with the Carnegie Airborne Observatory-Alpha system. Singh et al. [15]
mapped and characterized selected tree species using aerial data. To delineate individ-
ual tree crowns (ITCs) from very-high-resolution (VHR) aerial imagery and LiDAR data,
the study used object-based image analysis (OBIA). Both maximum likelihood (ML) and
spectral angle mapper (SAM) classifiers were applied to the aerial imagery. Other studies
have combined hyperspectral and LiDAR sensors. For example, Baldeck et al. [16] used
airborne imaging spectroscopy to identify individuals of three focal canopy tree species in
a diverse tropical forest on Barro Colorado Island, Panama. The addition of co-registered
LiDAR data further improved performance by identifying intra- and inter-canopy shadows
that alter species signatures [16]. Ferreira et al. [17] used LDA, RF, and SVM classifiers on
hyperspectral and multispectral data to discriminate and map tree species, at the pixel level.
Simulated WorldView-3 data were used to assess the role of SWIR bands in species classifi-
cation. A tree crown segmentation approach on the hyperspectral data was used to map tree
species. Graves et al. [18] assessed the accuracy of a support vector machine (SVM) model
with a highly imbalanced dataset using a hyperspectral image mosaic. Wagner et al. [3]
applied automatic ITC delineation in a highly diverse tropical forest using WorldView-2
satellite images. Ferreira et al. [4] applied visible to shortwave infrared WorldView-3
images and texture analysis to classify tropical tree species in a semi-deciduous forest in
different seasons.

Conventional multispectral sensors such as Landsat or MODIS lack both the spatial
and spectral resolution to detect changes in tree species composition [5,6]. Other satellite-
borne multispectral sensors such as IKONOS or QuickBird have a high spatial resolution
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but they lack the spectral resolution to map tree species in tropical forests [6]. High spatial
resolution sensors are not suited for species-level mapping, but rather adequately suited for
mapping fine targets, e.g., tree canopies or canopy gaps [6]. Air-borne cameras that provide
the highest spatial resolution do not offer the spectral resolution required [5]. Moreover,
aerial photos’ wide field of view results in strong effects from bi-directional reflectance
characteristics of most land cover types [5]. Therefore, the spectral signature of an object can
differ significantly. Tropical forests consist of trees of different species and ages, growing
close to each other, with their crowns intertwined, and this has made tree species mapping
a challenge. Their mapping requires remote sensing systems that can provide high spatial
resolution as well as high spectral resolution. Airborne hyperspectral and LiDAR sensors
enable mapping at very fine scales, but the high cost related to hyperspectral and LiDAR
data acquisition and processing has hindered their application in mapping tree species in
tropical forests [6]. However, some of the inherent features of hyperspectral data such as the
carotenoids and chlorophyll sensitive bands are preserved in WorldView-2 multispectral
data [19]. Thus, the high-resolution multispectral sensor, Worldview-2, has shown great
potential to generate the information required in the identification of tree species and
canopy attributes in complex tropical forest environments [17].

Kenya’s rainforest cover, mostly montane forests, are scattered patches that are being
further degraded [20]. The intense growth of population around Mount Kenya Forest
Reserve (MKFR) since the early 1970s has led to degradation of the indigenous forests due
to illegal logging of important timber trees [21]. This greatly reduced plant diversity and
the regenerative capacity of such tree species [21–24]. More demand than supply for wood
in Kenya has led to over-exploitation of high valued tree species [25]. Examples of the
targeted tree species are African pencil-cedar (Juniperus procera), Wild olive (Olea europaea),
East African rosewood (Hagenia abyssinica), East African camphor (Ocotea usambarensis),
red stinkwood (Prunus africana), East African newtonia (Newtonia buchananii), East African
yellow-wood (Podocarpus spp), East African olive (Olea capensis), Meru oak (Vitex keniensis),
Peacock flower (Albizzia gummifera), and others [21–24].

In mapping tree species in closed-canopy tropical forests, the performance of classifi-
cation algorithms may be affected by class imbalance [26]. Both deliberative and purely
random sampling may attract instances of imbalanced data [26]. In simple random sam-
pling, the chance of choosing a class is related to the areal coverage of the class, thus
relatively rare classes will consist of smaller proportions of the training set. Therefore, this
study aims to assess the effect of imbalanced data in identifying and mapping trees species
under threat in a selectively logged sub-montane heterogeneous tropical forest using RF
and SVM classifiers and WorldView-2 multispectral imagery. In assessing the significance
of imbalanced data in mapping endangered tree species in the study site, different training
class sizes comprising imbalanced and balanced datasets were used. To standardize the
original imbalanced data, the oversampling, undersampling, and combined oversampling
and undersampling techniques were applied. In addition„ the explanatory power of the
WorldView-2 spectral bands in discriminating the tree species was evaluated. The maps
showing the spatial distribution and abundance of the endangered tree species in the study
area will form the basis by which efforts can be made for the restoration of the tree species,
among other ecological applications.

2. Materials and Methods

2.1. Study Area

This total study area is 130 ha in MKFR, located between 0◦21′5′′ S t 0◦20′5′′ S latitude
and 37◦31′18′′ E to 37◦32′43′′ E longitude (Figure 1). Mount Kenya is an ice-capped
mountain and the second-highest in Africa, at approximately 5199 m asl. It is an extinct
strato-volcano developed in the Late Pliocene–Quaternary periods [27]. The mountain is
located on the Equator in Kenya, East Africa. The climate of the region is characterized
by large diurnal temperature fluctuations and small monthly disparities. The rainfall
pattern comprises short rains from October to November and long rains from March to
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June [21,27]. The mean annual rainfall values are 1015 mm at the foothills to over 2000 mm
in the montane forest and declining to 1015 mm per year in the alpine zone [28]. The
annual-mean maximum temperatures are 26 ◦C at the foothills, decreasing to 2 ◦C at the
nival zone [21].

Figure 1. WorldView-2 false-color composite (near-infrared 2: yellow: coastal) of the study area
showing tree crowns identified to the species level and other forest landscape features in the field.

Mount Kenya’s abrupt changes in altitude within short distances result in a variety of
plant species in a quite small area [21]. MKFR’s highly heterogeneous canopy consists of
deciduous and evergreen tree species. Anthropogenic activities determine vegetation types
and their distribution at the lower altitudes [21,29]. The montane forest zone lies between
1980 and 3000 m asl on the western, eastern, and southern sides of the mountain [30]. The
northern side is covered by grass, scattered trees, and Ericaceae and Protea scrub [30].
Nyayo Tea Zone, established by Legal Notice No. 265 of 1986 provides a buffer zone to
check against human encroachment into MKFR.

2.2. Acquisition and Pre-Processing of WorldView-2 Satellite Data

The study site was covered by one WorldView-2 scene, acquired on 30 January 2019. The
image utilized in this study was pre-processed and orthorectified by the image distributor [31].
It was geo-referenced to World Geodetic System (WGS) 1984 datum and the Universal
Transverse Mercator (UTM) zone 37S projection. Theoretically, the radiometric correction
and calibration of image data are necessary for detailed feature extraction. Atmospheric
effects can complicate the spectral separability between landscape features with fine spectral
differences [32]. Therefore, for optimal feature extraction, the WorldView-2 image was
atmospherically calibrated by converting the digital numbers (DN) to the top-of-atmosphere
reflectance. The conversion was done using the ENVI module (ENVI 5.3) FLAASH.

2.3. Field Data Collection

Because a published inventory of threatened plant taxa for Kenya does not exist, most
botanists discover a rising number of species requiring special protection [33]. Different
sources have tried to classify tree species considered to be threatened or endangered. For
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example, a State of the Environment report by the National Environment Management Au-
thority (NEMA) terms East African camphor (Ocotea usambarensis), Red stinkwood (Prunus
Africana), African satinwood (Zanthoxylum gilletii), East African sandalwood (Osyris lanceo-
lata), and Meru oak (Vitex keniensis) as endangered [20]. Ng’eno [24] listed Prunus africana
as an endangered tree species in Kenya, and Podocarpus spp., Vetex keniensis, Newtonia
buchananii, and Albizia gummifera are threatened species. Hagenia abyssinica, Juniperus pro-
cera, and Ocotea usambaraensis are listed as restricted tree species. According to KWS [21],
threatened plant species in Kenya include Prunus africana, Vitex keniensis, Ocotea usam-
barensis, among others. All these tree species are commercial indigenous tree species
of Kenya [34]. Therefore, field data collection involved the following endangered tree
species: Prunus Africana, Zanthoxylum gilletii, Albizia gummifera, and Newtonia buchananii.
Other species covered in this study were Anthocleista grandiflora, Syzygium guineense, and
Macaranga kilimandscharica; they are not currently under any threat, however, an increase
in the volume of extraction could endanger them. Rampant selective logging targeting
especially Ocotea usambarensis has made the species to be very rare in the study site, and
only eight samples were identified in the field. Other landscape classes, i.e., other woody
vegetation and shadow, were also sampled. Other woody vegetation class consists of all
species with very few samples, brought together to form a single mixed-species class. This
allowed for their inclusion in the model so that they could be mapped, although individual
species distinctions could not be made.

The ground truth points were collected in January and February 2020. Due to very
steep mountainous terrain and dense forest cover, only a few areas were accessible, there-
fore, the field campaign randomly selected tree species along trails traversing the study
area. The field measurement involved identification of tree species, tree height, diameter at
breast height (DBH), tree dominance, and size, which varied among stands. A handheld
global positioning system (Garmin eTrex® 20 GPS Receiver) and an RGB false-color com-
posite (Near Infrared 2: Yellow: Coastal) of WorldView-2 image (pixel = 1.89 m), aided in
locating tree crowns in the field. Using a GIS (ArcGIS v. 10.3®, ESRI, Redlands, CA, USA),
points were set on all relevant crown pixels on the WorldView-2 imagery. By following the
edges of the pixels, the points were made into polygons. A lot of care was taken to ensure
that the pixels extracted were as pure as possible, without contamination from lianas or
neighboring trees [7]. Any additional valuable information, such as tree flowering and
leaves from identified crowns, was noted. Tree species information was assigned to each
tree crown. The collected field data resulted in an imbalanced dataset, i.e., with common
species having many samples and less common species containing few samples (Table 1).
The dataset was randomly partitioned into 70% for training and 30% for testing.

Table 1. List of tree species, codes, family, leafy phenology, diameter at breast height (DBH), number of individual tree
crowns, and composition of training and test data for each species used to map trees in Mt. Kenya Forest Reserve.

Botanical Name Code Family Leaf Phenology DBH (m) Train Data Test Data Total

Macaranga k. MK Euphorbiaceae Semi-deciduous 0.30–0.57 56 24 80
Zanthoxylum g. ZG Rutaceae Semi-deciduous 0.97–3.00 56 24 80

Syzygium g. SG Myrtaceae Evergreen 1.00–2.50 56 24 80
Newtonia b. NB Fabaceae Deciduous 1.50–4.50 56 24 80

Anthocleista g. AnG Gentianaceae Evergreen 1.01–2.50 36 15 51
Prunus a. PA Rosaceae Evergreen 1.24–3.50 22 10 32

Albizzia g. AlG Fabaceae Deciduous 1.37–4.00 20 8 28
Other woody

vegetation
OWV — — — 56 24 80

Shadow SD — — — 56 24 80

Shown in Figure 2 are samples of the tree species in the study area.
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Figure 2. Samples of endangered tree species in the study area.

2.4. Spectral Separability

On-screen digitizing of samples from the display of the WorldView-2 false-color
composite was implemented to generate the respective signature files. An assessment
of the signatures was done to examine the spectral properties of the training sample
classes and their separability over others. The spectral information was extracted using the
central pixel within the crown polygon. Jeffries–Matusita (JM) distance was chosen as a
separability measure. The JM distance among the distributions of two classes ωi and ωj
has been defined as follows [35]:

JMij = 2
(

1 − e−Bij
)

, (1)

where Bij is the Bhattacharyya distance calculated as [36]:
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where μi and μj are the mean reflectances of species i and j, and Σi and Σj correspond
to their covariance matrices, whereas |Σi|and |Σj|are the determinants of Σi and Σj,
respectively. ln is the natural logarithm function, and T is the transposition function.

The JM distance was calculated for all pairwise combinations between the mean
spectral reflectance of the samples of a species and those of all other species, one at a time.
The VNIR (450–1040 nm) WorldView-2 bands were used for computing the JM distance.

2.5. Training of Random Forest and Support Vector Machine Classifiers

The RF and SVM algorithms were applied using RStoolbox in R software in a pixel-
based classification setting approach. The RF algorithm groups decision trees and the
splitting variables are randomly chosen feature subsets with bagged samples [37]. Nor-
mally, the number of decision trees (ntree) in the ensemble and the number of predictor
variables (mtry) randomly selected at each node need to be defined before applying the RF
model. To extract the best performing parameters to be utilized in training the algorithm,
a 10-fold grid search method was applied. RF brings together many weak learners, i.e.,
decision trees, into a stronger predictor by aggregating the predictions from all decision
trees [37]. The majority ‘vote’ of all the trees is used to allocate a final class for unknown
features. The mean decrease in accuracy (MDA) was used to evaluate the explanatory
power of the input variables [37]. The MDA shows how much accuracy the model loses by
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excluding each variable [37]. The higher the MDA value, the more important the variable
in the model.

The SVM finds the position of the optimal separating hyperplane, i.e., decision bound-
ary, which meets two ultimate goals at a go: (i) separate the original data while maximizing
the margin between classes, and (ii) minimize the misclassification error [38]. In the present
study, the radial basis function (RBF) was selected as the kernel function because it has
fewer parameter values to predefine, and it is as robust as other kernel types [26]. The
success of an SVM model depends on the C (penalty) and γ (Gamma) parameters in the
kernel function. The goal is to identify the best C and γ for the tree species mapping
problem so that the classifier can accurately predict unknown data [39].

2.6. Class Imbalance

A dataset’s imbalanced class distribution is characterized by cases where some classes
have more samples than others. Most classifier learning algorithms that assume a fairly
balanced distribution have found it challenging [26,40]. Previous studies have shown
that the k-NN (k-nearest neighbor), RF, and SVM algorithms are affected by imbalanced
training data [26].

To evaluate the impact of training data imbalance in mapping endangered tree species,
this study applied data sampling techniques that aimed to modify the imbalanced dataset
into balanced distribution, i.e., by altering the overall number of samples used in the
training [26]. In choosing the best model in the classification of tree species in the study
area, four datasets were compared: category 1 was composed of the original imbalanced
dataset (Table 1) from the field. In category 2, the training data for all classes were ran-
domly oversampled to match that of the majority classes, i.e., 56 data points. Category 3
consisted of the same number of samples for all classes, which was attained by randomly
undersampling the training data for all classes to match that of the smallest class, i.e., 20.
Finally, category 4 comprised a dataset created by combining both downsampling and
oversampling techniques. First, the oversampling technique is applied to create duplicate
and artificial data points, then the undersampling technique was used to eradicate noise
data points, thus creating a robust balanced dataset suitable for model training. Therefore,
the last three categories are subsets of the original field acquired dataset.

In all cases, the datasets were split into test and training data before running the
models. Running models before splitting datasets can allow identical samples to be present
in both the test and training data, leading to the models overfitting the training data. In all
models, the 10-fold cross-validation method was repeated 10 times.

2.7. Measures of Model Performance

A multidimensional scaling (MDS) technique was applied in the analysis of (dis)similarities
in the tree species datasets. MDS calculates a (dis)similarity matrix among pairs of tree species
and then displays the data in a low-dimensional representation [41]. Therefore, MDS shows
(dis)similarities among pairs of tree species as distances between points in a low-dimensional
space. The Euclidean distance formula can be used to calculate distance between two points,
e.g., i and j, as follows [42]:

dij =

√√√√ p

∑
k=1

(
xik − xjk

)
2 (3)

where p is the number of dimensions, dij is the distance, and xik is the data value of the
ith row and kth column. The dissimilarity between points i and j is denoted dij and sij
for similarity. Small dij values indicate points that are close together, thus, they belong
to the same group and vice versa. The similarity values are the opposite, i.e., small sij
values indicate points that are farther apart, hence they are not in the same group, and
vice versa [43]. The goodness-of-fit statistic, the stress measure, which is based on the
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differences between the observed data and their predicted values, was used to express how
well the datasets are represented by the model [42].

(4)

where is the predicted distance based on the MDS model.
To fully evaluate model effectiveness, precision and recall performance metrics were

used. Precision measures how accurate is the classifier’s prediction of a class [18]. Low
precision indicates a high number of false positives. Recall, also known as sensitivity,
measures the classifier’s ability to identify a class [18]. Low recall indicates a high number
of false negatives. For an imbalanced dataset, F1-score is a more appropriate metric. It is
the harmonic mean of the precision and recall, and the expression is [18]:

F1 − score = 2· Precision · Recall
Precision + Recall

(5)

To evaluate the performance of RF and SVM algorithm classifiers on mapping the
selected tree species using WorldView-2 data, 30% of the ground truth data were used to
generate confusion matrices from which precision, recall, and F1-score were calculated. The
overall, producer’s, and user’s accuracies were also calculated. The producer’s accuracy
(PA) is the ratio of the correctly detected trees to all the positive ground truth tree samples,
whereas the user’s accuracy (UA) is the ratio of the correctly detected trees to all the positive
model-predicted tree samples [18].

The McNemar test, a non-parametric test focused on the binary distinction between
correctly classified and misclassified class allocations of two classification outputs, was
used to compare and indicate the statistical significance of any difference in results [44]:

Z =
f12 − f21√

f12 + f21
(6)

where f 12 is the total number of samples classified correctly by the first classification,
but misclassified by the second, and f 21 is the total samples classified correctly by the
second classification but misclassified by the first one. A difference in accuracy between
the confusion matrices of the different models is regarded statistically significant (p ≤ 0.05)
if Z ≥ 1.96 (44).

3. Results

3.1. Spectral Separability between the Tree Species

The first step in mapping tree species is to figure out if the classes are spectrally
different. Figure 3 shows the mean spectral signatures for the eight tree species in the
study area. In the visible bands, Syzygium guineense has higher reflectance values compared
to the other seven tree species which reflect almost the same. The Coastal band shows
the highest reflectance values for all tree species. The difference in reflectance between
Syzygium guineense and the other tree species keeps on increasing from the Coastal band
towards the Red band.

The reflectance values in the Red Edge, Near Infrared 1, and Near Infrared 2 bands are
generally higher for the deciduous and semi-deciduous tree species than for the evergreen
tree species. Zanthoxylum gilletii and Albizzia gummifera showed the highest reflectance
values and differ significantly from the others. Among the evergreen tree species, Prunus
africana shows the highest reflectance values, followed by Anthocleista grandiflora. Syzygium
guineense has notably low reflectance values. Among the three bands, Near Infrared 1
shows the highest reflectance values by all tree species. The Near Infrared 1 and Near
Infrared 2 bands show the largest differences in reflectance between the seven tree species
in the study area.

244



Remote Sens. 2021, 13, 4970

Figure 3. Tree species mean spectral signatures derived from the WorldView-2 data.

Figure 4 shows significant spectral overlaps between tree species. Band-specific within-
species variance is evident, e.g., Syzygium guineense within-species variance is bigger in
Coastal and Blue bands, and quite small in the Near Infrared 2. Zanthoxylum gilletii has the
smallest within-species variance in the Red band, whereas the Coastal and Green bands
show larger variances.

Figure 4. Box-whisker plots showing tree species mean reflectance values derived from WorldView-2
data. The central lines within each box represent the medians, while the top and bottom edges of the
boxes are the upper and lower quartiles, respectively. The dots represent the outlier values within
tree species. Full species names for each species code are given in Table 1.

Table 2 is a matrix showing the inter-specific spectral separability of the tree species
calculated from the WorldView-2 VNIR bands using the JM distance. The highest JM
distances were reported for Syzygium guineense, i.e., values greater than 1. The lowest
values were 0.42 for separability between Newtonia buchananii and Albizzia gummifera, and
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0.43 for Newtonia buchananii and Anthocleista grandiflora. The highest values are shown
in bold.

Table 2. Tree species’ inter-specific spectral separability as calculated by the Jeffries–Matusita distance
(Equation (1)). The bold shows those species which are separable and those not separable (not in bold).

SG ZG AnG AlG PA NB MK

SG 1.37 1.21 1.23 1.27 1.25 1.16
ZG 1.01 0.75 1.05 0.89 1.22

AnG 0.51 0.59 0.43 0.66
AlG 0.65 0.42 0.87
PA 0.58 0.90
NB 0.74
MK

3.2. Optimization of Random Forest and Support Vector Machine

In all models, extracting the best performing ntree and mtry parameters to be used in
training of the RF algorithm, repeated 10-fold cross-validation (CV) technique, dependent
on the out-of-bag (OOB) error was applied. Using the same approach, the SVM parameters
were optimized for the WorldView-2 dataset. The best parameters combinations under
each of the four models are summarized in Table 3. As expected, the dataset produced by
the combined oversampling and then downsampling techniques performed better than the
others. For the R model, the default mtry value of 2 and ntree value of 3500 produced the
lowest OOB error rate, 0.271 (Figure 5a). The SVM parameters, i.e., gamma and cost, were
optimized for the WorldView-2 dataset, also using a 10-fold grid search approach. As seen
in Figure 5b, a gamma value of 1 and a cost value of 100 yielded the best performance with
a cross-validation error of 0.326. For the undersampled dataset, the best performance was
an OOB error rate of 0.476 produced by mtry value of 2 and ntree value of 3500. The SVM
yielded a gamma value of 0.01 and a cost value of 10, with a cross-validation error of 0.422.

Table 3. The RF and SVM model optimization parameters.

Model
Train

Data per Species
RF SVM

mtry ntree OOB Error Gamma Cost CV Error

Original dataset Refer to Table 1 3 1500 0.377 0.01 1000 0.387
Oversampling

technique
56 4 4500 0.279 0.01 1000 0.327

Undersampling
technique

20 2 3500 0.476 0.01 10 0.422

Combined
technique

varied 2 3500 0.271 1 100 0.326

The sampling techniques were only applied to training data to avoid model overfitting.

3.3. Relative Importance of Variables

After running the classification models, the MDA provided the relative importance of
each band (Figure 6). The most important spectral bands in all models, i.e., bands depicted
by highest MDA were the Red, Red Edge, Near Infrared 1, and Near Infrared 2.

The classification models also evaluated the ability of the WorldView-2 spectral bands
to detect the tree species. Figure 7 shows that the Red band was critical in the identification
of especially Syzygium guineense, and also involved to a greater extent in mapping Albizzia
gummifera, Anthocleista grandiflora, Prunus africana, and Zanthoxylum gilletii. The Near
Infrared 1 band contributed significantly to the mapping of Albizzia gummifera and Prunus
africana, as well as Anthocleista grandiflora, Macaranga kilimandscharica, Newtonia buchananii,
and Zanthoxylum gilletii. The Red Edge band majorly contributed to the identification of
Macaranga kilimandscharica and other woody vegetation, and, to a greater extent, shadow.
The Near Infrared 2 band was helpful in the mapping of all tree species at different
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proportions, but it was very vital in the identification of Albizzia gummifera, Anthocleista
grandiflora, and Prunus Africana.

Figure 5. Optimization by 10—fold cross—validation: (a) random forest parameters (mtry and ntree),
and (b) support vector machine parameters (gamma and cost).

Figure 6. The relative importance of WorldView-2 bands in discriminating between different tree
species as measured by RF classifier.
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Figure 7. The mean decrease accuracy (MDA) values show the relationship between each tree species
and WorldView-2 spectral bands as measured by the RF classifier. Full species names for each species
code are given in Table 1.

3.4. Model Performance

Figure 8a shows RF multidimensional scaling (MDS) is a nice way to visualize
(dis)similarity within and among tree species, using the proximity matrix calculated
from the variables in the training dataset. SVM multidimensional scaling also visual-
izes (dis)similarity within and among tree species, using the test data, as seen in Figure 8b.
The undersampled dataset performed poorly by attaining higher stress values, i.e., 2.41%
for RF and 2.09% for SVM. The rest of the datasets performed fairly as their stress values
were in the range of 1.41–1.89% for RF and SVM classifiers.

Figure 8. Visualizing tree species (dis)similarity using MDS scaling: (a) RF; (b) SVM.
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The confusion matrices in Table 4 are for RF and SVM classifiers, for the combined
technique, and F1-scores were closest to their model mean. They were computed using the
test data, which comprised 30% of the ground truth data.

Table 4. Confusion matrices for (a) RF algorithm and (b) SVM algorithm, for the combined oversampling
and undersampling technique. Full species names for each species code are given in Table 1.

(a) Random Forest

AlG AnG MK NB OWV PA SD SG ZG Total UA (%)

AlG 4 1 1 3 0 0 1 0 0 10 40.0
AnG 0 9 4 1 2 2 0 0 0 18 50.0
MK 0 0 16 2 0 2 0 0 0 20 80.0
NB 3 4 2 9 1 0 0 0 1 20 45.0

OWV 0 0 0 2 17 0 0 0 1 20 85.0
PA 0 0 1 5 1 6 0 0 0 13 46.2
SD 0 0 0 0 0 0 23 0 0 23 100.0
SG 0 0 0 0 0 0 0 23 0 23 100.0
ZG 1 1 0 2 3 0 0 1 22 30 73.3

Total 8 15 24 24 24 10 24 24 24 177
PA
(%) 50.0 60.0 66.7 37.5 70.8 60.0 90.0 90.0 80.0

Overall accuracy = 72.9% F1-score = 68.0%

(b) Support Vector Machine algorithm

AlG AnG MK NB OWV PA SD SG ZG Total UA (%)

AlG 3 1 1 2 1 0 0 0 0 8 37.5
AnG 1 8 3 2 2 2 1 0 1 20 40.0
MK 0 0 15 3 0 2 1 0 0 21 71.4
NB 3 4 2 7 1 0 0 0 1 18 38.9

OWV 0 0 0 2 17 0 0 0 0 19 89.5
PA 1 1 2 6 2 6 0 0 0 18 33.3
SD 0 0 0 0 0 0 22 0 0 22 100.0
SG 0 0 0 0 0 0 0 24 0 24 100.0
ZG 0 1 1 2 1 0 0 0 22 27 81.5

Total 8 15 24 24 24 10 24 24 24 177
PA
(%) 37.5 53.3 62.5 29.2 70.8 60.0 80.0 100.0 70.8

Overall accuracy = 70.1% F1-score = 64.2%

The combined technique dataset achieved the highest average overall accuracy on both
RF and SVM models, i.e., 73.2 ± 2.5% and 70.9 ± 2.7%, respectively. The average species
F1-score was 68.56 ± 2.6% for RF and 64.64 ± 3.4% for SVM. The F1-score ranged between 18
and 100%. Syzygium guineense and Zanthoxylum gilletii are characterized with high accuracy
and low variability, unlike Albizzia gummifera, Anthocleista grandiflora, and Newtonia buchananii,
which had low variability across iterations and also low F1-score (Figure 9).

The undersampled data reported the lowest F1-score, i.e., 45.8 ± 5% for RF, compared
to SVM’s 48 ± 6%, unlike the other datasets where RF performed better than SVM. The
original dataset’s F1-score were 63.8 ± 3.9% for RF and 62.7 ± 4.3% for SVM. The over-
sampled dataset achieved F1-score values of 67.8 ± 4.1% and 63.6 ± 3.7% for RF and SVM,
respectively (Figure 10).

The McNemar’s test, applied to test whether there was a significant difference between
the two best maps produced by the RF and SVM models, using the combined oversampling
and undersampling techniques, returned a Z value of 0.96 (Table 5). Thus, there were no
significant differences (Z ≥ 1.96) at 95% confidence level, existing amongst the confusion
matrices of the two classifiers.
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Figure 9. Species-level F1-score for the combined oversampling and undersampling technique: (a) RF; (b) SVM.

Figure 10. Model-level F1-score for the datasets: (a) RF; (b) SVM.

Table 5. McNemar’s test results to compare RF and SVM classification models using the combined
oversampling and undersampling technique.

Classifier RF

SVM

CC IC Total
CC 98 11 111
IC 16 52 66

Total 114 63 177
CC stands for correctly classified and IC is for incorrectly classified samples.

3.5. The Spatial Distribution of the Endangered Tree Species

In showing the distribution of tree species in the study area, two classified maps, i.e.,
one by RF and the other by SVM, produced using the combined technique dataset, whose
F1-score was closest to their model mean are used (Figure 11). These maps show that tree
species distribution is not haphazard. In the northwestern part of the study area is the
Macaranga kilimandscharica. Syzygium guineense is mostly occupying the lower and central
parts of the study area. Zanthoxylum gilletii covers the central-eastern and western parts.
A combination of other vegetation types can be seen dominating mostly the lower parts
of the study area. The other tree species, i.e., Albizzia gummifera, Anthocleista grandiflora,
Prunus africana, and Newtonia buchananii are found throughout the study area.

The RF and SVM classifiers show differences in the size of each class. Macaranga
kilimandscharica shows an area of 45.2 ha and 44.1 ha for RF and SVM classifier, respectively
(Table 6). Zanthoxylum gilletii reported 7.1 ha for RF and 7.2 ha for SVM, a negligible
difference of 0.1% between them. For Syzygium guineense, there was a 0.8% difference
between the two classifiers: RF recorded 9.6 ha and SVM recorded 10.6 ha. Newtonia
buchananii reported a difference of 0.4 ha between the two classifiers. Anthocleista grandiflora
had the second largest difference between the two classifiers, 1.8 ha, i.e., 13.4 ha for RF and
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15.2 ha for SVM. Other woody vegetation showed a difference of 1.9 ha between RF and
SVM classifiers. Shadow recorded 10.6 ha and 11.1 ha for RF classifier and SVM classifier,
respectively. The areal coverage of Prunus Africana and Albizzia gummifera was insignificant
compared to that of the other classes.

Figure 11. Classification maps of tree species in Mt. Kenya Forest, obtained using (a) random forest
and (b) support vector machine.

Table 6. Area coverage in hectares and percentage of the classes using RF and SVM classifiers.

Classes
RF Classified

Area (ha)
Percentage (%)

SVM Classified
Area (ha)

Percentage (%)

Macaranga
kilimandscharica 45.2 34.8 44.1 33.9

Zanthoxylum gilletii 7.1 5.5 7.2 5.6
Syzygium guineense 9.6 7.4 10.6 8.2

Newtonia
buchananii 23.6 18.1 23.2 17.8

Anthocleista
grandiflora 13.4 10.3 15.2 11.7

Prunus africana 0.0 0.0 0.0 0.0
Albizzia gummifera 0.0 0.0 0.0 0.0

Other woody
vegetation 20.5 15.8 18.6 14.3

Shadow 10.6 8.1 11.1 8.5

Total 130 100 130 100
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4. Discussion

4.1. Spectral Separability between the Tree Species

This study aimed to evaluate the impact of imbalanced data in mapping endangered
trees species in a selectively logged sub-montane heterogeneous tropical forest using
random forest and support vector machine classifiers, and WorldView-2 multispectral
imagery. As seen in Figure 4, there are spectral overlaps within the tree species classes. The
overlaps could be due to, among other reasons, the study area’s complex forest structure,
because some stands were multi-storied and also some tree crowns were relatively small,
thus the presence of mixed pixels [5]. This led to some of the misclassifications between
species, which was in agreement with their inter-specific separability (Table 2). Newtonia
buchananii, Anthocleista grandiflora, and Albizzia gummifera are examples of tree species with
significantly low F1-scores. The J–M distance values showed that the species were not as
separable as Syzygium guineense, Zanthoxylum gilletii, and Macaranga kilimandscharica, which
indicated higher spectral separability values and were more separable, and therefore had
higher F1-score values. In addition, very steep mountainous terrain and dense forest made
it difficult to collect data in the field. This may have interfered with the quality of ground
data used in the validation process. This research observed that higher spectral similarity
within a class and higher spectral variability among classes led to higher classification
accuracy. However, the contribution of the within- and among-species spectral variability
on the classification accuracy of tropical tree species is poorly understood [17].

4.2. Relative Importance of Variables

In the classification process, the study was able to single out the most valuable bands,
by making use of the variable importance (VI) measurement in the RF algorithm. RF
uses the mean decrease in accuracy (MDA) and mean decrease in Gini (MDG) to evaluate
the explanatory power of the input variables [37]. Generally, the best four bands in the
classification process were the Red, Red Edge, Near Infrared 1, and Near Infrared 2 bands.
This shows that both the visible and the infrared portions of the electromagnetic spectrum
are quite relevant in the mapping of endangered tree species in the study area. The
MDA was also used to show bands that were crucial in detecting particular tree species
(Figure 7). However, both MDA and MDG are biased in adapting to the variables in the
tree structure, hence larger values are provided than the actual value. Strobl et al. [45]
point out that two indicators are unable to determine the explanatory power of variables
in the classification process because they cannot distinguish false correlations due to
data characteristics. Strobl et al. [45] developed a technique to evaluate the influence of
conditional variable classification to solve this problem, but the technique is inconsistent in
grasping the explanatory power variables [46]. Hur et al. [46] developed another technique
based on the Shapley Value method on random forest regression. The determination of the
relative importance of variables remains an active area of research.

4.3. Class Imbalance

The effect of unequal training class sizes for species classification from WorldView-2
imagery was reported in Section 3.4. The original dataset was imbalanced despite efforts
to add samples of rare species, such as Prunus Africana and Albizzia gummifera, whose
density has diminished in MKFR. The variation in the sample size across classes in the
original dataset increased the rate of classification errors [26]. As expected, tree species with
larger sample sizes had positive prediction bias, i.e., commission errors were greater than
omission errors, and vice versa [18,40]. In addition„ species with small samples recorded
high F1-score variability across iterations (Figure 9). The degree of bias in the model was
minimized when the training data size was standardized across classes. The model that
used the original dataset reported a reduced overall accuracy. In recent times, research
shows that balanced data offers better overall classification performance [26,40]. The F1-
score for the combined technique model was 68.56 ± 2.6% and 64.64 ± 3.4% for RF and SVM,
respectively, whereas the unbalanced, original dataset reported F1-scores of 63.8 ± 3.9%
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for RF and 62.7 ± 4.3% for SVM. Previous studies have shown that the k-NN (k-nearest
neighbor), RF, and SVM algorithms are affected by imbalanced training data [26]. Although
these results are consistent with other studies using similar classification algorithms, they
may not be directly comparable because of factors such as differences in the topography
of the study area, size of samples, species diversity in the study area, a continuous closed
canopy, size of the study area, and spectral and spatial resolutions of the images used.

The undersampling techniques reduce observation numbers from the majority class to
make the dataset balanced. This technique may lead to the loss of important information
in the training data. According to Graves et al. [18], lowering the number of the sampled
common tree species while maintaining the species’ full range spectral variability solves the
reduced overall accuracy problem. Spectral variability in data can be retained when using
SVM algorithms by selecting data points on the border between classes to delineate the
separation between them [44], or to iteratively prune the support vectors to attain the best
separation between classes [47]. Another way is the manipulation of the SVM algorithm by
adjusting margin variable misclassification costs, e.g., the cost of misclassifying a feature
in the minority class is set higher than that of misclassifying a feature in the majority
class [26]. However, the effects of these selection processes on bias in models and successive
application to larger areas with many classes have not been quantified [18].

Apart from the techniques applied in this study to reduce class imbalance, other
methods, e.g., balanced class weight, and generating synthetic data of the minority class
that are similar to the original minority examples in the feature space using methods
such as the synthetic minority over-sampling (SMOTE) technique [40], among others, can
be used. In this study, the idea was to combine the undersampling and oversampling
techniques to create a robust balanced dataset fit for model training.

According to Krawczyk [48], the imbalanced classification problem is not solved; at a
time when we have such terms as big data, large neural network models, deep learning,
and models such as the xgboost, solutions should be identified and addressed specifically
for each training dataset [48].

4.4. Model Performance

In using an imbalanced dataset, the final classification under-predicts the classes with
fewer samples, thus minority classes will have less effect on the accuracy compared to
larger classes [49]. Therefore, test samples belonging to smaller classes are more often
misclassified than those belonging to the dominant classes [26,40]. In such a case, a model
may report a high accuracy level, but the map would not be useful. Accuracy is appropriate
for balanced datasets but not good for imbalanced ones [18]. In some cases, the accuracy of
samples in the smaller classes can be of greater importance than the contrary case [26,40].
This is the case in this research because the mapping of sparse tree species, e.g., Prunus
Africana and Albizzia gummifera is crucial.

