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Preface to ”Applications of Artificial Intelligence in

New Energy Technology Systems”

Dear Readers,

It is our great pleasure to present this book, titled ”Advances in Energy Technologies: Exploring

Innovations for a Sustainable Future.” This collection of research and insights brings together a

diverse range of topics and expertise, all centered around the advancement and application of energy

technologies for a greener and more sustainable world.

In recent years, the integration of distributed power generation and emerging energy

technologies has gained significant attention. However, the successful integration of these

technologies into existing power systems requires overcoming various challenges, such as efficiency

limitations, unreliable control strategies, inaccurate prediction methods, and high operating costs.

To tackle these obstacles and maximize the potential of new energy technologies, researchers have

turned to the power of AI and soft computing techniques.

This book, which is a compilation of the articles from the Special Issue, serves as a platform

for researchers to share their original work on AI-enabled solutions that improve, develop, and

manage new energy technologies. The selected papers cover a wide range of topics, including

AI-enabled control systems for renewable energy systems, advanced energy management systems,

innovative energy prediction techniques, AI-enabled energy planning strategies, grid integration of

new energy systems, smart grid communication systems empowered by AI, power electronics and

industrial electronics applications, electric vehicles and storage systems, virtual reality visualization

and simulation for new energy technologies, and virtual power plants.

By showcasing the latest advancements in AI for new energy technologies, we aim to foster

collaboration, spark new ideas, and contribute to the development of sustainable and efficient energy

systems. We believe that the research presented in this Special Issue will pave the way for a future

where new energy technologies seamlessly integrate into our daily lives and contribute to a greener

and more sustainable world.

We would like to express our sincere gratitude to all the authors who contributed their valuable

research to this Special Issue book. Their dedication and expertise have ensured the high quality of the

papers included. We would also like to extend our appreciation to the reviewers for their meticulous

evaluation and constructive feedback, which have helped shape this collection.

We invite all readers to explore the articles in this book and delve into the cutting-edge research

at the intersection of AI and new energy technologies. Together, let us accelerate the progress toward

a cleaner, smarter, and more sustainable future.

Mehdi Seyedmahmoudian, Alex Stojcevski, Ben Horan, and Saad Mekhilef

Editors
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Abstract: The prevailing massive exploitation of conventional fuels has staked the energy accessibility
to future generations. The gloomy peril of inflated demand and depleting fuel reservoirs in the
energy sector has supposedly instigated the urgent need for reliable alternative fuels. These very
issues have been addressed by introducing oxyhydrogen gas (HHO) in compression ignition (CI)
engines in various flow rates with diesel for assessing brake-specific fuel consumption (BSFC)
and brake thermal efficiency (BTE). The enrichment of neat diesel fuel with 10 dm3/min of HHO
resulted in the most substantial decrease in BSFC and improved BTE at all test speeds in the range of
1000–2200 rpm. Moreover, an Artificial Intelligence (AI) approach was employed for designing an
ANN performance-predicting model with an engine operating on HHO. The correlation coefficients
(R) of BSFC and BTE given by the ANN predicting model were 0.99764 and 0.99902, respectively.
The mean root errors (MRE) of both parameters (BSFC and BTE) were within the range of 1–3%
while the root mean square errors (RMSE) were 0.0122 kg/kWh and 0.2768% for BSFC and BTE,
respectively. In addition, ANN was coupled with the response surface methodology (RSM) technique
for comprehending the individual impact of design parameters and their statistical interactions
governing the output parameters. The R2 values of RSM responses (BSFC and BTE) were near to 1
and MRE values were within the designated range. The comparative evaluation of ANN and RSM
predicting models revealed that MRE and RMSE of RSM models are also well within the desired
range but to be outrightly accurate and precise, the choice of ANN should be potentially endorsed.
Thus, the combined use of ANN and RSM could be used effectively for reliable predictions and
effective study of statistical interactions.

Keywords: diesel; oxyhydrogen; artificial neural network; response surface methodology; predic-
tion; desirability

1. Introduction

Ever-growing industrialization and unprecedented use of non-renewable fuels have
brought us to a very feeble junction where we have to be a bit vigilant or we may run out

Sustainability 2021, 13, 9373. https://doi.org/10.3390/su13169373 https://www.mdpi.com/journal/sustainability
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of fossil fuels [1]. Hydrocarbon reserves found in nature are going to become extinct in
the future if we continue using them without any restrictions because these reserves are
being consumed at a rate faster than their formation [2,3]. The world energy demand is
excessively soaring and is likely to be 28% higher in 2040 if consumption continues at the
current pace. The intensifying pressure of depleting energy resources and fear of damage
to the environment has consequently made scientists to look for alternative or green fuels.
The use of oxygenated, alcoholic, and hydrogen fuels in CI engines has been the locus of
interest of engineers for the past few years [4–10].

Compression ignition (CI) engines have long been the power generation source for
heavy machinery in energy and aquatic transport owing to their high efficiency, torque,
and feasibility of operation on a lean mixture of air and fuel [11]. Diesel is a commonly
used fuel in CI engines. However, due to the incessant usage of fossil fuels to generate
diesel, the focus of the researchers, engineers, and scientists made a paradigm shift towards
the study of more efficient, promising, and greener fuels [12–16].

Hydrogen itself cannot be used in CI engines due to its high auto-ignition tempera-
tures, which requires a very high compression ratio, but it can be mixed with fuel with low
autoignition temperatures. Hydrogen gas is a good blending agent and could be effectively
used in engines because of its low ignition temperature and high flammability [17]. The
use of hydrogen as a mixing fuel is a concept with novelty and therefore much work has
been reported. The earliest studies were conducted by T. Litzinger et al. on the operations
of the IC Engines with multi-blended fuels. They validated the role of H2 inside the IC
engines and found it as a potential replacement of fossil fuels [18]. Moreover, with scientific
and technological development, many researchers have discovered that H2 can be used
as a blend with other gases to reduce its combustibility and increase its ignition energy.
H.K Abdel Aal carried out one such study to generate a safe method of H2 enrichment by
using methane as a blending agent with H2. He used Le Chatelier’s principle for predicting
flammability and determining a safe ratio [19].

Similarly, among many fuels available for mixing, the use of diesel has also been an
area of interest of researchers [20,21]. Kadir Aydin et al. conducted experimentation on
a Mitsubishi 4 stroke CI engine using HHO gas dm3/min as a blended fuel with diesel.
They observed a 19.1% increase in brake power (BP) and a 14% decrease in brake-specific
fuel consumption (BSFC) with the addition of HHO as compared with simple diesel. Their
study identified 1750 rpm as a critical speed, below which the HHO addition was not
favorable for engine performance [22]. Similarly, Alfredas et al. used an Audi 1.9 TDI (IZ
type) CI engine to investigate the effect of HHO addition at three liters per minute (LPM)
with diesel on the performance of the engine. Within the rpm range of 1900–3700, HHO
proved to be favorable for engine performance [23]. Ali Yimilaz et al. also studied the
outcome of HHO addition on engine performance and reported that engine torque was
amplified by 19.1%, and an average gain of 14% was achieved using HHO [24]. The effect
of HHO gas on the performance of a Mitsubishi Canter brand, four-stroke, water-cooled
diesel engine was conducted by Raif et al. They varied the flow rate of HHO from 3 LPM
to 7 LPM and observed that with HHO enrichment, the torque and brake power increased,
whereas fuel consumption decreased [25]. HHO has also the potential to be used as a
blending agent with other fuels. In this regard, Usman et al. used HHO with LPG and
CNG and reported improved performance and reduced emissions with the addition of
HHO for both cases [26].

Owing to the cost and time of simply random experiments, researchers nowadays are
utilizing computer systems to attain similar efficiency by performing the least number of
experimental runs. Artificial neural network (ANN) and response surface methodology
(RSM) techniques are currently used to solve problems in science and engineering, espe-
cially where classical modeling methods have pathetically failed. The predictive capability
of the ANN model is based on the training of experimental data values and followed by
validation. If new data values are not desired, the ANN model may re-learn to enhance
the performance [27,28]. Raif Kenanoglu et al. used an artificial neural network for perfor-
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mance and emission analysis of a hydroxy gas-enriched CI engine for odd flow rates of
3.5 and 7 L/min. They used the Levenberg-Marquardt (LM) training function and found
a 95.82% accuracy for torque [29]. Similarly, Yildrium et al. studied the effect of HHO
enrichment on three different biodiesels using ANN. They used artificial intelligence for
fixing optimum hydrogen enrichment and found that developed models had a coefficient
of determination close to 1 [30].

Similarly, the RSM has the statistical regression technique for prediction [31,32]. Over
the last few years, the combined application of ANN and RSM methods has been hailed
with significant success in the power industry. Ghobadian et al. utilized diesel and biodiesel
fuel blends for ANN-based prediction of performance and emission. The developed ANN
model was viable with correlation coefficients (R-values) of 0.999 and 0.9487 for BSFC and
torque, respectively [33]. The ANN coupled RSM-based optimization of SI engine was
carried by Samet Uslu et al., which rendered the use of the ANN-supported RSM model as
an effective tool for performance prediction [34].

Considering the literature cited, the use of ANN for predicting the performance of
engines fueled with diesel HHO blends has already been studied [30]. However, the
optimization of the engine with the same blend has not been reported so far. In the current
study, ANN was used to predict the performance (BSFC and BTE) of a CI engine operating
on diesel with HHO in flow rates of 2–10 LPM. Moreover, the ANN-assisted RSM optimiza-
tion was applied to identify the optimized working conditions. The obtained optimum
conditions were validated using experimentation. Thus, the combined use of artificial
intelligence and RSM proved valuable in estimating and optimizing the performance of a
CI engine.

2. Materials and Methods

2.1. HHO Generator

The HHO (hydroxy gas) was produced using an Ironside HHO Generator, shown in
Figure 1. The features of the used HHO generator are itemized in Table 1. The power to
the electrical unit was supplied using an AC source. Water was ionized using potassium
hydroxide as a catalyst that generated hydrogen (positive charge) and hydroxide (negative
charge) ions. On supplying the potential across ionized water, the generated HHO traversed
first from a bubbler and later from a flow meter. Prior to injection in the engine’s intake
manifold, the flow rate of the gas was monitored using the flow meter. The potentiometer
was connected with the electrical box for regulating the flow through the cell.

Figure 1. HHO generator.

3
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Table 1. HHO generator specifications.

Feature Description

Material of Plate Stainless steel (316-l)
Dimensions of Plate 16.5 cm by 16.5 cm by 0.1 cm

Electrode configuration Center anodes, end cathodes
Plate spacing 2 mm

HHO flow rate up to 10 LPM
Maximum Voltage 35 V
Maximum Current 40 A

Relation between current and LPM Direct relation up to 10 LPM

2.2. Experimental Methodology and Test Fuels

A direct injection, four-stroke, three-cylinder diesel engine was used for performance
tests whose specifications are shown in Table 2. The speed, load, and fuel flow measuring
system were equipped with the engine, as comprehensively demonstrated in the experi-
mental setup (see Figure 2). The engine was attached with a 3-phase AC generator having
85% efficiency. Five breakers with equal loading capacity were utilized from the control
unit, as shown in the schematic of the engine testbed (Figure 3). The loads were applied to
the test engine utilizing the generator.

Table 2. Engine specifications.

Features Description

Engine type Perkin/AD 3.152
Bore 91.4 mm

Stroke 127.0 mm
Number of holes of nozzles 4

Brake mean effective pressure 7.1570 bars
Injection timing 17 0 BTDC
Displacement 2.5 Liters

Compression ratio 18.5
Maximum speed 2200 rpm
Maximum power 36.8 kW at 1500 rpm
Maximum torque 243 N.m at 1400 rpm

The fuels used for conducting the experimental runs were pure diesel and HHO-mixed
diesel with 2, 4, 6, 8, and 10 LPM enrichment. The physicochemical properties of liquid
and gaseous fuels are shown in Table 3.

Table 3. Properties of fuels.

Properties Diesel Hydrogen

Research octane number 30 >130
Density at 20 ◦C 833.1 kg/m3 0.0827 kg/m3

Net heating value 42.5 MJ/kg 119.93 MJ/kg
Flame velocity 30 cm/s 265–325 cm/s

Autoignition temperature 530 K 858 K
Chemical composition C12H23 H2

4
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Figure 2. Experimental setup.

Figure 3. Schematic of engine test bed.

First, the diesel engine was allowed to warm up for 10 min ahead of recording the
experimental observations. The tests were started at an engine speed of 1000 rpm and
ceased at 2200 rpm, with equal increments of 200 rpm at each stage. The performance
parameters, BSFC and BTE, were calculated at each constant strategic engine speed with
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varying loads (9%, 18%, 27%, 36%, 45%) and HHO concentration of 2, 4, 6, 8, and 10 LPM
by using the following mathematical modelling equations:

BTE =
Break Power × 3600

Fuel Consumption × Calorific Value
(1)

BSFC =
Fuel Consumption

Break Power
(2)

Considering all the possible combinations of continuously varying factors, 210 experi-
mental observations were documented. The experimental work was restricted to lower half
partial loading conditions considering the safety aspect associated with HHO utilization in
engine. Moreover, using hydrogen accompanies better combustion and higher flame speed
and temperature inside the engine, which may lead to thermal degradation if operated at
higher loading conditions. Later, the ANN technique was implemented for designing the
predictable model of engine performance. Finally, the performance was optimized using
response surface methodology (RSM) and the desirability aspect was investigated.

3. Experimental Results and Discussion

Non-renewable fuels are normally associated with enhanced performance and re-
duced exhaust emissions [35]. Hydroxy gas is believed to facilitate cleaner and smoother
combustion compared with conventional fuels. The experimental deliverables signifi-
cantly demonstrated the decrease in BSFC and increase in BTE by virtue of HHO addition
to diesel. The detailed effect of HHO on performance parameters is presented in the
following sections.

3.1. Brake Specific Fuel Consumption

The patterns of BSFC variation with varying flow rate and engine load are shown
in Figure 4a–g. The BSFC of all operating conditions of HHO enriched fuel was lower
than for neat diesel. The addition of gaseous fuel to diesel evidenced promising fuel
economy. At the speed of 2200 rpm and a load of 9%, the parameter (BSFC) differed
by 12% for neat diesel and the one having 10 LPM of HHO, with the latter being more
fuel-efficient. Similarly, the speed of 1600 rpm rendered un-blended diesel less efficient
on the account of an average of 8.44% higher fuel consumption when juxtaposed with
10 LPM HHO-enriched diesel. Moreover, the higher engine speeds seem to have a greater
decrement in BSFC compared with low speeds. Equated at loads of 9% and 18% for speeds
1800 and 2200 rpm, the BSFC values diverged by 0.33 and 0.64 kg/kWh for low and high
speed, respectively. The higher flammability at higher speeds is the reason for augmented
variations (decline) in BSFC for increased revolutions of the power-producing shaft. The
improved fuel economy of the engine functioned with HHO could be apprehended by the
high calorific value of hydrogen and efficient combustion due to the availability of oxygen
atoms in the HHO structure [19,36–38].

6
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Figure 4. Cont.
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(g) 

Figure 4. (a–g) Comparison of BSFC for diesel—HHO blends in speed range (1000–2200).

3.2. Brake Thermal Efficiency

Figure 5a–g shows the brake thermal efficiencies of all operating conditions at different
HHO flow rates and loads. Identical to BSFC, the engine exhibited boosted thermal
efficiencies for all HHO-enriched fuels compared with pure diesel. The test speed of
1400 rpm and flow rates of 2, 4, 6, 8, and 10 HHO at the constant load of 18% returned
BTE values of 11.11%, 19.80%, 27.37%, 29.16%, and 31.55%, respectively. Thus, with
the successive addition of HHO to the pure diesel, the engine exhibited a more efficient
behavior. Figure 5c is seen to be following a different pattern compared with other test
speeds. The manufacturer provided the maximum torque of 243 Nm at 1400 rpm (see
Table 2). Therefore, at 36% loading condition for 1400 rpm, the fuel consumption was
observed as higher, which resulted in a lower rate of increase in BTE, as made evident by
the part of curve after the 25% load. Of all the experimental runs, the maximum recorded
efficiency was 42.39% at the following conditions: 1000 rpm, 10 LPM HHO, and 45% load.
Compared at a speed of 2000 rpm, diesel with 10 LPM HHO presented an average of 9.07%
better performance than neat fuel. The chemical structure of diesel reveals the presence of
23 hydrogen atoms. The addition of hydroxy gas augments the number of hydrogen atoms
and hydrogen to carbon ratio increases, which could be held accountable for significantly
improved efficiency [39]. Moreover, enhanced combustion, the high calorific value of fuel
mixture, diffusivity, and fast flame propagation speed of hydrogen are the phenomena
governing the better performance of the engine [29,30,40,41].

8
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(g) 

Figure 5. (a–g) Comparison of BTE for diesel—HHO blends in the speed range (1000–2200).

4. ANN Application

4.1. Data Preprocessing

Prior to the development of the model, the input data (speed, load, and flow rate) and
output data (BSFC and BTE) were normalized between the (0, 1) range using Equations (3)
and (4). All the data were within 0 to 1 and no faulty data were detected.

InputN =
input − min(input)

max(input)− min(input)
(3)

OutputN =
Output − min(output)

max(output)− min(output)
(4)

4.2. ANN Model

ANN is chiefly a statistical model that stems from the very idea of the information
processing system of the human brain [42]. Over the few decades, ANN models have
been growing exceptionally more common, owing to their widespread use for analyzing,
processing, system controls, and optimization applications. With similar popularity in
other fields, it has also been expansively used in the automotive sector as performance
parameters could be correctly estimated using it. Depending upon the complexity of data,
the ANN could have many layers, but generically it is reported with three stages: input
layer, hidden layer, and output layer [43,44]. Neurons are information carriers that act
as a connecting medium between the three layers. The neurons are interlinked through
communication links which are in turn connected with connection weights. The signals are
transmitted to the neurons by connection weights.

In the current study, engine speed, HHO flow rate, and engine load were designated
as input parameters for input layers while performance parameters (BSFC and BTE) were
dedicated to the output layer. The number of experimental observations recorded were
210, which served as a dataset to the input layer of ANN. MATLAB NN Toolbox was
used for developing the model, which randomly divided the input into three groups as
training (70%), validation (15%), and testing (15%). The network used in the hidden and
output layers of the ANN model was a feedforward backpropagation network because
of its valuable uses in the modelling of the system, signal processing of data with non-
linearities, and accuracy [43,45]. The Trainlm training function and mean square error
(MSE) performance function were employed, which is generally a preferable combination
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for faultless predictions [46]. Owing to the magnitude of the data set and higher reported
efficiency rates, the tansig transfer function was selected. For diminishing the errors,
LEARNGDM learning function was used. The quantity of neurons in the hidden layer
is central to the efficient prediction of the ANN model, as with too low a number the
connection between input data and output predicted results could be feeble and the
resultant model will be considered inappropriate [43,47]. Moreover, the criteria of ceasing
the training on the escalation of validation error was used. Usually, the use of 10 neurons
is widely reported in the literature and the same could also be considered for the present
case. However, with such a rough guess, the results may often be misleading. Therefore,
the optimum neurons were identified by iterations 5 points above and near 10 below which
identified the use of 10 neurons for achieving desirable results. The trained ANN model
may have an error in form overfitting, which is a considerable difference of error between
the training and testing. Figure 6 shows the performance of ANN training for 1000 epochs,
from which it could be arguably concluded that the test error is comparable to the training
error and are converging at one value. Therefore, the ANN model is not over fitted. The
attributes of the ANN models are epitomized in Table 4 and the detailed network structure
of the ANN model is shown in Figure 7. The working of ANN for the current case is
clarified by the process diagram shown in Figure 8. It encompasses three stages. Input
parameters were introduced in the first stage, which were repetitively trained in the second
stage for minimizing disparity, and checked for the desired results in the third stage.

Figure 6. Performance validation of ANN.

Table 4. Attributes of the ANN model.

Attributes Description

Parameters Three Inputs, Two Outputs, One hidden layer
Network Type Feedforward backpropagation

Total number of data sets 210
Number of data sets for ANN training 147

Neuron in hidden layer 10
Data Division 15% for validation, 15% for testing and 70% for training

11
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Figure 7. The ANN model.

Figure 8. Working of ANN.
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The output results of the ANN model were tested using the statistical measures of
mean relative error (MRE), Root mean square error (RMSE), and correlation coefficient (R2),
as defined in Equations (5)–(7):

MRE(%) =
1
n ∑n

i=1

∣∣∣∣100
ti − pi

pi

∣∣∣∣ (5)

RMSE =

√
1
n ∑n

i=1 (pi − oi)
2 (6)

R2 = 1 −
(

∑n
i=1 (pi − oi)

2

∑n
i=1 (oi)

2

)
(7)

The best output results could be adjudicated by ensuing certain statistical ranges
associated with the above formulas. In the current scenario, the ANN predicted outputs
rendered appropriate based on two statistical indicators: (a) correlation coefficient (R) close
to positive unity and (b) the MRE of input and output within the defined range of 1–3%.
In the case the predicted results failed to meet the demarcated criterion, the ANN model
learning rate was varied.

4.3. ANN Prediction Comparison and Discussion

The prediction of performance characteristics of test engine fueled with diesel-HHO
blends using the artificial intelligence approach proved exceptionally valuable. The overall
regression graphs yielded by the ANN application are shown in Figure 9a–d. The results
generated by the model were in line with the statistical criterion defined in the preceding
sections. The correlation coefficients for the three stages of the developed neural network
were found qua 0.99998 for training, 0.99988 for validation. 0.99978 for testing, and 0.99994
for training, testing, and validation as a whole. The correlation coefficients for all stages
were precisely near to +1, which demonstrates the well-matching of the experimental and
ANN-predicted results.

The further analysis was initiated by evaluating the predicted and experiment re-
sults of BSFC and BTE on an individual basis as shown in Figure 10a,b. The correlation
coefficient for BSFC returned a value of 0.99764. The MRE and RMSE accuracy-defining
equations proved solid testimonies of BSFC model-generated results with values of 2.64%
and 0.0122 kg/kWh. The statistical parameters showed that the prediction of the BSFC of a
diesel engine operating on blended fuel using ANN has enough competence and efficiency.
Similarly, the BTE-guessed values were significantly close to experimental values shown
with R, MRE, and RMSE values of 0.99902, 1.91%, and 0.2768%. The BTE ANN model
proved remarkable in the prediction of performance parameters.

The comprehensive comparison of two data sets, experimental and predicted, for
each observation of parameters (BSFC and BTE) is shown in Figure 11a,b. The plotted line
graphs depict the overlapping data points for most of the test runs, signaling the negligible
deviations. From 210 observations, there are only a few sets for which the predicted values
were seen escalating on either extreme, but collectively, they could merely be ignored due
to an inconsequential effect. The in-depth analysis of the obtained statistical parameters
unequivocally advocates that the ANN prediction model is suitable for performance
parameters.
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(a) (b) 

(c) (d) 

Figure 9. (a) Training, (b) validation, (c) testing, and (d) overall correlation coefficients.

 
(a) (b) 

Figure 10. Comparison of predicted results with experimental results for (a) BSFC and (b) BTE.
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(a) (b) 

Figure 11. Comparison of experimental and predicted values for (a) BSFC and (b) BTE.

5. RSM-Based Optimization

Optimization of any process aims at achieving the maximum output by manipulating
the controlled variables. In any optimization technique, numerical constraints are typically
introduced for either maximizing or minimizing the response variables. Several available
optimization techniques could admirably define the optimized parameters within the
provided range. Response surface methodology (RSM) is a well-known statistical technique
employed for the optimization of involved parameters using experimentally extracted
data for solving multiple simultaneous equations. Over the years, the RSM has been seen
extensively used in the engineering sector owing to its accurate prediction of response(s)
influenced by multiple discrete factors. In the current optimization study, the BSFC and
BTE of the test engine were nominated as response variables. The goal was to maximize
BTE and minimize BSFC. The RSM design factors considered for optimization of diesel
engine performance attributes were engine speed (rpm), HHO flow rate (LPM), and load
of the engine (%). Design Expert 11 was used for creating the model and response surfaces.
A multilevel design for a pre-defined experimental strategy was developed using historical
data feature. The model defining parameters, listed in Table 5, were three numeric factors,
seven levels of speed, six levels of HHO blend, and five levels of engine load.

Table 5. Factors and levels.

Factors Units Levels L [1] L [2] L [3] L [4] L [5] L [6] L [7]

Speed Rpm 7 1000 1200 1400 1600 1800 2000 2200
Flow rate LPM 6 0 2 4 6 8 10 —

Load % 5 9 18 27 36 45 — —

5.1. Selection of an Empirical Model

The fit summaries of BSFC and BTE are listed in Tables 6 and 7. Generally, the selection
of the appropriate model is governed by (a) p-value (b) predicted R2 and (c) reasonable
agreement between predicted and adjusted R2 [48]. Based on the mentioned assessing
parameters, the first two models (linear and 2FI) had small values of R2. However, the
quadratic model had the signs of best fit, owing to p < 0.0001 and R2 significantly close
to 1. Recent studies have also shown that the engine combustion process is complex and
therefore could be aptly described with a quadratic model [49]. Thus, referring to the
deduced observations and published literature, the quadratic model was designated for
optimization purposes.
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Table 6. BSFC fit summary.

Source p-Value Adjusted R2 Predicted R2

Linear <0.05 0.7224 0.7135
2FI <0.05 0.7482 0.7316

Quadratic <0.05 0.9939 0.9922

Table 7. BTE fit summary.

Source p-Value Adjusted R2 Predicted R2

Linear <0.05 0.9187 0.9161
2FI <0.05 0.9368 0.9335

Quadratic <0.0001 0.9940 0.9958

5.2. Analysis of Variance and Predicting Equations

Analysis of variance (ANOVA) is a statistical tool used for assessing the statistical
significance of the model, individual terms, and interactions. It provides a detailed under-
standing of the regression model as the interactions between the factors and the responses
can be explicitly comprehended. Tables 8 and 9 provide the ANOVA for the quadratic
models of BSFC and BTE. The model F values of 383.56 and 1298.30 for BSFC and BTE
imply that models are significant. The model terms have been abbreviated as A—Speed,
B—HHO flow rate, and C—load. The p values less than 0.0500 indicate the significance of
model terms. In the case of BSFC, A, B, C, AC, BC, A2, and C2 are significant model terms.
The p values of the terms AB, BC, and C2 indicate the model terms that are insignificant.
The accuracy of the models under consideration has been verified using the diagnostic
predicted vs actual and residual vs run plots as shown in Figure 12a–d. Figure 12a,b
demonstrates that for BSFC and BTE, the RSM predicted values are in close agreement
with the ANN values, indicated by the colored data point falling on the linear inclined line.
Similarly, the deviation of RSM and actual (ANN) values were in the narrow residual range
of [−3.7428, +3.7428], as depicted in Figure 12c,d. The even distribution atop and below
the reference axis, for both the cases, signals the statistical significance of BSFC and BTE
RSM models. The response surfaces of BSFC and BTE variation with engine speed, HHO
percentage, and engine load are shown in Figures 13 and 14 respectively. It is visible that
all the design factors had a significant effect on responses. The dark and light dots on the
response surfaces shows the design points above and below predicted values, respectively.

Table 8. ANOVA for BSFC.

Source
Sum of
Squares

Df
Mean

Square
F-Value p-Value

Model 11.51 9 1.28 383.56 <0.0001
A-Speed 1.06 1 1.06 317.29 <0.0001

B-Flow rate 0.0357 1 0.0357 10.71 <0.0001
C-Load 7.75 1 7.75 2324.75 <0.0001

AB 0.0000 1 0.0000 0.0032 0.9551
AC 0.3384 1 0.3384 101.49 <0.0001
BC 0.0156 1 0.0156 4.68 0.0317
A2 0.0606 1 0.0606 18.18 <0.0001
B2 0.0001 1 0.0001 0.0240 0.8771
C2 2.25 1 2.25 674.88 <0.0001
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Table 9. ANOVA for BTE.

Source
Sum of
Squares

Df
Mean

Square
F-Value p-Value

Model 15229.95 9 1692.22 1298.30 <0.0001
A-Speed 2724.04 1 2724.04 2089.93 <0.0001

B-Flow rate 110.22 1 110.22 84.56 <0.0001
C-Load 11414.41 1 11414.41 8757.34 <0.0001

AB 19.49 1 19.49 14.95 0.0001
AC 262.83 1 262.83 201.65 <0.0001
BC 9.03 1 9.03 6.93 0.0091
A2 31.18 1 31.18 23.92 <0.0001
B2 0.3481 1 0.3481 0.2671 0.6059
C2 658.42 1 658.42 505.15 <0.0001

  
(a) (b) 

 
(c) (d) 

Figure 12. (a–d) Predicted vs actual graph for (a) BSFC and (b) BTE and residual vs. run graphs for (a) BSFC and BTE RSM
models.
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Second-order regression equations relating the input parameters and responses for
estimation of performance are given by coded Equations (8) and (9). The coded alphabets
A, B, and C correspond to the study design factors: speed, HHO flow rate, and load,
respectively. By using the corresponding values of speed, flow rates, and engine load, in
the regression equations, the values of BSFC and BTE could be accurately predicted.

BSFC = 0.3055 + 0.0165 ∗ A − 0.0191 ∗ B − 0.2717 ∗ C + 0.0005 ∗ AB − 0.0852 ∗ AC

+0.0178 ∗ BC + 0.0441 ∗ A2 − 0.0015 ∗ B2 + 0.2475 ∗ C2 (8)

BTE = 23.71 − 5.40 ∗ A + 1.06 ∗ B + 10.43 ∗ C − 0.6690 ∗ AB − 2.37 ∗ AC

+0.4239 ∗ BC + 1 ∗ A2 + 0.1020 ∗ B2 − 4.23 ∗ C2 (9)

 
(a) (b) 

(c) 

Figure 13. Response surfaces variation of BSFC with (a) flow rate and speed, (b) speed and load, and (c) load and flow rate.
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(a) (b) 

 
(c) 

Figure 14. Response surfaces variation of BTE with (a) load and speed, (b) load and HHO, and (c) flow rate and speed.

5.3. Optimization Results and Validation

In the current study, objective of RSM was to recognize the engine optimum working
conditions. The speed, flow rate, and load were design factors, and ANN estimated values
of BSFC and BTE were the outputs (responses). The design expert optimization feature
demands optimal constraints to be defined for the factors and responses. Table 10 illustrates
the defined constraints and setup for optimization. The goal was to optimize the engine
with targets of minimizing BSFC and maximizing BTE while keeping the within range
criterion for study factors.

Table 10. Optimization setup.

Factors
Desired

Goal
Lower
Value

Upper
Value

Lower
Weight

Upper
Weight Importance

A: Speed (rpm) Is in range 1000 2200 1 1 3
B: HHO Flow rate (LPM) Is in range 0 10 1 1 3

C: Load (%) Is in range 0 45 1 1 3
BSFC (kg/kWh) Minimum 0.196822 1.27606 1 1 3

BTE (%) Maximum 6.22221 41.9617 1 1 3
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The best operating parameters for engine performance came out to be 1000 rpm, 10 L
per minute flow rate of HHO, and 45% engine load. The performance parameters against
these optimal values of design factors are 0.301 kg/kWh BSFC and 40.939% of BTE. The
composite desirability (D) is a unitless number that lies within the range of zero to one. It
is a measure of favorability to which input defining factors optimize the objectives as a
whole. The closer the value to the 1, the more favorable the optimization. In the current
study, the composite desirability was detected to be 0.971. A value sufficiently close to 1
indicates that the employed RSM models are highly efficient and could be used to predict
the optimum design factors for the efficient performance of the diesel engine.

The RSM-optimized results could be easily validated by conducting the experimental
runs. Therefore, experimental observations of BSFC and BTE were recorded correspond-
ing to optimized values of speed, flow rates, and loads, and the comparison is shown
in Figure 15a,b. The experimental observation returned a value of BSFC 5.64%, less as
compared with an optimized parameter. Similarly, the optimum value for brake thermal
efficiency was 6.15% lower in comparison with experimental observation. With sufficient
agreement between optimized and experimental observations as the basis, the RSM is
viable and practically implementable.

 
 

(a) (b) 

Figure 15. Comparison of optimized and experimental results for (a) BSFC and (b) BTE.

6. Comparison of ANN and RSM Models

The artificial intelligence and statistically based predicting models of BSFC and BTE
seemingly have alike reliability and efficiency. However, due to the generic association of
methods root task to the same domains, the comparative assessment of the two will be an
ideal approach. The detailed comparison of MRE and RMSE of ANN and RSM models is
shown in Table 11. The statistical comparison discloses that the ANN models of BSFC and
BTE have a better ability to efficiently predict parameters of an engine due to lower MRE
and RMSE. ANN and RSM returned MRE values of 1.91% and 2.26% for BTE and 2.64%
and 2.94% for BSFC, respectively. Similarly, the RMSE given by ANN and RSM for BSFC
were 0.012 and 0.088 kg/kWh, respectively. The comparison vouched for ANN’s efficiency
and reliability as the statistical parameters (MRE and RMSE) of both parameters were less
than its competitor.
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Table 11. ANN and RSM comparison.

Models Parameters MRE% RMSE

ANN
BTE (%) 1.91 0.27

BSFC (kg/kWh) 2.64 0.012

RSM
BTE (%) 2.26 0.41

BSFC (kg/kWh) 2.94 0.088

7. Conclusions

This study evaluated the use of oxyhydrogen gas with diesel at different flow rates in
a CI engine. ANN and RSM tools were collectively used for performance prediction and
optimization. The results could be summarized as:

• 10 LPM HHO with diesel was found to be most fuel efficient among all test fuels.
• HHO addition to the diesel improved BTE for all flow rates. Pure diesel showed the

least BTE among all combinations of fuels.
• The correlation coefficients of training, testing, and validation of the ANN model came

out to be 0.99998, 0.99988, and 0.99978 respectively. Moreover, MRE values were in
the range of 1–3%.

• RSM identified all the study factors as statistically significant owing to p values less
than 0.005.

• Optimum operating conditions for engine were 1000 rpm, 10 LPM HHO, and 45%
loading condition.

• Composite desirability of 0.971 for multi-response optimization indicated the appro-
priate optimization setting.

• The experimental BSFC and BTE differed by 5.64% and 6.15% from RSM-optimized values.
• The ANN model proved better than RSM due to low RMSE and MRE values.

Thus, the addition of HHO to diesel proved highly valuable for improved performance.
The statistical assessment tools (R, MRE, and RMSE) revealed that the performance could
be accurately predicted by ANN and RSM models. Conclusively, the HHO enrichment
to the diesel is desirable for better performance and could be optimized using Artificial
Intelligence and statistical methods.

The authors aim at conducting studies to investigate the effect of HHO with a stepwise
increment beyond 45% loading condition along with the collective and individual ANN
modelling for outputs with different algorithms and training functions.
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Abstract: The Crossover Switches Cell (CSC) is a recent Single DC-Source Multilevel Inverter (SDCS-
MLI) topology with boosting abilities. In grid-connected PV applications, the CSC should be con-
trolled to inject a sinusoidal current to the grid with low THD% and unity power factor, while
balancing the capacitor voltage around its reference. These two objectives can be met through the
application of a finite control set model predictive control (FCS-MPC) method. Thus, this paper
proposes a design of an optimized FCS-MPC for a 9-level grid-tied CSC inverter. The switching ac-
tions are optimized using the redundant switching states. The design is verified through simulations
and real-time implementation. The presented results show that the THD% of the grid current is
1.73%, and the capacitor voltage is maintained around its reference with less than 0.5 V mean error.
To test the reliability of the control design, different scenarios were applied, including variations
in the control reference values as well as the AC grid voltage. The presented results prove the
good performance of the designed controller in tracking the reference values and minimizing the
steady-state errors.

Keywords: crossover switches cell; CSC; multilevel inverter; Packed-U-Cell; model predictive control;
grid connection

1. Introduction

The capacity of global renewable energy (RE) has witnessed an increase of 261 GW in
2020, which leads to 2799 GW of the total global RE capacity, where PV systems dominate,
with around 25.3% of this total capacity [1]. In order to connect the PV strings to the utility
grid, the DC output of the PV modules should be converted to AC, which is the function
of the inverters stage. Several research works reviewed the inverter technologies for PV
applications [2–5].

In the literature, it has been reported that multilevel inverters (MLIs) ensure a higher
power quality compared to conventional 2-level inverters, which make them a good
candidate for RE applications [5]. In various MLI topologies, the design mainly consists of
the use of DC voltage sources, capacitors, and medium power semiconductor devices that
operate at a reduced voltage rating. These topologies, which generate multiple DC voltage
levels at the output terminals, have several advantages compared to the conventional
two-level inverters such as lower switching losses, lower voltage stress on the power
semiconductor devices, reduced electromagnetic interference, higher efficiency, and lower
harmonic pollution and filter size [6–8]. On the other hand, the complexity of the inverter’s
design increases and the overall reliability of the system decreases with the increase in
the number of levels. That is because each switch used in the design requires a related
gate driver and a protection circuit. As a result, the increase in the power semiconductor
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switches in the design leads to increases in the system’s cost and the control complexity [8,9].
Moreover, using multiple DC sources in MLIs topologies raises concerns regarding the
increase in the power losses and malfunctioning in the system due to the unbalanced power
sharing among the isolated DC sources [10]. In PV systems, the increase in the required
DC sources implies an excessive number of DC-DC converters.

