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Preface

We are delighted to present this Reprint, which brings together a collection of insightful scientific
works in various fields and centers around the fascinating concept of watersheds and their profound
significance in shaping the natural and human landscapes across the globe. This compilation aims
to provide a comprehensive overview of cutting-edge research and advancements in the subjects
covered.

As Guest Editors, our motivation for curating this Reprint stems from the desire to foster
knowledge dissemination and facilitate collaboration among experts and enthusiasts in these areas.
We firmly believe this collection will serve as a valuable resource for our audience, encompassing
researchers, practitioners, educators, and students.

This compilation delves into the essential role of watersheds as the fundamental unit for
evaluating landscape conditions and comprehending the environmental impacts of both natural
phenomena and human activities. The articles featured in this Reprint explore diverse facets
of watershed processes, and the interdisciplinary nature of watershed analysis is evident in the
involvement of experts and researchers from a broad spectrum of fields. This collaborative effort
underscores the urgency and relevance of incorporating geo-information in watershed studies to
address pressing sustainability issues.

Through this Special Issue, we aim to foster knowledge exchange and encourage innovative
research from diverse perspectives. We extend our heartfelt gratitude to all the contributors who
have enriched this Reprint with their original work and valuable insights. Additionally, we would
like to express our appreciation for the support and assistance we received from our colleagues and
the editorial team throughout this endeavor.

We hope this compilation serves as a source of inspiration and prompts further exploration
in the realms of watershed analysis, making a significant impact on scientific advancement and

environmental stewardship.

Walter Chen and Fuan Tsai
Editors
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Abstract: Hydro-based morphological models are representations of the terrain related to the flow
or storage of water in the landscape. However, their application in the context of an integrated
environmental assessment has been scarcely explored in the literature, despite the well-known
importance of water for ecosystems and land use planning. Here, we derive the HAND and TWI
models, which present solid conceptual bases based on water-landscape relationships from digital
terrain models. We aim to present these models as useful representations in the environmental
assessment of watersheds as they are relatively easy to generate and interpret. To this end, we
applied these models in a Brazilian watershed and evaluated their spatial and reciprocal occurrence
in the hydrological landscape through geographic entities and their spatial relationships with other
landscape elements such as land use. We argue that HAND and TWI are simple hydrological-
based models with robust premises that can reveal intrinsic relationships between relief parameters
and water, providing new perspectives for the environmental assessment of small watersheds.
Their outcomes have tremendous implications for land management initiatives. Our results show
that geometric signatures of the TWI appeared through all the structural units of the hydrological
landscape. The plateau areas were most prone to water accumulation/soil saturation, followed by
floodplains, hillslopes, and ecotones. Thus, there is a tendency for the greatest geometric signatures
of water accumulation/soil saturation entities to be located near the higher-order channels as well as
the greatest geometric signatures of the floodplains. Agriculture and planted forests increased with
distance, while the areas occupied by forest remnants tended to decrease within a range of up to
50 m from channels. However, they were also found within 50 m around the springs, whereas open
fields, urban areas, and water bodies remained stable. We argue that HAND and TWI are simple
hydrological-based models with robust premises that can reveal intrinsic relationships between the
relief parameters and water, providing new perspectives for the environmental assessment of small
watersheds whose outcomes have tremendous implications for land management initiatives.

Keywords: HAND; topographic wetness index; land use; hydrological landscape; topographic
footprint; geometric signature

1. Introduction

The relief records information about the topographic evolution dynamics, and its
geomorphometric study can be applied for different purposes such as hydrological, geo-
morphological, and landscape analysis [1,2]. Interestingly, geomorphometric records are
also helpful for ecosystem management applications, land use planning as well as the
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assessment and perception of risks [3], besides landforms and soil mapping, modeling the
occurrence of landslides, and hazard mapping in steep terrains, erosion, and deposition,
mass balance modeling on glaciers and hydrological applications involving channels and
floodplains [4].

This study’s motivation comes from natural hazard mitigation in several watersheds
in Southern Brazil caused by the incorrect use of landscape such as removing vegetation
in permanent preservation areas and constructing residences in areas prone to flooding
events. We argue that the link between relief and water can be explored through spa-
tial representations that provide parameters on water action in the environment simply
and rapidly without using complex cascade models. This aspect is fundamental in any
environmental analyses since anthropogenic interferences are highly conditioned by the
water in the landscape, possibly resulting in problems such as supply, natural disasters,
pollution, and diseases. Thus, the hydrological landscape [5] plays an important role in the
environmental assessment of watersheds as it relates the physical space’s structural units
with the water’s dynamics in that environment.

This paper aims to explore the so called topographic wetness index (TWI) [6] and the
height above the nearest drainage (HAND) [7-9] models as another layer of information
about the geomorphological agents that condition the anthropogenic activities in the struc-
turing units on the landscape. Such knowledge may support environmental analysis in land
management initiatives and improve the structuring of the problems and the consequent
search for solutions. This work contributes by bringing these hydro-based morphological
models from their single dimensions [7,10-21] to the context of the environmental analysis of
watersheds. Thus, a hypothesis was formulated that the combined use of HAND and TWI
models allows for even better characterization of the landscape and benefits land management
initiatives. Such models can help identify the different geomorphological strata that form the
landscape such as water accumulation zones, hillslopes, and plateaus, with reflections in land
use planning to preserve sensitive ecological zones and prevent the occurrence of disasters
caused by floods, extreme runoffs, debris flows, and mass movements.

In this paper, we briefly describe the conceptual approach in Section 2. Section 3 is
divided into two subsections, where the first refers to the study area description. Then, the
steps related to land use map generation are provided. Next, the DEM datasets and their
processing steps are described. The three forthcoming subsections detail the determination
of both the HAND and TWI models and the adopted data strategy analysis. Finally,
we present and discuss the results of both the HAND and TWI models by thoroughly
considering the landscape characterization.

2. The Conceptual Approach

The environmental assessment of watersheds seeks to identify, formulate, and structure
the problems through data, information, and knowledge concerning the problem domain.
It comprises the intelligence stage of a decision-making process [22] regarding planning
anthropogenic activities in the watershed. The more elaborated this stage is, the better the
chances of generating choices of viable solutions and of choosing the best possible alternative.

Chorley and Kennedy [23] mentioned the systems approach concept’s applicability in
analyzing complex geographic systems in which watersheds are the most viable research
unit. In this approach concept, the watershed comprises two subsystems: the cascade
and morphological systems. The cascade system represents the dynamic portion of the
watershed, in which the state of the entities that compose it changes frequently. It is part of
the system where the flow of matter or energy occurs such as the hydrological cycle and
the movement of people and animals in its most diverse manifestations [23].

On the other hand, the morphological system represents the static part of the sys-
tem, represented by entities in which the attributes of position and conformation do not
frequently change such as the drainage network, the sub-basins (or small watersheds),
and the relief itself. These entities are sometimes called features [23]. Both cascade and
morphological systems are modeled by their strategies. In the case of cascade systems,



ISPRS Int. ]. Geo-Inf. 2023, 12, 314

mathematical models are used, called scientific models [24]. In the case of morphological
systems, their modeling occurs through database modeling techniques, the most frequent
of which is object orientation [25]. Spatial decision support systems (SDSS) [24,26,27]
would be the technologies that deal with this conceptual universe; geographic information
systems (GIS) [25], for example, a type of SDSS that works on the morphological portion of
the geographic system.

The socio-economic and environmental consequences of population growth are a tacit
finding for many watersheds subject to anthropogenic occupations, especially in developing
countries where police and monitoring initiatives are inefficient and ineffective. In addition,
houses and buildings near watercourses and springs can worsen water pollution and soil
erosion, as they often lack permission from the local authorities. These structures are also
associated with an increased risk of natural disasters.

These events are commonly caused by an evident lack of planning and non-continuity
of occupational policies by public managers in developing countries [28,29]. All these issues
may bring complexities to the system involved, together with the particular idiosyncrasies
of each site, making a complete understanding of the problems and the search for their
solutions challenging [30-33].

A watershed represents an environmental (geographical, hydrological, and ecological)
system where topological relationships emerge, subject to being mapped through a collec-
tion of continuous geometries [34], sometimes perceived with distinct patterns, abstracted
through discrete parameters, at an appropriate degree of completeness for interpreting and
describing the processes and functions of these systems [35]. Watersheds are arrangements
of spatial entities [36] or terrain objects [37] such as depressions, peaks, ridge lines, course
lines, and break lines, with intrinsic topologies such as contiguities, adjacencies, proximities,
and contingencies, among others.

The definition of these entities depends on the most appropriate conceptual data
model for solving a problem and how they are represented on maps and in geographical
databases. For example, geometric signatures of spatial entities [34] are usually coded
in GIS through vector data structures for features such as point, line, and polygon, or
even matrix/raster data structures for continuous geographical phenomena such as digital
terrain models (DTM) [25]. Here, the difference between DTM and DEM merely lies in the
meaning of the z attribute. In the former, the z attribute refers to the continuous variable
terrain height in relation to a local or geodesic topographic reference, and the latter to the
other variables of continuous spatial phenomena such as temperature, soil moisture, and
parametric indices, among others.

Features identified on the terrain, revealed through DEM or based on a land use classi-
fication using remote sensing data, are relatively common in environmental assessments
that are geographical in scope. However, the metrics usually applied have little or no
relationship with the natural occurrence of water in the landscape.

The gravitational potential of water is a key element in the evolution of the landscape
as it is the main element responsible for water flow in the soil and subsoil and can be
applied in many models [38]. The relief, the soil, and its properties act as intervening agents
in water and energy distribution, redistribution, and accumulation [1,5,37]. This behavior
differs between the floodplain, hillslope, and plateau structural units of the hydrological
landscape [5,39], and hydrological connectivity between them may eventually exist [39].
The gravity gradients between points on the terrain are the main physical agents that
cause the flow or stationarity of water in the landscape, so the relief is considered the
main conditioner of that behavior. These gradients can be absolute or relative, depending
on the altimetric reference taken as a measure [37,40]. Thus, the landscape’s evolution in
watersheds results from complex interactions of multiscale (topographic, climatic, tectonic,
and anthropogenic) systems that determine the surface and subsurface properties [37].

The multi-parametric nature of a DTM can be explored in multiple layers [1]. Hydro-
based morphological models add relatively new layers of metrics based on the relation
between relief and water. The TWI model, for example, explores the tendency for soil
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saturation in the terrain’s low-sloping or concave surfaces through the topographic index
(Equation (1)).
A =In (a/tanp) (@)

where the A parameter is the topographic index of a point or cell on landscape. The a
parameter is the contributing area per unit contour length, that is a = A/L [41], where A
is the upslope contributing area, and L is the perimeter of a. The a parameter reflects the
amount of water that may be captured during surface or subsurface runoff or groundwater
flow events. The bigger a is, the more volume of water may flow to the point or cell on the
landscape. Bigger a values are expected close to watercourses, whereas smaller values are
expected near the watershed perimeter. The  parameter is the terrain gradient or local
slope and captures the potential gravitational gradient of a water particle to move in/on a
landscape. The higher , the larger the vertical differences between two points in relation
to its horizontal distance. Therefore, local sites with a higher § attribute tend to produce
higher waterflow surface velocities.

Therefore, parameter a defines the amount of water input to a point or cell and
defines its potential water output. The parameter A indicates the presence of potential
water accumulation on the surface, soil saturation, or wetland areas within the watershed’s
environmental assessment scope. High A values indicate places with large areas of upslope
drainage and low terrain gradient. Thus, high TWI values (1) are expected in flat areas or
areas with low slopes and high upslope contributing areas, which should occur in the low
regions of the watershed close to the higher-order channels. On the other hand, low TWI
values are expected close to the headwaters of the watershed or in the top regions of the
hydrological landscapes that compose its relief structure. The water flow at these locations
tends to be exclusively vertical, since water particles present little or no lateral gradient. In
saturated soil zones, the vertical flow depends on the subsoil’s physical properties, and
there may or may not be percolation. The contour lines of these zones characterize their
geometric signatures and can vary according to the volume of water present and the level of
water in the ground reservoir [42]. For this reason, these zones are also known as variable
flow areas (VFAs), where the anaerobic conditions of the wetlands offer conditions for the
production of biogenic methane, an important element for both the local and global carbon
cycle [43].

This concept was initially presented within the hydrological model TOPMODEL
(topography model) [6] to estimate a hydrograph of the runoff produced by a watershed in
a river control section based on a rainfall and evapotranspiration dataset. The distributed
parameter of the TOPMODEL is the topographic index (T1), calculated based on the natural
logarithm of the ratio between the specific contributing area (runoff watershed area/length
of the edge of the entry cell—obtained in the DTM pre-processing by the routine flow
accumulation and by the resolution of the cell, respectively) and the local slope of the
cell [41].

The HAND model uses the drainage network to reference the heights of points on the
ground. Figure 1 illustrates the methodological concept first presented by Rodda [44] for
mapping the flood extent and later explored by Renné et al. [7]. Any point on the surface
has a vertical distance to a watercourse. The choice of what watercourse and what cell in
the watercourse should be used for distance measurement is made based on a horizontal
distance. The horizontal distance depends on the algorithm for defining the flow direction
such as D-8 [41] and D-Infinity [44].

1 2

Figure 1. Schematic representation of the HAND model concept over a hypothetical elevation profile.
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The idea has been evaluated in determining the geometric signatures of floods [19,45-47]
and classifying the hydrological landscape [7,8,18]. It is based on the local gravitational potential
of a water particle, corresponding to HAND. The HAND DEM, therefore, is a discrete 2D
representation of the problem’s domain, usually a watershed or stretches of floodplains.

3. Materials and Methods
3.1. Study Area Description

The case study was conducted in the Canoinhas River watershed with a size of
1440 km?, axial length of 83.22 km, average width of 17.30 km, and drainage density of
1.13 km/km?. The compacity index 2.71 indicates that the Canoinhas River watershed is
elongated and has low susceptibility to maximum rainfall along all of its lengths, which
limits the occurrence of floods on its plains to frontal rain events.

The Canoinhas River is a fifth-order channel with a length (the area and perimeter
attributes were obtained from the attribute table in GIS. These values are automatically
calculated when the layer is generated) of 189.08 km and a sinuosity of 2.27 km/km. It
flows into the Rio Negro River, a tributary of the Iguagu River (26°30’ S; 50°20" W). The
watershed is part of the continental hillslope in Hydrographic Region 5 (RH5), called
“Planalto de Canoinhas”, and belongs to the macro-region of the northern plateau of the
Santa Catarina State, Brazil. The above sea level altitude ranged from 757 to 1344 m.

The vegetation comprises fields, tropical, and subtropical perennial and floodplain
forests, with the North Plateau region being the most expressive forest center in Latin
America [48]. The relief comprises strongly to gently undulating, mountainous, and flat
strata. Soil depths vary from less than 60 cm to 150 cm, with textures ranging from clayey
to very clayey. According to EMBRAPA [49], the most common soil types are described in
Table 1 and further illustrated in Figure 2.

Table 1. Soil types and their attributes in the Canoinhas watershed.

Area
Soil Type Texture Relief Depth (cm) Drainage
P kmd) %) i i

Cambisols 370 25.79% Clayey to very  Strongly undulah’ng to 60-150 Modgrately

clayey gently undulating Drained
Hum}c and slightly 187 13.0% Claye?y to Flat <60 Poorly to Yery
humic gley soil medium Poorly Drained
Bruno/Red latosols 498 34.6% Very clayey Gently undulating >150 Well drained
Litholic soils 319 2009, Ve dayeyto Hilly to gently <60 Moderately

clayey undulating Drainage
Nitosols 64 4.4% Very clayey Gently undulating >150 Well drained

The soils of the study area show a texture varying from clayey to very clayey (Table 1;
Figure 2). Latosols and nitosols are the most profound soil types, occupying ~39% of the
watershed and presenting the best drainage conditions. Allied with its gentle topography,
these attributes favor agricultural activities in small rural properties, typically smaller than
30 hectares in the study area.

Humic and slightly humic gley soil occupies ~13% and is located in flat areas near
the Canoinhas River. The flat relief, the shallow depth, and the clayey texture assure little
drainage capacity. Litholic soils are characterized by little depth, sometimes presenting a
stony ground surface and moderate drainage capacity, despite being clayey or very clayey.
These soils occur in hilly or gently undulating regions (Figure 2).

Cambisols occupy different landscape strata (strongly undulating to gently undulating
relief) and have moderate drainage capacity at medium depths (60 to 150 cm). This class
and latosols and nitosols occupy about 65% of the study area. In summary, various soil
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types located on different layers of the landscape, with a varied drainage capacity and a
relief amplitude of 847 m, assure exploitation in different ways.

1 1 1 1 1 1 1 1 1

h ™ 26°10'0"S=1 —— -
- 1= 26°20'0"S={ | —— -
b ™ 26°30'0"S =4 —— -
-1 P 26°40'0"S = —— -
- 1= 26°50'0"S=4 —— -
T T T T T T T
50°30'0"W 50°20'0"W 50°10'0"W 50°30'0"W 50°20'0"W 50°20'0"W 50°10'0"W
(A) Geology (B) Soil class (C) Drainage capacity
—— Stream |
B Urban Area
~JCanoinhas River Basin

~— Canoinhas River

Geology Soil class Drainage capacity

B Braving.(3:3%) Bruno/Red Latosols (34.6%) Il Moderately Drained (47.9%)

[JRastro River (34.0%) Cambisol (25.7%) ., -

B Alluvial deposits (11.9%) R [ Well Drained (39.1%)

[ Serra Alta (10.9%) gihollcSolls (22.2%) I Poorly to Very Poorly Drained (13.0%) 7 .

71 Botucatu (3.7%) Humic Glei (8.8%)

[ Serra Geral (3.6%) Nitosols (4.5%) o 18 2

I rati (1.6%) Slightly Humic Glei (4.2%) ——— KM

[ Palermo (0.06%) Coordinate System:

SIRGAS2000 UTM Zone

Figure 2. Geology (A), soil class (B), and drainage capacity (C) of the Canoinhas River watershed.

The Canoinhas River watershed is considered to be medium-sized [48] and partially
covers five municipalities such as Monte Castelo (source), Canoinhas (mouth), Major Vieira,
Papanduva, and Trés Barras (Table 2). The urban centers of all the municipalities are found
within the watershed. According to AMPLANORTE [50], these municipalities also show
high municipal human development index (MHDI) scores, with the highest percentage of
residents established in the urban area. The percentage of residents in the rural area is also
relatively expressive, keeping a mix of rural and urban landscapes (Table 2). The essential
economic activity is related to the pulp and paper industry, wood, and energy production.
The region is also facing a gradual increase in the establishment of new industries and,
consequently, urban growth is generating conflicts and environmental issues, which is why
it was selected as a case study.

3.2. Land Use Maps

A Sentinel-2 scene with an acquisition date of 23 February 2021 was used to generate
the land use map (Figure 3). The scene was chosen from the Earth Explorer, linked to the
Copernicus program of the European Space Agency (ESA). First, all spectral bands were
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resampled at a spatial resolution of 10 m, roughly relative to the horizontal 1:50,000 map
scale, which is compatible with regional studies [51].

Table 2. Information about the municipalities that compose the Canoinhas River watershed.

Municipality
Parameters ; . " ;
Monte Castelo Major Vieira Papanduva Trés Barras Canoinhas

Population (inhab) 8346 7479 17928 18129 52765
Urban population (%) 58% 40% 51% 85% 74%
Rural population (%) 42% 60% 49% 15% 26%
Land area (km?) 561 521 765 437 1148
Area covered by the watershed (%) 93% 93% 12% 40% 14%
Population density (inhab.km~2) 14.6 14.2 24.0 414 46.3
MHDI * (2010) 0.675 0.690 0.704 0.706 0.757

* MHDI: municipal human development index.
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Figure 3. Representation of the study area by the digital model of the shaded terrain with the ordering
of channels by the Strahler method (A) and land use classes (B). The study area is in the Northern
Plateau of Santa Catarina State (Southern Brazil).

Afterward, samples were collected through the study area, and the supervised maxi-
mum likelihood was applied. Finally, a majority filter was applied to remove the isolated
pixels, smoothing the classes” irregular boundaries. Further corrections were performed
by comparing the classified map with the MapBiomas collection [52] of Brazilian land
cover and land use, referring to 2020, in which the classification is originally from Landsat
mosaics using the dynamic and procedural methodology in Google Earth Engine.

Six land use classes were defined based on the identifiable entities in the scenes and of
interest to the environmental assessment of the watershed (Table 3). These classes also have
a very important spatial distribution in the area. The samples of the land use class were
selected through photo interpretation of the form, size, tone, color, texture, and pattern
(Table 3) [53]. We used fieldwork measurements and high spatial images from different
data sources such as ArcGIS and Google Earth Pro. Similar procedures were previously
adopted in another regional research [54,55].
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Table 3. Subsets of the six mainland cover classes in the selected study area with RGB composition,
bands 4, 3, 2.

Land Cover Classes Subset (1200 m x 800 m)

Agriculture: associated with annual agricultural activities
containing maize and other crops such as beans, yerba mate, and
tobacco.

Forest: natural forest remnants belonged to the mixed
ombrophilous forest under different successional forests, in
addition to natural fields.

Urban Area: urban occupation in the watershed encompassing
the urban centers of Canoinhas, Trés Barras, Major Vieira, Monte
Negro, and Papanduva.

Field: represents pastures formed of native or planted annual or
perennial grasses, besides small-sized vegetation.

Planted Forest: forest plantations occupied by either Pinus spp.
and Eucalyptus spp. stands.

Water: liquid surfaces such as lakes, ponds, streams, and rivers.

3.3. Digital Terrain Model (DTM)

A total of 94 digital terrain models (DTMs) with a spatial resolution of one meter
were mosaiced [56]. Afterward, the DTM was used to generate the relief information
needed to build the HAND and TWI morphological models. The DTM was pre-processed
in ArcGIS®10.5, with the help of the Spatial Analyst, 3D Analyst, ArcHydro Tools, and
Geo-HMS Tools extensions. The Geo-HMS tool was used to pre-process the DTM, which
consisted of filling depressions, defining flow directions (D8 algorithm [41]), flow accu-
mulation, defining the synthetic drainage network by testing different thresholds, and
outlining the watershed by setting the Canoinhas River as an outlet. The thresholds were
evaluated by comparing water streams with the support of visual interpretation over high
spatial resolution images (i.e., ~0.40 m) freely available from the State Government [56].

The spatial resolution chosen to apply the TWI model in the Canoinhas River water-
shed was 20 m, and to apply the HAND model, it was 5 m. The 20 m resolution is relative
to the roughly horizontal 1:100,000 scale, and the 5 m resolution to 1:25,000. Both were
from resampling the original 1 m DTM (relative to a 1:5000 horizontal scale). The 20 m
resolution was an arbitrary choice to identify horizontal TWI entities in sufficient detail
and considerably improve the computational performance. Interestingly, the original DTM
of the watershed with a 1 m spatial resolution accounted for 46.08 GB in the Canoinhas
River watershed, while the DEM of the TWI with 20 m resolution accounted for 1.44 GB
with 3.6 x 10° cells.
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To classify the landscape based on HAND, we empirically considered the possible
effects of discretization and smoothing of the DTM [57], the probable effects of the vertical
resolution, and the fractal dimension of the hydrographic network of the Canoinhas River
watershed. According to Gharari et al. [18], a spatial resolution of 20 m would be enough
to classify landscapes using the HAND model. In this way, a 20 m spatial resolution for
identifying horizontal TWI entities and a 5 m spatial resolution for landscape classification
would be compatible resolutions with environmental analyses for planning purposes at a
regional scale.

The different spatial resolutions from datasets were disregarded since the tabulation
of the pair of information was considered using the zonal statistics tool available in a GIS.
Specific aspects are discussed in forthcoming sections.

3.4. Topographic Wetness Index (TWI)

The TWI model was processed according to Quinn et al. [41] and subsequently clas-
sified according to the propensity of a cell for water accumulation on the surface or soil
saturation (Table 4).

Table 4. Classes of the TWI values and propensity for water accumulation on the surface or soil
saturation.

Water Accumulation

Class Characteristics Propensity/Soil Saturation
—0.56 to 6.40 Small contributing area and steep slopes Low
6.40 to 8.00 Averagea(‘:/(zr;;rgﬂem;ii)r;)gesarea and Average
3.00 to 25.69 Large contributing area and low local slopes High

(flatter areas)

A TWI parameter is assigned to each MDT cell. Cells with the same TWI show the
same tendency for water accumulation or soil water saturation. The scale and resolution of
the data affect the distribution of the TWI statistics in the landscape [13,58]. A horizontal
resolution corresponds to the elementary size of a surface measured by a remote sensor [57]
and should be sufficient to capture the minor features identifiable in the object space to
portray them unmistakably [34,53]. In practical terms, geographic features that identify
areas of water accumulation or soil saturation result from grouping neighboring cells with
the same value.

At high MDT resolutions, 1 m, for example, the slight variations in the local slope
parameter  (Equation (1)) between neighboring cells can assign quite a different TWI to
each, with the cells having a similar 2 parameter. This can generate an inconsistency in
the information about the areas prone to water accumulation, since this effect depends
on the water table, of which no significant variations are expected at short distances. The
floodplain areas (lowlands), which tend to present the highest TWI values, may present a
large variation in the TWI, without significant variation in soil moisture [11,59]. This effect
can exist in finer scales (or large scales), where small variations in relief can be perceived
without necessarily being proportional to small variations in soil moisture. This effect also
tends to produce an overabundance of TWT in the landscape without necessarily aiding in
identifying zonal features of interest to decision-making processes at the regional planning
level. Therefore, data and information saturation can impede the extraction of relevant
information. Thus, the dimensions of the spatial domain of the problem and the most
appropriate horizontal resolution have to be observed to show the geographical features of
interest. Even in course scales (or small scales), it is possible to extract relevant information
from the terrain for practical purposes [60]. For example, Gharari et al. [18] used a 10 m
resolution for the TWI model to compare it with the HAND. The HAND model presented
the best performance.
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3.5. Height above Nearest Drainage (HAND)

The HAND model can be applied in any terrain and translate hydrological mean-
ings [8]. The model has received great attention from researchers due to its simple concept,
relatively simple implementation, availability in open-source software like TerraHidro [61],
and large application possibilities.

The HAND model [7] was presented to outline the structural units of the hydrological
landscape to map terra-firme environments in the Cuieiras Biological Reservation (Ama-
zon), based on the shuttle radar topographic model (SRTM) DEM. These classes were
subsequently validated by Nobre et al. [8] over an area in the lower Rio Negro watershed
(Amazonia) using a set of field observation points. The most evident signs of the structural
units of the hydrological landscape are lowland, valley side, and upland [5]. However,
other classes may be needed to describe these units better such as waterlogged, ecotone,
slope, and plateau [8]. Interestingly, the class intervals to outline the structural elements of
the hydrological landscape have still been scarcely studied in the literature. Furthermore,
the transitions between the classes are usually not abrupt, and the attribution of a point
of the landscape to a certain class would imply the use of diffuse techniques [18]. In this
paper, we used the thresholds suggested by Rennd et al. [7] and Nobre et al. [8], whose
results are shown in Table 5.

Table 5. The HAND classes for classifying the hydrological landscape in the Canoinhas River
watershed.

Class Hydrological Landscape Unit
HAND <53 m Floodplain
53 <HAND < 15m Ecotone
HAND > 15 m and >7.6% slope Slope/Hillslope
HAND > 15 m and <7.6% slope Plateau

Source: adapted from Renno et al. [7].

Floodplains are located at the lowest heights of the terrain, close to the natural drainage
channels, presenting low slopes and a groundwater table close to the surface, which can
saturate the land [5,8]. Ecotones represent smooth concave surfaces of transition between
the floodplains and hillslopes, which mark the vadose regions [62] (i.e., the first landscape
entities in which the soil is unsaturated, far from the channels). Slopes or hillslopes mark
the surfaces with a height gradient in the landscape, which are well-drained and strongly
interact with surface runoff. Plateaus are distributed in the high regions of the landscape,
generally surrounded by hillslopes and with low slopes.

We chose these classes for the Canoinhas River watershed due to the greater number
of classes and the general topographic characteristics of the watershed, especially the fact
that 63% of the area of the watershed is composed of flat (slopes up to 3%) and slightly
undulating terrain (slopes ranging from 3 to 8%), which would indicate the possibility of
there being clear vadose zones (Figure 1).