The balancing of the original dataset slightly improved the F1-scores for RF and SVM
classifiers. Omission errors were recorded for each species, but Newtonia buchananii had
the highest omission errors in all models. Newtonia buchananii and Anthocleista grandiflora
exhibited a higher level of spectral confusion. This further degraded the F1-scores in all
models, because tree species with low separability tend to have high misclassification
rates. Furthermore, these tree species exhibited different crown color and density [50]. In
addition„ because random sampling was used to collect field data, tree crowns used to
train and validate the classifications of tree species are not distributed equally over the
forest. The dense forest and rough mountainous terrain limited the places we could access
within the forest. This may as well have influenced the outcome of the classification.

Finally, although error matrices are very crucial in comparing classification results,
they only give an estimate of the accuracy of the classification, determined by the samples
collected from the field. Thus, only biased conclusions can be made from such data [44].
Other metrics of model performance should be tried, e.g., balanced accuracy, bias score, or
the F-score, among others [16].
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4.5. The Spatial Distribution of Endangered Tree Species

This study found that, Macaranga kilimandscharica, an invasive species, mostly occupies
the northwestern part of the study area. This tree species is found in areas that have
experienced heavy intensive logging and forest disturbance. Logging activities have taken
place in this area in the recent past. The RF and SVM classified maps of the study area have
shown that Newtonia buchananii is more dominant than Syzygium guineense, Zanthoxylum
gilletii, Anthocleista grandiflora, Albizzia gummifera, and Prunus africana. Both Prunus africana
and Albizzia gummifera are hard to find in the study area. The same applies to Ocotea
usambarensis. Once dominant in the wet forests of Mount Kenya, the endangered tree
species are now rare.

In cases where differences in accuracy are marginal, i.e., a few percentage points apart,
Janssen and van der Wel [51] propose that a statistically rigorous way must be used to
compare the accuracies, and the results should be expressed with confidence limits. In
this study, the McNemar test was used to evaluate the RF and SVM classification outputs
of the combined technique dataset. The McNemar test was meant to indicate whether
a difference of 3.9% was statistically important. A difference in accuracy between the
confusion matrices of different WorldView-2 spectral subsets is statistically significant
(p ≤ 0.05) if the Z value is more than 1.96 [44] The Z value was 0.96, meaning there is no
significant difference between the two maps. Therefore, either of the two maps can be
considered for conservation purposes.

5. Conclusions

This study aimed to assess the effects of imbalanced data on identifying and mapping
trees species under threat in a selectively logged sub-montane heterogeneous tropical forest
using RF and SVM classifiers and WorldView-2 multispectral imagery. The study obtained
average F1-scores of 68.56 ± 2.6% and 64.64 ± 3.4% for RF and SVM, respectively, for
the best model, the combined oversampling and undersampling technique. This was an
improvement from the original imbalanced dataset. The F1-scores reported were directly
related to the differences between the spectral variability within and among species. The
most important spectral bands identified to have played a major role in mapping the
endangered tree species in the study area were the Red, Red Edge, Near Infrared 1, and
Near Infrared 2 bands. The tree species portrayed significant spectral overlaps, and this
may have led to misclassification errors between classes. As well, difficult mountainous
terrain and dense forest made it hard to collect data in the field, and this may have interfered
with the quality of data, and thus contributed to increased classification errors.

Given the results presented here, the approach used in this study may serve as the
basis for forest recovery initiatives in MKFR, an ecosystem that is considered a biodiversity
hot-spot for conservation priorities. However, these applications are based on models of
species classification that are not perfect [18]; therefore, more methods need to be developed
to overcome the challenges caused by imbalanced data. Further research will target a larger
study area and a higher number of tree species using VHR satellite data and object-based
image analysis techniques.
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Abstract: Species identification in Quebec, Canada, is usually performed with photo-interpretation at
the stand level, and often results in a lack of precision which affects forest management. Very high
spatial resolution imagery, such as WorldView-3 and Light Detection and Ranging have the potential to
overcome this issue. The main objective of this study is to map 11 tree species at the tree level using an
object-based approach. For modeling, 240 variables were derived from WorldView-3 with pixel-based
and arithmetic feature calculation techniques. A global approach (11 species) was compared to a
hierarchical approach at two levels: (1) tree type (broadleaf/conifer) and (2) individual broadleaf (five)
and conifer (six) species. Five different model techniques were compared: support vector machine,
classification and regression tree, random forest (RF), k-nearest neighbors, and linear discriminant
analysis. Each model was assessed using 16-band or first 8-band derived variables, with the results
indicating higher precision for the RF technique. Higher accuracies were found using 16-band instead
of 8-band derived variables for the global approach (overall accuracy (OA): 75% vs. 71%, Kappa
index of agreement (KIA): 0.72 vs. 0.67) and tree type level (OA: 99% vs. 97%, KIA: 0.97 vs. 0.95).
For broadleaf individual species, higher accuracy was found using first 8-band derived variables (OA:
70% vs. 68%, KIA: 0.63 vs. 0.60). No distinction was found for individual conifer species (OA: 94%,
KIA: 0.93). This paper demonstrates that a hierarchical classification approach gives better results for
conifer species and that using an 8-band WorldView-3 instead of a 16-band is sufficient.

Keywords: tree species; object-based; classification; mapping; WorldView-3; LiDAR; machine learning

1. Introduction

Forest characterization in Quebec, Canada, is usually assessed based on photo-interpretation using
three-dimensional appearance. This approach has been used since the last century and is still in use for
forest planning and forest composition analysis [1]. New techniques, such as image enhancement,
have been developed over the years using aerial imagery and user-friendly software, and the
information provided has been well accepted by and proven useful for foresters [2,3]. However, species
identification with these newer methods still lacks precision, and varies among photo-interpreters,
mainly because this characterization is made at the stand level, as species identification at the tree level
would be time consuming and expensive [3,4]. Recently, very high spatial resolution satellite imagery
has become more available and could be used to classify tree species at tree level across different
biomes [5–7]. In addition, with an airborne laser scanner or “LiDAR” (light detection and ranging),
an infrared laser can scan the surface of the earth, generating a 3D point cloud that can be used to
analyze the tree structure [8,9].
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Furthermore, LiDAR data allows a forest to be characterized at the tree level, which can lead to a
better estimation of timber volume and hence better planning by foresters [10]. Individual tree crown
(ITC) segmentation is being studied more and more [11–14]. Forest segmentation can be done through
two different techniques: (1) point cloud-based and (2) raster-based, using the canopy height model
(CHM) [8,15,16]. The first technique generally gives good results, but it is time-consuming, complex
and requires advanced LiDAR sensors [17]. The second technique has been studied much more, both
at the stand level [18,19] and at the tree level [20–22], as there are a variety of algorithms that provide
rapid ITC segmentation, which gives satisfactory results [14,16,23].

Many studies have investigated tree species mapping at the tree level in a forest environment,
however they usually process hyperspectral data [24–28]. Fewer studies have tried to map tree species
with satellite imagery at tree level scale [6,29–31]. Pham et al. [32] tried to combine imagery, LiDAR
and GIS topography indices, which led to better results than using a single data source. In previous
projects, we used aerial hyperspectral data fused with LiDAR and GIS data to map individual tree
species [4,33,34]. The results showed global precisions of over 93% to classify ash and spruce against
14 other species, and precisions of 62% and higher to classify seven species, in an urban and in a forest
environment, respectively. In the latter case, yellow birch and hemlock were the species identified with
the best accuracy (mean precisions of 77% and 83%, respectively). Both studies were carried out using
an experimental hyperspectral sensor. While using aerial hyperspectral data gives interesting results,
the complexity of the processes, as well as the high acquisition costs over large areas must be taken
into account [35].

The use of satellite multispectral imagery is relevant for tree species mapping. Indeed, satellite
data has been widely used to classify tree species [30,36–39], but since the launch of DigitalGlobe
multispectral sensors, none of these efforts has had the ability to capture very high spatial resolution
(<2 m) that is as detailed as WorldView-3. Moreover, the eight new bands in the Short-Wave Infrared
(SWIR) may improve tree species classification [7,40]. In remote areas, such precise satellite images
can become an alternative to aerial photography [41]. These images provide more spectral bands for
analysis with a relatively competitive acquisition cost. Some studies also combined satellite imagery
with LiDAR and demonstrated that a combination of both can significantly increase the accuracy of
classification [19,38,42,43], but they have essentially worked at the stand level. Others have used
fused data to classify tree species at the tree level using high spatial resolution sensors [32,43,44].
More recently, Li et al. [45] worked on tree species classification with WorldView-3 and LiDAR at the
tree level in an urban context with isolated trees. Nevertheless, the number of tree species in those
studies was limited, usually less than ten species.

Recently, the use of machine learning techniques, including the support vector machine (SVM),
classification and regression tree (CART), random forest (RF), k-nearest neighbors (k-NN) and
linear discriminant analysis (LDA) techniques for classifying forest characteristics have been gaining
popularity. These techniques have been widely used in remote sensing for species classification [46,47],
vegetation health assessment [48–51], biomass mapping [52–54], wetland mapping [55–57] and
landslide risk evaluation [58,59]. He et al. [40] also used RF in a hierarchical approach in order to
classify tree species. However, few studies evaluated the use of multiple techniques in a hierarchical
approach at the tree level [60].

The SVM algorithm, initially suggested by Vapnik [61], maximizes the margin around the
hyperplane that separates features into different domains [62]. For classes that are not linearly
separable, the SVM uses a kernel function, reducing a nonlinear problem to a linear problem based
on a radial basis function or Gaussian kernels. The penalty parameter (C) and the kernel parameter
gamma (γ) for the radial basis function kernel should be optimized, and can heavily impact the
classification accuracy when using SVM models [63]. It is C that determines the trade-off between
margin maximization and training error minimization [64], while the γ parameter defines how far the
influence of a single training example reaches, with low values meaning ‘far’ and high values meaning
‘close’ [65–67].
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The CART approach operates by recursively splitting the data until the ending points, or terminal
nodes, are achieved using pre-set criteria [68]. The CART therefore begins by analyzing all explanatory
variables and determining which binary division of a single explanatory variable best reduces deviance
in the response variable [69]. The main elements of the CART, and of any decision tree algorithm,
are: (1) rules for splitting data at a node based on the value of one variable; (2) stopping rules for
deciding when a branch is terminal and cannot be split anymore; and (3) a prediction for the target
variable in each terminal node.

Introduced by Breiman [70], RF is a classifier that evolves from decision trees. It actually consists
of many CARTs. To classify a new instance, each tree is trained with a randomly selected subset of
the training samples and variables based on bootstrap sampling, and then the final classification is
conducted based on a majority vote on the trees in the forest [71]. Although the classifier was originally
developed for the machine learning community, thanks to its accuracy, interest in RF has grown rapidly
in ecology [72] and in the classification of remotely-sensed imagery [73].

The k-NN [74] algorithm is a non-parametric method that assigns to an unseen point the dominant
class among its k-nearest neighbors within the training set. Unlike most other methods of classification,
k-NN falls under lazy learning, which means that there is no explicit training phase before the
classification. The classification with k-NN is carried out by following three steps: (1) compute a
distance value between the item to be classified and every other item in the training data set; (2) choose
the k-closest data points (the items with the k-lowest distances); and (3) conduct a “majority vote”
among those data points to decide the final classification.

LDA has been widely used in various tree species classification studies [75–78]. LDA projects
the original features onto a lower dimensional space by means of three steps [79]: (1) calculate the
separability between different classes, called the between-class variance; (2) calculate the distance
between the mean and sample of each class, called the within-class variance; and (3) construct
the lower dimensional space which maximizes the between-class variance and minimizes the
within-class variance.

The main objective of this study is to map 11 tree species using an object-based approach with
WorldView-3 imagery and LiDAR data. Object-based image analysis brings the capacity to group
homogenous pixels into meaningful objects based on their spectral values, which can then be analyzed
by their shape, size, texture and contextual information [19], in contrary to the pixel-based approach [80].
We implemented modeling techniques in a global and hierarchical approach. More specifically, this
study aims to (1) delineate ITC using fused data (WorldView-3 imagery and LiDAR data); (2) compare
models at each classification level (global and hierarchical); (3) evaluate classification improvement
using 16-band instead of 8-band WorldView-3; and (4) apply the best models to map tree species
over the study areas. This implies the ability to delineate ITCs in order to extract spectral signatures,
and to assign a specie class to each object. For ITC segmentation, we used three different techniques.
We propose an ITC segmentation using fused data (CHM and satellite imagery) to refine tree species’
crown delineation [32]. The classification of species is divided into three parts, on two levels: (1) tree
types and (2) broadleaf and conifer tree species. In the present study we used five different models
(SVM, CART, RF, k-NN and LDA) to overcome the uncertainty derived from the use of an individual
model, given that the results can vary depending on the modeling technique.

2. Data and Methods

2.1. Study Areas and Data

2.1.1. Study Areas

The study was conducted on the Kenauk Nature property, which is located in the south-west
region of the province of Quebec, Canada (N 45◦52′1”–45◦39′36”, W 74◦58′22”–74◦44′7”) (Figure 1).
This private property is over 250 km2, has a mean elevation of 226 m and is composed of a diverse
broadleaf forest including more than 25 tree species [81]. Medium slopes characterize its topography.
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For the purposes of the project and due to time limitations, three study areas totaling 26.1 km2 were
selected to collect field data, train and apply the models. Those areas contain mature forest stands
composed of dominant tree species with diverse structural stands and topography.

 
Figure 1. Study areas (delineated in white) at the Kenauk Nature property. The background image
displays WorldView-3 in false colors (infrared, green and blue).

2.1.2. Imagery and Airborne Laser Scanner Data

Very high spatial resolution 16-band WorldView-3 imagery was acquired for the study areas
on 26 August 2016 with a nadir view angle of 12.9◦ and a solar elevation of 54.3◦ (Table 1).
Two cloud-free images were collected and preprocessed. The images were geometrically corrected with
Rational Polynomial Coefficients (RPCs), radiometrically calibrated (radiance to reflectance) and then
pansharpened using the least squares algorithm [82]. No atmospheric correction or dehaze reductions
were applied since many artifacts were produced, and this preprocessing has proven to be less effective
than pansharpening for tree classification purposes using high spatial resolution imagery [6,30,82].
The orthorectification was done using a 5 m LiDAR Digital Elevation Model with OrthoEngine of PCI
Geomatica [6,7]. For the purpose of the study, all sixteen bands were rescaled to 30 cm, similarly to Li
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et al. [45]. Finally, the images were mosaicked with a bundle adjustment and then fitted with the CHM
using 100 tie points to reduce the offset in the canopy [83]. A second-order polynomial regression
was used to create the final mosaic with a root mean square error of 0.97 m. Inspired by Zhou and
Qiu [84] and Hartling et al. [31], deep shadow was extracted from the mosaic using a maximum
likelihood classification with a shadow index [85]. The Bhattacharyya index showed a separability
of 1.94 to detect deep shadow against other elements. This result was used to mask the mosaic for
subsequent processes. Those preprocesses were carried out using PCI Geomatica (version 2016) and
ENVI (version 5.4).

LiDAR data were acquired on 17 June 2015, with a point density of 10 pts/m2. The sensor used
was a Riegl Q-780 system with a pulse repetition frequency of 400 kHz and a laser wavelength of
1064 nm. For the acquisition, a Cessna 172 airplane was flown at a mean height of 1200 m above ground
level with a flight speed of 185 km/h. The absolute accuracy in xyz was 30 cm. The point cloud was
classified by the provider into five classes: Unassigned, Ground, High vegetation, Building and Water.
We used the Ground class (lowest points) to create a 50-cm Digital Elevation Model (DEM) and the
High vegetation class (highest points) to produce a 50-cm Digital Surface Model (DSM). We subtracted
the DSM from the DEM to obtain the 50-cm CHM. This procedure was performed using the LAS
Dataset To Raster function and the Raster Calculator tool in ArcGIS Desktop 10.6.

Table 1. WorldView-3 channels characteristics.

Band Spectrum
Wavelength
Range (nm)

Wavelength
Center (nm)

Spatial Resolution
(m)

0 Panchromatic 450–800 625 0.31

1 Costal 400–450 425

1.26

2 Blue 450–510 480
3 Green 510–580 545
4 Yellow 585–625 605
5 Red 630–690 660
6 Red-edge 705–745 725
7 Near-infrared #1 770–895 832.5
8 Near-infrared #2 860–1040 950

9 Short-Wave
Infrared #1 1195–1225 1210

3.89

10 Short-Wave
Infrared #2 1550–1590 1570

11 Short-Wave
Infrared #3 1640–1680 1660

12 Short-Wave
Infrared #4 1710–1750 1730

13 Short-Wave
Infrared #5 2145–2185 2165

14 Short-Wave
Infrared #6 2185–2225 2205

15 Short-Wave
Infrared #7 2235–2285 2260

16 Short-Wave
Infrared #8 2295–2365 2330

2.2. Field Survey and Data Collection

A total of 515 dominant trees were identified and positioned in the study areas using a high
precision Trimble Pro6H GPS with a mean precision of 1 m after post-processing. We targeted
individual trees or groups of trees presenting the same species with a minimum crown diameter
of 5 m. Geographical coordinates and physical parameters, such as tree heights and crown sizes,
were measured or interpreted from WorldView-3 and aerial images [1]. Based on GPS positions,

261



Remote Sens. 2020, 12, 3092

a manual delineation was made by photo-interpretation to fit the crown to the correct tree on the
WorldView-3 images (Figure 2) [6,7,86]. Thus, 185 broadleaf and 153 coniferous tree samples (total
of 338) remained after this manual delineating exercise, as only visible and identifiable crowns were
kept (Table 2). Mean crown sizes vary between species (22–85 m2) and the mean height is over 16 m in
all cases.

 

Figure 2. Manually delineated crowns by photo-interpretation and their corresponding GPS points
collected during the field campaign. The background image displays WorldView-3 in false colors
(infrared, green and blue). The species’ abbreviations are described in Table 2.

Table 2. Distribution of the different tree species samples (train and test) and tree crowns statistics of
each species. BL: Broadleaf, CF: Conifer.

Species Acronym Type
Tree Crowns Statistics

Train Test Total
Mean Size (m2) Mean Height (m) SD Height (m)

American Beech AB BL 32 21 4 31 10 41
Big Tooth Aspen BT BL 42 25 4 13 5 18

Red Oak RO BL 60 24 3 24 10 34
Sugar Maple SM BL 85 24 3 37 9 46
Yellow Birch YB BL 63 22 4 36 10 46
Balsam Fir BF CN 22 16 3 13 3 16

Eastern White Cedar EC CN 31 21 5 16 5 21
Eastern Hemlock HK CN 39 23 3 29 9 38

Red Pine RP CN 59 28 3 15 5 20
White Pine WP CN 64 26 4 38 10 48

White Spruce WS CN 35 20 5 7 3 10

Total 259 79 338

2.3. Derived Variables

WorldView-3 imagery data were used to extract, calculate and adapt variables based on the
available literature. The details of these variables are given in Appendix A. The spectral variables were
computed from the 16 bands so as to cover diverse spectral elements (vegetation, wetness, openness
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etc.). Spectral variables of reflectance values were calculated by pixel [6] and object-based methods
using R [87], SAS software [88] and eCognition Developer. Object-based indices consist of a series of
customized arithmetic features calculated using the mean of pixel values within an object of specific
bands [16,19,80]. Arithmetic features were also calculated for the 95th percentile highest pixels within
each object in order to use the brightest (sunlit) parts of each crown. Although they could be correlated
with pixel-based indices, arithmetic features are quick to calculate, which is a significant advantage
when working with massive data. Textural variables were extracted using eCognition Developer 9.2.

2.4. Tree Crown Segmentation from Fused Data

The first step of the object-based approach is to segment the territory into contextual objects,
such as single tree crowns. ITC segmentation using CHM is challenging in complex forest stands [89].
We decided to analyze trees over 17 m in height to reduce the effect of understory on canopy gaps [29,90]
and as a trade-off based on the field survey (see Table 2). A 2 m buffer around mature trees (>17 m) was
incorporated to keep pixels that are part of the same crown but that have smaller heights; those less
than 7 m in height were eliminated and used as a mask for further processing [16,29]. Preprocessed
CHM is usually utilized for ITC segmentation [15,21,91–93]. Various spatial filters with different
window sizes (two or four pixels) and shapes (rectangular or circular) were tested, and the one that
best fit the tree crowns visually was selected. We then combined the original and filtered CHMs with
the Jakubowski et al. [16] method to keep both the edges of the original CHM and the smooth central
crown of the filtered CHM. Topological operations were also undertaken to merge small crowns [93].

Three CHMs were evaluated in this study: original, filtered and corrected. Similarly to Pham et
al. [32] and Koch et al. [15], an inverse watershed segmentation algorithm was used within eCognition
Developer. This algorithm uses a CHM to find local maxima to grow a region according to the heights
of neighboring pixels until they touch another object [94]. Several parameters were tested in order to
select the optimal values for the height differences between local maxima and minima and object areas,
using trial and error with various combinations. A neighborhood of eight pixels was used in order
to produce disconnected objects. Three thresholds were used; considering the high resolution of the
CHM (50 cm), these were: (1) an overflow area of 25 pixels (6.25 m2); (2) an overflow depth (difference
between maximum and minimum height) of 0.5 m; and (3) an overflow volume of 15 m3 were selected.
Objects that were below those thresholds were merged to their neighboring objects.

The approach based on the CHM depends on height variation detection and is therefore related to
the shape of the crowns. However, different neighbor tree species may have overlapping branches and
could produce confusion when using imagery data to classify tree species. We added a multiresolution
segmentation to make the objects generated with CHM more precise by using imagery at a sublevel [5,6].
This segmentation is a bottom-up region merging technique. Combining CHM and imagery to make
ITC segmentation allows pure species objects to be delineated. The multiresolution segmentation
algorithm with the most significant bands identified with statistical analysis was used, as suggested
by Koch et al. [15] (Section 2.5.1). This algorithm requires several empirical parameters, including:
(1) the weights of each selected bands; (2) a color/shape weight associated with the spectral/shape
homogeneity; (3) a compactness/smoothness weight according to the object shape; and (4) a scale
parameter referring to the average size of objects. In this study, to integrate non-correlated visible and
infrared information, and by trial and error, four bands (3, 5, 6 and 7) were selected and assigned the
same weight (1). The weights of color and compactness were set as 0.3 and 0.7, respectively, in order to
insist on spectral variations while retaining more compact objects such as tree crowns. A scale parameter
of 100 was selected with visual assessments in order to limit under-segmentation. It has been shown
that under-segmentation affects the classification accuracy more than over-segmentation [95]. Those
parameters were empirically chosen to ensure best results for ITC segmentation [19]. The performance
of ITC segmentation based on CHM alone and then with imagery was assessed using 30 random
non-isolated crowns with photo-interpretation.
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We first evaluated if a segment represented a single crown. Considering the offset between the
data and the complexity of the forest structure, a single crown was identified when the segment
contained at least 75% of the corresponding tree [15]. Then, we evaluated the number of species
encompassed within the segment. The ITC segmentation technique which gave the best accuracy was
retained and used for classification over the study areas.

2.5. Classification Models

2.5.1. Variable Selection

In accordance with the literature, a total of 240 variables were used as predictor variables, including
64 band statistics (mean, skewness, standard deviation), 112 spectral indices and 64 textures (detailed
in Appendix A). Variable selection is a crucial procedure before modeling. Using a large number of
predictor variables is time consuming, requires high computing capacity, reduces the reproducibility,
and the results cannot be easily interpretable. Furthermore, the use of a large number of predictor
variables does not necessarily produce the best results, since the model performance can vary widely
according to the variables utilized.

As a first step, outliers were removed from the dataset, identified based on the work of Brillinger [96].
We first calculated the interquartile range for our data. Using that range, only the values falling
between the median value plus 2.5 times the interquartile, and the median value minus 2.5 times the
interquartile were conserved. A datum was removed after it had been attributed to an outlier for more
than eight distributed variables.

Secondly, to reduce the dimensionality of the data we proceeded with a correlation analysis to
avoid redundant information. Pairs of variables with correlation coefficients greater than 0.85 were
considered to be highly correlated, and the variable presenting the highest mean correlation with
the remaining predictor variables was discarded from further analysis [97]. To simplify the analysis,
those procedures were applied to parametric and non-parametric models. For all models, except LDA,
further procedures were applied. At the end of the correlation analysis, this limited number of variables
were introduced as input variables in the Boruta algorithm [98]. Boruta is a wrapper algorithm that
seeks to capture all the important, interesting features in a dataset with respect to a variable outcome.
The 15 most significant variables were selected. Finally, as machine learning algorithms do not always
retain the relevant variables [99,100], we created a loop among the 15 selected variables from Boruta to
evaluate the performance of models created by all possible combinations of a number of variables (3,
4, 5, 6, 7, 8, 9 and 10). For the LDA, variable selection was done with the Stepdisc procedure in SAS
using the stepwise selection method and a variable entry and staying significance level of 0.005. Those
iterations were processed within the training dataset. We then retained the combination that gave the
best performance for each classification technique. Those procedures were independently done for
16-band and 8-band WorldView-3 derived variables.

2.5.2. Modeling Process

We began by attempting to model all 11 tree species, five broadleaf and six coniferous, in a global
approach. Next, we used a hierarchical approach with group classifications, similarly to Wessel et
al. [60]. In the first step, we attempted to separate the two tree types (broadleaf and conifer trees). In the
second step, we proceeded to the modeling of individual tree species belonging to each type. For the
classification, four modeling procedures were implemented under R: RF [101], SVM [62], k-NN [102],
CART [102,103] and one under SAS: LDA [76,77].

To avoid overfitting of the classification models, independent validation was conducted by
dividing the available reference data into two sets, where 80% of the total samples were used for
model calibration [25] and the remaining samples were used as test set (Table 2). Tuning was applied
differently on each model.
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To find the best gamma and penalty parameters for SVM we used a grid search over a supplied
parameter range, and the combination of parameters that maximized model performance was retained.
The CART model was tuned with different complexity parameter (cp) values that were estimated by
testing cp values using cross-validation approaches. The best cp was then defined as the one that
maximized the cross-validation accuracy. For the RF model, we selected the number of trees to grow
(ntree) as the number from which the error converged and remained stable based on the out of bag
(OOB) error. Careful selection of this parameter is key, as we want to have enough trees to stabilize the
error but not so many that we over-correlate the ensemble. On the other hand, the number of variables
randomly sampled as candidates at each split (mtry) was selected based on the value that minimised
the OOB error and maximised the model performance. The neighborhood parameter (k) for the k-NN
algorithm was selected based on the model achieving the best accuracy when varying k. For the LDA,
selected variables were included using the Discrim procedure in SAS with a parametric method based
on multivariate normal distribution within each class to derive a linear discriminant function [88].
Five models were developed in order to compare their performance using various combinations of
predictor variables and tuning parameters. To determine if the eight extra bands of WorldView-3
imagery (SWIR 1 to 8) would improve classification accuracy, those procedures were first applied with
variables derived from 8-band WorldView-3 and then repeated with variables derived from 16-band
WorldView-3. Once the best-performing model was identified it was used to map the tree species’
distribution throughout the study areas.

2.6. Model Performance

The classification performance of each model was assessed based on confusion matrices computed
using reference data (20%) selected as a test dataset. Comparing the observed and the predicted
data allowed us to assess producer and user accuracies. Overall accuracy (OA) was calculated by
averaging accuracies among all classes [104]. We calculated Cohen’s Kappa index of agreement (KIA)
to evaluate the possibility of an agreement occurring simply by chance [105]. The KIA is a robust
statistic useful for reliability testing. Similar to correlation coefficients, it can range from−1 to +1, where
0 represents the amount of agreement that can be expected from random chance, and 1 represents
perfect agreement [106,107]. We compared all the models and selected the optimal ones offering the
highest OA and KIA.

3. Results

3.1. Individual Tree Crown Segmentation and Assessment

Three CHMs were used in the ITC segmentation: the original CHM, a filtered CHM and a
corrected CHM. Figure 3 presents a 3D profile for each CHM. It shows that the original CHM has a
high z range and the filtered CHM smooths the z variation. The corrected CHM is composed of both
original local variety and filtered CHM smoothness.
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(a) 

(b) 

(c) 

Figure 3. The three canopy height models (CHMs) used to make individual tree crown (ITC)
segmentation. (a) original CHM; (b) filtered CHM; and (c) corrected CHM.

As a second step, imagery was added to the ITC segmentation. The assessment shows similar
results for filtered and corrected CHMs (Table 3). They produced better delineation than the original
CHM for single crown (63% vs. 40%) and single species (73% vs. 70%) segmentation. Our results
indicate that the use of CHMs alone for ITC segmentation can lack precision, especially when different
species’ crowns can be interlaced or when their neighbors are at the same height. The combination of
filtered CHM and imagery showed the best result for single crown delineation (68%). Combinations of
original and corrected CHMs with imagery indicated that 56% and 64% of the objects fitted a single
crown, respectively, showing over-segmented crowns. ITC segmentation assessment showed that
the best results for single species were found by combining a corrected CHM with imagery. For this
combination, 82% of the objects represented a single species, in contrast to original (74%) and filtered
(75%) combinations. For the residual objects (18%), a majority showed a single species for 50% of their
area. Figure 4 shows an example of ITC segmentation using a corrected CHM combined with imagery,
the combination chosen for tree mapping.
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Table 3. Individual tree crown assessment comparing segmented objects produced with original,
filtered or corrected canopy height model (CHM) in combination with imagery.

Original Filtered Corrected
CHM CHM+Imagery CHM CHM+Imagery CHM CHM+Imagery

Single crown 40% 56% 60% 68% 63% 64%
Single species 70% 74% 73% 75% 73% 82%

Figure 4. Individual tree crown segmentation based on LiDAR (canopy height model) and WorldView-3
imagery. The background image displays WorldView-3 in true colors.

3.2. Classification and Assessment

For a visual analysis, the mean spectral values were calculated for each tree species of the training
dataset (Figure 5). The species are most discriminated in the NIR region. Conifers (Figure 5B) are more
separable than broadleaf species (Figure 5A), as their curves are more distinguishable.
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Figure 5. Spectral signatures for selected broadleaf (A) and conifer (B) species with 16-bands
WorldView-3 (WV3). The points are the mean spectral values of the training samples. The spectral
signatures are separated into four parts: visible, Red-edge (RE), Near-infrared (NIR) and Short-Wave
Infrared (SWIR). The species’ abbreviations and the number of training samples used to calculate the
mean are described in Table 2.

Variable selection was conducted prior to the classification. From the 240 original derived variables,
50 and 75 were not correlated using the first eight bands and using all the bands, respectively, and
were processed in the Boruta algorithm. The 15 most significant variables were then selected and
utilized to run all possible combinations for all models except LDA. Among those 15 variables, three
were especially notable: (A) the ARI_mean_95pc_higher index (Anthocyanin Reflectance Index); (B)
the GLCM_Entropy_Band_7; and (C) the GMI2_mean index (Simple NIR/Red-edge Ratio) (Figure 6).
The ARI (Anthocyanin Reflectance Index) was calculated with the 95th percentile highest pixels and
allows an estimation of the anthocyanin (water-soluble vacuolar pigments) accumulation in intact
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stressed and senescing leaves [108]. Broadleaf trees have higher values than conifers, which is consistent
with the fact that leaves, in contrary to needles, accumulate more anthocyanin to protect them from
sunlight [109]. The GLCM (Grey Level Co-occurrence Matrix) entropy texture index was calculated
using band 7 (832.5 nm); this index has a high value when all pixels are of similar magnitude [110,111].
Its values show that Sugar Maple (SM) species presents the most uniform pattern. A crown with small
bumps and shallow cavities, with an appearance similar to that of a broccoli, are indeed characteristics
used in photo-interpretation to identify this species [112]. The GMI2 (Gitelson and Merzylak Index)
index is a simple ratio that allows chlorophyll content estimation in a wide range of pigment variation
using insensitive (B7: near-infrared) and sensitive (B6: red-edge) bands and could be considered as an
improved Normalized Difference Vegetation Index (NDVI) [113]. This index shows values that vary
between conifer species. White pine (WP) is the species with the highest value, indicating a higher
chlorophyll content than the other conifer species [114].

Figure 6. Boxplots of the (A) ARI_mean_95pc_higher index; (B) GLCM_Entropy_Band_7;
and (C) GMI2_mean index for tree types, broadleaves and conifers, respectively. The species’
abbreviations and the number of training samples used to calculate the mean are described in
Table 2. The variables’ abbreviations are described in Appendix A.
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For the global modeling approach, RF (ntree: 2000; mtry: 3) was selected as the best model based
on the performance assessment, as it gives an OA of 75% and a KIA of 0.72 when using 16-band derived
variables (Table 4). This performance was achieved using nine variables. SVM also performed well,
with 71% OA and a KIA value of 0.68. The k-NN, CART and LDA approaches offered less-precise
classification, with OAs below 61%. All the performance models declined or were stable when using
8-band instead of 16-band derived variables, except for LDA, which increased by 5% (61% to 66%).

Table 4. Summary of the performance assessment using training and test sets with five modelling
techniques (RF, SVM, k-NN, CART and LDA) for global modeling. The modeling technique with the
highest overall accuracy (OA) is highlighted in dark. KIA: Kappa index of agreement.

Based on 8-Band WorldView-3 Based on 16-Band WorldView-3

M
o

d
e

l

Technique No of
Variables

Training Test No of
Variables

Training Test

OA KIA OA KIA OA KIA OA KIA

G
lo

b
a

l

RF 8 100% 1.00 71% 0.67 9 100% 1.00 75% 0.72
SVM 10 93% 0.93 70% 0.66 10 98% 0.98 71% 0.68
k-NN 9 72% 0.68 41% 0.34 10 78% 0.76 48% 0.42
CART 8 74% 0.70 53% 0.48 10 71% 0.68 53% 0.48
LDA 11 96% 0.95 66% 0.61 11 95% 0.94 61% 0.56

For the hierarchical modeling approach, RF (ntree: 2000; mtry: 2) presented the best performance
with OA of 99% and KIA of 0.97 for tree type (broadleaf/conifer) modeling (Table 5). This performance
was achieved using four variables derived from 16-band WorldView-3. If only 8-band instead of
16-band derived variables were used, RF and k-NN achieved the best performances (OA: 97%, KIA:
0.95). All the performance models declined or were stable when using 8-band derived variables. For
broadleaf and conifer species modeling, RF (ntree: 2000; mtry: 2) gave the best performances using
8-band derived variables, with OAs of 70% and 94% and using six and seven variables, respectively
(Table 6). For broadleaf modeling with RF, the KIA value (0.63) indicated a moderate agreement, which
is considered as a substantial agreement as presented by McHugh [106]. The KIA was greater than
0.90 for conifer species, which is considered as an almost perfect agreement [106] with a value of 0.93.
For RF, using 16-band instead of 8-band derived variables did not increase OAs for broadleaves (70%
vs. 68%) or conifers (94% in both cases).

Table 5. Summary of the performance assessment using training and test sets for the five modelling
techniques (RF, SVM, k-NN, CART and LDA) for the tree type (broadleaf/conifer) modeling approach.
For tree mapping, the selected modeling technique with the highest overall accuracy (OA) is highlighted
in dark. KIA: Kappa Index of agreement.

Based on 8-Band WorldView-3 Based on 16-Band WorldView-3

M
o

d
e

l

Technique No of
Variables

Training Test No of
Variables

Training Test

OA KIA OA KIA OA KIA OA KIA

T
re

e
ty

p
e

RF 4 100% 1.00 97% 0.95 4 100% 1.00 99% 0.97
SVM 10 100% 1.00 94% 0.87 6 100% 1.00 97% 0.95
k-NN 6 100% 1.00 97% 0.95 4 100% 1.00 97% 0.95
CART 2 97% 0.93 92% 0.85 4 98% 0.96 92% 0.85
LDA 3 97% 0.93 96% 0.92 4 100% 0.99 97% 0.95
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Table 6. Summary of the performance assessment using training and test sets for the five modelling
techniques (RF, SVM, k-NN, CART and LDA) for broadleaf and conifer species modeling. For tree
mapping, the selected modeling techniques with the highest overall accuracy (OA) for each model are
highlighted in dark. KIA: Kappa Index of agreement.

Based on 8-Band WorldView-3 Based on 16-Band WorldView-3

M
o

d
e

l

Technique No of
Variables

Training Test No of
Variables

Training Test

OA KIA OA KIA OA KIA OA KIA

B
ro

a
d

le
a

f RF 6 100% 1.00 70% 0.63 6 100% 1.00 68% 0.60
SVM 10 96% 0.95 59% 0.49 10 95% 0.94 68% 0.60
k-NN 7 79% 0.73 52% 0.39 6 83% 0.78 36% 0.03
CART 6 75% 0.68 45% 0.31 6 77% 0.70 59% 0.49
LDA 10 94% 0.93 64% 0.53 9 93% 0.91 61% 0.51

C
o

n
if

e
r

RF 7 100% 1.00 94% 0.93 7 100% 1.00 94% 0.93
SVM 10 96% 0.95 89% 0.85 9 100% 1.00 83% 0.78
k-NN 9 89% 0.86 83% 0.79 9 88% 0.84 89% 0.85
CART 5 79% 0.73 77% 0.71 7 81% 0.75 69% 0.60
LDA 8 99% 0.99 80% 0.74 9 100% 1.00 71% 0.63

Without considering the global approach, the three models selected to classify tree species used
a total of 16 variables: nine spectral indices, three simple bands, one standard deviation and three
textures (Table 7). Out of the 16 WorldView-3 bands, a total of nine bands were used in our selected
models (Table 8).

