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1. Introduction

Nowadays, computational electromagnetics (CEMs) methods play an important role
in the rapid modeling and design of electromagnetic (EM) systems and their industrial
applications. Virtual prototyping based on computational electromagnetics is currently
widely adopted in electrical and electronic systems design because of the high accuracy
guaranteed by many numerical methods for the solution of Maxwell’s equations in a wide
range of frequency from DC to hundreds of GHz or even in the THz range. With the
continuous increase of integration and complexity in EM systems and devices, numerical
modeling and simulation methods play a key role in the design of electromagnetic systems.
From this perspective, accurate and efficient algorithms and methods enabling an accurate
and efficient analysis of complex EM problems are strongly requested. Furthermore, semi-
analytical methods can also offer elegant and accurate solutions to complex EM problems.
This special issue aims to promote cutting-edge research along this direction and offers a
timely collection of works to benefit researchers and practitioners.

2. The Special Issue

This Special Issue consists of nine papers covering a broad range of topics related to
the applications of EM waves, from the modeling of transmission lines and electromagnetic
structures to imaging, from the high frequency characterization of wave guides and meta-
surfaces, to machine-learning modeling of electromagnetic devices and field distribution
along the earth’s surface of a submerged line current at low frequency. The contents of
these papers are briefly introduced in the following.

In the first paper [1], an analytical series-form solution for the time-harmonic EM field
components produced by an overhead current line source is presented. The axial electric
field is expanded into a power series of the vertical propagation coefficient in the air space
leading to explicit expressions for the electric and magnetic fields.

The second paper [2] presents an extension of the formulation of wave propagation
in transverse electric (TE) and transverse magnetic (TM) modes for the case of metallic
cylindrical waveguides filled with longitudinally magnetized ferrite which are important
for various industrial applications, such as circulators, isolators, antennas and filters. The
proposed approach guarantees a considerable reduction of the computation time compared
to a commercial software.

In the third paper [3], the addition translation theorem is used to analyze multiple
scattering by two Perfect Electric Conducting (PEC) spheres. The proposed approach will
allow to evaluate the scattering from macro-structures composed of spherical particles,
i.e., biological molecules, clouds of airborne particles.

The fourth paper [4] presents a simple technique to identify material texture from afar,
by using polarization-resolved imaging. It has been applied to both isotropic references
(Teflon bar) and anisotropic samples (wood). Such a technique can be easily implemented
into industrial environments, where fast and cheap sensors are required.

Electronics 2022, 11, 1830. https://doi.org/10.3390/electronics11121830 https://www.mdpi.com/journal/electronics
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The EM scattering may be a significant source of degradation in signal and power
integrity of high-contrast silicon-on-insulator (SOI) nano-scale interconnects, such as opto-
electronic or optical interconnects operating at 100 s of THz. The fifth paper [5] characterizes
THz scattering loss in nano-scale SOI waveguides exhibiting stochastic surface roughness
with exponential autocorrelation.

Paper [6] considers the calculation of magnetic flux density in the vicinity of overhead
distribution lines which takes the higher current harmonics into account. Based on the
Biot–Savart law and the complex image method, it allows to determine the contributions
of individual harmonic components of the current intensity to the total value of magnetic
flux density.

A machine learning (ML)-based regression for the construction of complex-valued
surrogate models for the analysis of the frequency-domain responses of EM structures is
presented in the seventh paper [7]. Relying on the combination of the principal component
analysis (PCA) and an unusual complex-valued formulation of the Least Squares Support
Vector Machine (LS-SVM) regression, a compact set of complex-valued surrogate models
are trained and then used to obtain the frequency response of EM structures.

Dielectric metasurfaces have emerged as a promising technology for sensing applica-
tions and non-linear frequency conversion, and for their flexibility to shape the emission
pattern in the visible regime. In paper [8], finite-size metasurfaces and beam-like illumina-
tion conditions are investigated in contrast to the typical infinite plane-wave illumination
compatible with the Floquet theorem.

Finally, a numerical analysis on field distribution along the earth’s surface of a line
current source submerged in the ground is conducted in [9]. The potential of the extremely
low frequency (ELF) technology in the envisioned long-distance communication techniques
is investigated by the combined numerical methods of the Romberg–Euler method and
Gauss–Laguerre method.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: This work presents an analytical series-form solution for the time-harmonic electromagnetic
(EM) field components produced by an overhead current line source. The solution arises from casting
the integral term of the complete representation for the generated axial electric field into a form where
the non-analytic part of the integrand is expanded into a power series of the vertical propagation
coefficient in the air space. This makes it possible to express the electric field as a sum of derivatives
of the Sommerfeld integral describing the primary field, whose explicit form is known. As a result,
the electric field is given as a sum of cylindrical Hankel functions, with coefficients depending on the
position of the field point relative to the line source and its ideal image. Analogous explicit expressions
for the magnetic field components are obtained by applying Faraday’s law. The results from numerical
simulations show that the derived analytical solution offers advantages in terms of time cost with
respect to conventional numerical schemes used for computing Sommerfeld-type integrals.

Keywords: line current source; half-space problem; EM wave propagation

1. Introduction

The computation of the electromagnetic (EM) fields from overhead electric lines located above
dissipative terrestrial areas is a classical problem which is still of interest today because of the public
concern about the biological effects of field exposure. In fact, it is well known that the strong EM fields
associated with the high-intensity currents and voltages of power lines can generate undesirable effects
on humans, animals and other forms of life [1–3]. The problem, in all of its variants, has spawned a
number of contributions to the scientific literature since a solution was first developed at the beginning
of the 20th century by Carson [1–25]. Yet, in spite of the variety of proposed approaches, to Author’s
knowledge there is scarcity of purely analytical techniques in literature, and most of the published
methods attempt to solve the problem through the derivation of analytical formulations amenable
to numerical treatment. Excellent illustrations of these approaches are the well-known method of
moments (MoM), which is used to solve surface integral formulations, and the method of auxiliary
sources [10], consisting of expressing the fields as weighted superpositions of the contributions from a
finite number of fictitious currents flowing on mathematical surfaces separated from the air-ground
interface. Even if these methods may exhibit good performances in terms of accuracy and efficiency,
as numerical procedures they suffer from the intrinsic disadvantage of involving memory requirements
and computational costs significantly greater than those implied by an analytical solution. Moreover,
they provide less insight in the physics of the problem and are also less suitable for sensitivity analysis.
On the other hand, one important contribution in the context of purely analytical techniques is the work
by Prof. J. R. Wait [5], which presents field expressions derived through usage of the complex image
theory. The only drawback of the obtained formulas resides in that they are valid in the quasi-static
regime only, that is when the effects of the displacement currents in the air space are negligible.
The aim of the present paper is to derive rigorous series-form expressions for the time-harmonic

Electronics 2020, 9, 2009; doi:10.3390/electronics9122009 www.mdpi.com/journal/electronics
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EM field components produced in the air-space by a uniform-current line source located above a
homogeneous dissipative ground. The field expressions are obtained starting from decomposing the
integral representation for the axial component of the generated electric field into three parts, that is
the direct field induced by the source current, the ideal reflected field induced by a negative image
current and a correction term due to the imperfect conductivity of the ground. Next, after recognizing
that the first two terms can be straightforwardly expressed in explicit form, the non-analytic part of the
integrand of the correction term is expanded into a power series of the vertical propagation coefficient
in the air space. This permits to express the electric field as a sum of derivatives of the Sommerfeld
Integral describing the direct field. As a result, the field is given as a sum of cylindrical Hankel
functions, with coefficients depending on the position of the field point relative to the original current
source and its ideal image. Finally, analogous explicit expressions for the magnetic field components are
obtained by applying Faraday’s law. The obtained solution is not subject to simplifying assumptions,
and hence is valid even when the high-frequency effects due to the displacement currents in both the
air and the soil are not negligible. As a consequence, the solution is also of practical use as an analytical
benchmark for simulation tools employed to solve EM boundary value problems. Numerical tests are
performed to show the validity of the developed method and its advantages in terms of computation
time with respect to standard numerical algorithms used to evaluate Sommerfeld-type integrals.

2. Formulation of the Problem

Consider an infinite line source of current located in proximity of a flat homogeneous ground,
as shown in Figure 1.

 

μ0 ,ε0 

I 
z+h 

h 

z 
P(y,z) 

z-h 

y 

μ0 , ε1, σ1 

-I 

h 

Figure 1. Sketch of a line source of current above a homogeneous ground.

The line is situated above the ground at height h, and the material medium is characterized by
the dielectric permittivity ε1 and electrical conductivity σ1, while the magnetic permeability is taken
to be everywhere that of free-space μ0. Under the hypothesis that the observation point lies in the
near-field region of the line source, it is reasonable to assume that the line supports a nearly uniform
current [1], i.e., I(x, t) ∼= Iejωt. Due to the symmetry of the problem, the total electric field generated
in the air space has only one component in the axial direction, whose integral representation is well
known and given by [10]

Ex = − jωμ0 I
2π

[Sd (|z−h|) + Sr (z+h)] , (1)

where

Sd(ζ)=
∫ ∞

0

1
u0

e−u0ζ cos (λy) dλ=− jπ
2

H(2)
0

(
k0

√
y2+ζ2

)
(2)

4
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and

Sr(ζ)=
∫ ∞

0

1
u0

u0 − u1

u0 + u1
e−u0ζ cos (λy) dλ (3)

are, respectively, the Sommerfeld Integrals describing the direct and reflected fields, being H(2)
0 the

zeroth-order Hankel function of the second kind, and un=
√

λ2 − k2
n. The aim of this paper is to derive

exact series representations for Ex and the magnetic field components, the latter arising from applying
Faraday’s law. To this goal, it is first convenient to use the identity

u0 − u1

u0 + u1
= −1 +

2u0

u0 + u1
(4)

and split Sr into two terms, that is the ideal reflected field contribution (induced by a negative image
current) plus a term due to the imperfect conductivity of the ground. It reads

Sr (z+h) =− Sd (z+h) +Sc (z+h) , (5)

with

Sc (ζ) =2
∫ ∞

0

e−u0ζ

u0 + u1
cos (λy) dλ, (6)

and where account has been taken of (2). The integral Sc may be evaluated by proceeding as follows.

After setting α=
√

k2
1/k2

0 − 1 and

1
u0 + u1

=
u0

k2
0α2

+ jP(u0), (7)

we replace the quantity eu0βP(u0), where β is a non-negative real constant to be determined, with its
Taylor expansion about u0 = 0, in a similar fashion as in [5]. It yields

f (u0) = eu0βP(u0) =
∞

∑
i=0

f (i)(0)
i!

ui
0, (8)

and, as a consequence, (6) becomes

Sc (ζ) =
2

(k0α)2

∫ ∞

0
u0e−u0ζ cos (λy) dλ + 2j

∞

∑
i=0

ai(β)
∫ ∞

0
ui

0e−u0(ζ+β) cos (λy) dλ, (9)

being ai(β) = f (i)(0)/i!. Under the assumption that ζ > 0, the second integral on the right-hand
side of (9) converges regardless of the value chosen for the non-negative arbitrary constant β.
This happens because, as λ becomes sufficiently large, the exponential factor e−u0(ζ+β) approaches
e−λ(ζ+β), which rapidly decays with increasing λ. Since β may be assumed to be as small as desired,
we now take the limit of (9) as β → 0+. It is not difficult to prove that, subject to this condition, the odd
coefficients a2i+1 (i = 0, 1, 2, . . .) become null. On the other hand, the limit of the even coefficients reads

lim
β→0+

a2i(β) =
c2i

(k0α)2i+1 , with ci=
(i + 1)!!
(i2 − 1) i!!

, (10)

and, as a consequence, (9) may be expressed as

Sc (ζ) =
2

(k0α)2
∂2Sd
∂ζ2 − 2j

∞

∑
i=0

c2i

(k0α)2i+1
∂2i+1Sd

∂ζ2i+1 , (11)

5
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where the ζ-derivatives of Sd, that is the derivatives of H(2)
0 , are to be made explicit. After letting let

r =
√

y2+ζ2, from the differential properties of the Bessel functions [26] it follows that

∂H(2)
0

∂ζ
=− k0 ζ

r
H(2)

1

∂2H(2)
0

∂ζ2 =−k0

[
1+ζ2

(
1
r

d
dr

)]
H(2)

1
r

∂3H(2)
0

∂ζ3 =−k0

[
3ζ

(
1
r

d
dr

)
+ζ3

(
1
r

d
dr

)2
]

H(2)
1
r

∂4H(2)
0

∂ζ4 =−k0

[
3
(

1
r

d
dr

)
+6ζ2

(
1
r

d
dr

)2
+ζ4

(
1
r

d
dr

)3
]

H(2)
1
r

...

∂l H(2)
0

∂ζ l =− k0

�l/2�
∑

m=0
(−1)mdlmζ l−2m

(
1
r

d
dr

)l−m−1H(2)
1
r

, (12)

where the argument of the Hankel functions, that is k0r, has been omitted for notational simplicity,
and with

dlm = (−1)m
(

l
l−2m

)
(2m − 1)!! =

(−1)ml!
(l−2m)!(2m)!!

. (13)

It should be noted that the number of terms on the right-hand sides of (12) is (l/2+1) for even l,
and [(l−1)/2+1] for odd l. Hence, it is equal to unity plus the integer part of (l/2), denoted by �l/2�.
Next, use of the tabulated result [26]

(
1
r

d
dr

)ν H(2)
1
r

= (−k0)
ν

H(2)
ν+1

rν+1 (14)

into (12) leads to the expression

∂lφ0

∂ζ l =(−k0)
l
�l/2�
∑

m=0
dlm

φl−m
(k0ζ)m , (15)

and

φn=

(
ζ

r

)n
H(2)

n (k0r). (16)

Finally, substituting (2) and (15) into (11) provides

Sc (ζ)=jπΦ2i+1,1, (17)

with

Φln=
φn

α2k0ζ
−φn+1

α2 − j
∞

∑
i=0

c2i

α2i+1

�l/2�
∑

m=0
dlm

φ2i−m+n
(k0ζ)m , (18)

6



Electronics 2020, 9, 2009

and hence, the total axial electric field component Ex (1) may be rewritten as

Ex=− ωμ0 I
4

[
φ0|ζ=|z−h| − (φ0+2Φ2i+1,1)ζ=z+h

]
. (19)

The non-null magnetic field components may be obtained from Ex by applying Faraday’s law,
as follows

Hy = − 1
jωμ0

∂Ex

∂z
=

I
2π

{
∂Sd(ζ)

∂ζ

∣∣∣∣
ζ=z−h

−
[

∂Sd(ζ)

∂ζ
−∂Sc(ζ)

∂ζ

]
ζ=z+h

}
, (20)

Hz =
1

jωμ0

∂Ex

∂y
= − I

2π

{
∂Sd(ζ)

∂y

∣∣∣∣
ζ=z−h

−
[

∂Sd(ζ)

∂y
−∂Sc(ζ)

∂y

]
ζ=z+h

}
. (21)

In fact, differentiating (17) with respect to ζ leads to write

∂Sc(ζ)

∂ζ
=− jπk0

(
2φ2

α2k0ζ
+ Φ2i+2,2

)
(22)

and, as a consequence, (20) is turned into

Hy=
jk0 I

4

[
φ1|ζ=z−h −

(
φ1+

4φ2

α2k0ζ
+ 2Φ2i+2,2

)
ζ=z+h

]
. (23)

On the other hand, since it holds

∂l+1φ0

∂y∂ζ l =− k0

�l/2�
∑

m=0
(−1)mdlmyζ l−2m

(
1
r

d
dr

)l−mH(2)
1
r

=(−k0)
l+1 y

ζ

�l/2�
∑

m=0
dlm

φl−m+1
(k0ζ)m (24)

and, therefore,

∂Sc (ζ)

∂y
=− jπk0y

ζ
Φ2i+1,2 (ζ) , (25)

the explicit expression for the Hz-field reads

Hz = − jπk0yI
4πζ

[
φ1|ζ=z−h − (φ1+2Φ2i+1,2)ζ=z+h

]
. (26)

3. Results

As validation of the theoretical development, expressions (23) and (26) were used to calculate the
magnetic field components that an infinite line source carrying 1 A of current produced at a plane 1 m
above the interface between air and a clay soil. The source was situated 4 m above the material medium,
whose electrical conductivity and dielectric permittivity were taken to be equal to σ1 = 0.1 mS/m and
ε1 = 40 ε0, respectively [27]. At first, the fields were computed against the horizontal distance y from the
line axis, assuming that the operating frequency was equal to 1 MHz. Four y-profiles were generated,
each one corresponding to a different value for the truncation index L of the outer infinite sum in (18).
The results of the computations, shown in Figures 2 and 3, were compared with those arising from
numerically evaluating the integral representations for the magnetic field components, namely [28]
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Hy=
I

2π

∫ ∞

0

[
e−u0|z−h| − u0 − u1

u0 + u1
e−u0(z+h)

]
cos(λy)dλ, (27)

Hz=
I

2π

∫ ∞

0

λ

u0

[
e−u0|z−h| + u0 − u1

u0 + u1
e−u0(z+h)

]
sin(λy)dλ. (28)

Numerical integration was carried out by applying a Gauss–Kronrod G7-K15 scheme, originating
from the combination of a seven-point Gauss rule with a 15-point Kronrod rule. From the analysis of
the plotted curves it emerged that increasing the truncation index L improved the accuracy of the result
of the computation. In fact, if L grew the curves provided by (23) and (26) approached the outcomes
from numerical quadrature, and close agreement was achieved when L = 9 in both the situations. Thus,
the proposed series-form solution converged to the exact solution. This was confirmed by the curves
plotted in Figure 4, which show the relative error of the outcomes from (23) as compared to numerical
integration data. As is seen, the error monotonically decreased as L increased. On the other hand, for a
fixed value of L the error was not substantially affected by a variation of the distance y as long as the
latter was smaller than 50 m. Thereafter, the relative error grew and exhibited an oscillating behavior,
pretty similar for all the considered values of the truncation index of the outer sum in (18). However,
even with the rapid increase as the distance y increased, for L = 9 the error did not exceed 10−3 in the
considered interval.
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|H
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  (
A

/m
)

Horizontal distance,  y (m)

(23)  L=3
(23)  L=4
(23)  L=5
(23)  L=9

Gauss-Kronrod

Figure 2. Amplitude of Hy against the horizontal distance from the line source.

The accuracy of the result of the computation also depended on the values of the electromagnetic
parameters of the lossy ground and, for instance, better accuracy was observed for larger values of the
electrical conductivity σ1. This aspect is illustrated by Figures 5 and 6, which show, respectively, profiles
of |Hy| versus the ratio σ1/(ωε1), and the relative error resulting from using (23) instead of G7-K15
scheme. Here, it is assumed that the source carried 1 A and operated at 100 kHz, and that ε1 = 20 ε0,
h = 5 m, y = 10 m, and z = 1 m. As is seen, the sequence of profiles of |Hy| generated by the partial sums
in (23) converged to the curve provided by the G7-K15 scheme, and perfect agreement between the
analytical and numerical data was again obtained for L = 9. Furthermore, convergence was faster in the
good-conductor limit (σ1� ωε1), where it sufficed to use a sum constituted by seven terms to produce
sufficiently accurate results. This does not necessarily imply that the relative error generated by each
partial sum in (23) always decreased as the conductivity grew. In fact, as pointed out by Figure 6,
the error fluctuated around a decreasing mean value rather than being monotonically decreasing.
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Figure 3. Amplitude of Hz against the horizontal distance from the line source.
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Figure 4. Relative error of (23) as compared to G7-K15 scheme, plotted versus y.

The proposed method made it possible to achieve time savings compared to G7-K15 numerical
scheme, while maintaining the same accuracy as the latter. In fact, on a single-core 2.2 GHz processor,
the average CPU time taken by (23) to generate the profile of |Hy| associated with L = 9 in Figure 5
was equal to 157 ms, while about 9 s were taken by numerical integration of (27) to produce the same
outcome. This means that, limited to the considered example, the proposed approach was about 57
times faster than Gaussian integration, and, as a consequence, the numerical complexity of the former
was significantly smaller than that exhibited by the latter. For the sake of completeness, the time costs
of (23) corresponding to the remaining values of L depicted in Figure 5 are indicated in Table 1.
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Table 1. CPU time comparisons for the calculation of Hy.

Approach Average CPU Time [s] Speed-Up

G7-K15 8.97 -

(23) with L = 4 3.13 × 10−4 2.87 × 104

(23) with L = 5 1.26 × 10−3 7.12 × 103

(23) with L = 7 3.84 × 10−2 2.34 × 102

(23) with L = 9 1.57 × 10−1 57.1
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Figure 5. Amplitude of Hy against the normalized conductivity of the ground σ1/(ωε1).

10-5

10-4

10-3

10-2

10-1

100

101

100 101 102 103

re
la

tiv
e 

er
ro

r

σ1/(ωε1)

L=7
L=9

L=10
L=11

Figure 6. Relative error of (23) as compared to G7-K15 scheme, plotted against σ1/(ωε1).

Finally, one would ask whether the proposed solution may still be used when both h and z
approach zero, since it has been obtained starting from expression (9), whose integrals on the right-hand
side, strictly speaking, converged only for ζ = z+ h > 0. This point is clarified by Figure 7, which shows
the amplitude–frequency spectrum of the Hy-field that a unit-current line source generated at a
point placed 30 m apart from it, assuming that both the source and the observation point lay on
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a homogeneous ground with σ1 = 20 mS/m and ε1 = 10 ε0. As is evident from the analysis of the
plotted curves, the trends arising from the sequence of partial sums in (23) still converged to the curve
resulting from numerical integration of (27), even if the number of terms of (23) required to approach
the numerical data grew as frequency decreased.
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(23)  L=13
Gauss-Kronrod

Figure 7. Amplitude-frequency spectrum of Hy, resulting from using both (23) and the G7-K15 scheme.

Hence, the rate of convergence of (23) depended on frequency, and convergence was faster at
higher frequencies. This aspect is further investigated in Figure 8, which depicts the relative error
of the outcomes of (23) plotted in Figure 7, as compared to the data arising from the G7-K15 rule.
The curves of Figure 8 point out that, for a fixed L, the accuracy of the result of the computation
significantly worsened when entering the low-frequency range. At the same time, they confirmed
that the accuracy could always be enhanced by increasing L. This implies that, all over the considered
frequency range, it holds [29]

lim
L→∞

|H(L+1)
y − Hy|

|H(L)
y − Hy|p

=q, (29)

where the symbol {H(L)
y } denotes the sequence of partial sums that originates from (23), as a result of

truncating the infinite sum in (18), and where p and q are the order of convergence (OC) of the sequence
and the asymptotic error constant (AEC), respectively. It is easily understood that the parameters p
and q depend on the operating frequency, and that the knowledge of their values permits to acquire
further information on the rate of convergence. As an example, Table 2 illustrates Lth order estimates
of the OC and the AEC for the sequence {H(L)

y } corresponding to 1 kHz in Figure 7. The estimates
were calculated using the well-known expressions [29]

pL=
log

[
|H(L+1)

y − H(L)
y |/|H(L)

y − H(L−1)
y |

]
log

[
|H(L)

y − H(L−1)
y |/|H(L−1)

y − H(L−2)
y |

] , (30)

qL=
|H(L+1)

y − H(L)
y |

|H(L)
y − H(L−1)

y |pL
(31)
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whose limits as L→∞ approach p and q [29]. As pointed out by Table 2, pL→1 with increasing L,
and this means that the sequence {H(L)

y } converges linearly. Moreover, convergence is accelerated by

the small values of the qL’s, which further reduce the remainder |Hy−H(L)
y | at any additional iteration

of the sequence.
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Figure 8. Relative error of (23) as compared to G7-K15 scheme, plotted against frequency.

Table 2. Estimated OC and AEC for the sequence {H(L)
y }.

L pL qL

4 0.857 0.674

5 0.871 0.591

7 0.944 0.563

10 0.989 0.495

13 0.996 0.442

4. Conclusions

This paper has presented a rigorous analytical approach for evaluating the time-harmonic EM field
components generated in the air space by an infinite current line source located above a homogeneous
lossy ground. The approach consists of expanding the non-analytic part of the integrand of the
correction term in the integral expression for the axial electric field into a power series of the z-directed
propagation coefficient in air. This leads to express the axial electric field as a sum of derivatives of
the Sommerfeld Integral describing the direct field, which may be analytically evaluated. As a result,
the electric field is given as a sum of cylindrical Hankel functions, with coefficients depending on the
position of the field point relative to the line source and its ideal image. Then, explicit expressions for
the magnetic field components are also derived by applying Faraday’s law. The obtained solution is
not subject to simplifying assumptions, and hence is valid even when the high-frequency effects due to
the displacement currents in both the air and the soil are no longer negligible. Numerical simulations
have been carried out to show that the proposed approach exhibits good accuracy, while taking
significantly less computation time than conventional numerical quadrature schemes used to evaluate
Sommerfeld-type integrals.
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Abstract: This paper presents an extension of the formulation of wave propagation in transverse
electric (TE) and transverse magnetic (TM) modes for the case of metallic cylindrical waveguides
filled with longitudinally magnetized ferrite. The higher order modes were exploited. We externally
controlled the cut-off frequency through the application of DC magnetic fields. The numerical results
of dispersion diagrams for TE and TM modes were obtained and analyzed. We analyzed a waveguide
antenna filled with partially magnetized ferrite using the mode matching (MM) technique based on
the TE and TM modes. By using modal analysis, our approach considerably reduced the computation
time compared to HFSS. Ferrites are important for various industrial applications, such as circulators,
isolators, antennas and filters.

Keywords: anisotropic materials; antenna; cylindrical waveguides; ferrites; propagation

1. Introduction

Recently, many researchers have been interested in guiding devices that use ferrite
in some frequency range for their potential applications in microwave circuits. However,
there is a lack of research into the dispersion of ferrite cylindrical waveguides. Among the
essential research pertaining to this topic, we can cite the work in [1–12]. Guided modes in
waveguides consisting of anisotropic media [4,13–15] have been studied in the literature.

In this paper, we present an extension of the transverse electric (TE) and transverse
magnetic (TM) modes to cylindrical waveguides filled with lossless longitudinally magne-
tized ferrite (LMF) which takes account of the spatial distribution of the permeability of
the medium that is applied to the transverse fields. We exploited the propagation modes
in this structure. We show how the dispersion diagrams were obtained and we discuss
the effects of anisotropic parameters on dispersion characteristics and cutoff frequencies.
We also show how the numerical results for the TE and TM modes were obtained. These
modes were used in the numerical method applied to the design of our antenna. Our
simulations of a cylindrical metallic waveguide antenna filled with partially magnetized
ferrite using mode matching (MM) [16,17] were in good agreement with those obtained
with HFSS. However, our method was noticeably faster.

Our objective was to analyze the physical discontinuities in a cylindrical metallic
waveguide filled with partially magnetized ferrite using the mode matching technique
based on the TE and TM modes. An antenna formed by this type of waveguide is presented
and analyzed. The magnetization of the ferrite using an external control can be achieved by
enveloping the waveguide with Helmholtz coils connected to a variable voltage generator.
Each voltage corresponds to a constant magnetic field applied to the ferrite longitudinally
which creates the magnetization of this medium. As a result, the magnetic properties of the
ferrite change. The permeability of the ferrite becomes tensorial. Our antenna was tuned
to the desired operating frequency for the ferrite magnetization circuit by adjusting the
voltage applied externally, which in turn affected the variation of the static magnetic field

Electronics 2021, 10, 474. https://doi.org/10.3390/electronics10040474 https://www.mdpi.com/journal/electronics
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applied to the ferrite. The operating frequency range could vary. Our interest in this study
was in the tuning of the operating frequency of the antenna.

This formulation is a useful tool for microwave engineers. This type of material is
extensively applied by information technology industries, particularly in microwaves and
RF devices, such as patch antennas, waveguide antennas, resonators, circulators, insulators,
phase converters and filters.

2. Formulation

For lossless longitudinally magnetized ferrite, as is shown in Figure 1, the Maxwell
equations can be written as:

→
∇×→

E = −jωμ f

→
H (1)

→
∇× →

H = jωε f
→
E (2)

Figure 1. Geometry of cylindrical waveguide filled with longitudinally magnetized ferrite (LMF).

At the microwave’s frequencies, the ferrites are characterized by a tensor permeability
that represents their induced anisotropy under a magnetic field. The permeability of the
LMF is tensorial and can be written in a system of cylindrical coordinates, as is given by
D. Polder [8], with

μ f = μ0 μr f = μ0

⎛⎝ μ −jκ 0
jκ μ 0
0 0 μrz

⎞⎠ = μ0

(
μrT 0
0 μrz

)
(3)

where μ, κ, μrz and ε f are real quantities.
For a partial magnetization of ferrite, J. J. Green et al. [5] and E. Schloemann [9] give

the empirical expressions of μ, κ, μrz [11]:

μ = μd + (1 − μd)

(
4πM
4πMS

)3/2
(4)

κ =
γ(4πM)

ω
(5)

μrz = μd
(1−( 4πM

4πMS
)

5/2
) (6)

where

μd =
1
3

⎧⎨⎩1 + 2

√
1 −

(
γ(4πMS)

ω

)2
⎫⎬⎭ (7)

where ω is the work pulsation, γ is the gyromagnetic constant, 4πMS is the magnetization
at saturation and 4πM is the magnetization which is lower than saturation. When the
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magnetization is equal to zero, κ = 0 and μ = μrz = 1. The ferrite then becomes an
isotropic dielectric.

Let us consider a cylindrical waveguide of radius R completely filled with LMF
without losses, as represented in the Figure 1. The walls of the guide are perfectly electric
conductive. In this study, we rigorously examined the TE and TM modes in a metallic
cylindrical waveguide completely full of longitudinally magnetized ferrite.

2.1. Transverse Electric Modes

By considering the propagation in the Oz direction and manipulating Equations (1)
and (2), we obtain the expressions of the transverse electromagnetic fields according to the
longitudinal fields in the TE modes.

E(h)
r =

−1
K2

c

(
A1

∂Hz

∂r
+ jA2

1
r

∂Hz

∂θ

)
(8)

E(h)
θ =

1
K2

c

(
jA2

∂Hz

∂r
− A1

1
r

∂Hz

∂θ

)
(9)

H(h)
r =

1
K2

c

(
−jkzK2

cμ
∂Hz

∂r
+ Fkz

1
r

∂Ez

∂θ

)
(10)

H(h)
θ =

−1
K2

c

(
Fkz

∂Hz

∂r
+ jkzK2

cμ
1
r

∂Hz

∂θ

)
(11)

with
K2

cμ = k2
0εr f μ − k2

z (12)

F = k2
0εr f κ (13)

K2
c = k4

cμ − F2 (14)

k2
0 = ω2ε0μ0 (15)

A1 =
Fk2

z
ωε0εr f

(16)

A2 =
k4

cμ − F2 + k2
zk2

cμ

ωε0εr f
(17)

From Equation (1), the differential equation for z-component can be obtained as follows

∂2Hz

∂r2 +
1
r

∂Hz

∂r
+

1
r2

∂2Hz

∂θ2 +
(

K(h)
c f

)2
Hz = 0 (18)

with (
K(h)

c f

)2
=

ωμ0μrzK2
c

A2
(19)

The resolution of the differential Equation (18), due to the separation of the two
variables, requires the expression of Hz for the TEmn modes in the metallic cylindrical
waveguide fully filled with LMF. The expression of the longitudinal magnetic field can be
written as follows

H(h)
z = H0sin(nθ)Jn

(
K(h)

c f r
)

ej(ωt−k(h)z z) (20)

Jn is the Bessel function of the first kind of order n (n = 0, 1, 2, 3, . . . ).
Equations (8)–(11) become

E(h)
r =

H0

K2
c

{
−A1K(h)

c f sin(nθ)J′n
(

K(h)
c f r

)
−jA2

n
r

cos(nθ)Jn

(
K(h)

c f r
)}

(21)
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E(h)
θ =

H0

K2
c

{
jA2K(h)

c f sin(nθ)J′n
(

K(h)
c f r

)
−A1

n
r

cos(nθ)Jn

(
K(h)

c f r
)}

(22)

H(h)
r =

H0

K2
c

{
−jk(h)z K2

cμK(h)
c f sin(nθ)J′n

(
K(h)

c f r
)
+Fk(h)z

n
r

cos(nθ)Jn

(
K(h)

c f r
)}

(23)

H(h)
θ =

H0

K2
c

{
−Fk(h)z K(h)

c f sin(nθ)J′n
(

K(h)
c f r

)
−jk(h)z K2

cμ
n
r

cos(nθ)Jn

(
K(h)

c f r
)}

(24)

J′n is the derivative of the Bessel function of the first kind of order n (n = 0, 1, 2, 3, . . . ).
The boundary conditions give

J′n
(
u′

nm
)
= 0 (25)

with
u′

nm = K(h)
c f R (26)

In Equation (26), u′
nm represents the mth zero (m = 1, 2, 3, . . . ) of the derivative of the

Bessel function J′n of the first kind of order n. The determination of constant H0 is done by
normalizing the power PTE that crosses the cross-section of the guide, which is in our case
a disc of radius R.

