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Preface to “Applications of Artificial Intelligence in
New Energy Technology Systems”

Dear Readers,

It is our great pleasure to present this book, titled “Advances in Energy Technologies: Exploring
Innovations for a Sustainable Future.” This collection of research and insights brings together a
diverse range of topics and expertise, all centered around the advancement and application of energy
technologies for a greener and more sustainable world.

In recent years, the integration of distributed power generation and emerging energy
technologies has gained significant attention. However, the successful integration of these
technologies into existing power systems requires overcoming various challenges, such as efficiency
limitations, unreliable control strategies, inaccurate prediction methods, and high operating costs.
To tackle these obstacles and maximize the potential of new energy technologies, researchers have
turned to the power of Al and soft computing techniques.

This book, which is a compilation of the articles from the Special Issue, serves as a platform
for researchers to share their original work on Al-enabled solutions that improve, develop, and
manage new energy technologies. The selected papers cover a wide range of topics, including
Al-enabled control systems for renewable energy systems, advanced energy management systems,
innovative energy prediction techniques, Al-enabled energy planning strategies, grid integration of
new energy systems, smart grid communication systems empowered by Al, power electronics and
industrial electronics applications, electric vehicles and storage systems, virtual reality visualization
and simulation for new energy technologies, and virtual power plants.

By showcasing the latest advancements in Al for new energy technologies, we aim to foster
collaboration, spark new ideas, and contribute to the development of sustainable and efficient energy
systems. We believe that the research presented in this Special Issue will pave the way for a future
where new energy technologies seamlessly integrate into our daily lives and contribute to a greener
and more sustainable world.

We would like to express our sincere gratitude to all the authors who contributed their valuable
research to this Special Issue book. Their dedication and expertise have ensured the high quality of the
papers included. We would also like to extend our appreciation to the reviewers for their meticulous
evaluation and constructive feedback, which have helped shape this collection.

We invite all readers to explore the articles in this book and delve into the cutting-edge research
at the intersection of AT and new energy technologies. Together, let us accelerate the progress toward

a cleaner, smarter, and more sustainable future.

Mehdi Seyedmahmoudian, Alex Stojcevski, Ben Horan, and Saad Mekhilef
Editors
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Abstract: The prevailing massive exploitation of conventional fuels has staked the energy accessibility
to future generations. The gloomy peril of inflated demand and depleting fuel reservoirs in the
energy sector has supposedly instigated the urgent need for reliable alternative fuels. These very
issues have been addressed by introducing oxyhydrogen gas (HHO) in compression ignition (CI)
engines in various flow rates with diesel for assessing brake-specific fuel consumption (BSFC)
and brake thermal efficiency (BTE). The enrichment of neat diesel fuel with 10 dm?®/min of HHO
resulted in the most substantial decrease in BSFC and improved BTE at all test speeds in the range of
1000-2200 rpm. Moreover, an Artificial Intelligence (AI) approach was employed for designing an
ANN performance-predicting model with an engine operating on HHO. The correlation coefficients
(R) of BSFC and BTE given by the ANN predicting model were 0.99764 and 0.99902, respectively.
The mean root errors (MRE) of both parameters (BSFC and BTE) were within the range of 1-3%
while the root mean square errors (RMSE) were 0.0122 kg/kWh and 0.2768% for BSFC and BTE,
respectively. In addition, ANN was coupled with the response surface methodology (RSM) technique
for comprehending the individual impact of design parameters and their statistical interactions
governing the output parameters. The R? values of RSM responses (BSFC and BTE) were near to 1
and MRE values were within the designated range. The comparative evaluation of ANN and RSM
predicting models revealed that MRE and RMSE of RSM models are also well within the desired
range but to be outrightly accurate and precise, the choice of ANN should be potentially endorsed.
Thus, the combined use of ANN and RSM could be used effectively for reliable predictions and
effective study of statistical interactions.

Keywords: diesel; oxyhydrogen; artificial neural network; response surface methodology; predic-
tion; desirability

1. Introduction

Ever-growing industrialization and unprecedented use of non-renewable fuels have
brought us to a very feeble junction where we have to be a bit vigilant or we may run out

Sustainability 2021, 13, 9373. https:/ /doi.org/10.3390/su13169373
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of fossil fuels [1]. Hydrocarbon reserves found in nature are going to become extinct in
the future if we continue using them without any restrictions because these reserves are
being consumed at a rate faster than their formation [2,3]. The world energy demand is
excessively soaring and is likely to be 28% higher in 2040 if consumption continues at the
current pace. The intensifying pressure of depleting energy resources and fear of damage
to the environment has consequently made scientists to look for alternative or green fuels.
The use of oxygenated, alcoholic, and hydrogen fuels in CI engines has been the locus of
interest of engineers for the past few years [4-10].

Compression ignition (CI) engines have long been the power generation source for
heavy machinery in energy and aquatic transport owing to their high efficiency, torque,
and feasibility of operation on a lean mixture of air and fuel [11]. Diesel is a commonly
used fuel in CI engines. However, due to the incessant usage of fossil fuels to generate
diesel, the focus of the researchers, engineers, and scientists made a paradigm shift towards
the study of more efficient, promising, and greener fuels [12-16].

Hydrogen itself cannot be used in CI engines due to its high auto-ignition tempera-
tures, which requires a very high compression ratio, but it can be mixed with fuel with low
autoignition temperatures. Hydrogen gas is a good blending agent and could be effectively
used in engines because of its low ignition temperature and high flammability [17]. The
use of hydrogen as a mixing fuel is a concept with novelty and therefore much work has
been reported. The earliest studies were conducted by T. Litzinger et al. on the operations
of the IC Engines with multi-blended fuels. They validated the role of H, inside the IC
engines and found it as a potential replacement of fossil fuels [18]. Moreover, with scientific
and technological development, many researchers have discovered that H, can be used
as a blend with other gases to reduce its combustibility and increase its ignition energy.
H.K Abdel Aal carried out one such study to generate a safe method of H, enrichment by
using methane as a blending agent with Hy. He used Le Chatelier’s principle for predicting
flammability and determining a safe ratio [19].

Similarly, among many fuels available for mixing, the use of diesel has also been an
area of interest of researchers [20,21]. Kadir Aydin et al. conducted experimentation on
a Mitsubishi 4 stroke CI engine using HHO gas dm?®/min as a blended fuel with diesel.
They observed a 19.1% increase in brake power (BP) and a 14% decrease in brake-specific
fuel consumption (BSFC) with the addition of HHO as compared with simple diesel. Their
study identified 1750 rpm as a critical speed, below which the HHO addition was not
favorable for engine performance [22]. Similarly, Alfredas et al. used an Audi 1.9 TDI (IZ
type) CI engine to investigate the effect of HHO addition at three liters per minute (LPM)
with diesel on the performance of the engine. Within the rpm range of 1900-3700, HHO
proved to be favorable for engine performance [23]. Ali Yimilaz et al. also studied the
outcome of HHO addition on engine performance and reported that engine torque was
amplified by 19.1%, and an average gain of 14% was achieved using HHO [24]. The effect
of HHO gas on the performance of a Mitsubishi Canter brand, four-stroke, water-cooled
diesel engine was conducted by Raif et al. They varied the flow rate of HHO from 3 LPM
to 7 LPM and observed that with HHO enrichment, the torque and brake power increased,
whereas fuel consumption decreased [25]. HHO has also the potential to be used as a
blending agent with other fuels. In this regard, Usman et al. used HHO with LPG and
CNG and reported improved performance and reduced emissions with the addition of
HHO for both cases [26].

Owing to the cost and time of simply random experiments, researchers nowadays are
utilizing computer systems to attain similar efficiency by performing the least number of
experimental runs. Artificial neural network (ANN) and response surface methodology
(RSM) techniques are currently used to solve problems in science and engineering, espe-
cially where classical modeling methods have pathetically failed. The predictive capability
of the ANN model is based on the training of experimental data values and followed by
validation. If new data values are not desired, the ANN model may re-learn to enhance
the performance [27,28]. Raif Kenanoglu et al. used an artificial neural network for perfor-
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mance and emission analysis of a hydroxy gas-enriched CI engine for odd flow rates of
3.5and 7 L/min. They used the Levenberg-Marquardt (LM) training function and found
a 95.82% accuracy for torque [29]. Similarly, Yildrium et al. studied the effect of HHO
enrichment on three different biodiesels using ANN. They used artificial intelligence for
fixing optimum hydrogen enrichment and found that developed models had a coefficient
of determination close to 1 [30].

Similarly, the RSM has the statistical regression technique for prediction [31,32]. Over
the last few years, the combined application of ANN and RSM methods has been hailed
with significant success in the power industry. Ghobadian et al. utilized diesel and biodiesel
fuel blends for ANN-based prediction of performance and emission. The developed ANN
model was viable with correlation coefficients (R-values) of 0.999 and 0.9487 for BSFC and
torque, respectively [33]. The ANN coupled RSM-based optimization of SI engine was
carried by Samet Uslu et al., which rendered the use of the ANN-supported RSM model as
an effective tool for performance prediction [34].

Considering the literature cited, the use of ANN for predicting the performance of
engines fueled with diesel HHO blends has already been studied [30]. However, the
optimization of the engine with the same blend has not been reported so far. In the current
study, ANN was used to predict the performance (BSFC and BTE) of a CI engine operating
on diesel with HHO in flow rates of 2-10 LPM. Moreover, the ANN-assisted RSM optimiza-
tion was applied to identify the optimized working conditions. The obtained optimum
conditions were validated using experimentation. Thus, the combined use of artificial
intelligence and RSM proved valuable in estimating and optimizing the performance of a
Cl engine.

2. Materials and Methods
2.1. HHO Generator

The HHO (hydroxy gas) was produced using an Ironside HHO Generator, shown in
Figure 1. The features of the used HHO generator are itemized in Table 1. The power to
the electrical unit was supplied using an AC source. Water was ionized using potassium
hydroxide as a catalyst that generated hydrogen (positive charge) and hydroxide (negative
charge) ions. On supplying the potential across ionized water, the generated HHO traversed
first from a bubbler and later from a flow meter. Prior to injection in the engine’s intake
manifold, the flow rate of the gas was monitored using the flow meter. The potentiometer
was connected with the electrical box for regulating the flow through the cell.

1. Control switch 2. Ammeter 5. Transformer
3. Bubbler 4. Bridge rectifier

Figure 1. HHO generator.
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Table 1. HHO generator specifications.

Feature Description

Material of Plate
Dimensions of Plate
Electrode configuration
Plate spacing

Stainless steel (316-1)
16.5 cm by 16.5 cm by 0.1 cm
Center anodes, end cathodes

2 mm
HHO flow rate up to 10 LPM
Maximum Voltage 35V
Maximum Current 40 A

Relation between current and LPM Direct relation up to 10 LPM

2.2. Experimental Methodology and Test Fuels

A direct injection, four-stroke, three-cylinder diesel engine was used for performance
tests whose specifications are shown in Table 2. The speed, load, and fuel flow measuring
system were equipped with the engine, as comprehensively demonstrated in the experi-
mental setup (see Figure 2). The engine was attached with a 3-phase AC generator having
85% efficiency. Five breakers with equal loading capacity were utilized from the control

unit, as shown in the schematic of the engine testbed (Figure 3). The loads were applied to
the test engine utilizing the generator.

Table 2. Engine specifications.

Features Description
Engine type Perkin/AD 3.152
Bore 91.4 mm
Stroke 127.0 mm
Number of holes of nozzles 4
Brake mean effective pressure 7.1570 bars
Injection timing 179 BTDC
Displacement 2.5 Liters
Compression ratio 18.5
Maximum speed 2200 rpm
Maximum power 36.8 kW at 1500 rpm
Maximum torque 243 N.m at 1400 rpm

The fuels used for conducting the experimental runs were pure diesel and HHO-mixed

diesel with 2, 4, 6, 8, and 10 LPM enrichment. The physicochemical properties of liquid
and gaseous fuels are shown in Table 3.

Table 3. Properties of fuels.

Properties Diesel Hydrogen
Research octane number 30 >130
Density at 20 °C 833.1 kg/m°> 0.0827 kg/m3
Net heating value 42.5M]/kg 119.93 MJ /kg
Flame velocity 30 cm/s 265-325 cm/s
Autoignition temperature 530 K 858 K
Chemical composition CioHos H,
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Figure 3. Schematic of engine test bed.

First, the diesel engine was allowed to warm up for 10 min ahead of recording the
experimental observations. The tests were started at an engine speed of 1000 rpm and
ceased at 2200 rpm, with equal increments of 200 rpm at each stage. The performance
parameters, BSFC and BTE, were calculated at each constant strategic engine speed with
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varying loads (9%, 18%, 27%, 36%, 45%) and HHO concentration of 2, 4, 6, 8, and 10 LPM
by using the following mathematical modelling equations:
Break Power x 3600

BTE = 1
Fuel Consumption x Calorific Value ™

Fuel Consumption

BSFC = @)

Considering all the possible combinations of continuously varying factors, 210 experi-
mental observations were documented. The experimental work was restricted to lower half
partial loading conditions considering the safety aspect associated with HHO utilization in
engine. Moreover, using hydrogen accompanies better combustion and higher flame speed
and temperature inside the engine, which may lead to thermal degradation if operated at
higher loading conditions. Later, the ANN technique was implemented for designing the
predictable model of engine performance. Finally, the performance was optimized using
response surface methodology (RSM) and the desirability aspect was investigated.

Break Power

3. Experimental Results and Discussion

Non-renewable fuels are normally associated with enhanced performance and re-
duced exhaust emissions [35]. Hydroxy gas is believed to facilitate cleaner and smoother
combustion compared with conventional fuels. The experimental deliverables signifi-
cantly demonstrated the decrease in BSFC and increase in BTE by virtue of HHO addition
to diesel. The detailed effect of HHO on performance parameters is presented in the
following sections.

3.1. Brake Specific Fuel Consumption

The patterns of BSFC variation with varying flow rate and engine load are shown
in Figure 4a—g. The BSFC of all operating conditions of HHO enriched fuel was lower
than for neat diesel. The addition of gaseous fuel to diesel evidenced promising fuel
economy. At the speed of 2200 rpm and a load of 9%, the parameter (BSFC) differed
by 12% for neat diesel and the one having 10 LPM of HHO, with the latter being more
fuel-efficient. Similarly, the speed of 1600 rpm rendered un-blended diesel less efficient
on the account of an average of 8.44% higher fuel consumption when juxtaposed with
10 LPM HHO-enriched diesel. Moreover, the higher engine speeds seem to have a greater
decrement in BSFC compared with low speeds. Equated at loads of 9% and 18% for speeds
1800 and 2200 rpm, the BSFC values diverged by 0.33 and 0.64 kg/kWh for low and high
speed, respectively. The higher flammability at higher speeds is the reason for augmented
variations (decline) in BSFC for increased revolutions of the power-producing shaft. The
improved fuel economy of the engine functioned with HHO could be apprehended by the
high calorific value of hydrogen and efficient combustion due to the availability of oxygen
atoms in the HHO structure [19,36-38].
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Figure 4. (a-g) Comparison of BSFC for diesel—HHO blends in speed range (1000-2200).

3.2. Brake Thermal Efficiency

Figure 5a—g shows the brake thermal efficiencies of all operating conditions at different
HHO flow rates and loads. Identical to BSFC, the engine exhibited boosted thermal
efficiencies for all HHO-enriched fuels compared with pure diesel. The test speed of
1400 rpm and flow rates of 2, 4, 6, 8, and 10 HHO at the constant load of 18% returned
BTE values of 11.11%, 19.80%, 27.37%, 29.16%, and 31.55%, respectively. Thus, with
the successive addition of HHO to the pure diesel, the engine exhibited a more efficient
behavior. Figure 5c is seen to be following a different pattern compared with other test
speeds. The manufacturer provided the maximum torque of 243 Nm at 1400 rpm (see
Table 2). Therefore, at 36% loading condition for 1400 rpm, the fuel consumption was
observed as higher, which resulted in a lower rate of increase in BTE, as made evident by
the part of curve after the 25% load. Of all the experimental runs, the maximum recorded
efficiency was 42.39% at the following conditions: 1000 rpm, 10 LPM HHO, and 45% load.
Compared at a speed of 2000 rpm, diesel with 10 LPM HHO presented an average of 9.07%
better performance than neat fuel. The chemical structure of diesel reveals the presence of
23 hydrogen atoms. The addition of hydroxy gas augments the number of hydrogen atoms
and hydrogen to carbon ratio increases, which could be held accountable for significantly
improved efficiency [39]. Moreover, enhanced combustion, the high calorific value of fuel
mixture, diffusivity, and fast flame propagation speed of hydrogen are the phenomena
governing the better performance of the engine [29,30,40,41].
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Figure 5. (a-g) Comparison of BTE for diesel—HHO blends in the speed range (1000-2200).

4. ANN Application
4.1. Data Preprocessing

Prior to the development of the model, the input data (speed, load, and flow rate) and
output data (BSFC and BTE) were normalized between the (0, 1) range using Equations (3)
and (4). All the data were within 0 to 1 and no faulty data were detected.

input — min(input)

®)

N _
Input™ = max(input) — min(input)

Output — min(output)

OutputN = 4)

max(output) — min(output)

4.2. ANN Model

ANN is chiefly a statistical model that stems from the very idea of the information
processing system of the human brain [42]. Over the few decades, ANN models have
been growing exceptionally more common, owing to their widespread use for analyzing,
processing, system controls, and optimization applications. With similar popularity in
other fields, it has also been expansively used in the automotive sector as performance
parameters could be correctly estimated using it. Depending upon the complexity of data,
the ANN could have many layers, but generically it is reported with three stages: input
layer, hidden layer, and output layer [43,44]. Neurons are information carriers that act
as a connecting medium between the three layers. The neurons are interlinked through
communication links which are in turn connected with connection weights. The signals are
transmitted to the neurons by connection weights.

In the current study, engine speed, HHO flow rate, and engine load were designated
as input parameters for input layers while performance parameters (BSFC and BTE) were
dedicated to the output layer. The number of experimental observations recorded were
210, which served as a dataset to the input layer of ANN. MATLAB NN Toolbox was
used for developing the model, which randomly divided the input into three groups as
training (70%), validation (15%), and testing (15%). The network used in the hidden and
output layers of the ANN model was a feedforward backpropagation network because
of its valuable uses in the modelling of the system, signal processing of data with non-
linearities, and accuracy [43,45]. The Trainlm training function and mean square error
(MSE) performance function were employed, which is generally a preferable combination

10
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for faultless predictions [46]. Owing to the magnitude of the data set and higher reported
efficiency rates, the tansig transfer function was selected. For diminishing the errors,
LEARNGDM learning function was used. The quantity of neurons in the hidden layer
is central to the efficient prediction of the ANN model, as with too low a number the
connection between input data and output predicted results could be feeble and the
resultant model will be considered inappropriate [43,47]. Moreover, the criteria of ceasing
the training on the escalation of validation error was used. Usually, the use of 10 neurons
is widely reported in the literature and the same could also be considered for the present
case. However, with such a rough guess, the results may often be misleading. Therefore,
the optimum neurons were identified by iterations 5 points above and near 10 below which
identified the use of 10 neurons for achieving desirable results. The trained ANN model
may have an error in form overfitting, which is a considerable difference of error between
the training and testing. Figure 6 shows the performance of ANN training for 1000 epochs,
from which it could be arguably concluded that the test error is comparable to the training
error and are converging at one value. Therefore, the ANN model is not over fitted. The
attributes of the ANN models are epitomized in Table 4 and the detailed network structure
of the ANN model is shown in Figure 7. The working of ANN for the current case is
clarified by the process diagram shown in Figure 8. It encompasses three stages. Input
parameters were introduced in the first stage, which were repetitively trained in the second
stage for minimizing disparity, and checked for the desired results in the third stage.

Best Validation Performance is 0.070938 at epoch 76

10°
Train
Validation
Test
= 102 e Best
@
E
E 10'
u
o
2
©
2 10°
n
c
©
]
=t
A\
102 L ‘ s ; : ‘
0 200 400 600 800 1000
1000 Epochs
Figure 6. Performance validation of ANN.
Table 4. Attributes of the ANN model.
Attributes Description
Parameters Three Inputs, Two Outputs, One hidden layer
Network Type Feedforward backpropagation
Total number of data sets 210
Number of data sets for ANN training 147
Neuron in hidden layer 10
Data Division 15% for validation, 15% for testing and 70% for training
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The output results of the ANN model were tested using the statistical measures of
mean relative error (MRE), Root mean square error (RMSE), and correlation coefficient (R?),
as defined in Equations (5)—(7):

t—p;
100‘7191
Pi

n

1
MRE(%) = ~ ) 37

RMSE = 4/ }1 Yo (p— o) (6)

R2—1— ( i1 (P — Oi)2> @)
-1 (01)2

The best output results could be adjudicated by ensuing certain statistical ranges
associated with the above formulas. In the current scenario, the ANN predicted outputs
rendered appropriate based on two statistical indicators: (a) correlation coefficient (R) close
to positive unity and (b) the MRE of input and output within the defined range of 1-3%.
In the case the predicted results failed to meet the demarcated criterion, the ANN model
learning rate was varied.