The following error matrices come from the best models (RF) using 16-band and 8-band derived
variables for the global approach and tree type, and for individual species, respectively. Although the
RF model presented an OA of 75% for the global approach, its precision per species fluctuated highly
and varied between 58% for SM and 100% for Big Tooth Aspen (BT), Eastern Hemlock (HK) and White
Spruce (WS) for the user’s accuracy in the confusion matrix, while its producer’s accuracy varied
between 33% for WS and 100% for HK and WP (Table 9). The tree type model (Table 10) had almost
perfect results (OA: 99%), with one error: one conifer was classified as a broadleaf. For broadleaf
species identification (OA: 70%) (Table 11), all species were classified over 70%, except Red Oak
(RO) and Yellow Birch (YB) (67%) for user’s accuracy. For producer’s accuracy, all species were
classified over 60%. For conifer species (OA: 94%) (Table 12), all species were perfectly classified
(100%), except WP with (83%) for user’s accuracy and Eastern White Cedar (EC) and Red Pine (RP)
(80%) for producer’s accuracy.

The RF model was used to map tree types and individual broadleaf and conifer tree species over
the study areas. Figure 7 illustrates the classification map in an island composed of both tree types.
Tall WP trees are especially visible on the border of the island. The inland is mainly made up of SM
and YB. Smaller trees (<17 m) were not mapped.
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Table 8. The number of times WorldView-3 bands were used with the hierarchical approach for
tree mapping.

Band B1 B2 B3 B4 B5 B6 B7 B12 B14

Times used 1 2 10 3 4 3 5 1 1

Table 9. Confusion matrix of the RF model for the global approach. AB: American Beech, BT: Big Tooth
Aspen, RO: Red Oak, SM: Sugar Maple, YB: Yellow Birch, BF: Balsam Fir, EC: Eastern White Cedar, HK:
Eastern Hemlock, RP: Red Pine, WP: White Pine, WS: White Spruce. OA: Overall accuracy, KIA: Kappa
Index of agreement.

Reference

AB BT RO SM YB BF EC HK RP WP WS User’s Accuracy (%)

P
re

d
ic

ti
o

n

AB 7 0 0 0 2 0 0 0 0 0 0 78%
BT 0 4 0 0 0 0 0 0 0 0 0 100%
RO 0 0 5 1 0 0 0 0 0 0 0 83%
SM 1 0 3 7 1 0 0 0 0 0 0 58%
YB 1 0 2 1 7 0 0 0 0 0 0 64%
BF 0 0 0 0 0 2 0 0 0 0 1 67%
EC 1 1 0 0 0 0 4 0 0 0 0 67%
HK 0 0 0 0 0 0 0 9 0 0 0 100%
RP 0 0 0 0 0 0 1 0 3 0 1 60%
WP 0 0 0 0 0 1 0 0 2 10 0 77%
WS 0 0 0 0 0 0 0 0 0 0 1 100%

Producer’s
accuracy (%)

70% 80% 50% 78% 70% 67% 80% 100% 60% 100% 33% OA: 75%
KIA: 0.72

Table 10. Confusion matrix of the RF model for the hierarchical approach: binary classification of tree
type (broadleaf/conifer). OA: Overall accuracy, KIA: Kappa Index of agreement.

Reference

Broadleaf Conifer
User’s Accuracy

(%)

Prediction
Broadleaf 44 1 98
Conifer 0 34 100

Producer’s accuracy (%) 100 97 OA: 99%
KIA: 0.97

Table 11. Confusion matrix of the RF model for the hierarchical approach: broadleaf species classification.
AB: American Beech, BT: Big Tooth Aspen, RO: Red Oak, SM: Sugar Maple, YB: Yellow Birch. OA:
Overall accuracy, KIA: Kappa Index of agreement.

Reference

AB BT RO SM YB User’s Accuracy (%)

Prediction

AB 6 0 1 0 1 75%
BT 1 5 0 0 1 71%
RO 0 0 6 3 0 67%
SM 1 0 1 6 0 75%
YB 2 0 2 0 8 67%

Producer’s accuracy (%) 70% 60% 100% 60% 67% OA: 70%
KIA: 0.63
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Table 12. Confusion matrix of the RF model for the hierarchical approach: conifer species classification.
BF: Balsam Fir, EC: Eastern White Cedar, HK: Eastern Hemlock, RP: Red Pine, WP: White Pine, WS:
White Spruce. OA: Overall accuracy, KIA: Kappa Index of agreement.

Reference

BF EC HK RP WP WS User’s Accuracy (%)

P
re

d
ic

ti
o

n

BF 3 0 0 0 0 0 100%
EC 0 4 0 0 0 0 100%
HK 0 0 9 0 0 0 100%
RP 0 0 0 4 0 0 100%
WP 0 1 0 1 10 0 83%
WS 0 0 0 0 0 3 100%

Producer’s accuracy (%) 100% 80% 100% 80% 100% 100% OA: 94%
KIA: 0.93

Figure 7. Tree species classification map. The background image displays WorldView-3 in true colors.
The species’ abbreviations are described in Table 2.
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4. Discussion

This study compares five different models to successfully map 11 tree species in a natural
North American forest based on WorldView-3 imagery and LiDAR data. The proposed method is
highlighted by three main aspects: (1) an object-based segmentation technique using imagery and
LiDAR; (2) a hierarchical classification approach with more than ten species; and (3) model iterations
for optimal selection.

ITC segmentation is usually implemented when mapping species at the tree level, and studies
have often used LiDAR data [13,119] or imagery [6,11,120]. Using only LiDAR or imagery at the tree
level results in objects with merged tree crowns [121], especially in a mature broadleaf forest like the
one in the present study. Both data types could be used together to limit this effect. As an example,
Heinzel and Koch [121] delineated ITCs using a pixel-based classification within the objects to avoid
neighbor tree errors. While Alonso-Benito et al. [39] used LiDAR and imagery for segmentation, they
did not classify at the tree level. Koukoulas and Blackburn [83] also used both data types, but with a
succession of complex GIS procedures to find treetops. The ITC segmentation proposed here follows
a watershed algorithm [122] from LiDAR data similarly to Weinacker et al. [93] and Koch et al. [26].
Significant bands for tree types (broadleaf and conifer) were then used to refine the segmentation
using a multiresolution algorithm as suggested by Pham et al. [32] and Koukoulas and Blackburn [83].
This approach has similarities with multiscale approaches to separate species in a dense and complex
forest. Indeed, raster-based ITC segmentation approaches do not allow object overlaps yet offer a more
realistic representation for a broadleaf natural forest [16]. As shown in Table 3, the results indicate that
using a filtered or corrected CHM delineates single crowns and species better than using an original
CHM (increased accuracy of at least 20% for single crowns and 3% for single species). When imagery
is added to ITC segmentation it leads to over-segmentation, creating many objects in large crown
cases when compared to their corresponding manually-delineated crowns. Single crown delineation
accuracy could be reduced. In such a situation, one option would be to merge similar small objects [24]
using spectral difference as a second step [80], although over-segmentation is generally preferred to
under-segmentation [40,95]. For this assessment, no isolated tree crowns were used. This could be
another reason why accuracies were not over 70% for single crown delineation. For single species
delineation, its accuracy improved with imagery; up to 9% for the corrected CHM. For filtered and
original CHMs, the accuracy slightly improved with imagery (2–4%). This could be related to the fact
that ITC segmentation using filtered CHM alone produced bigger objects. Those were then divided
into smaller parts that were not entirely covered (at least by 75%) by a single species.

The Kenauk Nature property is composed of a complex mixed forest with more than 25 tree species.
A number of studies have used high spatial resolution sensors to map tree species in a natural forest
environment at the tree level; those included relatively few species recognition [6,29,32,43,44,93,121].
For example, Immitzer et al. [7] classified 10 species while concentrating on pure stands for reference
data, where spectral variability could be limited. Having such a high number of species in our study
area forced us to survey only the dominant species (11). Misclassification could therefore be influenced
by the complex forest environment that made it difficult to target suitable data for references. For this
reason, we manually delineated tree samples by stereo photo-interpretation to have reliable data as
suggested by Immitzer et al. [7].

Previous studies generally limited their classification to a global approach without new machine
learning techniques such as SVM and RF. For example, Waser et al. [6] classified seven species with
an OA of 83% with a global approach using LDA. The present study demonstrates a hierarchical
classification approach as a significant procedure in order to classify and map 11 tree species. This
approach conserves the integrity of the tested algorithms in a hierarchical perspective by first classifying
tree types and then the individual species by their corresponding type. Our results show that the
hierarchical approach gives a better performance than using a single global approach, especially for
conifers, which is consistent with other studies [123]. However, the hierarchical approach needed
more variables (16) than the global approach (nine). Also, the hierarchical approach presented here
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shows that using multiple modeling techniques at each level allows the best models to be selected,
which could vary. Therefore, this approach has the ability to reduce unbalanced accuracies between
species as reported by studies working in a global approach [7]. In our case, RF was the best model for
all levels, followed by SVM. This observation is in opposition to other studies working with coarser
imagery, such as Sentinel-2 [60].

Another interesting element is that this approach allows the selection of relevant variables and
specific model techniques for each classification level. The variables selected for each model were not
the same for broadleaf and conifer species. For example, broadleaf species are more distinguishable
using texture variables because their branch structures are much more varied (Figure 6(B)). A similar
technique was used in Krahwinkler and Rossmann [124] to make a binary decision tree hierarchical
structure by classifying each single species. Our approach permits a simpler way to classify species by
type with satisfying results, and limits the hierarchical structure to two levels. Moreover, instead of
using only the SVM, we tried five different models to optimize the accuracy. On the other hand, it
is worth noting that SVM and RF are generally the best algorithms according to their OA. For tree
species classification, SVM is generally recognized to be more effective when working with a small
number and imbalanced distribution of samples [45]. It should be pointed out that ancillary variables
(topographic position index, topographic wetness index and water proximity, etc.) could also improve
classification accuracy [32,53,125], although it would be important to collect stratified samples evenly
distributed among those variables.

Mitigated improvements were observed when using 16-band or 8-band WorldView-3 derived
variables. The additional eight bands (SWIR 1 to 8) slightly enhanced the global approach (OA: 75%
vs. 71%, KIA: 0.72 vs. 0.67) and tree type classifications (OA: 99% vs. 97%, KIA: 0.97 vs. 0.95),
but did not improve individual species classification. This is partially consistent with other studies
that observed an improved classification accuracy when adding new bands, especially with a large
number of tree species [7,40]. For example, Ferreira et al. [126] simulated WorldView-3 bands for tree
species discrimination and found that incorporating SWIR bands significantly increased the average
accuracy. Despite the low spatial resolution compared to other multispectral bands (5.25 × 7.5 m
vs. 0.84 × 1.2 m), the spectral information of SWIR bands was significant for certain inter-species
separability, despite the fact that their integration should be made with caution when mapping smaller
trees because their crowns could be covered by just a few pixels. Adding the SWIR bands also permitted
to integrate spectral indices that were developed within hyperspectral studies [127–130]. Finally, the
small accuracy improvement shows that it may be sufficient to use only 8-band derived variables to
simplify the method.

The model iterations procedure for optimal selection is an important contribution of this study
compared to other similar studies. Studies generally integrate all variables without an oriented
variable selection or by using complicated methods such as linear mixed-effects modeling and genetic
algorithms [32,45,131–133]. However, this selection aspect is essential to insure reproducibility for
operational purposes [14]. Moreover, our results showed that using fewer variables could actually
improve the classification. We proposed a simple method using all the variables in order to select the
15 most significant variables provided by the Boruta algorithm [98], and eliminated the inter-correlated
variables similarly to Budei et al. [14]. We then computed all combinations to determine the one that
obtained the best results using the least possible number of variables.

Spectral variable calculation techniques are also an important aspect of this procedure. A majority
of the recent studies use a pixel-based calculation technique to perform spectral variables [6,44,45].
We used two different calculation techniques: pixel-based and arithmetic feature (mean of all pixels
or 95th percentile highest pixels within each object). For example, a tree crown could have an NDVI
value that differs depending on if it is calculated using the mean of each red and near-infrared band
(arithmetic feature) or if the mean of the NDVI calculated by pixel is extracted. The first case allows
spectral variables to be calculated rapidly, while the second case makes it possible to calculate textural
variables, for example. Indeed, an arithmetic feature has the advantage of creating variables rapidly
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within R or SAS instead of adding a new raster band each time, which would make massive data
management difficult. Additionally, using the 95th percentile of the highest pixel values allowed us to
keep the sunlit parts of crowns and thereby limit the shadow effects which could affect classification
accuracy [7].

Machala et al. [19] was concerned about using maximum values in features where objects are
heterogeneous (e.g., high and low trees), but this is not the case in our study since ITC segmentation is
aiming for homogeneous objects. While testing correlations for both calculation techniques, we obtained
high coefficients for many variables. For the arithmetic feature of NDVI with the mean of all pixels
within each object, we found correlations of 0.99 and 0.93 for pixel-based and 95th percentile of
highest pixel values’ corresponding variables, respectively. This method allowed more variables to be
implemented in the modeling process.

Although the proposed approach is robust to identify 11 tree species, three main limitations
were identified. The first limitation was that unevenly distributed samples between the 11 species
made it difficult to correctly use machine learning models such as RF. This limitation was also
identified by Tao et al. [134] and Farquad and Bose [135]. It is known that using an unbalanced
training dataset tends to affect the prediction accuracy of the dominant classes, which implies lower
accuracies in the less represented classes [60]. To limit this impact, new samples could balance
the dataset, but this simple solution is also the most expensive, involving additional field surveys
and photo-interpretation. As suggested by Farquad and Bose [135], another solution could be to
automatically over- or under-balance the dataset [136].

The second limitation concerns spatial and spectral resolutions and the georeferencing of imagery.
The research presented here was based on 16-band WorldView-3 imagery. Firstly, the spectral quality
could have been affected by rescaling. WorldView-3 bands contain various spatial resolutions from
0.21 m for panchromatic up to 7.5 m for shortwave infrared. The panchromatic band ranges from
450 to 800 nm, covering the first seven bands. Despite the fact that the nine other bands were out
of range, for methodological purposes, all bands were rescaled and pansharpened. Those last nine
bands could have been degraded, which may have affected the modeling and the reproducibility of
the method [137]. To limit this impact, the last nine bands should not be used for the texture variables.
Secondly, despite preprocessing, an offset between imagery and LiDAR CHM persist (RMS: 0.97 m)
and could affect the ITC segmentation and classification modeling. The offset at the ground level was
almost perfect, but the misalignment of the crowns was sometimes over 3 m. Tree crowns tilted in
the image could be used for stereo-reconstruction when at least two images are used [78,138], but
using a single image caused complex situations where segmented LiDAR crowns were not matching
their corresponding trees in the WorldView-3 image. A digital surface model derived from LiDAR
could also be used to orthorectify the image [25,29]. However, we did several tests and decided not
to use this technique because it created many artefacts when high spatial resolution images such as
WorldView-3 were used. In this study, where mature trees were present all over the area, manual
points were collected to fit the CHM and thereby reduce this offset. To limit this effect, a threshold of
17 m was set as a mask in order to analyze only tall and large trees. The imagery was also integrated in
the ITC segmentation to divide objects including more than one species as a solution to eliminate the
offset between data sources.

The third limitation of the proposed approach concerns the fact that the territory is composed of
more than 11 species. Given that the species modeling does not include the full diversity, a marginal
species will be classified into one of the 11 species classes used in the modeling. Also, small trees
were not mapped, as a threshold of 17 m was incorporated. It would be interesting to integrate
more species classes in the modeling, considering groups of age or height [26]. Although more
species will make the model more complex, functional groups could be tested in the hierarchical
approach [139], multi-temporal imagery could be used [40,41,45] or more advanced algorithms like
deep learning techniques [31]. Li et al. [45] argued that using bi-temporal WorldView imagery
could improve the classification on average by 10.7%. He et al. [40] found their best results when
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combining late-spring, mid-summer and early-fall images. Hartling et al. [31] demonstrated that deep
learning techniques could improve broadleaf species classification by at least 30% compared to RF
and SVM. Adding other variables such as LiDAR metrics or topological measures could also improve
the classification [8,14,16,22,39,131]. Finally, an expert procedure could be implemented to select a
maximum number of each categorical variable to limit over-representation [136]. For example, this
procedure would avoid the need to automatically select only LiDAR variables and instead allow for a
mix of LiDAR, spectral indices, topological variables, etc.

5. Conclusions

This study proposes a method to map individual tree species by using machine learning techniques
with very high spatial resolution imagery (WorldView-3) in a complex natural North American forest
at the tree level. An object-based approach at multiple scales was conducted. We found that adding
spectral information to CHM improved ITC segmentation. We were able to successfully classify
five broadleaf species and six conifer species using a hierarchical approach, with OAs of 70% and
94%, respectively. This hierarchical approach had better accuracies for conifers than using a global
approach (75%). Only sixteen variables were used with three models (tree type, broadleaf and
conifer) corresponding to nine spectral bands. Among the five tested machine learning techniques,
RF provided the best results for all cases. This method could also be applied on a large scale with
limited manipulations. The resulting maps represent a valuable tool with which to analyze forest
composition and to guide forest planners. However, ITC segmentation could be enhanced with
automatic evaluation techniques which could allow additional iterations. Ancillary variables such as
topographic and hydrographic indices could also improve the classification accuracy. This approach
could also be enriched by balancing dataset and expert procedures, by integrating LiDAR metrics and
multi-temporal imagery or by combining other sensors such as hyperspectral sensors.
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Abstract: The spatial distribution of forest stands is one of the fundamental properties of forests.
Timely and accurately obtained stand distribution can help people better understand, manage, and
utilize forests. The development of remote sensing technology has made it possible to map the
distribution of tree species in a timely and accurate manner. At present, a large amount of remote
sensing data have been accumulated, including high-spatial-resolution images, time-series images,
light detection and ranging (LiDAR) data, etc. However, these data have not been fully utilized.
To accurately identify the tree species of forest stands, various and complementary data need to be
synthesized for classification. A curve matching based method called the fusion of spectral image and
point data (FSP) algorithm was developed to fuse high-spatial-resolution images, time-series images,
and LiDAR data for forest stand classification. In this method, the multispectral Sentinel-2 image
and high-spatial-resolution aerial images were first fused. Then, the fused images were segmented to
derive forest stands, which are the basic unit for classification. To extract features from forest stands,
the gray histogram of each band was extracted from the aerial images. The average reflectance in
each stand was calculated and stacked for the time-series images. The profile curve of forest structure
was generated from the LiDAR data. Finally, the features of forest stands were compared with
training samples using curve matching methods to derive the tree species. The developed method
was tested in a forest farm to classify 11 tree species. The average accuracy of the FSP method for ten
performances was between 0.900 and 0.913, and the maximum accuracy was 0.945. The experiments
demonstrate that the FSP method is more accurate and stable than traditional machine learning
classification methods.

Keywords: forest stands classification; curve matching; data fusion; multisource remote sensing data;
segmentation; tree species mapping

1. Introduction

Forests, an important type of land cover and a key part of ecosystems, have a decisive
influence on maintaining carbon dioxide balance, biodiversity, and ecological balance.
Forests play a vital role in the survival and development of human civilization. According
to the report by the Food and Agriculture Organization (FAO) of the United Nations,
forest ecosystems cover approximately one-third of the earth’s land surface [1]. The com-
position and spatial distribution of forest tree species have a great impact on the forest
ecological environment, biodiversity, resource utilization efficiency, production and carbon
storage capacity, and nutrition cycle [2–8]. The basic unit for the forest inventory is the
forest stands, which is a large forested area of homogeneous tree species composition [9].
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Classification of tree species, one of the main tasks of forest science, is important to forest
management [10]. Tree species information obtained from classification can be served as
fundamental dataset. For example, the productivity of forest biomass can be improved
based on some tree species-specific models [7]. Timely and accurate identification of forest
stand types and tree species can help people better understand, manage, and protect forests.
Therefore, effective and efficient techniques for delineating forest stands and classifying
tree species are highly demanded [11,12].

In traditional forest surveys, forest stand distributions were obtained through field
investigation, which is a time-consuming and laborious process [13,14]. Remote sensing
technology can easily obtain forest information over large areas [15], even in dense and
inaccessible forests. Spectral images obtained from remote sensing systems offer a practical
and economical method to draw the distribution of tree species [13,16], thus reducing the
field workload [17,18]. According to the assumption that different tree species have differ-
ent spectral feature characteristics [19], the distribution of forest species can be extracted
from spectral images.

Spectral images include multispectral and hyperspectral images. Multispectral images
generally contain mid to low-spatial-resolution images, such as GaoFen-1/4, Sentinel-2,
Landsat-7/8, and SPOT 1/2/3/4 and high-spatial-resolution images, such as GaoFen-
2, IKONOS-2, QuickBird, RapidEye, and Airborne [20]. In the early stage, a Landsat
Multispectral Scanner System (MSS) image was applied to forest cover mapping, but the
classification results were limited due to the coarse spatial and spectral resolution of the
image [21–23]. With the improvement in multispectral sensors, high-spatial-resolution
multispectral images with wider band ranges have become available; thus, more details of
forest stands can be obtained from images [3,24–26]. A high-spatial-resolution multispectral
image provides rich spectral and textural information [27–29], which can improve the
accuracy of tree species classification [24,25]. Object-based image analysis (OBIA) is usually
first applied to high-spatial-resolution images, partitioning the image into segments (i.e.,
objects) according to the textural and spectral information [26]. Each segment can be seen
as a forest stand. Classification is applied to each forest stand to obtain the tree species.
Qian et al. (2006) showed that the classification accuracy can be improved by 10–15%
after introducing textural information compared with using only spectral information [30].
However, traditional OBIA uses only statistical features, such as the mean and standard
deviation of the pixels in the objects [27,28,31], so the rich information in the objects is not
fully used. Additionally, for the features of objects represented by those statistical features,
it assumes that the pixel values in the objects follow a Gaussian distribution [32]. When the
spatial resolution is high, the heterogeneity in the objects is large, such as in the forest stand
unit, and the traditional OBIA is no longer applicable [33]. In addition to the improvements
in spatial and spectral resolutions, the increase in time resolution also benefits forest stand
classification. Distinctive spectral-temporal features of tree species can be extracted from
time-series images. Karlson et al. (2016) used two seasonal WorldView-2 images for
mapping five tree species in West Africa [27]. Madonsela et al. (2017) concluded that two
seasonal WorldView-2 images can improve the accuracy of tree species [34]. Pu et al. (2018)
evaluated the potential of five seasonal images for classifying tree species in an urban
area [35]. These studies have shown that information on the phenology changes in forest
stands over the growing season can improve classification accuracy [26].

High-spatial-resolution images usually contain a few bands with a wide bandwidth,
thus providing poor spectral information. More importantly, similar spectral information may
exist among different tree species in high-spatial-resolution images. Hyperspectral images
contain nanometer-level spectral resolutions and the rich spectral information of ground
objects. Hyperspectral images have also been used for forest stand classification [36,37]. How-
ever, hyperspectral images usually have low spatial resolution. Due to the large number of
hyperspectral bands and strong correlation between bands, the increase of feature dimension
may cause the performance of the classifier to deteriorate when the feature dimension reaches
to a certain critical point. This is the so-called Hughes phenomenon, occurring in traditional
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machine learning classification methods that rely on spectral features and sample size [38,39].
Additionally, the variance of the spectra within the same class is usually large for hyperspec-
tral images, leading a poor separability of hyperspectral features [39–41]. These problems
might greatly affect the accuracy of forest stand classification [42–44], and the classification
result is not robust to noise when using hyperspectral images [36]. In addition, multispectral
and hyperspectral images do not contain three-dimensional structural information, such as
canopy height and vertical structures.

To describe the three-dimensional structure of trees, light detection and ranging
(LiDAR) data were introduced to forest stand classification. LiDAR data, a collection of
points, are a three-dimensional representation of an object. The LiDAR system became
mature in approximately 2000 [45]. Numerous works have pointed out the effectiveness of
LiDAR data in tree species classification [42,43,46], and some researchers used LiDAR data
to classify forest in a large area [47]. LiDAR data can be used alone for classification, but the
accuracy is lower than that using spectral images. More frequently, LiDAR points are
regarded as ancillary data to classify forest stands with remotely sensed images. At present,
LiDAR has become an important tool in forestry applications. Valuable forest geometric
information is obtained from LiDAR data, such as tree height [44], canopy diameter [48],
leaf area index [49], and canopy volume profiles [43]. For example, Blomley et al. (2017)
analyzed multi-scale geometrical features, revealing that representative features extracted
from LiDAR data can improve the accuracy of tree species identification. Rami et al. (2018)
and Pu et al. (2018) concluded that the height information extracted from LiDAR data is
helpful for mapping urban tree species [50,51]. Shi et al. (2018) evaluated some frequently
used LiDAR features for discriminating forest tree species, and these features are useful in
a mixed temperate forest [52]. However, the use of LiDAR data has some shortcomings.
For example, the features extracted from LiDAR can vary among tree species, which may
reduce the classification accuracy [53]. Additionally, it is difficult to fuse LiDAR data with
remotely sensed images.

As mentioned above, high-spatial-resolution images include spectral and textural
information, making it possible to extract forest stands. Time-series images provide phono-
logical features, and LiDAR data contain information about the geometric structure of
tree species. The information provided by the three types of data is complementary [43].
Consequently, combining these three types of data may hold great promise for improving
forest inventories, particularly at stand-level discrimination [54–57]. However, different
spectral images have different spatial, spectral, and time resolutions, making the fusion of
multisource images difficult. Additionally, LiDAR data are in point cloud format, which is
different from spectral images. Therefore, the traditional classification methods that fuse
spectral images and LiDAR data often sacrifice rich forest information. To fuse with
images, LiDAR data are usually transformed to raster formats, such as canopy height
modules (CHM) [56,58–61] and canopy volume profiles (CVP) [43]. These characteristics
only can describe one aspect of trees. Fassnacht et al. (2016) pointed out that few studies
have combined spectral images and LiDAR data in a more complicated way for forest
classifications [53].

Consequently, a comprehensive fusion method was expected to utilize the characteris-
tics of various types of data. Curve matching methods have shown promising outlooks for
object-based classification [62]. In previous studies, a histogram curve was generated for
each object across multispectral bands. Classification was performed based on a compari-
son of the histogram curves of the object to be classified and the sample objects. The curve
matching method includes richer information than traditional classification methods based
on statistical measures (e.g., mean value of objects). For LiDAR data, a frequency distri-
bution map that describes the structure of trees can be generated [63]. This profile curve
is called the profile curve because it mainly reflects information about the profile of the
tree. Compared with feature maps extracted from LiDAR data, such as CHM and CVP,
the profile curve can reflect more forest characteristics, and can be applied to estimate
the leaf area index and biomass [63–67]. Some researchers have fused the profile curve
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of LiDAR data with WorldView-2 to classify land cover types [32]. However, these cover
types are typical land cover classes, such as buildings, grass, water, trees, and pavement.
Although curve matching methods have achieved good results in classifications, there are
no related studies focusing on complex forest stand classification. Additionally, using curve
matching methods to fuse various types of data has not been explored.

Although a large amount of remote sensing data is available, they have not been
fully utilized. Comprehensive utilization of multiple data is expected to more accurately
classify forest stands. Currently, there are few studies on fusing time-series images with
high-spatial-resolution images to synergize spectral and phenology information for forest
stand classification. Additionally, there is a lack of multisource heterogeneous data fusion
methods to integrate images and point cloud data (i.e., LiDAR). Therefore, to solve these
problems and further improve the classification accuracy of forest stands, a forest stands
classification method that fuses high-spatial-resolution images, time-series multispectral
images and LiDAR data is developed. We define this method as the Fusion of Spectral
image and point data (FSP) method.

This paper is organized as follows: the study areas and experimental data are in-
troduced in Sections 2.1 and 2.2; the method we propose is described in Section 2.3;
experimental results and analysis are demonstrated in Section 3; the applicability of this
method is discussed in Section 4; the conclusion is provided in Section 5.

2. Materials and Methods

2.1. Study Area

The study area is in the Gaofeng forest farm (22◦58′20.54′′ N, 108◦23′16.26′′ E) in
Nanning, Guangxi Zhuang Autonomous Region, China (Figure 1). The area, which is in
a subtropical monsoon climate zone, is composed of a hilly landform with an elevation
varying from 100 to 300 m and a falling gradient of 6◦ to 35◦. The average annual tempera-
ture is 21.6 ◦C, and the annual sunshine time is between 1450 h and 1650 h. Additionally,
the annual rainfall, which is mainly concentrated in summer, is 1304.2 mm. The average
humidity is above 80%, and the annual evaporation is slightly higher than the rainfall.

This area, with typical characteristics of forests in southern China, is suitable for
the growth of a variety of timber trees, especially tropical and subtropical tree species.
The forest farm is rich in forest resources, with a forest coverage rate of 87.5%. The number
of tree species in the forest mainly includes Eucalyptus robusta Smith, Illicium verum Hook.
f., Mytilaria laosensis Lec, Cunninghamia lanceolata, Pinus massoniana Lamb, Pinus elliottii,
and other broad-leaved tree species.

2.2. Experimental Data
2.2.1. Sentinel-2 Data

Sentinel-2 images are widely available. The multispectral bands of Sentinel-2 images
include 13 bands, with bands 2, 3, 4, and 8 having a 10 m spatial resolution; bands 5, 6, 7,
8a, 11, and 12 having a 20 m spatial resolution; and bands 1, 9, and 10 having a 60 m spatial
resolution. Due to cloud coverage, only four images which were come from 2015 to 2017
were selected. The four images were acquired on 2 September 2016, 2 June 2016, 1 April
2017, and 30 July 2017, as shown in Figure 2. April and June are the flowering periods of
many tree species. In the midsummer in July, the growth of trees is vigorous and leafy.
September is the mature period of most trees in the study area. The selected periods are
typical time nodes of tree growth, and the spectra of these periods are of equal importance.
Time-series multispectral images were stacked in a monthly wise chronological order to
provide rich phonological information and spectral–temporal features.
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Figure 1. The study site in Gaofeng forest farm, Nanning, Guangxi Zhuang Autonomous Region, China.

  

(a) (b) 

  
(c) (d) 

Figure 2. Time-series Sentinel-2 images: (a) 1 April 2017; (b) 2 June 2016; (c) 30 July 2017; (d) 2 September 2016.
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2.2.2. Aerial Image and LiDAR Data

High-resolution aerial images and LiDAR data were acquired by the CAF (The Chinese
Academy of Forestry)-LiCHy(LiDAR, Charge-Coupled Device (CCD) and Hyperspectral)
airborne remote sensing system platform in June 2016. The LiCHy system, developed by
the Chinese Academy of Forestry, includes one full-waveform airborne LiDAR (RIEGL
LMS-Q680i) and one high-resolution charge-coupled device camera. The CCD sensor is
a DigiCAM-60, and the heading and lateral overlap rates are 60% and 30%, respectively.
All sensors share the same position and altitude system [68]. The parameters are shown in
Table 1.

Table 1. The parameters of LiCHy airborne remote sensing system platform.

CCD: DigiCAM-60 LiDAR: Riegl LMS-Q680i

Frame size 8956 × 6708 Wavelength 1550 nm
Pixel size 6 μm Laser beam divergence 0.5 mrad

Imaging sensor size 40.30 mm × 53.78 mm Laser pulse length 3 ns
Feld of view (FOV) 56.2◦ Cross-track FOV ±30◦

Ground resolution @1000 m altitude 0.12 m Vertical resolution 0.15 m
Focal length 50 mm Point density @1000 m altitude 3.6 pts/m2

—— —— Waveform Sampling interval 1 ns
—— —— Maximum scanning speed 200 lines/s
—— —— Maximum laser pulse repetition rate 400 kHz

2.2.3. Field Data Collection

In this study, two types of ground reference data are included: (i) field sampling points
and (ii) points interpreted from images. The field sampling plot is a square with a side
length of 30 m. The three-dimensional coordinates of the four corner points of the sample
plot were measured using dual-frequency differential global positioning system (GPS).
The surroundings of forest stands were observed when each plot was sampled. If the forest
stands within 30 m around the sampling center were the same tree species, the center was
sampled. Otherwise, the center was moved to a suitable place where the sampling plot
contained only one tree species. If the sample plot could not contain only one tree species
by moving to other places, two tree species can be included. Finally, the coordinates of the
four corner points of each sample point, dominant tree species, average breast diameter,
and average tree height were recorded.

The field samples were collected in August 2016. The samples include 11s tree species
(Illicium verum Hook. f., Eucalyptus urophylla, Eucalyptus grandis, Cunninghamia lanceolata, Linden,
Pinus elliottii, Michelia macclurei, Manglietia glauca, Mytilaria laosensis, Tsoongiodendrom odorum,
Pinus massoniana) and a total of 30 sampling areas. Figure 3 shows the spatial distribution
of all samples, and the range of the sample plot was determined by the diagonal point and
its adjacent point. For convenience, all tree species in the following text are abbreviated as
shown in Table 2. The ratio of training samples to test samples is 1:4 in this study.

Table 2. Abbreviations of tree species.

Species Illicium verum Tilia tuan Eucalyptus urophylla Michelia odora

Abbreviation I. verum T. tuan E. urophylla M. odora

Species Eucalyptus grandis Pinus massoniana Mytilaria laosensis Cunninghamia lanceolata

Abbreviation E. grandis P. massoniana M. laosensis C. lanceolata

Species Manglietia glauca Michelia macclurei Pinus elliottii ——

Abbreviation M. glauca M. macclurei P. elliottii ——
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Figure 3. Distribution of sample points.

2.3. Methods

The flowchart of the FSP method is shown in Figure 4. First, a high-resolution aerial
image was fused with a single-time Sentinel-2 image, and the forest stand was obtained by
the fractal net evolution approach (FNEA) segmentation. The features of the three types
of data were extracted for each forest stand. The histogram was generated using all pixel
values in a forest stand (i.e., one segment) for the aerial image across all multispectral
bands. The average reflectance of each band was calculated in a forest stand for the time-
series images, and the reflectance curve was generated by stacking all the bands of the
time-series images. The profile curve of height was generated from the LiDAR data for each
forest stand. Finally, the curve matching classifier was applied to classify the forest stands
based on the extracted feature curves. The details of the FSP method are described in the
following subsections, including data preprocessing, multisource image fusion, forest stand
segmentation, feature extraction, and classification.

2.3.1. Data Preprocessing

Atmospheric correction and resampling were applied to the Sentinel-2 image. The Level-
1C products of Sentinel-2 images were used. The Sen2Cor plug-in (v255) was used to manually
correct the atmosphere on all bands through the Sentinel application platform (SNAP, v6.0.4,
available online: http://step.esa.int/main/third-party-plugins-2/sen2cor/). The water vapor
band was removed because it mainly reflects the water vapor in the atmosphere. Since multi-
spectral bands of the Sentinel-2 image have different spatial resolutions, a third-party plug-in
super-resolution tool Sen2Res was used for resampling. This tool can synthesize all bands
with different resolutions to 10 m through super-resolution technology [69].

The LiDAR data were registered with images, and non-signal points were removed.
Therefore, the preprocess for the LiDAR data is to classify ground points and forest points.
The improved progressive triangulated irregular network (TIN) densification filtering
algorithm was applied to classify point clouds [70].
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Figure 4. The flowchart of the fusion of spectral image and point data (FSP) method.

In this algorithm, an appropriate grid size was selected to split the LiDAR data, and
the initial grid size was 20 m. The lowest point in each grid was selected as the initial seed
point. The seed points were used to construct an initial TIN. To iteratively densify the
TIN, all points to be classified were traversed, and the triangles into which the horizontal
projection of each point fell were queried. The distance k from the point to the triangle was
calculated, and the maximum value of the angle was formed by the point and plane of the
triangle. The calculated distance and the angle were compared with the iteration distance
(the threshold of the distance was 1.5 m) and iteration angle (the threshold of the value
was 8◦), respectively. If the distance and angle were less than the thresholds, the point
was classified as a ground point and added to the TIN. Thus, the ground points and the
points returned from the forest were separated. Finally, the values for these forest points
were normalized to 0–1. The final height was obtained by subtracting the digital elevation
model (DEM) to remove the influence of terrain.