Considering that the model’s basic premise is the vertical distance of a point on the
landscape from the nearest drainage channel, one has to assume that the model is sensitive
to the number of channels generated by the channel definition operation on the DTM.
This is a very common operation, which has the contributing area of the first grid cell
as a user-defined parameter to which the channel is assigned. The area threshold (AT)
parameter affects the degree of fractal discretization of the synthetic hydrographic network.
Therefore, the AT of 0.5 km? was adopted, corresponding to 0.035% of the total area of the
Canoinhas River watershed. This value is the approximate mean of the watershed area of
a sample set of sources of first-order natural water courses recognized in high-resolution
orthoimages available for the entire Santa Catarina State and are freely available for the
general community [56].

The features attributed to the natural hydrographic network were identified by analyz-
ing the form, size, tone, color, texture, and pattern [53]. The aim was to keep the geometric
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structure of the synthetic hydrographic network as close as possible to the natural geometric
structure [18]. Therefore, the samples for calculating were based on AT, and the synthetic
hydrographic network generated produced a set of linear features originating in the first
pixel attributed to the flow accumulation algorithm.

Regarding the spatial resolution of the MDT, it is assumed that the better the resolution,
the more accurate the vertical distances corresponding to the HAND. Furthermore, if the
model is used to determine the extent of flood zones, it is valid to consider the best
resolution available, especially in urban areas. However, the model here in this paper was
only used to classify the hydrological landscape at the planning level, which could perhaps
be sufficient for the 10 m resolution as used by Gharari et al. [18]. Therefore, we opted for
the 5 m resolution resampled from the 1 m MDT.

3.6. Spatial Relationships

Spatial relationships are properties of spaces that do not undergo variations with
their deformation. For example, a sub-watershed always belongs to its main watershed,
independently of the distortions of scale. Similar affirmations can be made for relationships
of continencies, intersections, contours, proximities, and adjacencies. These properties are
studied in topology and used for validating data, modeling the integrated behavior of
different features, data editing productivity, and query optimization [25].

The classes of features identified in the TWI and HAND morphological models, land
use, and slope maps were assessed regarding spatial relationships. The relationships
explored in this study were intersection, buffer clip, symmetrical differences, and proximity.
These operations are used in GIS by means of predicates or mathematical operations such as
the Euclidian distance between geometries of different classes, for example. Predicates are
functions for comparing a given condition between pairs of features belonging to different
classes coded as points, lines, or polygons. These functions can return a TRUE (T) condition
when the condition under analysis is met or FALSE (F) otherwise.

The GIS approach used in this study (ArcGIS 10.5.1) adopts the dimensionally ex-
tended nine intersections model (DE-9IM [63]). The DE-9IM matrix presents nine possibil-
ities of spatial relationships involving the features’ interior, exterior, or edge. Point-type
features have an interior and exterior but no edges. Similar to polygon-type features, line-
type features have an interior, exterior, and edge. The final configuration of the matrix will
be used to return the features of the classes involved in the operation or parts that satisfy
the conditions expressed in the matrix, which can then be analyzed separately from the
rest. The intersection operation returns the intercept features, which helps identify features
that somehow share the same space, whether fully or partially. Their original geometries
are maintained, which differs from the clip operation. This builds a group of features using
the boundaries of other features and only returns the geometry relative to the portion in
common. In both the intersection and clip operations, the attributes of both features can
be kept in the resulting features. The buffer operation is normally used to analyze the
area around features, especially regarding the proximity, continence, or intersection. The
symmetrical difference operation chooses non-overlapping parts of the geometries, which
operate inversely from the intersection. It is useful, for example, when excess information
needs to be eliminated from the analysis, leaving only that which is actually of interest.

The operations above-mentioned were applied in the environmental assessment of the
watershed. The operationalized classes of polygon features were land use, slope, TWI, HAND,
the order of the channels, and the areas around the points of origin of the first-order channels.
As the Brazilian Forest Act prescribes, these points are supposed to be the sources of the
main watercourse [64]. In addition, areas of 0-15 m, 0-30 m, 0-50 m, and 0-100 m around
the synthetic drainage features of the watershed were also defined. Finally, the surrounding
features thus defined were operated with the features from the land use classes.

11
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4. Results and Discussion
4.1. Topographic Wetness Index (TWI)

The TWI values vary considerably over the landscape according to the geomorphological
characteristics of the terrain [65,66]. This is due to TWI parameters a and tan  (Equation (1)),
where a depends on the position of a point on surface, being near or far from the watercourse,
and tan B depends on the slope. Values of a are expected to be higher the closer points
are to the watercourse, since a has a superficial dimension. Parameter a also depends on
the relief conformation because the shape of the watershed area A (Equation (1)) varies
with relief configuration. The parameter f§ is essentially a parameter linked to the relief
configuration. Therefore, the slope distribution in the watershed should affect the occurrence
and distribution of fan § in the landscape. In this regard, the geometric signatures show that
the watershed presents 40.8 hectares of highly mountainous relief, 12.2% of highly undulating
and mountainous relief, and the average slope is 0.09 m.m 1. About 63% of the watershed
area is on flat and gently undulating relief. This reveals that the relief of the watershed is quite
diversified and well-distributed in the range from 0 to 20% slope (Table 6).

Table 6. Slope classes in the Canoinhas River watershed [67].

Slope (%) Class km? %
0-3 Flat relief 378.6 26.3
3-8 Slightly undulating relief 532.7 37.0
8-20 Undulating relief 345.4 24.0

20-45 Highly undulating relief 176.9 12.2
45-75 Mountainous relief 6.6 0.5
>75 Highly mountainous relief 0.0 0.0
Total 1440.2 100

Some studies have shown that the TWI values that indicate prone to developing water
accumulation or soil saturation in the landscape are above 8.0 [17,18,65,66]. For example,
Figure 4 shows TWI variations ranging from —0.56 to 25.69, with a mean of 6.00 and a
standard deviation of 3.00.

A TWI ranging from —0.56 to 6.40 represents 49.1% of the watershed, whereas 6.40 to
8.00 with 27.5%, and 8.00 to 25.69 with 23.2%, respectively. Similarly, DuPage city’s values
varied from —7 to 29.5 and from —5 to 288 in Will County [17]. Values below 6.00 were
considered by Meles et al. [59] as very dry regions, those from 6.00 to 8.60 as dry, and those
above 16.60 as moderately wet to very wet. Values above 8.00 were validated in the field by
Schier [66] as being prone to flooding in the city of Lages, SC, Brazil.

Mapping the dry and wet zones of the landscape provides relevant information from
a regional and local planning point of view. Drylands reveal regions available for land
use for agricultural, forestry, and urban activities. However, these regions may be prone
to mass movements during extreme precipitation events or be the first regions of the
watershed to suffer water deficit during periods of drought. For example, we witnessed
during the drought that hit the state in 2020 in the Canoas River watershed Management
Committee that the cities located in the headwaters, close to the watershed, were the ones
that suffered most from the lack of water, requiring effective help and assistance actions
from the authorities. Wetlands, on the other hand, indicate areas that tend to be better able
to withstand periods of drought. Indeed, Biffi and Neto [67] demonstrated that during a
drought in 2005, the lower-lying areas of the relief in the apple production region of Santa
Catarina State exhibited higher production levels than the higher-lying areas.

In general, terrains in the State of Santa Catarina tend to present a predominance of
areas with little tendency for water accumulation/soil saturation in watersheds due to the
predominance of steeper slopes. For example, in the case of the Canoinhas River watershed,
38% of the area with a flat terrain (slopes from 0 to 3%) presented TWI geometric signatures
higher than 8.00, representing only 10% of the total area of the watershed. The fact that
not all areas with slopes from 0 to 3% presented a TWI > 8 does not imply that these
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areas are not prone to water accumulation/soil saturation, especially if they are located
close to drainage channels, where the water table is expected to be closer to the surface.
Hence, adding the topographic variable HAND helps categorize the landscape based on
the vertical distance between a point on the surface and the nearest drainage, making it an
important consideration.
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Figure 4. The TWI spatial distribution in the Canoinhas River watershed. The larger-size TWI spatial
entities are located in the lower part of the watershed (A), while the smaller entities are located in the
higher regions (B).

4.2. Height above Nearest Drainage (HAND)

The relative gravitational potential of a water particle is determined in the HAND
model by the vertical distance to the nearest drainage. Various results were found by Nobre
et al. [8] for the Rio Negro River watershed in Amazonia. The predominantly sedimentary
constitution of that region found 20.9% of the area occupied by floodplains, 26.9% by
ecotones, 9.1% by hillslopes, and 24.8% by plateaus. In the Canoinhas River watershed, we
found 4.74% occupied by floodplains, 2.67% by ecotones, 38.04% by hillslopes, and 54.55%
by plateaus (Table 7; Figure 5).

Table 7. Hydrological landscape classes in the Canoinhas River watershed.

Class Hydrological Landscape Unit Area (km?) %
HAND <53 m Floodplain 68.33 4.74
53 <HAND < 15m Ecotone 38.42 2.67
HAND > 15 m and >7.6% slope Hillslope 547.93 38.04
HAND > 15 m and <7.6% slope Plateau 785.64 54.55
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Figure 5. The HAND model classes in the Canoinhas River watershed. The lower region of the water-
shed has a wide area of plateaus and floodplains (A), while the higher regions have a predominance
of hillslopes (B).

These results may be influenced by the DTM resampling from higher to lower resolu-
tions due to the joint effect of discretization and smoothing [57]. However, the immediate
consequence is the loss of detailed information on the relief and, consequently, on identifi-
able spatial entities, especially through the discretization effect.

The quality of the vertical variable is also a point to be considered. Smoothing the DTM
tends to reduce the altimetric amplitude and with that, there is a loss of vertical accuracy.
Smoothing should also affect the presumed gravitational gradients and runoff paths to the
nearest channel. Thus, better altimetric determinations of the gravity gradients and of the
extent of the surface runoff are expected in DTMs with higher spatial and vertical resolutions.

The fractal dimension of the hydrographic network of a watershed [60] makes the
HAND model dependent on the area threshold (AT, presented in Section 3.5) to generate
a channel [18]. The AT affects the size of the network similarly to the effect commonly
associated with changes of scale in maps [60]. In a hydrographic network with a Hortonian
structure [68], the channels” orders parametrize the channels” average lengths and water-
shed areas. Thus, morphometric parameters such as bifurcation ratio, length ratio, and
the ratio of areas between the channels of contiguous orders are affected by the degree of
fractal discretization of the synthetic hydrographic network extracted from a DTM. The
algorithm considers the AT as an area value arbitrarily attributed as an injunction factor
regarding the flow accumulation model. The z attributes of the flow accumulation DEM
express the number of cells that flow to each cell of a DTM.

In a typical hydrological landscape, the subsurface water sheet tends to lie closer to
the topographic surface on the floodplains and further away from the plateaus [5,69]. The
continuity or not of that sheet throughout the landscape depends on the composition of the
soil profiles. In general, water accumulation or soil saturation in the landscape is expected
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on the floodplains and plateaus due to the low slopes of the terrain, leading to expected
susceptibility to flooding and sediment depositions on the floodplains.

The geometric signatures of floodplains appeared in the Canoinhas River watershed
throughout the entire hydrographic network (Figure 6). The most expressive floodplain
signatures tend to be closer to the higher-order channels, which would be expected due to the
lowest slope class characteristics of the watershed. These signatures can guide the planning of
land occupation, whether for agricultural activities or urban occupation, for example.
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Figure 6. Geometric signatures of the floodplain class throughout a 100 m buffer from the Canoinhas
River watershed hydrographic network.

The geometric signatures of the hillslopes were shown to be quite diversified in form
and size. It is common to find fragments of hillslopes surrounded by plateaus on the same
slope. This occurs due to changes in the local slope used to classify the model. These
fragments can even be considered irrelevant from the viewpoint of the environmental
analysis of the watershed, since few or no specific decision-making processes would be
expected in adhering to this level of analysis.

4.3. Zones with a Propensity for Water Accumulation/Soil Saturation and Hydrological
Landscapes Classes

The occurrence of zones with a high propensity for water accumulation or soil satu-
ration (TWI > 8) concerning the HAND classes has been studied in the literature. Unlike
the HAND model, whose manifestation of the vertical distances in the model depends on
the degree of fractal discretization of the synthetic hydrographic network, the TWI model
is manifested throughout the whole watershed precisely because the parameter depends
solely on variables of the relief (2 and ). The degree of fractal discretization of the synthetic
hydrographic network may be responsible for some regions of the watershed that could be
classified as floodplains (more discrete) being classified as hillslopes or plateaus (less dis-
crete), which can add bias in the TWI occurrence analysis in the classes of the hydrological
landscape. With this caveat, it was observed that in the Canoinhas River watershed, there
is a tendency for the most prominent water accumulation or soil saturation entities to lie
close to the higher-order channels (Figure 7).

There is a tendency for an exponential increase in the floodplain areas and the areas
with high water accumulation or soil saturation as the order of the channels increases. This
may be explained by the fractal dimension of the hydrographic network, the cumulative
order of the channels using the Strahler method in measuring the ramifications, and the
erosion, transportation, and fluvial sedimentation processes. The sedimentary areas tend
to occupy the lowest regions of the relief and contribute to the formation of the floodplains
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as structural units of the hydrological landscape. These zones should receive special
attention in the watershed’s environmental planning due to their riparian importance or
their tendency to flood.
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Figure 7. Geometric signatures of TWI throughout the 100 m buffer from the Canoinhas River water-
shed hydrographic network show the zones that are highly prone to developing water accumulation
or soil saturation on the floodplains.

The areas prone to developing water accumulation or soil saturation were distributed
throughout all units of the hydrological landscape (Figure 8). The plateau areas were the
most indicated areas prone to developing water accumulation or soil saturation, followed
by the floodplains, hillslopes, and ecotones. The means of the areas indicate that the number
of geometric signatures followed that same trend. This shows the importance of plateaus
as structural elements of the landscape for surface water storage. The hillslopes were also
shown to be relevant as landscape units with a tendency to accumulate water. These regions
can contain topographic footprints that indicate wetlands or waterlogged zones, which can
play a relevant ecological role in the watershed. From an urban occupation perspective,
these zones are potential areas of flooding caused by surface runoff from intense rainfall,
hence the need to pay attention to local micro-drainage systems [70,71].
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Figure 8. Geometric areas associated with a high propensity for developing water accumulation or
soil saturation in the units of the hydrological landscape in the Canoinhas River watershed.
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4.4. Land Use

Land use factors have been employed as parameters for assessing the levels of envi-
ronmental degradation or preservation [31-33,72,73]. Some of these factors are recognized
as modifying agents of the hydrological responses of the watershed and can act over water
infiltration and percolation in the ground, surface, and subsurface runoff, and evapotran-
spiration, among others. As a result, the hydric balance of the watershed can be affected,
the storage capacity of the aquifers can be reduced, and the occurrence of natural disasters
from landslides, mudslides, and flooding can be intensified.

The image classification of the Canoinhas River watershed produced geometries
associated with agriculture, water bodies, urban areas, fields, forests, and planted forests.
The geometric signatures of the respective classes appeared throughout the whole spatial
domain of the watershed and the structural units of the hydrological landscape (Figure 9).
The Forest class is the one that covers the most significant part of this domain, occupying
33% of the total area of plateaus and 61% of the hillslope area. However, there is a clear
decreasing trend in the geometric signatures of this specific class further away from the
hydrographic network, up to around 50 m (Figure 9).
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Figure 9. Land use in the Canoinhas River watershed in the classes of the hydrological landscape,
and in the areas prone to developing water accumulation or soil saturation.

The Field class is the second most frequent and represents, together with the Forest
and Water classes, the most sensitive geographical entities from an environmental quality
and preservation viewpoint. This shows that the Canoinhas River watershed still has wide
vegetated areas that warrant attention from a preservation viewpoint and wide field areas
subject to agroforestry exploitation. Most field and native forest areas are distributed on
floodplains, ecotones, and hillslopes. A substantial portion is also situated in areas prone
to water accumulation or soil saturation.

Agriculture, Urban Areas, and planted forests represent the geographical entities
associated with anthropogenic activities in the watershed. The geometric signatures of the
agriculture class occupy 19% of the total area of the watershed, and the planted forest class
occupies 15%. Agricultural activities are also found in 4% of the surrounding areas within
50 m of the source areas of the watershed. These areas are still occupied by entities of the
planted forest (7%), grasslands (30%), and forests (58%).

The areas occupied by agriculture entities and planted forest classes around the
hydrographic network tend to increase with distance, while the areas occupied by the
forest class tend to decrease (Figure 10). A drainage network is a component of the
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morphological subsystem of the watershed that scarcely alters its position, geometry, and
attribute characteristics, thus being considered fixed bases in the landscape and potentially
applicable as both horizontal and vertical references of alterations in the state of the GIS
of the chosen watershed. Thus, the hydrographic network is a potential indicator of
the behavior of dynamic geographic systems such as the expansion or contraction of
anthropogenic activities that are spatial in scope in one urban area [74].
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Figure 10. Areas occupied by the geometric signatures of land use in the 0-15 m, 0-30 m, and 0-50 m
surrounding areas in the Canoinhas River watershed. Land use consists of classes of natural use (a)
and classes with human activities (b).

The Urban Area class in the Canoinhas River watershed occupies a small total area.
However, it is found on floodplains, ecotones, and plateaus and in areas prone to developing
water accumulation or soil saturation. The plateaus can be considered as safe environments
for urban equipment in terms of the risks of flooding disasters. On the other hand, the
floodplains and areas prone to developing water accumulation/soil saturation warrant
attention concerning the macro- and micro-drainage systems, especially in the vectors
of urban expansion. Low-impact development (LID) measures should be considered to
mitigate the effects of localized flooding caused by intense rainfall in the consolidated areas
where the occupation has reached an irreversible state and address water quality in urban
ecosystems [69-78].
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4.5. Further Research Perspectives

Land use factors have been employed to assess environmental degradation or
preservation [31-33]. Some of these factors are recognized as modifying agents of
the hydrological responses of the watershed and can act over water infiltration and
percolation in the ground, surface, subsurface runoff, and evapotranspiration, among
others. As a result, the hydric balance of the watershed can be affected, the storage
capacity of the aquifers can be reduced, and the occurrence of natural disasters from
landslides, mudslides, and flooding can be intensified.

The relationship between water and landscape is a natural relationship for shaping the
land surface, sustaining lives, and conditioning human activities. Hydro-based hydrologi-
cal models such as TWI and HAND bring in their conceptual framework assumptions of
this relationship, which can be explored practically for regional or local planning purposes
to pursue environmentally sustainable development. They can be applied from a DEM
since their conceptual basis rests on the physical functions of water on the land, its geo-
graphical position in the terrain, and its energy potential in the landscape. These models
are conceptual abstractions built using the hydrological landscapes’ structural units that
form the watershed’s geomorphology.

Interestingly, these models can be used to recognize landforms that condition the
behavior of cascading systems such as the hydrological cycle, the dynamics of land use
by cities, agriculture, cattle ranching, and planted forests, among others, for example, to
preserve sensitive ecological zones and prevent the occurrence of disasters caused by floods
from extreme runoffs, debris flows, and mass movements. Therefore, the water-landscape
relationship can be explored with these models without the need for scientific modeling
of the cascade hydrological systems, whose complexity sometimes makes its application
unfeasible in countries like Brazil due to the lack of specialists or reliable data for effective
modeling of the systems.

Regional-scale maps have been found to be incompatible with local urban analysis as
it demands detailed DEMs for more accurate TWI and HAND models. Therefore, further
assessments should consider, for example, the efficacy of the HAND model to represent the
flood extent in flat areas under high spatial resolution DEMs such as those extracted from
high point density cloud points acquired by airborne LIDAR.

Furthermore, a sensitivity effect of algorithms to define flow direction and flow accu-
mulation from DEM, since the HAND model is spatially dependent on the channel’s flow
paths, is also needed. On the other hand, the TWI model tends to show a superabundance
of water accumulation/soil saturation in high-resolution DEM. Therefore, efforts may drive
toward a better choice of DEM resolution or DEM cell size to delineate features on the
landscape that better represent the phenomena, and therefore helps land managers and
environmental agencies support decisions for better use of the environment.

5. Conclusions

This research evaluated HAND and TWI morphological models as an important
source of information on the geomorphological agents that condition the anthropogenic
activities in the structuring units of the landscape. Our results showed that geometric
signatures of the TWI emerged through all of the structural units of the hydrological
landscape, with values between —0.56 and 25.69, where values above 8.0 represent areas
prone to developing water accumulation or soil saturation. The plateau areas were the ones
that most indicated that condition, followed by the floodplains, hillslopes, and ecotones. In
such areas, plateau areas are suggested as structural elements of the landscape for surface
water storage. However, this distribution depends on local relief characteristics, and more
detailed studies are strongly encouraged.

In the Canoinhas River watershed, there is a tendency for the largest geometric
signatures of water accumulation or soil saturation entities to be located close to the higher-
order channels, along with the largest geometric signatures of the floodplains. The area
around the drainage network within 50 m of these channels showed that the areas occupied
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by entities of the Agriculture and Planted Forest classes tended to increase with distance,
while the areas occupied by the Forest class tended to decrease. On the other hand, the
Grasslands, Urban Areas, and Water-related classes remained stable. Some agricultural
and forestry activities were also found within 50 m of the source areas, which shall be
considered in the future by environmental agencies.

HAND and TWI are hydrological-based models that are relatively simple to formulate
but have robust assumptions, which can be applied based on available DEMs. Their
conceptual basis rests on the physical functions of water on the land, its geographical
position in the terrain, and its energy potential in the landscape. These models are ultimately
conceptual abstractions built using the hydrological landscapes’ structural units that form
the watershed’s geomorphology.

Studying how land and water are related in morphological models like HAND and
TWI can help us better understand and evaluate watersheds using freely available remote-
sensing data sources. Factors like terrain, soil, and water quality all play a role in how peo-
ple use the land and could drive decision-makers to use the landscape better. Hydrological-
based models can be an easy way to analyze how all of these different factors interact and
where environmental agencies must pay some attention.

Author Contributions: Conceptualization, Silvio Luis Rafaeli Neto and Vanessa Jutel dos Santos;
Methodology, Silvio Luis Rafaeli Neto and Vanessa Jutel dos Santos; Software, Silvio Luis Rafaeli Neto,
Vanessa Jutel dos Santos, Emili Louise Diconcili Schutz, and Leticia Margarete de Moliner; Validation,
Silvio Luis Rafaeli Neto; Formal analysis, Silvio Luis Rafaeli Neto, Vanessa Jutel dos Santos, Emili
Louise Diconcili Schutz, Leticia Margarete de Moliner, Cristiane Gracieli Kloth, Daiane Teixeira
Schier, Veraldo Liesenberg, and Polyanna da Conceigao Bispo; Investigation, Silvio Luis Rafaeli
Neto; Resources, Silvio Luis Rafaeli Neto, Vanessa Jutel dos Santos, Emili Louise Diconcili Schutz,
Leticia Margarete de Moliner, Cristiane Gracieli Kloth, Daiane Teixeira Schier, Veraldo Liesenberg,
and Polyanna da Conceicao Bispo; Data curation, Silvio Luis Rafaeli Neto; Writing—original draft
preparation, Silvio Luis Rafaeli Neto, Vanessa Jutel dos Santos, and Emili Louise Diconcili Schutz;
Writing—review and editing, Silvio Luis Rafaeli Neto, Vanessa Jutel dos Santos, Emili Louise Diconcili
Schutz, Leticia Margarete de Moliner, Cristiane Gracieli Kloth, Daiane Teixeira Schier, Arsalan Ahmed
Othman, Veraldo Liesenberg, and Polyanna da Conceigao Bispo; Supervision, Silvio Luis Rafaeli
Neto, Veraldo Liesenberg, and Polyanna da Conceicao Bispo; Project administration, Silvio Luis
Rafaeli Neto and Polyanna da Conceigao Bispo; Funding acquisition, Silvio Luis Rafaeli Neto, Veraldo
Liesenberg, and Polyanna da Conceicao Bispo; Visualization, Silvio Luis Rafaeli Neto, Vanessa Jutel
dos Santos, Emili Louise Diconcili Schutz, Leticia Margarete de Moliner, Cristiane Gracieli Kloth,
Daiane Teixeira Schier, Arsalan Ahmed Othman, Veraldo Liesenberg, and Polyanna da Conceicao
Bispo. All authors have read and agreed to the published version of the manuscript.

Funding: This manuscript received financial support from Coordenagao de Aperfeicoamento de
Pessoal de Nivel Superior (CAPES PROAP/AUXPE) and FAPESC (2017TR1762, 2019TR828). Veraldo
Liesenberg is supported by CNPq (313887/2018-7, 317538 /2021-7).

Data Availability Statement: The dataset can be made available upon request.

Acknowledgments: This research received support from Fundagao de Amparo a Pesquisa e Inovacao
do Estado de Santa Catarina (FAPESC PAP/UDESC).

Conflicts of Interest: The authors declare no conflict of interest.

1. MacMillan, R.A.; Jones, R.K.; McNabb, D.H. Defining a Hierarchy of Spatial Entities for Environmental Analysis and Modeling
Using Digital Elevation Models (DEMs). Comput. Environ. Urban Syst. 2004, 28, 175-200. [CrossRef]

2. Rahmati, O.; Kornejady, A.; Samadi, M.; Nobre, A.D.; Melesse, A.M. Development of an Automated GIS Tool for Reproducing the
HAND Terrain Model. Environ. Model. Softw. 2018, 102, 1-12. [CrossRef]

3. Keller, E.; Adamaitis, C.; Alessio, P.; Anderson, S.; Goto, E.; Gray, S.; Gurrola, L.; Morell, K. Applications in Geomorphology.
Geomorphology 2020, 366, 106729. [CrossRef]

4. Gruber, S.; Peckham, S. Land-Surface Parameters and Objects in Hydrology. Dev. Soil Sci. 2009, 33, 171-194. [CrossRef]

5. Winter, T.C. The Concept of Hydrologic Landscapes. ]. Am. Water Resour. Assoc. 2001, 37, 335-349. [CrossRef]

20



ISPRS Int. ]. Geo-Inf. 2023, 12, 314

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Beven, K.J.; Kirkby, M.]. A Physically Based, Variable Contributing Area Model of Basin Hydrology. Hydrol. Sci. Bull. 1979, 24,
43-69. [CrossRef]

Renng, C.D.; Nobre, A.D.; Cuartas, L.A.; Soares, ].V.; Hodnett, M.G.; Tomasella, J.; Waterloo, M.J. HAND, a New Terrain
Descriptor Using SRTM-DEM: Mapping Terra-Firme Rainforest Environments in Amazonia. Remote Sens. Environ. 2008, 112,
3469-3481. [CrossRef]

Nobre, A.D.; Cuartas, L.A.; Hodnett, M.; Rennd, C.D.; Rodrigues, G.; Silveira, A.; Waterloo, M.; Saleska, S. Height above the
Nearest Drainage—A Hydrologically Relevant New Terrain Model. J. Hydrol. 2011, 404, 13-29. [CrossRef]

Cuartas, L.A.; Tomasella, J.; Nobre, A.D.; Nobre, C.A.; Hodnett, M.G.; Waterloo, M.].; de Oliveira, S.M.; von Randow, R.d.C.;
Trancoso, R.; Ferreira, M. Distributed Hydrological Modeling of a Micro-Scale Rainforest Watershed in Amazonia: Model
Evaluation and Advances in Calibration Using the New HAND Terrain Model. ]. Hydrol. 2012, 462—463, 15-27. [CrossRef]
Mattila, U.; Tokola, T. Terrain Mobility Estimation Using TWI and Airborne Gamma-Ray Data. ]. Environ. Manag. 2019, 232,
531-536. [CrossRef]

Guan, M.; Liang, Q. A two-dimensional hydro-morphological model for river hydraulics and morphology with vegetation.
Environ. Model. Softw. 2017, 88, 10-21. [CrossRef]

Mohamedou, C.; Tokola, T.; Eerikdinen, K. LIDAR-Based TWI and Terrain Attributes in Improving Parametric Predictor for Tree
Growth in Southeast Finland. Int. ]. Appl. Earth Obs. Geoinf. 2017, 62, 183-191. [CrossRef]

Drover, D.R.; Jackson, C.R.; Bitew, M.; Du, E. Effects of DEM Scale on TWI Spatial Distribution Effects of DEM Scale on the Spatial
Distribution of the TOPMODEL Topographic Wetness Index and Its Correlations to Watershed Characteristics. Hydrol. Earth Syst.
Sci. Discuss 2015, 12, 11817-11846. [CrossRef]

Rozycka, M.; Migon, P.; Michniewicz, A. Topographic Wetness Index and Terrain Ruggedness Index in Geomorphic Characterisa-
tion of Landslide Terrains, on Examples from the Sudetes, SW Poland. Z. Fur Geomorphol. 2017, 61, 61-80. [CrossRef]

Riihiméki, H.; Kemppinen, J.; Kopecky, M.; Luoto, M. Topographic Wetness Index as a Proxy for Soil Moisture: The Importance
of Flow-Routing Algorithm and Grid Resolution. Water Resour. Res. 2021, 57, €2021WR029871. [CrossRef]

Riittersfl, K.H.; O'neill, R.V.; Jones, K.B. Assessing habitat suitability at multiple scales: A landscape-level approach. Biol. Conserv.
1997, 81, 191-202. [CrossRef]

Ballerine, C. Topographic Wetness Index Urban Flooding Awareness Act Action Support Will and DuPage Counties; Illinois State Water
Survey—Prairie Research Institute—University of Illinois: Champaign, IL, USA, 2017; Volume 22.

