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Assessment of Morphometric Parameters as the Basis for Hydrological Inferences in Water
Resource Management: A Case Study from the Sinú River Basin in Colombia
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Cláudia Adriana Bueno da Fonseca, Nadhir Al-Ansari, Richarde Marques da Silva, Celso
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Preface

We are delighted to present this Reprint, which brings together a collection of insightful scientific

works in various fields and centers around the fascinating concept of watersheds and their profound

significance in shaping the natural and human landscapes across the globe. This compilation aims

to provide a comprehensive overview of cutting-edge research and advancements in the subjects

covered.

As Guest Editors, our motivation for curating this Reprint stems from the desire to foster

knowledge dissemination and facilitate collaboration among experts and enthusiasts in these areas.

We firmly believe this collection will serve as a valuable resource for our audience, encompassing

researchers, practitioners, educators, and students.

This compilation delves into the essential role of watersheds as the fundamental unit for

evaluating landscape conditions and comprehending the environmental impacts of both natural

phenomena and human activities. The articles featured in this Reprint explore diverse facets

of watershed processes, and the interdisciplinary nature of watershed analysis is evident in the

involvement of experts and researchers from a broad spectrum of fields. This collaborative effort

underscores the urgency and relevance of incorporating geo-information in watershed studies to

address pressing sustainability issues.

Through this Special Issue, we aim to foster knowledge exchange and encourage innovative

research from diverse perspectives. We extend our heartfelt gratitude to all the contributors who

have enriched this Reprint with their original work and valuable insights. Additionally, we would

like to express our appreciation for the support and assistance we received from our colleagues and

the editorial team throughout this endeavor.

We hope this compilation serves as a source of inspiration and prompts further exploration

in the realms of watershed analysis, making a significant impact on scientific advancement and

environmental stewardship.

Walter Chen and Fuan Tsai

Editors
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Abstract: Hydro-based morphological models are representations of the terrain related to the flow
or storage of water in the landscape. However, their application in the context of an integrated
environmental assessment has been scarcely explored in the literature, despite the well-known
importance of water for ecosystems and land use planning. Here, we derive the HAND and TWI
models, which present solid conceptual bases based on water–landscape relationships from digital
terrain models. We aim to present these models as useful representations in the environmental
assessment of watersheds as they are relatively easy to generate and interpret. To this end, we
applied these models in a Brazilian watershed and evaluated their spatial and reciprocal occurrence
in the hydrological landscape through geographic entities and their spatial relationships with other
landscape elements such as land use. We argue that HAND and TWI are simple hydrological-
based models with robust premises that can reveal intrinsic relationships between relief parameters
and water, providing new perspectives for the environmental assessment of small watersheds.
Their outcomes have tremendous implications for land management initiatives. Our results show
that geometric signatures of the TWI appeared through all the structural units of the hydrological
landscape. The plateau areas were most prone to water accumulation/soil saturation, followed by
floodplains, hillslopes, and ecotones. Thus, there is a tendency for the greatest geometric signatures
of water accumulation/soil saturation entities to be located near the higher-order channels as well as
the greatest geometric signatures of the floodplains. Agriculture and planted forests increased with
distance, while the areas occupied by forest remnants tended to decrease within a range of up to
50 m from channels. However, they were also found within 50 m around the springs, whereas open
fields, urban areas, and water bodies remained stable. We argue that HAND and TWI are simple
hydrological-based models with robust premises that can reveal intrinsic relationships between the
relief parameters and water, providing new perspectives for the environmental assessment of small
watersheds whose outcomes have tremendous implications for land management initiatives.

Keywords: HAND; topographic wetness index; land use; hydrological landscape; topographic
footprint; geometric signature

1. Introduction

The relief records information about the topographic evolution dynamics, and its
geomorphometric study can be applied for different purposes such as hydrological, geo-
morphological, and landscape analysis [1,2]. Interestingly, geomorphometric records are
also helpful for ecosystem management applications, land use planning as well as the

ISPRS Int. J. Geo-Inf. 2023, 12, 314. https://doi.org/10.3390/ijgi12080314 https://www.mdpi.com/journal/ijgi
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assessment and perception of risks [3], besides landforms and soil mapping, modeling the
occurrence of landslides, and hazard mapping in steep terrains, erosion, and deposition,
mass balance modeling on glaciers and hydrological applications involving channels and
floodplains [4].

This study’s motivation comes from natural hazard mitigation in several watersheds
in Southern Brazil caused by the incorrect use of landscape such as removing vegetation
in permanent preservation areas and constructing residences in areas prone to flooding
events. We argue that the link between relief and water can be explored through spa-
tial representations that provide parameters on water action in the environment simply
and rapidly without using complex cascade models. This aspect is fundamental in any
environmental analyses since anthropogenic interferences are highly conditioned by the
water in the landscape, possibly resulting in problems such as supply, natural disasters,
pollution, and diseases. Thus, the hydrological landscape [5] plays an important role in the
environmental assessment of watersheds as it relates the physical space’s structural units
with the water’s dynamics in that environment.

This paper aims to explore the so called topographic wetness index (TWI) [6] and the
height above the nearest drainage (HAND) [7–9] models as another layer of information
about the geomorphological agents that condition the anthropogenic activities in the struc-
turing units on the landscape. Such knowledge may support environmental analysis in land
management initiatives and improve the structuring of the problems and the consequent
search for solutions. This work contributes by bringing these hydro-based morphological
models from their single dimensions [7,10–21] to the context of the environmental analysis of
watersheds. Thus, a hypothesis was formulated that the combined use of HAND and TWI
models allows for even better characterization of the landscape and benefits land management
initiatives. Such models can help identify the different geomorphological strata that form the
landscape such as water accumulation zones, hillslopes, and plateaus, with reflections in land
use planning to preserve sensitive ecological zones and prevent the occurrence of disasters
caused by floods, extreme runoffs, debris flows, and mass movements.

In this paper, we briefly describe the conceptual approach in Section 2. Section 3 is
divided into two subsections, where the first refers to the study area description. Then, the
steps related to land use map generation are provided. Next, the DEM datasets and their
processing steps are described. The three forthcoming subsections detail the determination
of both the HAND and TWI models and the adopted data strategy analysis. Finally,
we present and discuss the results of both the HAND and TWI models by thoroughly
considering the landscape characterization.

2. The Conceptual Approach

The environmental assessment of watersheds seeks to identify, formulate, and structure
the problems through data, information, and knowledge concerning the problem domain.
It comprises the intelligence stage of a decision-making process [22] regarding planning
anthropogenic activities in the watershed. The more elaborated this stage is, the better the
chances of generating choices of viable solutions and of choosing the best possible alternative.

Chorley and Kennedy [23] mentioned the systems approach concept’s applicability in
analyzing complex geographic systems in which watersheds are the most viable research
unit. In this approach concept, the watershed comprises two subsystems: the cascade
and morphological systems. The cascade system represents the dynamic portion of the
watershed, in which the state of the entities that compose it changes frequently. It is part of
the system where the flow of matter or energy occurs such as the hydrological cycle and
the movement of people and animals in its most diverse manifestations [23].

On the other hand, the morphological system represents the static part of the sys-
tem, represented by entities in which the attributes of position and conformation do not
frequently change such as the drainage network, the sub-basins (or small watersheds),
and the relief itself. These entities are sometimes called features [23]. Both cascade and
morphological systems are modeled by their strategies. In the case of cascade systems,
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mathematical models are used, called scientific models [24]. In the case of morphological
systems, their modeling occurs through database modeling techniques, the most frequent
of which is object orientation [25]. Spatial decision support systems (SDSS) [24,26,27]
would be the technologies that deal with this conceptual universe; geographic information
systems (GIS) [25], for example, a type of SDSS that works on the morphological portion of
the geographic system.

The socio-economic and environmental consequences of population growth are a tacit
finding for many watersheds subject to anthropogenic occupations, especially in developing
countries where police and monitoring initiatives are inefficient and ineffective. In addition,
houses and buildings near watercourses and springs can worsen water pollution and soil
erosion, as they often lack permission from the local authorities. These structures are also
associated with an increased risk of natural disasters.

These events are commonly caused by an evident lack of planning and non-continuity
of occupational policies by public managers in developing countries [28,29]. All these issues
may bring complexities to the system involved, together with the particular idiosyncrasies
of each site, making a complete understanding of the problems and the search for their
solutions challenging [30–33].

A watershed represents an environmental (geographical, hydrological, and ecological)
system where topological relationships emerge, subject to being mapped through a collec-
tion of continuous geometries [34], sometimes perceived with distinct patterns, abstracted
through discrete parameters, at an appropriate degree of completeness for interpreting and
describing the processes and functions of these systems [35]. Watersheds are arrangements
of spatial entities [36] or terrain objects [37] such as depressions, peaks, ridge lines, course
lines, and break lines, with intrinsic topologies such as contiguities, adjacencies, proximities,
and contingencies, among others.

The definition of these entities depends on the most appropriate conceptual data
model for solving a problem and how they are represented on maps and in geographical
databases. For example, geometric signatures of spatial entities [34] are usually coded
in GIS through vector data structures for features such as point, line, and polygon, or
even matrix/raster data structures for continuous geographical phenomena such as digital
terrain models (DTM) [25]. Here, the difference between DTM and DEM merely lies in the
meaning of the z attribute. In the former, the z attribute refers to the continuous variable
terrain height in relation to a local or geodesic topographic reference, and the latter to the
other variables of continuous spatial phenomena such as temperature, soil moisture, and
parametric indices, among others.

Features identified on the terrain, revealed through DEM or based on a land use classi-
fication using remote sensing data, are relatively common in environmental assessments
that are geographical in scope. However, the metrics usually applied have little or no
relationship with the natural occurrence of water in the landscape.

The gravitational potential of water is a key element in the evolution of the landscape
as it is the main element responsible for water flow in the soil and subsoil and can be
applied in many models [38]. The relief, the soil, and its properties act as intervening agents
in water and energy distribution, redistribution, and accumulation [1,5,37]. This behavior
differs between the floodplain, hillslope, and plateau structural units of the hydrological
landscape [5,39], and hydrological connectivity between them may eventually exist [39].
The gravity gradients between points on the terrain are the main physical agents that
cause the flow or stationarity of water in the landscape, so the relief is considered the
main conditioner of that behavior. These gradients can be absolute or relative, depending
on the altimetric reference taken as a measure [37,40]. Thus, the landscape’s evolution in
watersheds results from complex interactions of multiscale (topographic, climatic, tectonic,
and anthropogenic) systems that determine the surface and subsurface properties [37].

The multi-parametric nature of a DTM can be explored in multiple layers [1]. Hydro-
based morphological models add relatively new layers of metrics based on the relation
between relief and water. The TWI model, for example, explores the tendency for soil
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saturation in the terrain’s low-sloping or concave surfaces through the topographic index
(Equation (1)).

λ = ln (a/tanβ) (1)

where the λ parameter is the topographic index of a point or cell on landscape. The a
parameter is the contributing area per unit contour length, that is a = A/L [41], where A
is the upslope contributing area, and L is the perimeter of a. The a parameter reflects the
amount of water that may be captured during surface or subsurface runoff or groundwater
flow events. The bigger a is, the more volume of water may flow to the point or cell on the
landscape. Bigger a values are expected close to watercourses, whereas smaller values are
expected near the watershed perimeter. The β parameter is the terrain gradient or local
slope and captures the potential gravitational gradient of a water particle to move in/on a
landscape. The higher β, the larger the vertical differences between two points in relation
to its horizontal distance. Therefore, local sites with a higher β attribute tend to produce
higher waterflow surface velocities.

Therefore, parameter a defines the amount of water input to a point or cell and β
defines its potential water output. The parameter λ indicates the presence of potential
water accumulation on the surface, soil saturation, or wetland areas within the watershed’s
environmental assessment scope. High λ values indicate places with large areas of upslope
drainage and low terrain gradient. Thus, high TWI values (λ) are expected in flat areas or
areas with low slopes and high upslope contributing areas, which should occur in the low
regions of the watershed close to the higher-order channels. On the other hand, low TWI
values are expected close to the headwaters of the watershed or in the top regions of the
hydrological landscapes that compose its relief structure. The water flow at these locations
tends to be exclusively vertical, since water particles present little or no lateral gradient. In
saturated soil zones, the vertical flow depends on the subsoil’s physical properties, and
there may or may not be percolation. The contour lines of these zones characterize their
geometric signatures and can vary according to the volume of water present and the level of
water in the ground reservoir [42]. For this reason, these zones are also known as variable
flow areas (VFAs), where the anaerobic conditions of the wetlands offer conditions for the
production of biogenic methane, an important element for both the local and global carbon
cycle [43].

This concept was initially presented within the hydrological model TOPMODEL
(topography model) [6] to estimate a hydrograph of the runoff produced by a watershed in
a river control section based on a rainfall and evapotranspiration dataset. The distributed
parameter of the TOPMODEL is the topographic index (TI), calculated based on the natural
logarithm of the ratio between the specific contributing area (runoff watershed area/length
of the edge of the entry cell—obtained in the DTM pre-processing by the routine flow
accumulation and by the resolution of the cell, respectively) and the local slope of the
cell [41].

The HAND model uses the drainage network to reference the heights of points on the
ground. Figure 1 illustrates the methodological concept first presented by Rodda [44] for
mapping the flood extent and later explored by Rennó et al. [7]. Any point on the surface
has a vertical distance to a watercourse. The choice of what watercourse and what cell in
the watercourse should be used for distance measurement is made based on a horizontal
distance. The horizontal distance depends on the algorithm for defining the flow direction
such as D-8 [41] and D-Infinity [44].

 
Figure 1. Schematic representation of the HAND model concept over a hypothetical elevation profile.

4



ISPRS Int. J. Geo-Inf. 2023, 12, 314

The idea has been evaluated in determining the geometric signatures of floods [19,45–47]
and classifying the hydrological landscape [7,8,18]. It is based on the local gravitational potential
of a water particle, corresponding to HAND. The HAND DEM, therefore, is a discrete 2D
representation of the problem’s domain, usually a watershed or stretches of floodplains.

3. Materials and Methods

3.1. Study Area Description

The case study was conducted in the Canoinhas River watershed with a size of
1440 km2, axial length of 83.22 km, average width of 17.30 km, and drainage density of
1.13 km/km2. The compacity index 2.71 indicates that the Canoinhas River watershed is
elongated and has low susceptibility to maximum rainfall along all of its lengths, which
limits the occurrence of floods on its plains to frontal rain events.

The Canoinhas River is a fifth-order channel with a length (the area and perimeter
attributes were obtained from the attribute table in GIS. These values are automatically
calculated when the layer is generated) of 189.08 km and a sinuosity of 2.27 km/km. It
flows into the Rio Negro River, a tributary of the Iguaçu River (26◦30′ S; 50◦20′ W). The
watershed is part of the continental hillslope in Hydrographic Region 5 (RH5), called
“Planalto de Canoinhas”, and belongs to the macro-region of the northern plateau of the
Santa Catarina State, Brazil. The above sea level altitude ranged from 757 to 1344 m.

The vegetation comprises fields, tropical, and subtropical perennial and floodplain
forests, with the North Plateau region being the most expressive forest center in Latin
America [48]. The relief comprises strongly to gently undulating, mountainous, and flat
strata. Soil depths vary from less than 60 cm to 150 cm, with textures ranging from clayey
to very clayey. According to EMBRAPA [49], the most common soil types are described in
Table 1 and further illustrated in Figure 2.

Table 1. Soil types and their attributes in the Canoinhas watershed.

Soil Type
Area

Texture Relief Depth (cm) Drainage
(km2) (%)

Cambisols 370 25.7% Clayey to very
clayey

Strongly undulating to
gently undulating 60–150 Moderately

Drained

Humic and slightly
humic gley soil 187 13.0% Clayey to

medium Flat <60 Poorly to Very
Poorly Drained

Bruno/Red latosols 498 34.6% Very clayey Gently undulating >150 Well drained

Litholic soils 319 22.2% Very clayey to
clayey

Hilly to gently
undulating <60 Moderately

Drainage

Nitosols 64 4.4% Very clayey Gently undulating >150 Well drained

The soils of the study area show a texture varying from clayey to very clayey (Table 1;
Figure 2). Latosols and nitosols are the most profound soil types, occupying ~39% of the
watershed and presenting the best drainage conditions. Allied with its gentle topography,
these attributes favor agricultural activities in small rural properties, typically smaller than
30 hectares in the study area.

Humic and slightly humic gley soil occupies ~13% and is located in flat areas near
the Canoinhas River. The flat relief, the shallow depth, and the clayey texture assure little
drainage capacity. Litholic soils are characterized by little depth, sometimes presenting a
stony ground surface and moderate drainage capacity, despite being clayey or very clayey.
These soils occur in hilly or gently undulating regions (Figure 2).

Cambisols occupy different landscape strata (strongly undulating to gently undulating
relief) and have moderate drainage capacity at medium depths (60 to 150 cm). This class
and latosols and nitosols occupy about 65% of the study area. In summary, various soil
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types located on different layers of the landscape, with a varied drainage capacity and a
relief amplitude of 847 m, assure exploitation in different ways.

 

Figure 2. Geology (A), soil class (B), and drainage capacity (C) of the Canoinhas River watershed.

The Canoinhas River watershed is considered to be medium-sized [48] and partially
covers five municipalities such as Monte Castelo (source), Canoinhas (mouth), Major Vieira,
Papanduva, and Três Barras (Table 2). The urban centers of all the municipalities are found
within the watershed. According to AMPLANORTE [50], these municipalities also show
high municipal human development index (MHDI) scores, with the highest percentage of
residents established in the urban area. The percentage of residents in the rural area is also
relatively expressive, keeping a mix of rural and urban landscapes (Table 2). The essential
economic activity is related to the pulp and paper industry, wood, and energy production.
The region is also facing a gradual increase in the establishment of new industries and,
consequently, urban growth is generating conflicts and environmental issues, which is why
it was selected as a case study.

3.2. Land Use Maps

A Sentinel-2 scene with an acquisition date of 23 February 2021 was used to generate
the land use map (Figure 3). The scene was chosen from the Earth Explorer, linked to the
Copernicus program of the European Space Agency (ESA). First, all spectral bands were
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resampled at a spatial resolution of 10 m, roughly relative to the horizontal 1:50,000 map
scale, which is compatible with regional studies [51].

Table 2. Information about the municipalities that compose the Canoinhas River watershed.

Parameters
Municipality

Monte Castelo Major Vieira Papanduva Três Barras Canoinhas

Population (inhab) 8346 7479 17928 18129 52765
Urban population (%) 58% 40% 51% 85% 74%
Rural population (%) 42% 60% 49% 15% 26%
Land area (km2) 561 521 765 437 1148
Area covered by the watershed (%) 93% 93% 12% 40% 14%
Population density (inhab.km−2) 14.6 14.2 24.0 41.4 46.3
MHDI * (2010) 0.675 0.690 0.704 0.706 0.757

* MHDI: municipal human development index.

Figure 3. Representation of the study area by the digital model of the shaded terrain with the ordering
of channels by the Strahler method (A) and land use classes (B). The study area is in the Northern
Plateau of Santa Catarina State (Southern Brazil).

Afterward, samples were collected through the study area, and the supervised maxi-
mum likelihood was applied. Finally, a majority filter was applied to remove the isolated
pixels, smoothing the classes’ irregular boundaries. Further corrections were performed
by comparing the classified map with the MapBiomas collection [52] of Brazilian land
cover and land use, referring to 2020, in which the classification is originally from Landsat
mosaics using the dynamic and procedural methodology in Google Earth Engine.

Six land use classes were defined based on the identifiable entities in the scenes and of
interest to the environmental assessment of the watershed (Table 3). These classes also have
a very important spatial distribution in the area. The samples of the land use class were
selected through photo interpretation of the form, size, tone, color, texture, and pattern
(Table 3) [53]. We used fieldwork measurements and high spatial images from different
data sources such as ArcGIS and Google Earth Pro. Similar procedures were previously
adopted in another regional research [54,55].
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Table 3. Subsets of the six mainland cover classes in the selected study area with RGB composition,
bands 4, 3, 2.

Land Cover Classes Subset (1200 m × 800 m)

Agriculture: associated with annual agricultural activities
containing maize and other crops such as beans, yerba mate, and
tobacco.

Forest: natural forest remnants belonged to the mixed
ombrophilous forest under different successional forests, in
addition to natural fields.

Urban Area: urban occupation in the watershed encompassing
the urban centers of Canoinhas, Três Barras, Major Vieira, Monte
Negro, and Papanduva.

Field: represents pastures formed of native or planted annual or
perennial grasses, besides small-sized vegetation.

Planted Forest: forest plantations occupied by either Pinus spp.
and Eucalyptus spp. stands.

Water: liquid surfaces such as lakes, ponds, streams, and rivers.

3.3. Digital Terrain Model (DTM)

A total of 94 digital terrain models (DTMs) with a spatial resolution of one meter
were mosaiced [56]. Afterward, the DTM was used to generate the relief information
needed to build the HAND and TWI morphological models. The DTM was pre-processed
in ArcGIS®10.5, with the help of the Spatial Analyst, 3D Analyst, ArcHydro Tools, and
Geo-HMS Tools extensions. The Geo-HMS tool was used to pre-process the DTM, which
consisted of filling depressions, defining flow directions (D8 algorithm [41]), flow accu-
mulation, defining the synthetic drainage network by testing different thresholds, and
outlining the watershed by setting the Canoinhas River as an outlet. The thresholds were
evaluated by comparing water streams with the support of visual interpretation over high
spatial resolution images (i.e., ~0.40 m) freely available from the State Government [56].

The spatial resolution chosen to apply the TWI model in the Canoinhas River water-
shed was 20 m, and to apply the HAND model, it was 5 m. The 20 m resolution is relative
to the roughly horizontal 1:100,000 scale, and the 5 m resolution to 1:25,000. Both were
from resampling the original 1 m DTM (relative to a 1:5000 horizontal scale). The 20 m
resolution was an arbitrary choice to identify horizontal TWI entities in sufficient detail
and considerably improve the computational performance. Interestingly, the original DTM
of the watershed with a 1 m spatial resolution accounted for 46.08 GB in the Canoinhas
River watershed, while the DEM of the TWI with 20 m resolution accounted for 1.44 GB
with 3.6 × 106 cells.
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To classify the landscape based on HAND, we empirically considered the possible
effects of discretization and smoothing of the DTM [57], the probable effects of the vertical
resolution, and the fractal dimension of the hydrographic network of the Canoinhas River
watershed. According to Gharari et al. [18], a spatial resolution of 20 m would be enough
to classify landscapes using the HAND model. In this way, a 20 m spatial resolution for
identifying horizontal TWI entities and a 5 m spatial resolution for landscape classification
would be compatible resolutions with environmental analyses for planning purposes at a
regional scale.

The different spatial resolutions from datasets were disregarded since the tabulation
of the pair of information was considered using the zonal statistics tool available in a GIS.
Specific aspects are discussed in forthcoming sections.

3.4. Topographic Wetness Index (TWI)

The TWI model was processed according to Quinn et al. [41] and subsequently clas-
sified according to the propensity of a cell for water accumulation on the surface or soil
saturation (Table 4).

Table 4. Classes of the TWI values and propensity for water accumulation on the surface or soil
saturation.

Class Characteristics
Water Accumulation

Propensity/Soil Saturation

−0.56 to 6.40 Small contributing area and steep slopes Low

6.40 to 8.00 Average contributing area and
average slopes Average

8.00 to 25.69 Large contributing area and low local slopes
(flatter areas) High

A TWI parameter is assigned to each MDT cell. Cells with the same TWI show the
same tendency for water accumulation or soil water saturation. The scale and resolution of
the data affect the distribution of the TWI statistics in the landscape [13,58]. A horizontal
resolution corresponds to the elementary size of a surface measured by a remote sensor [57]
and should be sufficient to capture the minor features identifiable in the object space to
portray them unmistakably [34,53]. In practical terms, geographic features that identify
areas of water accumulation or soil saturation result from grouping neighboring cells with
the same value.

At high MDT resolutions, 1 m, for example, the slight variations in the local slope
parameter β (Equation (1)) between neighboring cells can assign quite a different TWI to
each, with the cells having a similar a parameter. This can generate an inconsistency in
the information about the areas prone to water accumulation, since this effect depends
on the water table, of which no significant variations are expected at short distances. The
floodplain areas (lowlands), which tend to present the highest TWI values, may present a
large variation in the TWI, without significant variation in soil moisture [11,59]. This effect
can exist in finer scales (or large scales), where small variations in relief can be perceived
without necessarily being proportional to small variations in soil moisture. This effect also
tends to produce an overabundance of TWI in the landscape without necessarily aiding in
identifying zonal features of interest to decision-making processes at the regional planning
level. Therefore, data and information saturation can impede the extraction of relevant
information. Thus, the dimensions of the spatial domain of the problem and the most
appropriate horizontal resolution have to be observed to show the geographical features of
interest. Even in course scales (or small scales), it is possible to extract relevant information
from the terrain for practical purposes [60]. For example, Gharari et al. [18] used a 10 m
resolution for the TWI model to compare it with the HAND. The HAND model presented
the best performance.
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3.5. Height above Nearest Drainage (HAND)

The HAND model can be applied in any terrain and translate hydrological mean-
ings [8]. The model has received great attention from researchers due to its simple concept,
relatively simple implementation, availability in open-source software like TerraHidro [61],
and large application possibilities.

The HAND model [7] was presented to outline the structural units of the hydrological
landscape to map terra-firme environments in the Cuieiras Biological Reservation (Ama-
zon), based on the shuttle radar topographic model (SRTM) DEM. These classes were
subsequently validated by Nobre et al. [8] over an area in the lower Rio Negro watershed
(Amazonia) using a set of field observation points. The most evident signs of the structural
units of the hydrological landscape are lowland, valley side, and upland [5]. However,
other classes may be needed to describe these units better such as waterlogged, ecotone,
slope, and plateau [8]. Interestingly, the class intervals to outline the structural elements of
the hydrological landscape have still been scarcely studied in the literature. Furthermore,
the transitions between the classes are usually not abrupt, and the attribution of a point
of the landscape to a certain class would imply the use of diffuse techniques [18]. In this
paper, we used the thresholds suggested by Rennó et al. [7] and Nobre et al. [8], whose
results are shown in Table 5.

Table 5. The HAND classes for classifying the hydrological landscape in the Canoinhas River
watershed.

Class Hydrological Landscape Unit

HAND < 5.3 m Floodplain
5.3 ≤ HAND ≤ 15 m Ecotone

HAND > 15 m and ≥7.6% slope Slope/Hillslope
HAND > 15 m and <7.6% slope Plateau

Source: adapted from Rennó et al. [7].

Floodplains are located at the lowest heights of the terrain, close to the natural drainage
channels, presenting low slopes and a groundwater table close to the surface, which can
saturate the land [5,8]. Ecotones represent smooth concave surfaces of transition between
the floodplains and hillslopes, which mark the vadose regions [62] (i.e., the first landscape
entities in which the soil is unsaturated, far from the channels). Slopes or hillslopes mark
the surfaces with a height gradient in the landscape, which are well-drained and strongly
interact with surface runoff. Plateaus are distributed in the high regions of the landscape,
generally surrounded by hillslopes and with low slopes.

We chose these classes for the Canoinhas River watershed due to the greater number
of classes and the general topographic characteristics of the watershed, especially the fact
that 63% of the area of the watershed is composed of flat (slopes up to 3%) and slightly
undulating terrain (slopes ranging from 3 to 8%), which would indicate the possibility of
there being clear vadose zones (Figure 1).

Considering that the model’s basic premise is the vertical distance of a point on the
landscape from the nearest drainage channel, one has to assume that the model is sensitive
to the number of channels generated by the channel definition operation on the DTM.
This is a very common operation, which has the contributing area of the first grid cell
as a user-defined parameter to which the channel is assigned. The area threshold (AT)
parameter affects the degree of fractal discretization of the synthetic hydrographic network.
Therefore, the AT of 0.5 km2 was adopted, corresponding to 0.035% of the total area of the
Canoinhas River watershed. This value is the approximate mean of the watershed area of
a sample set of sources of first-order natural water courses recognized in high-resolution
orthoimages available for the entire Santa Catarina State and are freely available for the
general community [56].

The features attributed to the natural hydrographic network were identified by analyz-
ing the form, size, tone, color, texture, and pattern [53]. The aim was to keep the geometric
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structure of the synthetic hydrographic network as close as possible to the natural geometric
structure [18]. Therefore, the samples for calculating were based on AT, and the synthetic
hydrographic network generated produced a set of linear features originating in the first
pixel attributed to the flow accumulation algorithm.

Regarding the spatial resolution of the MDT, it is assumed that the better the resolution,
the more accurate the vertical distances corresponding to the HAND. Furthermore, if the
model is used to determine the extent of flood zones, it is valid to consider the best
resolution available, especially in urban areas. However, the model here in this paper was
only used to classify the hydrological landscape at the planning level, which could perhaps
be sufficient for the 10 m resolution as used by Gharari et al. [18]. Therefore, we opted for
the 5 m resolution resampled from the 1 m MDT.

3.6. Spatial Relationships

Spatial relationships are properties of spaces that do not undergo variations with
their deformation. For example, a sub-watershed always belongs to its main watershed,
independently of the distortions of scale. Similar affirmations can be made for relationships
of continencies, intersections, contours, proximities, and adjacencies. These properties are
studied in topology and used for validating data, modeling the integrated behavior of
different features, data editing productivity, and query optimization [25].

The classes of features identified in the TWI and HAND morphological models, land
use, and slope maps were assessed regarding spatial relationships. The relationships
explored in this study were intersection, buffer clip, symmetrical differences, and proximity.
These operations are used in GIS by means of predicates or mathematical operations such as
the Euclidian distance between geometries of different classes, for example. Predicates are
functions for comparing a given condition between pairs of features belonging to different
classes coded as points, lines, or polygons. These functions can return a TRUE (T) condition
when the condition under analysis is met or FALSE (F) otherwise.