©)

4.3. ANN Prediction Comparison and Discussion

The prediction of performance characteristics of test engine fueled with diesel-HHO
blends using the artificial intelligence approach proved exceptionally valuable. The overall
regression graphs yielded by the ANN application are shown in Figure 9a—d. The results
generated by the model were in line with the statistical criterion defined in the preceding
sections. The correlation coefficients for the three stages of the developed neural network
were found qua 0.99998 for training, 0.99988 for validation. 0.99978 for testing, and 0.99994
for training, testing, and validation as a whole. The correlation coefficients for all stages
were precisely near to +1, which demonstrates the well-matching of the experimental and
ANN-predicted results.

The further analysis was initiated by evaluating the predicted and experiment re-
sults of BSFC and BTE on an individual basis as shown in Figure 10a,b. The correlation
coefficient for BSFC returned a value of 0.99764. The MRE and RMSE accuracy-defining
equations proved solid testimonies of BSFC model-generated results with values of 2.64%
and 0.0122 kg/kWh. The statistical parameters showed that the prediction of the BSFC of a
diesel engine operating on blended fuel using ANN has enough competence and efficiency.
Similarly, the BTE-guessed values were significantly close to experimental values shown
with R, MRE, and RMSE values of 0.99902, 1.91%, and 0.2768%. The BTE ANN model
proved remarkable in the prediction of performance parameters.

The comprehensive comparison of two data sets, experimental and predicted, for
each observation of parameters (BSFC and BTE) is shown in Figure 11a,b. The plotted line
graphs depict the overlapping data points for most of the test runs, signaling the negligible
deviations. From 210 observations, there are only a few sets for which the predicted values
were seen escalating on either extreme, but collectively, they could merely be ignored due
to an inconsequential effect. The in-depth analysis of the obtained statistical parameters
unequivocally advocates that the ANN prediction model is suitable for performance
parameters.
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Figure 11. Comparison of experimental and predicted values for (a) BSFC and (b) BTE.

5. RSM-Based Optimization

Optimization of any process aims at achieving the maximum output by manipulating
the controlled variables. In any optimization technique, numerical constraints are typically
introduced for either maximizing or minimizing the response variables. Several available
optimization techniques could admirably define the optimized parameters within the
provided range. Response surface methodology (RSM) is a well-known statistical technique
employed for the optimization of involved parameters using experimentally extracted
data for solving multiple simultaneous equations. Over the years, the RSM has been seen
extensively used in the engineering sector owing to its accurate prediction of response(s)
influenced by multiple discrete factors. In the current optimization study, the BSFC and
BTE of the test engine were nominated as response variables. The goal was to maximize
BTE and minimize BSFC. The RSM design factors considered for optimization of diesel
engine performance attributes were engine speed (rpm), HHO flow rate (LPM), and load
of the engine (%). Design Expert 11 was used for creating the model and response surfaces.
A multilevel design for a pre-defined experimental strategy was developed using historical
data feature. The model defining parameters, listed in Table 5, were three numeric factors,
seven levels of speed, six levels of HHO blend, and five levels of engine load.

Table 5. Factors and levels.

Factors Units  Levels L[1] L[2] L[3] L[4] L[5] L [6] L[7]

Speed Rpm 7 1000 1200 1400 1600 1800 2000 2200
Flow rate LPM 6 0 2 4 6 8 10 —
Load % 5 9 18 27 36 45 — —

5.1. Selection of an Empirical Model

The fit summaries of BSFC and BTE are listed in Tables 6 and 7. Generally, the selection
of the appropriate model is governed by (a) p-value (b) predicted R? and (c) reasonable
agreement between predicted and adjusted R2 [48]. Based on the mentioned assessing
parameters, the first two models (linear and 2FI) had small values of R2. However, the
quadratic model had the signs of best fit, owing to p < 0.0001 and R? significantly close
to 1. Recent studies have also shown that the engine combustion process is complex and
therefore could be aptly described with a quadratic model [49]. Thus, referring to the
deduced observations and published literature, the quadratic model was designated for
optimization purposes.
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Table 6. BSFC fit summary.

Source p-Value Adjusted R? Predicted R?
Linear <0.05 0.7224 0.7135
2FI <0.05 0.7482 0.7316
Quadratic <0.05 0.9939 0.9922

Table 7. BTE fit summary.

Source p-Value Adjusted R? Predicted R?
Linear <0.05 0.9187 0.9161
2F1 <0.05 0.9368 0.9335
Quadratic <0.0001 0.9940 0.9958

5.2. Analysis of Variance and Predicting Equations

Analysis of variance (ANOVA) is a statistical tool used for assessing the statistical
significance of the model, individual terms, and interactions. It provides a detailed under-
standing of the regression model as the interactions between the factors and the responses
can be explicitly comprehended. Tables 8 and 9 provide the ANOVA for the quadratic
models of BSFC and BTE. The model F values of 383.56 and 1298.30 for BSFC and BTE
imply that models are significant. The model terms have been abbreviated as A—Speed,
B—HHO flow rate, and C—load. The p values less than 0.0500 indicate the significance of
model terms. In the case of BSFC, A, B, C, AC, BC, A2, and C? are significant model terms.
The p values of the terms AB, BC, and C? indicate the model terms that are insignificant.
The accuracy of the models under consideration has been verified using the diagnostic
predicted vs actual and residual vs run plots as shown in Figure 12a-d. Figure 12a,b
demonstrates that for BSFC and BTE, the RSM predicted values are in close agreement
with the ANN values, indicated by the colored data point falling on the linear inclined line.
Similarly, the deviation of RSM and actual (ANN) values were in the narrow residual range
of [-3.7428, +3.7428], as depicted in Figure 12¢,d. The even distribution atop and below
the reference axis, for both the cases, signals the statistical significance of BSFC and BTE
RSM models. The response surfaces of BSFC and BTE variation with engine speed, HHO
percentage, and engine load are shown in Figures 13 and 14 respectively. It is visible that
all the design factors had a significant effect on responses. The dark and light dots on the
response surfaces shows the design points above and below predicted values, respectively.

Table 8. ANOVA for BSFC.

Sum of Mean

Source Df F-Value p-Value
Squares Square
Model 11.51 9 1.28 383.56 <0.0001
A-Speed 1.06 1 1.06 317.29 <0.0001
B-Flow rate 0.0357 1 0.0357 10.71 <0.0001
C-Load 7.75 1 7.75 2324.75 <0.0001
AB 0.0000 1 0.0000 0.0032 0.9551
AC 0.3384 1 0.3384 101.49 <0.0001
BC 0.0156 1 0.0156 4.68 0.0317
A? 0.0606 1 0.0606 18.18 <0.0001
B? 0.0001 1 0.0001 0.0240 0.8771
C? 2.25 1 2.25 674.88 <0.0001
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Table 9. ANOVA for BTE.

Sum of

Mean

Source Df F-Value p-Value
Squares Square
Model 15229.95 9 1692.22 1298.30 <0.0001
A-Speed 2724.04 1 2724.04 2089.93 <0.0001
B-Flow rate 110.22 1 110.22 84.56 <0.0001
C-Load 11414.41 1 11414.41 8757.34 <0.0001
AB 19.49 1 19.49 14.95 0.0001
AC 262.83 1 262.83 201.65 <0.0001
BC 9.03 1 9.03 6.93 0.0091
A? 31.18 1 31.18 23.92 <0.0001
B? 0.3481 1 0.3481 0.2671 0.6059
C? 658.42 1 658.42 505.15 <0.0001
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Figure 12. (a-d) Predicted vs actual graph for (a) BSFC and (b) BTE and residual vs. run graphs for (a) BSFC and BTE RSM

models.
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Second-order regression equations relating the input parameters and responses for
estimation of performance are given by coded Equations (8) and (9). The coded alphabets
A, B, and C correspond to the study design factors: speed, HHO flow rate, and load,
respectively. By using the corresponding values of speed, flow rates, and engine load, in
the regression equations, the values of BSFC and BTE could be accurately predicted.

BSFC = 0.3055 + 0.0165 * A — 0.0191 * B — 02717 % C + 0.0005 * AB — 0.0852 % AC ®)
+0.0178 % BC + 0.0441 % A% —0.0015 % B> + 0.2475 % C2

BTE = 23.71 — 540 * A + 1.06 * B + 10.43 x C — 0.6690 * AB —2.37 + AC ©)
+0.4239 * BC + 1% A% 4 0.1020 % B> — 4.23 x C?

BSFC (kg/kWh)
BSFC (kg/kwh)

1000 45

BSFC (kg/kWh)

()

Figure 13. Response surfaces variation of BSFC with (a) flow rate and speed, (b) speed and load, and (c) load and flow rate.
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Figure 14. Response surfaces variation of BTE with (a) load and speed, (b) load and HHO, and (c) flow rate and speed.

5.3. Optimization Results and Validation

In the current study, objective of RSM was to recognize the engine optimum working
conditions. The speed, flow rate, and load were design factors, and ANN estimated values
of BSFC and BTE were the outputs (responses). The design expert optimization feature
demands optimal constraints to be defined for the factors and responses. Table 10 illustrates
the defined constraints and setup for optimization. The goal was to optimize the engine

with targets of minimizing BSFC and maximizing BTE while keeping the within range
criterion for study factors.

Table 10. Optimization setup.

Desired Lower Upper Lower Upper
Factors Goal Value Value Weight Weight Importance
A: Speed (rpm) Is in range 1000 2200 1 1 3
B: HHO Flow rate (LPM) Is in range 0 10 3
C: Load (%) Is in range 0 45 1 1 3
BSFC (kg/kWh) Minimum 0.196822 1.27606 1 1 3
BTE (%) Maximum 6.22221 41.9617 1 1 3
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The best operating parameters for engine performance came out to be 1000 rpm, 10 L
per minute flow rate of HHO, and 45% engine load. The performance parameters against
these optimal values of design factors are 0.301 kg/kWh BSFC and 40.939% of BTE. The
composite desirability (D) is a unitless number that lies within the range of zero to one. It
is a measure of favorability to which input defining factors optimize the objectives as a
whole. The closer the value to the 1, the more favorable the optimization. In the current
study, the composite desirability was detected to be 0.971. A value sufficiently close to 1
indicates that the employed RSM models are highly efficient and could be used to predict
the optimum design factors for the efficient performance of the diesel engine.

The RSM-optimized results could be easily validated by conducting the experimental
runs. Therefore, experimental observations of BSFC and BTE were recorded correspond-
ing to optimized values of speed, flow rates, and loads, and the comparison is shown
in Figure 15a,b. The experimental observation returned a value of BSFC 5.64%, less as
compared with an optimized parameter. Similarly, the optimum value for brake thermal
efficiency was 6.15% lower in comparison with experimental observation. With sufficient
agreement between optimized and experimental observations as the basis, the RSM is
viable and practically implementable.
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Figure 15. Comparison of optimized and experimental results for (a) BSFC and (b) BTE.

6. Comparison of ANN and RSM Models

The artificial intelligence and statistically based predicting models of BSFC and BTE
seemingly have alike reliability and efficiency. However, due to the generic association of
methods root task to the same domains, the comparative assessment of the two will be an
ideal approach. The detailed comparison of MRE and RMSE of ANN and RSM models is
shown in Table 11. The statistical comparison discloses that the ANN models of BSFC and
BTE have a better ability to efficiently predict parameters of an engine due to lower MRE
and RMSE. ANN and RSM returned MRE values of 1.91% and 2.26% for BTE and 2.64%
and 2.94% for BSFC, respectively. Similarly, the RMSE given by ANN and RSM for BSFC
were 0.012 and 0.088 kg/kWh, respectively. The comparison vouched for ANN's efficiency
and reliability as the statistical parameters (MRE and RMSE) of both parameters were less
than its competitor.
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Table 11. ANN and RSM comparison.

Models Parameters MRE% RMSE
BTE (%) 191 0.27

ANN BSEC (kg/kWh) 2.64 0.012
BTE (%) 2.26 0.41

RSM BSFC (kg/kWh) 2.94 0.088

7. Conclusions

This study evaluated the use of oxyhydrogen gas with diesel at different flow rates in
a CI engine. ANN and RSM tools were collectively used for performance prediction and
optimization. The results could be summarized as:

e 10 LPM HHO with diesel was found to be most fuel efficient among all test fuels.

e  HHO addition to the diesel improved BTE for all flow rates. Pure diesel showed the
least BTE among all combinations of fuels.

o  The correlation coefficients of training, testing, and validation of the ANN model came
out to be 0.99998, 0.99988, and 0.99978 respectively. Moreover, MRE values were in
the range of 1-3%.

e RSMidentified all the study factors as statistically significant owing to p values less
than 0.005.

e  Optimum operating conditions for engine were 1000 rpm, 10 LPM HHO, and 45%
loading condition.

e  Composite desirability of 0.971 for multi-response optimization indicated the appro-
priate optimization setting.

o The experimental BSFC and BTE differed by 5.64% and 6.15% from RSM-optimized values.

e The ANN model proved better than RSM due to low RMSE and MRE values.

Thus, the addition of HHO to diesel proved highly valuable for improved performance.
The statistical assessment tools (R, MRE, and RMSE) revealed that the performance could
be accurately predicted by ANN and RSM models. Conclusively, the HHO enrichment
to the diesel is desirable for better performance and could be optimized using Artificial
Intelligence and statistical methods.

The authors aim at conducting studies to investigate the effect of HHO with a stepwise
increment beyond 45% loading condition along with the collective and individual ANN
modelling for outputs with different algorithms and training functions.
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Abstract: The Crossover Switches Cell (CSC) is a recent Single DC-Source Multilevel Inverter (SDCS-
MLI) topology with boosting abilities. In grid-connected PV applications, the CSC should be con-
trolled to inject a sinusoidal current to the grid with low THD% and unity power factor, while
balancing the capacitor voltage around its reference. These two objectives can be met through the
application of a finite control set model predictive control (FCS-MPC) method. Thus, this paper
proposes a design of an optimized FCS-MPC for a 9-level grid-tied CSC inverter. The switching ac-
tions are optimized using the redundant switching states. The design is verified through simulations
and real-time implementation. The presented results show that the THD% of the grid current is
1.73%, and the capacitor voltage is maintained around its reference with less than 0.5 V mean error.
To test the reliability of the control design, different scenarios were applied, including variations
in the control reference values as well as the AC grid voltage. The presented results prove the
good performance of the designed controller in tracking the reference values and minimizing the
steady-state errors.

Keywords: crossover switches cell; CSC; multilevel inverter; Packed-U-Cell; model predictive control;
grid connection

1. Introduction

The capacity of global renewable energy (RE) has witnessed an increase of 261 GW in
2020, which leads to 2799 GW of the total global RE capacity, where PV systems dominate,
with around 25.3% of this total capacity [1]. In order to connect the PV strings to the utility
grid, the DC output of the PV modules should be converted to AC, which is the function
of the inverters stage. Several research works reviewed the inverter technologies for PV
applications [2-5].

In the literature, it has been reported that multilevel inverters (MLIs) ensure a higher
power quality compared to conventional 2-level inverters, which make them a good
candidate for RE applications [5]. In various MLI topologies, the design mainly consists of
the use of DC voltage sources, capacitors, and medium power semiconductor devices that
operate at a reduced voltage rating. These topologies, which generate multiple DC voltage
levels at the output terminals, have several advantages compared to the conventional
two-level inverters such as lower switching losses, lower voltage stress on the power
semiconductor devices, reduced electromagnetic interference, higher efficiency, and lower
harmonic pollution and filter size [6-8]. On the other hand, the complexity of the inverter’s
design increases and the overall reliability of the system decreases with the increase in
the number of levels. That is because each switch used in the design requires a related
gate driver and a protection circuit. As a result, the increase in the power semiconductor
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switches in the design leads to increases in the system’s cost and the control complexity [8,9].
Moreover, using multiple DC sources in MLIs topologies raises concerns regarding the
increase in the power losses and malfunctioning in the system due to the unbalanced power
sharing among the isolated DC sources [10]. In PV systems, the increase in the required
DC sources implies an excessive number of DC-DC converters.

Therefore, interest is increasing in the reduced switches MLIs and in single DC sources
MLIs (SDCS-MLIs) [11]. One of the recently developed SDC-MLIs is the Packed U cells
(PUC) topology, which is classified as an asymmetric Flying Capacitors inverter (FCI)
that could be used as a compromise between the cascaded H-bridges and the flying
capacitor topologies [12,13]. The PUC MLI generates more voltage levels with high-
power quality, while using a lower number of passive/active components and DC sources
(single DC source) compared to other MLI topologies. These PUC-MLI features result in
cost reductions and a smaller compact power conversion unit compared to even 2-level
topologies. However, the maximum voltage level generated by PUC-MLI equals the
DC source voltage which limits its employment to low power applications and makes it
unsuitable for applications that require an output voltage greater than the input DC source.
Furthermore, the topology provides the capacitor with one path for charging. Hence,
problems may occur if there is a lack of energy and a long interval between the discharging
and charging states [14].

These limitations are overcome by modifying the PUC MLI to have two crossover
switches between the DC link and the capacitor; the new topology is called the Crossover
Switches Cell (CSC) [14]. This modification provides another way of charging the capacitor
and increases the number of levels from seven levels in PUC to nine levels in CSC. The
maximum voltage level is the sum of the DC source and the capacitor’s voltage; CSC has a
boosting ability.

Voltage/current controllers are required in MLIs to deliver green energy/power from
the source to the load/grid. Control schemes with modulators such as sinusoidal pulse
width modulation (SPWM) and space vector (SVPWM) are commonly used with MLIs in
general and in PV applications [15-17]. These methods are compatible with high switching
frequencies. SPWM is easy to implement and does not require any optimization technique.
SVPWM generates low current ripples and is easy to implement, while its complexity
increases with the number of levels [6,18]. Space vector control is a fundamental frequency
method that is effective for a high number of levels cases, but the lower-order harmonic
components cannot be eliminated [6,7]. The selective harmonic elimination method gener-
ates signals with a low total harmonic distortion (THD%) and is suitable for high-power
applications, but suffers with offline calculations. Additionally, adaptive controllers, sliding
mode controllers, artificial intelligent controllers and Fuzzy logic controllers are designed
for MLIs in the PV systems [19-22].

Model predictive control (MPC) schemes are based on the predicted states obtained
by systems’ model. MPC was applied effectively in systems with MLIs and in PV appli-
cations [23-28]. One of the main advantages of MPC is that the control action is applied
directly to the system, without the need for a modulation stage [29]. Furthermore, MPC is a
multi-objective control technique; several objectives can be designed in its cost function by
specifying their priorities according to the application. This makes MPC a good candidate
for MLIs in PV systems where the capacitors’ voltage needs to be regulated according to
their references in order to generate the required voltage levels and maintain a low THD%
in the current that is fed to the grid.

In this paper, a finite control set MPC (FCS-MPC) is proposed for a nine-level, single
phase, grid-connected CSC-MLI. The objective of the controller is to generate a synchro-
nized grid current with a minimized THD%, while maintaining the capacitor voltage at
around its reference value. The topology and the switching patterns of the CSC inverter
are described in detail. Then, the mathematical model of the system and the control design
steps are explained. The proposed controller is verified through simulation and real-time
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implementation and the results are shown and discussed to prove the acceptable dynamic
performance of the designed controller.

2. CSC Topology and Mathematical Modelling
2.1. CSC Topology

The studied nine-level CSC-inverter is shown in Figure 1. The topology consists
of a DC voltage source (representing the the output of the DC-DC converter fed by the
solar panels in PV applications), a capacitor, and eight switches (S;, i = 1...8), where
two of them are bidirectional (S, and Ss). The switches between the DC link and the
positive output terminal of the inverter, S; and S4, work in a complementary manner,
in which one of them is ON at a time. The same concept applies to the switches between
the capacitor link and the negative output terminal of the inverter, S3 and Sg. The four
switches between the DC link and the capacitor link also work in a complementary way.
All the valid switching patterns are presented in Table 1, where s; € {0,1} represents the
switching state of the switch S;. In order to have nine DC levels at the output terminal of
the inverter, the capacitor voltage (V) is maintained at one third of the DC link voltage
(V1). Table 1 shows the V45 value when V is set to 150 V and V; is set to 50 V. It is clear
that the maximum and minimum output voltage will be 200 V. Hence, CSC inverter has
a boosting ability.

A Ls
1 L~
E |K.¥ " | “n} >
+|=- iy
Se ! s/ +

52 S5

| |\ Vaig @ .
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Figure 1. The Crossover Switches Cell (CSC) Inverter Topology.