Gharari, S.; Hrachowitz, M.; Fenicia, E.; Savenije, H.H.G. Hydrological Landscape Classification: Investigating the Performance of
HAND Based Landscape Classifications in a Central European Meso-Scale Catchment. Hydrol. Earth Syst. Sci. 2011, 15, 3275-3291.
[CrossRef]

Dantas, A.A.R.; Paz, AR. Use of HAND Terrain Descriptor for Estimating Flood-Prone Areas in River Basins. Rev. Bras. Ciéncias
Ambient. 2021, 56, 501-516. [CrossRef]

Bayat, M.; Ghorbanpour, M.; Zare, R.; Jaafari, A.; Thai Pham, B. Application of Artificial Neural Networks for Predicting Tree
Survival and Mortality in the Hyrcanian Forest of Iran. Comput. Electron. Agric. 2019, 164, 104929. [CrossRef]

Gao, Y.; Yao, L.; bin Chang, N.; Wang, D. Diagnosis toward Predicting Mean Annual Runoff in Ungauged Basins. Hydrol. Earth
Syst. Sci. 2021, 25, 945-956. [CrossRef]

Simon, H.A. The New Science of Management Decision, 1st ed.; Harper and Row: New York, NY, USA, 1960.

Chorley, R.; Kennedy, B. Physical Geography: A System Approach; Prentice-Hall: London, UK, 1971.

Neto, S.L.R.; Rodrigues, M. A Taxonomy of Strategies for Developing Spatial Decision Support Systems. In Systems Development
Methods for Databases, Enterprise, Modelling, and Workflow Management; Wojtkowski, W., Wojtkowski, W., Wrycza, S., Zupancic, J.,
Eds.; Kluwer Academic/Plenum: New York, NY, USA, 1999; pp. 139-155.

Longley Paul, A.; Goodchild, M.E.; Maguire, D.J.; Rhind, D.W. Sistemas e Ciéncia Da Informagio Geogrdfica, 3rd ed.; Bookman: Porto
Alegre, Brasil, 2013.

Neto, S.L.R; S4, E.A.S.; Debastiani, A.B.; Padilha, V.L.; Antunes, T.A. Efficacy of Rainfall-Runoff Models in Loose Coupling
Spacial Decision Support Systems Modelbase. Water Resour. Manag. 2019, 33, 889-904. [CrossRef]

Densham, PJ. Spatial Decision Support Systems. In Geographical Information Systems. Vol. 1: Principles; Wiley: Hoboken, NJ, USA,
1991; pp. 403—412. [CrossRef]

Kobiyama, M.; Mendonga, M.; Moreno, D.A.; Marcelino, .P.V.d.O.; Marcelino, E.V.; Gongalves, E.F.; Brazetti, L.L.P.; Goerl, R.E;
Molleri, G.S.F.; Rudorff, E.d.M. Prevengio de Desastres Naturais Conceitos Bdsicos; Organic Trading: Rosebery NSW, Australia, 2006;
ISBN 858775503X.

Tram, V.N.Q.; Somura, H.; Moroizumi, T.; Maeda, M. Effects of Local Land-Use Policies and Anthropogenic Activities on Water
Quality in the Upstream Sesan River Basin, Vietnam. J. Hydrol. Reg. Stud. 2022, 44, 101225. [CrossRef]

Pandey, S.; Kumar, P; Zlatic, M.; Nautiyal, R.; Panwar, V.P. Recent Advances in Assessment of Soil Erosion Vulnerability in a
Watershed. Int. Soil Water Conserv. Res. 2021, 9, 305-318. [CrossRef]

Sisay, G.; Gitima, G.; Mersha, M.; Alemu, W.G. Assessment of Land Use Land Cover Dynamics and Its Drivers in Bechet
Watershed Upper Blue Nile Basin, Ethiopia. Remote Sens. Appl. 2021, 24, 100648. [CrossRef]

Wang, Y.; Liu, X.; Wang, T.; Zhang, X.; Feng, Y.; Yang, G.; Zhen, W. Relating Land-Use/Land-Cover Patterns to Water Quality in
Watersheds Based on the Structural Equation Modeling. Catena 2021, 206, 105566. [CrossRef]

21



ISPRS Int. ]. Geo-Inf. 2023, 12, 314

33.

34.

35.

36.
37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.
54.

55.

56.

57.

58.

59.

60.

Ross, E.R.; Randhir, T.O. Effects of Climate and Land Use Changes on Water Quantity and Quality of Coastal Watersheds of
Narragansett Bay. Sci. Total Environ. 2022, 807, 151082. [CrossRef] [PubMed]

Pike, R.J. The Geometric Signature: Quantifying Landslide-Terrain Types from Digital Elevation Models I. Math Geol. 1988, 20,
491-511. [CrossRef]

Schroder, B. Pattern, Process, and Function in Landscape Ecology and Catchment Hydrology—How Can Quantitative Landscape
Ecology Support Predictions in Ungauged Basins? Hydrol. Earth Syst. Sci. 2006, 10, 967-979. [CrossRef]

Hengl, T.; Evans, 1.S. Mathematical and Digital Models of the Land Surface. Dev. Soil Sci. 2009, 33, 31-63. [CrossRef]

Bishop, M.P; Young, B.W.; Huo, D. Geomorphometry: Quantitative Land-Surface Analysis and Modeling. In Reference Module in
Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2018.

Mao, W.; Yang, J.; Zhu, Y.; Ye, M.; Liu, Z.; Wu, J. An Efficient Soil Water Balance Model Based on Hybrid Numerical and Statistical
Methods. J. Hydrol. 2018, 559, 721-735. [CrossRef]

van Buuren, M.; Kerkstra, K. The Framework Concept and the Hydrological Landscape Structure: A New Perspective in
the Design of Multifunctional Landscapes. Available online: https://doi.org/10.1007/978-94-011-2318-1_10 (accessed on 30
September 2022).

Neto, S.L.R.; Biffi, L.J. Aplicagao de Um Modelo Linear Local Na Determinacao de Alturas Ortométricas Referidas Ao Sistema
Geodésico Brasileiro. Bol. Goiano Geogr. 2016, 36, 157-176. [CrossRef]

Quinn, PK.B.; Chevallier, P; Planchon, O. The Prediction of Hillslope Flow Paths for Distributed Hydrological Modelling Using
Digital Terrain Models. Hydrol. Process. 1991, 5, 59-79. [CrossRef]

Ambroise, B.; Beven, K.; Freer, ]. Toward a Generalization of the TOPMODEL Concepts: Topographic Indices of Hydrological
Similarity. Water Resour. Res. 1996, 32, 2135-2145.

Dusek, J.; Dafenova, E.; Pavelka, M.; Marek, M.V. Methane and Carbon Dioxide Release from Wetland Ecosystems. In Climate
Change and Soil Interactions; Elsevier: Amsterdam, The Netherlands, 2020; pp. 509-553. [CrossRef]

Tarboton, D.G. A New Method for the Determination of Flow Directions and Upslope Areas in Grid Digital Elevation Models.
Water Resour. Res. 1997, 33, 309-319.

Nobre, A.D.; Cuartas, L.A.; Momo, M.R.; Severo, D.L.; Pinheiro, A.; Nobre, C.A. HAND Contour: A New Proxy Predictor of
Inundation Extent. Hydrol. Process. 2016, 30, 320-333. [CrossRef]

Momo, M.R;; Pinheiro, A.; Severo, D.L.; Cuartas, L.A.; Nobre, A.D. Desempenho Do Modelo Hand No Mapeamento de Areas
Suscetiveis a Inundacao Usando Dados de Alta Resolugao Espacial. Rev. Bras. Recur. Hidricos 2016, 21, 200-208. [CrossRef]
Bhatt, C.M.; Srinivasa Rao, G. HAND (Height above Nearest Drainage) Tool and Satellite-Based Geospatial Analysis of Hyderabad
(India) Urban Floods, September 2016. Arab. ]. Geosci. 2018, 11, 600. [CrossRef]

Santa Catarina. Plano de Recursos Hidricos Da Bacia Hidrografica Do Rio Canoinhas e Afluentes Catarinenses Do Rio Negro.
Available online: https:/ /www.infoteca.cnptia.embrapa.br/infoteca/bitstream/doc/964417 /1 /BPD-46-2004-Santa-Catarina-
.pdf (accessed on 30 September 2022).

EMBRAPA SOLOS Distribuicao Geografica Dos Solos Do Estado de Santa Catarina. Available online: https:/ /www.fapesc.sc.gov.
br/wp-content/uploads/2021/02/pgrh-canoinhas_produto_3_etapa_c_final_rev21jul2020.pdf (accessed on 30 September 2022).
AMPLANORTE. Plano de Desenvolvimento Regional Do Planalto Norte Catarinense. 2017. Available online: https://www.
amplanorte.org.br/cms/pagina/ver/codMapaltem /74869 (accessed on 30 September 2022).

Rao, P; Wang, Y.; Liu, Y,; Wang, X.; Hou, Y.; Pan, S.; Wang, F; Zhu, D. A Comparison of Multiple Methods for Mapping
Groundwater Levels in the Mu Us Sandy Land, China. J. Hydrol. Reg. Stud. 2022, 43, 101189. [CrossRef]

Souza, C.M.; Shimbo, J.Z.; Rosa, M.R.; Parente, L.L.; Alencar, A.A.; Rudorff, B.ET.; Hasenack, H.; Matsumoto, M.; Ferreira, L.G.;
Souza-Filho, PW.M,; et al. Reconstructing Three Decades of Land Use and Land Cover Changes in Brazilian Biomes with Landsat
Archive and Earth Engine. Remote Sens. 2020, 12, 2735. [CrossRef]

Avery, T.E. Interpretation of Aerial Photographs, 3rd ed.; Burgess Publishing Company: Minneapolis, MN, USA, 1977.

Souza, C.E; Liesenberg, V.; Schimalski, M.B.; Casemiro Soares, P.R. Evaluating the Monetary Environmental Compensation over a
Hydroelectric Power Plant Based on Opportunity Cost Simulation, GIS, and Remote Sensing Images. Remote Sens. Appl. 2021, 23,
100573. [CrossRef]

Costa, J.d.S.; Liesenberg, V.; Schimalski, M.B.; de Sousa, R.V,; Biffi, L.].; Gomes, A.R.; Neto, S.L.R.; Mitishita, E.; Bispo, P.d.C.
Benefits of Combining Alos/Palsar-2 and Sentinel-2a Data in the Classification of Land Cover Classes in the Santa Catarina
Southern Plateau. Remote Sens. 2021, 13, 229. [CrossRef]

SDS. Levantamento Aerofotogramétrico Do Estado de Santa Catarina. Secretaria de Estado Do Desenvolvimento Econdmico e Sustentdvel;
ENGEMAP: Assis, Brazil, 2013.

Wolock, D.M.; McCabe, G.J. Differences in Topographic Characteristics Computed from 100- and 1000-m Resolution Digital
Elevation Model Data. Hydrol. Process. 2000, 14, 987-1002. [CrossRef]

Wolock, D.M.; Price, C.V. Effects of Digital Elevation Model Map Scale and Data Resolution on a Topography-Based Watershed
Model. Water Resour. Res. 1994, 30, 3041-3052. [CrossRef]

Meles, M.B.; Younger, S.E.; Jackson, C.R.; Du, E.; Drover, D. Wetness Index Based on Landscape Position and Topography (WILT):
Modifying TWI to Reflect Landscape Position. J. Environ. Manag. 2020, 255, 109863. [CrossRef] [PubMed]

Gyasi-Agyei, Y.; Willgoose, G.; de Troch, EP. Effects of Vertical Resolution and Map Scale of Digital Elevation Models on
Geomorphological Parameters Used in Hydrology. Hydrol. Process. 1995, 9, 363-382. [CrossRef]

22



ISPRS Int. ]. Geo-Inf. 2023, 12, 314

61.

62.

63.

64.

65.

66.

67.

68.
69.

70.

71.

72.

73.

74.

75.

76.

77.
78.

Camara, G.; Vinhas, L.; Ferreira, K.R.; de Queiroz, G.R.; de Souza, R.C.M.; Monteiro, A.M.V.; de Carvalho, M.T.; Casanova,
M.A.; de Freitas, U.M. TerraLib: An Open Source GIS Library for Large-Scale Environmental and Socio-Economic Applications; Springer:
Berlin/Heidelberg, Germany, 2008; pp. 247-270. [CrossRef]

Nobre, A.D. A new landscape classification: The HAND Model. Available online: https:/ /hess.copernicus.org/preprints/8/C2
446/2011/hessd-8-C2446-2011.pdf (accessed on 30 September 2022).

ESRI. ArcGis Release 10.5.1; ESRI: Redlands, CA, USA, 2017.

Bonamigo, A.; Schimalski, M.B.; Soares, PR.C.; Liesenberg, V.; de Souza, T.R.; Boesing, T.L.S. Variagao Nas Areas de Preservacao
Permanente Em Imoveis Rurais Do Planalto Sul Catarinense Segundo as Leis N° 4.771 e 12.651. Cienc. Rural 2017, 47, 1-6.
[CrossRef]

Gharari, S.; Fenicia, F.,; Hrachowitz, M.; Savenije, H.H.G. Land Classification Based on Hydrological Landscape Units. Hydrol.
Earth Syst. Sci. Discuss 2011, 8, 4381-4425. [CrossRef]

Schier, D.T. Avaliagio Do Indice Topografico de Umidade Para Deteccdo de Zonas Urbanas Inundéveis. Master’s Thesis,
Universidade do Estado de Santa Catarina, Lages, Brazil, 2020.

Biffi, L.J.; Neto, S.L.R. Spatial Behavior of the Agronomic Variables of the Fuji Apple during Two Years in the Planalto Serrano of
Santa Catarina State. Rev. Bras. Frutic 2008, 975-980. [CrossRef]

Scheidegger, A.E. Horton’s Law of Stream Numbers, 3rd ed. Water Resour. Res. 1968, 4, 655-658. [CrossRef]

Tan, Z.; Li, Y.; Zhang, Q.; Liu, X;; Song, Y.; Xue, C.; Lu, J. Assessing Effective Hydrological Connectivity for Floodplains with a
Framework Integrating Habitat Suitability and Sediment Suspension Behavior. Water Res. 2021, 201, 117253. [CrossRef]

Sieker, H.; Klein, M. Best Management Practices for Stormwater-Runoff with Alternative Methods in a Large Urban Catchment in
Berlin, Germany. Water Sci. Technol. 1998, 38, 91-97. [CrossRef]

Braune, M.].; Wood, A. Best Management Practices Applied to Urban Runoff Quantity and Quality Control. Water Sci. Technol.
1999, 39, 117-121. [CrossRef]

Pereira, BW.d.F,; Maciel, M.d.N.M.; Oliveira, F.d.A.; Alves, M.A.M.d.S.; Ribeiro, A.M.; Ferreira, B.M.; Ribeiro, E.G.P. Land Use
and Water Quality Degradation in the Peixe-Boi River Watershed. Ambiente Agua 2016, 11, 472-485. [CrossRef]

Wroblescki, F.A.; Bertol, I.; Wolschick, N.H.; Bagio, B.; Santos, V.P.d.; Bernardi, L.; Biasiolo, L.A. Assessed Impact of Anthropization
on Water and Soil Quality in a Drainage Basin in Southern Brazil. Rev. De Ciéncias Agroveterindrias 2021, 20, 74-85. [CrossRef]
Neto, S.L.R.; Cordeiro, M.T.A. Analise Do Comportamento de Sistemas Urbanos Por Meio de Componentes de Sistemas
Hidrologicos. GEOUSP Espago E Tempo 2015, 19, 142-155. [CrossRef]

Ice, G. History of Innovative Best Management Practice Development and Its Role in Addressing Water Quality Limited
Waterbodies. ]. Environ. Eng. 2004, 130, 684-689. [CrossRef]

Tingsanchali, T. Urban Flood Disaster Management. In Proceedings of the Procedia Engineering; Elsevier Ltd.: Amsterdam, The
Netherlands, 2012; Volume 32, pp. 25-37.

Woods Ballard, B. Construction Industry Research and Information Association. The SuDS Manual; CIRIA: London, UK, 2016.
Maidment, D.; Rajib, A.; Lin, P.; Clark, E.P. National Water Center Innovators Program Summer Institute Report 2016; National Water
Center: Tuscaloosa, AL, USA, 2016.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

23






- . International Journal of
ISpys Geo-Information

Article

Assessment of a Dynamic Physically Based Slope Stability
Model to Evaluate Timing and Distribution of Rainfall-Induced
Shallow Landslides

Juby Thomas !, Manika Gupta *, Prashant K. Srivastava 2 and George P. Petropoulos

Citation: Thomas, J.; Gupta, M.;
Srivastava, P.K.; Petropoulos, G.P.
Assessment of a Dynamic Physically
Based Slope Stability Model to
Evaluate Timing and Distribution of
Rainfall-Induced Shallow Landslides.
ISPRS Int. ]. Geo-Inf. 2023, 12, 105.
https://doi.org/10.3390/
ijgi12030105

Academic Editors: Walter Chen,
Fuan Tsai and Wolfgang Kainz

Received: 24 November 2022
Revised: 23 February 2023
Accepted: 24 February 2023
Published: 2 March 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
1.0/).

1 Department of Geology, University of Delhi, Delhi 110007, India

Remote Sensing Laboratory, Institute of Environment and Sustainable Development,

Banaras Hindu University, Varanasi 221005, India

Department of Geography, Harokopio University of Athens, El. Venizelou 70, 17671 Athens, Greece
*  Correspondence: manikagup@gmail.com

Abstract: Shallow landslides due to hydro-meteorological factors are one of the most common
destructive geological processes, which have become more frequent in recent years due to changes
in rainfall frequency and intensity. The present study assessed a dynamic, physically based slope
stability model, Transient Rainfall Infiltration and Grid-Based Slope Stability Model (TRIGRS), in
Idukki district, Kerala, Western Ghats. The study compared the impact of hydrogeomechanical
parameters derived from two different data sets, FAO soil texture and regionally available soil texture,
on the simulation of the distribution and timing of shallow landslides. For assessing the landslide
distribution, 1913 landslides were compared and true positive rates (TPRs) of 68% and 60% were
obtained with a nine-day rainfall period for the FAO- and regional-based data sets, respectively.
However, a false positive rate (FPR) of 36% and 31% was also seen, respectively. The timing of
occurrence of nine landslide events was assessed, which were triggered in the second week of June
2018. Even though the distribution of eight landslides was accurately simulated, the timing of
only three events was found to be accurate. The study concludes that the model simulations using
parameters derived from either of the soil texture data sets are able to identify the location of the event.
However, there is a need for including a high-spatial-resolution hydrogeomechanical parameter data
set to improve the timing of landslide event modeling.

Keywords: rainfall-induced landslides; physically based model; TRIGRS; Western Ghats

1. Introduction

Shallow landslides due to hydro-meteorological factors are one of the most common
destructive geological processes on the Earth’s surface and are responsible for the loss of
lives, both human and livestock, every year, in mountainous regions. Although landslide
occurrences are confined to hillsides and steep terrain, the devastating after-effects are not
only limited to their origin but also affect the downstream areas. The cascading effects
of frequent landslides, often with intense precipitation, create innumerable adversities
for people and ecosystems in both highlands and lowlands [1-3]. Geologically, shallow,
rainfall-induced landslides have an important role as an agent of shaping mountainous
landscapes. While modifying the topography and renewing the terrain and ecosystems,
both in the upstream and downstream areas, landslides cause the degradation of fertile land,
damage to agricultural land, traffic disruption, and destruction of infrastructures, especially
settlements, and have many other indirect social and economic implications [4-10].

Although landslides are triggered by geological (volcanic eruption, earthquakes, etc.)
and anthropogenic (slope or toe excavation, slope loading, drawdown and irrigation,
blast-vibrations, etc.) factors, hydro-meteorological factors still remain the major extrinsic
factor [6,11]. In tectonically stable areas, e.g., southern peninsular India where this study
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was carried out, hydro-meteorological (intense rainfall) factors are the significant triggers,
in addition to anthropogenic activities.

The current trends and projections of precipitation patterns show an increase in oc-
currence of high-intensity rainfall events globally, and heavy rainfalls in a short span of
time will trigger a greater number of shallow landslides. As observed, a higher num-
ber of landslides have been reported globally because of the surge in the occurrence of
frequent intense-localized precipitation events. The increased human presence in the
mountainous regions makes the landslides and their immediate effects more severe and
destructive [12,13]. With the alarming situation of climate change, population expansion,
and uncontrolled exploitation of mountainous regions, tropical and subtropical moun-
tainous areas such as Western Ghats, where this study was carried out, will be the worst
affected areas by any typical hydro-geotechnical disaster such as landslides [6,14].

Shallow landslides are defined as slope failures that are generally confined to a depth
of less than 3 m [15-18], and depth is determined as the distance to the failure plane
from the surface. The failure plane, often termed as the slip surface, is between the soil
column and bedrock or within the soil column where a sharp contrast in permeability
is present [19,20]. The extent of a geographical area directly hit by landslides, especially
shallow, rainfall-induced landslides, is often much smaller than the area affected by similar
natural hazards such as floods, droughts, volcanic eruptions, and earthquakes. However,
landslides are more frequent and recurring than many of the above-mentioned disasters
and cause extensive destructions [6,8,21-25]. Although an individual rainfall-induced
shallow landslide involves less runout volume, it has the potential to evolve into debris or
earth flows and thereby gather more channel sediments and cause significant destruction
along its path and in the downstream areas [3,26,27].

In India, landslides are one of the most common geohazards and are often triggered by
hydrometeorological factors. India’s mountainous regions experience enormous pressure
due to increased human activities along with adversities due to climate change. The
impacts of geohazards such as rainfall-induced landslides have intensified. Since it is
impossible to control the occurrence of rainfall-induced landslides, it is best advised to
deploy comprehensive strategies to mitigate the effects. Additionally, it has to be noted
that rainfall-induced landslides are site-specific and their destructive power is limited to
the area of origin and the channels along the downstream areas. Adequate information
on when and where a landslide may occur will help the policymakers and administrators
with issuing site- or region-specific early warnings.

A number of methods are used for computing the information on when and where a
landslide will occur [28]. Conventionally, the methods utilized for landslide hazard assess-
ments or slope stability analysis to demarcate landslides can be classified into qualitative
and quantitative methods [29-31]. The qualitative approaches can be further categorized
into inventory-based mapping and heuristic methods. Inventory-based landslide assess-
ments are one of the simplest forms of landslide hazard assessment, in which historical
information of individual landslides are directly collected by visiting the affected area or
through various remote sensing techniques [32,33]. Heuristic methods provide information
on the degree and type of risks based on the knowledge and experience of an expert [34,35].
Because assigning weightage and ranking to causative and triggering parameters are highly
subjective and localized, the expert with most experience and knowledge might produce
the best results. Since each area is unique and complicated in its own ways, the ranking
and weightage for one region might not produce desirable results for another region. The
quantitative methods include two major categories: statistical- or stochastic- and physically
based models. The former method employs mathematical models to assess slope stability
based on the weighting assigned to the causative factors [36,37]. The weightages are relative,
and a possibility of generalization is always present in the statistical methods. Statistical
methods often work in combination with heuristic methods through bivariate, multivariate,
or neural network analysis. Even though physically based models are relatively compli-
cated compared with the rest of the methods, they are most suitable in local-scale and
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site-specific studies. Landslide hazard is determined using process-based slope stability
models that consider the interplay of causal factors [38,39]. The results are often expressed
in terms of a Factor of Safety (FoS), where lesser values indicate unstable areas.

Regardless of the complexity and data intensity of computing, physically based mod-
els are widely used to forecast rainfall-induced landslides because of the increased con-
trol over the hydrological and geotechnical aspects [40,41]. Physically based models in
Geographic Information System (GIS) platforms have provided promising results in com-
puting the timing and localization of shallow, rainfall-induced landslides at the regional
scale [16,22,25,42-46]. These models can be employed to model slope stability ranging
for areas from tens to thousands of kilometers squared. r.rotstab [47], High Resolution
Slope Stability Simulator (HIRESS) [48], GEOtop-FS [49], Shallow Landslides Instability
Prediction (SLIP) [50], Stability Index Mapping (SINMAP) [51], Shallow Slope Stability
Model (SHALSTAB) [52], distributed Shallow Landslide Analysis Model (ASLAM) [53],
and Transient Rainfall Infiltration and Grid-Based Regional Slope Stability (TRIGRS) [54]
are some of the available physically based models. SINMAP, SHALSTAB, and TRIGRS are
widely used in modeling the slope stability of hills. The models have been tested and vali-
dated in diverse geological, geomorphological, and climatic conditions globally. SINMAP,
a probabilistic steady-state model, and SHALSTAB, a deterministic steady-state model,
require geotechnical parameters and altitude information to compute slope stability and
combine the Mohr—Coulomb infinite slope stability model with a steady-state hydrological
model [55]. The illustration of slope failure mechanism is achieved mainly through the
computation of FoS in physically based models. The FoS is the ratio of shear strength
(resisting or stabilizing forces) to shear stress (driving or destabilizing forces) parallel to the
surface. The SLIP model considers the saturation of part of the soil column as the major
factor affecting slope failure. It assumes that the terrain is stable due to shear strength, and
water flows easily into the soil column as the rainfall progresses. Large portions of the soil
eventually become saturated, and the soil sliding process starts. SLIP assesses the stability
of terrain using the FoS computed through the limit equilibrium method.

TRIGRS, a transient model, considers hydrological information in addition to geotech-
nical parameters and altitude information. Because TRIGRS considers the transient effects
of rainfall on infiltration and computes the change in pore water pressure (PWP) and
FoS [54], time varying analysis of slope stability is possible with TRIGRS.