Therefore, interest is increasing in the reduced switches MLIs and in single DC sources
MLIs (SDCS-MLIs) [11]. One of the recently developed SDC-MLIs is the Packed U cells
(PUC) topology, which is classified as an asymmetric Flying Capacitors inverter (FCI)
that could be used as a compromise between the cascaded H-bridges and the flying
capacitor topologies [12,13]. The PUC MLI generates more voltage levels with high-
power quality, while using a lower number of passive/active components and DC sources
(single DC source) compared to other MLI topologies. These PUC-MLI features result in
cost reductions and a smaller compact power conversion unit compared to even 2-level
topologies. However, the maximum voltage level generated by PUC-MLI equals the
DC source voltage which limits its employment to low power applications and makes it
unsuitable for applications that require an output voltage greater than the input DC source.
Furthermore, the topology provides the capacitor with one path for charging. Hence,
problems may occur if there is a lack of energy and a long interval between the discharging
and charging states [14].

These limitations are overcome by modifying the PUC MLI to have two crossover
switches between the DC link and the capacitor; the new topology is called the Crossover
Switches Cell (CSC) [14]. This modification provides another way of charging the capacitor
and increases the number of levels from seven levels in PUC to nine levels in CSC. The
maximum voltage level is the sum of the DC source and the capacitor’s voltage; CSC has a
boosting ability.

Voltage/current controllers are required in MLIs to deliver green energy/power from
the source to the load/grid. Control schemes with modulators such as sinusoidal pulse
width modulation (SPWM) and space vector (SVPWM) are commonly used with MLIs in
general and in PV applications [15–17]. These methods are compatible with high switching
frequencies. SPWM is easy to implement and does not require any optimization technique.
SVPWM generates low current ripples and is easy to implement, while its complexity
increases with the number of levels [6,18]. Space vector control is a fundamental frequency
method that is effective for a high number of levels cases, but the lower-order harmonic
components cannot be eliminated [6,7]. The selective harmonic elimination method gener-
ates signals with a low total harmonic distortion (THD%) and is suitable for high-power
applications, but suffers with offline calculations. Additionally, adaptive controllers, sliding
mode controllers, artificial intelligent controllers and Fuzzy logic controllers are designed
for MLIs in the PV systems [19–22].

Model predictive control (MPC) schemes are based on the predicted states obtained
by systems’ model. MPC was applied effectively in systems with MLIs and in PV appli-
cations [23–28]. One of the main advantages of MPC is that the control action is applied
directly to the system, without the need for a modulation stage [29]. Furthermore, MPC is a
multi-objective control technique; several objectives can be designed in its cost function by
specifying their priorities according to the application. This makes MPC a good candidate
for MLIs in PV systems where the capacitors’ voltage needs to be regulated according to
their references in order to generate the required voltage levels and maintain a low THD%
in the current that is fed to the grid.

In this paper, a finite control set MPC (FCS-MPC) is proposed for a nine-level, single
phase, grid-connected CSC-MLI. The objective of the controller is to generate a synchro-
nized grid current with a minimized THD%, while maintaining the capacitor voltage at
around its reference value. The topology and the switching patterns of the CSC inverter
are described in detail. Then, the mathematical model of the system and the control design
steps are explained. The proposed controller is verified through simulation and real-time
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implementation and the results are shown and discussed to prove the acceptable dynamic
performance of the designed controller.

2. CSC Topology and Mathematical Modelling

2.1. CSC Topology

The studied nine-level CSC-inverter is shown in Figure 1. The topology consists
of a DC voltage source (representing the the output of the DC-DC converter fed by the
solar panels in PV applications), a capacitor, and eight switches (Si, i = 1 . . . 8), where
two of them are bidirectional (S2 and S5). The switches between the DC link and the
positive output terminal of the inverter, S1 and S4, work in a complementary manner,
in which one of them is ON at a time. The same concept applies to the switches between
the capacitor link and the negative output terminal of the inverter, S3 and S6. The four
switches between the DC link and the capacitor link also work in a complementary way.
All the valid switching patterns are presented in Table 1, where si ∈ {0, 1} represents the
switching state of the switch Si. In order to have nine DC levels at the output terminal of
the inverter, the capacitor voltage (V2) is maintained at one third of the DC link voltage
(V1). Table 1 shows the VAB value when V1 is set to 150 V and V2 is set to 50 V. It is clear
that the maximum and minimum output voltage will be ±200 V. Hence, CSC inverter has
a boosting ability.

Figure 1. The Crossover Switches Cell (CSC) Inverter Topology.

2.2. Modelling

Given that C is the CSC capacitor, L f is the filtering inductor. By using Kirchhoff’s
voltage law (KVL) and Kirchhoff’s current law (KCL) on the topology shown in Figure 1,
the model state equations can be written as:

V̇2(t) =
1
C
(s3 − s2 − s7)ig(t) (1)

i̇g(t) =
1

L f
(VAB(t)− Vg(t)) (2)
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where V̇2(t) =
dV2
dt , i̇g(t) =

dig
dt ,

VAB(t) = (s1 − s2 − s8)V1(t) + (s2 − s3 + s7)V2(t), (3)

V1(t) is the DC voltage and V2(t) is the capacitor voltage.

Table 1. Switching states and the corresponding output voltage level of the CSC inverter.

s1 s2 s3 s4 s5 s6 s7 s8 VAB VAB (V) Cell Capacitor

1 0 0 0 0 1 1 0 V1 + V2 200 Charged
1 0 0 0 1 1 0 0 V1 150 Bypassed
1 0 1 0 0 0 1 0 V1 150 Bypassed
1 0 1 0 1 0 0 0 V1 − V2 100 Discharged
0 0 0 1 0 1 1 0 V2 50 Charged
1 1 0 0 0 1 0 0 V2 50 Charged
0 0 1 1 0 0 1 0 0 0 Bypassed
1 1 1 0 0 0 0 0 0 0 Bypassed
0 0 0 1 1 1 0 0 0 0 Bypassed
1 0 0 0 0 1 0 1 0 0 Bypassed
0 0 1 1 1 0 0 0 −V2 −50 Discharged
1 0 1 0 0 0 0 1 −V2 −50 Discharged
0 1 0 1 0 1 0 0 −V1 + V2 −100 Charged
0 0 0 1 0 1 0 1 −V1 −150 Bypassed
0 1 1 1 0 0 0 0 −V1 −150 Bypassed
0 0 1 1 0 0 0 1 −V1 − V2 −200 Discharged

3. Control Scheme

MPC is divided into three steps: Predicting the model, calculating the cost function
and minimizing the cost function. The details of the control scheme are given in Figure 2.

Prediction of the model’s state equations step depends on the discrete version of
the state equations, in which the (k + 1) state is predicted from the (k) state. Since the
state variables’ trajectory is assumed to be rectlinear over a small sampling time, the state
equations can be discretized using the following relationship:

x(k + 1) = x(k) +
dx(t)

dt
.Ts (4)

where x(k + 1) is the predicted state at (k + 1), x(k) is the measured state at (k), Ts is the
sampling time.

At (k) step, Vg, ig, V1, and V2 are measured. By applying Equation (4) on Equations (1)
and (2), respectively, the prediction of the capacitor voltage and the grid current values at
(k + 1) can be found using the following equations:

V2(k + 1) = V2(k) +
Ts

C
(s3 − s2 − s7)ig(k) (5)

ig(k + 1) = ig(k) +
Ts

L f
(VAB(k)− Vg(k)) (6)

where VAB(k) = (s1 − s2 − s8)V1(k) + (s2 − s3 + s7)V2(k). The model is predicted for the
16 switching states given in Table 1.

For the grid-tied CSC inverter, the objective is to minimize the grid current THD% and
the error between the capacitor voltage and its reference value. Hence, the cost function is
designed as

g = λv‖V∗
2 (k + 1)− V2(k + 1)‖2 + λi‖i∗g(k + 1)− ig(k + 1)‖2, (7)

where λv and λi are weighting factors, and (i∗g,V∗
2 ) are the desired values for the grid current

and the capacitor voltage, respectively. The cost function implies that the reference values
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are obtained at (k+ 1) sample. According to [30,31], it can be assumed that i∗g(k+ 1) ≈ i∗g(k).
Since the DC voltage (V1) is assumed to be constant, then V∗

2 (k) is equal to V∗
2 (k+ 1). Hence,

the cost function is calculated using the following:

g = λv‖V∗
2 (k)− V2(k + 1)‖2 + λi‖i∗g(k)− ig(k + 1)‖2. (8)

Figure 2. The synoptic of the proposed optimized FCS-MPC for the grid-tied 9-Level CSC inverter.

The cost function is calculated for the 16 switching states, and the switching state
that will give the minimum g is chosen for (k + 1) time step. However, in CSC inverter,
as shown in Table 1, there are several redundant states that will lead to the same minimum
g. To reduce the switching losses, the (k) switching state (sk

1 : sk
8) is compared with all

switching states that give (gmin), (sk+1
1 : sk+1

8 ). The total switching transitions from (sk
1 : sk

8)
to (sk+1

1 : sk+1
8 ) are calculated, f . The one with the minimum switching transitions is sent to

the inverter.
The weighting factors, λv and λi are chosen based on the objectives’ priorities. In the

CSC grid-connected case, a higher priority is given to the grid current THD% over the
capacitor’s voltage error. In our previous work [32], it was shown that to compromise
between the two objectives, λi is set to 10 and λv is set to 5. The simulation results showed
that the current THD% is 1.73% and the mean voltage error is 0.53 V.
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4. Results and Discussion

The presented MPC for CSC inverter is tested via simulation and real-time imple-
mentation. The simulation was carried out using MATLAB/Simulink. The real-time
implementation of the system was carried out using an OPAL-RT 5600 real-time simulator,
enabling dynamic RT simulation responses.

The system parameters used for simulation and real-time implementation are listed in
Table 2.

Table 2. System’s parameters.

Parameters Value

Fundamental frequency f0 60 Hz
Sampling time Ts 20 μs

Grid voltage peak Vg 170 V
Grid current peak |i∗g| 5 A
DC source voltage V1 150 V
Capacitor voltage V∗

2 50 V
Capacitor C 2500 μF

Filtering inductor L f 6 mH
Current weighting factor λi 10
Voltage weighting factor λv 5

4.1. Simulation Results

The effectiveness of the proposed controller in generating low-grid-current THD%
is shown in Figure 3, where the THD% is 1.73%. This result is below the stated limit in
IEEE 929-2000 standard for grid-connected PV systems (THD < 5%). The synchronization
between the grid current and the grid voltage, the unity power factor, is shown in Figure 4.
Additionally, the quality of the grid current is presented by plotting it against its reference.

Figure 5 shows the DC voltage, V1, set as 150 V during the simulation. The capacitor
voltage, V2, is maintained at around its reference, 50 V, as shown in the same figure. The
mean error of V2 is 0.44 V. The third part of Figure 5 shows the generated nine levels of the
inverter , VAB, with the grid voltage, Vg. The results show the boosting ability of the CSC
inverter, where the maximum voltage level (200 V) is the sum of the DC voltage and the
capacitor voltage.

Figures 6 and 7 show the switching transitions for the eight switches (S1 : S8) of the
CSC inverter. In Figure 6, the switching optimization algorithm ( f ) was used to reduce
the total switching transitions, while in Figure 7, the switching optimization algorithm
was skipped. Applying the switching optimization algorithm reduces the number of total
switching transitions by an average of 85 transitions per cycle, and for a one-second simu-
lation, the difference was more than 4500 transitions which is 9.3% transitions reduction.
This reduction affects the conduction and switching losses in multilevel inverters, which
depend on the frequency with which the switches are turned ON and OFF [33,34].
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Figure 3. Grid current (ig) THD%.

Figure 4. (Upper): The grid current (ig) and the grid voltage (Vg), showing the synchronization
between the two signals. (Lower): the generated grid current (ig) versus its reference (i∗g).

Figure 5. (a) The DC voltage (V1), (b) The capacitor voltage (V2) against its reference (V∗
2 ), and (c) The

inverter output voltage VAB and the grid voltage (Vg).
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Figure 6. The transitions of the eight switches (S1 : S8) for one steady-state cycle when the switching
optimization algorithm is used.

Figure 7. The transitions of the eight switches (S1 : S8) for one steady-state cycle without using the
switching optimization algorithm.

4.2. Implementation Results

The setup of the system’s real-time implementation is shown in Figure 8. Figures 9–11
demonstrate the steady-state operation of the system. The nine voltage levels of the CSC
inverter (VAB) are shown in Figure 9 along with the grid voltage (Vg). The MPC objective
is to ensure that the generated grid current (ig) follows its reference (i∗g). This is clearly
shown in Figure 10. The phase angle that is used to generate the reference current signal
(i∗g) is obtained from the grid voltage signal. That is, the generated grid current (ig) is
synchronized with the grid voltage with unity power factor. This synchronization is
demonstrated in Figure 11.

To represent the importance of choosing the proper weighting factors, a distorted case
is shown through real-time implementation. In Figure 10 (λv = 5) and (λi = 10) are chosen
to give a higher priority to the current error in the cost function. However, in Figure 12,
high distortion is shown in the grid current when the weighting factors were chosen as
(λv = 5) and (λi = 1).

Since the MPC control strategy is based on predictions of the new state value using
the system’s model, any mismatch between the model and the real value of the system
may affect the controller’s effectiveness. Therefore, the capacitor and inductor values were
changed by 50% to test the robustness of the controller. Figure 13 shows the accommodation
of the generated grid current by the inverter, with its reference.
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Figure 8. The setup of the FCS-CSC real-time implementation.

Figure 9. The output voltage of the CSC terminals showing the nine levels and the grid voltage.

Figure 10. The grid currents (ig) and its reference i∗g for λv = 5 and λi = 10 case.
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Figure 11. The synchronization between the grid currents (ig) and the grid voltage vg.

Figure 12. The grid current (ig) and its reference i∗g for λv = 5 and λi = 1 case.

Figure 13. The grid current (ig) and its reference (i∗g) when the inductor and the capacitor values
varied by ±50%.

The real-time implementation of the proposed MPC was extended to include several
dynamic variation tests. Figure 14 illustrates the dynamic performance during a step-up
change in the current reference peak from 5 A to 10 A. The generated grid current followed
the new reference and maintained the unity power factor. In the second dynamic test,
the DC voltage source was increased by (40%), i.e., V1 is increased from 150 V to 210 V.
As shown in Figure 15, V2 accommodated the changes and increased from 50 V to 70 V
(V2 = V1/3).
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Figure 14. The grid voltage Vg and the generated grid current ig when the grid current reference (i∗g)
is increased from 5 A to 10 A.

Figure 15. V1, V2, and ig when the DC Source (V1) varies from 150 V to 210 V.

To ensure the reliability of the systems tied to grids and the quality of the power dis-
tribution, some power quality disturbances were introduced to systems under testing [35].
Additionally, several standards describe the criteria of the accepted electric power quality,
such as EN 50160-2000 and IEC 61000-2-8-2002. Voltage sag and voltage swell are common
power-quality disturbances, which were introduced to the proposed FCS-MPC for 9-level
CSC inverter in this work. Voltage sag can result from short-circuit faults, a change in the
load, or a sudden change in the power source [35]. To implement the system under the
effect of grid voltage sag, the grid voltage Vg was stepped-down by 10% from 170 V to
153 V, as shown in Figure 16. However, faults in the electrical distribution systems lead to
voltage swell disturbances. Although voltage swell is less likely to occur than voltage sag,
the damage it causes is greater on devices that cannot handle a voltage above their rating
values [35]. To implement the voltage swell disturbance on the proposed system, the grid
voltage Vg was increased from 170 V to 185 V, as shown in Figure 17.

Reactive power variation was tested by introducing phase shift between the grid voltage
and the grid current in two scenarios: π/4 and π/6, as shown in Figures 18 and 19, respectively.
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Figure 16. Voltage Sags—Grid Voltage (Vg 170 V to 153 V), Vg and ig.

Figure 17. Voltage swell—Grid Voltage (Vg 170 V to 185 V), Vg and ig.

Figure 18. The phase shift between the grid voltage and current is π/4.

Figure 19. The phase shift between the grid voltage and current is π/6.

5. Conclusions

This paper proposes a finite control set–model predictive control (FSC-MPC) for a nine-
level grid-connected single-phase crossover switches cell (CSC) multilevel inverter (MLI).
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The results clearly showed the generated nine voltage levels, where the maximum voltage
level was the sum of the DC source and the capacitor voltages. The cost function was
designed to minimize the THD% of the generated grid current and regulate the capacitor’s
voltage around its reference. The simulation results showed that the current THD% is 1.73%
and the mean error of the capacitor’s voltage is less than 0.5 V. To connect the system to the
grid, the grid current and the grid voltage should be synchronized; the power factor (PF) is
one. Simulation results and real-time implementation results showed the synchronization
between the two signals. The transient response of the system was tested in real-time
implementation by changing the reference values of the capacitor voltage and the grid
current amplitude. In both cases, the system showed a fast response to the changes and
reached the new steady state. Furthermore, the results showed the ability of the system
to accommodate different changes in the grid conditions, such as the grid voltage sag
case, grid voltage swell case and the need for a reactive power. The control algorithm was
designed to benefit from the redundant switching states in the CSC patterns by choosing,
at each time step, the state that minimizes the cost function with the fewest total switching
transitions. This algorithm decreased the switching transitions by 9.3% for a one-second
steady-state simulation.
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Abbreviations

The following abbreviations are used in this manuscript:

MLI Multilevel Inverter
THD Total harmonic distortion
CSC Crossover switches Cell
FCS-MPC Finite control set-model predictive control
si (i 1 to 8) CSC switches
V1 DC link voltage
V2 Capacitor voltage
VAB CSCoutput Voltage
Vg Grid voltage
ig Grid current
Ts Sampling time
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Abstract: Final energy use in Malaysia by the transport sector accounts for a consistent share of
around 40% and even more in some years within the past two decades. Amongst all modes of
transport, land transport dominates and within land transport, private travels are thought to be the
biggest contributor. Personal mobility is dominated by the use of conventional internal-combustion-
engine-powered vehicles (ICE), with the ownership trend of private cars has not shown any signs
of tapering-off. Fuel consumption by private cars is currently not governed by a national policy on
fuel economy standards. This is in contrast against not only the many developed economies, but
even amongst some of the ASEAN neighbouring countries. The lack of fuel economy standards has
resulted in the loss of potentially tremendous savings in fuel consumption and emission mitigation.
This study analysed the increase in private vehicle stock to date, the natural fuel economy improve-
ments brought by technology in a business as usual (BAU) situation, and the additional potential
energy savings as well as emissions reduction in the ideal case of mandatory fuel economy standards
for motor vehicles, specifically cars in Malaysia. The model uses the latest available data, relevant
and most current parameters for the simulation and projection of the future scenario. It is found that
the application of the fuel economy standards policy for cars in Malaysia is long overdue and that
the country could benefit from the immediate implementation of fuel economy standards.

Keywords: fuel economy; fuel consumption; energy savings; emissions mitigation; CO2 emis-
sions; Malaysia

1. Introduction

The contribution of the transport sector to the final energy consumption of Malaysia is
among the highest across all sectors of energy use. Final energy use in the transport sector
has shown to be the most urgent issue to be addressed by the Malaysian government. Since
the late 1970s, along with industrial sector use, it has almost the same share until 2008
when a divergent trend began to appear, and the transport sector’s consumption continued
to rise exponentially while industrial sector energy demand mellowed (Figure 1). In 2014,
the share of final energy use by the transport sector breached 46%, the highest in history
and was still hovering above 40% in the year 2017 (Figure 2).

While the transport sector comprises the land, marine and air sector, this analysis
focuses on land transport, primarily the use of petrol fuel in the internal combustion engine
(ICE) motor vehicles, specifically cars. The increase in the rate of motorisation, including
light-duty vehicles (LDV) or cars, has been steady since early the 1990s [3,4]. This focus is
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due to the enormous growth in car numbers, from around 4 million in 2000 to almost 13
million units in 2016 [5]. In addition, this segment of land transport is the biggest user of
energy in the sector. Therefore, addressing energy use by the ever-increasing fleet of cars is
imperative to reduce fuel consumption and mitigate its ensuing emissions. In this study,
this is achieved by improving the fuel economy of cars.

Figure 1. Final energy demand by sectors (ktoe), 1978–2017 [1].

Figure 2. The percentage share of final energy demand by sectors, 1978–2017 [2].

For this study, we define FE as a measure of how energy efficient a motor vehicle is,
commonly understood as the rate of its fuel consumption measured by calculating the
amount of fuel used for every unit distance travelled [6]. FE is also driven by essential
factors, including powertrain efficiency to convert fuel energy to functional work at the
wheels, vehicle weight, speed, aerodynamics, tyres rolling resistance and many more [6].
However, the simple idea of energy use per unit distance moved is the working definition
adopted by governments and international organisations worldwide in their reports [7–9].
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There are many ways to improve the FE situation, and these include FE standards,
which is a regulatory measure; fuel labelling, which is an information and awareness
measure; innovation in vehicle technology; and fiscal measures [7,10,11]. Some of these
have been implemented in some developed economies such as Australia, Canada, the
EU and the US, with some early adopters in Asia, including China, India, Japan and
South Korea [7,8,12,13]. In the Southeast Asian (SEA) region, Singapore, Vietnam and
Thailand had introduced a vehicle fuel economy labelling scheme in 2012, 2014 and 2015,
respectively [14], whereas fuel economy labels are voluntary in Indonesia. While no ASEAN
member states have mandatory FE standards, fuel consumption or CO2 emissions policies,
Singapore and Thailand have fiscal policies on vehicles based on their emissions [9].

The focus of this study is the benefits of having a Fuel Economy (FE) standard, which
improves the fuel economy of these vehicles by a mandatory measure [10,15]. FE standard
is a type of regulation that sets a limit to vehicle fuel consumption for new vehicles
entering the market when the standard is in place [7,9]. This is done by the introduction of
specific regulations by the government, for example, the Corporate Average Fuel Economy
Standards (CAFE) in the US [16,17] and the ‘Top Runner’ energy efficiency program in
Japan [8,11]. These regulations compel the vehicle manufacturers to meet the FE target set
by the regulator by making their vehicles more fuel-efficient, not at the individual vehicle
level, due to factors that drive FE described above. However, it is designed as a fleet-wide
average to allow for a flexible mix of various models introduced into the market, like the US
CAFE [8]. It is a fact that Malaysia has yet to have implemented FE standard measure for
its car market. Implementing a FE standard policy for cars in Malaysia is needed to reduce
its ever-increasing fuel use and emissions in the transport sector, which depends on the
dedication and will of the government to implement this measure. This study analyses and
discuss just how much energy can be saved and emissions can be curbed by this measure.
Without FE standard policy, there is no push for the automotive industry to introduce new
car models into the market with the best fuel-efficient technology. If this is coupled with
the fuel price situation, which is subsidised in the form of sales tax exemption, unnecessary
fuel use will continue to prevail [18], at the expense of the national fiscal situation, health of
the people and the environment. By introducing this policy, Malaysia has the opportunity
to address these pressing issues.

2. Methods

For this study, we have adapted the method developed by [19] to investigate the
impact of adopting a fuel economy standards policy on passenger vehicles. We employed
many of the equations and explain the principles of calculations in the subsequent sections.
We have listed the symbols employed in the Nomenclature list. In short, we will first
forecast the number of cars and fuel consumption amount using a polynomial curve-fitting
method of the latest published data. These are used to determine the average fuel use per
unit distance travel (the FE of the car) for each year in the available and forecasted data.
There will be a natural improvement of FE, even without the imposition of FE standard
due to normal automotive technology advancement. We forecast the natural improvement
of FE and the corresponding fuel use as a business-as-usual (BAU) scenario. We then
forecast the number of cars affected by the mandatory FE policy (STD). The affected cars
will be imposed a mandatory FE number, based on percentage reduction of BAU FE during
the first year of implementation. We then calculate the difference of fuel use under BAU
and STD scenarios as fuel savings and its avoided emissions. This method is suitable
for fuel use analysis at the macro level, where we do not have granular insights into the
respective car segment. The flexibility of this method was utilised by [20] in their study to
calculate fuel savings. This study includes the added analysis of greenhouse gas emissions
mitigation, not previously calculated by [20].

We sourced input data for the model from various government reports, statistics and
previous literature. The numbers of privately owned vehicles were sourced from [5,20].
Energy consumption in the form of petrol fuel data was sourced from [1]. We only include
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vehicles that run on petrol (gasoline) for this study. The focus on petrol was based on the
substantial number of petrol-powered ICE cars (taken to be 89% overall) compared with
non-petrol-powered vehicles [21]. The annual petrol fuel consumption (1990–2018) and
the corresponding total number of cars (1990 to 2016) are taken from various sources and
demonstrated in Table 1.

Table 1. The annual petrol fuel consumption and number of cars [1,5,20].

Year 1,2,3 Petrol Fuel Consumption (ktoe) Cars (Units)

1990 2901 1,678,980
1991 3135 1,824,679
1992 3326 1,942,016
1993 3666 2,088,300
1994 4139 2,302,547
1995 4548 2,553,574
1996 5205 2,886,536
1997 5586 3,271,304
1998 5854 3,452,854
1999 6793 3,787,047
2000 6387 4,145,982
2001 6827 4,557,992
2002 6948 5,001,273
2003 7360 5,426,026
2004 7839 5,898,142
2005 8211 6,473,261
2006 7517 6,941,996
2007 8600 7,419,643
2008 8842 7,966,525
2009 8766 8,506,080
2010 9560 9,114,920
2011 8155 9,721,447
2012 10,843 10,354,678
2013 12,656 10,535,575
2014 12,705 11,028,296
2015 12,804 11,871,696
2016 13,411 12,997,839
2017 13,437 -
2018 13,041 -

1 Vehicle numbers 1990–2008 from [20], 2 Vehicle numbers 2009–2016 from [5], 3 Fuel consumption 1990–2018
from [1].

2.1. Projection of Petrol Fuel Consumption and Motor Vehicle Numbers

The basis of reduction in petrol fuel consumption and its corresponding emissions
realised by the FE standards implementation hinges upon two important factors, namely
the annual fuel consumption and motor vehicle numbers. The polynomial regression is
instrumental and reliable in projecting future values beyond the presently available data.
We define variable x as the number of the year, whereas variable y is the number of cars and
petrol fuel consumption as a function of available data x. Polynomial regression enables the
best fit line to fit available data points to make future predictions. The following equation
represents a polynomial function of order k in x used in this study:

Y = C0 + C1 x + C2 x2 + . . . + Ck xk (1)

2.2. Potential Fuel Savings Calculations
2.2.1. Base Year Baseline Fuel Consumption, BFCYB

The baseline fuel consumption is the current state of affairs, also called the BAU
situation. The base year YB is taken as the year 2018 as the latest of the real data available.
It is easy to determine the baseline fuel consumption for products with standards already
implemented, taken as the standard or the rating level. Since Malaysia has no fuel FE stan-
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dard for cars, we assumed that the baseline fuel consumption for cars is equal to the annual
average of fuel consumption of cars. The total fuel consumption (petrol) in litres divided
by the numbers of petrol-powered ICE cars in Malaysia, as per the following equation:

BFCYB=
FCi

NVi
(L) (2)

2.2.2. Average Annual Fuel Economy Rating, FERi

We calculate the fuel economy of a motor vehicle by averaging the distance travelled
by the unit of fuel consumed, typically measured in either miles per gallon (mpg) or
kilometres per litres (km/L). The average annual kilometres travelled by car is multiplied
by the total number of cars divided by the total fuel consumption in litres. The average
fuel economy rating is then:

FERi= AM × NVi

FCi
(km/L) (3)

2.2.3. Annual Fuel Economy Improvement, AFIi

This parameter is the overall percentage improvement of all cars’ fuel consumption on
a year-on-year basis. This results from natural technological advancement in automotive
technology that enables the cars, overall to travel the same average distance with less fuel.
This parameter is represented by the following equation:

AFIi=

[
FERi − FERi−1

FERi−1

]
× 100 (%) (4)

2.2.4. Future Baseline Fuel Consumption, BFCYs

We define this parameter as the baseline for petrol fuel use by the whole car population
in the policy implementation year (Ys) in a BAU scenario. This parameter is predicted from
the projection of the fuel consumption that experiences natural fuel economy improvement
over the years. The BFCYB is applied a compounding interest function whereby the interest
rate is taken as the average of the annual fuel economy improvement (AFIavg) (throughout
the years of available data), over the number of years from the YB and Ys. BFCYs is
represented by:

BFCYs= BFCYB ×
(
1 + AFIavg

)(Ys− YB) (L) (5)

2.2.5. Fuel Consumption under FE Standard Implementation, SFCYS

The fuel consumption under FE standard implementation is the discounted value of
the BFCYs of the percentage reduction of fuel use applied under the FE standard. It is the
FE improvement from the future baseline fuel consumption, demonstrated as follows:

SFCYS= BFCYs × (1 − ηs) (L) (6)

2.2.6. Initial Unit Fuel Savings, UFSYS

Initial unit fuel savings is the difference between the baseline fuel consumption in the
first year FE standard is rolled out (BAU, in the absence of FE standard) and the reduced
petrol use of the cars under the implementation of the FE standard (applicable to the
affected vehicles under the standard). The expression for the initial unit fuel savings is
as follows:

UFSYS= BFCYs − SFCYs (L) (7)

2.2.7. Shipment, Shi

We adapted the concept of ‘shipment’ from [19]. This parameter is a description of the
included stock of cars under the FE standard implementation, as not all cars in the first
year FE standard is rolled out is included by the policy, namely the previous year’s model
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of the cars. The number of cars affected by the FE standard is the sum of the difference
between the number of cars in the current and the past year (the newly registered cars in
the current year), and the replacement stock of the scrapped cars the same year (due to
reaching its end-of-life). For example, if the general lifespan L of the vehicles is ten years,
then these cars will be scrapped in 10 years time, and the total replacement for these cars
will be back in the system in the 11th year. The following expression demonstrates the
concept of shipment of the cars:

Shi= (NVi − NVi−1) + NVi−L (units) (8)

2.2.8. Overall Fuel Economy Improvement, TIYs

We define the overall fuel economy improvement as a measure of the initial unit fuel
savings from the future baseline fuel (in Ys). The parameter is expressed as:

TIYs=
UFSYS

BFCYs

× 100 (%) (9)

2.2.9. Scaling Factor, SFi

The scaling factor is a concept of the natural decrease of fuel consumption of the
overall available cars in the country. This parameter is enabled by natural technological
advances in the automotive industry, making the cars more fuel-efficient over time, even
without the enforcement of an FE standard. Scaling factor reduces the initial unit fuel
savings of the cars over the effective span of the policy implementation in a linear manner.
In each year after the implementation of the FE standard, this parameter affects the unit
fuel savings in that particular year. The scaling factor is expressed as:

SFi= 1 − (
YShi − Ys

) AFIavg

TIYs

(dimensionless) (10)

2.2.10. Unit Fuel Savings, UFSi

This parameter is the value of the unit fuel savings for each year after the implemen-
tation of FE standard. Due to the natural technological advancement in the automotive
industry as described above, this value is adjusted with the scaling factor SFi annually, and
expressed as:

UFSi= SFi × UFSYS (L) (11)

2.2.11. Shipment Survival Factor, SSFi

The SSFi is a concept of the common survival rate of a product in light of its average
lifespan L. The concept is introduced in [19,22]. The ‘shipment’ of the cars will survive
100% up to 2/3 of its lifespan L. If the age of the car’s stock is more than 2/3 of average
lifespan L but less than 1 1/3 of the average lifespan L, the survival rate is expressed as
[2 − Age × 1.5/(Average Life)]. For the age of over 4/3 of its average lifespan L, 0% of the
stock survives. This factor can be graphically demonstrated as per Figure 3.
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Figure 3. The relationship between the Age/Average lifespan of a product with Product Survival.

2.2.12. Affected Stock, ASi

We define the affected stock of cars for the adherence to the FE standards as the
shipment of cars in the specific year multiplied by the shipment survival factor, plus the
number of cars under the standards in the previous year. Therefore, the expression for the
parameter is as follows:

ASi= (Shi × SSFi) + ASi−1 (unit) (12)

2.2.13. Fuel Savings, FSi

The fuel savings are the actual savings of fuel consumed under the FE standard
implementation. It is determined by the unit fuel savings and the applicable stock and
expressed as:

FSi=
T

∑
i= Ys

(ASi × UFSi) (L) (13)

2.3. Potential Emissions Reduction, ERi

Emissions can potentially be reduced when there is substantial fuel saving resulting
from the FE standard implementation. The most common tailpipe emissions of cars
include methane (CH4), carbon monoxide (CO), carbon dioxide (CO2), nitrous oxide (N2O),
nitrogen oxides (NOX) and sulphur dioxide (SO2). The tailpipe emissions avoided are
calculated from the total fuel savings and the emission factors of the respective gases per
unit litre of petrol. The emissions reduction is therefore expressed by:

ERi= FSi ×
(
EmCH4 + EmCO + EmCO2 + EmN2O + EmNOx + EmSO2

)
(kg) (14)

3. Results and Discussion

Based on the method described, we demonstrate sample calculations and the results
obtained in this section.

3.1. Data Analysis

The forecasted fuel consumption for private vehicles was calculated with Equation (1).
The polynomial regression method was used on the dataset in Table 1. The mathematical
equation for the curve fitted plot is shown below, and the plot is shown in Figure 4.

y = 4.168x2 − 16,325x + 15,986,198 R2 = 0.9579 (15)

47



Sustainability 2021, 13, 7348

 

Figure 4. The prediction of petrol fuel consumption for cars with polynomial regression.

The forecasted number of cars can be predicted using the same polynomial regression
method and Equation (1) on the dataset in Table 1. The polynomial expression for the curve
fitted plot of vehicle numbers is shown below, and the plot is shown in Figure 5.

y = 10,004.124x2 − 39,644,786x + 39,277,331,102 R2 = 0.9983 (16)

 

Figure 5. The prediction of the number of cars using polynomial regression.

We tabulated the forecasted petrol fuel consumption of cars and the number of cars in
Malaysia from 2010 until 2020 by using the polynomial regression equation in Table 2. Since
the subsequent fuel economy calculations will be in litres, this study converted the data on
energy use published by the Energy Commission in toe (or ton oil equivalent, which is the
measure of the energy contained in a metric ton of crude oil) into the appropriate unit of
measurement. Therefore, the study adopted the conversion factor whereby 1 ktoe equals
the net calorific value of 43.9614 TJ for petrol [1].
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Table 2. The forecasted number of cars running on petrol and its petrol fuel consumption.

Year
Car Petrol Fuel

Consumption (ktoe)
Car Petrol Fuel Consumption

(Litres)
Number of Cars

2019 14,222 18,649,416,515 13,285,168
2020 14,730 19,315,158,648 13,963,231
2021 15,246 19,991,830,550 14,659,102
2022 15,770 20,679,432,222 15,372,780
2023 16,303 21,377,963,664 16,104,266
2024 16,844 22,087,424,876 16,853,558
2025 17,394 22,807,815,857 17,620,658
2026 17,951 23,539,136,608 18,405,566
2027 18,517 24,281,387,128 19,208,281
2028 19,092 25,034,567,418 20,028,803
2029 19,674 25,798,677,478 20,867,132
2030 20,265 26,573,717,307 21,723,269
2031 20,865 27,359,686,906 22,597,213
2032 21,473 28,156,586,275 23,488,965
2033 22,089 28,964,415,413 24,398,523
2034 22,713 29,783,174,321 25,325,890
2035 23,346 30,612,862,999 26,271,063

3.1.1. Potential Fuel Savings Calculation

The year 2018 was taken as the base year for the baseline fuel consumption calculation.
The calculation used Equation (2) and shown below:

BFC2018=
17, 100, 410, 816

12, 624, 912
= 1354 L

A total of 17,100,410,816 litres of petrol were consumed in the year 2018. We derived
this number from published petroleum products final energy use data for 2018, reported in
kilotonnes of oil equivalent (ktoe) unit. We then converted the value to the unit litres by
adopting the conversion factor for toe to GJ and GJ to litres of petrol [1,23], whereby one
ktoe of energy is equal to 1,311,280.64 L of gasoline (petrol) [23].

There were 12,624,912 cars using petrol fuel in the year 2018. This number represented
89% of the overall motor vehicle numbers for the year. The overall motor vehicle numbers
were derived from the polynomial expression in Equation (1). The share of 89% for gasoline
(petrol) powered internal combustion engine (ICE) cars (out of the overall total) were
adopted from the work of [21]. Therefore, we assumed that petrol ICE cars are 89% of the
total number of cars throughout the simulation years for this study.

We used Equations (3) and (4), respectively to calculate the overall fuel economy
ratio—FER in km/L—for each year between 1990 and 2018, and the annual fuel economy
improvement (AFI), by using the petrol consumption (in litres) and the number of petrol
cars, as demonstrated in Table 3. Another critical assumption for this calculation was the
average annual distance travelled per car of 20,000 km. We then calculated the average
of the AFI (AFIavg), which was 2.64% based on each known AFI from the year 1991 to
2018. Consequently, we used the AFIavg value in Equation (5) to forecast the baseline fuel
consumption during the first year of the FE standards roll-out (BFCYs—in the year 2025).
For this case, based on known BFC in the year 2018, the baseline fuel consumption in the
implementation year of the standard (2025) is shown below:

BFCYs= BFC2025= 1354 × (1 + 2.64%)(2025−2018)= 1625.12 L/year
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Table 3. Fuel Economy Ratio, Annual Fuel Economy Improvement (AFI) and Average AFI.