The GIS approach used in this study (ArcGIS 10.5.1) adopts the dimensionally ex-
tended nine intersections model (DE-9IM [63]). The DE-9IM matrix presents nine possibil-
ities of spatial relationships involving the features’ interior, exterior, or edge. Point-type
features have an interior and exterior but no edges. Similar to polygon-type features, line-
type features have an interior, exterior, and edge. The final configuration of the matrix will
be used to return the features of the classes involved in the operation or parts that satisfy
the conditions expressed in the matrix, which can then be analyzed separately from the
rest. The intersection operation returns the intercept features, which helps identify features
that somehow share the same space, whether fully or partially. Their original geometries
are maintained, which differs from the clip operation. This builds a group of features using
the boundaries of other features and only returns the geometry relative to the portion in
common. In both the intersection and clip operations, the attributes of both features can
be kept in the resulting features. The buffer operation is normally used to analyze the
area around features, especially regarding the proximity, continence, or intersection. The
symmetrical difference operation chooses non-overlapping parts of the geometries, which
operate inversely from the intersection. It is useful, for example, when excess information
needs to be eliminated from the analysis, leaving only that which is actually of interest.

The operations above-mentioned were applied in the environmental assessment of the
watershed. The operationalized classes of polygon features were land use, slope, TWI, HAND,
the order of the channels, and the areas around the points of origin of the first-order channels.
As the Brazilian Forest Act prescribes, these points are supposed to be the sources of the
main watercourse [64]. In addition, areas of 0–15 m, 0–30 m, 0–50 m, and 0–100 m around
the synthetic drainage features of the watershed were also defined. Finally, the surrounding
features thus defined were operated with the features from the land use classes.
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4. Results and Discussion

4.1. Topographic Wetness Index (TWI)

The TWI values vary considerably over the landscape according to the geomorphological
characteristics of the terrain [65,66]. This is due to TWI parameters a and tan β (Equation (1)),
where a depends on the position of a point on surface, being near or far from the watercourse,
and tan β depends on the slope. Values of a are expected to be higher the closer points
are to the watercourse, since a has a superficial dimension. Parameter a also depends on
the relief conformation because the shape of the watershed area A (Equation (1)) varies
with relief configuration. The parameter β is essentially a parameter linked to the relief
configuration. Therefore, the slope distribution in the watershed should affect the occurrence
and distribution of tan β in the landscape. In this regard, the geometric signatures show that
the watershed presents 40.8 hectares of highly mountainous relief, 12.2% of highly undulating
and mountainous relief, and the average slope is 0.09 m.m−1. About 63% of the watershed
area is on flat and gently undulating relief. This reveals that the relief of the watershed is quite
diversified and well-distributed in the range from 0 to 20% slope (Table 6).

Table 6. Slope classes in the Canoinhas River watershed [67].

Slope (%) Class km2 %

0–3 Flat relief 378.6 26.3
3–8 Slightly undulating relief 532.7 37.0

8–20 Undulating relief 345.4 24.0
20–45 Highly undulating relief 176.9 12.2
45–75 Mountainous relief 6.6 0.5
>75 Highly mountainous relief 0.0 0.0

Total 1440.2 100

Some studies have shown that the TWI values that indicate prone to developing water
accumulation or soil saturation in the landscape are above 8.0 [17,18,65,66]. For example,
Figure 4 shows TWI variations ranging from −0.56 to 25.69, with a mean of 6.00 and a
standard deviation of 3.00.

A TWI ranging from −0.56 to 6.40 represents 49.1% of the watershed, whereas 6.40 to
8.00 with 27.5%, and 8.00 to 25.69 with 23.2%, respectively. Similarly, DuPage city’s values
varied from −7 to 29.5 and from −5 to 288 in Will County [17]. Values below 6.00 were
considered by Meles et al. [59] as very dry regions, those from 6.00 to 8.60 as dry, and those
above 16.60 as moderately wet to very wet. Values above 8.00 were validated in the field by
Schier [66] as being prone to flooding in the city of Lages, SC, Brazil.

Mapping the dry and wet zones of the landscape provides relevant information from
a regional and local planning point of view. Drylands reveal regions available for land
use for agricultural, forestry, and urban activities. However, these regions may be prone
to mass movements during extreme precipitation events or be the first regions of the
watershed to suffer water deficit during periods of drought. For example, we witnessed
during the drought that hit the state in 2020 in the Canoas River watershed Management
Committee that the cities located in the headwaters, close to the watershed, were the ones
that suffered most from the lack of water, requiring effective help and assistance actions
from the authorities. Wetlands, on the other hand, indicate areas that tend to be better able
to withstand periods of drought. Indeed, Biffi and Neto [67] demonstrated that during a
drought in 2005, the lower-lying areas of the relief in the apple production region of Santa
Catarina State exhibited higher production levels than the higher-lying areas.

In general, terrains in the State of Santa Catarina tend to present a predominance of
areas with little tendency for water accumulation/soil saturation in watersheds due to the
predominance of steeper slopes. For example, in the case of the Canoinhas River watershed,
38% of the area with a flat terrain (slopes from 0 to 3%) presented TWI geometric signatures
higher than 8.00, representing only 10% of the total area of the watershed. The fact that
not all areas with slopes from 0 to 3% presented a TWI > 8 does not imply that these
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areas are not prone to water accumulation/soil saturation, especially if they are located
close to drainage channels, where the water table is expected to be closer to the surface.
Hence, adding the topographic variable HAND helps categorize the landscape based on
the vertical distance between a point on the surface and the nearest drainage, making it an
important consideration.

Figure 4. The TWI spatial distribution in the Canoinhas River watershed. The larger-size TWI spatial
entities are located in the lower part of the watershed (A), while the smaller entities are located in the
higher regions (B).

4.2. Height above Nearest Drainage (HAND)

The relative gravitational potential of a water particle is determined in the HAND
model by the vertical distance to the nearest drainage. Various results were found by Nobre
et al. [8] for the Rio Negro River watershed in Amazonia. The predominantly sedimentary
constitution of that region found 20.9% of the area occupied by floodplains, 26.9% by
ecotones, 9.1% by hillslopes, and 24.8% by plateaus. In the Canoinhas River watershed, we
found 4.74% occupied by floodplains, 2.67% by ecotones, 38.04% by hillslopes, and 54.55%
by plateaus (Table 7; Figure 5).

Table 7. Hydrological landscape classes in the Canoinhas River watershed.

Class Hydrological Landscape Unit Area (km2) %

HAND < 5.3 m Floodplain 68.33 4.74
5.3 ≤ HAND ≤ 15 m Ecotone 38.42 2.67

HAND > 15 m and ≥7.6% slope Hillslope 547.93 38.04
HAND > 15 m and <7.6% slope Plateau 785.64 54.55

13



ISPRS Int. J. Geo-Inf. 2023, 12, 314

Figure 5. The HAND model classes in the Canoinhas River watershed. The lower region of the water-
shed has a wide area of plateaus and floodplains (A), while the higher regions have a predominance
of hillslopes (B).

These results may be influenced by the DTM resampling from higher to lower resolu-
tions due to the joint effect of discretization and smoothing [57]. However, the immediate
consequence is the loss of detailed information on the relief and, consequently, on identifi-
able spatial entities, especially through the discretization effect.

The quality of the vertical variable is also a point to be considered. Smoothing the DTM
tends to reduce the altimetric amplitude and with that, there is a loss of vertical accuracy.
Smoothing should also affect the presumed gravitational gradients and runoff paths to the
nearest channel. Thus, better altimetric determinations of the gravity gradients and of the
extent of the surface runoff are expected in DTMs with higher spatial and vertical resolutions.

The fractal dimension of the hydrographic network of a watershed [60] makes the
HAND model dependent on the area threshold (AT, presented in Section 3.5) to generate
a channel [18]. The AT affects the size of the network similarly to the effect commonly
associated with changes of scale in maps [60]. In a hydrographic network with a Hortonian
structure [68], the channels’ orders parametrize the channels’ average lengths and water-
shed areas. Thus, morphometric parameters such as bifurcation ratio, length ratio, and
the ratio of areas between the channels of contiguous orders are affected by the degree of
fractal discretization of the synthetic hydrographic network extracted from a DTM. The
algorithm considers the AT as an area value arbitrarily attributed as an injunction factor
regarding the flow accumulation model. The z attributes of the flow accumulation DEM
express the number of cells that flow to each cell of a DTM.

In a typical hydrological landscape, the subsurface water sheet tends to lie closer to
the topographic surface on the floodplains and further away from the plateaus [5,69]. The
continuity or not of that sheet throughout the landscape depends on the composition of the
soil profiles. In general, water accumulation or soil saturation in the landscape is expected
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on the floodplains and plateaus due to the low slopes of the terrain, leading to expected
susceptibility to flooding and sediment depositions on the floodplains.

The geometric signatures of floodplains appeared in the Canoinhas River watershed
throughout the entire hydrographic network (Figure 6). The most expressive floodplain
signatures tend to be closer to the higher-order channels, which would be expected due to the
lowest slope class characteristics of the watershed. These signatures can guide the planning of
land occupation, whether for agricultural activities or urban occupation, for example.

Figure 6. Geometric signatures of the floodplain class throughout a 100 m buffer from the Canoinhas
River watershed hydrographic network.

The geometric signatures of the hillslopes were shown to be quite diversified in form
and size. It is common to find fragments of hillslopes surrounded by plateaus on the same
slope. This occurs due to changes in the local slope used to classify the model. These
fragments can even be considered irrelevant from the viewpoint of the environmental
analysis of the watershed, since few or no specific decision-making processes would be
expected in adhering to this level of analysis.

4.3. Zones with a Propensity for Water Accumulation/Soil Saturation and Hydrological
Landscapes Classes

The occurrence of zones with a high propensity for water accumulation or soil satu-
ration (TWI > 8) concerning the HAND classes has been studied in the literature. Unlike
the HAND model, whose manifestation of the vertical distances in the model depends on
the degree of fractal discretization of the synthetic hydrographic network, the TWI model
is manifested throughout the whole watershed precisely because the parameter depends
solely on variables of the relief (a and β). The degree of fractal discretization of the synthetic
hydrographic network may be responsible for some regions of the watershed that could be
classified as floodplains (more discrete) being classified as hillslopes or plateaus (less dis-
crete), which can add bias in the TWI occurrence analysis in the classes of the hydrological
landscape. With this caveat, it was observed that in the Canoinhas River watershed, there
is a tendency for the most prominent water accumulation or soil saturation entities to lie
close to the higher-order channels (Figure 7).

There is a tendency for an exponential increase in the floodplain areas and the areas
with high water accumulation or soil saturation as the order of the channels increases. This
may be explained by the fractal dimension of the hydrographic network, the cumulative
order of the channels using the Strahler method in measuring the ramifications, and the
erosion, transportation, and fluvial sedimentation processes. The sedimentary areas tend
to occupy the lowest regions of the relief and contribute to the formation of the floodplains
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as structural units of the hydrological landscape. These zones should receive special
attention in the watershed’s environmental planning due to their riparian importance or
their tendency to flood.

Figure 7. Geometric signatures of TWI throughout the 100 m buffer from the Canoinhas River water-
shed hydrographic network show the zones that are highly prone to developing water accumulation
or soil saturation on the floodplains.

The areas prone to developing water accumulation or soil saturation were distributed
throughout all units of the hydrological landscape (Figure 8). The plateau areas were the
most indicated areas prone to developing water accumulation or soil saturation, followed
by the floodplains, hillslopes, and ecotones. The means of the areas indicate that the number
of geometric signatures followed that same trend. This shows the importance of plateaus
as structural elements of the landscape for surface water storage. The hillslopes were also
shown to be relevant as landscape units with a tendency to accumulate water. These regions
can contain topographic footprints that indicate wetlands or waterlogged zones, which can
play a relevant ecological role in the watershed. From an urban occupation perspective,
these zones are potential areas of flooding caused by surface runoff from intense rainfall,
hence the need to pay attention to local micro-drainage systems [70,71].
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Figure 8. Geometric areas associated with a high propensity for developing water accumulation or
soil saturation in the units of the hydrological landscape in the Canoinhas River watershed.
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4.4. Land Use

Land use factors have been employed as parameters for assessing the levels of envi-
ronmental degradation or preservation [31–33,72,73]. Some of these factors are recognized
as modifying agents of the hydrological responses of the watershed and can act over water
infiltration and percolation in the ground, surface, and subsurface runoff, and evapotran-
spiration, among others. As a result, the hydric balance of the watershed can be affected,
the storage capacity of the aquifers can be reduced, and the occurrence of natural disasters
from landslides, mudslides, and flooding can be intensified.

The image classification of the Canoinhas River watershed produced geometries
associated with agriculture, water bodies, urban areas, fields, forests, and planted forests.
The geometric signatures of the respective classes appeared throughout the whole spatial
domain of the watershed and the structural units of the hydrological landscape (Figure 9).
The Forest class is the one that covers the most significant part of this domain, occupying
33% of the total area of plateaus and 61% of the hillslope area. However, there is a clear
decreasing trend in the geometric signatures of this specific class further away from the
hydrographic network, up to around 50 m (Figure 9).

Figure 9. Land use in the Canoinhas River watershed in the classes of the hydrological landscape,
and in the areas prone to developing water accumulation or soil saturation.

The Field class is the second most frequent and represents, together with the Forest
and Water classes, the most sensitive geographical entities from an environmental quality
and preservation viewpoint. This shows that the Canoinhas River watershed still has wide
vegetated areas that warrant attention from a preservation viewpoint and wide field areas
subject to agroforestry exploitation. Most field and native forest areas are distributed on
floodplains, ecotones, and hillslopes. A substantial portion is also situated in areas prone
to water accumulation or soil saturation.

Agriculture, Urban Areas, and planted forests represent the geographical entities
associated with anthropogenic activities in the watershed. The geometric signatures of the
agriculture class occupy 19% of the total area of the watershed, and the planted forest class
occupies 15%. Agricultural activities are also found in 4% of the surrounding areas within
50 m of the source areas of the watershed. These areas are still occupied by entities of the
planted forest (7%), grasslands (30%), and forests (58%).

The areas occupied by agriculture entities and planted forest classes around the
hydrographic network tend to increase with distance, while the areas occupied by the
forest class tend to decrease (Figure 10). A drainage network is a component of the
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morphological subsystem of the watershed that scarcely alters its position, geometry, and
attribute characteristics, thus being considered fixed bases in the landscape and potentially
applicable as both horizontal and vertical references of alterations in the state of the GIS
of the chosen watershed. Thus, the hydrographic network is a potential indicator of
the behavior of dynamic geographic systems such as the expansion or contraction of
anthropogenic activities that are spatial in scope in one urban area [74].

Figure 10. Areas occupied by the geometric signatures of land use in the 0–15 m, 0–30 m, and 0–50 m
surrounding areas in the Canoinhas River watershed. Land use consists of classes of natural use (a)
and classes with human activities (b).

The Urban Area class in the Canoinhas River watershed occupies a small total area.
However, it is found on floodplains, ecotones, and plateaus and in areas prone to developing
water accumulation or soil saturation. The plateaus can be considered as safe environments
for urban equipment in terms of the risks of flooding disasters. On the other hand, the
floodplains and areas prone to developing water accumulation/soil saturation warrant
attention concerning the macro- and micro-drainage systems, especially in the vectors
of urban expansion. Low-impact development (LID) measures should be considered to
mitigate the effects of localized flooding caused by intense rainfall in the consolidated areas
where the occupation has reached an irreversible state and address water quality in urban
ecosystems [69–78].
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4.5. Further Research Perspectives

Land use factors have been employed to assess environmental degradation or
preservation [31–33]. Some of these factors are recognized as modifying agents of
the hydrological responses of the watershed and can act over water infiltration and
percolation in the ground, surface, subsurface runoff, and evapotranspiration, among
others. As a result, the hydric balance of the watershed can be affected, the storage
capacity of the aquifers can be reduced, and the occurrence of natural disasters from
landslides, mudslides, and flooding can be intensified.

The relationship between water and landscape is a natural relationship for shaping the
land surface, sustaining lives, and conditioning human activities. Hydro-based hydrologi-
cal models such as TWI and HAND bring in their conceptual framework assumptions of
this relationship, which can be explored practically for regional or local planning purposes
to pursue environmentally sustainable development. They can be applied from a DEM
since their conceptual basis rests on the physical functions of water on the land, its geo-
graphical position in the terrain, and its energy potential in the landscape. These models
are conceptual abstractions built using the hydrological landscapes’ structural units that
form the watershed’s geomorphology.

Interestingly, these models can be used to recognize landforms that condition the
behavior of cascading systems such as the hydrological cycle, the dynamics of land use
by cities, agriculture, cattle ranching, and planted forests, among others, for example, to
preserve sensitive ecological zones and prevent the occurrence of disasters caused by floods
from extreme runoffs, debris flows, and mass movements. Therefore, the water–landscape
relationship can be explored with these models without the need for scientific modeling
of the cascade hydrological systems, whose complexity sometimes makes its application
unfeasible in countries like Brazil due to the lack of specialists or reliable data for effective
modeling of the systems.

Regional-scale maps have been found to be incompatible with local urban analysis as
it demands detailed DEMs for more accurate TWI and HAND models. Therefore, further
assessments should consider, for example, the efficacy of the HAND model to represent the
flood extent in flat areas under high spatial resolution DEMs such as those extracted from
high point density cloud points acquired by airborne LIDAR.

Furthermore, a sensitivity effect of algorithms to define flow direction and flow accu-
mulation from DEM, since the HAND model is spatially dependent on the channel’s flow
paths, is also needed. On the other hand, the TWI model tends to show a superabundance
of water accumulation/soil saturation in high-resolution DEM. Therefore, efforts may drive
toward a better choice of DEM resolution or DEM cell size to delineate features on the
landscape that better represent the phenomena, and therefore helps land managers and
environmental agencies support decisions for better use of the environment.

5. Conclusions

This research evaluated HAND and TWI morphological models as an important
source of information on the geomorphological agents that condition the anthropogenic
activities in the structuring units of the landscape. Our results showed that geometric
signatures of the TWI emerged through all of the structural units of the hydrological
landscape, with values between −0.56 and 25.69, where values above 8.0 represent areas
prone to developing water accumulation or soil saturation. The plateau areas were the ones
that most indicated that condition, followed by the floodplains, hillslopes, and ecotones. In
such areas, plateau areas are suggested as structural elements of the landscape for surface
water storage. However, this distribution depends on local relief characteristics, and more
detailed studies are strongly encouraged.

In the Canoinhas River watershed, there is a tendency for the largest geometric
signatures of water accumulation or soil saturation entities to be located close to the higher-
order channels, along with the largest geometric signatures of the floodplains. The area
around the drainage network within 50 m of these channels showed that the areas occupied
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by entities of the Agriculture and Planted Forest classes tended to increase with distance,
while the areas occupied by the Forest class tended to decrease. On the other hand, the
Grasslands, Urban Areas, and Water-related classes remained stable. Some agricultural
and forestry activities were also found within 50 m of the source areas, which shall be
considered in the future by environmental agencies.

HAND and TWI are hydrological-based models that are relatively simple to formulate
but have robust assumptions, which can be applied based on available DEMs. Their
conceptual basis rests on the physical functions of water on the land, its geographical
position in the terrain, and its energy potential in the landscape. These models are ultimately
conceptual abstractions built using the hydrological landscapes’ structural units that form
the watershed’s geomorphology.

Studying how land and water are related in morphological models like HAND and
TWI can help us better understand and evaluate watersheds using freely available remote-
sensing data sources. Factors like terrain, soil, and water quality all play a role in how peo-
ple use the land and could drive decision-makers to use the landscape better. Hydrological-
based models can be an easy way to analyze how all of these different factors interact and
where environmental agencies must pay some attention.
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Abstract: Shallow landslides due to hydro-meteorological factors are one of the most common
destructive geological processes, which have become more frequent in recent years due to changes
in rainfall frequency and intensity. The present study assessed a dynamic, physically based slope
stability model, Transient Rainfall Infiltration and Grid-Based Slope Stability Model (TRIGRS), in
Idukki district, Kerala, Western Ghats. The study compared the impact of hydrogeomechanical
parameters derived from two different data sets, FAO soil texture and regionally available soil texture,
on the simulation of the distribution and timing of shallow landslides. For assessing the landslide
distribution, 1913 landslides were compared and true positive rates (TPRs) of 68% and 60% were
obtained with a nine-day rainfall period for the FAO- and regional-based data sets, respectively.
However, a false positive rate (FPR) of 36% and 31% was also seen, respectively. The timing of
occurrence of nine landslide events was assessed, which were triggered in the second week of June
2018. Even though the distribution of eight landslides was accurately simulated, the timing of
only three events was found to be accurate. The study concludes that the model simulations using
parameters derived from either of the soil texture data sets are able to identify the location of the event.
However, there is a need for including a high-spatial-resolution hydrogeomechanical parameter data
set to improve the timing of landslide event modeling.

Keywords: rainfall-induced landslides; physically based model; TRIGRS; Western Ghats

1. Introduction

Shallow landslides due to hydro-meteorological factors are one of the most common
destructive geological processes on the Earth’s surface and are responsible for the loss of
lives, both human and livestock, every year, in mountainous regions. Although landslide
occurrences are confined to hillsides and steep terrain, the devastating after-effects are not
only limited to their origin but also affect the downstream areas. The cascading effects
of frequent landslides, often with intense precipitation, create innumerable adversities
for people and ecosystems in both highlands and lowlands [1–3]. Geologically, shallow,
rainfall-induced landslides have an important role as an agent of shaping mountainous
landscapes. While modifying the topography and renewing the terrain and ecosystems,
both in the upstream and downstream areas, landslides cause the degradation of fertile land,
damage to agricultural land, traffic disruption, and destruction of infrastructures, especially
settlements, and have many other indirect social and economic implications [4–10].

Although landslides are triggered by geological (volcanic eruption, earthquakes, etc.)
and anthropogenic (slope or toe excavation, slope loading, drawdown and irrigation,
blast-vibrations, etc.) factors, hydro-meteorological factors still remain the major extrinsic
factor [6,11]. In tectonically stable areas, e.g., southern peninsular India where this study
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was carried out, hydro-meteorological (intense rainfall) factors are the significant triggers,
in addition to anthropogenic activities.

The current trends and projections of precipitation patterns show an increase in oc-
currence of high-intensity rainfall events globally, and heavy rainfalls in a short span of
time will trigger a greater number of shallow landslides. As observed, a higher num-
ber of landslides have been reported globally because of the surge in the occurrence of
frequent intense-localized precipitation events. The increased human presence in the
mountainous regions makes the landslides and their immediate effects more severe and
destructive [12,13]. With the alarming situation of climate change, population expansion,
and uncontrolled exploitation of mountainous regions, tropical and subtropical moun-
tainous areas such as Western Ghats, where this study was carried out, will be the worst
affected areas by any typical hydro-geotechnical disaster such as landslides [6,14].

Shallow landslides are defined as slope failures that are generally confined to a depth
of less than 3 m [15–18], and depth is determined as the distance to the failure plane
from the surface. The failure plane, often termed as the slip surface, is between the soil
column and bedrock or within the soil column where a sharp contrast in permeability
is present [19,20]. The extent of a geographical area directly hit by landslides, especially
shallow, rainfall-induced landslides, is often much smaller than the area affected by similar
natural hazards such as floods, droughts, volcanic eruptions, and earthquakes. However,
landslides are more frequent and recurring than many of the above-mentioned disasters
and cause extensive destructions [6,8,21–25]. Although an individual rainfall-induced
shallow landslide involves less runout volume, it has the potential to evolve into debris or
earth flows and thereby gather more channel sediments and cause significant destruction
along its path and in the downstream areas [3,26,27].

In India, landslides are one of the most common geohazards and are often triggered by
hydrometeorological factors. India’s mountainous regions experience enormous pressure
due to increased human activities along with adversities due to climate change. The
impacts of geohazards such as rainfall-induced landslides have intensified. Since it is
impossible to control the occurrence of rainfall-induced landslides, it is best advised to
deploy comprehensive strategies to mitigate the effects. Additionally, it has to be noted
that rainfall-induced landslides are site-specific and their destructive power is limited to
the area of origin and the channels along the downstream areas. Adequate information
on when and where a landslide may occur will help the policymakers and administrators
with issuing site- or region-specific early warnings.

A number of methods are used for computing the information on when and where a
landslide will occur [28]. Conventionally, the methods utilized for landslide hazard assess-
ments or slope stability analysis to demarcate landslides can be classified into qualitative
and quantitative methods [29–31]. The qualitative approaches can be further categorized
into inventory-based mapping and heuristic methods. Inventory-based landslide assess-
ments are one of the simplest forms of landslide hazard assessment, in which historical
information of individual landslides are directly collected by visiting the affected area or
through various remote sensing techniques [32,33]. Heuristic methods provide information
on the degree and type of risks based on the knowledge and experience of an expert [34,35].
Because assigning weightage and ranking to causative and triggering parameters are highly
subjective and localized, the expert with most experience and knowledge might produce
the best results. Since each area is unique and complicated in its own ways, the ranking
and weightage for one region might not produce desirable results for another region. The
quantitative methods include two major categories: statistical- or stochastic- and physically
based models. The former method employs mathematical models to assess slope stability
based on the weighting assigned to the causative factors [36,37]. The weightages are relative,
and a possibility of generalization is always present in the statistical methods. Statistical
methods often work in combination with heuristic methods through bivariate, multivariate,
or neural network analysis. Even though physically based models are relatively compli-
cated compared with the rest of the methods, they are most suitable in local-scale and
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site-specific studies. Landslide hazard is determined using process-based slope stability
models that consider the interplay of causal factors [38,39]. The results are often expressed
in terms of a Factor of Safety (FoS), where lesser values indicate unstable areas.

Regardless of the complexity and data intensity of computing, physically based mod-
els are widely used to forecast rainfall-induced landslides because of the increased con-
trol over the hydrological and geotechnical aspects [40,41]. Physically based models in
Geographic Information System (GIS) platforms have provided promising results in com-
puting the timing and localization of shallow, rainfall-induced landslides at the regional
scale [16,22,25,42–46]. These models can be employed to model slope stability ranging
for areas from tens to thousands of kilometers squared. r.rotstab [47], High Resolution
Slope Stability Simulator (HIRESS) [48], GEOtop-FS [49], Shallow Landslides Instability
Prediction (SLIP) [50], Stability Index Mapping (SINMAP) [51], Shallow Slope Stability
Model (SHALSTAB) [52], distributed Shallow Landslide Analysis Model (dSLAM) [53],
and Transient Rainfall Infiltration and Grid-Based Regional Slope Stability (TRIGRS) [54]
are some of the available physically based models. SINMAP, SHALSTAB, and TRIGRS are
widely used in modeling the slope stability of hills. The models have been tested and vali-
dated in diverse geological, geomorphological, and climatic conditions globally. SINMAP,
a probabilistic steady-state model, and SHALSTAB, a deterministic steady-state model,
require geotechnical parameters and altitude information to compute slope stability and
combine the Mohr–Coulomb infinite slope stability model with a steady-state hydrological
model [55]. The illustration of slope failure mechanism is achieved mainly through the
computation of FoS in physically based models. The FoS is the ratio of shear strength
(resisting or stabilizing forces) to shear stress (driving or destabilizing forces) parallel to the
surface. The SLIP model considers the saturation of part of the soil column as the major
factor affecting slope failure. It assumes that the terrain is stable due to shear strength, and
water flows easily into the soil column as the rainfall progresses. Large portions of the soil
eventually become saturated, and the soil sliding process starts. SLIP assesses the stability
of terrain using the FoS computed through the limit equilibrium method.

TRIGRS, a transient model, considers hydrological information in addition to geotech-
nical parameters and altitude information. Because TRIGRS considers the transient effects
of rainfall on infiltration and computes the change in pore water pressure (PWP) and
FoS [54], time varying analysis of slope stability is possible with TRIGRS.

TRIGRS has been previously utilized for regional-scale analysis in various studies and
has been found to produce reliable results for transient rainfall events varying from hours
to days [42,56,57]. In another study, importance was placed on the transient pore water
pressure, which may result in the triggering of a slip [58]. In a study, based on flume tests,
it was suggested that the initial porosity and saturation have an impact on the prediction
capacity of the SLIP model [59]. It has been noted that another model, SHALSTAB, consid-
ers a single set of geotechnical values for a whole basin. The study emphasized the spatial
discretization of these parameters to improve the predictive nature of the model [60]. One
of the major limitations of SHALSTAB and SINMAP is the assumption of uniform thickness
of soil, hydraulic conductivity, and steady-state shallow subsurface flow. Additionally, the
slide is assumed to be translational, and the hydrological boundaries always follow the
topography of the terrain [22]. While SHALSTAB and SINMAP are suggested for primary
investigations of terrain stability, TRIGRS is often recommended to model specific events
(such as the 2018 monsoon rainfall events in the study area) and early warning systems [45].
Although considering the soil as homogeneous has been found to over-estimate unsta-
ble pixels when using TRIGRS, it has been successfully utilized at the regional scale. As
stated in one of the studies, the model parameters were set to be constant for the study
area, which resulted in false positives [61]. These studies have stated the limitation of the
model lies in the accuracy of the hydrogeomechanical parameters, which may need to be
obtained through field investigations. These parameters are known to be spatially variable.
Additionally, the lack of field data and laboratory analysis at the regional scale makes these
parameters scarce. So, most of the studies are based on the inverse optimization of these
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parameters through the utilization of landslide inventories [56,61–63]. However, most of
the areas lack landslide inventories with correct timing of the landslide occurrence, creating
uncertainty in the optimization. The present study used the TRIGRS model [54,64,65] to
compute the timing and distribution of shallow, rainfall-induced landslides in a catchment
region in Western Ghats, India. In this study, the soil hydraulic parameters (SHPs) were
based on two different soil texture maps available at different scales, and their influences
on the occurrence of a landslide event were compared. Therefore, the impact of hydro-
geomechanical parameters on the determination of FoS and PWP was quantified along
hill slopes based on two soil texture data sets (FAO-based and regional), which differ in
introducing soil heterogeneity to the model.