2.3.2. Multisource Image Fusion

As mentioned before, aerial images have rich textural information, and time-series
images contain rich spectral information. The color (spectral) is as important because the
texture when using segmentation. Therefore, the Sentinel-2 image obtained on 2 June 2016,
was fused with the aerial image since both images were acquired in June. The twelve bands
of the Sentinel-2 image were used to fuse with the aerial image. The fusion can make the
best use of the spectral and textural information for an accurate segmentation. The fusion
method adopted in the experiments was a nonlinear transform and multivariate analysis
algorithm (NMV) [71]. The NMV method could minimize the spectral distortion in the
fusion image. The steps of the NMV algorithm are described as follows.

(1) The spatial details were obtained by the difference between the band and its de-
graded version:

Mi,h = Mi + Mi,L
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where Mi is the ith band, and Mi,L is an upsampled image using the bicubical method
to match the pixel size of the reflective band. The spatial details of the multiple
reflective bands can be expressed as follows:

Mi,h,t = (Mi)
t + (Mi,L)

t

where t is the coefficient.
(2) A multivariate regression of a low-resolution image and multiple reflective bands

was established.

Mlow =
n

∑
i=1

[
ci(Mi

t)+ ai Mi + b + e]

where ci, ai and b are coefficients; e is the residual; and Mlow is the low-spatial-
resolution image. Given value t, the coefficients can be estimated using the least
squares approach.

(3) The low-spatial-resolution image was fused to the final image with a high spatial
resolution by the following equation:

Mlow, f = Mlow +
n

∑
i=1

[ci Mi,h,t + ai Mi]

2.3.3. Forest Stand Segmentation

The FNEA [72] was applied to segment the forest stand. This algorithm grows from
bottom to top, following the principle of minimum heterogeneity and adjacent hetero-
geneity. Pixels with similar spectral information are merged into a homogenous object,
during which the textural, spectral, and shape features of the image object are simultane-
ously considered. The scale parameter was selected using the automated Estimation of
Scale Parameter (ESP2) tool. The scale factor was set to 80. The shape factor was 0.3 and
the compactness was 0.1.

2.3.4. Feature Extraction

By generating the histograms from the aerial image, the brightness of each multi-
spectral band was projected on the x-axis, and the histogram frequency was projected on
the y-axis. One hundred histogram bins were set between 0 and 1, and the number of
pixels was counted in each bin. Finally, the total number of pixels was used to normalize
the generated histogram, so that the effect of different sizes of objects can be eliminated.
Figure 5 shows the histograms of a forest stand for three multispectral bands of the
aerial image.

  
(a) (b) 

Figure 5. Grayscale histogram generated from aerial image of a forest stand. (a) A forest stand. (b) The histogram of the
forest stand in bands R, G, and B.
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The average reflectance of each band for each forest stand was calculated.
Figure 6 shows a forest stand for the time-series Sentinel-2 images and the stacked time-
series reflectance curve.

Figure 6. The reflectance curve of time-series image of a forest stand. (a) A forest stand. (b) The average reflectance of a
forest stand for each band. (c) The reflectance curve across the stacked time-series bands.

For the LiDAR data, the profile curve for each stand was generated to extract the
structural features of forest stands. The profile curve was generated from the vertical frequency
distribution of the LiDAR data. The profile curve is essentially a histogram of height. Since this
curve can characterize the vertical structure of trees, we use the term profile curve. The same
tree species have similar structural features, and different tree species have different structural
characteristics, as illustrated in Figure 7. Figure 8 shows the profile curve extracted in a forest
stand. The steps for generating the profile curve are described as follows. First, the elevation
was uniformly discretized, and the value of each elevation interval was calculated. In this
study, N was set to 100. The number of point clouds contained in each discrete height interval
of each forest stand was calculated, and the vertical profile curve of the point cloud was
generated. Finally, after being divided by the total number of point clouds in this forest stand,
the profile curve was obtained. The x-axis in Figure 8 is the height bin, and the y-axis is
the frequency distribution of the point cloud. The average point number in a stand is 2687,
thus the generated curves are rather smooth.

Figure 7. The profile curve in the vertical direction with different characteristics of a tree’s spatial struc-
ture.
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Figure 8. Frequency distribution map generated from light detection and ranging (LiDAR) data of a forest stand. (a) A forest
stand and the LiDAR data. (b) The profile curve of the forest stand.

2.3.5. Classification

Five feature curves (three for aerial images, one for time-series images, and one for
LiDAR) were extracted for each forest stand. To identify the species that the curves belong
to, a fusion method was developed to fuse all features using three curve matching classifiers:
The Kullback–Leibler divergence (KL), root sum squared differential area (RSSDA), and curve
angle mapper (CAM). In the curve matching classifier, the similarity between the known
sample and the sample to be classified was measured. In this study, P1 represents the feature
curves of the reference forest stand, and P2 refers to the feature curves of the forest stand to
be classified. The three curve matching classifiers are described below.

KL divergence, also known as cross entropy, is a method used to describe the difference
between two probability distributions. This method measures the distance between two
random distributions. If two random distributions are the same, their relative entropy is
zero. As the difference between two random distributions increases, their relative entropy
also increases.

dKL =
n

∑
i

log
(

P1(i)
P2(i)

)
P1(i)

CAM calculates the similarity between two discrete curves. The calculation result rep-
resents the angle between the curve to be classified and the sample curve in n-dimensional
space. The smaller the difference between the two curves, the smaller the angle.

dCAM = cos−1

⎡
⎣ ∑n

i=1 P1iP2i√
(∑n

i=1 P1i
2)
√

∑n
i=1 P2i

2

⎤
⎦

RSSDA calculates the difference between the area integrals of two curves. This clas-
sifier uses discrete intervals as the differential unit to approximate the area. The RSSDA
classifier was originally applied to match spectral curves [73], and was improved by
Douglas [74].

dRSSDA =

√
n

∑
i=1

(P1i − P2i)
2

In Formulas (5)–(7), i is a discrete interval of the curves, and n is the number of intervals.
For the histogram of the aerial image, i refers to the ith gray interval of a spectral histogram,
n is the number of intervals of this histogram. For the time-series reflectance curve, i refers to
the ith band, n is the total number of the stacked bands. For the profile curve, i refers to the
ith height bin, n is number of total bins. Moreover, dKL, dCAM, dRSSDA are the similarities of
two curves measured using the KL, CAM, RSSDA curve matching methods.
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Five feature curves were obtained for each forest stand. For a forest stand to be
classified (i.e., a testing sample), its feature curves were compared with the feature curves
of all training samples, using one of the above curve matching classifiers. The FSP method
is defined as follows:

dFSP = f1dR + f2dG + f3dB + f4dTS + f5dLD

where f 1, f 2, f 3, f 4, and f 5 are proportional weights for different features. These weights
were determined by the controlled variable method. In this study, the weights from f 1 to
f 5 were set to 0.2, 0.23, 0.23, 0.1, and 0.24, respectively. Moreover, dR, dG, and dB are the
similarities of R, G and B bands of the aerial image, respectively; dTS is the similarity of
time-series image; and dLD is the similarity of the LiDAR data.

Finally, the maximum value of fusion for each stand to be classified was found, and
the category of the training sample corresponding to the maximum value was assigned to
the stand to be classified.

3. Results

3.1. The Results of Fusion and Segmentation

Figure 9 shows the fusion results and detailed parts of the aerial image and Sentinel-
2 image. These detailed images (Figure 9d) show that textures in the fused image are
very clear. The fused image has a high resolution (0.2 m) and richer spectra than the
aerial images. The segmentation results and some representative details are shown in
Figure 10. As seen in the detailed images, the segmentation results divide the forest stands
with different textures, and each forest stand can largely maintain its internal consistency.

 

Figure 9. The relative image of fusion. (a) Aerial image. (b) Sentinel-2 image. (c) The results of
Sentinel-2 image fused with aerial image. (d) The details of fusion results. The left part is the
Sentinel-2 image; the right part shows the image after fusion.
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Figure 10. The results of segmentation and the enlarged details.

3.2. Feature Extraction Results

Figure 11 shows the histograms of 11 tree species in the R, G, and B bands.
Figure 12 shows the histograms generated by a single sample for each class in the R,
G, and B bands. The histograms in the R and G bands are similar. However, the peak of
the R band appears more quickly than the peak of the G band, and the gray value of the B
band is more concentrated than the values of the R and G bands. Therefore, the maximum
value of the histogram in the B band is larger than that in the R and G bands, and the wave
crest appears more quickly in the B band. This similarity can be regarded as the vegetation
commonality. In addition to the commonalities, the histogram shapes for different tree
species show diversity for different bands. In general, the histograms generated by each
category show similarity in the overall distribution. Different categories of tree species
have certain differences in each waveband, and some tree species in some wavebands have
high degrees of similarity.

Figure 13a–k shows the curves of the time series of eleven tree species. Figure 13l
shows the time-series curve generated by a single sample of 11 tree species. In the time-
series curves, distinguishability is greatest in the red-edged band (bands 4, 5, 6, and 7), and
the spectra show distinctive differences in different seasons.
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Figure 11. The histograms of 11 tree species in the R, G, B bands.

Figure 12. The histograms generated in the R, G, B, bands of 11 types of tree species. (a) The
histograms in the R band. (b) The histograms in the G band. (c) The histograms in the B band.
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Figure 13. (a–k) The spectral curve of time-series image of 11 tree species, and (l) a comparison chart of the curves for 11
tree species, shows the curves of the time series of eleven tree species.

Figure 14a–k shows the profile curve generated by the LiDAR data for different tree
species. The profile curves of the same tree species are similar. This similarity demonstrates
that the features extracted from the LiDAR data are effective for distinguishing different
tree species. Among the profile curves of 11 tree species, nine have one peak, and two have
double peaks. In the curve with two peaks, the first peak is caused by the vegetation under
the trees, such as small shrubs. The second peak is caused by the characteristics of trees.
When the forest stands are of the same species, the structure below the canopy might be
different, which may cause the deviation of the profile curve, such as for M. glauca and
I. verum. In addition, the tree species in a forest stand may not be all the same, causing the
waveform to deviate. Generally, the amount of deviation in the profile curve is only a small
part of the total forest stand.
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Figure 14. (a–k) The profile curve generated by the LiDAR data of 11 tree species and (l) a comparison chart of the curves
for 11 tree species.

To clearly show the difference in profile curves among the different tree species,
Figure 14l presents the results that integrate the profile curve of different tree species.
Generally, different tree species have different waveforms, including the locations of wave
peaks and the shape of the waveform. Sometimes, the profile curves of certain tree species
are nearly identical, such as P. elliottii and P. massoniana (Figure 14b,e). Therefore, the uti-
lization of the profile curve alone cannot distinguish between P. elliottii and P. massoniana
Fortunately, the histograms of P. elliottii and P. massoniana in the R, G, and B bands are
distinctive. M. laosensis and C. lanceolata (Figure 14h,j) can be easily distinguished using
profile curves even though they have similar histogram and time-series curves.
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3.3. Classification Results of FSP

Figure 15a shows the classification result obtained using the FSP method KL classifier.
The white areas are non-forest areas. C. lanceolata, P. elliottii, I. verum and E. grandis have
the widest distributions. Table 3 shows the classification results using the FSP method
based on three curve matching classifiers. The overall accuracy of the KL matching result
is 0.937, and the kappa coefficient is 0.926. The overall accuracy of the CAM matching
result is 0.902, with a kappa coefficient of 0.884, and the overall accuracy of the RSSDA
matching result is 0.925, with a kappa coefficient 0.911. The overall classification results of
the FSP methods based on the three curve matching classifiers reach 0.900, and the RSSDA
and KL classifiers are better than the CAM. Among all species, E. urophylla and P. elliottii
have the worst classification results. The KL and CAM classifiers classify a large part of
these two tree species into E. grandis because the two species have greater similarities in
the histograms for the R, G and B bands. The product accuracy of P. elliottii is fairly high
(0.900), but the user accuracy is poor (0.562) because the number of samples for P. elliottii is
small, and the number of samples for P. massoniana is five times more than that of P. elliottii
This imbalance of samples caused a part of the P. massoniana to be incorrectly classified as
P. elliottii The indices of the FSP method based on three curve matching classifiers indicate
that all classifications are well classified except for P. elliottii and E. urophylla However,
the F1-score for these two tree species achieves 0.75 and 0.83 in the RSSDA classifier.
This test indicates that the FSP method is suited to classify the tree species of forest stands
and that the classification accuracy is rather high.

Figure 15. The classification results of three methods. (a) The FSP result based on KL. (b) The results
using aerial and time-series image based on KL. (c) The results of using aerial image alone based on KL.
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Table 3. Classification accuracies of the FSP method based on the Kullback–Leibler divergence (KL), curve angle mapper
(CAM), and root sum squared differential area (RSSDA) curve matching classifiers.

FSP Method KL-Based CAM-Based RSSDA-Based

Class UA PA F1-Score UA PA F1-Score UA PA F1-Score

I. verum 1 0.933 0.966 1 0.867 0.929 0.938 1 0.968
T. tuan 1 1 1 1 0.941 0.970 1 0.824 0.903

E. urophylla 0.818 0.692 0.750 0.800 0.615 0.696 0.909 0.769 0.833
M. odora 1 1 1 1 0.800 0.889 1.000 1 1
M. glauca 1 0.933 0.966 1 0.933 0.966 0.875 0.933 0.903

M. macclurei 1 1 1 0.889 0.889 0.889 1 1 1
E. grandis 0.885 0.920 0.902 0.800 0.960 0.873 0.958 0.920 0.939

P. massoniana 0.980 0.877 0.926 0.942 0.860 0.899 0.943 0.877 0.909
M. laosensis 0.905 1 0.950 0.900 0.947 0.923 1 0.947 0.973
C. lanceolata 0.86 1 0.993 0.932 0.971 0.951 0.920 0.986 0.952

P. elliottii 0.562 0.900 0.692 0.571 0.800 0.667 0.643 0.900 0.750

Overall accuracy: 0.937
Kappa coefficient: 0.926

Overall accuracy: 0.902
Kappa coefficient: 0.884

Overall accuracy: 0.925
Kappa coefficient: 0.911

UA: user accuracy; PA: product accuracy

3.4. Comparison between Fusion Results of Different Types of Data

To determine whether the fusion can effectively improve the classification accuracy, we
further compared the proposed FSP method with the method based on aerial images alone
and the method based on the fusion of aerial images and time-series images. The same
curve matching classifiers (KL, CAM, and RSSDA) were used. To reduce the effects of
sampling, ten performances were applied with different random samples. The ratio of
training samples to test samples is 1:4.

Table 4 shows the accuracy of the assessment results. When only the aerial image was
used, the average classification accuracies (AVG) of ten performances were 0.795, 0.788,
and 0.794 based on KL, CAM, and RSSDA, respectively, and the highest accuracy (MAX)
reached 0.835. The fusion of time-series images and aerial images slightly improved the
classification accuracy. The classification accuracies of FSP were 0.911, 0.900, and 0.913
based on the KL, CAM, and RSSDA classifiers, respectively. The accuracy of FSP was higher
than that of the method that uses only aerial images. The SD column shows the standard
deviation of the accuracies for the ten performances. The standard deviation decreased as
more data were fused. The standard deviation of FSP was significantly lower than the other
two methods, suggesting that the FSP method is more robust and less affected by sampling.

Table 4. The average of overall accuracy for ten performances using the KL, CAM, and RSSDA classifiers.

Aerial Alone
Fusion of Aerial Image and

Time-Series Images
Fusion of Aerial Image, Time-Series

Images, and LiDAR Data

AVG SD MAX AVG SD MAX AVG SD MAX

KL 0.795 0.023 0.835 0.805 0.021 0.839 0.911 0.017 0.937
CAM 0.788 0.016 0.808 0.788 0.017 0.812 0.900 0.014 0.925

RSSDA 0.794 0.019 0.820 0.797 0.017 0.824 0.913 0.017 0.945

From the results of fusing different types of data in Table 4, it can be seen that the
most helpful information for classification mainly comes from the aerial image and LiDAR
data. The improvement contributed by the time-series images is limited. Nevertheless,
the standard deviation of ten classification results is reduced when introducing time-series
images, indicating a more robust result can be obtained.

Figure 15b,c shows the classification results using the KL classifier based on the fusion of
the aerial image and time-series images and the aerial image alone. After fusing the time-series
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images, the details are improved. By comparing these two results, the classification result of
FSP provides a more accurate description of the distribution of tree species.

3.5. Comparison with Traditional Methods

The FSP method was also compared with other traditional object-level classifiers,
including the random forest (RF) [27], support vector machine (SVM) [75], and eXtreme
Gradient Boosting (XGBoost) algorithms [51]. These three classifiers are commonly used.
For traditional OBIA methods, the spectral and textural information for each forest stand
were used for all bands of the aerial image and time-series images, whereas only the mean
and standard deviation of the heights were used for the LiDAR data [7]. The spectral fea-
ture includes the mean and standard deviation, and the textural information includes con-
trast, entropy, homogeneity, angular second moment, dissimilarity, and correlation based
on the gray-level co-occurrence matrix (GLCM) [28]. Therefore, the multi-dimensional
summarized characteristics of forest stands are obtained. For a fair comparison, all the
classifications were performed on the same ten samplings as previously mentioned.

The FSP and the benchmark classifications were coded in Python 3.7. The main
package includes scikit-learn and gdal. The results of traditional classification methods
are shown in Table 5. The worst classification result was SVM (0.814), and the best result
was RF (0.824). RF also had the highest classification accuracy in ten performances (0.875);
regardless RF has the largest standard deviation of 0.034. The overall accuracy of the
FSP was 0.900, which was 0.09 higher than that of the traditional method. The highest
classification accuracy of the FSP was 0.06 higher than that of the traditional method.
Additionally, the standard deviation of the ten performances shows that the FSP was more
stable than traditional methods. In general, the FSP method we proposed has a higher
accuracy than the RF, SVM, XGBoost classifiers based on traditional summarized features
(i.e. mean, standard deviation, etc.).

Table 5. The accuracy assessment of ten performances of support vector machine (SVM), random
forest (RF), eXtreme Gradient Boosting (XGBoost).

Algorithm AVG SD MAX

Traditional methods

SVM 0.814 0.025 0.855

RF 0.824 0.034 0.875

XGBoost 0.817 0.025 0.855

FSP

KL 0.911 0.017 0.937

CAM 0.900 0.014 0.925

RSSDA 0.913 0.017 0.945

To compare the separability of the summarized features used in the traditional classifi-
cations and comprehensive features (i.e., feature curves) used in the FSP method, a projec-
tion of these two types of features was performed to visualize their separability. The sum-
marized features (120 dimension) include spectral and textual features of images and two
height features of LiDAR data. The comprehensive features (448 dimension) consist of all
the points on three types of feature curves in the FSP method. The t-SNE tool [76] was used
to downscale the extracted features to two dimensions at the best visual aspect. The final
visualization results are shown in Figure 16. The red circles mark some points with poor
separability. In general, the points characterized by the comprehensive features in the FSP
method are more concentrated, even those in the red circle remain aggregated (Figure 16b).
In contrast, the summarized features show a confusion of many tree species (Figure 16a).
Therefore, the comprehensive features using the FSP method have better separability than
the summarized features based on the traditional classification methods.
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Figure 16. Separability of features: (a) the separability of summarized features used in traditional methods. (b) The
separability of comprehensive features used in the FSP method.

4. Discussion

The study area is a managed forest, and there are not many mixed forests in this area.
Therefore, the classification accuracy can reach over 90% for 11 tree species. If in a mixed
forest, the accuracy may be compromised. Some improvements can be made from the
following aspects.

First, the histogram curves from high-spatial-resolution image reflect spectral variabil-
ity of forest stand. However, the histogram is essentially a disorder expression of the pixels,
the spatial relationship lies in the forest stand is ignored. Sometimes forest stands belonging
to different tree species may have similar spectral histograms but different textural informa-
tion. Therefore, the rich textural information contained in the high-spatial-resolution image
is not fully utilized. Therefore, in the follow-up research, a more sophisticated feature
extraction method is expected to extract and incorporate textural information.

Second, the time-series Sentinel-2 images reflect the phenology features. When intro-
ducing phenology features, the classification accuracy is improved 1% and the standard
deviation of accuracy is reduced comparing with that used the high-spatial-resolution
image alone. It is known that the wavelength beyond 2000 nm is distinctive for many tree
species [53]. Sentinel-2 images, however, do not cover such a wide wavelength range. If hy-
perspectral images are available, the FSP method can be applied similarly and probably
derive a better result.

Third, the profile curve from LiDAR data is generated by counting the number of
point clouds in forest stands, which means that the profile curves greatly rely on the density
of point clouds. The shape of the profile curves is also affected by the shape of the tree and
the size of the stand area. If in a mixed forest, the density of the point clouds is required to
be high to characterize different structures of different tree species in the profile curve.

Finally, if the tree species are mixed seriously, it would be difficult to classify tree
species at the forest stand level. Instead, classification can be performed at the individual
tree level. In such case, the current FNEA segmentation algorithm is not suited, and the
individual tree delineation algorithm is required. The FSP method can be extended to the
delineation result, but higher requirements for the spatial resolution of images and the
density of the LiDAR data are required to extract distinct features of individual trees.
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5. Conclusions

This paper proposed an FSP method to synthesize high-spatial-resolution multispec-
tral images, time-series images, and LiDAR data. The developed FSP method first extracts
rich information in the form of curves from three types of data. The histogram for the
multispectral band is generated in a stand for the high-spatial-resolution image, the aver-
age reflectance is calculated in each stand for a single band of time-series images, and a
reflectance curve is generated by stacking time-series bands, and the profile curve from
the point cloud LiDAR data is generated for each stand. Then, the fusion method is used
based on curve matching classifiers for forest mapping. The performance of the three curve
matching classifiers is evaluated, including KL, CAM, and RSSDA.

The features provided by different types of data contain a large amount of key informa-
tion. The histograms extracted from the aerial image have richer spectral information than
those of traditional OBIA methods based on some statistical measures, such as the mean
and standard deviation. The phenology information is contained in time-series images and,
thus, distinctive features can be reflected for some tree species from the reflectance curves.
The profile curve generated from LiDAR data includes rich forest structure information
and is effective in distinguishing tree species. Additionally, the features in the form of
the curves facilitate the fusion of disparate data on the stand unit by introducing curve
matching classifiers. The results show that the FSP method fused with three types of data
can achieve higher accuracy and is more stable than the methods fused with less data or
using only aerial images. The FSP method also shows a great advantage over traditional
OBIA classification methods.
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Abstract: Microwave and optical imaging methods react differently to different land surface parame-
ters and, thus, provide highly complementary information. However, the contribution of individual
features from these two domains of the electromagnetic spectrum for tree species classification is
still unclear. For large-scale forest assessments, it is moreover important to better understand the
domain-specific limitations of the two sensor families, such as the impact of cloudiness and low
signal-to-noise-ratio, respectively. In this study, seven deciduous and five coniferous tree species of
the Austrian Biosphere Reserve Wienerwald (105,000 ha) were classified using Breiman’s random forest
classifier, labeled with help of forest enterprise data. In nine test cases, variations of Sentinel-1 and
Sentinel-2 imagery were passed to the classifier to evaluate their respective contributions. By solely
using a high number of Sentinel-2 scenes well spread over the growing season, an overall accuracy of
83.2% was achieved. With ample Sentinel-2 scenes available, the additional use of Sentinel-1 data
improved the results by 0.5 percentage points. This changed when only a single Sentinel-2 scene was
supposedly available. In this case, the full set of Sentinel-1-derived features increased the overall
accuracy on average by 4.7 percentage points. The same level of accuracy could be obtained using
three Sentinel-2 scenes spread over the vegetation period. On the other hand, the sole use of Sentinel-1
including phenological indicators and additional features derived from the time series did not yield
satisfactory overall classification accuracies (55.7%), as only coniferous species were well separated.

Keywords: tree species classification; Sentinel-1; Sentinel-2; multitemporal; random forest;
Wienerwald biosphere reserve; BPWW

1. Introduction

The ongoing species loss and the continued degradation of many terrestrial ecosystems
make it increasingly important to monitor changes on the Earth’s surface on a large scale,
with high accuracy and low latency [1]. The multispectral image data generated by the
Sentinel-2 (S2) twin satellites are provided free of charge through the European Copernicus
program. These data provide a great opportunity to monitor the entire Earth’s surface with
high spatial and spectral as well as temporal resolution [2,3]. Several studies have already
shown that the use of multispectral imagery generates highly informative data for land
cover and tree species classification [4,5]. Further improvements in classification accuracy
can be achieved by using multispectral time series [6–8].

While the high 5-day-temporal resolution of the S2 satellites leads to dense time series,
it is not guaranteed that areas larger than 103–104 km2 are fully covered by the very same
cloud-free acquisitions. The selection of suitable image material is, therefore, often easy
and straightforward for smaller areas, but for large areas, additional pre-processing steps
are needed to ensure a homogenous and gap-free set of features. Suitable techniques
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are, for example, compositing techniques [9], gap-filling procedures [10,11], or the use of
descriptive temporal metrics [12].

Radar sensors, on the other hand, provide a more continuous data stream with how-
ever a lower signal-to-noise-ratio (SNR), as well as terrain- and observation-geometry-
related artifacts [13,14]. The two Sentinel-1 satellites (S1), which possess high spatial
resolution and high revisit frequency, are also provided free of charge by the Copernicus
program and generate microwave images under almost all weather conditions. A number
of studies have demonstrated a good potential for the differentiation of deciduous trees
and conifers [14,15]. Rüetschi et al. [16] obtained an overall accuracy of 72% for a test site
in Switzerland. Udali et al. [17] presented a forest type and tree species classification in a
test area in southern Sweden using multitemporal S1 data with overall accuracies of 94%
and 66%, respectively.

The combination of S1 and S2 data was used in several studies [7,15] for forest type
and tree species classifications. Bjerreskov et al. [7] used a combination of multitemporal S1
and S2 data to classify nemoral forests in Denmark into broadleaf and coniferous forest
types as well as into predefined tree species groups with overall accuracies of 95% and
63%, respectively. A combination of S1 and optical Landsat imagery was used for the
classification of dominant tree species in broadleaf deciduous forests in Vietnam with an
overall accuracy of 79% [18]. Systematic ablation studies are lacking investigating the
potential of the two electromagnetic domains for the classification of a higher number (≥10)
of tree species in forests with high diversity.

The objective of this paper is to study the benefits of combining S1 and S2 data for
tree species classification in the mid-altitude forests of Austria. Various S1 and S2 data
combinations are used to classify 12 different tree species with the help of Breiman’s random
forest classifier [19] to evaluate the discriminative power of the two data streams:

(1) a set of S1-derived parameters and 14 cloud-free S2 scenes were classified individually
and in combination;

(2) the monotemporal S2 scenes were classified separately as well as paired with S1 data;
(3) the accuracies obtained from the monotemporal S2 scenes were used to determine

the most- and least-accurate S2 scenes from spring, summer, and autumn seasons.
Combinations of the least- and most-accurate seasonal S2 scenes were classified with
and without S1 data.

2. Materials and Methods

2.1. Study Site, Reference Data

The Biosphere Reserve Wienerwald (BPWW) is located southwest of Vienna (Austria)
and covers an area of approximately 105,000 hectares with a geographical extension of ca.
42 km × 47 km and an elevation between 162 and 893 m above sea level. The broadleaf-
dominated forest is characterized by more than 20 forest communities [20]. Due to its
diversity of tree species and its location within the overlapping area of two S2 orbits, it is
particularly well suited for investigating remote sensing methods.

The study site and the reference data are shown in Figure 1. An existing dataset,
created by using information from several forest enterprises such as forest inventories and
stand-wise description of the forest management plans, was used as reference data [6].
Additional samples were added to better balance the different classes. While it was not
always possible for sparsely represented tree species, a maximum of one pixel per forest
stand was selected. The final dataset consisted of 1283 individual pixels, representing a
total of 12 tree species—seven deciduous and five coniferous. Although not all tree species
occurring in the BPWW were represented in the samples, they nevertheless provided a
good overview of the main tree species prevailing in the park.
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Figure 1. Overview of the Biosphere Reserve Wienerwald in the southwestern area of Vienna as well as
the 12 classes of tree species reference samples. Background: Color Infrared composite of Sentinel-2.

2.2. Sentinel-2 Data

All 14 completely cloud-free S2 scenes from the 2018 growing period (April to October)
were selected (Table 1). Since Nkosi et al. [21] found band 9 to have a high capability
in discriminating tree species, band 9 was left in the dataset, while bands 1 and 10 were
excluded. The remaining eleven S2 spectral bands were resampled to a unique 10 m spatial
resolution and corrected using the Sen2Cor atmospheric correction [22]. The resulting
dataset was expanded by two biophysical vegetation variables calculated from visible and
NIR spectral channels: FAPAR and the LAI [23,24]. In addition, 30 vegetation indices were
calculated and added to the dataset (Table A1).

Table 1. Summary of the Sentinel-2 (S2) scenes of the 2018 vegetation period used for classification.

S2 Satellite Date Orbit Sun Zenith Angle Sun Azimuth Angle

B 8 April 2018 79 43.02 157.29
B 21 April 2018 122 37.72 160.39
A 6 May 2018 122 33.06 159.37
A 2 July 2018 79 28.23 147.73
B 9 August 2018 122 34.38 155.97
A 21 August 2018 79 38.49 154.81
B 29 August 2018 122 40.40 160.44
A 13 September 2018 122 45.59 163.93
B 18 September 2018 122 47.41 164.98
B 28 September 2018 122 51.10 166.96
A 30 September 2018 79 52.25 164.21
B 5 October 2018 79 54.08 165.12
A 10 October 2018 79 55.90 165.94
A 30 October 2018 79 62.82 168.14
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2.3. Sentinel-1 Data

In this study, 250 S1 ground-range-detected (GRD) interferometric wide (IW) swath
mode acquisitions from the year 2018 were used. The pre-processed data were avail-
able via the Austrian Data Cube [25]. The pre-processing steps included precise orbit
correction, border noise removal, radiometric correction to ß0 values, radiometric terrain
flattening, range-Doppler terrain correction, and conversion to the decibel scale. A terrain
model based on airborne laser scanning resampled onto a 10 m grid was used for the
radiometric terrain flattening and the range-Doppler terrain correction steps. From the
multitemporal S1 data, several parameters were computed. These included temporally
averaged backscatter values for given time periods, phenological parameters, and harmonic
regression model parameters.

2.3.1. Backscatter Averages and Ratios

For each repeat cycle of the S1 satellites (12 days), the temporal average of S1 backscat-
ter was computed (Table 2). Two values per polarization (VV and VH)—one representing
snow free, leaf-off conditions (14 to 26 March 2018) and one representing leaf-on conditions
(18 to 30 June 2018) were selected. Furthermore, in case of the leaf-on period, the cross ratio
(CPR) was computed as the backscatter ratio between VH and VV polarization [26,27], and
in the case of VH polarization, the backscatter ratio between the leaf-on (18 to 30 June 2018)
and leaf-off (14 to 26 March 2018) conditions was included.

Table 2. Summary of the Sentinel-1 temporal average backscatter parameters of the 2018 vegetation
period used for classification.

Temporal Average Backscatter Leaf-Off Leaf-On

VH 20180314_20180326_VH 20180618_20180630_VH
VV 20180314_20180326_VV 20180618_20180630_VV

VH/VV 20180618_20180630_CPR

2.3.2. Phenological Parameters

Deciduous forest classes show distinct backscatter behavior where the VH backscatter
drops during the summer period by 1–2 dB when compared to the leaf-off period [16,28].
Several studies assumed that the drop in backscatter is connected to the leaf emergence,
while the backscatter increase is caused by the leaf fall [16,28–30]. We applied the break-
points algorithm described in Zeileis et al. [31] and successfully tested on the annual time
series of the 12-day VH backscatter averages [16]. The computation was limited to pixels,
where the average backscatter in the leaf-on period was lower than that in the leaf-off
period (hence the ratio between the temporally averaged backscatter for leaf-on and leaf-off
conditions was positive). The first breakpoint in the time series was assumed to represent
the start of the season, while the second breakpoint represented the end of the season.
The length of the season was computed as the difference between the two values. Start of
season, end of season, and length of season were used in this study (Table 3).

Table 3. Summary of the Sentinel-1 phenological parameters of the 2018 vegetation period used
for classification.

Backscatter ratio VH or VV
Leaf-on/Leaf-off Rat_Leaf_on_off

Phenology VH or VV
Start of season—day of the year sos_doy
End of season—day of the year eos_doy

Length of season—days sos_doy
correlation_winter

slope_winter

318



Remote Sens. 2022, 14, 2687

2.3.3. Harmonic Parameters

Changes in the vegetation structure and environmental conditions cause temporal
changes in radar backscatter. Especially in the case of vegetation, these changes typically
have a strong seasonal character. Harmonic models (Equation (1)) can be used to describe
this seasonal backscatter variation [32].

γ̂0
tday

= γ0 +
k

∑
i=1

(
Ci cos

2πitday

n
+ Si sin

2πitday

n

)
(1)

The model estimates the most probable radar backscatter, γ̂0
tday

, for a given day of the

year, tday, from the average backscatter, γ0, for the given time period (year 2018 in case
of this study) and the harmonic coefficients of the cosine and sine components, Ci and
Si. Harmonic coefficients and average backscatter are referred to as harmonic parameters
(HPAR). As suggested, k is set to 3, representing the processes of a time scale of four
months [32].

The HPARs (Table 4) are derived from a least-squares estimation based on the backscat-
ter values and corresponding observation times of the input S1 time series. As opposed to
Schlaffer et al. [32], we used the backscatter observations directly instead of using 10-day
composites. Due to the strong dependency of the backscatter on the acquisition geometry,
the parameter estimation was performed separately for each unique acquisition geometry
(e.g., relative S1 orbit). As an additional parameter, the standard deviation of the residual
error of the harmonic model was calculated as the square root of the sum of squared errors
(SSE), divided by the number of data points (Npoints) adjusted for the degrees of freedom of
the model (Equation (2)). The SSE was derived from the pixel’s backscatter time-series γ0

t, r
and its harmonic model γ̂0

t, r.
For this study, we computed HPARs for both VV and VH polarization and for one

ascending (relative orbit number 73) and one descending (relative orbit number 22) orbit.

s =

√√√√SSE
(

σ0
t, r, σ̂0

t, r

)
Npoints − 2

(2)

Table 4. Summary of the Sentinel-1 harmonic parameters of the 2018 vegetation period used
for classification.

Ascending (Orbit 73) Descending (Orbit 22)

HPAR
Cosine 1 VH HPAR-C1_2018_VH_A073 HPAR-C1_2018_VH_D022

VV HPAR-C1_2018_VV_A073 HPAR-C1_2018_VV_D022
Cosine 2 VH HPAR-C2_2018_VH_A073 HPAR-C2_2018_VH_D022

VV HPAR-C2_2018_VV_A073 HPAR-C2_2018_VV_D022
Cosine 3 VH HPAR-C3_2018_VH_A073 HPAR-C3_2018_VH_D022

VV HPAR-C3_2018_VV_A073 HPAR-C3_2018_VV_D022
Sine 1 VH HPAR-S1_2018_VH_A073 HPAR-S1_2018_VH_D022

VV HPAR-S1_2018_VV_A073 HPAR-S1_2018_VV_D022
Sine 2 VH HPAR-S2_2018_VH_A073 HPAR-S2_2018_VH_D022

VV HPAR-S2_2018_VV_A073 HPAR-S2_2018_VV_D022
Sine 3 VH HPAR-S3_2018_VH_A073 HPAR-S3_2018_VH_D022

VV HPAR-S3_2018_VV_A073 HPAR-S3_2018_VV_D022
HPAR temporal average

VH HPAR-M0_2018_VH_A073 HPAR-M0_2018_VH_D022
VV HPAR-M0_2018_VV_A073 HPAR-M0_2018_VV_D022

HPAR model error
VH HPAR-STD_2018_VH_A073 HPAR-STD_2018_VH_D022
VV HPAR-STD_2018_VV_A073 HPAR-STD_2018_VV_D022
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2.4. Classification Approach

Different test cases were defined (Table 5), which included various band and parameter
combinations of the two satellite systems.

Table 5. Scenario of the nine test cases evaluated using different combinations of Sentinel-1 (S1) and
Sentinel-2 (S2) data.