2.2. Modelling

Given that C is the CSC capacitor, Ly is the filtering inductor. By using Kirchhoff’s
voltage law (KVL) and Kirchhoff’s current law (KCL) on the topology shown in Figure 1,
the model state equations can be written as:

Valt) = &5 52— )it )
() = f—f(vABu)—vg(t)) @

27



Sustainability 2021, 13, 8119

where V5(t) = 92, o (1) = %,
Vap(t) = (51— 52 — sg)Va(t) + (s2 — 53+ 57) Va(t), &)
V1 (t) is the DC voltage and V;(t) is the capacitor voltage.

Table 1. Switching states and the corresponding output voltage level of the CSC inverter.

s1 s2 s3 S4 S5 S6 s7 ss Vap Vag (V) Cell Capacitor
1 0 0 0 0 1 1 0 Vi+V, 200 Charged
1 0 0 0 1 1 0 0 Vi 150 Bypassed
1 0 1 0 0 0 1 0 Vi 150 Bypassed
1 0 1 0 1 0 0 0 Vi—V 100 Discharged
0 0 0 1 0 1 1 0 V2 50 Charged
1 1 0 0 0 1 0 0 Vs 50 Charged
0 0 1 1 0 0 1 0 0 0 Bypassed
1 1 1 0 0 0 0 0 0 0 Bypassed
0 0 0 1 1 1 0 0 0 0 Bypassed
1 0 0 0 0 1 0 1 0 0 Bypassed
0 0 1 1 1 0 0 0 Vs —50 Discharged
1 0 1 0 0 0 0 1 —Va -50 Discharged
0 1 0 1 0 1 0 0 -Vi+W —100 Charged
0 0 0 1 0 1 0 1 -V —150 Bypassed
0 1 1 1 0 0 0 0 -V —150 Bypassed
0 0 1 1 0 0 0 1 --W —200 Discharged

3. Control Scheme

MPC is divided into three steps: Predicting the model, calculating the cost function
and minimizing the cost function. The details of the control scheme are given in Figure 2.

Prediction of the model’s state equations step depends on the discrete version of
the state equations, in which the (k + 1) state is predicted from the (k) state. Since the
state variables’ trajectory is assumed to be rectlinear over a small sampling time, the state
equations can be discretized using the following relationship:

dx(t)

x(k+1) =x(k) + It

T, 4)

where x(k + 1) is the predicted state at (k+ 1), x(k) is the measured state at (k), T is the
sampling time.

At (k) step, Vg, ig, Vi, and V; are measured. By applying Equation (4) on Equations (1)
and (2), respectively, the prediction of the capacitor voltage and the grid current values at
(k+ 1) can be found using the following equations:

Vk+1) = Vz(k)+%(53—52—57)ig(k) 5)
(k1) = ig<k>+§;<vAB<k>—vg<k>) ©)

where Vyp(k) = (s1 — 52 —sg) Vi(k) + (sp — s3 + s7) Va(k). The model is predicted for the
16 switching states given in Table 1.

For the grid-tied CSC inverter, the objective is to minimize the grid current THD% and
the error between the capacitor voltage and its reference value. Hence, the cost function is
designed as

§=ollV5 (k+1) = Va(k + 1|2 + Aillig(k +1) — ig(k + 1%, @)

where A, and A; are weighting factors, and (i;ﬁ,Vz*) are the desired values for the grid current
and the capacitor voltage, respectively. The cost function implies that the reference values
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are obtained at (k + 1) sample. According to [30,31], it can be assumed that iy (k+1) ~ iz (k).

Since the DC voltage (V;) is assumed to be constant, then V' (k) is equal to V; (k +1). Hence,
the cost function is calculated using the following:

§ = Ao V3 (k) = Valk + 1)1 + Allig (k) — ig (k + 1| ®)

173 lig|

Phase yk
Detector

MPC Cost function : Min(g)

Ve B " Min(g) with
[ Yes— ~redundancy >1?-
siss | Switching states _
giving Min(g) |O
Z

k )
51188 C Total Switching |Min() :
— g State selection

transitions (f)

/]

Figure 2. The synoptic of the proposed optimized FCS-MPC for the grid-tied 9-Level CSC inverter.

The cost function is calculated for the 16 switching states, and the switching state
that will give the minimum g is chosen for (k + 1) time step. However, in CSC inverter,
as shown in Table 1, there are several redundant states that will lead to the same minimum
g. To reduce the switching losses, the (k) switching state (s’l‘ : sk) is compared with all
switching states that give (gmin), (s’l“rl : s’é*l). The total switching transitions from (s¥ : sf)
to (slf+1 : sé“) are calculated, f. The one with the minimum switching transitions is sent to
the inverter.

The weighting factors, A, and A; are chosen based on the objectives’ priorities. In the
CSC grid-connected case, a higher priority is given to the grid current THD% over the
capacitor’s voltage error. In our previous work [32], it was shown that to compromise
between the two objectives, A; is set to 10 and A, is set to 5. The simulation results showed
that the current THD% is 1.73% and the mean voltage error is 0.53 V.
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4. Results and Discussion

The presented MPC for CSC inverter is tested via simulation and real-time imple-
mentation. The simulation was carried out using MATLAB/Simulink. The real-time
implementation of the system was carried out using an OPAL-RT 5600 real-time simulator,
enabling dynamic RT simulation responses.

The system parameters used for simulation and real-time implementation are listed in
Table 2.

Table 2. System’s parameters.

Parameters Value
Fundamental frequency fy 60 Hz
Sampling time T 20 ps
Grid voltage peak Vg 170V
Grid current peak [ig| 5A
DC source voltage V; 150 V
Capacitor voltage V; 50V
Capacitor C 2500 uF
Filtering inductor L¢ 6 mH
Current weighting factor A; 10
Voltage weighting factor A, 5

4.1. Simulation Results

The effectiveness of the proposed controller in generating low-grid-current THD%
is shown in Figure 3, where the THD% is 1.73%. This result is below the stated limit in
IEEE 929-2000 standard for grid-connected PV systems (THD < 5%). The synchronization
between the grid current and the grid voltage, the unity power factor, is shown in Figure 4.
Additionally, the quality of the grid current is presented by plotting it against its reference.

Figure 5 shows the DC voltage, V;, set as 150 V during the simulation. The capacitor
voltage, V3, is maintained at around its reference, 50 V, as shown in the same figure. The
mean error of V; is 0.44 V. The third part of Figure 5 shows the generated nine levels of the
inverter , V4p, with the grid voltage, V. The results show the boosting ability of the CSC
inverter, where the maximum voltage level (200 V) is the sum of the DC voltage and the
capacitor voltage.

Figures 6 and 7 show the switching transitions for the eight switches (S : Sg) of the
CSC inverter. In Figure 6, the switching optimization algorithm (f) was used to reduce
the total switching transitions, while in Figure 7, the switching optimization algorithm
was skipped. Applying the switching optimization algorithm reduces the number of total
switching transitions by an average of 85 transitions per cycle, and for a one-second simu-
lation, the difference was more than 4500 transitions which is 9.3% transitions reduction.
This reduction affects the conduction and switching losses in multilevel inverters, which
depend on the frequency with which the switches are turned ON and OFF [33,34].
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Figure 7. The transitions of the eight switches (S; : Sg) for one steady-state cycle without using the
switching optimization algorithm.

4.2. Implementation Results

The setup of the system’s real-time implementation is shown in Figure 8. Figures 9-11
demonstrate the steady-state operation of the system. The nine voltage levels of the CSC
inverter (V4p) are shown in Figure 9 along with the grid voltage (V). The MPC objective
is to ensure that the generated grid current (iy) follows its reference (i;). This is clearly
shown in Figure 10. The phase angle that is used to generate the reference current signal
(i) is obtained from the grid voltage signal. That is, the generated grid current (ig) is
synchronized with the grid voltage with unity power factor. This synchronization is
demonstrated in Figure 11.

To represent the importance of choosing the proper weighting factors, a distorted case
is shown through real-time implementation. In Figure 10 (A, = 5) and (A; = 10) are chosen
to give a higher priority to the current error in the cost function. However, in Figure 12,
high distortion is shown in the grid current when the weighting factors were chosen as
(Ay =5)and (A; = 1).

Since the MPC control strategy is based on predictions of the new state value using
the system’s model, any mismatch between the model and the real value of the system
may affect the controller’s effectiveness. Therefore, the capacitor and inductor values were
changed by 50% to test the robustness of the controller. Figure 13 shows the accommodation
of the generated grid current by the inverter, with its reference.
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varied by £50%.

The real-time implementation of the proposed MPC was extended to include several
dynamic variation tests. Figure 14 illustrates the dynamic performance during a step-up
change in the current reference peak from 5 A to 10 A. The generated grid current followed
the new reference and maintained the unity power factor. In the second dynamic test,
the DC voltage source was increased by (40%), i.e., V; is increased from 150 V to 210 V.
As shown in Figure 15, V, accommodated the changes and increased from 50 V to 70 V

(Vo =V1/3).
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Figure 15. V1, V5, and ig when the DC Source (V1) varies from 150 V to 210 V.

To ensure the reliability of the systems tied to grids and the quality of the power dis-
tribution, some power quality disturbances were introduced to systems under testing [35].
Additionally, several standards describe the criteria of the accepted electric power quality,
such as EN 50160-2000 and IEC 61000-2-8-2002. Voltage sag and voltage swell are common
power-quality disturbances, which were introduced to the proposed FCS-MPC for 9-level
CSC inverter in this work. Voltage sag can result from short-circuit faults, a change in the
load, or a sudden change in the power source [35]. To implement the system under the
effect of grid voltage sag, the grid voltage V, was stepped-down by 10% from 170 V to
153V, as shown in Figure 16. However, faults in the electrical distribution systems lead to
voltage swell disturbances. Although voltage swell is less likely to occur than voltage sag,
the damage it causes is greater on devices that cannot handle a voltage above their rating
values [35]. To implement the voltage swell disturbance on the proposed system, the grid
voltage V, was increased from 170 V to 185 V, as shown in Figure 17.

Reactive power variation was tested by introducing phase shift between the grid voltage
and the grid current in two scenarios: 77/4 and 71/6, as shown in Figures 18 and 19, respectively.
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5. Conclusions

This paper proposes a finite control set-model predictive control (FSC-MPC) for a nine-
level grid-connected single-phase crossover switches cell (CSC) multilevel inverter (MLI).
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The results clearly showed the generated nine voltage levels, where the maximum voltage
level was the sum of the DC source and the capacitor voltages. The cost function was
designed to minimize the THD% of the generated grid current and regulate the capacitor’s
voltage around its reference. The simulation results showed that the current THD% is 1.73%
and the mean error of the capacitor’s voltage is less than 0.5 V. To connect the system to the
grid, the grid current and the grid voltage should be synchronized; the power factor (PF) is
one. Simulation results and real-time implementation results showed the synchronization
between the two signals. The transient response of the system was tested in real-time
implementation by changing the reference values of the capacitor voltage and the grid
current amplitude. In both cases, the system showed a fast response to the changes and
reached the new steady state. Furthermore, the results showed the ability of the system
to accommodate different changes in the grid conditions, such as the grid voltage sag
case, grid voltage swell case and the need for a reactive power. The control algorithm was
designed to benefit from the redundant switching states in the CSC patterns by choosing,
at each time step, the state that minimizes the cost function with the fewest total switching
transitions. This algorithm decreased the switching transitions by 9.3% for a one-second
steady-state simulation.
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Abbreviations

The following abbreviations are used in this manuscript:

MLI Multilevel Inverter
THD Total harmonic distortion
CsC Crossover switches Cell

FCS-MPC  Finite control set-model predictive control
5;i(i1to8) CSC switches

Vi DC link voltage

1%} Capacitor voltage

Vag CSCoutput Voltage

Ve Grid voltage

ig Grid current

Ts Sampling time
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Abstract: Final energy use in Malaysia by the transport sector accounts for a consistent share of
around 40% and even more in some years within the past two decades. Amongst all modes of
transport, land transport dominates and within land transport, private travels are thought to be the
biggest contributor. Personal mobility is dominated by the use of conventional internal-combustion-
engine-powered vehicles (ICE), with the ownership trend of private cars has not shown any signs
of tapering-off. Fuel consumption by private cars is currently not governed by a national policy on
fuel economy standards. This is in contrast against not only the many developed economies, but
even amongst some of the ASEAN neighbouring countries. The lack of fuel economy standards has
resulted in the loss of potentially tremendous savings in fuel consumption and emission mitigation.
This study analysed the increase in private vehicle stock to date, the natural fuel economy improve-
ments brought by technology in a business as usual (BAU) situation, and the additional potential
energy savings as well as emissions reduction in the ideal case of mandatory fuel economy standards
for motor vehicles, specifically cars in Malaysia. The model uses the latest available data, relevant
and most current parameters for the simulation and projection of the future scenario. It is found that
the application of the fuel economy standards policy for cars in Malaysia is long overdue and that
the country could benefit from the immediate implementation of fuel economy standards.

Keywords: fuel economy; fuel consumption; energy savings; emissions mitigation; CO, emis-
sions; Malaysia

1. Introduction

The contribution of the transport sector to the final energy consumption of Malaysia is
among the highest across all sectors of energy use. Final energy use in the transport sector
has shown to be the most urgent issue to be addressed by the Malaysian government. Since
the late 1970s, along with industrial sector use, it has almost the same share until 2008
when a divergent trend began to appear, and the transport sector’s consumption continued
to rise exponentially while industrial sector energy demand mellowed (Figure 1). In 2014,
the share of final energy use by the transport sector breached 46%, the highest in history
and was still hovering above 40% in the year 2017 (Figure 2).

While the transport sector comprises the land, marine and air sector, this analysis
focuses on land transport, primarily the use of petrol fuel in the internal combustion engine
(ICE) motor vehicles, specifically cars. The increase in the rate of motorisation, including
light-duty vehicles (LDV) or cars, has been steady since early the 1990s [3,4]. This focus is
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https:/ /www.mdpi.com/journal/sustainability
41



Sustainability 2021, 13, 7348

due to the enormous growth in car numbers, from around 4 million in 2000 to almost 13
million units in 2016 [5]. In addition, this segment of land transport is the biggest user of
energy in the sector. Therefore, addressing energy use by the ever-increasing fleet of cars is
imperative to reduce fuel consumption and mitigate its ensuing emissions. In this study,
this is achieved by improving the fuel economy of cars.
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Figure 1. Final energy demand by sectors (ktoe), 1978-2017 [1].
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Figure 2. The percentage share of final energy demand by sectors, 1978-2017 [2].

For this study, we define FE as a measure of how energy efficient a motor vehicle is,
commonly understood as the rate of its fuel consumption measured by calculating the
amount of fuel used for every unit distance travelled [6]. FE is also driven by essential
factors, including powertrain efficiency to convert fuel energy to functional work at the
wheels, vehicle weight, speed, aerodynamics, tyres rolling resistance and many more [6].
However, the simple idea of energy use per unit distance moved is the working definition
adopted by governments and international organisations worldwide in their reports [7-9].
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There are many ways to improve the FE situation, and these include FE standards,
which is a regulatory measure; fuel labelling, which is an information and awareness
measure; innovation in vehicle technology; and fiscal measures [7,10,11]. Some of these
have been implemented in some developed economies such as Australia, Canada, the
EU and the US, with some early adopters in Asia, including China, India, Japan and
South Korea [7,8,12,13]. In the Southeast Asian (SEA) region, Singapore, Vietnam and
Thailand had introduced a vehicle fuel economy labelling scheme in 2012, 2014 and 2015,
respectively [14], whereas fuel economy labels are voluntary in Indonesia. While no ASEAN
member states have mandatory FE standards, fuel consumption or CO, emissions policies,
Singapore and Thailand have fiscal policies on vehicles based on their emissions [9].

The focus of this study is the benefits of having a Fuel Economy (FE) standard, which
improves the fuel economy of these vehicles by a mandatory measure [10,15]. FE standard
is a type of regulation that sets a limit to vehicle fuel consumption for new vehicles
entering the market when the standard is in place [7,9]. This is done by the introduction of
specific regulations by the government, for example, the Corporate Average Fuel Economy
Standards (CAFE) in the US [16,17] and the “Top Runner’ energy efficiency program in
Japan [8,11]. These regulations compel the vehicle manufacturers to meet the FE target set
by the regulator by making their vehicles more fuel-efficient, not at the individual vehicle
level, due to factors that drive FE described above. However, it is designed as a fleet-wide
average to allow for a flexible mix of various models introduced into the market, like the US
CAFE [8]. It is a fact that Malaysia has yet to have implemented FE standard measure for
its car market. Implementing a FE standard policy for cars in Malaysia is needed to reduce
its ever-increasing fuel use and emissions in the transport sector, which depends on the
dedication and will of the government to implement this measure. This study analyses and
discuss just how much energy can be saved and emissions can be curbed by this measure.
Without FE standard policy, there is no push for the automotive industry to introduce new
car models into the market with the best fuel-efficient technology. If this is coupled with
the fuel price situation, which is subsidised in the form of sales tax exemption, unnecessary
fuel use will continue to prevail [18], at the expense of the national fiscal situation, health of
the people and the environment. By introducing this policy, Malaysia has the opportunity
to address these pressing issues.

2. Methods

For this study, we have adapted the method developed by [19] to investigate the
impact of adopting a fuel economy standards policy on passenger vehicles. We employed
many of the equations and explain the principles of calculations in the subsequent sections.
We have listed the symbols employed in the Nomenclature list. In short, we will first
forecast the number of cars and fuel consumption amount using a polynomial curve-fitting
method of the latest published data. These are used to determine the average fuel use per
unit distance travel (the FE of the car) for each year in the available and forecasted data.
There will be a natural improvement of FE, even without the imposition of FE standard
due to normal automotive technology advancement. We forecast the natural improvement
of FE and the corresponding fuel use as a business-as-usual (BAU) scenario. We then
forecast the number of cars affected by the mandatory FE policy (STD). The affected cars
will be imposed a mandatory FE number, based on percentage reduction of BAU FE during
the first year of implementation. We then calculate the difference of fuel use under BAU
and STD scenarios as fuel savings and its avoided emissions. This method is suitable
for fuel use analysis at the macro level, where we do not have granular insights into the
respective car segment. The flexibility of this method was utilised by [20] in their study to
calculate fuel savings. This study includes the added analysis of greenhouse gas emissions
mitigation, not previously calculated by [20].

We sourced input data for the model from various government reports, statistics and
previous literature. The numbers of privately owned vehicles were sourced from [5,20].
Energy consumption in the form of petrol fuel data was sourced from [1]. We only include
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vehicles that run on petrol (gasoline) for this study. The focus on petrol was based on the
substantial number of petrol-powered ICE cars (taken to be 89% overall) compared with
non-petrol-powered vehicles [21]. The annual petrol fuel consumption (1990-2018) and
the corresponding total number of cars (1990 to 2016) are taken from various sources and
demonstrated in Table 1.

Table 1. The annual petrol fuel consumption and number of cars [1,5,20].

Year %3 Petrol Fuel Consumption (ktoe) Cars (Units)
1990 2901 1,678,980
1991 3135 1,824,679
1992 3326 1,942,016
1993 3666 2,088,300
1994 4139 2,302,547
1995 4548 2,553,574
1996 5205 2,886,536
1997 5586 3,271,304
1998 5854 3,452,854
1999 6793 3,787,047
2000 6387 4,145,982
2001 6827 4,557,992
2002 6948 5,001,273
2003 7360 5,426,026
2004 7839 5,898,142
2005 8211 6,473,261
2006 7517 6,941,996
2007 8600 7,419,643
2008 8842 7,966,525
2009 8766 8,506,080
2010 9560 9,114,920
2011 8155 9,721,447
2012 10,843 10,354,678
2013 12,656 10,535,575
2014 12,705 11,028,296
2015 12,804 11,871,696
2016 13,411 12,997,839
2017 13,437 -
2018 13,041 -

! Vehicle numbers 1990-2008 from [20], 2 Vehicle numbers 2009-2016 from [5], 3 Fuel consumption 1990-2018
from [1].