PTE =
∫ R

0

∫ 2π

0

(
E(h)

r H∗(h)
θ − E(h)

θ H∗(h)
r

)
rdrdθ = 1 (27)

* indicates the complex conjugate.
Equation (27) gives

H0 =
K2

c Kc f√
kz

(
A2K2

cμ + A1F
) N(h)

nm (28)

with
N(h)

nm =
1√

σn
2

(
(u′

nm)
2 − n2

)1/2
Jn(u′

nm)

(29)

σn =

{
2π i f n = 0
π i f n > 0

(30)

From Equation (26), we obtain the propagation equation

k4
z +

(
−2ω2ε0μ0εr f μ + μ

μrz

(
u′

nm
R

)2
)

k2
z

+ω2ε0μ0εr f
(
μ2 − κ2)[ω2ε0μ0εr f − 1

μrz

(
u′

nm
R

)2
]
= 0 (31)

To find cut-off frequencies, the propagation constant should be equated to zero in
Equation (31). The cutoff frequency in the TE mode is written

f (TE)
c.nm =

c
2π

1√
εr f μrz

(
u′

nm
R

)
(32)

If the magnetization 4πM decreases, μrz increases. Consequently, the cutoff frequency
f (TE)
c.nm decreases. We can externally control the cut-off frequency through the application

of DC magnetic fields. The magnetization of the ferrite using an external control can
be achieved by enveloping the waveguide with Helmholtz coils connected to a variable
voltage generator.
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2.2. Transverse Magnetic (TM) Modes

By manipulating Equations (1) and (2), we can obtain the expressions of the transverse
electromagnetic fields according to the longitudinal fields in the TM modes.

E(e)
r =

kz

K2
c

(
−jK2

cμ
∂Ez

∂r
+ F

1
r

∂Ez

∂θ

)
(33)

E(e)
θ =

−kz

K2
c

(
F

∂Ez

∂r
+ jK2

cμ
1
r

∂Ez

∂θ

)
(34)

H(e)
r =

ωε0εr f

K2
c

(
F

∂Ez

∂r
+ jK2

cμ
1
r

∂Ez

∂θ

)
(35)

H(e)
θ =

ωε0εr f

K2
c

(
−jK2

cμ
∂Ez

∂r
+ F

1
r

∂Ez

∂θ

)
(36)

From Equation (1), the differential equation for the z component can be obtained as
follows

∂2Ez

∂r2 +
1
r

∂Ez

∂r
+

1
r2

∂2Ez

∂θ2 +
(

K(e)
c f

)2
Ez = 0 (37)

with
K(e)

c f =
Kc

Kcμ
(38)

The resolution of the differential Equation (37), due to the separation of the two
variables, requires the expression of Ez for the TMnm modes in the metallic cylindrical
waveguide fully filled with LMF. The expression of the longitudinal electric field can be
written as follows

E(e)
z = E0cos(nθ)Jn

(
K(e)

c f r
)

ej(ωt−k(e)z z) (39)

Equations (33)–(36) become

E(e)
r =

−E0kz

K2
c

{
jK2

cμK(e)
c f cos(nθ)J′n

(
K(e)

c f r
)
+F

n
r

sin(nθ)Jn

(
K(e)

c f r
)}

(40)

E(e)
θ =

E0kz

K2
c

{
−FK(e)

c f cos(nθ)J′n
(

K(e)
c f r

)
+jK(2)

cμ
n
r

sin(nθ)Jn

(
K(e)

c f r
)}

(41)

H(e)
r =

ωε0εr f E0

K2
c

{
FK(e)

c f cos(nθ)J′n
(

K(e)
c f r

)
−jK2

cμ
n
r

sin(nθ)Jn

(
K(e)

c f r
)}

(42)

H(e)
θ =

−ωε0εr f E0

K2
c

{
jK2

cμK(e)
c f cos(nθ)J′n

(
K(e)

c f r
)
+F

n
r

sin(nθ)Jn

(
K(e)

c f r
)}

(43)

The boundary conditions give the following equation

Jn(unm) = 0 (44)

with
unm = K(e)

c f .R (45)

In Equation (45), unm represents the mth zero (m = 1, 2, 3, . . . ) of the Bessel function
Jn of the first kind of order n. The determination of constant E0 is done by normalizing
the power PTM that crosses the cross-section of the guide, which is in our case a disc of
radius R.

PTM =

R∫
0

2π∫
0

(
E(e)

r H∗(e)
θ − E(e)

θ H∗(e)
r

)
rdrdθ = 1 (46)
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Equation (46) gives

E0 =
1√

ωε0εr f kz

K2
c√

K4
cμ + F2

N(e)
nm (47)

with
N(e)

nm =
1

unm.J′n(unm).
√

σn
2

(48)

Finally, the propagation constant in the TM mode is given by

k4
z +

(
−2ω2ε0μ0εr f μ +

( unm
R

)2
)

k2
z cos−1 θ

+ω2ε0μ0εr f

[
ω2ε0μ0εr f

(
μ2 − κ2)− μ

( unm
R

)2
]
= 0.

(49)

Obviously, the cutoff frequency is written

f (TM)
c.nm =

c
2π

1√
μre f f εr f

.
(unm

R

)
(50)

with

μre f f =
μ2 − κ2

μ
(51)

μre f f is the effective permeability.
If the magnetization 4πM decreases, μre f f increases. Consequently, the cutoff fre-

quency f (TM)
c.nm in the TE modes decreases. We can externally control the cut-off frequency

through the application of DC magnetic fields.

3. Analysis of Uni-Axial Discontinuities in the Cylindrical Waveguides

In this section, we describe how the use of MM can be extended to characterize
uni-axial discontinuities between metallic cylindrical waveguides filled with the studied
medium (LMF). The discontinuities were considered without losses. This method was
based on the modal development of the transverse electromagnetic fields.

Figure 2 shows a junction between two cylindrical waveguides filled with two different
media with the same cross-sections, where ai and bi are the incident and the reflected waves,
respectively.

Figure 2. A junction between two cylindrical waveguides filled with two different media with the
same cross-sections.
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The transverse electric and magnetic fields (ET , HT) in the waveguides can be written
in the modal bases as follows [16,17].

ET =
∞

∑
m=1

Ai
m

(
ai

m + bi
m

)
ei

m (52)

HT =
∞

∑
m=1

Bi
m

(
ai

m − bi
m

)
hi

m (53)

where ET and HT are the transverse electric and magnetic fields (the sub-index T refers to
the components in the transverse plane) and Ai

m and Bi
m are complex coefficients which

are determined by normalizing the power flow down the cylindrical guides (i = I, I I and
m is the index of the mode). ei

m and hi
m represent the mth electric and magnetic modal

eigenfunction in the guide i, respectively.
At the junction, the continuity of the fields makes it possible to write the following

equations:
EI

T = EII
T (54)

HI
T = HII

T (55)

By inserting Equations (52) and (53) into Equations (54) and (55), we obtain:

N1

∑
m=1

AI
m

(
aI

m + bI
m

)
eI

m =
N2

∑
p=1

AII
p

(
aII

p + bII
p

)
eI I

p (56)

N1

∑
m=1

BI
m

(
aI

m − bI
m

)
hI

m =
N2

∑
p=1

BII
p

(
−aII

p + bII
p

)
hII

p (57)

N1 and N2 are the numbers of considered modes in guides 1 and 2, respectively. By
applying Galerkin’s method, Equations (56) and (57) lead to the following systems:

N1

∑
m=1

AI
m

(
aI

m + bI
m

)〈
eI

m

∣∣∣eI I
p

〉
= AII

p

(
aII

p + bII
p

)
(58)

BI
m

(
aI

m − bI
m

)
=

N2

∑
p=1

BII
p

(
−aII

p + bII
p

)〈
hII

p

∣∣∣hI
m

〉
(59)

The inner product can be defined as:

〈em

∣∣∣ep

〉
=

∫
S

e∗mep dS (60)

Equations (58) and (59) give:

− aII
p +

N1

∑
m=1

AI
m

AII
p

aI
m

〈
eI

m

∣∣∣eI I
p

〉
= bII

p −
N1

∑
m=1

AI
m

AII
p

bI
m

〈
eI

m

∣∣∣eI I
p

〉
(61)

aI
m +

N2

∑
p=1

BII
p

BI
m

aII
p

〈
hII

p

∣∣∣hI
m

〉
= bI

m +
N2

∑
p=1

BII
p

BI
m

bII
p

〈
hII

p

∣∣∣hI
m

〉
(62)
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which can be written in matrix form:

[
U M1
M2 −U

]
⎡⎢⎢⎢⎢⎢⎢⎢⎣

aI
1
.

aI
N1

aII
1
.

aII
N2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

[
U M1

−M2 U

]
⎡⎢⎢⎢⎢⎢⎢⎢⎣

bI
1
.

bI
N1

bII
1
.

bII
N2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(63)

where U is the identity matrix. M1 and M2 (of dimensions (N1 × N2) and (N2 × N1)
respectively) are matrixes of the following general terms:

M1ij =
BII

j

BI
i

〈
hII

j

∣∣∣hI
i

〉
(64)

M2ij =
AI

i
AII

j

〈
eI

i

∣∣∣eI I
j

〉
(65)

The scattering matrix of the discontinuity is:

S =

[
U M1

−M2 U

]−1[ U M1
M2 −U

]
(66)

of dimensions ((N1 + N2)× (N1 + N2)).
In the numerical calculations we have to invert a complex matrix of dimensions equal

to the sum of the modes taken into account on each side of the discontinuity.
For a structure with multiple uni-axial discontinuities in cascade, the total matrix can

be obtained by separating the chaining of S matrixes of discontinuities with waveguides of
lengths equal to the distances between the discontinuities.

Figure 3 represents a double discontinuity. From the incident and reflected waves, we
can write the following equations( [

bI
1
][

bI
2
] )

= SI
( [

aI
1
][

aI
2
] )

(67)

( [
bII

1
][

bII
2
] )

= SII
( [

aII
1
][

aII
2
] )

(68)[
bI

1

]
= SI

11

[
aI

1

]
+ SI

12

[
aI

2

]
(69)[

bI
2

]
= SI

21

[
aI

1

]
+ SI

22

[
aI

2

]
(70)[

bII
1

]
= SII

11

[
aII

1

]
+ SII

12

[
aII

2

]
(71)[

bII
2

]
= SII

21

[
aII

1

]
+ SII

22

[
aII

2

]
(72)
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Figure 3. Cylindrical waveguide antenna filled with partially magnetized ferrite of width d with the same cross-section as
the other waveguides.

There are [
aI

2

]
= D

[
bII

2

]
(73)[

aII
2

]
= D

[
bI

2

]
(74)

with

D =

⎡⎣ e−γ1.d 0 0
0 . . . 0
0 0 e−γN .d

⎤⎦ (75)

γi is the propagation constant of the ith mode of the central guide and N is the number
of modes in the same guide.

Using Equations (73) and (74), we get[
bI

1

]
= SI

11

[
aI

1

]
+ SI

12D
[
bII

2

]
(76)[

bII
1

]
= SII

11

[
aII

1

]
+ SII

12D
[
bI

2

]
(77)[

bI
2

]
= SI

21

[
aI

1

]
+ SI

22D
[
bII

2

]
(78)[

bII
2

]
= SII

21

[
aII

1

]
+ SII

22D
[
bI

2

]
(79)

Equation (79), in using Equation (78), becomes[
bII

2

]
= SII

21

[
aII

1

]
+ SII

22DSI
21

[
aI

1

]
+ SII

22DSI
22D

[
bII

2

]
(80)

We put

E =
[
U − SII

22DSI
22D

]−1
(81)

U is the identity matrix. As a result[
bII

2

]
= ESII

22DSI
21

[
aI

1

]
+ ESII

21

[
aII

1

]
(82)

[
bI

1
]

=
[
SI

11 + SI
12DESII

22DSI
21
][

aI
1
]

+
[
SI

12DESII
21
][

aII
1
] (83)
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[
bII

1
]

= SI
12D

[
U + SI

22DESII
22D

]
SI

21
[
aI

1
]

+
[
SII

11 + SII
12DSI

22DESII
21
][

aII
1
]
.

(84)

The matrix S of the double discontinuity is given by

S =

[
SI

11 + SI
12DESII

22DSI
21 SI

12DESII
21

SI
12D

[
U + SI

22DESII
22D

]
SI

21 SII
11 + SII

12DSI
22DESII

21

]
(85)

Thus, the matrix S of several discontinuities in cascade can be determined from
Equation (85) by chaining two matrixes Si to two other matrixes.

This classic formulation allowed us to analyze several microwave devices [18–20].

4. Numerical Results and Discussion

4.1. Propagation Modes

Consider TE mode waves in a metallic cylindrical waveguide of radius R = 13.4 mm,
fully filled with LMF (see Figure 1) with a partial magnetization 4πM. The waveguide
has a resonant frequency of 6.57 GHz for the fundamental mode if it is empty. For the
case of ferrite magnetized longitudinally with M

MS
= 0.8, 4πMS = 750 G and a permittivity

εr f = 11.3 (ferrite TT1-414 from Trans-Tech), the resonant frequency is f TE
c.11 = 3 GHz for the

TE11 mode. When the ferrite is demagnetized, the resonant frequency is f TE
c.11 = 1.96 GHz.

Figure 4 represents calculated curves of the propagation constant for the first three TE
modes in the frequency range 1–8 GHz and for the cases where the ferrite is magnetized
with M

MS
= 0.8 or demagnetized. All modes propagate. The propagation constant decreases

when the magnetization increases.

Figure 4. Curves of the propagation constant kTE
z for the first three transverse electric (TE) modes

of the cylindrical waveguide completely filled with LMF. _____: case for a demagnetized ferrite.
_._._._._.: case for M

MS
= 0.8.

In Figure 5, the cutoff frequencies of the lowest TE modes are shown as M
MS

increases
from 0 to 0.99. It can be seen that the cutoff frequencies of the TE modes monotonically de-
crease as M

MS
decreases. We can notice the same behavior for the TM modes. The numerical

results show that the cutoff frequencies can be controlled by external magnetization.
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Figure 5. The cutoff frequencies for the first three TE modes vs. M
MS

.

4.2. Ferrite Antenna Design

In this section, we describe how the use of MM can be extended to characterize uni-
axial discontinuities between cylindrical waveguides filled with the studied media. The
discontinuities were considered without losses. This method was based on the modal
development of the transverse electromagnetic fields.

We considered two discontinuities (see Figure 3) constituted by juxtaposing three
cylindrical waveguides with the same dimensions (R = 13.4 mm). The central waveguide
of width d = 5 mm was filled by LMF, as was studied in the previous section. The other
guides were empty.

Figure 6 represents the reflection coefficient as a function of the frequency using our
approach and HFSS. For the modal method, we used eight modes in the whole circuit.
We note that both simulations were in perfect agreement. However, our method was
significantly faster than HFSS (7.12 s vs. 9.43 min) because it is a modal method. Thus, by
using our approach, it is easy to design antenna according to given specifications.

Figure 6. Reflection coefficient of circular waveguide antenna in Figure 3.

The magnetization of the ferrite using an external control can be achieved by en-
veloping the waveguide with Helmholtz coils and connecting them to a variable voltage
generator. Each voltage corresponds to a constant magnetic field applied to the ferrite
longitudinally that creates the magnetization of this medium. Our interest in this study
was in the tuning of the operating frequency of the antenna.

Figure 7 represents the results of the simulation of the radiation pattern and the gain
of antenna with HFSS for various values of magnetized ferrite at the resonance frequency.
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For demagnetized ferrite the gain and resonance frequency of this antenna are 8.93 dB and
9.2 GHz, respectively. It is the geometric discontinuity between the empty cylinder and
the free air which radiates. However, the physical discontinuities between the guides and
between the materials (ferrite–air) have an effect on the radiation of the antenna. The gain
of the antenna depends on the electrical and magnetic characteristics of the ferrite medium.

(a) Frequency = 9.2 GHz and M = 0xMs (b) Frequency = 9.3 GHz and M = 0.2xMs

(c) Frequency = 9.6 GHz and M = 0.5xMs (d) Frequency = 10.1 GHz and M = 0.8xMs(d)

Figure 7. Radiation pattern and gain of antenna for various values of magnetized ferrite at the resonant frequency.

When the magnetization increases, the gain and the resonant frequency increase. At a
magnetization equaling 0.8 Ms, the gain reaches 9.62 dB and the resonant frequency passes
to 10.1 GHz.

If magnetization M increases, then the cutoff increases due to the decrease in inter-
modal interference. So, the gain increases.

We can externally control the resonant frequency with the tensor permeability, which
is a function of the magnetization of ferrite. The resonant frequency increases with an
increase of the magnetization. The antenna has become multiband.

5. Conclusions

A rigorous TE and TM modes analysis of cylindrical waveguides completely filled with
longitudinally magnetized ferrite was developed in this study. It was demonstrated that the
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electromagnetic characteristics of the waveguide are closely dependent on magnetization.
The curves of the dispersion diagram of the fundamental mode and the first two higher
order modes of the ferrite waveguide were obtained. The cutoff frequencies could be
controlled by external magnetization. These results for the propagation constant can
be used in the design of cylindrical ferrite waveguide antennas. Our results were in
good agreement with the theoretical prediction. Moreover, in this paper, we applied
the mode matching technique to analyze multiple uni-axial discontinuities in metallic
cylindrical waveguides filled with anisotropic materials. The results of the simulations of
the cylindrical waveguides antenna filled with partially magnetized ferrite using the mode
matching technique and those obtained with HFSS were in perfect agreement. However,
our method was noticeably faster. The proposed formulation is a useful tool for microwave
engineers.
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Abstract: An analysis of multiple scattering by two Perfect Electric Conducting (PEC) spheres using
translation Addition Theorem (AT) for spherical vector wave functions is presented. Specifically,
the Cruzan formalism is used to represent the AT for spherical harmonics, which introduces the
translation coefficients for transformation of spherical harmonics from one coordinate to another.
The adoption of these coefficients with the use of two PEC spheres in a near zone region makes the
calculation of multiple scattering electric fields very efficient. As an illustration, the mathematical
formation using advanced computational approaches was inspected. Then, the generic truncation
criteria in the scattered electric field by two PEC spheres was deeply investigated using translation AT.
However, the numerical validation was obtained using Comsol simulation software. This approach
will allow to evaluate the scattering from macro-structures composed of spherical particles, i.e.,
biological molecules, clouds of airborne particles, etc. An original and fully general solution to
the problem using vector quantities is introduced, and the convergence of the solution in several
numerical examples is also demonstrated. This approach takes into account the effect of multiple
scattering by two PEC spheres for spherical vector function.

Keywords: scattering; translation addition theorem; Mie theory

1. Introduction

The problem of multiple scattering by closely spaced objects has a wide range of engi-
neering applications, including electromagnetic (EM) wave transmission by rain [1], scatter-
ing by complex bodies [2–5], scanning of buried objects [6,7], biological cell detection [8,9],
radar and remote sensing applications in biomedical diagnostics, etc. [10,11]. The resolu-
tion of multiple scattering problems by PEC spheres allows an analytic treatment and a
better physical interpretation into the scattering mechanism for novel applications [12,13].

The problem of scattering from two identical spheres with small radii was formu-
lated by Liang and Lo [14]. The translation AT for vector spherical wave functions as
multipole expansion was used to express the derived solution of EM fields distributed
by spheres. Later on, Olaofe [15] described the multiple scattering by an unequal and
parallel circular cylinders. An overview of previous research projects on multiple scattering
problems showed that a theoretical investigation of the effects of inter-particle coupling
on morphology-dependent resonances of spheres was examined by Fuller [16]. Lo and
Bruning determined the new recursion relationship for the calculations of the multiple
scattering of EM waves by two arbitrary spheres, reducing the difficulty of the computa-
tional quantitative analysis in scattering problems [17]. Further, Wang and Chew derived
the recursive approach (T-matrix algorithm), which is used for the formation of multiple
scattering fields by several spheres. This method is suitable for the calculation of the vector
AT and valid for Monte Carlo simulation for many diagnostic applications [18].
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In 1954, Friedman and Russek proposed the calculation of AT for spherical scalar
wave functions [19]. Cruzen and Stein also developed the AT for spherical harmonics,
fitting it for the appropriate solution of multiple scattering by spheres [20,21]. More
recently, a further improvement was introduced by Mackowski with the superposition
solution method for multiple spheres scattering problems [22]. Xu illustrated the multiple
scattering by aggregate spheres, and interpreted the detail of the fast evaluation of Gaunt
coefficients [23]. The vector translation AT for spherical harmonics was first formulated
by Xu for an analytical solution of multiple scattering problems. Then, the computational
difference between the three vital types of analytical expressions was determined for the
vector translation coefficients: Stein’s [20], Cruzan’s [21], and Xu’s [24]. Moreover, Xu
presented the necessary recursive approaches to exactly calculating the Gaunt coefficients
using Wigner 3-j [25].

Recently, Batool et al. specified a brief outline of the multiple scattering by a PEC
sphere using translation AT for spherical harmonics [26]. Additionally, the effect of trun-
cation error on its convergence behavior in AT for spherical harmonics was deduced [27].
As is known, some researchers reported the truncation error and its convergence in Mie
theory [28]. It was observed that the most popular Wiscombe’s criterion was not sufficient
to overcome the truncation error of translation AT for spherical vector functions [29].

In the current manuscript, the multiple scattering analysis using two PEC spheres
was studied. The Cruzen formula for the translation addition coefficients based on Wigner
3-j was selected. Then, the scattering electric field using AT for spherical harmonics
was derived and the mathematical formation using numerical simulation approach was
computed. During our numerical investigation, the truncation error and its convergence
were observed to vary with respect to the frequency. The study offers an examination of
the impact of finite terms on the truncation error of AT related to spherical vector wave
function. The truncation effect forces the numerical results of spherical harmonics to vary,
as common for the most truncation criteria used. Currently, the most used truncation
criterion in the literature is the one proposed by Wiscombe more than 40 years ago. This
criterion allows to accurately choose the truncation of the series in order to express an
electric field in the presence of a single scatterer. On the other hand, it does not take into
consideration more complex scenarios, as in the case of two or more scatterers. In this
scenario, the field must be expressed in spherical vector wave functions translated on the
center of a reference system of each other sphere. This translation is reached by exploiting
the AT, which in turn is obtained by a superposition of vector spherical functions that must
obey an appropriate truncation criterion. As a consequence of the numerical simulation
results, the translation of both spheres along z-axis and the observed scattering pattern
by varying frequency and radii of the spheres were presented. Comsol (Multiphysics
5.4) simulation software for the validation of the numerical results was used and the best
comparison between Matlab and Comsol results was also retrieved.

2. Formation of the Problem

Two PEC spheres with radii a and c with respect to the center at the origins O and
O′ of two different coordinates systems are taken under consideration. The sphere with
O as origin is characterized by a spherical coordinates system (r, θ, φ), while (r′, θ′, φ′)
characterizes the sphere with origin O′. The distance between the centers of spheres along
z-axis is δ as shown in Figure 1. Let us study a horizontal elliptically polarized plane wave
that propagates along a certain direction of the three dimensions cartesian coordinates
system. The plane wave can be written as [30,31]:

Ei(r) = epol exp(ikir) =
(
Eθθ+ Eφφ

)
exp(ikir) (1)
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with

ki = k1(sin θi cos φix0 + sin θi sin φiy0 + cos θiz0) (2)

θ0i = (cos θi cos φix0 + cos θi sin φiy0 − sin θiz0) (3)

φ0i = − sin φix0 + cos φiy0 (4)

Then, the incident electric field in terms of spherical harmonics can be written
as [30,31]:

Ei(r) =
+∞

∑
ν=1

ν

∑
μ=−ν

[
aμνM

(1)
μν (r) + bμνN

(1)
μν (r)

]
(5)

Vector spherical harmonics M
(1)
μν and N

(1)
μν is [30,31]:

M
(1)
μν = exp(iμφ)jν(kr)

[
iμ

Pμ
ν (cos θ)

sin θ
θ0 − ∂Pμ

ν (cos θ)

∂θ
φ0

]
(6)

N
(1)
μν = exp(iμφ)

jν(kr)
kr

ν(ν + 1)Pμ
ν (cos θ)r0+ (7)[

∂Pμ
ν (cos θ)

∂θ
θ0 + i

μPμ
ν (cos θ)

sin θ
φ0

]
exp(iμφ)

1
kr

∂

∂r
[rjν(kr)]

considering

π
μ
ν (cos θ) = μ

Pμ
ν (cos θ)

sin θ
(8)

τ
μ
ν (cos θ) =

∂Pμ
ν (cos θ)

∂θ
(9)

The vector spherical harmonics expressions can be simplified as follows:

M
(1)
μν = exp(iμφ)jν(kr)

[
iπμ

ν (cos θ)θ0 − τ
μ
ν (cos φ)φ0

]
(10)

N
(1)
μν = exp(iμφ)

jν(kr)
kr

ν(ν + 1)Pμ
ν (cos θ)r0+ (11)[

τ
μ
ν (cos θ)θ0 + iπμ

ν (cos φ)φ0

]
exp(iμφ)

1
kr

∂

∂r
[rjν(kr)]

Now, let us consider modified spherical vector functions characterized by an angles θ
and φ. The following expressions are obtained replacing the spherical vector function with
the tesseral function:

mμν = exp(iμφ)
[
iπμ

ν (cos θ)θ0 − τ
μ
ν (cos θ)φ0

]
(12)

nμν = exp(iμφ)
[
τ

μ
ν (cos θ)θ0 + iπμ

ν (cos θ)φ0

]
(13)

pμν = exp(iμφ)ν(ν + 1)Pμ
ν (cos θ)r0 (14)

By above-simplified Equations (10) and (11), we achieve:

M
(1)
μν = jν(kr)mμν (15)

N
(1)
μν =

jν(kr)
kr

pμν +
1
kr

∂

∂r
[rjν(kr)]nμν (16)
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The features of orthogonality properties are used for vector spherical harmonics,
which implies that the coefficients can be expressed in a modified form:

aμν = iν
(2ν + 1)(ν − μ)!
ν(ν + 1)(ν + μ)!

epol · m∗
μν(θt, φt) (17)

bμν = iν−1 (2ν + 1)(ν − μ)!
ν(ν + 1)(ν + μ)!

epol · n∗
μν(θt, φt) (18)

The elliptically polarized incident field for a sphere may once be written as:

Ei(r, θ, φ) =
+∞

∑
ν=1

ν

∑
μ=−ν

[
aμνM

(1)
μν (r, θ, φ) + bμνN

(1)
μν (r, θ, φ)

]
(19)

with

aμν = iν
(2ν + 1)(ν − μ)!
ν(ν + 1)(ν + μ)

exp (−iμφi)
[
− iEθi π

μ
ν (cos θi)− Eφi τ

μ
ν (cos θi)

]
(20)

bμν = iν−1 (2ν + 1)(ν − μ)!
ν(ν + 1)(ν + μ)

exp (−iμφi)
[
− iEθi τ

μ
ν (cos θi)− Eφi π

μ
ν (cos θi)

]
(21)

Figure 1. Geometry of the two PEC spheres exercising translation of the spheres along-z-axis using
translation AT.

2.1. Expansion of Incident Plane Wave

The incident electric field is expanded into multipole fields series around the origins
O and O′ of the spherical coordinates systems (r, θ, φ) and (r′, θ′, φ′). Thus, the incident
plane wave using multipole coefficients expansion may be written as follows, since the
radial vector r = r′ + δ = exp(−ik1r′) exp(−ik1δ cos α) [14].

Ei(r′, θ′, φ′) =
+∞

∑
ν=1

ν

∑
μ=−ν

[
a∗μνM

(1)
μν (r′, θ′, φ′) + b∗μνN

(1)
μν (r′, θ′, φ′)

]
(22)

where

a∗μν = exp(−ik1δ cos α)aμν (23)

b∗μν = exp(−ik1δ cos α)bμν (24)
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2.2. Scattered Field by Two Conducting Sphere

Scattered field by two PEC spheres may be represented with EI
s and EI I

s , respectively.
In this problem, the total electric field is described by the incident and scattered electric
fields, and it is expressed as follows:

Etotal = Ei + EI
s + EI I

s (25)

where

EI
s(r, θ, φ) =

+∞

∑
ν=1

ν

∑
μ=−ν

[
eμνM

(3)
μν (r, θ, φ) + fμνN

(3)
μν (r, θ, φ)

]
(26)

EI I
s (r

′
, θ

′
, φ

′
) =

+∞

∑
ν=1

ν

∑
μ=−ν

[
gμνM

(3)
μν (r

′
, θ

′
, φ

′
) + hμνN

(3)
μν (r

′
, θ

′
, φ

′
)
]

(27)

2.3. AT for Translation of the Vector Spherical Harmonics

The translation AT for spherical vector wave equations depends on the relative schism
in a spherical coordinates system using different origin O and O′. The following expres-
sions are used to express the translation of lth coordinates system (r, θ, φ) to jth (r′, θ′, φ′)
coordinates system.

M
(3)
μν (l) =

∞

∑
n=1

n

∑
m=−n

Aμν
mn(l, j)M(1)

mn(j) + Bμν
mn(l, j)N(1)

mn(j) (28)

N
(3)
μν (l) =

∞

∑
n=1

n

∑
m=−n

Bμν
mn(l, j)M(1)

mn(j) + Aμν
mn(l, j)N(1)

mn(j) (29)

Then, translation of a jth coordinates system (r′, θ′, φ′) to lth coordinates system
(r, θ, φ) at translation distance δ may be formulated as:

M
(3)
μν (j) =

∞

∑
n=1

n

∑
m=−n

Cμν
mn(j, l)M(1)

mn(l) + Dμν
mn(j, l)N(1)

mn(l) (30)

N
(3)
μν (j) =

∞

∑
n=1

n

∑
m=−n

Dμν
mn(j, l)M(1)

mn(l) + Cμν
mn(j, l)N(1)

mn(l) (31)

2.4. Formation of Vector Translation Coefficients

EM field in terms of translation is illustrated by an infinite sum with respect to a
coordinate system with a different reference. Therefore, Cruzan’s mathematical derivations
for Al,j

mnμν and Bl,j
mnμν coefficients can be written in a simplified form [21]:

Al,j
mnμν = (−1)−m (2ν + 1)(n + m)!(ν − μ)!