Test Case Acronym Features Comment

1 S1 43 multitemporal S1 parameters
2 S2 (MULTI) 574 multitemporal image data of S2
3 S1 + S2 (MULTI) 617 multitemporal S1 parameters + multitemporal image data of S2
4 S2 (MONO) 41 monotemporal image data of S2
5 S1 + S2 (MONO) 84 multitemporal S1 parameters + monotemporal image data of S2
6 S2 (MAS) 123 image data of Most Accurate S2 Scene of each growing season

7 S1 + S2 (MAS) 166 multitemporal S1 parameters + image data of Most Accurate S2 Scene of each
growing season

8 S2 (LAS) 123 image data of Least Accurate S2 Scene of each growing season

9 S1 + S2 (LAS) 166 multitemporal S1 parameters + image data of Least Accurate S2 Scene of each
growing season

Test case 1 to Test case 3 represent various combinations of the respective total data
of the two satellite systems. While Test case 4 and Test case 5 were defined to evaluate
the influence of additional S1 data on a monotemporal S2 scene, they were also necessary
to identify the S2 scenes to be used in Test case 6 to Test case 9. Test cases 6–9 used a
selection of the three scenes from the spring, summer, and autumn seasons, which had the
highest/lowest total accuracy. Of these, classification models were created as the “most
accurate scene of season” (MAS) and the “least accurate scene of season” (LAS) with and
without the S1 features, respectively.

These 9 test cases (Table 5) were passed to Breiman’s [19] random forest (RF) algorithm,
a widely used ensemble learning approach. To avoid overfitting, a recursive “mean decrease
in accuracy” feature selection (MDA) was performed similarly to other studies [6,33–35].
The number of trees in the random forests was chosen with ntree = 1000, and for mtry
(number of predictors randomly sampled for each node), the default value was used, that
is the square root of available input variables. The accuracy assessment was done based
on the out-of-bag-results (OOB) of the random forest models calculating common metrics
based on confusion matrices.

3. Results

3.1. Full S1/S2 Dataset Comparison

In Table 6, the results of the model created exclusively with S1 data are shown (Test
case 1). An overall accuracy (OA) of 55.7%, with a Cohen’s kappa of 0.469, was achieved.
While good class-specific accuracies were achieved, especially for the conifers, the decid-
uous trees, apart from European beech (Fagus sylvatica FS), could only be separated with
significantly lower accuracy. Furthermore, not a single sample of the two tree species maple
(Acer spp. AC) and alder (Alnus glutinosa AG) could be assigned to the correct class.

If the sample classes were stratified in broadleaved (BL) and coniferous (CO) groups,
the random forest model was able to separate them very well (BL = 96.5%, CO = 92.7%).

In the model built using only the S2 data (Test case 2), the overall accuracy was 83.2%
with a Cohen’s kappa of 0.806. We also observed an increase in overall accuracy between
the broadleaved and coniferous groups (BL = 99.4%, CO = 97.2%) compared to Test case 1,
while a significant increase occurred in both the user’s and producer’s accuracies of all tree
species. The two species that could not be classified using the S1 data were also relatively
well separated (Table 7).
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Table 6. Confusion matrix based on the out-of-bag-result of Test case 1, using only Sentinel-1 data.
UA: user’s accuracy, PA: producer’s accuracy, OA: overall accuracy; for the abbreviations of tree
species names see Figure 1.

Reference
FS AG FE QU PR CP AC PA PN PS LD PM UA F1-Score

Se
nt

in
el

-1
−

Te
st

ca
se

1

C
la

ss
ifi

ca
ti

on

FS 236 33 36 86 16 39 34 0 10 4 14 0 46.5% 0.584
AG 0 0 0 1 0 1 0 0 0 0 0 1 NA NA
FE 3 2 6 2 1 1 4 0 0 0 0 0 31.6% 0.113
QU 47 14 40 140 2 18 13 0 4 1 0 0 50.2% 0.550
PR 1 0 0 0 1 0 0 0 0 0 0 0 50.0% 0.074
CP 0 0 2 0 0 4 0 1 0 0 0 1 50.0% 0.101
AC 0 0 0 0 0 0 0 0 0 0 0 0 NA NA
PA 1 0 0 0 0 2 0 119 2 7 0 24 76.8% 0.821
PN 7 2 2 1 0 5 2 1 114 19 1 5 71.7% 0.755
PS 0 0 0 0 1 0 0 5 11 44 1 5 65.7% 0.603
LD 5 1 1 0 4 1 2 1 0 2 31 1 63.3% 0.626
PM 0 0 0 0 0 0 0 8 2 2 3 19 55.9% 0.422

∑ Reference 300 52 87 230 25 71 55 135 143 79 50 56
PA 78.7% 0.0% 6.9% 60.9% 4.0% 5.6% 0.0% 88.1% 79.7% 55.7% 62.0% 33.9%

OA 55.7% Kappa 0.469

Table 7. Confusion matrix based on the out-of-bag-result of Test case 2, using only Sentinel-2 data.
UA: user’s accuracy, PA: producer’s accuracy, OA: overall accuracy; for the abbreviations of tree
species names see Figure 1.

Reference
FS AG FE QU PR CP AC PA PN PS LD PM UA F1-Score

Se
nt

in
el

-2
−

Te
st

ca
se

2

C
la

ss
ifi

ca
ti

on

FS 272 4 10 26 5 22 15 0 2 0 6 0 75.1% 0.822
AG 1 42 3 1 1 1 0 0 0 0 0 0 85.7% 0.832
FE 6 2 64 5 2 4 3 0 2 0 2 0 71.1% 0.723
QU 13 1 7 195 5 4 4 0 0 0 1 0 84.8% 0.848
PR 0 0 0 0 12 0 0 0 0 0 0 0 100.0% 0.649
CP 3 2 1 1 0 40 1 0 0 0 0 0 83.3% 0.672
AC 5 1 0 1 0 0 30 0 0 0 0 0 81.1% 0.652
PA 0 0 0 0 0 0 0 127 1 4 1 3 93.4% 0.937
PN 0 0 0 0 0 0 2 3 133 1 1 1 94.3% 0.937
PS 0 0 0 0 0 0 0 3 3 72 3 5 83.7% 0.873
LD 0 0 2 1 0 0 0 0 2 2 36 2 80.0% 0.758
PM 0 0 0 0 0 0 0 2 0 0 0 45 95.7% 0.874

∑ Reference 300 52 87 230 25 71 55 135 143 79 50 56
PA 90.7% 80.8% 73.6% 84.8% 48.0% 56.3% 54.5% 94.1% 93.0% 91.1% 72.0% 80.4%

OA 83.2% Kappa 0.806

The results of Test case 3, combining all data, show a marginal 0.5-percentage-point
improvement in overall accuracy with OA = 83.7 % and kappa = 0.811, compared to Test
case 2 (Table 8). The within-coniferous-group accuracy slightly gained by 1.1 percentage
points compared to that for the sole use of optical data (Test case 2). The results of the
individual classes remained more or less constant.

To better understand the inputs, Figure 2 lists the 15 most important out of the
50 remaining variables after the MDA-Feature selection of Test case 3. The analysis reveals
that, with “20180618_20180630_VH” and “20180618_20180630_CPR” (red), only two S1
parameters were among the 50 remaining variables of the model. Interestingly, they were in
the first and third place of importance. Band 9 was not included in the remaining variables.
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Table 8. Confusion matrix based on the out-of-bag-result of Test case 3, using Sentinel-1 data
and Sentinel-2 data. UA: user’s accuracy, PA: producer’s accuracy, OA: overall accuracy; for the
abbreviations of tree species names see Figure 1.

Reference
FS AG FE QU PR CP AC PA PN PS LD PM UA F1-Score

Se
nt

in
el

-3
−

Te
st

ca
se

3

C
la

ss
ifi

ca
ti

on

FS 271 2 9 28 8 19 16 0 1 0 3 0 75.9% 0.825
AG 0 43 1 0 0 1 0 0 0 0 0 0 95.6% 0.887
FE 6 2 64 6 0 3 4 0 1 0 2 0 72.7% 0.731
QU 16 1 9 193 6 4 3 0 0 0 0 0 83.2% 0.835
PR 0 0 0 0 10 0 0 0 0 0 0 0 100% 0.571
CP 2 3 3 2 0 44 1 0 1 0 0 0 78.6% 0.693
AC 4 1 0 0 1 0 29 0 0 0 0 0 82.9% 0.644
PA 0 0 0 0 0 0 0 129 1 4 1 5 92.1% 0.938
PN 1 0 0 0 0 0 2 3 135 2 2 0 93.1% 0.938
PS 0 0 0 0 0 0 0 2 3 70 2 3 87.5% 0.881
LD 0 0 1 1 0 0 0 0 1 3 40 2 83.3% 0.816
PM 0 0 0 0 0 0 0 1 0 0 0 46 97.9% 0.893

∑ Reference 300 52 87 230 25 71 55 135 143 79 50 56
PA 90.3% 82.7% 73.6% 83.9% 40.0% 62.0% 52.7% 95.6% 94.4% 88.6% 80.0% 82.1%

OA 83.7% Kappa 0.811

Figure 2. Importance plot of the remaining variables of Test case 3. The two Sentinel-1 parame-
ters 20180618_20180630_VH and 20180618_20180630_CPR (in red letters) remain in the classifica-
tion model.

3.2. Added Value of S1 on Monotemporal S2 Datasets

To evaluate the contributions of S1 data in the (extreme) case of only one available
S2 scene, the individual S2 scenes were each classified separately with (Test case 5) and
without S1 data (Test case 4). Figure 3 compares the two variants for each of the 14 S2
acquisitions of Test case 4 and Test case 5, each with (blue) and without S1 data (green).
Furthermore, as surrogates for compositing approaches, the three most-accurate (MAS)
and the three least-accurate scenes (LAS) of each growing season are shown, which serve
as S2 data material for Test case 6 to Test case 9. The last bar shows the result of using all
available S2 data, with (blue) and without S1 data (green).
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Figure 3. Overall accuracy of models using monotemporal Sentinel-2 (S2) scenes as well as two
seasonal selections using the three least- (LAS) and the three most-performing S2 scenes (MAS), with
and without Sentinel-1 (S1) combination. Also shown are the results when using all available S2
scenes with and without S1 combination. The red horizontal line highlights the results of the model
based on S1 data only.

The monotemporal S2 results show an increase of the OA from spring to summer and
again slightly lower values in the fall. Adding S1 data, the overall accuracy increased by
around 5 percentage points but still fell far short of the accuracies achieved in Test case 2
(all S2 scenes without any S1; Figure 3 right, green). Each of the 14 monotemporal S2 scenes
largely outperformed (by 5.2 to 14.3 percentage points) the full S1 dataset (horizontal red
line in Figure 3).

3.3. Added Value of S1 on Multitemporal S2 Dataset

The two variants of seasonal S2 data (LAS vs. MAS) were separated by roughly 10
percentage points from each other (71.1% vs. 80.0%) with very minor improvements when
the suite of S1 features were included (Figure 3). The LAS variant without S1 data, in
which for each of the three seasons only the worst performing S2 image was retained (Test
case 8), still performed better than the single best performing S2 scene (July image) and
largely better (15.4%) compared to the full S1 dataset. The differences between S1 and
S2 data were further accentuated (by almost 9%) when the three seasonal images were
composed of the best performing individual S2 images (MAS; Test case 6). For this test
case, classification results were almost on par with Test case 2 (all S2 scenes) and Test case 3
(all S1 and S2 data).

When comparing the sample-class F1-scores of Test cases 5 to Test case 9, shown in
Figure 4a, it becomes apparent that already three S2 MASs were sufficient to eliminate the
added value of S1 data on the classification result. If only three S2 LASs were available,
there was a marginal improvement in the F1-scores of individual sample classes, but the
results of already well-classified sample-classes were not further improved.

Nevertheless, it was not possible to reach the highest overall accuracy of Test case 3 by
using only three individual S2 scenes, with and without additional S1 data.
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Figure 4. F1-scores of Test cases 1 to Test case 3 (a), F1-scores of all expressions of Test cases 6 to Test
case 9 (b); for the abbreviations of tree species names see Figure 1, and definitions of test cases are
provided in Table 5.

4. Discussion

The classification based only on S1 data (Test case 1) did not achieve the same high
accuracy values as the classification with either monotemporal and/or combined S2 image
data. Nevertheless, it was already possible to separate the five coniferous species with
a moderate degree of accuracy. This underlines the potential of S1 for separating differ-
ent conifers. Furthermore, the separation of the two groups, deciduous and coniferous
forests, was already at a very high level and exceeded the results from previous S1-based
studies [14,15]. The increased accuracy could be related to the higher number of samples
and/or the significantly smaller study area compared to the aforementioned studies. The
larger number of derived S1 features could also play a role here, albeit comparisons across
datasets are generally to be taken with caution.

The fact that the species within the conifer group were separated with satisfactory
accuracies using microwave data—but not the deciduous species—is possibly related to
the more distinct canopy surface roughness between conifers (as compared to the smoother
deciduous species canopy surface). These results are in line with previous studies on tree
species classification from S1 with slightly higher overall accuracies but fewer species
(Table 9).

Test case 2, which was only based on S2 data, delivered significantly better results than
Test case 1. This was expected as optical data reflect both structural and biochemical forest
traits [46] and their temporal evolution, and S2 data are known to have a very high SNR and
a good temporal coverage [47]. The differentiation of the two strata was again very good,
but more importantly, now all species (deciduous and conifers) were separable. Separating
the individual tree species yielded a satisfactory result with an OA of 83.2%, kappa of 0.806
and an improvement of 27.5 percentage points compared to the sole use of S1 (Test case 1).
The result of Test case 2 could not reach the high accuracy of 88.7%, which was reached
by using the original sample dataset and S2 scenes from several years [6]. However, the
samples were increased in size and more balanced. Compared to other studies presented
in Table 9, the OA of Test case 2 is within the range usually achieved with multitemporal
S2 data.

The result of Test case 2 could be improved only marginally, 0.5 percentage points, by
using additional S1 data (Test case 3). Including S1 data, however, we observed a shift in
contributing features. Indeed, the MDA analysis revealed that Test case 3 included two
very high ranking S1 parameters as input variables, which, therefore, had to replace at
least two optical features from Test case 2. The high number of highly correlated features
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makes it very difficult to fully understand the MDA findings. After the MDA-Feature
selection, band 9 never remained in the dataset. Therefore, the added value of band 9 in
the discrimination of tree species depicted by Nkosi et al. [21] could not be confirmed.

Table 9. Summary of previous studies using Sentinel-1 (S1), Sentinel-2 (S2), and both combined for
tree species classification and their achieved overall accuracies (OAs).

Satellite
No. of

Species
Species Names OA Reference

S1 3 Quercus spp., Fagus sylvatica, Picea abies 72% [16]
S1 4 Quercus robur, Betula spp., Picea abies, Pinus sylvestris 66% [17]

S1 12
Fagus sylvatica, Alnus glutinosa, Fraxinus excelsior, Quercus spp., Prunus spp.,

Carpinus betulus, Acer spp., Picea abies, Pinus nigra, Pinus sylvestris, Larix decidua,
Pseudotsuga menziesii

58% Table 6

S2 4 Fagus sylvatica, Quercus spp., other broadleaf trees, coniferous trees 88% [36]
S2 4 Sabina przewalskii, Picea crassifolia, Betula spp., Populus spp. 90% [37]
S2 5 Larix spp., Pinus spp., Pinus mugo, Abies alba/Picea abies, broadleaf trees 84% [38]
S2 5 Picea abies, Pinus silvestris, Larix × marschlinsii, Betula sp., Quercus robur 88% [39]
S2 7 Picea sp., Pinus sp., Larix sp., Abies sp., Fagus sp., Quercus sp., other broadleaf trees 66% [3]

S2 7 Acacia mearnsii, Eucalyptus dunnii, Eucalyptus grandiis, Eucalyptus mix, Pinus
tecunumanii, Pinus elliotii, Pinus taedea 84% [40]

S2 8 Fagus sylvatica, Quercus spp., Alnus spp., Betula pendula, Picea abies, Pinus sylvestris,
Abies alba, Larix decidua 82% [8]

S2 9 Fagus sylvatica, Betula pendula, Carpinus betulus, Abies alba, Acer pseudoplatanus, Larix
decidua, European larch, Alnus incana, Pinus sylvestris, Picea abies 92% [41]

S2 11 Alnus spp., Acer pseudoplatanus, Fagus sylvatica, Betula pendula, Carpinus betulus,
Quercus spp., Picea abies, Pinus sylvestris, Larix decidua, Pseudotsuga menziesii 87% [42]

S2 12
Fagus sylvatica, Alnus glutinosa, Fraxinus excelsior, Quercus spp., Prunus spp.,

Carpinus betulus, Acer spp., Picea abies, Pinus nigra, Pinus sylvestris, Larix decidua,
Pseudotsuga menziesii

83% Table 7

S2 12
Fagus sylvatica, Alnus glutinosa, Fraxinus excelsior, Quercus spp., Prunus spp.,

Carpinus betulus, Acer spp., Picea abies, Pinus nigra, Pinus sylvestris, Larix decidua,
Pseudotsuga menziesii

90% [6]

S2 12
Betula pendula, Quercus robur/pubescens/petraea, Quercus rubra, Populus spp., Fraxinus
excelsior, Robinia pseudoacacia, Salix spp., Eucalyptus spp., Pinus nigra subsp. laricio,

Pinus pinaster, Pinus nigra, Abies alba, Pseudotsuga menziesii, Cupressus spp.

0.90
* [43]

S2 17

Fagus sylvatica, Alnus spp., Quercus petraea/robur, Quercus rubra, Betula pendula,
Robinia pseudoacacia, Tilia cordata, Acer pseudoplatanus, Fraxinus excelsior, Populus

spp., Carpinus betulus, Picea abies, Larix spp., Pseudotsuga menziesii, Pinus sylvestris,
Pinus strobus, Pinus nigra

96%
** [44]

S1 + LS 4 Shorea siamensis, Shorea obtuse, Dipterocarpus tuberculatus, semi-evergreen/evergreen 79% [18]
S1 + S2 6 Fagus sylvatica, Quercus spp., other broadleaves, Picea sp., Pinus sp., other conifers 63% [7]

S1 + S2 6 Quercus mongolia, Betula spp., Populus spp., Armeniaca sibirica Larix spp., Pinus
tabulaeformis 78% [45]

S1 + S2 7 Acacia mearnsii, Eucalyptus dunnii, Eucalyptus grandiis, Eucalyptus mix, Pinus
tecunumanii, Pinus elliotii, Pinus taedea 88% [40]

S1 + S2 12
Fagus sylvatica, Alnus glutinosa, Fraxinus excelsior, Quercus spp., Prunus spp.,

Carpinus betulus, Acer spp., Picea abies, Pinus nigra, Pinus sylvestris, Larix decidua,
Pseudotsuga menziesii

84% Table 8

* mean F1-score instead of OA; ** OA influenced by high dominance of one class.

For the study area, Wienerwald, and the employed RF classifier, it can be stated that if
there are a sufficient number of S2 scenes available, no more added value is generated by
using additional S1 data. We did, however, not evaluate the impact of the S2 orbit overlap on
the classification accuracy, which certainly would negatively impact the obtained accuracies.
On the other hand, temporal metrics (both parametric and using harmonics) in this study
were only employed for S1 data.

The best monotemporal S2 result was achieved by the scenes from May and July,
often a period with only few cloud-free data in Central Europe. Whenever data from
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several dates are available, the classification performance can be improved. Both variants
of seasonal data (i.e., combining the three best and the three worst S2 scenes per season)
demonstrated the added-value of multitemporal data.

Interestingly, in (optical) data-poor regions, the low S1 performance can be boosted
significantly, if at least one S2 scene can be added as this adds valuable biochemical trait
information. In this case, the OA of the classification can be increased by ca. 5.0 percentage
points on average. This finding is significant in that S1 scenes, unlike S2 scenes, are always
available due to the nature of their sensor’s active microwaves, but are only marginally
performant when used alone. If, however, several S2 scenes are available, the added value
of S1 is increasingly equalized and decreases to 1.7 percentage points with a composite of
MAS-S2 scenes and to 1.5 percentage points with a composite of LAS-S2 scenes. This is
in line with the findings of Mngadi et al. [40] and Waser et al. [15]. Even using seasonal
S2-composites as in other studies [48], overall accuracies of the full multitemporal datasets
as in Test case 2 and Test case 3 were far from achieved.

5. Conclusions

In this study, the performance of the Sentinel-1 and Sentinel-2 satellite pairs, both
individually and in various combinations, is presented. Twelve tree species, seven decid-
uous and five coniferous, of the Austrian Biosphere Reserve Wienerwald were classified
using Breiman’s random forest. While the results using only Sentinel-1 data were not
satisfactory, the ability of the Sentinel-2 satellites to classify tree species was demonstrated
once again. The greatest increase in accuracy can be achieved by using multitemporal
Sentinel-2 data. In areas with insufficient coverage of optical satellites, Sentinel-1 can add
value to classification accuracy. Seasonal Sentinel-2 composites have advantages over
monotemporal classifications, but preference should be given to a full time series whenever
possible. If sufficient Sentinel-2 data are available, the added value of Sentinel-1 data is only
marginal, so that the effort to acquire data is offset by the added value of increased accuracy.
However, for large-scale applications, the possibilities of acquiring cloud-free Sentinel-2
time series are often the limiting factor. In such cases, the advantage of the Sentinel-1 time
series is obvious. The next steps would be further combinations with other datasets such as
LiDAR or hyperspectral data (e.g., EnMAP). For a better understanding of the results and
the relationship between vegetation structure and reflectance properties, radiative transfer
models (RTMs) should be consulted.
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Appendix A

Table A1. Summary of the additional vegetation indices used for the classification, together with the
corresponding formula and references (band 8 was used for the NIR = Near-Infrared; RE = Red-Edge).

Index-Name Formula Reference

Built-up Area Index (BAI) BLUE−NIR
BLUE+NIR [49]

Chlorophyll Green Index (CGI) NIR
GREEN+RE1 [50]

Greenness Index (GI) GREEN
RED [51]

Green Normalized-Difference Vegetation Index (gNDVI) NIR−GREEN
NIR+GREEN [52]

Leaf Chlorophyll Content Index (LCCI) RE3
RE1 [53]

Moisture Stress Index (MSI) SWIR1
NIR [54]

Normalized-Difference Red-Edge and SWIR2(NDRESWIR) RE2−SWIR2
RE2+SWIR2 [55]

Normalized-Difference Tillage Index (NDTI) SWIR1−SWIR2
SWIR1+SWIR2 [56]

Normalized-Difference Vegetation Index (NDVI) NIR−RED
NIR+RED [57]

Red-Edge Normalized-Difference Vegetation Index(reNDVI) NIR−RE1
NIR+RE1 [52]

Normalized-Difference Water Index 1 (NDWI1) NIR−SWIR1
NIR+SWIR1 [58]

Normalized-Difference Water Index 2 (NDWI2) NIR−SWIR2
NIR+SWIR2 [52]

Normalized Humidity Index (NHI) SWIR2−GREEN
SWIR2+GREEN [59]

Red-Edge Peak Area (REPA) RED + RE1 + RE2 + RE3 + NIR [55,60]

Red SWIR1 Difference (DIRESWIR) RED + SWIR1 [61]

Red-Edge Triangular Vegetation Index (RETVI) 100(NIR − RE1)− 10(NIR − GREEN) [62]

Soil Adjusted Vegetation Index (SAVI) NIR−RED
NIR+GREEN+0.5 1.5 [63]

Blue and RE1 Ratio (SRBRE1) BLUE
RE1 [51]

Blue and RE2 Ratio (SRBRE2) BLUE
RE2 [64]

Blue and RE3 Ratio (SRBRE3) BLUE
RE3 [55]

NIR and Blue Ratio (SRNIRB) NIR
BLUE [65]

NIR and Green Ratio (SRNIRG) NIR
GREEN [51]

NIR and Red Ratio (SRNIRR) NIR
RED [65]

NIR and RE1 Ratio (SRNIRRE1) NIR
RE1 [50]

NIR and RE2 Ratio (SRNIRRE2) NIR
RE2 [55]

NIR and RE3 Ratio (SRNIRRE3) NIR
RE3 [55]

Soil Tillage Index (STI) SWIR1
SWIR2 [56]

Water Body Index (WBI) BLUE−RED
BLUE+RED [66]
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Abstract: Detailed knowledge about tree species composition is of great importance for forest
management. The two identical European Space Agency (ESA) Sentinel-2 (S2) satellites provide
data with unprecedented spectral, spatial and temporal resolution. Here, we investigated the
potential benefits of using high temporal resolution data for classification of five coniferous and seven
broadleaved tree species in a diverse Central European Forest. To run the classification, 18 cloud-free
S2 acquisitions were analyzed in a two-step approach. The available scenes were first used to stratify
the study area into six broad land-cover classes. Subsequently, additional classification models were
created separately for the coniferous and the broadleaved forest strata. To permit a deeper analytical
insight in the benefits of multi-temporal datasets for species identification, classification models were
developed taking into account all 262,143 possible permutations of the 18 S2 scenes. Each model was
fine-tuned using a stepwise recursive feature reduction. The additional use of vegetation indices
improved the model performances by around 5 percentage points. Individual mono-temporal
tree species accuracies range from 48.1% (January 2017) to 78.6% (June 2017). Compared to the
best mono-temporal results, the multi-temporal analysis approach improves the out-of-bag overall
accuracy from 72.9% to 85.7% for the broadleaved and from 83.8% to 95.3% for the coniferous tree
species, respectively. Remarkably, a combination of six–seven scenes achieves a model quality
equally high as the model based on all data; images from April until August proved most important.
The classes European Beech and European Larch attain the highest user’s accuracies of 96.3% and 95.9%,
respectively. The most important spectral variables to distinguish between tree species are located
in the Red (coniferous) and short wave infrared (SWIR) bands (broadleaved), respectively. Overall,
the study highlights the high potential of multi-temporal S2 data for species-level classifications in
Central European forests.

Keywords: tree species classification; Sentinel-2; multi-temporal; Wienerwald biosphere reserve

1. Introduction

The current Global Assessment Report on Biodiversity and Ecosystem Services again depicts an
alarming picture of the Earth with accelerating rates of biodiversity loss [1]. Earth observation (EO)
has a high potential for biodiversity assessments, mainly for the description of vegetation habitats [2].
The synoptic view, and the delivery of detailed, objective and cost-efficient information over large
areas, makes EO data one of the most useful tools for biodiversity assessments [3–5]. Depending on
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the spectral, spatial and temporal resolution of the EO data, various categorical and biophysical traits
can be mapped [6,7]. In forest ecosystems, tree species diversity is a key parameter for ecologists,
conservationists and also for forest managers [8,9]. In addition to the occurrences of tree species,
information about the distribution and the spatial pattern of tree species within larger geographic
extents is also essential.

In the last few years, the number and variety of commercially and publicly funded EO sensors
has increased dramatically. As a result, data with higher spatial, spectral and temporal resolutions are
available. Analysis of hyperspectral data demonstrated the added value of the dense spectral sampling
for the separation of tree species [10–13]. Multi-spectral, very high resolution (VHR) satellite data were
successfully used for mapping tree species distribution for up to ten different species [14–17]. The
small pixel size of VHR data enables the classification of individual tree crowns. However, the use
of VHR satellite data or airborne hyperspectral data is often limited by high data costs and limited
area coverage.

Studies covering larger regions by combining data with different spatial resolution have thus far
only focused on a small number of tree species [18], respectively, on tree species groups [19]. Likewise,
existing continental-scale forest maps such as the Copernicus high resolution forest layer [20], only
distinguish broadleaf and deciduous forests. Studies analyzing several tree species and covering large
geographic extents are still missing [21].

With the launch of the twin Sentinel-2A and 2B satellites since 2015, high quality data with high
spatial, spectral and temporal resolution are now freely available. Despite the fact that individual
tree crowns cannot be separated with the 10–20 m data, the rich spectral information with bands in
the visible, Red-Edge, Near-Infrared (NIR) and Shortwave-Infrared (SWIR) wavelengths has a high
potential for tree species separation [22–29]. An additional advantage is the very high revisit interval
of the two satellites. The twins cover the entire Earth surface every 5 days, with even higher number of
observations in the overlap areas of adjacent orbits.

In many (partly) cloudy areas of the world, the availability of dense time series is paramount to
obtaining reliable and cloud-free observations during key phenological periods [30]. An adequate
number of cloud-free observations also enables a better description of the actual situation and historical
evolution and moreover helps to detect changes [31]. Consequently, the use of multi-temporal
Sentinel-2 data also improves tree species identification. Nelson [32], for example, analyzed six tree
species classes in Sweden testing all possible combinations of three Sentinel-2 scenes from May, July
and August. They achieved overall accuracies of up to 86%. Bolyn et al. [22] classified eleven forest
classes in Belgium with an overall accuracy of 92% using Sentinel-2 scenes from May and October.
In a German test site, Wessel et al. [33] achieved up to 88% overall accuracy for four tree species
classes using Sentinel-2 scenes from May, August, and September. Persson et al. [27] used four scenes
from April, May, July, and October for the separation of five tree species in Sweden and obtained an
overall accuracy of 88%. In a Mediterranean forest, four forest types were separated with accuracies of
over 83% by Puletti et al. [28] using the Sentinel-2 bands together with vegetation indices. Hościło
and Lewandowska [34] used four scenes to classify eight tree species in southern Poland with an
overall accuracy of 76%. Using additional topographic features and a stratification in broadleaf and
coniferous species, the accuracy increased to 85%. Grabska et al. [23] achieved, with five (from 18)
Sentinel-2 images, an overall accuracy of 92% for the classification of nine tree species in a Carpathian
test site. The most important band was the Red-Edge 2 and most important scene were acquisitions
from October. All studies clearly demonstrated the benefit of multi-temporal data and gave some hints
about the importance of individual bands and optimum acquisition times. However, the number of
identified tree species was still relatively small (2–11), and generally only a few (3–5) Sentinel-2 scenes
were analyzed.

The aim of this study is to assess the suitability of dense multi-temporal Sentinel-2 data for a
detailed description of tree species and other vegetation/land cover classes in the Wienerwald biosphere
reserve in Austria. In protected areas, detailed information on the actual land cover—and possible
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changes—are of high importance. Up-to-now, the forest description of the biosphere reserve was
mainly based on management plans from different forest enterprises. These data do not cover the entire
biosphere reserve and are sometimes outdated. The biosphere management would tremendously
benefit from consistent and reliable information about the spatial distribution of the major coniferous
and broadleaf tree species.

The main objectives of our research were:

• To evaluate the potential of multi-temporal Sentinel-2 data for mapping 12 tree species at 10 m
spatial resolution for the entire Wienerwald biosphere reserve.

• To identify the best acquisition dates and scene combinations for tree species separation.
• To identify the most important Sentinel-2 bands for tree species classification and the added value

of several vegetation indices.
• To evaluate the benefits of stratified classifications.
• To apply an additional short-term change detection analysis to monitor forest management

activities and to ensure that the final tree species maps are up-to-date.

2. Materials and Methods

For the land cover classification and the tree species mapping in the Wienerwald biosphere reserve,
18 cloud-free Sentinel-2 scenes acquired between 2015 and 2017 were used. The mapping was done in
three steps using different reference data sets (Figure 1). In the first step, six broad land cover classes
were mapped. Subsequently, the individual tree species were identified within the resulting forest
strata. In the final step, change detection was applied to identify areas where forest activities took place.

 

Figure 1. Workflow diagram of the classification approach with three main steps: (1) broad land cover
classification, (2) tree species identification within the forest strata and (3) change detection to mask out
areas where forest activities took place.

For the broad land cover classification, reference data were visually interpreted in a regular
grid using four-band orthoimages with a spatial resolution of 20 cm acquired in the course of the
national aerial image campaign and provided by Austria’s Federal Office of Metrology and Surveying.
The reference data for the tree species were derived from stand maps and other forest management
databases. To enhance the data quality, the reference points were cross-checked by visual interpretation
of color-infrared (CIR) orthoimages. With these reference data, the coniferous and broadleaved tree

333



Remote Sens. 2019, 11, 2599

species were classified both separately and together, while testing all possible combinations of the
Sentinel-2 data. The best classification results were merged together and areas where changes could be
detected were masked out.

2.1. Study Site Wienerwald Biosphere Reserve

The Wienerwald biosphere reserve is one of the largest contiguous deciduous beech woodlands
in Central Europe. It is located in the south-west of Vienna (Austria) and covers an area of 105,645
ha. The location of such a large forest on the edge of a metropolitan area is unique. The range of
(micro) climatic and geological conditions in the Wienerwald is the main reason for the large diversity
of vegetation types [35]. The Biosphere Reserve has more than 20 types of woodland—with beech,
oak and hornbeam being dominant—and more than 23 types of meadow [36]. Concerning the forest,
particularly rare woods can be found, such as Austrian’s largest downy oak forests (Quercus pubescens)
and unique stands of Austrian Black Pine (Pinus nigra subsp. nigra) occurring in the eastern part
of the Wienerwald [37]. The inlet in Figure 2 shows the location of the study area within a region
characterized by its diversity of nature and culture, and sustainable ecosystem management.

Figure 2. Overview of the study area and the 6-class land cover reference data. (a) Regular grid for
reference data collection for the land cover classification covering the biosphere reserve and some
surrounding areas (background: Sentinel-2 bands 8-4-3). (b) Examples (10 and 20 m grid cells) for each
class (background: CIR orthoimage). (c) Location of the biosphere reserve Wienerwald within Austria
and Sentinel-2 orbit cover.

2.2. Reference Data Sets

For the reference data creation, a regular grid (1 km × 1 km) was laid over the entire biosphere
reserve as well as some surrounding areas (Figure 2a). At each point, the grid cell was visually
interpreted using CIR orthoimages (Figure 2b). Table 1 presents the number of samples and class
definitions of the six land cover classes.
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Table 1. Summary of the reference data for the land cover classification.

Class Name Definition Samples Amount [%]

Broadleaf forest Broadleaf-dominated forests 388 48.68
Coniferous forest Conifer-dominated forests 97 12.17

Grassland Grassland, meadows, lawns,
pastures, parks, etc. 104 13.05

Cropland Agricultural crops, wine yards 77 9.66

Built-up Sealed surfaces - buildings, roads,
infrastructure, etc. 116 14.56

Water Lakes, rivers, ponds, etc. 15 1.88∑
797 100.00

Six target classes were distinguished for the land cover classification: deciduous forest, broadleaf
forest, grassland, cropland, build-up areas and water bodies. To receive adequate numbers of trainings
samples for the classes cropland, build-up areas and water, the grid was extended to surrounding
areas in the north and east of the study area. Only clearly interpretable samples which contain only
one class were retained for the training of the classification model. In the end, 797 out of 1360 pixels
were useable.

For the tree species classification, additional reference samples were necessary and were derived
from forest management data. First, pure stands of the 12 tree species were identified in the forest
management maps. Next, one or two Sentinel-2 pixels were chosen in the center of each stand and the
correctness of the information was checked using CIR orthoimages (Figure 3).

Figure 3. (a) Distribution of the reference data set for the tree species classification and (b) examples (10
and 20 m grid cells) for each tree species. Background images: Color Infrared composites of Sentinel-2
(a) and orthoimages (b).

In this way, on average 85 reference samples per tree species were distinguished, well distributed
over the entire biosphere reserve (Table 2). The variation in the number of available reference data
reflects the difficulties to identify sufficiently large and pure stands for some of the species.
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Table 2. Summary of the reference data for the tree species classification.

Tree Species Scientific Name Acronym Samples Amount [%]

European beech Fagus sylvatica FS 215 21.37
European alder Alnus glutinosa AG 52 5.17
European ash Fraxinus excelsior FE 60 5.96

Oaks Quercus sp. QU 130 12.92
Cherry Prunus sp. PR 25 2.49

European hornbeam Carpinus betulus CP 65 6.46
Maple Acer sp. AC 33 3.28

Norway spruce Picea abies PA 135 13.42
Austrian pine Pinus nigra PN 107 10.64

Scots pine Pinus sylvestris PS 79 7.85
European larch Larix decidua LD 49 4.87

Douglas fir Pseudotsuga menziesii PM 56 5.57∑
1006 100.00

2.3. Sentinel-2 Data Sets

The study area is located in the overlapping area of two Sentinel-2 orbits (122 and 79—Figure 2),
and therefore, the number of acquisitions twice as high as normal in this latitude. For the analysis,
all available Sentinel-2 scenes were visually checked. Only cloud-free data were selected. From the
188 scenes acquired between June 2015 to end of 2017, 18 scenes were perfectly useable. Summary
information about selected scenes can be found in Table 3. All scenes were atmospherically corrected
using Sen2Cor [38] Version 2.4 using the data service platform operated by BOKU [39] on the Earth
Observation Data Centre (EODC) [40]. The 20 m bands B5, B6, B7, B8a, B11 and B12 were resampled to
10 m and the 60 m-bands B1, B9 and B10 were excluded from the analyses.

Table 3. Summary of the selected Sentinel-2 data sets (granule T33UWP). Over the region of interest,
the images were free of clouds. The percentage cloud cover of the entire scenes was in the range 0-15%.