TRIGRS has been previously utilized for regional-scale analysis in various studies and
has been found to produce reliable results for transient rainfall events varying from hours
to days [42,56,57]. In another study, importance was placed on the transient pore water
pressure, which may result in the triggering of a slip [58]. In a study, based on flume tests,
it was suggested that the initial porosity and saturation have an impact on the prediction
capacity of the SLIP model [59]. It has been noted that another model, SHALSTAB, consid-
ers a single set of geotechnical values for a whole basin. The study emphasized the spatial
discretization of these parameters to improve the predictive nature of the model [60]. One
of the major limitations of SHALSTAB and SINMAP is the assumption of uniform thickness
of soil, hydraulic conductivity, and steady-state shallow subsurface flow. Additionally, the
slide is assumed to be translational, and the hydrological boundaries always follow the
topography of the terrain [22]. While SHALSTAB and SINMAP are suggested for primary
investigations of terrain stability, TRIGRS is often recommended to model specific events
(such as the 2018 monsoon rainfall events in the study area) and early warning systems [45].
Although considering the soil as homogeneous has been found to over-estimate unsta-
ble pixels when using TRIGRS, it has been successfully utilized at the regional scale. As
stated in one of the studies, the model parameters were set to be constant for the study
area, which resulted in false positives [61]. These studies have stated the limitation of the
model lies in the accuracy of the hydrogeomechanical parameters, which may need to be
obtained through field investigations. These parameters are known to be spatially variable.
Additionally, the lack of field data and laboratory analysis at the regional scale makes these
parameters scarce. So, most of the studies are based on the inverse optimization of these
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parameters through the utilization of landslide inventories [56,61-63]. However, most of
the areas lack landslide inventories with correct timing of the landslide occurrence, creating
uncertainty in the optimization. The present study used the TRIGRS model [54,64,65] to
compute the timing and distribution of shallow, rainfall-induced landslides in a catchment
region in Western Ghats, India. In this study, the soil hydraulic parameters (SHPs) were
based on two different soil texture maps available at different scales, and their influences
on the occurrence of a landslide event were compared. Therefore, the impact of hydro-
geomechanical parameters on the determination of FoS and PWP was quantified along
hill slopes based on two soil texture data sets (FAO-based and regional), which differ in
introducing soil heterogeneity to the model.

2. Materials and Methods

A catchment area was delineated to execute the TRIGRS, and the catchment area
lies mostly in the district of Idukki, Kerala, India, being on the windward side of the
southern part of Western Ghats. Figure 1 shows the geographical location of the study
area along with the administrative boundaries and extent of Western Ghats. The present
study examined the distribution of 1913 landslides as a result of rainfall events during
the devastating 2018 monsoon period (Figure 2) along with timing of 9 selected shallow
landslides in the study area (Figure 3).

The study area lies in one of the most landslide-prone areas in India, and both climate
and topography play a significant role as causative and triggering factors [66] for the
occurrences of landslides in the region. The tropical climate with intense rainfall and
scorching summers have resulted in a thick overburden of poorly consolidated soil, with
thickness often ranging up to 5 m (depending upon the slope) in the study area [67,68].
The combination of highly weathered bedrock, steep slopes, and heavy precipitation in the
monsoon season makes the study area an ideal location for understanding, rainfall-induced
shallow landslides.

The study area receives the majority of its rainfall in two monsoon periods (South West
monsoon from June to September and North East monsoon from October to November).
Additionally, the high-altitude and steep terrain of Western Ghats receives more rainfall
than the low-lying areas due to orographic effect of Western Ghats [67,68].

Moreover, the devastating impacts of global climate changes have already been ob-
served in the study area in the form of extreme rainfall, which are expected to increase in
the coming years, which will in turn increase the frequency of slope failure in the study
area [69-74]. According to the India Meteorological Department (IMD), the entire state of
Kerala received 2346.6 mm of rainfall between 1 June 2018 and 19 August 2018 rather than
the expected 1649.5 mm, which was about 42% above the normal rainfall rate. Furthermore,
the district of Idukki received 3555.5 mm rainfall instead of the normal 1851.7 mm from
1 June 2018 to 22 August 2018 [75]. This is a 92% increase from the normal rainfall, and the
IMD has identified this as large-excess deviation from normal rainfall. On 9 August, three
stations in the catchment region delineated for this study received 255 mm, 254 mm, and
211 mm of rain. The intense and incessant rainfall received in the steep and undulating
terrain of Western Ghats triggered multiple landslides in the study area on 9 and 11 June
2018 [76].
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Figure 1. Geographical location of the study area. (A) Location of Western Ghats in the political
map of India. (B) Relative positions of Kerala and the catchment region selected for the study in the
Western Ghats. (C) Geographical location of the catchment region chosen for the study.
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were available on Google Earth and given as six tiles.

2.1. Data Sets

The determination of landslide occurrences through physically based models involves
multiple levels of complexity. The output of models such as TRIGRS are significantly
dependent on the resolution and precision of the input data sets. The following data sets,
materials, tools, and software were used for understanding the timing and distribution of
rainfall-induced shallow landslides in the study area. A detailed description of the data
sets used for the present study is provided in the sections below.
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2.1.1. Slope Failure Inventory

The entire state of Kerala received one of the most severe rainfalls in the century
during June and August 2018, which triggered thousands of landslides, affecting millions
of people [77-80]. The severity of the disaster led to studies on understanding the causes of
slope failures in the region. The National Remote Sensing Center-Indian Space Research
Organization (NRSC-ISRO), Geological Survey of India (GSI), and Kerala State Disaster
Management Authority (KSDMA) generated various landslide inventories primarily by
analysing pre- and post-disaster high-resolution satellite images. Later, Hao et al. impro-
vised a landslide inventory by adding missing events and eliminating falsely detected
landslides [66]. Further details on the elimination of erroneous entries and utilization of
object-based image analysis for automated landslide detection can be found in [66]. The
present study used the spatial information of the 1913 landslide events that occurred in
the study area during 2018 monsoon rainfall based on the above-mentioned landslide
inventory.

Along with the spatial information on the distribution of landslides in the study area,
9 slope failures in the study area that were triggered by the very intense rainfall between
1 and 19 June 2018 were validated for the timing of the occurrence of event. The events
were documented by Geological Survey of India (GSI) under the program “Post disaster
studies in Kerala” (FSP No: M4SI/NC/SR/SU-KRL/2018/21108).

Landslide 1 (Figure 3) happened in the Survey of India (SOI) toposheet number
58F /04 in Kallar Vettiyar, and the event happened on 9 June 2018. It had a dimension of
60m x 30 m x 60 m (length x width x height), and the depth to the failure surface as
observed was less than 4 m. The failure can be classified as a rainfall-induced shallow planar
landslide. The area was an agricultural land with major crop being cardamom (low height
plantation with no deep roots). Landslide 2 (Figure 3) was a shallow planar rainfall-induced
landslide in a locality called Anachal (SOI toposheet number 58F/04) and occurred in the
afternoon, around 2 PM, of 11 June, 2018. The slide had a length of 20 m, width of 30 m,
and a height of 25 m. The failure surface was less than 3 m from the top, and the overlying
material was very loose coarse-grained in situ soil. The slide was caused by a rise in the
PWP as a result of a continuous downpour on the overlying material. A nearby four-story
building collapsed as a result of the slide. Landslide 3 (Figure 3) happened on 9 June 2018
and was a shallow planar failure due to incessant rainfall. It happened in a locality called
Eetticity, which lies in SOI toposheet 58F/04. The failure was a shallow planar rainfall-
induced landslide with a 60 m length, 50 m width, and 45 m height. The overlying soil was
planted with mixed plantations. On 9 June 2018, another landslide (landslide 4, Figure 3)
happened in a locality called Kallimali (SOI toposheet number 58G/01). The landslide
had a dimension of 45 m x 8 m x 40 m (length x width x height), and the overlying land
was used for agriculture (pepper cultivation), and almost 1.5 acres of agricultural land
on the hillslope was destroyed. According to the GSI reports, unplanned agricultural
practices had caused higher infiltration of rainwater, which in turn caused a rise in the PWP
and resulted in the failure. Landslide 5 (Figure 3) happened in Kallarkutty village in SOI
toposheet 58G/01 on 9 June 2018, and was a shallow rotational failure triggered by rainfall.
The failure was relatively small and had a length, width, and height of 8 m, 9 m, and 20 m,
respectively. The same village had another landslide (Landslide 6, Figure 3) on the same day
early in the morning (2 AM) in a pepper plantation. A shallow planar landslide happened
in Cheruthoni on 9 June 2018, with a failure depth of 0.5 m deep and a very small run out
distance of less than 2.5 m. The area lies in SOI toposheet 58B/16 (Landslide 7, Figure 3).
Landslide 8 (Figure 3) occurred on 9 June 2018 in the village of Anaviratty (SOI toposheet
number 58F/04). The failure was a shallow planar rainfall-induced landslide, and the
overburden had thick vegetation. The depth to the failure was almost 1 m and had a very
small, less than 5 m, run-out distance. Landslide 9 (Figure 3), chosen in the catchment area
for the present study, happened on 9 June 2018, and was a shallow planar landslide less
than 1 m deep to the failure plane. The top soil was characterized by moderate vegetation.
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2.1.2. Strength and Hydraulic Parameters of the Study Area

The quantification of infiltration, runoff, flow routing, and thereby PWP and FoS
was based on the strength and hydraulic parameters of the study area. The present study
derived the strength and hydraulic parameters for the area from a soil texture map. The
soil texture map of the area was obtained from the NASA Centre for Climate Simulation
(NCCS) data portal. The Global Hybrid STATSGO/FAO Soil Texture [81,82] is provided by
the NCCS data portal and is a 16-category soil texture map with 30 s resolution. Although
the data are provided in 30 s spatial resolution, they were originally remapped data
from the Food and Agricultural Organization of United Nations (below) 5 min data. The
STATSGO/FAQ data’s soil texture indices were set to the United States Geological Survey
(USGS) index texture values, and further information on the original STATSGO and original
FAO soil map can be found on the NCCS data portal. Three major designated soil textures
were identified in the study according to the 30 s STATSGO/FAO soil texture map, and
Table 1 summarizes the key hydrogeomechanical parameters (hydraulic and strength
parameters) with respect to the three major corresponding soil textures of the terrain. A
number of authors have examined the sensitivity of hydraulic and mechanical properties
of terrain to compute the FoS and have found that physically based models perform
better when the input parameters, hydraulic and mechanical, are high resolution [83].
The present study further used a detailed soil texture map from the Department of Soil
Survey and Soil Conservation (DSSSC), Thiruvananthapuram, Kerala, India. The DSSSC
is the state nodal agency for the conservation as well as management of soil resources
for the state of Kerala. The department provides scientific databases to researchers and
policymakers for the best practices on soil and land management. The detailed soil texture
map was derived from the local soil texture associations provided by the DSSSC. The
high-resolution hydrogeomechanical properties derived from the DSSSC soil texture maps
were further utilized for deriving high-resolution FoS and then for sensitivity analyses
(Sections 2.2 and 4). Figure 4 illustrates the soil texture maps (FAO-STATSGO-derived and
DSSSC-derived soil maps) of the catchment area selected for the present study. It can be
seen that the FAO-STATSGO database demarcates only three soil types in the region, while
eight soil types are identified in the field-based high-resolution DSSSC regional map.
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Figure 4. Soil texture map of the study area. (A) Soil texture based on the Global Hybrid
STATSGO/FAO Soil Texture. (B) Field-based soil texture from Department of Soil Survey and
Soil Conservation (DSSSC), Thiruvananthapuram, Kerala.
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Table 1. Hydrogeomechanical parameters (hydraulic and strength parameters) of the study area for
three designated soil textures. C” is cohesion for effective stress, ¢’ is angle of internal friction, v is
unit weight of soil, Dy is hydraulic diffusivity, and K; is saturated hydraulic conductivity.

Soil Texture Loam Sandy Clay Loam Clay Loam
FAO soil texture index 6 7 9
C’ (KPa) 10 29 35
¢’ (degree) 225 20 20
7 (Nm~3) 13,000 15,000 14,000
Do (m2s~1) 0.0000094 0.0000062 0.000005
Ks (mls~1) 0.00000453 0.00000659 0.00000272

2.1.3. Digital Elevation Model (DEM)

Terrain parameters, such as elevation, slope, and flow direction, have been extensively
used in every landslide study at the catchment scale. The present study derived the terrain
parameters from the Shuttle Radar Topography Mission (SRTM) Global DEM (Digital
Object Identifier number:/10.5066/F7PR7TFT). The void filled elevation data at 1 arc-
second (30 m) with a worldwide coverage was used for generating a grid-wise distribution
of the altitude, slope, and flow direction. SRTM, hosted by the Endeavour space shuttle,
was the first mission to use C-band spaceborne imaging radar and X-band synthetic
aperture radar (X-SAR) for the global acquisition of elevation. The void-filled DEM used
for the present study is hosted and distributed by the Earth Resources Observation and
Science (EROS) Archive. Even though the DEM is tagged as void-filled, there were some
anomalously low-altitude pixels, often referred to as depressions or pits or sinks, entirely
surrounded by high-altitude pixels. Because sinks significantly interfere with the routing
and flow across terrain, they have to be eliminated by filling (increasing the altitude to
an extent where it allows draining off to the downhill) or breaching (lowering the edges
of the dead-ends or sinks blocking the flow to allow draining off downhill). The present
study used a highly efficient utility program called TauDEM, Terrain Analysis Using Digital
Elevation Models [84] to remove the sinks and generate a hydrologically conditioned DEM
for seamlessly deriving the terrain parameters for topographic indexing and TRIGRS.

2.1.4. Precipitation

Time-varying rainfall intensity is one of the major parameters used as input to compute
the FoS and PWP in the TRIGRS model. The present study used a carefully curated synthetic
rainfall history for analyzing the distribution and timing of the landslides in the study area.
The IMERG and IMD data sets and a number of reports and articles from the State Disaster
Management Authority (SDMA) and various authors (Section 1) were used for generating
the time-varying rainfall intensity curve for a nine-day study period. The precipitation
data sets from the IMD have a spatial resolution of 0.250° x 0.250° and provide daily
gridded data over the Indian region [85]. Additionally, the Integrated Multi-satellitE
Retrievals for GPM (IMERG) daily “final” precipitation (Level 3, version 6) is a global
precipitation data set with high spatial resolution (0.10" x 10°) that is available half-hourly,
daily, and monthly [86]. The present study used IMERG’s “final” (~3.5 months after the
observation) precipitation data sets, which are satellite-gauge products using both forward
and backward morphing, and the data sets are available from web portals such as the
Global Precipitation Measurement (GPM) portal (https://gpm.nasa.gov/data/sources,
accessed on 24 November 2022). Because the routing scheme in TRIGRS is established
through the mass balance of rainfall, infiltration, and runoff, the reliability of precipitation
data plays a significant role in computing slope stability.

The synthetic rainfall history prepared for the present study is shown in Figure 5. The
curve shows a gradual increase in the daily rainfall from the first to the seventh day and a
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drop for next two days; the highest daily accumulated daily rainfall was 250 mm. Because
Central Water Commission (CWC) reported heavy rainfall on 9 August 2018, and three
stations in the catchment region received 255 mm, 254 mm, and 211 mm (Peermade, Munnar,
and Myladumpara in the Idukki district, respectively), the rainfall history taken for this
study is a possible scenario in the catchment region.
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Figure 5. Time-varying rainfall rate prepared for the present study by considering CWC and GPM-
IMERG data sets.

2.1.5. Spatial Distribution of Soil Thickness

Soil thickness is one of the significant input parameters in TRIGRS and plays a crucial
role in determining the FoS, PWP, depth to slip surface, and hydrological response of the
terrain [44,87-89]. Although a uniform soil depth is accepted in the model, it might produce
considerably less-realistic FoSs and lead to the erroneous timing and spatial distribution
of landslides. The present study obtained the depth to slip surface at 9 nine landslide
locations where field observations were available through GSI.

Because the present study was carried out for larger and complex terrain, it was
rather difficult to obtain (or interpolate from the available sources) the spatial distribution
of soil depth in high resolution. A number of studies have been carried out in different
parts of the world, and a firm linear relationship between soil depth and slope has been
established [42,44,90,91]. The present study therefore assumed a linear relationship between
slope and soil thickness over the study area (Equation (1)) and derived the soil depth for
the study area (Figure 6).

D = —0.3437s + 3.5 (1)

where D is the soil depth at each raster cell with slope s. The slope distribution for the study
area was derived from the pit-filled SRTM 30 m DEM. The depth D is in meters, and the
slope s is in degrees. Waterbodies in the study area were masked as pixels corresponding
to waterbodies (i.e., have the least slope), might have erroneously resulted in thicker soil.
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Figure 6. Spatial distribution of soil thickness and slope in the study area.

2.2. Model Description

The dynamic physically based slope stability model used in the present study, Tran-
sient Rainfall Infiltration and Grid-based Regional Slope-Stability Model (TRIGRS) is a
commonly used slope stability model for computing the timing and distribution of rainfall-
induced shallow landslides [54,63,64,92,93]. The TRIGRS model consists of a runoff routing
component and a slope stability component. The former computes the infiltration and sub-
surface flow of storm water, and the latter models the grid-based slope stability over an area
of interest. Many studies have been carried out globally for different terrain with varying
topographic settings, and a number of researchers have shown that the open-source model
is capable of modeling rainfall-induced shallow landslides over a large region. A brief
description of infiltration, runoff, flow routing, and slope stability models is given below.

2.2.1. Modeling Infiltration, Runoff, and Flow Routing in TRIGRS

Since the study area is in a low-latitude area and experiences a warm, temperate
climate, it can be safely assumed that rainwater is the only form of precipitation in the
study area. It is hypothesized in the TRIGRS flow routing model that the rainwater from
the upslope cells flows downslope, based on the infiltrability of the cells. The infiltrability
or infiltration capacity is a function of the saturated hydraulic conductivity of the medium.
Additionally, runoff from a particular cell occurs only when the sum of the direct precip-
itation received on a cell and the accumulated runoff from the upslope cells exceeds the
infiltrability of the cell.

The model computes infiltration (I) at every cell as a sum of precipitation (P) and
runoff (R,) from cells with higher elevation with an assumption that infiltration cannot
exceed saturated hydraulic conductivity (K;).

I=P + R, [Provided (I — K;) is negative] 2)

Furthermore, whenever the sum of P and R, exceeds K, the excess quantity, P + R, — K,
is channeled as runoff and routed to adjacent downslope cells, and the runoff diverted to
the adjacent downslope cells (R;) is calculated as,

Ri =P + Ry — K [only when (P + R;) > K] 3)
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Additionally, the input water is forced to run off from every cell where the ground
water table reaches the surface (implying saturated grids). The saturated cells exfiltrate
water received, either in the form of rain or run off from upslope cells, and is modeled to
further run off to the downslope cells.

The entire process of flow routing after the computation of run off for each cell is
based on the directions of the nearest and steepest confining downslope cell. D8 flow
directions [94,95] were used in the present study for flow routing cell-by-cell in the mass
balance calculations, and the D8 numbering scheme was set up according to the TopoIndex
(Section 2.3.1). D8 flow directions were derived in TauDEM, which output gridded cells
with a numbering scheme where 1 to 8 represent east, north east, north, north west, west,
south west, south, and south east, respectively. Furthermore, adequate measures were
taken to avoid any possible conflicts along the grid cells adjacent to the edges of the
hydrologically conditioned DEM and along the flat areas in the basin [96].

2.2.2. Modeling Slope Stability

The slope stability component in the model computes the grid-based slope stability
of each cell using an infinite-slope stability analysis. A parameter called FoS, which is
the ratio of resisting basal Coulomb friction to gravitationally induced downslope basal
driving stress, was employed to determine the failure of infinite slope as result of rainfall.
Equation (4) governs the FoS for each grid for the selected time step.

_tang! ' —p(Z,t)y tang’

FoS = - 4
¢ tanw + Ysdjpsinacosa @)

where qb/ is the effective angle of internal friction, ¢’ is the effective cohesion, 1 is the
pressure head as a function of depth Z and time f, dy, is the depth of the lower impervious
boundary, and 7% and 1 are the unit weights of water and soil, respectively. The model was
modified to include a layer of an unsaturated zone. The modified equation for obtaining
the FoS in this zone is,

_tang’ | —(Z,)y"xtang’
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_0—0
X= "8, (6)

where the x approximation was given by Vanapalli and Fredlund [97] and is known as
the effective stress parameter. 6 is the soil moisture content in the unsaturated soil zone,
0, is the residual soil water content of the soil, and 0 is the saturated soil water content.
Figure 7 (modified from [54]) is a schematic cross-section of the hillslope where the TRIGRS
model was applied. The infinite slope or the particular cell is considered stable when FoS is
above 1; when the FoS falls below 1, the slope fails. Thus, the depth Z, where FoS first falls
below 1, is considered the depth of landslide initiation [92].

The model considers the catchment region as digital terrain, which can be divided into
zones, based on the soil texture, and three-dimensional cell grids. The user or modeler can
introduce more control by feeding each zone topographic parameters (elevation and slope),
hydraulic properties (flow direction, diffusivity, infiltration rate, depth to ground water,
saturated water content, residual water content, saturated hydraulic conductivity, and
inverse of the height of capillary rise), and strength parameters (cohesion, friction angle,
and weight of the soil). Furthermore, control can be achieved by providing elevation, slope,
flow direction, depth to ground water, and depth to bedrock grid-wise. The TRIGRS version
used for the present study did not have the versatility to provide strength and hydraulic
parameters grid-wise. The present study employed version 2.1 [54] of TRIGRS, which is
based on version 1.0 [64], but with fewer restrictive hypotheses. The model is capable of
performing on saturated as well as unsaturated media and is capable of capturing unstable
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cells, which are effectively landslide locations, in the study area by considering precipitation
and the corresponding changes in the hydrogeomechanical parameters.

- Water table
Saturated zone

Basal hhiindaxjy o

.

Figure 7. Schematic cross-section showing the shallow ground water condition in the soil. dy; is the
unsaturated zone above the water table. dyt is the depth to the ground water table from the surface.
dy, is the depth to the impervious lower boundary 5 of the slope.

The execution time required for TRIGRS has an exponential negative relationship with
the number of pixels, grids, and cells in the input data sets. A larger number of pixels can
be expected whenever the model is executed with high-resolution input data sets or over a
large area. Because the present study was carried out for a relatively larger catchment area
with a higher number of grids in the input data sets, multiple model executions became
time consuming. In order to overcome this issue, the study employed TRIGRS MPI [65] for
the parallel implementation of TRIGRS by utilizing the maximum computational capacity.
The TRIGRS MPT significantly reduced the time consumed for each run, provided more
flexibility and freedom while changing the input parameter sets for multiple executions of
the model.
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2.3. Application of the Model

The present study assessed the distribution of slope failures in the catchment region at
1913 landslide sites along with computing the fall in FoS and rise in PWP at 9 landslide sites
in the study area with respect to a 9-day rainfall period. The open-source model, TRIGRS, is
capable of considering topographic parameters (elevation and slope), hydraulic properties
(flow direction, permeability, diffusivity, conductivity, infiltration rate, and depth to ground
water), and strength parameters (cohesion, friction angle, and weight of the soil) while
computing the FoS.

A brief description of the significant steps involved in this work is described in the
following sections.

2.3.1. Topographic Indexing for Flow Routing

The execution of the model TRIGRS is carried out through two individual programs:
Topolndex and the main TRIGRS program. The former, as the name suggests, is used for
topographic indexing; the latter, the main program, is used for flow routing and runoff
calculations. Topolndex prepares a list and a grid of downslope receptor cells (TIdsneiList
and TIdscelGrid), a list of index numbers corresponding to each cell number (TIcelindxList),
a list of downslope cells for which nonzero weighting factors have been computed (TIds-
celList), and a list of weighting factors for downslope receptor cells (TIwfactorList). The
outputs of the TopoIndex are generated in ASCII, and text formats and each output’s name
start with what is given above in the brackets.

A hydrologically conditioned DEM and flow direction are the input files required for
generating the essentials data sets for TRIGRS. Section 2.1.3 briefly describes the hydrologi-
cal conditioning of the DEM. The present study used the D8 algorithm to derive the flow
direction through TauDEM (Section 2.1.3). Although TopoIndex uses the D8 flow direction,
the numeric coding is different than that of the TauDEM-derived flow direction or ESRI
flow direction. Figure 8 shows the designated codes in both the flow direction along with
the geographical direction. Although the flow direction for TopoIndex can be generated
through with D8 and D-infinity methods, the present study used the TauDEM-derived D8
flow direction scheme for generating the outputs.
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Figure 8. Comparison of D8 ESRI flow direction and D8 Topolndex flow direction.

Figure 9 shows a schematic diagram of the study, which depicts the derivation of
the input data sets, application of the model, and validation of the output (grid-based
FoS) from the hydrogeomechanical properties through FAO-STATSGO and high-resolution
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hydrogeomechanical properties through the field-based DSSSC against the landslide in-
ventory. The landslide inventory is based on the landslides that occurred in the catchment
region during the 2008 monsoon season.
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Figure 9. Schematic diagram of the methodology adopted in the present study. The derivation of
the input data sets, application of the model, and validation of the output (grid-based FoS) from
hydrogeomechanical properties through FAO-STATSGO and high-resolution hydrogeomechanical
properties through field-based DSSSC against the landslide inventory are graphically represented in
the diagram.

2.3.2. TRIGRS Initialization for Slope Stability

The present study divided the entire study area into three zones based on the FAO soil
texture and eight zones based on the regional soil texture map (Figure 4). The hydrological
and strength parameters were based on both soil texture maps. The hydrological and
strength parameters, such as cohesion (¢’), internal friction (¢’), unit weight of soil (7y),
hydraulic diffusivity (Dy), saturated hydraulic conductivity (K;), and saturated and residual
water content, were derived solely based on the soil texture map. The values of these
parameters were obtained from the literature based on the soil type. The present study
divided the entire catchment region into 30 m x 30 m cells, and the FoS was computed
for each grid with a time step of 1 day for a total period of nine days. An FoS value of 1
was considered as the threshold for slope failure in the catchment region. Thereby, a value
greater than 1 was taken as a measure to classify the pixel as stable (non-landslide) and
a value less than 1 was taken as a measure to classify the pixel as unstable (landslide) in
the catchment region. The computed FoS for every pixel in the study area for the entire
nine-day period was taken as an indicator of the initiation of slope failure.

3. Results

As discussed in Section 2.1.1, the present study examined the landslides in a landslide-
prone catchment region in Western Ghats. The shallow landslides were triggered by
widespread heavy and incessant rainfall that occurred in the first weeks of June 2018.
Details of the hydrogeomechanical parameters and terrain parameters used for computing
the FoS and PWP in the physically based model are provided in Sections 2.1.2 and 2.1.3.
The rainfall rate fed into the TRIGRS model is described Section 2.1.4. The distribution of
the landslide pixels and the changes as the rainfall continued are described in Section 3.2,
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and the timing of the triggering of the nine landslides as a result of the rainfall in the study
are is described in Sections 3.3 and 3.4.

3.1. Impact of Varying the Number of Soil Zones

Even though the number of soil zones in the studied catchment varied for the two runs,
being three and eight, the properties were still based on soil texture. It can be seen from
Figure 10 that the true identifications of the landslide events in both runs were comparable.
The model in both the cases could identify 1524 and 1323 landslides of the 1913 landslides.
Additionally, a true positive rate (TPR) of 68% and 60% was obtained with a nine-day
rainfall period for the two derived soil texture data sets, respectively. A false positive rate
(FPR) of 36% and 31% was also seen, respectively. The total accuracy was 68%. Although
previous studies [83] showed that the hydrogeomechanical parameters have an impact
on the simulations of FoS and PWP, it was seen here that the properties just based on soil
texture did not impact the model result. It was also suggested that these properties may
need to be derived from the other sources such as Earth Observation (EO) data sets, which
can result in a better simulation of the PWP [98].

76°40'0"E 77°20'0"E 76°40'0"E 77°20'0"E
z @ z z z
s s 2 : s
g - o NS = - N &5
S ) : t S & ) : [ 2
° s 3 s
£ g2 g
z z z z
s s @ s
=3 =3 =3 =
- b - >
& EN- &

® True positive ® True positive
z @ False negative z z @ False negative z
s s = 3 s
g |:] Catchment area boundary g % |:| Catchment area boundary = 2
Lo Kilometers 2 B Kilometers =
0 125 25 50 0 125 25 50
76°40'0"E 77°20'0"E 76°40'0"E 77°20'0"E

Figure 10. Distribution of false positives and false negatives (A) when hydraulic properties were
derived from FAO soil texture and (B) when hydraulic properties were derived from the soil map of
the Soil Survey & Soil Conservation Directorate.