2. Materials and Methods

A catchment area was delineated to execute the TRIGRS, and the catchment area
lies mostly in the district of Idukki, Kerala, India, being on the windward side of the
southern part of Western Ghats. Figure 1 shows the geographical location of the study
area along with the administrative boundaries and extent of Western Ghats. The present
study examined the distribution of 1913 landslides as a result of rainfall events during
the devastating 2018 monsoon period (Figure 2) along with timing of 9 selected shallow
landslides in the study area (Figure 3).

The study area lies in one of the most landslide-prone areas in India, and both climate
and topography play a significant role as causative and triggering factors [66] for the
occurrences of landslides in the region. The tropical climate with intense rainfall and
scorching summers have resulted in a thick overburden of poorly consolidated soil, with
thickness often ranging up to 5 m (depending upon the slope) in the study area [67,68].
The combination of highly weathered bedrock, steep slopes, and heavy precipitation in the
monsoon season makes the study area an ideal location for understanding, rainfall-induced
shallow landslides.

The study area receives the majority of its rainfall in two monsoon periods (South West
monsoon from June to September and North East monsoon from October to November).
Additionally, the high-altitude and steep terrain of Western Ghats receives more rainfall
than the low-lying areas due to orographic effect of Western Ghats [67,68].

Moreover, the devastating impacts of global climate changes have already been ob-
served in the study area in the form of extreme rainfall, which are expected to increase in
the coming years, which will in turn increase the frequency of slope failure in the study
area [69–74]. According to the India Meteorological Department (IMD), the entire state of
Kerala received 2346.6 mm of rainfall between 1 June 2018 and 19 August 2018 rather than
the expected 1649.5 mm, which was about 42% above the normal rainfall rate. Furthermore,
the district of Idukki received 3555.5 mm rainfall instead of the normal 1851.7 mm from
1 June 2018 to 22 August 2018 [75]. This is a 92% increase from the normal rainfall, and the
IMD has identified this as large-excess deviation from normal rainfall. On 9 August, three
stations in the catchment region delineated for this study received 255 mm, 254 mm, and
211 mm of rain. The intense and incessant rainfall received in the steep and undulating
terrain of Western Ghats triggered multiple landslides in the study area on 9 and 11 June
2018 [76].
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Figure 1. Geographical location of the study area. (A) Location of Western Ghats in the political
map of India. (B) Relative positions of Kerala and the catchment region selected for the study in the
Western Ghats. (C) Geographical location of the catchment region chosen for the study.
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Figure 2. Distribution of landslides in the catchment area. The red dots in the catchment area
represent the locations of the landslides occurred during the 2018 monsoon period.
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Figure 3. Locations of the 9 events selected for finding the timing of initiation through computing
FoS as part of the study in the catchment area. (A) Geographical location of the landslide locations.
(B) Landslide 1 to 9 in Google Earth images. Approximate shapes of Landslides 2, 4, 5, 6, 7, and 8
were available on Google Earth and given as six tiles.

2.1. Data Sets

The determination of landslide occurrences through physically based models involves
multiple levels of complexity. The output of models such as TRIGRS are significantly
dependent on the resolution and precision of the input data sets. The following data sets,
materials, tools, and software were used for understanding the timing and distribution of
rainfall-induced shallow landslides in the study area. A detailed description of the data
sets used for the present study is provided in the sections below.
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2.1.1. Slope Failure Inventory

The entire state of Kerala received one of the most severe rainfalls in the century
during June and August 2018, which triggered thousands of landslides, affecting millions
of people [77–80]. The severity of the disaster led to studies on understanding the causes of
slope failures in the region. The National Remote Sensing Center-Indian Space Research
Organization (NRSC-ISRO), Geological Survey of India (GSI), and Kerala State Disaster
Management Authority (KSDMA) generated various landslide inventories primarily by
analysing pre- and post-disaster high-resolution satellite images. Later, Hao et al. impro-
vised a landslide inventory by adding missing events and eliminating falsely detected
landslides [66]. Further details on the elimination of erroneous entries and utilization of
object-based image analysis for automated landslide detection can be found in [66]. The
present study used the spatial information of the 1913 landslide events that occurred in
the study area during 2018 monsoon rainfall based on the above-mentioned landslide
inventory.

Along with the spatial information on the distribution of landslides in the study area,
9 slope failures in the study area that were triggered by the very intense rainfall between
1 and 19 June 2018 were validated for the timing of the occurrence of event. The events
were documented by Geological Survey of India (GSI) under the program “Post disaster
studies in Kerala” (FSP No: M4SI/NC/SR/SU-KRL/2018/21108).

Landslide 1 (Figure 3) happened in the Survey of India (SOI) toposheet number
58F/04 in Kallar Vettiyar, and the event happened on 9 June 2018. It had a dimension of
60 m × 30 m × 60 m (length × width × height), and the depth to the failure surface as
observed was less than 4 m. The failure can be classified as a rainfall-induced shallow planar
landslide. The area was an agricultural land with major crop being cardamom (low height
plantation with no deep roots). Landslide 2 (Figure 3) was a shallow planar rainfall-induced
landslide in a locality called Anachal (SOI toposheet number 58F/04) and occurred in the
afternoon, around 2 PM, of 11 June, 2018. The slide had a length of 20 m, width of 30 m,
and a height of 25 m. The failure surface was less than 3 m from the top, and the overlying
material was very loose coarse-grained in situ soil. The slide was caused by a rise in the
PWP as a result of a continuous downpour on the overlying material. A nearby four-story
building collapsed as a result of the slide. Landslide 3 (Figure 3) happened on 9 June 2018
and was a shallow planar failure due to incessant rainfall. It happened in a locality called
Eetticity, which lies in SOI toposheet 58F/04. The failure was a shallow planar rainfall-
induced landslide with a 60 m length, 50 m width, and 45 m height. The overlying soil was
planted with mixed plantations. On 9 June 2018, another landslide (landslide 4, Figure 3)
happened in a locality called Kallimali (SOI toposheet number 58G/01). The landslide
had a dimension of 45 m × 8 m × 40 m (length × width × height), and the overlying land
was used for agriculture (pepper cultivation), and almost 1.5 acres of agricultural land
on the hillslope was destroyed. According to the GSI reports, unplanned agricultural
practices had caused higher infiltration of rainwater, which in turn caused a rise in the PWP
and resulted in the failure. Landslide 5 (Figure 3) happened in Kallarkutty village in SOI
toposheet 58G/01 on 9 June 2018, and was a shallow rotational failure triggered by rainfall.
The failure was relatively small and had a length, width, and height of 8 m, 9 m, and 20 m,
respectively. The same village had another landslide (Landslide 6, Figure 3) on the same day
early in the morning (2 AM) in a pepper plantation. A shallow planar landslide happened
in Cheruthoni on 9 June 2018, with a failure depth of 0.5 m deep and a very small run out
distance of less than 2.5 m. The area lies in SOI toposheet 58B/16 (Landslide 7, Figure 3).
Landslide 8 (Figure 3) occurred on 9 June 2018 in the village of Anaviratty (SOI toposheet
number 58F/04). The failure was a shallow planar rainfall-induced landslide, and the
overburden had thick vegetation. The depth to the failure was almost 1 m and had a very
small, less than 5 m, run-out distance. Landslide 9 (Figure 3), chosen in the catchment area
for the present study, happened on 9 June 2018, and was a shallow planar landslide less
than 1 m deep to the failure plane. The top soil was characterized by moderate vegetation.
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2.1.2. Strength and Hydraulic Parameters of the Study Area

The quantification of infiltration, runoff, flow routing, and thereby PWP and FoS
was based on the strength and hydraulic parameters of the study area. The present study
derived the strength and hydraulic parameters for the area from a soil texture map. The
soil texture map of the area was obtained from the NASA Centre for Climate Simulation
(NCCS) data portal. The Global Hybrid STATSGO/FAO Soil Texture [81,82] is provided by
the NCCS data portal and is a 16-category soil texture map with 30 s resolution. Although
the data are provided in 30 s spatial resolution, they were originally remapped data
from the Food and Agricultural Organization of United Nations (below) 5 min data. The
STATSGO/FAO data’s soil texture indices were set to the United States Geological Survey
(USGS) index texture values, and further information on the original STATSGO and original
FAO soil map can be found on the NCCS data portal. Three major designated soil textures
were identified in the study according to the 30 s STATSGO/FAO soil texture map, and
Table 1 summarizes the key hydrogeomechanical parameters (hydraulic and strength
parameters) with respect to the three major corresponding soil textures of the terrain. A
number of authors have examined the sensitivity of hydraulic and mechanical properties
of terrain to compute the FoS and have found that physically based models perform
better when the input parameters, hydraulic and mechanical, are high resolution [83].
The present study further used a detailed soil texture map from the Department of Soil
Survey and Soil Conservation (DSSSC), Thiruvananthapuram, Kerala, India. The DSSSC
is the state nodal agency for the conservation as well as management of soil resources
for the state of Kerala. The department provides scientific databases to researchers and
policymakers for the best practices on soil and land management. The detailed soil texture
map was derived from the local soil texture associations provided by the DSSSC. The
high-resolution hydrogeomechanical properties derived from the DSSSC soil texture maps
were further utilized for deriving high-resolution FoS and then for sensitivity analyses
(Sections 2.2 and 4). Figure 4 illustrates the soil texture maps (FAO-STATSGO-derived and
DSSSC-derived soil maps) of the catchment area selected for the present study. It can be
seen that the FAO-STATSGO database demarcates only three soil types in the region, while
eight soil types are identified in the field-based high-resolution DSSSC regional map.

Figure 4. Soil texture map of the study area. (A) Soil texture based on the Global Hybrid
STATSGO/FAO Soil Texture. (B) Field-based soil texture from Department of Soil Survey and
Soil Conservation (DSSSC), Thiruvananthapuram, Kerala.
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Table 1. Hydrogeomechanical parameters (hydraulic and strength parameters) of the study area for
three designated soil textures. C’ is cohesion for effective stress, φ’ is angle of internal friction, γ is
unit weight of soil, D0 is hydraulic diffusivity, and Ks is saturated hydraulic conductivity.

Soil Texture Loam Sandy Clay Loam Clay Loam

FAO soil texture index 6 7 9

C’ (KPa) 10 29 35

φ’ (degree) 22.5 20 20

γ (Nm−3) 13,000 15,000 14,000

D0 (m2s−1) 0.0000094 0.0000062 0.000005

Ks (m1s−1) 0.00000453 0.00000659 0.00000272

2.1.3. Digital Elevation Model (DEM)

Terrain parameters, such as elevation, slope, and flow direction, have been extensively
used in every landslide study at the catchment scale. The present study derived the terrain
parameters from the Shuttle Radar Topography Mission (SRTM) Global DEM (Digital
Object Identifier number:/10.5066/F7PR7TFT). The void filled elevation data at 1 arc-
second (30 m) with a worldwide coverage was used for generating a grid-wise distribution
of the altitude, slope, and flow direction. SRTM, hosted by the Endeavour space shuttle,
was the first mission to use C-band spaceborne imaging radar and X-band synthetic
aperture radar (X-SAR) for the global acquisition of elevation. The void-filled DEM used
for the present study is hosted and distributed by the Earth Resources Observation and
Science (EROS) Archive. Even though the DEM is tagged as void-filled, there were some
anomalously low-altitude pixels, often referred to as depressions or pits or sinks, entirely
surrounded by high-altitude pixels. Because sinks significantly interfere with the routing
and flow across terrain, they have to be eliminated by filling (increasing the altitude to
an extent where it allows draining off to the downhill) or breaching (lowering the edges
of the dead-ends or sinks blocking the flow to allow draining off downhill). The present
study used a highly efficient utility program called TauDEM, Terrain Analysis Using Digital
Elevation Models [84] to remove the sinks and generate a hydrologically conditioned DEM
for seamlessly deriving the terrain parameters for topographic indexing and TRIGRS.

2.1.4. Precipitation

Time-varying rainfall intensity is one of the major parameters used as input to compute
the FoS and PWP in the TRIGRS model. The present study used a carefully curated synthetic
rainfall history for analyzing the distribution and timing of the landslides in the study area.
The IMERG and IMD data sets and a number of reports and articles from the State Disaster
Management Authority (SDMA) and various authors (Section 1) were used for generating
the time-varying rainfall intensity curve for a nine-day study period. The precipitation
data sets from the IMD have a spatial resolution of 0.250◦ × 0.250◦ and provide daily
gridded data over the Indian region [85]. Additionally, the Integrated Multi-satellitE
Retrievals for GPM (IMERG) daily “final” precipitation (Level 3, version 6) is a global
precipitation data set with high spatial resolution (0.10

◦ × 10
◦
) that is available half-hourly,

daily, and monthly [86]. The present study used IMERG’s “final” (~3.5 months after the
observation) precipitation data sets, which are satellite-gauge products using both forward
and backward morphing, and the data sets are available from web portals such as the
Global Precipitation Measurement (GPM) portal (https://gpm.nasa.gov/data/sources,
accessed on 24 November 2022). Because the routing scheme in TRIGRS is established
through the mass balance of rainfall, infiltration, and runoff, the reliability of precipitation
data plays a significant role in computing slope stability.

The synthetic rainfall history prepared for the present study is shown in Figure 5. The
curve shows a gradual increase in the daily rainfall from the first to the seventh day and a
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drop for next two days; the highest daily accumulated daily rainfall was 250 mm. Because
Central Water Commission (CWC) reported heavy rainfall on 9 August 2018, and three
stations in the catchment region received 255 mm, 254 mm, and 211 mm (Peermade, Munnar,
and Myladumpara in the Idukki district, respectively), the rainfall history taken for this
study is a possible scenario in the catchment region.

Figure 5. Time-varying rainfall rate prepared for the present study by considering CWC and GPM-
IMERG data sets.

2.1.5. Spatial Distribution of Soil Thickness

Soil thickness is one of the significant input parameters in TRIGRS and plays a crucial
role in determining the FoS, PWP, depth to slip surface, and hydrological response of the
terrain [44,87–89]. Although a uniform soil depth is accepted in the model, it might produce
considerably less-realistic FoSs and lead to the erroneous timing and spatial distribution
of landslides. The present study obtained the depth to slip surface at 9 nine landslide
locations where field observations were available through GSI.

Because the present study was carried out for larger and complex terrain, it was
rather difficult to obtain (or interpolate from the available sources) the spatial distribution
of soil depth in high resolution. A number of studies have been carried out in different
parts of the world, and a firm linear relationship between soil depth and slope has been
established [42,44,90,91]. The present study therefore assumed a linear relationship between
slope and soil thickness over the study area (Equation (1)) and derived the soil depth for
the study area (Figure 6).

D = −0.3437s + 3.5 (1)

where D is the soil depth at each raster cell with slope s. The slope distribution for the study
area was derived from the pit-filled SRTM 30 m DEM. The depth D is in meters, and the
slope s is in degrees. Waterbodies in the study area were masked as pixels corresponding
to waterbodies (i.e., have the least slope), might have erroneously resulted in thicker soil.
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Figure 6. Spatial distribution of soil thickness and slope in the study area.

2.2. Model Description

The dynamic physically based slope stability model used in the present study, Tran-
sient Rainfall Infiltration and Grid-based Regional Slope-Stability Model (TRIGRS) is a
commonly used slope stability model for computing the timing and distribution of rainfall-
induced shallow landslides [54,63,64,92,93]. The TRIGRS model consists of a runoff routing
component and a slope stability component. The former computes the infiltration and sub-
surface flow of storm water, and the latter models the grid-based slope stability over an area
of interest. Many studies have been carried out globally for different terrain with varying
topographic settings, and a number of researchers have shown that the open-source model
is capable of modeling rainfall-induced shallow landslides over a large region. A brief
description of infiltration, runoff, flow routing, and slope stability models is given below.

2.2.1. Modeling Infiltration, Runoff, and Flow Routing in TRIGRS

Since the study area is in a low-latitude area and experiences a warm, temperate
climate, it can be safely assumed that rainwater is the only form of precipitation in the
study area. It is hypothesized in the TRIGRS flow routing model that the rainwater from
the upslope cells flows downslope, based on the infiltrability of the cells. The infiltrability
or infiltration capacity is a function of the saturated hydraulic conductivity of the medium.
Additionally, runoff from a particular cell occurs only when the sum of the direct precip-
itation received on a cell and the accumulated runoff from the upslope cells exceeds the
infiltrability of the cell.

The model computes infiltration (I) at every cell as a sum of precipitation (P) and
runoff (Ru) from cells with higher elevation with an assumption that infiltration cannot
exceed saturated hydraulic conductivity (Ks).

I = P + Ru [Provided (I − Ks) is negative] (2)

Furthermore, whenever the sum of P and Ru exceeds Ks, the excess quantity, P + Ru − Ks,
is channeled as runoff and routed to adjacent downslope cells, and the runoff diverted to
the adjacent downslope cells (Rd) is calculated as,

Rd = P + Ru − Ks [only when (P + Ru) > Ks] (3)
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Additionally, the input water is forced to run off from every cell where the ground
water table reaches the surface (implying saturated grids). The saturated cells exfiltrate
water received, either in the form of rain or run off from upslope cells, and is modeled to
further run off to the downslope cells.

The entire process of flow routing after the computation of run off for each cell is
based on the directions of the nearest and steepest confining downslope cell. D8 flow
directions [94,95] were used in the present study for flow routing cell-by-cell in the mass
balance calculations, and the D8 numbering scheme was set up according to the TopoIndex
(Section 2.3.1). D8 flow directions were derived in TauDEM, which output gridded cells
with a numbering scheme where 1 to 8 represent east, north east, north, north west, west,
south west, south, and south east, respectively. Furthermore, adequate measures were
taken to avoid any possible conflicts along the grid cells adjacent to the edges of the
hydrologically conditioned DEM and along the flat areas in the basin [96].

2.2.2. Modeling Slope Stability

The slope stability component in the model computes the grid-based slope stability
of each cell using an infinite-slope stability analysis. A parameter called FoS, which is
the ratio of resisting basal Coulomb friction to gravitationally induced downslope basal
driving stress, was employed to determine the failure of infinite slope as result of rainfall.
Equation (4) governs the FoS for each grid for the selected time step.

FoS =
tanφ′

tanα
+

c′ − ψ(Z, t)γwtanφ′

γsdlbsinαcosα
(4)

where φ′ is the effective angle of internal friction, c′ is the effective cohesion, ψ is the
pressure head as a function of depth Z and time t, dlb is the depth of the lower impervious
boundary, and γw and γs are the unit weights of water and soil, respectively. The model was
modified to include a layer of an unsaturated zone. The modified equation for obtaining
the FoS in this zone is,

FoS =
tanφ′

tanα
+

c′ − ψ(Z, t)γwχtanφ′

γsdlbsinαcosα
(5)

where,

χ =
θ − θr

θs − θr
(6)

where the χ approximation was given by Vanapalli and Fredlund [97] and is known as
the effective stress parameter. θ is the soil moisture content in the unsaturated soil zone,
θr is the residual soil water content of the soil, and θs is the saturated soil water content.
Figure 7 (modified from [54]) is a schematic cross-section of the hillslope where the TRIGRS
model was applied. The infinite slope or the particular cell is considered stable when FoS is
above 1; when the FoS falls below 1, the slope fails. Thus, the depth Z, where FoS first falls
below 1, is considered the depth of landslide initiation [92].

The model considers the catchment region as digital terrain, which can be divided into
zones, based on the soil texture, and three-dimensional cell grids. The user or modeler can
introduce more control by feeding each zone topographic parameters (elevation and slope),
hydraulic properties (flow direction, diffusivity, infiltration rate, depth to ground water,
saturated water content, residual water content, saturated hydraulic conductivity, and
inverse of the height of capillary rise), and strength parameters (cohesion, friction angle,
and weight of the soil). Furthermore, control can be achieved by providing elevation, slope,
flow direction, depth to ground water, and depth to bedrock grid-wise. The TRIGRS version
used for the present study did not have the versatility to provide strength and hydraulic
parameters grid-wise. The present study employed version 2.1 [54] of TRIGRS, which is
based on version 1.0 [64], but with fewer restrictive hypotheses. The model is capable of
performing on saturated as well as unsaturated media and is capable of capturing unstable
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cells, which are effectively landslide locations, in the study area by considering precipitation
and the corresponding changes in the hydrogeomechanical parameters.

 

Figure 7. Schematic cross-section showing the shallow ground water condition in the soil. duz is the
unsaturated zone above the water table. dwt is the depth to the ground water table from the surface.
dlb is the depth to the impervious lower boundary δ of the slope.

The execution time required for TRIGRS has an exponential negative relationship with
the number of pixels, grids, and cells in the input data sets. A larger number of pixels can
be expected whenever the model is executed with high-resolution input data sets or over a
large area. Because the present study was carried out for a relatively larger catchment area
with a higher number of grids in the input data sets, multiple model executions became
time consuming. In order to overcome this issue, the study employed TRIGRS MPI [65] for
the parallel implementation of TRIGRS by utilizing the maximum computational capacity.
The TRIGRS MPI significantly reduced the time consumed for each run, provided more
flexibility and freedom while changing the input parameter sets for multiple executions of
the model.
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2.3. Application of the Model

The present study assessed the distribution of slope failures in the catchment region at
1913 landslide sites along with computing the fall in FoS and rise in PWP at 9 landslide sites
in the study area with respect to a 9-day rainfall period. The open-source model, TRIGRS, is
capable of considering topographic parameters (elevation and slope), hydraulic properties
(flow direction, permeability, diffusivity, conductivity, infiltration rate, and depth to ground
water), and strength parameters (cohesion, friction angle, and weight of the soil) while
computing the FoS.

A brief description of the significant steps involved in this work is described in the
following sections.

2.3.1. Topographic Indexing for Flow Routing

The execution of the model TRIGRS is carried out through two individual programs:
TopoIndex and the main TRIGRS program. The former, as the name suggests, is used for
topographic indexing; the latter, the main program, is used for flow routing and runoff
calculations. TopoIndex prepares a list and a grid of downslope receptor cells (TIdsneiList
and TIdscelGrid), a list of index numbers corresponding to each cell number (TIcelindxList),
a list of downslope cells for which nonzero weighting factors have been computed (TIds-
celList), and a list of weighting factors for downslope receptor cells (TIwfactorList). The
outputs of the TopoIndex are generated in ASCII, and text formats and each output’s name
start with what is given above in the brackets.

A hydrologically conditioned DEM and flow direction are the input files required for
generating the essentials data sets for TRIGRS. Section 2.1.3 briefly describes the hydrologi-
cal conditioning of the DEM. The present study used the D8 algorithm to derive the flow
direction through TauDEM (Section 2.1.3). Although TopoIndex uses the D8 flow direction,
the numeric coding is different than that of the TauDEM-derived flow direction or ESRI
flow direction. Figure 8 shows the designated codes in both the flow direction along with
the geographical direction. Although the flow direction for TopoIndex can be generated
through with D8 and D-infinity methods, the present study used the TauDEM-derived D8
flow direction scheme for generating the outputs.

Figure 8. Comparison of D8 ESRI flow direction and D8 TopoIndex flow direction.

Figure 9 shows a schematic diagram of the study, which depicts the derivation of
the input data sets, application of the model, and validation of the output (grid-based
FoS) from the hydrogeomechanical properties through FAO-STATSGO and high-resolution
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hydrogeomechanical properties through the field-based DSSSC against the landslide in-
ventory. The landslide inventory is based on the landslides that occurred in the catchment
region during the 2008 monsoon season.

Figure 9. Schematic diagram of the methodology adopted in the present study. The derivation of
the input data sets, application of the model, and validation of the output (grid-based FoS) from
hydrogeomechanical properties through FAO-STATSGO and high-resolution hydrogeomechanical
properties through field-based DSSSC against the landslide inventory are graphically represented in
the diagram.

2.3.2. TRIGRS Initialization for Slope Stability

The present study divided the entire study area into three zones based on the FAO soil
texture and eight zones based on the regional soil texture map (Figure 4). The hydrological
and strength parameters were based on both soil texture maps. The hydrological and
strength parameters, such as cohesion (c′), internal friction (φ′), unit weight of soil (γ),
hydraulic diffusivity (D0), saturated hydraulic conductivity (Ks), and saturated and residual
water content, were derived solely based on the soil texture map. The values of these
parameters were obtained from the literature based on the soil type. The present study
divided the entire catchment region into 30 m × 30 m cells, and the FoS was computed
for each grid with a time step of 1 day for a total period of nine days. An FoS value of 1
was considered as the threshold for slope failure in the catchment region. Thereby, a value
greater than 1 was taken as a measure to classify the pixel as stable (non-landslide) and
a value less than 1 was taken as a measure to classify the pixel as unstable (landslide) in
the catchment region. The computed FoS for every pixel in the study area for the entire
nine-day period was taken as an indicator of the initiation of slope failure.

3. Results

As discussed in Section 2.1.1, the present study examined the landslides in a landslide-
prone catchment region in Western Ghats. The shallow landslides were triggered by
widespread heavy and incessant rainfall that occurred in the first weeks of June 2018.
Details of the hydrogeomechanical parameters and terrain parameters used for computing
the FoS and PWP in the physically based model are provided in Sections 2.1.2 and 2.1.3.
The rainfall rate fed into the TRIGRS model is described Section 2.1.4. The distribution of
the landslide pixels and the changes as the rainfall continued are described in Section 3.2,
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and the timing of the triggering of the nine landslides as a result of the rainfall in the study
are is described in Sections 3.3 and 3.4.

3.1. Impact of Varying the Number of Soil Zones

Even though the number of soil zones in the studied catchment varied for the two runs,
being three and eight, the properties were still based on soil texture. It can be seen from
Figure 10 that the true identifications of the landslide events in both runs were comparable.
The model in both the cases could identify 1524 and 1323 landslides of the 1913 landslides.
Additionally, a true positive rate (TPR) of 68% and 60% was obtained with a nine-day
rainfall period for the two derived soil texture data sets, respectively. A false positive rate
(FPR) of 36% and 31% was also seen, respectively. The total accuracy was 68%. Although
previous studies [83] showed that the hydrogeomechanical parameters have an impact
on the simulations of FoS and PWP, it was seen here that the properties just based on soil
texture did not impact the model result. It was also suggested that these properties may
need to be derived from the other sources such as Earth Observation (EO) data sets, which
can result in a better simulation of the PWP [98].

Figure 10. Distribution of false positives and false negatives (A) when hydraulic properties were
derived from FAO soil texture and (B) when hydraulic properties were derived from the soil map of
the Soil Survey & Soil Conservation Directorate.

3.2. Change in FoS and PWP in the Catchment Region

In the study area, the FoS corresponding to majority of the grids showed a significant
decrease during the nine-day rainfall period. Furthermore, over time, a higher number of
grids started showing an FoS below the threshold value of one, and the corresponding time
was taken as the initiation of the landslide. Along with the FoS, the PWP was computed for
each grid to further illustrate the interconnection among the FoS, landslide initialization,
and rainfall history. Figure 11 shows the fall in the FoS and rise in the PWP for the study
area for the period of nine days. It is depicted in the figure that the FoS was decreasing for
the majority of the pixels, and new areas could be demarcated as landslide pixels as time
progressed. The FoS was calculated for each pixel at the end of a 24 h rainfall period for
nine days in Figure 11 (left). The same was repeated for the PWP and is plotted in Figure 11
(right). It is clear from the FoS–PWP through the rainfall rate plot that a number of pixels
fell below the threshold FoS value and turned into unstable areas.
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Figure 11. (Left) Decrease in factor of safety (FoS) in the catchment region for the 9-day rainfall
period. Day 1 (top left) is the plot of FoS at each pixel at the end of a 24 h rainfall period, and day 9
is the FoS at each pixel at the end of a 9-day rainfall period. Red region indicates lower-FoS and
unstable areas, and blue region indicates higher-FoS and stable area. (Right): Rise in pore water
pressure (PWP) in the catchment region for the 9-day rainfall period. Day 1 (top left) is the plot of
PWP at each pixel at the end of a 24 h rainfall period, and day 9 is the PWP at each pixel at the end
of a 9-day rainfall period. Red region indicates higher PWP (relatively unstable), and blue region
indicates lower PWP (relatively stable). The nine selected landslides are located in the black rectangle
(not shown in this plot). Note that the color keys are reversed for easy demarcation of relatively
unstable (i.e., red) areas.

Furthermore, Figure 11 shows the inverse relationship between the FoS and PWP in
the study area. It can be observed from the figure that when PWP increased as rainfall
continued, the FoS significantly decreased. The blue region in the plots represents the
relatively stable areas (lower PWP and higher FoS), and the red region represents relatively
lesser stable areas (higher PWP and lower FoS). For better understanding, the usage of
model with regard to landslide initiation timing, the nine landslides were chosen for the
case study. The nine landslides chosen for the study are located in the black rectangle in
the plots.

The plot in Figure 8 is a detailed illustration of the FoS–PWP in and around the nine
landslide sites chosen in the study area. As discussed above, the rise in the PWP and fall
in the FoS were computed and plotted for the nine-day rainfall period. The black dots
represent the locations of the nine landslides chosen for the study area. It can be seen
from Figures 11 and 12 that there are false positive regions, where the FoS drops below
one. This shows that the geohydrological parameters that were governing the hydrological
simulation needed to be further improved so that the partition of water among the soil
layers could be better simulated. The χ approximation from Equation (6), utilized in
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Equation (5) of the FoS, is based on the SHPs, saturated water content, and residual water
content. It can be seen that the properties impact both the PWP and FoS. These parameters
were literature-based and dependent on the soil texture. One of the limitations is that
these properties were not available at a 30 m resolution. Again, this shows that these
properties may have to be identified at finer resolution through satellite data that have
higher spatial coverage compared with the field analysis, which may be not possible in
remote and inaccessible areas. However, the landslide events were identified, which can
still act as a warning for susceptible zones.