2.1. Projection of Petrol Fuel Consumption and Motor Vehicle Numbers

The basis of reduction in petrol fuel consumption and its corresponding emissions
realised by the FE standards implementation hinges upon two important factors, namely
the annual fuel consumption and motor vehicle numbers. The polynomial regression is
instrumental and reliable in projecting future values beyond the presently available data.
We define variable x as the number of the year, whereas variable y is the number of cars and
petrol fuel consumption as a function of available data x. Polynomial regression enables the
best fit line to fit available data points to make future predictions. The following equation
represents a polynomial function of order k in x used in this study:

Y=Co+Cix+Cox2+... +C XK 1)

2.2. Potential Fuel Savings Calculations
2.2.1. Base Year Baseline Fuel Consumption, BFCy,

The baseline fuel consumption is the current state of affairs, also called the BAU
situation. The base year Yj is taken as the year 2018 as the latest of the real data available.
It is easy to determine the baseline fuel consumption for products with standards already
implemented, taken as the standard or the rating level. Since Malaysia has no fuel FE stan-
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dard for cars, we assumed that the baseline fuel consumption for cars is equal to the annual
average of fuel consumption of cars. The total fuel consumption (petrol) in litres divided
by the numbers of petrol-powered ICE cars in Malaysia, as per the following equation:

FG
NV;

BFCy,= .~ (L) @)

2.2.2. Average Annual Fuel Economy Rating, FER;

We calculate the fuel economy of a motor vehicle by averaging the distance travelled
by the unit of fuel consumed, typically measured in either miles per gallon (mpg) or
kilometres per litres (km/L). The average annual kilometres travelled by car is multiplied
by the total number of cars divided by the total fuel consumption in litres. The average
fuel economy rating is then:

NV,
FC;

FER;= AM x (km/L) ®)

2.2.3. Annual Fuel Economy Improvement, AFJ;

This parameter is the overall percentage improvement of all cars’ fuel consumption on
a year-on-year basis. This results from natural technological advancement in automotive
technology that enables the cars, overall to travel the same average distance with less fuel.
This parameter is represented by the following equation:

FER; — FER; ;

AFL=
i { FER;

} x 100 (%) @)

2.2.4. Future Baseline Fuel Consumption, BFCy,

We define this parameter as the baseline for petrol fuel use by the whole car population
in the policy implementation year (Y;) in a BAU scenario. This parameter is predicted from
the projection of the fuel consumption that experiences natural fuel economy improvement
over the years. The BFCy, is applied a compounding interest function whereby the interest
rate is taken as the average of the annual fuel economy improvement (AFlayg) (throughout
the years of available data), over the number of years from the Yg and Ys. BFCy, is
represented by:

BFCy,= BFCy, x (1+ AFlg)™ " (L) G)

2.2.5. Fuel Consumption under FE Standard Implementation, SFCy,

The fuel consumption under FE standard implementation is the discounted value of
the BFCy, of the percentage reduction of fuel use applied under the FE standard. It is the
FE improvement from the future baseline fuel consumption, demonstrated as follows:

SFCy,= BFCy, x (1~ n,) (L) ®)

2.2.6. Initial Unit Fuel Savings, UFSy;

Initial unit fuel savings is the difference between the baseline fuel consumption in the
first year FE standard is rolled out (BAU, in the absence of FE standard) and the reduced
petrol use of the cars under the implementation of the FE standard (applicable to the
affected vehicles under the standard). The expression for the initial unit fuel savings is
as follows:

UFSy,= BFCy, — SFCy;, (L) (7)

2.2.7. Shipment, Sh;

We adapted the concept of ‘shipment’ from [19]. This parameter is a description of the
included stock of cars under the FE standard implementation, as not all cars in the first
year FE standard is rolled out is included by the policy, namely the previous year’s model
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of the cars. The number of cars affected by the FE standard is the sum of the difference
between the number of cars in the current and the past year (the newly registered cars in
the current year), and the replacement stock of the scrapped cars the same year (due to
reaching its end-of-life). For example, if the general lifespan L of the vehicles is ten years,
then these cars will be scrapped in 10 years time, and the total replacement for these cars
will be back in the system in the 11th year. The following expression demonstrates the
concept of shipment of the cars:

Shiz (NVi - NVi_l) + NVi_L (units) (8)

2.2.8. Overall Fuel Economy Improvement, Tly,

We define the overall fuel economy improvement as a measure of the initial unit fuel
savings from the future baseline fuel (in Ys). The parameter is expressed as:

=Y % 100 (%) )

2.2.9. Scaling Factor, SF;

The scaling factor is a concept of the natural decrease of fuel consumption of the
overall available cars in the country. This parameter is enabled by natural technological
advances in the automotive industry, making the cars more fuel-efficient over time, even
without the enforcement of an FE standard. Scaling factor reduces the initial unit fuel
savings of the cars over the effective span of the policy implementation in a linear manner.
In each year after the implementation of the FE standard, this parameter affects the unit
fuel savings in that particular year. The scaling factor is expressed as:

AFl,g

SFi= 1= (Yon, = Ys)

(dimensionless) (10)

2.2.10. Unit Fuel Savings, UFS;

This parameter is the value of the unit fuel savings for each year after the implemen-
tation of FE standard. Due to the natural technological advancement in the automotive
industry as described above, this value is adjusted with the scaling factor SF; annually, and
expressed as:

UFS;= SF; x UFSy; (L) (11)

2.2.11. Shipment Survival Factor, SSF;

The SSF; is a concept of the common survival rate of a product in light of its average
lifespan L. The concept is introduced in [19,22]. The ‘shipment’ of the cars will survive
100% up to 2/3 of its lifespan L. If the age of the car’s stock is more than 2/3 of average
lifespan L but less than 1 1/3 of the average lifespan L, the survival rate is expressed as
[2 — Age x 1.5/(Average Life)]. For the age of over 4/3 of its average lifespan L, 0% of the
stock survives. This factor can be graphically demonstrated as per Figure 3.
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Figure 3. The relationship between the Age/Average lifespan of a product with Product Survival.

2.2.12. Affected Stock, AS;

We define the affected stock of cars for the adherence to the FE standards as the
shipment of cars in the specific year multiplied by the shipment survival factor, plus the
number of cars under the standards in the previous year. Therefore, the expression for the
parameter is as follows:

AS;= (Shl X SSFI) + AS; 4 (unit) (12)

2.2.13. Fuel Savings, FS;

The fuel savings are the actual savings of fuel consumed under the FE standard
implementation. It is determined by the unit fuel savings and the applicable stock and
expressed as:

T
FS;= Y (AS; x UFS)) (L) (13)
i= Y
2.3. Potential Emissions Reduction, ER;

Emissions can potentially be reduced when there is substantial fuel saving resulting
from the FE standard implementation. The most common tailpipe emissions of cars
include methane (CHy), carbon monoxide (CO), carbon dioxide (CO,), nitrous oxide (N0),
nitrogen oxides (NOx) and sulphur dioxide (SO;). The tailpipe emissions avoided are
calculated from the total fuel savings and the emission factors of the respective gases per
unit litre of petrol. The emissions reduction is therefore expressed by:

ER;= FS; x (EmCH4 + Emco + Emcoz + EmNzo + EmNoX + Emsoz) (kg) (14)

3. Results and Discussion

Based on the method described, we demonstrate sample calculations and the results
obtained in this section.

3.1. Data Analysis

The forecasted fuel consumption for private vehicles was calculated with Equation (1).
The polynomial regression method was used on the dataset in Table 1. The mathematical
equation for the curve fitted plot is shown below, and the plot is shown in Figure 4.

y = 4.168x* — 16,325x + 15,986,198 R? = 0.9579 (15)
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Figure 4. The prediction of petrol fuel consumption for cars with polynomial regression.

The forecasted number of cars can be predicted using the same polynomial regression
method and Equation (1) on the dataset in Table 1. The polynomial expression for the curve
fitted plot of vehicle numbers is shown below, and the plot is shown in Figure 5.

y = 10,004.124x% — 39,644,786x + 39,277,331,102  R? = 0.9983 (16)
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Figure 5. The prediction of the number of cars using polynomial regression.

We tabulated the forecasted petrol fuel consumption of cars and the number of cars in
Malaysia from 2010 until 2020 by using the polynomial regression equation in Table 2. Since
the subsequent fuel economy calculations will be in litres, this study converted the data on
energy use published by the Energy Commission in toe (or ton oil equivalent, which is the
measure of the energy contained in a metric ton of crude oil) into the appropriate unit of
measurement. Therefore, the study adopted the conversion factor whereby 1 ktoe equals
the net calorific value of 43.9614 TJ for petrol [1].
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Table 2. The forecasted number of cars running on petrol and its petrol fuel consumption.

Year Car Petrol Fuel Car Petrol Fuel Consumption Number of Cars
Consumption (ktoe) (Litres)
2019 14,222 18,649,416,515 13,285,168
2020 14,730 19,315,158,648 13,963,231
2021 15,246 19,991,830,550 14,659,102
2022 15,770 20,679,432,222 15,372,780
2023 16,303 21,377,963,664 16,104,266
2024 16,844 22,087,424,876 16,853,558
2025 17,394 22,807,815,857 17,620,658
2026 17,951 23,539,136,608 18,405,566
2027 18,517 24,281,387,128 19,208,281
2028 19,092 25,034,567,418 20,028,803
2029 19,674 25,798,677,478 20,867,132
2030 20,265 26,573,717,307 21,723,269
2031 20,865 27,359,686,906 22,597,213
2032 21,473 28,156,586,275 23,488,965
2033 22,089 28,964,415,413 24,398,523
2034 22,713 29,783,174,321 25,325,890
2035 23,346 30,612,862,999 26,271,063

3.1.1. Potential Fuel Savings Calculation

The year 2018 was taken as the base year for the baseline fuel consumption calculation.
The calculation used Equation (2) and shown below:

17,100,410, 816

BFCo15=
Cans 12,624,912

=1354L

A total of 17,100,410,816 litres of petrol were consumed in the year 2018. We derived
this number from published petroleum products final energy use data for 2018, reported in
kilotonnes of oil equivalent (ktoe) unit. We then converted the value to the unit litres by
adopting the conversion factor for toe to GJ and GJ to litres of petrol [1,23], whereby one
ktoe of energy is equal to 1,311,280.64 L of gasoline (petrol) [23].

There were 12,624,912 cars using petrol fuel in the year 2018. This number represented
89% of the overall motor vehicle numbers for the year. The overall motor vehicle numbers
were derived from the polynomial expression in Equation (1). The share of 89% for gasoline
(petrol) powered internal combustion engine (ICE) cars (out of the overall total) were
adopted from the work of [21]. Therefore, we assumed that petrol ICE cars are 89% of the
total number of cars throughout the simulation years for this study.

We used Equations (3) and (4), respectively to calculate the overall fuel economy
ratio—FER in km/L—for each year between 1990 and 2018, and the annual fuel economy
improvement (AFI), by using the petrol consumption (in litres) and the number of petrol
cars, as demonstrated in Table 3. Another critical assumption for this calculation was the
average annual distance travelled per car of 20,000 km. We then calculated the average
of the AFI (AFlayg), which was 2.64% based on each known AFI from the year 1991 to
2018. Consequently, we used the AFl,yg value in Equation (5) to forecast the baseline fuel
consumption during the first year of the FE standards roll-out (BFCy,—in the year 2025).
For this case, based on known BFC in the year 2018, the baseline fuel consumption in the
implementation year of the standard (2025) is shown below:

BFCy, = BFCopps= 1354 x (1+2.64%) %218 _ 162512 L./ year
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Table 3. Fuel Economy Ratio, Annual Fuel Economy Improvement (AFI) and Average AFL.

Year FER (km/L) AFI (%)
1990 7.86
1991 7.90 0.57
1992 7.93 0.32
1993 7.73 —2.44
1994 7.55 —2.34
1995 7.62 0.93
1996 7.53 —1.23
1997 7.95 5.60
1998 8.01 0.72
1999 7.57 —5.48
2000 8.81 16.44
2001 9.06 2.85
2002 9.77 7.81
2003 10.01 242
2004 10.24 2.29
2005 10.70 4.54
2006 12.54 17.14
2007 11.71 —6.58
2008 12.23 4.43
2009 13.17 7.70
2010 12.94 —1.74
2011 16.18 25.03
2012 12.96 —19.89
2013 11.30 —12.83
2014 11.78 4.27
2015 12.59 6.82
2016 13.16 4.53
2017 13.60 3.38
2018 14.77 8.56
Average 2.64%

The remaining analysis required some other data and statistics for the basis of assump-
tions used. There are many improvements needed in the data recording, maintenance
and reporting for the transport sector in Malaysia. In lieu of the lack of data, these data
estimates were nevertheless adapted from [24,25] and summarised in Table 4.

Table 4. Input data for calculation of potential fuel savings.

Description Values
Implementation Year 2025
Average Lifespan 10 years
BFCy, (Ys = 2025) 1625.12 L/year
Target FE efficiency improvement 10%
Standards fuel consumption 1333 L/year
Annual mileage 20,000 km/year
Average Annual Fuel Economy Improvement (AFI) 2.64%

The potential fuel savings calculation results realised by enforcement of FE standard
on cars in Malaysia (beginning year 2025) is outlined in Table 5. As can be seen, the efficacy
of the policy lasts for only a few years before the natural improvement of the AFI, due to
the advancement of automotive technology, catches up with the target fuel savings of the
standards. Based on the previous data, it was assumed that the annual AFI will improve
at 2.64% on average, without the FE standard policy in place. Therefore, if the fixed FE
standard is not revised to the latest relevant base year, the FE standard’s savings will cease
to be relevant a few years after its implementation. As a demonstration of this point, based
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on Table 5 and Figure 6, the FE standard of 15% reduction based on the year 2025 will be
effective for six years, up to the year 2030.

Table 5. The potential fuel savings calculation results.

Year Shipment Applicable Scaling Unit Fuel Potential Fuel
(“000) Stock (“000) Factor Savings (L) Savings (L)

2025 10,565,809 10,565,809 1.00 162.51 21,090,749,294
2026 11,568,077 22,133,886 0.82 133.95 20,574,304,446
2027 11,982,463 34,116,349 0.65 105.39 20,685,925,377
2028 12,624,912 46,741,261 0.47 76.83 21,443,597,561
2029 13,285,168 60,026,429 0.30 48.26 22,901,509,777
2030 13,963,231 73,989,660 0.12 19.70 25,115,885,234

4,000,000,000

3,500,000,000

litres

3,000,000,000
2,500,000,000
2,000,000,000
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Figure 6. The prediction of annual fuel savings for cars.

It can be seen in Figure 6 that substantial savings will begin in the first year of the
FE standard implementation and continues to increase as more applicable stock gets into
the system after the year 2025. After that, however, this effect starts to taper off four
years into the FE standard implementation until it ceases to be relevant after the year 2030.
This situation happens as the effect of reducing scaling factor kicks in due to the natural
increase of the technological advancement in automotive technologies that increases the
fuel efficiencies of cars against the FE standard.

The comparison between annual fuel consumption in a BAU situation and fuel con-
sumption under FE standard implementation is shown in Figure 7, whereby STD is the
potential fuel consumption at the much-reduced level under the FE standard. The to-
tal cumulative savings during the years the FE standard policy is effective is more than
16.2 billion litres of petrol or more than 12,300 ktoe. It is nice to be aware that these savings
are based on a minimum of 15% efficiency improvement. With continuous technological
improvements, the fuel savings for the future period can be better.
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Figure 7. The prediction of annual fuel savings for cars.

3.1.2. Potential Emissions Mitigation

The fuel savings to be achieved may result in tailpipe emissions reduction, which is
beneficial to the global environment. Tailpipe emissions from gasoline (petrol) comprise
CHy, CO, CO,, N,O, NOx and SO,. The amount of emissions avoided is a function of
the emission factors and the amount of petrol saved. We adapted the emission factors
from [20,26] in this study. We did some necessary unit conversions as some factors were
originally in the units of gallons, and the emission factors are eventually in the form of
kg/L or g/L. Table 6 outlines the corresponding emission factors used in this study.

It is essential to understand these from the lens of its respective Global Warming
Potential (GWP), in the normalised units of a reference gas, in this case, the CO; in the
form of carbon dioxide equivalent (CO; eq). Each gas has its GWP factor that measures its
propensity to the global warming effects, which depends on the time horizon of 100 years. It
is interesting to note that depending on the different time horizons adopted, the GWP factor
varies. However, the parties to the Conference of the Parties (COP) to the United Nations
Framework Convention on Climate Change (UNFCCC) has adopted the 100-year time
horizon since the Kyoto Protocol and reaffirmed in the IPCC Second Assessment Report [27]
and IPCC Fifth Assessment Report [28]. We outlined the GWP of the respective gases in
Table 6. It is worth noting that CO, SO, and NOy are considered indirect greenhouse gases,
as compared to CO,, CH4 and N,O, which has direct global warming potential. Therefore,
we excluded the effects of CO, SO, and NOy on global warming from this study as indirect
greenhouse gases can be highly uncertain, compared with direct GWPs, believed to be
highly accurate [29].

Table 6. The emission factor for motor gasoline (petrol) and Global Warming Potential (GWP) of gases.

Type of Emission Emission Factor Emission Factor GwWP3
CO, 8.78 kg/gal 2.319kg/L 1
CHy 0.38 g/gal 0.100 g/L 21
N,O 0.08 g/gal 0.021 g/L 310
Cco 3.49086 kg/GJ 116.400 g/L indirect
S0, 0.00228 kg /GJ 0.076 g/L indirect
NOx 1.36876 kg/GJ 45.630 g/L indirect

1 Emission factor for CO,, CHy, and N,O from [26]; 2 Emission factor for CO, SO, and NOx from [20]; 3 GWP
from [30].

Table 7 shows the result of the emissions avoided throughout FE standard implemen-
tation. Consequently, we applied the GWP factor to CO,, CH4 and N,O, and greenhouse
gas emission avoidance over the FE standard period, as demonstrated in Table 8.
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Table 7. The emissions avoidance calculation results.

Year CO, (Ton) CHy(kg) N;O(kg) CO(kg) SO, (kg) NOx (kg)
2025 3982619 172,368 36,288 199,866,548 130497 78,349,747
2026 6,876,726 297,626 62,658 345106464 225327 135285292
2027 8,339,428 360,932 75986 418511748 273255 164,060,920
2028 8,329,009 360,481 75801 417,988,891 272,914 163,855,955
2029 6,719,783 290,833 61,228 337,230,320 220,185 132,197,762
2030 3381342 146,345 30,809 169,691,653 110,795 66,520,877

1 Emission factor for CO,, CHy, and N,O from [26]; 2 Emission factor for CO, SO, and NOx from [20]; 3 GWP
from [30].

Table 8. The greenhouse gas emissions avoidance.

Year CO; (Ton) CH4 (kg CO, e,;l) N20 (kg CO, eq)
2025 3,982,619 3,619,738 762,050
2026 6,876,726 6,250,145 1,315,820
2027 8,339,428 7,579,571 1,595,699
2028 8,329,009 7,570,102 1,593,706
2029 6,719,783 6,107,502 1,285,790
2030 3,381,342 3,073,247 646,999

GHG emissions avoidance can be substantial, especially for CO,, while CH; and
N,O can be negligible relative to the CO, scale, as demonstrated by Figure 8. Total CO,
emissions reduction is 37.6 million tons, while CH4 and N,O account for 41,400 tons of
CO2 equivalent. Nevertheless, these should count towards the GHG reduction potential as
each contribution counts for Malaysia’s commitments to reducing GHG emissions.
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Figure 8. The greenhouse gas emissions avoidance under the FE standard implementation.

4. Conclusions

The analysis in this study for the implementation of the FE standard in the year 2025 is
fortunately timed with the commitments of the Malaysian government in reducing its GHG
emissions by the year 2030. This study forecasted the stock of cars in the study period and
its corresponding fuel savings and emissions mitigation under the FE standard implemen-
tation. The key findings that we have found are that, in the period of implementation, fuel
savings of 16.2 billion litres of petrol or more than 12,300 ktoe can be achieved, along with
the reduction in at least 37.6 million tons CO, equivalent GHG emissions. In Malaysia’s
official projection to the UNFCCC, under the BAU scenario, the GHG emissions up to the
year 2030 (from 2005) is 549,535 Gg CO; ¢q (549.535 million Ton CO; ¢q), while the mitiga-
tion plan scenario is expected to lower this value to 510,205 Gg CO; ¢q (510.205 million Ton
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CO3¢q)- The reduction of the overall 39.3 million Ton CO; ¢q pledged by Malaysia in its
Third National Communication and Second Biennial Update Report to the UNFCCC seems
within reach with just this FE standard implementation. These certainly will do well for
Malaysia in meeting its commitments to the international community.

The implementation of a FE standard policy for cars in Malaysia is a promising policy
to help Malaysia reduce its energy use from the transport sector. This step could be one
of the most effective measures, among other FE initiatives [12], nudged positively by
the discussion and public discourse of the policy that has happened at various levels
within Malaysia and regionally [8,9,31]. However, Malaysia still has a lot to do before the
implementation of the FE standard can be realised.

Malaysia has policy documents that outline the intention to have the FE standard
implementation timed nicely within the timeframe of this analysis [32-34]. Specifically, the
Ministry of Transport (MOT) (the ministry in charge of transport policies and regulations)
plan to formulate and implement a fuel economy policy between the year 2019 and 2030 [34].
In addition, a further commitment was made by the Ministry of International Trade and
Industry (MITI) (the ministry in charge of the development of automotive industry),
“pledged to reduce carbon emission by improving fuel economy level in Malaysia by
2025 in line with the ASEAN Fuel Economy Roadmap of 5.3 Lge/100 km” [33]. Both the
government automotive and transport policy statements [33,34] for the FE as outlined
above indicate that Malaysia is on the right track towards the realisation of the policy.