2n(n + 1)(n − m)!(ν + μ)!
exp[i(μ − m)φl j]

×
qmax

∑
q=0

ip[n(n + 1) + ν(ν + 1)− p(p + 1)]aq

×h(1)p (kd)Pμ−m
p (cos θ)

(32)

The following expressions are reached:

Al,j
mnμν = (−1)−mζ(m, n, μ, ν)

qmax

∑
q=0

h(1)p (kr) (33)

Cl,j
mnμν = (−1)−mζ∗(m, n, μ, ν)

qmax

∑
q=0

h(1)p (kr) (34)
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where

ζ(m, n, μ, ν) =
(2ν + 1)(n + m)!(ν − μ)!

2n(n + 1)(n − m)!(ν + μ)!
exp[i(μ − m)φl j]

×
qmax

∑
q=0

ip[n(n + 1) + ν(ν + 1)− p(p + 1)]aq Pμ−m
p (cos θl j)

and

Bl,j
mnμν = (−1)−m+1 (2ν + 1)(n + m)!(ν − μ)!

2n(n + 1)(n − m)!(ν + μ)!
exp[i(μ − m)φl j]

×
Qmax

∑
q=1

ip+1{[(p + 1)2 − (n − ν)2][(n + ν + 1)2 − (p + 1)2]} 1
2

×b(−m, n, μ, ν, p + 1, p)h(1)p+1(kr)Pμ−m
p+1 (cos θ)

(35)

Similarly

Bl,j
mnμν = (−1)−m+1ξ(m, n, μ, ν)

qmax

∑
q=0

h(1)p+1(kr) (36)

Dl,j
mnμν = (−1)−m+1ξ∗(m, n, μ, ν)

qmax

∑
q=0

h(1)p+1(kr) (37)

where

ξ(m, n, μ, ν) =
(2ν + 1)(n + m)!(ν − μ)!

2n(n + 1)(n − m)!(ν + μ)!
exp[i(μ − m)φl j]

×
Qmax

∑
q=1

ip+1{[(p + 1)2 − (n − ν)2][(n + ν + 1)2 − (p + 1)2]} 1
2

× b(−m, n, μ, ν, p + 1, p)Pμ−m
p+1 (cos θl j)

(38)

Similarly, Cj,l
mnμν and Dj,l

mnμν coefficients are obtained by taking the complex conjugate

of ξ(m, n, μ, ν) and ζ(m, n, μ, ν) from Aj,l
mnμν and Bj,l

mnμν. Here, k is the propagation constant,
aq = a(−m, n, μ, ν, p), q = 1, 2, . . . , qmax, p = n + ν − 2q and

qmax = min
(

n, ν,
n + ν − |m + μ|

2

)
(39)

Gaunt coefficients have been described in the literature [24], the total electric field for
the lth coordinates system (r, θ, φ) may be explicitly written as:

Etotal(l) =
+∞

∑
ν=1

ν

∑
μ=−ν

aμνM
(1)
μν (l) + bμνN

(1)
μν (l) + eμνM

(3)
μν (l) + fμνN

(3)
μν (l)

+
+∞

∑
ν=1

ν

∑
μ=−ν

∞

∑
n=1

n

∑
m=−n

gμν

{
Aμν

mn(l, j)M(1)
mn(l) + Bμν

mn(l, j)N(1)
mn(l)

}
+

hμν

{
Bμν

mn(l, j)M(1)
mn(l) + Aμν

mn(l, j)N(1)
mn(l)

}
(40)
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Similarly, the total electric field for the jth coordinates system (r′, θ′, φ′) may be written
as:

Etotal(j) =
+∞

∑
ν=1

ν

∑
μ=−ν

a∗μνM
(1)
μν (j) + b∗μνN

(1)
μν (j) + gμνM

(3)
μν (j) + hμνN

(3)
μν (j)

+
+∞

∑
ν=1

ν

∑
μ=−ν

∞

∑
n=1

n

∑
m=−n

eμν

{
Cμν

mn(j, l)M(1)
mn(j) + Dμν

mn(j, l)N(1)
mn(j)

}
+

fμν

{
Dμν

mn(j, l)M(1)
mn(j) + Cμν

mn(j, l)N(1)
mn(j)

}
(41)

Applying the boundary condition, the tangential component of the electric field must
continue on the surface of spheres. Using the orthogonality properties, the simultaneous
linear equations can be expressed as:

eμν = Xn(a)

{
aμν +

(
gμν

∞

∑
n=1

n

∑
m=−n

Aμν
mn + hμν

∞

∑
n=1

n

∑
m=−n

Bμν
mn

)}
(42)

fμν = Yn(a)

{
bμν +

(
gμν

∞

∑
n=1

n

∑
m=−n

Bμν
mn + hμν

∞

∑
n=1

n

∑
m=−n

Aμν
mn

)}
(43)

gμν = Xn(c)

{
a∗μν +

(
eμν

∞

∑
n=1

n

∑
m=−n

Cμν
mn + fμν

∞

∑
n=1

n

∑
m=−n

Dμν
mn

)}
(44)

hμν = Yn(c)

{
b∗μν +

(
eμν

∞

∑
n=1

n

∑
m=−n

Dμν
mn + fμν

∞

∑
n=1

n

∑
m=−n

Cμν
mn

)}
(45)

where

X(r0) = − jν(kr)

h(1)ν (kr)
|r=r0 (46)

Y(r0) = − j
′
ν(kr)

h
′(1)
ν (kr)

|r=r0 (47)

After solving the linear equations, all coefficients eμν, fμν, gμν, hμν can be obtained,
thanks to which it is easily possible to determine scattering, extinction, and absorption
cross-section [32]. As a result of the above derivations and the use of Equations (28) and
(29), the scattered field can be achieved:

Es(l) =
∞

∑
ν=1

ν

∑
μ=−ν

[
eμν

∞

∑
n=1

n

∑
m=−n

{
Aμν

mn(l, j)M(3)
mn(j) + Bμν

mn(l, j)N(3)
mn(j)

}
+ fμν

∞

∑
n=1

n

∑
m=−n

{
Bμν

mn(l, j)M(3)
mn(j) + Aμν

mn(l, j)N(3)
mn(j)

}] (48)

3. Numerical Results

This paper introduces the numerical results of multiple scattering by two PEC spheres.
The validity of the present mathematical formalism has been investigated by multi-
paradigm programming language (Matlab) and simulation software (Comsol Multiphysics
5.4). The proposed method efficiency has been analyzed by comparison of Matlab and
Comsol numerical results. This article is dedicated to a scattering theory using transla-
tion AT for spherical harmonic functions. Specifically, the calculation of the translation
coefficients for two PEC spheres and the numerical outcomes of the scattered electric field
between two PEC spheres in the near zone region are discussed. Therefore, Equation (48)
was used for numerical simulation using a Matlab code.
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3.1. Validation Test for Two PEC Spheres at Zero Translation Distance

In the first numerical test, the translation distance between two PEC spheres is zero.
This means that the problem of two PEC spheres is reduced into a problem with a single PEC
sphere. Then, the single PEC sphere present in a free space is investigated to demonstrate
the validity of numerical simulations. For a single PEC sphere, the scattering coefficients
eμν and fμν can be obtained by using the solution of two linear equations. As a result
of the above calculations gμν = 0 and hμν = 0, and the use of Equations (42) and (43),
the scattered coefficients can be achieved:

eμν = Xn(a)aμν (49)

fμν = Yn(a)bμν (50)

It occurs when the origin of the lth and jth coordinates system are overlapped (i.e., no
translation is involved). m = μ, n = ν, Aμν

mn ≡ 1, Bμν
mn ≡ 0, and m = μ, n = ν, Aμν

mn ≡ 0,
and Bμν

mn ≡ 0. From the previous conditions, the following expressions are obtained
M

(3)
μν (l) ≡ M

(3)
μν (j), N

(3)
μν (l) ≡ N

(3)
μν (j). Consequently, the scattered field by using the above

Equations (49) and (50) may be written as:

Es(l) =
∞

∑
ν=1

ν

∑
μ=−ν

[
eμνM

(3)
μν (l) + fμνN

(3)
μν (l)

]
(51)

For this purpose, the following parameters are selected: radius of the sphere a = 0.1 m,
frequency f = 0.3 GHz, angles of incident θi = 0 rad, and φi = 1 rad. Considering the
position of cartesian coordinates system with center xr = yr = zr = 0 and center of the
sphere xq = 0, yq = 0, zq = 0, the field was measured along the line segment with double
of length for the radius of the sphere lying parallel along x-axis, which is placed at hight
z = 0.3 m, y = 0. The numerical results (Matlab code) are comparable with the simulation
results (COMSOL Multiphysics 5.4) as shown in Figure 2.

Figure 2. Real part (left) and imaginary part (right) of the scattered electric field by a PEC sphere
present in free space. Matlab results (blue color dot lines) are super-imposed on Comsol results (red
marker color lines). Here, selected parameters are frequency f = 0.3 GHz, radius a = c = 0.1 m.

Further, the scattering behavior with translation of both PEC spheres at different trans-
lation distance was investigated. The plots for the scattering electric field are analyzed at
three different range of frequencies: 3 MHz, 0.3 GHz, and 3 GHz, respectively. The derived
mathematical formalism reveals the response of the truncation error for translation AT
of spherical harmonics. It is observed that for lower frequency, the numerical results of
the Matlab code presents the optimized convergence at lower truncation sum N, whereas
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the higher the frequency, the higher the value of truncation sum N for the numerical results
of the Matlab code.

3.2. Case 1: f = 3 MHz

In this section, the numerical results of scattered electric fields have been investigated
at a frequency f = 3 MHz. Let suppose that the PEC spheres I, II were translated along
z-axis at z = 0.3 m and z = −0.3 m, respectively. The position of the field measuring line
can be defined as: the line segment to double the radius of sphere that lies parallel along
x-axis; that is placed at height z = 0.1 m, y = 0. For the analysis of the scattering field
pattern, the following parameters have been chosen: radius of spheres I, II a = c = 0.1 m,
angles of incident θi = 0 rad, and φi = 1 rad. The best comparison between Matlab code
and Comsol simulation results are illustrated in Figure 3. The numerical results show that
the real part of scattering fields for Ex and Ez components has a larger amplitude compared
to the imaginary part of the same Ex and Ez. The component of electric field Ey is equal to
zero for both real and imaginary cases.

Figure 3. Real part (left) and imaginary part (right) of the scattered electric field by two PEC spheres.
In particular, Matlab results (blue color dot lines) are perfectly superimposed on Comsol results (red
marker color lines). Sphere I and sphere II are translated at 0.3 m and −0.3 m along z-axis, and the
selected frequency is f = 3 MHz.

Figure 4 presents the translation of both PEC spheres I, II translated along z-axis at
z = 0.5 m and z = −0.5 m. The position of the field measuring line is translated at hight
z = 0.2 m. The observed numerical results at a lower values of truncation sum at N = 5
Matlab code show the perfect matching with Comsol results.

3.3. Case 2: f = 0.3 GHz

The numerical results of scattered electric fields have been inspected at a frequency
f = 0.3 GHz. The PEC spheres I, II have translated along z-axis at z = 0.5 m and z = −0.5 m.
The position of the field measuring line is translated along z-axis at z = 0.3 m. During our
numerical analysis, the chosen parameters were: radius of spheres I, II a = c = 0.1 m,
angles of incident θi = 0 rad, and φi = 1 rad. The best comparison between Matlab code and
Comsol simulation results are illustrated in Figure 5.
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Figure 4. Real part (left) and imaginary part (right) of the scattered electric field by two PEC spheres.
In particular, Matlab results (blue color dot lines) are perfectly super-imposed on Comsol results (red
marker color lines). Sphere I and sphere II are translated at 0.5 m and −0.5 m along z-axis, and the
selected frequency is f = 3 MHz.

Figure 5. Real part (left) and imaginary part (right) of the scattered electric field by two PEC spheres.
In particular, Matlab results (blue color dot lines) are perfectly super-imposed on Comsol results (red
marker color lines). Sphere I and sphere II are translated at 0.5 m and −0.5 m along z-axis, and the
selected frequency is f = 0.3 GHz.

The numerical results show that the real part of scattering fields for Ez components
has a higher amplitude compared to the imaginary part of the same Ez, while the real part
of scattering fields for Ex components has a smaller amplitude compared to the imaginary
part of the same Ex. The component of electric fields Ey is equal to zero for both real and
imaginary cases.

Figure 6 demonstrates the translation of both PEC spheres I, II along z-axis at z = 0.4 m
and z = −0.4 m. The position of the field measuring line is translated at a height z = 0.1 m.
The numerical results, for a lower value of truncation sum N = 4 Matlab code, show
fluctuations beyond the results obtained through Comsol. Increasing the truncation sum to
N = 37 Matlab code makes the numerical results perfectly match with Comsol.
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Figure 6. Real part (left) and imaginary part (right) of the scattered electric field by two PEC spheres.
The red color lines (Comsol results), blue and green lines (Matlab results) at different value of the
truncation sum N, sphere I, and sphere II are translated at 0.4 m and −0.4 m along z-axis, and the
selected frequency is f = 0.3 GHz.

3.4. Case 3: f = 3 GHz

The PEC spheres I, II were translated along z-axis at z = 0.08 m and z = −0.08 m.
The position of the field measuring line is translated along z-axis at z = 0.3 m. During our
numerical test, the following parameters have been chosen: radius of the spheres I, II
a = c = 0.05 m, angles of incident θi = 0 rad, φi = 1 rad, and f = 3 GHz. Figure 7
illustrates the numerical results for a lower value of truncation sum N = 5 Matlab code,
showing fluctuations across the Comsol results. Increasing the truncation sum to N = 40
in Matlab code makes the numerical results perfectly match with Comsol outcomes.

Figure 7. Real part (left) and imaginary part (right) of the scattered electric field by two PEC spheres.
The red color lines (Comsol results), blue and green lines (Matlab results) at different value of the
truncation sum N, sphere I and sphere II are translated at 0.08 m and −0.08 m along z-axis, and the
selected frequency is f = 3 GHz.
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4. Truncation Error Analysis of Scattered Electric Field Using Vector Translation AT

The criteria of truncating the inherent infinite series with a finite version of the same
to achieve convergence was developed. This leads to a little fluctuation compared to the
test of the scattered electric field by two PEC spheres using Comsol and Matlab simulation
software, as mentioned in Section 3. The error rate for the proposed approach due to the
value of truncation sum N is investigated in this section. Using Equation (49), the error
function for scattered electric field is defined as follows:

err =
‖En+1

s − En
s ‖

‖En
s ‖

n = 1, 2, 3 . . . (52)

where

‖En
s ‖ =

√√√√ N

∑
n=1

|En
s |2 (53)

The higher value of truncation number N in the scattered electric field can be employed
to tune the accuracy of the solution. Additionally, as the lower values of truncation sum N
the error level increases with the variation of frequency. When we increase the number of
terms to N ≥ 40 by using above input, the convergence results are depicted in Figure 8.
Finally, the criteria of truncation behavior related to translation AT reliant directly on
frequency was discovered. For higher frequency, the truncation sum N converges at a
higher numerical value for translation AT shown in Table 1. This methodology is useful
even for spheres as small r << λ and spheres as large r >> λ. The former solution is
very general and applicable to multiple PEC spheres. When sphere I is moving away from
sphere II, for both cases real and imaginary numerical results, a higher concentration of
scattering electric field pattern is shown. The improvement of our approach will provide a
new concept to researchers for developing the deep analysis of the light scattering problem
across general distributions of spheres.

Figure 8. Representation of the truncation variation sum N (left) and its convergence solution with
the variation of different frequency f = 3 M, f = 0.3 G, f = 3 G (right).

Table 1. Variation of truncation number N with respect to frequency.

# Frequency Size of a Sphere
Convergence of the Solution

(Truncation Number N)

1 3 MHz 0.1 m N = 5

1 0.3 GHz 0.1 m N = 37

2 3 GHz 0.05 m N = 40
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5. Conclusions

This paper presents and explores multiple scattering by two PEC spheres through
computer simulations. A method of translation AT for spherical vector wave equation
was introduced. To describe this problem, a Cruzan’s formalism for vector translation
coefficients was proposed. The scattering electric field by two PEC spheres in a near zone
region was calculated. The translation of spheres I, II along the z-axis was thought out
and resolved to understand the scattering behavior. The results of our calculations were
investigated using a numerical approach. The numerical results were compared with the
Comsol simulation models and both software results were found to be perfectly matched
one another, which gives a fairly good validation.

In summary, the work presented in this letter has investigated the finite truncation
sum N. The convergence of the solution is useful to determine the scattering efficiency
of a homogeneous spherical scatterer by a plane wave. From a practical point of view,
the proposed mathematical expressions are clearly useful to facilitate fast simulations of
light scattering phenomena. It should be noted that this truncation criterion applies to
homogeneous spheres, whereas other shapes result in their own scattering coefficients.

We aim to build on shared fundamentals, highlight the most pressing research chal-
lenges, and exchange state-of-the-art methodologies and approaches. This all-community
approach will promote solutions to those issues facing many practical applications in
complex media through the rigorous underpinning of mathematical techniques and the
development of effective computational methods.
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Abstract: In this paper, we develop a simple technique to identify material texture from far, by
using polarization-resolved imaging. Such a technique can be easily implemented into industrial
environments, where fast and cheap sensors are required. The technique has been applied to both
isotropic references (Teflon bar) and anisotropic samples (wood). By studying the radiance of the
samples illuminated by linearly polarized light, different and specific behaviours are identified for
both isotropic and anisotropic samples, in terms of multipolar emission and linear dichroism, from
which fibre orientation can be resolved.

Keywords: light polarization; polarimetry; polarized imaging; augmented reality; industrial sensing

1. Introduction

Most natural matter is composite, heterogeneous, made up of different materials,
present in several phases, and with properties and characteristics different from their bulk
equivalents. A composite is presented as a set of micro and nanostructures assembled
together: for example, the tissues of living beings, both animal and vegetable, are formed
by cells, fibres, membranes, layers, i.e., they are not made up of homogeneous substances
but by a set of small structures, aggregated together. Just think of the muscle or wood tissue,
both made up of fibres connected together that make it resistant and elastic. Technology has
taken an example from nature, engineering materials through the creation of composites in
order to create new ones with properties not found in nature. For example, you can think
about materials with glass or carbon fibres incorporated in resins or sheathed by adhesive
plastic films, in order to create bulks or tissues that are both light and extremely resistant at
the same time.

To visualize and characterize the micro- and nano-structuring of a composite, optical
microscopy techniques are used, which can be both simple and advanced, such as flu-
orescence [1] or nonlinear [2]. Microscopy directly observes the individual fibres (even
the etymology suggests a “vision at the micron scale”) and, through appropriate image
processing, characterizes the order of structuring of the samples studied. The propaga-
tion of light in biological tissues [3,4] has always attracted a lot of attention due to the
infinite implications that it can entail. For example, consider the possibility of recognizing
diseases [5–8] or discriminating similar tissues [9,10]. To study anisotropic materials, the
polarization of light is often used as a probe [4–18]: by using electromagnetic fields oscillat-
ing parallel or orthogonally to the dipoles of the material, it is also possible to obtain an
anisotropic diffusion according to the microscopic alignment of the material. Thus, through
the analysis of microscopic images taken using polarized light, it is possible to characterize
the morphology of different materials [11,16,17].
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By microellissometry [18], or through the study of Mueller matrices [19–25], it is
possible to measure the state of polarization of the light and obtain information on the
microscopic or nanoscopic order of the material. In fact, it has been widely documented
that both the propagation of light in nanostructured materials [26–29] and the Lambertian-
type emission from non-symmetrical nano-oscillators [30–34] maintain information on the
orientation and order of the material.

However, optical microscopy requires time and specific preparation of the samples,
which could result in handicaps in the industrial field where, otherwise, fast, econom-
ical techniques are required and that can work at great distances, even without special
preparation of the samples.

The fourth industrial revolution we are experiencing, known as Industry 4.0, sees a
propensity of today’s automation to insert new production procedures, aimed at improving
working conditions, creating new business models but above all at increasing the yield
of the plants by improving quality. of products. The evolution of industrial computer
applications passes through the use of innovative vision and recognition techniques, such
as machine learning and augmented reality. These require the support of new sensory
techniques, that is, the use of innovative electromagnetic measuring instruments, capable
of providing rapid and precise information remotely.

Thus, we asked ourselves whether it is possible to extract information from polarization-
resolved images shot at a distance with a simple camera or a video camera, in order to
discriminate and characterize the structuring of materials. For this purpose, we acquired
and processed images with polarization parallel and orthogonal to that of illumination,
highlighting how these are affected by the structuring of the material and its orientation
in space. In fact, by studying the polar distribution of the emission in terms of multipolar
contributions, up to the fourth order, it is possible to observe that isotropic materials as well
as anisotropic ones, with specific spatial orientations, show different optical behaviours.

Multipole analysis of light emission and scattering [35–37] has been effectively used
to study micro- and nanospheroid [38–40], acoustic scattering [41], or light scattered from
single biological cells [42]. This is an alternative procedure to the representation of Mueller
matrices [24,25], from which to immediately identify whether the material is isotropic or
anisotropic and possibly also its spatial orientation.

The present work studies two different types of material: Teflon, as an isotropic
reference, and wood, as an anisotropic material. Wood is a good material for optical
investigations, being formed by micro- and nano-fibrils [43] oriented along a privileged
direction; wood has already been studied by optical techniques in the past to identify
structural changes induced by mechanical stresses [44].

2. Materials and Methods

The experimental setup is schematically shown in Figure 1. A sample is homoge-
neously illuminated from the orthogonal direction (azimuthal angle = 0, polar angle = π/2)
by a collimated beam of linearly-polarized light, generated by a blue/violet LED.

The light color is chosen because the short wavelength (405 nm) gives higher sensitivity
in resolving texture nano-orientations.

Using an achromatic zoom (180×), a CCD camera (whose response linearity has been
previously verified) records the images of the sample at a great distance (about 2 m) and at
different azimuthal viewing angles θview (variable from 10◦ to 70◦ with 10◦ steps, at fixed
polar angle θpolar= π/2). At each viewing angle, the linear-polarization direction of the
illumination is rotated all over 360◦ (in steps of 10◦) and, for each orientation, two images
are taken of the parallel and orthogonal polarised light respectively (with respect to the
input one). As a reference, the 0◦ polarisation means TE on the sample (as well as 180◦ and
360◦), while 90◦ means TM (as well as 270◦).
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Figure 1. Experimental geometry. A sample is orthogonally illuminated by incoherent linearly-
polarized light. A camera records images of the sample surface at different azimuthal angles θview,
performing a selection of the observed light polarizations, both parallel and orthogonal to the
input one.

From the digitalised images, the average radiance is calculated for each viewing angle
over homogeneous areas of 200 × 200 pixels which correspond to roughly 2 mm2 on
the samples (with a signal depth of 8 bits). This particular geometry (average on a fixed
area of the image) was chosen to compensate for the angular dispersion of Lambertian
emitters. The emissivity of a Lambertian emitter is maximum in the orthogonal direction
(θpolar = π/2, θview = 0) and decreases moving away angularly from it, with a cosine type
trend. To compensate for this dependence, fixed image areas have been selected which
correspond to increasingly larger surfaces on the sample if θview is increased, with a
1/cosine trend. The reciprocal compensation leads to a “clean” observation of the emissivity,
formally independent of the angle. Figure 2 shows the average emissivity of a Teflon surface
(isotropic reference) illuminated with both TE (0◦) and TM (90◦) polarisations. As you can
see, the reported signals are not affected by the typical Lambertian angular dependence.

Figure 2. Observed average intensity of the Teflon radiance illuminating with TE (0◦) or TM polariza-
tions (90◦).

In order to have a good comparison between isotropic and structured materials, an
opaque white Teflon tablet and a wooden one were chosen respectively (Figure 3). The
latter is made of pine wood, obtained from the xylem with a radial cut. In this way, fibres
and fibrils constituting the wooden fabric are oriented parallel with respect to the surface.
According to the geometry shown in Figure 1, the wood sample was positioned with either
vertical (parallel to the polar direction) or horizontal fibres (i.e., in the equatorial plane). As
a consequence, vertical fibres were parallel to the electric field for the TE polarization (0◦),
while horizontal fibres were orthogonal to the electric field for the TM polarization (90◦).
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Figure 3. Wood and Teflon samples. The wood one shows the micro-structure of macroscopic fibres.

The polarisation-dependent emissivity diagrams have been numerically processed
in order to identify the origin of the signals and to discriminate those most sensitive to
the texture orientation. More specifically, the polarization-dependent trends have been
numerically processed by means of Fourier series fitting. For this purpose, the MatLab
“Curve Fitting Tool” package was used. Among all the infinite terms, we have used the first
four which correspond to the monopole (zero-order/constant term), dipole (first-order),
quadrupole (second-order), and octupole (fourth-order) emitters. The third term has been
fixed to zero during the fitting procedure because it has no physical meaning. The frequency
of the Fourier series was fixed at 2π/360 = 0.01745 rad/◦.

3. Results

In Figure 4, the polar distributions of the radiance emitted by the Teflon sample are
reported to vary the polarization plane of the lightning light. Each figure was recorded
at a different angle of observation, ranging from 10◦ to 70◦. The red curves in the figure
describe the radiant intensity with polarization parallel to the illumination, while the blue
ones represent the radiant intensity with orthogonal polarization. As you can see, towards
the orthogonal observation (see 10◦) the two curves tend to achieve similar circular shapes
(which should coincide for observation at 0◦ where the TE and TM polarisations coincide).
The orthogonal polarization (blue line) has a more flattened trend: this flattening increases
with the angle. The red curve is also flattened more by increasing the angle but in the other
direction. As you can be seen, although Teflon is an isotropic diffuser, the specific geometry
maintains an anisotropic behaviour due to the different TE and TM emissivities, which
depend on the emission angle too.

Figure 4. Polar distributions of Teflon radiances for polarizations parallel (red) and orthogonal
(blue) to the input one. Images report the measured radiances varying the observation azimuthal
angle θview.

The equivalent radiance of the unisotropic wood samples is shown in Figure 5 for the
two orientations of wood with vertical (W-VF) and horizontal (W-HF) fibres. One more
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time, W-VF means fibres parallel to the TE polarisation while W-HF means fibres parallel
to the TM one.

Figure 5. Polar distributions of wood radiances for polarizations parallel (red) and orthogonal (blue)
to the input one. Images report the measured radiances varying the observation azimuthal angle
θview. Top images refer to wood with vertical fibres (W-VF); bottom images refer to wood with
horizontal fibres (W-HF).

In this case, the distributions of the parallel and orthogonal radiances are very different
from each other and do not tend to assume the same distribution going towards the
orthogonal observation.

The parallel radiance of the vertical fibres flattens increasing the viewing angle, simi-
larly to that shown in Figure 4 for the isotropic diffuser. This means that the TE emission
decreases with the viewing angle much more than the TM one. Instead, the polar distri-
bution of the radiance from horizontal fibres changes significantly for both TE and TM
polarisations: the whole emission efficiency becomes lower and lower as the angle increases,
and the shape of the distribution also changes.

The polar distributions at the orthogonal polarisation suffer less the viewing angle:
the emission from vertical fibres seems completely insensitive to the viewing angle, while
for horizontal fibres the main differences appear at 45◦-135◦-225◦-315◦: the “flower” type
emission is rapidly attenuated, tending to a “squared” distribution. Such variations clearly
describe different weights of the multipolar emissive efficiencies. In order to discriminate
each contribution, different Fourier elements of the angular distributions were calculated,
corresponding to monopole, dipole, quadrupole and octupole emissions. In Figure 6 the
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normalized multipole contributions are reported. The values related to polarization parallel
to the illumination are shown in red while the orthogonal ones are shown in blue.

 
Figure 6. Multi-pole analysis of the obtained polar signals shown in Figures 4 and 5.

The dominant contributions are due to monopole emission, as expectable. The Teflon
emission is almost completely depolarized (both signals are close to 50%), with a very
slight memory of the lightning polarization (red signals). Such memory is attenuated by
increasing the viewing angle, towards a perfect depolarization by tending to 90◦. This
behaviour occurs because Teflon is a “soft” diffuser, and consequently the radiation pene-
trates inside it before coming out backward, maintaining information of the input. In wood,
anisotropy is indeed more evident. The information of the initial polarization is maintained.
Wood is certainly a stiffer diffuser than Teflon, where light penetration is very limited if not
completely absent. For both fibre alignments, the depolarization of the monopole emission
decreases by increasing the viewing angle but never disappears.

Dipole contributions for all three samples are very limited to a few percent, almost negligible.
Quadrupole contributions of Teflon are important and grow by increasing the view-

ing angle, up to almost 10% of the entire signal such phenomena are also present in the
quadrupole emission of wood with vertical fibres only in the parallel polarization compo-
nent; the orthogonal polarization component, on the other hand, is little affected (for about
1%) by the quadrupole emission. This insensitivity is also present for wood with horizontal
fibres. In this case, however, the parallel polarization component exhibits an anomalous
behaviour, with a minimum in correspondence of about 40◦ which can be attributed to
Brewster-like loss of emissive efficiency.

The octupole contribution is null for the isotropic sample (Teflon) while in wood it
shows high values. The vertical orientation of the fibres gives a contribution of octupole
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independent of the viewing angle while, for the horizontal orientation of the fibres, the
emission efficiency of the octupole terms decreases as the angle of observation increases.

Monopole, quadrupole and octupole radiance contributions are indeed discriminating
factors to recognize the orientation of the material texture. Monopole and quadrupole
emissions are polarisation sensitive while octupole seems to be perfectly depolarised.

4. Discussion

Figure 6 shows which multipole emission contributions can recognise a structural
anisotropy of surfaces. The most efficient emission is undoubtedly the monopole one,
as expectable: the first element of a power expansion is always more effective than the
following higher-order terms. The isotropic Teflon sample shows a monopole anisotropy
quantifiable in a 6% difference between the signals emitted on the two polarisations. This
effect is due to a different emissivity of a “soft” material, i.e., a surface that does not reflect
specularly but whose incident radiation penetrates and suffers multiple scattering in the
volume before being re-emitted backward. The phenomenon is well described by the
Kubelka–Munk theory [45,46]. At larger viewing angles, the number of multi-scattering
events strongly increases, inducing more efficient depolarisation.

Unlike the isotropic sample, wood shows a stronger monopole anisotropic radiance,
quantifiable for a normal observation at about 50–60% of the total signal. Vertical fibres
retain more information than horizontal fibres by means of a geometrical shadowing effect.
As the observation angle varies, vertical fibres pack up in an increasingly dense manner,
showing a stronger anisotropic emissivity (Figure 7).

Figure 7. Wood observations at different azimuthal angles θview are influenced by the fibre orientation.

Instead, the package shadowing does not affect the horizontal fibres, that remain
equally spaced, without visibility alteration. This behaviour is well known and experi-
mented with by everyone observing for example the grass of a stadium that appears striped
depending on how it has been cut/combed.

Dipole contributions are extremely low (of the order of 1%), and therefore, negligible.
Instead, the quadrupole contributions are important and show different trends for the

parallel and orthogonal radiative polarizations. Teflon shows very similar trends on both
crossed polarizations. Different behaviours occur for wood, where the crossed emission
(i.e., orthogonal to the lightning polarization) is always negligible, reaching a value between
1 and 2%. We do expect that higher polar emissivity is related to smaller textures.

Otherwise, the parallel polarization emission of vertical fibres becomes more and
more efficient with the viewing angle. This would be the behaviour for both vertical and
horizontal fibres, were it not for the fact that horizontal fibres show a Brewster-like emission
quenching at about 30–40◦.
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Octupole terms are important to recognise wood texture but do not show any
anisotropic behaviour.