Figure 12. (Left) Fall in factor of safety (FoS) in and around the nine landslides for the nine days
rainfall period. Day 1 (top left) is the plot of FoS at each pixel at the end of a 24-h rainfall period and
Day 9 is the FoS at each pixel at the end of a 9-day rainfall period. Red region indicates lower FoS,
unstable, areas and blue region indicates higher FoS, stable area. (Right): Rise in Pore Water Pressure
(PWP) in and around the nine landslides for the nine days rainfall period. Day 1 (top left) is the plot
of PWP at each pixel at the end of a 24-h rainfall period and Day 9 is the PWP at each pixel at the end
of a 9-day rainfall period. Red region indicates higher PWP (relatively unstable), and blue region
indicates lower PWP (relatively stable). The black dots indicate the landslide sites. Note that the color
keys are reversed for easy demarcation of relatively unstable (~red) areas.
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3.3. Fall in FoS

Figures 11 and 12 show the distribution of the landslides in the catchment region and
their changes as the rainfall progresses. The 8 landslides were triggered on 9 June 2018
and one landslide was triggered on 11 June 2018. The rainfall event used for computing
the eight landslides which were triggered on 9 June 2018 started on 3 June and ended
on 11 June 2018. Seventh day of the rainfall event (9 June) was the day on which eight
landslides happened. Similarly, a rainfall event started on 5 June and ended on 11 June
2018 was used for computing the FoS at one landslide which was triggered on 11 June 2018.

Figure 13 shows the gradual fall in FoS at nine landslide sites with respect to the nine
days rainfall event. A vertical dotted line is added to each plot for easy representation of
day on which the landslide occurred (9 June in the case of Landslide 1, 3, 4, 5, 6, 7, and 8 and
11 June 2018 in the case of Landslide 2). As discussed above, the present study considered
1 as a threshold value for FoS and whenever a pixel’s FoS fall below 1 is considered as a
landslide and the corresponding time is recorded as the landslide initiation time.

Figure 13. Fall in FoS with respect to nine-day rainfall period at the landslide sites. The vertical
dotted line shows the day on which the landslide occurred.

Landslide 1 (Kallar Vattiyar), Landslide 3 (Eetticity), Landslide 4 (Kallimali), Landslide 5
(Kallarkutty I), Landslide 6 (Kallarkutty II), Landslide 7 (Cheruthoni), Landslide 8 (Anaviratty)
and Landslide 9 (Ambazhachal) were triggered on 9 June 2018. The FoS computed at
these landslide locations on 9 June are 1.15, 6.87, 0.90, 0.89, 1.08, 1.08, 1.11, and 1.22 (FoS
corresponding to dotted line on Figure 13). Additionally, Landslide 2 (Anachal), was
triggered on 11 June and the FoS computed as per TRIGRS on the same day is 0.93 (FoS
corresponding to dotted line on Figure 13). According to the FoS computed Figure 13, the
model could indicate the slope failures at three landslide sites out of nine chosen landslides
in the study area. Additionally, as the time progresses it can be observed that the model
rightly shows the eight out of 9 landslides failures in the study area.
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3.4. Rise in PWP

As part of the study, the PWP was calculated for the catchment region. Figure 14 plots
the PWP extracted at the nine landslide sites in the study area against the time-varying
rainfall rate. The plot shows a near linear rise in the PWP with respect to the rainfall.
Furthermore, the PWP and FoS showed an inverse relationship at the nine landslide sites
(Figures 13 and 14). As in the case of rainfall-induced shallow landslides anywhere else, an
increase in the PWP indeed reduced the FoS at the nine landslide sites in the study area.

Figure 14. Comparison of the rise in PWP (porewater pressure) with respect to rainfall, from the
outputs of nonoptimized and optimized model runs at 9 validation sites. The vertical dotted black
line indicates the day on which the landslide was triggered.

4. Discussion

The timing and distribution of shallow landslides were modeled in a catchment region
(Figure 1) in Western Ghats through TRIGRS. The hydrogeomechanical properties used
in TRIGRS to model the FoS and PWP were derived through two different sources: FAO-
STATSGO and a regional soil texture map from DSSSC. Although TRIGRS computes the
FoS cellwise (i.e., gridded), the hydrogeomechanical parameters are provided zone-wise.
The available versions of TRIGRS do not have the ability to provide cell-wise hydroge-
omechanical properties. Because the hydro-geomechanical parameters were derived from
the soil texture information, the zones in TRIGRS approximately followed the soil texture
map of the study area. The present study incorporated FAO-STATSGO soil information
and high-resolution regional soil information from DSSSC, which resulted in three and
eight soil types in the study area, respectively (Figure 4). Therefore, the study area was
categorized into three and eight zones. Although the spatial heterogeneity was better
represented with the DSSSC soil texture, the modeled FoS from both soil textures were
comparable (Section 3.1), leading to a lack of improvisation. This may have been due to the
use of SHPs based on soil texture. This was further clarified by carrying out a sensitivity
analysis to quantify the impact of the SHP on the analysis of slope stability and to further
understand the absence of significant changes in modeled FoS when the two soil texture
maps were used to derive the SHPs.
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Because SHPs are important in determining the stability of hillslopes, saturated water
content (θs); residual water content (θr); and a fitting parameter for soil size distribution (α),
which is approximately equivalent to the inverse height of capillary rise [54], were selected
for sensitivity analysis. In order to understand the impact of each parameter on the final
grid-based FoS, one-parameter-at-a-time (OAT) analyses were carried out. OAT analyses
are often used in sensitivity analyses, parameter optimization, and calibrating physically
based models [42,99–101].

The current study considered a case of a finite and unsaturated profile. The finite depth
was based on Equation (1). Based on Equations (4) and (5), the FoS was calculated for both
the saturated and unsaturated zones, where each cell was treated as a unique sliding unit.
Thus, failure analysis with pressure head determination provided the FoS for the depth
profile for each cell. It is noted that the depth at which the FoS first reduced below one was
considered the landslide initiation depth, which could vary depending on the soil properties
as well as the rainfall intensity [92,102]. The depth may vary between the water table depth
and the basal boundary [103]. The pressure head, utilized in Equations (4) and (5), was
calculated based on the below equations based on Richard’s equation (Equation (7)).

∂θ

∂t
=

∂

∂z

[
K(ψ)

(
1

cos2δ

∂ψ

∂Z
− 1

)]
(7)

where,
K(ψ) = Ks exp(αψ∗) (8)

The pressure head was obtained using Equation (9).

ψ(Z, t) =
cosδ

α1
ln
[

K(Z, t)
Ks

]
+ ψ0 (9)

A realistic range of θs, ranging from 0.280 to 0.450, with a median of 0.365, was chosen
to understand the impact of the saturated water content on the stability of terrain and
to determine the landslide initiation zone (Figure 15). It can be seen that with the same
rainfall intensities, a change in θs impacted the FoS of the depth profile (Figure 15) as well
as the time taken for the rising of the groundwater table (Table 2). The FoS corresponding
to θs = 0.365 reached < 1 on the seventh day. At the minimum θs, an FoS < 1 was seen on
the fifth day, while the cell remained stable for θs = 0.450 (Figure 15). Figure 15 further
quantifies the change in FoS (%) with respect to changes in θs (%), where a 30% increase
in θs reflects a 15% change in the FoS. The OAT analyses carried out as part of the present
study for θs showed an approximate linear trend for the study area. Additionally, it can be
seen from Table 2 that the landslide was initiated as soon as the groundwater table rose to
depth of 0.50 m. The water table rise mechanism was already previously explained (Baum
et al., 2010). Thus, as shown in Take et al., 2004, with the rise in pore water pressure to zero,
the shear resistance fell. This led to an unstable zone. It is illustrated from both the depth
profile in Figure 15 and Table 2 that the zone of weakness increased with the decrease in
θs, which represents the porosity of the soil. It is deciphered from Figure 15 that θs had a
significant role in estimating FoS and, thereby, the initiation time and spatial distribution of
the landslides in the study area.
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Figure 15. Sensitivity analysis of saturated water content (θs): (Top) changes in FoS with depth for
a 9−day period with respect to the different θs values; (Bottom Left) changes in FoS and landslide
initiation time with change in θs values. (Bottom right) Percentage change in FoS in accordance with
the percentage change θs. The vertical dotted line on the bottom left indicates the time at which the
median value of the selected parameter crossed the threshold FoS, and the horizontal line indicates
the corresponding threshold FoS, which is 1.
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Table 2. Comparative analysis for landslide initiation based on variation in θs.

Sl. No. θs
FoS < 1

(Landslide Initiation Day)
Depth to

Groundwater Table
Depth of Weak

Zone

1 0.28 Day 5 0.50 m 1–2 m

2 0.32 Day 6 0.48 m 1.7–2 m

3 0.36 Day 7 0.46 m 1.8–2 m

4 0.45 Day 9 (Stable) 0.76 m Stable

As described above, an OAT analysis was carried out for θr. The θr values were
considered from 0.01 to 0.1, with a median of 0.55, and the corresponding FoSs were
modeled for a 9-day period and are plotted in Figure 16. The median θr (0.055) reached the
threshold value before the seventh day, and the soils with lower θr values needed more
time, up to 36 more hours, to become unstable. This change could be attributed to the
increase in the water-holding capacity of the soil. On the other hand, higher θr values
started crossing the threshold FoS of one starting on the fifth day. It can be seen that a
100% change in θr produced only a 4% change in the FoS. It might be because of the fact
that the θr alone might have a lesser impact on the modeled FoS. In reality, landslide is a
very complex phenomenon, and the interplay of multiple factors determine the mechanism
behind its initiation. Furthermore, in order to understand the impact of θr together with
θs and other factors, many-parameter-at-a-time (MAT) analyses should be carried out by
simultaneously varying multiple parameters in the model. Even though MAT analyses will
further shed light on the interconnection among various hydrogeomechanical parameters,
the present study was limited to OAT because of its simplicity and the significantly less
computational effort required.

Along with θs and θr, α (a fitting parameter for soil size distribution and is approximately
equivalent to the inverse height of capillary rise) was analyzed to comprehend its impact on
FoS and thereby the initiation of landslides. The α values were varied from 0 to 10, and we
modeled the FoS for a 9-day period. The experiments were carried out as in the cases for θs
and θr and are plotted in Figure 16. The fall in FoS for 9 days with the α values 0.35, 1.00, 1.80,
2.00, and 10.00 are highlighted in the plot. It is observed from Figure 16 that α values above
two were less significant in determining the FoS than values from zero to two. Because any
α value above two had less significance in determining the FoS in the study area, a range of
zero to two with a median of one was considered for analyzing the percentage change in the
FoS with respect to the percentage change in α (Figure 16). It has to be noted that any α value
less than zero acts as a flag in TRIGRS to treat the terrain as tension-saturated.

Two major observations were made as part the present study while selecting the input
parameters for modeling the slope stability in complex terrain. Primarily, even though the
regional DSSSC soil map had better soil information representing the study area, it still
considered a mean θs, θr, and α for a zone based on the field observations and laboratory
measurements of the soil samples. In reality, the SHPs vary for the same soil type based
on the porosity, grain size, degree of compaction, etc., and complex terrain is more likely
to reflect this trend. The subzonal variation must have strongly affected the modeled
distribution and the computed initiation time of the landslides in the study area. Secondly,
because the uncertainties present in spatially varying hydrological properties have an
impact on the initiation time and spatial distribution in complex terrain, a robust approach
has to be implemented to (1) accurately derive the hydrological properties through EO data
sets in finer resolution and (2) provide the derived finer-resolution hydrological properties
cell-wise rather than zone-wise as in the present versions of TRIGRS. An obvious solution
for deriving hydrological properties that have a significant impact on the FoS is through
inverse modeling. Although in situ collected soil samples and laboratory analyses are rather
more intuitive than modeling approaches, it has to be noted that in situ data collection,
sampling in uniform intervals (spatial and temporal), and analyses are very costly and
often impossibly laborious for complex and inaccessible terrain.
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Figure 16. Sensitivity analysis of SHPs, residual water content (θr), and a fitting parameter for
soil size distribution (α), which is approximately equivalent to the inverse height of capillary rise.
(Left) Changes in FoS for a 9−day period with respect to the different θr and α. (Right) Percentage
change FoS in accordance with the percentage changes in θr, and α. The vertical dotted line on the
left side of the figure indicates the time at which the median value of the selected parameter crossed
the threshold FoS, and the horizontal line indicates the corresponding threshold FoS, which is 1.

Along with the results and findings of the present study, the significance of the inher-
ent uncertainties present in the hydraulic parameters in determining the model outputs
was also put forward in a previous study on a landslide-prone area in Brazil [104]. The
study further emphasized the need for developing novel strategies to generate hydraulic
parameters that represent spatial variation in finer resolution. A recent review [45] on
TRIGRS and its performance compared with that of other physical slope stability models
also concluded that refined hydrological parameters can generate more realistic results.
Another study carried out in Norway focused on the initial conditions of the terrain and
concluded that wetter initial conditions lead to early instability and overestimation of
landslide pixels in the study area [105]. A data-sparse region in the northern part of Kerala
was studied for landslide hazard zonation using TRIGRS and showed that providing spa-
tially varying SHPs significantly reduces the overestimation of landslide pixels [62]. The
study further raised concerns regarding the lack of flexibility to provide local variations in
hydrogeomechanical parameters to the current versions of TRIGRS. The study suggested
the modification of TRIGRS to receive input parameters with local variations rather than
generalizing the properties zone-wise. A number of methods to inversely derive SHPs
through EO data sets have been put forward to overcome the limitations of regression
functions [106–108]. The high-resolution SHPs derived through inverse modeling [108] can
be a possible alternative, especially in areas where field data are difficult to retrieve.
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5. Conclusions

The present study modeled the distribution and timing of rainfall-induced shallow
landslides in a catchment in Western Ghats. It was shown how a physically based model
can be used for understanding the timing and distribution of landslides with minimal
ground-based data sets. This study used a set of satellite-derived terrain parameters
and hydrogeomechanical parameters with ground-measured rainfall data to compute the
FoS and PWP in a landslide-prone area. The model was able to predict the landslide
distribution in the spatial region with a TPR of 68%. Additionally, for nine landslides, the
model predicted the occurrence of eight landslides, with precise timing of three landslides.
In addition, the present study analyzed the impact of the SHPs in computing the FoS and
thereby predicting the timing and distribution of landslides in the study area. It could
be seen that with the increase in the storage capacity of soil, it became more stable, and
a prominent shift was seen in the initiation of the landslide events. Thus, the precise
timing of a landslide event was dependent on the SHPs. Although the model could
compute the change in the FoS and PWP in accordance with the rainfall received in the
study area, it is worth mentioning the challenges and room of improvement when using
the model, TRIGRS. Primarily, the lack of high-resolution SHPs was one of the major
challenges faced when executing the slope stability model. Although a field-based high-
resolution soil texture map from DSSSC was used to generate high-resolution FoS and
could reduce the number of false positives, it needs further improvement, especially in
computing the timing of landslide initiation. A high-resolution map of SHPs can provide
more control and heterogeneity and thereby improve the modeling of the FoS and PWP.
Because the hydrologic response of terrain is determined by the spatial distribution of the
thickness of soil columns, any physically based slope stability model heavily depends on
the resolution and accuracy of the soil depth. In TRIGRS, the depth to slip surface and time
taken to reach complete saturation of each cell are computed as a function of soil depth. It
further emphasizes the requirement for the high-resolution spatial distribution of soil depth.
Although it is extremely difficult to obtain in situ observations of soil thickness for larger
and complicated terrain, a higher number of in situ and uniformly distributed soil thickness
sampling observations would resolve this problem to a certain extent. Although necessary
steps, such as pit removal, were taken prior to the analyses, the present study heavily
relied upon SRTM 30 m DEM to derive the terrain and hydrological parameters, such as
slope, flow direction, and TopoIndex parameters used in TRIGRS. A high-resolution DEM
from airborne surveys, such as drone-based surveys, could have significantly improved
TRIGRS’ outputs.

Furthermore, the dynamic physically based slope stability model, TRIGRS (version 2.1),
does not provide the flexibility to input the hydrogeomechanical parameters grid- or pixel-
wise. The grid-wise provision of input data sets with the inclusion of the impact of local
geological and anthropogenic features and hydrogeomechanical properties can significantly
improve the model outputs. Although the grid-wise provision of the hydrogeomechanical
properties will be computationally expensive, it may significantly enhances modeling
capabilities. On the basis of the results obtained in the present study and the sensitivity
analysis carried out, we further plan to generate SHPs in finer resolution and provide SHPs
cell-wise, rather than grid-wise, in TRIGRS.

Despite of the limitations of this study and the unavailability of high-resolution terrain
and hydrogeomechanical information, the model could fairly demarcate the distribution
and capture the timing of rainfall-induced shallow landslides in the study area. It can
be further concluded that the model and method can be used as a measure to assess the
landslide vulnerabilities in the Western Ghats area or anywhere else where the input data
sets are available. Moreover, the physically based slope stability model used in the present
study can be used as a primary approach to comprehensively understand the stability
of hillslopes where input data sets are limited or only remotely sensed EO data sets are
readily available.
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Abstract: One hundred seventeen landslides occurred in Malang Regency throughout 2021, triggering
the need for practical hazard assessments to strengthen the disaster mitigation process. In terms of
providing a solution for investigating the location of landslides more precisely, this research aims to
compare machine learning algorithms to produce an accurate landslide susceptibility model. This
research applies three machine learning algorithms composed of RF (random forest), NB (naïve
Bayes), and KNN (k-nearest neighbor) and 12 conditioning factors. The conditioning factors consist
of slope, elevation, aspect, NDVI, geological type, soil type, distance from the fault, distance from
the river, river density, TWI, land cover, and annual rainfall. This research performs seven models
over three ratios between the training and testing dataset encompassing 50:50, 60:40, and 70:30 for
KNN and NB algorithms and 70:30 for the RF algorithm. This research measures the performance
of each model using eight parameters (ROC, AUC, ACC, SN, SP, BA, GM, CK, and MCC). The
results indicate that RF 70:30 generates the best performance, witnessed by the evaluation parameters
ACC (0.884), SN (0.765), GM (0.863), BA (0.857), CK (0.749), MCC (0.876), and AUC (0.943). Overall,
seven models have reasonably good accuracy, ranging between 0.806 and 0.884. Furthermore, based
on the best model, the study area is dominated by high susceptibility with an area coverage of 51%,
which occurs in the areas with high slopes. This research is expected to improve the quality of
landslide susceptibility maps in the study area as a foundation for mitigation planning. Furthermore,
it can provide recommendations for further research in splitting ratio scenarios between training and
testing data.

Keywords: landslide susceptibility; machine learning; k-nearest neighbor; naïve Bayes; random forest

1. Introduction

Landslides are the phenomena of downslope movements by soil mass and rock slopes.
Landslides occur due to the sliding of a volume above a layer of rock containing clay
after the saturation of water acts as a launcher [1]. A landslide is a natural phenomenon
controlled by geological factors, rainfall, and land use on the slopes [2]. Indonesia is a
country with a high potential for landslides. According to the data from the National Dis-
aster Management Agency of Indonesia (BNPB), throughout 2021, there were 632 incidents
reaching 20% of the total disasters in Indonesia throughout 2021.

Malang Regency is situated in East Java Province and is highly vulnerable to landslides.
The Malang Regency Regional Disaster Management Agency (BPBD) data accounted for
117 landslides in 2021, reaching 44% of the total disasters in Malang Regency throughout
2021. Geographical conditions render the Malang Regency highly vulnerable to landslides.
It is located in a highland area with various slopes, from sloping to very steep, as it is
surrounded by the Tengger Mountains, Mounts Kawi and Kelud, and Mounts Arjuna
and Welirang.
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Landslide susceptibility assessment is a fundamental action for improving the mitiga-
tion process. Periodical assessment is necessary, since landslides occur periodically, and
the conditioning factors change over time. Implementing various methods to investigate
the location of landslides, assess the vulnerability area, and analyze the impacts can be
conducted by using a terrestrial survey [3], satellite monitoring [4], or spatial modeling [5].
Spatial modeling has become a prompt solution, along with the growth of technologies
and the availability of various data sources. It can integrate various data sources through
algorithms to produce maps, such as the machine learning approach. Machine learning
(ML) is a branch of computational algorithms developed and designed to imitate human
intelligence by learning from environmental data [6]. Machine learning is capable of solving
problems regarding predictions and classifications [7]. In terms of landslide susceptibility
modeling, a prediction can utilize machine learning using coordinate data of landslide
occurrence as training data and landslide conditioning factors as the evaluators [8].

Research trends using the keywords landslide susceptibility and machine learning
have grown significantly since 2018 [9]. Research conducted by [10] applied the NB
(naïve Bayes) algorithm, the RBF (radial basis function) classifier, and the RBF network
for Longhai, China, for analysis of landslide susceptibility modeling. It indicated that the
naïve Bayes algorithm showed high performance in predicting landslide susceptibility
with an AUC value of 0.872. Moreover, other research conducted by [11] using ANN
(artificial neural network) and support vector machine (SVM) algorithms, decision trees
(DTs), RF (random forest), and combined models of ANN and SVM was implemented in
the Cameron Highlands district located in the state of Pahang, Malaysia. According to
this research, the RF algorithm produced the best performance, with an AUC value on the
testing data of 0.82. Research conducted by [12] carried out spatial modeling of landslide
susceptibility in the Wayanad district in the southern part of India using RF, SVM, and
K-NN (k-nearest neighbor) algorithms. The K-NN algorithm has a good predictive ability
of landslide susceptibility, with a maximum AUC value of 0.981. The maximum entropy
(MAXENT) algorithm was developed for various spatial analyses with good performance
results as part of the development of machine learning algorithms for spatial analysis. The
Maxent algorithm can perform various spatial analyses, including predictions of urban
waterlogging-prone areas, fire hazards, and land subsidence studies [13–15]. A recent study,
however, showed that using the maximum-entropy algorithm (MAXENT) in the evaluation
of landslide susceptibility produced a lower accuracy than RF [16].

In the study area, research regarding spatial modeling of landslide susceptibility
applied scoring and overlay analysis, logistic regression, and spatial multi-criteria evalu-
ation [17–19]. Those methods are subject-oriented and rely on the consistency of various
experts in the adjustment process and the time-consuming handling of multiple data
sources. In addition, a landslide susceptibility model using the conventional scoring
method, multi-criteria evaluation, and expert judgment generates less accuracy [17]. Con-
sidering the condition of Malang Regency as a mobility center with a high tourist attraction,
a high-accuracy of landslide susceptibility assessment is necessary to mitigate casualties.
Therefore, this research applies machine learning algorithms to assess landslide susceptibil-
ity in the study area. Using a statistical approach and machine learning techniques can help
to reduce the subjectivity of the analysis. The model can be evaluated quantitatively, and
producing the contribution level of each variable can be quantitatively based on [20,21]. RF,
KNN, and NB are three machine-learning algorithms that have produced accurate models
of landslide susceptibility in various case studies.

Therefore, this research will compare the spatial modeling of landslide susceptibility
using three machine learning algorithms (RF, NB, and KNN). This research applies three
splitting ratios for training and testing data comprising 50:50, 60:40, and 70:30 for NB and
KNN. Moreover, the RF only uses 70:30, following the best splitting ratio produced from
previous research [22]. Eight evaluation parameters were sequentially used to test the
performance of seven models. These parameters were comprised of ROC (receiver opera-
tor characteristic), AUC (area under curve), accuracy (ACC), sensitivity (SN), specificity
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(SP), balanced accuracy (BA), geometric mean (GM), Cohen’s kappa (CK), and Matthew’s
correlation coefficient (MCC).

2. Materials and Methods

2.1. Study Area

Figure 1 depicts the study area of this research showing the distribution of landslides
and non-landslide location. The study area was in Malang Regency, which is located
geographically at 112◦17′10.9′′–112◦57′0.0′′ E and 7◦44′55.11′′–8◦26′35.45′′ S. Malang Re-
gency has 33 sub-districts, 12 urban villages, and 378 villages. Malang Regency is the
second largest regency in East Java Province with an area of 334.786 ha. The topography of
Malang Regency varies, with elevation values between 0 and 3660 MASL. It has several
mountains, including Mount Semeru (4676 MASL), Mount Kelud (1731 MASL), Mount
Welirang (3156 MASL), and Mount Arjuno (3339 MASL). Consequently, the slope is varied
between 0◦ and 85.2◦. The geological type is dominated by tuff formation with extrusive
intermediate pyroclastic composition and derived from volcanic deposits. Malang Regency
has a tropical climate with an average surface temperature of 18.25 ◦C to 31.45 ◦C.

 
Figure 1. Location of the study area. (A) Elevation of the study area and distribution of training
points. (B) The location of the study area in East Java Province. (C) The location of East Java Province
in Indonesia.

2.2. Data Sources
2.2.1. Data Training Sample

The training sample consisted of landslides and non-landslide areas [23]. The data
type was a point feature acquired from the Malang Regency Disaster Management Agency’s
daily reports from 2012 to 2021. From the data collected on landslide occurrence during
2012–2021, the number of points was 88. The number of landslides inclined in certain
locations from 2012 to 2021. Hence, it was assumed that past events are still actively
occurring at some locations. Moreover, the non-slide training sample was obtained by
randomly extracting points with a slope of less than 2◦ [24]. The number of non-landslide
training samples, as many as 88 points, was adjusted to the number of landslide points.
Eventually, the total number of training sample points was 176.
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2.2.2. Spatial Data Landslide Conditioning Factors

The selection of landslide conditioning factors is essential to achieving high modeling
accuracy. Standard rules related to the parameters that affect the landslide susceptibility
model do not exist [25]. Landslide conditioning factors depend on the characteristics of
the case study, the type of occurrence of the landslide, and the scale of analysis [26]. This
research proposed 12 landslide conditioning factors to produce landslide susceptibility
maps considering study area conditions, literature studies, and data availability. The
12 parameters consist of topography, land cover, and hydrological and trigger factors.
Topographic factors consist of elevation, slope, and aspect. Moreover, land cover factors
include geological type, soil type, distance from faults, and vegetation density. Hydrological
factors include TWI (Topographic Wetness Index), distance from the river, and river density,
whilst the triggering factor is average annual rainfall in 2012–2021. Figure 2 visualizes the
landslide conditioning factors in the study area.

 

Figure 2. Landslide conditioning factors; (A) annual rainfall; (B) geological type; (C) aspect; (D) slope;
(E) distance to fault; (F) elevation; (G) soil type; (H) distance to river; (I) TWI; (J) NDVI; (K) river
density; (L) land cover.
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Elevation Data

This research used DEMNAS as the elevation data with a resolution of 0.27 arc-
second or 8 m, published in 2018 by The Indonesian Geospatial Information Agency
(https://tanahair.indonesia.go.id/demnas, accessed on 26 February 2022) [27]. DEMNAS
was used to extract elevation, aspect, and slope parameters. Based on the DEMNAS, the
study area has an elevation value of 0 to 3660 MASL with a slope ranging from 0◦ to 73◦.
Moreover, the aspect distributes from 0 to 360, indicating that the slope angle direction is
clockwise. It consists of north, northeast, east, southeast, south, southwest, west, northwest,
and flat. Besides extracting topographic factor parameters, elevation data also generated
TWI of the study area. The TWI ranged from 1.8 to 16.8. For modeling purposes, this
research resampled all the data into 30 m. In addition, the resampling process was carried
out to project all datasets into the same coordinate system.

Geological Map Data

Geological map data were acquired from the Geological Agency, Ministry of Energy,
and Mineral Resources Indonesia with the scale of 1:100,000. The latest geological map
was created in 1992 by the Indonesian ministry of energy and mineral resources. The map
was produced from measurements of direct outcrop points in the field, which started in
1921 during the Dutch-Indies period [28]. Geological maps extracted geological type and
fault parameter information. Furthermore, this research proceeded with Euclidean distance
analysis to calculate the distance from the fault location; moreover, the geological type
was converted into a raster format and resampled. According to the geological type, the
study area is dominated by a tuff formation with a coverage area of 16%. The formation is
a pyroclastic extrusive rock originating from volcanic deposits.

The study area consists of 34 geological unit formations. Table 1 represents the
characteristics related to the types of formations, rock formations, and deposits. In general,
the rock conditions are composed of rocks brought by volcanic activity consisting of tuff,
sandy tuff, volcanic breccia, agglomerates, and lava. Moreover, the distance between the
study area and the fault ranges between 0 and 50,000 m. The type of fault which crosses the
study area is a local fault with shear, descending, and horizontal faults [29–31]. The local
faults pass through the Sub-district of Sumbermanjing, Bantur, Gedangan, Gondang Legi,
Turen, Wajak, Poncokusumo, and Dampit. The fault which passes through Sumbermanjing
Sub-district is a descending type, while those passing through Sumbermanjing and Bantur
Sub-district are shear-type and horizontal, respectively.

Table 1. Geological unit, Malang Regency.

Code Formation Rock Formation Deposit Area (km2)

Qvtm1 Malang tuff E: I: PA Volcanism: subaerial—Volcanism 633.995
Qpkb Kawi-butak volcanic rock E: I: PC Volcanism: subaerial—Volcanism 446.265

Tomm3 Mandalika formation E: I: L Volcanism: subaerial—Volcanism 401.839
Qpj Jombang formation ST: CC: CE: B Volcanism: subaerial—Volcanism: 331.369

Tmn5 Nampol formation ST: CC: M: S Sedimentation: transitional—Sed 277.764
Qvt2 Tengger volcanic rock E: I: PA Volcanism: subaerial—Volcanism 238.221

Qvaw Arjuna-Welirang volcanic rock E: I: PC Volcanism: subaerial—Volcanism 184.673
Tmw1 Wuni formation ST: CC: CE: B — 184.217

Qp Western volcanic rock E: I: PC Volcanism: subaerial—Volcanism 171.113
Qpat Anjasmara old volcanic rock E: I: PC Volcanism: subaerial—Volcanism 160.352
Qvs2 Semeru volcanic deposit E: I: L Volcanism: subaerial—Volcanism 96.447
Qpva Anjasmara young volcano E: I: PC Volcanism: subaerial—Volcanism 87.365
Tomt Tuff member E: I: PA Volcanism: subaerial—Volcanism 70.339
Tmcl Campurdarat formation ST: CC: LS Sedimentation: littoral—Sedimen 45.227

Qpvb1 Buring volcanic deposit E: MC: L Volcanism: subaerial—Volcanism 39.199
Qas Swamp and river deposits S: CC: M: S Sedimentation: terrestrial: fluv 26.346
Non Lake - - 20.240

Tmwl1 Wonosari formation ST: R: LS Sedimentation: littoral: reef—S 15.264
Qvk4 Kelud young volcano E: I: PC Volcanism: subaerial—Volcanism: 13.200
Qpvk Kelud old volcanic rock E: I: L Volcanism: subaerial—Volcanism 11.789
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Table 1. Cont.