Year FER (km/L) AFI (%)

1990 7.86
1991 7.90 0.57
1992 7.93 0.32
1993 7.73 −2.44
1994 7.55 −2.34
1995 7.62 0.93
1996 7.53 −1.23
1997 7.95 5.60
1998 8.01 0.72
1999 7.57 −5.48
2000 8.81 16.44
2001 9.06 2.85
2002 9.77 7.81
2003 10.01 2.42
2004 10.24 2.29
2005 10.70 4.54
2006 12.54 17.14
2007 11.71 −6.58
2008 12.23 4.43
2009 13.17 7.70
2010 12.94 −1.74
2011 16.18 25.03
2012 12.96 −19.89
2013 11.30 −12.83
2014 11.78 4.27
2015 12.59 6.82
2016 13.16 4.53
2017 13.60 3.38
2018 14.77 8.56

Average 2.64%

The remaining analysis required some other data and statistics for the basis of assump-
tions used. There are many improvements needed in the data recording, maintenance
and reporting for the transport sector in Malaysia. In lieu of the lack of data, these data
estimates were nevertheless adapted from [24,25] and summarised in Table 4.

Table 4. Input data for calculation of potential fuel savings.

Description Values

Implementation Year 2025
Average Lifespan 10 years
BFCYs (Ys = 2025) 1625.12 L/year

Target FE efficiency improvement 10%
Standards fuel consumption 1333 L/year

Annual mileage 20,000 km/year
Average Annual Fuel Economy Improvement (AFI) 2.64%

The potential fuel savings calculation results realised by enforcement of FE standard
on cars in Malaysia (beginning year 2025) is outlined in Table 5. As can be seen, the efficacy
of the policy lasts for only a few years before the natural improvement of the AFI, due to
the advancement of automotive technology, catches up with the target fuel savings of the
standards. Based on the previous data, it was assumed that the annual AFI will improve
at 2.64% on average, without the FE standard policy in place. Therefore, if the fixed FE
standard is not revised to the latest relevant base year, the FE standard’s savings will cease
to be relevant a few years after its implementation. As a demonstration of this point, based
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on Table 5 and Figure 6, the FE standard of 15% reduction based on the year 2025 will be
effective for six years, up to the year 2030.

Table 5. The potential fuel savings calculation results.

Year
Shipment

(‘000)
Applicable
Stock (‘000)

Scaling
Factor

Unit Fuel
Savings (L)

Potential Fuel
Savings (L)

2025 10,565,809 10,565,809 1.00 162.51 21,090,749,294
2026 11,568,077 22,133,886 0.82 133.95 20,574,304,446
2027 11,982,463 34,116,349 0.65 105.39 20,685,925,377
2028 12,624,912 46,741,261 0.47 76.83 21,443,597,561
2029 13,285,168 60,026,429 0.30 48.26 22,901,509,777
2030 13,963,231 73,989,660 0.12 19.70 25,115,885,234

Figure 6. The prediction of annual fuel savings for cars.

It can be seen in Figure 6 that substantial savings will begin in the first year of the
FE standard implementation and continues to increase as more applicable stock gets into
the system after the year 2025. After that, however, this effect starts to taper off four
years into the FE standard implementation until it ceases to be relevant after the year 2030.
This situation happens as the effect of reducing scaling factor kicks in due to the natural
increase of the technological advancement in automotive technologies that increases the
fuel efficiencies of cars against the FE standard.

The comparison between annual fuel consumption in a BAU situation and fuel con-
sumption under FE standard implementation is shown in Figure 7, whereby STD is the
potential fuel consumption at the much-reduced level under the FE standard. The to-
tal cumulative savings during the years the FE standard policy is effective is more than
16.2 billion litres of petrol or more than 12,300 ktoe. It is nice to be aware that these savings
are based on a minimum of 15% efficiency improvement. With continuous technological
improvements, the fuel savings for the future period can be better.
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Figure 7. The prediction of annual fuel savings for cars.

3.1.2. Potential Emissions Mitigation

The fuel savings to be achieved may result in tailpipe emissions reduction, which is
beneficial to the global environment. Tailpipe emissions from gasoline (petrol) comprise
CH4, CO, CO2, N2O, NOX and SO2. The amount of emissions avoided is a function of
the emission factors and the amount of petrol saved. We adapted the emission factors
from [20,26] in this study. We did some necessary unit conversions as some factors were
originally in the units of gallons, and the emission factors are eventually in the form of
kg/L or g/L. Table 6 outlines the corresponding emission factors used in this study.

It is essential to understand these from the lens of its respective Global Warming
Potential (GWP), in the normalised units of a reference gas, in this case, the CO2 in the
form of carbon dioxide equivalent (CO2 eq). Each gas has its GWP factor that measures its
propensity to the global warming effects, which depends on the time horizon of 100 years. It
is interesting to note that depending on the different time horizons adopted, the GWP factor
varies. However, the parties to the Conference of the Parties (COP) to the United Nations
Framework Convention on Climate Change (UNFCCC) has adopted the 100-year time
horizon since the Kyoto Protocol and reaffirmed in the IPCC Second Assessment Report [27]
and IPCC Fifth Assessment Report [28]. We outlined the GWP of the respective gases in
Table 6. It is worth noting that CO, SO2 and NOx are considered indirect greenhouse gases,
as compared to CO2, CH4 and N2O, which has direct global warming potential. Therefore,
we excluded the effects of CO, SO2 and NOx on global warming from this study as indirect
greenhouse gases can be highly uncertain, compared with direct GWPs, believed to be
highly accurate [29].

Table 6. The emission factor for motor gasoline (petrol) and Global Warming Potential (GWP) of gases.

Type of Emission Emission Factor 1,2 Emission Factor GWP 3

CO2 8.78 kg/gal 2.319 kg/L 1
CH4 0.38 g/gal 0.100 g/L 21
N2O 0.08 g/gal 0.021 g/L 310
CO 3.49086 kg/GJ 116.400 g/L indirect
SO2 0.00228 kg/GJ 0.076 g/L indirect
NOX 1.36876 kg/GJ 45.630 g/L indirect

1 Emission factor for CO2, CH4, and N2O from [26]; 2 Emission factor for CO, SO2, and NOX from [20]; 3 GWP
from [30].

Table 7 shows the result of the emissions avoided throughout FE standard implemen-
tation. Consequently, we applied the GWP factor to CO2, CH4 and N2O, and greenhouse
gas emission avoidance over the FE standard period, as demonstrated in Table 8.
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Table 7. The emissions avoidance calculation results.

Year CO2 (Ton) CH4 (kg) N2O (kg) CO (kg) SO2 (kg) NOX (kg)

2025 3,982,619 172,368 36,288 199,866,548 130,497 78,349,747
2026 6,876,726 297,626 62,658 345,106,464 225,327 135,285,292
2027 8,339,428 360,932 75,986 418,511,748 273,255 164,060,920
2028 8,329,009 360,481 75,891 417,988,891 272,914 163,855,955
2029 6,719,783 290,833 61,228 337,230,320 220,185 132,197,762
2030 3,381,342 146,345 30,809 169,691,653 110,795 66,520,877

1 Emission factor for CO2, CH4, and N2O from [26]; 2 Emission factor for CO, SO2, and NOX from [20]; 3 GWP
from [30].

Table 8. The greenhouse gas emissions avoidance.

Year CO2 (Ton) CH4 (kg CO2 eq) N2O (kg CO2 eq)

2025 3,982,619 3,619,738 762,050
2026 6,876,726 6,250,145 1,315,820
2027 8,339,428 7,579,571 1,595,699
2028 8,329,009 7,570,102 1,593,706
2029 6,719,783 6,107,502 1,285,790
2030 3,381,342 3,073,247 646,999

GHG emissions avoidance can be substantial, especially for CO2, while CH4 and
N2O can be negligible relative to the CO2 scale, as demonstrated by Figure 8. Total CO2
emissions reduction is 37.6 million tons, while CH4 and N2O account for 41,400 tons of
CO2 equivalent. Nevertheless, these should count towards the GHG reduction potential as
each contribution counts for Malaysia’s commitments to reducing GHG emissions.

Figure 8. The greenhouse gas emissions avoidance under the FE standard implementation.

4. Conclusions

The analysis in this study for the implementation of the FE standard in the year 2025 is
fortunately timed with the commitments of the Malaysian government in reducing its GHG
emissions by the year 2030. This study forecasted the stock of cars in the study period and
its corresponding fuel savings and emissions mitigation under the FE standard implemen-
tation. The key findings that we have found are that, in the period of implementation, fuel
savings of 16.2 billion litres of petrol or more than 12,300 ktoe can be achieved, along with
the reduction in at least 37.6 million tons CO2 equivalent GHG emissions. In Malaysia’s
official projection to the UNFCCC, under the BAU scenario, the GHG emissions up to the
year 2030 (from 2005) is 549,535 Gg CO2 eq (549.535 million Ton CO2 eq), while the mitiga-
tion plan scenario is expected to lower this value to 510,205 Gg CO2 eq (510.205 million Ton
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CO2 eq). The reduction of the overall 39.3 million Ton CO2 eq pledged by Malaysia in its
Third National Communication and Second Biennial Update Report to the UNFCCC seems
within reach with just this FE standard implementation. These certainly will do well for
Malaysia in meeting its commitments to the international community.

The implementation of a FE standard policy for cars in Malaysia is a promising policy
to help Malaysia reduce its energy use from the transport sector. This step could be one
of the most effective measures, among other FE initiatives [12], nudged positively by
the discussion and public discourse of the policy that has happened at various levels
within Malaysia and regionally [8,9,31]. However, Malaysia still has a lot to do before the
implementation of the FE standard can be realised.

Malaysia has policy documents that outline the intention to have the FE standard
implementation timed nicely within the timeframe of this analysis [32–34]. Specifically, the
Ministry of Transport (MOT) (the ministry in charge of transport policies and regulations)
plan to formulate and implement a fuel economy policy between the year 2019 and 2030 [34].
In addition, a further commitment was made by the Ministry of International Trade and
Industry (MITI) (the ministry in charge of the development of automotive industry),
“pledged to reduce carbon emission by improving fuel economy level in Malaysia by
2025 in line with the ASEAN Fuel Economy Roadmap of 5.3 Lge/100 km” [33]. Both the
government automotive and transport policy statements [33,34] for the FE as outlined
above indicate that Malaysia is on the right track towards the realisation of the policy.

Despite all these, Malaysia needs to designate a body focusing on the technical aspects
and regulatory matters to realise this policy [35]. While various government agencies are
related to road transport, prior existing jurisdictions rendered the policy fall in between
the cracks, as no specific government agency in Malaysia is responsible for both energy use
and transport under its roof. For the technical aspect, one of the actions required involves
the driving test cycle suitable for the local situation for measuring the right FE situation.
The IEA has outlined the policy pathway and critical actions to implement FE policies,
including deciding on the form of standard, target values, introducing a mechanism for
increased vehicle weights as part of the policy design process, before implementing and
monitoring the progress of the policy implementation [11]. The implementation of FE
standard itself should regularly be updated as natural improvements happen over time,
rendering the standard obsolete. In addition, conflicting priorities like the encouragement
of car ownership as a support to the national automotive industry [3] and curbing energy
usage from car use through the implementation of FE standard may impact the competi-
tiveness of the national car industry. This is where Malaysia should resolve its will so that
the implementation of the FE standard becomes a reality.
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Nomenclature

List of symbols
AM Annual mileage (km)
ASi Affected stock of cars in the year i (unit)
ASi−1 Affected stock of cars in the year i−1 (unit)
AFIi Annual fuel economy improvement in the year i (%)
AFIavg Average annual fuel economy improvement (%)
BFCYB (BFC2018) Base year baseline fuel consumption (2018 baseline fuel consumption) (L)
BFCYs (BFC2025) Future baseline fuel consumption in the year policy is implemented (2025) (L)
EmCH4 Emission factor for CH4 (g/L)
EmCO Emission factor for CO (g/L)
EmCO2 Emission factor for CO2 (kg/L)
EmN2O Emission factor for N2O (g/L)
EmNOx Emission factor for NOx (g/L)
EmSO2 Emission factor for SO2 (g/L)
ERi Potential emissions reduction in the year i (kg)
FCi Fuel consumption in the year i (L)
FERi Average annual fuel economy rating in the year i (km/L)
FERi−1 Average annual fuel economy rating in the year i−1 (km/L)
FSi Fuel savings in the year i (L)
L Lifespan of the vehicles (year)
NVi Number of vehicles in the year i (unit)
NVi−1 Number of vehicles in the year i−1 (unit)
NVi-L Number of vehicles in the year i-L (unit)
ηs Percentage reduction of fuel use as the result of FE standard (%)
SFCYS Fuel consumption under FE standard implementation (L)
Shi Shipment (included stock of cars under FE standard implementation)
SFi Scaling factor in the year i
SSFi Shipment survival factor in the year i
TIYs Overall fuel economy improvement (%)
UFSYS Initial unit fuel savings in the first-year roll-out of the standard (L)
UFSi Unit fuel savings in the year i (L)
x Variable x in polynomial expression, year
Y Variable Y in polynomial expression, (number of cars or petrol fuel consumption)
YB Base year
YS Year when FE standard is implemented
YShi Year of the Shipment in year i
ICE Internal combustion engine
ASEAN Association of Southeast Asian Nations
BAU Business-as-usual
CH4 Methane
CO Carbon monoxide
CO2 Carbon dioxide
CO2 eq Carbon dioxide equivalent
COP Conference of the Parties
N2O Nitrous oxide
NOx Nitrogen oxides
SO2 Sulphur dioxide
DSM Demand Side Management
EPU Economic Planning Unit
EU European Union
FE Fuel economy
GHG Greenhouse gas
GJ Giga Joule
GWP Global warming potential
IPCC Intergovernmental Panel on Climate Change
ktoe Kilo tonnes of oil equivalent
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LDV Light-duty vehicles
MITI Ministry of International Trade and Industry
MOT Ministry of Transport
SEA Southeast Asia
toe Ton oil equivalent
UNFCCC United Nations Framework Convention on Climate Change
US United States of America
toe Ton oil equivalent
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Abstract: Refrigeration systems have experienced massive technological changes in the past 50 years.
Nanotechnology can lead to a promising technological leap in the refrigeration industry. Nano-
refrigerant still remains unknown because of the complexity of the phase change process of the
mixture including refrigerant, lubricant, and nanoparticle. In this study, the stability of Al2O3

nanofluid and the performance of a nano-refrigerant-based domestic refrigerator have been experi-
mentally investigated, with the focus on the thermodynamic and energy approaches. It was found
that by increasing the nanoparticle concentration, the stability of nano-lubricant was decreased and
evaporator temperature gradient was increased. The average of the temperature gradient increment
in the evaporator was 20.2% in case of using 0.1%-Al2O3. The results showed that the energy con-
sumption of the refrigerator reduced around 2.69% when 0.1%-Al2O3 nanoparticle was added to
the system.

Keywords: nano-refrigerant; nanofluid; refrigerator; energy efficiency; thermodynamic analysis;
aluminum oxide

1. Introduction

In the past 50 years, refrigeration systems have experienced massive technological
changes. Many of the recent changes in refrigeration systems are due to the rapid changes
in technology and environmental challenges. Beside the harmful effect of refrigerant on
the environment, scientists have warned that the continuous release of refrigerants into
the atmosphere will destroy the Earth’s ozone layer. Ozone layer depletion might lead
to global warming followed by natural disasters. HFC-134a (R134a) is the most common
refrigerant used in domestic refrigerators due to zero ozone depletion potential (ODP), low
global warming potential (GWP), being non-flammable, and favorable thermodynamic
properties [1,2].

Application of nanomaterials in various fields of engineering has become an inter-
esting topic and remained challenging in some aspects during the last two decades [3–7].
Since 1995, when the term nanofluid was introduced by Choi [8] to describe a new class of
heat transfer fluids, many studies have been conducted in this field to discover advantages
and disadvantages in order to overcome the application barriers [9–11]. The main objective
has been to create a new type of coolant with higher heat transfer capability, which has
been used in variety of products such as computers, power electronics, car engines, heat
exchangers, and high-powered lasers. Enhancement in thermal properties such as thermal
conductivity due to the presence of nanoparticles has attracted great interest of researchers,
but instability of nano-size solid particles in the basefluid, especially at high concentrations,
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still remains a challenge in its application [12–15]. Many studies have been conducted on
the fundamental properties, application, and characterization of different types of nanopar-
ticles dispersed in different base fluids [16–19]. However, application of nanoparticle in a
low temperature base fluid such as refrigerant remains unknown because of the difficulties
during measuring the fundamental properties of the mixture and liquid-to-vapor phase
change of the fluid. Therefore, the function of nano-refrigerant in a phase-change process
including migration of nanoparticle during boiling, sedimentation, and thermophysical
characteristics of different phases is very controversial.

Comparatively, few investigations have considered certain effects of nano-refrigerant
on the refrigeration system, and most of them have evaluated the fundamental proper-
ties of nano-refrigerants [20,21] or impacts of using nano-refrigerant on the heat transfer
characteristics in a pipe [22–24]. In addition, it is essential to consider the applicability of
nano-refrigerants in a real refrigeration system.

There are a limited number of investigations on nano-refrigerants available in the
literature. Peng et al. [22] have investigated the heat transfer characteristics of the flow
boiling of a refrigerant-based nanofluid inside a horizontal smooth tube. They have
found that the heat transfer coefficient of the nanofluid is larger than that of the pure
refrigerant. The nucleate pool boiling heat transfer enhancement of refrigerant-based
nanofluid with low concentration of additives was reported by Peng et al. [23]. The
experiment by Henderson et al. [24] on the flow-boiling of R-134a/polyolester mixture
showed that the heat transfer coefficient increased more than 100% over the baseline by
adding CuO nanoparticle into the mixture. In a fundamental aspect, several experimental
articles investigated the characterization of refrigerant-based nanofluid [20,21,25,26]. There
are only two articles available reporting the effect of refrigerant-based nanofluid in a
refrigeration system. According to the work done by Bi et al. [25], R-134a/mineral oil with
TiO2 nanoparticles worked normally in the refrigerator and the performance of refrigerator
was better than that of R-134a and POE oil. The improved refrigerator performance with
TiO2-R600a nano-refrigerant compared to pure R600a was achieved experimentally by Bi
et al. [26] as well.

Influence of CuO nanoparticles on the boiling performance of R134a/polyolester
lubricant oil mixture was experimentally investigated by Kedzierski et al. [27]. The exper-
iment was done on a roughened, horizontal, and flat surface. They found 50% to 275%
heat transfer improvement for R134a/polyolester by adding 0.5% mass fraction of CuO
nanoparticle. The average boiling heat transfer enhancement was 19% and 12% in case of
using 1% and 2% nanoparticle loading concentration, respectively. They also concluded
that the thermal conductivity of the lubricant was increased around 20%. The result of the
same investigation done by Kedzierski [28], showed 400% heat transfer improvement by
adding 0.5% mass fraction of Al2O3 nanoparticles into the R134a/polyolester lubricant oil.

The feasibility of synthesis of refrigerant-based nanofluids, as well as characterizing
their thermal behavior, must be taken into consideration.

In recent years, some studies have been reported on phase-change heat transfer of
nanofluid. Most of them focused on pool boiling heat transfer. Two-phase flow heat
transfer investigation was studied by Bartelt et al. [29]. The effect of CuO nanoparticle
on the flow boiling of R134a/POE mixtures in a horizontal tube was examined. At least,
42% and 50% heat transfer enhancements were concluded as the effect of using 1% and 2%
mass fraction of nanoparticles, respectively. No effect on the heat transfer coefficient was
observed in case of using 0.5% mass fraction of CuO nanoparticle.

Household refrigerator freezer market is one of the major segments of the refrigeration
industry. The widespread use of household refrigerator freezers provides an opportunity
for sustainable energy saving, and the 100 million new units sold annually around the
world represent a considerable potential of energy consumption in this field. Consequently,
it can lead to huge amounts of energy saving by considering the energy consumption
reduction methods.
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This study investigates the performance of a domestic refrigerator using nano-refrigerant
by focusing on the thermodynamic and energy approach. To analyze the thermodynamic
and energy efficiency of the domestic refrigerator, experimental study was conducted,
and the effect of different mass fractions of nanoparticles were investigated. This study
can be a viable means of elucidating the effect of nanoparticles on the performance of the
refrigeration systems.

2. Materials and Methods

The domestic refrigerator used in the experiment was a SR 30NMB type manufac-
tured by Samsung Company Limited, which was a double-door, freezer and refrigerator,
evaporator fin type, and natural convection condenser type. The picture of the refrigerator
which was used as a test-rig and the schematic diagram of the experimental set-up and
the charging mechanism, are shown in Figures 1 and 2, respectively. This refrigerator was
designed to work with R-134a refrigerant and the technical specifications are shown in
Table 1.

 
Figure 1. Domestic refrigerator test-rig.

Table 1. Technical specifications of refrigerator test unit.

Item Specification

Model name SR 30 NMB

Type 2-Door Freezer/refrigerator

Power source 230~240 V/50 Hz

Net Capacity
Lit (cu.ft.)

Freezer 68 (2.4)

Refrigerator 186 (6.6)

Total 254 (9.0)

Refrigerant R 134a (140 g)

Compressor model SD162CL1U/T3
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Figure 2. Schematic diagram of the experiment set-up and charging system.

The refrigerator’s performance has been investigated with no load and closed door
condition. The refrigerator was fitted with the thermocouples, pressure transducers, and
power meter, and the other components remained intact.

2.1. Experiment Condition

In order to carry out the tests, the sequence of the clauses in international standard of
household refrigerating standard, refrigerator–freezers characteristics and test methods
were considered. The refrigerator was placed in a temperature controlled room and all
experiments have been done in a steady-state operating condition. There was no ceiling
fan and air conditioning system to force the movement of air inside the room. Therefore,
heat transfer occurred by natural convection in the condenser and refrigerator walls [30].

2.2. Experiment Procedure

The same procedure was used for all experiments. Nanofluids were prepared based
on the proposed method in the literature. Refrigerant and nanoparticle in this experiment
were R134a and Al2O3. As the baseline experiment, the system was operated with R134a
and polyolester oil (POE) as a lubricant. In this study, nano-refrigerant was a mixture of
Al2O3 nanoparticles, POE lubricant oil, and R134a refrigerant. First, the required amount
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of Al2O3 nanoparticles and POE lubricant oil were mixed and sonicated for at least 30 min
to achieve a homogenized mixture before being injected to the compressor. Finally, R134a
was charged into the system. The thermocouples, pressure transducers, and power meter
were installed on the system (Figure 2) and connected to the data logger to record the
required data during all experiments. Vacuum and pressurize tests were performed before
and after charging the refrigerant for at least 30 min to ensure that there was no leakage in
the system.

To ensure that the previous working fluid was cleaned out of the passages, the fluid
was driven out and the system was washed with based refrigerant and lubricant. It was
done by charging the base lubricant into the compressor, then evacuating the system from
air and moisture, followed by charging the system with refrigerant, and finally making it
run for a few hours with the base fluid passing within the system. At the end, the system
was made empty from refrigerant, and the oil was driven out from the compressor.

2.3. Refrigeration System Performance

Generally, heat travels from a hot space to a cold space due to a certain temperature
difference. However, in refrigeration systems, it is done in the opposite direction as heat
transfers from a lower temperature region to a higher temperature one. Figure 3, shows a
schematic of a vapor compression refrigeration system.

Figure 3. Schematic of a vapor compression system (Adapted from [31]).

The ratio of the cooling or refrigeration capacity (desired output) to the energy in-
put into the system (required input) is called the coefficient of performance (COP), and
expressed as:

COP =
Cooling.capacity

Work.input
=

Qr f

Wnet,in
(1)

According to Figure 3, the refrigeration cycle is divided into four stages during which
the properties of refrigerant change. Based on thermodynamics, heat transfer characteristics
and thermal performance in each stage are explained on the following.

The compressor is the main power-consuming device in the refrigeration system.
This energy is used to increase the pressure of the refrigerant vapor and to circulate it
through the system. Consequently, the temperature of vapor refrigerant rises which in turn
increases the enthalpy of the refrigerant at the outlet of the compressor.

The compressor work is determined with according to the P-h diagram and can be
written as:

w = (h2 − h1) (2)

where h2 and h1 are the enthalpies of refrigerant at the outlet and inlet of the compressor,
respectively.

The compressor of the set-up refrigerator is a hermetic reciprocating type, (220 Volts,
50 Hz) that is thermally protected, and design for use with R-134a.
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A condenser operates as a heat transfer device to release the heat from high-pressure
superheated refrigerant vapor (discharged from the compressor) to the surrounding. As a
result of heat rejection in the condenser, vapor refrigerant becomes a liquid at the outlet.
Heat transfer rate in the condenser is calculated by:

qcon = (h3 − h2) (3)

In this study, condenser is the natural convection cooling type.
Capillary tube operates as an expansion valve. The pressure of the liquid refrigerant

is reduced by the capillary tube. The pressure of the liquid drops slightly in the first
two-thirds of the length of the capillary tube. In current refrigerator, the capillary tube has
0.75 mm inside diameter and 3400 mm length.

The evaporator absorbs heat from its surroundings (inside refrigerator and freezer
space) and transfers it to the refrigerant inside the evaporator. The refrigerant phase
changes during the evaporation process from a liquid to a vapor, and at the evaporator exit
is slightly superheated. This slight overdesign ensures that the refrigerant is completely
vaporized when entering the compressor. The refrigeration effect is defined as the heat
rejected by a unit mass of refrigerant during the evaporating process in the evaporator. It
can be written as:

qr f = h1 − h4 (4)

where h1 and h4 are the refrigerant enthalpies at the outlet and inlet of the evaporator,
respectively.

Refrigerating capacity, or cooling capacity,Qr f , is the actual rate of heat which is
removed by refrigerant in the evaporator, and can be calculated by [1]:

Qr f =
.

mr(h1 − h4) (5)

2.4. Nano-Refrigerant Properties

According to the literatures, the physical and thermophysical properties of nanofluid
can be calculated based on the following equations [32,33]. The specific heat of nanofluids
and volume fraction of nanoparticle in the basefluid are expressed as:

Cp,n f =
φ(ρcp)n + (1 − φ)(ρcp) f

φρn + (1 − φ)ρ f
(6)

φ =
Vn

Vn + V f
(7)

The density of nano-refrigerant, as a physical property of mixture, is introduced by:

ρe f f = (1 − φ)ρ f + φρn (8)

where subscripts f and n refer to fluid and nanoparticle, respectively. Dynamic viscosity of
nanofluid is determined using the following equation:

μn f =
μ f

(1 − φ)2.5 (9)

The viscosity of the mixture is related to the viscosity of refrigerant and the volume
fraction of nanoparticles.

Enthalpy is a critical parameter in evaporation process for calculating the thermody-
namic characteristics of the system and it depends on temperature, pressure, and state
of the fluid (Liquid–Vapor). By assuming that the nanoparticles are volatile as basefluid,
and that using the low nanoparticle concentration can lead to that the enthalpy difference
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of fluid in the case of using nanoparticle could be relevant to the temperature difference
compared to the fluid without nanoparticle. Enthalpies of various fluids are available
in different temperatures and pressures. As these data are empirical-based, there is no
available data for nano-refrigerants that causes a major gap in the calculations related to ap-
plication of nano-refrigerants. Therefore, future investigations including experimental and
numerical methods are needed to obtain accurate thermophysical properties of nanofluids
during evaporation and condensation.

2.5. Energy Consumption and Energy Efficiency of Refrigerator

The purpose of the energy consumption test is to check the energy consumption
of refrigerator under specific test conditions according to the international standard of
household refrigerating standard, refrigerator–freezers characteristics and test methods.

The energy consumption was measured for a period of 24 h after stable operating
conditions. Each test was repeated several times to ensure the reliability of the results.

The measurement of energy consumption was carried out under empty condition with
all compartments simultaneously being in operation and has been expressed in kilowatt
hours per 24 h (kWh/24 h) [30].

3. Results and Discussions

All experiments were done in the same condition to avoid the effects of external
parameters on the results. Figure 4, shows the ambient temperature was controlled during
the experiments and it followed the same pattern in all experiments. Relative humidity
also was controlled in the accepted range of the international standard.

Figure 4. Ambient temperature and relative humidity of test room during experiments.

3.1. Stability of Nanofluid

Stability of the prepared nanofluids was investigated while keeping the samples at
similar conditions. Experiments show that the stability of nanofluid decreases with by
increasing the concentration of nanoparticles. It may happen as a result of increasing
agglomeration process. When the number of nanoparticle molecules increases in the
constant volume, the interaction of molecules within the solution causes the formation of
aggregates due to strong van der Walls forces [34].

Stability of Al2O3 and polyolester lubricant oil mixtures with 0.05%, 0.1%, and 0.3%
mass fractions is shown in Figure 5. All mixtures were stable in the first hour after
preparation. Nanofluid with 0.3%-Al2O3 started to sediment after some hours. This
signifies the insufficient stability of the mixture to be used in the system. Sedimentation of
mixture with 0.1%-Al2O3 increased at the end of day 1 and it almost completely sedimented
on day 3. 0.05%-Al2O3 was stable even after 4 days, which proved the possibility for long-
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term stability for the lowest loading concentration of nanoparticles. Therefore, mixtures of
0.05% and 0.1%-Al2O3 nanoparticle and lubricant oil were chosen for this experiment.

 

Figure 5. Stability of Al2O3-POE lubricant oil with different concentrations.

3.2. Effect of Nano-Refrigerant on Evaporator Temperature Gradient

Evaporator temperature is one of the most important parameters when investigating
the heat transfer analysis in refrigeration systems. In the evaporation process, heat is trans-
ferred from the cold region into the refrigerant medium through three steps. Heat transfer
to the liquid refrigerant before evaporation, during evaporation, and to the refrigerant va-
por after completing the evaporation right before leaving the evaporator. These three steps,
altogether, are known as refrigeration effect in the evaporator and can be calculated based
on Equation (4). According to Equations (4) and (5), the heat transfer and cooling effect in
the refrigeration system is explained based on the enthalpy difference of refrigerant fluid
between outlet and inlet of the evaporator. Based on the explanation in the nano-refrigerant
properties section regarding the enthalpy difference in refrigeration systems in the case
of using nanoparticles compared to without nanoparticles, the evaporator performance
can be analyzed based on temperature gradient of the evaporator. Higher temperature
gradient causes an increase in the cooling effect and performance of the evaporator due to
higher enthalpy difference between outlet and inlet.
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Figure 6, shows the temperature gradient of refrigerant during one on–off cycle in the
evaporator. As it can be seen, the temperature gradient of nanoparticle based refrigerant is
higher than that of the pure refrigerant (R134a). It proves that the heat transfer is improved
in the case of using nano-refrigerants. The average temperature gradient improvement
in the evaporator was 1.9 ◦C (equal to 20.2%) when using 0.1%-Al2O3. The possible
explanation for the increased heat transfer is the enhanced thermophysical properties of
nano-refrigerants, such as thermal conductivity due to the existence of solid nanoparticles in
the refrigerant. The experiments were conducted for 7 consecutive days in order to evaluate
the stability of nano-refrigerant. The obtained results for last day are approximately
similar to the acquired results in the initiation of the measurements which proves the
stability of nano-refrigerant during the course of experiment. Although higher temperature
gradient and consequently higher cooling effect can be achieved at higher nanoparticle
concentrations, there is a limitation due to stability problem.

°C

Figure 6. Temperature gradient in evaporator.

3.3. Energy Consumption by the Compressor

The energy consumption of each test is shown in Figures 7 and 8. Graphs show
decrements in energy consumption after adding nanoparticles to the refrigerant. Every
test was done at least three times under the same condition to ensure the repeatability of
the results. The energy consumption of the refrigerator with normal refrigerant medium
(R134a-POE) was 3.821 kWh/day. The maximum reduction in the energy consumption
was around 2.69% in the case of using 0.1%-Al2O3 nanoparticles. The other nanoparticle
concentration (0.05%-Al2O3) also led to reduction in the energy consumption by 1%. The
results from previous experiments on the use of nanoparticle for refrigeration applications
showed a similar behavior in terms of energy consumption reduction [25,26]. This can
lead to significant long-term energy saving and emission reduction, as current refrigeration
methods are a main part of environmental pollutants, when considered as a national
policy [35].

Analysis of Figures 7 and 8, appeals that despite the equal off-cycles duration the
on-cycles duration was decreased after using nano-refrigerant. This means that the cooling
velocity of nano-refrigerant system was more quickly that the R134a system. Therefore,
energy consumption of the refrigerator was reduced due to the decrease in the total on-
cycles duration in a complete standard cycle.

The reason behind the decrement in the on-cycles time of the compressor can be the
enhancement in the heat transfer characteristics of the evaporator as a result of improved
thermophysical characteristics of the refrigerant after dispersing the nanoparticles in
the refrigerant.
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Figure 7. Energy consumption of refrigerator with 0.05%-Al2O3 and without nanoparticle.

Figure 8. Energy consumption of refrigerator with 0.1%-Al2O3 and without nanoparticle.

3.4. Compressor Discharge and Suction Pressure Analysis

Figures 9 and 10, compare the compressor discharge and suction pressures of the
test-rig over one on–off cycle, respectively. These figures show that both pressures were
reduced for the case of nano-refrigerants.
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Figure 9. Compressor discharge pressure.

Figure 10. Compressor suction pressure.

For 0.05%-Al2O3 nanoparticles, the discharge pressure of the compressor was lower
than that of the base fluid at the first minutes of compressor operating time, but it was
almost the same as the base fluid after the pressure becomes stable. It shows that small
amounts of nanoparticles do not have substantial effect on the discharge pressure, but
causes the discharge pressure to decrease at the first minutes of the on-cycle time. Nano-
refrigerant with 0.1% nanoparticles also follows the same trend as 0.05%, but at a higher
discharge pressure between those for the base fluid and 0.05% nanofluid. On the other
hand, both Figures 9 and 10 demonstrate that the operating time of compressor in cases
of using nanofluids are less than base fluid which causes the energy consumption of
the compressor to drop during a complete standard cycle. The reason might be that the
nanoparticles improve the heat transfer capability of the refrigerant and then causes the
working time of the compressor to decrease. Figure 10 also demonstrates that existence of
nanoparticles in the refrigeration system caused the suction pressure and working time of
the compressor to reduce. Decreasing the suction pressure of the compressor could be the
result of two phenomena: the increase in the pressure drop in the system which is the result
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of increase in the viscosity of the working fluid, as well as the decrease in the discharge
pressure of the compressor.

3.5. Pressure Drop in the System

Pressure drop is one of the important parameters in fluid systems, especially when
the existing fluid is replaced by a new fluid. Figure 11 shows the pressure drop between
the outlet and inlet of the compressor. This includes the summation of the pressure drop of
the condenser, evaporator, capillary tube, and pipes in the system from inlet to the outlet of
the compressor.

Figure 11. Total pressure drop in the system.

As can be seen, Figure 11 indicates the pressure drop in the system for base fluid and
nanofluid with different nanoparticle concentration over one on-off cycle. It shows that base
fluid and nano-refrigerant with 0.1% nanoparticle have almost the same pressure drops.
0.1% nano-refrigerant owns less pressure drop at the beginning of the cycle. However, its
pressure drop increases slightly and reaches to well above that of the baseline at the end of
the cycle. Nano-refrigerant with 0.05%-Al2O3 follows a different pattern. Apparently, the
pressure drop in the beginning of the cycle is much less than those of the other samples. It
increases slightly during the initial one-third of the cycle, reaches to the same pressure drop
as other experiments, and follows the same pattern during the rest of the cycle. Domination
of the lubricity characteristic of nanoparticle in low concentration to the increasing of
the density and viscosity due to adding solid particles to the fluid could be the reason.
Therefore, increasing the concentration of nanoparticle in the base fluid causes to increase
pressure drop and more energy consumption in each on-cycle.

4. Conclusions

A test-rig was constructed in order to evaluate the performance of a household
refrigerator-freezer using refrigerant R-134a as a working fluid. The test-rig included
instrumentation to measure the thermodynamic properties of the system. The energy
consumption test was used to evaluate energy consumption of the refrigerator. The system
was tested by the normal working fluid, as well as Al2O3 nano-refrigerant with different
nanoparticle concentrations. Finally, all data were compared to evaluate the effect of nano-
refrigerant on the thermodynamic performance, heat transfer characteristics, and energy
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efficiency of the domestic refrigerator. After the successful investigation of the measured
parameters, the following conclusions have been drawn:

• Stability of Al2O3 nano-lubricant oil decreases by increasing the nanoparticle concen-
tration in the base fluid. Therefore, application of nanofluid with high nanoparticle
concentration is limited and alternative preparation methods and using additives are
needed to improve the stability. However, nanofluid with low nanoparticle concentra-
tion is stable for longtime;

• Evaporator temperature gradient is increased by using nano-refrigerant. It proves that
thermodynamic behavior of fluid is improved. An increment of 20.2% occurred at the
temperature gradient of the evaporator for 0.1%-Al2O3;

• It has been found that the electricity consumption of the refrigerator was 2.69% lower
than that of the base fluid (R134a) when 0.1%-Al2O3 nanoparticle was added to the
system. This value was 1% for the case of 0.05%-Al2O3;

• It is apparent from the data that the on-cycles duration was less for nano-refrigerants,
but off-cycles duration was nearly the same for both baseline and nanofluid. It proves
that the cooling velocity in nano-refrigerant system was happened quicker than the
normal refrigerant. This can be a reason of reduction in energy consumption during a
complete standard cycle;

• Suction and discharge pressures of the compressor decreased when using nano-
refrigerant compared to the case of pure refrigerant. The result of increasing the
pressure drop in the system due to adding nanoparticles to the fluid appears in the
suction pressure and its effects on the discharge pressure;

• Effect of nano-refrigerant on the performance of the compressor could be a reason for
decreasing the discharge pressure of the compressor;

• Finally, it can be concluded that using nanoparticles in a refrigeration system can
improve thermodynamic characteristics and decrease energy consumption of a do-
mestic refrigerator.