Sentinel-2 Satellite Date Orbit Sun Zenith Angle Sun Azimuth Angle

A 30.08.2015 122 40.64 160.67
A 25.12.2015 79 72.89 165.72
A 27.03.2016 122 46.92 161.03
A 13.04.2016 79 40.99 157.03
A 06.05.2016 122 32.93 159.34
A 31.08.2016 79 41.81 157.47
A 13.09.2016 122 45.77 164.04
A 30.09.2016 79 52.43 164.31
A 11.01.2017 122 71.18 165.83
A 01.04.2017 122 45.04 160.96
A 28.05.2017 79 29.06 151.92
A 20.06.2017 122 26.83 153.18
A 01.08.2017 79 33.19 150.41
A 29.08.2017 122 40.48 160.55
A 08.09.2017 122 43.90 162.88
A 28.09.2017 122 51.20 167.02
B 30.09.2017 79 52.35 164.20
A 15.10.2017 79 57.79 166.70

2.4. Random Forest Classification Approach

For all classifications, the ensemble learning random forest (RF) approach developed by
Breiman [41] was used. The two hyper-parameters mtry (number of predictors randomly sampled
for each node) and ntree (the number of trees) were set to the square root of available input variables
(default) and, to 1000, respectively.
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One advantage of the bootstrapping is that it yields relatively unbiased ‘out-of-bag’ (OOB) results,
as long as representative reference data are provided [42]. Another benefit is the computation of
importance measures which can be used for the evaluation of the input data and subsequent feature
reduction. In this study, a recursive feature selection process using the ‘Mean decrease in Accuracy’
(MDA) was applied similarly to other studies [18,43,44]. More information about the algorithm and its
advantages, such as the importance measure for the input variables and the integrated bootstrapping,
can be found in the literature [16,41,45,46].

To classify the six land cover classes, first a model based on all Sentinel-2 datasets was developed
using the land cover reference data from the visually interpreted regular grid. The tree species models
were developed separately for the broadleaf and coniferous species—for testing purposes we also
pooled all tree species together. The tree species classification models were based on the tree species
reference data set and only applied to areas previously mapped as broadleaf or coniferous forest.

To find the best combinations for the tree species classification, we tested all possible combinations
of the 18 Sentinel-2 scenes. We tested for example 18 individual scenes, 153 combinations of two
scenes, 816 of three and so on. In total, 262,143 different models for each of the two forest strata were
developed. The training of each model, including the feature selection, took on average about 5 min
on a standard PC (CPU i7-2600 3.40 GHz, 16 GB RAM), and therefore, a high-performance computing
(HPC) environment was used.

The modeling was done with two data sets: one contains only the 10 spectral bands, the second
combines the 10 spectral bands with 28 widely used vegetation indices (Table A1 in the Appendix A).

2.5. Input Data Evaluation

The classification models were assessed using the OOB results. Previous studies had demonstrated
that the OOB results of RF classifiers compare well against an assessment based on a separate validation
data set [42,47,48].

To assess the importance of individual Sentinel-2 bands and acquisition times, the ‘Mean decrease
in Accuracy’ (MDA) importance values of the final RF models (after feature selection) were normalized
for each model to 1 by dividing all values by the maximum value of the specific model. Variables
which were eliminated by the feature selection procedure were assigned an importance value of 0. All
normalized values were summed up for all tested combinations and divided by the total number of
tested combinations (Equation (1)):

IMPi =

∑n
j=0

MDAji
MDAjmax

n
(1)

where IMPi is the normalized and aggregated importance value for variable i (= one band of one
specific Sentinel-2 scene); MDAji the MDA importance value of variable i in the model j; MDAjmax
the maximum MDA importance value in the model j; and n the number of models (combinations of
Sentinel-2 scenes) considering variable i (= 131,072).

When evaluating the importance of the spectral bands, models involving the vegetation indices
were discarded to avoid skewing the results by the chosen indices. This was deemed particularly
important as most indices include the NIR band. However, we applied the evaluation also to
the models with vegetation indices to investigate the most important vegetation indices for tree
species classification.

2.6. Change Detection

As outlined above, for the tree species classification, data from a three-year period (2015 to 2017)
were used. To avoid interference of possibly occurring changes during the three years, a simple change
detection was applied. Changes in the forest cover were detected by comparing the NDVI values from
the respective August scenes of the years 2015, 2016 and 2017. Based on the difference between the
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NDVI of the actual and the previous year, pixels with absolute differences of ≤0.05 were flagged as
‘change’. Negative values indicate a decrease in leaf biomass and were interpreted as an indicator
of forest management activities such as thinning, harvesting or calamities. This interpretation was
cross-checked by visual interpretation of the data sets and consultations with the forest management.
All areas where forest management activities were detected were masked out from the tree species map.

3. Results

3.1. Land Cover Classification

The land cover classification based on all input data using the random forest modeling approach
including the feature selection achieved an overall accuracy of 96%, and nearly all class-specific
accuracies were higher than 90% (Table 4). The highest misclassifications can be found between the
two agricultural classes grassland and cropland. The two forest classes (broadleaf and conifer forest)
achieved very high producer and user accuracies (>93%).

Table 4. Confusion matrix based on OOB results of the land cover classification model based on all 18
Sentinel-2 scenes. (UA: user’s accuracy, PA: producer’s accuracy, OA: overall accuracy).

Reference
BF CF GL CL BU WB UA

C
la

ss
ifi

ca
ti

o
n Broadleaf forest (BF) 387 7 2 0 2 0 97.3%

Conifer forest (CF) 0 90 0 0 0 0 100.0%
Grassland (GL) 1 0 94 5 0 0 94.0%
Cropland (CL) 0 0 6 70 3 0 88.6%
Build-up (BU) 0 0 2 2 111 0 96.5%

Waterbody (WB) 0 0 0 0 0 15 100.0%
∑

reference data 388 97 104 77 116 15 797
PA 99.7% 92.8% 90.4% 90.9% 95.7% 100%

OA 96.2% Kappa 0.946

3.2. Tree Species Classification

The boxplots in Figure 4 illustrate the overall accuracies based on the out-of-bag results after
feature selection. Each bar summarizes the different image combinations (1–18 images). For the
coniferous species (middle row), overall accuracies of around 90% were achieved. Occasionally, a
combination of five to six scenes was sufficient for such high classification accuracies. For the broadleaf
trees (top row), the overall accuracies leveled out at around 80%. Here, a slightly higher number of
scenes was necessary to reach optimum performance (7–8 scenes). The OA of the model trained on
the pooled set of tree species was somewhere between the two class-specific results (bottom row). In
all three cases, the use of vegetation indices (right column) improved the classification compared to
the sole use of the reflectance data (left column). The average improvement of the OA was around
5 percentage points: The highest OA of the best models improved from 82.1% to 85.9% for the broadleaf
strata, from 90.4% to 95.3% for the coniferous strata and from 83.5% to 88.7% for all tree species pooled
together. Compared to the best mono-temporal results the use of multi-temporal data (both including
vegetation indices) improved the out-of-bag overall accuracy from 72.9% to 85.7% for the broadleaved,
from 83.8% to 95.3% for the coniferous and from 74.4% to 88.7% for all tree species together.
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Figure 4. Overall accuracies of all possible Sentinel-2 combinations based on models using only spectral
bands (a–c) and using spectral bands and vegetation indices (d–f). Strata-specific results are displayed
in the rows: results for broadleaf species (a,d), coniferous species (b,e) and all tree species together (c,f).

The best results for the broadleaf trees obtained an overall accuracy of 86%. For all species, the
achieved Producer’s and User’s accuracies are good (>70%) to very good (>90%) except for maple
(Acer sp.). For the coniferous the best model reached an overall accuracy of 95.3%. All class specific
accuracies were above 90%. For comparison reason the two results of the best broadleaf and the best
coniferous models were combined into a single confusion matrix in Table 5. The differences to the
result of the best model including all tree species (Table 6) are small. The aggregated overall accuracy
of the stratified approach is slightly higher (89.9% versus 88.7%) and some classes with small numbers
of reference data also benefit from the separated modeling. The best models for the three groups
are based on the following input data after feature selection: (1) broadleaf trees: 159 variables from
nine dates including all spectral bands and indices, (2) coniferous trees: 24 variables from seven dates
including three bands and 13 indices, (3) all tree species together: 126 variables from 13 dates including
eight bands and 26 indices.
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Table 5. Confusion matrix based on the combined OOB results of the best broadleaf and the best
coniferous model using spectral bands and vegetation indices. (UA: user’s accuracy, PA: producer’s
accuracy, OA: overall accuracy).

Reference
FS AG FE QU PR CP AC PA PN PS LD PM UA

C
la

ss
ifi

ca
ti

on

Fagus sylvatica (FS) 211 4 7 7 4 12 8 83.4%
Alnus glutinosa (AG) 0 44 0 1 0 0 0 97.8%

Fraxinus excelsior (FE) 0 0 44 3 0 0 7 81.5%
Quercus sp. (QU) 0 1 5 117 1 4 2 90.0%
Prunus sp. (PR) 0 0 0 0 18 0 0 100.0%

Carpinus betulus (CB) 4 2 3 1 1 48 0 81.4%
Acer sp. (AC) 0 1 1 1 1 1 16 76.2%

Picea abies (PA) 132 0 3 1 1 96.4%
Pinus nigra (PN) 1 101 1 1 2 95.3%

Pinus sylvestris (PS) 1 4 75 0 0 93.8%
Larix decidua (LD) 1 1 0 46 1 93.9%

Pseudotsuga menziesii (PM) 0 1 0 1 52 96.3%
∑

Reference data 215 52 60 130 25 65 33 135 107 79 49 56
PA 98.1% 84.6% 73.3% 90.0% 72.0% 73.8% 48.5% 97.8% 94.4% 94.9% 93.9% 92.9%

OA 89.9% Kappa 0.885

Table 6. Confusion matrix based on the OOB result of the best model for all tree species together
using spectral bands and vegetation indices. (UA: user’s accuracy, PA: producer’s accuracy, OA:
overall accuracy).

Reference
FS AG FE QU PR CP AC PA PN PS LD PM UA

C
la

ss
ifi

ca
ti

on

Fagus sylvatica (FS) 210 3 4 7 4 11 8 0 0 0 0 0 85.0%
Alnus glutinosa (AG) 0 43 0 1 0 0 1 0 0 0 0 0 95.6%

Fraxinus excelsior (FE) 0 0 46 2 0 0 7 0 0 0 0 0 83.6%
Quercus sp. (QU) 2 2 7 115 1 4 2 1 0 0 0 0 85.8%
Prunus sp. (PR) 0 0 1 0 17 0 0 0 0 0 1 0 89.5%

Carpinus betulus (CB) 2 3 0 3 2 49 0 0 0 0 0 0 83.1%
Acer sp. (AC) 0 1 2 1 1 1 15 0 0 0 0 0 71.4%

Picea abies (PA) 0 0 0 0 0 0 0 132 0 3 1 5 93.6%
Pinus nigra (PN) 0 0 0 0 0 0 0 1 98 1 1 1 96.1%

Pinus sylvestris (PS) 0 0 0 0 0 0 0 1 7 74 1 0 89.2%
Larix decidua (LD) 1 0 0 1 0 0 0 0 2 1 45 2 86.5%

Pseudotsuga menziesii (PM) 0 0 0 0 0 0 0 0 0 0 0 48 100.0%
∑

Reference data 215 52 60 130 25 65 33 135 107 79 49 56
PA 97.7% 82.7% 76.7% 88.5% 68.0% 75.4% 45.5% 97.8% 91.6% 93.7% 91.8% 85.7%

OA 88.7% Kappa 0.871

Huge differences in feature importance were found within and between the model tree species
groups (Figure 5). The dot size indicates the importance of a specific band (y-axis) and date (x-axis)
in the classification models. Larger dots indicate a higher importance. To generate this information,
the results of all combinations were aggregated, excluding models with vegetation indices. For the
broadleaf species, the most important Sentinel-2 bands are the SWIR bands B12 and B11 followed by
the Red-Edge band 1 (B5) and acquisitions from May, April and June are more useful compared to
those from late summer and autumn. For the coniferous species, a higher number of scenes showed
high importance compared to the broadleaf species. Again, the acquisition End of May, as well as the
August acquisitions, showed the highest contribution. For the separation of the coniferous species
the Red band is the most relevant band. The results for the aggregated modeling with all tree species
together is a mixture of the results of the modeling for the two strata. Only the high importance of the
NIR band B8 is striking.
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Figure 5. Aggregated feature importance derived from the combination of all classification models,
excluding models involving spectral vegetation indices. A larger dot size indicates a higher importance
of the specific band and date combination. The bars on the top and right side of the graphs summarize
the importance of the individual months and spectral bands, respectively. (a) Results for the broadleaf
stratum, (b) coniferous species and (c) all tree species pooled together. Different colors indicate the year
of the Sentinel-2 acquisition.

Similar results can be found for the models using spectral data and vegetation indices together.
For all three groups, the same Sentinel-2 bands show the highest importance (Figures A1–A3). The
vegetation indices with the highest contributions to the classification performance for the broadleaf
species were again indices which consider the SWIR, NIR and Red-Edge bands in different variations
such as simple ratios, differences, and normalized differences (Figure A1). For the coniferous species
mainly indices based on the NIR and Red bands (simple ratios and normalized differences) and the
ratio between Green and Red showed the highest importance values (Figure A2). The result for all tree
species together is again a mixture of the two strata. The highest ranked variable in the aggregated
modeling was the Difference between Red and SWIR (Figure A3).

Figure 6 shows the final result of the tree species mapping for the entire Wienerwald biosphere
reserve. The map combines the results of the land cover classification, the stratified tree species
models (separated for broadleaf and coniferous species) and the change detection (forest management
activities).
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Figure 6. Final map based on aggregation of the best models of the land cover, broadleaf trees and
coniferous trees classifications and the results of the change detection.

A qualitative check was done by the biosphere reserve management and the validity was confirmed.
The different forest types mainly result from geological differences (e.g., Black pine forests in the
southeast grow on limestone) and different management strategies (e.g., higher amount of coniferous
trees in other regions).

For the detection of forest changes, the simple comparison of NDVI values from August scenes of
different years was useful, as for each year, changes were captured on around 1% of the forest area.
Areas where changes were detected in first period (2015–2016) often showed a clear regrowth in the
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second period. First trials aggregating the values to stand maps and interpreting the absolute values
showed promising results to distinguish between different forest management activities (not shown).
Both the affected area and the grade of the thinning can be determined based on the change in the
NDVI values and the number of pixels with changes.

4. Discussion

4.1. Classification Accuracy

The classification of 12 tree species revealed very good results. We obtained an overall accuracy of
89% in line with comparable studies. However, most of the previous studies used only three to five
S2 scenes and considered only fewer classes: Nelson [32] achieved 86% for six tree species classes,
Bolyn et al. [22] 92% for 11 forest classes, Wessel et al. [33] 88% for four tree species classes, Persson et
al. [27] 88% for five tree species, Soleimannejad et al. [49] 77% for three tree species and Hościło and
Lewandowska [34] 76% (using only S2 bands) and 85% (using a stratified approach and including
topographic features), for eight tree species. Grabska et al. [23] achieved with five (out of 18) S2 scenes
an overall accuracy of 92% for nine tree species. We attribute our favorable results to the high quality
of the reference data and the acquisition density, which allowed covering the temporal changes in the
spectral signatures well, which in turn contributed to the successful classifications.

Several studies showed that higher accuracies can be achieved using data with higher spatial
resolution such as WorldView-2 or Pleiades [25,26,49]. The accuracies of the present study are even
higher compared to studies using WorldView-2 data for tree species classification under similar
ecological conditions. For example, Immitzer et al. [16] obtained for 10 tree species overall accuracies of
82%, Waser et al. [17] for seven species 83% and Fassnacht et al. [15] for 10 species 80%. In the present
study, we found clear indications that the use of multi-temporal data contributed to the successful
classifications, further enhanced by the availability of spectral bands in the SWIR.

Only maple, cherry and European hornbeam were classified with low accuracies (46–75%). All
other classes reached high (≥77%) to very high (≥85%) producer’s and user’s accuracies. Coniferous
species were generally very well identified, in line with results published by Grabska et al. [23] and in
contrast to Hościło and Lewandowska [34]. Further research is warranted to determine why not all
species show distinct spectral-temporal features.

Similar to other studies [15,16,23–25,30], we found that class imbalances negatively affect the
class-specific results. For ‘hard-to-separate classes’, the class with more samples is obviously preferred
by the RF classifier and consequently obtains higher accuracies. This underlines again the importance
of an adequate number of high quality reference samples. Although desirable, in practice, such a
request is not always feasible, as some tree species hardly occur in pure stands, respectively, do not
cover large enough areas for being detectable with 10 m resolution data.

4.2. Acquisition Date

In particular for the multi-date classifications, it is difficult to depict the importance of the
acquisition date, as counter-balancing effects occur. For example, for mono-temporal classifications, the
dataset from May achieved the best result for all tree species together. Images acquired in May were
also used in models achieving the highest accuracies based on combinations of two and more scenes,
together with October images. The sole use of October images, however, gave only moderate results.
Hence, whereas individual acquisition dates can be well interpreted in mono-temporal classification,
this is not always possible when multiple scenes are involved. To sustain interpretation, we aggregated
the feature importance information in a new way (Equation (1) and Figure 5). As a general trend
we confirm findings of previous studies, that a well-balanced data set, involving scenes from spring
to autumn, are preferable [23,34,50]. When enough processing power and storage is available, a
simple straight forward solution is to use all available images. Obviously, for very large areas such an
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approach will fail, as clouds will occur at least in parts of the area, making it necessary to use either
compositing techniques [51] or spatio-temporal gap-filling procedures [52].

Species-specific temporal changes of the spectral signatures can be visualized nicely using dense
time-series [23]. The date of leaf flush, for example, varies from species to species. This permits
to distinguish tree species that otherwise show very similar spectral signatures during the summer
months. The same holds for the timing of the leaf coloration. Therefore, both phenomena can be
very helpful for the separation of tree species [23,50,53–57]. However, regional differences related to
altitude, aspect or soil conditions co-influence the phenological development and timing of leaf flush
and coloration, making additional information necessary [58]. Therefore, the quality of the available
reference data is very important, as well as means to define strata in which individual models perform
well. Alternatively, one has to use (auxiliary) proxy variables describing the species-independent
phenological variations that are typically encountered when working across larger regions [59].

In general terms, it is beneficial to acquire and use large representative samples for each species
covering as good as possible the site-specific variations. To leverage species-dependent differences
in phenological development, the highest possible revisit frequencies are optimum. Very dense time
series not only mitigate cloud effects but also permit to extract key phenological indicators such as start
and end of season [50,60]. In our study, the available cloud-free scenes did not cover the entire year in
regular intervals: mainly in July, only very few cloud-free data sets were acquired due to convective
cloud formation; additionally, in spring and autumn, spells of bad weather prevented the acquisition
of useful scenes.

4.3. Sentinel-2 Bands and Vegetation Indices

Our study demonstrates the high suitability of the Sentinel-2 bands for the separation of broad
land cover classes as well as for the identification of various tree species. The most important bands are
the SWIR, Red and NIR. The importance of the NIR and SWIR bands for species classification was also
highlighted by other studies [22,27,28,49]. Our results reveal that the SWIR bands are mainly necessary
for the separation of the individual broadleaf species; the NIR band is useful for the separation of
the two strata coniferous and broadleaf species. In our work, the broader NIR band (band 8 at 10 m)
achieves higher importance values than the narrow NIR band (band 8a at 20 m). This is in contrast
to the work of Bolyn et al. [22] and Persson et al. [27], who found that band 8a was more important.
Additionally, these two studies and Grabska et al. [23] highlighted the significance of the Red-Edge
bands, which cannot be fully confirmed by our study. As the mentioned bands are recorded at different
spatial resolutions, the contradictions may stem from site-specific differences in the patchiness of
the forests. On the other hand, the high importance of the Red band for the coniferous species is in
agreement with Hościło and Lewandowska [34].

We found that the use of vegetation indices improved the classification performance compared to
the sole use of spectral signatures. Similar results were reported by Puletti et al. [28] and Maschler
et al. [12]. The most relevant vegetation indices were based on the same bands, which show high
importance in the models based only on spectral bands. For the broadleaf species, band combinations
involving the SWIR, NIR and Red Edge bands were most useful, for the coniferous indices based
on Red and NIR bands. The highest ranked indices considering all types of indices (simple ratios,
differences, normalize differences).

5. Conclusions

The introduced Sentinel-2 workflow for tree species classification is robust, cost-efficient and
scalable. The workflow was already successfully applied in several test areas across Germany. In
the highly diverse Wienerwald biosphere reserve in Austria, the classification method achieved high
classification accuracies for most of the 12 investigated tree species. However, a noticeable dependence
on tree species, but also on the number and quality of the reference data, was found.
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The NIR band is useful to separate the two tree species groups, coniferous and broadleaf trees, but
much less so for identifying individual species. For the identification of the seven broadleaf species,
the two SWIR bands are the most important. To separate the five individual coniferous species, the
highest importance was found for the Red band. The use of additional vegetation indices further
improved the performance of the classification models, and is therefore highly recommended.

The sensors on-board of Sentinel-2A and 2B provide rich spectral information in 10 spectral bands.
The data are extremely useful for tree species mapping over large areas. The data is freely available,
and due to the regular and dense acquisition pattern (five-day), images covering all phenological
stages can be acquired and used for the classification. Although a few well-placed acquisitions can
possibly yield very good classification results, the easiest way to ensure high classification accuracies is
to combine and use all available cloud-free images simultaneously. This avoids the definition of the
‘perfect’ acquisition date(s), which far too often cannot be obtained due to local weather conditions.

With two Sentinel-2 satellites and their high revisit rate, the acquisition of several scenes per year
should be possible for most Central European regions. However, especially over mountainous regions
such as the Alps, the revisit frequency is probably still not high enough. The high cloudiness also
prevents the application of methods for the extraction of land surface phenology (LSP) parameters,
and their subsequent use in classification models. Unfortunately, in mountainous regions such as the
Alps, microwave sensors are also only of limited use, due to strong terrain effects and radar shadows.
Hence, it is requested to further increase the temporal revisit frequency of optical sensors and to make
better use of virtual constellations, if possible involving the fleet of commercial VHR satellites.

From a methodological point of view, research should focus on further increasing the number
of tree species involved in such classifications, while finding ways to handle strong class imbalances
and missing values. The handling of mixed classes should also have high priority, as long as sensor
resolution does not permit to resolve individual tree crowns. Ultimately, the full benefits of Earth
Observation data will only become visible if such maps are produced and regularly updated at
continental scale. This requires progress in terms of data standardization and feature extraction, and
implementation of suitable code within HPC environments having direct access to the data storage.
More research is warranted to identify the bio-physical factors leading to the observed large variations
in species-specific classification accuracies.
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Appendix A

Table A1. Overview of the used vegetation indices and band combinations together with
the corresponding formula and references (band 8 was used for the NIR = Near − Infrared;
RE = Red − Edge).

Name Formula Reference

Built-up Area Index (BAI) BLUE−NIR
BLUE+NIR [61]

Chlorophyll Green index (CGI) NIR
GREEN+RE1 [62]

Global Environmental Monitoring Index (GEMI)
η− 0.25η2 − RED−0.125

1−RED

η =
2(NIR2−RED2)+1.5NIR+0.5RED

NIR+RED+0.5

[63]

Greenness Index (GI) GREEN
RED [64]

Green Normalized Difference Vegetation Index (gNDVI) NIR−GREEN
NIR+GREEN [65]

Leaf Chlorophyll Content Index (LCCI) RE3
RE1 [29]

Moisture Stress Index (MSI) SWIR1
NIR [66]

Normalized Difference Red-Edge and SWIR2
(NDRESWIR)

RE2−SWIR2
RE2+SWIR2 [67]

Normalized Difference Tillage Index (NDTI) SWIR1−SWIR2
SWIR1+SWIR2 [68]

Normalized Difference Vegetation Index (NDVI) NIR−RED
NIR+RED [69]

Red-Edge Normalized Difference Vegetation Index
(reNDVI)

NIR−RE1
NIR+RE1 [65]

Normalized Difference Water Index 1 (NDWI1) NIR−SWIR1
NIR+SWIR1 [70]

Normalized Difference Water Index 2 (NDWI2) NIR−SWIR2
NIR+SWIR2 [65]

Normalized Humidity Index (NHI) SWIR1−GREEN
SWIR1+GREEN [71]

Red-Edge Peak Area (REPA) RED + RE1 + RE2 + RE3 + NIR [67,72]

Red SWIR1 Difference (DIRESWIR) RED− SWIR1 [73]

Red-Edge Triangular Vegetation Index (RETVI) 100 (NIR − RE1) − 10 (NIR − GREEN) [74]

Soil Adjusted Vegetation Index (SAVI) NIR−RED
NIR+RED+0.5 1.5 [75]

Blue and RE1 ratio (SRBRE1) BLUE
RE1 [64]

Blue and RE2 ratio (SRBRE2) BLUE
RE2 [76]

Blue and RE3 ratio (SRBRE3) BLUE
RE3 [67]

NIR and Blue ratio (SRNIRB) NIR
BLUE [77]

NIR and Green ratio (SRNIRG) NIR
GREEN [64]

NIR and Red ratio (SRNIRR) NIR
RED [77]

NIR and RE1 ratio (SRNIRRE1) NIR
RE1 [62]

NIR and RE2 ratio (SRNIRRE2) NIR
RE2 [67]

NIR and RE3 ratio (SRNIRR3) NIR
RE3 [67]

Soil Tillage Index (STI) SWIR1
SWIR2 [68]

Water Body Index (WBI) BLUE−RED
BLUE+RED [78]
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Figure A1. Aggregated feature importance for the broadleaf stratum derived from the combination of
all classification models, based on spectral bands and vegetation indices (please see Figure 4 for more
details about the graph and Table A1 for the Vegetation indices description).
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Figure A2. Aggregated feature importance for the coniferous stratum derived from the combination of
all classification models, based on spectral bands and vegetation indices (please see Figure 4 for more
details about the graph and Table A1 for the Vegetation indices description).
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Figure A3. Aggregated feature importance for all tree species together derived from the combination
of all classification models based on spectral bands and vegetation indices (please see Figure 4 for more
details about the graph and Table A1 for the Vegetation indices description).
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Abstract: Mapping forest composition using multiseasonal optical time series remains a challenge.
Highly contrasted results are reported from one study to another suggesting that drivers of
classification errors are still under-explored. We evaluated the performances of single-year Formosat-2
time series to discriminate tree species in temperate forests in France and investigated how predictions
vary statistically and spatially across multiple years. Our objective was to better estimate the impact
of spatial autocorrelation in the validation data on measurement accuracy and to understand which
drivers in the time series are responsible for classification errors. The experiments were based on
10 Formosat-2 image time series irregularly acquired during the seasonal vegetation cycle from
2006 to 2014. Due to lot of clouds in the year 2006, an alternative 2006 time series using only
cloud-free images has been added. Thirteen tree species were classified in each single-year dataset
based on the Support Vector Machine (SVM) algorithm. The performances were assessed using a
spatial leave-one-out cross validation (SLOO-CV) strategy, thereby guaranteeing full independence
of the validation samples, and compared with standard non-spatial leave-one-out cross-validation
(LOO-CV). The results show relatively close statistical performances from one year to the next despite
the differences between the annual time series. Good agreements between years were observed in
monospecific tree plantations of broadleaf species versus high disparity in other forests composed of
different species. A strong positive bias in the accuracy assessment (up to 0.4 of Overall Accuracy
(OA)) was also found when spatial dependence in the validation data was not removed. Using the
SLOO-CV approach, the average OA values per year ranged from 0.48 for 2006 to 0.60 for 2013, which
satisfactorily represents the spatial instability of species prediction between years.

Keywords: tree species; forest; biodiversity; time series; spatial autocorrelation; cross-validation; accuracy

1. Introduction

Forest ecosystems play a major role in global biodiversity [1]. They provide several services
to humanity including carbon sequestration (which regulates climate [2]), timber production [3],
soil protection [4], and recreation. They also have an impact on human health and well-being. However,
the provision of such ecosystem services depends on several factors including the diversity of tree
species [5]. Therefore, knowing the distribution of tree species in forests is crucial to assess ecosystem
functions and services. More broadly, information on tree species is required for forest management
and also for long-term forest monitoring, especially in the current context of climate change and related
disturbances (forest fires, windstorms, drought, pests and diseases) [6].
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Remote sensing has long been used to collect information on forest resources including stand
composition [7,8]. Nevertheless, accurately distinguishing tree species is still challenging [9]. In the
past, maps of tree species were based on field surveys completed by computer-aided analysis of
aerial photographs [10,11]. While this approach provides accurate operational results for forest
managers, it is limited to small spatial extent because it is costly and time consuming, which also
affects its updating. In the last few decades, various types of remotely sensed images have been
used to automate the identification of forest tree species. Some authors focused on the spatial
resolution using very high-resolution satellite or airborne imagery [12–15]. They assumed the
classification would benefit from the spatially detailed information and would therefore be accurate.
Despite some successful results, this approach revealed itself to be of limited interest when only
a single date was used due to the low spectral resolution of the data because of the reduced spectral
and temporal information. Alternatively, as tree morphology and biochemical traits have a subtle
influence on spectral reflectance [16], several authors explored airborne hyperspectral imagery [17–19].
Depending on the number of classes of species, on the methodology used for classification, and on the
characteristics of the images (pixel size, number of spectral bands), the accuracy of the classification
varied. Nevertheless, studies based on hyperspectral imagery were typically more accurate than those
based on single-date multispectral data [9].

Taking advantage of the temporal dimension of the satellite data was another way to separate tree
species [9]. Time series can capture the phenological behavior of the vegetation and this functional trait
can be useful to discriminate the forest types. Changes in pigment contents, water and leaf morphology
across seasons can vary from one species to another. Time series with images covering all phenological
events from green-up to senescence (leaf-on, spring flush, autumn senescence, leaf-off) can produce
detailed classification results. The use of multitemporal data for this purpose is not new. This approach
has been explored from various image datasets of different spatial and temporal resolutions based on
spaceborne sensors such as MODIS [20,21], Landsat [22–26], RapidEye [27], WorldView [28], as airborne
sensor [29,30] or unmanned aerial systems [31]. More recently, the potential of the new freely available
high spatial resolution Sentinel-2 (S2) data has been investigated [32–36]. In general, the authors found
it advantageous to combine images acquired in spring and autumn, at the key phenological stages
of temperate forests, since it had a positive influence on the accuracy of the classification. Images
acquired in summer are also frequently selected in features ranking procedures, particularly for conifer
species [36], but also for deciduous species [30]. From a spectral point of view, red-edge bands and
SWIR bands are reported to be important variables when S2 time series are used [32–34].

Despite the increasing number of studies that use time series to identify forest types, the true
predictive power of these kinds of data remain to be demonstrated. Even though it is difficult
to compare studies because of the use of different methods, sensors, and classes of tree species,
we observed very contrasted results from one study to another. For instance, using four dates for
S2 data in 2017, Persson et al. [34] obtained a kappa value of 0.83 to classify five species (Norway
spruce—Picea abies; Scots pine—Pinus sylvestris; Hybrid larch—Larix x marschlinsii; Birch—Betula sp.
and Pedunculate Oak—Quercus robur). This differs substantially from the Immitzer’s results [32]
(kappa = 0.59) as they used only two S2 images to map seven species including Norway spruce,
Scots pine, European larch (Larix decidua) and Oak (Oak sp). There was also a difference of almost
0.2 points of overall accuracy (OA) between a study by Persson et al. [34] and one by Liu et al. [35]
who classified eight types of forest in China with the same number of S2 images. In another study,
using only two S2 images to separate 11 forest classes of broadleaves and conifers, Bolyn et al. [33]
obtained very accurate results (OA of 0.93) in contrast with previous works but in line with others
based on dense time series acquired using different sensors [27,37,38].

The notable difference in accuracy among past studies suggests a better understanding is required
of the factors that affect the classification of species, as recommended by [9]. Several drivers of
classification errors remain insufficiently explored, among which, spatial autocorrelation of reference
data has long been identified but rarely quantified [39,40]. Spatial dependence in the reference data
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due to an inadequate sampling strategy to split training and validation sets can wrongly increase
classification accuracy [39,41,42]. Despite different approaches addressing this issue by imposing
a spatial stratification to select samples for training and testing [41,42], the spatial autocorrelation is not
always estimated explicitely. This can lead to keep a residual spatial dependence between training and
testing samples and not to fully eliminate the spatial overfitting. Contamination by clouds and cloud
shadows in dense image high resolution time series may also have a major impact on classification
performances. Because the distribution of such contamination may vary over time and in space across
years, a multiyear analysis is required to reliably evaluate their effect.

The first objective of this study is to explore the stability of classification results in tree species
discrimination from optical remotely sensed time series data of multiple years. The second objective is
to understand the main drivers that affect the classification accuracy in this context. To our knowledge,
this is the first study of variability between one-year classifications of tree species based on multiple
years using dense image high spatial resolution time series. We evaluated the classification performance
of single-year Formosat-2 time series in distinguishing forest types with spatially independent
validation data. We also investigated how the predictions vary statistically and spatially across
multiple years (from 2006 to 2014). The main contribution of this work is a better estimation of the
classification accuracy of the forest maps by reducing optimistic bias due to spatial autocorrelation.
The second contribution, resulting from the first, is a finer understanding of the drivers responsible for
classification errors. We hypothesize that time series data improve species discrimination compared to
single-date image due to seasonal variability in spectral reflectance between species.

2. Material

2.1. Study Area

The study site is located in south-western France, next to Toulouse, and covers an area of
24 km × 24 km (Figure 1). This delimited area was determined by a satellite acquisitions scheme
by the Centre National d’Etudes Spatiales (CNES) who acquired a Formosat-2 Satellite Image Time
Series (SITS) of the site. The Garonne river crosses the eastern part of the study area, influencing soil
composition and the nearly flat topography of the area. The climate is sub-Atlantic characterized
by sunny autumns, hot dry summers, and mild rainy winters (the average annual temperature is
>13 ◦C; annual precipitation = 656 mm). The landscape is dominated by arable lands (including wheat,
sunflower, maize) and grasslands. Forests cover up to 10% of the landscape (53 km2).

2.2. Satellite Image Time Series

We used a dense optical image dataset composed of Formosat-2 time series acquired in nine
consecutive years from 2006 to 2014. This dataset was obtained during preparation for the Sentinel-2
and VENμS mission with cooperation between the Israeli Space Agency (ISA) and the French CNES [43].
A total of 156 dates was acquired with an average of 14 images per year and a maximum of 43 images
in 2006. The distribution of the dates over time varied from one year to another and the number of
images available during the growth season differed from the number available at the end of vegetation
season (Figure 2).
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Figure 1. The map on the left shows the location of the study area in the Haute-Garonne district
(in dark grey) near Toulouse, France. On the right, a false-color image acquired on 13 August 2013
which represents the entire Formosat-2 scene covering an extent of 24 × 24 km.

Figure 2. Number and acquisition dates of each image in the Formosat-2 time series from 2006 to 2014.

Cloud coverage also varied considerably from one date to another, ranging from a minimum of 8
cloud-free images in 2011 to a maximum of 20 in 2006. For 2006, by visual inspection, we created an
additional dataset (named 2006 bis) by selecting only the cloud-free images, resulting in a time series
of 20 dates (compared to the original 46).

The Formosat-2 multispectral images are delivered in an 8-bit radiometric resolution. Each image
provides 4 spectral bands ranging from the visible (Blue: 0.45–0.52 μm, Green: 0.53–0.60 μm, Red:
0.63–0.69 μm) to the near-infrared (NIR: 0.76–0.90 μm) with a nominal pixel size of 8 m. All the images
were acquired under a constant viewing angle and a field of view of 24 km like Landsat, VENμS
and Sentinel-2.
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2.3. Ancillary Data

A forest mask produced in 1996 by the French National Forest Inventory database (IGN BDForêt®,
v.1) was used to select forest pixels in the SITS (i.e., forest stands with a minimum area of 2.25
hectares) and to exclude non-forested areas. Based on aerial photographs taken in 2006, 2010 and 2013
(IGN BDOrtho®), the mask was manually updated to retain only SITS forest stands that remained
stable over the nine year period

2.4. Field Data

Four field campaigns were conducted between November 2013 and January 2017 to identify and
locate reference samples of tree species in the study site. All the main forests were visited. Only the
dominant broadleaf and conifer tree species were recorded. To insure tree species purity in the training
samples, plots were delimited at the center of homogeneous areas covering an area of approximatly
576 m2 (i.e., nine contiguous 8 m × 8 m Formosat-2 pixels). Only the pixel at the center of each area
was used for the classification protocol. Plots were located using a Garmin GPSMap 62st receiver
(3–5 m accuracy) and distributed over 72 distinct forest stands.