The quadrupolar anisotropic behaviour can be highlighted by means of a linear
dichroism LD factor, defined as the difference between the parallel and orthogonal radiances
normalized to their sum:

LD =
R‖ − R⊥
R‖ + R⊥

(1)

The LD trends are shown in Figure 8. Teflon dichroism (upper part of Figure 8) is
indeed very small, lower than 10%: it has been magnified in order to resolve the slight
modifications. A small viewing angles dichroism shows a dipolar trend; at higher angles
the quadrupole contribution becomes more and more. This anisotropy is mainly geometric
in nature, recognising TE and TM polarisation emissions.

 

Figure 8. Polar representation of linear dichroism as the azimuth angle of observation varies, both
for the Teflon samples (8 upper panels) and for those of wood (8 lower panels). The wood represen-
tations report both the experimental results for vertically (solid line) and horizontally (dashed line)
oriented fibres.
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Wood dichroism (lower part of Figure 8) is indeed more effective, arriving at values up
to 0.6. LD’s deriving for vertical (solid line) and horizontal (dashed line) fibres are reported
on the same graphs for comparison.

As you can see, the linear dichroism of vertical fibres is much more intense than that
of horizontal fibres and remains high almost insensitive to the observation angle. On the
other hand, the horizontal fibres are strongly affected by the Lambertian behaviour and
dichroism tends to quench for viewing angles close to 90◦. In both cases, vertical fibres and
horizontal fibres, the shape of the dichroism is clearly linked to the quadrupole emission.

5. Conclusions

In conclusion, the performed work has shown that through polarization-resolved
imaging it is possible to discriminate between isotropic and anisotropic materials, but also
to recognise different texture orientations.

Different textures are discriminated monitoring monopole, quadrupole and octupole
contributions to emissions. The discriminator par excellence of the material’s anisotropy
is given by the octupole emission, zero for the isotropic reference and different from zero
for anisotropic samples. Wood monopole and quadrupole contributions show different
behaviours of the polarisation components. Quadrupole crossed radiance (with respect
to the lightning polarisation) is always very low; instead, parallel radiance is higher and
depends on the observation angle. Orthogonal fibres show a Brewster-like quenching of the
quadrupole parallel emission at about 30–40◦ which is not present with vertical fibres and
that can be effectively used as a fibre-orientation detector. We do expect that higher-order
polar emissivity would depend on smaller and smaller material texture, but this point is at
the moment under investigation.
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Abstract: Electromagnetic (EM) scattering may be a significant source of degradation in signal and
power integrity of high-contrast silicon-on-insulator (SOI) nano-scale interconnects, such as opto-
electronic or optical interconnects operating at 100 s of THz where two-dimensional (2D) analytical
models of dielectric slab waveguides are often used to approximate scattering loss. In this work,
a formulation is presented to relate the scattering (propagation) loss to the scattering parameters
(S-parameters) for the smooth waveguide; the results are correlated with results from the finite-
difference time-domain (FDTD) method in 2D space. We propose a normalization factor to the
previous 2D analytical formulation for the stochastic scattering loss based on physical parameters of
waveguides exhibiting random surface roughness under the exponential autocorrelation function
(ACF), and validate the results by comparing against numerical experiments via the 2D FDTD method,
through simulation of hundreds of rough waveguides; additionally, results are compared to other 2D
analytical and previous 3D experimental results. The FDTD environment is described and validated
by comparing results of the smooth waveguide against analytical solutions for wave impedance,
propagation constant, and S-parameters. Results show that the FDTD model is in agreement with the
analytical solution for the smooth waveguide and is a reasonable approximation of the stochastic
scattering loss for the rough waveguide.

Keywords: dielectric slab waveguide; discrete filtering; exponential autocorrelation; FDTD; optical
interconnects; photonics; random roughness; stochastic scattering loss; scattering parameters; S-parameters

1. Introduction

Nano-scale SOI optical interconnects, comprised of silicon/silicon-dioxide (Si/SiO2)
dielectric waveguides operating at 100s of terahertz (THz), constitute an increasingly im-
portant building block of modern integrated circuits, where the high-tech market demands
smaller form-factors and wavelengths. Considering the non-ideal manufacturing process,
random imperfections in the surfaces of nano-scale dielectric waveguides may cause sig-
nificant signal degradation and power attenuation, as EM waves propagate through the
interconnect structure, where the loss is primarily due to EM wave scattering with surface
roughness of the waveguide [1–5]. Therefore, the characterization of scattering loss is a
topic of significant interest to the scientific community [1–10].

The three-dimensional (3D) structure of SOI optical interconnects poses certain chal-
lenges to its analytical and numerical modeling; thus, the stochastic scattering loss observed
in nano-scale THz SOI interconnects is often approximated using 2D planar models of
the dielectric slab waveguide exhibiting surface roughness. The 2D analogue is useful for
analytically [5,8,10] characterizing the effect of scattering loss on the power attenuation
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of light waves, and is used as a comparison for both experimental analysis (of physical
waveguides) [1–4] and numerical analysis [1,2,6,7,9].

In 1983, Kuznetsov and Haus [11] published their work on using the 3D volume
current method (VCM) to evaluate the radiation loss in dielectric waveguide structures.
Their work includes analysis of single-line, two-line coupled, and three-line coupled waveg-
uide structures, in the absence of random surface roughness. In 1990, Lacey and Payne [5]
released their seminal work analyzing 2D planar waveguides exhibiting random surface
roughness for a single-line waveguide structure. Their work applies Green’s functions to
the structure, operating in the transverse-electric-to-z (TEz) mode, as an approximation
for scattering loss in 3D optical interconnects, and later in 1994 [8] it was updated to use
normalized waveguide parameters. In 2005, Barwicz and Haus [6] expanded on both of
those developments by applying the 3D VCM to single-line waveguides exhibiting random
surface roughness. In each of these cases, despite having relatively simple geometries,
the solutions are formulated around complicated integral equations, and the solutions
only become more complicated as the geometry becomes more complex, for example by
adding roughness, multiple tightly-coupled lines, arbitrary-shaped lines or grating, etc.,
thus limiting the application of integral-based solutions. An effective workaround to the
integral-equation complication is to reformulate the problem around differential-equations,
leading to the FDTD method. A version of the FDTD method based on wavelets is used
in [2], but the details of the FDTD formulation are not included. The FDTD method is also
used in [1] through the software tool Lumerical, but again details of the FDTD methodology
are absent.

The major contributions of the present work are as follows. (1) We provide the
FDTD methodology for analysis of 2D dielectric waveguides exhibiting random surface
roughness, operating in the TEz mode. (2) We propose a methodology for the extraction
of S-parameters, and we apply that methodology to the characterization of scattering loss.
(3) We improve the computational efficiency of this model by using filtering techniques
to attenuate numerical noise from simulation results, thereby allowing for the use of
a relatively coarse spatial and temporal discretization while retaining the integrity of
numerical results. (4) While the integral-based VCM has increasing complexity as the
geometry becomes more complex, the FDTD method is especially well-suited for arbitrary
waveguide geometries and arbitrary surface roughness profiles. To keep this presentation
simple and concise, we chose to apply the methodology to a single line; however, it can
easily be adapted to multiple tightly-coupled lines. (5) We provide the Python [12] code
titled Optical Interconnect Designer Tool (OIDT) [13] which features multi-CPU-core support
for parallelized FDTD, as an open-source software package [14] hosted on GitHub through
a public repository under the GNU GPL v3.0 license [15], to encourage further exploration
and (inter)national collaboration on optical interconnect research.

While the FDTD method implemented via a serial programming paradigm would be
computationally expensive, its highly parallelizable nature may provide a potential path
to a computationally expedient solution; thus, herein we begin to explore this poten-
tial by developing a parallelized implementation of FDTD with a traditional Yee-based
algorithm [16,17] and convolution perfectly matched layer (CPML) [18] boundaries, to
characterize the scattering loss in dielectric slab waveguides exhibiting surface roughness.

The remainder of this paper is organized as follows. Section 2.1 outlines the physical
waveguide structure analyzed throughout this paper. Section 2.2 establishes the details
of the FDTD model being used, where Section 2.2.1 provides additional details on the
discretization and application of random roughness profiles to the FDTD environment.
Section 2.2.2 details the filtering technique used to improve numerical measurements
from FDTD simulations. Section 2.2.3 addresses the coordinate transformations used to
move between the analytical solution and the FDTD model. In Section 2.3, we provide
the methodology for S-parameter extraction in 2D FDTD. In Section 2.3.2, we formulate
the relations between the S-parameter matrix and the scattering loss α. In Section 2.4,
we propose an updated equation for computing the stochastic scattering loss α based on
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physically realistic waveguide parameters and define its components, including a discus-
sion on the exponential ACF. In Section 2.5, we validate the FDTD model by correlating
against analytical expressions for the wave impedance, the propagation constant, and the
ideal S-parameter matrix. In Section 3, we discuss the numerical results of FDTD, and
the potential sources of error between FDTD and the analytical model. In Section 3.1, we
compare our results against those of other investigators. In Section 3.2, we examine the
dependence of α on input power and formulate the mode normalization NF. We conclude
with closing remarks in Section 4.

2. Methods

2.1. The Waveguide Structure

Optical interconnects are comprised of spatially 3D waveguide structures with a
certain surface roughness profile which may not vary much relative to the smooth (flat)
waveguide’s width. Often, 2D models of dielectric slab waveguides with the same height
and similar material parameters are used to analyze the 3D waveguide. This allows the
analysis to be decomposed into two modes: (1) transverse electric (TE) and (2) transverse
magnetic (TM).

Here, we analyze the structure in Figure 1 for the TE mode. We start by defining the
coordinate grid in the x̂-ẑ plane, and orient the device to operate with infinite extent in both
the ŷ and the ẑ directions, where the waveguide length and power flow are along ẑ and the
waveguide height is infinite along ŷ.

Figure 1. The baseline dielectric slab waveguide structure.

The dielectric slab waveguide consists of two regions, the core and the cladding. The
core has a refractive index of n1, and the cladding has a refractive index of n2, where
n1 > n2. The core region has a finite nominal width, which is typically denoted as two
half-widths. Here, the width is δ = 2d, where d is the half-width used throughout this
work. The fields in the waveguide are assumed to be time harmonic (with ejωt dependence,
where ω (rad/s) is the angular frequency) in nature with the E-field taking the form in (1).

E(x, z) = ŷ Φ(x)e−(α+jβ)z, (1)

where β = neffk0 (rad/m), neff is the effective index found via the effective index method
(EIM) [10], k0 is the free-space wave number, α is the attenuation constant resulting
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from sidewall roughness, and Φ(x) is a piece-wise function with its components defined
in (2)–(4). In (2) the term Ae is a scaling constant.

Φ(x) =
{

Ae cos (κx) |x| ≤ d
Ae cos (κd)e−γ(|x|−d) |x| > d

, (2)

κ2 = n2
1k2

0 − β2 (3)

γ2 = β2 − n2
2k2

0 (4)

Random perturbations exist along the boundary between the core and cladding,
resulting in the surface roughness profile. We use an exponential ACF to describe the surface
roughness by its standard deviation σ and its correlation length Lc. The mean of the profile
is 0, so the random perturbations are not included in the nominal width. We further assume
the cladding extends infinitely outward from the core region. The FDTD environment used
in this paper is described fully in [7,14,19], and in Section 2.2.

2.2. The FDTD Environment

The nominal waveguide structure may expediently fit into 2D FDTD analysis. We start
by converting the nominal structure into uniform discrete cells with side length Δx. The tem-
poral resolution is then set at the Courant stability limit [20] for 2D FDTD, where the back-
ground material is set to the cladding medium. We apply the CPML [18] to the exterior of
the computational domain, thereby simulating infinite space with minimal reflections and
computational cost.

We define a length � over which we generate and discretize a random profile; the
remaining FDTD cells create an extra buffer space to allow for modal waves to settle, after
leaving the source point and before reaching the recording (numerical measurement) point.
Each source and recording location are designated by a separate port, e.g., a single optical
line would be characterized by two ports, with one port at each end of the line.

Once the roughness profile is ready, it is applied as the core and cladding boundary
between ports. Referring to Figure 1, we place a source condition along x̂ in a vertical line
of cells across the entire opening of the waveguide, where the distance between the source
and CPML is more than 10 cells, while we may approximate infinite space with the CPML,
we still need to retain a buffer space in the cladding between the waveguide and the CPML
boundary. To capture the intricacies of the interactions of the EM fields in both the core and
cladding regions, we need to set the cladding size appropriately. Therefore, it is necessary
to capture as much of the E-field as possible. Note, in (2) the E-field magnitude decays
exponentially in the cladding region with a rate of 1/γ, and we can use that behavior to set
the cladding buffer size. At a distance of 4/γ from the core/cladding boundary, the E-field
magnitude at the edge of the simulation space is no more than 2% of the E-field magnitude
at the core/cladding interface, and it only decays further from there; thus, the cladding
region size is set accordingly, as in Figure 1.

Data are collected in the form of E-field values at ports 1 and 2 along the first line
of cells adjacent to the rough region. These points are recorded at each time-step for the
duration of the FDTD analysis. In post-processing, we take the recorded time-domain
E-field values and convert them to the frequency domain with the fast Fourier transform
(FFT) [21]. We then numerically integrate the E-field over the recorded line of cells, resulting
in a frequency dependent voltage with which further analysis may be performed.

We set up the FDTD grid based on the waveguide geometry, material parameters, and
desired frequency range. The geometry is set up as shown in Figure 1, where n1 = 3.5 and
n2 = 1.5. We additionally set the fundamental frequency as f0 = 194.8 THz (corresponding
to source wavelength λs = 1.54 μm). Using the core refractive index, we find the minimum
phase velocity vmin (m/s). Using the fundamental frequency, we assign our desired maxi-
mum frequency as fmax = NH f0 (Hz), where NH is the number of desired harmonics above
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the fundamental. Using both the minimum phase velocity and the maximum frequency,
we find the minimum wavelength simulated in the FDTD scheme with λmin = vmin/ fmax.
Then, our spatial discretization is Δx = λmin/30. At NH = 2, Δx ≈ 7.3 nm/cell. We set
the time-step Δt at the Courant limit based on the cladding material which has the largest
possible phase velocity in the FDTD environment, such that Δt = Δx√

2vclad
.

The total grid is 5554 cells × 247 cells (ẑ × x̂) with 26,997 time-steps. We use 40 layers
of CPML as the absorbing boundary condition because in our experience 30–40 CPML
layers provides good correlation of wave impedance within 1%. Along x̂, the core region is
centered and the nominal full width measures 36 cells, where the remaining 300 cells are
evenly distributed on either side of the core as cladding. Along ẑ, � = 4092 cells, and the
remaining 1858 cells are evenly distributed to each port region.

The computations are done by using a workstation with two Intel® Xeon® E5-2687W
v3 CPUs (40 logical cores), operating at 3.10 GHz. Each simulation occupies less than
410 MB of RAM and is completed in roughly 300 s (or 5 min).

2.2.1. Verifying the Validity of Discretized Roughness Profiles

We start by assigning a target for σo, Lco , and μo, where μ designates the mean in this
subsection. These parameters are then normalized by the spatial discretization step-size Δx
value used in the FDTD simulation to yield {σ = σo/Δx, Lc = Lco /Δx, μ = 0}. The discrete
values are passed into the Pyspeckle [22] Python library which uses the methods in [23]
to generate random profiles; this generation process returns an array of a specified size
with floating point values quantifying the surface perturbation. As was the case in [7],
a linear offset is added to the aforementioned floating point array to ensure that all values
are positive. The offset array is then cast to integer values via the floor function and the
same linear offset is subtracted from the now integer array, where the final discrete array
has parameters σ′, L′

c, and μ′. The error between input (σ) and output (σ′) parameters may
be quite large, due to the discretization process. However, we may circumvent this issue by
constraint-based generation of profiles, described below.

We set a percentage tolerance for the normalized input parameters {σ, Lc, μ} and we
check that the output parameters {σ′, L′

c, μ′} fit the input parameters within the prescribed
tolerance. If a profile does not meet the criteria it is discarded and a new profile is generated.
In our numerical experiments, the tolerance is specified by σ′ ∈ [0.9σ, 1.1σ] and L′

c ∈
[0.9Lc, 1.1Lc], and μ′ ∈ [−0.01,+0.01].

We find σ′ and μ′ via built-in Numpy functions std and mean, respectively. We may
estimate the L′

c value that fits the autocorrelation data, as explained next. We start by
finding the autocorrelation of the generated discretized surface profile using the Pyspeckle
autocorrelate function which provides a normalized array with its maximum value occurring
at ζ = 0. Note the autocorrelation of the generated profile tracks an exponential ACF up
to the correlation length, as can be seen in Figure 2. With that in mind, we apply a root
finding technique to determine L′

c while using RXX(L′
c) = e−1 as the reference value. We

then subtract e−1 from the discrete ACF and find the root closest to ζ = 0, which is the
correlation length of the discrete ACF. We may then compare the L′

c with Lc to determine
the validity of the generated discretized profile.

For samples with parameter values Δx = 11 nm and σ = 9 nm, and knowing that the
probability distribution function (PDF) of the random process is normal in nature, we know
that 99% of values in the final array will be contained in the range ±3σ ≈ ±2.46. Applying
the floor function to this range results in the discrete set {−3,−2,−1, 0, 1, 2} which may
cause significant differences between output values {σ′, L′

c, μ′} and input values {σ, Lc, μ}.
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Figure 2. Example ACF with input parameters σ = 9 nm and Lc = 50 nm. The discrete trace is
generated with 5000 samples.

Figure 2 compares a discretized exponential ACF comprised of 5000 samples against
the continuous analytical (18). Even at this small sample size, the discretized profile still
correlates well to the ideal ACF up to ζ = Lc, but after that point, there is noticeable noise.
At ζ = 0 nm the discretized and continuous analytical ACFs do not line up perfectly. The
misalignment at ζ = 0 nm may be remedied by normalizing the analytical ACF to match
the discretized ACF, using σ′ instead of σ.

2.2.2. FDTD Noise Reduction

Numerical experiments involving waveguides with random surface roughness result
in a certain amount of noise in α. We may observe that in the initial calculation, labeled
unfiltered, there is rapid oscillation around the trend; such oscillations are undesirable and
cause scattering loss readings to vary between numerical experiments. This issue may be
resolved by the use of a moving-average function over the frequency range of interest; this
technique is often used to reduce noise levels in digital signals [24]. We use (5) to reduce
the noise level at each frequency point, where N is the number of samples to either side the
reference index k.

αFiltered[k] =
1

2N + 1

N

∑
p=−N

αUnfiltered[k + p] (5)

The rolling average function is effective at reducing noise levels, but due to the
smoothing effect it also introduces its own set of numerical distortions. However, the
introduced error is small when N is small. As such, we use N = 5 to generate the
filtered curve, where the rapid oscillations have been reduced but the trend remains
mostly unchanged.

2.2.3. Modal Transformations and Coordinate Mapping

The geometry used for the characterization of scattering loss from random surface
perturbations, shown in Figure 1, is based on the geometry from Figure 5 in [10]. The fields
in [10] are described as TEz, since Ez = 0 and ∂

∂y
= ∂y = 0, and by using (56), (59), and (60)

in [10] we know the non-zero field components are {Ey, Hx, Hz}, while Ez = Ex = Hy = 0.
The TEz field configuration may also be obtained from (6-72) in [25] and setting ∂y = 0,
and it is mathematically identical as two other modes; specifically, setting ∂y = 0 in (6-64)
in [25] yields the TMy, and in (6-74) in [25] yields TEx.
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In our geometry of Figure 1, there exists a single nonzero E-field component along
the invariant (infinite) direction (ŷ), and two nonzero H-field components along the finite
directions (ẑ, x̂) which may be interpreted as either height or width [10]. Out of the three
mathematically equivalent modes (TEz, TMy, TEx), we choose the TEz field configuration
here, as it aligns best with the physical interpretation of the physical waveguide with
propagation along ẑ (length), a transverse E-field along ŷ (width or height), and H-field
components along x̂ and ẑ.

Our FDTD simulations are based on the traditional Yee algorithm in a 2D lattice, as
formulated in ([17], ch. 3). Our FDTD formulation is derived with the assumption that
Hz = 0 and ∂z = 0, resulting in the TMz mode with field components {Ez, Hx, Hy}. This
FDTD lattice may initially appear to be in conflict with our analytic formulation; however,
note that the E-field has a single nonzero component along the infinite (invariant) direction,
and the H-field has two nonzero components. Since we can assign the FDTD geometry
in an arbitrary manner, we choose to orient Hx along the length and Hy along the width
(or height), resulting in a field configuration with the same orientation as the analytical
formulation but with a rotated coordinate grid. We can rotate the coordinate grid of the
analytical field configuration such that it results in a configuration identical to the FDTD
fields by the steps shown in Figure 3.

Figure 3. Coordinate grid rotation steps. (a) Initial orientation of analytical formulation for 2D TEz.
(b) Intermediary rotated mapping. (c) Final mapped orientation of analytical formulation is identical
to the FDTD formulation for 2D TMz.

In Figure 3, starting with the analytical expression in (a), we rotate the coordinate grid
twice. The first rotation is 90◦ around x̂ from ẑ toward ŷ; this produces the grid in (b). The
second rotation is 90◦ around ẑ from ŷ to x̂; this produces the grid in (c). The mapping is
complete after these rotations, and we can then use the FDTD 2D TMz field components
{Ez, Hx, Hy} to represent the analytical 2D TEz field components {Ey, Hz, Hx}, respectively,
with no modifications to the established FDTD formulation nor the analytical formulation.

2.3. S-Parameters Extraction Methodology in FDTD

S-parameters are often used to characterize a variety of electronic systems [7,19,26].
The methodology of finding S-parameters may be applied to 2D FDTD simulations quite
expediently [7,19].

We use the traditional definition of S-parameters [26], where the total voltage wave
measured at each port in a system can be decomposed into incident and reflected waves,
i.e., Ṽ = Ṽ+ + Ṽ−, and those components can be used to evaluate S-parameters as in (6),
where m, n, k are port numbers, Ṽ+ is the incident wave, Ṽ− is the reflected wave, and Ṽ is
the total wave.

Smn =
Ṽ−

m

Ṽ+
n

∣∣∣∣
Ṽ+

k =0 ∀k =n
(6)

In our FDTD simulations, we use a two-port system, so {m, n, k} ∈ {1, 2}. This
methodology may be further extended to systems with more than two ports.
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2.3.1. Computing S-Parameters, Using FDTD

We are able to record total, incident, and reflected fields in FDTD simulations, but
these may not all be recorded simultaneously. Therefore, we utilize a four-step simulation
setup for collecting S-parameters.

Other simulations for calculation of loss may be considered a subset of the four-step
simulation process [19]. Each of the simulation steps are visualized in Figure 4, and
explained below. The baseline setup and geometry is in Figure 1.

Figure 4. Four-step simulation setup for S-parameters extraction methodology.

Sim 1:The first simulation starts by placing the source condition at port 1, so Ṽ+
2 = 0

for this simulation. We simplify the geometry of the dielectric slab by excluding the random
sidewall perturbations at this time. Additionally, we extend the right-side CPML boundary
to 10 cells to the right of port 1. This simulation results in Ṽ+

1 .
Sim 2: The second simulation starts with the same source condition as simulation 1.

We then apply a valid discrete roughness profile to top and bottom boundaries between
core and cladding. In our simulations, we chose the top and bottom profiles to be identical,
but other choices are possible too. The CPML boundaries are evenly distributed around
the computational domain. This simulation results in Ṽ1 and Ṽ−

2 .
Sim 3: The third simulation is similar to the first simulation. We place the source

condition at port 2, where Ṽ+
1 = 0 in this simulation, and extend the left-side CPML

boundary to 10 cells to the left of port 2. Simulation 3 results in Ṽ+
2 .

Sim 4: The fourth simulation finalizes the port field data collection. Similar to the third
simulation, we place the source condition at port 2, and similar to the second simulation
we set the CPML boundaries at the baseline limits and apply the roughness profile in the
same manner. This simulation results in Ṽ−

1 and Ṽ2.
The fields recorded in the numerical experiments are limited to the four aforemen-

tioned steps, but there are still two field components missing which would fully describe
the scattering matrix; those are Ṽ−

1 when Ṽ+
2 = 0, and Ṽ−

2 when Ṽ+
1 = 0. Here, we may
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use the decomposition relation to find the implicit reflected fields. Specifically, using Ṽ+
1

from Simulation 1 and Ṽ1 from Simulation 2, we may obtain Ṽ−
1 = Ṽ1 − Ṽ+

1 . Similarly, we
may recover Ṽ−

2 from simulations 3 and 4.
With each of these values calculated from the numerical experiments, the S-parameters

matrix may now be computed. In ideal waveguide with no sidewall perturbations, we
would expect the S-parameters matrix (of the waveguide system) to be both symmetric
(reciprocal) and unitary (lossless) [26]. For a waveguide with sidewall perturbations, we
expect the S-parameters matrix (of the waveguide system) to be symmetric (reciprocal)
but non-unitary (lossy) [26]. Higher port numbers may be simulated by following the
same process of incident field simulation followed by total field simulation, for each port
subsequently.

2.3.2. Direct Method of Computing Scattering Loss, Using FDTD

Using the second simulation, we may find the total voltage wave values at both ports
1 and 2, but this time we label them Ṽ(0) and Ṽ(�), respectively. We assume the voltages
to have the same form as the electric field but with the Φ(x) element replaced with V0, i.e.,
Ṽ(z) = V0e−(α+jβ)z. In this form, it may be observed that as z increases, we also expect the
voltage to attenuate in amplitude and accumulate in phase.

Since we have measured the voltage at two port locations, we may determine the
attenuation. To do this, we divide Ṽ(�) by Ṽ(0), resulting in (7).

Ṽ(�)

Ṽ(0)
=

V0e−(α+jβ)�

V0
= e−(α+jβ)� (7)

Using (7) we may isolate α by using the complex logarithm where z ∈ C, log(z) is the
complex-domain natural logarithm of z, ln(|z|) is the natural logarithm with base e, and
arg() is the true angle of z; i.e., the angle of z which includes all full turns and may have a
magnitude greater than ±π [27].

log(z) = ln(|z|) + j arg(z), (8)

Applying (8) to (7) results in (9).

− α�− jβ� = ln
(∣∣∣∣ Ṽ(�)

Ṽ(0)

∣∣∣∣)+ j arg
(

Ṽ(�)

Ṽ(0)

)
(9)

Equation (9) may be separated into real and imaginary components, resulting in the
final expression in (10), for calculating power loss directly from FDTD experiments.

α = −1
�

ln
(∣∣∣∣ Ṽ(�)

Ṽ(0)

∣∣∣∣) (Np/m) (10)

While (10) is possibly the most direct method for calculating power loss from FDTD
simulation, there is an alternative definition which could accomplish that task through
the use of S-parameters. We start by taking the argument of the natural logarithm in (10)
and squaring it, but instead of 0 and � being the reference points, the voltages are now in
reference to ports 1 and 2, leading to

A =

∣∣∣∣ Ṽ(�)

Ṽ(0)

∣∣∣∣2 =

∣∣∣∣ Ṽ2

Ṽ1

∣∣∣∣2 =

∣∣∣∣∣ Ṽ+
2 + Ṽ−

2
Ṽ+

1 + Ṽ−
1

∣∣∣∣∣
2

. (11)

In (11), we may replace the magnitude-squared operation with the equivalent complex
operation, resulting in

A =

(
Ṽ+

2 + Ṽ−
2
)(

Ṽ+
2 + Ṽ−

2
)∗(

Ṽ+
1 + Ṽ−

1
)(

Ṽ+
1 + Ṽ−

1
)∗ , (12)
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where ∗ denotes the complex conjugate operator.
Simplifying (12), we may combine the incident and reflected voltage waves into

compact S-parameters from. We may then reinsert A into a natural logarithm and recover
the expression for α as a function of S-parameters in (13) [19].

α = −1
�

ln
(∣∣∣∣ (1 + S11)(S12)

S11 + S12S21

∣∣∣∣) (Np/m). (13)

The form of α in (13) may also be utilized on systems with larger number of ports. In
this case, port 1 is used as the reference port for loss, but in general the reference port may
be any port in a multi-port system. In a large multi-port system, the loss equation using
S-parameters may be computed for each reference port.

2.4. Analytical Loss Function

In the ensuing formulation, we assume simple media; i.e., linear, isotropic, and non-
dispersive. Following the recent work in [10], we propose (14) as the generic scattering
loss function.

α =
1

NF
Φ2(d)MWSW (Np/m). (14)

Equation (14) is similar to the loss function used in previous works [5,8,10], but we
have made a modification by dividing α in those works by the normalization factor NF.

Either part of the piece-wise function (2) may be evaluated at x = d and result in (15).

Φ2(d) = A2
e cos2 (κd), (15)

Note that Ae, derived in Equation (73) in [10], is dependent on the input power. This
dependency is not desirable; thus, it is eliminated by introducing the factor, NF, in (14),
normalizing the amplitude of α, as explained in Section 3.2.

The term MW is defined with (16).

MW =
(

n2
1 − n2

2

)2 k3
0

4πn1
. (16)

The term SW is defined with (17) and represents the contribution by the surface
roughness described by a random distribution.

SW =
∫ π

0
R̃XX(β − n2k0 cos (θ))dθ, (17)

where R̃XX is the power spectral density of the surface roughness profile.
Surface roughness may be approximated as a stationary random process [10], therefore

the power spectral density may be recovered through the ACF of the roughness profile,
which may be assumed to have an exponential shape [4,5]. The exponential ACF is given
by (18) [10]

RXX(ζ) = σ2e−
∣∣∣ ζ

Lc

∣∣∣, (18)

where σ and Lc are the standard deviation and correlation length of the profile, respectively,
and ζ is the spatial shift variable.

There are two observations that could be made about (18) by setting ζ to specific values.
First, RXX(ζ = 0) results in the variance of the profile. Second, RXX(ζ = Lc) = σ2e−1;
this second result is used later for approximating the value of Lc from surface profile data
generated by the Pyspeckle software [22]. Some photo-lithographic processes for Si/SiO2
may lead to profiles with σ = 9 nm and Lc = 50 nm [4].

We define the spatial Fourier transform (SFT) as

R̃XX(k) =
∫ ∞

−∞
RXX(ζ)e−jkζ dζ, (19)
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where the input function is translated from ζ-space (m) to k-space (rad/m), k is the wave
number, and the imaginary number j =

√−1.
Applying the SFT (19) to (18), yields

R̃XX(k) =
2Lcσ2

1 + L2
c k2 . (20)

We may insert (20) into (17) and numerically evaluate the integral to obtain the contri-
bution of the surface roughness profile to the loss α.

2.5. FDTD Model Validation

We validate the FDTD model being used in these numerical experiments in three ways,
described below. Unless stated otherwise, the data in this section is generated for a smooth
waveguide with δ = 300 nm, n1 = 3.5, n2 = 1.5, and f0 = 194.8 THz. Validation must
be done prior to performing numerical experiments, so we utilize the smooth waveguide
and the below methods for model validation. Using known and expected attributes of the
smooth waveguide, we can compare the results obtained from numerical experiments to
provide confidence in the validity of our model before performing numerical experiments
with waveguides that exhibit surface roughness.

2.5.1. Wave Impedance

One such method is through comparison with a known analytical solution to the
smooth dielectric slab waveguide. We use the wave impedance of an outward traveling
wave. This solution is well established and has been derived in several places [10,25].
We find the wave impedance by dividing TEz mode E-field by the corresponding H-field
component along the length of the slab waveguide. Here, those fields are Ey and Hz,
respectively. In the smooth slab case, the real portion of the wave impedance should be
very small. For the analytical solution, the division between the E-field and H-field gives

Zw = j
x
|x|

ωμ

γ
(Ω), (21)

where μ is the magnetic permeability. Division of x by its magnitude is used to set the
appropriates sign for either above or below the slab.