5. Recommendations

The present research investigated the performance of the domestic refrigerator using
nano-refrigerant. In fact, the feasibility of using nano-refrigerant as a refrigerant medium
in domestic refrigerator was taken into account. Utilization of nano-refrigerant requires a
wide range of information about the properties of the nanofluid such as enthalpy, viscosity,
thermal conductivity, and compatibility of the nano-refrigerant with the other material in
the system. Compatibility is very important and should be examined for all parts of the
system to ensure that there are no negative effects on the system components in the short
and long run.

The following recommendations can be suggested for the future research on the
application of nano-refrigerant: overcoming the stability problem, direct preparation
method for nano-refrigerant, measuring the fundamental properties of nano-refrigerant
especially in cases where the boiling temperature of refrigerant is lower than the ambient
temperature, the effects of using solid nanoparticles in the refrigeration system, such as
compatibility with the equipment, chemical reaction during longtime operation, solubility
of the mixture of lubricant oil, refrigerant, and nanoparticle.
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Abstract: A novel Nonlinear Consequent Part Recurrent Type-2 Fuzzy System (NCPRT2FS) is
presented for the modeling of renewable energy systems. Not only does this paper present a new
architecture of the type-2 fuzzy system (T2FS) for identification and behavior prognostication of an
experimental solar cell set and a wind turbine, but also, it introduces an exquisite technique to acquire
an optimal number of membership functions (MFs) and their corresponding rules. Using nonlinear
functions in the “Then” part of fuzzy rules, introducing a new mechanism in structure learning,
using an adaptive learning rate and performing convergence analysis of the learning algorithm are
the innovations of this paper. Another novel innovation is using optimization techniques (including
pruning fuzzy rules, initial adjustment of MFs). Next, a solar photovoltaic cell and a wind turbine
are deemed as case studies. The experimental data are exploited and the consequent yields emerge
as convincing. The root-mean-square-error (RMSE) is less than 0.006 and the number of fuzzy rules
is equal to or less than four rules, which indicates the very good performance of the presented fuzzy
neural network. Finally, the obtained model is used for the first time for a geographical area to
examine the feasibility of renewable energies.

Keywords: self-evolving; nonlinear consequent part; convergence analysis; renewable energy; type-2
fuzzy; artificial intelligence; machine learning; big data; data science; fuzzy logic; energy

1. Introduction

Renewable energy is expanding rapidly around the world. There are two main reasons
for this: one is the issue of fossil fuel pollution and the other is the high cost of fossil fuels.
Therefore, research in this field should be developed and supported. One of the power-
ful tools in data analysis and inference is computational intelligence. Neural networks
share lots of significant benefits such as landmark computation ability, parallel process-
ing and adaptation. The fuzzy systems are able to utilize the expert knowledge entitled
“if-then rules” and possess actual parameter concepts. As is well known, mathematical
modeling is a substantial preliminary step in many control issues. On the other hand,
prediction, simulation and modeling of complicated systems established upon physical
and chemical principles appear industrious in such a way that they will not yield con-
solidated mathematical forms [1]. One may suggest system identification as a solution
to cope with this problematic issue. This method puts the mathematical equations at the
access point, utilizing input-to-output data analysis to increase the efficiency of dynamic
process calculations [2]. Computational intelligence lies among the most efficient methods
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with excellent fulfillment. Many papers have recently been published on fuzzy modeling
and identification. Nonlinear system identification, founded on fuzzy and neuro-fuzzy
models, was surveyed [3]. Computational intelligence becomes extremely feasible in the
area of renewable energy [4]. For design MPPT control [5], solar water heater selection [6],
photovoltaic system failure diagnosis [7] and solar power plant location alternatives [8],
computational intelligence has been used. Neural networks were also used by Grahovac
et al. [9] in order to model and anticipate bio-ethanol generation from the intermediates
and byproducts yielded in the beet-to-sugar procedure. The productivity of the neuro-
fuzzy controller in extraction of the maximum yield by flow and energy optimization
was demonstrated by Khiareddine et al. [10] in comparison with fuzzy and algorithm
controllers. It was asserted that the neuro-fuzzy control system is worthy of being executed
in an experimental setup in Tunisia. Ocario et al. [11] testified wind power forecasts in
the Portuguese system, exploiting a novel hybrid evolutionary–adaptive methodology.
Etemadi et al. [12] predicted the wind power produced by data-driven fuzzy modeling.

Type-2 fuzzy (T2F) logic, which appears more capable and flexible in comparison
to type-1, has been investigated for the last ten years. A novel method was suggested
for general T2F clustering by Doostparast et al. [13]. Some other applications of T2F sets
can be found in textile engineering [14] and aerospace engineering [15]. Fuzzy c-means
clustering and high order cognitive map were exerted by Lu in order to model and predict
time series by T1FS [16]. T2FS identification has engrossed many researchers [17–23].
Abiyev et al. [17] took advantage of T2F clustering to organize construction of a wavelet
TSK-based T2FS. They brought forth an adaptive law to update the parameters of the
antecedent part and ultimately, they employed a gradient learning algorithm to bring
parameters of the descendant part up to date. T2FSs were applied for elicitation of fuzzy
rules and casting derogatory features off [24]. The proposed mechanism took advantage
of the self-evolution capability in such a way that identification of the integral structure
of the network would become efficient and there would be no requirement for initial
start-up of the network structure. The antecedent part and modulation parameters are
trained in order to hold parameter learning in the network true, utilizing back-propagation
errors. Tuning parameters of the resultant part, the rule-ordered Kalman filter algorithm
assists in network sharpness amelioration. The genetic algorithm [25] and PSO [26] are
among the learning mechanism of T2F neural networks which have been conversed and
scrutinized so far. Research development on T2F systems has brought about their vast
usages in various fields such as time-series prediction [27], DC motor control [28], clinical
practice guideline encryption [29], pattern recognition [30], robot control [31] and control
of nonlinear systems [32,33]. A new smart type of reduction is held forth in [34]. A T2FS is
optimized by its type-1 counterpart in [35]. The learning process was held true, merging
and extending the type-1 membership functions. Henceforth, the novel constructed T2FS
went under implementation on a programmable chip.

It is worth noting that most of the control engineers and system analyzers consider
actual systems represented in nonlinear dynamics; not only do these system outputs mo-
mentarily turn dependent upon the input, but also, they appear reliant on the delayed
inputs/outputs. This leads to a responsible consideration of both external and internal dy-
namics as a non-negligible essential remark in system modeling. Delayed inputs/outputs
have to be used in external dynamics. Another feedback, denoted as “recurrent neuron”,
has to be exerted in internal dynamics. Wu et al. [36] presented the solution of recurrent
FSs for problematic classification. Not only does this paper contribute to minimization of
the cost function utilizing a recurrent fuzzy neural network, but it also proposes maximiza-
tion of the discriminability of adopting a novel approach. Some modern recurrent fuzzy
systems are presented in [37]. This special kind of neural network in the resultant part
functions input variables in a nonlinear manner. There have hardly been any studies on
recurrent T2F systems so far. Some of them are surveyed in the following. A contributive
recurrent interval T2FS is presented in order to identify nonlinear systems in [30]. The
novel technique requires initial information about plant order and input numbers as well.
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Furthermore, the convergence issue in the learning algorithm is not taken into consider-
ation and conversed even theoretically. Juang et al. [15] put forth another contributive
recurrent T2F neural network to model dynamical systems. There is not any rule pruning,
which leads to extremely overlapped fuzzy sets. Soft switching of the nonlinear model
is superior to the linear one in order to identify nonlinear systems [1]. Consequently,
our suggested technique is established upon the nonlinear resultant part in fuzzy rules.
Rarely may one find comprehensive works on nonlinear consequent parts in fuzzy sys-
tems; however, some of the studies in this arena are shortly surveyed in the following.
A reduction in the number of rules was carried out by Moodi in a fuzzy system using
the TSK fuzzy model accompanied by a nonlinear consequent part [38]. The result of a
rule is supposed to comprise a linear term and a nonlinear one. In their attempts, the
numerous rules decrease and model precision simultaneously shows an increase at the cost
of complication abundance in the fuzzy model. The NFNN was constructed applying fuzzy
rules which merge nonlinear functions. The linear consequent part requires more rules
to achieve the desired precision during the modeling of complicated nonlinear processes.
The increasing number of rules represents the increasing number of neurons [39]. Some
recent works on T2F neural networks can be seen in many applications such as 2DOF
robot control [40], 3 parallel robots control [41], PMSM control [42], water temperature
control [43,44], environmental temperature control [45] and UAV control [46]. Tavoosi
and Badamchizadeh [47] proposed a T2S with linear “then part” for dynamic modeling.
Their pivotal contribution was rule pruning in such a way that an increase in learning
speed would be targeted to attain a reduction in the parameters in both MF parameters
and descendant parts. Tavoosi et al. [48,49] have made another contribution to the issue,
bringing forth a novel technique for analyzing the stability of one class of T2F systems.
Another analysis method for stability was also suggested by Jahangiri et al. [50]. Suratgar
and Nikravesh [51] proposed a modern technique of fuzzy linguistic modeling as well as
integral stability analysis. In [52], a fuzzy neural network has been used for wind speed
forecasting. In [53], a comparison between ANFIS and an autoregressive method for wind
speed/power prediction has been performed. In [54], a fuzzy control on the basis of a
predictive technique for a governing system has been presented. In [55], a multilayer
perceptron is combined with an adaptive fuzzy system to forecast the performance of
a wind turbine. Some disadvantages and shortcomings of the works studied above are:
lack of convergence proof, long training time (not usable in online applications), high
complexity of the model, lack of proper accuracy. On the other hand, so far, no applied
research has been conducted to use renewable energies in the Ilam region. Unfortunately,
there are no wind turbines in this area, and solar cells have also not been used on a large
scale to supply electricity to a neighborhood or even several houses. Due to this issue, the
main innovation of this paper is the feasibility study of new energy use in the Ilam region.

Therefore, this paper proposes NCPRT2FS for nonlinear system identification. The
nonlinear systems here are the same as solar cells and wind turbines. The objective of
identifying the system is to use it to specify the efficiency of the renewable energy system
in the Ilam region. The innovations of this article are as follows: (1) Using a nonlinear
consequent part in the rules. (2) Introducing a new mechanism in structure learning. (3)
Using an adaptive learning rate (different from the other studies in the literature). (4)
Convergence analysis of the T2F neural network learning algorithm. Finally, (5) New
optimization techniques (including pruning fuzzy rules, initial adjustment of MFs, etc.).
The paper is divided into six sections. Section 2 presents a short surveying of T2F logic.
Section 3 entails an inspection of the structure of NCPRT2FS. The learning convergence of
NCPRT2FS is subsumed relying upon Lyapunov theory in Appendix A. Section 4 presents
simulative identification studies, taking into account a solar photovoltaic cell and a wind
turbine as the case studies and utilizing their experimental data.
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2. A Review on T2FSs

Firstly, Zadeh brought forward type-1 fuzzy logic, and introduced the T2F logic in
order to provide solutions to some problems of type-1 ten years later. He deemed a fuzzy
set where its MF was fuzzy and entitled a “type-2 fuzzy set”. T2F sets may typically be
exploited when the determination of accurate membership function becomes arduous. For
instance, some time series predictions lie among problematic cases, which necessitate the
usage of T2F sets. Hence, exploiting T2F sets emerges as advantageous in order to describe
some system behaviors.

Certain defects with type-1 fuzzy sets were scrutinized by Castro et al. [56]. Research
on T2F systems was limited before the years of 1998. Critical and controversial questions
and debate on T2F logic and its usage commenced after publication of a book which
contained the solidarity and intersection of T2F sets [57]. Extensive information on T2FS
computation, such as defuzzification and type reduction, was suggested by Mendel [58]. A
general T2F set, Ã, may be specified by (1):

Ã =
∫

x∈X
μÃ(x)/x =

∫
x∈X

[∫
μ∈Jx

fx(μ)
μ

]
x

(1)

where μÃ(x) is a secondary MF; Jx represents the primary membership of x ∈ X, with
μ ∈ Jx; fx(μ) ∈ [0, 1] denotes a secondary membership. The primary and secondary MFs
in Gaussian form are illustrated in Figure 1.

Figure 1. Primary and secondary membership functions (MFs).

Note that the secondary MFs lead to interval T2F ones, while fx(μ) = 1 , ∀μ ∈
Jx ⊆ [0, 1]. For more explanation, a crisp number would be fuzzified in two stages
supposing that Gaussian MF was exerted to attain a T2F number. First,

μ1 = exp

(
−0.5· (x − M)2

σx2

)
(2)

where μ1 is the primary membership and M and σx are the primary mean and spread of
Gaussian MF, respectively; then,

μ2(x, μ1) = exp

(
−0.5· (a − μ1(x))2

σm2

)
(3)
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where μ2(x, μ1) is the secondary degree, a ∈ [0, 1] is the domain of the secondary MF for
each x, and σm is the secondary spread of the Gaussian MF.

Simple and special kinds of general T2F sets change the same as the interval T2F
one. Figure 2 depicts two interval T2F sets. A fuzzy set specified by a Gaussian MF by
mean/width m/[σ1, σ2] is demonstrated in Figure 2a. Two T2F sets are given in Figure
2. Figure 2b illustrates a fuzzy set with an MF of Gaussian form encompassing a distinct
standard deviation of σ. However, the mean value is quite uncertain and adopts values in
the interval of [m1, m2].

Figure 2. (a) Uncertainty in width and (b) uncertainty in center.

An MF of Gaussian form with determined σ and uncertain m, as seen in Figure 2a, is
applied through all of this paper.

Type-2 Fuzzy Systems

One may gain a certain number by defuzzifying a T1FS [59], whereas T2FS yields a
T2F set. This is the reason one has to endeavor to succeed in the reduction in fuzzy set type
from two to one in a process entitled “Type Reduction”. The process is a challenging issue
of high significance in T2F systems [60]. Figure 3 displays the structure of a T2F system.

Figure 3. The structure of a T2F system.

As can be easily grasped through Figure 4, construction of the T2FS will be the same
as the organization of type-1 if the “Type-Reduction” block is neglected.
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Figure 4. The structure of the proposed NCPRT2FS.

3. The Proposed NCPRT2FS

Section 3 tries to consolidate the nonlinear descendant or resultant part of recurrent
T2F systems into a formula. Taking into account two informative and useful points that are
mentioned later, the descriptive equation of (1) establishes the kth rule:

1) TSK-based T2FSs, usually yield a polynomial constructive of the inputs;
2) The outputs are represented by T1F sets [61].

This study recommends a novel NCPRT2FS, of which its total construction is illus-
trated in Figure 4. As one may see, the system clearly embodies seven layers. Generally
speaking, the kth rule would be demonstrated in the following terms in a first-order T2FS
with a TSK model by M rules and n inputs:

Rk : i f x1 is Ãk
1 and . . . and xn is Ãk

n then ỹk = Ck,0 + Ck,1x1 + . . . + Ck,nxn

where k = 1, . . . , M is the number of rules, xi(i = 1, . . . , n) are inputs, and ỹk is the output
of the kth rule. ỹk is an interval T1F set and Ãk

i are antecedent sets; Ck,i ∈ [ck,i − sk,i, ck,i + sk,i]
represent consequent sets, where ck,i represents the center of Ck,i and sk,i is the spread of Ck,i.

In this paper, the nonlinear consequent part is taken into account. The resulting kth
rule in NCPRT2FS, which has two antecedent variables and three outputs with delayed
time shift ranging from one unit to three in the descendant part, is demonstrated in (2):

Rk : i f x1 is Ãk
1 and x2 is Ãk

2 then

ỹk = Ck,0 + Ck,1x1 + Ck,2x2 + Ck,3y(t − 1) + Ck,4x1x2 + Ck,5x1y(t − 1) + Ck,6x2y(t − 1)

+ Ck,7x2
1 + Ck,8x2

2 + Ck,9y2(t − 1) + Ck,10x1x2y(t − 1) (4)

One may make an extension to fuzzy rule (2) considering n antecedent variables and
time-delayed outputs in the descendant part with a delaying shift in time ranging from
one unit to m units. n may be designed remarking nonlinearity degree and complexity of
the unknown system, which is going to be identified next.

The layers’ details are as:
Layer 0: This layer denotes the inputs.
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Layer 1: The outputs of fuzzification are written as:

1μk,i

(
xi,
[
σk,i,

1mk,i

])
= e

−0.5(
xi−1mk,i

σk,i
)

2

(5)

2μk,i

(
xi,
[
σk,i,

2mk,i

])
= e

−0.5(
xi−2mk,i

σk,i
)

2

(6)

where mk,i ∈
[1mk,i, 2mk,i

]
and σk,i are the uncertain mean and spread for kth rule and

ith input.
Layer 2: The T-norm and S-norm are computed as:

μ
k,i
(xi) =

1μk,i(xi).2μk,i(xi) , k = 1, 2, . . . , M , i = 1, 2, . . . , n (7)

μk,i(xi) =
1μk,i(xi) + 2μk,i(xi) − μ

k,i
(xi) (8)

Layer 3: The rule firings ( f k and f
k
) are:

f k =
n

∏
i=1

μ
k,i

; f
k
=

n

∏
i=1

μk,i (9)

Layer 4: The left-most/right-most firing are obtained as:

f k
l =

wk
l f

k
+ wk

l f k

wk
l + wk

l

; f k
r =

wk
r f

k
+ wk

r f k

wk
r + wk

r
(10)

where w are adjustable weights.
Layer 5: The rule left/right firings are:

yk
l = ck,0 + ck,1x1 + ck,2x2 + ck,3y(t − 1) + ck,4x1x2 + ck,5x1y(t − 1)

+ck,6x2y(t − 1) + ck,7x2
1 + ck,8x2

2 + ck,9y2(t − 1)

+ck,10x1x2y(t − 1)− sk,0 − sk,1|x1| − sk,2|x2| − sk,3|y(t − 1)|
−sk,4|x1x2| − sk,5|x1y(t − 1)| − sk,6|x2y(t − 1)| − sk,7x2

1

−sk,8x2
2 − sk,9y2(t − 1)− sk,10x1x2y(t − 1)

(11)

yk
r = ck,0 + ck,1x1 + ck,2x2 + ck,3y(t − 1) + ck,4x1x2 + ck,5x1y(t − 1)

+ck,6x2y(t − 1) + ck,7x2
1 + ck,8x2

2 + ck,9y2(t − 1)

+ck,10x1x2y(t − 1) + sk,0 + sk,1|x1|+ sk,2|x2|+ sk,3|y(t − 1)|
+sk,4|x1x2|+ sk,5|x1y(t − 1)|+ sk,6|x2y(t − 1)|+ sk,7x2

1

+sk,8x2
2 + sk,9y2(t − 1) + sk,10x1x2y(t − 1)

(12)

Layer 6: ŷl and ŷr are:

ŷl =
∑M

k=1 f k
l yk

l

∑M
k=1 f k

l

(13)

ŷr =
∑M

k=1 f k
r yk

r

∑M
k=1 f k

r
(14)

Layer 7: The output is:

ŷ =
ŷl + ŷr

2
(15)

In this article, structure learning is realized by exploiting T2F clustering. As one knows,
an efficacious method is suggested to procreate fuzzy rules in real-time and decrease
computations in antecedent part in structure optimization [62]. Structure learning appears
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as a great assistance in the simplification of T2FS, taking advantage of the reduction in
fuzzy rules. Scrutinizing more, its duty is not only the production of novel membership but
also pruning additional MFs and rules. In the input layer, a rule geometrically represents
a cluster. Its firing degree could be taken into account as the degree of input data that
belongs to a cluster. The center of the firing degree in NCPRT2FS is calculated by (16) since
it is an interval.

fk =
f k + f

k

2
(16)

Additionally, for generation of a new MF, find:

μÃk
i
=

μ
Ãk

i
+ μÃk

i

2
, i = 1, 2, . . . , n (17)

For every incoming data
→
x = {x1, . . . , xn}, calculate:

I = arg max
1≤k≤M(t)

fk (18)

For newly generated rules:

Ii = arg max
1≤k≤ki(t)

μÃk
i

, i = 1, 2, . . . , n (19)

where M(t) is the existing number of rules at time t. If I ≤ ∅th, the system generates a new
rule, where ∅th ∈ (0 1) is a threshold that is defined [63]. If Ii > ρ, where ρ ∈ [0 1] is a
previously defined threshold, then use the existing fuzzy set ÃIi

i as the antecedent part of
the new rule in input variable i. Otherwise, one could produce a novel MF in input variable
i and hold the equation, ki(t + 1) = ki(t) + 1, true. The number of MFs is defined by the
parameter ρ in each input variable. Fuzzy clustering is a technique to structure a fuzzy
model [64]. A new T2F clustering technique, which is a development of Krishnapuram and
Keller Possibilistic C-Mean (PCM) [65], is suggested and described by:

Jm(x, μ̃, c) = min

[
c

∑
i=1

N

∑
j=1

μ̃m
ij Dij +

c

∑
i=1

ηi

N

∑
j=1

(
1 − μ̃ij

)m
]

(20)

S.T :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 <

N

∑
j=1

μ̃ij < N

μ̃ij ∈ [0, 1] ∀i, j
maxμ̃ij > 0 ∀j

(21)

where μ̃ij is type-2 MF in the jth data for the ith cluster. Moreover, the symbols Dij, c, and
N are the Euclidean distance of the jth data in the ith cluster center, clusters and input
data numbers, respectively. ηi is also a positive number. Dij has to be as small as possible
as the first term. On the other hand, the memberships in a cluster have to be greater as
much as possible. They have to stay in the interval of [0, 1] and their sum is confined to
become smaller than the number of input data. Equation (21) appears as the descriptive
term. That ηi corresponds to ith cluster, and is of the order of Dij, is greatly welcomed [65].
The distance to the cluster’s center must be as low as possible (first term). It is desirable
that ηi relate to ith cluster and be of the order of Dij [63].

ηi =
∑N

j=1 μ̃m
ij Dij

∑N
j=1 μ̃m

ij
∀i = 1, . . . , c
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Using (20), the optimal values of the centers of the clusters are achieved. The initial
mk,i and σk,i for the ki(t + 1) th interval T2F set are:

mk,i ∈ [vi − 0.1vi, vi + 0.1vi]

σ ki(t+1)i = β

∣∣∣∣∣vi −
1mIi ,i +

2m Ii ,i

2

∣∣∣∣∣
where vi is the optimal value of the cluster’s center; β > 0 denotes the degree of overlap
between 2 fuzzy sets. In this study, β is considered to be 0.5 [61]. The parameters of the
consequent part are initialized as:

[ck,0 − sk,0, ck,0 + sk,0] = [yd − 0.1, yd + 0.1] , k = 1, 2, . . . , M (22)

where yd is the target signal for input
→
x = {x1, . . . , xn}. All the other consequent

parameters are zero.
By repeating the above process for each training dataset, new rules are created one

after the other until NCPRT2FS is finally complete. The network output is calculated for
each input applied. The calculated output is then compared to the target to obtain an error.
Assume that the input–output data pair

{(
xp : tp

)} ∀p = 1, . . . , q, where p represents the
data numbers and x/t is the input/output, respectively. The NCPRT2FS output error can be
expressed as follows:

ep = tp − ŷp, (23)

Ep =
1
2

e2
p =

1
2
(
tp − ŷp

)2 (24)

E =
q

∑
p=1

Ep (25)

The gradient-based learning algorithm is used for updating the parameters. The
mathematical relation of the gradient-based update algorithm is as follows.

Wnew = Wold − η
∂E
∂W

See Appendix A for more details on the parameter update formulation. We choose
the initial η as:

η =
1

max
∣∣∣ ∂ŷ(k)

∂W

∣∣∣2
After all the data have been applied, the variable learning rate is determined by the

following form. ⎧⎨⎩ if RMSE (l)
RMSE (l−1) < 1 → η(l) = η(l − 1)

if RMSE (l)
RMSE (l−1) ≥ 1 → η(l) = 0.9 × η(l − 1)

where l is the number of iterations. The RMSE formula is as follows:

RMSE =

√√√√ 1
N

N

∑
p=1

(
tp − ŷp

)2

where tp and ŷp are actual and model (NCPRT2FS) outputs at p moment, respectively. The
total number of data is denoted by N.
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4. Simulation Results

Two real renewable energy systems are used for identification. The structure is shown
in Figure 5.

Figure 5. The structure of the system and the NCPRT2FS-based identifier.

The inputs to the NCPRT2FS-based identifier are the main input and delayed system
output. The parameters of the NCPRT2FS structure should be adjusted to minimize plant
output yd and identification yield ŷ for all input values of x.

Example 1: Real data of a 660kw wind turbine (see Figure 6) have been taken from
the Iran Renewable Energy Organization (SUNA) (http://www.suna.org.ir/en/home/
1 March 2021). The model of the wind turbine is S47-660kw, made by VESTAS (Denmark),
and information is given in Table 1.

Figure 6. Manjil and Rudbar Wind Farm.

In this example, u(k), k = 1, . . . , 365 is wind speed that is fed to the wind turbine
system and obtains the 365 samples of y(k), which is the output power of the wind
turbine. The other conditions are the same as example 1. Figure 7 exhibits the identification
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performance of the NCPRT2FS. Here, the output (solid line) and the NCPRT2FS identifier
output (dashed line) are shown.

Table 1. Information for Example 1.

Cut-in wind speed: 4 m/s
Survival wind speed: 60 m/s

Rated wind speed: 15 m/s
Cut-out wind speed: 25 m/s

Rotor: Generator:

Number of blades: 3 Type: Asynchronous
Swept area: 1.735 m2 Number: 1.0

Type: 22.90 Grid connection: Thyristor
Rotor speed, max: 28.50 U/min

Tipspeed: 70.10 m/s Voltage: 400 V
Diameter: 47 m Speed, max: 1.650 U/min
Material: GFK Grid frequency: 50 Hz

Figure 7. Identification performance of the NCPRT2FS for wind turbine.

The trained NCPRT2FS is used to calculate wind power in a place called Ilam (A city
in the west of the Islamic Republic of Iran). Figure 8 shows the wind speed of Ilam for a
year. Figure 9 shows the predicted wind power in Ilam.

Figure 8. Wind speed of a place in Ilam for a year.
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Figure 9. Predicted wind power of a place in Ilam for a year.

The final values of the parameters of NCPRT2FS are shown in Table 2.

Table 2. The final values of NCPRT2FS parameters.

Antecedent
parameters

1mij
2mij σij

u(k)

1m11 = 3.62
1m21 = 6.13
1m31 = 8.19

2m11 = 4.32
2m21 = 7.02
2m31 = 9.51

σ11 = 0.38
σ21 = 1.10
σ31 = 0.89

y(k-1)

1m12 = 4.93
1m22 = 5.34
1m32 = 5.81
1m42 = 6.11

2m12 = 5.12
2m22 = 5.66
2m32 = 5.98
2m42 = 6.48

σ12 = 0.21
σ22 = 0.09
σ32 = 0.36
σ42 = 0.18

fourth layer
adaptive
weights

w1
r = 1.92 w1

r = 1.50 w1
l = 1.00 w1

l = 0.63

w2
r = 1.66 w2

r = 0.92 w2
l = 0.71 w2

l = 0.06

w3
r = 0.80 w3

r = 0.70 w3
l = 0.56 w3

l = 0.43

w4
r = 1.87 w4

r = 0.94 w4
l = 0.85 w4

l = 0.77

consequent
parameters

Rule 1 Rule 2 Rule 3 Rule 4 Rule 1 Rule 2 Rule 3 Rule 4

s1,0 = 0.40 s2,0 = 0.33 s3,0 = 0.27 s4,0 = 0.52 c1,0 = 1.00 c2,0 = 1.40 c3,0 = 1.00 c4,0 = 1.40

s1,1 = 0.55 s2,1 = 0.39 s3,1 = 0.48 s4,1 = 0.43 c1,1 = 1.10 c2,1 = 1.00 c3,1 = 1.00 c4,1 = 1.00

s1,2 = 1.00 s2,2 = 1.00 s3,2 = 1.00 s4,2 = 1.00 c1,2 = 1.00 c2,2 = 1.32 c3,2 = 0.81 c4,2 = 0.93

s1,3 = 0.43 s2,3 = 0.39 s3,3 = 0.65 s4,3 = 0.90 c1,3 = 1.00 c2,3 = 1.00 c3,3 = 1.65 c4,3 = 1.82

s1,4 = 0.62 s2,4 = 1.00 s3,4 = 1.00 s4,4 = 1.00 c1,4 = 1.00 c2,4 = 1.09 c3,4 = 1.00 c4,4 = 1.00

s1,5 = 0.87 s2,5 = 0.10 s3,5 = 1.00 s4,5 = 1.00 c1,5 = 1.10 c2,5 = 1.00 c3,5 = 1.55 c4,5 = 1.90

s1,6 = 1.00 s2,6 = 1.00 s3,6 = 1.00 s4,6 = 1.00 c1,6 = 1.00 c2,6 = 1.00 c3,6 = 1.00 c4,6 = 1.00

s1,7 = 0.69 s2,7 = 0.66 s3,7 = 0.31 s4,7 = 0.06 c1,7 = 0.80 c2,7 = 0.72 c3,7 = 0.67 c4,7 = 0.81

s1,8 = 0.96 s2,8 = 0.11 s3,8 = 0.54 s4,8 = 0.21 c1,8 = 1.10 c2,8 = 1.00 c3,8 = 0.92 c4,8 = 0.59

s1,9 = 0.30 s2,9 = 0.32 s3,9 = 0.36 s4,9 = 0.98 c1,9 = 0.95 c2,9 = 0.77 c3,9 = 1.00 c4,9 = 1.00

s1,10 = 0.35 s2,10 = 0.31 s3,10 = 0.54 s4,10 = 0.50 c1,10 = 1.00 c2,10 = 0.44 c3,10 = 0.64 c4,10 = 0.89

Example 2: A real solar cell system is shown in Figure 10.
In this example, u(k), k = 1, . . . , 600 is solar radiation that is fed to the real solar cell

system and 600 samples of y(k) are obtained. The other conditions are the same as in
examples 1 and 2. Figure 11 shows the identification performance of the NCPRT2FS for
three solar radiations. Here, the plant output (solid line) and the NCPRT2FS identifier
output (dashed line) are shown.
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Figure 10. Experimental solar cell testing system (a) and a solar cell (b).

Figure 11. Identification results of the NCPRT2FS for solar cell.

After structure learning, for NCPRT2FS, three rules are generated and the RMSE value
for the NCPRT2FS and IT2-TSK-FNN for the training and test are shown in Table 3. The
final parameters are given in Table 3.

Table 3. The final values of NCPRT2FS parameters.

Antecedent
parameters

1mij
2mij σij

u(k)

1m11 = 251
1m21 = 598
1m31 = 798

2m11 = 332
2m21 = 615
2m31 = 949

σ11 = 43
σ21 = 12

σ31 = 211

y(k-1)

1m12 = 69
1m22 = 82
1m32 = 93

2m12 = 75
2m22 = 89
2m32 = 97

σ12 = 11
σ22 = 5
σ32 = 3

fourth layer
adaptive
weights

w1
r = 0.20 w1

r = 0.06 w1
l = 0.12 w1

l = 0.09

w2
r = 1.80 w2

r = 1.00 w2
l = 1.42 w2

l = 0.98

w3
r = 0.57 w3

r = 0.21 w3
l = 1.93 w3

l = 1.10
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Table 3. Cont.

consequent
parameters

Rule 1 Rule 2 Rule 3 Rule 1 Rule 2 Rule 3

s1,0 = 0.10 s2,0 = 0.84 s3,0 = 1.00 c1,0 = 0.56 c2,0 = 1.00 c3,0 = 1.22

s1,1 = 0.32 s2,1 = 0.39 s3,1 = 0.37 c1,1 = 0.94 c2,1 = 1.60 c3,1 = 1.00

s1,2 = 1.00 s2,2 = 1.00 s3,2 = 0.61 c1,2 = 1.00 c2,2 = 1.00 c3,2 = 1.00

s1,3 = 0.22 s2,3 = 1.20 s3,3 = 0.50 c1,3 = 1.00 c2,3 = 1.77 c3,3 = 1.20

s1,4 = 0.10 s2,4 = 0.42 s3,4 = 1.00 c1,4 = 1.61 c2,4 = 0.60 c3,4 = 1.63

s1,5 = 0.47 s2,5 = 1.00 s3,5 = 1.00 c1,5 = 1.30 c2,5 = 1.00 c3,5 = 2.00

s1,6 = 0.10 s2,6 = 1.00 s3,6 = 1.00 c1,6 = 1.00 c2,6 = 1.11 c3,6 = 1.00

s1,7 = 1.20 s2,7 = 1.00 s3,7 = 0.19 c1,7 = 1.10 c2,7 = 1.50 c3,7 = 0.88

s1,8 = 1.00 s2,8 = 0.36 s3,8 = 0.69 c1,8 = 1.60 c2,8 = 0.89 c3,8 = 0.91

s1,9 = 1.00 s2,9 = 0.28 s3,9 = 0.11 c1,9 = 1.53 c2,9 = 0.95 c3,9 = 0.48

s1,10 = 0.55 s2,10 = 0.35 s3,10 = 0.50 c1,10 = 0.88 c2,10 = 1.00 c3,10 = 1.00

The trained NCPRT2FS is used to calculate the solar power of Ilam. Figure 12 shows
the solar radiation of Ilam for a year. Figure 13 shows the predicted solar power in Ilam.

Figure 12. Solar radiation of Ilam.

Figure 13. Predicted solar power in Ilam for a year.

Table 4. presents the comparison of our proposed method with another method
(method of [46]).
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Table 4. Comparison between results of the proposed method and the method of [46].

Example
Method of [46] Proposed NCPRT2FS

Rules Epochs Run Time (s) RMSE Rules Epochs Run Time (s) RMSE

1 4 34 4 0.0159 4 31 6 0.0057

2 5 27 4 0.00759 3 39 7 0.0013

Simulations verify that the presented NCPRT2FS has high performances in function
approximation and system identification. Table 4 shows that the number of rules of the
proposed NCPRT2FS is almost less than the method of [53]; accuracy of identification is
better than [53], but the training time in 10 runs (MATLAB 2011a; Dual CPU T3200 @ 2.00;
RAM: 2.00 GB; GHz 2.00 GHz) is more than [53]. The references [23,46] presented two
different T2F neural structures. They have also been used and evaluated only to identify
some theory systems. In the present paper, however, the T2F neural network structure is
different from references [23] and [53] and several experimental energy systems have been
used for modeling.