Despite all these, Malaysia needs to designate a body focusing on the technical aspects
and regulatory matters to realise this policy [35]. While various government agencies are
related to road transport, prior existing jurisdictions rendered the policy fall in between
the cracks, as no specific government agency in Malaysia is responsible for both energy use
and transport under its roof. For the technical aspect, one of the actions required involves
the driving test cycle suitable for the local situation for measuring the right FE situation.
The IEA has outlined the policy pathway and critical actions to implement FE policies,
including deciding on the form of standard, target values, introducing a mechanism for
increased vehicle weights as part of the policy design process, before implementing and
monitoring the progress of the policy implementation [11]. The implementation of FE
standard itself should regularly be updated as natural improvements happen over time,
rendering the standard obsolete. In addition, conflicting priorities like the encouragement
of car ownership as a support to the national automotive industry [3] and curbing energy
usage from car use through the implementation of FE standard may impact the competi-
tiveness of the national car industry. This is where Malaysia should resolve its will so that
the implementation of the FE standard becomes a reality.
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Nomenclature

List of symbols
AM

AS;

AS;—1

AFI

AFlyq

BFCy, (BFCy1s)
BFCy, (BFCa025)
Emcy,

Emco

Emco,

Emn,0

Emno,

Emgp,

ER;

G

FER;

FER;_,

FS;

L

NV;

NV

NViL

s

SFCy,

Sh;

SF;

SSF;

Tly
UFSy,
UFS;

Yp

Yshi
ICE
ASEAN
BAU
CH,y
CO
CO,
COZ eq
cor
N,O
NO«
SO,
DSM
EPU
EU
FE
GHG
GJ
GWP
IPCC
ktoe

Annual mileage (km)

Affected stock of cars in the year i (unit)

Affected stock of cars in the year i—1 (unit)

Annual fuel economy improvement in the year i (%)

Average annual fuel economy improvement (%)

Base year baseline fuel consumption (2018 baseline fuel consumption) (L)
Future baseline fuel consumption in the year policy is implemented (2025) (L)
Emission factor for CHy (g/L)

Emission factor for CO (g/L)

Emission factor for CO, (kg/L)

Emission factor for N,O (g/L)

Emission factor for NOy (g/L)

Emission factor for SO, (g/L)

Potential emissions reduction in the year i (kg)

Fuel consumption in the yeari (L)

Average annual fuel economy rating in the year i (km/L)
Average annual fuel economy rating in the yeari—1 (km/L)
Fuel savings in the year i (L)

Lifespan of the vehicles (year)

Number of vehicles in the year i (unit)

Number of vehicles in the year i—1 (unit)

Number of vehicles in the year i-L (unit)

Percentage reduction of fuel use as the result of FE standard (%)
Fuel consumption under FE standard implementation (L)
Shipment (included stock of cars under FE standard implementation)
Scaling factor in the year i

Shipment survival factor in the year i

Overall fuel economy improvement (%)

Initial unit fuel savings in the first-year roll-out of the standard (L)
Unit fuel savings in the yeari (L)

Variable x in polynomial expression, year

Variable Y in polynomial expression, (number of cars or petrol fuel consumption)
Base year

Year when FE standard is implemented

Year of the Shipment in year i

Internal combustion engine

Association of Southeast Asian Nations

Business-as-usual

Methane

Carbon monoxide

Carbon dioxide

Carbon dioxide equivalent

Conference of the Parties

Nitrous oxide

Nitrogen oxides

Sulphur dioxide

Demand Side Management

Economic Planning Unit

European Union

Fuel economy

Greenhouse gas

Giga Joule

Global warming potential

Intergovernmental Panel on Climate Change

Kilo tonnes of oil equivalent

55



Sustainability 2021, 13, 7348

LDV Light-duty vehicles

MITI Ministry of International Trade and Industry

MOT Ministry of Transport

SEA Southeast Asia

toe Ton oil equivalent

UNEFCCC United Nations Framework Convention on Climate Change
Us United States of America

toe Ton oil equivalent
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Abstract: Refrigeration systems have experienced massive technological changes in the past 50 years.
Nanotechnology can lead to a promising technological leap in the refrigeration industry. Nano-
refrigerant still remains unknown because of the complexity of the phase change process of the
mixture including refrigerant, lubricant, and nanoparticle. In this study, the stability of Al,O3
nanofluid and the performance of a nano-refrigerant-based domestic refrigerator have been experi-
mentally investigated, with the focus on the thermodynamic and energy approaches. It was found
that by increasing the nanoparticle concentration, the stability of nano-lubricant was decreased and
evaporator temperature gradient was increased. The average of the temperature gradient increment
in the evaporator was 20.2% in case of using 0.1%-Al,O3. The results showed that the energy con-
sumption of the refrigerator reduced around 2.69% when 0.1%-Al,O3 nanoparticle was added to
the system.

Keywords: nano-refrigerant; nanofluid; refrigerator; energy efficiency; thermodynamic analysis;
aluminum oxide

1. Introduction

In the past 50 years, refrigeration systems have experienced massive technological
changes. Many of the recent changes in refrigeration systems are due to the rapid changes
in technology and environmental challenges. Beside the harmful effect of refrigerant on
the environment, scientists have warned that the continuous release of refrigerants into
the atmosphere will destroy the Earth’s ozone layer. Ozone layer depletion might lead
to global warming followed by natural disasters. HFC-134a (R134a) is the most common
refrigerant used in domestic refrigerators due to zero ozone depletion potential (ODP), low
global warming potential (GWP), being non-flammable, and favorable thermodynamic
properties [1,2].

Application of nanomaterials in various fields of engineering has become an inter-
esting topic and remained challenging in some aspects during the last two decades [3-7].
Since 1995, when the term nanofluid was introduced by Choi [8] to describe a new class of
heat transfer fluids, many studies have been conducted in this field to discover advantages
and disadvantages in order to overcome the application barriers [9-11]. The main objective
has been to create a new type of coolant with higher heat transfer capability, which has
been used in variety of products such as computers, power electronics, car engines, heat
exchangers, and high-powered lasers. Enhancement in thermal properties such as thermal
conductivity due to the presence of nanoparticles has attracted great interest of researchers,
but instability of nano-size solid particles in the basefluid, especially at high concentrations,
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still remains a challenge in its application [12-15]. Many studies have been conducted on
the fundamental properties, application, and characterization of different types of nanopar-
ticles dispersed in different base fluids [16-19]. However, application of nanoparticle in a
low temperature base fluid such as refrigerant remains unknown because of the difficulties
during measuring the fundamental properties of the mixture and liquid-to-vapor phase
change of the fluid. Therefore, the function of nano-refrigerant in a phase-change process
including migration of nanoparticle during boiling, sedimentation, and thermophysical
characteristics of different phases is very controversial.

Comparatively, few investigations have considered certain effects of nano-refrigerant
on the refrigeration system, and most of them have evaluated the fundamental proper-
ties of nano-refrigerants [20,21] or impacts of using nano-refrigerant on the heat transfer
characteristics in a pipe [22-24]. In addition, it is essential to consider the applicability of
nano-refrigerants in a real refrigeration system.

There are a limited number of investigations on nano-refrigerants available in the
literature. Peng et al. [22] have investigated the heat transfer characteristics of the flow
boiling of a refrigerant-based nanofluid inside a horizontal smooth tube. They have
found that the heat transfer coefficient of the nanofluid is larger than that of the pure
refrigerant. The nucleate pool boiling heat transfer enhancement of refrigerant-based
nanofluid with low concentration of additives was reported by Peng et al. [23]. The
experiment by Henderson et al. [24] on the flow-boiling of R-134a/polyolester mixture
showed that the heat transfer coefficient increased more than 100% over the baseline by
adding CuO nanoparticle into the mixture. In a fundamental aspect, several experimental
articles investigated the characterization of refrigerant-based nanofluid [20,21,25,26]. There
are only two articles available reporting the effect of refrigerant-based nanofluid in a
refrigeration system. According to the work done by Bi et al. [25], R-134a/mineral oil with
TiO, nanoparticles worked normally in the refrigerator and the performance of refrigerator
was better than that of R-134a and POE oil. The improved refrigerator performance with
TiO,-R600a nano-refrigerant compared to pure R600a was achieved experimentally by Bi
et al. [26] as well.

Influence of CuO nanoparticles on the boiling performance of R134a/polyolester
lubricant oil mixture was experimentally investigated by Kedzierski et al. [27]. The exper-
iment was done on a roughened, horizontal, and flat surface. They found 50% to 275%
heat transfer improvement for R134a/polyolester by adding 0.5% mass fraction of CuO
nanoparticle. The average boiling heat transfer enhancement was 19% and 12% in case of
using 1% and 2% nanoparticle loading concentration, respectively. They also concluded
that the thermal conductivity of the lubricant was increased around 20%. The result of the
same investigation done by Kedzierski [28], showed 400% heat transfer improvement by
adding 0.5% mass fraction of Al,O3 nanoparticles into the R134a/polyolester lubricant oil.

The feasibility of synthesis of refrigerant-based nanofluids, as well as characterizing
their thermal behavior, must be taken into consideration.

In recent years, some studies have been reported on phase-change heat transfer of
nanofluid. Most of them focused on pool boiling heat transfer. Two-phase flow heat
transfer investigation was studied by Bartelt et al. [29]. The effect of CuO nanoparticle
on the flow boiling of R134a/POE mixtures in a horizontal tube was examined. At least,
42% and 50% heat transfer enhancements were concluded as the effect of using 1% and 2%
mass fraction of nanoparticles, respectively. No effect on the heat transfer coefficient was
observed in case of using 0.5% mass fraction of CuO nanoparticle.

Household refrigerator freezer market is one of the major segments of the refrigeration
industry. The widespread use of household refrigerator freezers provides an opportunity
for sustainable energy saving, and the 100 million new units sold annually around the
world represent a considerable potential of energy consumption in this field. Consequently,
it can lead to huge amounts of energy saving by considering the energy consumption
reduction methods.
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This study investigates the performance of a domestic refrigerator using nano-refrigerant
by focusing on the thermodynamic and energy approach. To analyze the thermodynamic
and energy efficiency of the domestic refrigerator, experimental study was conducted,
and the effect of different mass fractions of nanoparticles were investigated. This study
can be a viable means of elucidating the effect of nanoparticles on the performance of the
refrigeration systems.

2. Materials and Methods

The domestic refrigerator used in the experiment was a SR 30NMB type manufac-
tured by Samsung Company Limited, which was a double-door, freezer and refrigerator,
evaporator fin type, and natural convection condenser type. The picture of the refrigerator
which was used as a test-rig and the schematic diagram of the experimental set-up and
the charging mechanism, are shown in Figures 1 and 2, respectively. This refrigerator was
designed to work with R-134a refrigerant and the technical specifications are shown in
Table 1.

Figure 1. Domestic refrigerator test-rig.

Table 1. Technical specifications of refrigerator test unit.

Item Specification
Model name SR 30 NMB
Type 2-Door Freezer /refrigerator
Power source 230~240 V/50 Hz
Freezer 68 (2.4)
NELC(EE ‘af;:.i)ty Refrigerator 186 (6.6)
Total 254 (9.0)
Refrigerant R 134a (140 g)
Compressor model SD162CL1U/T3
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Figure 2. Schematic diagram of the experiment set-up and charging system.

The refrigerator’s performance has been investigated with no load and closed door
condition. The refrigerator was fitted with the thermocouples, pressure transducers, and
power meter, and the other components remained intact.

2.1. Experiment Condition

In order to carry out the tests, the sequence of the clauses in international standard of
household refrigerating standard, refrigerator—freezers characteristics and test methods
were considered. The refrigerator was placed in a temperature controlled room and all
experiments have been done in a steady-state operating condition. There was no ceiling
fan and air conditioning system to force the movement of air inside the room. Therefore,
heat transfer occurred by natural convection in the condenser and refrigerator walls [30].

2.2. Experiment Procedure

The same procedure was used for all experiments. Nanofluids were prepared based
on the proposed method in the literature. Refrigerant and nanoparticle in this experiment
were R134a and Al,O3. As the baseline experiment, the system was operated with R134a
and polyolester oil (POE) as a lubricant. In this study, nano-refrigerant was a mixture of
Al,O3 nanoparticles, POE lubricant oil, and R134a refrigerant. First, the required amount
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of Al,O3 nanoparticles and POE lubricant oil were mixed and sonicated for at least 30 min
to achieve a homogenized mixture before being injected to the compressor. Finally, R134a
was charged into the system. The thermocouples, pressure transducers, and power meter
were installed on the system (Figure 2) and connected to the data logger to record the
required data during all experiments. Vacuum and pressurize tests were performed before
and after charging the refrigerant for at least 30 min to ensure that there was no leakage in
the system.

To ensure that the previous working fluid was cleaned out of the passages, the fluid
was driven out and the system was washed with based refrigerant and lubricant. It was
done by charging the base lubricant into the compressor, then evacuating the system from
air and moisture, followed by charging the system with refrigerant, and finally making it
run for a few hours with the base fluid passing within the system. At the end, the system
was made empty from refrigerant, and the oil was driven out from the compressor.

2.3. Refrigeration System Performance

Generally, heat travels from a hot space to a cold space due to a certain temperature
difference. However, in refrigeration systems, it is done in the opposite direction as heat
transfers from a lower temperature region to a higher temperature one. Figure 3, shows a
schematic of a vapor compression refrigeration system.

Condenser

Constant T’

Condenser

Compressor
5 3 pl‘EE\.Ll’C 2s 2
Expansion Lf T =
valve
|
| Evaporator
| pressure
& -
1 / 4

Evaporator

O

Figure 3. Schematic of a vapor compression system (Adapted from [31]).

The ratio of the cooling or refrigeration capacity (desired output) to the energy in-
put into the system (required input) is called the coefficient of performance (COP), and
expressed as:

Cooling.capacity — Qyf

coP = Work.input Wiset in

)

According to Figure 3, the refrigeration cycle is divided into four stages during which
the properties of refrigerant change. Based on thermodynamics, heat transfer characteristics
and thermal performance in each stage are explained on the following.

The compressor is the main power-consuming device in the refrigeration system.
This energy is used to increase the pressure of the refrigerant vapor and to circulate it
through the system. Consequently, the temperature of vapor refrigerant rises which in turn
increases the enthalpy of the refrigerant at the outlet of the compressor.

The compressor work is determined with according to the P-h diagram and can be
written as:

w = (I’lz — h]) (2)

where hy and hy are the enthalpies of refrigerant at the outlet and inlet of the compressor,
respectively.

The compressor of the set-up refrigerator is a hermetic reciprocating type, (220 Volts,
50 Hz) that is thermally protected, and design for use with R-134a.
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A condenser operates as a heat transfer device to release the heat from high-pressure
superheated refrigerant vapor (discharged from the compressor) to the surrounding. As a
result of heat rejection in the condenser, vapor refrigerant becomes a liquid at the outlet.
Heat transfer rate in the condenser is calculated by:

Jcon = (h3 - h2) (3)

In this study, condenser is the natural convection cooling type.

Capillary tube operates as an expansion valve. The pressure of the liquid refrigerant
is reduced by the capillary tube. The pressure of the liquid drops slightly in the first
two-thirds of the length of the capillary tube. In current refrigerator, the capillary tube has
0.75 mm inside diameter and 3400 mm length.

The evaporator absorbs heat from its surroundings (inside refrigerator and freezer
space) and transfers it to the refrigerant inside the evaporator. The refrigerant phase
changes during the evaporation process from a liquid to a vapor, and at the evaporator exit
is slightly superheated. This slight overdesign ensures that the refrigerant is completely
vaporized when entering the compressor. The refrigeration effect is defined as the heat
rejected by a unit mass of refrigerant during the evaporating process in the evaporator. It
can be written as:

Grf =h1—hy 4)

where I and hy are the refrigerant enthalpies at the outlet and inlet of the evaporator,
respectively.

Refrigerating capacity, or cooling capacity,Q,, is the actual rate of heat which is
removed by refrigerant in the evaporator, and can be calculated by [1]:

Qs = 1y (hy — hy) @)

2.4. Nano-Refrigerant Properties

According to the literatures, the physical and thermophysical properties of nanofluid
can be calculated based on the following equations [32,33]. The specific heat of nanofluids
and volume fraction of nanoparticle in the basefluid are expressed as:

¢locp), + (1 =) (ocp) ¢
Ppon + (1= ¢)py

Vi

Vv,
Vi

Conf = (6)

¢ @)

The density of nano-refrigerant, as a physical property of mixture, is introduced by:

Perf = (L= @)ps + Ppn ®)

where subscripts f and n refer to fluid and nanoparticle, respectively. Dynamic viscosity of
nanofluid is determined using the following equation:

i
Huf (l _ 4))2‘5 (9)

The viscosity of the mixture is related to the viscosity of refrigerant and the volume
fraction of nanoparticles.

Enthalpy is a critical parameter in evaporation process for calculating the thermody-
namic characteristics of the system and it depends on temperature, pressure, and state
of the fluid (Liquid-Vapor). By assuming that the nanoparticles are volatile as basefluid,
and that using the low nanoparticle concentration can lead to that the enthalpy difference
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of fluid in the case of using nanoparticle could be relevant to the temperature difference
compared to the fluid without nanoparticle. Enthalpies of various fluids are available
in different temperatures and pressures. As these data are empirical-based, there is no
available data for nano-refrigerants that causes a major gap in the calculations related to ap-
plication of nano-refrigerants. Therefore, future investigations including experimental and
numerical methods are needed to obtain accurate thermophysical properties of nanofluids
during evaporation and condensation.

2.5. Energy Consumption and Energy Efficiency of Refrigerator

The purpose of the energy consumption test is to check the energy consumption
of refrigerator under specific test conditions according to the international standard of
household refrigerating standard, refrigerator—freezers characteristics and test methods.

The energy consumption was measured for a period of 24 h after stable operating
conditions. Each test was repeated several times to ensure the reliability of the results.

The measurement of energy consumption was carried out under empty condition with
all compartments simultaneously being in operation and has been expressed in kilowatt
hours per 24 h (kWh/24 h) [30].

3. Results and Discussions

All experiments were done in the same condition to avoid the effects of external
parameters on the results. Figure 4, shows the ambient temperature was controlled during
the experiments and it followed the same pattern in all experiments. Relative humidity
also was controlled in the accepted range of the international standard.
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Figure 4. Ambient temperature and relative humidity of test room during experiments.

3.1. Stability of Nanofluid

Stability of the prepared nanofluids was investigated while keeping the samples at
similar conditions. Experiments show that the stability of nanofluid decreases with by
increasing the concentration of nanoparticles. It may happen as a result of increasing
agglomeration process. When the number of nanoparticle molecules increases in the
constant volume, the interaction of molecules within the solution causes the formation of
aggregates due to strong van der Walls forces [34].

Stability of Al,O3 and polyolester lubricant oil mixtures with 0.05%, 0.1%, and 0.3%
mass fractions is shown in Figure 5. All mixtures were stable in the first hour after
preparation. Nanofluid with 0.3%-Al,0O3 started to sediment after some hours. This
signifies the insufficient stability of the mixture to be used in the system. Sedimentation of
mixture with 0.1%-Al,O3 increased at the end of day 1 and it almost completely sedimented
on day 3. 0.05%-Al,O3 was stable even after 4 days, which proved the possibility for long-

65



Sustainability 2021, 13, 5659

term stability for the lowest loading concentration of nanoparticles. Therefore, mixtures of
0.05% and 0.1%-Al,O3 nanoparticle and lubricant oil were chosen for this experiment.

Figure 5. Stability of Al,O3-POE lubricant oil with different concentrations.