The FDTD portion of this comparison may be conducted through the second simu-
lation from Section 2.3.1 with the surface roughness omitted. Since the wave impedance
is calculated for an outward traveling wave, we use the E-field and H-field data in the
cladding region. We take all the steps necessary to compare frequency-domain voltages
as described in Section 2.2, but we exclude the final integration such that we are left with
field data for every point along the line at ports 1 and 2. Using the port 2 data allows for
the wave to propagate over a long enough distance to be well-set into the lowest order
mode. We take the measurements from two cells below the lowest core cell which leaves a
single cell buffer between the core region and the cell used for this calculation. Finally, the
imaginary component is compared to the analytical solution.

The wave impedance calculated from the FDTD model is shown in Figure 5a. We
can see that the impedance found from numerical experiment matches with the expected
analytical value throughout this range of frequency samples. At f0 the difference between
the FDTD and analytical values is approximately 1.5 Ω, which translates to an error of less
than 2% near the frequency of interest.
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(a) (b)

(c) (d)

Figure 5. (a) Zeroth order TEz mode wave impedance for the smooth dielectric slab waveguide.
(b) Propagation constant β vs. frequency. (c) S-parameters for the smooth waveguide. (d) Propagation
loss α (dB/cm) vs. frequency, for a smooth waveguide with S-parameters method vs. direct method
for calculating propagation loss.

2.5.2. Propagation Constant

In the next validation method, we compare the propagation constant β obtained from
FDTD against that obtained from the EIM in the frequency range of interest, at the same
samples as the FDTD model output. We find β from FDTD by evaluating the imaginary
component of (9).

Since we are examining the phase angle of the voltage measurements, the division of
Ṽ(�) by Ṽ(0) may be converted to a subtraction, resulting in (22).

β = −1
�

(
arg

(
Ṽ(�)

)− arg
(
Ṽ(0)

))
(22)

In FDTD, we compute the angle of the complex voltages over the entire frequency
range on the smooth dielectric slab waveguide and unwrap the final angle array into full
angle form (rather than principal angle form).

In Figure 5b, the traces are nearly overlapped. The fundamental frequency is high-
lighted by the vertical dashed line, where the error between the EIM and the FDTD model
is less than 1%. This data further validates the FDTD model, and confirms the formulation
leading to (22).

2.5.3. Scattering Matrix

In the last validation method, we utilize the properties of the S-parameters matrix
described in Section 2.3.1. As stated, the matrix should be symmetric and unitary for the
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smooth waveguide. We extract the S-parameters from the FDTD model using the method
presented in Section 2.3, and show these in Figure 5c.

Two observations are noteworthy in the frequency range of interest: (1) the cross-
terms (S12, S21) have a magnitude of near 0 dB, indicating that there is almost complete
transmission of power from one end of the waveguide to the other, and the self-terms (S11,
S22) are correspondingly very small compared to the cross-terms, with a peak value of
less than −150 dB; therefore, the matrix is nearly unitary as expected for a smooth lossless
waveguide. (2) the S-parameter matrix is symmetrical, given the near perfect overlap of
S11 with S22, and S12 with S21. These observations are noteworthy because they are the
expected results for an ideal network, such as a smooth dielectric slab waveguide. Since
the FDTD results align well with the expected behavior of a 2-port network, these results
further validate the FDTD model.

We compare the S-parameters method of Section 2.3.1 and the direct method of Section 2.3.2
for calculating loss, as shown in Figure 5d. Here, we observe an oscillatory behavior similar
to that in the cross-terms of Figure 5c. The oscillations hover around α = 0 dB/cm and
decay with increasing frequency, while the expected per-unit-length attenuation for an
ideal smooth waveguide is α = 0 dB/cm. Note that the loss from the S-parameters and
from the direct method match very well, where the mean-squared error is on the order
of 10−8.

3. Results and Discussion

Unless stated otherwise, the data in this section are generated for waveguides with
δ = 200 nm, n1 = 3.5, n2 = 1.5, f0 = 194.8 THz, and Δx = 7.33 nm.

In Figure 6, we show an example loss curve simulated in FDTD, to illustrate the need
for filtering the FDTD output. As we can be seen in the figure, there is a nontrivial level of
noise on the full range of α.

Figure 6. α vs. frequency, for a rough waveguide (σ = 15 nm, Lc = 200 nm) with noisy FDTD
data (red dashed line) compared to filtered FDTD data (blue solid line), where f0 is the excitation
source frequency.

Applying the filter described in Section 2.2.2 results in the Filtered trace which con-
siderably reduces the noise in the FDTD data. This is best exemplified by the α values for
frequencies above 225 THz, where the noise is reduced by an order of magnitude. The
α values from FDTD are subjected to this filtering technique prior to calculation of the
percentage error between the FDTD and the analytical solution (14).

Figure 7 uses the data from tables I and II in [7], respectively, to illustrate the distribu-
tion of percent error between FDTD and analytical calculations. Figure 7a,b were generated
with the standard deviation σ = 9 nm. The correlation length Lc varies uniformly in the
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range 200 nm to 1000 nm. The figures show the distribution of percentage errors for all cor-
relation lengths with the same standard deviation, where a total of 924 roughness profiles
were simulated using the FDTD model. We use these data to illustrate the effect of filtering
on simulation results. In Figure 7a the mean error is −5.12%, whereas in Figure 7b the error
is reduced to −4.12%. Likewise, the standard deviation reduces from 21.96 to 19.87%.

(a) (b)

(c) (d)

Figure 7. Percent error in propagation loss α (dB/cm) between analytical (14) vs. FDTD solutions:
(a) 924 roughness profiles at σ = 9 nm, (b) same as (a) with data filtering, (c) 947 roughness profiles
at σ = 15 nm, and (d) same as (c) with data filtering.

A similar setup is used for Figure 7c,d, where σ = 15 nm and Lc is uniform in the range
200 nm to 1000 nm, with a total of 90 roughness profiles simulated with the FDTD model.
In Figure 7c the mean error is 1.89%, whereas in Figure 7d the error is increased, to 2.24%.
Like in the σ = 9 plots, the standard deviation reduces, this time from 19.76 to 18.56%.
From the numerical experiments conducted in FDTD on the relatively short-length slab
waveguide, we have created the histogram of occurrences, which may be easily translated
to a probability mass distribution.

Some potential sources of error in Figure 7 are listed below. (1) The parameters
{σ′, L′

c, μ′}, rather than {σ, Lc, μ}, are used in the analytical solution when calculating the
percentage errors. (2) We use a relatively coarse spatial and temporal resolution in the
FDTD model, while utilizing a finer resolution grid may decrease the percentage error
range, it would increase computation time. (3) We use (14) as the analytical model, which
is based on the formulation originally proposed in [5] that used various approximations
and simplifications, such as a first-order Taylor series expansion to evaluate the E-field.

From each setup in Figure 7 the maximum difference between filtered and unfiltered
data is standard deviation from Figure 7a,b which reduces by 2.09%, and each other relevant
value changes by around 1%, with the mean percentage error in the σ = 15 nm case actually
increasing by 0.35%. This shows that the filtering step does not significantly impact the
percentage error of the FDTD results from the analytical solution.
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We define the improvement metric Fimp as

Fimp(xFiltered, xUnfiltered) =

(
1 − |xFiltered|

|xUnfiltered|
)
× 100%, (23)

where xFiltered = αFiltered − αAnalytical, xUnfiltered = αUnfiltered − αAnalytical, αFiltered and
αUnfiltered are defined in Section 2.2.2, and αAnalytical is defined by (14).

We use (23) to compare the effect of filtering on the FDTD data. Using this metric,
we consider any value greater than 0% to be an improvement, and 100% would indicate
the filter has maximally improved the unfiltered signal. We consider ±5% to be negligible
change, i.e., filtering had little effect on unfiltered signal. For σ = 9 nm, filtering improves
the error in 487 instances out of 924, and that filtering has negligible effect for 62 instances.
For σ = 15 nm (23) results in improvement for 462 instances out of 947, and negligible
effect for 107 instances.

It is worth noting that the above technique involves filtering α after E- and H-fields
have been computed in FDTD. The data show that filtering in this manner does not add
significant value. Thus, we plan to investigate filtering techniques within FDTD during
the computation of E- and H-fields, as was demonstrated in [28] for suppressing spurious
noise waves due to sub-gridding.

3.1. Comparing Our Results to Previous Publications

We compare this work to previous theoretical and experimental works. Equation (14)
is based on the formulation provided in [10], which in turn is based on both [5,8]. The
primary difference between [10] and this work is that here we introduce the normalization
factor NF. In [10], the components for α are based on the more physically realistic form
of E-field (2) where Ae may be any real-valued scalar. The absence of the normalization
factor (i.e., setting NF = 1) leaves a dependency on input power; however, the input power
may be modified to fit the expected scattering loss value for any point, by setting (24) equal
to (25) and solving for α, which will always result in (29). In [5], the original formulation
for finding scattering loss was proposed, where the mathematical normalization of (24)
is used.

The follow-up work of [8] proposed a formulation for scattering loss calculations
by using normalized waveguide parameters, but as was noted in [6], there appears to
be an extra factor of 2 in the formulation used therein. We can see this numerically by
comparing [8] with this work, also in Table 1, where the loss value is double what is
calculated by (14). We further see that an input power of PTE = 4.3 mW in the formulation
found in [10] is most similar to the normalized values found here, but other choices of input
power (e.g., PTE = 1 mW or PTE = 1.45 mW) could yield different values for loss as they
may not eliminate dependence of α on input power.

The VCM was used in [6] to verify the scattering loss calculations. Their work was
done on several 3D waveguides, and these provide a similar analogue to the 2D structure
simulated in this work.

Looking at the experimental side, in [3] a physical 3D dielectric optical interconnect
was tested for scattering loss. Their results show that the 2D planar model [8] is generally
an overestimate of what can be expected from physical hardware, and the 3D simulations
in [6] are generally an underestimate. Furthermore, in [3], unit variance is used, making it
unique compared to other experimental data and included in Table 1. Other experiments
conducted on physical hardware include those of [1,4], where a scattering loss magnitude of
≈35 dB/cm is reported. These experiments were conducted on 3D SOI optical interconnects
consisting of Si core and SiO2 cladding extending 1 μm in each direction around the core,
making them amenable to comparison with the 2D planar approximation. The loss value
in [1,4] is approximately 36% of the loss value in (14), and approximately 72% of the loss
value in [6].
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Table 1. α values in (dB/cm).

Source d = 210 nm d = 250 nm
(a: hardware experimental) Lc = 20 nm Lc = 50 nm
(b: numerical/analytical) σ2 = 1 nm2 σ2 = 81 nm2

a [4] Lee N/A ≈34

a [1] Jaberansary N/A ≈33

a [3] Horikawa ≈0.5 N/A

b [6] Barwicz N/A 48.6

b [8] PL 94 1.87 193.7

b [10], PTE = 1 mW 0.22 22.1

b [10], PTE = 1.45 mW 0.32 32.1

b [10], PTE = 4.3 mW 0.94 95.2

This work (14) 0.94 96.8

3.2. Mode Normalization

Although allowing α to have dependency on waveguide’s structural attributes such as
the surface roughness profile, material parameters, or even input wavelength is desirable,
dependence on input power is not. In previous works [5,8], the E-field is mathematically
normalized, such that ∫ ∞

−∞
Φ2(x) dx = 1. (24)

While the above normalization removes the dependence of α on the input power, it
also forces Φ(x) to satisfy a certain mathematical requirement; however, if we evaluate (24)
by inserting the physical field expression (2) for the TE modes, we arrive at (25) [10].∫ ∞

−∞
Φ2(x) dx = A2

e

(
d +

1
γ

)
. (25)

Note that if (24) is assumed to be true, then the field amplitude Ae would be forced to
have the particular value A2

e = 1/(d + 1
γ ); however, this assumption may not hold true in

the physical waveguide. To remedy the inconsistency, we start with [5]

α =
Prad/2L

Pg
=

n2
2η0

∫ π
0

〈|Ex(r,θ)|2〉
2L r dθ

n1
2η0

∫ +∞
−∞ Φ2(x) dx

, (26)

where the core and cladding refractive indices are tied to the guided power Pg and the
radiated power Prad, 〈 f 〉 designates the ensemble average of f [10], and η0 ≈ 377 Ω [5].

We use (15) from [5] to simplify the numerator in (26) and note that 2η0 cancels at this
point, resulting in (27).

α =
n2

n1

Φ2(d)
(
n2

2 − n2
1
)2 k3

0
4πn2

∫ π
0 R̃XX(β − n2k0 cos θ) dθ∫ +∞

−∞ Φ2(x) dx
. (27)

We use the definition of MW and SW here to further simplify (27); this results in (28),
where n2 in the numerator cancels and the n1 in the denominator is pulled into MW .

α =
Φ2(d)MWSW∫ +∞
−∞ Φ2(x) dx

(28)

We may further simplify (28) for the zeroth-order mode by inserting the result from (25)
and the physical field amplitude expression of Φ2(d) in (15), followed by canceling the
resulting A2

e term in the numerator and denominator.
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α =
cos2(κd)MWSW

d + 1/γ
(29)

Therefore, to remove dependence on input power uniformly for any initial input field
amplitude, we propose to define NF in (14) as (30), where NF has the same dependence on
input power as Φ2(d).

NF = A2
e

(
d +

1
γ

)
, (30)

Note that here, (29) is the simplest form for even TE modes, using the physical
considerations based on actual field values in the waveguide. In [5], (24), is assumed to be
true prior to calculating α, forcing the denominator of (28) to be 1.0 and limiting Φ2(d) to be
single valued. The crucial difference in the proposed formulation here (based on inclusion
of NF in α) lies in the assumption that the E-field amplitude can be functionally any value.
We believe that the proposed normalization based on NF offers a more physically consistent
expression of α, and works more intuitively for correlation of numerical (or physical)
experiments in FDTD (or in the lab) where the initial field amplitudes may be specified
with regard to considerations independent of scattering loss.

4. Conclusions

Based on physical waveguide parameters, an explicit normalization factor (30) for the
scattering loss α (14) was proposed. The equation was then used to compare the results
across several previous publications, including both numerical and physical experiments,
showing that the analytical equation is generally an overestimation of actual propagation
loss in a physical waveguide. We used the proposed analytical equation to confirm the
presence of an extra factor of 2 in [8].

The proposed analytical formulation of scattering loss was verified, using an expedient
FDTD scheme which included extraction of the attenuation coefficient and S-parameters.
We validated the FDTD scheme by comparing numerical results against previously pub-
lished analytical functions for the dielectric slab waveguide.

With the FDTD model verified, we demonstrated S-parameters extraction and attenu-
ation coefficient calculation by applying the proposed methodology to a smooth dielectric
slab waveguide. We then applied the methodology to compute the attenuation coefficient
for a dielectric slab waveguide exhibiting random sidewall perturbations according to the
exponential autocorrelation function. We proposed to use a filtering technique to reduce
the signal-to-noise ratio of the final FDTD data in the frequency domain.

Along the way, we demonstrated the ability of the FDTD scheme to produce reasonably
accurate results through tens of simulations for sidewall roughness profiles of varying
correlation length at standard deviations of σ = 9 nm and σ = 15 nm. The FDTD results
showed that the mean error for simulation is quite small, with an overall average error of
only −4.12% and 2.24% for the attempted standard deviations, respectively.

The Python FDTD code (OIDT) [13] used to generate much of the data in this paper
was released as open-source software (under the GNU GPL v3.0 license [15]) published on
GitHub [14], featuring multi-core support (for CPU) to compute the 2D TEz fields of optical
interconnects. Work is currently underway to develop efficient 2D transverse magnetic
(TM), and full 3D, FDTD models for further characterization of stochastic scattering loss
due to sidewall roughness in nano-scale optical interconnects, consisting of single-line and
multiple tightly-coupled lines, operating at 100 s of THz.
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Abstract: This paper considers the method for the calculation of magnetic flux density in the vicinity
of overhead distribution lines which takes into account the higher current harmonics. This method
is based on the Biot–Savart law and the complex image method. The considered method calculates
the values of the magnetic flux density for each harmonic component of the current separately at all
points of interest (usually lateral profile). In this way, it is possible to determine the contributions of
individual harmonic components of the current intensity to the total value of magnetic flux density.
Based on the contributions of individual harmonic components, the total (resultant) value of the
magnetic flux density at points of interest is determined. Validation of the computational method
is carried out by comparison of the results obtained by the considered calculation method with
measurement results. Furthermore, the application of the calculation method was demonstrated
by calculating magnetic flux density harmonics in the vicinity of two overhead distribution lines of
typical phase conductor arrangements.

Keywords: Biot–Savart (BS) law based method; current intensity harmonics; magnetic flux density
harmonics; overhead lines

1. Introduction

Advances in technology and increased energy requirements have brought with them a
significant increase in the number of nonlinear loads, as well as the use of converter-based
distributed generation units. Nowadays, a large number of such units are connected to the
networks. As previously stated, this brings into the networks the problem of harmonic
pollution [1,2].

The presence of a large number of nonlinear devices in the network causes harmonic
pollution to become one of the most common power quality problems. Harmonic currents
cause numerous detrimental side effects (heating, accelerated aging and capacity reduction),
primarily on lines and transformers, but also on other equipment in the distribution
network. They can also cause unwanted activation of protection devices, malfunctions
of sensitive devices, interference in communication systems, and the reduction of useful
torque of induction motors [3–5].

Due to the negative effects that harmonics have on the electrical equipment, which
results in financial losses, it is important to limit harmonic currents injection [6]. For this
purpose, international and national organizations defined the limits for each harmonic
amplitudes, in relation to the fundamental one, as well as the limits of the total harmonic
distortion (THD) [7–9]. “IEEE Recommended Practice and Requirements for Harmonic
Control in Electric Power Systems” limits the harmonic distortion at the point of com-
mon coupling, and defines the limit values for up to the 50th harmonic. This standard
prescribes different harmonic limits depending on the system rated voltage [7]. Inter-
national Electrotechnical Commission published series of standards “IEC 61000-3:2022
SER-Electromagnetic compatibility” where different standards treat harmonic emissions in
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public low-voltage systems and the connection of distorting installations in medium, high
and extra high voltage systems [9].

In order to meet these limitations, various methods are being developed to mitigate
harmonic emission. Harmonic emission mitigation methods are classified into three cate-
gories: passive, active, and hybrid methods. Choosing the most appropriate method for
mitigating harmonic emission is a demanding process, and it should be borne in mind that
some of the methods are highly dependent on network conditions, while others can cause
resonant phenomena [10,11].

Nonlinear loads have a tendency to change their input impedance over the time
and this has a significant impact on their current harmonic emission. Thus, the network
harmonic impedance can be used to characterize the impact of individual nonlinear devices
on harmonic currents emission in the grid [12], which can be useful for proper harmonic
limiting method selection.

Investigations of possible adverse health issues associated with exposure to magnetic
fields is of great research interest in recent decades. Numerous studies are conducted in
order to find the exact mechanism of the impact of these phenomena on humans, as well
as to establish consequences of that exposure [13–17]. Based on the experimental research
and the statistical analyses of the relationship between the magnetic field exposure and the
occurrences of severe diseases, the International Commission on Non-Ionizing Radiation
Protection (ICNIRP) [18] published guidelines for limiting exposure to time-varying electric
and magnetic fields in the frequency range (1 Hz–100 kHz). These guidelines relate to
instances when the fields are caused by pure sine currents and voltages, but also instances
when their harmonic distortion is present. The guidelines cover all magnetic flux density
harmonics which may occur in power system facilities. Since harmonic standards cover
limit values up to the 50th harmonic, which for a system with fundamental frequency of
50 Hz corresponds to a frequency 2500 Hz, or 3000 Hz for the systems with a fundamen-
tal frequency of 60 Hz, it is interesting to note exposure limit values for that frequency
range. For occupational exposure to time varying magnetic fields ICNIRP limit values are
1 × 10−3 T in a frequency range from 25 Hz to 300 Hz, and 0.3/ f T for a frequency range
from 300 Hz to 3 kHz, where f is the frequency of the analysed field. For general public
exposure, the limit values for various frequency ranges are defined in a slightly different
way. For a frequency range from 50 Hz to 400 Hz the limit value is 2 × 10−4 T and for a
frequency range from 400 Hz to 3 kHz, the limit value is defined as 8 × 10−2/ f T. When
it comes to simultaneous exposure to multiple frequency fields, which is the case in the
vicinity of power facilities with currents polluted by harmonics, specific criterion regarding
reference levels should be applied [18]. According to these criteria, the influence of fields of
all frequencies is summed up and the exposure limit value can be violated even if the fields
at all frequencies individually meet the limit values.

It is important to perform magnetic flux density determination in the vicinity of
overhead lines, as one of the strongest field sources. It is often assumed that if the magnetic
flux density of the fundamental harmonic satisfies the prescribed reference levels than the
harmonic magnetic flux density also satisfies them. However, this does not have to be the
case in situations where currents with a large presence of higher harmonics flow through
overhead lines [19,20].

In this paper, a method for magnetic flux density harmonics calculation in the vicinity
of overhead lines is considered. The method is validated by comparing the results obtained
by the considered method to the measurement results. Furthermore, the considered method
is applied to calculate magnetic flux density harmonics in the case of a currently operational
medium voltage overhead lines.

The remainder of this paper is organized as follows. Section 2 provides a detailed
description of the considered calculation method for the calculation of magnetic flux density
harmonics. In Section 3, a comparison of the results obtained by considered calculation
method with the measurement results is given. Section 4 considers the application of the
considered calculation method on a case of two overhead distribution lines of a typical
configuration of phase conductors. Section 5 concludes the paper.
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2. Calculation Method

In order to analyse magnetic flux density harmonics it is necessary to consider the
exact phase current conditions. In overhead lines with the presence of higher current
harmonics, phase current waveforms have the general form:

ia(t) =
√

2
N

∑
h=1

I(h)a sin(hωt + θ
(h)
a ) (1)

ib(t) =
√

2
N

∑
h=1

I(h)b sin(hωt + θ
(h)
b ) (2)

ic(t) =
√

2
N

∑
h=1

I(h)c sin(hωt + θ
(h)
c ), (3)

where: ia(t), ib(t), ic(t) are phase current waveforms, N is the total number of considered
harmonics, h denotes the harmonic under a consideration, I(h)a , I(h)b , I(h)c are root mean
square (RMS) values of phase current intensities of h-th harmonic, ω is fundamental
harmonic angular frequency, and θh

a , θh
b , θh

c are h-th harmonic phase angles associated with
the phase currents.

It is important to note that not all current harmonics behave in the same manner as the
fundamental harmonic. According to symmetrical component theory, current harmonics
can be categorized into three different sequences: direct, inverse, and zero. The phase
angles for direct, inverse and zero sequence harmonics are defined by the Equations (4)–(6),
respectively [19,20]: ⎡⎢⎣θ

(h)
a

θ
(h)
b

θ
(h)
c

⎤⎥⎦ =

⎡⎢⎣ 0
e−j 2π

3

ej 2π
3

⎤⎥⎦(h = 3 · k + 1, k = 0, 1, 2, ...) (4)

⎡⎢⎣θ
(h)
a

θ
(h)
b

θ
(h)
c

⎤⎥⎦ =

⎡⎢⎣ 0
ej 2π

3

e−j 2π
3

⎤⎥⎦(h = 3 · k + 2, k = 0, 1, 2, ...) (5)

⎡⎢⎣θ
(h)
a

θ
(h)
b

θ
(h)
c

⎤⎥⎦ =

⎡⎣0
0
0

⎤⎦(h = 3 · k, k = 1, 2, 3, ...). (6)

For each considered calculation point in the vicinity of the overhead line, magnetic
flux density can be calculated by applying the BS law based method [21]. This method
considers every phase conductor as one current point source. Based on the equations for
the calculation of magnetic flux density for fundamental harmonics [22], derived from
the BS law based method, magnetic flux density for harmonics of a higher order can be
calculated. The magnetic flux density for the entire lateral profile is calculated separately
for each current harmonic. For the h-th order harmonic, the magnetic flux density phasor
spatial components at an arbitrary calculation point P(x, y) in the vicinity of the overhead
distribution line can be calculated using the following equations:

B(h)
x (x, y) =

μ0

2π
·

n

∑
i=1

(
−y − yi

r2
i

+
y + yi + α(h)

r′i
2

)
· I(h)i (7)

B(h)
y (x, y) =

μ0

2π
·

n

∑
i=1

(
x − xi

r2
i

− x − xi

r′i
2

)
· I(h)i , (8)
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where B(h)
x (x, y) and B(h)

y (x, y) are x and y vector components of the h-th harmonic mag-
netic flux density phasor, μ0 is the permeability of the air, n is the total number of phase
conductors, I(h)i is the current intensity of h-th harmonic of i-th phase conductor, (x,y)
are coordinates of an arbitrary calculation point, (xi,yi) are coordinates of the i-th phase
conductor, α(h) is the complex depth, ri is the shortest distance between the i-th phase
conductor and calculation point, r′i is the shortest distance between complex image of i-th
phase conductor and calculation point.

The effect of ground surface is taken into account by using the complex image method.
The complex depth is frequency dependent, therefore it can be calculated using the follow-
ing equation [23,24]:

α(h) =
2√

−j · ω(h) · μ0 · (σsoil − j · ω(h) · εsoil)
, (9)

where ω(h) is the h-th harmonic angular frequency, σsoil is soil conductivity, εsoil is dielectric
permittivity of the soil.

The total magnetic flux density spatial vector components at an arbitrary calculation
point can be obtained by applying the principle of superposition to include the contributions
of each considered harmonic, as in:

Btot
x (x, y) =

√√√√ N

∑
h=1

∣∣∣B(h)
x (x, y)

∣∣∣2 (10)

Btot
y (x, y) =

√√√√ N

∑
h=1

∣∣∣B(h)
y (x, y)

∣∣∣2, (11)

where Btot
x (x, y) and Btot

y (x, y) are magnetic flux density vector spatial components RMS values.
The resultant value of the total magnetic flux density with the presence of higher

harmonics taken into account at some arbitrary point is defined as [21]:

Btot(x, y) =

√∣∣∣Btot
x (x, y)

∣∣∣2 + ∣∣∣Btot
y (x, y)

∣∣∣2, (12)

where Btot(x, y) is the resultant value of the magnetic flux density at an arbitrary point with
coordinates (x, y).

THD of the magnetic flux density can be calculated using the following equation [25]:

THDB(x, y) =

√
∑N

h=2 B(h)(x, y)
2

B(1)(x, y)
. (13)

The RMS value of magnetic flux density for each considered harmonic, including the
fundamental one, can be calculated from the following equation:

B(h)(x, y) =

√∣∣∣B(h)
x (x, y)

∣∣∣2 + ∣∣∣B(h)
y (x, y)

∣∣∣2, (14)

where B(h)(x, y) is the RMS value of the h-th magnetic flux density at an arbitrary point
with coordinates (x, y).

3. Calculation Method Validation

In order to validate the proposed calculation method, a comparison between calcu-
lated and measured values is presented in this section. Two cases have been analysed.
The first considered case is a simple low voltage three-phase horizontal conductor ar-
rangement with previously published results. The second considered case corresponds
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to a three-phase distribution overhead line of 35kV rated voltage with horizontal phase
conductor arrangement.

3.1. Low-Voltage Experimental Case

The method for the calculation of magnetic flux density harmonics in the vicinity of
overhead lines is validated by the comparison of calculated magnetic flux density with
measurement results given in the literature [26]. The measurements correspond to the
three-phase configuration where conductors are placed at the same height, as shown in
Figure 1a. Magnetic flux density calculation and measurements are performed at ground
level over the considered lateral profile in increments of 25 cm. Two cases are examined,
without the presence of higher current harmonics, and with the presence of third current
harmonic. The phase current intensity RMS value during the measurements is 4.58 A at
frequency 16.666 Hz, and the third harmonic current intensity is 0.7633 A at frequency
50 Hz [26]. For both cases, the comparison of magnetic flux density measurement results
and the obtained calculation results for the considered test case are given in Figure 1b.

(a) (b)
Figure 1. Considered validation case study. (a) Three-phase experimental configuration [26]. (b) Com-
parison of calculated and measured results.

From Figure 1b, it can be noted that there exists a high level of agreement between the
measurement and the calculation magnetic flux density results in both considered cases;
in the absence and in the presence of a third current harmonic in the system. Although
magnetic flux density measurements were originally presented in Gauss [26], in this paper
they are converted to SI system units. Measurements were extracted from the paper [26]
using the WebPlotDigitizer tool [27], which may be the cause of certain deviations from the
originally presented measurements.

In order to determine the level of agreement between the calculated and measured
values, in both cases, mean square error (MSE) metric is used. In the case when there is
no presence of higher harmonics, the mean square error is 4.08 × 10−4 (μT)2, while in the
case when there is a third harmonic in the considered system, the MSE value amounts to
6.62 × 10−4 (μT)2.

There are certain deviations between the measurement and calculation results re-
gardless of whether there is the presence of higher harmonics or not. It is interesting to
note that, in the significant number of considered points observed deviations are larger
in case without presence of third harmonic. Taking this into account it can be considered
that the proposed model adequately takes into account the presence of higher harmonics.
Deviations between measured and calculated values in both cases can be caused by low
current intensity, which causes low magnetic flux density values, which are more difficult
to register. Furthermore, although measurements are intended to be performed at floor
level, it is difficult to set the sensor exactly at that level and due to the small height at
which conductors are placed, this can significantly affect measured values. The small
distances between the conductors and between the points where the magnetic flux density
measurement are performed, can also have an impact on measured values.
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3.2. Overhead Distribution Line Case

The proposed calculation model is also validated in the case of the overhead dis-
tribution line of 35 kV rated voltage. The phase conductor configuration of considered
distribution line is shown in Figure 2a. The height of the phase conductors was determined
by measurements using Suparule model 600 height meter, while the lateral distance be-
tween the phase conductors was taken from the technical specifications obtained from the
local distribution company. The magnetic flux density has been measured by the 3D probe
Narda-ELT 400 whose frequency range is from 1 Hz up to 400 kHz. Measurements are
performed at the height of 1 m above ground surface. Measurements were performed from
the distribution line axis to a distance of 20 m in one direction with increments of 1 m. Si-
multaneously with the measurement of the magnetic flux density, the current intensity was
also measured. The measurement of the current intensity and current harmonic spectrum
was conducted by power quality analyser EPPE W8. These measurements were carried
out in the distribution transformer station (35/10 kV) which is supplied by the considered
overhead distribution line. The power quality analyser was connected to the secondary
windings of current measuring transformers that are placed on the lower voltage terminals
(10 kV terminals) of the distribution transformer. The transmission ratio of the current
measuring transformer is 600/5 (A). Therefore, the measured values of current intensity
were corrected by the transmission ratios of the current measuring transformer and the
distribution transformer. The value of the fundamental harmonic intensity was 218.64 A at
frequency 50 Hz. The registered current harmonic content is given in Figure 2b.

(a) (b)
Figure 2. Considered 35 kV horizontal overhead distribution line case. (a) 35 kV overhead distribution
line configuration. (b) Current harmonic spectrum.

A comparison between the measured and calculated magnetic flux density values is
presented in Figure 3. It can be noted that the results of measurements and the calculations
of magnetic flux density closely match. For this case, the calculated value of the mean
square error equals 2.24 × 10−3 (μT)2.

The observed deviations between the measurements and calculation results can be
caused by numerous factors such as current intensity and current harmonic content varia-
tion during the measurement of the magnetic flux density, measurement transformer error
and uneven terrain on location where magnetic flux density was measured.