5. Conclusions

In this paper, a novel Nonlinear Consequent Part Recurrent T2FS (NCPRT2FS) for
identification and prediction of renewable energy systems was proposed. The nonlinear
consequent part helps to better model highly nonlinear systems. Recurrent structure is a
useful choice for the identification of dynamical systems. The self-evolving structure helps
to obtain a simpler structure of the NCPRT2FS by ending up with a minimum number of
fuzzy sets and fuzzy rules in the end. Simulations showed that the NCPRT2FS based on the
backpropagation algorithm and adaptive optimization rate performs better than IT2-TSK-
FNN [53] in identification. An S47-660 kw wind turbine (VESTAS company Denmark) and
a solar cell were selected as case studies. After data gathering, the proposed method was
finally used with the experimental data for the purpose of identification. The RMSE was
less than 0.006 and the number of fuzzy rules was equal and less than 4 rules; therefore, the
results easily demonstrated the remarkable capability of the NCPRT2FS developed in the
paper. In order to continue the work and look to the future, we can use the evolutionary
algorithms as a complement to the proposed method for the development of the fuzzy
neural network (to increase accuracy, increase convergence, etc.). Different case studies
(types of solar cells, types of wind turbines, etc.) should be identified and the appropriate
renewable system can be extracted for each geographical location.
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Appendix A

To update the consequent part parameters, Equations (A1)–(A20) are used.

newck,0 = oldck,0 + η·0.5·ep·
[

f k
l

∑M
k=1 f k

l

+
f k
r

∑M
k=1 f k

r

]
(A1)

newck,i =
oldck,i + η·0.5·ep·

[
f k
l

∑M
k=1 f k

l

+
f k
r

∑M
k=1 f k

r

]
· xi i = 1, 2 (A2)

newck,3 = oldck,3 + η·0.5·ep ·
[

f k
l

∑M
k=1 f k

l

+
f k
r

∑M
k=1 f k

r

]
· y(t − 1) (A3)

newck,4 = oldck,4 + η·0.5·ep ·
[

f k
l

∑M
k=1 f k

l

+
f k
r

∑M
k=1 f k

r

]
· x1·x2 (A4)

newck,5 = oldck,5 + η·0.5·ep ·
[

f k
l

∑M
k=1 f k

l

+
f k
r

∑M
k=1 f k

r

]
· x1·y(t − 1) (A5)

newck,6 = oldck,6 + η·0.5·ep ·
[

f k
l

∑M
k=1 f k

l

+
f k
r

∑M
k=1 f k

r

]
· x2·y(t − 1) (A6)

newck,7 = oldck,7 + η·0.5·ep ·
[

f k
l

∑M
k=1 f k

l

+
f k
r

∑M
k=1 f k

r

]
· x2

1 (A7)

newck,8 = oldck,8 + η·0.5·ep ·
[

f k
l

∑M
k=1 f k

l

+
f k
r

∑M
k=1 f k

r

]
· x2

2 (A8)

newck,9 = oldck,9 + η·0.5·ep ·
[

f k
l

∑M
k=1 f k

l

+
f k
r

∑M
k=1 f k

r

]
· y2(t − 1) (A9)

newck,10 = oldck,10 + η·0.5·ep ·
[

f k
l

∑M
k=1 f k

l

+
f k
r

∑M
k=1 f k

r

]
· x1·x2·y(t − 1) (A10)

newsk,0 = oldsk,0 + η·0.5·ep ·
[

f k
l

∑M
k=1 f k

l

− f k
r

∑M
k=1 f k

r

]
(A11)

newsk,i =
oldsk,i + η·0.5·ep ·

[
f k
l

∑M
k=1 f k

l

− f k
r

∑M
k=1 f k

r

]
· |xi| i = 1, 2 (A12)

newsk,3 = oldsk,3 + η·0.5·ep ·
[

f k
l

∑M
k=1 f k

l

− f k
r

∑M
k=1 f k

r

]
· |y(t − 1)| (A13)

newsk,4 = oldsk,4 + η·0.5·ep ·
[

f k
l

∑M
k=1 f k

l

− f k
r

∑M
k=1 f k

r

]
· |x1x2| (A14)

newsk,5 = oldsk,5 + η·0.5·ep ·
[

f k
l

∑M
k=1 f k

l

− f k
r

∑M
k=1 f k

r

]
· |x1·y(t − 1)| (A15)

newsk,6 = oldsk,6 + η·0.5·ep ·
[

f k
l

∑M
k=1 f k

l

− f k
r

∑M
k=1 f k

r

]
· |x2·y(t − 1)| (A16)

newsk,7 = oldsk,7 + η·0.5·ep ·
[

f k
l

∑M
k=1 f k

l

− f k
r

∑M
k=1 f k

r

]
· x2

1 (A17)
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newsk,8 = oldsk,8 + η·0.5·ep ·
[

f k
l

∑M
k=1 f k

l

− f k
r

∑M
k=1 f k

r

]
· x2

2 (A18)

newsk,9 = oldsk,9 + η·0.5·ep ·
[

f k
l

∑M
k=1 f k

l

− f k
r

∑M
k=1 f k

r

]
· y2(t − 1) (A19)

newsk,10 = oldsk,10 + η·0.5·ep ·
[

f k
l

∑M
k=1 f k

l

− f k
r

∑M
k=1 f k

r

]
· |x1·x2·y(t − 1)| (A20)

The learning rate is indicated by η.
To update the left and right weights, Equations (A21)–(A24) are used.

newwk
l =

oldwk
l + η·0.5·ep·

yk
l − ŷl

∑M
j=1 f j

l

· f k − f k
l

wk
l + wk

l

(A21)

newwk
l =

oldwk
l + η·0.5·ep·

yk
l − ŷl

∑M
j=1 f j

l

· f
k − f k

l

wk
l + wk

l

(A22)

newwk
r =

oldwk
r + η·0.5·ep· yk

r − ŷr

∑M
j=1 f j

r
· f k − f k

r

wk
r + wk

r
(A23)

newwk
r =

oldwk
r + η·0.5·ep· yk

r − ŷr

∑M
j=1 f j

r
· f

k − f k
r

wk
r + wk

r
(A24)

Finally, the equations for updating the antecedent parameters can be described as follows:

1mnew
k,i = 1mold

k,i + η·0.5·ep·
⎡⎣ yk

l − ŷl

∑M
j=1 f j

l

· ∂ f k
l

∂1mk,i
+

yk
r − ŷr

∑M
j=1 f j

r
· ∂ f k

r
∂1mk,i

⎤⎦ (A25)

2mnew
k,i = 2mold

k,i + η·0.5·ep·
⎡⎣ yk

l − ŷl

∑M
j=1 f j

l

· ∂ f k
l

∂2mk,i
+

yk
r − ŷr

∑M
j=1 f j

r
· ∂ f k

r
∂2mk,i

⎤⎦ (A26)

σnew
k·i = σold

k·i + η·0.5·ep·
⎡⎣ yk

l − ŷl

∑M
j=1 f j

l

· ∂ f k
l

∂σk,i
+

yk
r − ŷr

∑M
j=1 f j

r
· ∂ f k

r
∂σk,i

⎤⎦ (A27)

where

∂ f k
l

∂1mk,i
=

wk
l ·
[

f
k − 2μk,i·∏n

l=1,l �=i

(
μk,l

)]
+ wk

l · f k

wk
l + wk

l

· xi − 1mk,i

(σk,i)
2 , (A28)
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l ·
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Convergence Analysis of Learning Algorithm

The Lyapunov function is used to guarantee learning algorithm convergence. The
Lyapunov function is defined as

Vp(k) = Ep(k) =
1
2

e2
p(k) =

1
2
(
tp(k) − ŷp(k)

)2 (A34)

Equation (A35) shows the Lyapunov function changes.

ΔVp(k) = Vp(k + 1) − Vp(k) =
1
2

(
e2

p(k + 1) − e2
p(k)

)
(A35)

Next, the moment error is calculated from Equation (A36).

ep(k + 1) = ep(k) + Δep(k) ∼= ep(k) +

[
∂ ep(k)

∂W

]T

ΔW (A36)

In Equation (A36), ΔW is parameter changing, where W =
[
σk,i, 1mk,i, 2mk,i, ck,i, sk,i

]
.

In Equation (A37), the general form of gradient-based updating is presented.

W(k + 1) = W(k) + ΔW(k) = W(k) + η·
(
−∂Ep(k)

∂W

)
(A37)

where
∂Ep(k)

∂W
= −ep(k) · ∂ŷ

∂W
(A38)

Equation (A35) can be rewritten as Equation (A39).

ΔVp(k) =
1
2

(
e2

p(k + 1) − e2
p(k)

)
(A39)

=
1
2
[(

ep(k + 1) − ep(k)
)] · [(ep(k + 1) + ep(k)

)]
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1
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2
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)
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]

92



Sustainability 2021, 13, 3301

=
1
2

Δep(k)
[
2
(
ep(k)

)
+ Δep(k)

]
=

[
∂ep(k)

∂W

]T

·η·ep(k) · ∂ŷ(k)
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∂W

∣∣∣∣2
]

In order for ΔVp(k) < 0, then:

0 < η <
2

max
∣∣∣ ∂ŷ(k)

∂W

∣∣∣2 (A40)

If (A40) holds for every parameter W =
[
σk,i, 1mk,i, 2mk,i, ck,i, sk,i

]
, then the algorithm

is definitely convergent.
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Abstract: The significance of accurate heating load (HL) approximation is the primary motivation of
this research to distinguish the most efficient predictive model among several neural-metaheuristic
models. The proposed models are formulated through synthesizing a multi-layer perceptron network
(MLP) with ant lion optimization (ALO), biogeography-based optimization (BBO), the dragonfly
algorithm (DA), evolutionary strategy (ES), invasive weed optimization (IWO), and league champion
optimization (LCA) hybrid algorithms. Each ensemble is optimized in terms of the operating
population. Accordingly, the ALO-MLP, BBO-MLP, DA-MLP, ES-MLP, IWO-MLP, and LCA-MLP
presented their best performance for population sizes of 350, 400, 200, 500, 50, and 300, respectively.
The comparison was carried out by implementing a ranking system. Based on the obtained overall
scores (OSs), the BBO (OS = 36) featured as the most capable optimization technique, followed
by ALO (OS = 27) and ES (OS = 20). Due to the efficient performance of these algorithms, the
corresponding MLPs can be promising substitutes for traditional methods used for HL analysis.

Keywords: energy-efficient building; heating load; neural computing; biogeography-based opti-
mization; big data; machine learning; artificial intelligence; deep learning; building energy; smart
buildings, IoT; smart city

1. Introduction

Energy consumption analysis of buildings is a very significant task, due to the high
rate of energy consumed in this sector [1]. Heating, ventilating, and air conditioning
(HVAC) [2] is a state-of-the-art system that controls the heating load (HL) and cooling load
(CL) in the buildings. Considering the crucial importance of the subject, the approaches
such as regression analysis [3,4] and time series [5] cannot satisfy the accuracy required for
estimating these parameters. As well as this, other difficulties such as the non-linearity of
the problem have driven many scholars to improve the flexibility of intelligent models. As
discussed by many scholars, along with well-known models (e.g., decision-making [6–9]),
the artificial intelligence techniques have provided a high capability in the estimation of
non-linear and intricate parameters [10–12]. Plenty of scientific efforts (e.g., concerning
environmental subjects [13–23], gas consumption modeling [24,25], sustainable devel-
opments [26], pan evaporation and soil precipitation simulation [26–31], energy-related

Sustainability 2021, 13, 3198. https://doi.org/10.3390/su13063198 https://www.mdpi.com/journal/sustainability
97



Sustainability 2021, 13, 3198

estimations [32–39], water supply assessment [16,40–49], computer vision and visual pro-
cessing [50–57], building and structural design analysis [8,58–61], behavior of structural
components [60,62–64], measurement techniques [43,50,65,66], climatic-related calcula-
tions [64], and analysis that deals with feature selection [64,67–72]) have been associated
with these computational technologies. In an artificial neural network (ANN), for example,
a mapping process between the input and target parameters is carried out by mimicking
the neural-based method established in the human brain [73–76]. Different structures (and
consequently diverse types) of ANNs have been designed for specific objectives (e.g., multi-
layer perceptron (MLP) [77–79]). Going into deep processors such as ANN, a so-called
method “deep learning” emerges, which has successfully modeled various phenomena
and parameters [8,80–82]. Diagnostic problem and medical sciences, for instance, are two
subjects which have been nicely solved by extreme machine learning approaches [83–86].

Up to now, diverse notions of soft computing techniques (e.g., support vector machine
(SVM) and artificial neural network (ANN)) have been effectively used for energy consump-
tion modeling [87–91]. Roy, et al. [92] proposed multivariate adaptive regression splines
(MARS) coupled with an extreme learning machine (ELM) for predicting the HL and CL.
They used the first model to perform importance analysis of the parameters to feed the
second model. Likewise, Sholahudin and Han [93] used an ANN along with the Taguchi
method for investigating the effect of the input factors on the HL. The feasibility of a ran-
dom forest predictive method was investigated by Tsanas and Xifara [94] and Gao et al. [95]
for both HL and CL factors. The latter reference is a comprehensive comparative study
that compares the simulation capability of sixteen machine learning models (e.g., elastic
net, radial basis function regression). This study also confirmed the high efficiency of
alternating model tree and rules decision table models. Chou and Bui [91] proposed the
combination of ANN and SVM as a proper model for new designs of energy-conserving
buildings. The applicability of the neuro-fuzzy approach (ANFIS) for predicting the HL
and CL was explored by Nilashi et al. [96]. They used expectation-maximization and
principal component analysis along with the ANFIS, respectively, for clustering objective
and removing noise. Referring to obtained values of mean absolute error (MAE) (0.16 and
0.52 for the HL and CL predictions, respectively), they concluded that the proposed model
is accurate enough for this aim.

In addition, studies in different fields have shown that utilizing metaheuristic algo-
rithms is an effective idea for improving the accuracy of typical predictors [97,98]. For
energy-efficient buildings, Moayedi et al. [99] improved the ANN for forecasting the CL by
benefiting from the foraging/social behavior of ants, Harris hawks, and elephant (i.e., the
EHO algorithm). The results (e.g., the correlation values over 85%) show that the applied
algorithms can satisfactorily handle the optimization task. An EHO-based CL predictive
formula was also presented. Amar and Zeraibi [100] used the firefly algorithm to optimize
the SVM (parameters) for HL modeling in district heating systems. Their model outper-
formed genetic programming and ANN. Moayedi et al. [99] employed a grasshopper
optimization algorithm (GOA) and grey wolf optimization (GWO) algorithms for enhanc-
ing the HL prediction of ANN. A significant decrease in the MEA calculated for the ANN
(from 2.0830 to 1.7373 and 1.6514, respectively, by incorporation of the GOA and GWO)
means that the algorithms can build a more reliable ANN network compared to the typical
back-propagation one. In addition, other studies such as [26] outlined the competency of
such algorithms in the same fields. As a visible gap of knowledge, despite the variety of
studies that have mainly focused on broadly used metaheuristic techniques [101], there are
still some algorithms that need to be evaluated. Therefore, assessing the performance of six
novel optimization techniques, namely ant lion optimization (ALO), biogeography-based
optimization (BBO), many-objective sizing optimization [102–104], data-driven robust
optimization [35,105], the dragonfly algorithm (DA), evolutionary strategy (ES), invasive
weed optimization (IWO), and league champion optimization (LCA), is the central aim of
the present paper.
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2. Data Provision and Analysis

Providing a reliable dataset is an essential step in intelligent model implementation.
These data are used in two stages. Firstly, the significant share is analyzed by the models to
infer the relationship between the intended factors and independent variables. The rests
are then used to represent unseen conditions of the problem and the performance of the
model for stranger data.

In this article, the used dataset was downloaded from a freely available data repository
(http://archive.ics.uci.edu/mL/datasets/Energy+efficiency, accessed on 20 December
2020) based on a study by Tsanas and Xifara [94]. They analyzed 768 residential buildings
with different geometries using Ecotect software [106] to obtain the HL and CL as the out-
puts. They set the information of eight independent factors, namely relative compactness
(RC), overall height (OH), surface area (SA), orientation, wall area (WA), glazing area (GA),
roof area (RA), and glazing area distribution (GAD). Figure 1 shows the distribution of
these factors versus the HL, which we aim to predict in this study. Based on plenty of
previous studies [97], a random division process was carried out to specify 538 samples
(i.e., 70% of the whole) and 230 rows (i.e., 30% of the whole) to the training and testing
sets, respectively.

3. Methodology

The overall methodology used in this study is shown in Figure 2.

3.1. Artificial Neural Network

ANNs are popular data mining techniques based on the biological mechanism of the
neural network [107]. ANNs are able to deal with highly complicated engineering simu-
lations because of the non-linear analysis option [108,109]. This approach distinguishes
itself by different notions including multi-layer perceptron (MLP) [110], radial basis func-
tion [111], and general regression [112]. In this study, an MLP network was selected as the
basic method. Figure 3 depicts the MLP general structure predicting M output variables
by taking into consideration L input factors. It is important to note that in an MLP, more
than one hidden layer can be sandwiched between two other layers. However, theoretical
studies have demonstrated the efficiency of unique hidden layer MLPs for any problem.

ANNs normally benefit from the training scheme of Levenberg–Marquardt (LM), an
approximation to the method of Newton [113] (Equation (1)). The LM is known to be quicker
and enjoy more power compared to conventional gradient descent technique [114,115].

Δx = −
[
∇2 V(x)

]−1 ∇V(x) (1)

where ∇V(x) and ∇2 V(x) are the gradient and the Hessian matrix, respectively. The
following equation expresses V(x) as a sum of squares function:

V(x) =
N

∑
i=1

e2
i (x) (2)

Next, let J(x) be the Jacobean matrix, then it can be written:

∇V(x) = J(x) e(x)
∇2 V(x) = JT(x)J(x) + S(x),

S(x) =
N
∑

i=1
ei ∇2ei(x)

(3)

Equation (1) can be written as follows when S(x) ≈ 0:

Δx =
[

JT(x)J(x)
]
−1 JT(x) e(x) (4)
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Lastly, Equation (5) presents the central equation of the LM, based on the Gauss–
Newton method.

Δx =
[

JT(x)J(x) + μI
]
−1 JT(x) e(x) (5)

Remarkably, high and low values of μ turn this algorithm to steepest descent (with
step 1/μ) and Gauss–Newton, respectively.

Figure 1. The distribution of the heating load (HL) versus environmental factors: (a) relative compactness, (b) overall height,
(c) surface area, (d) orientation, (e) wall area, (f) glazing area, (g) roof area, and (h) glazing area distribution.
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Figure 2. The general path of the study.

Figure 3. Multi-layer perceptron (MLP) general structure predicting M output variables.

3.2. Swarm-Based Metaheuristic Ideas

Optimization algorithms which have recently been very popular for enhancing the
performance of predictive models (e.g., ANNs) are based on swarm functioning of a group
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of corresponding individuals. They are mostly inspired by nature and seek an optimal
global solution for a defined problem by analyzing the relationship between the existing
parameters. Coupled with an ANN, these optimizers seek to adjust the biases and weights.
This process is better explained in the next section. Here, the overall idea of the intended
algorithms is briefly described.

Ant lion optimization (Mirjalili [116]) is a recently-developed hybrid model that mim-
ics the herding behavior of ant lions. It comprises different stages in which the prey
(usually an ant) gets trapped and hunted in a hole by a random walk. The capability of the
individuals is evaluated by a “roulette wheel selection” function. Biogeography-based op-
timization is based on two items: (a) the information concerning biogeography and (b) the
way different species are distributed. This algorithm was designed by Simon [117] and
was used by Mirjalili, et al. [118] to train an MLP network. In the BBO, there are migration
and mutation steps and the population is made up of “habits”. Note that these habits are
evaluated by two indices called the habitat suitability index and suitability index variable.
The dragonfly algorithm is another population-based optimization technique proposed by
Mirjalili [119]. Based on the Reynolds swarm intelligence, the DA draws on three stages,
namely separation, alignment, and cohesion. The name evolutionary strategy implies a
stochastic search approach proposed by Schwefel [120]. In the ES, two operators of selection
and mutation act during the evolution and adaption stages. The population is produced
with offspring variables and the offspring’s modality is compared to that of the parents.
Inspired by the colonizing behavior of weeds, invasive weed optimization was presented
by Mehrabian and Lucas [121]. The optimal solution of this algorithm is the most suitable
site for the plants to grow and reproduce. The algorithm begins with the initialization
and after reproducing, it runs the stages called spatial dispersal and competitive exclusion,
and gets stopped after meeting with the termination measures. Last but not least, league
champion optimization is suggested by Kashan [122], mimicking sporting competitions
in leagues. The LCA tries to find the best-fitted solution to the problem by implementing
an artificial league including schedule programming and determining the winner/looser
teams. More information about the mentioned algorithms (e.g., mathematical relationships)
was detailed in previous studies (for the ALO [123,124], BBO [125], DA [126], ES [127],
IWO [128], and LCA [129,130]).

3.3. Hybridization Process and Sensitivity Analysis

In order to develop the proposed neural-metaheuristic ensembles, the algorithms
should be hybridized with the ANN. To this end, utilizing the provided data, the general
equation of an MLP neural network is yielded to the ALO, BBO, DA, ES, IWO, and LCA as
the problem function. But before that, it is required to determine the most suitable structure
(i.e., the number of neurons) of it. As explained previously, the number of neurons in the
first and the last layers is equal to the number of input and output variables, respectively.
Hence, only the number of hidden neurons can be varied. Based on a trial-and-error process,
it was set to five. Therefore, the network architecture was distinguished as 8 × 5 × 1.

Each ensemble was executed within 1000 repetitions, where the mean square error (MSE)
was defined to measure the performance error during them (objective function = MSE). For
greater reliability of the results, a sensitivity analysis was carried out in this part. Eleven
different population sizes, including 25, 50, 100, 150, 200, 250, 300, 350, 400, 450, and 500,
were tested for each model, and the best-fitted complexity was used to predict the HL
in the following. The convergence curves belonging to elite networks of each model are
presented in Figure 4. According to these charts, for all algorithms, the error is chiefly
reduced within the first half of the iterations. Test best population sizes are determined
350, 400, 200, 500, 50, and 300 for the ALO-MLP, BBO-MLP, DA-MLP, ES-MLP, IWO-MLP,
and LCA-MLP, respectively.
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Figure 4. The sensitivity analysis accomplished for determining the best population size of the (a) ant lion optimization
(ALO)-MLP, (b) biogeography-based optimization (BBO)-MLP, (c) dragonfly algorithm (DA)-MLP, (d) evolutionary strategy
(ES)-MLP, (e) invasive weed optimization (IWO)-MLP, and (f) league champion optimization (LCA)-MLP.

4. Results and Discussion

4.1. Statistical Accuracy Assessment

Three broadly used criteria are applied to measure the prediction accuracy of the
implemented models by reporting the error and correlation of the results. For this purpose,
MAE (along with the RMSE) and the coefficient of determination (R2) are used. These
criteria are applied to the data belonging to the training and testing groups to demonstrate
the qualities of learning and prediction, respectively. Assuming G as the total number of
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samples, and Ji observed, and Ji predicted as the real and forecasted HL values, Equations (6)–(8)
formulate the RMSE, MAE, and R2.

RMSE =

√√√√ 1
G

G

∑
i=1

[(Jiobserved − Jipredicted)]

2

(6)

MAE =
1
G

G

∑
I=1

∣∣∣Jiobserved − Jipredicted

∣∣∣ (7)

R2 = 1 −

G
∑

i=1
(Jipredicted − Jiobserved)

2

G
∑

i=1
(Jiobserved − Jobserved)

2
(8)

where Jobserved denotes the mean of Ji observed values.

4.2. Training Results

The results of elite structures of each model are evaluated in this section. Figure 5
shows the training results. In this regard, the error (=real HL − forecasted HL) is calculated
and marked for all 538 samples. In this phase, the maximum and minimum of the (positive)
error values were 0.0136 and 6.4455, 0.0018 and 6.0681, 0.0019 and 9.2773, 0.0248 and 7.3006,
0.0184 and 6.3776, and 0.0715 and 8.4620, respectively, for the leaning process of ALO-MLP,
BBO-MLP, DA-MLP, ES-MLP, IWO-MLP, and LCA-MLP ensembles.

Referring to the calculated RMSEs (2.6054, 2.5359, 3.4314, 2.7146, 3.2506, and 3.8297),
all six models achieved a reliable performance in understanding the non-linear relationship
of the HL and eight influential factors. Another piece of evidence that supports this claim
is the MAE index (2.0992, 2.0846, 2.9402, 2.0848, 2.8709, and 3.4091). Furthermore, the
correlation between the expected and real HLs is higher than 92% in all models. In detail,
the values of R2 are 0.9539, 0.9596, 0.9222, 0.9357, 0.9547, and 0.9386.

4.3. Validation Results

The developed models are then applied to the second group of data to assess the
generalization capability of them. Figure 6 depicts the correlation between the expected
HLs and networks’ products. As is seen, all obtained R2s (0.9406, 0.9516, 0.9340, 0.9318,
0.9431, and 0.9400) reflect higher than 93% accuracy for all models. In this phase, the errors
range between −5.5792 and 6.9349, −5.6311 and 6.3000, −9.3137 and 6.8288, −7.0282 and
7.0647, −6.2505 and 5.8823, and −8.2384 and 6.1992, respectively.
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Figure 5. The training errors calculated for the (a) ALO-MLP, (b) BBO-MLP, (c) DA-MLP, (d) ES-MLP, (e) IWO-MLP, and (f)
LCA-MLP prediction.

Considering the computed RMSE (2.7162, 2.4807, 3.3998, 3.0958, 3.3524, and 3.2954) as
well as the MAE (2.1865, 1.8284, 2.8713, 2.5072, 2.9702, and 2.7807) error criteria, it can be
deduced that the networks’ prediction for unseen environmental conditions has a good
level of accuracy. More clearly, the values of mean absolute percentage error were 10.01%,
9.78%, 13.59%, 12.63%, 13.01%, and 13.01%, respectively.
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Figure 6. The R2 results calculated in the testing phase of the (a) ALO-MLP, (b) BBO-MLP, (c) DA-MLP, (d) ES-MLP,
(e) IWO-MLP, and (f) LCA-MLP models.
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4.4. Score-Based Comparison and Time Efficiency

Table 1 summarizes the values of the RMSE, MAE, and R2 obtained for the training
and testing phases. In this section, the comparison between the performance of the used
predictors is carried out to determine the most reliable one. For this purpose, by taking into
consideration all three accuracy criteria, a ranking system is developed. In this way, a score
is calculated for each criterion based on the relative performance of the proposed model.
The summation of these scores gives an overall score (OS) to rank the models. Table 2 gives
the scores assigned to each model.

Table 1. The results of accuracy assessment.

Ensemble
Models

Network Results

Training Phase Testing Phase

RMSE MAE R2 RMSE MAE R2

ALO-MLP 2.6054 2.0992 0.9539 2.7162 2.1865 0.9406

BBO-MLP 2.5359 2.0846 0.9596 2.4807 1.8284 0.9516

DA-MLP 3.4314 2.9402 0.9222 3.3998 2.8713 0.9340

ES-MLP 2.7146 2.0848 0.9357 3.0958 2.5072 0.9318

IWO-MLP 3.2506 2.8709 0.9547 3.3524 2.9702 0.9431

LCA-MLP 3.8297 3.4091 0.9386 3.2954 2.7807 0.9400

Table 2. The executed ranking system.

Models

Scores

Training Testing

RMSE MAE R2 Overall Score Rank RMSE MAE R2 Overall Score Rank

ALO-MLP 5 4 4 13 2 5 5 4 14 2

BBO-MLP 6 6 6 18 1 6 6 6 18 1

DA-MLP 2 2 1 5 5 1 2 2 5 6

ES-MLP 4 5 2 11 3 4 4 1 9 3

IWO-MLP 3 3 5 11 3 2 1 5 8 5

LCA-MLP 1 1 3 5 5 3 3 3 9 3

According to the results, the most significant OS (=18) is obtained for the BBO-MLP in
both the training and testing phases. The ALO and ES-based ensembles emerged as the
second and third most accurate ones, respectively. However, the IWO in the training phase
and the LCA in the testing phase gained a similar rank to the ES. In addition, it can be seen
that the results of the DA-MLP are less consistent than other colleagues.

Moreover, Figure 7 illustrates the time required for implementing the used models.
This item is also measured for other well-known optimization techniques (including Harris
hawks optimization (HHO) [131], GWO [132], whale optimization algorithm (WOA) [133],
artificial bee colony (ABC) [134], ant colony optimization (ACO) [135], elephant herding
optimization (EHO) [136], genetic algorithm (GA) [137], imperialist competitive algo-
rithm (ICA) [138], particle swarm optimization (PSO) [139], and wind driven optimization
(WDO) [140]) to be compared with ALO, BBO, DA, ES, IWO, and LCA. This figure indi-
cates that the metaheuristic algorithms used in this study present a good time-efficiency in
comparison with other models. Moreover, it was observed that the ABC, HHO, and DA
take the greatest amount of time for almost all of the population sizes.
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Figure 7. The computation time needed for various hybrid methods.

4.5. Presenting the HL Predictive Equation

In the previous section, it was concluded that the BBO constructs the most reliable
neural network. This means that the biases and connecting weights optimized by this
technique can analyze and predict the HL more accurately compared to other metaheuristic
algorithms. Therefore, the governing relationships in the BBO-MLP ensemble are extracted
and presented as the best HL predictive formula (Equation (9)). As is seen, there are five
parameters (Z1, Z2, . . . , Z5) in this equation, which need to be calculated by Equation (10).
Basically, the response of the neurons in the hidden layer are represented by Z1, Z2, . . . ,
Z5. Remarkably, the term Tansig is the network activation function, which is expressed by
Equation (11).

HL BBO-MLP = 0.9076 × Z1 + 0.0050 × Z2 − 0.3986 × Z3 − 0.4754 × Z4 − 0.2692 × Z5 + 0.0283 (9)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Z1

Z2

Z3

Z4

Z5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= Tansig

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.8459 0.2944 −0.7562 0.1225 −0.2456 0.3266 −1.0020 0.6090

−0.2863 0.4134 −0.1649 −0.8857 0.8828 −0.9327 0.1703 0.4336

0.7094 −0.5079 −0.6916 0.6346 −0.3142 −0.0794 −0.4306 0.9990

−1.1274 −0.0470 −0.1336 0.6061 0.0406 0.3088 −0.8939 −0.6135

0.1514 0.2735 −0.8389 0.1982 −0.6465 −1.0777 0.2336 0.6753

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

RC

SA

WA

RA

OH

Orientation

GA

GAD

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.7120

0.8560

0.0000

−0.8560

1.7120

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(10)

Tansig (x) =
2

1 + e−2x − 1 (11)

4.6. Further Discussion and Future Works

Due to the fact that the dataset used in this study is a prepared dataset dedicated
to residential buildings, the applicability of the used methods is derived for this type of
building. However, there are many studies that have successfully employed machine
learning tools for predicting the thermal loads of buildings with other usages, such as
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office, commercial, and industrial ones [141]. Hence, utilizing multi-usage datasets for
future works can overcome this limitation.

Another idea may be evaluating the accuracy of the new generation of hybrid models
which can be divided into (a) the combination of the existing metaheuristic tools with other
intelligent models, e.g., ANFIS and SVM, or (b) utilizing more recent optimizers for the
existing ANN models. Both ideas are helpful to possibly recognize more efficient predictive
methods. Moreover, a practical use of the implemented models is also of interest. In order
to evaluate the generalizability of the methods, they can be applied to the information
taken from real-world buildings noting that the input parameters considered for predicting
the HL should be the same as those used in this study; otherwise, it would be a new
development.

5. Conclusions

The high competency of optimization techniques in various engineering fields moti-
vated the authors to employ and compare the efficacy of six novel metaheuristic techniques,
namely ant lion optimization, biogeography-based optimization, dragonfly algorithm,
evolutionary strategy, invasive weed optimization, and league champion optimization, in
hybridizing the neural network for accurate estimation of the heating load. The proper
structure of all seven methods was determined by sensitivity analysis and it was shown
that the most appropriate population size could be varied from one algorithm to another.
The smallest and largest populations were 50 and 500 hired by the IWO and ES, respectively.
The high rate of accuracy observed for all models indicated that metaheuristic techniques
could successfully establish a non-linear ANN-based relationship that predicts the HL from
the building characteristics. Comparison based on the used accuracy indices revealed that
the BBO, ALO, and ES (with around 94% correlation of the results) are able to construct
more reliable ANNs in comparison with IWO, LCA, and DA. In addition, the models enjoy
a good time efficiency relative to some other existing algorithms. However, the authors
believe that, due to recent advances in metaheuristic science, further comparative studies
may be required for outlining the most efficient predictive method.
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Abstract: As energy distribution systems evolve from a traditional hierarchical load structure towards
distributed smart grids, flexibility is increasingly investigated as both a key measure and core
challenge of grid balancing. This paper contributes to the theoretical framework for quantifying
network flexibility potential by introducing a machine learning based node characterization. In
particular, artificial neural networks are considered for classification of historic demand data from
several network substations. Performance of the resulting classifiers is evaluated with respect to
clustering analysis and parameter space of the models considered, while the bootstrapping based
statistical evaluation is reported in terms of mean confusion matrices. The resulting meta-models
of individual nodes can be further utilized on a network level to mitigate the difficulties associated
with identifying, implementing and actuating many small sources of energy flexibility, compared to
the few large ones traditionally acknowledged.

Keywords: smart grid; electricity network; flexibility assessment; renewable energy sources; machine
learning; network simulation; artificial neural networks; convolutional neural networks

1. Introduction

Safe and reliable operation of energy systems depends on maintaining a balance
between consumption and production in real-time, while an increasingly large part of the
production portfolio depends on the inherently variable non-stationary climate, such as
renewable wind or solar sources [1].

The variability of the consumption, on the other hand, can be relatively easily con-
trolled, when compared to the climate-dependent part of the production portfolio, by
purposefully influencing the consumption behavior, i.e., targeting the reducible (epistemic)
uncertainty components on the consumer side, rather than focusing only on mostly aleatory
(irreducible) uncertainties related to long-term weather forecasting.

The ability to purposefully influence both the production and consumption behavior
of selected elements of the electricity system is therefore gradually gaining in importance
(e.g., [1–4], as it can effectively reduce fluctuations in the overall load diagram and thus
reduce the demands on available power and dynamics of Support Services, as well as the
associated costs.

The electricity market is currently at a crossroads. The current market model assumes
that the market will ensure both short-term optimization, such as effective allocation of
the necessary production among existing capacities, and long-term investment signals for
the construction of new capacities. However, the significant degree of market distortions
in the sector practically paralyzed this function of the market model. Such development
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leads to a situation where investors are only looking for the construction of sources with
guaranteed (subsidized) prices. Investments in resources and networks are thus driven
by state incentives, instead of the market. Under such conditions, market development
without adjustments by the state leads to an unbalanced resource mix with a number of
strategic and systemic risks for the future [1].

An important part of any state’s critical infrastructure is its electricity network. This
is traditionally based on centralized generation in large power plants, however, as the
share of renewable energy production increases, the grid will need to adapt to a large
number of smaller sources. Decentralized production growth is enabled by the spread of
new technologies and typically benefits the local economy.

However, the transformation of energy must meet the basic conditions. These are
secure supplies during normal operation as well as in the event of sudden changes in
external conditions, and competitive prices. At the same time, energy must be sustainable
in the sense that it does not harm the environment, is able to provide raw materials for its
operation and the whole sector is economically stable.

The aim of this work is to contribute to the theoretical framework for quantifying
network flexibility potential by introducing a machine learning-based node characteri-
zation. It is unique in the successful utilization of state-of-the-art convolutional neural
network models for the classification of historic demand data from the Ausgrid distri-
bution zone substation data. After introducing the related concepts of smart grid, grid
flexibility and network modeling, demand interval data used for this study are introduced
together with the clustering analysis performed. Next, machine learning-based time-series
classification and surrogate resampling concepts are discussed, together with various
architectures of convolutional neural network models. Finally, the statistics of resulting
classifiers are discussed.

1.1. Smart Grid

Decentralizing the energy system and thus at least partially replacing large-scale
energy production (e.g., fossil, nuclear or hydroelectric) is an increasingly common effort.
These facilities are usually far from the end consumer and therefore require an extensive and
reliable high-voltage transmission network. The global tendency to achieve a sustainable
economy and improve the environment leads to higher use of energy from renewable
sources and thus, for example, to reduce the global temperature disruption [5]. Carbon
dioxide emissions during energy production account for about two-thirds of all greenhouse
gases [6]. Power plants using renewable sources are usually smaller in format and closer to
the end-user. Thus, energy is not transmitted over such long distances and the transmission
network has a decentralized structure. This results in fewer losses during transmission and
the network is less vulnerable because it does not depend on a small number of remote
large power plants. The whole system is therefore composed of smaller subsystems, which
do not have to be interdependent, but still communicate with each other and can help
each other.

An ideal (smart) grid is a modernized electrical self-monitoring grid that can combine
conventional central sources with alternative sources of electricity [7]. This includes an
intelligent control system that monitors and adjusts the operation of the network in real-
time, including the self-healing capabilities and supported by intelligent elements, without
the need for human intervention. Smart grids communicate with the customer in real-time
and help to optimize the consumption with regard to the current price of electricity and
the burden on the environment, allowing better integration of renewable electricity sources
and improving the efficiency, reliability, economics, and sustainability of the production
and distribution of electricity.

As the production of energy using renewable sources is difficult to predict in the long
run (climate-dependent production), it is necessary to be able to target consumers and
ensure communication between individual entities. In this way, the demands on the peak
loads and the operational cost and costs of providing support services can be reduced [8].
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This can be done through a combination of technical and economic tools. Various
smart metrics for measuring, communication, synchronization, forecasting and control are
being developed [9]. Among the economic instruments, it is possible to name, for example,
the real-time pricing [10] or the Adaptive Billing Mechanism [11], which can work, with
negative energy prices and thus flatten the oscillation of the overall load diagram. A whole
new market with new entrants can be expected.

Information security is discussed in [12], where risk propagation model based on the
Susceptible–Exposed–Infected–Recovered (SEIR) infectious disease model is proposed for
a smart grid. The high volatility and uncertainty of load profiles and the tremendous com-
munication pressure are discussed in a two-stage household electricity demand estimation
study by [13]. Investigation of voltage control at consumers connection points based on
smart approach has recently been carried out by [14], proposing a voltage control system
for use in the Russian distribution grid.

1.2. Grid Flexibility

Flexibility is considered a key enabler for the smart grid according to O’Connell et al. [15],
and is required to facilitate Demand-Side Management (DSM) programs, manage electrical
consumption to reduce peaks, balance renewable generation and provide ancillary services
to the grid. The ISO 50002:2014 [16] specifies the process requirements for carrying out an
energy audit in relation to energy performance. It is applicable to all types of establishments
and organizations, and all forms of energy and energy use. This standard can be used to assess
flexibility and formulate optimization requirements [2,15]. According to a given scale, flexibility
analysis can help to identify and quantify the available electrical load at a network or node level,
i.e., substation, site or building.

U.S. Energy Information Administration (EIA) [17] defines DSM programs as those
including planning, implementing, and monitoring activities of electric utilities which are
designed to encourage consumers to modify their level and pattern of electricity usage. In
its international energy outlook or other EIA annual reports, projected and actual energy
production can be compared with the global changes in manufacturing and services share,
an important component in any flexibility analysis for smart grid DSM.