Thirteen tree species of which eight were broadleaf species and five conifer species were studied
(Table 1). In some species, identification was limited to the genus level because of the existence of
cultivars (case of Aspen) and the difficulty involved in determining the exact species of Oak, Willow
and Eucalyptus. We acquired a total of 1262 sample plots (named reference samples in the rest of the
paper). Class distribution was moderately imbalanced reflecting the uneven distribution of species
abundances in the forests. The number of samples varied from 50 (the minimum for Willow) to 211
(the maximum for Aspen). Conifers were less well represented with an average of 73 samples per class
compared with 112 for broadleaf species.

Table 1. List of tree species with their sample size, in pixels, collected during field surveys (n = 1262).
The number of forest stands in which the samples were collected is also provided. Stand delimitation
is based on the French National Forest Inventory database (IGN BDForêt® v.1).

Species Sample Size Forest Stands

Broadleaf
Silver birch (Betula pendula) 85 3
Oak (Quercus robur/pubescens/petraea) 115 12
Red Oak (Quercus rubra) 147 7
Aspen (Populus spp.) 211 6
European Ash (Fraxinus excelsior) 80 3
Black locust (Robinia pseudoacacia) 63 7
Willow (Salix spp.) 50 3
Eucalyptus (Eucalyptus spp.) 148 4

Conifer
Corsican Pine (Pinus nigra subsp. laricio) 70 6
Maritime Pine (Pinus pinaster) 103 7
Black Pine (Pinus nigra) 55 2
Silver Fir (Abies alba) 75 5
Douglas Fir (Pseudotsuga menziesii) 60 7

3. Classification Protocol

A global overview of the classification protocol applied on each Formosat-2 single-year time series
is shown in Figure 3.

3.1. Pre-Processing

In this step, surface reflectance time series were produced from the Formosat-2 level 1A images
using the MACCS (Multisensor Atmospheric Correction and Cloud Screening) processing chain
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developed by the CNES [44,45]. MACCS involved orthorectification, atmospheric correction, detection
of clouds and cloud shadows, and reduction of topographic effects on illumination, based on
multitemporal and multispectral criteria. Atmospheric correction relies on the estimation of aerosol
optical thickness based on a spectro-temporal technique that minimizes (i) variations in surface
reflectances between pixels acquired consecutive cloud-free images after correction and (ii) differences
between the blue surface reflectance predicted from the red band (empirical relationship) and the blue
surface reflectance obtained after correction [46]. Clouds are detected using a multitemporal approach
that analyzes the increase in reflectance in the blue spectral band [45]. If high variation is observed,
cloud is likely to be present. Based on this method, masks of clouds and related shadows are produced
by MACCS for each image in the time series.

In the second step, SITS of each year were filtered using a linear gap-filling algorithm applied to
each spectral band to remove noisy data (i.e., cloudy and shady pixels) and to retrieve their surface
reflectance [47]. Invalid pixels were replaced by the interpolated values from the closest available valid
pixels in the time series. Gap-filling was chosen for its simplicity and its previously demonstrated
efficiency already demonstrated when time gaps between consecutive images are limited [48].

Figure 3. Classification protocol for a single year time series, repeated for the 9 years available
from 2006 to 2014. The splitting procedure to create independent training and test sets is based
on a spatial and non-spatial leave-one-out cross-validation (SLOO-CV and LOO-CV, respectively).
The LOO-CV were trained with exactly the same number of training samples as the SLOO-CV,
after random undersampling.
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3.2. Training

Classification models were built using all spectral bands of each annual time series as predictors
with exactly the same pixels for training and testing. We used the supervised SVM (Support Vector
Machine) classifier [49] known to be the best approach in the case of small training data sets with
respect to data dimensionality [50]. In this study, we selected the Radial Basis Function (RBF) kernel
which is the most frequently used and has already been proven to be effective in the case of similar
classification problems [51]. Hyperparameters including the regularization parameter (C) and the
kernel bandwidth (γ) were tuned by cross-validation in a search space with the following settings:
C = {0.01, 0.1, ..., 110} and γ = {1−9, 1−8, ..., 13}. A linear kernel was also tested for comparison with
RBF. However, since the linear kernel performed worse, the results are not presented here. To account
for imbalanced data and to prevent potential bias due to the dominant classes [52], the class weights in
the SVM parameters were also modified. Weights were set inversely proportional to class frequencies.
SVM was computed using the scikit-learn python library [53]. Vector of features were standardized
(i.e., centering and scaling to unit variance) prior to training.

3.3. Estimating Prediction Errors by Spatial Cross-Validation

Because spatial autocorrelation between training and test sets may produce optimistic bias in
assessments of classification performance [39,41,42], we used a spatial leave-one-out cross-validation
(SLOO-CV) sampling strategy [54,55] to separate the training and test sets to guarantee full
independence between them. In this approach, one reference sample is used as the test set and
the remaining samples, non-spatially correlated with the test set, are used as the training set (Figure 4).
This is repeated n times where n equals the number of samples. The n prediction results are then
averaged to obtain an estimation of the prediction error. In our case, the test set was composed of
one pixel of each class (i.e., a total of 13 pixels at each iteration) and the procedure was repeated
50 times, this being the number of reference samples of the lowest class size. We compared this
splitting procedure with the classical non-spatial leave-one-out cross-validation strategy (LOO-CV)
using the same training size per class as in SLOO-CV, by random undersampling. For year-to-year
comparison, we also used the same training and test sets related to each sampling approach by setting
the same random seed.

Figure 4. Spatial leave-one-out cross-validation (SLOO-CV) schema for one class. One pixel is used
for testing. The other pixels are used for training, except pixels geographically too close to the pixel
selected for testing. This procedure is repeated n times where n is the number of reference samples.
Spatial autocorrelation between nearby pixels is assumed up to a distance d which can be estimated
using Moran’s I.

The spatial autocorrelation distance was estimated by computing the Moran’s Index from the
pixels of forests in the SITS [56]. Moran’s I estimates the correlation between the value of a variable at
one location and nearby observations. The index ranges from -1 (negative spatial autocorrelation) to
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+1 (positive spatial autocorrelation) with a value close to 0 in the absence of spatial autocorrelation
(random spatial distribution). More formally, the Moran’s I is defined as the ratio of the covariance
between neighborhood pixels and the variance of the entire image:

I(d) =
n
S0

n
∑

i=1

n
∑

j=1
wi,j(xi − x)(xj − x)

n
∑

i=1
(xi − x)2

(1)

where, in our case, xi is the pixel value of x (a spectral band of the SITS for pixels of forests) at location
i, xj is the pixel value of x at location j (a nearby pixel of forest of i), x is the average value of x, n is the
number of pixels of forests in the image, wi,j is the weight equals to 1 if pixel j is within distance d of
pixel i, otherwise wi,j = 0, and S0 the sum of all wi,j’s:

S0 =
n

∑
i=1

n

∑
j=1

wi,j (2)

In this study, Moran’s I was computed for each spectral band of each year, for neighborhoods
(lags) varying from 1 to 100 pixels (i.e., from 8 m to 800 m). Based on correlograms, we evaluated
the distance between nearby pixels for which Moran’s I equals 0.2, considering the potential effect of
spatial autocorrelation as not significantly different from the thresold value of Moran’s I [57]. Then,
the median distance was calculated for each spectral band, taking all the dates of one year into
account (Figure 5). This was done for each year. Finally, the average value of the median distance of
each year was kept in the spatial cross-validation procedure to split the training and test sets. This
average value was estimated to be 340 m (i.e., 42 pixels).

Figure 5. Moran’s I correlograms of each Formosat-2 spectral band of the Satellite Image Time Series
(SITS) 2013, for pixels representing forests. Each curve represents one date of the SITS. the red dashed
line represents the median distance value (in x) where Moran’s I = 0.2 (in y). For a Moran’s I thresold
value of 0.2, spatial independence between nearby pixels was assumed. This is the case beyond to
528 m in the blue band, 168 m in the green, 176 m in the red and 144 m in the near-infrared.

3.4. Accuracy Assessment of One-Year Classifications and Comparison

The results of the classifications were assessed according to the confusion matrix based on Overall
Accuracy (OA) and the F1 score (i.e., the harmonic mean of precision and recall varying from 0 for the
worst case to 1 for perfect classification), errors of omission and errors of commission. A Wilcoxon
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signed-rank test was used to determine if the difference in accuracy between annual classifications
and sampling strategies (LOO-CV vs SLOO-CV) was statistically significant.

Classifications were also compared spatially to highlight instability between years. A map
of uncertainty was produced by computing the number of agreements between the one-year
classifications (i.e., the modal value related to the class with the highest frequency) for each pixel.
Additionally, the distribution of this uncertainty was examined per class using either all the predicted
pixels or only the reference samples. Finally, the maps were visually inspected to identify problem
areas and to better understand the errors with the help of field knowledge. The maps shown in results
section were produced using the SLOO-CV.

4. Results

4.1. Overall Statistical Performances

The classification performances for each year are presented in Table 2. Generally speaking,
the performances were similar between the years but very different between sampling strategies
(SLOO-CV vs LOO-CV) in a given year.

When prediction errors were estimated by spatial cross-validation (SLOO-CV), the average OA
varied from 0.48 in 2007 to 0.60 in 2013 with high variability in the results (average standard deviation
of 0.12). No significant differences were observed between the years 2008–2012, 2012–2014 and
between 2006 and 2007 which were the cloudiest SITS (p < 0.05; Wilcoxon signed-rank test statistic;
see Appendix B for statistical details). For the year 2006, when cloudy images were removed from the
SITS (i.e., using the 2006bis dataset), the classification was improved, the performance was similar to
that in the other years (average OA = 0.57). The best classification was obtained using the 2013 time
series (average OA = 0.60).

When accuracy was computed using the standard leave-one-out cross-validation (LOO-CV),
prediction errors were very low compared to when SLOO-CV was used, suggesting a high optimistic
bias in the evaluation. The average OA varied from 0.97 in 2011 to 1.00 in 2006 and 2014 with a standard
deviation close to zero. The cloudiest years (2006 and 2007) did not differ significantly in performance
from the other years in most cases (Appendix B). These results contradict the previous ones: while the
year 2007 was the worst with the SLOO-CV, with LOO-CV it had the second best score.

In the following sections, we only detail the results based on the SLOO-CV strategy since it best
reflects the true performance of the classifications.

4.2. Accuracy per Species

In most cases, whatever the year, broadleaf tree species were better discriminated than
conifers (Figure 6). The highest performances were obtained for monospecific plantations of Red
oak (average F1 score = 87%) and Willow (average F1 score = 86%). Aspen was also detected with
good accuracy (average F1 score = 68%). Conversely, some species were difficult to identify, including
European ash (average F1 score = 26%) and Silver birch (average F1 score = 36%) except in the years
2010 and 2013.

High confusion rates were obtained for conifer tree species. Black pine was the worst class
with a F1 score close to zero, except in 2014 (F1 score = 62%). Maritime pines were generally better
discriminated but the performances remained low (average F1 score = 40%). The best agreement was
obtained for Silver fir (average F1 score = 50%) which reached its best score (average F1 score = 81%)
in the year 2010.
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Figure 6. Average F1 score (in %) per species and per year based on the SLOO-CV sampling strategy
using the Support Vector Machine (SVM) (RBF kernel) classifier. Values range from white (F1 score = 0%)
to dark green (F1 score = 100%). Average values of F1 score per year and per species are also provided
(in the bottom row and last column on the right, respectively).

On average, the year 2013 was the best, mainly because of a high score for Silver birch compared
to the other years. Year 2007 was the least accurate. Higher performance disparity was observed from
one year to another for most species, except Red oak and Willow.

4.3. Confusion between Species

Generally, when errors occurred, the broadleaf tree species were confused with each other as
well as with conifers. The main source of omissions for Silver birch was mispredictions as Oak which,
in turn, was confused with European ash but also with Black locust and with some pines (see the
confusion matrix for the year 2013 in Figure 7, for example). Red oak was the subject of very little
confusion. High rates of omissions were observed for European ash with misclassifications as Oak,
Aspen and Black locust. Under-detection was also observed for the evergreen Eucalyptus plantations
due to confusion with Willow. In conifer species, the errors mainly appeared between species of Pine
but also between Pine and Douglas fir.

Confusions between species were similar from one year to another but the commission and
omission errors rates varied and accuracy was very low for some species (Figure 8).
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Figure 7. Confusion matrix for 13 tree species for year 2013. Each cell provides an average value of
agreement or confusion (in %) based on 50 classifications (number of iterations) using the SLOO-CV
sampling strategy.

(a) Commission (b) Omission
Figure 8. Average rate of commission and omission errors (in %) per species and per year based on the
SLOO-CV sampling strategy.
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4.4. Spatial Agreement between Years

As revealed by the map of the modal class values, Oak was the most representative species
in the study region, especially in the small forests, which is consistent with our field observations
(Appendix A). Conifers and plantations of broadleaf species were less frequent but pixels of the same
class appear to be grouped in homogeneous stands, as expected.

When spatial uncertainty was analyzed using the map of agreements between the one-year
classifications, good stability was observed in the monospecific tree plantations of broadleaf
species (Figure 9). The stands composed of Aspen, Red oak, and Eucalyptus were clearly differentiated.
In contrast, in complex forests including a mix of different species, disagreements between annual
classifications were higher, as suggested by the previous statistical assessment. An example is given
in Figure 10 showing a mix forest composed of conifers (mainly Black pine but also Douglas fir and
Silver fir) and deciduous species (mainly Oak and Silver birch). There was considerable confusions
between conifer species from one year to another (low agreement). The extent of Silver birch areas was
also highly variable. In this forest, the dominant species were rather well-identified but their exact
location was inaccurate at the pixel level.

Significant disagreements between the classifications were also observed in other contexts,
especially in thin riparian forests and forest edges where species composition and diversity is high,
with lots of species unsampled (Figure 9). This was also true in low density forest stands, for which
confusions appeared with the understory vegetation. Finally, disagreements were also observed in
areas very affected by clouds and cloud shadows.

Figure 9. Spatial comparison between the annual classifications of forest tree species from 2006 to 2014
(including 2006bis). The number of agreement is the modal value related to the class with the highest
frequency. This map illustrates the stability of predictions from one year to another with a high number
of disagreements in red (high uncertainty) and a low number of disagreements in green (high accuracy).
In many cases, homogeneous green areas are tree plantations of broadleaf species such as Red Oak and
Aspen or Eucalyptus.
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Figure 10. Annual classifications of tree species in a mixed forest composed of different conifers and
broadleaf species. Instability was observed in the conifer plantations composed of Black pine, Silver fir
and Douglas fir. This was also the case for Silver birch. Part of the forest (in the north) has was excluded
from the analysis because of changes during the study period (clear-cuts and reforestation).

5. Discussion

In this study, an archive of Formosat-2 time series was used to classify tree species in temperate
forests in nine consecutive years. Each classification was validated using the same spatial leave-one-out
cross-validation approach to remove the test samples that were spatially correlated with the training
samples. To our knowledge, this is the first study to examine the stability of predictions from one
year to another using dense SITS of high spatial resolution with spatially independent validation data.
The present study is a first attempt to assess the robustness of tree species discrimination in multiple
years and to better understand the drivers that affect classification performances.

5.1. Effect of Spatial Autocorrelation: The SLOO-CV Strategy as a Standard

Our results revealed a strong positive bias in validation based on the usual LOO-CV strategy
for splitting reference data. This bias was already suspected in our previous studies when we used
stratified-k-fold but was not quantified [38,58]. Regarding the importance of the overestimation in the
classification accuracy (ΔOA > 0.4 between LOO and SLOO-CV), the use of spatially independent
data for validation should no longer be an option but wherever possible, a requirement, in agreement
with the recommendation of [9].

Spatial autocorrelation in the reference data has long been known to affect the classification
and accuracy assessment [39,40,59,60]. Different sampling strategies for data splitting have already
been studied in the literature including spatial [42,55,61,62] and aspatial approaches [61,63–65].
Although the spatial sampling approach is recommended to reduce the spatial autocorrelation effect,
an aspatial (i.e., random, systematic or stratified) sampling strategy assuming independence between
training and test sets is usually used in remote sensing analyses for the sake of simplicity [65].

In this study, the SLOO-CV strategy was used to estimate an unbiased prediction performance,
similar to used in [54]. We measured the spatial dependence between nearby pixels of forests explicitly,
using the Moran’s I, as in [66], and we separated training and validation samples that were located
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geographically too close to one another. In other studies, spatial partitioning was achieved differently,
based on k-means clustering [42,67] or on the definition of patches [68], or blocks related to the spatial
structure [62]. In these approaches, the spatial dependence between training and test sets is supposed
to be removed but this is not verified. Whatever the spatial sampling method used, all the studies
demonstrated larger errors in predictions with lower spatial autocorrelation between training and test
sets, as we observed here. The absence of independence between training and testing samples thus
provides an inflated estimate of classification performances as confirmed by our results.

An important point to note is that we guaranteed complete independence between the training
and test sets but not among the training samples. Thus, spatial autocorrelation still persisted in
the training set. Compared to LOO-CV, the SLOO-CV strategy provides a statistical estimate of
accuracy that fits the quality of the map product better (and hence predictive performance) but in
terms of predictions, the results of classification results are similar. This is illustrated by the number of
agreements between the annual classifications for both LOO-CV and SLOO-CV (Figure 11). With the
exception of some classes (e.g., Maritime and Black pine), the distribution of agreements per class of
species is rather similar.

(a) LOO-CV sampling (b) SLOO-CV sampling
Figure 11. Distribution per species of the number of agreements between the annual classifications
using all the predicted pixels for both the LOO-CV and SLOO-CV sampling strategies.

5.2. Effect of the Size of the Reference Sample

The size of the training sample dataset is known to be a key factor affecting both classification
accuracy and predictive performance [59,69]. In practice, it is hard to adequately judge the optimal
training set size which depend on several factors such as the number of features, the degree of
imbalance in class distribution, and the machine learning algorithm. In this study, we used the SVM
classifier, which is known to be less sensitive to sample size since the decision boundaries rely on only
a few support vectors. We also adjusted class weights to avoid bias due to the uneven distribution of
tree species. Nevertheless, we obtained a slightly significant positive correlation (r = 0.52; p-value = 0.06)
between the average number of pixels used for training (see Appendix D) and the average F1 score
obtained for each species (including all the years), suggesting a potential effect of training set size on
accuracy. We also observed that the least well-identified species were those with a limited number
of forest stands (only three for Silver birch, European ash and Black pine). For these small classes,
the presence of noise on the data (under detected clouds or cloud shadows under-detected, see below)
may have a greater negative impact on their discrimination. However, Willow is an exception, as it
was the least populated species with only 21 samples for training and a total of three forest stands
but obtained the second highest F1 score (average = 0.86) behind Red oak (average = 0.87) with
118 samples (Appendix D).
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More generally, due to the complexity of the learning problem (i.e., partial overlapping between
spectro-temporal signatures of species in the feature space), increasing the size of the training
sample and reducing the degree of imbalance in class distribution should improve the predictive
performance [70]. In a recent study, Bolyn et al. [33] obtained a high degree of accuracy (OA = 88.5%)
when they classified 11 forest classes (including seven tree species) in the entire Belgian Ardenne
ecoregion with only two Sentinel-2 dates. Although this statistical performance may be partially
inflated by spatial autocorrelation, this greater accuracy could also be explained by the large sample
size (from 2589 to 7068 pixels for each class with a minimum of 31 forest stands and a maximum of 64).
An equivalent level of performance (OA = 88.2%) was obtained by [34] when they identified five tree
species in a forest in central Sweden using four S2 images acquired from spring to autumn. However,
in their case study, the sample size was very close to ours (from 27 to 98 pixels per species). Spatial
overfitting is suspected, as in our previous works [38,58].

5.3. Effect of Clouds and Cloud Shadows

When we compared the stability of predictions from one year to another (i.e., the map of
agreements between the annual classifications) with the number of times the pixels were affected
by clouds or cloud shadows, we found no significant correlation. This indicates that disagreements
between the classifications can not be attributed to this factor. We observed that the years most affected
by clouds (2006 and 2007) had the lowest average OA values (52% and 48% respectively, see Table 2).
However, for the other years, the F1 score per species was not always consistent with the extent of
cloud coverage. For instance, in 2008, 11% of the reference pixels for Oak were affected by clouds
(Appendix C) but the F1 score was the highest of all the years. This suggests that when clouds and
cloud shadows are detected by the MACCS processing chain, the gap-filling approach is appropriate
to correct noisy pixels. This procedure is currently used in the French production center THEIA
(https://theia.cnes.fr) for Landsat, VENμS and Sentinel-2 level2A products.

An in-depth visual analysis of the map products in fact revealed that misdetections of clouds
and cloud shadows had a major effect on classification performances. When the forests were partially
affected by clouds and cloud shadows or when these were under detected (which is what happened in
the case of slight fog), spectral signatures were skewed and confusion between species was likely. This
issue is illustrated in Figure 12 which shows changes in the reflectance values of an Oak pixel in 2006.
On most of the dates, the pixel was free of clouds and shadows (green dots). In some cases, clouds
or cloud shadows were found and the pixel values were gap-filled by linear interpolation (orange
dots). But on certain dates, clouds or cloud shadows were not detected (red dots) and this influences
the spectro-temporal signature. These dates had erroneous values but also had a negative impact on
nearby gap-filled values since the dates are considered to be valid (e.g., see the 10th image in Figure 12).
Another example showing an erroneous spatial pattern in a forest stand due to undetected clouds
is provided in Appendix A3. This noise may influence the training step through the addition of
inadequate support vectors, as well as the validation step, if the reference pixel to be tested is impacted
by noise but the training pixels are not.

An alternative to the gap-filling approach to reduce noise could be the use of smoothing methods
applied to the whole time series and not only to a limited temporal window (i.e., the cloudy and shady
pixels). Non-parametric methods such as Whittaker smoother [71] or splines [72] may be appropriated.
Another way to limit the effect of noise could be reducing the number of features [73]. Limiting the
number of features in the classification protocol could help remove noise but also prevent the Hughes
phenomenon [74] (i.e., a decrease in accuracy with the addition of new features after an initial increase).
In theory, the Hughes effect should not be observed with the SVM classifier which is robust to the
dimensionality of data [75]. However, a previous study demonstrated a positive role of feature
selection on classification results with SVM, particularly when the training set used is small [76].
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Figure 12. Influence of undetected clouds in the time series, an example with the reflectance evolution
of a Oak tree pixel in 2006. If the dot is red in the infrared time series, it means the pixel is in a cloud or
in a shadow but this was not detected by the algorithm. So this pixel is taken as a valid pixel to be used
to gap-fill nearest missing data.

5.4. Effect of the Available Dates in the SITS

We hypothesized that time series data improve the identification of tree species compared to the
use of only one date or a couple of images due to phenological differences in spring or autumn. Using
several dates should be better than using one date, whatever the year, as demonstrated in [30,31,34].
However, because of the variation in the dates available from one year to another, the differences
in cloud and shadow contamination, and the potential Hughes effect, it is difficult to give a clear
answer concerning the most appropriate time windows to separate species. When we examine the
relationships between the classification performances and the number of dates acquired during the key
seasons, we find no evidence of a positive effect. For example, classification accuracy in the year 2008
was statistically equivalent to that in the year 2014 when there was comparable cloud coverage (<5%)
whereas we only had one available image in spring 2008 versus five in 2014. Similarly, classification
performance in the year 2009 was statistically identical to that in other years including in 2006bis.
However, in autumn 2009, no images were available from end of October to the middle of December
and only a very limited number of images were available in spring compared to 2006bis which had
four dates in spring and six dates in autumn (Figure 2).

In order to better evaluate the most relevant dates for classification and to assess the sensitivity
of our results to the Hughes effect, an additional analysis was carried out using a feature selection
approach following the SLOO-CV strategy. Feature selection was based on the simple Sequential
Forward Selection (SFS) algorithm which adds at each iteration, the most important feature (sensu OA)
in the pool of selected ones, starting with an empty set [77]. Each feature is permanently conserved
after selection and the process is repeated until all the features are included. Here, the feature selection
approach was applied for each year, using all the spectral bands of the available dates. However,
to reduce the computation time, we considered as a feature a single-date acquisition composed of four
spectral bands.

Globally, this analysis confirmed the difficulty to draw robust conclusions about the tangible
contribution of seasonal variations in species discrimination. The most important dates were highly
variable from one year to another because of the irregular acquisition dates. For instance, compared
to 2008, the maximum classification accuracy of 2011 (OA = 0.62) was statistically equivalent, for the
same number of dates (5 dates) after feature selection. However, the image ranking was quite different
with more dates selected in autumn in 2008 compared to 2011 (Figure 13a,b). In 2013, the first two most
important dates enabling to reach a similar level of accuracy (OA ≈ 0.62) were acquired in winter and
summer which is still different in 2014 (Figure 13c,d; see Appendix E for full results). What appears to
be constant in this additional analysis is the limited number of dates (around five) to reach maximum
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accuracy and the decrease in accuracy using all the dates. The identification of tree species is improved
with the use of multitemporal images compared to single-date image but in a most effective way
when feature selection is applied before training. The use of fewer features that contain the maximum
discrimination information about the tree species classes is better than the use of all the features of
which many of them could be correlated or irrelevant because of noise. These results confirms that the
Hughes effect can occur using SVM, as already observed by [76]. This is also in line with the Zhu and
Liu’s recommendations of selecting the most discriminative features before classifying forest types
using dense time series [24].

(a) 2008 (b) 2011

(c) 2013 (d) 2014
Figure 13. Ranking-based feature selection of image dates for single-year classification of 2008 (a),
2011 (b), 2013 (c), 2014 (d).

In a study, a combination of three aerial images acquired in spring (March 17th), summer
(July 16th) and autumn (October 27th) provided the highest classification accuracy compared to all
possible combinations based on five dates [30]. When only one image was selected, autumn appeared
to be the best period to distinguish between common Oak, English Oak, Field Maple, Silver birch,
Aspen and small-leaved Elm. In other recent studies based on Sentinel-2 data, the optimal single date
was found in May [33,34]. The same observation was made when discrimating deciduous tree species
in a multitemporal image dataset acquired with an unmanned aerial system [31]. When more images
were combined, the best datasets included data acquired in different seasons (spring, early summer
and autumn) in accordance with [30].

5.5. Differences between Species

We found more difficulty to separate conifers than broadleaf species as previously highlighted in
other studies when multitemporal data are used [13,26,34,38,78]. Seasonal changes are less pronounced
which induces higher overlapping between spectro-temporal profiles. Pine species were the harder
to identified (in particular Corsican and Black pines). Among broadleaf species, European Ash and
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Silver birch were the most confused (contrary to [13]). The best agreements were obtained for Red
Oak, Eucalyptus, Willow and Aspen, in line with [31] for the latter species.

The evergreen phenology of Eucalyptus explains its high rate of agreements among 9 years
despite a medium F1-score (average of all years OA = 65%). Because of differences in morphological
and anatomical traits, optical properties also differ from those of conifers. The Red oak phenology
is also specific, in particular in autumn when leaves turn red due to the production of anthocyanins.
This gives a spectral characteristic which help to recognize them among the other species. For Willow,
stands are located in well-suited humid areas sometimes waterlogged. The variable moisture
conditions associated with a partially recovering canopy provide them a weaker reflectance in the
near-infrared band compared to the other broadleaf species which may explain the good classification
accuracy. For other species that cannot easily be separated, various factors may be involved, in addition
to close spectral signatures. Forest managing practice is one of them. Stand age, density and the
existence of understory vegetation are others. Spectral disparity for a given species (intra-species
variability) may also influence the classification [31].

6. Conclusions

This study based on temperate forests in France is the first to explore the stability of tree species
classification over nine consecutive years using dense high spatial resolution SITS with spatially
uncorrelated validation data. The study was based on surface reflectance products derived from
Formosat-2 optical time series acquired at irregular intervals from 2006 to 2014. Despite close statistical
results in terms of classification accuracy, we observed high spatial disparities from one year to
the next reflecting the moderate ability to predict tree species at the pixel level because of various
disturbing factors.

Based on our findings, several conclusions can be drawn:

1. Spatial autocorrelation within validation data drastically overestimates the classification accuracy.
In our context, an average optimistic bias of 0.4 of OA is observed when spatial dependence
remained (LOO-CV strategy vs SLOO-CV). In further studies, we recommend adapting the
data-splitting procedure to systematically reduce or eliminate spatial autocorrelation in the
validation set in order to provide more robust conclusions about the true predictive performance.

2. Noise in the time series (i.e., undetected clouds and shadows) affects the SVM based
classification performances. Despite accurate masks of clouds and shadows and a gap-filling
approach to correct invalid pixels, residual noise impacts the learning and prediction processes.
Feature selection is a good option to ignore noisy data, reduce data dimension, and to find the
optimal subset of images for classification. There is a clear benefit (+0.08 of OA in average) of using
fewer images containing the maximum discrimination information about the tree species classes.

3. The use of multitemporal images improves the tree species discrimination compared to
single-date image. However, there is no clear evidence that the positive effect is really due
to phenological differences between species. The most important dates varied from one year to
another with no strong preference for images acquired at the key seasons.

4. The monospecific broadleaf plantations of Aspen, Red Oak and Eucalyptus are the easiest to
classify. Conifers are the most difficult. The lowest accuracy was obtained for Silver birch,
European ash and Black pines for which only a few forest stands were available.

Perspectives of this study are twofold. The first one is the use of S2 time series to confirm the
results and assess the contribution of additional spectral bands such as the red-edge to separate tree
species for the same in situ dataset and area. With its 5-day revisit time, S2 provides many more data
in one year. These new time series should help better identify the best combination of multitemporal
images and check that the combination is consistent with phenological events of the tree species
concerned. Work is in progress to collect ground phenological observations on the study site. S2 also
offers the possibility to work at a larger scale and will thus give us more reference pixels to reduce the
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bias due to the spatial autocorrelation. The second is related to the Formosat-2 time series. Annual
datasets could be combined to reconstruct a synthesized multiyear time series based on all cloud-free
images to combine all the phenological events of the species into one representative year.

In order to reproduce this study or to have tree species ground references suitable for remote
sensing, our reference samples are publicly available at Zenodo, the Open Science platform at the
CERN Data (https://doi.org/10.5281/zenodo.2581400). An interactive web version of the predicted
species map using the 10 SITS with the Spatial Leave-One-Out cross-validation method (SLOO-CV) is
available online (https://dynafor1201.github.io/publications/maps/treespeciesformosat2/).
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Appendix A. Tree Species Map

Figure A1. Map of the most predicted species using the 10 SITS with the Spatial Leave-One-Out
cross-validation method (SLOO-CV).
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Figure A2. Map of the most predicted species using the 10 SITS with the Leave-One-Out cross-validation
method (LOO-CV).

Appendix B. Significance Tables for Prediction between Years

Table A1. Wilcoxon signed-rank test significance table for SLOO-CV computed from the overall
accuracy of the 50 predictions for each single-year SITS. In bold, where p < 0.05.

2006 2006bis 2007 2008 2009 2010 2011 2012 2013 2014

2006 nan 244 242 255 302 354 313 194 193 309
2006bis 244 nan 198 551 335 407 307 556 384 459

2007 242 198 nan 143 112 90 208 120 57 144
2008 255 551 143 nan 349 345 365 433 275 257
2009 302 335 112 349 nan 288 299 348 173 229
2010 354 407 90 345 288 nan 382 284 215 384
2011 313 307 208 365 299 382 nan 315 166 250
2012 194 556 120 433 348 284 315 nan 356 451
2013 193 384 57 275 173 215 166 356 nan 360
2014 309 459 144 257 229 384 250 451 360 nan
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Table A2. Wilcoxon signed-rank test significance table for LOO-CV computed from the overall accuracy
of the 50 predictions for each single-year SITS. In bold, where p < 0.05.

2006 2006bis 2007 2008 2009 2010 2011 2012 2013 2014

2006 nan 0 0 0 0 0 0 0 0 6
2006bis 0 nan 6 20 18 30 29 30 10 7

2007 0 6 nan 4 10 0 6 5 0 6
2008 0 20 4 nan 22 27 25 42 4 5
2009 0 18 10 22 nan 30 11 32 16 11
2010 0 30 0 27 30 nan 16 30 0 12
2011 0 29 6 25 11 16 nan 16 6 7
2012 0 30 5 42 32 30 16 nan 4 13
2013 0 10 0 4 16 0 6 4 nan 7
2014 6 7 6 5 11 12 7 13 7 nan

Appendix C. Effect of Clouds and Cloud Shadows

Figure A3. Example of misclassified forest stand (for European ash, in the north) due to under-detected
clouds in 1 September 2019. In the cloud mask, pixels in black are cloud and shadow free. Pixels in
white are cloudy or shady.
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Table A3. Percent of reference pixels affected by clouds or shadows detected by the MACCS algorithm
for each species and each year.

Species 2006 2006bis 2007 2008 2009 2010 2011 2012 2013 2014

Silver birch 26 0 17 1 9 0 0 0 4 0
Oak 24 0 20 11 6 5 1 0 2 0

Red Oak 21 0 11 0 1 6 3 0 0 0
Aspen 29 0 8 0 0 1 4 3 0 0

European Ash 22 0 11 6 5 1 0 0 3 1
Black locust 25 0 11 1 0 0 5 0 2 0

Willow 27 0 6 2 2 0 6 2 0 0
Eucalyptus 23 0 7 0 0 5 4 0 2 0

Corsican Pine 16 0 16 11 2 5 5 0 1 4
Maritime Pine 25 0 9 9 3 3 2 0 0 0

Black Pine 30 0 17 5 10 1 0 0 2 0
Silver Fir 28 0 17 5 8 5 0 0 3 0
Douglas 26 0 10 9 5 4 4 0 0 0

Appendix D. Training Size per Species

Table A4. Number of training pixels for each cross-validation method. For both methods, value per
species is the mean from the 50-folds. The split between test and train set is exactly the same for
each year.

Species SLOO-CV LOO-CV

Broadleaf
Silver birch 35 35

Oak 97 97
Red oak 118 118
Aspen 142 142

European ash 50 50
Black locust 50 50

Willow 21 21
Eucalyptus 85 85

Conifer
Corsican pine 33 33
Maritime pine 79 79

Black pine 26 26
Silver fir 54 54

Douglas fir 46 46

Total 836 836

Appendix E. Ranking-based feature selection of Image Dates for Each Single-Year Classification

(a) 2006
Figure A4. Cont.
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(b) 2006bis (c) 2007

(d) 2008 (e) 2009

(f) 2010 (g) 2011

(h) 2012 (i) 2013
Figure A4. Cont.
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(j) 2014
Figure A4. Ranking-based feature selection of image dates for single-year classification.
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Abstract: Filling in the void between forest ecology and remote sensing through monitoring
biodiversity variables is of great interest. In this study, we utilized imaging spectroscopy data from
the ISRO–NASA Airborne Visible InfraRed Imaging Spectrometer—Next Generation (AVIRIS-NG)
India campaign to investigate how the measurements of biodiversity attributes of forests over wide
areas can be augmented by synchronous field- and spectral-metrics. Three sites, Shoolpaneshwar
Wildlife Sanctuary (SWS), Vansda National Park (VNP), and Mudumalai Tiger Reserve (MTR), spread
over a climatic gradient (rainfall and temperature), were selected for this study. Abundant species
maps of three sites were produced using a support vector machine (SVM) classifier with a 76–80%
overall accuracy. These maps are a valuable input for forest resource management. Convex hull
volume (CHV) is computed from the first three principal components of AVIRIS-NG spectra and used
as a spectral diversity metric. It was observed that CHV increased with species numbers showing
a positive correlation between species and spectral diversity. Additionally, it was observed that
the abundant species show higher spectral diversity over species with lesser spread, provisionally
revealing their functional diversity. This could be one of the many reasons for their expansive reach
through adaptation to local conditions. Higher rainfall at MTR was shown to have a positive impact
on species and spectral diversity as compared to SWS and VNP. Redundancy analysis explained
13–24% of the variance in abundant species distribution because of climatic gradient. Trends in
spectral CHVs observed across the three sites of this study indicate that species assemblages may have
strong local controls, and the patterns of co-occurrence are largely aligned along climatic gradient.
Observed changes in species distribution and diversity metrics over climatic gradient can help in
assessing these forests’ responses to the projected dynamics of rainfall and temperature in the future.