3.2. Effect of Nano-Refrigerant on Evaporator Temperature Gradient

Evaporator temperature is one of the most important parameters when investigating
the heat transfer analysis in refrigeration systems. In the evaporation process, heat is trans-
ferred from the cold region into the refrigerant medium through three steps. Heat transfer
to the liquid refrigerant before evaporation, during evaporation, and to the refrigerant va-
por after completing the evaporation right before leaving the evaporator. These three steps,
altogether, are known as refrigeration effect in the evaporator and can be calculated based
on Equation (4). According to Equations (4) and (5), the heat transfer and cooling effect in
the refrigeration system is explained based on the enthalpy difference of refrigerant fluid
between outlet and inlet of the evaporator. Based on the explanation in the nano-refrigerant
properties section regarding the enthalpy difference in refrigeration systems in the case
of using nanoparticles compared to without nanoparticles, the evaporator performance
can be analyzed based on temperature gradient of the evaporator. Higher temperature
gradient causes an increase in the cooling effect and performance of the evaporator due to
higher enthalpy difference between outlet and inlet.
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Figure 6, shows the temperature gradient of refrigerant during one on-off cycle in the
evaporator. As it can be seen, the temperature gradient of nanoparticle based refrigerant is
higher than that of the pure refrigerant (R134a). It proves that the heat transfer is improved
in the case of using nano-refrigerants. The average temperature gradient improvement
in the evaporator was 1.9 °C (equal to 20.2%) when using 0.1%-Al,O3. The possible
explanation for the increased heat transfer is the enhanced thermophysical properties of
nano-refrigerants, such as thermal conductivity due to the existence of solid nanoparticles in
the refrigerant. The experiments were conducted for 7 consecutive days in order to evaluate
the stability of nano-refrigerant. The obtained results for last day are approximately
similar to the acquired results in the initiation of the measurements which proves the
stability of nano-refrigerant during the course of experiment. Although higher temperature
gradient and consequently higher cooling effect can be achieved at higher nanoparticle
concentrations, there is a limitation due to stability problem.

T T T 1
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Time (hour)

—=—Baseline ——0.05% AI203 0.10% Al203
Figure 6. Temperature gradient in evaporator.

3.3. Energy Consumption by the Compressor

The energy consumption of each test is shown in Figures 7 and 8. Graphs show
decrements in energy consumption after adding nanoparticles to the refrigerant. Every
test was done at least three times under the same condition to ensure the repeatability of
the results. The energy consumption of the refrigerator with normal refrigerant medium
(R134a-POE) was 3.821 kWh/day. The maximum reduction in the energy consumption
was around 2.69% in the case of using 0.1%-Al,O3 nanoparticles. The other nanoparticle
concentration (0.05%-Al,03) also led to reduction in the energy consumption by 1%. The
results from previous experiments on the use of nanoparticle for refrigeration applications
showed a similar behavior in terms of energy consumption reduction [25,26]. This can
lead to significant long-term energy saving and emission reduction, as current refrigeration
methods are a main part of environmental pollutants, when considered as a national
policy [35].

Analysis of Figures 7 and 8, appeals that despite the equal off-cycles duration the
on-cycles duration was decreased after using nano-refrigerant. This means that the cooling
velocity of nano-refrigerant system was more quickly that the R134a system. Therefore,
energy consumption of the refrigerator was reduced due to the decrease in the total on-
cycles duration in a complete standard cycle.

The reason behind the decrement in the on-cycles time of the compressor can be the
enhancement in the heat transfer characteristics of the evaporator as a result of improved
thermophysical characteristics of the refrigerant after dispersing the nanoparticles in
the refrigerant.

67



Sustainability 2021, 13, 5659

350.0
300.0
250.0
200.0

150.0

Power (watt)

100.0
50.0

\
0.0 -

00:00 06:00 12:00 18:00 00:00
Time (hour)

—=—Baseline ——0.05%A1203

Figure 7. Energy consumption of refrigerator with 0.05%-Al,O3 and without nanoparticle.
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Figure 8. Energy consumption of refrigerator with 0.1%-Al,O3 and without nanoparticle.

3.4. Compressor Discharge and Suction Pressure Analysis

Figures 9 and 10, compare the compressor discharge and suction pressures of the
test-rig over one on-off cycle, respectively. These figures show that both pressures were
reduced for the case of nano-refrigerants.

68



Sustainability 2021, 13, 5659

14 4

12

10

Pdis (bar)
o0

00:14 00:43 01:12 01:40 02:09 02:38 03:07
Time (hour)

—e—Base Com. Out  ——0.05% Com.Out ——0.10% Com. Out
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Figure 10. Compressor suction pressure.

For 0.05%-Al,O3 nanoparticles, the discharge pressure of the compressor was lower
than that of the base fluid at the first minutes of compressor operating time, but it was
almost the same as the base fluid after the pressure becomes stable. It shows that small
amounts of nanoparticles do not have substantial effect on the discharge pressure, but
causes the discharge pressure to decrease at the first minutes of the on-cycle time. Nano-
refrigerant with 0.1% nanoparticles also follows the same trend as 0.05%, but at a higher
discharge pressure between those for the base fluid and 0.05% nanofluid. On the other
hand, both Figures 9 and 10 demonstrate that the operating time of compressor in cases
of using nanofluids are less than base fluid which causes the energy consumption of
the compressor to drop during a complete standard cycle. The reason might be that the
nanoparticles improve the heat transfer capability of the refrigerant and then causes the
working time of the compressor to decrease. Figure 10 also demonstrates that existence of
nanoparticles in the refrigeration system caused the suction pressure and working time of
the compressor to reduce. Decreasing the suction pressure of the compressor could be the
result of two phenomena: the increase in the pressure drop in the system which is the result

69



Sustainability 2021, 13, 5659

of increase in the viscosity of the working fluid, as well as the decrease in the discharge
pressure of the compressor.

3.5. Pressure Drop in the System

Pressure drop is one of the important parameters in fluid systems, especially when
the existing fluid is replaced by a new fluid. Figure 11 shows the pressure drop between
the outlet and inlet of the compressor. This includes the summation of the pressure drop of
the condenser, evaporator, capillary tube, and pipes in the system from inlet to the outlet of
the compressor.
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Figure 11. Total pressure drop in the system.

As can be seen, Figure 11 indicates the pressure drop in the system for base fluid and
nanofluid with different nanoparticle concentration over one on-off cycle. It shows that base
fluid and nano-refrigerant with 0.1% nanoparticle have almost the same pressure drops.
0.1% nano-refrigerant owns less pressure drop at the beginning of the cycle. However, its
pressure drop increases slightly and reaches to well above that of the baseline at the end of
the cycle. Nano-refrigerant with 0.05%-Al,O3 follows a different pattern. Apparently, the
pressure drop in the beginning of the cycle is much less than those of the other samples. It
increases slightly during the initial one-third of the cycle, reaches to the same pressure drop
as other experiments, and follows the same pattern during the rest of the cycle. Domination
of the lubricity characteristic of nanoparticle in low concentration to the increasing of
the density and viscosity due to adding solid particles to the fluid could be the reason.
Therefore, increasing the concentration of nanoparticle in the base fluid causes to increase
pressure drop and more energy consumption in each on-cycle.

4. Conclusions

A test-rig was constructed in order to evaluate the performance of a household
refrigerator-freezer using refrigerant R-134a as a working fluid. The test-rig included
instrumentation to measure the thermodynamic properties of the system. The energy
consumption test was used to evaluate energy consumption of the refrigerator. The system
was tested by the normal working fluid, as well as Al,O3 nano-refrigerant with different
nanoparticle concentrations. Finally, all data were compared to evaluate the effect of nano-
refrigerant on the thermodynamic performance, heat transfer characteristics, and energy
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efficiency of the domestic refrigerator. After the successful investigation of the measured
parameters, the following conclusions have been drawn:

e  Stability of Al;O3 nano-lubricant oil decreases by increasing the nanoparticle concen-
tration in the base fluid. Therefore, application of nanofluid with high nanoparticle
concentration is limited and alternative preparation methods and using additives are
needed to improve the stability. However, nanofluid with low nanoparticle concentra-
tion is stable for longtime;

e  Evaporator temperature gradient is increased by using nano-refrigerant. It proves that
thermodynamic behavior of fluid is improved. An increment of 20.2% occurred at the
temperature gradient of the evaporator for 0.1%-Al,O3;

e It has been found that the electricity consumption of the refrigerator was 2.69% lower
than that of the base fluid (R134a) when 0.1%-Al,O3 nanoparticle was added to the
system. This value was 1% for the case of 0.05%-Al,03;

e Itis apparent from the data that the on-cycles duration was less for nano-refrigerants,
but off-cycles duration was nearly the same for both baseline and nanofluid. It proves
that the cooling velocity in nano-refrigerant system was happened quicker than the
normal refrigerant. This can be a reason of reduction in energy consumption during a
complete standard cycle;

e  Suction and discharge pressures of the compressor decreased when using nano-
refrigerant compared to the case of pure refrigerant. The result of increasing the
pressure drop in the system due to adding nanoparticles to the fluid appears in the
suction pressure and its effects on the discharge pressure;

e  Effect of nano-refrigerant on the performance of the compressor could be a reason for
decreasing the discharge pressure of the compressor;

e  Finally, it can be concluded that using nanoparticles in a refrigeration system can
improve thermodynamic characteristics and decrease energy consumption of a do-
mestic refrigerator.

5. Recommendations

The present research investigated the performance of the domestic refrigerator using
nano-refrigerant. In fact, the feasibility of using nano-refrigerant as a refrigerant medium
in domestic refrigerator was taken into account. Utilization of nano-refrigerant requires a
wide range of information about the properties of the nanofluid such as enthalpy, viscosity,
thermal conductivity, and compatibility of the nano-refrigerant with the other material in
the system. Compatibility is very important and should be examined for all parts of the
system to ensure that there are no negative effects on the system components in the short
and long run.

The following recommendations can be suggested for the future research on the
application of nano-refrigerant: overcoming the stability problem, direct preparation
method for nano-refrigerant, measuring the fundamental properties of nano-refrigerant
especially in cases where the boiling temperature of refrigerant is lower than the ambient
temperature, the effects of using solid nanoparticles in the refrigeration system, such as
compatibility with the equipment, chemical reaction during longtime operation, solubility
of the mixture of lubricant oil, refrigerant, and nanoparticle.
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Abstract: A novel Nonlinear Consequent Part Recurrent Type-2 Fuzzy System (NCPRT2FS) is
presented for the modeling of renewable energy systems. Not only does this paper present a new
architecture of the type-2 fuzzy system (T2FS) for identification and behavior prognostication of an
experimental solar cell set and a wind turbine, but also, it introduces an exquisite technique to acquire
an optimal number of membership functions (MFs) and their corresponding rules. Using nonlinear
functions in the “Then” part of fuzzy rules, introducing a new mechanism in structure learning,
using an adaptive learning rate and performing convergence analysis of the learning algorithm are
the innovations of this paper. Another novel innovation is using optimization techniques (including
pruning fuzzy rules, initial adjustment of MFs). Next, a solar photovoltaic cell and a wind turbine
are deemed as case studies. The experimental data are exploited and the consequent yields emerge
as convincing. The root-mean-square-error (RMSE) is less than 0.006 and the number of fuzzy rules
is equal to or less than four rules, which indicates the very good performance of the presented fuzzy
neural network. Finally, the obtained model is used for the first time for a geographical area to
examine the feasibility of renewable energies.

Keywords: self-evolving; nonlinear consequent part; convergence analysis; renewable energy; type-2
fuzzy; artificial intelligence; machine learning; big data; data science; fuzzy logic; energy

1. Introduction

Renewable energy is expanding rapidly around the world. There are two main reasons
for this: one is the issue of fossil fuel pollution and the other is the high cost of fossil fuels.
Therefore, research in this field should be developed and supported. One of the power-
ful tools in data analysis and inference is computational intelligence. Neural networks
share lots of significant benefits such as landmark computation ability, parallel process-
ing and adaptation. The fuzzy systems are able to utilize the expert knowledge entitled
“if-then rules” and possess actual parameter concepts. As is well known, mathematical
modeling is a substantial preliminary step in many control issues. On the other hand,
prediction, simulation and modeling of complicated systems established upon physical
and chemical principles appear industrious in such a way that they will not yield con-
solidated mathematical forms [1]. One may suggest system identification as a solution
to cope with this problematic issue. This method puts the mathematical equations at the
access point, utilizing input-to-output data analysis to increase the efficiency of dynamic
process calculations [2]. Computational intelligence lies among the most efficient methods
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with excellent fulfillment. Many papers have recently been published on fuzzy modeling
and identification. Nonlinear system identification, founded on fuzzy and neuro-fuzzy
models, was surveyed [3]. Computational intelligence becomes extremely feasible in the
area of renewable energy [4]. For design MPPT control [5], solar water heater selection [6],
photovoltaic system failure diagnosis [7] and solar power plant location alternatives [8],
computational intelligence has been used. Neural networks were also used by Grahovac
et al. [9] in order to model and anticipate bio-ethanol generation from the intermediates
and byproducts yielded in the beet-to-sugar procedure. The productivity of the neuro-
fuzzy controller in extraction of the maximum yield by flow and energy optimization
was demonstrated by Khiareddine et al. [10] in comparison with fuzzy and algorithm
controllers. It was asserted that the neuro-fuzzy control system is worthy of being executed
in an experimental setup in Tunisia. Ocario et al. [11] testified wind power forecasts in
the Portuguese system, exploiting a novel hybrid evolutionary-adaptive methodology.
Etemadi et al. [12] predicted the wind power produced by data-driven fuzzy modeling.

Type-2 fuzzy (T2F) logic, which appears more capable and flexible in comparison
to type-1, has been investigated for the last ten years. A novel method was suggested
for general T2F clustering by Doostparast et al. [13]. Some other applications of T2F sets
can be found in textile engineering [14] and aerospace engineering [15]. Fuzzy c-means
clustering and high order cognitive map were exerted by Lu in order to model and predict
time series by T1FS [16]. T2FS identification has engrossed many researchers [17-23].
Abiyev et al. [17] took advantage of T2F clustering to organize construction of a wavelet
TSK-based T2FS. They brought forth an adaptive law to update the parameters of the
antecedent part and ultimately, they employed a gradient learning algorithm to bring
parameters of the descendant part up to date. T2FSs were applied for elicitation of fuzzy
rules and casting derogatory features off [24]. The proposed mechanism took advantage
of the self-evolution capability in such a way that identification of the integral structure
of the network would become efficient and there would be no requirement for initial
start-up of the network structure. The antecedent part and modulation parameters are
trained in order to hold parameter learning in the network true, utilizing back-propagation
errors. Tuning parameters of the resultant part, the rule-ordered Kalman filter algorithm
assists in network sharpness amelioration. The genetic algorithm [25] and PSO [26] are
among the learning mechanism of T2F neural networks which have been conversed and
scrutinized so far. Research development on T2F systems has brought about their vast
usages in various fields such as time-series prediction [27], DC motor control [28], clinical
practice guideline encryption [29], pattern recognition [30], robot control [31] and control
of nonlinear systems [32,33]. A new smart type of reduction is held forth in [34]. A T2FS is
optimized by its type-1 counterpart in [35]. The learning process was held true, merging
and extending the type-1 membership functions. Henceforth, the novel constructed T2FS
went under implementation on a programmable chip.

It is worth noting that most of the control engineers and system analyzers consider
actual systems represented in nonlinear dynamics; not only do these system outputs mo-
mentarily turn dependent upon the input, but also, they appear reliant on the delayed
inputs/outputs. This leads to a responsible consideration of both external and internal dy-
namics as a non-negligible essential remark in system modeling. Delayed inputs/outputs
have to be used in external dynamics. Another feedback, denoted as “recurrent neuron”,
has to be exerted in internal dynamics. Wu et al. [36] presented the solution of recurrent
FSs for problematic classification. Not only does this paper contribute to minimization of
the cost function utilizing a recurrent fuzzy neural network, but it also proposes maximiza-
tion of the discriminability of adopting a novel approach. Some modern recurrent fuzzy
systems are presented in [37]. This special kind of neural network in the resultant part
functions input variables in a nonlinear manner. There have hardly been any studies on
recurrent T2F systems so far. Some of them are surveyed in the following. A contributive
recurrent interval T2FS is presented in order to identify nonlinear systems in [30]. The
novel technique requires initial information about plant order and input numbers as well.
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Furthermore, the convergence issue in the learning algorithm is not taken into consider-
ation and conversed even theoretically. Juang et al. [15] put forth another contributive
recurrent T2F neural network to model dynamical systems. There is not any rule pruning,
which leads to extremely overlapped fuzzy sets. Soft switching of the nonlinear model
is superior to the linear one in order to identify nonlinear systems [1]. Consequently,
our suggested technique is established upon the nonlinear resultant part in fuzzy rules.
Rarely may one find comprehensive works on nonlinear consequent parts in fuzzy sys-
tems; however, some of the studies in this arena are shortly surveyed in the following.
A reduction in the number of rules was carried out by Moodi in a fuzzy system using
the TSK fuzzy model accompanied by a nonlinear consequent part [38]. The result of a
rule is supposed to comprise a linear term and a nonlinear one. In their attempts, the
numerous rules decrease and model precision simultaneously shows an increase at the cost
of complication abundance in the fuzzy model. The NFNN was constructed applying fuzzy
rules which merge nonlinear functions. The linear consequent part requires more rules
to achieve the desired precision during the modeling of complicated nonlinear processes.
The increasing number of rules represents the increasing number of neurons [39]. Some
recent works on T2F neural networks can be seen in many applications such as 2DOF
robot control [40], 3 parallel robots control [41], PMSM control [42], water temperature
control [43,44], environmental temperature control [45] and UAV control [46]. Tavoosi
and Badamchizadeh [47] proposed a T2S with linear “then part” for dynamic modeling.
Their pivotal contribution was rule pruning in such a way that an increase in learning
speed would be targeted to attain a reduction in the parameters in both MF parameters
and descendant parts. Tavoosi et al. [48,49] have made another contribution to the issue,
bringing forth a novel technique for analyzing the stability of one class of T2F systems.
Another analysis method for stability was also suggested by Jahangiri et al. [50]. Suratgar
and Nikravesh [51] proposed a modern technique of fuzzy linguistic modeling as well as
integral stability analysis. In [52], a fuzzy neural network has been used for wind speed
forecasting. In [53], a comparison between ANFIS and an autoregressive method for wind
speed/power prediction has been performed. In [54], a fuzzy control on the basis of a
predictive technique for a governing system has been presented. In [55], a multilayer
perceptron is combined with an adaptive fuzzy system to forecast the performance of
a wind turbine. Some disadvantages and shortcomings of the works studied above are:
lack of convergence proof, long training time (not usable in online applications), high
complexity of the model, lack of proper accuracy. On the other hand, so far, no applied
research has been conducted to use renewable energies in the Ilam region. Unfortunately,
there are no wind turbines in this area, and solar cells have also not been used on a large
scale to supply electricity to a neighborhood or even several houses. Due to this issue, the
main innovation of this paper is the feasibility study of new energy use in the Ilam region.

Therefore, this paper proposes NCPRT2FS for nonlinear system identification. The
nonlinear systems here are the same as solar cells and wind turbines. The objective of
identifying the system is to use it to specify the efficiency of the renewable energy system
in the Ilam region. The innovations of this article are as follows: (1) Using a nonlinear
consequent part in the rules. (2) Introducing a new mechanism in structure learning. (3)
Using an adaptive learning rate (different from the other studies in the literature). (4)
Convergence analysis of the T2F neural network learning algorithm. Finally, (5) New
optimization techniques (including pruning fuzzy rules, initial adjustment of MFs, etc.).
The paper is divided into six sections. Section 2 presents a short surveying of T2F logic.
Section 3 entails an inspection of the structure of NCPRT2FS. The learning convergence of
NCPRT2FS is subsumed relying upon Lyapunov theory in Appendix A. Section 4 presents
simulative identification studies, taking into account a solar photovoltaic cell and a wind
turbine as the case studies and utilizing their experimental data.
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2. A Review on T2FSs

Firstly, Zadeh brought forward type-1 fuzzy logic, and introduced the T2F logic in
order to provide solutions to some problems of type-1 ten years later. He deemed a fuzzy
set where its MF was fuzzy and entitled a “type-2 fuzzy set”. T2F sets may typically be
exploited when the determination of accurate membership function becomes arduous. For
instance, some time series predictions lie among problematic cases, which necessitate the
usage of T2F sets. Hence, exploiting T2F sets emerges as advantageous in order to describe
some system behaviors.

Certain defects with type-1 fuzzy sets were scrutinized by Castro et al. [56]. Research
on T2F systems was limited before the years of 1998. Critical and controversial questions
and debate on T2F logic and its usage commenced after publication of a book which
contained the solidarity and intersection of T2F sets [57]. Extensive information on T2FS
computation, such as defuzzification and type reduction, was suggested by Mendel [58]. A
general T2F set, A, may be specified by (1):

Jrex [ e, 2221

X

gz/xexyg(x)/x: @

where i ;(x) is a secondary MF; |, represents the primary membership of x € X, with
u € Jx; fx(u) € [0,1] denotes a secondary membership. The primary and secondary MFs
in Gaussian form are illustrated in Figure 1.
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Figure 1. Primary and secondary membership functions (MFs).

Note that the secondary MFs lead to interval T2F ones, while fx(y) =1, Vu €
Jx € [0,1]. For more explanation, a crisp number would be fuzzified in two stages
supposing that Gaussian MF was exerted to attain a T2F number. First,

a2
U1 = exp <O.5-(x(7x§/f)> (2)

where jiq is the primary membership and M and oy are the primary mean and spread of
Gaussian MF, respectively; then,

2
po(x, 1) = exp<—0.5.(’17”12(x))> 3

Om
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where 15 (x, ji1) is the secondary degree, a € [0,1] is the domain of the secondary MF for
each x, and 0y, is the secondary spread of the Gaussian MF.