The primary objective of most DSM programs in the past was to provide cost-effective
energy and capacity resources in order to help defer the need for new sources of power,
including generating facilities, power purchases, and transmission and distribution capacity
additions. However, due to changes that are occurring within the industry, electric utilities
are also using DSM as a way to enhance customer service. According to EIA, DSM refers
to only energy and load-shape modifying activities that are undertaken in response to
utility-administered programs. It does not refer to energy and load-shape changes arising
from the normal operation of the marketplace or from government-mandated energy-
efficiency standards.

Moreover, the European Commission’s (EC) 2020 targets [18] to generate 20% of
Europe’s energy from renewable energy and reduce greenhouse gasses emissions by 20%
have already resulted in increased climate-dependent production. In order to further
increase this production to 25%, all aspects of grid flexibility have to be carefully addressed
to ensure grid resilience and stability. This includes, among others, the ability to balance
non-dispatchable sources and managing the power locally.

In the International Energy Agency’s annex 67 [19], energy flexibility is also presented
as a key asset in the smart building future, where buildings can manage itself, interact with
their users and take part in demand response.

1.3. Network Modeling

In the current state of discussions, energy flexibility is typically associated with
“smartness” and evaluated either in a qualitative framework according to the number and
type of services provided by its components, or, as presented in this paper, by quantitative
and physical indicators, utilizing measured (historic) data and network-level simulations.
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To better understand the functioning of Smart grids and investigate the possibilities
of optimization of their functions, it is appropriate to create a mathematical meta-model
of individual network nodes and simulate the operation of the whole network, where the
nodes are connected according to real network topology and edge capacity. Because it is
a decentralized system, decision intelligence is divided between the individual nodes of
the network. Agent models are commonly used for simulations, where each agent has its
own decision-making power and none of them depends on any central authority [20]. Rela-
tionships and connections between agents are usually modeled using network theory [21].
The agent decision-making process and behavior prediction can be modeled, for example,
using machine learning (ML) [22].

Among recent contributions to the integrated simulation of power and communication
networks for smart grid, applications can be found [4], where the smart grid discrete-
event simulator is implemented in C++ using the open-source OMNeT++ simulation
environment. In [23], a comprehensive real-time simulation of the smart grid is presented,
including a microgrid model of a small community. A recent overview of simulation and
modeling application to residential demand response can be found in [24].

In order to simulate the behavior of the entire network, and to evaluate the impact of
various control strategies on the power grid, it is necessary to validate the behavior of the
individual nodes first. In this paper, a historic 15 min interval demand data from Ausgrid
substations [3,25] have been classified using machine learning methods.

2. Interval Demand Data

Publicly available distribution zone substation 15-min interval demand data from the
Australian network operator Ausgrid [25] have been used for the machine learning-based
node characterization in order to support computational reproducibility of this research. In
particular, historic data from the year 2019 (between May 2018 and April 2019) and from
the year 2020 (between May 2019 and April 2020) from 185 substations from distribution
networks around Sydney and Newcastle have been used. These substations form the
boundary between the sub-transmission network and the distribution (11 kV) network.
The time is in Australian Eastern Standard Time (AEST) format during the winter period
and Australian Eastern Daylight Time (AEDT) during the summer period. Figure 1 shows
the irregular topology of the investigated distribution network, where real node positions
(red dots) correspond to population density clusters, resulting in large variability of edge
length (black lines).

Data from individual substations were sampled at 15 min and divided into time
series by days, resulting in 96 data points. The proposed classification cannot intentionally
distinguish between workdays, weekends or holidays, as there is no information on the
actual date attached to the individual time series, although the dataset exhibit typical
daily, weekly and seasonal fluctuations in electricity demand. Nevertheless, the achieved
accuracies are far from prohibitive, as discussed in the next chapter.

The daily fluctuations include morning and afternoon peaks throughout all four
seasons, including workdays and weekends, see Figures 2–5 for an example from Harbord
substation, with group averages in dark color. In summer, a lower overall demand can be
observed, including less distinct morning and evening peaks.
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Figure 1. Irregular topology of the investigated distribution network (map source [26]).

Clustering Analysis

In general, the goal of clustering is to identify structure in an unlabeled data set
by objectively organizing data into homogeneous groups where the within-group-object
similarity is minimized and the between-group-object dissimilarity is maximized [27]. The
time-series demand data presented in this section have been clustered by the basic k-means
algorithm [28] in order to split substations into several groups. K-means clustering is a
renowned heuristic method for crisp partitions (i.e., each object belongs to exactly one
cluster, as opposed to fuzzy if one object is allowed to be in more than one cluster to a
different degree), where each cluster is represented by the mean value of the objects in
the cluster.
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Figure 2. Daily fluctuations and seasonal scattering at Harbord substation, May–July 2018.

Figure 3. Daily fluctuations and seasonal scattering at Harbord substation, August–October 2018.
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Figure 4. Daily fluctuations and seasonal scattering at Harbord substation, November 2018–January 2019.

Figure 5. Daily fluctuations and seasonal scattering at Harbord substation, February–April 2019.

For effective optimization of the distribution grid, and for any network-level simula-
tions in general, the behavior of nodes (i.e., stations and substations) must be understood.
Daily fluctuations of power demand may depend on the type of supplied neighborhood.
Three basic types of substation neighborhoods—residential, business and combined—were
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considered as only 96 equally spaced data points were available per signal. K-means
clustering analysis with k = 3 identified the following clusters (Figures 6–8):

• C1: 48 substations, residential, morning and evening demand peak,
• C2: 66 substations, combined, morning and evening peaks less distinct than in the

clusters C1,
• C3: 71 substations, business, high and flat distribution of energy demand during

the day.

Note that the qualitative evaluation of characteristics of the three identified clusters is
based only on the assumption of daily peak distribution and has not been verified by any
other on-site investigation as it was not the goal of this research. Note the normalization of
amplitudes of daily signals to the maximum value in order to ensure classification based
on demand patterns instead of absolute values of demand.

Figure 6. Cluster C1 with average daily power demand for each substation (grey) and overall average
demand (blue).
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Figure 7. Cluster C2 with average power demand for each substation (grey) and overall average
demand (blue).

Figure 8. Cluster C3 with average power demand for each substation (grey) and overall average
demand (blue).

125



Sustainability 2021, 13, 2954

3. Machine Learning Based Classification

3.1. Surrogates Resampling

In each identified cluster, 14 substations have been randomly selected (see Table 1) for
the machine learning-based classification. The goal is to identify a substation based on its
daily demand, all selected substations being type 33/11 kV. Since data for all substations
were not complete, a criterion for the minimal number of measurement days per substation
has been set to 350 days of a year.

Table 1. Selected substations for each cluster.

C1 C2 C3

Avondale Baerami Auburn
Cessnock South Blakehurst Blackwattle Bay
Edgeworth Campsie Brookvale
Harbord Dulwich Hill Camperdown
Jannali Enfield City East
Killarney Gateshead Darlinghurst
Medowie Lindfield Graving Dock
Mt Hutton Maitland Kotara
Newport Nelson Bay Lucas Heights
Paxton Peats Ridge New Lambton
Sans Souci Riverwood Newcastle CBD
Swansea St Ives Paddington
Tanilba Bay Thornton Surry Hills
Tomaree Williamtown Tomago

Three scenarios were evaluated considering data from year the 2019, 2020 and both
years respectively. In the first two scenarios, data were divided between training and
testing set using a typical split ratio 80%/20%. Data were selected randomly from the
original dataset in such a way that the same split ratio is ensured for each substation. In
order to avoid over-fitting and evaluate the reliability of the models, 10 splits of the dataset
were randomly generated. This technique is often referred to as bootstrapping [29] and
has been preferred over cross-validation due to the limited number of time series available,
as cross-validation resamples without replacement and thus produces surrogate data sets
that are smaller than the original. Bootstrapping used here resamples without replacement,
produces surrogate datasets with the same number of time series as the original dataset,
therefore statistical evaluation of the performance of the model becomes available, as
represented here by the average confusion matrices and reported variability of accuracies.
Each row in a confusion matrix represents the instances in a real class, while each column
represents the instances in a predicted class, so whether the system is confusing two classes
can easily be visible.

In the third scenario, denoted as 2019–2020, data from the year 2019 were used for
training and data from the year 2020 for testing. Five runs for each cluster and model were
done and their results averaged in order to consider variance due to random initialization
of network parameters and data shuffling. This scenario aims to evaluate generalization
capability of the used model for future years. Setup of all three scenarios is listed in Table 2.
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Table 2. Setup of the evaluated years and clusters.

Year Cluster No. of Classes Dataset Size Training Size Testing Size No. of Repeats

2019 C1 14 5085 4070 1015 10

C2 14 5081 4068 1013 10

C3 14 5085 4069 1016 10

2020 C1 14 5109 4091 1018 10

C2 14 5098 4082 1016 10

C3 14 5105 4087 1018 10

2019–2020 C1 14 10,194 5085 5109 5

C2 14 10,179 5081 5098 5

C3 14 10,190 5085 5105 5

3.2. CNN Models

Commonly used machine learning methods for the classification of time-series data
are Support Vector Machines (SVM) and Artificial Neural Networks (ANN), as recently
reported in [30–32].

SVM is a simple algorithm that looks for a hyperplane that divides the n-dimensional
input space into two or more categories and assigns an output value accordingly. However,
there is an infinite number of such planes, and the goal of the algorithm is to find a plane
that has the maximum distance from the points of both (all) classes. Multidimensional
problems are usually transformed using the so-called kernel transformation, so the non-
linear problem is converted to linear. That means, from the original space to the Euclidean
space. Thus, it is clear that the correct function of the SVM depends on the correct choice of
the kernel function. This method is computationally expensive if large amounts of data are
to be considered.

The best known and probably also the most universal ML algorithm is the Artificial
Neural Network (ANN) method. This algorithm is inspired by the decision-making
processes of the human brain. It is composed of several million neurons, which evaluate
and pass information to each other. Likewise, an artificial neural network is composed
of layers, which are composed of neurons. Each layer has given rules, based on which it
evaluates the input information from the previous layer and passes the output to the next
layer. Input and output can be of different formats. Within ANN, however, the information
is transmitted using an internal weighing system. The number of layers and neurons in
them is arbitrary, as well as the type of layers. However, all these parameters affect the
reliability of ANN.

Both SVM and ANN are sensitive to the subjective choice of parameters, in the case
of SVM, these are the describing (scalar) features of the time-series, such as the number
of peaks, total energy or various Fourier transform properties. In the case of ANN, the
subjective choice of its architecture can significantly influence both its performance as well
as computational requirements. Given the relatively small size of the time series (96 data
points), compared to applications that differ by two orders of magnitude, where high-
frequency components have to be maintained, such as the dynamic response of railway
track due to a passing train, which, if resampled to a lower resolution, looses its most
important characteristics (see e.g., [30]), finding proper characterization for SVM input
vector would make a little sense, since the entire time series vector can be directly processed
by a more general ANN model.

Some advanced time series classification techniques can be used such as Least-Squares
Wavelet (LSWAVE) [33]. The spectral and wavelet analyses are very useful for estimating
trends and seasonal components of any time series and identifying their patterns in the
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time-frequency domain [34]. Herein, we directly classify the time series data and shall
leave the use of wavelets to future research.

A specific type of ANN, the convolutional neural networks (CNN) were selected for
data classification as they provide state-of-the-art performance for computer vision or time-
series classification and are also widely adopted for end-to-end learning [35]. End-to-end
approach utilizes raw time-series data without any preprocessing and manual feature
extraction which often introduces unnecessary bias as extracted features are often domain-
specific. Convolutional layers in CNN also enhance pattern recognition capabilities of
the network.

In the following, three CNN models with different architectures have been considered:

• CNN1 has the same architecture as the best performing model CNN in [30]. It contains
one convolutional layer with 64 filters followed by max-pooling layer, fully connected
hidden layer and an output layer;

• CNN2 contains three convolutional layers with 128, 64 and 32 filters, respectively.
Batch normalization and dropout with 25% probability is applied to the output of the
last convolutional layer before passed to a max-pooling layer. The result of the pooling
layer is flattened to one fully connected output layer. It is the deepest architecture
with the largest number of layers with trainable parameters;

• CNN3 contains one convolutional layer with 64 filters followed by an average pooling
layer with output size 20 and fully connected output layer. This architecture contains
the lowest number of trainable parameters.

Rectified linear unit (ReLU) has been used between layers as an activation function
for all presented architectures. Overview of parameters for evaluated architectures is
presented in Table 3.

Table 3. Number of layers and number of trainable parameters for the evaluated convolutional
neural networks.

Model CNN1 CNN2 CNN3

Number of layers with trainable parameters 4 6 3

Number of trainable parameters 123,498 122,830 18,446

Average training time (s) 1,2 96.4 99.5 93.6
1 C2 dataset in year 2019 (4069 training samples), 2 NVIDIA GeForce GTX 1050 Max-Q with 640 cores and 3 GB
of memory.

Training has been executed in 20 epochs. Data were forwarded through the networks
in batches of size 32. The learning rate has been set to 0.001, while Adam optimizer has
been used to minimize cross-entropy loss function (which is a composition of negative
log-likelihood and logarithmic softmax function).

A graphics processing unit (GPU) has been used for training, approximately 0.6–0.8 GB
of memory has been required, and models with a lower number of parameters (CNN3)
had only slightly lower training time.

4. Results

The most accurate model with mean accuracy over 88.8% and deviation less than
1.5% for all clusters and all scenarios is the CNN2 due to the incorporation of multiple
convolutional layers. Slightly lower accuracy can be seen in the scenario 2019–2020,
compared to the scenarios 2019 and 2020.

It was also shown that CNN2 model has the best ability to generalize future years
(trained 2019, tested 2020), C1 cluster shows higher accuracy compared to C2 and C3.

The highest mean accuracy can be observed in scenario 2019–2020 for CNN2 model
and cluster C1 at Jannali substation (99.3%), while the lowest mean accuracy occurred in
cluster C2 at Maitland substation (67.3%), which was often confused with Thornton.
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The mean model accuracies are presented in Table 4 or in graphical representation,
Figure 9, where the accuracy of independent and random selection results (base) are also
included for reference.

Results are presented by means of mean confusion matrices for scenario three (training
on 2019 data and testing on 2020 data) and the best performing CNN2 classifier model for
individual clusters C1 to C3, see Figures 10–12. These matrices show how the model is able
to cope with the classification of new data in future years and which classes (substations)
are often confused.

Table 4. Mean model accuracies for each year and cluster.

Year Cluster Base (%) Mean (%) CNN1 (%) CNN2 (%) CNN3 (%)

2019 C1 7.1 83.7 ± 10.0 80.7 ± 2.5 96.8 ± 1.4 73.6 ± 2.8

C2 7.1 80.9 ± 10.0 75.3 ± 2.4 94.6 ± 1.4 72.8 ± 2.3

C3 7.1 81.6 ± 8.8 78.7 ± 2.4 93.3 ± 1.4 72.9 ± 1.7

2020 C1 7.1 83.3 ± 10.7 79.7 ± 4.7 97.2 ± 0.9 72.9 ± 1.8

C2 7.1 75.0 ± 13.8 64.5 ± 6.9 93.5 ± 1.4 66.9 ± 2.7

C3 7.1 79.0 ± 9.9 74.7 ± 2.9 92.4 ± 1.3 70.0 ± 2.7

2019–2020 C1 7.1 79.1 ± 12.0 76.8 ± 0.9 94.8 ± 0.7 65.7 ± 1.4

C2 7.1 74.2 ± 10.4 68.0 ± 1.5 88.8 ± 1.4 65.9 ± 1.0

C3 7.1 79.9 ± 7.7 77.4 ± 3.6 89.9 ± 1.5 72.4 ± 1.3

Figure 9. Accuracy of evaluated neural network models for different clusters in different years (mean
+− standard deviation).
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Figure 10. Mean confusion matrix for best performing model convolutional neural networks CNN2
and cluster C1.

Figure 11. Mean confusion matrix for best performing model CNN2 and cluster C2.
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Figure 12. Mean confusion matrix for best performing model CNN2 and cluster C3.

5. Discussion

The machine learning-based substation node energy demand characterization repre-
sents a first logical step in a network-level flexibility assessment based on simulations or
optimizations of DSM programs, ensuring resilient and stable operation of smart grids.

The resulting meta-models of individual substations can be further utilized to mitigate
the difficulties associated with identifying, implementing and actuating various sources of
energy flexibility, such as those related to the technology of indoor environmental comfort,
compared to the few large ones traditionally acknowledged.

As explained and demonstrated in the paper, the ML-based classification of substations
can be further utilized to study different scales of smart grid applications, and verify new
control strategies. In particular, this study shows that:

(1) Clustering analysis can effectively help to understand the type of supplied neighbour-
hood, such as residential, mixed or business, and is used in this paper for benchmark-
ing categorization of the three convolutional neural network models.

(2) Despite inherent daily (accounted timestamp), weekly (unaccounted directly) and
seasonal (unaccounted directly) fluctuations in historic node demand data, the pro-
posed CNN2 model yields relatively reliable results even when validated on future
data, with mean model accuracy ranging from 88.8 + −1.4 (combined cluster C2) to
94.8 + −0.7 (residential cluster C1) in case of scenario 2019–2020.

(3) Given the relatively high ratio of trainable parameters (e.g., 122,830 for CNN2) to the
input size (96 data points), over-fitting and over-determinism can clearly represent
a problem and has to be carefully acknowledged in general, however, due to the
proposed state-of-the-art ANN architecture, including multiple convolutional layers
accompanied with regularization techniques such as batch normalization and dropout
and conservatively set learning rate, the presented sparse mean confusion matrices
based on bootstrap (10× resampling) demonstrate a rather robust fit, if relatively small
accuracy standard deviation of 1.4% (CNN2) and dominant diagonal are considered.
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(4) Certain classes may be mutually confused due to similarities in substations and
their neighbourhoods. Some types of neighbourhood such as tourist or holiday
locations may also increase demand variability in different parts of a year. The mutual
confusions are similar for all investigated CNN models, and since these models have
a different number of convolutional layers, the confusion is more likely to stem from
substations variability rather than from the different architecture of CNN. For example,
Swansea has fishing and tourism, Campsie has business and commercial areas, while
Darlinghurst is a vibrant central district dependent on high season.

Limitations of this study include a limited range of considered years due to computa-
tional intensity. In order to optimize the distribution grid as a whole, network topology
including its inner dependencies and boundary conditions must be considered (e.g., us-
ing hierarchical neural networks). In this study, only classification of network nodes
was presented.

6. Conclusions

After introducing the importance of quantifying network flexibility potential for the
safe integration of renewable energy sources and sustainable economy, the background on
the smart grid and network modeling has been presented together with state-of-the-art
machine learning techniques and their application to the classification of historical demand
data. The resulting characterization of individual substations is important for future work
on network-level simulations, the aim of which is to mitigate the difficulties associated
with identifying, implementing and actuating many small sources of energy flexibility,
compared to the few large ones traditionally acknowledged.

The proposed CNN models do not require any pre-processing of the 15 min interval
demand data, the only subjective choice associated with the classification is the architecture
of the neural network. Three scenarios were evaluated considering data from year 2019,
2020 and both years respectively. In the first two scenarios, data were divided between
training and testing set using a typical split ratio 80/20, and in the third scenario, denoted
as 2019–2020, data from the year 2019 were used for training and data from the year 2020
for testing. This enabled the verification of both statistical significance of the classifier,
based on bootstrapping, as well as generalization of the resulting meta-models.

The sparse mean confusion matrices indicate a robust modeling approach, considering
very similar structures across the investigated architectures, and relatively small standard
deviation of accuracies. A more detailed (qualitative) assessment of substations and their
neighbourhoods was beyond the scope of this paper, as well as the effects of boundary
conditions on real network topology. Future work will continue with hierarchical neural
networks modeling of the entire network.
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Abstract: Predicting the electrical power (PE) output is a significant step toward the sustainable
development of combined cycle power plants. Due to the effect of several parameters on the
simulation of PE, utilizing a robust method is of high importance. Hence, in this study, a potent
metaheuristic strategy, namely, the water cycle algorithm (WCA), is employed to solve this issue.
First, a nonlinear neural network framework is formed to link the PE with influential parameters.
Then, the network is optimized by the WCA algorithm. A publicly available dataset is used to feed
the hybrid model. Since the WCA is a population-based technique, its sensitivity to the population
size is assessed by a trial-and-error effort to attain the most suitable configuration. The results in
the training phase showed that the proposed WCA can find an optimal solution for capturing the
relationship between the PE and influential factors with less than 1% error. Likewise, examining the
test results revealed that this model can forecast the PE with high accuracy. Moreover, a comparison
with two powerful benchmark techniques, namely, ant lion optimization and a satin bowerbird
optimizer, pointed to the WCA as a more accurate technique for the sustainable design of the
intended system. Lastly, two potential predictive formulas, based on the most efficient WCAs, are
extracted and presented.

Keywords: power plant; electrical power modeling; metaheuristic optimization; water cycle algo-
rithm; machine learning; deep learning; big data; energy; deep learning

1. Introduction

The accurate forecast of power generation capacity is a significant task for power
plants [1]. This task concerns the efficiency of plants toward an economically beneficial
performance [2]. Due to the nonlinear effect of several factors on thermodynamic sys-
tems [3,4] and related parameters like electrical power (PE), many scholars have updated
earlier solutions by using machine learning. As a matter of fact, there are diverse types
of machine learning methods (e.g., regression [5], neural systems [6,7], fuzzy-based ap-
proaches [8],) that have presented reliable solutions to various problems. Liao [9] could
successfully predict the output power of a plant using a regression model. The model
attained 99% accuracy and was introduced as a promising approach for this purpose.
Wood [10] employed a transparent open box algorithm for the PE output approximation
of a combined cycle power plant (CCPP). The evaluations revealed the suitability of this
algorithm as it provided an efficient and optimal prediction. Besides, as discussed by
many scholars, intelligence techniques have a high capability to undertake nonlinear and
complicated calculations [11–16]. A large number artificial intelligence-based practices
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are studied, for example, in the subjects of environmental concerns [17–21], pan evapora-
tion and soil precipitation prediction [22,23], sustainability [24], water and groundwater
supply chains [25–32], natural gas consumption [33], optimizing energy systems [34–45],
air quality [46], image classification and processing [47–49], face or particular pattern
recognition [50–52], structural health monitoring [53], target tracking and computer vi-
sion [54–56], building and structural design analysis [57–59], soil-pile analysis and landslide
assessment [60–64], quantifying climatic contributions [65], structural material (e.g., steel
and concrete) behaviors [66–71], or even some complex concerns such as signal process-
ing [72,73] as well as feature selection and extraction problems [74–78]. Similar to deep
learning-based applications [79–84], many decision-making applications are related to
complicated engineering problems as well [85–91]. In another sense, the technique of the
artificial neural network (ANN) is a sophisticated nonlinear processor that has attracted
massive attention for sensitive engineering modeling [92]. In this sense, the multi-layer
perceptron (MLP) [93,94] is composed of a minimum of three layers, each of which contains
some neurons for handling the computations—noting that a more complicated ANN-based
solution is known as deep learning [95]. For instance, Chen, et al. [96], Hu, et al. [97], Wang,
et al. [98], and Xia, et al. [99] employed the use of extreme machine learning techniques in
the field of medical sciences. As new advanced prediction techniques, hybrid searching
algorithms have been widely developed to have more accurate prediction outputs; namely,
harris hawks optimization [100–102], fruit fly optimization [103], multi-swarm whale opti-
mizer [104,105], ant colony optimization [57,106], grasshopper optimizer [107], bacterial
foraging optimization [108], many-objective optimization [109,110], and chaos enhanced
grey wolf optimization [111,112].

In machine learning, ANNs have been widely used for analyzing diverse energy-
related parameters in power plants [113–115]. Akdemir [116], for example, suggested the
use of ANNs for predicting the hourly power of combined gas and steam turbine power
plants. Regarding the coefficient of determination (R2) of nearly 0.97, the products of
the ANN were found to be in great agreement with real data. The successful use of two
machine learning models, namely, recurrent ANN and a neuro-fuzzy system, was reported
by Bandić et al. [117], who applied three popular machine learning approaches, namely,
random forest, random tree, and an adaptive neuro-fuzzy inference system (ANFIS), to
the same problem. Their findings indicated that the random forest outperforms other
models. They also took a feature selection measure. It was shown that the original and
changed data led to root mean square errors (RMSEs) of 3.0271 and 3.0527 MW, respectively.
Mohammed et al. [118] used an ANFIS to find the thermal efficiency and optimal power
output of combined cycle gas turbines which were 61% and 1540 MW, respectively.

Metaheuristic techniques have effectively assisted engineers and scholars in opti-
mizing diverse problems [23,119–128], especially energy-related parameters such as solar
energy [129], building thermal load [130], wind turbine interconnections [131], and green
computing awareness [132]. Seyedmahmoudian et al. [133] used a differential evolu-
tion and particle swarm optimization (DEPSO) method to analyze the output power for
a building-integrated photovoltaic system. These algorithms have also gained a lot of
attention for optimally supervising conventional predictors like ANNs. Hu et al. [134]
proposed a sophisticated hybrid composed of an ANN with a genetic algorithm (GA)
and the PSO for predicting short-term electric load. With a relative error of 0.77%, this
model performed better than the GA-ANN and PSO-ANN. Another application of the
GA was studied by Lorencin et al. [135]. They tuned an ANN to estimate the PE output
of a CCPP. Since the proposed model achieved a noticeably smaller error than a typical
ANN, it was concluded that the GA is a nice optimizer for this system. Ghosh et al. [136]
used a metaheuristic algorithm called beetle antennae search (BAS) to exploit a cascade
feed-forward neural network applied to simulate the PE output of a CCPP. Due to the
suitable performance of the developed model, they introduced it as an effective method
for PE analysis. Chatterjee et al. [137] combined the ANN with cuckoo search (CS) and the
PSO for electrical energy modeling at a combined cycle gas turbine. Their findings showed
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the superiority of the CS-trained ANN (with an average RMSE of approximately 2.6%)
over the conventional ANN and PSO-trained version.

Due to the crucial role of power generation forecast in the sustainability of systems
like gas turbines [138], selecting an appropriate predictive model is of great importance. On
the other hand, the above literature reflects the high potential of metaheuristic algorithms
for supervising the ANN. However, a significant gap in the knowledge emerges when
the literature of PE analysis relies mostly on the first generation of these techniques (e.g.,
PSO and GA). Hence, this study is concerned with the application of a novel metaheuristic
technique, namely, the water cycle algorithm (WCA) for the accurate prediction of the PE of
a base load operated CCPP. Moreover, the performance of this algorithm is comparatively
validated by ant lion optimization (ALO) and satin bowerbird optimizer (SBO) as bench-
marks. These techniques are applied to this problem through a neural network framework.
Some previous studies have shown the competency of the WCA [139], ALO [140], and
SBO [141] in optimizing intelligent models like ANNs and ANFIS. The main contribution
of these algorithms to the PE estimation lies in finding the optimal relationship between
this parameter and influential factors.

2. Materials and Methods

2.1. Data Provision

When it comes to intelligent learning, the models acquire knowledge by mining the
data. In ANN-based models, this knowledge draws on a group of tunable weights, as well
as biases. The data should represent records of one (or a number of) input parameter(s)
and their corresponding target(s).

In this work, the data are downloaded from a publicly available repository at:
http://archive.ics.uci.edu/ml/datasets/Combined+Cycle+Power+Plant, based on studies
by Tüfekci [138] and Kaya et al. [142]. The 6 years of records (2006–2011) of a CCPP
working with full load (nominal generating capacity of 480 MW, made up of 2 × 160 MW
ABB 13E2 gas turbines, 2× dual pressure heat recovery steam generators, and 1 × 160 MW
ABB steam turbine) form this dataset [138]. It gives full load electrical power output as the
target parameter, along with four input parameters, namely, ambient temperature (AT),
exhaust steam pressure (vacuum, V), atmospheric pressure (AP), and relative humidity
(RH). Figure 1 shows the relationship between the PE and input parameters. According
to the drawn trendlines, a meaningful correlation can be seen in the figures of PE-AT and
PE-V (R2 of 0.8989 and 0.7565, respectively), while the values of AP and RH do not indicate
an explicit correlation. Both AT and V are adversely proportional to the PE.

Table 1 describes the dataset statistically. The values of AT, V, AP, and RH range in
[1.8, 37.1] ◦C, [25.4, 81.6] cm Hg, [992.9, 1033.3] mbar, and [25.6, 100.2] % with average
values of 19.7 ◦C, 54.3 cm Hg, 1013.3 mbar, and 73.3%, respectively. Additionally, the
minimum and maximum recorded PEs are 420.3 and 495.8 MW. The dataset comprises
a total of 9568 samples, out of which 7654 samples are selected as training data and the
remaining 1914 samples form the testing data. To do this, a random selection with an
80:20 ratio is applied.
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Figure 1. The graphical situation of PE versus (a) AT, (b) V, (c) AP, and (d) RH.

Table 1. Descriptive statistics of the PE and input parameters.

Factor Unit
Descriptive Indicator

Mean Std. Error Std. Deviation Sample Variance Minimum Maximum

AT ◦C 19.7 0.1 7.5 55.5 1.8 37.1
V cm Hg 54.3 0.1 12.7 161.5 25.4 81.6

AP mbar 1013.3 0.1 5.9 35.3 992.9 1033.3
RH % 73.3 0.1 14.6 213.2 25.6 100.2
PE MW 454.4 0.2 17.1 291.3 420.3 495.8

2.2. Methodology

The overall methodology used in this study is shown in Figure 2.

2.2.1. The WCA

Simulating the water cycle process was the main idea of the WCA algorithm, which
was designed by Eskandar et al. [143]. In studies like [144], scholars have used this
algorithm for sustainable energy issues. When the algorithm gets started, a population
with the size Npop is generated from raindrops. Among the individuals, the best one is
designated as the sea whose solution is shown by Xsea. Additionally, individuals with
promising solutions (Xrs) are considered as rivers. The number of rivers is determined
based on the parameter Nsr that gives the number of rivers plus the unique sea. The
residual individuals form the stream group (Xss). The number of streams is the difference
between Npop and Nsr.
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Figure 2. The general path of the study.

The description of the used algorithms is presented below.
The population can be expressed as follows:
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Concerning the function value of Xr and Xsea in the beginning, a number of Xs are
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Despite the typical procedure in nature (stream → river → sea), some streams may

flow straight to the sea. The new values of Xr and Xs are obtained from the below equations:
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where rand is a random number (in [0, 1]), cons gives a positive constant value (in [1, 2]), t
signifies the iteration number. Xr and Xs are evaluated and compared. If the quality of Xs
is better than that of Xr, they exchange their positions. A similar process happens between
Xr and Xsea [145,146]. By performing the evaporation part of the water cycle, the algorithm
is again implemented to improve the solution iteratively.

2.2.2. The Benchmarks

The first benchmark algorithm is the ALO. Mirjalili [147] designed this algorithm as a
robust nature-inspired strategy. Additionally, it has attracted the attention of experts for
tasks like load shifting in analyzing sustainable renewable resources [148]. The pivotal idea
of this algorithm is simulating the idealized hunting actions of the antlion. They build a
cone-shaped fosse and wait for prey (often ants) to fall into the trap. The prey makes some
movements to escape from antlions. The fitness of the solution is evaluated by a roulette
wheel selection function. In this sense, the more powerful the hunter is, the better the prey
is [149]. The details of the ALO and its application for optimizing intelligent models like
ANNs can be found in earlier literature [150].

The SBO is considered as the second benchmark for the WCA. Inspired by the
lifestyle of satin bowerbirds, Moosavi and Bardsiri [141] developed the SBO. Scholars
like Zhang et al. [151] and Chintam and Daniel [152] have confirmed the successful per-
formance of this algorithm in dealing with structural and energy-related optimization
issues. In this strategy, there is a bower-making competition between male birds to attract
a mate. The population is randomly created and the fitness of each bower is calculated.
By making an elitism decision, the most promising individual is considered as the best
solution. After determining the changes in the positions, a mutation operation is applied,
followed by a step to combine the solutions of the old and new (updated) population [153].
A mathematical description of the SBO can be found in studies like [154].

3. Results and Discussion

3.1. Accuracy Assessment Measures

Two essential error criteria, namely, the RMSE and mean absolute error (MAE), are
defined to return different forms of the prediction error. Another error indicator called
mean absolute percentage error (MAPE) is also defined to report the relative (percentage)
error. Given PE iexpected and PE ipredicted as the expected and predicted electrical power outputs,
Equations (7) to (9) denote the calculation of these indicators.

RMSE =

√√√√ 1
N

N

∑
i=1

[(
PEiexpected − PEipredicted

)]2
, (7)

MAE =
1
N

N

∑
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MAPE =
1
N

N

∑
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PEiexpected

∣∣∣∣∣× 100, (9)

where the number of samples (i.e., 7654 and 1914 in the training and testing groups,
respectively) is signified by N.

Moreover, a correlation indicator called the Pearson correlation coefficient (R) is used.
According to Equation (10), it reports the consistency between PE expected and PE predicted.
Note that the ideal value for this indicator is 1.

R =
∑N

i=1

(
PEipredicted − PE predicted

)(
PEiexpected − PEexpected

)
√

∑N
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2
√
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2
, (10)
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3.2. Hybridizing and Training

It was earlier stated that this study pursues a novel forecasting method for the problem
of PE modeling. To this end, the water cycle algorithm explores the relationship between
this parameter and four inputs through an MLP neural network. This skeleton is used
to establish nonlinear equations between the mentioned parameters. A three-layer MLP
is considered wherein the number of neurons lying in the first, second, and third layer
(also known as input, hidden, and output layers) equals four (the number of inputs), nine
(obtained by trial and error practice), and one (the number of outputs only), respectively.
Figure 3 shows this structure:

Figure 3. The used artificial neural network (ANN).

There are two kinds of tunable computational parameters in an MLP: (a) weights
(W) that are designated to each input factor and (b) bias terms. Equation (11) shows the
calculation of a neuron with a given input (I).

Response = Tansig(W × I + b) , (11)

where Tansig signifies an activation function which is defined as follows:

Tansig (x) =
2

1 + e−2x − 1, (12)

Each neuron of the ANN applies an activation functions to a linear combination of
inputs and network parameters (i.e., W and b) to give its specific response. There are a
number of functions (e.g., Logsig, Purelin, etc.) that can be used for this purpose. However,
many studies have stated the superiority of Tansig for hidden neurons [155–157].

The WCA finds the optimal values of the parameters in Equation (11) in an iterative
procedure. In this way, the suitability of each response (in each iteration) is reported by an
objective function (OF). This study uses the RMSE of training data for this purpose. So, the
lower the OF is, the better the optimization is. Figure 4a shows the optimization curves
of the WCA for the given problem. The reduction of the OF in this figure shows that the
RMSE error is being reduced consecutively.
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(b) 

Figure 4. (a) Convergence curves belonging to the tested PS of WCA-ANN and (b) comparison
between the convergence behaviors of the chosen networks.

Famously, the size of the population can greatly impact the quality of optimization.
The convergence curves are plotted for seven different WCA-NN networks distinguished
by different population sizes (PS of 10, 50, 100, 200, 300, 400, 500). As is seen, the curve
of PS = 400 is finally below the others. Therefore, this network is the representative of the
WCA-NN for further evaluations. Note that a total of 1000 iterations were considered for
all tested PSs.

The same strategy (i.e., the same PSs and number of iterations) was executed for
the benchmark models. It was shown that ALO-NN and SBO-NN with PSs of 400 and
300 are superior. Figure 4b depicts and compares the convergence behavior of the selected
networks. According to this figure, all three algorithms have a similar performance in
dealing with error minimization. The OF is chiefly reduced over the initial iterations.

Figure 4b also says that the OF of the WCA-NN is below both benchmarks. In this
sense, the RMSEs of 4.1468, 4.2656, and 4.2484 are calculated for the WCA-NN, ALO-NN,
and SBO-NN, respectively. Additionally, the corresponding MAEs (3.2112, 3.3389, and
3.3075) can support this claim.

Subtracting PE predicted from PE expected returns an error value for each sample. Figure 5
shows these errors. It can be seen that close-to-zero values are obtained for the majority of
training samples. Concerning peak values, the errors lie in the ranges [−18.4548, 42.4231],
[−18.9855, 43.2264], and [−19.1242, 42.8160]. With respect to the range of PE (Table 1), these
values indicate a very good prediction for all models. Moreover, the calculated MAPEs
report less than 1% relative errors (0.7076%, 0.7359%, and 0.7289%).
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Figure 5. The magnitude of error over the training dataset obtained by (a) WCA-NN, (b) ALO-NN,
and (c) SBO-NN.

Moreover, the R values of 0.96985, 0.96807, and 0.96834 profess an excellent correlation
between the products of the used models and the observed PE. This favorable performance
means that the WCA, ALO, and SBO have nicely understood the dependence of the PE
on AT, V, AP, and RH and, accordingly, they have optimally tuned the parameters of the
MLP system.

3.3. Testing Performance

The testing ability of a forecasting model illustrates the generalizability of the captured
knowledge for unfamiliar conditions. The weights and bias terms tuned by the WCA, ALO,
and SBO created three separate methods that predicted the PE for testing samples. The
quality of the results is assessed in this section.