The results of two analysed cases demonstrate that the considered calculation method
can be used for magnetic flux density analysis in the vicinity of overhead lines with the
presence of higher current harmonics.
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Figure 3. Comparison of calculated and measured values for analysed 35 kV overhead distribu-
tion line.

4. Case Studies

The considered calculation method has been applied to perform a magnetic flux
density harmonics calculation in the vicinity of two typical overhead distribution lines. The
first case corresponds to a 10 kV overhead distribution line of horizontal phase conductor
configuration and the second case corresponds to a 35 kV overhead distribution line. These
overhead distribution line configurations are selected based on their widespread use, large
human population proximity, and the presence of higher current harmonics in the medium
voltage networks, due to a high number of nonlinear loads and distributed generation.

4.1. Overhead Distribution Line of Horizontal Configuration

The first considered overhead distribution line configuration is shown in Figure 4a.
Calculations are performed for the rated current of phase conductors and the usual presence
of higher current harmonics. For the 10 kV rated voltage overhead line, the aluminium
steel conductor with ampacity of 170 A is typically used. Calculations are performed for
the converter-based distributed generator typical harmonic spectrum as in Table 1 [28,29].

Table 1. Considered current harmonic spectrum.

Harmonic Order Magnitude (%) Phase Angle (Rad)

1 100 0

5 20 0

7 14.3 0

11 9.1 0

13 7.7 0

17 5.9 0

19 5.3 0

23 4.3 0

25 4 0

29 3.4 0

31 3.2 0

The main goal of magnetic flux density calculation is to determine whether or not
the values of magnetic flux density generated by the overhead distribution line exceed
the prescribed values. Thus, in Figure 4b, the maximum calculated values of magnetic
flux density harmonics are shown together with the ICNIRP reference levels for exposure
to time varying magnetic fields [18]. Calculations are performed over the lateral profile
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from −20 m to +20 m from distribution line axis, at a height of 1 m above ground surface.
Calculations are performed for the assumed minimum conductor heights, where the highest
magnetic flux density values are expected [30].

(a) (b)
Figure 4. Considered 10 kV overhead distribution line case. (a) 10 kV overhead distribution line
configuration. (b) Comparison with ICNIRP reference values.

From Figure 4b it can be noted that all magnetic flux density harmonics, in the consid-
ered case study, satisfy prescribed limit values for both general and occupational exposure.
In addition, ICNIRP proposes criteria for simultaneous exposure to multiple frequency
fields [18]. These criteria are originally defined for magnetic field strength, but in this
paper they are adjusted for the magnetic flux density. Taking into account the relationship
between the magnetic field strength and the magnetic flux density, the criteria can be
defined by the following equation:

10 MHz

∑
j=1 Hz

Bj

BR,j
≤ 1, (15)

where Bj is magnetic flux density at frequency j, and BR,j is magnetic flux density reference
level at frequency j for professional or general public exposure.

Taking into account magnetic flux densities of all present harmonics, the sum from
Equation (15) corresponds to a value of 4.8 × 10−3, which is significantly less than 1.
The general public exposure reference values are used for calculation. Considering that
occupational exposure reference values are larger, it can be concluded that for this test case
exposure limits are satisfied in all conditions.

Taking into account that a typical overhead distribution line is analysed under the
assumption that phase current intensity is equal to the conductor ampacity, information
that even in the most difficult load conditions will not violate the prescribed reference
values is very significant. This is especially relevant for densely populated areas, where
distribution lines are widespread.

Figure 5a presents the magnetic flux density distributions associated with the funda-
mental harmonic, the total magnetic flux density where contributions of the entire analyzed
harmonic spectrum are taken into account, and the magnetic flux density where only a
limited harmonic spectrum is considered (only those harmonics with values higher than
5% of fundamental harmonic are considered). Figure 5b shows the distribution of magnetic
flux density higher order harmonics over the considered lateral profile.
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(a) (b)
Figure 5. Magnetic flux density distribution for the analysed 10 kV overhead distribution line. (a) Fun-
damental harmonic and total magnetic flux density. (b) Higher harmonics magnetic flux density.

It can be noted from Figure 5 that all considered magnetic flux density harmonics
as well as the total magnetic flux density have a maximum value at the distribution line
axis. The maximum calculated values of magnetic flux density in Figure 5a are 1.84 μT for
total magnetic flux density with entire harmonic spectrum, 1.83 μT for limited harmonic
spectrum and 1.76 μT for fundamental harmonic magnetic flux density. The relative error
between the total magnetic flux densities, when the entire harmonic spectrum and limited
harmonic spectrum were taken into account, is −0.54%. On the other hand, the highest
relative error between the magnetic flux densities corresponding to a case when the entire
harmonic spectrum is considered, and a case when only the fundamental harmonic is
taken into account, is equal to −4.35%. The observed difference between these three values
is due to the presence of higher current harmonics which cause higher magnetic flux
density harmonics.

Fundamental harmonic magnetic flux density, total magnetic flux density and mag-
netic flux density limited to harmonics higher than 5% over one period are shown in
Figure 6. Magnetic flux density waveforms correspond to the point directly under the
central phase conductor, where magnetic flux density reaches the maximum value for all
considered harmonics. The total magnetic flux density waveforms when higher harmonics
presence was taken into account are obtained by superimposing the waveforms of all
considered magnetic flux density harmonics.

Figure 6. Magnetic flux density waveform for analysed 10 kV overhead distribution line.

As it can be noted from Figure 6 fundamental harmonic magnetic flux density have
the sine waveform, while other two magnetic flux densities have distorted waveforms
due to the presence of higher current harmonics. Also, it can be noted that magnetic flux
densities for cases of entire and limited harmonic spectrum have similar waveforms with
minor deviations.
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4.2. Overhead Distribution Line of 35 kV Rated Voltage

Phase conductor arrangement of the second analysed overhead distribution line is
presented in Figure 7a. The calculations are performed for the rated current of phase
conductors and in the presence of higher current harmonics. For the analysed 35 kV
rated voltage distribution line, the current intensity of fundamental harmonic of 300 A is
assumed. The harmonic spectrums used in this case are the same as in the previous case. In
Figure 7b, the maximum calculated values of magnetic flux density harmonics are shown
together with the ICNIRP reference levels for exposure to time varying magnetic fields [18].
Calculations are performed over the lateral profile from −20 m to +20 m from distribution
line axis, with increments of 1 m. Calculations are performed at a height of 1 m above
ground surface.

(a) (b)
Figure 7. Considered 35 kV overhead distribution line case. (a) 35 kV overhead distribution line
configuration. (b) Comparison with ICNIRP reference values.

In this case, as in the previous one, all magnetic flux density harmonics are lower
than both prescribed limit values for the general and occupational exposure. Applying
the ICNIRP criteria for simultaneous exposure to multiple frequency magnetic fields, the
obtained sum for stricter limits, defined in Equation (15) amounts to 5.2 × 10−3, which
means that also in this considered case, exposure restrictions are satisfied.

The comparison of magnetic flux density distribution for fundamental harmonics as
well as the total magnetic flux density, where contributions of the entire analysed harmonic
spectrum and limited harmonic spectrum are considered, are shown in Figure 8a. The
magnetic flux density of higher order harmonics over the considered lateral profile is shown
in Figure 8b.

(a) (b)
Figure 8. Magnetic flux density distribution for analysed 35 kV overhead distribution line. (a) Funda-
mental harmonic and total magnetic flux density. (b) Higher harmonics magnetic flux density.

The maximum calculated value of the fundamental harmonic magnetic flux density
shown in Figure 8a is 1.91 μT. On the other hand, the maximum values of the total magnetic
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field density for case of entire and limited harmonic spectrum are 2.00 μT and 1.99 μT,
respectively. The highest relative error between total magnetic flux densities when entire
harmonic spectrum and limited harmonic spectrum were taken into account is −0.5%. The
highest relative error between the magnetic flux densities corresponding to a case when
entire harmonic spectrum is considered, and a case when only fundamental harmonic is
taken into account, is equal to −4.5%. It is noticeable that in this case, the higher current
harmonics have a significant impact on the calculated magnetic flux density values, as in
the previous case.

Fundamental harmonic magnetic flux density waveform, magnetic flux density wave-
form obtained by taking into account entire harmonic spectrum and magnetic flux density
taking into account limited harmonic spectrum for the analysed 35 kV overhead distri-
bution line are shown in Figure 9. The waveform correspond to a particular point in the
considered lateral profile where maximum magnetic flux density values are attained.

Figure 9. Magnetic flux density waveform for analysed 35 kV overhead distribution line.

Figure 9 demonstrates the distortion of magnetic flux density waveform due to the
impact of the current harmonics. The total magnetic flux density waveform is dependent
on the current harmonic spectrum.

Magnetic flux density THD, over the entire considered lateral profile, is 29.42% in
both considered case studies and, as expected, it is equal to current intensity THD. At
all analyzed points, the ratio of the magnetic flux density of the higher harmonic to the
fundamental harmonic magnetic flux density is also constant and equal to the ratio of the
current of the corresponding higher harmonic to the fundamental harmonic current.

The obtained results, in all analysed cases, undoubtedly show the significance of mag-
netic flux density harmonics in the magnetic flux density exposure analysis. The magnetic
flux density harmonics are especially important when analyzing overhead distribution
lines, due to the their harmonic pollution as well as population proximity.

5. Conclusions

This paper consider a method for the calculation of magnetic flux density harmonics
in the vicinity of overhead lines. The considered method is based on the BS law. The
validation of the calculation method is done by comparison of the results obtained by the
considered calculation method with the measurement results. In addition, the considered
method is applied for magnetic flux density harmonics calculation of two typical overhead
distribution lines. The obtained results show the difference between the fundamental
harmonic magnetic flux density and the resultant value obtained when the higher current
harmonics are taken into consideration. The observed differences emphasize the signif-
icance of magnetic flux density harmonics analyses, especially in situations where the
obtained magnetic flux density values are close to the prescribed values.

Results presented within the paper showed that, when calculating the magnetic
flux density caused by harmonics distorted current, the magnetic flux density waveform
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will also be distorted. In addition, it was shown that if current harmonics with a small
percentage share are neglected, this will have a slight effect on a calculated total value
of the magnetic flux density. Specifically, it was shown that when the share of current
harmonics is lower than 5%, they can be neglected without introducing any significant
errors in the results of the total magnetic flux density calculation. Such an approximation
further reduces the calculation time, since the total current harmonic spectrum does not
need to be considered.
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Abstract: This paper deals with the development of a Machine Learning (ML)-based regression
for the construction of complex-valued surrogate models for the analysis of the frequency-domain
responses of electromagnetic (EM) structures. The proposed approach relies on the combination
of two-techniques: (i) the principal component analysis (PCA) and (ii) an unusual complex-valued
formulation of the Least Squares Support Vector Machine (LS-SVM) regression. First, the training and
test dataset is obtained from a set of parametric electromagnetic simulations. The spectra collected in
the training set are compressed via the PCA by exploring the correlation among the available data.
In the next step, the compressed dataset is used for the training of compact set of complex-valued
surrogate models and their accuracy is evaluated on the test samples. The effectiveness and the
performance of the complex-valued LS-SVM regression with three kernel functions are investigated
on two application examples consisting of a serpentine delay structure with three parameters and
a high-speed link with four parameters. Moreover, for the last example, the performance of the
proposed approach is also compared with those provided by a real-valued multi-output feedforward
Neural Network model.

Keywords: Least Squares Support Vector Machine; serpentine delay line; high-speed interconnect
link; principal component analysis

1. Introduction

In recent decades, Machine Learning (ML) methods have been widely applied to
construct accurate and fast-to-evaluate surrogate models able to reproduce the input–
output behavior of electromagnetic (EM) structures as a function of deterministic and
uncertain parameters [1–14]. In the above scenario, advanced data-driven and ML-based
regressions, such as Polynomial Chaos Expansion [1–4], Support Vector Machine (SVM)
regression [5,6], Least-Squares Support Vector Machine (LS-SVM) regression [7], Gaussian
Process regression (GPR) [8], and feedforward [9–12], deep [12,13], convolutional [12] and
Long Short-Term Memory (LSTM) [14] neural networks (NNs), have been successful ap-
plied to uncertainty quantification (UQ) and optimization in EM applications. The common
idea is to adopt the above methods to train a regression model by using a limited number
of training samples generated via a set of expensive full-wave or circuital simulations with
the so-called computational model. Then, since the resulting surrogate model is known in
a closed form, it can be suitably embedded within UQ and an optimization scheme as an
efficient and effective “surrogate” of the expensive computational model [15].

Despite the high performance shown in realistic electronic and EM applications, most
of the ML techniques have been developed for dealing with real-valued data [16–18].
However, complex-valued data are widely used in electronic applications (e.g., for AC
simulations and frequency-domain analysis). The simplest strategy for extending the
applicability of real-valued ML techniques to the case of complex-valued data is based
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on the so-called dual-channel formulation [19–21]. The underlaying idea is to recast the
complex-valued problem into two uncorrelated real-valued ones, by stacking the real
and imaginary part of the complex input and output values. The main advantage of the
above procedure is that plain real-valued ML techniques can be directly adopted without
requiring any generalization or improvement. However, such an approach completely
ignores the possible correlation among the real and imaginary parts of the complex-valued
output, thus leading to possible issues regarding accuracy and robustness to noise [19,22].
For the above reasons, alternative pure complex-valued formulations have been proposed
for several ML techniques, such as NN [22], SVM regression [23], kernel Least Squares
regression [19–21,24,25], LS-SVM regression [7] and GPR [26].

This paper investigates the performances of a pure-complex implementation of a
kernel-based ML technique such as the LS-SVM regression. The proposed complex-value
formulation is based on the theoretical framework developed in [19,21,24] for a plain
kernel-based regression in which the regularization term is missing. Indeed, like the SVM
regression, the LS-SVM regression is a powerful and well-consolidated regression technique
combining the beneficial effect of the kernel and of the Tikhonov regularization [17,25,27].
Specifically, thanks to the kernel trick, the above regression allows the construction of a
non-parametric model in which the number of unknowns to be estimated by the regression
problem is independent from the dimensionality of the input space. Furthermore, the
regularizer terms limits the overfitting issue and increases the model generalization.

The aim of this work is twofold. First, the mathematical formulation of the complex-
value LS-SVM regression is developed, and the mathematical link between the pure com-
plex formulation and the dual channel one is highlighted, where the latter is a special
case of the more general complex-valued formulation. Second, the performance of com-
pressed surrogate models constructed via the dual-channel and the pure complex-value
LS-SVM regression with a complex and pseudo kernel are investigated by considering the
frequency-domain responses of two test-cases consisting of a serpentine delay structure and
a high-speed link, with three and four parameters, respectively. It is important to stress that,
in the above applications, a compressed representation of the frequency-domain responses
based on principal component analysis (PCA) [18,28–30] has been used to remove the
redundant information and to reduce the number of LS-SVM-based models that need to
be trained [31]. For the sake of completeness, for the second example, the results of the
proposed approaches are compared with those provided by a real-valued multi-output
feedforward NN model [11,12].

The paper is organized as follows. Section 2 describes the problem statement ad-
dressed during the paper, and its challenges. Section 3 provides an overview of the
mathematical background of the PCA. Section 4 provides a self-contained formulation of
the complex-valued LS-SVM regression with specific emphasis on the differences between
the dual-channel and the pure complex implementation. In Section 5, the accuracy and
the performance of the proposed complex-valued LS-SVM regression are investigated on
two test cases consisting of a serpentine delay line structure and a transfer function of a
high-speed interconnect link. Finally, the paper ends with the conclusions in Section 6.

2. Problem Statement and Challenges

Starting from a training set D = {(xi, yi( fk))}L,K
i,k=1 and collecting the configuration of

the input parameters xi = [xi,1, . . . , xi,d]
T ∈ X , with X ∈ Cd and the corresponding output

yi( fk) ∈ C computed by a full-computational model (i.e., yi( fk) = M( fk; xi)) for a set of
values of the independent variable fk (e.g., the frequency), our goal is to build a surrogate
model M̃ that approximates the training data and is able to generalize well on the “unseen”
data, usually known as test samples, such as:

y( fk; x) ≈ M̃( fk; x), (1)

For any x ∈ X and for k = 1, . . . , K.
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Without loss of generality, we seek a data-driven regression technique able to provide
an accurate and efficient approximation of the actual behavior of the computational model
M( fk; xi). This means that the surrogate model M̃ should be constructed by using a
small set of training samples (i.e., L should be as small as possible), since the training
samples are usually generated via a set of computational expensive simulations based on
the full-computational model M.

The above modeling problem is rather challenging. First, the regression technique
should be able to work in the complex domain. Moreover, the resulting surrogate model
should be able to mimic the behavior of a multi-output complex-valued function provided
by the computational model (i.e., the output values yi( fk)), in which its values unavoidably
depend on both the configuration of the input parameters xi and on the variable fk.

A possible modeling scheme consists of considering the free variable fk as an extra
input parameter. This means that we are seeking a “single” advanced model able to
represent in a closed-form the impact of both the parameter x and the frequency fk on
the system output. As an example, such a model can be obtained via a plain or recurrent
NN [12,13]. However, due to the complexity of the problem at hand, the resulting neural
network structure usually requires a large number of neurons and several hidden layers.
Moreover, despite their flexibility, the training of NN-based structures requires the solution
of a non-convex optimization leading to training issues (i.e., expensive training time and/or
huge number of training samples [13,32]).

In order to partially overcome the above issues, we can think of using a single-output
regression trained via the solution of a convex optimization problem, such as the plain
kernel Least Squares regression [21], the LS-SVM regression [33], or the SVM regression [34],
and build one model for each frequency point. In this way, the model generation requires
less training samples; unfortunately, however, the overall model requires training K single-
output surrogates, thus making the training process extremely expensive and cumbersome
when a large number of frequency points are considered.

A data compression strategy can be seen as a good compromise between the two
modeling schemes depicted in the previous section. As an example, PCA [18,28–30] allows
the extraction of the inherent correlation existing among several realizations of output data
samples at different frequency points, thus leading to a compressed representation of the
frequency spectra. In such a scenario, the number of actual single-output models required
to represent the data can be heavily reduced.

3. PCA Compression

This section briefly presents the mathematical background of the PCA [18,28–30]. Let
us consider the output dataset {yi( fk)}L,K

i,k=1 that collects L spectra computed for different
configurations of the input parameters (i.e., the number of training outputs), each having
K frequency points. The above dataset can be recast as a K × L matrix Y, such that the
element Yi,k = yi( fk). For normalization purposes, a zero-mean matrix is considered:

Ỹ = Y − μ , (2)

where μ is the mean value of Y, calculated row-wise and subtracted column-wise
The new rectangular matrix Ỹ ∈ CK×L can be represented by means of the compact

singular value decompositions (SVD) [28,30]:

Ỹ = USVH, (3)

where, assuming that there are L columns of U and V associated with non-zero singular
values, U = [u1, . . . uL] ∈ CK×L and V = [v1, . . . , vL ] ∈ CL×L are orthogonal matri-
ces, such that UHU = VHV = IL×L, collecting the left and right singular vectors, and
S = diag{(σ1, . . .σL)} ∈ CL×L is a diagonal matrix collecting the singular values sorted in
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a decreasing order σ1 � σ2 � · · · � σL. Now, a compressed approximation of the actual
matrix Ỹ can be obtained as follows:

Ỹ ≈ ŨS̃Ṽ
H

, (4)

where Ũ = [u1, . . . , un] ∈ CK×ñ with ui ∈ CK×1 and Ṽ = [v1, . . . , vn] ∈ Cñ×L

with vi ∈ CL×1 are the reduced left and right-eigenvector matrices collecting only
the first ñ components (i.e., the first ñ columns of the original matrices U and V), and
S̃ = diag{(σ1, . . . , σñ)} is a reduced diagonal matrix containing the first ñ singular values.

The above relationship can be used to obtain a compressed representation Z ∈ Cñ×L

of the original matrix Y, such that:

Z = Ũ
H

Ỹ = S̃Ṽ
H

, (5)

It is important to note the resulting compressed matrix Z ∈ Cñ×L is smaller than the
original matrix Ỹ, since usually ñ � K. Moreover, the rows of the compressed matrix Z

can be considered to be the realizations of a new set of output variables {z(xl)}L
l=1, with

z(xl) ∈ Cñ×1, which can be considered as the collection of L samples of a compressed
ñ-dimensional output variable. Specifically, the element (i, j) of the matrix Z, corresponds
to the i-th output of the compressed representation evaluated at the j-th configuration of
the input parameters, i.e., Zij = zi

(
xj
)
. This means that only ñ single-output models need

to be trained to represent the whole dataset provided by the matrix Y, thus leading to a
substantial improvement in the training time. Once a surrogate model for each of the ñ
components of the compressed multi-output representation in Z is available, the overall

compress surrogate can be inexpensively used to predict the system output y

(
¯
x

)
∈ CK×1

for a generic test sample
¯
x ∈ X as follows:

y
(

¯
x

)
≈ μ+ ŨZ , (6)

where Z =

[
z1

(
¯
x

)
, . . . , zñ

(
¯
x

)]T
∈ Cñ×1.

It is important to remark that the compressed representation z(x) provided by the PCA
compression allows approximating the actual data y(x) with a tunable accuracy depending
on the number of PCA components ñ, such that [28]:(

σñ+1
σ1

)2
≤ ε2, (7)

where ε is a given error threshold tuned by the user.

4. Complex Valued Least-Square Support Vector Machine Regression

The LS-SVM regression is a kernel-based regression with an L2 regularizer, which
allows constructing a non-parametric model in which the number of unknowns and com-
plexity is independent from the number of input parameters via the solution of a simple
linear system, i.e., by solving a convex optimization problem [33].

However, the plain formulation of such a technique has been developed for real-
valued datasets only. The aim of this section is to extend the mathematical formulation
of the LS-SVM regression to the more general case of the complex-data problem. The
proposed formulation is based on the preliminary results presented in [25] and on the results
presented in [19,21] for a classical reproducing kernel Hilbert space (RKHS) regression, in
which the regularizer term is neglected. For the sake of simplicity, the following complex
valued formulation is developed for the simplified case of single-output regression, but all
the calculations can be easily extended to the case of a multi-output problem.
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Starting from a set of complex-valued samples D = {(xl , yl)}L
l=1 where xl ∈ Cd and

yl = y(xl) ∈ C, the primal space formulation of the LS-SVM regression is written:

y ≈ M̃(x) =
N

∑
i=1

wiφ
∗
i (x) + b = w, Φ(x) + b, (8)

where w = [w1, . . . , wN ]
T = wR + jwI ∈ CN are the complex regression coefficients

(i.e., wi = wi,R + jwi,I), Φ(x) = ΦR(x) + jΦI(x) = [φ1(x), . . . , φN(x)]
T is a vector-valued

complex function Φ(·) : Cd → CN collecting the complex-valued basis functions φi(x) that
provide a map between the parameter space and the feature space, b = bR + jbI is the bias
term, and w, Φ(x) = ΦH(x)w = wTΦ∗(x) is the inner product in the complex domain.

The primal space formulation of the complex-valued regression in Equation (8) can be
written in term of its real and imaginary components:

M̃(x) = M̃R(x) + jM̃I(x) =
(

wRΦT
R(x) + wIΦ

T
I (x) + bR

)
+ j

(
wIΦ

T
R(x)− wR ΦT

I (x) + bi

)
, (9)

In the above primal space formulation, the regression unknowns (i.e., the coefficients
in wR and wI , and the bias term bR and bI , respectively) are estimated by solving the
following convex optimization problem:

min
wR ,wI ,bR ,bI ,eR ,eI

1
2

wT
RwR +

1
2

wT
I wI +

γR
2

L

∑
l=1

e2
R,l +

γI
2

L

∑
l=1

e2
I,l (10)

Such that

eR,l = Re
{

yl − M̃(xl)
}
= yR,l − (wRΦR(xl) + wIΦI(xl) + bR)

eR,l = Im
{

yl − M̃(xl)
}
= yI,l − (wIΦR(xl)− wRΦI(xl) + bI

)
For l = 1, . . . , L, where wT

RwR + wT
I wI = w2

2 is the L2 regularizer and the terms e2
R,l

and e2
I,l provide the error of a squared loss function.

The Lagrangian for the above constraint optimization problem is written:

L(wR, wI , bR, bI , eR, eI , αR, αI)

= 1
2 wT

RwR + 1
2 wT

I wI +
γR
2

L
∑

l=1
e2

R,l +
γI
2

L
∑

l=1
e2

I,l

− L
∑

l=1
αR,l

{
eR,l − yR,l +

(
wT

RΦR(xl) + wT
I ΦI(xl) + bR

)}
− L

∑
l=1

αI,l
{

eI,l − yI,l +
(
wT

I ΦR(xl)− wT
RΦI(xl) + bI

)}
,

(11)

where αl = αR,l + jαI,l are the Lagrangian multipliers such that αR,l , αI,l ≥ 0 for l = 1, . . . , L.
By computing the partial derivatives of the Lagrangian L(wR, wI , bR, bI , eR, eI , αR, αI)

with respect to its parameters:

∂L
∂wR

= 0 → wR =
L

∑
l=1

[αR,lΦR(xl)− αI,lΦI(xl)], (12)

∂L
∂wI

= 0 → wI =
L

∑
l=1

[αR,lΦI(xl) + αI,lΦR(xl)], (13)

∂L
∂bR

= 0 →
L

∑
l=1

αR,l = 0 , (14)
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∂L
∂bI

= 0 →
L

∑
l=1

αI,l = 0 , (15)

∂L
∂eR,l

= 0 → γReR,l = αR,l , (16)

∂L
∂eI,l

= 0 → γI eI,l = αI,l , (17)

∂L
∂αR,l

= 0 → eR,l − yR,l +
(

wT
RΦR(xl) + wT

I ΦI(xl) + bR

)
= 0, (18)

∂L
∂αI,l

= 0 → eI,l − yI,l +
(

wT
I ΦR(xl)− wT

RΦI(xl) + bI

)
= 0, (19)

For l = 1, . . . , L.
By substituting (12)–(17) in (18) and (19):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

αR,l
γR

− yR,l +
L
∑

i=1
[αR,iΦR(xi)− αI,iΦI(xi)]

TΦR(xl) +
L
∑

i=1
[αR,iΦI(xi) + αI,iΦR(xi)]

TΦI(xl) + bR = 0

αI,l
γI

− yI,l +
L
∑

i=1
[αR,iΦI(xi) + αI,iΦR(xi)]

TΦR(xl)−
L
∑

i=1
[αR,iΦR(xi)− αI,iΦI(xi)]

TΦI(xl) + bI = 0

L
∑

l=1
αR,l = 0

L
∑

l=1
αI,l = 0

(20)

For l = 1, . . . , L.
The above system of equations is the dual-form representation of the optimization

problem in Equation (10), in which the original regression coefficients collected in the
vectors wR and wI are replaced by the Lagrangian multipliers αR and αI . It is important to
remark that, although the number of unknowns in the primal space (i.e., the dimensionality
of |w| = N) is given by the number of basis functions, in the dual formulation the number
of unknowns (i.e., the Lagrangian multipliers collected in the vectors α = αR + jαI) is
always equal to the number of the training samples L. This means the resulting model is
non-parametric, i.e., a model in which its complexity is independent from the number of
both the input parameters and the basis functions.

In order to define the kernel function and the dual formulation of the complex-valued
LS-SVM, the first two equations in Equation (20) can be rewritten as follows:

αR,l

γR
− yR,l +

L

∑
i=1

αR,i

[
ΦT

R(xi)ΦR(xl) + ΦT
I (xi)ΦI(xl)

]
+

L

∑
i=1

αI,i

[
ΦT

R(xi)ΦI(xl)− ΦT
I (xi)ΦR(xl)

]
+ bR = 0, (21)

αI,l

γI
− yI,l +

L

∑
i=1

αR,i

[
ΦT

I (xi)ΦR(xl)− ΦT
R(xi)ΦI(xl)

]
+

L

∑
i=1

αI,i

[
ΦT

R(xi)ΦR(xl) + ΦT
I (xi)ΦI(xl)

]
+ bI = 0, (22)

For l = 1, . . . , L.
Now, let us define a complex-valued kernel kc

(
x, x

′)
:

kc

(
x, x

′)
= Φ(x), Φ

(
x
′)

= ΦT(x) · Φ∗
(

x
′)

= (ΦR(x) + jΦI(x))
T ·

(
ΦR

(
x
′)− jΦI

(
x
′))

=[
ΦT

R(x)ΦR

(
x
′)

+ ΦT
I (x)ΦI

(
x
′)]

+ j
[
ΦT

I (x)ΦR

(
x
′)− ΦT

R(x)ΦI

(
x
′)]

= kR
(

x, x
′)

+ jkI
(

x, x
′) (23)

Similar to the real-valued formulation, the kernel function is defined as the inner
product in the complex feature space of the basis functions evaluated at x and x′, where:
kR

(
x, x

′)
= ΦT

R(x)ΦR

(
x
′)

+ΦT
I (x)ΦI

(
x
′)

and kI
(

x, x
′)

= ΦT
I (x)ΦR

(
x
′)−ΦT

R(x)ΦI

(
x
′)

.
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Using the above definition, Equations (21) and (22) can be rewritten as follows:

αR,l

γR
− yR,l +

L

∑
i=1

[αR,ikR(xi, xl)− αI,ikI(xi, xl)] + bR = 0 (24)

αI,l

γI
− yI,l +

L

∑
i=1

[αI,ikR(xi, xl) + αR,ikI(xi, xl)] + bI = 0 (25)

For l = 1, . . . , L.
In the above equations, the regression unknowns can be computed by solving the

following linear system:⎡⎢⎢⎢⎣
KRR + IL

γR
KRI 1 0

KIR KI I +
IL
γI

0 1

1T 0T 0 0
0T 1T 0 0

⎤⎥⎥⎥⎦
⎡⎢⎢⎣

αR
αI
bR
bI

⎤⎥⎥⎦ =

⎡⎢⎢⎣
yR
yI
0
0

⎤⎥⎥⎦ (26)

where IL is the identity matrix of size L × L, 1T = [1, . . . , 1]T ∈ R1×L, 0T = [0, . . . , 0]T ∈
R1×L, αR, αI ∈ RL×1 are vectors collecting the real and imaginary part of the regression
coefficients, b = bR + jbI is the bias term and KRR, KRI , KIR, KI I ∈ RL×L are kernel
matrices defined as:

K(i,j)
RR = K(i,j)

I I = kR
(
xi, xj

)
(27)

K(i,j)
IR = −K(i,j)

RI = kI
(
xi, xj

)
(28)

for any i, j = 1, . . . , L. The parameters γR and γI are the regularizer hyperparameters tuned
by the user and provide a trade-off between the model flatness and its accuracy [34].

It is important to remark that the above linear system is square and, therefore, if the de-
terminant of the square matrix is different from 0, it always yields a unique solution, which
leads to the following dual space formulation for complex-valued of LS-SVM regression:

y(x) =
L

∑
l=1

αlkC(xl , x) + b (29)

By substituting Equation (23) in the above equation gives:

y(x) =
L

∑
l=1

[(αR,lkR(xl , x)− αI,lkI(xl , x) + bR) + j(αR,lkI(xl , x) + αI,lkR(xl , x) + bI)] (30)

From the above formulation, it is clear that by means of the complex kernel kC,
the complex-valued LS-SVM regression in the dual space is able to account for possible
correlation between the real and imaginary part of y(x).