Keywords: species diversity; spectral diversity; convex hull volume; AVIRIS-NG; tropical forests;
ISRO–NASA campaign; climatic gradient

1. Introduction

Forest communities across the globe are constantly affected by a combination of biotic and abiotic
factors that impact their composition, structure, and function [1]. Understanding how regional and
global environmental forcing act as drivers towards impacting species abundances [2], and how

Remote Sens. 2020, 12, 2130; doi:10.3390/rs12132130 www.mdpi.com/journal/remotesensing
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different facets of biodiversity affect ecosystem functioning at different scales [3], are critical aspects
of research. Owing to a longer lifespan, trees have the ability to adapt to spatio-temporal variations
in environmental conditions [4], and also play a vital role in determining ecosystem structure and
function by large contributions to biomass [5]. These are more important for tropical forests with larger
diversity, and the understanding of mechanisms determining ecosystem structure and distributions is
significantly lacking [6,7].

Field-based biodiversity estimates are generally used to measure species richness and
abundance [8]. Trait variability within a species may not be reliably measured with field-based
studies [9] as it requires collecting large samples of data over wider regions. Linking field and remote
sensing-based metrics can help in getting better estimates of trait variability and species distribution,
and ecological and remote sensing communities are making efforts to blend these disparate areas of
research towards more effective biodiversity assessment [10]. It is reported that intra- and inter-specific
variations in plant functional traits are normally reflective of environmental variation across the species’
ranges of occurrence, and are indirectly observable as emergent patterns of spatial variations in trait
characteristics [11]. Wide area mapping with remote sensing [12] provides a divergent approach over
field methods of sampling to monitor biodiversity. Hill et al. [13] highlighted the possible application
of hyperspectral remote sensing towards monitoring forest functional diversity by comparing spectral
variability. Proximal and airborne hyperspectral sensors, such as the Airborne Visible InfraRed Imaging
Spectrometer (AVIRIS and AVIRIS—Next Generation (AVIRIS-NG)) have shown immense promise and
potential in exploring inter- and intra-species variability and divergence in trait characteristics [14–16].
However, there are limited empirical investigations, thereby restricting our ability to find general
mechanisms that link traits and competition in the main functional realms of the plant world [17].

It has been observed that measures of variation in the spectral characteristics of a remotely sensed
image are related to species richness [18,19]. The observed spectral heterogeneity can act as a proxy
of species diversity and has been linked to variability in plant community assemblages [20] and
environmental gradients [21]. As an example, Dahlin [22] has demonstrated that the convex hull
volume (CHV) computed from the first three principal components of AVIRIS-NG spectral data can be
used to reveal key insights on the relative importance of drivers of community assembly, even in the
absence of additional data about plant functional traits. So, CHV not only reduces the dimensionality
of spectral data through principal component analysis (PCA), but can also be used as a spectral
diversity metric [23]. Wang and Gamon [10] observed that spectral diversity metrics can provide cues
about the “dimensionality” of spectral data of a target area, and future work on these lines can bring
clarity about regulations linked to the “plant phylogenetic–functional–spectral relationship” that may
enhance understanding about the remote sensing of biodiversity. A myriad of factors impact plant
growth, response, and performance, and reports indicate that variability in environmental settings,
such as grazing, climate change [24], climatic gradient [25], and precipitation gradient [26], impact
plant functional trait responses. The present study is an attempt to check how well spectral diversity,
measured as CHV, can infer tropical tree species response to climate variability, such as different rainfall
patterns and atmospheric temperature differences.

Some earlier studies presented a correlation between spectral diversity observed through remote
sensing to species diversity and species response to climatic change in Amazonian forests [27] and
North American biomes [28]. However, such studies are limited in the tropics and more so in regions
with high heterogeneity and immense anthropogenic pressure. The tropics support most of the global
diversity, and climate change has a significant impact on these diverse systems [1]. Climate impacted
changes in the tree functional compositions of forests magnify the feedback of forest biomass [3].
Linking trait data to climate inputs can help in understanding how biodiversity and the associated
functioning of the species are affected by climate change [29]. Other reports [30–32] show that tropical
forests are directly affected by rainfall patterns. The forest ecosystems of India are not well studied
using remote sensing data in spite of being diverse and vast [33], with a large number of areas
listed as UN biodiversity hotspots [33]. Some earlier studies around the Godavari basin [34] and the
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Eastern Ghats [35] reported that multispectral data can be utilized in mapping forest cover features.
Gairola et al. [36] presented a review of methodologies for ecological studies and suggested that high
resolution remote sensing data are better suited to study the Indian Himalayan region due to the high
diversity and heterogeneity of the landscape. Wieczynski et al. [29] advocated for the inclusion of
trait and abundance data of the forest cover of underrepresented regions of the world to have a better
understanding of the effect of climate change on the overall aboveground biomass content. To address
this ecologically important aspect, the abundant species mapping of forest cover using remote sensing
becomes an important target to achieve. The tropical forests of India are exposed to highly variable
rainfall dynamics and the corresponding changes in their structure, function, and distribution have
not been fully studied. This study aims at filling some of the gaps in our understanding about Indian
forests and the changes happening in the diversity and distribution of tree species in the context of
climate variability.

Trees with bigger canopy sizes can be easily distinguished with the spatial resolution of airborne
remote sensing sensors [10]. AVIRIS-NG data, over some of the forest cover of India, were used to map
dominant species and diversity metrics at a community level [37]. This study builds on earlier work
and explores the possibility of linking field observations and diversity metrics derived from remote
sensing data to assess the variability due to rainfall and temperature (henceforth referred to as climatic
gradient). To this end, we investigate the following questions:

• How species diversity correlates with spectral diversity calculated from remote sensing;
• Can measured CHVs assist in elucidating the intra- and inter-species variability of abundant

species;
• To what extent climatic gradient impacts the distribution of species and the associated

spectral diversity.

2. Materials and Methods

2.1. Site Description

Three forest sites in India, Shoolpaneshwar Wildlife Sanctuary (SWS), Vansda National Park
(VNP) in Gujarat, and Mudumalai Tiger Reserve (MTR) in Tamil Nadu, were selected for this study
(Figure 1). The three sites are designated as protected areas and experience highly variable rainfall
patterns, along with increasing anthropogenic pressure (Table 1). Mean annual rainfall is different
in the three zones, with the lowest record at SWS and the highest at MTR. A temperature gradient is
also observed, with MTR recording the lowest mean values and the highest being at SWS, which is an
opposite trend to that of rainfall (Table S1). Such variation in climate is expected to affect the species
distribution, diversity, and abundance, which is of interest in this work. Different steps carried out in
the study are schematically represented in Figure 2.

Table 1. Physiographic characters and decadal means of rainfall and temperature data of the three sites.

Sites
Location Area

(km2)
Average

Elevation (m)
Rainfall

(mm)

Temperature
(◦C)

Lat (◦N) Lon (◦E)

SWS 21.88 73.65 607.70 287 1210.66 27.00
VNP 20.82 73.44 23.99 169 1557.72 26.52
MTR 11.73 76.46 688.00 1233 1731.88 24.84
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Figure 1. Map showing the location of the three study sites, Shoolpaneshwar Wildlife Sanctuary (SWS),
Vansda National Park (VNP), and Mudumalai Tiger Reserve (MTR). The color gradient indicates
decadal mean rainfall across the country.

Figure 2. Schematic view of the workflow carried out.
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2.2. Vegetation Characteristics

The forests of all three sites support tree species with diverse physiognomies and phenological
characteristics. The tree species of SWS and VNP are largely deciduous with a few evergreens. MTR
also supports both deciduous and evergreens, with a larger proportion of evergreen species (~25%).
Plantations of teak and bamboo at SWS and VNP, and teak, bamboo, eucalyptus, and silver oak at
MTR constitute sizable proportions of tree cover. Amongst the tree species recorded during field study
at each site, some of the species showed widespread distribution (referred as abundant species), while
others are sparse (referred to as lesser distributed species). Table S2 illustrates common tree species
found in the three sites.

2.3. Field Data Collection

Initial field surveys were conducted ± 5 days from the image acquisition dates (Table 2) for
each site. Field work includes the marking and registering of field plots, recording the phenological
phases of tree species, and the collection of foliar samples from representative individuals of each
species observed in these plots. Sites were revisited in subsequent months to perform detailed species
inventories. Registered field plots and additional ones were laid across the length and width of the
flight path at the three sites over accessible terrain (Figure 3). During the initial field visits, it was
noticed that individual trees of some of the commonly occurring species were spread over > 4 m, and
the expected spatial resolution from the flight campaign was 4–8 m. Keeping in view of the observed
distribution of tree species in the field, and the suggestive spatial resolution of the sensor, quadrats of 8
m × 8 m were randomly laid down across trails of forest cover, some away from the trail (nearly 200 at
each site). In addition to these, three to five polygons of varying sizes (500–750 m2) were laid out. The
number of quadrats at each site, and the size of the polygons considered, was primarily based on the
observed vegetation characteristics and remarks of the local forest officials. All trees of more than 4
cm in diameter at breast height (dbh), falling within each quadrat and polygon, were counted. Tree
species diversity, stem density, height, and canopy spread were measured and trees were identified to
the species level with the help of field manuals, consultations with local residents, and forest service
personnel. Tree crowns and field plots were geolocated using a handheld global positioning system
(GPS) unit (Garmin Ltd. Olathe KS, USA) with < 3 m accuracy. The GPS readings were noted after
three minutes of position averaging for better accuracy. Qualitative observations showed that the
progression and duration of the senescent phase differed amongst species and across the three sites.
The proportion of leaves fallen from the canopy also differed between species and the three sites. Few
species were fully foliated with greener crowns.

Table 2. Summary of Airborne Visible InfraRed Imaging Spectrometer—Next Generation (AVIRIS-NG)
image data.

Sites
Flight

Elevation (km)

Image
Acquisition

Date

Image
Acquisition Time

(GMT +5:30)

Flight
Footprint

Length (km)
Cloud Cover

MTR 4.83 05-Jan-2016 10:62:47–12:81:39 42.22 Clear to hazy
SWS 4.15 08-Feb-2016 12:58:43–13:61:58 44.85 Clear
VNP 4.16 09-Feb-2016 11:02:17–11:57:46 13.32 Clear
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Figure 3. Sampled quadrats (yellow) and polygons (blue) established during field study. (a) SWS,
(b) VNP, and (c) MTR.

2.4. Climatic Data

Following Diaz et al. [25], variability in the measurements of temperature and rainfall together are
referred to as climatic gradient. We assessed two different datasets for sourcing temperature and rainfall
data on annual, decadal, and long-term timescales from European ReAnalysis-Interim (ERA-Interim)
and Climate Hazards Infrared Precipitation with Station data (CHIRPS). Data were projected to a
spatial resolution of 5.12 km (0.05◦) for CHIRPS data and 12.5 km (0.125◦) for ERA-Interim data and
extracted for all sampling locations at the three sites. The meteorological data from 1984–2016 indicated
a spatial rainfall gradient from MTR (wetter) to VNP to SWS (lesser wetter, more arid). Annual, decadal,
and long-term mean minimum and maximum temperatures had with minor variations at the three
sites. Decadal mean rainfall and temperature at MTR are ~40% higher and ~4% lower compared to
SWS (Table S1).

2.5. AVIRIS-NG Data Acquisition and Processing

As part of a joint campaign between the Indian Space Research Organization (ISRO) and the
National Aeronautics and Space Administration (NASA, USA), the AVIRIS-NG sensor was flown
over a large number of sites in India between October 2015 and February 2016. AVIRIS-NG acquired
data at wavelengths from 380 to 2510 nm with 5 nm spectral sampling. The sensor was flown on a
King Air B200 at a 4000–8000 m elevation, with resulting pixel sizes of 4–8 m, depending on flight
altitude. The spatial resolution of the AVIRIS-NG data of the three sites considered in this study
was 4 m. The instrument measurements were calibrated and atmospherically corrected following
Thompson et al. [38]. Airborne imaging spectroscopy data were subject to significant sun–sensor
surface illumination effects due to both topography and anisotropic reflectance by vegetation. These
were corrected following methods in Soenen et al. [39] and Wanner et al. [40] (code available at
https://github.com/EnSpec/HyTools-sandbox) resulting in topographically and bidirectional reflectance

388



Remote Sens. 2020, 12, 2130

distribution function (BRDF)-corrected images. Details of the AVIRIS-NG image data acquisition are
given in Table 2.

The topographically and BRDF-corrected data were mosaicked into contiguous blocks for all
sites. Noisy bands (<411 nm) and water absorptions bands (1348–1428, 1778–1949 nm) were removed,
resulting in final image spectral subsets comprising a total of 366 usable bands (from a total of 425). The
normalized difference vegetation index (NDVI) of each image was used primarily to generate non-forest
masks with thresholds of 0.4 (SWS and VNP) and 0.6 (MTR) based on visual observations. The difference
in NDVI threshold values is because of the observed variability in canopy greenness and senescent
phases at the time of the flight pass over the three sites. To lower the overall brightness variation, a
continuum removal (CR) transformation was also applied (as in [22]). These CR-transformed data
were considered for further processing.

NDVI =
ρ860 − ρ650

ρ860 + ρ650
(1)

2.6. Data Analysis

2.6.1. Field Data Analysis

The data of the quadrats laid down in field plots were pooled (10 quadrats in each field plot),
resulting in 20 field plots for SWS, 19 for VNP, and 21 for MTR. Abundance data of each site at the laid
down quadrats and polygons indicated that ~20 species are abundant at each site, covering 75–80%
of the forest of each site (henceforth referred to as abundant species). Species with lesser occupancy
of each site are together referred to as lesser distributed species. The BiodiversityR package [41] has
been used for analyses of field data. Kindt’s exact method [41] was used for plotting tree species area
accumulation curves using 1000 permutations for each site. These curves were developed for all the
recorded species and the abundant species of each site. We tested different methods to obtain estimates
of the number of tree species for each site (first- and second-order Jackknife, Chao, and Bootstrap), with
an expectation that the tree species richness estimates of a site would be better characterized by using a
range than a single one. Bray–Curtis dissimilarity graphs were developed to assess the dissimilarity in
the composition of any pair of field plots of a site. Estimated values for the Bray–Curtis dissimilarity
distance ranged between 0 and 1 depending on the 100% similarity (0) or complete dissimilarity (1) of
existing species in a pair of plots. Akin to species–area curves, Bray-Curtis graphs were developed for
all the recorded species and abundant species.

2.6.2. Abundant Species Mapping with the Support Vector Machine (SVM) Model

A spectral library of crown-level reflectance spectra for the abundant tree species of each site
(20 species at SWS and VNP, 19 in MTR) was developed for all the three sites using field records. At
many points, we could obtain abundant species having a canopy spread of > 5m or as pure patches
with > 15 m spread (Table 3). These locations were utilized to extract the canopy spectra of each
abundant species. Data from the canopy spectral library were used to develop species maps of each
site. The classification of the images to map the abundant species required an abundant species map of
each site to assess differences, if any, in these tree species distributions, and spectral diversity as CHVs,
across the climatic gradient. Minimum noise fraction (MNF) transformation [42] was applied to the
CR-transformed spectral dataset for feature reduction. A supervised classification of the abundant
species of each site was performed using the support vector machine (SVM) method [43] using the
MNF-transformed canopy spectra of each species. The parameters of the SVM model are optimized
using three-fold cross-validation based on the available training data. After visual screening, the first
16 bands (for SWS and MTR) and the first 17 bands (for VNP) of MNF were selected as inputs for the
SVM model to develop an abundant species map of the three sites. The field data were separated as
training and testing data with a 60:40 ratio. For the SWS and VNP sites, additional field visits were
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carried out to validate randomly selected locations from the species map for an additional level of
verification of classification accuracy.

Table 3. Measured biophysical parameters of the tree species at each site.

Sites
Height (m) Canopy Area (m2)

Mean (± SD) Min Max Mean (± SD) Min Max

SWS 12.48 ± 4.80 2.60 25.80 55.91 ± 65.27 2.41 613.80
VNP 18.31 ± 6.30 3.50 35.00 71.89 ± 70.44 2.55 446.93
MTR 22.90 ± 7.56 6.00 39.00 75.45 ± 74.66 2.41 638.20

2.6.3. Spectral Diversity Area Curves and Metrics

Spectral diversity metrics were generated both from NDVI masked standalone images and from
the abundant species maps of each site. Three different ways were followed to assess the applicability
of spectral diversity metrics towards gauging tree species diversity. In the first approach, to understand
the applicability of hyperspectral data in measuring diversity sans field study inputs, 175 squares
(10 × 10 pixels) per site were randomly extracted from an NDVI masked image of each site. The
CR-transformed spectral data of the extracted squares of each site were analyzed based on Dahlin [22].
Principal component analysis (PCA) was performed to reduce the dimensionality of the data with the
resulting components accounting for most of the total variance. The first three principal components
accounted for 94% of the variation in the recorded spectral data. Two spectral diversity measures,
the sum of variance of the first three PCs and the convex hull volume value, were calculated [22].
The CHV quantifies the volume of the trait space occupied by species in a community regardless of
the shape of the distribution and represents the multivariate equivalent of range [44]. The sum of
variance of the first three PCs and CHV values derived from spectral data of this study were empirically
considered as proxies towards showcasing the tree species functional trait diversity of each site, as
noted in Dahlin [22]. These data were also used to verify whether the spectral diversity metric was
altered in lieu of the changes in species diversity expected across the forest cover of each site.

In the second approach, to find out the relation between the field-measured species diversity of
the plots and the spectral diversity of the remote sensing measurements over the same, the spectral
data of areas falling within Ground Control Points (GCPs) locations of the plots (20 of SWS, 19 of VNP,
and 21 of MTR) of each site were extracted and CHV values from the CR-transformed spectral data of
each plot were calculated and used to make a moving average-based spectral diversity area curve.
This curve represented the spectral diversity of the species recorded during field study.

In the third approach, a number of plots of similar sizes, coinciding with the field study, were
selected from the abundant species maps of each site, spectral data were extracted, and CHVs were
calculated. The patterns identified in this approach were considered as abundant species spectral
diversity–area curves, as the spectral data were based on the derived classification map indicating
abundant species in the regions of interest. To analyze the one-to-one relationship between the number
of abundant species and cumulative spectral diversity, equal numbers of canopy spectra (n = 10) of
each abundant species were successively added and CHVs were calculated. A linear regression line
was drawn between species numbers and CHVs. In another way, equal sized plots (0.5 ha, n = 5)
were chosen from subsets of abundant species maps with a varied number of species. The CHVs of
extracted spectral data were calculated to observe whether the value changed with species number.

2.6.4. Intra- and Inter-Species Variability, CHV Values

The abundant species maps derived from the remote sensing data were used to test the strength
of spectral data as proxies for functional trait diversity in explaining the impact of climatic gradient on
tree inter- and intra-species variability. Fifty spectra of each of the common abundant species (five tree
species) of three sites were extracted from each of the CHIRPS 0.05◦ grid cells based on the abundant
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species maps. The CHVs of the extracted spectral data of each of the common abundant species falling
in CHIRPS grid cells at each site were calculated and plotted against CHIRPS decadal mean rainfall
data. The expectation was that the CHV values of each of these five common tree species did not vary
significantly without being impacted by the observed climatic gradient.

2.6.5. Redundancy Analysis

To look at the impact of climatic gradient on the tree species diversity, distribution, and spectral
diversity of the three sites, redundancy analysis (RDA) was performed. RDA is a constrained ordination
technique that directly relates the relative abundance of species across environmental gradients [41] and
allows for establishing relationships between observed gradient of abundances vis-à-vis environmental
drivers considered here as a climatic (rainfall–temperature) gradient. Analyses were performed using
field plot data, the CHVs of plots for all recorded species, and abundant species (response variables)
against recorded climatic gradient (explanatory variable).

3. Results

3.1. Tree Species Diversity, Distribution

A total of 123 tree species were recorded during field study at the three sites, of which 31 species
were found to be common at all three sites. The recorded tree species richness was similar at VNP and
SWS (68 and 70, respectively) but relatively higher at MTR (80 species). Amongst different the methods
employed to estimate the species richness of each site, the Bootstrap method showed relatively closer
values to the observed ones, as shown in Table S3. Estimates also showed a greater richness of species
at MTR over the other two sites. A list of the common species at the three sites and the abundant
species at each site are given in Tables S2 and S4. Species abundance data obtained from field plots was
corroborated with observed distributions in larger polygons (Figure 2) laid down during field study,
and were found to be matching. Log-based rank abundance curves of the abundant tree species, and
all the recorded species of each site, showed variable width and similar slopes, indicating variability in
the occurrence of these species (Figure S1). Lesser distributed species were in the lower part of the
abundance curve, with many having the same rank. Site specificity was evident in the recorded tree
species diversity, and the distribution of tree species, across the rainfall gradient. The most abundant
and common tree species across three sites were Ficus racemosa, Tectona grandis, Terminalia bellirica, and
Terminalia tomentosa. Bamboo (Dendrocalamus strictus at SWS and VNP and Bambusa bambos at MTR)
was the fifth most common abundant species at the three sites. The relative distribution of common
abundant species and their hierarchy, as seen in the abundant species maps, was not the same at the
three sites (Figure 4). The distribution of T. grandis increased with an increase in rainfall, while bamboo
species showed a reverse trend. T. bellirica showed lesser spread at VNP, while T. tomentosa showed
higher spread, indicating intra-genus inconsistency in spread.

The phenology of deciduous and evergreen tree species showed diverse phases at the three sites
at the time of the AVIRIS-NG flight pass. Differences within deciduous species were also noticed.
Deciduous species at MTR appeared greener compared to the other two sites. The recorded biophysical
parameters of trees, such as height and canopy spread, were higher at MTR compared to the other two
sites. Marked trees with larger dimensions (Table 3), and the recorded clusters of some of the species
during field study, made it possible to develop a canopy spectral library of abundant species. This
effectively assisted in developing abundant species maps of each site with better accuracy.
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Figure 4. Proportional distribution of five common abundant species across the three sites from
abundant species maps.

3.2. Abundant Species Maps

The support vector machine (SVM) classification model for the abundant species of each site
performed well, with accuracies of 80.15%, 76.32%, and 78.54% and kappa 0.79, 0.75, and 0.76 for SWS,
VNP, and MTR, respectively, as shown in Tables S5–S8. Accuracy measures were cross-verified with
receiver operating characteristic (ROC) curves for each species, and the area under the curve (AUC) was
calculated (Figure S2 and Table S9). The mean AUC value for each site was 0.99, 0.98, and 0.94 for SWS,
VNP, and MTR, respectively, showing the subtlety and specificity of the accuracies of the developed
species maps. These maps were used to inquire about how spectral diversity metrics derived from
remote sensing data can reveal species diversity and distribution. Figure 5 shows how the abundant
species were spread at each site. The spread of common species was distinctive and site-specific.
Spectral diversity, calculated as CHV, increased with species number and their relationship showed
high R2 values (Figure 6), indicating that metrics of spectral data can be used/tested as a proxy for
species diversity inputs for unexplored and relatively inaccessible forest cover. The CHVs of spectral
data obtained from plots of 0.5 ha size selected from abundant species maps showing different species
numbers increased with an increase in species numbers, as shown in Figure 6. Species specific to MTR,
such as C. tetraandra and F. tsjahela, showed higher CHVs. Seed-propagated abundant species showed
relatively higher CHV values compared to vegetation-propagated ones, as can be observed in Table
S10. This supports the common understanding that diversity is usually greater in seed-propagated
species compared to species showing vegetative propagation.
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Figure 5. RGB image (R = 862 nm, G = 652 nm, B = 552 nm) and zoomed in subset of abundant species
classification maps of the three sites (a,b: SWS, c,d: VNP, e,f: MTR). The abundant species color code is
the same as for Figures 4 and 5. The names of common abundant species at the three sites are marked
in red-colored font.
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Figure 6. Convex Hull Volumes CHVs of 0.5 ha plots (n = 5) selected from abundant species maps
of the three sites (A: SWS, B: VNP, C: MTR) with different numbers of occupant species; CHV values
are: a = 2.41 (n = 4), b = 6.05 (n = 12) for SWS, a = 3.31 (n = 5), b = 5.65 (n = 12) for VNP, and a = 1.86
(n = 4), b = 6.1 (n = 11) for MTR; Regression lines are of cumulative CHVs and the number of abundant
species. (a) represents 0.5 ha plot with lower diversity (n = 4 or 5); (b) represents 0.5 ha plot with higher
diversity (n = 11 or 12); (c) Regression lines of cumulative CHVs.

3.3. Diversity–Area Curves

Species diversity–area curves revealed a higher diversity at MTR compared to SWS (Figure 7).
Spectral diversity–area curves developed for the three sites by following three different approaches
showed distinguishing patterns. Firstly, to test the approach given in Dahlin [22] for these lesser
studied sites, the sum of variance of the first three PCs and CHV were used to compare spectral
diversity within and across the three sites. This approach revealed the utility of remote sensing data
in measuring biodiversity variables sans field inputs. The results of this approach account for the
spectral diversity of standalone tree cover diversity in the forests of each site. Spectral diversity–area
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curves of the summed variance of 175 plots showed an increase in variance over the observed climatic
gradient, with the lowest value at SWS and the highest at MTR (Figure 7). The CHVs of 175 plots at
MTR were nearly twice the value of SWS (Table S11), indicating greater spectral diversity over the
climatic gradient. Spectral diversity–area curves from the other two approaches also showed that
spectral diversity increased over the observed climatic gradient. Abundant species at each site showed
higher spectral diversity compared to the recorded tree species (Figure 7).

Figure 7. Diversity area curves (A: SWS, B: VNP, C: MTR). Spectral diversity–area curves for the
summed variance of 175 plots (a–c); Species diversity–area curves (d–f); Cumulative CHVs and area
curves (g–i).

Heat maps of Bray–Curtis dissimilarity graphs between plots developed for all the recorded
species and abundant species showed differences in the values of species and spectral diversity (as
CHVs) metrics. For the SWS and VNP sites, values measured from the spectral diversity metrics were
higher compared to the ones coming from field metrics. At MTR, the values were the same for both
field and spectral data metrics (Figure 8 and Figure S3).
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Figure 8. Heatmap of Bray–Curtis dissimilarity graphs of abundant species. The mean dissimilarity
value of species abundance (blue) and that of spectral diversity as CHVs (yellow) are (a) 0.64 and (d)
0.81 for SWS, (b) 0.56 and (e) 0.68 for VNP, and (c) 0.81 and (f) 0.81 for MTR.

3.4. Intra- and Inter-Species Spectral Diversity, Rainfall Gradient

The abundant species maps developed from AVIRIS-NG datasets were found to be very useful in
finding the intra- and inter-spectral variability of species spread over ~80% of cover at all three sites.
The CHV values of the sets of 50 spectra of each common abundant species from each of the 0.05◦
CHIRPS grid cells across rainfall gradient showed that rainfall has a positive effect on intra-species CHV
values, indicating a dynamic range in their functional diversity. CHVs increased over rainfall gradient
consistently across the sites (R2 0.86–0.98). Across species, CHV variability was relatively narrow for T.
grandis (Figure 9) and substantially higher for F. racemosa and bamboo species. Inter-species variability
was found to be relatively higher at MTR (Figure S4).

Figure 9. Common abundant species intra-species spectral variability (as seen in CHVs) across the
climatic gradient of the three sites. (n = 5 in a, n = 7 in b).
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3.5. Redundancy Analysis

Redundancy analysis was performed using climatic data as explanatory variables and species
abundance and CHV values as response variables. RDA plots revealed that species are broadly spread
across the climatic gradient. The climatic gradient explained 12–17% of the variance in the species
and spectral diversity distribution of all recorded species at the three sites (Figure S5). The Spectral
diversity metrics were observed to be more sensitive compared to the species abundance metrics by
showing higher explained variance towards the climatic gradient. The field and spectral diversity
metrics of the abundant species as response variables showed higher explained variance, as shown in
Figure 10, indicating that 13–24% of the variance in the distribution of the species by site matrix was
because of the climatic gradient.

Figure 10. Redundancy analysis output of abundant species distribution values (left) and spectral
diversity as CHVs (right) (considered as response variables) with climatic gradient (explanatory
variable). The variance explained for species distribution ranged between 13–24%, and for spectral
diversity as CHVs, varied between 14–23%. (a) SWS, (b) VNP, and (c) MTR.

3.6. Caveats

The level of uncertainty in spectral diversity measurements can be impacted by the classification
accuracy of species maps and the available number of spectra for lesser distributed species. Our results
indicate that the selected field plots numbers were reasonable for these sites. Other regions with
variable species and spectral diversity metrics may require different sampling scales for correlating
with the measured inputs.

397



Remote Sens. 2020, 12, 2130

4. Discussion

4.1. Tree Species Diversity Metrics

The present study focuses on measuring the tree diversity of three sites of a megadiverse tropical
country, India, using field-based and remote sensing techniques, which is of importance to forest
managers and conservationists [45]. Measured dissimilarity indices indicated that spectral diversity
metrics can provide a better understanding of the diversity compared to sampling-based field study
metrics. Amongst the tree species recorded (70–80 species), field-based metrics revealed that around
a quarter of them are seen as abundant, and this pattern is referred to as an established attribute of
communities [46]. Similar to previous findings [47,48], of the 31 common species of the three sites,
11 were found to co-occur as abundant species at MTR, 14 at VNP, and 15 at SWS, showing site- and
climatic gradient-specific distributions, resulting in disparate inter-specific interactions. The differences
in species composition, seen here across climatic gradient, are congruent to the studies reported
earlier across rainfall gradients and drought [49,50]. A few of the species, such as Gmelina arborea,
showed sparse distribution at all the three sites, indicating that some of the species inherently show
restricted spread, irrespective of the observed climatic variability. These observed shifts in community
composition can eventually determine the growth rates and productivity [3] of the three sites, which
have a long-term impact on prevailing forest structure and function. The trends in spectral CHVs
observed across the three sites of this study indicate that species assemblages may have strong local
controls, and the corresponding patterns of co-occurrence are largely aligned along major climatic
gradient. As observed earlier in [51], ecological and remote sensing products together, as reported in
this study, can improve the verity of ecological models for effective forest management.

The congruence observed in the field- and spectra-based diversity metrics and the increase in
the measured CHVs proportionate to abundant species per unit area (Figure 4) affirm the utility of
spectral diversity metrics in measuring biodiversity. A similar association was reported between
species richness and spectral diversity [52]. The higher rainfall observed at MTR resulted in a larger
number of recorded tree species (by 15%), and significantly higher spectral diversity, as observed in
the CHVs of abundant species (nearly twice that of the readings at SWS) compared to the other two
sites. Spectral diversity positively increased across the climatic gradient, affirming the positive impact
of rainfall on diversity. The flattening of the species–area curves appeared first for abundant species
and later for all the recorded species. This pattern was reversed for spectral diversity–area curves,
indicating that greater intra-species variability, as seen in the abundant species of this study, may have
a surprise impact on biodiversity estimates coming from remote sensing [16], and this is to be factored
in while projecting biodiversity estimates of the tropics using remote sensing. Higher intra-species
variability amongst the abundant species of the three sites, as seen from CHVs, could be one of the
many reasons for their expansive reach at the three sites. As mentioned by Avolio et al. [46], our study
makes an effort in estimating abundant species distribution over larger spatial scales through remote
sensing and conveys functional diversity through spectral diversity metrics, which may not be visible
in traditional field-based studies.

Random plots of each site, selected from the forest cover maps of the three sites, showed
different spectral diversity values (Figure 7) from the ones reported by Dahlin (whose study area
was forests sof southwestern Michigan, USA) [22], demonstrating how effectively the spectral data of
AVIRIS-NG correlates with tree species diversity observed in the tropical cover of this study. Similar
to the observation of Wang and Gamon [10], our work supports and strengthens the efficacy of high
resolution remote sensing data in the assessment of biodiversity variables of forest cover through
spectral diversity metrics.

4.2. Abundant Species Maps

The abundant species maps of the three sites showed a higher accuracy and matching similarity
with field-observed data. The corroboration of the developed species maps with additional field visits

398



Remote Sens. 2020, 12, 2130

showed a > 85% match. Classification accuracy is mostly dependent on intra- and inter-species spectral
variability [53,54]. This is evident in the spectra of abundant species, which resulted in developing
classification maps showing > 75% accuracy in the classification of ~20 tropical tree species spread over
~80% of the forest cover of the three sites, revealing the advantage of AVIRIS-NG in tree enumeration
studies over expansive regions. As reported earlier, the distribution and spread of abundant species
canopies [55] and the quality of extracted endmember spectra [10] made it possible to have abundant
species maps of the three sites with better accuracy. Earlier, Ferreira et al. [54] reported 81–84% user’s
accuracy for eight tree species of tropical deciduous forests using hyperspectral data with a 1-m spatial
resolution. With seven individual tree species and an additional class of broadleaved ones in forest
cover in Poland, Modzelewska et al. [56] reported 77% accuracy in classification using 5-m resolution
hyperspectral data. The user’s accuracy values of this study (83.54–86.70%) for ~20 tropical tree species
with 4-m spatial resolution data are reasonable. The distribution maps of abundant species developed
here by using high resolution sensors provide valuable inputs for forest ecological studies [57] and
also for forest management.

4.3. Intra- and Inter-Species Spectral Variability

Jetz et al. [58] indicated that spectra reveal biochemical and structural aspects of vegetation,
assisting in tracking plant functional diversity remotely. Schweiger et al. [14] underlined the importance
of plant spectral diversity in predicting the ecosystem functionality of Cedar Creek. These reports
broadly support the foundation of this study. Though transformations, such as PCA, do not directly
represent measured traits, the CHV metric calculated here indirectly expresses the multivariate range
of trait values captured through the variability of spectra collected via the high-fidelity AVIRIS-NG
instrument, as in [44]. Patterns of intra- and inter-species variability in CHVs across the three sites
(Table S10) help show the variability in canopy traits and simultaneously help elucidate the variations
in traits along a major climatic gradient. The CHVs of species with restricted distributions are relatively
lower when compared to the abundant species, indicating a high degree of trait conservatism.

Albert et al. [59] emphasized considering intra-specific variability in plant ecology, and
Siefert et al. [60] reported that 25% of trait variation in a community is because of intra-species
variability. The observed intra-species variability of abundant species in measured CHVs, and on
species assemblages over the three sites, is in sync with these reports. Functional variability can be
looked at from an individual perspective or at the species-based [61] and community level. These are
evident from the consistent increase in the CHVs of the common abundant species across the climatic
gradient over the three sites (Figure 9). Poorter et al. [61] reported 44% trait variation within the most
abundant species. The amplitudes of intra-specific variability among abundant species, seen in this
study, are large. Additionally, the dynamics in CHV values are species-specific. Bolnick et al. [62]
suggested how intra-specific trait variation can modulate species abundance and interaction, impacting
community dynamics. Similar reasoning can be given for the observed dynamics of abundant species
distribution over the three sites of this study.

4.4. Climatic Gradient and Species Response

RDA, performed primarily as a constrained ordination technique, showed the impact of the
climatic gradient on the spread of tree species. The impact of the climatic gradient is evident in the
direction and spread of the arrows in the RDA plot (Figure 10), indicating a constrained response of
species spread towards environmental variables with high positive, negative, and near zero correlations.
Climatic gradient explained more variance about the abundant species distribution, revealing their
explicit response, with ~80% occupancy at each site. The explained variance increased from SWS to
VNP to MTR, showing positivity in the distribution dynamics of recorded tropical tree species over
the climatic gradient. The measured variance values went down for the RDA of all recorded species,
indicating that sensitivity towards climatic gradient could be different for abundant species compared
to others. Though the percentage of variation in species distribution, explained by the observed
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gradient, appears smaller at the lower end, values at the upper end can match with the ones given for
the three different factors of woody plants of the Panama Republic [63]. Though further confirmations
are needed, it is interesting to notice how the same common species place themselves in site-specific
community conformations in response to rainfall variability. Stavros et al. [64] raised the question, “do
diverse communities respond to climate change differently from simpler communities?”. The outputs
of the multivariate analysis of this study are indicative of a similar approach by the recorded species of
this study.

5. Conclusions

This study utilized a large field-sampled dataset over a climatic gradient to leverage imaging
spectroscopy data from the joint ISRO-NASA AVIRIS-NG India campaign to help generate an
understanding of the patterns of linkage between tree species field and spectral diversity metrics.
High resolution datasets worked effectively in developing abundant species maps, finding out intra-
and inter-species variability as CHVs within and over three sites in the tropics. Similar to the report
of [65], which mentioned that climate primarily drives the distribution of regional species, the climatic
gradient in this study was shown to impact the spread and dispersion of abundant tree species of
three sites differently, leading to site-specific strategic species assemblages. The response of two of the
important species, T. grandis and bamboo species, depict how well these species can tune their inherent
functional diversity towards climatic gradient. The findings of this study are relevant in providing
vital inputs to the management of these precious and vulnerable forest covers, and support the view
in [66] that an integrative approach of remote sensing and vital field data has huge potential in the
conservation of nature. The outputs of this study, coming from regions less represented in the global
database, can contribute to global models. Observed changes in species distribution and diversity
metrics over climatic gradient can help in assessing these forests’ responses to the projected dynamics
in rainfall over the coming decades.
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