3.2. Change in FoS and PWP in the Catchment Region

In the study area, the FoS corresponding to majority of the grids showed a significant
decrease during the nine-day rainfall period. Furthermore, over time, a higher number of
grids started showing an FoS below the threshold value of one, and the corresponding time
was taken as the initiation of the landslide. Along with the FoS, the PWP was computed for
each grid to further illustrate the interconnection among the FoS, landslide initialization,
and rainfall history. Figure 11 shows the fall in the FoS and rise in the PWP for the study
area for the period of nine days. It is depicted in the figure that the FoS was decreasing for
the majority of the pixels, and new areas could be demarcated as landslide pixels as time
progressed. The FoS was calculated for each pixel at the end of a 24 h rainfall period for
nine days in Figure 11 (left). The same was repeated for the PWP and is plotted in Figure 11
(right). It is clear from the FOS-PWP through the rainfall rate plot that a number of pixels
fell below the threshold FoS value and turned into unstable areas.
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Figure 11. (Left) Decrease in factor of safety (FoS) in the catchment region for the 9-day rainfall
period. Day 1 (top left) is the plot of FoS at each pixel at the end of a 24 h rainfall period, and day 9
is the FoS at each pixel at the end of a 9-day rainfall period. Red region indicates lower-FoS and
unstable areas, and blue region indicates higher-FoS and stable area. (Right): Rise in pore water
pressure (PWP) in the catchment region for the 9-day rainfall period. Day 1 (top left) is the plot of
PWP at each pixel at the end of a 24 h rainfall period, and day 9 is the PWP at each pixel at the end
of a 9-day rainfall period. Red region indicates higher PWP (relatively unstable), and blue region
indicates lower PWP (relatively stable). The nine selected landslides are located in the black rectangle
(not shown in this plot). Note that the color keys are reversed for easy demarcation of relatively
unstable (i.e., red) areas.

Furthermore, Figure 11 shows the inverse relationship between the FoS and PWP in
the study area. It can be observed from the figure that when PWP increased as rainfall
continued, the FoS significantly decreased. The blue region in the plots represents the
relatively stable areas (lower PWP and higher FoS), and the red region represents relatively
lesser stable areas (higher PWP and lower FoS). For better understanding, the usage of
model with regard to landslide initiation timing, the nine landslides were chosen for the
case study. The nine landslides chosen for the study are located in the black rectangle in
the plots.

The plot in Figure 8 is a detailed illustration of the FoS-PWP in and around the nine
landslide sites chosen in the study area. As discussed above, the rise in the PWP and fall
in the FoS were computed and plotted for the nine-day rainfall period. The black dots
represent the locations of the nine landslides chosen for the study area. It can be seen
from Figures 11 and 12 that there are false positive regions, where the FoS drops below
one. This shows that the geohydrological parameters that were governing the hydrological
simulation needed to be further improved so that the partition of water among the soil
layers could be better simulated. The y approximation from Equation (6), utilized in
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Equation (5) of the FoS, is based on the SHPs, saturated water content, and residual water
content. It can be seen that the properties impact both the PWP and FoS. These parameters
were literature-based and dependent on the soil texture. One of the limitations is that
these properties were not available at a 30 m resolution. Again, this shows that these
properties may have to be identified at finer resolution through satellite data that have
higher spatial coverage compared with the field analysis, which may be not possible in
remote and inaccessible areas. However, the landslide events were identified, which can
still act as a warning for susceptible zones.

77.00 77.00 77.00 77.00
04 06 08 12 18 20 02 04 06 08 12 14 1:6 1.8

—@

Fos )—H—C PWPH

Figure 12. (Left) Fall in factor of safety (FoS) in and around the nine landslides for the nine days
rainfall period. Day 1 (top left) is the plot of FoS at each pixel at the end of a 24-h rainfall period and
Day 9 is the FoS at each pixel at the end of a 9-day rainfall period. Red region indicates lower FoS,
unstable, areas and blue region indicates higher FoS, stable area. (Right): Rise in Pore Water Pressure
(PWP) in and around the nine landslides for the nine days rainfall period. Day 1 (top left) is the plot
of PWP at each pixel at the end of a 24-h rainfall period and Day 9 is the PWP at each pixel at the end
of a 9-day rainfall period. Red region indicates higher PWP (relatively unstable), and blue region
indicates lower PWP (relatively stable). The black dots indicate the landslide sites. Note that the color
keys are reversed for easy demarcation of relatively unstable (~red) areas.
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3.3. Fall in FoS

Figures 11 and 12 show the distribution of the landslides in the catchment region and
their changes as the rainfall progresses. The 8 landslides were triggered on 9 June 2018
and one landslide was triggered on 11 June 2018. The rainfall event used for computing
the eight landslides which were triggered on 9 June 2018 started on 3 June and ended
on 11 June 2018. Seventh day of the rainfall event (9 June) was the day on which eight
landslides happened. Similarly, a rainfall event started on 5 June and ended on 11 June
2018 was used for computing the FoS at one landslide which was triggered on 11 June 2018.

Figure 13 shows the gradual fall in FoS at nine landslide sites with respect to the nine
days rainfall event. A vertical dotted line is added to each plot for easy representation of
day on which the landslide occurred (9 June in the case of Landslide 1, 3, 4, 5, 6, 7, and 8 and
11 June 2018 in the case of Landslide 2). As discussed above, the present study considered
1 as a threshold value for FoS and whenever a pixel’s FoS fall below 1 is considered as a
landslide and the corresponding time is recorded as the landslide initiation time.
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Figure 13. Fall in FoS with respect to nine-day rainfall period at the landslide sites. The vertical

dotted line shows the day on which the landslide occurred.

Landslide 1 (Kallar Vattiyar), Landslide 3 (Eetticity), Landslide 4 (Kallimali), Landslide 5
(Kallarkutty I), Landslide 6 (Kallarkutty II), Landslide 7 (Cheruthoni), Landslide 8 (Anaviratty)
and Landslide 9 (Ambazhachal) were triggered on 9 June 2018. The FoS computed at
these landslide locations on 9 June are 1.15, 6.87, 0.90, 0.89, 1.08, 1.08, 1.11, and 1.22 (FoS
corresponding to dotted line on Figure 13). Additionally, Landslide 2 (Anachal), was
triggered on 11 June and the FoS computed as per TRIGRS on the same day is 0.93 (FoS
corresponding to dotted line on Figure 13). According to the FoS computed Figure 13, the
model could indicate the slope failures at three landslide sites out of nine chosen landslides
in the study area. Additionally, as the time progresses it can be observed that the model
rightly shows the eight out of 9 landslides failures in the study area.
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Landslide 1 (Kallar Vattiyar)

Rainfall (mm/day)

3.4. Rise in PWP

As part of the study, the PWP was calculated for the catchment region. Figure 14 plots
the PWP extracted at the nine landslide sites in the study area against the time-varying
rainfall rate. The plot shows a near linear rise in the PWP with respect to the rainfall.
Furthermore, the PWP and FoS showed an inverse relationship at the nine landslide sites
(Figures 13 and 14). As in the case of rainfall-induced shallow landslides anywhere else, an
increase in the PWP indeed reduced the FoS at the nine landslide sites in the study area.
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Figure 14. Comparison of the rise in PWP (porewater pressure) with respect to rainfall, from the
outputs of nonoptimized and optimized model runs at 9 validation sites. The vertical dotted black
line indicates the day on which the landslide was triggered.

4. Discussion

The timing and distribution of shallow landslides were modeled in a catchment region
(Figure 1) in Western Ghats through TRIGRS. The hydrogeomechanical properties used
in TRIGRS to model the FoS and PWP were derived through two different sources: FAO-
STATSGO and a regional soil texture map from DSSSC. Although TRIGRS computes the
FoS cellwise (i.e., gridded), the hydrogeomechanical parameters are provided zone-wise.
The available versions of TRIGRS do not have the ability to provide cell-wise hydroge-
omechanical properties. Because the hydro-geomechanical parameters were derived from
the soil texture information, the zones in TRIGRS approximately followed the soil texture
map of the study area. The present study incorporated FAO-STATSGO soil information
and high-resolution regional soil information from DSSSC, which resulted in three and
eight soil types in the study area, respectively (Figure 4). Therefore, the study area was
categorized into three and eight zones. Although the spatial heterogeneity was better
represented with the DSSSC soil texture, the modeled FoS from both soil textures were
comparable (Section 3.1), leading to a lack of improvisation. This may have been due to the
use of SHPs based on soil texture. This was further clarified by carrying out a sensitivity
analysis to quantify the impact of the SHP on the analysis of slope stability and to further
understand the absence of significant changes in modeled FoS when the two soil texture
maps were used to derive the SHPs.
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Because SHPs are important in determining the stability of hillslopes, saturated water
content (6s); residual water content (6,); and a fitting parameter for soil size distribution («),
which is approximately equivalent to the inverse height of capillary rise [54], were selected
for sensitivity analysis. In order to understand the impact of each parameter on the final
grid-based FoS, one-parameter-at-a-time (OAT) analyses were carried out. OAT analyses
are often used in sensitivity analyses, parameter optimization, and calibrating physically
based models [42,99-101].

The current study considered a case of a finite and unsaturated profile. The finite depth
was based on Equation (1). Based on Equations (4) and (5), the FoS was calculated for both
the saturated and unsaturated zones, where each cell was treated as a unique sliding unit.
Thus, failure analysis with pressure head determination provided the FoS for the depth
profile for each cell. It is noted that the depth at which the FoS first reduced below one was
considered the landslide initiation depth, which could vary depending on the soil properties
as well as the rainfall intensity [92,102]. The depth may vary between the water table depth
and the basal boundary [103]. The pressure head, utilized in Equations (4) and (5), was
calculated based on the below equations based on Richard’s equation (Equation (7)).

» - %[K(tﬁ)(@% - 1)} %

K(y) = Ks exp(ay”) ®)

The pressure head was obtained using Equation (9).

where,

¥(Z,1)

_cosd, [K(Z,t)
= 0[5 ©)
A realistic range of 05, ranging from 0.280 to 0.450, with a median of 0.365, was chosen
to understand the impact of the saturated water content on the stability of terrain and
to determine the landslide initiation zone (Figure 15). It can be seen that with the same
rainfall intensities, a change in 65 impacted the FoS of the depth profile (Figure 15) as well
as the time taken for the rising of the groundwater table (Table 2). The FoS corresponding
to 0s = 0.365 reached < 1 on the seventh day. At the minimum 6, an FoS < 1 was seen on
the fifth day, while the cell remained stable for 65 = 0.450 (Figure 15). Figure 15 further
quantifies the change in FoS (%) with respect to changes in 65 (%), where a 30% increase
in 6 reflects a 15% change in the FoS. The OAT analyses carried out as part of the present
study for 6; showed an approximate linear trend for the study area. Additionally, it can be
seen from Table 2 that the landslide was initiated as soon as the groundwater table rose to
depth of 0.50 m. The water table rise mechanism was already previously explained (Baum
et al., 2010). Thus, as shown in Take et al., 2004, with the rise in pore water pressure to zero,
the shear resistance fell. This led to an unstable zone. It is illustrated from both the depth
profile in Figure 15 and Table 2 that the zone of weakness increased with the decrease in
605, which represents the porosity of the soil. It is deciphered from Figure 15 that 6; had a
significant role in estimating FoS and, thereby, the initiation time and spatial distribution of
the landslides in the study area.
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Figure 15. Sensitivity analysis of saturated water content (6;): (Top) changes in FoS with depth for
a 9—day period with respect to the different 65 values; (Bottom Left) changes in FoS and landslide
initiation time with change in 65 values. (Bottom right) Percentage change in FoS in accordance with
the percentage change 65. The vertical dotted line on the bottom left indicates the time at which the
median value of the selected parameter crossed the threshold FoS, and the horizontal line indicates

the corresponding threshold FoS, which is 1.
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Table 2. Comparative analysis for landslide initiation based on variation in 6.

SL. No. 0. ) FoS.<.1 ) Depth to Depth of Weak
(Landslide Initiation Day) Groundwater Table Zone
1 0.28 Day 5 0.50 m 12m
2 0.32 Day 6 0.48 m 1.7-2m
3 0.36 Day 7 0.46 m 1.8-2m
4 0.45 Day 9 (Stable) 0.76 m Stable

As described above, an OAT analysis was carried out for 6,. The 6, values were
considered from 0.01 to 0.1, with a median of 0.55, and the corresponding FoSs were
modeled for a 9-day period and are plotted in Figure 16. The median 6, (0.055) reached the
threshold value before the seventh day, and the soils with lower 6, values needed more
time, up to 36 more hours, to become unstable. This change could be attributed to the
increase in the water-holding capacity of the soil. On the other hand, higher 6, values
started crossing the threshold FoS of one starting on the fifth day. It can be seen that a
100% change in 6, produced only a 4% change in the FoS. It might be because of the fact
that the 0, alone might have a lesser impact on the modeled FoS. In reality, landslide is a
very complex phenomenon, and the interplay of multiple factors determine the mechanism
behind its initiation. Furthermore, in order to understand the impact of 6, together with
05 and other factors, many-parameter-at-a-time (MAT) analyses should be carried out by
simultaneously varying multiple parameters in the model. Even though MAT analyses will
further shed light on the interconnection among various hydrogeomechanical parameters,
the present study was limited to OAT because of its simplicity and the significantly less
computational effort required.

Along with 65 and 6,, « (a fitting parameter for soil size distribution and is approximately
equivalent to the inverse height of capillary rise) was analyzed to comprehend its impact on
FoS and thereby the initiation of landslides. The a values were varied from 0 to 10, and we
modeled the FoS for a 9-day period. The experiments were carried out as in the cases for 6
and 6, and are plotted in Figure 16. The fall in FoS for 9 days with the « values 0.35, 1.00, 1.80,
2.00, and 10.00 are highlighted in the plot. It is observed from Figure 16 that a values above
two were less significant in determining the FoS than values from zero to two. Because any
« value above two had less significance in determining the FoS in the study area, a range of
zero to two with a median of one was considered for analyzing the percentage change in the
FoS with respect to the percentage change in a (Figure 16). It has to be noted that any « value
less than zero acts as a flag in TRIGRS to treat the terrain as tension-saturated.

Two major observations were made as part the present study while selecting the input
parameters for modeling the slope stability in complex terrain. Primarily, even though the
regional DSSSC soil map had better soil information representing the study area, it still
considered a mean 6, 6, and « for a zone based on the field observations and laboratory
measurements of the soil samples. In reality, the SHPs vary for the same soil type based
on the porosity, grain size, degree of compaction, etc., and complex terrain is more likely
to reflect this trend. The subzonal variation must have strongly affected the modeled
distribution and the computed initiation time of the landslides in the study area. Secondly,
because the uncertainties present in spatially varying hydrological properties have an
impact on the initiation time and spatial distribution in complex terrain, a robust approach
has to be implemented to (1) accurately derive the hydrological properties through EO data
sets in finer resolution and (2) provide the derived finer-resolution hydrological properties
cell-wise rather than zone-wise as in the present versions of TRIGRS. An obvious solution
for deriving hydrological properties that have a significant impact on the FoS is through
inverse modeling. Although in situ collected soil samples and laboratory analyses are rather
more intuitive than modeling approaches, it has to be noted that in situ data collection,
sampling in uniform intervals (spatial and temporal), and analyses are very costly and
often impossibly laborious for complex and inaccessible terrain.
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Figure 16. Sensitivity analysis of SHPs, residual water content (6,), and a fitting parameter for
soil size distribution (), which is approximately equivalent to the inverse height of capillary rise.
(Left) Changes in FoS for a 9—day period with respect to the different 6, and «. (Right) Percentage
change FoS in accordance with the percentage changes in 6,, and «. The vertical dotted line on the
left side of the figure indicates the time at which the median value of the selected parameter crossed
the threshold FoS, and the horizontal line indicates the corresponding threshold FoS, which is 1.

Along with the results and findings of the present study, the significance of the inher-
ent uncertainties present in the hydraulic parameters in determining the model outputs
was also put forward in a previous study on a landslide-prone area in Brazil [104]. The
study further emphasized the need for developing novel strategies to generate hydraulic
parameters that represent spatial variation in finer resolution. A recent review [45] on
TRIGRS and its performance compared with that of other physical slope stability models
also concluded that refined hydrological parameters can generate more realistic results.
Another study carried out in Norway focused on the initial conditions of the terrain and
concluded that wetter initial conditions lead to early instability and overestimation of
landslide pixels in the study area [105]. A data-sparse region in the northern part of Kerala
was studied for landslide hazard zonation using TRIGRS and showed that providing spa-
tially varying SHPs significantly reduces the overestimation of landslide pixels [62]. The
study further raised concerns regarding the lack of flexibility to provide local variations in
hydrogeomechanical parameters to the current versions of TRIGRS. The study suggested
the modification of TRIGRS to receive input parameters with local variations rather than
generalizing the properties zone-wise. A number of methods to inversely derive SHPs
through EO data sets have been put forward to overcome the limitations of regression
functions [106-108]. The high-resolution SHPs derived through inverse modeling [108] can
be a possible alternative, especially in areas where field data are difficult to retrieve.
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5. Conclusions

The present study modeled the distribution and timing of rainfall-induced shallow
landslides in a catchment in Western Ghats. It was shown how a physically based model
can be used for understanding the timing and distribution of landslides with minimal
ground-based data sets. This study used a set of satellite-derived terrain parameters
and hydrogeomechanical parameters with ground-measured rainfall data to compute the
FoS and PWP in a landslide-prone area. The model was able to predict the landslide
distribution in the spatial region with a TPR of 68%. Additionally, for nine landslides, the
model predicted the occurrence of eight landslides, with precise timing of three landslides.
In addition, the present study analyzed the impact of the SHPs in computing the FoS and
thereby predicting the timing and distribution of landslides in the study area. It could
be seen that with the increase in the storage capacity of soil, it became more stable, and
a prominent shift was seen in the initiation of the landslide events. Thus, the precise
timing of a landslide event was dependent on the SHPs. Although the model could
compute the change in the FoS and PWP in accordance with the rainfall received in the
study area, it is worth mentioning the challenges and room of improvement when using
the model, TRIGRS. Primarily, the lack of high-resolution SHPs was one of the major
challenges faced when executing the slope stability model. Although a field-based high-
resolution soil texture map from DSSSC was used to generate high-resolution FoS and
could reduce the number of false positives, it needs further improvement, especially in
computing the timing of landslide initiation. A high-resolution map of SHPs can provide
more control and heterogeneity and thereby improve the modeling of the FoS and PWP.
Because the hydrologic response of terrain is determined by the spatial distribution of the
thickness of soil columns, any physically based slope stability model heavily depends on
the resolution and accuracy of the soil depth. In TRIGRS, the depth to slip surface and time
taken to reach complete saturation of each cell are computed as a function of soil depth. It
further emphasizes the requirement for the high-resolution spatial distribution of soil depth.
Although it is extremely difficult to obtain in situ observations of soil thickness for larger
and complicated terrain, a higher number of in situ and uniformly distributed soil thickness
sampling observations would resolve this problem to a certain extent. Although necessary
steps, such as pit removal, were taken prior to the analyses, the present study heavily
relied upon SRTM 30 m DEM to derive the terrain and hydrological parameters, such as
slope, flow direction, and TopoIndex parameters used in TRIGRS. A high-resolution DEM
from airborne surveys, such as drone-based surveys, could have significantly improved
TRIGRS’ outputs.

Furthermore, the dynamic physically based slope stability model, TRIGRS (version 2.1),
does not provide the flexibility to input the hydrogeomechanical parameters grid- or pixel-
wise. The grid-wise provision of input data sets with the inclusion of the impact of local
geological and anthropogenic features and hydrogeomechanical properties can significantly
improve the model outputs. Although the grid-wise provision of the hydrogeomechanical
properties will be computationally expensive, it may significantly enhances modeling
capabilities. On the basis of the results obtained in the present study and the sensitivity
analysis carried out, we further plan to generate SHPs in finer resolution and provide SHPs
cell-wise, rather than grid-wise, in TRIGRS.

Despite of the limitations of this study and the unavailability of high-resolution terrain
and hydrogeomechanical information, the model could fairly demarcate the distribution
and capture the timing of rainfall-induced shallow landslides in the study area. It can
be further concluded that the model and method can be used as a measure to assess the
landslide vulnerabilities in the Western Ghats area or anywhere else where the input data
sets are available. Moreover, the physically based slope stability model used in the present
study can be used as a primary approach to comprehensively understand the stability
of hillslopes where input data sets are limited or only remotely sensed EO data sets are
readily available.
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Abstract: One hundred seventeen landslides occurred in Malang Regency throughout 2021, triggering
the need for practical hazard assessments to strengthen the disaster mitigation process. In terms of
providing a solution for investigating the location of landslides more precisely, this research aims to
compare machine learning algorithms to produce an accurate landslide susceptibility model. This
research applies three machine learning algorithms composed of RF (random forest), NB (naive
Bayes), and KNN (k-nearest neighbor) and 12 conditioning factors. The conditioning factors consist
of slope, elevation, aspect, NDVI, geological type, soil type, distance from the fault, distance from
the river, river density, TWI, land cover, and annual rainfall. This research performs seven models
over three ratios between the training and testing dataset encompassing 50:50, 60:40, and 70:30 for
KNN and NB algorithms and 70:30 for the RF algorithm. This research measures the performance
of each model using eight parameters (ROC, AUC, ACC, SN, SP, BA, GM, CK, and MCC). The
results indicate that RF 70:30 generates the best performance, witnessed by the evaluation parameters
ACC (0.884), SN (0.765), GM (0.863), BA (0.857), CK (0.749), MCC (0.876), and AUC (0.943). Overall,
seven models have reasonably good accuracy, ranging between 0.806 and 0.884. Furthermore, based
on the best model, the study area is dominated by high susceptibility with an area coverage of 51%,
which occurs in the areas with high slopes. This research is expected to improve the quality of
landslide susceptibility maps in the study area as a foundation for mitigation planning. Furthermore,
it can provide recommendations for further research in splitting ratio scenarios between training and
testing data.

Keywords: landslide susceptibility; machine learning; k-nearest neighbor; naive Bayes; random forest

1. Introduction

Landslides are the phenomena of downslope movements by soil mass and rock slopes.
Landslides occur due to the sliding of a volume above a layer of rock containing clay
after the saturation of water acts as a launcher [1]. A landslide is a natural phenomenon
controlled by geological factors, rainfall, and land use on the slopes [2]. Indonesia is a
country with a high potential for landslides. According to the data from the National Dis-
aster Management Agency of Indonesia (BNPB), throughout 2021, there were 632 incidents
reaching 20% of the total disasters in Indonesia throughout 2021.

Malang Regency is situated in East Java Province and is highly vulnerable to landslides.
The Malang Regency Regional Disaster Management Agency (BPBD) data accounted for
117 landslides in 2021, reaching 44% of the total disasters in Malang Regency throughout
2021. Geographical conditions render the Malang Regency highly vulnerable to landslides.
It is located in a highland area with various slopes, from sloping to very steep, as it is
surrounded by the Tengger Mountains, Mounts Kawi and Kelud, and Mounts Arjuna
and Welirang.
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Landslide susceptibility assessment is a fundamental action for improving the mitiga-
tion process. Periodical assessment is necessary, since landslides occur periodically, and
the conditioning factors change over time. Implementing various methods to investigate
the location of landslides, assess the vulnerability area, and analyze the impacts can be
conducted by using a terrestrial survey [3], satellite monitoring [4], or spatial modeling [5].
Spatial modeling has become a prompt solution, along with the growth of technologies
and the availability of various data sources. It can integrate various data sources through
algorithms to produce maps, such as the machine learning approach. Machine learning
(ML) is a branch of computational algorithms developed and designed to imitate human
intelligence by learning from environmental data [6]. Machine learning is capable of solving
problems regarding predictions and classifications [7]. In terms of landslide susceptibility
modeling, a prediction can utilize machine learning using coordinate data of landslide
occurrence as training data and landslide conditioning factors as the evaluators [8].

Research trends using the keywords landslide susceptibility and machine learning
have grown significantly since 2018 [9]. Research conducted by [10] applied the NB
(naive Bayes) algorithm, the RBF (radial basis function) classifier, and the RBF network
for Longhai, China, for analysis of landslide susceptibility modeling. It indicated that the
naive Bayes algorithm showed high performance in predicting landslide susceptibility
with an AUC value of 0.872. Moreover, other research conducted by [11] using ANN
(artificial neural network) and support vector machine (SVM) algorithms, decision trees
(DTs), RF (random forest), and combined models of ANN and SVM was implemented in
the Cameron Highlands district located in the state of Pahang, Malaysia. According to
this research, the RF algorithm produced the best performance, with an AUC value on the
testing data of 0.82. Research conducted by [12] carried out spatial modeling of landslide
susceptibility in the Wayanad district in the southern part of India using RF, SVM, and
K-NN (k-nearest neighbor) algorithms. The K-NN algorithm has a good predictive ability
of landslide susceptibility, with a maximum AUC value of 0.981. The maximum entropy
(MAXENT) algorithm was developed for various spatial analyses with good performance
results as part of the development of machine learning algorithms for spatial analysis. The
Maxent algorithm can perform various spatial analyses, including predictions of urban
waterlogging-prone areas, fire hazards, and land subsidence studies [13-15]. A recent study,
however, showed that using the maximum-entropy algorithm (MAXENT) in the evaluation
of landslide susceptibility produced a lower accuracy than RF [16].

In the study area, research regarding spatial modeling of landslide susceptibility
applied scoring and overlay analysis, logistic regression, and spatial multi-criteria evalu-
ation [17-19]. Those methods are subject-oriented and rely on the consistency of various
experts in the adjustment process and the time-consuming handling of multiple data
sources. In addition, a landslide susceptibility model using the conventional scoring
method, multi-criteria evaluation, and expert judgment generates less accuracy [17]. Con-
sidering the condition of Malang Regency as a mobility center with a high tourist attraction,
a high-accuracy of landslide susceptibility assessment is necessary to mitigate casualties.
Therefore, this research applies machine learning algorithms to assess landslide susceptibil-
ity in the study area. Using a statistical approach and machine learning techniques can help
to reduce the subjectivity of the analysis. The model can be evaluated quantitatively, and
producing the contribution level of each variable can be quantitatively based on [20,21]. RF,
KNN, and NB are three machine-learning algorithms that have produced accurate models
of landslide susceptibility in various case studies.

Therefore, this research will compare the spatial modeling of landslide susceptibility
using three machine learning algorithms (RF, NB, and KNN). This research applies three
splitting ratios for training and testing data comprising 50:50, 60:40, and 70:30 for NB and
KNN. Moreover, the RF only uses 70:30, following the best splitting ratio produced from
previous research [22]. Eight evaluation parameters were sequentially used to test the
performance of seven models. These parameters were comprised of ROC (receiver opera-
tor characteristic), AUC (area under curve), accuracy (ACC), sensitivity (SN), specificity
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(SP), balanced accuracy (BA), geometric mean (GM), Cohen’s kappa (CK), and Matthew’s
correlation coefficient (MCC).

2. Materials and Methods
2.1. Study Area

Figure 1 depicts the study area of this research showing the distribution of landslides
and non-landslide location. The study area was in Malang Regency, which is located
geographically at 112°17/10.9”-112°570.0" E and 7°44/55.11"-8°26/35.45" S. Malang Re-
gency has 33 sub-districts, 12 urban villages, and 378 villages. Malang Regency is the
second largest regency in East Java Province with an area of 334.786 ha. The topography of
Malang Regency varies, with elevation values between 0 and 3660 MASL. It has several
mountains, including Mount Semeru (4676 MASL), Mount Kelud (1731 MASL), Mount
Welirang (3156 MASL), and Mount Arjuno (3339 MASL). Consequently, the slope is varied
between 0° and 85.2°. The geological type is dominated by tuff formation with extrusive
intermediate pyroclastic composition and derived from volcanic deposits. Malang Regency
has a tropical climate with an average surface temperature of 18.25 °C to 31.45 °C.
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Figure 1. Location of the study area. (A) Elevation of the study area and distribution of training
points. (B) The location of the study area in East Java Province. (C) The location of East Java Province
in Indonesia.