Figure 6 presents two charts for each model. First, the correlation between the
PE expected and PE predicted is graphically shown. Along with it, the frequency of errors
(PE expected − PE predicted) is shown in the form of histogram charts. At a glance, the re-
sults of all three models demonstrate promising generalizability, due to the aggregation
of points around the ideal line (i.e., x = y) in Figure 6a,c,e. Additionally, as a general
trend in Figure 6b,d,f, small errors (zero and close-to-zero ranges) have a higher frequency
compared to large values. Remarkably, testing errors range within [−16.6585, 44.7929],
[−15.8225, 45.7482], and [−16.3683, 45.8428].
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Figure 6. The testing results in terms of (a,c,e) correlation and (b,d,f) histogram of errors for the
WCA-NN, ALO-NN, and SBO-NN, respectively.

The RMSE and MAE of the WCA-NN, ALO-NN, and SBO-NN were 4.0852 and 3.1996,
4.1719 and 3.3028, and 4.1614 and 3.2802, respectively. These values are close to those of the
training phase. Hence, all three models enjoy a high accuracy in dealing with out-of-data
situations. Furthermore, a desirable level of relative error can be represented by the MAPEs
of 0.7045%, 0.7272%, and 0.7221%.

According to the obtained R values (0.97164, 0.97040, and 0.97061), all three hybrids
are able to predict the PE of a CCPP with highly reliable accuracy. In all regression charts,
there is an outlying value, PE = 435.58 (obtained for AT = 7.14 ◦C, V = 41.22 cm Hg,
AP = 1016.6 mbar, and RH = 97.09%) that is predicted to be 480.3728513, 481.3282482,
and 481.4228308.

3.4. WCA vs. ALO and SBO

The quality of the results showed that the WCA, ALO, and SBO metaheuristic algo-
rithms benefit from potential search strategies for exploring and mapping the PE pattern.
However, comparative evaluation using the RMSE, MAE, MAPE, and R pointed out
noticeable distinctions in the performance of these algorithms.
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Figure 7 depicts and compares the accuracies in the form of radar charts. The shape
of the produced triangles indicates the superiority of the WCA-based model over the
benchmark algorithms in both training and testing phases. In terms of all four indicators,
this model could predict the PE with the best quality. It means that the ANN supervised by
the WCA is constructed of more promising parameters. Following the proposed algorithm,
the SBO won the competition with ALO. It is noteworthy that the accuracy of these two
algorithms in the testing phase was closer compared to the training results.

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 7. Radar charts for comparing the calculated (a) RMSE, (b) MPE, (c) MAPE, and (d) R.

From the time-efficiency point of view, computations of the ALO were shorter than
the two other methods. The elapsed times for tuning the ANN parameters were nearly
14,261.1, 12,928.1, and 14,871.3 s by the WCA, ALO, and SBO, respectively. It should be
also noted that the WCA and ALO used PS = 400, while this value was 300 for the SBO.

According to the above results, the WCA provides both an accurate and efficient
solution to the problem of PE approximation, and thus, sustainable development of the
CCPPs. It is true that the ALO could optimize the neural network in a shorter time, but
smaller PSs of the WCA (i.e., 300, 200, ...) were far faster. On the other hand, back to
Figure 4, the PS of 300 produced a solution almost as good as that of 400. It is interesting to
know that the prediction of PS = 300 was slightly better than PS = 400 (testing RMSEs 4.0760
vs. 4.0852). The computation time of this configuration was around 3186.9 seconds which
is considerably smaller than the two other algorithms. Thus, for time-sensitive projects,
less complex configurations of the WCA are efficiently applicable.

3.5. Predictive Formulas

Due to the comparisons in the previous section, the solutions found by WCAs with
the PSs of 300 and 400 are presented here in the form of two separate (different) formu-
las for forecasting the electrical power. Equations (13) and (14) give the PE through a
linear relationship.

PEPS = 300= 0.814 × Y1 − 0.543 × Y2 + 0.825 × Y3 − 0.584 × Y4 − 0.509 × Y5 − 0.220 × Y6 +
0.296 × Y7 + 0.039 × Y8 + 0.542 × Y9. − 0.076,

(13)
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PEPS = 400 = −0.782 × Z1 + 0.627 × Z2 − 0.569 × Z3− 0.594 × Z4 − 0.891 × Z5 − 0.548 × Z6
+ 0.661 × Z7 + 0.416 × Z8 + 0.383 × Z9 − 0.696,

(14)

where Yi and Zi (i = 1, 2, ..., 9) symbolize the output of the hidden neurons. These
parameters are calculated using a generic equation as follows:

Yi and Zi = Tansig (Wi1 ×AT + Wi2×V + Wi3×AP + Wi4 ×RH + bi), (15)

and with the help of Table 2.

Table 2. The optimized parameters of the WCA configurations.

i
For Zi (PS = 400) For Yi(PS = 300)

Wi1 Wi2 Wi3 Wi4 bi Wi1 Wi2 Wi3 Wi4 bi

1 −1.238 0.344 1.240 −1.640 2.425 0.887 −1.670 1.517 0.068 −2.425
2 1.482 −1.851 0.311 0.399 −1.819 −0.042 2.181 −0.983 −0.395 1.819
3 −0.870 1.152 −1.755 −0.847 1.212 1.035 1.770 0.848 0.979 −1.212
4 −0.830 0.172 1.716 1.489 0.606 0.639 1.690 1.572 −0.378 −0.606
5 0.864 −1.691 −1.343 0.685 0.000 −1.587 −1.512 −1.016 −0.213 0.000
6 −1.394 −1.677 −1.052 −0.136 −0.606 1.256 1.282 −1.204 1.100 0.606
7 −2.004 −1.261 0.276 −0.446 −1.212 −0.313 0.385 −1.739 −1.615 −1.212
8 1.609 0.883 1.532 0.402 1.819 1.277 0.190 −1.739 −1.090 1.819
9 −1.876 −0.740 0.819 −1.069 −2.425 −0.514 −1.679 1.003 −1.339 −2.425

According to the above formulas, calculating the PE consists of two steps: First,
recalling the MLP structure (Figure 3) and also Equation (11) from Section 3.2, Equation (15)
is applied to produce the response of nine hidden neurons (e.g., Y1, Y2, . . . , Y9 for the
formula corresponding to PS = 300). For instance, W32 represents the weight of the 3rd
neuron applied to the 2nd input (i.e., V). Thus, it equals 1.152 in Table 2 used for calculating
Y3. Next, these parameters are used by the output neuron (in Equation (13)) to yield
the PE. The same goes for the formula corresponding to PS = 400 (Z1, Z2, . . . , Z9 and
Equation (14)).

4. Conclusions

This paper investigated the efficiency of three capable metaheuristic approaches for
the accurate analysis of electrical power output. The water cycle algorithm was used to
supervise the learning process of an ANN. This algorithm was compared with two other
techniques, namely antlion optimization and a satin bowerbird optimizer. The results
showed the superiority of the WCA in all cases and terms of all accuracy indicators. For
example, the RMSEs of 4.1468 vs. 4.2656 and 4.2484 in the training phase and 4.0852 vs.
4.1719 and 4.1614 in the prediction phase. However, all three hybrids could understand
and reproduce the PE pattern with less than 1% error. All in all, a significant sustainability
issue was efficiently managed and solved by metaheuristic science. Thus, the presented
hybrid models can be practically employed to forecast the electrical power output of
combined cycle power plants by having the records of AT, V, AP, and RH. They can also be
appropriate substitutes for time-consuming and costly methods. However, further efforts
are recommended for future projects to compare the applicability of different metaheuristic
techniques and also to present innovative measures that may improve the efficiency of the
existing models in terms of both time and accuracy.
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Abstract: As promising solutions to various social and environmental issues, the generation and
integration of renewable energy (RE) into microgrids (MGs) has recently increased due to the rapidly
growing consumption of electric power. However, such integration can affect the stability and security
of power systems due to its complexity and intermittency. Therefore, an optimal control approach is
essential to ensure the efficiency, reliability, and quality of the delivered power. In addition, effective
planning of policies for integrating MGs can help promote MG operations. However, outages may
render these strategies inefficient and place the power system at risk. MGs are considered an ideal
candidate for distributed power systems, given their capability to restore these systems rapidly
after a physical or cyber-attack and create reliable protection systems. The energy management
system (EMS) in an MG can operate controllable distributed energy resources and loads in real-time
to generate a suitable short-term schedule for achieving some objectives. This paper presents a
comprehensive review of MG elements, the different RE resources that comprise a hybrid system,
and the various types of control, operating strategies, and goals in an EMS. A detailed explanation of
the primary, secondary, and tertiary levels of MGs is also presented. This paper aims to contribute
to the policies and regulations adopted by certain countries, their protection schemes, transactive
markets, and load restoration in MGs.

Keywords: microgrid; energy management system; restoration; power quality; policy market

1. Introduction

Increasing energy demand is a key indicator of economic growth and social devel-
opment. Such demand has been growing exponentially in various sectors, such as in the
transportation, building, and manufacturing industries. However, energy consumption is
directly linked to environmental issues due to the frequent use of fuel or coal as the main
electricity generation sources that emit greenhouse gases (GHG). Therefore, many global
actors, including the World Bank, are encouraging countries to generate clean energy by
financially supporting their projects [1].

Renewable energy (RE) is an important energy source with an abundant supply in
nature. RE is less carbon-intensive and more sustainable than traditional energy sources,
hence explaining its growing popularity. Such green energy resources not only have
limited impacts on the environment but also contribute to energy savings and reduce the
dependence of industries on fossil fuels. Accordingly, many countries have promoted
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the use of RE to achieve sustainable development. The electricity produced from RE was
estimated to account for 11% of the total energy produced in 2020, as shown in Figure 1 [2].

Figure 1. The estimated power generation of each power resource in 2020.

RE resources are increasingly being used in distributed generators (DG) to address the
shortcomings in centralized energy generation, including its high cost, transmission losses,
and environmental effects. However, the efficiency of RE generation is effected by natural
environment indicators, such as wind speed, temperature, and solar irradiation, which
may introduce challenges in a power network, such as inverse power flow, and voltage
deviations and fluctuations. Using a hybrid grid strategy that combines RE with the more
efficient and secure microgrid (MG) approach is therefore critical [3].

An MG combines different energy sources (renewable and non-renewable) and energy
storage systems (ESS) to fulfill the demand for loads that can be either connected to the main
grid at the Point of Common Coupling (PCC) or operated in the islanded mode, where the
MG operating system can support green energy. MGs operate autonomously in an isolated
mode whenever a fault occurs in linked power systems. MGs provide many benefits, such
as reducing GHG, supporting reactive power to increase the voltage profile, decentralizing
the energy supply, and offering demand response. The global deployment of MGs reached
1.4 GW in 2015, and is expected to increase to 8.8 GW by 2024. MGs have been deployed
in remote areas, communities, and various sectors, including the commercial, industrial,
and military sectors, in consideration of their objectives, load types, and geographical and
climactic conditions [4].

With its growing popularity, previous studies have examined the application of MGs.
For instance, Hirsch et al. [5] discussed some factors that lead to the implementation of an
MG in a power system and its contributions to energy security, economics, and clean energy
generation. Majumder et al. [6] explored the main features, challenges, and sectors that im-
plement MGs. Cagnano et al. [7] discussed the functions, device configurations, and control
topologies of MGs. Dawoud et al. [8] proposed a set of specifications and instructions that
can help address the challenges faced in real MG applications. Meng et al. [9] proposed sev-
eral optimization techniques and tools for improving MG utilization. Muhammad Fahad
Zia et al. [4] discussed the development of energy management system (EMS) strategies
and solution approaches in MGs. Table 1 summarizes the recent literature on MGs.
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Table 1. The recent literature on MG.

Ref Details

[10] Addressed the issues affecting DC MG safety from different aspects, such as fault location detection,
and evaluated some protective devices.

[11] Comprehensively reviewed the stability issues being faced by MGs based on extant definitions and
classifications of stability and illustrated these issues as modeling examples.

[12] Examined the existing MG architectures in detail, and demonstrated the widely distributed
technologies along with their advantages and disadvantages.

[13] Highlighted several issues, challenges, and solutions related to the protection of an AC MG.

[14] Represents features of, and the large-disturbance stability that prevails for, a
power-converter-dominated MG, with some stability analysis highlighted.

[15] Comprehensively reviewed the main components, size, and energy management of harbor MGs.

This work Comprehensively reviews the operation strategies and objectives used in EMSs and explains the
architecture and elements of an EMS in an MG.

An EMS ensures the efficiency and economic activity of an MG based on the output
power generated from distributed energy resources (DERs), the status of devices, forecasted
load and weather, and prices of electricity and fuel. An EMS can correlate and control
the output power of DERs, ESSs, and energy exchanges. Consequently, an EMS can be
used to achieve single or multiple objectives, such as minimizing daily operational costs,
performing real and reactive monitoring of power, reducing losses, and balancing the
energy in transmission lines. In this case, an EMS is critical for MGs to operate efficiently,
ensure their reliability, and satisfy power balance in both the short and long term [16].

Both the MG and EMS are critical in dealing with the challenges arising from the inte-
gration of DER units, such as photovoltaic (PV) systems, wind turbines, microturbines that
use the CHP system, and fuel cells and batteries in power systems. However, integrating
RE resources into the main grid is unusable given the unpredictable behavior of such inte-
gration and the intermittent nature of RE. Therefore, during the intermittent dispatching
of RE resources, the reliability index of the power system is reduced. The resiliency of the
power system can be improved by using an appropriate protection scheme, improving
redundancy, installing isolation systems, and adopting conventional DERs. From this
perspective, the necessary policies and regulations should be implemented as benchmarks
for interconnecting DERs with traditional electric power systems.

The main objectives of this review are to explore the evolution of the MG and EMS
and to review the elements, implementation, classification, objective functions, quality, and
protection schemes of the MG. This paper reviews the existing technologies and challenges
faced in MGs and EMSs. This article is organized as follows. Section 2 discusses the
concept, architecture, and elements of the MG. Section 3 reviews the control schemes of
the MG and the objectives of an EMS. Section 4 discusses the transactive energy market
and its classification. Sections 5 and 6 present the designs of protection systems and the
direction of MG policies in various countries, respectively. Section 7 shares the perspectives
of authors toward MGs and concludes the paper. This paper also aims to unlock many
possibilities for further research in this area.

The contents of this paper will considerably help researchers mitigate the present
shortcomings of MGs and EMSs and formulate new techniques and objective functions for
promoting their application.

2. MG Architecture and Elements

An MG comprises of DGs, ESSs, balanced and controlled electrical loads, and intelli-
gent devices such as circuit breakers (CBs) and intelligent switches, as shown in Figure 2.
DERs and ESSs operate in coordination to reliably supply electricity and to preserve the
balance between generated and consumed power. Using MGs in a power system as a
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model for the massive integration of different DERs will solve the technical problems in
traditional centralized distribution. The majority of the DERs that can be connected to an
MG cannot be directly integrated into the power system due to the type of power they
produce. Therefore, power electronic interfaces, such as inverter controls, are necessary.
Moreover, an MG is guaranteed to operate continuously during normal operations and
critical cases [17].

Figure 2. Block diagram of an MG model connected with an MGCC.

The MG central controller (MGCC) is considered the brain of an MG, responsible
for enhancing its performance, calculating the optimal values, achieving some objective
functions in consideration of the constraints, conducting additional operations based on
the electricity and gas prices in the market, shouldering extra costs (e.g., for DER startup),
and performing weather forecasting to ensure an optimal power generation. The MGCC
also controls the loads in an MG by adequately managing the stability of the power system.
The following subsections explain the different technologies and architectures that may be
integrated into an MG installed in a power system [18].

2.1. Microgrid Elements

Different power technologies, such as DGs and ESSs, are characteristic attributes of
MGs. This section discusses some technologies that have been developed to be integrated
into MGs.

2.1.1. Distributed Generators

DGs are defined by the Institute of Electrical and Electronics Engineers Inc. (IEEE) as
“The generation of electricity by facilities sufficiently smaller than central generating plants
as to allow interconnection at nearly any point in a power system. DGs are a subset of
distributed resources” [19].

DGs are dispatchable generating units, including fuel cell and diesel generators, or
non-dispatchable generators, such as PV plants and wind turbines stations, that are placed
at loading sites. The application of these generators is becoming increasingly popular given
their role in satisfying the demand of consumers. These units are deployed to improve the
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efficiency and cleanliness of power generation by using RE resources. Deploying DGs can
increase the resilience of a power system by supporting the growth of different resources
for the partial distribution of power; for example, a natural disaster may result in large-
scale outages, and using diverse DGs will ensure that the power system will not be
impacted by such phenomenon [20]. Meanwhile, integrating DERs into the distribution
network improves the voltage profile, reduces line loss, and lowers power generation
costs. These DGs can provide AC power outputs, such as combined heat and power (CHP),
fuel cells, and gas turbines, or DC outputs, such as wind turbines or PV. Therefore, DGs
comprise inverters that convert their output to suit the specifications of a power system.
The capacity of DGs is also related to space and time [21].

Table 2 presents some DG technologies used in MGs.

Table 2. Different DG technologies applied in MGs.

Ref CHP 1 DG 2 GG 3 FC 4 MT 5 PV 6 HYD 7 WT 8 TI 9

[22] � �
[23] � � � � �
[24] � �
[25] � � � �
[26] � � �
[27] � � �
[28] � � � � �
[29] � � � � �
[30] � � �
[31] � �
[32] �
[33] � � �
[34] � �

1 Combined Heat and Power, 2 Diesel Generator, 3 Gas Generator, 4 Fuel Cell, 5 Microturbine, 6 Photovoltaic,
7 Hydropower, 8 Wind Turbine, 9 Tidal.

2.1.2. Energy Storage Devices

An MG has a slight generating capability given that some DGs, such as RE resources,
can change the output power and pose technical challenges [35]. Therefore, MGs require
an energy storage system (ESS) to solve mismatch problems and suit the power system
requirements. ESSs can store and provide surplus energy when needed. These systems
can also promote the reliability of the power system, improve the performance of an MG,
achieve power balance among end-users, and reduce peak demand. ESS devices also
satisfy mismatched energy requirements to ensure a continuous energy supply [36].

ESS technologies have promising uses in MG deployment. Konstantinopoulos et al. [37]
used hydrogen for production and storage, given that the power generated from RE re-
sources is assumed to exceed the power demand. Hou et al. [38] integrated hybrid energy
storage into MG and used flywheel storage to allow the application of two strategies in the
system. Mousavi et al. [39] proposed a novel design for storing surplus energy by using a
hydro pump to ensure the efficient performance of MGs in rural areas. Jia et al. [40] used
ultracapacitor storage to minimize the total costs and applied the charging/discharging
method to manage the power storage. Guo et al. [41] integrated lead-acid batteries into a
standalone MG model to minimize the total net present cost and carbon dioxide emissions.
Table 3 summarizes the various ESSs that have been studied in the literature.
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Table 3. Reviews/surveys relating to ESSs.

Ref Details

[42] Comprehensively reviewed the challenges, modeling approaches, and estimation of impact on
market structures when utilizing energy storage.

[43] Presented an overview of the applications of ESSs, which may introduce challenges to MGs.

[44]
Comprehensively reviewed the most recent ESS innovations in MG technologies, including the
concepts and optimization techniques, architectures, control techniques, future trends, and
challenges in ESSs.

[45] Addressed some factors in sizing of the ESSs in MGs and various applications through the
integration with RE.

[46] Presented a comprehensive techno-economic analysis of the battery storage system under various
MG system configurations.

Regardless of their advantages, ESS technologies have not been used in MG appli-
cations given some limitations, their cost, and their difficulty to control. Table 4 presents
the limitations, advantages, disadvantages, and generation costs of each DER technology
during MG operation.

Table 4. Comparison of various types of DERs utilized in MGs.

Type Element
Output
Type

Capacity
Generation

Cost ($/kWh)
Advantages Disadvantages

DG

D
is

pa
tc

ha
bl

e
re

so
ur

ce
s.

CHP AC 20 kW–10 MW –
- Continuous

power
dispatch.

- Startup fast.
- Multiple fuel

options

- Greenhouse Gas
Emissions.

- Noise production

Diesel backup
generator AC 20 kW–10 MW 125–300

Gas generator AC 50 kW–5 MW 250–600

Fuel cell AC 50 kW–1 MW 1500–3000

Micro turbine AC 25–100 kW 350–750

N
on

-D
is

pa
tc

ha
bl

e
re

so
ur

ce
s.

Photovoltaic
(PV) DC 10 kW–300 MW –

- Clean energy.
- Does not cost

power
generation.

- Fluctuation in
generation.

- Comparatively
expensive in the
installation phase.

- Related to
geographic locations.

Hydro AC 50 kW–30 MW –

Wind turbine AC 10 kW–300 MW –

Tidal AC 50 kW–200 MW –

ESS

Pumped hydro

AC

102–107 kWh 1000–2500

- Clean
- Fast response
- High efficiency

- Limited discharge
time

- Not dispatchable
without storage

Compressed air 12,000 kWh–6.42
GWh 1000–2800

Thermal storage 1000 kWh–1.1 GWh 1250–1500

Flywheel 2–25 kWh 250–300

Li-ion 10–120,000 kWh 250–500

Lead-acid 7–15 kWh 250–500

Capacitors 3.5–150 kWh 25–50

2.1.3. Loads

DGs and ESSs can supply either electrical or thermal loads. The defined loads are
treated as input parameters in scheduled energy management studies where the load pro-
files change according to the activities of customers and the weather conditions. The loads
in MGs are classified into critical and non-critical loads, of which the latter does not require
DERs to be connected to their buses or local generators. These loads should have the
potential to disconnect during emergency cases to preserve balance in the power system.
Meanwhile, critical loads are a very sensible and high priority; some of these loads, includ-
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ing commercial and industrial loads, need to be supplied continuously, whereas others can
be connected individually to DERs [47].

2.1.4. Additional Elements

An MG must conduct power management and ensure controllable load sharing.
Intelligent circuit breakers are required in an MG to manage and control the interconnection.
Most intelligent circuit breakers are located in the point of connection between the MG
and the rest of the DERs, and may apply certain techniques, such as power switching,
protective relaying, metering, and communication. The interconnection breakers should
meet the general standards, such as the IEEE 1547 and UL 1741 in North America, to ensure
the safe operation of MGs and to enable the application of DERs or power converters [48].

Power converters, such as intelligent inverters, are used in MGs to ensure their efficient
and autonomous operation with limited capacity which is managed via the AC/DC
conversion, or vice versa. These converters serve as the interface between the energy
generation resources and the end-user, and are utilized to manage, form, and feed the
power system. The different technologies described above need to share information with
one another before taking the prerequisite actions. Consequently, a robust communication
system is needed to ensure a continuous and accurate sharing of information [49]. Figure 3
presents the various communication technologies used in MGs.

Figure 3. Various communication technology is used in MGs. NB-PLC: Narrow band power line
communication; BB-PLC: Broad band power line communication; PON: passive optical network;
DSL: Digital subscriber line.

2.2. Control Scheme of MGs

The control schemes used in MGs can be classified into centralized and decentralized.
Centralized control collects all data from a single MGCC unit that can execute the required
calculations and define the control procedures and actions. This approach requires compre-
hensive communication between the MGCC and other substation units [50]. Meanwhile,
decentralized control employs the local controller to operate the unit. Figure 4 illustrates
the communication and actions that take place between the controller and its unit. Table 5
summarizes previous surveys related to centralized and decentralized control schemes in
an MG.
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Figure 4. Basic control structures: (a) centralized; (b) decentralized.

Table 5. Previous studies on centralized and decentralized MGs.

Ref Type Remarks

[51]

C
en

tr
al

iz
ed

Proposed an MG control based on a centralized architecture where different DERs are connected
to a single bus, and applied a centralized heuristic approach to managing the reliability and
economical use of energy.

[52] Performed a centralized real-time simulation in an MG connected to DERs and found that the
optimization model in a centralized control can operate a virtual power of DERs.

[53]
Proposed a centralized control for an intelligent network of greenhouses connected to an MG.
The control of stochastic power DERs was based on model predictive control (MPC) to optimize
crop production and control indoor climate conditions.

[54] Managed the active and reactive power in a power system by using centralized control in an MG
connected to the primary grid, which can provide an auxiliary to control frequency and voltage.

[55] Employed an optimal operation approach to schedule energy in multiple MGs and allocated
economic benefits.

[56]

D
ec

en
tr

al
iz

ed

Developed a multi-agent system relying on an MG cluster (MGC). Performed multi-time scale
optimization to control and manage the EMS in the MGC and to schedule the day based on
stability and economy.

[57] Proposed and simulated an adaptive control with DERs, including an ESS, to adjust the power
injection by managing the DC voltage bus on an efficiency point.

[58]
Applied the decentralized control of an MG to ensure the robustness and reliability of the power
system by considering several objectives, such as economic power dispatch and reduction in
power transmission losses.

[59] Promoted decentralized control by using a near real-time algorithm that operates the elements of
an MG at the event of changing conditions.

The employment of each control scheme is associated with the type of MG, the
elements being used, and the geographic area. Although centralized and decentralized
control approaches have many advantages (e.g., low-performance complexity), they also
have limited reliability, expandability, and flexibility. These approaches typically follow
the same hierarchical control structure as illustrated in Figure 5, which shows three levels
of control, namely, primary, secondary, and tertiary, with each level having unique features
in response, operation, and communication speed [12].
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Figure 5. Hierarchical control scheme.

2.2.1. Primary Control Level

Primary control, also known as the field control or the first level of control, is com-
pletely based on the variables and local measurements (e.g., voltage and frequency) of the
system. The different elements and other categories of droop controls at this level do not
require communication tools. This level aims to ensure reliability, effective power-sharing,
enhanced performance, and plug-and-play capability for DERs. The implementation of
active/reactive power mode (PCM) or the voltage control mode (VCM) in DERs allows
users to control the active and reactive power output and coordinate power-sharing among
DERs as managed by voltage source inverter (VSI) controllers. The PCM and VCM are
operated in the grid-connected and island modes in an MG, respectively. To adjust output
power-sharing from the VSI, the droop characteristics should be applied to control the
active/reactive power or voltage and frequency [60].

Droop control is an autonomous approach for controlling the frequency and voltage
amplitude of power dispatch in an MG. Droop is a standard power-sharing method that
has been mainly applied in MGs. This method aims to promote power-sharing among
DER inverters, given the uncertainty of line impedances and the power delivered from
RE resources, which leads to an unbalanced power system. Various approaches for droop
control have been designed, such as conventional and non-conventional droop control.
The traditional droop control aims to set the steady droop gain. An accurate gain in droop
control affects the stability of an MG, the voltage regulation, and the management of
power-sharing [61]. Conventional droop control is formulated as:

ω = ω0 − kp ∗ P (1)

V = V0 − kq ∗ Q (2)
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where kp and kq denote active and reactive power gains, respectively, in the droop control;
ω0 and V0 denote the DER output angular frequency and voltage values; ω and V denote
the adjusted frequency and voltage; and Pg and Qg denote the injected active and reactive
powers, where:

P = P0 − P∗ (3)

Q = Q0 − Q∗ (4)

P0 and Q0 represent the active and reactive power delivered from DERs, respectively,
and P∗ and Q∗ denote the reference active and reactive power values. Figure 6 presents a
block diagram of the conventional droop control strategy.

Figure 6. Block diagram of conventional droop control.

Many methods have been proposed to further improve the accuracy of droop gain.
For instance, Datta et al. [62] proposed a conventional droop control that adjusts the droop
gain in two stages, namely, the lower and higher gains for the low and high frequencies,
respectively. Datta, Kalam, et al. [63] adjusted a multi-gain using the droop control ap-
proach to manage power-sharing in a wind farm and then integrated this method into two
types of angle controls in a proportional comparative study. Joung et al. [64] studied the
droop gain in traditional droop control for decoupling the frequency and voltage control
of DERs, which can preserve the frequency and voltage constants in a grid. Although
conventional droop control lacks complexity in its implementation and application, such
method has some drawbacks when applied in MGs, such as reducing the voltage due to
the current equality, its inability to handle non-linear loads, and the ingrained trade-off
between voltage and power-sharing [65]. Therefore, non-conventional droop control has
been used to address these shortcomings. Several techniques have also been applied to
improve droop control in MGs, such as load sharing [66], voltage-active power droop
(VPD) and frequency-reactive power boost (FQB) [67], virtual output impedance [68], and
adaptive voltage droop [69], as described in Table 6.

Table 6. Non-conventional droop control techniques used in MGs.

Method Description Advantages Disadvantages

VPD & FQB method
[67]

This approach solves many
shortcomings in MG

applications. VPD and FQB can
support those DERs with power

factor impedance and help
control the low voltage of

highly resistive transmission
lines where the common bus
voltage Vbus is adjusted to

manage a reference voltage Vref
for a specific bus.

- Simple implementation.
- May disturb the

connection to non-linear
loads.
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Table 6. Cont.

Method Description Advantages Disadvantages

Adaptive voltage droop
control [69]

The voltage response coefficient
is changed adaptively, based on

the operating state of the
converter station in DERs.

- Improves power sharing,
reliability, and flexibility
in MGs.

- More accurate voltage in
MGs across various
conditions.

- May fail to provide the
appropriate voltage and
power-sharing in a large
DC MG.

virtual output impedance
[68]

A virtual impedance is used to
cancel out the negative

impedance by simplifying the
coupling relationship of active

and reactive power.

- Functions with linear
and non-linear loads.

- Improves the balance of
DER output voltages.

- Voltage regulation is not
guaranteed in a
large-scale
implementation.

Virtual transformation
method [66]

This method uses an
instantaneous power calculation

unit, a coordinate rotation
transformation unit, and an

adaptive inverse control unit,
the last of which can adjust and

modify the active power
frequency droop control

module by using a different
optimization technique.

- Simple implementation.

- Requires prior
knowledge about

- the physical parameters
that can affect voltage
and frequency.

Angle droop control [70]

The angle of the reference
voltage in the inverters is used
to control the active power and

the frequency produced
from DERs.

- Controls the output
voltage of converters
with low THD.

- Control the voltage at
the PCC.

- May fail to handle
non-linear loads.

Synchronized reactive
power compensation [71]

To recognize the errors in power
sharing, the system injects a
real-reactive power transient

coupling term and then
compensates for the errors by
using a slow integral term for

regulating the DG
voltage magnitude.

- Effective in slow inner
communications.

- Does not require
configurations in MGs.

- May fail to handle
non-linear loads.

- Complex
implementation.

Self-Adjusting control [72]

The control method uses a
multi-droop controller whose
parameters are adjusted based

on the power consumption from
the local loads. Virtual

inductive impedance is used to
improve the control of voltage
and transient responses of the

power sharing.

- Does not require any
communication
connection.

- Reduces the reactive
power flow in
medium-voltage lines.

- Can disturb the
connection to non-linear
loads.

2.2.2. Secondary Control Level

The secondary control level aims to address the shortcomings in the primary control
level of MGs, including voltage deviations. This level is also known as the EMS level,
which enhances power quality, restores the power system, ensures economical operations,
and eliminates the frequency and voltage deviations and fluctuations caused by the droop
control at the primary level [73]. Figure 7 presents the problems encountered in MGs
that are solved using an EMS. This system can determine the optimal output power for
each DER, the optimal network design for the restoration, and the stability of an MG by
solving a single objective or multiple objectives in the grid depending on user preferences,
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geographical areas, available equipment, and their capacity, government regulations, types
of tariffs, and DER/battery energy storage system (BESS) constraints. The secondary control
level is considered a challenge in MGs. Given that the variations in employment and the
power dispatched from DERs, the command and update between the loads and DERs must
be in high communication and speed to ensure a subsequent power generation in MGs.
The subsections below present the goals and objectives of EMSs in MGs. The following
subsections present the goals and objectives of EMSs in MGs.

Figure 7. Types of problems solved by the EMS.

Minimize the Cost

Minimizing costs has different objectives, as shown in Figure 8. The objectives may be
expressed as mathematical models, as shown in Table 7. The literature review reveals that
the cost-minimization problems in the EMS are solved using many approaches.

Figure 8. Objective function in minimizing costs.

Some studies have applied classical approaches to solve EMS problems. For instance,
Lu et al. [74] proposed quadratic programing to solve and analyze the economic power
dispatch of DERs in MGs. Economic costs involve the costs of shutting down, starting up,
and generating power from DERs. Luna et al. [75] analyzed an EMS in an MG integrated
with a grid-connected BESS that applies mixed-integer linear programming (MILP) to min-
imize the operating costs and improve the self-consumption strategy. Jabarnejad et al. [76]
developed an MILP approach to ensure an optimal power flow and to reduce the electricity
generation costs and GHG emissions. Sarabi et al. [77] proposed linear programming (LP)
to minimize the annual energy invoice of railway station parking using plug-in electric
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vehicles (EV). Riffonneau et al. [78] proposed an optimal power management strategy
using dynamic programming for connected grids, PVs, and BESSs. The proposed control
maximizes the economic benefits and minimizes the degradation in BESSs. Maroufmashat
et al. [79] used LP to solve EMS problems, such as minimizing the capital, operation, and
maintenance costs in a hydrogen refueling station. Dong et al. [80] presented an MG based
on CHP and RE while taking economy, environment, and flexibility into consideration to
reduce the operation costs and CO2 emissions. Garcia et al. [81] proposed a novel MPC
model that minimizes power loss in an ESS in real-time. Sultana et al. [82] developed an
EMS controller that reduces the voltage drop and improves the life cycle of Li-ion batteries.
Chiang et al. [83] created an EMS controller to reduce the voltage drop in an aim to improve
the life cycle of lithium-ion batteries. Ju et al. [84] applied mathematical optimization to
prevent shortages in various DERs via a day-ahead output prediction. Zhao et al. [85]
developed an optimization strategy for MGs that uses day-head market operations to mini-
mize the demand response costs. Zhen Wang et al. [86] proposed a risk-based method that
enhances the overall transient stability of power systems by using LP to minimize shedding
costs. Y. Cao et al. [87] proposed an intelligent approach based on a mathematical model to
reduce the charging costs in an EV in response to the time-of-use price in the electricity
market. In [88] developed a model for reducing the charging and discharging costs in
an EV connected to a PV station and grid. Giraldo et al. [89] proposed a comprehensive
MG framework that operates in grid-connected and isolated modes, where the objective
function is solved using the convex mixed-integer technique.

Several metaheuristic optimization approaches have also been used to solve EMS prob-
lems in MGs. For example, Mohammadi-ivatloo et al. [90] used the imperialist competitive
algorithm to reduce the operation cost of fuel units, whose objective function involves the
dynamic economic dispatch problem. Elsied et al. [91] used an advanced real-time EMS that
applies the genetic algorithm (GA) to minimize the energy cost and carbon emissions and
to maximize the power penetrating from REs simultaneously. Grisales-Noreña et al. [92]
applied particle swarm optimization (PSO) to reduce the cost of energy purchased from
utility grids. The MG implemented in this work comprised various DERs, such as PV, WT,
and BESS. Marzband et al. [93] used an artificial bee colony (ABC) to obtain the optimal
production cost and increase the power penetrating from RE in MGs. K. Roy et al. [94]
explored an EMS using an ant-lion optimizer, which parameterizes the uncertainty in solar
and wind energy generation in an MG. This optimizer meets the load demand at an optimal
cost and takes the constraints into account. Other metaheuristic optimization techniques
have also been applied, including the Jaya algorithm (JAYA) [95], teaching-learning based
optimization (TLBO) [96], differential evolution (DE) [97], gray wolf optimizer (GWO) [98],
firefly algorithm (FA) [99], moth-flame optimization [100], and the crow search algorithm
(CSA) [101].

Some papers have used hybrid or modified optimization techniques, such as a hybrid
of the bacterial forging optimization algorithm and GA, to reduce the electricity costs and
to curtail the peak-to-average ratio [102]; and the hybrid ABC-PSO to analyze the techno-
economic MG and reduce the total cost [103]. Other hybrid metaheuristic techniques
have also been proposed, including the optimal stopping rule (OSR) and GA (OSR-GA),
OSR-TLBO, and OSR-FA in [104]; DE and sequential quadratic programming (DE-SQP)
in [105]; the GA and whale optimization algorithm in [106]; Jaya-TLBO in [107]; the genetic
harmony search algorithm in [108]; and the wind-driven bacterial foraging algorithm
in [109]. Some of these algorithms are developed based on other approaches, such as
artificial neural networks (ANN) [110], multi-agent systems [111], and fuzzy control [112].

Other researchers have considered additional objective functions to solve EMS prob-
lems. Some of them treat such problems as multi-objective, which may involve minimizing
the costs (for operation, maintenance, fuel, and battery charging/discharging), emissions,
and penalties. For instance, Swain et al. [113] proposed DE to solve the multiple objectives
of the economic emission load dispatch problem. Xiong et al. [114] analyzed the effect of
adding EMS to a grid connected to REs. Three objective functions were considered to mini-
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mize electricity bills, reduce the cost of power purchased from the main grid, and optimize
power quality, and a novel multi-agent system was developed to optimize these objectives.
Teo et al. [115] presented a fuzzy logic-based energy management system integrated with a
grid-connected integrated with EMS. The model incorporates multi-objective optimization
into NSGA-II to reduce the average peak load and operating costs by controlling the BESS
status and the electricity market. Ren et al. [116] designed an optimal design for fast
EV charging stations using WT, PV, and a BESS and for minimizing electricity costs and
pollution emissions. This model is solved by using a hybrid optimization algorithm that
combines the multi-objective particle swarm optimization algorithm with TOPSIS.

Table 7. Objectives in cost minimization.