Code Formation Rock Formation Deposit Area (km2)

Tomi Rock intrusion IE: I Plutonism: sub-volcanic—Plutoni 11.564
Qpvp Marikeng volcanic rock IE: I Plutonism: sub-volcanic—Plutoni 6.937
Qvlh Lava deposit E: I: PC Volcanism: subaerial—Volcanism 5.602
Qvs Tengger volcanic sand E: I: PA Volcanism: subaerial—Volcanism 4.173

Qvk5 Kepolo volcanic deposit E: I: L Volcanism: subaerial—Volcanism 3.084
Qpw Welang formation ST: CC: M: S Sedimentation: terrestrial: allu 2.546
Qvj Jembangan volcanic deposit E: MC: L Volcanism: subaerial—Volcanism 2.225
Qt5 Terrace deposit ST: CC: A Sedimentation: terrestrial: allu 2.179
Qlk Katu’s peak lava E: I: L Volcanism: subaerial—Volcanism 1.829
Qal Aluvial and coastal deposit ST: CC: A Sedimentation: terrestrial: fluv 1.130

Qvb5 Bromo volcanic rock E: I: PC Volcanism: subaerial—Volcanism: 0.810
Qlks Lava Parasite Kepolo Mt. Semeru E: I: L Volcanism: subaerial—Volcanism 0.727
Qlk1 Lava andesit parasit E: I: L Volcanism: subaerial—Volcanism 0.058
Qlv Avalanche deposits from volcanoes E: I: PC Volcanism: subaerial—Volcanism 0.035

Qpk1 Kalipucang formation ST: CC: CE: CL Sedimentation: terrestrial: fluv 0.001

Rock Formation: ST = sediment, CC= clastic, E = extrusive, I = intermediate, L = lava, PC = polymic, A = alluvium,
M = medium, PA = pyrocla, R = reef: LS = limestone, S = sands, CE = coarse, B = brecc, MC = mafic.

Soil Type Data

The Indonesian Ministry of Agriculture Indonesia produced soil-type map data with
a scale of 1:50,000 in 2014. The rasterization proceeded to convert the data into a raster
format. Then, this research resampled the map with 30 m. According to the soil type,
cambisol dominates the study area with a coverage area of 60%. Cambisol soil types are
rich in mineral matter and vary in drainage, depth, and base saturation [32].

Landsat-8 OLI TIRS Imagery Data

Landsat-8 OLI TIRS Imagery data were acquired from the USGS (United States Geo-
logical Survey) directory using the Google Earth engine (https://developers.google.com/
earth-engine/datasets, accessed on 24 March 2022). The acquisition time of imagery was
19 August 2021, with a cloud cover of 5.51%. Land-cover analysis and NDVI were chosen
in 2021 and on a specific date, as this research tried to utilize the latest and best data
specifications with a relatively low cloud cover. Since to produce a good landslide hazard
prediction model, the latest land cover and NDVI data are necessary [33]. The imagery has
a spatial resolution of 30 m on a multispectral sensor [34]. The Landsat-8 OLI TIRS imagery
data were used to extract land cover and triggering factor parameters. The extracted land
cover factor was the vegetation index using the NDVI algorithm. NDVI can be used to
estimate the level of greenery density in an area of land [35]. The NDVI algorithm can be
seen in Equation (1), where NIR is the near infrared band, and R is the red band of the
Landsat-8 [36].

NDVI =
NIR − R
NIR + R

(1)

This research applied the supervised classification random forest method to generate
land cover. It comprised water bodies, forests, vegetation (including agricultural land),
built-up land, and bare land. The classification was reasonably well-accepted, with overall
accuracy and kappa accuracy values of 0.89 and 0.86, respectively. The classification results
indicated that forests cover 38% of the study area. According to the vegetation density, the
result showed that the vegetation includes a variety of land cover, namely, water bodies,
low-density vegetation, medium-density vegetation, and high-density vegetation, with a
density index between −0.46 and 0.83 [37].

Annual Rainfall Data

Annual rainfall data were acquired by calculating daily CHIRPS data with a resolution
of 5 km retrieved from 2012 to 2021. This research used CHIRPS data as a database for
annual rainfall because the number of rain gauge station points covering the study area
is very limited. Consequently, the rain gauge station data were less representative. While
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CHIRPS is a terrestrial rainfall database that combining three types of rainfall information
(global climatology, satellite-based rainfall estimates, and in-situ rainfall observations) [38].
It can be accessed at https://data.chc.ucsb.edu/products/CHIRPS-2.0/ (accessed on 24
March 2022). Retrieval and processing of this dataset were carried out using the Google
Earth engine. Following the process, raster extraction produced 190 rainfall grid points,
which were assumed to be rainfall measuring points. Then, this research applied ordinary
kriging to generate rainfall value over the study area. Based on the average annual rainfall
data, the study area has 1750.56–3338.21 mm/year.

River Net Data

River net data were obtained from a topographic map produced by the Indonesian
Geospatial Information Agency. The river net data have a scale of 1:25,000 and were
published in 1999. These data are the latest data owned by the Indonesian Geospatial
Information Agency. River net data were used to extract the hydrological factor parameters
composed of the distance from the river and the density of the river. Euclidean distance
analysis was carried out to measure the distance parameter from the river. Based on
the distance parameter from the river, the study area has a distance value from the river
between 0 and 5055.16 m. A line density analysis proceeded with units of km/km2 to
generate river density. The result demonstrated that the river density has a value of
0–6.58 km/km2.

2.3. Methods

This research applied three machine learning algorithms composed of random forest,
naïve Bayes, and k-nearest neighbor to compare their performance in generating landslide
susceptibility analysis. Figure 3 illustrates the workflow of this research. In general,
the landslide susceptibility analysis consisted of 3 major steps: (1) conditioning factor
parameters preparation, (2) modelling, and (3) model evaluation.

Figure 3. Research workflow of the comparison of landslide susceptibility prediction using RF, NB,
and KNN algorithms.
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Random forest is an ensemble learning model from a set of decision trees (DTs). Each
DT depends on a sample of independent data values, and the distribution of each decision
tree is the same [39]. RF is effective for predictions, as it uses the strength of each DT and its
correlation and is less sensitive to the problem of over-fitting [40]. It works by performing
a majority voting of the overall results of each DT. Equation (2) denotes the RF algorithm,
where Ĉr f is the class of random forest results, and the hat operator in Ĉ indicates that the
class is the estimated class; x is an input vector; and Ĉn is the predictive class of the nth tree
in a random forest [41].

Ĉr f = majority vote
{

Ĉn(x)
}N

n=1 (2)

The k-nearest neighbor (KNN) is a machine learning algorithm utilizing neighboring
techniques in determining the class of a point [42]. A point is classified based on its closest
neighbors to the training data. KNN is categorized as a non-parametric ML model because
the computational process does not depend on data distribution [12]. The determination
of the shortest distance between the new data and the training data commonly utilizes
Euclidean distance (Equation (3)), where Xiv is the individual characteristic of i; Xjv is an
individual characteristic of j; p is the number of sample partitions; and v is an individual
sample [43].

dij =
√

∑p
v=1

(
Xiv − Xjv

)2 (3)

Naïve Bayes (NB) is a supervised learning method based on statistical measurement
for classifying purposes. NB works based on the Bayesian theorem, which is well suited for
when the data have a high dimension and is not affected by the distribution of the data [44].
NB is a simple form of a Bayesian network, with all variables considered independent
of each other [45]. Equation (4) denotes the NB algorithm for landslide susceptibility
modeling, where x is the parameter of the factors causing landslides; y is the classification
variable for landslides and non-landslides; P(yi) is the probability of yi; and P(xi/yi) is a
posterior probability that can be calculated by Equation (5) [10].

y =
argmaxP(yi)

yi = (landslide, non − landslide

14

∏
i=1

P(xi/yi) (4)

P(xi/yi) =
1√
2πσ

e
−(xi−μ)2

2σ2 (5)

For landslide susceptibility modelling, a stack raster ensures that all parameters are
in the exact resolution. Therefore, this research extracts landslide occurrence points for
each parameter and conducts a normalization process using the z-score calculation so that
all numeric data are in the same dimension (Equation (6)), where X is the value of data,
namely, the average value of all the data; and S is the standard deviation of the overall
data [46].

Z =
X − X

S
(6)

Following the normalization process, splitting is performed to separate training and
testing data. The training data are used to generate prediction models, while testing
is used to evaluate the built models. The ratios between training and testing are 70:30,
60:40, and 50:50 for applying the NB and K-NN algorithms. Moreover, the RF algorithm
uses a ratio of 70:30. In general, specific rules in determining the splitting ratio scenario
between training and testing data do not exist, since each machine learning algorithm
has its optimum splitting ratio to perform the best model. However, some splitting ratio
schemes which are commonly used are 50:50, 60:40, and 70:30. The KNN and NB algorithms
use these three scenarios to obtain optimum model accuracy [10,22,41,47,48]. Unlike the RF
algorithm, previous research with the same physical area characteristics showed that the
RF algorithm had maximum accuracy when using a splitting ratio of 70:30 [22]. Therefore,
the RF algorithm only used a splitting ratio of 70:30 in this research.
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After the modeling process, eight evaluation parameters comprising ROC (receiver op-
erator characteristic), AUC (area under curve), accuracy (ACC), sensitivity (SN), specificity
(SP), balanced accuracy (BA), geometric mean (GM), Cohen’s kappa (CK), and Matthew’s
correlation coefficient (MCC) were used to assess the performance of each model. The
evaluation values were obtained based on the confusion matrix of four predicted labels,
which consisted of tp and fp for the number of positive data samples and tn and fn for
the number of negative data samples. Table 2 denotes the equations and objectives of
each evaluator.

Table 2. Metric evaluator equation and each objective.

Metric Equation Objective

ACC tp + tn
tp + f p + tn + f n

Indicates the ratio of correct prediction to the total
number of evaluation samples [49].

SN tp
tp + f n

Measures the fraction of correctly classified
positive patterns [49].

SP tn
tn + f p

Measures the fraction of correctly classified
negative patterns [49].

GM sn + sp
2

Measures the average sensitivity (sn) obtained
under each class [50].

BA
√

sn × sp Measures the roots of the products sn and sp [50].

CK 2 × ((TP × TN) − (FP × FN))
((TP + FP)×(FP + TN)) + ((TP + FN) × (FN + TN))

Consistency value between 2 raters (observation
and prediction) [51].

MCC (TP × TN) − (FP × FN)√
(TP + FP) × (TP + FN) × (TN + FP) × (TN + FN)

Measures the performance of the classification
algorithm through the correlation between

observations and predictions [51].

ROC-AUC AUC =
Sp − np(nn + 1)/2

npnn

The ROC curve is built based on sn (sb-Y) with sp
(sb-X), and AUC is an integral ROC [10].

3. Results

3.1. Continuous Data Parameter Normality Characteristics

Some machine learning algorithms assume that the training data are normally dis-
tributed, so that identifying the normality characteristics of the data for evaluating the ap-
plication of machine learning algorithms is necessary. This research uses a non-parametric
alternative statistical Kolmogorov–Smirnov test (K-S) to display the normality characteris-
tics. The K-S test uses the cumulative distribution to determine the distribution level of
data [52]. Moreover, the K-S test is reliable for various purposes to efficiently establish
Goodness of Fit [53]. Table 3 denotes the results of the K-S test from the landslide and
non-landslide training dataset.

Table 3. Result of K-S test training dataset.

Parameter

Landslide Training Point Non-Landslide Training Point

D-Value p-Value
Normal

Distribution
D-Value p-Value

Normal
Distribution

River Density 0.167 2.32 × 10−6 No 0.096 0.04519 No
Annual Rainfall 0.165 3.47 × 10−6 No 0.104 0.01946 No
Distance to Fault 0.258 6.76 × 10−16 No 0.151 3.92 × 10−5 No

Elevation 0.107 0.01467 No 0.101 0.02766 No
Distance to River 0.192 5.39 × 10−7 No 0.152 3.03 × 10−5 No

NDVI 0.175 5.39 × 10−7 No 0.149 4.74 × 10−5 No
Slope 0.140 2.04 × 10−4 No 0.113 7.78 × 10−3 No
TWI 0.088 9.00 × 10−2 Yes 0.205 8.66 × 10−10 No

Hypothesis: H0 = normally distributed; H1 = not normally distributed.
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The error rate in decision making is set to 5% = 0.05, with the decision-making criteria
using sig.α or p-value. If sig.α < α, then H0 is rejected [54]. The results of the K-S test shows
that all parameters in non-landslide training are not normally distributed. Moreover, in
the landslide training data, only the TWI parameter is normally distributed with a p-value
of 0.09.

3.2. Landslide Susceptibility Modeling Results

Before performing KNN for the landslide susceptibility model, it is required estimating
the value of k to generate the number of nearest neighbors considered from a point. The
estimation of the k-value used the cross-validation technique. Cross-validation is performed
with three iterations to optimize the accuracy. Figure 4 illustrates the results of the measure
of the k-value. Based on the cross-validation results for the estimated k-value for the 50:50
KNN model, the optimum k-value was 3, with a maximum accuracy of 0.814, while for
the 60:40 KNN model, the value of k produces a maximum accuracy of 3 with a maximum
accuracy of 0.796. The KNN 70:30 model had a maximum accuracy when the k value was 7,
with a maximum accuracy value of 0.817.

Figure 4. Cross-validation to obtain the best k value for each scenario of the KNN algorithm.

The KNN yields probability values of landslides from 0 to 1. The average probability
values of the KNN 50:50, KNN 60:40, and KNN 70:30 models are 0.449, 0.338, and 0.365,
respectively. The probability values are then classified into low susceptibility (0–0.3), mod-
erate susceptibility (0.3–0.6), and high susceptibility (0.6–1) [42]. Figure 5 illustrates the
result of each scenario, where (A), (B), and (C) demonstrate the results of landslide suscep-
tibility modeling using the KNN. The 50:50 KNN model indicates that high susceptibility
dominates the study area with an area of 147,319.29 km2 (42%) as opposed to the 60:40 KNN
model being dominated by moderate susceptibility with an area of 195,318.54 km2 (56%).
For the 70:30 KNN model, the study area was dominated by low susceptible with an area
of 180,326.16 km2 (51%).
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Figure 5. Landslide susceptibility modeling result of 7 models. (A) KNN 50:50 model. (B) KNN 60:40
model. (C) KNN 70:30 model. (D) NB 50:50 model. (E) NB 60:40 model. (F) NB 70:30 model. (G) RF
70:30 model.

Likewise, the NB algorithm applies three scenarios between training and testing
composed of 50:50, 60:40, and 70:30. The results indicates that the probability values of
landslides in the NB 50:50 model has a range of 6.24 × 10−10 to 1, with an average of 0.451.
Moreover, the NB 60:40 model generates a probability range between 5.68 × 10−14 and 1,
with an average of 0.424. In the NB 70:30 model, the probability values of landslides lay
between 5.87 × 10−12 and 1, with an average value of 0.299. In addition, the NB models
also classifies the susceptibility. Figure 6 illustrates the proportion of the study area based
on the probability classification of landslides. The classification of all scenarios showes
that low susceptibility dominated the study area; 51% of the study area was classified as
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low susceptibility in the NB 50:50 model, with 179,493.57 km2, as opposed to the NB 60:40
model with 231,354.63 km2 (66%). Moreover, the area with low susceptibility on the NB
70:30 model was 235.410.39 km2 (67%). On the contrary, only RF 70:30 generates more than
50% high susceptibility.

RF
70:30

NB
70:30

NB
60:40

NB
50:50

KNN
70:30

KNN
60:40

KNN
50:50

Low Susceptible 19% 67% 66% 51% 51% 38% 24%

Moderate Susceptible 31% 5% 5% 6% 35% 56% 34%

High Susceptible 51% 28% 30% 43% 13% 6% 42%
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Figure 6. Landslide susceptibility classes’ percentages for each model.

The RF algorithm only implements a scenario between training and testing (70:30) to
produce a landslide susceptibility map. In the RF modelling, it was necessary to estimate
the best mtry, which is the number of random variables, before establishing a DT. The best
mtry estimation agrees using a cross-validation technique. Figure 7 illustrates the results of
the cross-validation.

Figure 7. Cross-validation results to obtain the best mtry of the RF model.

According to results, the mtry value which produces the highest accuracy (0.896) of
the RF model was 11. The RF 70:30 generates probability values from 0.01 to 1, with an
average of 0.595. After generating the RF model, it classified the level of susceptibility
to landslides based on the respective value. The result indicates that high susceptibility
dominated 51% of the study area, with 177,208.83 km2 distributed over the edge.

4. Discussion

This research produces seven landslide susceptibility models. All models indicates that
high levels of landslide susceptibility located on the edge of the study area, except for the
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KNN 60:40 and KNN 70:30 models. The probability values generated by all models ranged
from 0 to 1. The probability values of landslides approaching 0 indicated no susceptibility
to landslides. On the contrary, once the probability value was close to 1, it refers to an
increased susceptibility to landslides [55]. Then the probability value can be classified into
three levels of landslide susceptibility, composed of low, moderate, and high when the
probability value ranged from 0 to 0.3, from 0.3 to 0.6, and from 0.6 to 1, respectively.

The evaluation is conducted towards training and testing data. For training data,
ACC and CK were measured. Figure 8 depicts the evaluation results of each model using
these parameters. The RF 70:30 model generates the highest values for ACC and CK, with
values of 0.915 and 0.819, respectively. In comparison, the NB60:40 model yields the highest
evaluation value for ACC and CK, with values of 0.863 and 0.691, respectively. For the
KNN algorithm, the KNN50:50 model produces the highest ACC and CK values among all
the scenarios, with ACC and CK values of 0.823 and 0.597, respectively.

Figure 8. Result of evaluation of each model on training data.

Eight parameters (ACC, SN, SP, BA, GM, MCC, CK, and ROC–AUC) are used to
evaluate the performance of each model. Figure 9 depicts the results of the evaluation
of each model using these parameters. The RF 70:30 model generates the highest values
for six evaluation parameters, namely, ACC, SN, GM, BA, CK, and MCC, with values of
0.884, 0.765, 0.863, 0.857, 0.749, and 0.876, respectively. Moreover, for the SP parameter, the
NB 50:50 and KNN50:50 models have the highest value among the other models, namely,
0.977. The NB 50:50 model had the lowest performance with six evaluation parameters,
namely, ACC (90.806), SN (0.536), GM (0.757), BA (0.724), CK (0.556), and MCC (0.601).
Moreover, the KNN 70:30 model obtains the lowest performance for the SP evaluation
parameter (0.846).

ROC–AUC measures the performance of each model for distinguishing landslide and
non-landslide as a binary value. ROC–AUC is the relationship curve between SP and SN.
Figure 10 illustrates the results of the ROC–AUC of training and testing data. Based on the
ROC graph, all models have an AUC of more than 0.7, which indicates that the model had
good performance [46]. Compared to testing data of other models, the RF 70:30 generates
the highest AUC of 0.943. On the contrary, the model with the lowest AUC value was
KNN70:30 (0.852), meaning that the performance of KNN in identifying landslides was
low. In line with the AUC value in the testing data, the AUC in the RF algorithm training
data and the 70:30 scenario produces the highest AUC compared to other models, with a
value of 1. Moreover, the lowest AUC value for training data is obtained with KNN 60:40,
with an AUC value of 0.922. In addition, KNN 70:30 produced the lowest values of ACC,
SP, CK, and MCC, with respective values of 0.814, 0.846, 0.611, and 0.624. Moreover, the
most optimum scenario of the KNN splitting ratio between training and testing was 50:50,
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which produces the highest values in five of the eight evaluation parameters. It comprises
ACC (0.833), SP (0.977), CK (0.625), MCC (0.658), and AUC (0.881).

Figure 9. Result of evaluation of each model.

Figure 10. ROC–AUC plot of training and testing data.

Figure 11 depicts the relative variable contribution degree of each model. In general,
slope led to the highest relative contribution degree in all models, with a value of 100%.
However, each model produces a different sequence of contribution degrees on each
parameter. Looking at the lowest contribution degree, the NDVI has the lowest relative
contribution degree in the RF 70:30 and NB 70:30 models, with merely 0.44% and 5.28%,
respectively. For land use, it possesses the lowest relative contribution degree in the NB
50:50 model (7.31%). Moreover, the proportion of geological type in the NB 60:40 model
was just above ten (10.13%). In KNN 50:50 and KNN 60:40 models, the soil type parameter
yielded a relative contribution degree of 10.12% for the KNN60:40 model as opposed to the
KNN50:50 model (8.64%). In the KNN 70:30 model, the parameter with the lowest relative
contribution degree was aspect, with a value of 9.24%.
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Figure 11. Relative contribution degree of each model (SL = slope; RD = river density; DR = distance
to river; EL = elevation; AR = annual rainfall; DF = distance to fault; AS = aspect; GT = geological
type; ST = soil type; LU = land use).

Among all models, RF was the appropriate model to discriminate non-landslide
areas from landslide areas based on landslide conditioning factors, considering the model
evaluation performance and accuracy [56]. The evaluation parameters comprise ROC–AUC,
ACC, SP, SN, GM, BA, CK, and MCC. According to the evaluation results, RF 70:30 was
the best model with the highest value of seven of the eight evaluation parameters. In the
application of the NB algorithm, the optimal ratio between training and testing scenarios
is 60:40, as it generated the highest value in five of eight parameters [57]. Moreover, the
scenario with the lowest performance wis the 50:50, since it generates the lowest value in
six of the eight evaluation parameters. RF performes the best in this research, followed
by KNN and NB sequentially. In addition to implementing algorithms using similar
conditioning factors, KNN, RF, and NB yielded good performance, with AUC values of
0.8903, 0.8690, and 0.8639, respectively [58]. The excellent performance of these three
algorithms in predicting landslides was also approved by additional conditioning factors
such as curvature, lithology, road ratios, and forest area ratios [59].

The KNN algorithm shows the lowest performance compared to the best models of
the other algorithms. However, compared to the overall splitting ratio scheme, the NB
algorithm produces the lowest performance compared to the KNN and RF algorithms.
Based on the results of the continuous data normality test in the previous sub-section,
the training data do not normally distribute. Otherwise, the NB algorithm assumes that
the data does not normally distribute [60]. Therefore, this research applies numerical
training normality tests on the data to determine the normality of data distribution using
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the Kolmogorov–Smirnov (K-S) test. Eventually, the K-S test proves that NB’s performance
depends on the training data distribution.

The most influential parameter of all models is the slope. In several studies related
to landslide susceptibility modeling using machine learning algorithms, the slope param-
eter dominantly leads to the highest relative contribution as opposed to other parame-
ters [8,11,47]. Other research produces different contribution levels, such as elevation [61]
and rainfall [62], while the slope parameter has a contribution level in the fifth order. In
this research, the distribution of landslide training data dominantly occurred on slopes
between 8◦ and 30◦, which are classified as rather steep slopes. According to the influence
of topography on the landslides occurrence, ref. [63] found that landslides tend to occur at
slope values between 15◦ and 25◦, as the slope angle controls shear forces and stresses on a
slope [64]. The slope angle level affects how much shear stress there is and how low the
level of slope stability is [65]. As the slope angle increases, the tangential stress increases
in the consolidated soil layer, while the axial stress (shear strength increases on a steeper
slope) and the slope stability level decrease accordingly. As a result, slope angle triggers the
potential for rock mass increase and ultimately triggers soil movement down the slope [64].
Variations in the slope value affect the magnitude of the stress on the potential shear surface
and determine the deformation mechanism [66]. Furthermore, the saturation of the fill
slope causes the rock mass to slide down the slope because the high compressibility and
mobility of air in the unsaturated void allow the fill slope to initiate undrained failure. The
saturation level on the fill slope is determined by the type of soil and the hydrological
conditions [67,68].

The lowest relative contribution level is divergent in each model. The NDVI had the
lowest relative contribution level in the RF 70:30 and NB 70:30 models. The results of these
two models indicates that the model is less associated with NDVI data. The landslide
training data tend to occur at NDVI values between 0.24 and 0.787 which is classified as low
to high vegetation density [37]. According to the influence of vegetation density in identi-
fying landslides occurrence, it does not significantly contribute [69]. On the other hand,
ecological damage, indicated by low vegetation density, will trigger landslides. Therefore,
it is necessary to consider ecological restoration as the primary means of preventing and
controlling landslides [70]. Vegetation can be an effective measure for mitigating land-
slides, as it can promote the shear strength of the soil through a series of mechanical and
hydrological effects [71].

The land cover parameter is found to be the lowest relative contribution level in the
NB 50:50 model. This research plots all the training datasets regardless of the land cover
type. However, the locations were mainly in a forest area, and built-up areas, including
roads, were non-significant, as the spatial resolution of the imagery is 30 m while the road
width usually is less than 30 m. As a result, a misclassification possibly occurred due to
the road being covered by vegetation. Hence, land cover is also an essential factor in the
assessment of landslide susceptibility [72]. Changes in land cover, such as deforestation,
which is used to support various human activities, can increase slope instability, which
causes landslides [73].

The soil type parameter has the lowest relative contribution level in the KNN 50:50
and 60:40 models; 57.90% of landslides occurred on Gleisol soil of the study area. Gleisol
has a loamy texture, as it is formed in a basin area and is affected by excessive water [74].
Loamy soil increases the potential of landslides because the loose soil is relatively soft after
being exposed to water and breaks when the air temperature is too high [75]. There is a rela-
tionship between soil type and landslide occurrence regarding geotechnical properties [76].
The geotechnical properties consist of hydraulic conductivity, infiltration rate, runoff and
increased pore water pressure on the slope, volume change, and the rate of decrease in
shear strength during rain [77]. These geotechnical properties are also related to the type of
geology of an area [78]. Other areas that have the potential for landslides are sandy slope
areas. When sandy slope areas also have the characteristics of an area with high rainfall,
slope instability will increase, and ultimately landslides will occur [79]. In the NB 60:40
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model, the geological parameter contributes as the lowest order. Based on the distribution
of the training dataset, landslides tend to occur with the characteristics of rocks originating
from volcanic deposits. Volcanic deposits are easily weathered rocks, especially tuff, which
is highly weathered to wholly weathered. On the other hand, previous studies have proved
that geology or lithology contributes relatively significantly [58,69,80].

In the 70:30 KNN model, aspect contributes as the lowest order, which is opposed to
other research finding that aspect has a relatively significant contribution level [58,69,80].
In this research, the landslides dominantly occurred on slopes facing northeast, with a
percentage of 28%. The direction of the slope is related to the amount of sunlight intensity.
In areas continuously exposed to direct sunlight, the organic content of the soil composition
in the area is low, which causes the area to be easily dispersed and ultimately triggers
landslides. The northern aspect is more susceptible to landslides, where landslides occur
in the southern hemisphere, and the southern aspect is more susceptible to landslides in
the northern hemisphere and vice versa [81]. In the northern hemisphere, the direction of
the slopes facing south has a higher intensity of sunlight than slopes facing north. In areas
exposed to direct sunlight continuously, the organic content of the soil constituents in the
area is low, which triggers the area to easily disperse, and ultimately causes landslides [81].
However, aspect does not contribute significantly to this research model, since Indonesia
is a country situated in the equatorial region. As a result, sunlight intensity is almost the
same in all directions [82].

Evaluation of landslide susceptibility is carried out to accurately determine areas that
are susceptible to landslides [83]. Mistakes in determining landslide susceptibility can
lead to false judgment, resulting in loss of life and property. The landslide susceptibility
map becomes fundamental for evaluating sustainable disaster mitigation issues [83]. A
machine learning approach can accurately and efficiently predict the level of landslide
susceptibility. The application of machine learning to evaluate landslide susceptibility has
not been widely implemented in Indonesia. In addition, the landslide susceptibility map in
the study area still applies the conventional scoring method with low accuracy. As a result,
machine learning has the potential to be implemented. Moreover, machine learning can
efficiently update landslide susceptibility maps continuously. Determining the splitting
ratio between training and testing data is crucial in determining the model’s accuracy.
Hence, this research is expected to provide recommendations for further research using the
RF, KNN, and NB algorithms. Subsequently, it can save time in the process of determining
the splitting ratio between training and testing for landslide susceptibility modelling.

5. Conclusions

This research compares the performance of the RF, KNN, and NB algorithms in
producing a spatial model of landslide susceptibility in Malang Regency, East Java Province,
Indonesia. According to the results, the RF algorithm dominantly led to the highest value
of evaluation parameters, composed of ACC, SN, GM, BA, CK, and MCC, with respective
values of 0.884, 0.765, 0.863, 0.857, 0.749, and 0.876. In addition, RF generates the best
performance, with an AUC of 0.943. On the other hand, the optimum splitting ratios
between the training and testing data for the NB and KNN algorithms in the case study
were 60:40 and 50:50, with AUC values of 0.928 and 0.916, respectively. Slope contributes
as the highest relative contribution degree for all the models, with the same value of 100%.
According to the best model, high susceptibility dominates Malang Regency, which includes
51% of the study area. Thus, the predictive model can assist policymakers in promoting
sustainable mitigation for the potential location. However, optimization methods and prior
knowledge concerning selecting landslide conditioning factors and landslide occurrence
inventories are necessary to improve prediction accuracy. This research recommends
utilizing multi-temporal data for more complex analyses in future research.
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Abstract: Compound events occur when multiple drivers or hazards occur in the same region
or on the same time scale, hence amplifying their impacts. Compound events can cause large
economic damage or endanger human lives. Thus, a better understanding of the characteristics
of these events is needed in order to protect human lives. This study investigates the drivers and
characteristics of floods in Europe and North America from the compound event perspective. More
than 100 catchments across Europe and North America were selected as case study examples in order
to investigate characteristics of floods during a 1979–2019 period. Air temperature, precipitation,
snow thickness, snow liquid water equivalent, wind speed, vapour pressure, and soil moisture
content were used as potential drivers. Annual maximum floods were classified into several flood
types. Predefined flood types were snowmelt floods, rain-on-snow floods, short precipitation floods
and long precipitation floods that were further classified into two sub-categories (i.e., wet and dry
initial conditions). The results of this study show that snowmelt floods were often the dominant
flood type in the selected catchments, especially at higher latitudes. Moreover, snow-related floods
were slightly less frequent for high altitude catchments compared to low- and medium-elevation
catchments. These high-altitude areas often experience intense summer rainstorms that generate the
highest annual discharges. On the other hand, snowmelt-driven floods were the predominant flood
type for the lower elevation catchments. Moreover, wet initial conditions were more frequent than
the dry initial conditions, indicating the importance of the soil moisture for flood generation. Hence,
these findings can be used for flood risk management and modelling.