Simple and special kinds of general T2F sets change the same as the interval T2F
one. Figure 2 depicts two interval T2F sets. A fuzzy set specified by a Gaussian MF by
mean/width m/[oy, 03] is demonstrated in Figure 2a. Two T2F sets are given in Figure
2. Figure 2b illustrates a fuzzy set with an MF of Gaussian form encompassing a distinct
standard deviation of 0. However, the mean value is quite uncertain and adopts values in
the interval of [my, m;].

°
T

Degree of Membership

Figure 2. (a) Uncertainty in width and (b) uncertainty in center.

An MF of Gaussian form with determined ¢ and uncertain m, as seen in Figure 2a, is
applied through all of this paper.

Type-2 Fuzzy Systems

One may gain a certain number by defuzzifying a T1FS [59], whereas T2FS yields a
T2F set. This is the reason one has to endeavor to succeed in the reduction in fuzzy set type
from two to one in a process entitled “Type Reduction”. The process is a challenging issue
of high significance in T2F systems [60]. Figure 3 displays the structure of a T2F system.

.

A

K

fuzzifier
Fuzzy-T1
utput fuzzy set

L

Fuzzy-T2

Figure 3. The structure of a T2F system.

As can be easily grasped through Figure 4, construction of the T2FS will be the same
as the organization of type-1 if the “Type-Reduction” block is neglected.
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Figure 4. The structure of the proposed NCPRT2FS.

3. The Proposed NCPRT2FS

Section 3 tries to consolidate the nonlinear descendant or resultant part of recurrent
T2F systems into a formula. Taking into account two informative and useful points that are
mentioned later, the descriptive equation of (1) establishes the kth rule:

1)  TSK-based T2FSs, usually yield a polynomial constructive of the inputs;
2)  The outputs are represented by T1F sets [61].

This study recommends a novel NCPRT2FS, of which its total construction is illus-
trated in Figure 4. As one may see, the system clearly embodies seven layers. Generally
speaking, the kth rule would be demonstrated in the following terms in a first-order T2FS
with a TSK model by M rules and 7 inputs:

Rk: if x1is g’{ and . ..and x, is g’; then Y = Cro + Cr1x1 + ... + Cp Xy

where k = 1,..., M is the number of rules, x;(i = 1,...,n) are inputs, and ¥ is the output
of the kth rule. ¥y is an interval T1F set and gi‘ are antecedent sets; Cy; € [c; — Ski, Cki + Sk,i
represent consequent sets, where ¢y ; represents the center of Cy ; and s ; is the spread of Cy ;.
In this paper, the nonlinear consequent part is taken into account. The resulting kth
rule in NCPRT2FS, which has two antecedent variables and three outputs with delayed
time shift ranging from one unit to three in the descendant part, is demonstrated in (2):

RF:if x1is AX and x;is AL then

V= Cro+ Crax1 + Craxa + Cay(t — 1) + Craxixo + Crsxry(t — 1) + Crexay(t — 1)

+ Crzx? + Crsxs + Croy?(t — 1) + Caoxixoy(t — 1) %)

One may make an extension to fuzzy rule (2) considering # antecedent variables and
time-delayed outputs in the descendant part with a delaying shift in time ranging from
one unit to m units. n may be designed remarking nonlinearity degree and complexity of
the unknown system, which is going to be identified next.

The layers’ details are as:

Layer 0: This layer denotes the inputs.
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Layer 1: The outputs of fuzzification are written as:

1 2
XiT My,

gy (x,-, [Uk,illmk,i]> =BT 5)

2
05(1 ’Z",qk/" )

(6)

where my; € [1m kir 2 ki] and 0y ; are the uncertain mean and spread for kth rule and
ith input.
Layer 2: The T-norm and S-norm are computed as:

2 2 -
Hk,i (Xi, [Uk,i, mk,z‘]) =e

e i(xi) = Ui () 2pei(xi), k=12, ,M,i=12,...,n @)

Fii(x) = i () + i) = oy (x0) ®)
Layer 3: The rule firings ( ]:k and fk) are:

n

f=ﬂ%;?=ﬂ% ©)

i=1

Layer 4: The left-most/right-most firing are obtained as:

7k k 7k k
L TF +uff W +ulf

- . fk— 10
1 w;("!‘ﬂé( r ( )

W + wk

where w are adjustable weights.
Layer 5: The rule left/right firings are:

YF = o+ ckax1 + ez + cay(t— 1) + craxixa + sy (t— 1)
+epexoy(t—1) + Ck,7x% + ck,8x§ +croy?(t—1)
t+ekox12y(t — 1) = sgo — sp1lx1| — skalxa| — spaly(t —1)] (11)
—spal¥1%a| = spslxy(t — )] = sgelxay(t —1)] = sgzxg
—5k8%3 — Soy*(t — 1) — sprox12y(t — 1)

YE = o+ ci1x1 + craxa + cay(t — 1) + craxixa + sy (t— 1)
tepexay(t—1) + cprx? + sl + croy®(t— 1)
texp0x1%2y (t — 1) + sg0 + Sg1lx1] + skalxa| + spaly(t — 1) (12)
Fspalvinal + spslxiy(t— 1))+ spelxay(t — 1] + spzx7
+51,8%3 + Skoy>(t — 1) + s 10x102y(t — 1)

Layer 6: §; and 7, are:

o T fiu 13
Yr= ZM fk (13)
k=171
L Y 14
R "
k=1Jr
Layer 7: The output is:
ity
§=45" (15)

In this article, structure learning is realized by exploiting T2F clustering. As one knows,
an efficacious method is suggested to procreate fuzzy rules in real-time and decrease
computations in antecedent part in structure optimization [62]. Structure learning appears
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as a great assistance in the simplification of T2FS, taking advantage of the reduction in
fuzzy rules. Scrutinizing more, its duty is not only the production of novel membership but
also pruning additional MFs and rules. In the input layer, a rule geometrically represents
a cluster. Its firing degree could be taken into account as the degree of input data that
belongs to a cluster. The center of the firing degree in NCPRT2FS is calculated by (16) since
it is an interval. -
+
i-ttt (16

Additionally, for generation of a new MEF, find:

Bt P
Hp= g i=12.n 17)

. . =
For every incoming data x = {xy,...,x,}, calculate:

I= arg1 1}'{nax( )fk (18)

For newly generated rules:

I = arg max

L i=12...n 19
<ranm A 1)

where M(t) is the existing number of rules at time f. If I < @y, the system generates a new
rule, where @, € (01) is a threshold that is defined [63]. If I > p,wherep € [01]isa
previously defined threshold, then use the existing fuzzy set A as the antecedent part of
the new rule in input variable i. Otherwise, one could produce a novel MF in input variable
i and hold the equation, k;(t + 1) = k;(t) + 1, true. The number of MFs is defined by the
parameter p in each input variable. Fuzzy clustering is a technique to structure a fuzzy
model [64]. A new T2F clustering technique, which is a development of Krishnapuram and
Keller Possibilistic C-Mean (PCM) [65], is suggested and described by:

c N c N
Jm(x,11,¢) =min|Y Y i Dij + Yo Y (1= )" (20)
i=1j=1 i=1 j=1
N
0< Zﬁ” <N
S.T: =1 1)

i € [0,1] Vi, j
maxji;j >0 Vj

where i;; is type-2 MF in the jt" data for the i cluster. Moreover, the symbols Djj, ¢, and
N are the Euclidean distance of the j data in the i cluster center, clusters and input
data numbers, respectively. ; is also a positive number. D;; has to be as small as possible
as the first term. On the other hand, the memberships in a cluster have to be greater as
much as possible. They have to stay in the interval of [0, 1] and their sum is confined to
become smaller than the number of input data. Equation (21) appears as the descriptive
term. That #; corresponds to ith cluster, and is of the order of Dj;, is greatly welcomed [65].
The distance to the cluster’s center must be as low as possible (first term). It is desirable
that 7; relate to it" cluster and be of the order of D;; [63].

N o~
Lj=1 Hj Dy

:72 — =1,...,¢c
j=1 Hij
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Using (20), the optimal values of the centers of the clusters are achieved. The initial
my; and oy ; for the k;(t + 1) th interval T2F set are:

My € [U,‘ —0.1v;, v; + 0.12]1'}
i+ 2my;

Ui — 5

Tk(t+1)i = P

where v; is the optimal value of the cluster’s center; B > 0 denotes the degree of overlap
between 2 fuzzy sets. In this study, § is considered to be 0.5 [61]. The parameters of the
consequent part are initialized as:

[cko = skosCko+ skl = [yd—01, yd+01] , k=12,....M (22)

where yd is the target signal for input ? = {x1,...,x,}. All the other consequent
parameters are zero.

By repeating the above process for each training dataset, new rules are created one
after the other until NCPRT2FS is finally complete. The network output is calculated for
each input applied. The calculated output is then compared to the target to obtain an error.
Assume that the input-output data pair { (xp : t,,) } Vp =1,...,q, where p represents the
data numbers and x/t is the input/output, respectively. The NCPRT2FS output error can be
expressed as follows:

ep =ty —1p, (23)
1 1 L \2
Ep= Q"fa =5ty —9p) (24)
E=)E (25)
p=1

The gradient-based learning algorithm is used for updating the parameters. The
mathematical relation of the gradient-based update algorithm is as follows.

JE
Whew = Wora — WW
See Appendix A for more details on the parameter update formulation. We choose
the initial # as:
1

0

N=———"—"
max#

After all the data have been applied, the variable learning rate is determined by the
following form.

if RMSE(_>1 o (1) =09x7(l—1)

{ if RIEAAF/;I;E(I(—I)I) <1l = 5)=nl-1)
RMSE (I-1) =

where [ is the number of iterations. The RMSE formula is as follows:
1 Y N2
RMSE =, | & Y (ty—1p)

where t, and §J, are actual and model (NCPRT2FS) outputs at p moment, respectively. The
total number of data is denoted by N.
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4. Simulation Results

Two real renewable energy systems are used for identification. The structure is shown
in Figure 5.

A

Nonlinear System —>

Figure 5. The structure of the system and the NCPRT2FS-based identifier.

The inputs to the NCPRT2FS-based identifier are the main input and delayed system
output. The parameters of the NCPRT2FS structure should be adjusted to minimize plant
output yd and identification yield 7 for all input values of x.

Example 1: Real data of a 660kw wind turbine (see Figure 6) have been taken from
the Iran Renewable Energy Organization (SUNA) (http://www.suna.org.ir/en/home/
1 March 2021). The model of the wind turbine is S47-660kw, made by VESTAS (Denmark),
and information is given in Table 1.

Figure 6. Manjil and Rudbar Wind Farm.
In this example, u(k), k = 1,...,365 is wind speed that is fed to the wind turbine

system and obtains the 365 samples of y(k), which is the output power of the wind
turbine. The other conditions are the same as example 1. Figure 7 exhibits the identification
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Power (100kw)

Wind Speed (m/s)

performance of the NCPRT2FS. Here, the output (solid line) and the NCPRT2FS identifier

output (dashed line) are shown.

Table 1. Information for Example 1.

Cut-in wind speed: 4m/s
Survival wind speed: 60m/s
Rated wind speed: 15m/s
Cut-out wind speed: 25m/s
Rotor: Generator:
Number of blades: 3 Type: Asynchronous
Swept area: 1.735 m? Number: 1.0
Type: 22.90 Grid connection: Thyristor
Rotor speed, max: 28.50 U/min
Tipspeed: 70.10m/s Voltage: 400 V
Diameter: 47 m Speed, max: 1.650 U/min
Material: GFK Grid frequency: 50 Hz

Time (day)

4 5 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350
Time (day)
Figure 7. Identification performance of the NCPRT2FS for wind turbine.
The trained NCPRT2FS is used to calculate wind power in a place called Ilam (A city
in the west of the Islamic Republic of Iran). Figure 8 shows the wind speed of Ilam for a
year. Figure 9 shows the predicted wind power in Ilam.
1 0 T T T T T T T
8 - -
6
4 = —
2 1 1 1 1 1 1 ]
0 50 100 150 200 250 300 350

Figure 8. Wind speed of a place in Ilam for a year.
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Figure 9. Predicted wind power of a place in Ilam for a year.
The final values of the parameters of NCPRT2FS are shown in Table 2.
Table 2. The final values of NCPRT2FS parameters.
tmij 2mij %
Ly =3.62 2y = 4.32 o1 = 0.38
u(k) Ly =613 2y = 7.02 01 =1.10
Antecedent Tpig = 8.19 2151 = 9.51 731 = 0.89
parameters
Ly, =493 2y = 5.12 o1p = 021
Uiy =534 2119y = 5.66 09y = 0.09
yleD Upsy = 5.81 214, = 5.98 o3 = 0.36
Ty = 6.11 2y = 6.48 oy =0.18
w; =192 wi =150 @, = 1.00 wi = 0.63
fourth layer w2 = 1.66 w? =0.92 @ =071 w? = 0.06
adaptive — 3 — 3
weights w; = 0.80 w; =0.70 w; = 0.56 wy =043
wr =1.87 wt = 0.94 @} =085 wi =077
Rule 1 Rule 2 Rule 3 Rule 4 Rule 1 Rule 2 Rule 3 Rule 4
51,0 = 0.40 $20 = 0.33 53,0 = 0.27 S40 = 0.52 C10 = 1.00 0= 1.40 30 = 1.00 C40 = 1.40
S]/] =0.55 52/1 =0.39 53/1 =048 54/1 =043 61,1 =1.10 62,1 =1.00 C3,1 =1.00 C4,1 =1.00
S12 = 1.00 S22 = 1.00 532 = 1.00 S42 = 1.00 C12 = 1.00 2= 1.32 32 = 0.81 C42 = 0.93
513 = 0.43 S23 = 0.39 533 = 0.65 S43 = 0.90 €13 = 1.00 €3 = 1.00 C33 = 1.65 C43 = 1.82
consequent

parameters 514 = 0.62 sp4 = 1.00 s34 = 1.00 s44 = 1.00 c14 = 1.00 c4 = 1.09 c34 = 1.00 c44 = 1.00
s15 = 0.87 sp5 = 0.10 s35 = 1.00 s45 = 1.00 c15 =110 c5 = 1.00 c35 = 1.55 c45 =190
s1,6 = 1.00 526 = 1.00 536 = 1.00 s46 = 1.00 c1,6 = 1.00 06 = 1.00 c36 = 1.00 c46 = 1.00
s1,7 = 0.69 sp7 = 0.66 s37 = 0.31 s47 = 0.06 c1,7 = 0.80 c7 =072 c37 = 0.67 c47 = 0.81
s1,8 = 0.96 sp8 = 0.11 s38 = 0.54 sgg = 0.21 c1,8 = 1.10 o8 = 1.00 c38 = 0.92 c4g = 0.59
s19 = 0.30 sp9 = 0.32 539 = 0.36 s49 = 0.98 c19 = 0.95 09 =077 39 =100 cg9 = 1.00
51,10 =035 5510 =031 5370 =054 5490 =050 1,50 =1.00 «cp10=044 c370=0.64 c410=0.89

Example 2: A real solar cell system is shown in Figure 10.

In this example, u(k), k =1,...,600 is solar radiation that is fed to the real solar cell
system and 600 samples of y(k) are obtained. The other conditions are the same as in
examples 1 and 2. Figure 11 shows the identification performance of the NCPRT2FS for
three solar radiations. Here, the plant output (solid line) and the NCPRT2FS identifier
output (dashed line) are shown.
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Figure 11. Identification results of the NCPRT2FS for solar cell.
After structure learning, for NCPRT2FS, three rules are generated and the RMSE value
for the NCPRT2FS and IT2-TSK-FNN for the training and test are shown in Table 3. The
final parameters are given in Table 3.
Table 3. The final values of NCPRT2FS parameters.
i 2mij %

1m11 =251 2mn =332 o1 = 43

Antecedent u(k) Yy = 598 2my = 615 oy =12

parameters lmz =798 2mz1 = 949 o3 =211

1m12 =69 211412 =75 0 = 11

y(k-l) 111122 =82 211122 =89 o =5
111432 =93 2)1132 =97 o3 =3
1 1_ =l 1_

fourth layer w, = 0.20 w, = 0.06 wy = 0.12 wy = 0.09

adaptive % = 1.80 w? =1.00 w7 =142 w} = 0.98

weights w3 = 0.57 w? =021 @ =193 w} =110
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Table 3. Cont.

Rule 1 Rule 2 Rule 3 Rule 1 Rule 2 Rule 3
51,0 = 0.10 $20 = 0.84 53,0 = 1.00 €10 = 0.56 00 = 1.00 3,0 = 1.22
511 = 0.32 S21 = 0.39 531 = 0.37 11 = 0.94 1= 1.60 31 = 1.00
S12 = 1.00 S22 = 1.00 532 = 0.61 €12 = 1.00 2= 1.00 32 = 1.00
consequent 513 = 0.22 523 = 1.20 533 = 0.50 €13 = 1.00 3 = 1.77 33 = 1.20
parameters S14 = 0.10 S24 = 0.42 534 = 1.00 €14 = 1.61 4= 0.60 34 = 1.63
515 = 0.47 S5 = 1.00 S35 = 1.00 15 = 1.30 G5 = 1.00 35 = 2.00
516 = 0.10 S26 = 1.00 536 = 1.00 €16 = 1.00 06 = 1.11 36 = 1.00
51/7 =120 52,7 =1.00 53,7 =0.19 61,7 =1.10 02,7 =150 C3/7 =0.88
518 = 1.00 S28 = 0.36 538 = 0.69 €18 = 1.60 g = 0.89 38 = 0.91
519 = 1.00 S29 = 0.28 539 = 0.11 €19 = 1.53 €29 = 0.95 39 = 0.48
51,10 = 0.55 52,10 = 0.35 53,10 = 0.50 1,10 = 0.88 010 = 1.00 €310 = 1.00
The trained NCPRT2FS is used to calculate the solar power of llam. Figure 12 shows
the solar radiation of Ilam for a year. Figure 13 shows the predicted solar power in Ilam.
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Figure 12. Solar radiation of Ilam.
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Figure 13. Predicted solar power in Ilam for a year.

Table 4. presents the comparison of our proposed method with another method
(method of [46]).
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Table 4. Comparison between results of the proposed method and the method of [46].

Method of [46] Proposed NCPRT2FS
Example - "
Rules Epochs Run Time (s) RMSE Rules Epochs Run Time (s) RMSE
1 4 34 4 0.0159 4 31 6 0.0057
2 5 27 4 0.00759 3 39 7 0.0013

Simulations verify that the presented NCPRT2FS has high performances in function
approximation and system identification. Table 4 shows that the number of rules of the
proposed NCPRT2FS is almost less than the method of [53]; accuracy of identification is
better than [53], but the training time in 10 runs (MATLAB 2011a; Dual CPU T3200 @ 2.00;
RAM: 2.00 GB; GHz 2.00 GHz) is more than [53]. The references [23,46] presented two
different T2F neural structures. They have also been used and evaluated only to identify
some theory systems. In the present paper, however, the T2F neural network structure is
different from references [23] and [53] and several experimental energy systems have been
used for modeling.

5. Conclusions

In this paper, a novel Nonlinear Consequent Part Recurrent T2FS (NCPRT2FS) for
identification and prediction of renewable energy systems was proposed. The nonlinear
consequent part helps to better model highly nonlinear systems. Recurrent structure is a
useful choice for the identification of dynamical systems. The self-evolving structure helps
to obtain a simpler structure of the NCPRT2FS by ending up with a minimum number of
fuzzy sets and fuzzy rules in the end. Simulations showed that the NCPRT2FS based on the
backpropagation algorithm and adaptive optimization rate performs better than IT2-TSK-
FNN [53] in identification. An S47-660 kw wind turbine (VESTAS company Denmark) and
a solar cell were selected as case studies. After data gathering, the proposed method was
finally used with the experimental data for the purpose of identification. The RMSE was
less than 0.006 and the number of fuzzy rules was equal and less than 4 rules; therefore, the
results easily demonstrated the remarkable capability of the NCPRT2FS developed in the
paper. In order to continue the work and look to the future, we can use the evolutionary
algorithms as a complement to the proposed method for the development of the fuzzy
neural network (to increase accuracy, increase convergence, etc.). Different case studies
(types of solar cells, types of wind turbines, etc.) should be identified and the appropriate
renewable system can be extracted for each geographical location.
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Appendix A
To update the consequent part parameters, Equations (A1)—(A20) are used.
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new old flk f?z{ 2
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The learning rate is indicated by 7.
To update the left and right weights, Equations (A21)-(A24) are used.
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Finally, the equations for updating the antecedent parameters can be described as follows:
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Convergence Analysis of Learning Algorithm

The Lyapunov function is used to guarantee learning algorithm convergence. The
Lyapunov function is defined as

Vo) = Epk) = 380 = 2(tp(k) — (k) (A34)
Equation (A35) shows the Lyapunov function changes.
AVp(k) = Vplkt1) — Vp(k) = 2 (B(k+1) — (k) (A35)
Next, the moment error is calculated from Equation (A36).

dep(k) 1"
S } AW (A36)

ep(k+1) = ep(k) + Aey(k) = ep(K) + [

In Equation (A36), AW is parameter changing, where W = [U’kli, L kir 2m kir Ck,ir sk,,‘} .
In Equation (A37), the general form of gradient-based updating is presented.