Objective Equation Details

Operation Cost [74] T
∑

t=1
∑
i

[
F
(

Pg(i, t) I(i, t)
)
+ SU(i, t) + SD(i, t)

]
i, t : number of DERs and time of operation
respectively. Pg : t Thermal unit dispatch at hour
t. I : solar cell terminal current. SU : start-up
cost of the thermal unit i at time t. SD :
shutdown of thermal unit i at time t.

Operating Cost [75] T
∑

t=1
∑
i

Ed
g(i, t) ∗ C(id, t)] +

T
∑

t=1
∑
i

End
g (i, t) ∗ C(ind, t)]

Ed
g : energy delivered from dispatchable

resources. End
g : energy delivered from

non-dispatchable resources. C(ind) and C(id):
unitary cost of each non-dispatchable and
dispatchable generator i at time t.

Operating Cost [78]
[Pgrid (Δt) ∗ f it (Δt) ∗ Δt ] + [Pgrid (Δt) ∗ EgP (Δt) ∗ Δt

+BrC (Δt)]

Where:

BrC =
T
∑

t=0
BrC (t)∗

(−ΔSoH(xi,xj,t)
1−SoHmin

)
.

Pgrid : power delivered from the grid. f it:
feed-in tariff.
EgP : electricity grid price. BrC : battery
replacement cost. SoH : state of charge at time t.

Operation Cost [117] T
∑

t=1
ai P2

it + bi Pit + ci

ai , bi , ci : coefficients of the appropriate
measurement units that depend on DERs. P :
generated power.

Total Operation [91]

T
∑

t=1

(
N
∑

i=1
DDERi(t)PDERi(t) CDERi(t) + DDERi(t) SUCDERi(t)

+
J

∑
j=1

DESSj(t)PESSj(t) CESSj(t)

+ Pgr(t) Cgr(t)− Pgs(t) Cgs(t)
)

CDERi , CESSj : costs of the output power of the i, j
generator. Cgr , Cgs : cost of buying and selling
power to the main grid. Pgr , Pgs : power
received from and sold to the main grid.
DDERi , DESSj : state vectors that may be either 0
or 1. SUCDERi : startup cost of each generator i.
PDERi , PESSj : power delivered from DERs and
ESS, respectively.

Economic Emission Dispatch
[76] ∑

i
∑
k

Cd
k xik

(1+i)t−1 + ∑
t

∑
l

∑
n

Hl Cg
n gt l n

(1+i)t−1

l: load block. t : time period. n : generator. Cd
k :

investment for line k. xik : investment state of
line k at time t. k : number of transmission lines.
N: number of generators. Hl : a number of hours
at load block l. Cg

n : operation cost of generator n.
gt l n : power generated at time t.

Grid Cost [81] T
∑
t

Pgrid,t ∗ Cgrid,t

Pgrid,t : power consumption from the main grid
at time t, where Pgrid = PLoad − Ppv − PBESS.
Cgrid,t : cost of power consumption at time t.

The production Cost [90] ∑
t

ai P2
it + bi Pit + ci +

∣∣ei sin
(

fi
(

Pmin
i − Pit

))∣∣ ai , bi , ci : fuel coefficients of unit i. Pit : power
generated from unit i at time t. ei and fi :
valve-point coefficients of each i unit. Pmin

i :
minimum capacity limit of the i unit.

The production Cost [93] T
∑
1

(
Cg

t + Cg′
t + CES−

t + Cl
t + CES+

t + Ωt

)
∗ Δt

Cg
t , Cg′

t : cost of energy generated by
non-dispatchable and dispatchable resources,
respectively. CES−

t , CES+
t : cost of energy from

the charging and discharging of BESS,
respectively. Cl

t : cost of power from the
responsive load demand. Ωt : penalty cost.
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Table 7. Cont.

Objective Equation Details

Total Operational and
Maintenance Costs [79]

∑
s

(
Cs

op + Cs
f uel − incomes

)
+
(

CEPCIyear
CEPCIbase year

)
∗ Cre f station

cap ∗ CRF + Cpipe

Cs
op : operation cost of stations.

Cs
f uel : fuel cos t at the station. CRF : capital

recovery factor. Cpipe : installation of district
heating pipelines.
Cre f station

cap : total cost related to the hydrogen
refueling stations. CEPCI : Chemical
Engineering Plant Cost Index, which allows the
conversion of costs from their base year to the
study year.

Carbon Dioxide Emission
Cost [80] CCO2 = PCO2

[
Cgt

(
Pt

GT + Ht
GT
)
+ Cgb Ht

GB + CgridPmt
1
]
.Δt

PCO2 : carbon tax. Cgt, Cgb, Cgrid : carbon
dioxide emissions per unit. Pmt

1 : electricity
purchased from the main grid. Ht

GB : power
output of the gas boiler. Ht

GT : heat produced by
the micro gas turbine (GT).

Annual Power Loss [118] N
∑

g=1
Plossg ∗ P

{
Cg
} ∗ J

Plossg : power loss in state g. P
{

Cg
}

: probability
of any combination of load and wind-based DG
output. J : takes a value of either 90 or 8760. N :
number of discrete states.

Power Loss [95] N
∑

i=1

N
∑

j=1
Pi Bij Pj +

N
∑

i=1
Bi0 Pi + B00

Bij, Bi0, B00 : B-matrix coefficients. Pi , Pj : power
outputs from the generators i and j, respectively.

Battery Cost [81]

24
∑

t=1

(
CCbat

2 · Cyclesbat
Pbat,ch(t).Ts· ηbat,ch + Costdegr,ch·P2

bat,ch(t)

+
CCbat ·Pbat,dis(t)·Ts
2 · Cyclesbat ·ηbat,dis

+ Costdegr,dis·P2
bat,dis(t)

)
CCbat : capital cost. Cyclesbat : number of life
cycles. Pbat,ch, Pbat,dis : power delivered from the
battery during charging and discharging,
respectively. Costdegr,ch, Costdegr,dis : hourly
economic costs during charging and discharging,
respectively. ηbat,ch, ηbat,dis : performance of the
battery during charging and discharging,
respectively.

Charging Cost [87] T
∑

t=0
M(t) ∗ P(t) Δt

M(t) : unit price at time t. P(t) : charging power
at time t.

Degradation Cost [119] Cd = cbat
LET

cbat : capital cost of the battery. LET : battery life.

Charging and discharging
Cost [88]

T
∑

t=1

(
Nf

∑
n=1

P f
n,d(t)e

f
n,d(t) + Pg,out(t)eg,out(t) −

Nf

∑
n=1

P f
n,c(t)e

f
n,c(t)

−
Nf

∑
n=1

Ps
n,c(t)es

n,c(t) +
Nc
∑

n=1
Pcn

n,c(t)ecn
n,c(t) − Pg,in(t)eg,in(t)

)

P f
n,d : discharging price per unit of energy for EV.

e f
n,d : discharging rate for EV. Pg,out : selling price

of electricity sold by the grid to the charging
station. eg,out : Amount of electricity that the
charging station buys from the grid.
P f

n,c : charging price per unit of energy for EV.
e f

n,c : charging rate for conservative EV. Ps
n,c :

charging price per unit of energy for premium
EV. es

n,c : charging rate for premium EV.
Pcn

n,c : charging price per unit of energy for
conservative EV. ecn

n,c : charging rate for
conservative EVs. Pg,in : price of electricity
purchased by the grid from the charging station.
eg,in : amount of electricity sold to the grid.

Purchase Cost [120] T
∑

t=1

(
Cpur (t) Ppur (t) Ts − Csold (t) Psold (t) Ts

) Cpur , Csold : prices of the sold and purchased
energy at time t. Ppur , Psold: purchased and sold
power from the grid at time t.

Start-up Cost [120] CDG
SU = γSU · T

∑
t=1

σON
DG

γSU : startup cost. σON
DG : ON-OFF binary

variable.

Maintenance Cost [120] CM = γM · T
∑

t=1
δDG(t) Ts

γM : maintenance cost. Ts : sampling time, set to
0.25 h. δDG : ON-OFF binary variable.

Shortage Cost [121]
n
∑

i=1

m
∑

j=1

(
Kpi Pij + Kpi Pij

) Kpi , Kpi : loss factors of nodes i and j.Pij : power
shortage between nodes i and j.
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Table 7. Cont.

Objective Equation Details

Shortage Cost [84] T
∑

t=1
ρsp,t gsp, t

ρsp : penalty price for power shortage. gsp :
electricity of power shortages.

Operation Cost of Battery [122] Cmax
ch,ESS

Pmax
ch,ESS

·P2
ch,ESS (t) +

Cmax
dis,ESS

Pmax
dis,ESS

·P2
dis,ESS (t)

Cmax
ch,ESS, Cmax

dis,ESS : maximum operation cost of
charging and discharging, respectively.
Pmax

ch,ESS, Pmax
dis,ESS : maximum power dispatched

from the ESS during charging and discharging,
respectively. Pch,ESS, Pdis,ESS : power dispatched
from the ESS during charging and discharging,
respectively.

Daily Operation Cost [85] 24
∑

t=1
∑
s

ws
(
Cgrid + Cwpc + Cess + Cmtg + Cdr

)
ws : probability of scenario s. Cgrid : transaction
cost in the electricity market. Cwpc : cost of wind
power curtailment. Cess : cost of the energy
storage operation. Cmtg : cost of the micro-gas
turbine resource. Cdr : cost of the electrical
demand.

Electrical demand response [85] Cdr = Pmtg
(

Pdown(t, s) + Pup(t, s)
)
Δt

Pdown(t, s) : demand response program at time t
and sc nario s. Pup(t, s) : shifted up electrical
power by demand response program at time t
and scenario s.Pmtg : unit cost of the electrical
demand response.

Load Shading Cost [86] ND
∑

i=1
cDi ∗ ΔPDi

ND : number of loads. ΔPDi : active power
shedding of the i load. cDi : cost coefficient of i
load.

Investment Cost [98] ∑
i

∑
k

Oik ϕ
Equ
i Cinv

i

Oik : a variable with a value of either 0 or 1.
ϕ

Equ
i : capital recovery rate of class i energy

conversion and storage equipment cycle.
Cinv

i : initial investment cost.

Restoration

Blackout events in power systems have dramatically increased due to weather events,
natural disasters, or vandalism. These power outages greatly affect the economic, social,
and industrial sectors. Any outage in a network will result in supply interruption for
customers of the defective section. To reduce the gravity of the consequences, the scale
of different power system damages needs to be evaluated, and system restoration actions
need to be taken. Resiliency describes the ability of a power system to persevere in the
face of high-impact, low-probability events (HILP) and to quickly restore its operations,
either completely or partially, by using all the available resources within a short timeframe
with constricted costs [123]. Previous studies have referred to resilience using various
terms, such as resourcefulness, self-healing, adaptability, and flexibility. Figure 9 shows
how the performance level of a power system changes during HILP events. To improve
the resilience of power systems, some measures must be implemented in plant manage-
ment, restoration service programs, and hardware designs [124]. Figure 10 presents a
comprehensive classification of power system resilience.
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Figure 9. Changes in the resilience of a power system during certain events.

Figure 10. Comprehensive classification of power system resilience [124].

The EMS has various computational tools that control and operate the resilience of a
power system by introducing advanced computational algorithms. Mathematically, the
restoration problem in MGs is viewed as an objective of maximizing the supply for as
many customers as possible, minimizing the switching costs, changing the status of line
loading, and addressing the radial network constraints as shown in Table 8. Different
reconfiguration techniques have been proposed in the literature to solve this problem.

As an important feature of an EMS, service restoration has also received much re-
search attention. Poudel et al. [125] restored the services in a power distribution system
by monitoring status switches to isolate the outage area and to maximize the number
of restored loads; they modeled this problem in MILP to ensure large-scale flexibility.
Gholami et al. [126] proposed two heuristic approaches for solving the restoration problem
that involves maximizing the total and priority of loads restored and minimizing the
number of switching operations; which are graph-based to optimize the objectives function
proposed. Alowaifeer et al. [127] improved the resilience of a power system by relying
on a dynamic prioritization of customers. The priority of loads is influenced by many
factors, including the criticality of the load and the cost of interruption. Shen et al. [128]
proposed a comprehensive framework that involves theoretical and quantitative indicators
of self-healing in a power system during its restoration process, including the credibil-
ity, rate, speed, and benefits of MGs. Jiao et al. [129] proposed the wide-area measure-
ment/information (WAM/WAI) control to handle the restoration speed problem in MGs.
WAM/WAI was applied based on the unified power flow controller, which allows the

169



Sustainability 2021, 13, 10492

redistribution of power flow in areas affected by the outage. Yang et al. [130] improved the
resilience of a distribution network in three stages. First, the emergency system restored the
critical load by applying the tree restoration method. Second, EV was used as an emergency
power supply. Third, the restoration model restored the non-critical loads during faults.
Zidan et al. [131] proposed a multiagent system that determines, and isolates faults based
on several objectives by minimizing the number of switches and power loss, and by maxi-
mizing the number of restored critical loads. Romero et al. [132] developed a mathematical
model by abstracting multiple objectives into a single objective. Lin et al. [133] proposed the
term “electrical betweenness” to determine the optimal restoration path during self-healing
operations and used complex network theory to restart the non-black-start generators
and to identify the priority loads to be restored. Liu et al. [134] used the WAM system to
estimate the restorable size of power load after outages and to control the stability of the
system during the load restoration operation. Qianqian et al. [135] developed a two-stage
mathematical model for centralized self-healing in an electrical distribution system that
isolates the damage zone by minimizing the de-energized area, load shedding, and active
power losses. Patsakis et al. [136] proposed an optimal allocation of black-start units to
restore the power system. However, these units have a high maintenance cost, which can
affect the self-healing process. Cao et al. [137] adopted the concept of top-down power
system restoration where black-start resources were used to address the shortcomings of
the non-black-start units and sub-transmission systems, and to restore the power system
after encountering defaults.

Leite et al. [138] applied a multiagent system to collect and update local information
and to quickly isolate the nearest damage location. Wang et al. [139] proposed a multi-
objective formulation of service restoration and improved the efficiency of this framework
in three steps. Gu et al. [140] introduced a two-level self-healing framework for service
restoration, a problem which they formulated as a multi-objective function. Afterward,
they applied the lexicographic optimization method to solve this problem. Chen et al. [141]
used multiple MGs energized by DERs to restore the critical loads after the occurrence of
faults. Zhaoyu et al. [142] proposed a comprehensive framework that applies two strategies
based on the self-healing concept. The primary mode minimizes the operation cost and
maximizes the profit, and the system enters the self-healing mode after the occurrence
of a fault. The sectionalization method applies rolling-horizon optimization to isolate
the damaged section and to restart the other utilities in the network system. Dimitrijevic
et al. [143] reduced the restoration costs by supplying loads with a low switching cost and by
applying the minimum spanning trees algorithm to address the proposed objective function.
Rodríguez et al. [144] applied systematic measures to integrate algebraic calculations and
heuristic rules that help distribution management systems find the optimal switching
selection operation for the rapid isolation and restarting of DERs. Wang et al. [145] proposed
the stochastic response method for reducing load loss within a minimum switching time,
while allowing for a standard design of the network reconfiguration and islanding section.
Widiputra et al. [146] developed a novel restoration algorithm that uses discrete PSO
to solve the clod load pick up and conservation voltage reduction problems in service
restoration. Vieira et al. [147] integrated the protection constraints in service restoration
for a distributed power network by using the multi-objective evolutionary algorithm to
enhance the protection efficiency of the device. Ma et al. [148] proposed a three-level
optimization problem to minimize the investment and load-shedding costs during extreme
weather events, and applied the greedy searching algorithm to optimize the formulation
proposed in a multi-study of scenarios. Arif et al. [149] modeled the uncertainty of end-user
consumption and power dispatch from DERs to facilitate the service restoration of an MG by
using a stochastic mixed-integer linear program to maximize the served load. Xu et al. [150]
introduced the resilience-oriented method to optimize the restoration problem in secondary
network distribution systems, which are directly controlled by the unit commitment in an
EMS. Khatib et al. [151] applied the probabilistic operational planning method to achieve
distribution automation by placing the ESS in the fault area. They formulated the objective
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function to reduce the total energy cost and enhance reliability. Abniki et al. [152] applied a
BESS as a backup utility to restore the de-energized portion of the system and formulated
the objective function as an MINLP to minimize the total cost of interruption.

Table 8. Objectives for improving reliability.

Objective Equation Details

The restored Load [125] ∑
i∈ v ∅ ∈ {a,b,c}

∑ wi si P∅

Li

wi : the weight factors for each load. si : the
load pick-up. P∅

Li : complex power demand
at i.

Number of Switches [125] ∑
(i→j) ∈ ER

S

(
1 − δi j

)
+ ∑

(i→j) ∈ ER
T

(
δi j
)
+ ∑

(i→j) ∈ Ev

(
δi j
) δi j : Line or switch decision. ER

S : set normally
closed sectionalizing switches. ER

T : set
normally open tie switches. Ev : set of virtual
edges for DG connection.

Number of switches [131] Ns
∑

i=1
|xi − xi0|

Ns : the total number of switches. xi : status of
switch i. xi0 : status of switch i after fault
occurs.

The energized Load [126] ∑
K∈NTT

LK
LK : the energized loads in the network. NTT :
The restorable total buses.

The number of switches [126] NSO NSO : the number of switches operation.

Priority of load [127] N
∑

i=1
PLi xi

PLi : the priority weight of each load i. xi : the
status of the switch in the load i.

The resilience [130]

nMG
∑

ik=1
Cik Pik T0 + ∑

s∈S

nEPS
∑

is=1
Cis Pis (T0 − tsdi) +

n−nMG−nEPS
∑

i=1
Ci Pi Ti − α ∑

s∈S

nEPS
∑

is=1
Pis (T0 − tsdi)

nMG : number of loads. tsdi : the travel
time. nEPS : the number of restored
loads. Pi and Pis : the active power dispatch
from the microgrid and EV, respectively. Ci :
the cost utilities. α : the unit capacity
consumption cost.

The restoration paths [133] ∑
j∈Ω

Ti
UR

α PGj+β PLj

Edsj−1

ΩTi
UR : the set of nodes of the power grid. PGj :

the power dispatched from DER.PLj : the
power consumed by each node. α, β :
coefficients for measuring the relative
importance. E : coefficient of exponential
decay.

The centralized
Self-healing [135]

∑
z∈Ωz

CR
z (1 − xz) + ∑

i∈Ωb

CIs
i PD

i ri +

∑
i j ∈Ωl

Rij I
sqr
ij + Clss ∑

i j ∈Ωsw

(
1 − wij

)
+ Csw ∑

i j ∈Ωl

wij

Ωz : set of loads, Ωb : set of nodes, Ωl : set of
branches, Ωsw : set of switches, PD

i : active
power requested in node i. Rij : resistance
branch ij. Isqr

ij : current in branch ij. CR
z : cost of

de-energizing. CIs
i , Clss : cost of load-shedding

and loss cost, respectively. Csw : cost of switch
operation.

The total generation capability [137] nL
∑

i=1

np,i

∑
j=1

EP, ij

nL : number of loads, np,i : number of
non-black start generators. EP, ij : the power
capability of the generator.

Out-of-service Area [153] b1
∑

i=1
Li − ∑

i∈B
Li

b1 : number of energized bus, Li : load i. B : set
of energized buses.

Restoration/maintenance switching
sequence [154]

∑
z∈Ωz

∑
s∈Ωs

CU
z,s(1 − xz,s) +

Csw ∑
ij ∈ Ωsw

∑
s∈Ωs

(
Δy+ij,s + Δy−ij,s

)
Ωz : set of zones, Ωs : set of sequence, CU

z,s :
cost od de-energizing, xz,s : binary variable.
Csw : operating cost. Ωsw: set of switches.
Δy+ij,s, Δy−ij,s : opening and closing of switch
operation.

The network layer unit
restarting [140]

nG
∑

i=1

T1
∑

kΔt

(
α(t) ci1 PG,ij(t) dt + μ

nGi
∑

j=2
PM,ij

) nG : number of DERs, Gij : the unit j in the
plan i. α : weight factor. PG,ij : the power
delivered from j. μ : distributing factor. PM,ij :
the maximum output of DERs.
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Table 8. Cont.

Objective Equation Details

Restore the outage area [142]
t+Tp

∑
t

(
∑
s

γs ∑
k

(
|Vk,s,t − Vn|+ ∑

j
xkj + wkPD

k,s,t(1 − yk,t)

)) γs : probability of the scenario. Vk,s,t: : voltage
magnitude, Vn : basic voltage. xkj : indicator of
boundary line. wk : priority index of the load.
PD

k,s,t : active power, yk,t : the status of the
switch.

Served Loads [149] ∑
∀s

Pr(s)

(
∑
∀t

(
∑

∀ i∈ID
yi wi PD

i,t,s + ∑
∀ i∈ICL

PCL
i,t

)) PCL
i,t : controllable loads, PD

i,t,s : non-controlable
loads, wi : weight factor, yi : connecting status
of the loads. Pr(s) : priority of the loads s.

Power Quality

The proliferation of nonlinear, unbalanced loads and loads shedding during the
restoration process may compromise the power quality in MGs and distribution systems.
Meanwhile, the intermittency and instability of RE sources can result in fluctuations in
power quality and stability [155]. The EMS can improve power quality and stability in the
power system by monitoring the control equipment using control theories and optimization
techniques [156]. Table 9 shows the objective function used to enhance the power quality in
MGs. Several control strategies and approaches in EMSs for improving power quality have
been proposed in the literature. For instance, Mei et al. [157] proposed the moth-flame
optimization technique to minimize the voltage deviation and total system transmission
loss, and to improve power stability via reactive compensators sizing. Jian et al. [158] de-
veloped a service model for an unbalanced three-phase active process distributed using a
multi-terminal soft open point system to realize power flow in DERs and supply the outage
area. The formulation was summarized as a combination of objectives, including maxi-
mizing the restored load and minimizing the voltage unbalance and power loss. Mousavi
et al. [156] proposed a novel control that uses the PV and battery energy storage interfacing
inverter to improve power quality while taking several constraints into consideration, such
as battery service life and charging/discharging status. Sahoo et al. [159] proposed a novel
centralized energy management approach for stabilizing the voltage flow and the flexibil-
ity of inverters in a solar-battery hybrid MG. Ravinder et al. [160] used the shunt active
power filter integrated with the PV and battery to improve the quality of power in an MG.
The shunt active power filter was controlled using ACO to minimize the total harmonic
distortion. Aljohani et al. [161] utilized the vector-decouple algorithm to preserve stability
and to control the hybrid MG, and proposed a controller that measures efficiency and
robustness and improves the quality of the voltage output and frequency. Nasr et al. [162]
proposed a multi-objective function that includes minimizing the voltage deviation in an
MG to ensure voltage balance and to satisfy the contingency constraint. Han et al. [163]
enhanced the power quality in a power system by using two levels of an EMS. In the first
level, the control based on MPPT was used to improve the output power penetration from
the PV. In the second level, droop control was applied to monitor the inverter in the power
system. Agnoletto et al. [164] formulated the EMS as an optimal power flow problem, and
considered both the operating cost and power loss in the optimization process by using
the ∈ constraint method. Zhang et al. [165] addressed a multi-objective function optimal
reactive power dispatch problem and proposed a model that minimizes active power loss
and voltage deviations using multi-objective optimization techniques. Leonori et al. [166]
developed an optimal power flow strategy for a grid connected to a BESS, utilized the BESS
to improve power stability, and used a fuzzy EMS controller to manage power in real time.
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Table 9. Objectives in improving power quality.

Objective Equation Details

Voltage deviation [157] Nd
∑

i=1

∣∣∣Vi − Vsp
i

∣∣∣ Vi : the voltage at load bus- i. Vsp
i : is the

specified value (usually set as 1.0 p. u).

Voltage deviation [165] Nload

∑
k=1

∣∣∣∣ VK−Vre f
K

Vupper−Vlower

∣∣∣∣ Vre f
K : reference voltage. Vlower : is the

lower limit of load bus voltage. Vupper :
the upper limit of load.

The voltage unbalance [158]
√

∑
tεT

∑
i∈Ωb

(1/3 Ut
i,A + 1/3e4π/3Ut

i,B + 1/32π/3Ut
i,C)

2 Ωb : the set of the distributed system. Ut
i :

is the voltage in each phase.

Voltage profile [162] ∑
Kt ∈ T

∑
i ∈ B

Vi, Kt − Vsp
i, Kt

B : all system buses, Vi, Kt : bus voltage
[p.u]. Vsp

i, Kt
: rated voltage [p.u].

2.2.3. Tertiary Control Level

As the top-level control, the tertiary control level preserves the optimality of the
operation, specifically the efficiency and cost between the MG and the primary grid,
and vice-versa. This level usually has a slow dynamic response to define the optimal
active and reactive power references of each DG due to the complexity of the calculation
and the prediction model of economic and meteorological data [167]. The prediction
model helps classify the weather, network optimization, and uncertainty quantification.
Different methods are applied at this level to formulate the forecasting and prediction
model, such as machine learning [168], long short-term memory (LSTM) [169], k-nearest-
neighbors (KNN) [170], generalized regression neural network [171], neural network
ensemble [172] and deep recurrent neural networks [173]. While the secondary level
focuses on the power quality and sharing among DERs, the tertiary control focuses on
economic aspects, electricity market participation, and power-sharing trends. This level
guarantees high power-sharing quality by defining the error between the reference and
actual values, whose values are computed as [73]:

ω∗ = kpP (P∗
G − PG) + kiP

∫
(P∗

G − PG) dt (5)

V∗ = kpQ (Q∗
G − QG) + kiQ

∫
(Q∗

G − QG) dt (6)

where P∗
G and Q∗

G are the active and reactive power references from the DER to the main
grid, respectively; ω∗ and V∗ are the frequency and voltage errors; and kp and ki are the
gains of the PI controller. The tertiary control level is generally endowed with the familiar
concept of the tending of the electricity and the financial market, such as mentioned and
discussed in the next section.

3. Transactive Energy Market in Microgrids

The MG energy market not only allows the trading of local power generation among
consumers but also fosters sustainable and efficient power use. MG markets also help re-
duce the cost of transporting energy while keeping losses at a minimum [174]. This market
design schedules the load profile and power generation from DERs in preparation for the
dispatching process to reduce the energy costs. Transactive energy management (TEM) is a
comprehensive framework that introduces several features for integrating DER utilities
and MGs into power systems. TEM also allows small and large energy consumers or
producers to trade energy under market rules. TEM promotes the demand-side based on
sharing among prosumers, and the economic signals that are in line with optimal operation
targets to ensure the suitability and reliability of the system. This framework optimizes
system performance by ensuring a dynamic alignment among local objectives and by using
different approaches to determine the tariffs, bilateral contracts, penalties, and organized
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markets [175]. With TEM, customers can trade their surplus energy either in real-time
or on a deferred basis. Nevertheless, the application of TEM to MGs requires a design
track to manage complex operations in a way that ensures transparency, freedom, and
fairness for prosumers. To design a proper TEM structure, several design principles that
are related to agent properties, pricing mechanisms, and internal and external markets
must be considered [12].

Xue et al. [176] argued that the technology of the power market and the transactive
energy in a large grid are not suitable for MGs. Therefore, the power industry proposed
energy trading based on blockchain to allow trading in dynamic P2P networks, distributed
networks, cryptography, and others such as those discussed in [177]. Janko et al. [178]
proposed multi-agent control as a well-known technique for transactive energy trading
due to its ability to improve system scalability, flexibility, autonomy, and transparency.
Therefore, this market design can reduce the risks of price oscillation for small customers
and increase their profit. Other approaches proposed in the literature including direct
acyclic graph [179], hash graph [180], flow chain [181], and game-theory [182].

4. Protection Systems

The excess generation capacity of DERs in an MG can provide the primary grid or
other connected MGs the necessary system recovery resources to enhance their resilience
and shorten the outage duration. However, the resilience of an MG is not entirely protected
from short-circuit faults, which could increase the rated current by hundreds of times,
thereby necessitating the replacement of CBs. The protection system in an MG is aimed
at identifying the fault location. After locating the fault, the protective device in the MG
isolates and repairs the fault section quickly [10].

Short-circuit fault is the most common type of fault in an MG that can damage con-
sumer appliances. Therefore, MGs require an overcurrent protection protocol and schemes
that protect against external and internal faults. To avoid high voltage in MGs during
external faults, a protective relay must be installed to automatically detect faults and assist
the CBs to isolate such faults. In the connected mode, the protection is usually placed at the
PCC level, whereas in the island mode, the protection is placed depending on the inverters.
Rapid automatic detection of faults requires a fast communication system. Therefore, auto-
matic detection schemes should be evaluated based on their speed, sensitivity, selectivity,
and reliability [36].

Several schemes have also been proposed in the literature to address the most common
issues associated with overcurrent protection in MGs as shown in Table 10.

Table 10. Protection schemes applied in the MG.

Protection Scheme Ref Advantages Disadvantages

Undervoltage-based
protection schemes. [183]

- Protects MGs against both internal
and external faults relative to any
protective zone.

- Detects fault locations and types
in MGs.

- Ignores HIFs and symmetrical faults
and does not enable
single-phase tripping.

- Difficult to coordinate.
- Any voltage drop in MGs may lead to

the malfunctioning of
protection devices.

Voltage-restrained
protection schemes. [184]

- Protects MGs against electric shock
without relying on basic insulation.

- Detects low current faults.

- Cannot operate at a high
impedance rate.

Harmonic content-based
schemes. [185]

- Detects and identifies all
types of faults. - Adaptive settings may be required.
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Table 10. Cont.

Protection Scheme Ref Advantages Disadvantages

Distance protection
schemes. [186]

- Disconnect only the faulted line part.
- Avoids the unnecessary

disconnection of consumers
and/or DGs.

- A synchronizing mechanism may be
needed for long lines.

Adaptive overcurrent
protection schemes [187]

- Protects group of units or DERs.
- Reduces the limitation of settings in

larger systems.

- Complex design.
- Requires communication links.

Differential protection
schemes. [188]

- Provides accurate protection by
discriminating the high impedance
fault from switching events.

- No backup protection for
neighboring sections.

5. Policy of Microgrid

Most power consumer countries are exploring alternative energy sources, such as RE,
to reduce their dependence on fossil fuels and lower the associated costs. However, RE
lacks a widely accepted framework for implementation due to policy reasons and its
experimental nature. Therefore, various policies have been implemented to encourage the
deployment of RE and DER technologies [189].

MG regulation in the EU faces many challenges related to protection, consumers and
power supplier engagements, legalities, limitations, and interconnection with the main
grid. To achieve a sustainable and secure energy supply, the EU issued a policy that aimed
to reduce its fuel consumption by 20% by 2020. In 2014, the EU launched its 2030 vision,
which involves increasing the penetration of RE technologies by up to 27% and reducing its
GHG emissions by 40% to 95% by 2050 [190]. In 2016, the EU launched the IEC TS 62257-9-2
standard, followed by IEC TS 62898-1/2/3 in 2018, and PD IEC TS 62898-2 in 2020.

Since the oil and gas crises in the late 1970s, the US has issued several energy policies,
including the IEEE standard 1547-Family, which was launched in 2005. This standard has
a vital role in ensuring energy security and power quality. These policies issue financial
incentives, such as the exemption of transmission and transmission loss charges, as well as
climate change levy exemption. Other policies in the US have focused on R&D programs,
software and tools, grants, and funding support to incentivize demonstration projects [191].

The tariff policy in China aims to promote the exploration of RE. This tariff policy
is able to offer a continuing purchase price to the electricity seller to the grid corporation
with a fit market competition by giving privileged prices [192]. Over the years, China
has issued several policies and programs to promote the utilization of the RE, such as the
national climate change program in 2002, renewable energy law amendments in 2009, and
preferential tax policies for renewable energy in 2015. Table 11 summarizes the MG policies
implemented in the EU, US, and China.
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Table 11. Policies for MG design in different countries.

Region Standard/Policy Description

EU

PD IEC TS 62898-2

Applies to the operation and control of MGs, including:

• Interconnection modes and mode transfer.
• EMS and MG operations.
• Communication and monitoring procedures; and
• Battery energy storage regulations.

IEC TS 62898-1/2/3

• AC microgrids.
• Interconnection among DERs.
• Commissioning, maintenance, and testing.

IEC TS 62257-9-2

• Low AC voltage.
• Three- or single-phase.
• Changing the voltage range.
• rural electrification.

US IEEE Standard 1547-Family

• Guide for monitoring the design operation and the integration of DR
island systems.

• Interconnection of DERs.
• Tariff policies.
• Protection schemes.

China

Renewable Energy Law
amendments

• Supports emerging RE sectors in the country.
• Encourages the industrial power grid to purchase RE.

National Climate Change
Program

• A global warming policy initiative.

Preferential Tax Policies for
Renewable Energy

• Tax reduction or exemption.
• Preferential pricing.
• Credit guarantees.

6. Perspective and Discussion

Regardless of the yearly changes in power generation, the authors expect the following
services from electricity systems:

• Future MGs may rely on a progressive combination of energy resources, including
large-scale decentralized resources, to be suitable and variable. Energy storage systems
have the potential to alter the nature of production and transmission;

• The deployment of the ESS only targets a few countries, such as Australia, Germany,
and Japan. Such deployment is expected to cover 40% more countries every year until
2025 [193];

• A different change will occur in countries determined by market policy and regulatory
structures, and the diversity of the resources supplying customers;

• While MGs are considered the best solution to local and general problems, they are
essentially a novel architecture paradigm that offers higher flexibility and reliability
against outages;

• Future MGs may improve their fault detection and self-healing capabilities to shorten recov-
ery time, maximize loads restored, and identify gaps between research and implementation;

• The Internet of Things facilitates the emergence of real-time platforms and serves as an
important link between decentralized and transactive energy markets. Moreover, from
their previous research, the authors have determined that bidirectional exchanges of
energy between customers and producers are considered the most challenging for the
future; however, future techniques are expected to solve this challenge;
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• The application of deep learning, including ANN, in MGs instead of classical and
mathematical methods warrants exploration to achieve a dynamic adjustment of
energy flow, reduction in GHG emissions, and enhanced protection for MGs;

• The use of blockchains and smart contracts in MGs should be promoted to guarantee
secure energy transactions and DER operations.

• Integrating quantum computers into the MG may allow the system to restore more
loads within a short period, use deep learning and machine learning methods for im-
proving forecasting models, and apply algorithms for quickly directing DER dispatches;

• MG controllers should be evaluated and tested in controlled laboratory environ-
ments to minimize risks. Testing various technologies, such as hardware-in-the-
loop, is expected to become a practical approach for evaluating controllers before
their deployment.

7. Summary

MGs are primarily composed of various DERs, EVs, EMSs, loads, and communication
devices. The development of MGs has become a requirement for the integration of REs
in remote areas and the deployment of smart grids. MGs with an EMS are promising
technologies that not only promote system efficiency and economic achievability but also
ensure sustainable development and reduce GHG emissions. Many researchers have
examined the development of EMSs and their operations, stability, reliability, costs, and
utilization in MGs. This review paper presents a comprehensive and critical review of the
elements in MGs. The MG has three levels, namely:

• Primary control, which guarantees reliable operation by maintaining voltage and
frequency stability;

• Secondary control, which optimizes the power quality of the system; and
• Tertiary control, which achieves economic optimization according to the prices in the

electricity market.

At the secondary control level, the EMS aims to optimize operation, energy planning,
and system reliability in either the grid-connected or islanded mode. This extensive review
addresses the mathematical objectives of minimizing the cost of restoration and improving
power quality. The review also indicates that the design of an autonomous, reliable, and
flexible EMS is essential to adapt to different configurations. It is compulsory to design
optimal controller’s schemes that are capable of controlling MG elements smoothly and
fitting the changes in the environment without human interference or restructuring the
entire controller. In this context, methods empowered with forecasting models, such as
metaheuristics and AI techniques, are promising for the MG. Furthermore, EMSs must
be capable of handling the fluctuations of the power generation dispatch from the RE
resources by considering data forecasts. Several techniques have illustrated their ability to
overcome these problems.

This paper also explores the TEM and the protection schemes mostly applied in MGs.
Currently, the MG as a technology is still in its infancy stage. However, several countries,
such as China and the US, have already started to encourage its adoption. This paper also
discusses the perspectives of authors about the future of EMSs and MGs.
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Nomenclature

RE Renewable Energy
MG Microgrid
EMS Energy Management System
GHG Greenhouse Gases
DG Distributed generators
PCC Point of Common Coupling
GW Gigawatt
KW kilowatt
DERs Distributed Energy Resources
PV Photovoltaic
MGCC Microgrid central controller
CHP Combined Heat and Power
HYD Hydropower
WT Wind Turbine
AC Alternating Current
DC Direct Current
kWh kilowatt-hour
NB-PLC Narrow Band Power Line Communication
BB-PLC Broad Band Power Line Communication
PON Passive Optical Network
DSL Digital subscriber line
MPC Predictive Control
VCM Voltage Control Mode
PCM Active/Reactive Power Mode
VPD Voltage-Active Power Droop
FQB Frequency-Reactive Power Boost
ESS Energy Storage System
BESS Battery Energy Storage System
WAM Wide Area Measurement
TEM Transactive energy management
ML Machine Learning
DL Deep Learning
LSTM Long Short-term Memory
KNN K-Nearest-Neighbors
GRNN Generalized Regression Neural Network
NNE Neural Network Ensemble
DRNN Deep Recurrent Neural Networks
ω Angular frequency
V Voltage
P Active Power
Q Reactive Power
kp and ki Gains of the PI controller
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