Keywords: floods; compound events; flood typologies; precipitation; catchment characteristics

1. Introduction

Floods are a natural hazard that can cause large economic damage and endanger
human lives [1–3]. In order to protect human lives and property, either effective early warn-
ing systems or comprehensive flood-risk management are needed. In order to implement
flood risk management measures such as hybrid flood protection infrastructure, under-
standing of flood mechanisms across different spatial scales, climates, elevations and other
catchment-related characteristics is required [1]. This also applies to the snowmelt-related
floods [2,3], which are the focus of this study.

Snow cover and snowmelt can affect the occurrence of floods in different ways. For
example, a combination of snowmelt and intense precipitation with higher air temperature
can generate so-called rain-on-snow floods, which can cause significant flood damage
due to the compound effect. In recent years, special attention has been given to various
compound events. Definitions and typologies for compound events were recently presented
by Zscheischler et al. (2020) [1]. According to Zscheischler et al. (2020) [1], compound events
can be classified into four main types, namely preconditioned events, multivariate events,
temporally compounding events and spatially compounding events. Preconditioned events
are hazards created or exacerbated by a pre-existing condition, as in the case of rain-on-snow
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floods [2,3]. Multivariate events are caused by multiple drivers and/or hazards occurring
in the same geographic region within a temporal boundary, such as a combination of
fluvial and coastal floods or a combination of drought and heat waves [4,5]. Temporally
compounding events are a sequence of hazards occurring in a spatially bounded region,
such as a series of large rainstorms causing flooding [6–8]. Spatially compounding events
experience single or multiple hazards within a given time period [9,10], such as the large
floods that occurred in Germany, Belgium and the Netherlands in 2021 [11].

This study focuses on compound events, where snowmelt is one of the driving forces
of flooding. These type of events occur most frequently in northern regions in the northern
hemisphere and conversely in the southern hemisphere, and in alpine areas [3,12,13]. This
type of hazard becomes a potential threat for society when snow depth increases during the
winter and then melts rapidly as a result of a sudden temperature rise or precipitation event.
The significant melting of snow can saturate the soil and consequently lead to excessive
surface runoff that can cause flooding, especially in cases when the ground is frozen. Many
rivers around the globe experience this type of flooding each year. If it rains at the same time
as the snow melts, even more severe flooding can occur, known as rain-on-snow floods [2,3].
Not many studies have been conducted that focus on examining the characteristics of rain-
on-snow floods at large spatial scales. Most studies have been conducted focusing on
smaller spatial scales. For example, Sikorska et al. (2015) [14] classified the most frequent
flood types in Switzerland into six categories: snowmelt, rain-on-snow, flash, glacier-
melt, short-rainfall and long-rainfall floods. Floods were classified using decision tree
and the fuzzy method [14]. This study demonstrated that the predominant flood types
in Switzerland are long-rainfall and short-rainfall floods. The potential drivers of flood
events were also examined by Merz and Blöschl (2003) [15], who investigated floods
in Austria. They found that there are significant regional differences between different
climatic and terrain zones in Austria. Furthermore, they also analyzed the seasonality of
flooding, which indicates the time of the year when the catchments are most likely to be
flooded. Additionally, the authors reported that long-term rainfall events are the main
cause of flooding in Austria. Recently, Berghuijs et al. (2019) [16] examined the potential
drivers of the most extreme floods across Europe. The main drivers considered were
snowmelt, extreme precipitation, and high antecedent soil moisture. Extreme precipitation
(i.e., maximum annual discharge is a result of the largest precipitation event) was found
to be the least dominant driver in generating floods in Europe. On the other hand, this
mechanism was the most pronounced in the mountainous regions of the Alps and the
Carpathians. Furthermore, the melting of snow was the second-most important flood
generation mechanism in Europe, with this factor dominating in Eastern Europe and
Scandinavia. However, [16] showed that the most important flood generation mechanism
across Europe was high antecedent moisture. It should be noted that [16] focused primarily
on the flood dates and did not consider the complete flood hydrographs.

There are still many open questions that need to be addressed to improve the un-
derstanding and prediction of floods, e.g., the seasonal characteristics of snow-related
events, which climate factors are the main drivers of floods, etc. Therefore, the main aim
of this paper is to classify floods into different categories according to their causes and
to identify which flood types are most common in different parts of Europe and North
America. Additionally, this study also focuses on analyzing the relationships between flood
types and elevation, climate zone, and catchment area.

2. Data

The research includes 107 catchments throughout Europe and North America. The se-
lected catchments are shown in Figures 1 and 2 for North America and Europe, respectively.
A detailed list of selected catchments with their main characteristics is presented in the
Supplement prepared (Table S1) based on Brazda (2021) [17]. These 107 catchments were
manually selected to include catchments in different climate zones, elevations, etc., and
with the most complete discharge dataset. The focus of this study was Europe and North
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America and catchments located between 40◦ and 70◦ latitude were selected. Hence, all
these catchments are located in the mid-latitudes, meaning that all four seasons (autumn,
winter, spring, summer) define the climate characteristics. Additionally, nested catchments
were not taken into consideration. Hence, the idea was to have roughly uniform distribu-
tion of catchments in these two continents based on the above limitations and discharge
data availability. For all catchments, the AM sample was visually checked in order to
detect possible significant changes in the sample size due to human impact (e.g., dam
construction). We argue that these 107 catchments are a valid representation of a typical
catchment for the selected study area.

Figure 1. Gauging stations locations for catchments that were selected in North America.

Figure 2. Gauging stations locations for catchments that were selected in Europe.

Daily discharge data for the selected catchments were obtained from the Global
Runoff Data Centre [18]. Daily mean discharge from 1979 to 2019 was used in the study.
Additionally, the catchment boundaries were also obtained from the GRDC [18]. Figure 3
shows an example of the daily discharge time series for the Penobscot River catchment in
the USA, which was one of the selected catchments in North America.
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Figure 3. Example of the river discharge time series for one of the investigated catchments for the
period 1979–2019. River discharge data were obtained from the GRDC. The Penobscot river is located
in the USA and has a catchment area of 17,317 km2, and most of the catchment area is located in the
Warm Summer Humid Continental climate zone.

The Köppen–Geiger system [19] was used to identify the corresponding climate zone
of each of the selected catchments. The Climate Change and Infectious Diseases Group [19]
was used to obtain the climate zone data. Table 1 shows the climate zones that were
considered. The distribution of catchments per climate zone is shown in the Supplement
(Figure S1).

Table 1. The climate zones of the considered catchments based on the Köppen–Geiger system.

Acronym Climate Zone

BSK Cold Semi-Arid

CFA Humid Subtropical

CFB Temperate Oceanic

CFC Subpolar Oceanic

CSB Warm Summer Mediterranean

DFA Hot Summer Humid Continental

DFB Warm Summer Humid Continental

DFC Subarctic

DSB Mediterranean-Influenced Warm Summer Humid Continental

DSC Mediterranean-Influenced Subarctic

ET Tundra

Global elevation data were downloaded from EarthEnv [20] to determine the catch-
ment mean elevation. The elevation data used in this study were a gridded dataset with a
spatial resolution of 1 km. Figure 4 shows the elevation data and the catchment boundaries.
The distribution of catchments per elevation zone is shown in the Supplement (Figure S3).
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Figure 4. The elevation (m.a.s.l.) data with catchment boundaries (black polygons).

All climate data, except soil moisture data, were obtained from the Copernicus Agrom-
eteorological Indicators Data Store [21]. The period used was 1979–2019. The grids had
a spatial resolution of 0.1◦. Table 2 displays all the climate information downloaded and
used in the scope of this study.

Table 2. List of climate variables that were taken into consideration in the scope of this study.

Variable Description Unit

Temperature Mean 24 h air temperature at a 2 m height K

Precipitation Total volume of water fallen per unit area over the 24 h period mm/day

Snow Thickness Mean depth of snow cover over the 24 h period cm

Snow Thickness Liquid Water
Equivalent (LWE)

Mean depth of liquid over the 24 h period assuming all snow
melts and there is no runoff, soil penetration or evaporation cm

Vapour Pressure Mean water vapour pressure measured over the 24 h period hPa

Wind Speed Mean wind speed at 10 m height m/s

Soil Moisture Volume of water in the top soil layer (0–7 cm depth) m3/m3

Soil moisture data were obtained from the Copernicus Data Store [22]. Hourly ERA5
data at individual levels from 1979 to the present was used. The hourly value at 12:00
was used for further analysis. ERA5 is one of the products that is frequently used in
many different fields [4,23–25], providing a reanalysis of global climate and weather that
combines model data with observations into a globally complete and consistent dataset
using data assimilation technique.

3. Methods

3.1. Flood Hydrograph Seperation

R software was used to conduct the data analysis (i.e., data import, clipping of the
gridded data, etc.) [26]. The Annual Maximum (AM) method [27–30] was used to determine
the flood events. In the scope of this study, we did not focus only on peak discharge values
but we extracted the entire flood hydrographs [29], which was not the case in some previous
studies [16]. We decided to extract the climate data for the entire duration of the hydrograph
rather than just extracting data only on the day of the maximum peak discharge. This
is because in many catchments there is a lag between precipitation and runoff, and the
flood-driving climate factors often occur on the days before the peak. Baseflow separation
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was used to determine the start and the end of the hydrograph. It is a frequently used
method for hydrograph definition [29,31,32]. Baseflow is often considered as part of the
stream water that originates from groundwater [32]. The surface runoff hydrograph starts
when overland flow exceeds baseflow and ends when there is no more water belonging to
the overland runoff. To determine the shape of the hydrograph, as well as the start and
the end date, the Baseflow Index Method (BFI) from the “lfstat” package (Koffler et al.,
2016) [33] in R was used. A detailed explanation of the BFI method can be found in the
report on Low-flow Estimation and Prediction [34]. Hence, for each AM peak discharge
value, the corresponding flood hydrograph was extracted from the daily discharge time
series for all 107 stations.

3.2. Flood Typology

In order to analyze the compound flooding, the hydrographs were first divided
into classes that included multivariate compound events and pre-conditioned compound
events. The methodology used in this study is relatively similar to one implemented by
Sikorska et al. (2015) [14], as some similar flood types were used. However, we decided to
additionally distinguish between dry and wet event conditions (Table 3). This resulted in
the eight flood types presented in Table 3.

Sikorska et al. (2015) [14] indicated that when snow cover exceeded 5% of the catch-
ment area, the flood can be considered as influenced by snow, and the flood type in this
case is either a snowmelt (SMF) flood or a rain-on-snow (ROS) flood. In case rain falls
on top of the existing snow cover, then this is considered a ROS event. The threshold for
precipitation used in this study to identify the ROS flood was 12 mm, which causes more
than 1 mm of snowmelt (Table 3). The amount of snowmelt was determined by subtracting
the snow thickness liquid water equivalent (LWE) from the previous day’s LWE. The total
thickness of the solid snow was not considered in this calculation because snow thickness
can decrease, which changes the density of the snow without causing snowmelt runoff [35].
A SMF flood occurs when snowmelt exceeds 1 mm and less than 12 mm of precipitation
falls (Table 3). To determine if the snow cover was in an initial wet or dry condition, snow
density characteristics were investigated. Kuusisto (1984) [35] studied snow density during
melting periods. Snow density depends on many factors, including snow thickness, air and
snow temperature, precipitation, etc. Moreover, snow density can also vary regionally, and
thus a direct comparison of snow densities between the selected catchments would not be
an optimal solution. Therefore, the percentage of snow density increase during the melting
phase can be compared. Kuusisto (1984) [35] wrote that snow density increased by more
than 20% during the final phase of melting. This value (i.e., 20%) was used in the study as
a threshold to determine whether the conditions were initially wet or dry. If snow density
increased by more than 20% from the beginning of the hydrograph to the day of maximum
snowmelt, it can be assumed that the snow was not in the process of melting, and the event
(i.e., hydrograph) can be classified as an initial dry condition. If the increase in density
was less than 20%, it can be assumed that the snow was already close to melting. Hence,
the hydrograph can be classified as having initial wet conditions. Furthermore, the day
of maximum snowmelt was used to determine the change in density, since there may be
situations where, on the day of the peak hydrograph, the snow cover and thickness is close
to zero, meaning that all the snow has already been melted. To obtain the snow density, the
LWE was compared to the total solid snow thickness.

In cases when snow cover is less than 5% of the catchment area, it can be assumed
that snowmelt has a minor impact on flood generation [14]. In this case, the main driver
of the flood event is precipitation. The precipitation floods in the study were divided into
short-precipitation floods (SPF) and long-precipitation floods (LPF). A SPF event occurs
when the rainfall duration does not exceed 1 day and rainfall amount is greater than 12 mm.
A LPF occurs when the rainfall duration is from 2 to 4 days and the rainfall amount exceeds
25 mm [14,36]. In the case that both conditions are fulfilled, the event was classified as LPF.
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Moreover, multiple peaks in the hydrograph were assumed to be the LPF event [36]. The R
package “pracma” was used to determine the number of peaks in the hydrograph [37].

Soil moisture data were used to determine the initial conditions (i.e., wet or dry)
of the event. In order to calculate the percent saturation, data for each catchment were
examined, and the largest daily volumetric water content for each catchment was defined.
This maximum water content was assumed to be 100% saturation. All other values were
then selected as numerators above this maximum value, resulting in the daily percent
saturation content. The threshold was set at 75% (Table 3). This threshold was selected after
some preliminary investigations and it was found to be a reasonable threshold to be used
in relation to defining the antecedent conditions. By applying these constraints to each of
the identified flood hydrographs, they were classified into eight categories. If an individual
flood hydrograph did not meet any of the eight pre-determined categories (Table 3), it was
classified in the “other” category. Figure 5 shows the classification process.

Table 3. Flood typology used in this study. References that were used to define the threshold values
are presented in the square brackets.

Flood Type Precipitation [14] Snow Cover [14] Snowmelt [14]
Antecedent

Moisture
Condition

Other [36] Abbreviation

Rain-on-Snow Flood
with Dry Conditions >12 mm >5% >1 mm >20% Increase in

snow density [35] ROS-D

Rain-on-Snow Flood
with Wet Conditions >12 mm >5% >1 mm <20% Increase in

snow density [35] ROS-W

Snowmelt Flood with
Dry Conditions <12 mm >5% >1 mm >20% Increase in

snow density [35] SMF-D

Snowmelt Flood with
Wet Conditions <12 mm >5% >1 mm <20% Increase in

snow density [35] SMF-W

Long-Precipitation
Floods with

Dry Conditions

>25 mm over
4 days <5% <1 mm

<75% soil
saturation at start

of hydrograph
Multiple Peaks LPF-D

Long-Precipitation
Floods with

Wet Conditions

>25 mm over
4 days <5% <1 mm

>75% soil
saturation at start

of hydrograph
Multiple Peaks LPF-W

Short-Precipitation
Floods with

Dry Conditions
>12 mm in 1 day <5% <1 mm

<75% soil
saturation at start

of hydrograph
SPF-D

Short-Precipitation
Floods with

Wet Conditions
>12 mm in 1 day <5% <1 mm

>75% soil
saturation at start

of hydrograph
SPF-W

Figure 5. Visual representation of the flood classification process shown in Table 3.
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Additionally, the differences in climate zones, catchment areas, and altitudes were
also considered in analysis. The climate zone covering most of the catchment area was
selected as the dominant zone of the individual catchment (see Supplement Figure S1).
Four dominant climate zones were identified in the study, namely warm summer humid
continental climate, temperate oceanic climate, tundra, and subarctic climate zone (see
Supplement Figure S1). Other climate zones were only relevant to 1–3 catchments and were
not considered in the classification by climate zone. The catchments were also divided into
three categories according to their size (see Supplement Figure S2): large (>10,000 km2),
medium (between 200 and 10,000 km2), and small (<200 km2). Furthermore, the catchments
were also divided into three categories by catchment mean elevation: high (>1000 m.a.s.l.),
medium (between 500 and 1000 m.a.s.l.), and low (<500 m.a.s.l.) (see Supplement Figure S3).

4. Results and Discussion

4.1. Flood Typology Classification for All Catchments

Following the presented methodology for the extracted AM events (i.e., 41 events were
extracted for each catchment), main climate characteristics during these events were exam-
ined (see Supplement Figures S4–S7). Some relatively large variability in the snow thickness,
soil moisture and other variables during these events can be seen across Europe and North
America (see Supplement Figures S4–S7). Hence, the percentage of snowmelt-related
floods differed among the selected 107 catchments (see Supplement Figures S8 and S9).
We argue that selected catchments represent a variety of conditions between the 40◦ and
70◦ latitude. Figures 6 and 7 show the results of the flood classification methodology for
the selected European and North American catchments using heat maps. Several conclu-
sions can be drawn from the heatmaps shown in Figures 6 and 7. Firstly, the majority
of the AM floods that occurred in the investigated catchments (107 in total) were clas-
sified as snowmelt-driven floods (SMF). The snowmelt-driven floods (i.e., SMF-W and
SMF-D types) represent 39% of all floods considered on both continents (Figures 6 and 7).
Secondly, for all categories (i.e., ROS, SMF, SPF, and LPF), the wet conditions (-W) were
always more prevalent than the dry conditions (-D) (Figures 6 and 7). The dry initial
conditions accounted for 45%, 36%, 20%, and 19% of ROS, SMF, SPF, and LPF, respectively
(Figures 6 and 7). These results are in accordance with what was reported in some previous
studies that pointed to the importance of soil moisture on flood generation [16,38]. It
should be noted that the percentage of dry initial conditions (-D) was higher for the snow-
influenced floods (i.e., ROS and SMF) compared to SPF and LPF. Hence, high soil moisture
values frequently occur with SPF and LPF events, and compound occurrence frequently
results in flooding. It should be noted that the dry initial conditions for the snow-influenced
floods were determined based on snow density. More specifically, the ROS floods made up
55% of the floods in the wet initial condition (Figures 6 and 7). The main reason for this
is that rain quickly increases snow density prior to melting [39]. Furthermore, less than
20% of SPF and LPF events were seen where the maximum annual flood started at less
than 75% soil saturation. Based on this fact, it is reasonable to assume that antecedent soil
moisture is an important driver in flood generation in Europe and North America. These
results are consistent with findings from previous studies [16,38]. It can also be seen that
the percentage of SMF-W in general decreased from north to south (Figures 6 and 7). For
flood hydrographs that we could not classify into any of the predefined categories for the
North America catchments (i.e., Other type), an opposite situation is evident (Figure 6).
For European catchments, the percentage of SPF-W and LPF-W generally increases from
south to north (Figure 7). It should be noted that the selected thresholds (Table 3) could
have an impact on the percentage of the occurrence of different flood types. For example,
increasing the snow cover threshold (i.e., from 5% to 10 or 15%) would reduce the number
of snow-related flood events. Additionally, increasing the 12 mm precipitation threshold
related to the SPF events would decrease the number of these events. However, we argue
that smaller changes in the selected thresholds would have a relatively minor impact on
the presented results.
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Figure 6. Heatmap for the North American catchment distribution of annual maximum (AM) flood
typologies. Catchments are sorted from the south to the north.

Figure 7. Heatmap for the European catchment distribution of annual maximum (AM) flood typolo-
gies. Catchments are sorted from south to north.
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4.2. Flood Typology Classification Based on Climate Zone

The flood types were also classified based on the predefined climate zone of each
catchment. For each climate zone, the mean distribution of flood typologies was considered.
Figure 8 shows that the CFB and DFA zones are more evenly distributed across the different
typologies, with the SPF and LPF being nearly equal to the SMF. The DFC zone has the
highest magnitude of floods in the SMF-W category (Figure 8). The ET climate zone is
dominated by the two dominant flood types, namely SMF-W and ROS-W (Figure 8). ET is
the only one of the four climate zones (i.e., CFB, DFA, DFC, and ET) that includes more
than three catchments, where ROS-W occured as the dominant flood type (Figure 8). This
is likely due to the large amounts of rainfall in many mountainous regions where the ET
climate is found [14].

Figure 8. Heatmap for the annual maximum (AM) flood typology classification by climate zone,
showing results for the four climate zones with the highest number of catchments.

4.3. Flood Typology Classification Based on Catchment Area

Figure 9 shows the flood types classified based on the size of the catchments. The
SMF floods dominate in the large catchments, whereas the SPF and LPF are more common
in the other two categories (Figure 9). There are several reasons for these results, one of
which is the threshold related to the snow cover used to classify hydrographs (Table 3). The
threshold for the snow cover, above which the flood was considered to be influenced by
snow, was 5% (Table 3). In case of very large catchments, it is more likely that a part of the
catchment is covered with snow, exceeding the threshold for a flood to be influenced by
snowmelt. On the other hand, small catchments may be completely without snow coverage
since small catchments do not cover large geographical areas. Additionally, several larger
catchments in North America are located at higher latitudes. Another possible reason
for these results is the soil moisture concept discussed by Harpold et al. (2015) [39].
Harpold et al. (2015) [39] argued that the highest soil moisture is reached within 5 days
after the snowpack has completely melted. Moreover, in the case of large catchments, a
rainfall storm would need to have a large spatial extent in order that catchment reaches
the soil moisture required for an annual maxima flood generation. Hence, if a spatially
extensive snowpack melts throughout the watershed, the entire watershed can reach the
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high soil moisture required. The number of LPFs is relatively small for large catchments
(Figure 9), which is to some extent an unexpected result, as LPFs generally have the ability
to saturate large catchments, while on the other hand, the spatial extent of most extreme
and short-duration precipitation events (i.e., SPFs) may be spatially limited [9]. Moreover,
the results indicate that the medium and small catchments are dominated by SPFs and
LPFs (Figure 9). This is likely due to the fact that the spatial extent of the storm required for
these catchments to become saturated is generally smaller. Very extreme rainfall events
(e.g., summer thunderstorms) tend to have a smaller spatial extent, which is why SPFs
are more common in small- and medium-sized catchments (Figure 9) [15]. Additionally,
small- and medium-sized catchments often have a shorter time of concentration compared
to large catchments [15]. Thus, SPF and LPF can more easily saturate the entire small and
medium catchments, resulting in high peak discharge values.

Figure 9. Flood typology classification based on the catchment area size.

4.4. Flood Typology Classification Based on Elevation

Figure 10 shows the distribution of floods in each flood type based on the mean
elevation of the 107 catchments considered. It can be seen that the catchments at higher
elevations have a slightly lower number of SMF and ROS floods than catchments at the
medium and low elevations (Figure 10). A similar conclusion was also reached by Sikorska
et al. (2015) [14]. Sikorska et al. (2015) [14] used two different methods to classify the floods.
When investigating high-elevation catchments, they found that precipitation floods were
the dominant flood type when using the crisp decision tree method [14], which is similar to
the findings of this study (Figure 10). However, when they applied the fuzzy method, they
found that although the dominant flood type remained the precipitation-driven flood, many
of the floods were also classified as SMF or ROS floods [14]. However, the snow-related
aspects do not exceed the thresholds to classify the flood as a snowmelt-affected flood.
Sikorska et al. (2015) [14] hypothesized that this is due to a large amount of rainfall that
falls in mountainous regions. Flash floods also often occur in mountainous catchments [14],
which is not a flood type in the assessment shown in this study (Table 3). Moreover,
Berghuijs et al. (2019) [16] found that extreme precipitation is the only predominant driver
in mountainous regions [16]. Despite the large amounts of snow in the mountainous
regions, rainfall can form the dominant flood type, which is caused by rainfall rather
than snowmelt.
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Figure 10. Flood typology classification based on the catchment elevation.

5. Conclusions

Based on the conducted analyses that were made based on the 107 selected catch-
ments, several important conclusions can be made. It should be noted that the selection of
107 catchments that are relatively uniformly distributed between 40◦ and 70◦ latitude in
Europe and North America represent a subset of all catchments and that different selection
of catchments could yield different results. However, we argue that 107 catchments are
representative for the selected study area. The results presented in this study indicate
that snowmelt floods (especially SMF-W events) are often the dominant flood type in the
catchments considered, especially for the catchments located at higher latitudes.

When comparing the relationships between the flood types (Table 3) and the climate
zones, catchment elevation, and size, further conclusions could be made. Firstly, the
primary flood type in the DFC and ET zones was SMF-W (Figure 8). Secondly, it was also
shown that the large catchments had a slightly higher proportion of SMFs (Figure 9), while
the medium and small catchments had slightly larger numbers of SPFs and LPFs (Figure 9).
Thirdly, the occurrence of some specific flood types was found to change with latitude (e.g.,
SMF-W slightly decreased from south to north in Europe and North America). Finally,
floods with wet soil initial condition (-W) occurred much more frequently than floods with
the dry soil initial conditions (-D) in our analysis (Figures 6–10). The high frequency of the
floods with wet soil initial conditions (-W) indicates that this may be a type of compound
event—where a high antecedent moisture condition would qualify as a pre-existing event.
In summary, these findings could be useful in the flood forecasting process, where special
focus could be given to situations where soil moisture is high and a medium-precipitation
event is expected in the following days. Additionally, these results could be used in
the process of optimizing the flood risk management in relation to specific catchment
characteristics (i.e., size, elevation, location climate). Moreover, finding could also be
used for design of flood protection measures such as hybrid infrastructure. In the future,
a similar study could be conducted, taking into account additional influencing factors
(e.g., soil temperature as a proxy of ground frozenness) using an even larger number of
catchments and testing different thresholds, which could be supplemented with additional
statistical analysis.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijgi11120580/s1, Figure S1: Distribution of the selected 107 catch-
ments per climate zone; Figure S2: Number of catchments based on the size of the catchment area.
Small catchments have less than 200 km2, large catchments are greater than 10,000 km2 and medium
catchments are between 200 and 10,000 km2; Figure S3: Number of catchments based on the elevation.
High elevation catchments are greater than 1000 m.a.s.l. Low elevation catchments are less than
500 m.a.s.l. Medium elevation catchments are between 500 and 1000 m.a.s.l; Figure S4: Mean snow
thickness in the selected North American catchments during annual maximum events in the period
1979–2019; Figure S5: Mean snow thickness in the selected European catchments during annual
maximum events in the period 1979–2019; Figure S6: Mean soil moisture in the selected North
American catchments during annual maximum events in the period 1979–2019; Figure S7: Mean
soil moisture in the selected European catchments during annual maximum events in the period
1979–2019; Figure S8: Percentage of annual maximum events that were affected by snowmelt in
North America in the period 1979–2019; Figure S9: Percentage of annual maximum events that were
affected by snowmelt in Europe in the period 1979–2019; Table S1: A list of 107 selected catchments
with their main characteristics.
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Abstract: Buenaventura on the Colombian Pacific coast has experienced a wide range of threats,
mainly due to the effects of coastal erosion and flooding. Globally, millions of people will expe-
rience increased vulnerability in the coming decades due to climate change. The change in the
coastline (1986–2020) over time was analyzed with remote sensors and the Digital Shoreline Analysis
System (DSAS) in conjunction with GIS. A total of 16 indicators were selected to quantitatively
evaluate exposure, sensitivity, and adaptive capacity to construct a composite vulnerability index
(COVI). The endpoint rate (EPR) of the change in the coastline was estimated. The results showed
that 35% of the study area was stable, 18% of the coastline experienced erosion processes, and 47%
experienced accretion. The COVI analysis revealed that coastal watersheds show great spatial het-
erogeneity; 31.4% of the area had moderate vulnerability levels, 26.5% had low vulnerability levels,
and 41.9% had high vulnerability levels. This analysis revealed that the watersheds located in the
northern (Málaga Bay) and central (Anchicaya, Cajambre, and Rapposo basins) parts of the coastal
zone were more vulnerable than the other areas.

Keywords: coastal vulnerability index; coastal erosion; shoreline change; GIS; remote sensing;
coastal watersheds

1. Introduction

The coastal areas of Colombia cover less than 7% of the land surface of the country
and support a population of 6 million inhabitants [1]. In recent years, the Colombian
Pacific coast has experienced a wide range of catastrophic threats to its ecosystems, pop-
ulation, and infrastructure, mainly due to the effects of coastal erosion and flooding [2].
The destruction of ecosystems, climate change, population growth, and human activities,
such as deforestation and mining, will increase vulnerability even more in the coming
decades [3–6]. Globally, approximately 10 million people experience negative effects from
tropical storms, coastal erosion, floods, and storm surges each year, which is expected to in-
crease to 50 million by 2080 due to climate change and high sociodemographic pressure [7].
Coastal flooding and sea level are expected to increase significantly by the middle of the
century [8]. How vulnerability should be assessed to generate adaptation and resilience
strategies in the face of potentially disastrous events in the coastal zone is a global concern
of scientific communities. [8,9]. However, the intensity and severity of hazardous events
vary spatially, and they often become disasters when combined with the vulnerable socioe-
conomic environment of the human population [10]. Vulnerability is the degree to which a
system is susceptible to natural hazards and social changes; it is a concept with multiple
dimensions, encompassing the economic, political, physical, social, and environmental
dimensions [11]. Vulnerability to any event can be explained as a function of exposure, sen-
sitivity, and the ability to adapt or cope [12]. The definition of vulnerability implemented
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by the Intergovernmental Panel on Climate Change (IPCC) is one of the most widespread
concepts in the world for conducting vulnerability assessments of multiple hazards [7].
To address this problem in Colombia, it has been proposed to include coastal erosion in
disaster risk management as a public policy approach [13,14].