2.2. Data Sources
2.2.1. Data Training Sample

The training sample consisted of landslides and non-landslide areas [23]. The data
type was a point feature acquired from the Malang Regency Disaster Management Agency’s
daily reports from 2012 to 2021. From the data collected on landslide occurrence during
2012-2021, the number of points was 88. The number of landslides inclined in certain
locations from 2012 to 2021. Hence, it was assumed that past events are still actively
occurring at some locations. Moreover, the non-slide training sample was obtained by
randomly extracting points with a slope of less than 2° [24]. The number of non-landslide
training samples, as many as 88 points, was adjusted to the number of landslide points.
Eventually, the total number of training sample points was 176.
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2.2.2. Spatial Data Landslide Conditioning Factors

The selection of landslide conditioning factors is essential to achieving high modeling
accuracy. Standard rules related to the parameters that affect the landslide susceptibility
model do not exist [25]. Landslide conditioning factors depend on the characteristics of
the case study, the type of occurrence of the landslide, and the scale of analysis [26]. This
research proposed 12 landslide conditioning factors to produce landslide susceptibility
maps considering study area conditions, literature studies, and data availability. The
12 parameters consist of topography, land cover, and hydrological and trigger factors.
Topographic factors consist of elevation, slope, and aspect. Moreover, land cover factors
include geological type, soil type, distance from faults, and vegetation density. Hydrological
factors include TWI (Topographic Wetness Index), distance from the river, and river density,
whilst the triggering factor is average annual rainfall in 2012-2021. Figure 2 visualizes the
landslide conditioning factors in the study area.
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Figure 2. Landslide conditioning factors; (A) annual rainfall; (B) geological type; (C) aspect; (D) slope;
(E) distance to fault; (F) elevation; (G) soil type; (H) distance to river; (I) TWI; (J) NDVI; (K) river
density; (L) land cover.
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Elevation Data

This research used DEMNAS as the elevation data with a resolution of 0.27 arc-
second or 8 m, published in 2018 by The Indonesian Geospatial Information Agency
(https:/ /tanahair.indonesia.go.id /demnas, accessed on 26 February 2022) [27]. DEMNAS
was used to extract elevation, aspect, and slope parameters. Based on the DEMNAS, the
study area has an elevation value of 0 to 3660 MASL with a slope ranging from 0° to 73°.
Moreover, the aspect distributes from 0 to 360, indicating that the slope angle direction is
clockwise. It consists of north, northeast, east, southeast, south, southwest, west, northwest,
and flat. Besides extracting topographic factor parameters, elevation data also generated
TWI of the study area. The TWI ranged from 1.8 to 16.8. For modeling purposes, this
research resampled all the data into 30 m. In addition, the resampling process was carried
out to project all datasets into the same coordinate system.

Geological Map Data

Geological map data were acquired from the Geological Agency, Ministry of Energy,
and Mineral Resources Indonesia with the scale of 1:100,000. The latest geological map
was created in 1992 by the Indonesian ministry of energy and mineral resources. The map
was produced from measurements of direct outcrop points in the field, which started in
1921 during the Dutch-Indies period [28]. Geological maps extracted geological type and
fault parameter information. Furthermore, this research proceeded with Euclidean distance
analysis to calculate the distance from the fault location; moreover, the geological type
was converted into a raster format and resampled. According to the geological type, the
study area is dominated by a tuff formation with a coverage area of 16%. The formation is
a pyroclastic extrusive rock originating from volcanic deposits.

The study area consists of 34 geological unit formations. Table 1 represents the
characteristics related to the types of formations, rock formations, and deposits. In general,
the rock conditions are composed of rocks brought by volcanic activity consisting of tuff,
sandy tuff, volcanic breccia, agglomerates, and lava. Moreover, the distance between the
study area and the fault ranges between 0 and 50,000 m. The type of fault which crosses the
study area is a local fault with shear, descending, and horizontal faults [29-31]. The local
faults pass through the Sub-district of Sumbermanjing, Bantur, Gedangan, Gondang Legi,
Turen, Wajak, Poncokusumo, and Dampit. The fault which passes through Sumbermanjing
Sub-district is a descending type, while those passing through Sumbermanjing and Bantur
Sub-district are shear-type and horizontal, respectively.

Table 1. Geological unit, Malang Regency.

Code Formation Rock Formation Deposit Area (km?)
Qvtml Malang tuff E: 1. PA Volcanism: subaerial—Volcanism 633.995
Qpkb Kawi-butak volcanic rock E: 1. PC Volcanism: subaerial—Volcanism 446.265
Tomma3 Mandalika formation E:I.L Volcanism: subaerial—Volcanism 401.839
Qpj Jombang formation ST: CC: CE: B Volcanism: subaerial—Volcanism: 331.369
Tmn5 Nampol formation ST: CC: M: S Sedimentation: transitional—Sed 277.764
Qvt2 Tengger volcanic rock E:I: PA Volcanism: subaerial—Volcanism 238.221
Qvaw Arjuna-Welirang volcanic rock E: L. PC Volcanism: subaerial—Volcanism 184.673
Tmw1 Wuni formation ST: CC: CE: B — 184.217
Qp Western volcanic rock E: 1. PC Volcanism: subaerial—Volcanism 171.113
Qpat Anjasmara old volcanic rock E: . PC Volcanism: subaerial—Volcanism 160.352
Qvs2 Semeru volcanic deposit E:I: L Volcanism: subaerial—Volcanism 96.447
Qpva Anjasmara young volcano E: . PC Volcanism: subaerial—Volcanism 87.365
Tomt Tuff member E: 1. PA Volcanism: subaerial—Volcanism 70.339
Tmcl Campurdarat formation ST: CC: LS Sedimentation: littoral—Sedimen 45.227
Qpvbl Buring volcanic deposit E:MC: L Volcanism: subaerial—Volcanism 39.199
as Swamp and river deposits S:CC:M: S Sedimentation: terrestrial: fluv 26.346
Non Lake - - 20.240
Tmwll Wonosari formation ST:R: LS Sedimentation: littoral: reef—S 15.264
Qvk4 Kelud young volcano E: 1: PC Volcanism: subaerial—Volcanism: 13.200
Qpvk Kelud old volcanic rock E:I: L Volcanism: subaerial—Volcanism 11.789
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Table 1. Cont.

Code Formation Rock Formation Deposit Area (km?)
Tomi Rock intrusion IE: 1 Plutonism: sub-volcanic—Plutoni 11.564
Qpvp Marikeng volcanic rock IE: 1 Plutonism: sub-volcanic—Plutoni 6.937
Qvlh Lava deposit E: I: PC Volcanism: subaerial—Volcanism 5.602
Qvs Tengger volcanic sand E: I: PA Volcanism: subaerial—Volcanism 4.173
Qvk5 Kepolo volcanic deposit E:I.L Volcanism: subaerial—Volcanism 3.084
Qpw Welang formation ST: CC: M: S Sedimentation: terrestrial: allu 2.546
Qvj Jembangan volcanic deposit E:MC: L Volcanism: subaerial—Volcanism 2.225
Qt5 Terrace deposit ST:CC: A Sedimentation: terrestrial: allu 2.179
Qlk Katu'’s peak lava E:I. L Volcanism: subaerial—Volcanism 1.829
Qal Aluvial and coastal deposit ST:CC: A Sedimentation: terrestrial: fluv 1.130
Qvb5 Bromo volcanic rock E: L. PC Volcanism: subaerial—Volcanism: 0.810
Qlks Lava Parasite Kepolo Mt. Semeru E:I: L Volcanism: subaerial—Volcanism 0.727
Qlk1 Lava andesit parasit E:I. L Volcanism: subaerial—Volcanism 0.058
Qlv Avalanche deposits from volcanoes E: 1. PC Volcanism: subaerial—Volcanism 0.035
Qpkl1 Kalipucang formation ST: CC: CE: CL Sedimentation: terrestrial: fluv 0.001

Rock Formation: ST = sediment, CC= clastic, E = extrusive, I = intermediate, L = lava, PC = polymic, A = alluvium,
M = medium, PA = pyrocla, R = reef: LS = limestone, S = sands, CE = coarse, B = brecc, MC = mafic.

Soil Type Data

The Indonesian Ministry of Agriculture Indonesia produced soil-type map data with
a scale of 1:50,000 in 2014. The rasterization proceeded to convert the data into a raster
format. Then, this research resampled the map with 30 m. According to the soil type,
cambisol dominates the study area with a coverage area of 60%. Cambisol soil types are
rich in mineral matter and vary in drainage, depth, and base saturation [32].

Landsat-8 OLI TIRS Imagery Data

Landsat-8 OLI TIRS Imagery data were acquired from the USGS (United States Geo-
logical Survey) directory using the Google Earth engine (https://developers.google.com/
earth-engine/datasets, accessed on 24 March 2022). The acquisition time of imagery was
19 August 2021, with a cloud cover of 5.51%. Land-cover analysis and NDVI were chosen
in 2021 and on a specific date, as this research tried to utilize the latest and best data
specifications with a relatively low cloud cover. Since to produce a good landslide hazard
prediction model, the latest land cover and NDVI data are necessary [33]. The imagery has
a spatial resolution of 30 m on a multispectral sensor [34]. The Landsat-8 OLI TIRS imagery
data were used to extract land cover and triggering factor parameters. The extracted land
cover factor was the vegetation index using the NDVI algorithm. NDVI can be used to
estimate the level of greenery density in an area of land [35]. The NDVI algorithm can be
seen in Equation (1), where NIR is the near infrared band, and R is the red band of the

Landsat-8 [36].
NIR — R

—_ 1
NIR+R @

This research applied the supervised classification random forest method to generate
land cover. It comprised water bodies, forests, vegetation (including agricultural land),
built-up land, and bare land. The classification was reasonably well-accepted, with overall
accuracy and kappa accuracy values of 0.89 and 0.86, respectively. The classification results
indicated that forests cover 38% of the study area. According to the vegetation density, the
result showed that the vegetation includes a variety of land cover, namely, water bodies,
low-density vegetation, medium-density vegetation, and high-density vegetation, with a
density index between —0.46 and 0.83 [37].

NDVI =

Annual Rainfall Data

Annual rainfall data were acquired by calculating daily CHIRPS data with a resolution
of 5 km retrieved from 2012 to 2021. This research used CHIRPS data as a database for
annual rainfall because the number of rain gauge station points covering the study area
is very limited. Consequently, the rain gauge station data were less representative. While
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CHIRPS is a terrestrial rainfall database that combining three types of rainfall information
(global climatology, satellite-based rainfall estimates, and in-situ rainfall observations) [38].
It can be accessed at https://data.chc.ucsb.edu/products/CHIRPS-2.0/ (accessed on 24
March 2022). Retrieval and processing of this dataset were carried out using the Google
Earth engine. Following the process, raster extraction produced 190 rainfall grid points,
which were assumed to be rainfall measuring points. Then, this research applied ordinary
kriging to generate rainfall value over the study area. Based on the average annual rainfall
data, the study area has 1750.56-3338.21 mm/year.

River Net Data

River net data were obtained from a topographic map produced by the Indonesian
Geospatial Information Agency. The river net data have a scale of 1:25,000 and were
published in 1999. These data are the latest data owned by the Indonesian Geospatial
Information Agency. River net data were used to extract the hydrological factor parameters
composed of the distance from the river and the density of the river. Euclidean distance
analysis was carried out to measure the distance parameter from the river. Based on
the distance parameter from the river, the study area has a distance value from the river
between 0 and 5055.16 m. A line density analysis proceeded with units of km/km? to
generate river density. The result demonstrated that the river density has a value of
0-6.58 km /km?.

2.3. Methods

This research applied three machine learning algorithms composed of random forest,
naive Bayes, and k-nearest neighbor to compare their performance in generating landslide
susceptibility analysis. Figure 3 illustrates the workflow of this research. In general,
the landslide susceptibility analysis consisted of 3 major steps: (1) conditioning factor
parameters preparation, (2) modelling, and (3) model evaluation.

| Landslide Inventory ‘

Geological Map 1:100,000 ” Digital Elevation Model Database 2012 - 2021

Topographical Map 1:25,000 " Daily Rainfall CHIRPS Data

Soil Type Map 1:50,000 ” Landsat-8 Satellite Imagery
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: v
Training Points Testing Points
Landslide Conditioning Factors :
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* Distance to Fault Naive Bayes
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* Cohen’s Kappa

Best Landslide Susceptibility Model

Figure 3. Research workflow of the comparison of landslide susceptibility prediction using RF, NB,
and KNN algorithms.
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Random forest is an ensemble learning model from a set of decision trees (DTs). Each
DT depends on a sample of independent data values, and the distribution of each decision
tree is the same [39]. RF is effective for predictions, as it uses the strength of each DT and its
correlation and is less sensitive to the problem of over-fitting [40]. It works by performing
a majority voting of the overall results of each DT. Equation (2) denotes the RF algorithm,
where Cr £ is the class of random forest results, and the hat operator in C indicates that the
class is the estimated class; x is an input vector; and C, is the predictive class of the nth tree
in a random forest [41].
C,s = majority vote {CA,L(JC)}HI\]:1 )

The k-nearest neighbor (KNN) is a machine learning algorithm utilizing neighboring
techniques in determining the class of a point [42]. A point is classified based on its closest
neighbors to the training data. KNN is categorized as a non-parametric ML model because
the computational process does not depend on data distribution [12]. The determination
of the shortest distance between the new data and the training data commonly utilizes
Euclidean distance (Equation (3)), where Xj; is the individual characteristic of i; Xj, is an
individual characteristic of j; p is the number of sample partitions; and v is an individual
sample [43].

dip =\ b1 (Xio — Xjo)? ®)

Naive Bayes (NB) is a supervised learning method based on statistical measurement
for classifying purposes. NB works based on the Bayesian theorem, which is well suited for
when the data have a high dimension and is not affected by the distribution of the data [44].
NB is a simple form of a Bayesian network, with all variables considered independent
of each other [45]. Equation (4) denotes the NB algorithm for landslide susceptibility
modeling, where x is the parameter of the factors causing landslides; y is the classification
variable for landslides and non-landslides; P(y;) is the probability of y;; and P(x;/y;) is a
posterior probability that can be calculated by Equation (5) [10].

_ argmaxP (y;) T P(x /1
y= y; = (landslide, non — landslidegp(x'/y’) @)
P(x:/ 1 *(xifzﬂ)z 5)
Xi/yi) = e 2
G090 = g

For landslide susceptibility modelling, a stack raster ensures that all parameters are
in the exact resolution. Therefore, this research extracts landslide occurrence points for
each parameter and conducts a normalization process using the z-score calculation so that
all numeric data are in the same dimension (Equation (6)), where X is the value of data,
namely, the average value of all the data; and S is the standard deviation of the overall
data [46]. .

X-X
s ©

Following the normalization process, splitting is performed to separate training and
testing data. The training data are used to generate prediction models, while testing
is used to evaluate the built models. The ratios between training and testing are 70:30,
60:40, and 50:50 for applying the NB and K-NN algorithms. Moreover, the RF algorithm
uses a ratio of 70:30. In general, specific rules in determining the splitting ratio scenario
between training and testing data do not exist, since each machine learning algorithm
has its optimum splitting ratio to perform the best model. However, some splitting ratio
schemes which are commonly used are 50:50, 60:40, and 70:30. The KNN and NB algorithms
use these three scenarios to obtain optimum model accuracy [10,22,41,47,48]. Unlike the RF
algorithm, previous research with the same physical area characteristics showed that the
RF algorithm had maximum accuracy when using a splitting ratio of 70:30 [22]. Therefore,
the RF algorithm only used a splitting ratio of 70:30 in this research.

zZ
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After the modeling process, eight evaluation parameters comprising ROC (receiver op-
erator characteristic), AUC (area under curve), accuracy (ACC), sensitivity (SN), specificity
(SP), balanced accuracy (BA), geometric mean (GM), Cohen’s kappa (CK), and Matthew’s
correlation coefficient (MCC) were used to assess the performance of each model. The
evaluation values were obtained based on the confusion matrix of four predicted labels,
which consisted of tp and fp for the number of positive data samples and tn and fn for
the number of negative data samples. Table 2 denotes the equations and objectives of
each evaluator.

Table 2. Metric evaluator equation and each objective.

Metric Equation Objective
ACC tp + tn Indicates the ratio of correct prediction to the total
tp+fpt+intfn number of evaluation samples [49].
SN tp Measures the fraction of correctly classified
tp+ fn positive patterns [49].
sp tn Measures the fraction of correctly classified
tn+ fp negative patterns [49].
oM sn + sp Measures the average sensitivity (sn) obtained
under each class [50].
BA /s Xsp Measures the roots of the products sn and sp [50].
CK 2 x ((TP x TN) — (FP x FN)) Consistency value betwegn 2 raters (observation
((TP + FP)x(FP + TN)) + ((TP + FN) x (FN + TN)) and prediction) [51].
Measures the performance of the classification
MCC (TP x TN) — (FP x FN) algorithm through the correlation between
V(TP + FP) x (TP + FN) x (TN + FP) x (TN + FN) observations and predictions [51].
_ The ROC curve is built based on sn (sb-Y) with s
ROC-AUC AUC = W (sb-X), and AUC is an integral I({OC [)] 0]. P
3. Results
3.1. Continuous Data Parameter Normality Characteristics
Some machine learning algorithms assume that the training data are normally dis-
tributed, so that identifying the normality characteristics of the data for evaluating the ap-
plication of machine learning algorithms is necessary. This research uses a non-parametric
alternative statistical Kolmogorov-Smirnov test (K-S) to display the normality characteris-
tics. The K-S test uses the cumulative distribution to determine the distribution level of
data [52]. Moreover, the K-S test is reliable for various purposes to efficiently establish
Goodness of Fit [53]. Table 3 denotes the results of the K-S test from the landslide and
non-landslide training dataset.
Table 3. Result of K-S test training dataset.
Landslide Training Point Non-Landslide Training Point
Parameter Normal Normal
D-Value p-Value Distribution D-Value p-Value Distribution
River Density 0.167 232 x10°° No 0.096 0.04519 No
Annual Rainfall 0.165 347 x 1070 No 0.104 0.01946 No
Distance to Fault 0.258 6.76 x 10716 No 0.151 3.92 x 1075 No
Elevation 0.107 0.01467 No 0.101 0.02766 No
Distance to River 0.192 5.39 x 1077 No 0.152 3.03 x 1073 No
NDVI 0.175 5.39 x 1077 No 0.149 4.74 x 1075 No
Slope 0.140 2.04 x 1074 No 0.113 7.78 x 1073 No
TWI 0.088 9.00 x 102 Yes 0.205 8.66 x 10710 No

Hypothesis: Hy = normally distributed; H1 = not normally distributed.
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The error rate in decision making is set to 5% = 0.05, with the decision-making criteria
using sig.« or p-value. If sig.« < «, then Hy is rejected [54]. The results of the K-S test shows
that all parameters in non-landslide training are not normally distributed. Moreover, in
the landslide training data, only the TWI parameter is normally distributed with a p-value
of 0.09.

3.2. Landslide Susceptibility Modeling Results

Before performing KNN for the landslide susceptibility model, it is required estimating
the value of k to generate the number of nearest neighbors considered from a point. The
estimation of the k-value used the cross-validation technique. Cross-validation is performed
with three iterations to optimize the accuracy. Figure 4 illustrates the results of the measure
of the k-value. Based on the cross-validation results for the estimated k-value for the 50:50
KNN model, the optimum k-value was 3, with a maximum accuracy of 0.814, while for
the 60:40 KNN model, the value of k produces a maximum accuracy of 3 with a maximum
accuracy of 0.796. The KNN 70:30 model had a maximum accuracy when the k value was 7,
with a maximum accuracy value of 0.817.

3 & 7 9 11 15 15 17 19 21 23 25 27 29 -3l

K-Value

—— KNN 50:50 KNN 60:40 —— KNN 70:30
Figure 4. Cross-validation to obtain the best k value for each scenario of the KNN algorithm.

The KNN yields probability values of landslides from 0 to 1. The average probability
values of the KNN 50:50, KNN 60:40, and KNN 70:30 models are 0.449, 0.338, and 0.365,
respectively. The probability values are then classified into low susceptibility (0-0.3), mod-
erate susceptibility (0.3-0.6), and high susceptibility (0.6-1) [42]. Figure 5 illustrates the
result of each scenario, where (A), (B), and (C) demonstrate the results of landslide suscep-
tibility modeling using the KNN. The 50:50 KNN model indicates that high susceptibility
dominates the study area with an area of 147,319.29 km? (42%) as opposed to the 60:40 KNN
model being dominated by moderate susceptibility with an area of 195,318.54 km? (56%).
For the 70:30 KNN model, the study area was dominated by low susceptible with an area
of 180,326.16 km? (51%).
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Figure 5. Landslide susceptibility modeling result of 7 models. (A) KNN 50:50 model. (B) KNN 60:40
model. (C) KNN 70:30 model. (D) NB 50:50 model. (E) NB 60:40 model. (F) NB 70:30 model. (G) RF
70:30 model.

Likewise, the NB algorithm applies three scenarios between training and testing
composed of 50:50, 60:40, and 70:30. The results indicates that the probability values of
landslides in the NB 50:50 model has a range of 6.24 x 10710 to 1, with an average of 0.451.
Moreover, the NB 60:40 model generates a probability range between 5.68 x 10~'* and 1,
with an average of 0.424. In the NB 70:30 model, the probability values of landslides lay
between 5.87 x 10712 and 1, with an average value of 0.299. In addition, the NB models
also classifies the susceptibility. Figure 6 illustrates the proportion of the study area based
on the probability classification of landslides. The classification of all scenarios showes
that low susceptibility dominated the study area; 51% of the study area was classified as
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low susceptibility in the NB 50:50 model, with 179,493.57 km?, as opposed to the NB 60:40
model with 231,354.63 km? (66%). Moreover, the area with low susceptibility on the NB
70:30 model was 235.410.39 km? (67%). On the contrary, only RF 70:30 generates more than
50% high susceptibility.

70%
?
< 60%
o 0,
= 50%
o
S 40%
—
° 30%
R
= 20%
g
z 10% I
0%
NB KNN KNN KNN
70.30 70:30 60.40 50.50 70:30 60:40 50:50
B Low Susceptible 19% 67% 66% 51% 51% 38% 24%
Moderate Susceptible  31% 5% 5% 6% 35% 56% 34%
B High Susceptible 51% 28% 30% 43% 13% 6% 42%

Classes of Landslide Susceptibility Model

Figure 6. Landslide susceptibility classes” percentages for each model.

The RF algorithm only implements a scenario between training and testing (70:30) to
produce a landslide susceptibility map. In the RF modelling, it was necessary to estimate
the best mtry, which is the number of random variables, before establishing a DT. The best
mtry estimation agrees using a cross-validation technique. Figure 7 illustrates the results of
the cross-validation.

086

0.86

0.84

T T T T T
10 20 30 40

#Randomly Selected Predictors

Accuracy (Repeated Cross-Validation)

Figure 7. Cross-validation results to obtain the best mtry of the RF model.

According to results, the mtry value which produces the highest accuracy (0.896) of
the RF model was 11. The RF 70:30 generates probability values from 0.01 to 1, with an
average of 0.595. After generating the RF model, it classified the level of susceptibility
to landslides based on the respective value. The result indicates that high susceptibility
dominated 51% of the study area, with 177,208.83 km? distributed over the edge.

4. Discussion

This research produces seven landslide susceptibility models. All models indicates that
high levels of landslide susceptibility located on the edge of the study area, except for the
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KNN 60:40 and KNN 70:30 models. The probability values generated by all models ranged
from 0 to 1. The probability values of landslides approaching 0 indicated no susceptibility
to landslides. On the contrary, once the probability value was close to 1, it refers to an
increased susceptibility to landslides [55]. Then the probability value can be classified into
three levels of landslide susceptibility, composed of low, moderate, and high when the
probability value ranged from 0 to 0.3, from 0.3 to 0.6, and from 0.6 to 1, respectively.

The evaluation is conducted towards training and testing data. For training data,
ACC and CK were measured. Figure 8 depicts the evaluation results of each model using
these parameters. The RF 70:30 model generates the highest values for ACC and CK, with
values of 0.915 and 0.819, respectively. In comparison, the NB60:40 model yields the highest
evaluation value for ACC and CK, with values of 0.863 and 0.691, respectively. For the
KNN algorithm, the KNN50:50 model produces the highest ACC and CK values among all
the scenarios, with ACC and CK values of 0.823 and 0.597, respectively.

Model Evaluation Training Data

0.636

KMNM 50:50 KMM G0:40 KMMN 70:30 MEB 50:50 MNEB 60:40 NB 70:30 RF 70:30

Model

Figure 8. Result of evaluation of each model on training data.

Eight parameters (ACC, SN, SP, BA, GM, MCC, CK, and ROC-AUC) are used to
evaluate the performance of each model. Figure 9 depicts the results of the evaluation
of each model using these parameters. The RF 70:30 model generates the highest values
for six evaluation parameters, namely, ACC, SN, GM, BA, CK, and MCC, with values of
0.884, 0.765, 0.863, 0.857, 0.749, and 0.876, respectively. Moreover, for the SP parameter, the
NB 50:50 and KNN50:50 models have the highest value among the other models, namely,
0.977. The NB 50:50 model had the lowest performance with six evaluation parameters,
namely, ACC (90.806), SN (0.536), GM (0.757), BA (0.724), CK (0.556), and MCC (0.601).
Moreover, the KNN 70:30 model obtains the lowest performance for the SP evaluation
parameter (0.846).

ROC-AUC measures the performance of each model for distinguishing landslide and
non-landslide as a binary value. ROC-AUC is the relationship curve between SP and SN.
Figure 10 illustrates the results of the ROC-AUC of training and testing data. Based on the
ROC graph, all models have an AUC of more than 0.7, which indicates that the model had
good performance [46]. Compared to testing data of other models, the RF 70:30 generates
the highest AUC of 0.943. On the contrary, the model with the lowest AUC value was
KNN?70:30 (0.852), meaning that the performance of KNN in identifying landslides was
low. In line with the AUC value in the testing data, the AUC in the RF algorithm training
data and the 70:30 scenario produces the highest AUC compared to other models, with a
value of 1. Moreover, the lowest AUC value for training data is obtained with KNN 60:40,
with an AUC value of 0.922. In addition, KNN 70:30 produced the lowest values of ACC,
SP, CK, and MCC, with respective values of 0.814, 0.846, 0.611, and 0.624. Moreover, the
most optimum scenario of the KNN splitting ratio between training and testing was 50:50,
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which produces the highest values in five of the eight evaluation parameters. It comprises
ACC (0.833), SP (0.977), CK (0.625), MCC (0.658), and AUC (0.881).
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Figure 10. ROC-AUC plot of training and testing data.

Figure 11 depicts the relative variable contribution degree of each model. In general,
slope led to the highest relative contribution degree in all models, with a value of 100%.
However, each model produces a different sequence of contribution degrees on each
parameter. Looking at the lowest contribution degree, the NDVI has the lowest relative
contribution degree in the RF 70:30 and NB 70:30 models, with merely 0.44% and 5.28%,
respectively. For land use, it possesses the lowest relative contribution degree in the NB
50:50 model (7.31%). Moreover, the proportion of geological type in the NB 60:40 model
was just above ten (10.13%). In KNN 50:50 and KNN 60:40 models, the soil type parameter
yielded a relative contribution degree of 10.12% for the KNN60:40 model as opposed to the
KNN50:50 model (8.64%). In the KNN 70:30 model, the parameter with the lowest relative
contribution degree was aspect, with a value of 9.24%.
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Figure 11. Relative contribution degree of each model (SL = slope; RD = river density; DR = distance
to river; EL = elevation; AR = annual rainfall; DF = distance to fault; AS = aspect; GT = geological
type; ST = soil type; LU = land use).

Among all models, RF was the appropriate model to discriminate non-landslide
areas from landslide areas based on landslide conditioning factors, considering the model
evaluation performance and accuracy [56]. The evaluation parameters comprise ROC-AUC,
ACC, SP, SN, GM, BA, CK, and MCC. According to the evaluation results, RF 70:30 was
the best model with the highest value of seven of the eight evaluation parameters. In the
application of the NB algorithm, the optimal ratio between training and testing scenarios
is 60:40, as it generated the highest value in five of eight parameters [57]. Moreover, the
scenario with the lowest performance wis the 50:50, since it generates the lowest value in
six of the eight evaluation parameters. RF performes the best in this research, followed
by KNN and NB sequentially. In addition to implementing algorithms using similar
conditioning factors, KNN, RF, and NB yielded good performance, with AUC values of
0.8903, 0.8690, and 0.8639, respectively [58]. The excellent performance of these three
algorithms in predicting landslides was also approved by additional conditioning factors
such as curvature, lithology, road ratios, and forest area ratios [59].