4.1. Complex-Valued Kernel

There are several strategies to construct a complex kernel kC. Within this paper, we
will investigate two of them, the independent kernel, referred to as the complex valued
complex function (CVCF) [19], and the pseudo kernel, referred to as the pseudo complex-
valued function (PCF) [35,36]. A generic CVCF kernel can be constructed starting from a
real-valued kernel kR as follows:

kC

(
x, x

′)
= kR

(
xR, x′R

)
+ kR

(
xI , x′I

)
+ j

(
kR

(
xR, x′I

)
+ kR

(
xI , x′R

))
, (31)

The above complex kernel is fully compliant with the definition provided in Equation (23).
The real kernel kR can be any real kernel function, e.g., linear kernel, radial basis function
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(RBF) kernel and polynomial kernel. Hereafter, in this paper, for the CVCF kernel we will
use kR as the RBF kernel, i.e.,

kR
(

x, x
′)

= exp
(
− 1

2σ2 x − x′)2
)

, (32)

where σ is the kernel hyperparameter, which in this work will be tuned, along with the
regularizer hyperparameters, during the model training by combining cross validation
(CV) with a Bayesian optimizer [37,38].

As an alternative, a family of kernels based on the PCF can be suitably generated from
the isotropic complex covariance function, such that (additional mathematical details are
provided in [19,36]):

kc(x, x′) = cos
(

cx − x
′)

kR
(

x, x
′)

+ j sin(cx − x′)kR
(

x, x
′)

, (33)

where kR(x, xk) can be selected as any kernel function and c is a new hyperparameter. In this
specific case, a Rational Quadratic kernel is adopted, such as kR(x, x′) = σ2

(
1 + x−x′2

2al2

)
−a,

which is a Rational Quadratic kernel in which a, l and σ are additional hyperparame-
ters. Moreover, in this case all the hyperparameters are tuned via CV and a Bayesian
optimizer [37,38].

4.2. Dual Channel Kernel (DCK) LS-SVM for Complex-Valued Data

The dual channel kernel (DCK) formulation can be seen as a special case of the general
mathematical framework presented in the previous section. The underlying idea is to recast
the complex variables in terms of their real and imaginary part and to work with a standard
real kernel, i.e., kc = kR: Rd×d → R .

Under the above assumption, the regression problem in Equation (26) can be simplified
as follows: ⎡⎢⎢⎢⎣

KRR + IL
γR

0L 1 0

0L KRR + IL
γI

0 1

1T 0T 0 0
0T 1T 0 0

⎤⎥⎥⎥⎦
⎡⎢⎢⎣

αR
αI
bR
bI

⎤⎥⎥⎦ =

⎡⎢⎢⎣
yR
yI
0
0

⎤⎥⎥⎦ (34)

where 0L is the L × L null matrix, KRR ∈ RL×L such that K(i,j)
RR = kR

(
xi, xj

)
, whilst the

matrices KIR = −KRI = 0L.
It is important to remark that, in the above formulation, there is no coupling between

the real and imaginary coefficients αR and αI , and bias terms bR and bI . Indeed, the solution
of the above linear system is equivalent to solving two decoupled ones, accounting for the
real and imaginary parts of the regression unknowns independently, such as:[

KRR + IL
γR

1

1T 0

][
αR
bR

]
=

[
yR
0

]
, (35)

[
KRR + IL

γI
1

1T 0

][
αI
bI

]
=

[
yI
0

]
, (36)

In this work, a standard RBF kernel is considered as the real kernel kR
(
xi, xj

)
. In the

above scenario, the dual space formulation of the LS-SVM is written [27]:

yR(x) =
L

∑
l=1

αR,lkR(xl , x) + bR, (37)

yI(x) =
L

∑
l=1

αI,lkR(xl , x) + bI , (38)
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It is important to note that, in the above formulation, the model for the real and
imaginary parts of y are built separately, thus ignoring any possible correlation between
them. Furthermore, the above models can be trained using the LS-SVM Lab toolbox for the
LS-SVM available in MATLAB [39].

5. Application Examples

This section compares the accuracy and the robustness against noise of the three
implementations of the complex-valued LS-SVM regression provided in Section 4 by
considering two different application examples. Specifically, the proposed approaches are
applied to predict the scattering parameters of a serpentine structure with three parameters
and the transfer function of a high-speed link with four parameters.

5.1. Example I

As a first test case, the complex-valued LS-SVM regression applied to calculate the
scattering parameters of a serpentine delay line structure is presented. Serpentine lines are
widely used in printed circuit board (PCB) design to compensate time delays introduced by
the trace routing. However, the frequency-domain behavior of such a structure is heavily
affected by its geometrical and electrical parameters and should be carefully assessed
during the design phase to avoid signal and power integrity issues and to meet design
constraints [40].

The structure of the serpentine delay line considered in this example is shown in
Figure 1 (inspired by [40]). The S21 scattering parameters of the above structure are
investigated as a function of three parameters (i.e., x = [εr, LL, SW]T) in a frequency
bandwidth from 1 MHz to 1 GHz. Table 1 shows the range of variability serpentine delay
line parameters that are simulated to produce the training and test data.

Figure 1. (a) Design parameters of the serpentine line to be analyzed; (b) cross-sectional view of the
serpentine line.

Table 1. Serpentine delay line parameters for the training and test dataset.

Training Ranges Test Ranges

4.5 mm ≤ LL ≤ 5.1 mm 4.5 mm ≤ LL ≤ 5.1 mm
3.9 ≤ εr ≤ 4.5 3.9 ≤ εr ≤ 4.5

0.13 mm ≤ SW ≤ 0.17 mm 0.13 mm ≤ SW ≤ 0.17 mm
1 MHz ≤ f ≤ 3 GHz 1 MHz ≤ f ≤ 3 GHz

1000 samples for each frequency 2000 samples for each frequency

The whole dataset consists of 3000 samples (1000 training data and 2000 test sam-
ples). The samples were generated via Latin Hypercube Sampling (LHS) by assuming a
uniform variability between their maximum and minimum value. For each configuration
of the geometrical parameters, the corresponding scattering parameters were computed
for 5000 linearly spaced frequency sample points. The samples were generated via a set of
parametric simulations with the full-wave solver available in CST.

The PCA compression is then used to compress the data in the frequency domain and
to reduce the computation for the model training. Figure 2 shows the behavior normalized
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singular values of the frequency points of the training dataset. The plot shows that n = 9 is
enough to represent the whole training set with a 0.001% threshold.

Figure 2. Normalized singular value plot of the serpentine delay line for the considered dataset
with 5000 frequency points (blue line). The horizontal line shows the 0.001% threshold for the
PCA truncation.

After applying the PCA, the performances of the LS-SVM regression using the PCF
and the CVCF complex kernel function (see Section 4.1), and of the DCK LS-SVM regression
(see Section 4.2), were assessed on the test samples for the S21 parameter. To investigate
the performance of the mentioned methods, the relative Root Mean Square Error (NRMSE)
is calculated as the following equation:

NRMSE % = 100 ·
1
T

√
∑T

t=1
(
Xy − Xŷ

)2

1
T

√
∑T

t=1 X2
y

, (39)

where Xy can be either the real or imaginary part of the actual test samples, Xŷ is the
corresponding prediction estimated via the proposed metamodels, and T is the number of
test samples.

Figures 3 and 4 show the normalized error for real and imaginary parts of these
three regression approaches for an increasing number of training samples (i.e., L = 50, 250,
and 500).

Figure 3. Comparison of the relative NRMSE values computed by the proposed approaches on the
test samples by considering the real part of the S21 parameter of the serpentine delay line structure
for an increasing number of training samples (i.e., L = 50, 250, 500).
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Figure 4. Comparison of the relative NRMSE values computed by the proposed approaches on the
test samples by considering the imaginary part of the S21 parameter of the serpentine delay line
structure for an increasing number of training samples (i.e., L = 50, 250, 500).

The plots highlight the improved accuracy of the CVCF and PCF with respect to
the DCK. Indeed, with the DCK-based model, we are implicitly neglecting any kind of
correlation between the real and imaginary parts of the S parameters, and this lack of
complexity becomes even more evident when a low number of training samples is used to
train the model.

5.2. Example II

The second application example is based on the high-speed link, as depicted in Figure 5,
representing a signal distribution on a PCB. Similar to the previous example, the frequency
response of the link, and thus its performance, can be greatly influenced by possible
variations of its internal parameters [5].

Figure 5. Schematic of the high-speed interconnect link.

Specifically, the proposed modeling approaches are here adopted to build a surrogate
model for the frequency-domain behavior of the complex-valued transfer function, in
which y(x; f ) = Vout( f ;x)

E( f ) , as a function of the values of four lumped components C1(x1),
C2(x2), L1(x3), and L2(x4), is defined by four uniformly distributed random variables with
a variation of ±50% around their central value collected in x = [x1, x2, x3, x4]

T (additional
details are provided in Table 2).
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Table 2. High-speed interconnect link parameters for the training and test datasets.

Training and Test Ranges

C1 (x1) (1 ± 0.5 x1) pF
C2 (x2) (0.5 ± 0.25 x2) pF
L1 (x3) (10 ± 5 x3) nH
L2 (x4) (10 ± 5 x4) nH

i 1,2,3,4
xi Random variable in [−1, 1]

Four sets consisting of L = 20, 100, 150, and 500 training input configurations were
generated via an LHS and used as input for a computational model implemented in
MATLAB, which provides as output the corresponding transfer function evaluated at
200 frequency points. The PCA is applied to remove redundant information, leading to
a compressed representation of the original dataset with only n = 10 components using a
threshold of 0.01%.

The compressed training sets are then used to train three different surrogate models
based on the DCK, PCF, and CVCF LS-SVM regressions. For the sake of completeness,
the predictions of the above methods are compared with those provided by an additional
surrogate model built via a multi-output feedforward NN structure [34,35] considering the
real and imaginary parts of the considered transfer function (i.e., using the dual channel
implementation). The NN is trained via the Gradient Decent backpropagation method
implemented within the Neural Net Fitting Tool available in the MATLAB Deep Learn-
ing Toolbox. The network consists of three hidden layers with 50, 20, and 15 neurons,
respectively. The activation function is the hyperbolic tangent sigmoid.

Figures 6 and 7 show the performance of each method on a test set consisting of
1000 samples assessed via the relative NRMSE in Equation (39) for the real and imaginary
parts, respectively. The results clearly highlight the improved accuracy achieved via the
PCF. Moreover, as expected, due to its simplified formulation, the DCK again provides
the lowest accuracy. By comparison, NN shows the lower accuracy when a small number
of training samples is used (i.e., up to 150 training samples). This low convergence with
respect to the number of training samples is due to the inherent non-convex nature of the
optimization problem solved during the model training [32].

Moreover, in order to stress the reliability of the proposed techniques, the training
output y was corrupted with Gaussian noise, such that:

yi,noisy(xi) = yi(xi)× (1 + ζn), (40)

where ζn ∼ N (
0, σ2

n
)

is a Gaussian random variable with standard deviation σn = [0.01, 0.03].
Figures 8 and 9 compare the relative NRMSE computed at a single frequency point

selected as the one providing the maximum error via the proposed approaches, and a
multi-output feedforward NN for different values of the noise standard deviation σn and
the number of training samples L for the real and imaginary parts, respectively. Among the
introduced methods, CVCF shows the better performance and robustness against noise,
both for real and imaginary parts.
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Figure 6. Comparison of the relative NRMSE values computed by the proposed approaches and
a feedforward multi-output neural network on the test samples by considering the real part of
the transfer function of a high-speed link for an increasing number of training samples (a) L = 20;
(b) L = 100; (c) L = 150; (d) L = 500).

Figure 7. Cont.
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Figure 7. Comparison of the relative NRMSE values computed via the proposed approaches and
a feedforward multi-output neural network on the test samples by considering the imaginary part
of the transfer function of high-speed link for an increasing number of training samples. (a) L = 20;
(b) L = 100; (c) L = 150; (d) L = 500).

Figure 8. Three-dimensional plot of the relative NRMSE computed on the real part of the test samples
at a single frequency point selected as the one providing the maximum error via the proposed
approaches (see panel (a) for the DCK, panel (b) for CVCF and panel (d) for PCF), and a multi-output
feedforward NN (see panel (c))for different values of the noise standard deviation σn and the number
of training samples L.
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Figure 9. Three-dimensional plot of the relative NRMSE computed on the real part of the test samples
at a single frequency point selected as the one providing the maximum error via the proposed
approaches (see panel (a) for the DCK, panel (b) for CVCF and panel (d) for PCF), and a multi-output
feedforward NN (see panel (c)) for different values of the noise standard deviation σn and the number
of training samples L.

6. Conclusions

In this paper, the application of different methods based on LS-SVM regression for
predicting the complex-valued frequency response was presented in a serpentine delay line
and a high-speed link. The required data for training and examination were obtained from
CST and MATLAB software, in terms of physical and geometrical parameters, including
substrate dielectric constant and height and strip width of the serpentine delay line, and
the capacitances and inductances of the high-speed link. PCA is shown to reduce the
computational cost of the frequency samples. Then, the training data are used to create the
model, and the test data are considered for the examination of the established model. The
performance of the three proposed methods and of a multi-output feedforward NN are
compared on the test dataset. It is shown that the CVCF method is suitable for the first
complex electromagnetic problem when there are few training data points. In addition,
PCF shows an acceptable performance under noise-free conditions at all frequency points
for the second example. Finally, the results show that CVCF is the best method when the
level of noise is increased.

103



Electronics 2022, 11, 551

Author Contributions: Conceptualization, N.S. and R.T.; methodology, N.S. and R.T.; software, data
curation and validation, N.S.; writing original draft preparation, N.S.; writing review and editing,
N.S. and R.T.; supervision, R.T. All authors have read and agreed to the published version of the
manuscript.

Funding: This research received no external funding.

Acknowledgments: The authors would like to thank Flavio Canavero, Politecnico di Torino, Italy, for
his valuable and constructive suggestions during the planning and development of this manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Manfredi, P.; Ginste, D.V.; Stievano, I.S.; de Zutter, D.; Canavero, F.G. Stochastic transmission line analysis via polynomial chaos
methods: An overview. IEEE Electromagn. Compat. Mag. 2017, 6, 77–84. [CrossRef]

2. Zhang, Z.; El-Moselhy, T.A.; Elfadel, I.M.; Daniel, L. Stochastic testing method for transistor-level uncertainty quantification
based on generalized polynomial chaos. IEEE Trans. Comput. -Aided Des. Integr. Circuits Syst. 2013, 32, 1533–1545. [CrossRef]

3. Spina, D.; Ferranti, F.; Dhaene, T.; Knockaert, L.; Antonini, G.; Ginste, D.V. Variability analysis of multiport systems via
polynomial-chaos expansion. IEEE Trans. Microw. Theory Tech. 2012, 60, 2329–2338. [CrossRef]

4. Ahadi, M.; Roy, S. Sparse Linear Regression (SPLINER) Approach for Efficient Multidimensional Uncertainty Quantification of
High-Speed Circuits. IEEE Trans. Comput. -Aided Des. Integr. Circuits Syst. 2016, 35, 1640–1652. [CrossRef]

5. Trinchero, R.; Manfredi, P.; Stievano, I.S.; Canavero, F.G. Machine Learning for the Performance Assessment of High-Speed Links.
IEEE Trans. Electromagn. Compat. 2018, 60, 1627–1634. [CrossRef]

6. Ma, H.; Li, E.; Cangellaris, A.C.; Chen, X. Support Vector Regression-Based Active Subspace (SVR-AS) Modeling of High-Speed
Links for Fast and Accurate Sensitivity Analysis. IEEE Access 2020, 8, 74339–74348. [CrossRef]

7. Treviso, F.; Trinchero, R.; Canavero, F.G. Multiple delay identification in long interconnects via LS-SVM regression. IEEE Access
2021, 9, 39028–39042. [CrossRef]

8. Houret, T.; Besnier, P.; Vauchamp, S.; Pouliguen, P. Controlled Stratification Based on Kriging Surrogate Model: An Algorithm for
Determining Extreme Quantiles in Electromagnetic Compatibility Risk Analysis. IEEE Access 2020, 8, 3837–3847. [CrossRef]

9. Watson, P.M.; Gupta, K.C.; Mahajan, R.L. Development of knowledge based artificial neural network models for microwave
components. IEEE Int. Microw. Symp. Baltim. 1998, 1, 9–12.

10. Veluswami, A.; Nakhla, M.S.; Zhang, Q.-J. The application of neural networks to EM based simualtion and optimization of
interconencts in high-speed VLSI circuits. IEEE Trans. Microw. Theory Techn. 1997, 45, 712–723. [CrossRef]

11. Kumar, R.; Narayan, S.L.; Kumar, S.; Roy, S.; Kaushik, B.K.; Achar, R.; Sharma, R. Knowledge-Based Neural Networks for Fast
Design Space Exploration of Hybrid Copper-Graphene On-Chip Interconnect Networks. IEEE Trans. Electromagn. Compat. 2021,
1–14, Early Access Article. [CrossRef]

12. Swaminathan, M.; Torun, H.M.; Yu, H.; Hejase, J.A.; Becker, W.D. Demystifying Machine Learning for Signal and Power Integrity
Problems in Packaging. IEEE Trans. Compon. Packag. Manuf. Technol. 2020, 10, 1276–1295. [CrossRef]

13. Jin, J.; Zhang, C.; Feng, F.; Na, W.; Ma, J.; Zhang, Q. Deep Neural Network Technique for High-Dimensional Microwave Modeling
and Applications to Parameter Extraction of Microwave Filters. IEEE Trans. Microw. Theory Tech. 2019, 67, 4140–4155. [CrossRef]

14. Moradi, M.; Sadrossadat, A.; Derhami, V. Long Short-Term Memory Neural Networks for Modeling Nonlinear Electronic
Components. IEEE Trans. Compon. Packag. Manuf. Technol. 2021, 1, 840–847. [CrossRef]

15. Bourinet, J.-M. Reliability Analysis and Optimal Design under Uncertainty—Focus on Adaptive Surrogate-Based Approaches; Computation
[stat.CO]; Université Clermont Auvergne: Clement Ferrand, France, 2018.

16. Scardapane, S.; van Vaerenbergh, S.; Hussain, A.; Uncini, A. Complex-valued neural networks with nonparametric activation
functions. IEEE Trans. Emerg. Top. Comput. Intell. 2018, 4, 140–150. [CrossRef]

17. Adali, T.; Schreier, P.J.; Scharf, L.L. Complex-valued signal processing: The proper way to deal with impropriety. IEEE Trans.
Signal Processing 2011, 59, 5101–5125. [CrossRef]

18. Papaioannou, A.; Zafeiriou, S. Principal Component Analysis with Complex Kernels, IEEE Transactions on Neural Networks and
Learning Systems, 2013. pp. 1719–1726. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.402.3888&
rep=rep1&type=pdf (accessed on 28 December 2021).

19. Boloix-Tortosa, R.; Murillo-Fuentes, J.J.; Santos, I.; Pérez-Cruz, F. Widely linear complex-valued kernel methods for regression.
IEEE Trans. Signal Processing 2017, 65, 5240–5248. [CrossRef]

20. Tobar, F.A.; Kuh, A.; Mandic, D.P. A novel augmented complex valued kernel LMS. In Proceedings of the 2012 IEEE 7th Sensor
Array and Multichannel Signal Processing Workshop (SAM), Hoboken, NJ, USA, 17–20 June 2012; pp. 473–476.

21. Boloix-Tortosa, R.; Murillo-Fuentes, J.J.; Tsaftaris, S.A. The Generalized Complex Kernel Least-Mean-Square Algorithm. IEEE
Trans. Signal Processing 2019, 67, 5213–5222. [CrossRef]

22. Hirose, A. Complex-Valued Neural Networks; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013.
23. Bouboulis, P.; Theodoridis, S.; Mavroforakis, C.; Evaggelatou-Dalla, L. Complex Support Vector Machines for Regression and

Quaternary Classification. IEEE Trans. Neural Netw. Learn. Syst. 2015, 26, 1260–1274. [CrossRef]

104



Electronics 2022, 11, 551

24. Scardapane, S.; van Vaerenbergh, S.; Comminiello, D.; Uncini, A. Widely Linear Kernels for Complex-Valued Kernel Activation
Functions. In Proceedings of the ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), Brighton, UK, 12–17 May 2019; pp. 8528–8532.

25. Ogunfunmi, T.; Paul, T.K. On the complex kernel-based adaptive filter. In Proceedings of the 2011 IEEE International Symposium
of Circuits and Systems (ISCAS), Rio de Janeiro, Brazil, 15–18 May 2011; pp. 1263–1266.

26. Boloix-Tortosa, R.; Murillo-Fuentes, J.J.; Payán-Somet, F.J.; Pérez-Cruz, F. Complex Gaussian processes for regression. IEEE Trans.
Neural Netw. Learn. Syst. 2018, 29, 5499–5511. [CrossRef]

27. Soleimani, N.; Trinchero, R.; Canavero, F. Application of Different Learning Methods for the Modelling of Microstrip Characteris-
tics. In Proceedings of the 2020 IEEE Electrical Design of Advanced Packaging and Systems (EDAPS), Shenzhen, China, 14–16
December 2020; pp. 1–3.

28. Manfredi, P.; Grivet-Talocia, S. Compressed Stochastic Macromodeling of Electrical Systems via Rational Polynomial Chaos
and Principal Component Analysis. In Proceedings of the 2021 Asia-Pacific International Symposium on Electromagnetic
Compatibility (APEMC), Nusa Dua-Bali, Indonesia, 27–30 September 2021.

29. Ahmadi, M.; Sharifi, A.; Fard, M.J.; Soleimani, N. Detection of brain lesion location in MRI images using 326 convolutional neural
network and robust PCA. Int. J. Neurosci. 2021, 131, 1–12.

30. Jolliffe, I.T. Principal Component Analysis; Springer: New York, NY, USA, 2002.
31. Manfredi, P.; Trinchero, R. A data compression strategy for the efficient uncertainty quantification of time-domain circuit

responses. IEEE Access 2020, 8, 92019–92027. [CrossRef]
32. Kushwaha, S.; Attar, A.; Trinchero, R.; Canavero, F.; Sharma, R.; Roy, S. Fast Extraction of Per-Unit-Length Parameters of

Hybrid Copper-Graphene Interconnects via Generalized Knowledge Based Machine Learning. In Proceedings of the IEEE 30th
Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS), Austin, TX, USA, 17–20 October 2021.

33. Suykens, J.A.K.; van Gestel, T.; de Brabanter, J.; de Moor, B.; Vandewalle, J. Least Squares Support Vector Machines; World Scientific
Publishing Company: Singapore, 2002.

34. Vapnik, V. The Nature of Statistical Learning Theory, 2nd ed.; Springer: New York, NY, USA, 1999.
35. Posa, D. Parametric families for complex valued covariance functions: Some results, an overview and critical aspects. Spat. Stat.

2020, 39, 100473. [CrossRef]
36. Iaco, D.S.; Palma, M.; Posa, D. Covariance functions and models for complex-valued random fields. Stoch. Environ. Res. Risk

Assess. 2003, 17, 145–156. [CrossRef]
37. Snoek, J.; Larochelle, H.; Adams, R.P. Practical bayesian optimization of machine learning algorithms. Adv. Neural Inf. Processing

Syst. 2012, 25, 1–10.
38. Geng, J.; Gan, W.; Xu, J.; Yang, R.; Wang, S. Support vector machine regression (SVR)-based nonlinear modeling of 354 radiometric

transforming relation for the coarse-resolution data-referenced relative radiometric normalization (RRN). Geo-Spat. Inf. Sci. 2020,
23, 237–247. [CrossRef]

39. LS-SVMlab, Version 1.8 ed; Department of Electrical Engineering (ESAT), Katholieke Universiteit Leuven: Leuven, Belgium, 6
July 2011; Available online: https://www.esat.kuleuven.be/sista/lssvmlab/old/toolbox.html (accessed on 28 December 2021).

40. Soh, W.-S.; See, K.-Y.; Chang, W.-Y.; Oswal, M.; Wang, L.-B. Comprehensive analysis of serpentine line design. In Proceedings of
the 2009 Asia Pacific Microwave Conference, Singapore, 7–10 December 2009; pp. 1285–1288.

105





Citation: Ciarella, L.; Tognazzi, A.;

Mangini, F.; De Angelis, C.;

Pattelli, L.; Frezza, F. Finite-Size and

Illumination Conditions Effects in

All-Dielectric Metasurfaces.

Electronics 2022, 11, 1017. https://

doi.org/10.3390/electronics11071017

Academic Editor: Longqing Cong

Received: 14 February 2022

Accepted: 21 March 2022

Published: 24 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Finite-Size and Illumination Conditions Effects in
All-Dielectric Metasurfaces

Luca Ciarella 1,†, Andrea Tognazzi 2,3,*,†, Fabio Mangini 4,†, Costantino De Angelis 3,4,5,

Lorenzo Pattelli 6,7,† and Fabrizio Frezza 1,5

1 Dipartimento di Ingegneria dell’Informazione, Elettronica e Telecomunicazioni, Sapienza Università di Roma,
Via Eudossiana 18, 00184 Roma, Italy; ciarella.1656100@studenti.uniroma1.it (L.C.);
fabrizio.frezza@uniroma1.it (F.F.)

2 Dipartimento di Ingegneria, Università degli Studi di Palermo, Viale delle Scienze ed. 8, 90128 Palermo, Italy
3 Istituto Nazionale di Ottica-Consiglio Nazionale delle Ricerche (INO-CNR), Via Branze 45,

25123 Brescia, Italy; costantino.deangelis@unibs.it
4 Dipartimento di Ingegneria dell’Informazione, Università degli Studi di Brescia,Via Branze 38,

25123 Brescia, Italy; fabio.mangini@unibs.it
5 Consorzio Nazionale Interuniversitario per le Telecomunicazioni (CNIT), Viale G.P. Usberti 181/A Sede

Scientifica di Ingegneria-Palazzina 3, 43124 Parma, Italy
6 Laboratorio Europeo di Spettroscopia Nonlineare (LENS), Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy;

pattelli@lens.unifi.it
7 Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce 91, 10135 Torino, Italy
* Correspondence: andrea.tognazzi@unipa.it
† These authors contributed equally to this work.

Abstract: Dielectric metasurfaces have emerged as a promising alternative to their plasmonic coun-
terparts due to lower ohmic losses, which hinder sensing applications and nonlinear frequency
conversion, and their larger flexibility to shape the emission pattern in the visible regime. To date,
the computational cost of full-wave numerical simulations has forced the exploitation of the Floquet
theorem, which implies infinitely periodic structures, in designing such devices. In this work, we
show the potential pitfalls of this approach when considering finite-size metasurfaces and beam-like
illumination conditions, in contrast to the typical infinite plane-wave illumination compatible with
the Floquet theorem.

Keywords: all-dielectric metasurfaces; multipolar decomposition; T-matrix; BIC

1. Introduction

All-dielectric metasurfaces have recently emerged as a valid and promising alternative
to their plasmonic counterparts. Their lower dissipative losses and thermal heating at opti-
cal frequencies allow working at higher pump power for nonlinear frequency generation
and the performance of non-invasive sensing of biological samples [1–12]. Moreover, in all-
dielectric resonators, electric and magnetic resonances can be used to engineer near and far
fields, thus providing more degrees of freedom in the design of optical devices [1,13–16].
In this framework, III-V compounds have been used for second-harmonic generation,
due to their non-centrosymmetric structure and their high second-order nonlinear coeffi-
cients [2–5,17–23]. Strong third-harmonic generation has been demonstrated instead with
Si-based platforms [24,25]. Lately, great efforts have been made to improve the design
of optical nanoresonators, either in the limit of single isolated nanoantennas or in the
opposite scenario where perfect periodicity is assumed and thus the finite-size real-world
structure is approximated by an infinite structure [26–28]. The two opposite situations
are required in order to limit the numerical burden in the modelling when resorting to
the full-wave solution of Maxwell’s equations. Despite the fact that this has given very
helpful guidelines, these approaches fail in the accurate design of a device, because they
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unavoidably neglect the effects that are due to the size of a real device, which is necessarily
finite and is often pumped by input beams exciting a limited portion of the device (see
Figure 1). Such limitations become particularly relevant when considering metasurfaces
supporting bound states in the continuum (BIC), which are non-radiating resonant modes
in an open system that are not coupled to the radiating channels and exist only in infinite
structures [29]. A common approach to obtain extremely high Q-factor resonances is to
introduce a defect into a BIC-supporting metasurface (e.g., by breaking its symmetry), thus
realizing a so-called quasi-BIC. This approach is mainly dictated by the fact that currently
available simulation tools allow only infinite structures to be inspected, and thus it is
necessary to break the symmetry in order to couple to such modes. Quasi-BICs, however,
are expected to arise naturally by simply considering the finite extent of a real metasurface.

Figure 1. Sketch of a finite-size metasurface on a substrate illuminated by a Gaussian beam. Only a
portion of the array is covered by the impinging light.

The necessity of using a finite-size model arises from the fact that the currently adopted
models simulate an elementary unit cell and exploit the periodicity of the structure through
Floquet’s theorem to obtain the optical parameters of an infinite extended metasurface. The
results of these models are very good, but they do not take into account the finiteness of
the structure and the border effects. Furthermore, when Floquet’s theorem is employed,
the only possible excitation is a plane wave, unlike in experiments, where a Gaussian beam
is usually employed. The combination of the two types of models can help to better foresee
the behaviour of an actual metasurface in the experimental phase.

The differences between an infinite model and a finite one are highlighted in [30]
and [31], where the situation is analysed with a dipole coupling model for a 2D array of
nanoparticles. However, dielectric resonators often support higher-order resonances which
cannot be described in the dipole approximation. In order to overcome this limitation, it
is necessary to account for higher-order multipolar components, which are of particular
interest for dielectric metasurfaces and the study of metamaterials in general [26,32–35].
Babicheva and Evlyukhin [36] provided an analytical model to include a quadrupolar
contribution, but the authors employed an infinite structure approximation. In [37], the au-
thors employed the superposition T-matrix scheme with the Ewald sum formalism to
describe periodic structures with large unit cells. In [38], the authors studied finite-size
effects in plasmonic metasurfaces, highlighting the full-width half-maximum dependence
of resonances upon the number of resonators.

Our study aims to highlight the importance of the spatial finiteness of a metasurface
supporting high-order multipole components. For this purpose, we employed SMUTHI [39],
which implements a linear space-limited model, and tested its performance considering
a metasurface composed of silicon nanopillars on a silicon oxide substrate. We analysed
the total reflectivity behaviour as a function of the incident wavelength and compared it
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with the results obtained with the COMSOL infinite periodic model. The reflectivity of
the metasurface strongly depends on the number of elements and converges to the infinite
array approximation for a large array size, thus highlighting the importance of considering
the finiteness of the metasurface. Furthermore, this approach allows the metasurface to
be illuminated with a Gaussian beam of a different size under the paraxial approximation,
which is not possible when employing Floquet’s theorem.

2. Methods

We simulated an all-dielectric metasurface composed of Si cylinders on a SiO2 sub-
strate, both with a periodic model using COMSOL (exploiting the periodicity via Floquet’s
theorem) and a space-limited model using SMUTHI, which allowed us to simulate very
large finite structures due to the lower computational power required. To test the finite
model, we calculated the reflectivity (R) for both models, varying the wavelength of the
incident wave λ from 1250 nm to 1800 nm, in steps of 10 nm.