In recent years, evaluation of coastal vulnerability with an emphasis on geomorpholog-
ical and physical factors has focused on the use of the coastal vulnerability index (CVI). This
index was designed to estimate areas of risk caused by environmental and socioeconomic
hazards and is widely used to implement decision-making within the framework of risk
reduction. The CVI approach was initially developed by Gornitz [15,16] to study the vul-
nerability of the east coast of the United States of America due to sea level rise. The index
allows to relate six physical variables in a quantifiable way and produces numerical data
that cannot be directly equated with particular physical effects, but it does highlight the
regions where the various effects of sea level rise may be greater [17]. Subsequently, the CVI
was used to assess vulnerability along the Atlantic coast by the United States Geological
Survey (USGS) in the study of Thieler and Hammar-Klose [18]. In the analysis of coastline
change, some studies focused on analyzing the geomorphological and physical factors of
the CVI but also included socioeconomic variables to develop resilience to the threats of
climate change [19–24]. The state of vulnerability can be determined based on a group
of conditions and processes resulting from physical, environmental, and socioeconomic
factors that increase the susceptibility of people living in coastal areas to natural hazards,
including their ability to adapt and respond to disasters [25,26].

Based on the CVI, other indices have been developed that focus more extensively
on the conceptual structure of the vulnerability index using a process of analytical hierar-
chy, and this index is called the composite vulnerability index (COVI). Recently, several
researchers have used this method to evaluate coastal vulnerability by incorporating differ-
ent factors that indicate different dimensions (physical, ecological, social, and economic),
including parameters such as biophysical exposure, sensitivity, and adaptive capacity
or resilience to evaluate multiple hazards. For example, Zhang et al. [27] evaluated the
coastal vulnerability to climate change of Bohai in China considering fifteen factors related
to ecological, physical, and socioeconomic conditions in a COVI. Ghosh and Mistri [28]
evaluated coastal vulnerability as a function of multiple factors with the composite vulner-
ability index in the lower delta of the Sundarban, India considering 22 indicators, mainly
physical, climatic, and socioeconomic variables. Sahana and Sajjad [29] evaluated floods
focusing on storm surge with a vulnerability index composed of remote sensing infor-
mation in the Sundarban Biosphere Reserve, India considering seventeen factors. Finally,
Furlan et al. [30] developed a multidimensional CVI to evaluate vulnerability to flood
scenarios along the Italian coast considering multiple indicators. Although there are studies
that evaluate the general vulnerability of the coasts of Buenaventura [13,21,22,31,32], these
have focused mainly on geomorphological and physical dimensions. Numerous studies
have been conducted around the world to examine different aspects of coastal vulnerability
with a geospatial approach using the CVI and COVI (Table 1).

The objective of this work is to analyze coastal erosion at the watershed level using
remote sensors in conjunction with GIS to build a COVI. Selection of indicators and the
weighting assigned to each indicator are important parts of the study. Incorporation of
physical, environmental, and socioeconomic variables to evaluate various indices using
a weighting method allows a comprehensive view of spatial vulnerability considering
that coastal watershed is the most appropriate scale to assess vulnerability to natural and
anthropogenic changes.
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Table 1. Studies conducted worldwide with a geospatial approach that uses coastal vulnerability
indices.

Index Tools * Year Country Author

Coastal Vulnerability
Index (CVI)

GIS, RS, DSAS 2021 India Bera and Maiti, 2021 [19]
GIS, RS, DSAS 2021 India Pramanik et al., 2021 [23]
GIS, RS, DSAS 2021 Egypt Abdelaty, 2021 [33]
GIS, RS, DSAS 2021 Greece Boumboulis et al., 2021 [34]
GIS, RS, DSAS 2020 Italy Sekovskia et al., 2020 [35]

GIS 2019 Brazil Serafim et al., 2019 [24]
GIS 2019 Spain Koroglua et al.,2019 [36]
GIS 2019 Malaysia Mohda et al.,2019 [37]

GIS, RS, DSAS 2019 Bangladesh Hoquea et al., 2019 [38]
GIS 2019 Colombia Coca and Ricaute, 2019 [21]

GIS, RS, DSAS 2019 Colombia Gallego and Selvaraj, 2019 [22]

Composite Vulnerability
Index (COVI)

GIS, RS, DSAS 2021 Tunisia Hzami et al., 2021 [39]
GIS 2021 China Zhang et al., 2021 [27]
GIS 2021 India Ghosh and Mistri 2021 [28]
GIS 2021 Italy Furlan et al., 2021 [30]
GIS 2020 India Rehman et al., 2020 [40]
GIS 2020 India Sahana and Sajjad,2019 [29]

GIS, RS, DSAS 2019 Bangladesh Mullick et al., 2019 [41]

* Geographic information system (GIS), remote sensing (RS), and Digital Shoreline Analysis System (DSAS).

2. Materials and Methods

2.1. Study Area

Buenaventura is located in the Valle del Cauca in the central zone of the Colombian
Pacific in one of the four Colombian departments on the coast of the Pacific Ocean. It
encompasses the extensive area of the municipality and special port district of Buenaven-
tura. It is bounded by the San Juan River to the north and by the Naya River to the south,
semienclosed by two bays: Bay of Buenaventura and Bay of Malaga. Geographically, the
coastal area has a total coastline of approximately 686 km and extends over the coordi-
nates 4◦2.23′82′′ N and 77◦26′18.87′′ W, at 3◦13′33.21′′ N and 77◦32′41.63′′ W, as shown
in Figure 1. The coastline is composed of barrier islands, intertidal zones, rocky cliffs, rocky
platforms, alluvial and intertidal plains, estuaries, sandy beaches, and salt marshes [42].
The beaches of Buenaventura are of natural origin according to the sedimentological de-
scription from the granulometric analysis made by the Institute of Marine and Coastal
Research of Colombia (INVEMAR) on beach samples for the sectors of Punta Soldado,
La Bocana, and Piangüita in the department of Valle del Cauca. The average grain size
distribution in different sampling campaigns in the years 2012, 2014, and 2015, indicates
that, in this area of the municipality of Buenaventura, sediments showed a tendency mostly
to a fine grain size [1]. The Chocó Biogeografico (biodiversity hotspot) includes the Pacific
coastline between Darién in Panama and northwestern Ecuador, passing through the entire
coastal strip of Colombia.

Within this hotspot, mangroves are one of the most important ecosystems in Valle del
Cauca, covering 140 km2 [43]. The tides of the Colombian Pacific coast are regular semidi-
urnal, that is, with two high tides and two low tides per day with a period of approximately
12.25 h, and their tidal range can reach slightly more than 4 m [44]. Precipitation generally
shows monomodal behavior, with an annual average between 6821 mm and 7673 mm, and
there are approximately 228 days with rain. The average annual temperature for the Pacific
is 25.7 ◦C [45]. Structurally, Buenaventura is characterized by a flat morphology in the
south and cliff formations to the north. There are three levels of terraces present in the river
courses that seem to indicate recent tectonic activity of uplift and subsidence, formed by
Quaternary deposits [44]. Economically, the port area of Buenaventura consists of several
maritime terminals that provide port and logistics services in the most important port of
the Colombian Pacific through which a large part of Colombia’s foreign trade occurs. This
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port moves 47% of Colombian exports and imports, including those related to mining, oil,
and its derivatives [46]. Its population for 2020 was approximately 311,827 inhabitants,
demographically composed of African descendants and mixed-ancestry and indigenous
communities [47,48]. A percentage of the population lives in stilt houses located at or
close to the shoreline exposed to waves, increasing their degree of exposure to the tidal
regime [45]. Insufficient resources, multidimensional poverty, and remoteness are great
challenges for the community. Almost 33.3% of the population lives below the poverty
level [47]. Regarding studies of the coastal zone of Buenaventura related to vulnerability,
the study by Ricaurte et al., 2021 [11] stands out, where the dominance of each compo-
nent of the threat in the Colombian Pacific region was analyzed and it was established
that it is determined by fragility, mainly social, economic, and institutional. Coca and
Ricaurte 2019 [21] studied the town of La Barra since 2013, when a process of avulsion
towards the sea began; associated with this event, an accelerated coastal erosion process
could be measured, where the vulnerability of the population was evaluated. Gallego
and Selvaraj 2019 [22] applied the coastal vulnerability index (CVI) using eight variables,
three physical/hydrodynamic, three geological/geomorphological, and two socioeconomic
variables. The coastline was classified into five relative vulnerability ranges. Cifuentes et al.,
2017 [31] focused on studying the magnitude of shoreline change north of Buenaventura
District over a 30-year period. On average, they found a rate of change of −0.2 m per
year in the coastline, reflecting its erosional trend, with maximum EPR values of 26.9 m
of accretion and −21 m of coastal erosion. Uribe et al., 2020 [32] explored the degree of
vulnerability of ecosystem services in the northern area of Buenaventura to natural and
anthropogenic hazards. Sea level rise and coastal erosion are the most likely threats to
ecosystem services. One of the most significant dangers that threatens the study area is
coastal erosion. To evaluate vulnerability, the analyses were grouped using the division of
coastal watersheds (Figure 1).

2.2. Shoreline Change

The change in a coastline is an important parameter that can have a natural or an-
thropogenic origin and indicates the pattern of accretion/erosion in conjunction with
different processes, such as waves, tides, sea levels, and topographic shape [49]. The
coastline represents the boundary between the sea and the landmass. Evaluating coastal
erosion is essential for planning future management strategies, land use planning, and risk
management [50]. Historical photographs and high-resolution satellite data were used to
monitor coastline changes during a period of 34 years (from 1986 to 2020). Initially, ortho-
mosaics were created for 1986 based on data acquired from official datasets (aerial photos)
of the Agustín Codazzi Geographical Institute (IGAC). Two sets of airborne synthetic
aperture radar images (synthetic-aperture radar SAR) were used, the first for 2009 and
the second of 2015, being the most accurate public use datasets available for the terrain of
Buenaventura (Table 2). In addition, 19 high-resolution orthorectified images of the Plan-
etScope satellite from 2020 were acquired. The constellation of PlanetScope satellites
consists of groups of individual high-resolution satellites; each satellite has a 3U CubeSat
format (10 cm by 10 cm by 30 cm). The complete constellation of PlanetScope is approx-
imately 130 satellites and is capable of taking images of the entire Earth’s surface with
four spectral bands (blue, green, red, and near infrared (NIR)); it has a spatial resolution
of 3 m and a high temporal resolution (24 h) [51]. All sensors were used to extract the
multitemporal coastline (Table 2).
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Figure 1. Map of the municipality of Buenaventura and its coastal watersheds.

Table 2. Images and products of the remote sensors used for coastline data extraction.

Year Sensor Product * Spatial Resolution Source

1986 Aerial photography Orthomosaic 3 m Geographic Institute of Colombia (IGAC)

2009 Synthetic-Aperture Radar
Image—Airborne Orthomosaic, DSM, DTM 3 m Geographic Institute of Colombia (IGAC)

2015 Synthetic-Aperture Radar
Image—Airborne Orthomosaic, DSM, DTM 3 m Regional Autonomous Corporation of

Valle del Cauca (CVC)

2020 Satellite PlanetScope Orthomosaic 3 m This project

* Digital surface model (DSM) and digital terrain model (DTM).

To reduce uncertainty during the vectorization of the coastline from remote sensing
data at the time of image capture, the tidal fluctuation error was taken into account [52].
The tidal errors were considered low since the acquired images showed the tides oscillating
between 0.4 and ±2.3 m based on the data from the port of Buenaventura tide gauge,
obtained from tide tables for the study area [53]. Taking into account the spatial resolution
of 3 m, the possible displacement of the coastline by the tide was within the spatial
uncertainty of the data. A visual interpretation of the coastline was performed using
Catalyst software (v 2022, PCI Geomatics, Ontario, Canada) and ArcGIS (v 10.8, ESRI,
Redlands, California, USA), in conjunction with Digital Shoreline Analysis System (DSAS)
software, which complements ArcGIS and was developed by the Coastal Change Hazards
project of the US Geological Survey. The DSAS allows the user to calculate rate of change
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statistics from multiple historical coastal positions; the rate of shoreline disposal/change
was estimated through the software by calculating the end point rate (EPR) statistical
parameter. The EPR is obtained by dividing the distance of coastline movement with the
elapsed time between the oldest and youngest coastline position [54]. From the digitized
coastlines for the four examined years (Figure 2), the date, uncertainty value, and type of
coastline were standardized as required by the DSAS format. To create a uniform baseline,
an interval of 25 m was used to create transects perpendicular to coastlines.

 

Figure 2. Example of digitization of the coastline in Buenaventura Bay in different years: (a) aerial
photography mosaic from 1986, (b) airborne radar image from 2009, (c) airborne radar image from
2015, (d) PlanetScope 2020 satellite image.

2.3. Justification of the Indicators

A methodology was implemented to estimate vulnerability as a function of exposure,
sensitivity, and adaptive capacity in conjunction with an analysis of coastal erosion at the
basin level to understand how to mitigate and adapt to the risks from disasters in the coastal
zone of Buenaventura in the Colombian Pacific. According to IPCC [26], vulnerability
is explained in terms of exposure, sensitivity, and adaptive capacity. In this work, the
COVI refers to the extent to which coastal systems are susceptible to the impacts of coastal
erosion and global change. The COVI was developed based on the exposure index (EI),
the sensitivity index (SI), and the adaptive capacity index (ACI) modified from the Sahana
and Sajjad methodology [29], where resilience is replaced by adaptive capacity. The index

98



ISPRS Int. J. Geo-Inf. 2022, 11, 568

allowed the relationship of physical variables in a quantifiable way with the decision-
making approach using spatial analysis, giving equal weight to the indicators. Exposure
and sensitivity together have a potential impact on coastal systems and are positively
correlated with vulnerability based on the propensity of populations and coastal properties
to be negatively affected by natural hazards [25]. In contrast, adaptive capacity helps to
generate resilience against the adverse consequences of hazards, and this is negatively
correlated with vulnerability [26,55].

Based on bibliographic research (Table 1), a total of 16 indicators were selected for
the quantitative evaluation of the vulnerability indices, the exposure index, the sensitivity
index, and the adaptability index. A detailed description of the selected indicators and their
functional relationships with vulnerability are shown in Table 3. After the establishment
of the index system, values were assigned and weighted using the appropriate formulas.
Each variable was rated from 1 (very low) to 5 (very high) in qualitative ranges. To
evaluate coastal vulnerability in the context of environmental hazards, the multicriteria
spatial analysis (MCSA) approach and the simple average method (SAM) were used; these
quantitative methods are widely used to evaluate vulnerability in the framework of coastal
risk reduction [27–30,40,41].

Table 3. Selected indicators to construct the composite vulnerability index.

Components Indicators Class Range

Exposure

Geomorphology

Barrier island, Flood plain, Intertidal flat without vegetation, Beach 5—Very High
vegetated intertidal flat 4—High

Alluvial valley 3—Moderate
Island 2—Low

Water body, Coastal lagoon, Hillocks and hills, Continental shelf,
Marine terrace 1—Very Low

Slope 0–18◦ 5—Very High
(degrees) 18–25◦ 4—High

25–75◦ 3—Moderate
75–80◦ 2—Low
80–88◦ 1—Very Low

Shoreline change rate −96.30 to −3.0 5—Very High
(m/year) −2.99 to 0.5 4—High

−0.49 to 0.5 3—Moderate
0.51 to 3.0 2—Low
3.1 to 95.9 1—Very Low

Sea level rise rate >9 5—Very High
(mm/year) 6 to 9 4—High

3.9 to 6 3—Moderate
0 to 3.9 2—Low

<0 1—Very Low

Mean tidal range 3.0 to 3.74 5—Very High
(m) 2.25 to 2.99 4—High

1.26 to 2.24 3—Moderate
0.38 to 0.75 2—Low
0.26 to 0.38 1—Very Low

Significant wave height >6 5—Very High
(m) 4 to 6 4—High

2 to 4 3—Moderate
1 to 2 2—Low
<1.0 1—Very Low

Flood inundation risk ENSO floods 5—Very High
Hydrometeorological flooding 4—High
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Table 3. Cont.

Components Indicators Class Range

Roughness of terrain 0.131 (Very rough) 5—Very High
0.128 (Rough) 4—High

0.047 (Roughly open) 3—Moderate
0.020 (Open) 2—Low

0.001 (Smooth) 1—Very Low

Sensitivity

Multidimensional poverty 70.1% to 98.5% 5—Very High
50.1% to 70% 4—High
40.1% to 50% 3—Moderate
30.1% to 40% 2—Low
4.15% to 30% 1—Very Low

Settlements Urbanized area 5—Very high
Villages 4—High

Rural 3—Medium
No settlement 2—Low

Land Use and Land Cover Urban zones, Artificial surfaces 5—Very High
Cultivation areas, Banana, Coconut palm, Miscellaneous 4—High

Shrubland, Guandal forest, Mangrove Forest, Mixed Forest, Natural
grassland, Island, Cultivated grassland, Secondary vegetation 3—Moderate

Temporary flooded areas, Natural areas, Other marshy areas 2—Low
Shallows and intertidal flats, Littoral barriers, Artificial ponds, Ocean,

Beaches, Rivers 1—Very Low

Population
(inhabitant/km2) 80 to 20,656 5—Very High

50 to 80 4—High
15 to 50 3—Moderate
5 to15 2—Low
1 to 5 1—Very Low

Adaptive
capacity Economic activities

Industrial fishing 5—Very High
Artisanal fishing 4—High

Ecotourism 3—Moderate
Landscape 2—Low

Recreation—beaches 1—Very Low

Medical services (Health
care provided)

0 to 56 5—Very High
57 to179 4—High

180 to 327 3—Moderate
328 to 628 2—Low

629 to 1186 1—Very Low

Distance to roads

2000 m 5—Very High
1000 m 4—High
500 m 3—Moderate
250 m 2—Low
100 m 1—Very Low

Literacy rate

<67% 5—Very High
67% to 73% 4—High
73% to 81% 3—Moderate
81% to 86% 2—Low

>86% 1—Very Low

2.4. Exposure Index (EI)

An EI includes the eight factors that trigger the risk of biophysical exposure, and these
factors were compiled from an extensive review of previous studies and expert opinions.
The shape of a coastline is fundamental in analyzing vulnerability due to the degree of
relative resistance that a coastal geoform can have against erosion [56]. To determine the
geomorphology in the coastal zone of Buenaventura, the geomorphological maps devel-
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oped by the Institute of Marine and Coastal Research of Colombia (INVEMAR) [45] and
the geomorphological maps of the Center for Oceanographic and Hydrographic Research
of Colombia (CIOH) [57] were used. The geomorphological units were reinterpreted and
adjusted to a finer scale (1:10,000) using a geomorphometric analysis [58] with the digital
terrain model (DTM) derived from the 2015 radar data. The degree of topographic variation
influences the processes through which hydrometeorological events can expose a coast
to floods and coastline retreat [26,59]. To determine the slope in the coastal zone, the
2015 radar DTM was used. The rate of coastline change indicated change characteristics
that were largely due to erosion and accretion, and the rate of change was calculated with
the DSAS software to determine EPR.

One of the aspects that can generate the greatest vulnerability in coastal areas is sea
level rise [59]. To analyze this aspect, raster data of monthly and annual sea level averages
from satellite observations for the global ocean from 1993 to 2020 were used, and they were
provided by the Copernicus Marine Environment Monitoring Service (CMEMS) [60]. This
dataset provides global estimates of sea level based on satellite altimetry measurements,
and these estimates are calculated with respect to an average reference period of twenty
years (1993–2012) using updated altimetry standards. The data are provided in NetCDF
format with a horizontal resolution of 0.25◦ × 0.25◦. To define the mean tidal range (MTR),
the values obtained for the municipality of Buenaventura from the analysis of Gallego
and Selvaraj [20] were used. The MTR was obtained using the mean high tide differ-
ence (MHW), a record of at least 19 years, and the mean low tide (MLW) from the recorded
data of the Buenaventura tide gauge provided by the University of Hawaii Sea Level
Center (UHSLC) [22]. Significant wave height is a representation of wave energy that
is related to the movement and transport of coastal sediments [22]. For the study area,
the significant wave height data were provided by the CMEMS information system. This
information was compiled with data from the European Center for Medium-Range Weather
Forecasts (ECMWF) [61] in the ERA5, an analysis of historical data. The analysis combines
monthly averages of model data with observations from around the world in a globally
complete and consistent dataset. Three points were selected from the global grid ERA5
at a relative depth of 15 m located between coordinates 3◦49′44.25′′ N, 77◦23′32.05′′ W,
and 3◦49′58.67′′ N, 77◦7′46.89′′ W. The data were recalculated in a regular latitude and
longitude grid with a horizontal resolution of 0.25◦ × 0.25◦ for 1959 to 2020. Significant
wave height dataset has been extracted for the Colombian Pacific area in NetCDF format.

The risk of flooding due to hydrometeorological processes was determined using
hazard maps at a scale of 1:100,000 from the Institute of Hydrology, Meteorology and
Environmental Studies (IDEAM). These maps showed flooding from 1 m to 6 m as a result
of storm surge, heavy rains due to historical accumulation, and flooding due to the El
Niño Southern Oscillation (ENSO). The percentage of area under the different flood risk
levels was calculated to evaluate the average flood risk. Terrain roughness can be defined
generally as a characteristic related to the irregularity or topography of the terrain [62]. This
represents the resistance of the land surface to water intrusion. The greater the roughness
and sinuosity of land surfaces, the lower the vulnerability is [63]. From the 2015 digital
elevation model, the roughness values were obtained.

The EI was determined by Equation (1) as:

Exposure index = (EX1 + EX2 + EX3 + EX4 + EX5 + EX6 + EX7 + EX8)/8 (1)

where the EI is a function of the ranges of geomorphology (EX1), slope (EX2), shoreline
change rate (EX3), sea level rise rate (EX4), mean tidal range (EX5), significant wave
height (EX6), flood inundation risk (EX7), and terrain roughness (EX8).

2.5. Sensitivity Index (SI)

Sensitivity is expressed as the elements at risk where a potential danger could be
triggered. A very important aspect of sensitivity is population density since it plays a
very influential role in the vulnerability of the coastal zone. The population density was
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calculated from the last National Population and Housing Census, which was in 2018 [48].
The multidimensional poverty factor was obtained from official census data. In Colom-
bia, the index for measuring multidimensional poverty was designed by the National
Planning Department (DNP) based on an adaptation of the methodology of Alkire and
Foster (2011) [64]. For Colombia, the direct method evaluates the results of satisfaction (or
no deprivation) that an individual has with respect to certain demographic characteristics
that are considered vital, such as health, education, and employment [65]. In the study
area, the coastal settlements were located within 6 km of the coastline, and their coastal
vulnerability increases as the settlements are located closer to the coast. These data were ob-
tained from the National Administrative Department of Statistics (DANE) from the national
geostatistical framework (NGF). This layer contains the political-administrative divisions
of Colombia: departments and municipalities, population centers, and other geostatistical
areas where populations appear. Finally, this study used land cover and land use data at
municipal level that were developed by the Regional Autonomous Corporation of Valle
del Cauca (CVC) using the Corine Land Cover methodology adapted for Colombia [66].
Determining the land use and land cover in different human settlements is critical when
assessing coastal vulnerability due to the possible socioeconomic impacts and their impacts
on communities.

The SI was determined by Equation (2) as follows:

Sensitivity index = (SE1 + SE2 + SE3 + SE4)/4 (2)

where the sensitivity index is the function of the ranges of multidimensional poverty (SE1),
settlements (SE2), land use and land cover (SE3), and population (SE4).

2.6. Adaptive Capacity Index (ACI)

Adaptive capacity is the potential ability of a system to resist the adverse impact of
hazards using available resources, skills, and technology [26]. Therefore, it is a crucial
factor in determining the impacts of climate change. The distance to road networks
was used to determine transportation services by generating a map of proximity to the
road network using a specific distance, and this area was divided into five buffer zones.
Generally, an increase in the distance to the roads increases exposure due to the difficulty
of accessing or exiting an area. The vulnerable population based on access to medical
services was quantified from the geostatistical data of the 2018 National Population and
Housing Census [48]. The availability of medical services in rural areas helps to strengthen
health services in case of hazardous events. The economic activity factor was calculated
as an aggregation of five factors that can be affected by coastal hazards, and they were
industrial fishing, artisanal fishing, ecotourism, landscapes, and recreation/beaches, which
are vulnerable to varying degrees.

These indicators have a negative correlation with vulnerability and help increase
the resistance of coastal communities to natural disasters. The ACI was determined by
Equation (3) as follows:

Adaptive capacity index = (AC1 + AC2 + AC3 + AC4)/4 (3)

where the ACI is a function of the ranges of economic activities (AC1), medical ser-
vices (AC2), distances to roads (AC3), and literacy rates (AC4).

2.7. Composite Vulnerability Index (COVI)

The composite vulnerability index (COVI) was calculated as positively correlated
with the EI and SI but negatively correlated with the ACI. Using the three indices, the
vulnerability was determined by Equation (4) as follows:

COVI = (Exposure x Sensitivity) − Adaptive capacity (4)
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It was calculated by a simple average of normalized scores (Equation (4)). The value
lies between 0 and 1, denoting very low to very high coastal vulnerability. There are
several studies [27,28,40] that, in recent years, have validated Equation (4); in the case of
India, Sahana and Sajjad 2019 [29] used a variation that replaces the term adaptive capacity
with resilience.

3. Results

3.1. Rate of Coastline Displacement

Coastline movements with respect to erosion and accretion are a direct indicator of
risk. The EPR statistical parameter of the multitemporal coastlines (1986 to 2020) was
estimated after calculating 7818 transects with the DSAS tool; the coastline of Buenaventura
was 406 km long. Further, 35% of the transects on the analyzed coastline in the study area
were identified as stable. However, 18% of the coastline reflected erosion processes, and
47% reflected accretion processes (Figure 3a).

Figure 3. Results of the EPR parameter analysis showing the zones of erosion and coastal accretion.
Locations b and c show places with areas of great change.

Grouping the results of the watershed analysis, the watersheds and the places with
the greatest erosion and accretion are identified in Table 4. The greatest change in coastline
(erosion–accretion) according to the EPR analysis was −96.23 m/year adjacent to the
Raposo watershed in the Bocana de Raposo zone (Figure 3b) and 95.83 m/year adjacent to
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the Málaga Bay watershed in Playa La Concepción (Figure 3c). The general trend of the
coastline was accretion according to the average EPR (2.84 m/year).

Table 4. Watersheds and locations where erosion/accretion occurred along the coastline.

State Watershed km Location km

Erosion

Anchicaya 19.96 Punta Soldado, Punta Santa Barbara 18.27
Cajambre 12.22 Punta Bonita 12.22

Yurumangui 9.52 Punta La Concepción 8.31
Bajo San Juan 9.16 El Choncho 6.87

Naya 7.50 El Ajicito beach 4.7
Malaga Bay 7.27 The Bar 6.05

Accretion

Naya 35.35 Ajicito and Ají beach 32.09
Malaga Bay 32.83 La Concepción Beach 20.1

Bajo San Juan 27.27 Boca de Bajo San Juan 20.08
Cajambre 21.57 Punta Fray Juan 20.73
Raposo 15.65 Raposo mouth 15.29

3.2. Exposure to Coastal Erosion

Approximately 31.7% of the watersheds, concentrated in the central and southern
regions of the municipality of Buenaventura, had low to very low exposure scores, while the
remaining areas had medium exposure scores (23.2%). Of the total watersheds (10), at least
four watersheds were highly exposed to coastal erosion (44.9%) in the high to very high
ranges (Figure 4a). The EI values varied with geographic heterogeneity among the coastal
watersheds, with Málaga Bay registering the highest values. This is mainly attributed to the
relatively higher scores for slope, average wave height, coastal erosion, and risk of flooding
over the area of the watershed directly exposed to the sea (Figure 4a). The places in the
outermost part of the bay are defined as estuarine areas and directly affected by intertidal
processes, and they contain sandy beaches with sand of continental origin, transported by
coastal rivers, and a moderate drainage density. In contrast, Málaga Bay has the lowest
biophysical exposure (Figure 4b); this scenario also occurs in Buenaventura Bay, the area
with the second lowest exposure value. The interior area of the bays is characterized by
large areas of mangroves, small beaches, and cliffs, and the lower scores for this area were
attributed mainly to the risk factors related to flooding, coastal erosion, and average wave
height (Figure 4c).

3.3. Sensitivity to Coastal Erosion

The analysis of the SI revealed that approximately 37% of the areas were classified
as having very low to low sensitivity scores, while the remaining areas were classified as
having medium scores (32%); additionally, some watersheds were highly to very sensitive
(29.4%), as shown in Figure 5a. Of all the coastal areas, the highest SI was calculated for the
city of Buenaventura and the Dagua River watershed (Figure 5b) due to these areas having
the highest scores for multidimensional poverty and population density and being the only
large, urbanized areas. In contrast, the lowest SI was calculated for the interior of Málaga
Bay, which was mainly due to the lower scores for population density and multidimensional
poverty and its lack of urbanized areas (Figure 5c). Most coastal watersheds with mangrove
forests and natural vegetation showed low sensitivity to coastal erosion.

3.4. Adaptive Capacity to Coastal Erosion

The adaptive capacity of the Buenaventura watersheds was low since more than 85%
of the total areas were characterized by low to very low resilience; places that generally
have little or no infrastructure development have no connection to land by roads, and these
areas depend on coastal resources and connections through maritime routes. The remaining
watersheds had medium adaptive capacity scores of 11.2% and high to very high adaptive
capacity scores of 3.1%. The ACI values showed great spatial heterogeneity between the
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coastal watersheds (Figure 6a), with the highest value occurring in Buenaventura Bay
(Figure 6b) and the lowest value occurring in Málaga Bay (Figure 6c). The factor that most
contributed to the high adaptation capacity of the Bay of Buenaventura was the existence
of better facilities and greater access to public services, transportation routes, trade and
tourism services, education, and medical services, while Málaga Bay’s adaptive capacity
was reduced mainly by its relatively lower scores for these factors; in addition, its low
literacy rate resulted in this area having little or no adaptive capacity.