The KNN algorithm shows the lowest performance compared to the best models of
the other algorithms. However, compared to the overall splitting ratio scheme, the NB
algorithm produces the lowest performance compared to the KNN and RF algorithms.
Based on the results of the continuous data normality test in the previous sub-section,
the training data do not normally distribute. Otherwise, the NB algorithm assumes that
the data does not normally distribute [60]. Therefore, this research applies numerical
training normality tests on the data to determine the normality of data distribution using
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the Kolmogorov-Smirnov (K-S) test. Eventually, the K-S test proves that NB’s performance
depends on the training data distribution.

The most influential parameter of all models is the slope. In several studies related
to landslide susceptibility modeling using machine learning algorithms, the slope param-
eter dominantly leads to the highest relative contribution as opposed to other parame-
ters [8,11,47]. Other research produces different contribution levels, such as elevation [61]
and rainfall [62], while the slope parameter has a contribution level in the fifth order. In
this research, the distribution of landslide training data dominantly occurred on slopes
between 8° and 30°, which are classified as rather steep slopes. According to the influence
of topography on the landslides occurrence, ref. [63] found that landslides tend to occur at
slope values between 15° and 25°, as the slope angle controls shear forces and stresses on a
slope [64]. The slope angle level affects how much shear stress there is and how low the
level of slope stability is [65]. As the slope angle increases, the tangential stress increases
in the consolidated soil layer, while the axial stress (shear strength increases on a steeper
slope) and the slope stability level decrease accordingly. As a result, slope angle triggers the
potential for rock mass increase and ultimately triggers soil movement down the slope [64].
Variations in the slope value affect the magnitude of the stress on the potential shear surface
and determine the deformation mechanism [66]. Furthermore, the saturation of the fill
slope causes the rock mass to slide down the slope because the high compressibility and
mobility of air in the unsaturated void allow the fill slope to initiate undrained failure. The
saturation level on the fill slope is determined by the type of soil and the hydrological
conditions [67,68].

The lowest relative contribution level is divergent in each model. The NDVI had the
lowest relative contribution level in the RF 70:30 and NB 70:30 models. The results of these
two models indicates that the model is less associated with NDVI data. The landslide
training data tend to occur at NDVI values between 0.24 and 0.787 which is classified as low
to high vegetation density [37]. According to the influence of vegetation density in identi-
fying landslides occurrence, it does not significantly contribute [69]. On the other hand,
ecological damage, indicated by low vegetation density, will trigger landslides. Therefore,
it is necessary to consider ecological restoration as the primary means of preventing and
controlling landslides [70]. Vegetation can be an effective measure for mitigating land-
slides, as it can promote the shear strength of the soil through a series of mechanical and
hydrological effects [71].

The land cover parameter is found to be the lowest relative contribution level in the
NB 50:50 model. This research plots all the training datasets regardless of the land cover
type. However, the locations were mainly in a forest area, and built-up areas, including
roads, were non-significant, as the spatial resolution of the imagery is 30 m while the road
width usually is less than 30 m. As a result, a misclassification possibly occurred due to
the road being covered by vegetation. Hence, land cover is also an essential factor in the
assessment of landslide susceptibility [72]. Changes in land cover, such as deforestation,
which is used to support various human activities, can increase slope instability, which
causes landslides [73].

The soil type parameter has the lowest relative contribution level in the KNN 50:50
and 60:40 models; 57.90% of landslides occurred on Gleisol soil of the study area. Gleisol
has a loamy texture, as it is formed in a basin area and is affected by excessive water [74].
Loamy soil increases the potential of landslides because the loose soil is relatively soft after
being exposed to water and breaks when the air temperature is too high [75]. There is a rela-
tionship between soil type and landslide occurrence regarding geotechnical properties [76].
The geotechnical properties consist of hydraulic conductivity, infiltration rate, runoff and
increased pore water pressure on the slope, volume change, and the rate of decrease in
shear strength during rain [77]. These geotechnical properties are also related to the type of
geology of an area [78]. Other areas that have the potential for landslides are sandy slope
areas. When sandy slope areas also have the characteristics of an area with high rainfall,
slope instability will increase, and ultimately landslides will occur [79]. In the NB 60:40
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model, the geological parameter contributes as the lowest order. Based on the distribution
of the training dataset, landslides tend to occur with the characteristics of rocks originating
from volcanic deposits. Volcanic deposits are easily weathered rocks, especially tuff, which
is highly weathered to wholly weathered. On the other hand, previous studies have proved
that geology or lithology contributes relatively significantly [58,69,80].

In the 70:30 KNN model, aspect contributes as the lowest order, which is opposed to
other research finding that aspect has a relatively significant contribution level [58,69,80].
In this research, the landslides dominantly occurred on slopes facing northeast, with a
percentage of 28%. The direction of the slope is related to the amount of sunlight intensity.
In areas continuously exposed to direct sunlight, the organic content of the soil composition
in the area is low, which causes the area to be easily dispersed and ultimately triggers
landslides. The northern aspect is more susceptible to landslides, where landslides occur
in the southern hemisphere, and the southern aspect is more susceptible to landslides in
the northern hemisphere and vice versa [81]. In the northern hemisphere, the direction of
the slopes facing south has a higher intensity of sunlight than slopes facing north. In areas
exposed to direct sunlight continuously, the organic content of the soil constituents in the
area is low, which triggers the area to easily disperse, and ultimately causes landslides [81].
However, aspect does not contribute significantly to this research model, since Indonesia
is a country situated in the equatorial region. As a result, sunlight intensity is almost the
same in all directions [82].

Evaluation of landslide susceptibility is carried out to accurately determine areas that
are susceptible to landslides [83]. Mistakes in determining landslide susceptibility can
lead to false judgment, resulting in loss of life and property. The landslide susceptibility
map becomes fundamental for evaluating sustainable disaster mitigation issues [83]. A
machine learning approach can accurately and efficiently predict the level of landslide
susceptibility. The application of machine learning to evaluate landslide susceptibility has
not been widely implemented in Indonesia. In addition, the landslide susceptibility map in
the study area still applies the conventional scoring method with low accuracy. As a result,
machine learning has the potential to be implemented. Moreover, machine learning can
efficiently update landslide susceptibility maps continuously. Determining the splitting
ratio between training and testing data is crucial in determining the model’s accuracy.
Hence, this research is expected to provide recommendations for further research using the
RF, KNN, and NB algorithms. Subsequently, it can save time in the process of determining
the splitting ratio between training and testing for landslide susceptibility modelling.

5. Conclusions

This research compares the performance of the RF, KNN, and NB algorithms in
producing a spatial model of landslide susceptibility in Malang Regency, East Java Province,
Indonesia. According to the results, the RF algorithm dominantly led to the highest value
of evaluation parameters, composed of ACC, SN, GM, BA, CK, and MCC, with respective
values of 0.884, 0.765, 0.863, 0.857, 0.749, and 0.876. In addition, RF generates the best
performance, with an AUC of 0.943. On the other hand, the optimum splitting ratios
between the training and testing data for the NB and KNN algorithms in the case study
were 60:40 and 50:50, with AUC values of 0.928 and 0.916, respectively. Slope contributes
as the highest relative contribution degree for all the models, with the same value of 100%.
According to the best model, high susceptibility dominates Malang Regency, which includes
51% of the study area. Thus, the predictive model can assist policymakers in promoting
sustainable mitigation for the potential location. However, optimization methods and prior
knowledge concerning selecting landslide conditioning factors and landslide occurrence
inventories are necessary to improve prediction accuracy. This research recommends
utilizing multi-temporal data for more complex analyses in future research.
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Abstract: Compound events occur when multiple drivers or hazards occur in the same region
or on the same time scale, hence amplifying their impacts. Compound events can cause large
economic damage or endanger human lives. Thus, a better understanding of the characteristics
of these events is needed in order to protect human lives. This study investigates the drivers and
characteristics of floods in Europe and North America from the compound event perspective. More
than 100 catchments across Europe and North America were selected as case study examples in order
to investigate characteristics of floods during a 19792019 period. Air temperature, precipitation,
snow thickness, snow liquid water equivalent, wind speed, vapour pressure, and soil moisture
content were used as potential drivers. Annual maximum floods were classified into several flood
types. Predefined flood types were snowmelt floods, rain-on-snow floods, short precipitation floods
and long precipitation floods that were further classified into two sub-categories (i.e., wet and dry
initial conditions). The results of this study show that snowmelt floods were often the dominant
flood type in the selected catchments, especially at higher latitudes. Moreover, snow-related floods
were slightly less frequent for high altitude catchments compared to low- and medium-elevation
catchments. These high-altitude areas often experience intense summer rainstorms that generate the
highest annual discharges. On the other hand, snowmelt-driven floods were the predominant flood
type for the lower elevation catchments. Moreover, wet initial conditions were more frequent than
the dry initial conditions, indicating the importance of the soil moisture for flood generation. Hence,
these findings can be used for flood risk management and modelling.

Keywords: floods; compound events; flood typologies; precipitation; catchment characteristics

1. Introduction

Floods are a natural hazard that can cause large economic damage and endanger
human lives [1-3]. In order to protect human lives and property, either effective early warn-
ing systems or comprehensive flood-risk management are needed. In order to implement
flood risk management measures such as hybrid flood protection infrastructure, under-
standing of flood mechanisms across different spatial scales, climates, elevations and other
catchment-related characteristics is required [1]. This also applies to the snowmelt-related
floods [2,3], which are the focus of this study.

Snow cover and snowmelt can affect the occurrence of floods in different ways. For
example, a combination of snowmelt and intense precipitation with higher air temperature
can generate so-called rain-on-snow floods, which can cause significant flood damage
due to the compound effect. In recent years, special attention has been given to various
compound events. Definitions and typologies for compound events were recently presented
by Zscheischler et al. (2020) [1]. According to Zscheischler etal. (2020) [1], compound events
can be classified into four main types, namely preconditioned events, multivariate events,
temporally compounding events and spatially compounding events. Preconditioned events
are hazards created or exacerbated by a pre-existing condition, as in the case of rain-on-snow
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floods [2,3]. Multivariate events are caused by multiple drivers and/or hazards occurring
in the same geographic region within a temporal boundary, such as a combination of
fluvial and coastal floods or a combination of drought and heat waves [4,5]. Temporally
compounding events are a sequence of hazards occurring in a spatially bounded region,
such as a series of large rainstorms causing flooding [6-8]. Spatially compounding events
experience single or multiple hazards within a given time period [9,10], such as the large
floods that occurred in Germany, Belgium and the Netherlands in 2021 [11].

This study focuses on compound events, where snowmelt is one of the driving forces
of flooding. These type of events occur most frequently in northern regions in the northern
hemisphere and conversely in the southern hemisphere, and in alpine areas [3,12,13]. This
type of hazard becomes a potential threat for society when snow depth increases during the
winter and then melts rapidly as a result of a sudden temperature rise or precipitation event.
The significant melting of snow can saturate the soil and consequently lead to excessive
surface runoff that can cause flooding, especially in cases when the ground is frozen. Many
rivers around the globe experience this type of flooding each year. If it rains at the same time
as the snow melts, even more severe flooding can occur, known as rain-on-snow floods [2,3].
Not many studies have been conducted that focus on examining the characteristics of rain-
on-snow floods at large spatial scales. Most studies have been conducted focusing on
smaller spatial scales. For example, Sikorska et al. (2015) [14] classified the most frequent
flood types in Switzerland into six categories: snowmelt, rain-on-snow, flash, glacier-
melt, short-rainfall and long-rainfall floods. Floods were classified using decision tree
and the fuzzy method [14]. This study demonstrated that the predominant flood types
in Switzerland are long-rainfall and short-rainfall floods. The potential drivers of flood
events were also examined by Merz and Bloschl (2003) [15], who investigated floods
in Austria. They found that there are significant regional differences between different
climatic and terrain zones in Austria. Furthermore, they also analyzed the seasonality of
flooding, which indicates the time of the year when the catchments are most likely to be
flooded. Additionally, the authors reported that long-term rainfall events are the main
cause of flooding in Austria. Recently, Berghuijs et al. (2019) [16] examined the potential
drivers of the most extreme floods across Europe. The main drivers considered were
snowmelt, extreme precipitation, and high antecedent soil moisture. Extreme precipitation
(i.e., maximum annual discharge is a result of the largest precipitation event) was found
to be the least dominant driver in generating floods in Europe. On the other hand, this
mechanism was the most pronounced in the mountainous regions of the Alps and the
Carpathians. Furthermore, the melting of snow was the second-most important flood
generation mechanism in Europe, with this factor dominating in Eastern Europe and
Scandinavia. However, [16] showed that the most important flood generation mechanism
across Europe was high antecedent moisture. It should be noted that [16] focused primarily
on the flood dates and did not consider the complete flood hydrographs.

There are still many open questions that need to be addressed to improve the un-
derstanding and prediction of floods, e.g., the seasonal characteristics of snow-related
events, which climate factors are the main drivers of floods, etc. Therefore, the main aim
of this paper is to classify floods into different categories according to their causes and
to identify which flood types are most common in different parts of Europe and North
America. Additionally, this study also focuses on analyzing the relationships between flood
types and elevation, climate zone, and catchment area.

2. Data

The research includes 107 catchments throughout Europe and North America. The se-
lected catchments are shown in Figures 1 and 2 for North America and Europe, respectively.
A detailed list of selected catchments with their main characteristics is presented in the
Supplement prepared (Table S1) based on Brazda (2021) [17]. These 107 catchments were
manually selected to include catchments in different climate zones, elevations, etc., and
with the most complete discharge dataset. The focus of this study was Europe and North
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America and catchments located between 40° and 70° latitude were selected. Hence, all
these catchments are located in the mid-latitudes, meaning that all four seasons (autumn,
winter, spring, summer) define the climate characteristics. Additionally, nested catchments
were not taken into consideration. Hence, the idea was to have roughly uniform distribu-
tion of catchments in these two continents based on the above limitations and discharge
data availability. For all catchments, the AM sample was visually checked in order to
detect possible significant changes in the sample size due to human impact (e.g., dam
construction). We argue that these 107 catchments are a valid representation of a typical
catchment for the selected study area.
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Figure 1. Gauging stations locations for catchments that were selected in North America.
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Figure 2. Gauging stations locations for catchments that were selected in Europe.

Daily discharge data for the selected catchments were obtained from the Global
Runoff Data Centre [18]. Daily mean discharge from 1979 to 2019 was used in the study.
Additionally, the catchment boundaries were also obtained from the GRDC [18]. Figure 3
shows an example of the daily discharge time series for the Penobscot River catchment in
the USA, which was one of the selected catchments in North America.
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Figure 3. Example of the river discharge time series for one of the investigated catchments for the
period 1979-2019. River discharge data were obtained from the GRDC. The Penobscot river is located
in the USA and has a catchment area of 17,317 km?, and most of the catchment area is located in the
Warm Summer Humid Continental climate zone.

The Képpen-Geiger system [19] was used to identify the corresponding climate zone
of each of the selected catchments. The Climate Change and Infectious Diseases Group [19]
was used to obtain the climate zone data. Table 1 shows the climate zones that were
considered. The distribution of catchments per climate zone is shown in the Supplement
(Figure S1).

Table 1. The climate zones of the considered catchments based on the Képpen—Geiger system.

Acronym Climate Zone
BSK Cold Semi-Arid
CFA Humid Subtropical
CFB Temperate Oceanic
CEC Subpolar Oceanic
CSB Warm Summer Mediterranean
DFA Hot Summer Humid Continental
DFB Warm Summer Humid Continental
DFC Subarctic
DSB Mediterranean-Influenced Warm Summer Humid Continental
DSC Mediterranean-Influenced Subarctic

ET Tundra

Global elevation data were downloaded from EarthEnv [20] to determine the catch-
ment mean elevation. The elevation data used in this study were a gridded dataset with a
spatial resolution of 1 km. Figure 4 shows the elevation data and the catchment boundaries.
The distribution of catchments per elevation zone is shown in the Supplement (Figure S3).
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Figure 4. The elevation (m.a.s.l.) data with catchment boundaries (black polygons).
All climate data, except soil moisture data, were obtained from the Copernicus Agrom-
eteorological Indicators Data Store [21]. The period used was 1979-2019. The grids had

a spatial resolution of 0.1°. Table 2 displays all the climate information downloaded and
used in the scope of this study.

Table 2. List of climate variables that were taken into consideration in the scope of this study.

Variable Description Unit
Temperature Mean 24 h air temperature at a 2 m height K
Precipitation Total volume of water fallen per unit area over the 24 h period mm/day

Snow Thickness Mean depth of snow cover over the 24 h period cm
Snow Thi(fkness Liquid Water Mean depth of hguid over the 2.4 h period.assuming all snow om
Equivalent (LWE) melts and there is no runoff, soil penetration or evaporation
Vapour Pressure Mean water vapour pressure measured over the 24 h period hPa
Wind Speed Mean wind speed at 10 m height m/s
Soil Moisture Volume of water in the top soil layer (0-7 cm depth) m3/m3

Soil moisture data were obtained from the Copernicus Data Store [22]. Hourly ERA5
data at individual levels from 1979 to the present was used. The hourly value at 12:00
was used for further analysis. ERA5 is one of the products that is frequently used in
many different fields [4,23-25], providing a reanalysis of global climate and weather that
combines model data with observations into a globally complete and consistent dataset
using data assimilation technique.

3. Methods
3.1. Flood Hydrograph Seperation

R software was used to conduct the data analysis (i.e., data import, clipping of the
gridded data, etc.) [26]. The Annual Maximum (AM) method [27-30] was used to determine
the flood events. In the scope of this study, we did not focus only on peak discharge values
but we extracted the entire flood hydrographs [29], which was not the case in some previous
studies [16]. We decided to extract the climate data for the entire duration of the hydrograph
rather than just extracting data only on the day of the maximum peak discharge. This
is because in many catchments there is a lag between precipitation and runoff, and the
flood-driving climate factors often occur on the days before the peak. Baseflow separation
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was used to determine the start and the end of the hydrograph. It is a frequently used
method for hydrograph definition [29,31,32]. Baseflow is often considered as part of the
stream water that originates from groundwater [32]. The surface runoff hydrograph starts
when overland flow exceeds baseflow and ends when there is no more water belonging to
the overland runoff. To determine the shape of the hydrograph, as well as the start and
the end date, the Baseflow Index Method (BFI) from the “Ifstat” package (Koffler et al.,
2016) [33] in R was used. A detailed explanation of the BFI method can be found in the
report on Low-flow Estimation and Prediction [34]. Hence, for each AM peak discharge
value, the corresponding flood hydrograph was extracted from the daily discharge time
series for all 107 stations.

3.2. Flood Typology

In order to analyze the compound flooding, the hydrographs were first divided
into classes that included multivariate compound events and pre-conditioned compound
events. The methodology used in this study is relatively similar to one implemented by
Sikorska et al. (2015) [14], as some similar flood types were used. However, we decided to
additionally distinguish between dry and wet event conditions (Table 3). This resulted in
the eight flood types presented in Table 3.

Sikorska et al. (2015) [14] indicated that when snow cover exceeded 5% of the catch-
ment area, the flood can be considered as influenced by snow, and the flood type in this
case is either a snowmelt (SMF) flood or a rain-on-snow (ROS) flood. In case rain falls
on top of the existing snow cover, then this is considered a ROS event. The threshold for
precipitation used in this study to identify the ROS flood was 12 mm, which causes more
than 1 mm of snowmelt (Table 3). The amount of snowmelt was determined by subtracting
the snow thickness liquid water equivalent (LWE) from the previous day’s LWE. The total
thickness of the solid snow was not considered in this calculation because snow thickness
can decrease, which changes the density of the snow without causing snowmelt runoff [35].
A SMF flood occurs when snowmelt exceeds 1 mm and less than 12 mm of precipitation
falls (Table 3). To determine if the snow cover was in an initial wet or dry condition, snow
density characteristics were investigated. Kuusisto (1984) [35] studied snow density during
melting periods. Snow density depends on many factors, including snow thickness, air and
snow temperature, precipitation, etc. Moreover, snow density can also vary regionally, and
thus a direct comparison of snow densities between the selected catchments would not be
an optimal solution. Therefore, the percentage of snow density increase during the melting
phase can be compared. Kuusisto (1984) [35] wrote that snow density increased by more
than 20% during the final phase of melting. This value (i.e., 20%) was used in the study as
a threshold to determine whether the conditions were initially wet or dry. If snow density
increased by more than 20% from the beginning of the hydrograph to the day of maximum
snowmelt, it can be assumed that the snow was not in the process of melting, and the event
(i.e., hydrograph) can be classified as an initial dry condition. If the increase in density
was less than 20%, it can be assumed that the snow was already close to melting. Hence,
the hydrograph can be classified as having initial wet conditions. Furthermore, the day
of maximum snowmelt was used to determine the change in density, since there may be
situations where, on the day of the peak hydrograph, the snow cover and thickness is close
to zero, meaning that all the snow has already been melted. To obtain the snow density, the
LWE was compared to the total solid snow thickness.

In cases when snow cover is less than 5% of the catchment area, it can be assumed
that snowmelt has a minor impact on flood generation [14]. In this case, the main driver
of the flood event is precipitation. The precipitation floods in the study were divided into
short-precipitation floods (SPF) and long-precipitation floods (LPF). A SPF event occurs
when the rainfall duration does not exceed 1 day and rainfall amount is greater than 12 mm.
A LPF occurs when the rainfall duration is from 2 to 4 days and the rainfall amount exceeds
25 mm [14,36]. In the case that both conditions are fulfilled, the event was classified as LPF.
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Moreover, multiple peaks in the hydrograph were assumed to be the LPF event [36]. The R
package “pracma” was used to determine the number of peaks in the hydrograph [37].

Soil moisture data were used to determine the initial conditions (i.e., wet or dry)
of the event. In order to calculate the percent saturation, data for each catchment were
examined, and the largest daily volumetric water content for each catchment was defined.
This maximum water content was assumed to be 100% saturation. All other values were
then selected as numerators above this maximum value, resulting in the daily percent
saturation content. The threshold was set at 75% (Table 3). This threshold was selected after
some preliminary investigations and it was found to be a reasonable threshold to be used
in relation to defining the antecedent conditions. By applying these constraints to each of
the identified flood hydrographs, they were classified into eight categories. If an individual
flood hydrograph did not meet any of the eight pre-determined categories (Table 3), it was
classified in the “other” category. Figure 5 shows the classification process.

Table 3. Flood typology used in this study. References that were used to define the threshold values
are presented in the square brackets.

Antecedent
Flood Type Precipitation [14] Snow Cover [14] Snowmelt [14] Moisture Other [36] Abbreviation
Condition
Rain-on-Snow Flood o, >20% Increase in
with Dry Conditions >12 mm >5% >1 mm snow density [35] ROS-D
Rain-on-Snow Flood o, <20% Increase in
with Wet Conditions >12 mm >5% >1mm snow density [35] ROS-W
Snowmelt Flood with o >20% Increase in
Dry Conditions <12mm >5% >1 mm snow density [33] SMEF-D
Snowmelt Flood with o <20% Increase in
Wet Conditions <12mm >5% >1 mm snow density [35] SMF-W
Long-Precipitation <75% soil
Floods with >254Hér; ts)ver <5% <1 mm saturation at start Multiple Peaks LPF-D
Dry Conditions Yy of hydrograph
Long-Precipitation >75% soil
Floods with >254Hé1: (SJver <5% <1 mm saturation at start Multiple Peaks LPE-W
Wet Conditions 4 of hydrograph
Short-Precipitation <75% soil
Floods with >12mm in 1 day <5% <1 mm saturation at start SPF-D
Dry Conditions of hydrograph
Short-Precipitation >75% soil
Floods with >12mm in 1 day <5% <1l mm saturation at start SPF-W
Wet Conditions of hydrograph

>5% Snow Coverage | | <5% Snow Coverage

>12 mm rain | | <12 mm rain |

12 mm rain 25 mm rain
in 24 hrs in 4 days

Snow Density Snow Denswv Snow Densltv Snow Density Soil Moisture Soil Moisture Soil Moisture Soil Moisture
Increase >20% | | Increase <20% Increase >2o% Increase <20% <75% >75% <75% >75%

ko [csu] [suro] [, wio] [wiw] oo wiw

Figure 5. Visual representation of the flood classification process shown in Table 3.
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Additionally, the differences in climate zones, catchment areas, and altitudes were
also considered in analysis. The climate zone covering most of the catchment area was
selected as the dominant zone of the individual catchment (see Supplement Figure S1).
Four dominant climate zones were identified in the study, namely warm summer humid
continental climate, temperate oceanic climate, tundra, and subarctic climate zone (see
Supplement Figure S1). Other climate zones were only relevant to 1-3 catchments and were
not considered in the classification by climate zone. The catchments were also divided into
three categories according to their size (see Supplement Figure S2): large (>10,000 km?),
medium (between 200 and 10,000 km?), and small (<200 km?). Furthermore, the catchments
were also divided into three categories by catchment mean elevation: high (>1000 m.a.s.L.),
medium (between 500 and 1000 m.a.s.1.), and low (<500 m.a.s.1.) (see Supplement Figure S3).

4. Results and Discussion
4.1. Flood Typology Classification for All Catchments

Following the presented methodology for the extracted AM events (i.e., 41 events were
extracted for each catchment), main climate characteristics during these events were exam-
ined (see Supplement Figures S4-57). Some relatively large variability in the snow thickness,
soil moisture and other variables during these events can be seen across Europe and North
America (see Supplement Figures 54-57). Hence, the percentage of snowmelt-related
floods differed among the selected 107 catchments (see Supplement Figures S8 and S9).
We argue that selected catchments represent a variety of conditions between the 40° and
70° latitude. Figures 6 and 7 show the results of the flood classification methodology for
the selected European and North American catchments using heat maps. Several conclu-
sions can be drawn from the heatmaps shown in Figures 6 and 7. Firstly, the majority
of the AM floods that occurred in the investigated catchments (107 in total) were clas-
sified as snowmelt-driven floods (SMF). The snowmelt-driven floods (i.e., SMF-W and
SMF-D types) represent 39% of all floods considered on both continents (Figures 6 and 7).
Secondly, for all categories (i.e., ROS, SMEF, SPF, and LPF), the wet conditions (-W) were
always more prevalent than the dry conditions (-D) (Figures 6 and 7). The dry initial
conditions accounted for 45%, 36%, 20%, and 19% of ROS, SMF, SPF, and LPF, respectively
(Figures 6 and 7). These results are in accordance with what was reported in some previous
studies that pointed to the importance of soil moisture on flood generation [16,38]. It
should be noted that the percentage of dry initial conditions (-D) was higher for the snow-
influenced floods (i.e., ROS and SMF) compared to SPF and LPE. Hence, high soil moisture
values frequently occur with SPF and LPF events, and compound occurrence frequently
results in flooding. It should be noted that the dry initial conditions for the snow-influenced
floods were determined based on snow density. More specifically, the ROS floods made up
55% of the floods in the wet initial condition (Figures 6 and 7). The main reason for this
is that rain quickly increases snow density prior to melting [39]. Furthermore, less than
20% of SPF and LPF events were seen where the maximum annual flood started at less
than 75% soil saturation. Based on this fact, it is reasonable to assume that antecedent soil
moisture is an important driver in flood generation in Europe and North America. These
results are consistent with findings from previous studies [16,38]. It can also be seen that
the percentage of SMF-W in general decreased from north to south (Figures 6 and 7). For
flood hydrographs that we could not classify into any of the predefined categories for the
North America catchments (i.e., Other type), an opposite situation is evident (Figure 6).
For European catchments, the percentage of SPF-W and LPF-W generally increases from
south to north (Figure 7). It should be noted that the selected thresholds (Table 3) could
have an impact on the percentage of the occurrence of different flood types. For example,
increasing the snow cover threshold (i.e., from 5% to 10 or 15%) would reduce the number
of snow-related flood events. Additionally, increasing the 12 mm precipitation threshold
related to the SPF events would decrease the number of these events. However, we argue
that smaller changes in the selected thresholds would have a relatively minor impact on
the presented results.
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4.2. Flood Typology Classification Based on Climate Zone

The flood types were also classified based on the predefined climate zone of each
catchment. For each climate zone, the mean distribution of flood typologies was considered.
Figure 8 shows that the CFB and DFA zones are more evenly distributed across the different
typologies, with the SPF and LPF being nearly equal to the SMF. The DFC zone has the
highest magnitude of floods in the SMF-W category (Figure 8). The ET climate zone is
dominated by the two dominant flood types, namely SMF-W and ROS-W (Figure 8). ET is
the only one of the four climate zones (i.e., CFB, DFA, DFC, and ET) that includes more
than three catchments, where ROS-W occured as the dominant flood type (Figure 8). This
is likely due to the large amounts of rainfall in many mountainous regions where the ET
climate is found [14].