The finite structure was composed of a maximum of 169 cylinders lying on the sub-
strate in a 13 × 13 configuration, as seen in Figure 2. The refractive indices were 1 for
the air, 3.45 for the cylinders, and 1.45 for the substrate, the last two values being the
silicon and silicon oxide indices at the working frequencies. The cylinder heights were
428 nm and their radii were 214 nm. The distance between two adjacent cylinders was
856 nm. These dimensions were chosen to create a structure that supports resonant modes
at the working frequencies on two levels: inside single cylinders and globally due to the
periodicity. The layers consisted of a substrate with thickness 2λ/nsubstrate and an air layer
2λ thick, and the domain on the plane of the cylinders was a square with a side length
of 15,500 nm. Although SMUTHI allows the simulation of lossy media, in this study we
employed a fixed real value for the refractive indices, because in the spectral region of
interest the silicon and silicon dioxide absorption coefficients and the dispersion were very
small and thus could be neglected.

Figure 2. The y-component of the scattered electric field given by SMUTHI in the xy (left) and yz
planes (right) for the structure composed of 13 × 13 cylinders. The substrate (positive z-axis) has
n = 1.45 and the air layer (negative z-axis) has n = 1. The cylinders have n = 3.45, height 428 nm,
and radius 214 nm, and 856 nm is the periodicity (distance between two cylinders on the same column
or row). The incident wave is a Gaussian beam 15 μm wide at 1600 nm, linearly polarized along
the y-axis with an initial maximum intensity of the electric field of 1 V m−1, with the maximum at
the origin (x, y, z) = (0, 0, 0). The incidence is perpendicular to the substrate and the propagation
direction is towards the positive z-direction. The domain on the xy plane is a square with a side
length of 15,500 nm.

The incident wave used for the COMSOL periodic model is always a plane wave
polarized along the y-axis, while with SMUTHI it is also possible to simulate an incident
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Gaussian beam. We set an incident wave propagating from the air layer towards the
substrate at normal incidence, at a wavelength which varied as previously described.
The polarization of the wave was linear, with the electric field oscillating along the y-axis
and an initial intensity of E0 = 1 V m−1. The maximum value of the electric field was at
the air–substrate interface. To calculate the reflectivity, we wrote a MATLAB script, which
takes as an input the SMUTHI results related to the scattered field from the cylinders and
the reflected one from the substrate. Then, we calculated the flux of the Poynting vector
through three surfaces xy, yz, and xz at the border of the domain described above, inside
the air layer.

The formulas used to evaluate the Poynting vector components were the follow-
ing [40]:

px =
|Ey|2 + |Ez|2

2Z
py =

|Ex|2 + |Ez|2
2Z

pz =
|Ex|2 + |Ey|2

2Z
p0 =

|E0y|2
2Z

=
|E0|2
2Z

where Ex, Ey, and Ez are the field components given by the combinations of the scattered
and the reflected waves, E0 is the initial intensity, and Z is the characteristic impedance of
vacuum. Integrating these values along the respective surfaces, it is possible to calculate
the reflectivity:

R =
Pz + 2Px + 2Py

P0

where capital Px, Py, and Pz are the powers relative to the power densities with the same
subscript and are obtained through surface integration over the simulation domain walls.
This procedure was repeated for each wavelength to obtain the full spectrum.

3. Validation

To develop the space-limited model we used SMUTHI, a recently developed open-
source Python package based on numerical methods, to speed up the computation of light
scattering problems [41,42] (an analytical treatment is reported in Appendix A).

To determine how the software performs in our situation, we developed two simple
models of the metasurface, one using COMSOL and the other using SMUTHI, to compare
the outputs for a structure composed of nine cylinders arranged in a 3 × 3 configuration
around the origin. The parameters were the same as those set in the previous section,
except for the domain width in the plane of the cylinders, which was changed to 5000 nm,
and the incident plane wave that was fixed at 1200 nm. In COMSOL, we simulated a larger
domain: a cube with a side length of 6500 nm with a perfectly matched layer all around,
in order to prevent unwanted reflections from the side. We performed the integration
on the same surface as that employed in SMUTHI. We employed the iterative GMRES
solver in COMSOL and set a mesh size of λe/7, where λe is the effective refractive index of
the material.

Figure 3 shows the electric fields at a distance of 1430 nm from the last cylinder,
obtained in COMSOL (left) and SMUTHI (right), respectively.

A good agreement was found using a multipolar expansion with l = m = 3 for the
cylinders, which resulted in very similar field distributions and integrated reflectance
values of:

RCOMSOL = 0.0649

RSMUTHI = 0.0542
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Then, for the transmission coefficient:

TSMUTHI = 0.9482

and thus the condition R + T = 1 is almost respected (this must hold because the refractive
indices are real) [41,42].

We underline the times required for the two simulations: for the structure reported in
this chapter, COMSOL required 16 min with a reduced geometry, obtained by exploiting
symmetry considerations, and 74 min with the full structure, to solve the problem; on
the other hand, SMUTHI required 3 min (PC specifications: CPU Intel© Xeon© E5-2650
0, 2 GHz, 8 core. RAM DIMM-DD3 1600 MHz, 64 GB. GPU NVIDIA Quadro K2000).
Although COMSOL provides a more complete simulation by computing the field in the
full volume of the structure, we only need the field on three specific surfaces, and thus
SMUTHI is much more time-efficient.

Figure 3. The y-component of the scattered electric field obtained with COMSOL (left) and with
SMUTHI (right) for the structure composed of 3 × 3 cylinders. The cylinders have n = 3.45, height
428 nm, and radius 214 nm, with 856 nm as the periodicity. The incident wave is a plane wave at
1200 nm, linearly polarized along the y-axis at normal incidence. The domain on the xy plane is a
square with a side length of 5000 nm. The plots are along the yz plane at a distance of 1430 nm from
the last cylinders (2500 nm from the centre of the structure).

4. Results

Figure 4a shows the plots of R, calculated on the same surface, as a function of the
wavelength, for different metasurface sizes. When the number of cylinders increases,
the spectral features related to the multipolar resonances inside the cylinders and their
interplay become more evident. We note that for smaller arrays, the covered area inside the
integration surface is much smaller, thus resulting in smaller reflectivity values.

In Figure 4b–d we compare the reflectivity as a function of the wavelength obtained
with the two models.

For the finite-size model, the values are relative to the 13 × 13 cylinder structure and
are normalized to have a maximum equal to one. The normalization is only for comparison
purposes. Indeed, in the finite structure case, when the integration domain is enlarged,
the unpatterned surface increases, thus reducing the reflectivity. However, the relative
size of the peaks does not change as this is only due to the cylinders. The normalization
of the finite structure to the infinite structure allows the relative intensities of the peaks
to be compared, and thus the finite-size effect to be evaluated. We compared the spectra
with an incident plane wave for both structures and then changed the wave for the finite
model into a Gaussian beam 15 μm and 6 μm wide. Our simulations showed that as long
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as the paraxial simulation holds and the beam covers the metasurface, the plane wave
approximation deviates slightly from the real situation.

Figure 4. Reflectivity (R) as a function of the wavelength for both the periodic model and the finite
model. (a) R as a function of the wavelength for the structures obtained by varying the number of
cylinders (3 × 3, 5 × 5, 10 × 10, and 13 × 13), simulated with SMUTHI. The integration surface is the
same for all the structures. (c,d) Comparisons between the two models. For the periodic model with
COMSOL, the incident wave is a plane wave; for the space-limited model with SMUTHI there is an
incident plane wave (b), an incident Gaussian beam 15 μm wide (c), and an incident Gaussian beam
6 μm wide (d). The values obtained with SMUTHI are normalized so that the maximum is equal
to one.

The normalized behaviours are very faithful to the COMSOL behaviours, either with
an incident plane wave or with a Gaussian beam. In particular, we see two peaks at
1610 nm and 1330 nm, which are at exactly the same wavelengths for the two models. The
resonance at 1610 nm is related to the magnetic dipole inside the cylinder and is also present
in the scattering cross section in the isolated structure. The different values around the
shorter wavelength peak are due to the finite extension of the structure and the excitation
beam; therefore, this feature can only be highlighted through a finite-size model. Indeed,
a Gaussian beam can be described by considering a larger amount of k-vectors, which is
not possible with the plane-wave excitation employed in COMSOL. This is further evident
from Figure 5, where we report also the results obtained considering the flux through the
walls around the central cylinder in the finite-size model and the reflectivity of the infinite
periodic structure. It is interesting to note that the characteristic of the bigger structure
is more similar to the periodic model. As expected, the relative weight of the resonant
peak due to the interaction between the cylinders (around 1330 nm) and the single-pillar
magnetic dipole (1610 nm) increases with the array size. We emphasize that the resonance
at 1610 nm is related to the magnetic dipole in the isolated pillar, thus it is well reproduced
even for small arrays and beam sizes. Thus, these results show that it is essential to consider
the size of the system and the excitation, to correctly describe a real finite-size system. For
this purpose, it should be noted that the size of the structure compared to the wavelength
is more important than the number of unit cells considered in the simulation. However,
the size of the unit cells plays a key role in determining the interaction strength between the
resonators. Indeed, if the cylinders are well separated from each other, they act as isolated
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sources, and the scattering properties can be evaluated by computing the electromagnetic
field of an isolated pillar and considering the system as an array of antennas.

Figure 5. Reflectivity as a function of the wavelength for infinite case (dashed lines) and finite case
(continuous lines). For the finite case, the power flux is considered through the walls around the
central cylinder for the structures with 3 × 3 cylinders (a) and 13 × 13 cylinders (b). This means that
the simulation domain on the xy plane has a width of 856 nm around the central cylinder (compared
to the previous value of 15,500 nm). The plots obtained with SMUTHI are normalized to have a
maximum equal to one.

To further prove the importance of finite-size effects in conjunction with resonant
behaviour, we consider a structure supporting bound states in the continuum. Figure 6
shows the reflectivity as a function of the wavelength for a suspended array of cylinders,
which was previously reported for sustaining a BIC [43]. The Gaussian beam waist was
kept fixed at 10 μm, while the number of resonators was increased. It is clear that increasing
the number of resonators reduces the line width of the Fano resonance associated with
the quasi-BIC. We highlight that in [43], the authors introduced a gap in the middle of the
cylinders in order to couple to the resonant mode, while in our case this was not necessary
since both the illumination and the structure were finite and the modes could couple to the
radiating channels.

Figure 6. Reflectivity as a function of wavelength for arrays of cylinders (height 563 nm, radius 250
nm, and period 850 nm) with different numbers of elements. The refractive index is 3.49 and the
impinging Gaussian beam waist is 10 μm.

5. Conclusions

In conclusion, we built a space-limited model with SMUTHI to simulate a real meta-
surface, to determine the border effects. First, we tested the software performance in
the presence of the metasurface and verified the conservation of energy in the simulated
domain (R + T = 1), as well as the agreement with the COMSOL simulation. The resulting
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reflection coefficients R were similar for the two structures, and the produced scattered
fields were very similar.

We developed the finite model by introducing an approximation for the scattered
field and the refractive indices. Moreover, with the finite-domain model, it was possible
to highlight a difference in the higher-frequency peak related to collective excitation. We
could also simulate an incident Gaussian beam, which is not possible in the periodic case.
SMUTHI allowed us to simulate the wavelength sweep for a large finite structure with 13 ×
13 cylinders, which is impractical to replicate in COMSOL, and also allowed us to simulate
the configuration with 3 × 3 cylinders 5.3 times faster. This approach also allowed us to
employ a non-periodic distribution of resonators, which is not possible when exploiting the
Floquet theorem. Furthermore, it allowed us to study real situations involving BIC, which
are intimately related to the finiteness of the system. The proposed approach may be further
extended by analogy with [44], where the authors employed multipolar decomposition to
study free-standing single nanoparticles, to simulate nonlinear frequency generation in
finite-size metasurfaces.
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Appendix A. Scattering from Axially Symmetric Particles on a Stratified Medium

The SMUTHI software allows the resolution of the electromagnetic scattering problem
from an ensemble of axially symmetric particles in a stratified medium. To approach
this problem, SMUTHI uses a combination of methods that include the expansion of
spherical vector wave functions (SVWFs) to represent the impinging wave in spherical
waves, the expansion of plane vector wave functions (PVWFs) to represent the spherical
wave in a complete set of plane waves, in order to consider the interaction between the
scattered field from the particle and the stratified medium, and a T-matrix approach
(or null-field method) with the addition theorem to take into account the interaction
between each scatterer. The first step of the method consists of the representation of all
the fields as an expansion of SVWFs, then, fixing a scatterer s, they can be written as
a superposition of regular harmonic functions for the incoming field or with outgoing
harmonic functions [41,42,45–53]:

Es
reg(r) = ∑

n
as

n M(1)
n (r − rs) (A1)

Es
sca(r) = ∑

n
bs

n M(3)
n (r − rs) (A2)
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where the apexes (1) and (3) represent the types of the SVWFs. In particular, the first type
of the Bessel spherical function is used as the harmonic function with (1) and the third type
of the same function is used with (3). Each one is centred in the middle of the particle rs.
The second step consists of the simultaneous calculation of the coefficients for the incoming
and outgoing fields for each scatterer s. For this, we use the null-field method and the
addition theorem, obtaining:

bs
n = ∑

n′
Ts

mn′ as
n′ (A3)

as
n = ∑

s′
∑
n′

Wss′
mn′bs′

n′ as,in
n (A4)

having indicated with Ts
mn′ the T-matrix for a single scatterer, and with the matrix Wss′

mn′
the mutual interaction between the particles, using the addition theorem and the stratified
medium. The third step is characterized by the determination of the interaction between
the ensemble of the scattering particles and the stratified medium. The coupling matrix
Wss′

mn′ can be found by considering the superposition of two contributions:

Wss′
mn′ = WD,ss′

mn′ + WR,ss′
mn′ (A5)

where the first is the coupling term for an infinite medium and the second represents the
(multiple) reflections of the wave at the layer interfaces, which are then the incident fields
to the particle s. In particular, the last term can be expressed as an expansion of PVWFs,
given the flat nature of the interface. Using the Sommerfeld integration form we have:

WR,ss′
mn′ = 4i|m

′−m|ei|m′−m|ϕs′s

∫ ∞

0

[(
f+nn′(K, z) + f−nn′K, z)

)
J|m′−m|(kρ)dK

]
(A6)

with

f+nn′(k, z) =
K

kzk ∑
j

[
B

′+
n,j(Lis

j )12B−
n′ ,je

ikzz + B
′−
n,j(Lis

j )21B+
n′ ,je

−ikzz] (A7)

f−nn′(k, z) =
K

kzk ∑
j

[
B

′+
n,j(Lis

j )11B−
n′ ,je

ikzz + B
′−
n,j(Lis

j )22B+
n′ ,je

−ikzz] (A8)

where j indicates the plane wave TE- or TH-polarization, k, K, and kz are the wavenumber,
the wave vector’s radial cylinder and the z component in the scattering particle surface,
respectively, B

′±
n,j are the transformation coefficients in matrix form between the SVWFs and

PVWFs, and Lis
j is a generalized reflection coefficient in matrix form encoding the overall

response of the flat layer interfaces. A complete derivation of the values can be found
in [41,42,45–53].
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Abstract: A numerical analysis on field distribution along the Earth’s surface of a line current source
submerged in the ground is conducted in this paper to investigate the potential of the extremely low
frequency (ELF) technology in the envisioned long-distance communication techniques. The problem
is modeled as a submerged horizontal electric dipole (HED) in a two-layered homogeneous half space
and solved by the combined numerical methods of the Romberg-Euler method and Gauss-Laguerre
method. The model is validated by experimental results with only a maximum 10% error at 9 Hz
around 490 m. Meanwhile, the study shows that the ELF signals emitted by a submerged line current
source can transmit at least 1 km with a current sensor sensitivity of 0.1 pT. These results indicate
the possibility of applying of ELF technology to long-distance communication or the long-distance
transmedia detection.

Keywords: electromagnetic wave distribution; extremely low frequency; layered-space problem;
horizontal electric dipole

1. Introduction

The investigation on extremely low frequency electromagnetic wave distribution has
been a classical problem because of the wide applications of technologies in marine engi-
neering such as undersea detection, undersea sensor networks, coastal surveillance, seabed
communication, etc. The problem has attracted increasing attention and investigations,
which are mainly focused on field distribution in stratified media since the first analysis
for the electromagnetic wave along the planar boundary as early as 1907 [1]. Then, Dr.
Sommerfeld investigated the excited field of a dipole in the multilayered lossy media where
the concept of Sommerfeld integrals [2] is proposed, and a field theory in a homogeneous
half-space is fully developed in [3]. Since the attenuation rates of ELF waves could be
as low as 1 dB/1000 km, stated in reference [4], the potential of the applications of such
technologies to long-distant communication has gained researcher’s attention. Currently,
numerous investigations have been conducted on the ELF EM wave propagation based on
an isotropic conductivity Earth model where field distribution by a dipole submerged in
a lossy media is thoroughly studied [5–9]. Chave A. D. studies undersea communication
by free propagation of ULF/ELF electromagnetic waves from harmonic dipole sources
located on or near the sea floor [10]. In 2017, the scenario of a three-layered conducting
media including air, seawater and seabed has been discussed [11], where the ELF electro-
magnetic fields generated by a submerged horizontal electric dipole in the shallow sea are
fully investigated. Later, the studies have been extended to the detection of underwater
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moving objects [12,13]. In 2018, the seabed environment is treated as a three-layered media
and the field distribution is numerically investigated [14]. At the same time, the ELF EM
signal has widely used in drilling system to carry downhole measurement data where the
studies of channel models and demodulation techniques are essential [15]. Meanwhile, the
existence of Zenneck surface wave has drawn researchers’ attention, which was proposed
by Baño [3]. Successive studies have been conducted by Dr. King on lateral electromagnetic
waves in 1980s while the work is extended from two-layered to three-layered media by Dr.
Dunn [16–19].

It can be easily observed that large amounts of studies have been conducted on
theoretical analysis and numerical modeling, but there is scarcity of fulfillment of the
transmission of ELF signals [20–22]. Furthermore, the majority of current measurements
are limited to the propagation of ELF wave in the sea while the work on wave propagation
along Earth’s surfaces remains vacant. To fill these gaps, an experiment is first designed
with a line current source submerged in the ground where the emitted magnetic field signals
along the mountain surface are collected by the commercial magnetic sensor. Then, the
submerged line current source is modeled as a submerged horizontal electric dipole, and
the field distribution is calculated by a combined method of Romberg-Euler method and
Gauss-Laguerre method. Furthermore, numerical results are compared with experimental
ones to validate the models and investigate field performances.

The remainder of the paper is organized as follows. Section 2 discusses the theoretical
model of the line current source while the experiment’s descriptions are illustrated in
Section 3. At the same time, the performance of the numerical model is also investigated in
Section 3. In the end, a brief conclusion is drawn in Section 4.

2. Theoretical Model

To save the space and to enhance performance, a horizontal line current is adopted
in our study, which is approximated as a horizontal electric dipole source theoretically.
Not losing generality, an x-directed horizontal electric dipole is investigated, as shown in
Figure 1, which is placed at point z = d on the downward-directed z-axis in the half-space
where z ≥ 0, which is region 1. Region 2 is the space where z ≤ 0. The wave number of each
region is kj = ω

√
μjεj, where εj = ε0(εrj − jσi/ωε0), μj = μriμ0 and j = 1, 2. ε0 and μ0 are

the permittivity and permeability of free space. Since soil and rock are all non-magnetic,
μr1 = μr2 = 1.

Figure 1. Schematics of x-directed horizontal electric dipole at (0, 0, d) and measuring point P at
(x, y, z) or (ρ, φ, z).
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Therefore, the problem can be described as follows. Maxwell’s equation in the two
region are as follows:

∇× Ej = iωBj
∇× Bj = μ0(−iωεjEj + J)

(1)

where J = x̂Ilδ(x)δ(y)δ(z − d) is the electric moment.
Ej and Bj will be solved with the following boundary conditions.

E1x(x, y, 0) = E2x(x, y, 0);
E1y(x, y, 0) = E2y(x, y, 0);

k2
1E1z(x, y, 0) = k2

2E2z(x, y, 0);
B1(x, y, 0) = B2(x, y, 0)

(2)

To investigate the performance of the wave, we usually measure the fields in region 2.
Thus, the field components in it are solved and illustrated below [23]:

E2ρ = − Ilωμ0
4π cosφ

∫ ∞
0 ( [J0(λρ) + J2(λρ)]

M + γ1γ2[J0(λρ) − J2(λρ)]
N )ei(γ1d−γ2z)λdλ

E2φ = Ilωμ0
4π sinφ

∫ ∞
0 ( [J0(λρ) − J2(λρ)]

M + γ1γ2[J0(λρ) + J2(λρ)]
N )ei(γ1d−γ2z)λdλ

E2z = − Ilωμ0
2π cosφ

∫ ∞
0

γ1 J1(λρ)ei(γ1d − γ2z)λ2

N dλ

B2ρ = Ilμ0
4π sinφ

∫ ∞
0 ( γ2[J0(λρ) − J2(λρ)]

M +
k2

2γ1[J0(λρ) + J2(λρ)]
N )ei(γ1d−γ2z)λdλ

B2φ = Ilμ0
4π cosφ

∫ ∞
0 ( γ2[J0(λρ) + J2(λρ)]

M +
k2

2γ1[J0(λρ) − J2(λρ)]
N )ei(γ1d−γ2z)λdλ

B2z = iIlμ0
2π sinφ

∫ ∞
0

J1(λρ)ei(γ1d − γ2z)λ2

M dλ

(3)

where M ≡ γ1 + γ2, N ≡ k2
1γ2 + k2

2γ1 and Jn is the Bessel function. γ2
j = k2

j − ξ2 − η2, which

is defined by the translational invariance E(x, y, z) = 1
(2π)2

∫ ∞
−∞ dξ

∫ ∞
−∞ dηeE(ξ, η, z) [23].

The calculation of Equation (3) would require the analysis of the Sommerfeld Integral,
for which its general form is described as follows:

S =
∫ ∞

0
f (λ)Jn(λρ)e−g(λ)dλ (4)

where f (λ) and g(λ) are the complex function of the frequency and medium properties.
Jn(λρ) is the first kind Bessel function of order n. To evaluate SI, numerous poles would
appear in the integral path, which would make the numerical calculation divergent. To
solve such problems, numerous techniques have been developed and a combined numerical
method with the Gauss-Laguerre method and Romberg–Euler method is applied in the
paper based on the current studies [24]. A brief introduction of both methods is illustrated
as follows.

2.1. Gauss-Laguerre Method

The Gauss-Laguerre quadrature method can be expressed as follows:

∫ ∞

0
f (x)e−xdx ≈

n

∑
i=0

Ai f (xi) (5)

where xi is the ith null point of the Laguerre polynomial of order N + 1, and wi is the
corresponding weight; they can be easily obtained from the relevant literature. The approx-
imation in Equation (5) is exact when f (x) is a polynomial of a degree less than 2N + 1;
thus, the Guass–Laguerre quadrature succeeds if f (x) can be adequately represented by
a polynomial of finite order for range [0, ∞]. It is obvious that the higher order Laguerre
polynomial can produce more accurate integral results but involves more computation
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time. For example, in Equation (3), by permitting the following, B2z can be evaluated by
Equation (5).

f (x) =
J1(xρ)ei(γ1d−γ2z)x2

ex

M
(6)

Although more complicated than B2z, the other components can also be evaluated in
this manner.

This method is suitable for the case where the horizontal distance is less than the
vertical distance, i.e., ρ ≤ z.

2.2. Romberg-Euler Method

The Romberg–Euler composite method can by expressed as follows:

S =
∫ ∞

0
W(λ)Jn(λρ)e−g(λ)dλ ≈

∞

∑
m=1

∫ xm

xm−1

W(λ)Jn(λρ)e−g(λ)dλ =
∞

∑
m=1

Bm = Sp (7)

where x0 = 0, and xm is the first root of the Bessel function Jn(λρ). The value of the integral
S is the limit to which sequence Sp converges.

The termination condition of the iteration is stated as follows.

|ΔSp

Sp
| = | (Sp − Sp−1)

Sp
| = |Bp

Sp
| < ε (8)

Take Bz in Equation (3) as an example again; here, we can permit W(λ) = 1
M and

g(λ) = −i(γ1d − γ2z)λ2. Then, B2z can be evaluated by Equation (7).
The integration is performed between the zeros of the Bessel function, and the trun-

cated infinite integral is expressed as a sum of integral between successive Bessel zeros.
Since the envelope of W(λ) decays more slowly than the rapidly oscillating Bessel function,
especially for large values of the argument, the Euler transform can be used to speed up
the converge of the piecewise integration sequence. The Romberg quadrature method is
adopted for piecewise integration in Bm.

To evaluate the performance of the above methods, the calculation times are usually
compared with different values of ρ

z . Studies shows that when ρ > z, the Romberg–Euler
method outperforms the Gauss-Laguerre one [24] and when ρ < z, Gauss-Laguerre method
performs better.

3. Experiments and Results Discussions

3.1. Experiments Description

An experiment has been conducted in a reservoir in the Qin Mountain in Northwestern
China (109◦49′ E, 33◦42′ N), shown in Figure 2a, to study the radiation performances of
the submerged line current and the wave diffusion along the Earth’s surface. The soil of
the region was composed of mud, sand and crushed granite where conductivity is around
5 S/m. The line current source is buried around 1-m deep in a shallow horizontal layer and
connected to a transmitter which would send ELF signals. The schematics of the source are
shown in Figure 2b. In the experiment, the copper wire is around 200 m long, the radius is
around 1 mm and the emission current is constantly 0.07 A. Thus, the emission intensity of
the envisioned electric dipole is 14 Am. The emitting frequencies of the ELF signals are set
at 3 Hz, 5 Hz and 9 Hz.
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(a) Topographic map of the experiment layout

(b) Schematic layout of source (c) Source Environment along Hao Creek

Figure 2. Schematics of the experiment setup.

A commercial magnetic sensor produced by Huashun Ltd. (Xi’an, China) with a high
sensitivity of 216 mV/nT and low noise level of 0.057 pT/

√
Hz at 1 Hz, shown in Figure 3a,

is adopted to collect magnetic signals. The details of the ferrite rod sensor is shown in
Table 1. To investigate the magnetic fields’ complete performance, three sensors were
perpendicularly assembled relative each other, shown in Figure 3b, which are placed as
high as 20 cm away from the Earth’s surface. The three-axis magnetic collection system
would transfer the collecting magnetic field into voltage with 24-bit sampling, which would
be recorded in the data acquisition system based on NI modules with sampling rates of
200 Hz, as shown in Figure 3c. To obtain the field strength, the values at the frequency
of interest would be collected and transferred by sensitivity. A 5 Hz square-wave signal
collected by the system is shown in Figures 4 and 5.

To check the source states, a reference point is fixed closely to the line current source,
which records the received magnetic signal at 50 m. Other spots at 490 m, 632 m and 735 m
away from the source are chosen according to the environment in the mountain. Figure 3c
shows the receiver placed in a 5-m deep cave at an distance of 490 m.
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(a) Magnetic sensor (b) Schematic of the 3-axis system (c) Magnetic field collection system

Figure 3. Commercial sensors to collect magnetic signals.

Table 1. Parameters of the ferrite rod sensor.

Paramters Values

Bandwith 0.1 Hz–200 Hz

Noise Level 0.057 pT/
√

Hz@1 Hz

Measurement Range ±10 nT

Output Voltage ±10 V

NRP ≤0.35 W

(a) x axis (b) y axis (c) z axis

Figure 4. Original signal of a 5 Hz square wave collected by the system.

(a) x axis (b) y axis (c) z axis

Figure 5. Post-processed measured values vs. frequency of a 5 Hz square signal.
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3.2. Results Discussion
3.2.1. Validation of the Numerical Model

To investigate the performance of the proposed numerical model and the combined
method, the measured magnetic fields strengths are compared with the numerical results of
the submerged HED model. As shown in Figure 1, the source is selected as an HED with the
electric moment of 14 Am, and it was located in a two-half homogeneous space. The HED is
1 m away from the interface and located in region 1 where εr = 10, μr = 1, σ = 5 S/m, which
are the general parameters of the soil. Region 2 would be air with εr = 1, μr = 1, σ = 0 S/m,
and the fields of interest are analyzed.

The comparison of the two field strengths is illustrated in Figure 6 with distance
as the horizontal axis. From the figure, we can see that both data agree well but with
some slight differences with 0.026 nT as the maximum (10%) at 9 Hz around 490 m. The
errors are mainly caused by the ideal assumption of the ideal layered structures and the
noise produced by the collection system and introduced by the environment. Thus, it
can be easily concluded that the proposed model would be a promising substitute for the
preliminary study of such channels at the ELF band, especially for locations that are hard
to reach. At the same time, it can be easily observed that, in the ELF band, the influences of
the frequency on field strength are limited, especially in the closer range.

(a) 3 Hz (b) 5 Hz (c) 9 Hz

Figure 6. Comparison of measured data with the theoretical values for ELF waves at 3 Hz, 5 Hz and
9 Hz.

3.2.2. Investigations on the Field Distribution

From the previous study, it can be clearly concluded that a magnetic ELF signals could
be produced by a submerged line current and such signals can travel along the Earth’s
surface. Although the signal strengths are at the level of nT, magnetic signals can be
collected at least 1 km for all ELF bands up to 9 Hz due to the development of the current
sensor technology, which would increase sensitivity to the level of sub-pT.

The electric field and magnetic field distributions at xoy-plane (z = 1 m) of the ELF
wave at 5 Hz with an x-axis located HED as the source are shown in Figure 7. The
electric moments is 14 Am, and the figure is illustrated in logarithm form. A typical
distribution of an electric dipole can be observed and the magnetic field suffers less power
loss than the electric field, which indicates the potential of the magnetic signals of ELF
communication techniques.

The power loss of the signals is illustrated in Figure 8. To calculate path loss, the
magnitude of the magnetic field was measured and recorded at 50 m, which was chosen as
reference Bo. Then, the ratio of the field magnitude at ith point Bi to the ones at reference
point Bo would be calculated and followed by a logarithmic operation, i.e., PL = 20lg Bi

Bo
.

From the figure, it can be observed that path loss increases with an increase in the distance,
but frequency would have limited impact.

125



Electronics 2022, 11, 1116

(a) Electric field (b) Magnetic Field

Figure 7. The electric field and magnetic field distributions at xoy − plane (z = 1 m) of the ELF wave
at 5 Hz (HED source located at z = −1 m; values are in logarithm form).

Figure 8. Power loss of the ELF wave at various frequencies at the mountain.

Additionally, a modified Friis Model [25] is applied to model path loss:

PL = alg
d
d0

+ b
d
d0

+ c (9)

where d0 is 50 m, a is the spreading path loss index and b refers to the absorption index.
The corresponding parameters are shown in Table 2. From the table, it can be easily

observed that the spreading path loss index a and absorption index b would be at the same
order for different frequencies, as indicated by the figure. The spreading path loss index is
around 40, which indicates the appearance of other types of wave transmission in addition
to traditional direct propagation, while the absorption index is close to zero because of the
non-lossy properties of mountain rocks, which would render absorption loss negligible.

Table 2. Parameters of modified path-loss models.

Freq. a b c SSE RMSE

3 Hz 30.86 −0.87 0.46 4.43 0.22

5 Hz 39.56 −0.85 2.11 25.99 0.53

9 Hz 46.17 −0.63 3.43 4.83 0.23
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4. Conclusions

In the paper, the emission fields of a submerged line current source in the ground are
theoretically and experimentally analyzed. The results showed that the submerged line
current source can emit ELF signals and can be modeled as a submerged HED, which would
simplify the process for the communication system’s design. In addition, the initial studies
of the path loss models indicate the potential of the ELF techniques for super long-distance
communication, which would pave the way for future studies. However, to render wide
ELF bands available and usable, the antenna and transceiver techniques should be fully
developed, and they are still in their early phases; thus, more research work should be
conducted. As an initial study on such techniques, much work still needs to be performed,
such as more experiments and complete theoretical analyses to enrich the database and to
explain the peculiarities in detail.
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