W(k+1) = W(k) + AW(K) = W(k) + ;7-< aEan/k)) (A37)

where - w
aw — W) o (A38)

Equation (A35) can be rewritten as Equation (A39).
(k) = 3(Ak+1) — E®) (A39)

[(ep(k+1) — ep(k))] - [(ep(k+1) +ep(k))]

N\H

= 286y (k) [2(ep (K)) + Aep(K)]
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2|39(k) |? 1 (agk)|?
=1 (ep(k)) —g( ). {12’7"31(,\/)
In order for AV, (k) <0, then:
2
o<p< —— (A40)
! max| %4 ‘2
W

If (A40) holds for every parameter W = [U’k,i, T kis 2m ki Ch,is skr,‘} , then the algorithm
is definitely convergent.
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Abstract: The significance of accurate heating load (HL) approximation is the primary motivation of
this research to distinguish the most efficient predictive model among several neural-metaheuristic
models. The proposed models are formulated through synthesizing a multi-layer perceptron network
(MLP) with ant lion optimization (ALO), biogeography-based optimization (BBO), the dragonfly
algorithm (DA), evolutionary strategy (ES), invasive weed optimization (IWO), and league champion
optimization (LCA) hybrid algorithms. Each ensemble is optimized in terms of the operating
population. Accordingly, the ALO-MLP, BBO-MLP, DA-MLP, ES-MLP, IWO-MLP, and LCA-MLP
presented their best performance for population sizes of 350, 400, 200, 500, 50, and 300, respectively.
The comparison was carried out by implementing a ranking system. Based on the obtained overall
scores (OSs), the BBO (OS = 36) featured as the most capable optimization technique, followed
by ALO (OS = 27) and ES (OS = 20). Due to the efficient performance of these algorithms, the
corresponding MLPs can be promising substitutes for traditional methods used for HL analysis.

Keywords: energy-efficient building; heating load; neural computing; biogeography-based opti-
mization; big data; machine learning; artificial intelligence; deep learning; building energy; smart
buildings, IoT; smart city

1. Introduction

Energy consumption analysis of buildings is a very significant task, due to the high
rate of energy consumed in this sector [1]. Heating, ventilating, and air conditioning
(HVAC) [2] is a state-of-the-art system that controls the heating load (HL) and cooling load
(CL) in the buildings. Considering the crucial importance of the subject, the approaches
such as regression analysis [3,4] and time series [5] cannot satisfy the accuracy required for
estimating these parameters. As well as this, other difficulties such as the non-linearity of
the problem have driven many scholars to improve the flexibility of intelligent models. As
discussed by many scholars, along with well-known models (e.g., decision-making [6-9]),
the artificial intelligence techniques have provided a high capability in the estimation of
non-linear and intricate parameters [10-12]. Plenty of scientific efforts (e.g., concerning
environmental subjects [13-23], gas consumption modeling [24,25], sustainable devel-
opments [26], pan evaporation and soil precipitation simulation [26-31], energy-related
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estimations [32-39], water supply assessment [16,40-49], computer vision and visual pro-
cessing [50-57], building and structural design analysis [8,58-61], behavior of structural
components [60,62-64], measurement techniques [43,50,65,66], climatic-related calcula-
tions [64], and analysis that deals with feature selection [64,67-72]) have been associated
with these computational technologies. In an artificial neural network (ANN), for example,
a mapping process between the input and target parameters is carried out by mimicking
the neural-based method established in the human brain [73-76]. Different structures (and
consequently diverse types) of ANNs have been designed for specific objectives (e.g., multi-
layer perceptron (MLP) [77-79]). Going into deep processors such as ANN, a so-called
method “deep learning” emerges, which has successfully modeled various phenomena
and parameters [8,80-82]. Diagnostic problem and medical sciences, for instance, are two
subjects which have been nicely solved by extreme machine learning approaches [83-86].

Up to now, diverse notions of soft computing techniques (e.g., support vector machine
(SVM) and artificial neural network (ANN)) have been effectively used for energy consump-
tion modeling [87-91]. Roy, et al. [92] proposed multivariate adaptive regression splines
(MARS) coupled with an extreme learning machine (ELM) for predicting the HL and CL.
They used the first model to perform importance analysis of the parameters to feed the
second model. Likewise, Sholahudin and Han [93] used an ANN along with the Taguchi
method for investigating the effect of the input factors on the HL. The feasibility of a ran-
dom forest predictive method was investigated by Tsanas and Xifara [94] and Gao et al. [95]
for both HL and CL factors. The latter reference is a comprehensive comparative study
that compares the simulation capability of sixteen machine learning models (e.g., elastic
net, radial basis function regression). This study also confirmed the high efficiency of
alternating model tree and rules decision table models. Chou and Bui [91] proposed the
combination of ANN and SVM as a proper model for new designs of energy-conserving
buildings. The applicability of the neuro-fuzzy approach (ANFIS) for predicting the HL
and CL was explored by Nilashi et al. [96]. They used expectation-maximization and
principal component analysis along with the ANFIS, respectively, for clustering objective
and removing noise. Referring to obtained values of mean absolute error (MAE) (0.16 and
0.52 for the HL and CL predictions, respectively), they concluded that the proposed model
is accurate enough for this aim.

In addition, studies in different fields have shown that utilizing metaheuristic algo-
rithms is an effective idea for improving the accuracy of typical predictors [97,98]. For
energy-efficient buildings, Moayedi et al. [99] improved the ANN for forecasting the CL by
benefiting from the foraging/social behavior of ants, Harris hawks, and elephant (i.e., the
EHO algorithm). The results (e.g., the correlation values over 85%) show that the applied
algorithms can satisfactorily handle the optimization task. An EHO-based CL predictive
formula was also presented. Amar and Zeraibi [100] used the firefly algorithm to optimize
the SVM (parameters) for HL modeling in district heating systems. Their model outper-
formed genetic programming and ANN. Moayedi et al. [99] employed a grasshopper
optimization algorithm (GOA) and grey wolf optimization (GWO) algorithms for enhanc-
ing the HL prediction of ANN. A significant decrease in the MEA calculated for the ANN
(from 2.0830 to 1.7373 and 1.6514, respectively, by incorporation of the GOA and GWO)
means that the algorithms can build a more reliable ANN network compared to the typical
back-propagation one. In addition, other studies such as [26] outlined the competency of
such algorithms in the same fields. As a visible gap of knowledge, despite the variety of
studies that have mainly focused on broadly used metaheuristic techniques [101], there are
still some algorithms that need to be evaluated. Therefore, assessing the performance of six
novel optimization techniques, namely ant lion optimization (ALO), biogeography-based
optimization (BBO), many-objective sizing optimization [102-104], data-driven robust
optimization [35,105], the dragonfly algorithm (DA), evolutionary strategy (ES), invasive
weed optimization (IWO), and league champion optimization (LCA), is the central aim of
the present paper.

98



Sustainability 2021, 13, 3198

2. Data Provision and Analysis

Providing a reliable dataset is an essential step in intelligent model implementation.
These data are used in two stages. Firstly, the significant share is analyzed by the models to
infer the relationship between the intended factors and independent variables. The rests
are then used to represent unseen conditions of the problem and the performance of the
model for stranger data.

In this article, the used dataset was downloaded from a freely available data repository
(http:/ /archive.ics.uci.edu/mL/datasets/Energy+efficiency, accessed on 20 December
2020) based on a study by Tsanas and Xifara [94]. They analyzed 768 residential buildings
with different geometries using Ecotect software [106] to obtain the HL and CL as the out-
puts. They set the information of eight independent factors, namely relative compactness
(RC), overall height (OH), surface area (SA), orientation, wall area (WA), glazing area (GA),
roof area (RA), and glazing area distribution (GAD). Figure 1 shows the distribution of
these factors versus the HL, which we aim to predict in this study. Based on plenty of
previous studies [97], a random division process was carried out to specify 538 samples
(i.e., 70% of the whole) and 230 rows (i.e., 30% of the whole) to the training and testing
sets, respectively.

3. Methodology

The overall methodology used in this study is shown in Figure 2.

3.1. Artificial Neural Network

ANN s are popular data mining techniques based on the biological mechanism of the
neural network [107]. ANNSs are able to deal with highly complicated engineering simu-
lations because of the non-linear analysis option [108,109]. This approach distinguishes
itself by different notions including multi-layer perceptron (MLP) [110], radial basis func-
tion [111], and general regression [112]. In this study, an MLP network was selected as the
basic method. Figure 3 depicts the MLP general structure predicting M output variables
by taking into consideration L input factors. It is important to note that in an MLP, more
than one hidden layer can be sandwiched between two other layers. However, theoretical
studies have demonstrated the efficiency of unique hidden layer MLPs for any problem.

ANNSs normally benefit from the training scheme of Levenberg-Marquardt (LM), an
approximation to the method of Newton [113] (Equation (1)). The LM is known to be quicker
and enjoy more power compared to conventional gradient descent technique [114,115].

Ax = — [VZ V(g)} UV 1)

where VV(x) and V? V(x) are the gradient and the Hessian matrix, respectively. The
following equation expresses V(x) as a sum of squares function:

N
Vix) = YA 0) &

Next, let J(x) be the Jacobean matrix, then it can be written:

VV(x) =J(x) e(x)

V2V(x) = JT(x)](x) +S(x),

N (3)
S(x) = ¥ e VZei(x)
i=1

Equation (1) can be written as follows when S(x) ~ 0:

Ax = [JT6)10] 7T () elx) @
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Lastly, Equation (5) presents the central equation of the LM, based on the Gauss—
Newton method.

Ax = [T )70 +pl] 1T e(x) ©)

Remarkably, high and low values of y turn this algorithm to steepest descent (with
step 1/p) and Gauss-Newton, respectively.
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Figure 1. The distribution of the heating load (HL) versus environmental factors: (a) relative compactness, (b) overall height,
(c) surface area, (d) orientation, (e) wall area, (f) glazing area, (g) roof area, and (h) glazing area distribution.

100



Sustainability 2021, 13, 3198

Literature

data

1 Data provision [

| ReofAw | or | Guadngdvea

[nirn

|| Overall teight | | WallArea |

Glazing Area Distribution | | Surface Area |

--------- I Model impl and op I
Metaheuristic Optimization
Algorithms
MLP —
Neural
Network
I
| Prediction and accuracy

Figure 2. The general path of the study.

Figure 3. Multi-layer perceptron (MLP) general structure predicting M output variables.

3.2. Swarm-Based Metaheuristic Ideas

Optimization algorithms which have recently been very popular for enhancing the
performance of predictive models (e.g., ANNSs) are based on swarm functioning of a group
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of corresponding individuals. They are mostly inspired by nature and seek an optimal
global solution for a defined problem by analyzing the relationship between the existing
parameters. Coupled with an ANN, these optimizers seek to adjust the biases and weights.
This process is better explained in the next section. Here, the overall idea of the intended
algorithms is briefly described.

Ant lion optimization (Mirjalili [116]) is a recently-developed hybrid model that mim-
ics the herding behavior of ant lions. It comprises different stages in which the prey
(usually an ant) gets trapped and hunted in a hole by a random walk. The capability of the
individuals is evaluated by a “roulette wheel selection” function. Biogeography-based op-
timization is based on two items: (a) the information concerning biogeography and (b) the
way different species are distributed. This algorithm was designed by Simon [117] and
was used by Mirjalili, et al. [118] to train an MLP network. In the BBO, there are migration
and mutation steps and the population is made up of “habits”. Note that these habits are
evaluated by two indices called the habitat suitability index and suitability index variable.
The dragonfly algorithm is another population-based optimization technique proposed by
Mirjalili [119]. Based on the Reynolds swarm intelligence, the DA draws on three stages,
namely separation, alignment, and cohesion. The name evolutionary strategy implies a
stochastic search approach proposed by Schwefel [120]. In the ES, two operators of selection
and mutation act during the evolution and adaption stages. The population is produced
with offspring variables and the offspring’s modality is compared to that of the parents.
Inspired by the colonizing behavior of weeds, invasive weed optimization was presented
by Mehrabian and Lucas [121]. The optimal solution of this algorithm is the most suitable
site for the plants to grow and reproduce. The algorithm begins with the initialization
and after reproducing, it runs the stages called spatial dispersal and competitive exclusion,
and gets stopped after meeting with the termination measures. Last but not least, league
champion optimization is suggested by Kashan [122], mimicking sporting competitions
in leagues. The LCA tries to find the best-fitted solution to the problem by implementing
an artificial league including schedule programming and determining the winner/looser
teams. More information about the mentioned algorithms (e.g., mathematical relationships)
was detailed in previous studies (for the ALO [123,124], BBO [125], DA [126], ES [127],
IWO [128], and LCA [129,130]).

3.3. Hybridization Process and Sensitivity Analysis

In order to develop the proposed neural-metaheuristic ensembles, the algorithms
should be hybridized with the ANN. To this end, utilizing the provided data, the general
equation of an MLP neural network is yielded to the ALO, BBO, DA, ES, IWO, and LCA as
the problem function. But before that, it is required to determine the most suitable structure
(i.e., the number of neurons) of it. As explained previously, the number of neurons in the
first and the last layers is equal to the number of input and output variables, respectively.
Hence, only the number of hidden neurons can be varied. Based on a trial-and-error process,
it was set to five. Therefore, the network architecture was distinguished as 8 x 5 x 1.

Each ensemble was executed within 1000 repetitions, where the mean square error (MSE)
was defined to measure the performance error during them (objective function = MSE). For
greater reliability of the results, a sensitivity analysis was carried out in this part. Eleven
different population sizes, including 25, 50, 100, 150, 200, 250, 300, 350, 400, 450, and 500,
were tested for each model, and the best-fitted complexity was used to predict the HL
in the following. The convergence curves belonging to elite networks of each model are
presented in Figure 4. According to these charts, for all algorithms, the error is chiefly
reduced within the first half of the iterations. Test best population sizes are determined
350, 400, 200, 500, 50, and 300 for the ALO-MLP, BBO-MLP, DA-MLP, ES-MLP, INO-MLP,
and LCA-MLP, respectively.
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Figure 4. The sensitivity analysis accomplished for determining the best population size of the (a) ant lion optimization
(ALO)-MLP, (b) biogeography-based optimization (BBO)-MLP, (c) dragonfly algorithm (DA)-MLP, (d) evolutionary strategy
(ES)-MLP, (e) invasive weed optimization (IWO)-MLP, and (f) league champion optimization (LCA)-MLP.

4. Results and Discussion
4.1. Statistical Accuracy Assessment

Three broadly used criteria are applied to measure the prediction accuracy of the
implemented models by reporting the error and correlation of the results. For this purpose,
MAE (along with the RMSE) and the coefficient of determination (R?) are used. These
criteria are applied to the data belonging to the training and testing groups to demonstrate
the qualities of learning and prediction, respectively. Assuming G as the total number of
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samples, and J; opserved, @0d J; predicted @s the real and forecasted HL values, Equations (6)—(8)
formulate the RMSE, MAE, and R2.

2
1 G
RMSE — J 2% Uhsns ~ ) ©
i=1
1 G
MAE = G Y ivtseroat = Epredicted 7
I=1

G 2
5 i; (]ipredzcted - ]iobsuyvud)
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®)
2

G _
U fobserved Jobserved)

i=1

where Jypserved denotes the mean of J; ypserved Values.

4.2. Training Results

The results of elite structures of each model are evaluated in this section. Figure 5
shows the training results. In this regard, the error (=real HL — forecasted HL) is calculated
and marked for all 538 samples. In this phase, the maximum and minimum of the (positive)
error values were 0.0136 and 6.4455, 0.0018 and 6.0681, 0.0019 and 9.2773, 0.0248 and 7.3006,
0.0184 and 6.3776, and 0.0715 and 8.4620, respectively, for the leaning process of ALO-MLP,
BBO-MLP, DA-MLP, ES-MLP, IWO-MLP, and LCA-MLP ensembles.

Referring to the calculated RMSEs (2.6054, 2.5359, 3.4314, 2.7146, 3.2506, and 3.8297),
all six models achieved a reliable performance in understanding the non-linear relationship
of the HL and eight influential factors. Another piece of evidence that supports this claim
is the MAE index (2.0992, 2.0846, 2.9402, 2.0848, 2.8709, and 3.4091). Furthermore, the
correlation between the expected and real HLs is higher than 92% in all models. In detail,
the values of R? are 0.9539, 0.9596, 0.9222, 0.9357, 0.9547, and 0.9386.

4.3. Validation Results

The developed models are then applied to the second group of data to assess the
generalization capability of them. Figure 6 depicts the correlation between the expected
HLs and networks’ products. As is seen, all obtained R%s (0.9406, 0.9516, 0.9340, 0.9318,
0.9431, and 0.9400) reflect higher than 93% accuracy for all models. In this phase, the errors
range between —5.5792 and 6.9349, —5.6311 and 6.3000, —9.3137 and 6.8288, —7.0282 and
7.0647, —6.2505 and 5.8823, and —8.2384 and 6.1992, respectively.
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Figure 5. The training errors calculated for the (a) ALO-MLP, (b) BBO-MLP, (c) DA-MLP, (d) ES-MLP, (e) IWO-MLP, and (f)
LCA-MLP prediction.

Considering the computed RMSE (2.7162, 2.4807, 3.3998, 3.0958, 3.3524, and 3.2954) as
well as the MAE (2.1865, 1.8284, 2.8713, 2.5072, 2.9702, and 2.7807) error criteria, it can be
deduced that the networks’ prediction for unseen environmental conditions has a good
level of accuracy. More clearly, the values of mean absolute percentage error were 10.01%,
9.78%, 13.59%, 12.63%, 13.01%, and 13.01%, respectively.
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4.4. Score-Based Comparison and Time Efficiency

Table 1 summarizes the values of the RMSE, MAE, and R? obtained for the training
and testing phases. In this section, the comparison between the performance of the used
predictors is carried out to determine the most reliable one. For this purpose, by taking into
consideration all three accuracy criteria, a ranking system is developed. In this way, a score
is calculated for each criterion based on the relative performance of the proposed model.
The summation of these scores gives an overall score (OS) to rank the models. Table 2 gives
the scores assigned to each model.

Table 1. The results of accuracy assessment.

Network Results
Ensemble . . .
Models Training Phase Testing Phase
RMSE MAE R? RMSE MAE R?
ALO-MLP 2.6054 2.0992 0.9539 2.7162 2.1865 0.9406
BBO-MLP 2.5359 2.0846 0.9596 2.4807 1.8284 0.9516
DA-MLP 3.4314 2.9402 0.9222 3.3998 2.8713 0.9340
ES-MLP 2.7146 2.0848 0.9357 3.0958 2.5072 0.9318
IWO-MLP 3.2506 2.8709 0.9547 3.3524 2.9702 0.9431
LCA-MLP 3.8297 3.4091 0.9386 3.2954 2.7807 0.9400
Table 2. The executed ranking system.
Scores
Models Training Testing
RMSE  MAE R? Overall Score Rank RMSE  MAE R? Overall Score  Rank

ALO-MLP 5 4 4 13 2 5 5 4 14 2
BBO-MLP 6 6 6 18 1 6 6 6 18 1
DA-MLP 2 2 1 5 5 1 2 2 5 6
ES-MLP 4 5 2 11 3 4 4 1 9 3
IWO-MLP 3 3 5 11 3 2 1 5 8 5
LCA-MLP 1 1 3 5 5 3 3 3 9 3

According to the results, the most significant OS (=18) is obtained for the BBO-MLP in
both the training and testing phases. The ALO and ES-based ensembles emerged as the
second and third most accurate ones, respectively. However, the IWO in the training phase
and the LCA in the testing phase gained a similar rank to the ES. In addition, it can be seen
that the results of the DA-MLP are less consistent than other colleagues.

Moreover, Figure 7 illustrates the time required for implementing the used models.
This item is also measured for other well-known optimization techniques (including Harris
hawks optimization (HHO) [131], GWO [132], whale optimization algorithm (WOA) [133],
artificial bee colony (ABC) [134], ant colony optimization (ACO) [135], elephant herding
optimization (EHO) [136], genetic algorithm (GA) [137], im