43%
BSK I

25%
CFA

cF8 I
0%
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Figure 8. Heatmap for the annual maximum (AM) flood typology classification by climate zone,
showing results for the four climate zones with the highest number of catchments.

4.3. Flood Typology Classification Based on Catchment Area

Figure 9 shows the flood types classified based on the size of the catchments. The
SMF floods dominate in the large catchments, whereas the SPF and LPF are more common
in the other two categories (Figure 9). There are several reasons for these results, one of
which is the threshold related to the snow cover used to classify hydrographs (Table 3). The
threshold for the snow cover, above which the flood was considered to be influenced by
snow, was 5% (Table 3). In case of very large catchments, it is more likely that a part of the
catchment is covered with snow, exceeding the threshold for a flood to be influenced by
snowmelt. On the other hand, small catchments may be completely without snow coverage
since small catchments do not cover large geographical areas. Additionally, several larger
catchments in North America are located at higher latitudes. Another possible reason
for these results is the soil moisture concept discussed by Harpold et al. (2015) [39].
Harpold et al. (2015) [39] argued that the highest soil moisture is reached within 5 days
after the snowpack has completely melted. Moreover, in the case of large catchments, a
rainfall storm would need to have a large spatial extent in order that catchment reaches
the soil moisture required for an annual maxima flood generation. Hence, if a spatially
extensive snowpack melts throughout the watershed, the entire watershed can reach the
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high soil moisture required. The number of LPFs is relatively small for large catchments
(Figure 9), which is to some extent an unexpected result, as LPFs generally have the ability
to saturate large catchments, while on the other hand, the spatial extent of most extreme
and short-duration precipitation events (i.e., SPFs) may be spatially limited [9]. Moreover,
the results indicate that the medium and small catchments are dominated by SPFs and
LPFs (Figure 9). This is likely due to the fact that the spatial extent of the storm required for
these catchments to become saturated is generally smaller. Very extreme rainfall events
(e.g., summer thunderstorms) tend to have a smaller spatial extent, which is why SPFs
are more common in small- and medium-sized catchments (Figure 9) [15]. Additionally,
small- and medium-sized catchments often have a shorter time of concentration compared
to large catchments [15]. Thus, SPF and LPF can more easily saturate the entire small and
medium catchments, resulting in high peak discharge values.

Area

. Large
. Medium
. Small

o Q ® Q o Q ! Q 5
Q-&/ eé’/ 6‘{(/ 6§/ ézq/ %QQ/ & \‘;(/ 0‘@
Flood Types

Figure 9. Flood typology classification based on the catchment area size.

4.4. Flood Typology Classification Based on Elevation

Figure 10 shows the distribution of floods in each flood type based on the mean
elevation of the 107 catchments considered. It can be seen that the catchments at higher
elevations have a slightly lower number of SMF and ROS floods than catchments at the
medium and low elevations (Figure 10). A similar conclusion was also reached by Sikorska
et al. (2015) [14]. Sikorska et al. (2015) [14] used two different methods to classify the floods.
When investigating high-elevation catchments, they found that precipitation floods were
the dominant flood type when using the crisp decision tree method [14], which is similar to
the findings of this study (Figure 10). However, when they applied the fuzzy method, they
found that although the dominant flood type remained the precipitation-driven flood, many
of the floods were also classified as SMF or ROS floods [14]. However, the snow-related
aspects do not exceed the thresholds to classify the flood as a snowmelt-affected flood.
Sikorska et al. (2015) [14] hypothesized that this is due to a large amount of rainfall that
falls in mountainous regions. Flash floods also often occur in mountainous catchments [14],
which is not a flood type in the assessment shown in this study (Table 3). Moreover,
Berghuijs et al. (2019) [16] found that extreme precipitation is the only predominant driver
in mountainous regions [16]. Despite the large amounts of snow in the mountainous
regions, rainfall can form the dominant flood type, which is caused by rainfall rather
than snowmelt.
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Figure 10. Flood typology classification based on the catchment elevation.

5. Conclusions

Based on the conducted analyses that were made based on the 107 selected catch-
ments, several important conclusions can be made. It should be noted that the selection of
107 catchments that are relatively uniformly distributed between 40° and 70° latitude in
Europe and North America represent a subset of all catchments and that different selection
of catchments could yield different results. However, we argue that 107 catchments are
representative for the selected study area. The results presented in this study indicate
that snowmelt floods (especially SMF-W events) are often the dominant flood type in the
catchments considered, especially for the catchments located at higher latitudes.

When comparing the relationships between the flood types (Table 3) and the climate
zones, catchment elevation, and size, further conclusions could be made. Firstly, the
primary flood type in the DFC and ET zones was SMF-W (Figure 8). Secondly, it was also
shown that the large catchments had a slightly higher proportion of SMFs (Figure 9), while
the medium and small catchments had slightly larger numbers of SPFs and LPFs (Figure 9).
Thirdly, the occurrence of some specific flood types was found to change with latitude (e.g.,
SME-W slightly decreased from south to north in Europe and North America). Finally,
floods with wet soil initial condition (-W) occurred much more frequently than floods with
the dry soil initial conditions (-D) in our analysis (Figures 6-10). The high frequency of the
floods with wet soil initial conditions (-W) indicates that this may be a type of compound
event—where a high antecedent moisture condition would qualify as a pre-existing event.
In summary, these findings could be useful in the flood forecasting process, where special
focus could be given to situations where soil moisture is high and a medium-precipitation
event is expected in the following days. Additionally, these results could be used in
the process of optimizing the flood risk management in relation to specific catchment
characteristics (i.e., size, elevation, location climate). Moreover, finding could also be
used for design of flood protection measures such as hybrid infrastructure. In the future,
a similar study could be conducted, taking into account additional influencing factors
(e.g., soil temperature as a proxy of ground frozenness) using an even larger number of
catchments and testing different thresholds, which could be supplemented with additional
statistical analysis.
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Small catchments have less than 200 km?, large catchments are greater than 10,000 km? and medium
catchments are between 200 and 10,000 km?; Figure S3: Number of catchments based on the elevation.
High elevation catchments are greater than 1000 m.a.s.l. Low elevation catchments are less than
500 m.a.s.l. Medium elevation catchments are between 500 and 1000 m.a.s.l; Figure S4: Mean snow
thickness in the selected North American catchments during annual maximum events in the period
1979-2019; Figure S5: Mean snow thickness in the selected European catchments during annual
maximum events in the period 1979-2019; Figure S6: Mean soil moisture in the selected North
American catchments during annual maximum events in the period 1979-2019; Figure S7: Mean
soil moisture in the selected European catchments during annual maximum events in the period
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affected by snowmelt in Europe in the period 1979-2019; Table S1: A list of 107 selected catchments
with their main characteristics.
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Abstract: Buenaventura on the Colombian Pacific coast has experienced a wide range of threats,
mainly due to the effects of coastal erosion and flooding. Globally, millions of people will expe-
rience increased vulnerability in the coming decades due to climate change. The change in the
coastline (1986-2020) over time was analyzed with remote sensors and the Digital Shoreline Analysis
System (DSAS) in conjunction with GIS. A total of 16 indicators were selected to quantitatively
evaluate exposure, sensitivity, and adaptive capacity to construct a composite vulnerability index
(COVI). The endpoint rate (EPR) of the change in the coastline was estimated. The results showed
that 35% of the study area was stable, 18% of the coastline experienced erosion processes, and 47%
experienced accretion. The COVI analysis revealed that coastal watersheds show great spatial het-
erogeneity; 31.4% of the area had moderate vulnerability levels, 26.5% had low vulnerability levels,
and 41.9% had high vulnerability levels. This analysis revealed that the watersheds located in the
northern (Mélaga Bay) and central (Anchicaya, Cajambre, and Rapposo basins) parts of the coastal
zone were more vulnerable than the other areas.

Keywords: coastal vulnerability index; coastal erosion; shoreline change; GIS; remote sensing;
coastal watersheds

1. Introduction

The coastal areas of Colombia cover less than 7% of the land surface of the country
and support a population of 6 million inhabitants [1]. In recent years, the Colombian
Pacific coast has experienced a wide range of catastrophic threats to its ecosystems, pop-
ulation, and infrastructure, mainly due to the effects of coastal erosion and flooding [2].
The destruction of ecosystems, climate change, population growth, and human activities,
such as deforestation and mining, will increase vulnerability even more in the coming
decades [3-6]. Globally, approximately 10 million people experience negative effects from
tropical storms, coastal erosion, floods, and storm surges each year, which is expected to in-
crease to 50 million by 2080 due to climate change and high sociodemographic pressure [7].
Coastal flooding and sea level are expected to increase significantly by the middle of the
century [8]. How vulnerability should be assessed to generate adaptation and resilience
strategies in the face of potentially disastrous events in the coastal zone is a global concern
of scientific communities. [8,9]. However, the intensity and severity of hazardous events
vary spatially, and they often become disasters when combined with the vulnerable socioe-
conomic environment of the human population [10]. Vulnerability is the degree to which a
system is susceptible to natural hazards and social changes; it is a concept with multiple
dimensions, encompassing the economic, political, physical, social, and environmental
dimensions [11]. Vulnerability to any event can be explained as a function of exposure, sen-
sitivity, and the ability to adapt or cope [12]. The definition of vulnerability implemented
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by the Intergovernmental Panel on Climate Change (IPCC) is one of the most widespread
concepts in the world for conducting vulnerability assessments of multiple hazards [7].
To address this problem in Colombia, it has been proposed to include coastal erosion in
disaster risk management as a public policy approach [13,14].

In recent years, evaluation of coastal vulnerability with an emphasis on geomorpholog-
ical and physical factors has focused on the use of the coastal vulnerability index (CVI). This
index was designed to estimate areas of risk caused by environmental and socioeconomic
hazards and is widely used to implement decision-making within the framework of risk
reduction. The CVI approach was initially developed by Gornitz [15,16] to study the vul-
nerability of the east coast of the United States of America due to sea level rise. The index
allows to relate six physical variables in a quantifiable way and produces numerical data
that cannot be directly equated with particular physical effects, but it does highlight the
regions where the various effects of sea level rise may be greater [17]. Subsequently, the CVI
was used to assess vulnerability along the Atlantic coast by the United States Geological
Survey (USGS) in the study of Thieler and Hammar-Klose [18]. In the analysis of coastline
change, some studies focused on analyzing the geomorphological and physical factors of
the CVI but also included socioeconomic variables to develop resilience to the threats of
climate change [19-24]. The state of vulnerability can be determined based on a group
of conditions and processes resulting from physical, environmental, and socioeconomic
factors that increase the susceptibility of people living in coastal areas to natural hazards,
including their ability to adapt and respond to disasters [25,26].

Based on the CVI, other indices have been developed that focus more extensively
on the conceptual structure of the vulnerability index using a process of analytical hierar-
chy, and this index is called the composite vulnerability index (COVI). Recently, several
researchers have used this method to evaluate coastal vulnerability by incorporating differ-
ent factors that indicate different dimensions (physical, ecological, social, and economic),
including parameters such as biophysical exposure, sensitivity, and adaptive capacity
or resilience to evaluate multiple hazards. For example, Zhang et al. [27] evaluated the
coastal vulnerability to climate change of Bohai in China considering fifteen factors related
to ecological, physical, and socioeconomic conditions in a COVI. Ghosh and Mistri [28]
evaluated coastal vulnerability as a function of multiple factors with the composite vulner-
ability index in the lower delta of the Sundarban, India considering 22 indicators, mainly
physical, climatic, and socioeconomic variables. Sahana and Sajjad [29] evaluated floods
focusing on storm surge with a vulnerability index composed of remote sensing infor-
mation in the Sundarban Biosphere Reserve, India considering seventeen factors. Finally,
Furlan et al. [30] developed a multidimensional CVI to evaluate vulnerability to flood
scenarios along the Italian coast considering multiple indicators. Although there are studies
that evaluate the general vulnerability of the coasts of Buenaventura [13,21,22,31,32], these
have focused mainly on geomorphological and physical dimensions. Numerous studies
have been conducted around the world to examine different aspects of coastal vulnerability
with a geospatial approach using the CVI and COVI (Table 1).

The objective of this work is to analyze coastal erosion at the watershed level using
remote sensors in conjunction with GIS to build a COVI. Selection of indicators and the
weighting assigned to each indicator are important parts of the study. Incorporation of
physical, environmental, and socioeconomic variables to evaluate various indices using
a weighting method allows a comprehensive view of spatial vulnerability considering
that coastal watershed is the most appropriate scale to assess vulnerability to natural and
anthropogenic changes.
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Table 1. Studies conducted worldwide with a geospatial approach that uses coastal vulnerability
indices.

Index Tools * Year Country Author
GIS, RS, DSAS 2021 India Bera and Maiti, 2021 [19]
GIS, RS, DSAS 2021 India Pramanik et al., 2021 [23]
GIS, RS, DSAS 2021 Egypt Abdelaty, 2021 [33]
GIS, RS, DSAS 2021 Greece Boumboulis et al., 2021 [34]
. GIS, RS, DSAS 2020 Ital Sekovskia et al., 2020 [35]
Coastal Vulnerability GIS 2019 Brasi Serafim et al., 2019 [24]
Index (CVD) GIS 2019 Spain Koroglua et al.,2019 [36]
GIS 2019 Malaysia Mohda et al.,2019 [37]
GIS, RS, DSAS 2019 Bangladesh Hoquea et al., 2019 [38]
GIS 2019 Colombia Coca and Ricaute, 2019 [21]
GIS, RS, DSAS 2019 Colombia Gallego and Selvaraj, 2019 [22]
GIS, RS, DSAS 2021 Tunisia Hzami et al., 2021 [39]
GIS 2021 China Zhang et al., 2021 [27]
Composite Vulnerability GIS 2021 India Ghosh and Mistri 2021 [28]
Index (COVI) GIS 2021 Italy Furlan et al., 2021 [30]
GIS 2020 India Rehman et al., 2020 [40]
GIS 2020 India Sahana and Sajjad,2019 [29]
GIS, RS, DSAS 2019 Bangladesh Mullick et al., 2019 [41]

* Geographic information system (GIS), remote sensing (RS), and Digital Shoreline Analysis System (DSAS).

2. Materials and Methods
2.1. Study Area

Buenaventura is located in the Valle del Cauca in the central zone of the Colombian
Pacific in one of the four Colombian departments on the coast of the Pacific Ocean. It
encompasses the extensive area of the municipality and special port district of Buenaven-
tura. It is bounded by the San Juan River to the north and by the Naya River to the south,
semienclosed by two bays: Bay of Buenaventura and Bay of Malaga. Geographically, the
coastal area has a total coastline of approximately 686 km and extends over the coordi-
nates 4°2.23/82" N and 77°26'18.87" W, at 3°13/33.21" N and 77°32'41.63"” W, as shown
in Figure 1. The coastline is composed of barrier islands, intertidal zones, rocky cliffs, rocky
platforms, alluvial and intertidal plains, estuaries, sandy beaches, and salt marshes [42].
The beaches of Buenaventura are of natural origin according to the sedimentological de-
scription from the granulometric analysis made by the Institute of Marine and Coastal
Research of Colombia (INVEMAR) on beach samples for the sectors of Punta Soldado,
La Bocana, and Piangtiita in the department of Valle del Cauca. The average grain size
distribution in different sampling campaigns in the years 2012, 2014, and 2015, indicates
that, in this area of the municipality of Buenaventura, sediments showed a tendency mostly
to a fine grain size [1]. The Choc6 Biogeografico (biodiversity hotspot) includes the Pacific
coastline between Darién in Panama and northwestern Ecuador, passing through the entire
coastal strip of Colombia.

Within this hotspot, mangroves are one of the most important ecosystems in Valle del
Cauca, covering 140 km? [43]. The tides of the Colombian Pacific coast are regular semidi-
urnal, that is, with two high tides and two low tides per day with a period of approximately
12.25 h, and their tidal range can reach slightly more than 4 m [44]. Precipitation generally
shows monomodal behavior, with an annual average between 6821 mm and 7673 mm, and
there are approximately 228 days with rain. The average annual temperature for the Pacific
is 25.7 °C [45]. Structurally, Buenaventura is characterized by a flat morphology in the
south and cliff formations to the north. There are three levels of terraces present in the river
courses that seem to indicate recent tectonic activity of uplift and subsidence, formed by
Quaternary deposits [44]. Economically, the port area of Buenaventura consists of several
maritime terminals that provide port and logistics services in the most important port of
the Colombian Pacific through which a large part of Colombia’s foreign trade occurs. This

95



ISPRS Int. ]. Geo-Inf. 2022, 11, 568

port moves 47% of Colombian exports and imports, including those related to mining, oil,
and its derivatives [46]. Its population for 2020 was approximately 311,827 inhabitants,
demographically composed of African descendants and mixed-ancestry and indigenous
communities [47,48]. A percentage of the population lives in stilt houses located at or
close to the shoreline exposed to waves, increasing their degree of exposure to the tidal
regime [45]. Insufficient resources, multidimensional poverty, and remoteness are great
challenges for the community. Almost 33.3% of the population lives below the poverty
level [47]. Regarding studies of the coastal zone of Buenaventura related to vulnerability,
the study by Ricaurte et al., 2021 [11] stands out, where the dominance of each compo-
nent of the threat in the Colombian Pacific region was analyzed and it was established
that it is determined by fragility, mainly social, economic, and institutional. Coca and
Ricaurte 2019 [21] studied the town of La Barra since 2013, when a process of avulsion
towards the sea began; associated with this event, an accelerated coastal erosion process
could be measured, where the vulnerability of the population was evaluated. Gallego
and Selvaraj 2019 [22] applied the coastal vulnerability index (CVI) using eight variables,
three physical /hydrodynamic, three geological /geomorphological, and two socioeconomic
variables. The coastline was classified into five relative vulnerability ranges. Cifuentes et al.,
2017 [31] focused on studying the magnitude of shoreline change north of Buenaventura
District over a 30-year period. On average, they found a rate of change of —0.2 m per
year in the coastline, reflecting its erosional trend, with maximum EPR values of 26.9 m
of accretion and —21 m of coastal erosion. Uribe et al., 2020 [32] explored the degree of
vulnerability of ecosystem services in the northern area of Buenaventura to natural and
anthropogenic hazards. Sea level rise and coastal erosion are the most likely threats to
ecosystem services. One of the most significant dangers that threatens the study area is
coastal erosion. To evaluate vulnerability, the analyses were grouped using the division of
coastal watersheds (Figure 1).

2.2. Shoreline Change

The change in a coastline is an important parameter that can have a natural or an-
thropogenic origin and indicates the pattern of accretion/erosion in conjunction with
different processes, such as waves, tides, sea levels, and topographic shape [49]. The
coastline represents the boundary between the sea and the landmass. Evaluating coastal
erosion is essential for planning future management strategies, land use planning, and risk
management [50]. Historical photographs and high-resolution satellite data were used to
monitor coastline changes during a period of 34 years (from 1986 to 2020). Initially, ortho-
mosaics were created for 1986 based on data acquired from official datasets (aerial photos)
of the Agustin Codazzi Geographical Institute (IGAC). Two sets of airborne synthetic
aperture radar images (synthetic-aperture radar SAR) were used, the first for 2009 and
the second of 2015, being the most accurate public use datasets available for the terrain of
Buenaventura (Table 2). In addition, 19 high-resolution orthorectified images of the Plan-
etScope satellite from 2020 were acquired. The constellation of PlanetScope satellites
consists of groups of individual high-resolution satellites; each satellite has a 3U CubeSat
format (10 cm by 10 cm by 30 cm). The complete constellation of PlanetScope is approx-
imately 130 satellites and is capable of taking images of the entire Earth’s surface with
four spectral bands (blue, green, red, and near infrared (NIR)); it has a spatial resolution
of 3 m and a high temporal resolution (24 h) [51]. All sensors were used to extract the
multitemporal coastline (Table 2).
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Figure 1. Map of the municipality of Buenaventura and its coastal watersheds.

Table 2. Images and products of the remote sensors used for coastline data extraction.

Year Sensor Product * Spatial Resolution Source
1986 Aerial photography Orthomosaic 3m Geographic Institute of Colombia (IGAC)
2009 Synthetlc-ApeFture Radar Orthomosaic, DSM, DTM 3m Geographic Institute of Colombia (IGAC)
Image—Airborne
Synthetic-Aperture Radar . Regional Autonomous Corporation of
2015 Image—Airborne Orthomosaic, DSM, DTM 3m Valle del Cauca (CVC)
2020 Satellite PlanetScope Orthomosaic 3m This project

* Digital surface model (DSM) and digital terrain model (DTM).

To reduce uncertainty during the vectorization of the coastline from remote sensing
data at the time of image capture, the tidal fluctuation error was taken into account [52].
The tidal errors were considered low since the acquired images showed the tides oscillating
between 0.4 and £2.3 m based on the data from the port of Buenaventura tide gauge,
obtained from tide tables for the study area [53]. Taking into account the spatial resolution
of 3 m, the possible displacement of the coastline by the tide was within the spatial
uncertainty of the data. A visual interpretation of the coastline was performed using
Catalyst software (v 2022, PCI Geomatics, Ontario, Canada) and ArcGIS (v 10.8, ESRI,
Redlands, California, USA), in conjunction with Digital Shoreline Analysis System (DSAS)
software, which complements ArcGIS and was developed by the Coastal Change Hazards
project of the US Geological Survey. The DSAS allows the user to calculate rate of change
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statistics from multiple historical coastal positions; the rate of shoreline disposal/change
was estimated through the software by calculating the end point rate (EPR) statistical
parameter. The EPR is obtained by dividing the distance of coastline movement with the
elapsed time between the oldest and youngest coastline position [54]. From the digitized
coastlines for the four examined years (Figure 2), the date, uncertainty value, and type of
coastline were standardized as required by the DSAS format. To create a uniform baseline,
an interval of 25 m was used to create transects perpendicular to coastlines.

BuenaventusalBayg [BuenaveniuzalBayl

BuenaventuralBayg BuenaventuralBay]

o oW EE
— — Kilometers
Shoreline 0 0425 085

Figure 2. Example of digitization of the coastline in Buenaventura Bay in different years: (a) aerial
photography mosaic from 1986, (b) airborne radar image from 2009, (c) airborne radar image from
2015, (d) PlanetScope 2020 satellite image.

2.3. Justification of the Indicators

A methodology was implemented to estimate vulnerability as a function of exposure,
sensitivity, and adaptive capacity in conjunction with an analysis of coastal erosion at the
basin level to understand how to mitigate and adapt to the risks from disasters in the coastal
zone of Buenaventura in the Colombian Pacific. According to IPCC [26], vulnerability
is explained in terms of exposure, sensitivity, and adaptive capacity. In this work, the
COVI refers to the extent to which coastal systems are susceptible to the impacts of coastal
erosion and global change. The COVI was developed based on the exposure index (EI),
the sensitivity index (SI), and the adaptive capacity index (ACI) modified from the Sahana
and Sajjad methodology [29], where resilience is replaced by adaptive capacity. The index
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allowed the relationship of physical variables in a quantifiable way with the decision-
making approach using spatial analysis, giving equal weight to the indicators. Exposure
and sensitivity together have a potential impact on coastal systems and are positively
correlated with vulnerability based on the propensity of populations and coastal properties
to be negatively affected by natural hazards [25]. In contrast, adaptive capacity helps to
generate resilience against the adverse consequences of hazards, and this is negatively
correlated with vulnerability [26,55].

Based on bibliographic research (Table 1), a total of 16 indicators were selected for
the quantitative evaluation of the vulnerability indices, the exposure index, the sensitivity
index, and the adaptability index. A detailed description of the selected indicators and their
functional relationships with vulnerability are shown in Table 3. After the establishment
of the index system, values were assigned and weighted using the appropriate formulas.
Each variable was rated from 1 (very low) to 5 (very high) in qualitative ranges. To
evaluate coastal vulnerability in the context of environmental hazards, the multicriteria
spatial analysis (MCSA) approach and the simple average method (SAM) were used; these
quantitative methods are widely used to evaluate vulnerability in the framework of coastal
risk reduction [27-30,40,41].

Table 3. Selected indicators to construct the composite vulnerability index.

Components

Indicators Class Range

Exposure

Barrier island, Flood plain, Intertidal flat without vegetation, Beach ~ 5—Very High

vegetated intertidal flat 4—High
Geomorphology Alluvial valley 3—Moderate
Island 2—Low
Water body, Coastal lagoon, Hillocks and hills, Continental shelf, 1V
Marine terrace —Very Low
Slope 0-18° 5—Very High
(degrees) 18-25° 4—High
25-75° 3—Moderate
75-80° 2—Low
80-88° 1—Very Low
Shoreline change rate —96.30 to —3.0 5—Very High
(m/year) —299t00.5 4—High
—0.49t0 0.5 3—Moderate
0.51t0 3.0 2—Low
3.1t0959 1—Very Low
Sea level rise rate >9 5—Very High
(mm/year) 6t09 4—High
39to6 3—Moderate
0to3.9 2—Low
<0 1—Very Low
Mean tidal range 3.0t03.74 5—Very High
(m) 2.25 t0 2.99 4—High
1.26 to 2.24 3—Moderate
0.38 to 0.75 2—Low
0.26 to 0.38 1—Very Low
Significant wave height >6 5—Very High
(m) 4t06 4—High
2to4 3—Moderate
1to2 2—Low
<1.0 1—Very Low
Flood inundation risk ENSO floods 5—Very High
Hydrometeorological flooding 4—High
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Table 3. Cont.

Components Indicators Class Range
Roughness of terrain 0.131 (Very rough) 5—Very High
0.128 (Rough) 4—High
0.047 (Roughly open) 3—Moderate
0.020 (Open) 2—Low
0.001 (Smooth) 1—Very Low
Multidimensional poverty 70.1% to 98.5% 5—Very High
50.1% to 70% 4—High
Sensitivity 40.1% to 50% 3—Moderate
30.1% to 40% 2—Low
4.15% to 30% 1—Very Low
Settlements Urbanized area 5—Very high
Villages 4—High
Rural 3—Medium
No settlement 2—Low
Land Use and Land Cover Urban zones, Artificial surfaces 5—Very High
Cultivation areas, Banana, Coconut palm, Miscellaneous 4—High

Shrubland, Guandal forest, Mangrove Forest, Mixed Forest, Natural
grassland, Island, Cultivated grassland, Secondary vegetation
Temporary flooded areas, Natural areas, Other marshy areas 2—Low

Shallows and intertidal flats, Littoral barriers, Artificial ponds, Ocean,

3—Moderate

Beaches, Rivers 1—Very Low
Population .
(inhabitant/km2) 80 to 20,656 5—Very High
50 to 80 4—High
15 to 50 3—Moderate
5tol5 2—Low
1to5 1—Very Low
Industrial fishing 5—Very High
. Artisanal fishing 4—High
Adapt .
ca ascil:; Economic activities Ecotourism 3—Moderate
P Landscape 2—Low
Recreation—beaches 1—Very Low
0to 56 5—Very High
. . 57 tol179 4—High
Medical services (Health 180 to 327 3 Moderate
care provided) 328 to 628 2—Low
629 to 1186 1—Very Low
2000 m 5—Very High
1000 m 4—High
Distance to roads 500 m 3—Moderate
250 m 2—Low
100 m 1—Very Low
<67% 5—Very High
67% to 73% 4—High
Literacy rate 73% to 81% 3—Moderate
81% to 86% 2—Low
>86% 1—Very Low

2.4. Exposure Index (EI)

An El includes the eight factors that trigger the risk of biophysical exposure, and these
factors were compiled from an extensive review of previous studies and expert opinions.
The shape of a coastline is fundamental in analyzing vulnerability due to the degree of
relative resistance that a coastal geoform can have against erosion [56]. To determine the
geomorphology in the coastal zone of Buenaventura, the geomorphological maps devel-
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oped by the Institute of Marine and Coastal Research of Colombia (INVEMAR) [45] and
the geomorphological maps of the Center for Oceanographic and Hydrographic Research
of