Figure 4. Exposure to coastal erosion in the study area.

3.5. Results of the Composite Vulnerability Index

The COVI analysis revealed that the coastal watersheds showed great spatial hetero-
geneity in their vulnerability levels (Figure 7). In the coastal zone of Buenaventura, 31.4%
of the area had moderate vulnerability values, 22% had low vulnerability values, and 4.5%
had very low vulnerability values. In contrast, 16.18% of the area had high vulnerability
values, followed by a 25.8% with very high vulnerability values, indicating that 41.9% of
the study area had the highest combined vulnerability values. The marine areas exposed
to the ocean in the Málaga Bay watershed (Figure 8a,b), such as the Anchicayá, Raposo,
and Cajambre watersheds (Figure 8a,c), are very vulnerable to coastal erosion as they are
located in the southern–central zone, where hydrodynamic forcing increases due to coastal
relief change.
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Figure 5. Sensitivity to coastal erosion in the study area.

The causes of the high vulnerability levels of these watersheds were their lack of
economic development and resilience, with greater rates of multidimensional poverty,
illiteracy rates, coastal erosion, higher average wave height, and risk of flooding over the
area of the basin directly exposed to the sea. Within these watersheds, there are places
with high vulnerability levels, such as La Boca de La Barra, Ladrilleros, Juanchaco, La Base
Naval, and the sectors between Punta Domingo and Punta Culo de Barco (Figure 8b). In
the Málaga Bay watershed, the interior of the bay had moderate vulnerability levels. This
watershed, although located in a remote, difficult-to-access area, has a high capacity for
recovery of its biophysical environment since a national protected area (Parque Nacional
Natural Uramba Málaga Bay) and a regional protected area (Parque Natural Regional
La Sierpe) have been developed for environmental tourism development and ecosystem
protection. This area also has a low population density and minimal effects from coastal
erosion, but it is highly vulnerable in terms of its ability to adapt due to the low literacy
rate of the population, its lack of public services, and minimal access to medical services.
Watersheds with low to very low vulnerability levels occur in the central (Buenaventura)
and southern (Naya) parts of the coastal zone.
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Figure 6. Adaptive capacity in the study area.

Buenaventura has a network of urban roads and the most important port in Colombia,
where most of the commercial activity is generated, whereas, around the port, infrastructure
and services have been developed. In addition, this area has greater access to services,
transportation, education, and medical services. This is associated with its relatively higher
adaptive capacity and its lower biophysical exposure, which was mainly attributed to
the lower vulnerability scores for flooding, coastal erosion, and average wave height.
On the other hand, the community in this area had a very high sensitivity level due
to its high multidimensional poverty level and highest population density of the entire
coastal area. The Naya watershed has a low vulnerability level mainly due to minimal
coastal erosion, whereas it has the highest accretion rate, low population density, and
low multidimensional poverty. The COVI helped to estimate the most vulnerable coastal
population as a function of coastal erosion. Currently, 82,008 people, representing 26.2% of
the total coastal population of Buenaventura, live in the Málaga Bay watershed (Figure 8b)
and the Anchicayá and Raposo basins, which are the most prone to erosion and have a
greater number of people in areas with very high vulnerability levels compared to those
in the other watersheds (Figure 8c). With the 2100 sea level rise, it is estimated that the
number of highly threatened people will increase with respect to the current scenario.
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Figure 7. Distribution of vulnerability by watershed in the study area.

Figure 8. Composite vulnerability index in the study area.
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4. Discussion

A coastal vulnerability assessment is important for spatial planning and disaster risk
reduction [7,59]. In this study, remote sensing technology and GIS were integrated to study
the change in the coastline in the long-term using active and passive sensors with reasonable
precision. In the analysis with the DSAS tool from 1989 to 2020, the coastline was shown to
experience the greatest change in erosion according to the EPRs, which were recorded as
−96.2 m/year and 95.8 m/year per erosion and accretion event, respectively. There was a
general trend in coastline accretion according to the average EPR of 2.8 m/year, with a total
accretion of 48%. However, the Cifuentes [31] study from 1986 to 2015 showed that, on
average, a change rate of −0.2 m/year occurred, reflecting an erosion trend with maximum
EPR values of 26.9 m/year of accretion and −21 m/year of coastal erosion. The marked
differences in the values of the previous study with those of this study may be explained
from the higher temporal coverage used in this work, mainly in the La Concepción beach
area. This scenario also explains why the study of Cifuentes [31] used data with a low
spatial resolution (30 m). This study used the mean tidal range parameter from the work of
Gallego and Selvaraj 2019 [22]; the data were taken from this study and integrated as a layer
of analysis. We emphasize that, in our work, a higher spatial and temporal resolution was
used in all physical and socioeconomic variables. Regarding the limitations of the study,
oceanographic information was requested from the Colombian Center for Oceanographic
Data, from which it was not possible to obtain a dataset that covered the entire period of
analysis, so the global scale data from ERA5 were used.

This study used the COVI to estimate spatial vulnerability to coastal erosion through
an analysis of coastal watersheds. The vulnerability in the Buenaventura area has been
characterized by previous studies [13,20–22,31,32]. However, an evaluation of its vulnera-
bility to multiple risks and physical, environmental, and socioeconomic parameters, such
as the COVI, has received minimal attention in studies on the coastal zone of Buenaven-
tura. The delineation of the COVI as a function of three indices (EI, SI, and ACI) indicates
comprehensively the critical aspects of coastal vulnerability.

The general analysis of the indices showed that the Málaga Bay basin is highly exposed
according to the EI of the oceanic portion of the coastal zone, mainly due to the weight
of physical factors (slope, average wave height, coastal erosion, and risk of flooding).
Consistent with the results of Uribe et al. [32], the most frequent natural and anthropogenic
hazards occur in the external region of Málaga Bay, and hazards are mainly caused by
water-related erosion, bioerosion, and landslides. Uribe et al. [32] stated that the beaches of
Juanchaco and Ladrilleros in the Málaga Bay area are permanently exposed to strong waves
and high-energy processes. By contrast, in the internal part of the same watershed, the
lowest biophysical exposure occurs because it is protected by the bay, and this internal area
has the lowest SI. Ricaurte et al. [13] stated that the factor determining the erosion threat in
the Pacific region is vulnerability, mainly social, economic, and institutional vulnerability,
and we agree with this conclusion. In this study, the influence that socioeconomic factors
(lack of medical services, low literacy rates, and minimal economic activity) have on
vulnerability scores was verified, and this impact results in a low ACI, hindering the ability
to face coastal hazards. The watershed with the greatest sensitivity to erosion according
to the SI is Buenaventura, mainly due to the high score for the multidimensional poverty
factor and its highest population density. However, this watershed also shows the highest
value of adaptive capacity (ACI) because it has the best facilities and greater access to all
types of services as it is the most urbanized area. The EI showed low biophysical exposure
within the area of the bay because its exposure to biophysical factors is reduced, a concept
consistent with that in Gallego and Selvaraj [22], who affirmed that the biophysical system
of Buenaventura Bay, due to its geomorphological characteristics, steep slopes, and high
vegetation cover, provides it a lower degree of relative vulnerability.

The results of the study revealed that the high exposure (EI) and especially the lack of
adaptive capacity (ACI) directly affected the high vulnerability of the study area, as shown
by the COVI. Coastal watersheds, such as Málaga Bay and Anchicayá, Cajambre, and
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Raposo basins, are the most vulnerable to coastal hazards physically and socioeconomically.
Socioeconomic factors are the main internal element that increases vulnerability. Further,
85% of the watersheds have low adaptive capacity, and households do not have access to
drinking water and medical resources. Most households in the coastal area of Buenaventura
live below the poverty level and have very limited access to economic resources, so they
cannot cope with any type of extreme event. This work analyzed the socioeconomic,
biophysical, and ecological aspects together to provide valuable information on the factors
that are critical to vulnerability at the spatial level. Those responsible for decision-making
will likely be able to act in the most vulnerable areas, using the results as an analytical basis
to develop adaptation strategies in the face of vulnerability and climate change.

5. Conclusions

The use of the COVI provided a broad view of the coastal area of Buenaventura at a
detailed scale; 41.9% of the coastal area has a high level of vulnerability to erosion, with
approximately 82,000 people at risk. This analysis revealed that the watersheds located
in the northern (Málaga Bay) and central (Anchicayá, Cajambre, and Raposo) parts of the
coastal zone were more vulnerable. If this situation continues, then, clearly, the population
will be extremely affected by the increase in potentially disastrous events, such as the rise
in sea level and ENSO events.

Therefore, the vulnerability of the region to coastal erosion will increase in the near
future, further affecting socioeconomic and ecological systems and making it necessary to
plan disaster management actions. Structural and nonstructural measures are needed to
improve the adaptive capacity of the inhabitants, improve the physical resilience of the
environment, and improve the socioeconomic activities of the community. The results of
this type of study can assist decision-makers in highlighting actions to prioritize coastal
areas in the development of management plans and land use planning to improve the
adaptability of coasts to climate change.

This vulnerability assessment can be refined by incorporating other factors into the in-
dices, such as a three-dimensional hydraulic flood model, a valuation of ecosystem services,
and broader sociodemographic aspects, for which more in situ data and complementary
physical monitoring data are needed. This work used data available from optical sensors
and radar; however, in the future, data from high-resolution active sensors, such as light
detection and ranging (LIDAR), could be used as they can generate more accurate results
in terms of modeling the terrain and coastline, providing a more accurate measurement of
spatial vulnerability.
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Abstract: In recent decades, global climate change has made natural hazards increasingly prevalent.
Droughts, as a common natural hazard, have been a hot study topic for years. Most studies conducted
drought monitoring in arid and semi-arid regions. In humid and sub-humid regions, due to climate
change, seasonal droughts and seasonal water shortages were often observed too, but have not
been well studied. This study, using a MODIS satellite-based aridity index (SbAI), investigated
spatiotemporal changes in drought conditions in the subtropical Pearl River Basin. The study results
indicated that the inter-annual SbAI exhibited a significant decreasing trend, illustrating a wetter
trend observed in the basin in the past two decades. The decreasing trend in the SbAI was statistically
significant in the dry season, but not in the monsoon season. The drought conditions displayed an
insignificant expansion in the monsoon season, but exhibited statistically significant shrinking in the
dry season. The Pearl River Basin has become wetter over past two decades, probably due to the
results of natural impacts and human activities. The areas with increased drought conditions are more
likely impacted by human activities such as water withdrawal for irrigation and industrial uses, and
fast urbanization and increased impervious surfaces and resultant reduction in water storage capacity.
This study provided a valuable reference for drought assessment across the Pearl River Basin.

Keywords: drought monitoring; Pearl River Basin; MODIS satellite; SbAI; Google Earth Engine

1. Introduction

Natural hazards are a huge threat to humans and social development. Global warming
has increased the likelihood of the occurrence of natural hazards such as droughts, heat
waves, wildfires, and floods [1,2]. As one of the most serious natural hazards affecting
humans, droughts cause huge casualties and economic losses worldwide every year [3].
For example, more than half of the U.S. states are affected by droughts, leading to an annual
economic loss of approximately USD 6–8 billion [4]. However, currently, humans still know
very little about droughts and need effective ways to combat droughts. Thus, drought
monitoring is an important prerequisite for drought migration.

Previous studies have proposed different drought indices for drought monitoring,
most of which are based on the observations from meteorological stations. Such indices
include the PDSI (Palmer Drought Severity Index) [5], the SPI (Standard Precipitation
Index) [6], and the SPEI (Standardized Precipitation Evapotranspiration Index) [7]. Based
on the observations from meteorological stations, ambient drought conditions can be accu-
rately characterized. However, due to the stations’ low density and uneven distribution, it
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is difficult to achieve large-scale drought monitoring, especially in remote rural areas. There-
fore, these indices cannot represent the general trends and changes in drought conditions
for large areas. Satellites can provide spatiotemporal images with continuous coverage
for large areas, and thus have unique advantages for drought monitoring, especially in
remote areas with few meteorological stations. Based on satellite images, many scholars
have proposed new drought monitoring indices such as the VCI (Vegetation Condition
Index) [8], the TCI (Temperature Condition Index) [8], the SDCI (Scaled Drought Condition
Index) [9], the MIDI (Microwave Integrated Drought Index) [10], the OVDI (Optimized Veg-
etation Drought Index) [11] and the OMDI (Optimized Meteorological Drought Index) [11].
These drought indices can provide better spatial coverage for drought conditions, and
also combine multiple bands to build an integrated drought monitoring index to better
represent drought conditions.

Therefore, with the development in remote sensing techniques, satellite images have
been widely used in drought detection and have made great contributions to drought
monitoring at the global, continental and regional scales. Dehghan et al. [12] used the PDSI
for drought assessment in Fars Province, Iran. Their results proved the strong correlation
between the results simulated from site-based precipitation (R2 > 0.63) and temperature
(R2 > 0.95) observations. At a global scale, Trenberth et al., using the PDSI, concluded
that increased heating due to global warming may not lead to droughts but it is expected
that, when droughts occur, they are likely to occur quicker as well as be more intense [13].
Gidey et al. [14] used the SPI to analyze the temporal and spatial variation of drought in
northern Ethiopia, predicting that due to insufficient precipitation, the region will continue
to be dry in the future. In facts, the SPI based on historical observations also indicated that
the increase in drought frequency, duration, and severity will be significant in Africa, the
Mediterranean region, Eastern Asia, and Southern Australia [15]. The SPI can work stably
even with the difference of precipitation in different regions. It can also derive various
results for different time scales. This is very meaningful for generating diurnal, monthly,
seasonal and annual variations of droughts across a large area. On the basis of the SPI,
considering evapotranspiration, Hernandez et al. [16] proposed the SPEI and used the
metric for drought assessment in southern Texas, USA. The results illustrated that due to
the increase in temperature and decrease in precipitation in the future, the region will be
much drier. Additionally, based on the SPEI and the SPI, Chiang et al. found that that the
presence of anthropogenic forcing has increased the drought frequency, maximum drought
duration, and maximum drought intensity experienced in large parts of the Americas,
Africa, and Asia [17]. In addition, the VCI is also a new drought monitoring method based
on remote sensing technology. Dutta et al. [18] used the VCI to monitor agricultural drought
in Rajasthan (India), and compared this with the results derived from the SPI. They found
that the VCI and SPI results were consistent. The VCI is also a useful tool for assessing
agricultural drought. Zhang et al. [10] proposed the MIDI based on precipitation, soil
moisture and surface temperature, and used the index for drought monitoring in northern
China. Based on validation with the results of the multi-scale SPI, they concluded that it
can be applied well to monitoring of short-term droughts.

As discussed above, most studies conducted drought monitoring in arid and semi-arid
regions. In fact, in humid and sub-humid areas, due to the influence of climate change,
seasonal droughts were often observed too, and seasonal water shortages also reported from
time to time [19–23]. However, few studies have been performed on drought monitoring
in humid and sub-humid areas. This context necessitates studies on seasonal droughts
or water shortages in humid and sub-humid regions. In addition, in the context of global
climate change, drought monitoring is also an important tool to evaluate regional long-term
dry and wet changes. It is also an important indicator for regional environmental changes.

The Pearl River Basin (PRB) is a typical humid and sub-humid area, which is an ap-
propriate study area for such aforementioned studies. The PRB is located in the subtropical
zone, with a mild and rainy climate. However, in recent years, seasonal water shortages
were often reported in the PRB [24,25] but the changes in wet and dry environmental
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conditions and their long-term changes are still unknown. In this study, using MODIS
surface reflectance and surface temperature data, by calculating the metric of the SbAI
(Satellite-Based Aridity Index) and comparing it with the precipitation data, the major
objectives of this study on the spatiotemporal changes in drought conditions in the PRB are
as follows: (1) the inter-annual and monthly variation in the SbAI and the corresponding
changes in drought conditions for the period 2001–2021 for the PRB; (2) spatial distribu-
tion of droughts across the PRB; (3) spatiotemporal variation in drought conditions in the
basin’s representative sub-regions. The study results will improve the understanding of the
seasonal drought characteristics and the long-term changes in wet and dry environmen-
tal conditions in the PRB. It can provide valuable references for drought prevention and
environmental management in the PRB.

2. Materials and Methods

2.1. Study Area

The Pearl River Basin (PRB) is located in southern China (Figure 1a), from 21◦31′ N
to 26◦49′ N and 102◦14′ E to 115◦53′ E, and administratively covers 6 provinces (Yunnan,
Guizhou, Guangxi, Guangdong, Hunan, and Jiangxi) and 2 special administrative regions
(Hongkong and Macau).

Figure 1. Geographical configuration of the PRB and its natural characteristics: (a) rough location of
the PRB; (b) topographical characteristics of the PRB; (c) land use configuration in the PRB in 2020;
(d) distribution of the annual precipitation in the PRB from 2001 to 2019.

Controlled by a subtropical climate, the basin, with a size of 442,100 km2, has an
annual average temperature from 14 to 22 ◦C and an average precipitation from 1200 to
2200 mm [26]. Similar to its high northwest and low southeast topography, its precipitation
varies widely in spatial and temporal distribution: the precipitation in spatial distribution
gradually decreases from west to east. The monsoon season is from April to September,
when 70~85% of the annual precipitation occurs.

With its wide span from west to east across the Yunnan–Guizhou Plateau, the moun-
tains in Guangdong and Guangxi provinces, and the Pearl River Delta Plain, we spilt the
PRB into 7 sub-regions for detailed analysis (Figure 1b): the headwater region (including
the Nanpanjiang River and Beipanjiang River basins) (Area 1); the Hongshui River and
Liujiang River basins (Area 2); the Zuojiang River, Youjiang River and Yujiang River basins
(Area 3); the Heguijiang River, Qianxunjiang River and Xijiang mainstem river basins
(Area 4); the Beijiang River basin (Area 5); the Pearl River Delta (Area 6); the Dongjiang
River basin (Area 7).

According to previous studies [27–30], from the 1960s to 2019, precipitation in the
PRB showed a slight increasing trend, with the most pronounced declines occurring in the
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middle and upper reaches, and an increase in the lower reaches. Inter-annual precipitation
in spring and winter gradually increased in volume, and reduced in summer and autumn.

In addition to the changes in precipitation, studies also displayed that land use also
experienced a great change in the PRB [31,32]. In the last 30 years, the area of waterbodies
and forest land in the PRB has shrunk due to the expansion of urbanization, and there has
been a dramatic increase in built-up areas. The decrease in grassland mainly occurred in
the western part, which was transformed into forest land. The decrease in cropland was
concentrated in the central basin. However, the increase in built-up areas primarily occurred
in the southeast, especially in the Pearl River Delta, contributing to approximately 6.3% of
the delta area, which was mainly converted from crop land and forest land. Nowadays, the
predominant land use in the PRB is forest land, accounting for approximately 67.3% of the
basin; followed by crop land (approximately 25.6%) mainly in the western and central PRB.
After that is built-up areas (approximately 2.5%) in the southeastern PRB; and grassland
(approximately 2.2%) in the western PRB.

2.2. Data
2.2.1. MODIS Satellite Data

Two datasets were used to calculate the SbAI—the surface reflectance dataset and
the surface temperature dataset—both of which were provided by MODIS satellite series.
Compared with other satellite products, MODIS satellites provide better-quality and longer
continuous datasets. Their performance and applicability have been proved in various
studies. However, due to the low spatial resolution, MODIS products can only be used in
large-scale regions.

The MODIS reflectance product is the most common data used for albedo production.
It has two datasets—MOD09GA and MYD09GA—corresponding to products generated
from the Terra and Aqua satellites, respectively. In this study, the MOD09GA reflectance
dataset produced by the Terra satellite was used. The MOD09GA product has a temporal
resolution of 1 day, a spatial resolution of 1 km, and a reflectance spatial resolution of 500 m.
The 500 m reflectance dataset also provided reflectance for Bands 1–7, data quality, data
extent, observation number, and 250 m scanning information. The 1 km datasets provided
descriptive information including observation frequency, data quality, sensor azimuth
and zenith, solar altitude and azimuth, and orbit information. The reflectance of 7 bands
from the 500 m datasets and the solar zenith from the 1 km dataset were used for data
preprocessing and analysis. To reduce the error, we firstly made a cloud removal operation
for the MOD09GA dataset. The dataset was retrieved from the Google Earth Engine (GEE)
image library (https://developers.google.com/earth-engine/datasets/catalog/MODIS_
006_MOD09GA, accessed on 24 June 2022) for image processing and analysis on the GEE
platform using JavaScript.

The surface temperature dataset was acquired from the MOD11A1 dataset produced
by the Terra satellite. A global daily average surface temperature production framework
was established by the coupling of the annual temperature cycle (ATC) model and the
diurnal temperature cycle (DTC) model. Then, the global 1 km average daily surface
temperature product was generated based on the framework. The MOD11A1 dataset has a
temporal resolution of 1 day and a spatial resolution of 1 km. To reduce the error, we also
only used good-quality pixels in the MOD11A1 dataset. The dataset was acquired on the
GEE platform (https://developers.google.com/earth-engine/datasets/catalog/MODIS_
006_MOD11A1, accessed on 24 June 2022). Additionally, it was also processed on the GEE
platform using JavaScript.

2.2.2. Precipitation Data

Precipitation data were used to verify the analysis results of the SbAI. The Tropical
Rainfall Measuring Mission (TRMM) and the Global Precipitation Measurement mission
(GPM) are global typical representatives of high-precision historical precipitation data.
The TRMM satellite provided precipitation data with a temporal resolution of 3 h and a
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spatial resolution of 0.25◦ in the latitude range of 50◦ S–50◦ N in the period 1997–2015.
Since 2014, the National Aeronautics and Space Administration (NASA) and the Japan
Aerospace Exploration Agency (JAXA) began to provide the Global Precipitation Mea-
surement mission (GPM) dataset. As a continuation of the TRMM, the GPM provides
higher-precision precipitation data with a temporal resolution of 0.5 h and a spatial resolu-
tion of 0.1◦, using multiple sensors, multiple satellites, and multiple algorithms combined
with satellite networks and rain gauge inversion. The most used precipitation dataset in
this study was the GPM dataset. This dataset has a monthly dataset on the GEE platform,
which was acquired and processed on the GEE platform (https://developers.google.com/
earth-engine/datasets/catalog/NASA_GPM_L3_IMERG_MONTHLY_V06, accessed on
24 June 2022).

2.2.3. Other Datasets

To support the results of this study, we also obtained the 2001–2020 Water Resources
Bulletin for the PRB from the Pearl River Water Resources Commission (PRWRC) (http://
www.pearlwater.gov.cn/zwgkcs/lygb/szygb/, accessed on 28 August 2022). The statistical
results of the annual precipitation in the PRB were compared with the GPM precipitation
data, and the overall trend obtained in this study was verified. Most of these datasets
came from the government’s official reports. Thus, the data quality can be guaranteed,
meaning that they were able to support the relevant analysis in this study. The land
use data were obtained from the 30 m annual land cover datasets in China from 1990
to 2021 (https://zenodo.org/record/5816591#.Yvj5-3ZBxPY, accessed on 14 May 2022).
DEM data came from the Geospatial Data Cloud (http://www.gscloud.cn, accessed on
14 May 2022). These datasets were mainly used to investigate the causes for changes in
drought conditions.

2.3. Methods
2.3.1. The Satellite-Based Aridity Index (SbAI)

The SbAI [33] is the ratio of the land surface temperature (LST) difference between day
and night to the absorbed solar radiation. The physical meaning of the SbAI is the opposite
of heat capacity determined by land surface wetness, which can be derived as follows:

SbAI =
ΔTs

Rs
(1)

where
ΔTs = LSTday − LSTnight (2)

Rs = (1 − r)S0 cos θc (3)

where r in Formula 3 can be computed as:

r = 0.160r1 + 0.291r2 + 0.243r3 + 0.116r4 + 0.112r5 + 0.081r7 (4)

ΔTs is the LST difference between the day and night values, and Rs is the absorbed
solar radiation, calculated from the broadband albedo r, the solar constant S0 (1367 W·m−2)
and the solar zenith angle at the Sun’s apex θc, where r is obtained from the experimental
formula [34]. For dry surfaces, the SbAI is larger because of its larger heat capacity, resulting
in a larger ΔTs, and vice versa.

2.3.2. Trend Analysis

The Mann–Kendall (M–K) test [35] was used to analyze the significance of the SbAI’s
changing trends. The M–K test is a non-parametric method, and it does not require the
samples to follow a random distribution. The test’s results are not affected by missing data
and a few outliers, giving it strong applicability. The test steps are as follows:
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S =
n−1

∑
j=1

n

∑
i=j+1

sgn
(
xi − xj

)
(5)

where xi and xj are observations:

sgn
(

xi − xj
)
=

⎧⎨
⎩
−1 xi − xj < 0

0 xi − xj = 0
1 xi − xj > 0

(6)

The calculation of the variance Var(S) is as follows:

Var(S) =
n(n − 1)(2n + 5)

18
(7)

Z and p are obtained by the following equations:

Z =

⎧⎪⎪⎨
⎪⎪⎩

S−1√
Var(s)

S < 0

0 S = 0
S+1√
Var(s)

S > 0
(8)

p = 2(1 − cd f (|Z|)) (9)

For Z, if |Z| ≥ 1.96, there is a significant change at the confidence level of 0.05.
Theil Sen Median slope estimation [36] was used to calculate the intensity of the trend,

which is calculated by Equation (10).

TSSlope = median
( xj − xi

j − i

)
(10)

The Pettitt test [37] was used to detect the abrupt change year, and the test steps are
as follows:

Ut,N = Ut−1,N +
N

∑
J=1

sgn
(
xt − xj

)
f or t = 2, 3, . . . , N (11)

where xt and xj are observations, and Ut,N indicates whether two sample sets are from the
same population.

The test statistics K(t) and p are given as follows:

K(t) = max|Ut,N | (12)

p = 2e
−6(KN )2

N3+N2 f or t = 2, 3, . . . , N (13)

3. Results

3.1. Temporal Trends of the SbAI

To quantify the temporal trends of drought conditions in the PRB during the period
2001–2021, this study calculated the monthly SbAI (Figure 2a–l) and the yearly SbAI
(Figure 2m) on the basis of daily MOD09GA and daily MOD11A1 products. According to
seasonal division in China [38], this study assumed that spring is March, April, and May;
summer is June, July, and August; autumn is September, October, and November; winter is
December, January, and February. According to the precipitation in different months in the
PRB [27,39], this study defined the monsoon season in the PRB as from May to October,
and the dry season as the remaining months. The seasonal SbAI, the monsoon seasonal
SbAI, and the dry seasonal SbAI were derived from the monthly SbAI.
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Figure 2. Annual and monthly changing trends of the SbAI in the PRB: (a–l) Monthly SbAI trend; (m)
Annual SbAI trend; (n) Monthly SbAI changing rate. Note: * represents multiplication sign; Jan, Feb,
Mar, etc. is the abbreviation of each month.

3.1.1. Annual Trends of the SbAI

As shown in Figure 2 and Table 1, the SbAI significantly decreased (p < 0.01) during
the period 2001–2021, with a decreasing trend of −0.624/yr, indicating that the PRB is
becoming wetter. From 2001 to 2021, the maximum, minimum, and mean SbAI was 104.983
in 2006, 90.428 in 2016, and 97.41, respectively; there are 13 years with an SbAI higher than
the multi-year average, and 9 years with an SbAI lower than the multi-year average, mostly
occurring after 2010, indicating that the PRB became wetter mainly after 2010. In the past
20 years, North China, even arid and semi-arid Northwest China, and the Qinghai–Tibet
Plateau also became wetter [40–42], revealing an increasingly humid trend in most parts
of China.
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3.1.2. Monthly Trends of the SbAI

Collectively, during the period 2001–2021, except for June, the SbAI showed a de-
creasing trend in all other months, but the downward trends were more significant in the
dry season. The fastest decrease in the SbAI was observed in November, with a rate of
−1.375/yr. The slowest decrease in the SbAI was in August, with a rate of −0.108/yr. How-
ever, June was the only month with an increase in the SbAI, although without statistical
significance. According to previous studies [27–30], from the 1960s to 2019, precipitation
in the Pearl River Basin showed a slight increasing trend, with an increase in the lower
reaches, and the most pronounced declines in the middle and upper reaches. Inter-annual
precipitation in spring and winter showed a gradual increase, and displayed a reduction in
summer and autumn. This revealed that the changes in the SbAI in the PRB are consistent
with the trends of precipitation changes.

3.1.3. Drought Events Detected by SbAI

We used the monthly SbAI time series from 2001 to 2021 for monthly drought analysis
(Table 2). The Water Resources Bulletin for the PRB from the PRWRC shows that drought
occurs almost every year in the PRB in the monsoon season, so we chose the median SbAI
in the monsoon season over 21 years to calculate a threshold. Then, the threshold was
used to analyze the drought duration, drought severity, and drought intensity. Most of the
droughts occurred in November, December, January and February. Drought duration is
generally 2–5 months. Although some places experienced droughts for a long time, they
are small in size and are primarily located in the upper reaches of the Pearl River, thus the
consequences were not typical.

Table 2. Drought events detected by the SbAI.

Start Year Start Month End Year End Month Duration Severity Intensity

2001 1 2001 2 2 211.42 105.71
2001 11 2002 1 3 356.69 118.9
2002 10 2003 3 6 642.96 107.16
2003 11 2004 2 4 431.15 107.79
2004 10 2005 3 6 662.99 110.5
2005 11 2006 3 5 528.28 105.66
2006 11 2007 3 5 560.9 112.18
2007 11 2008 1 3 342.58 114.19
2008 3 2008 4 2 219.19 109.59
2008 11 2009 2 4 443.07 110.77
2009 11 2010 2 4 428.2 107.05
2010 11 2010 12 2 217.74 108.87
2011 11 2012 2 4 416.95 104.24
2013 12 2014 4 5 536.69 107.34
2014 12 2015 1 2 213.85 106.92
2017 12 2018 1 2 212.31 106.16

3.2. Spatial Patterns of the SbAI

To quantify the spatial patterns of the SbAI in the PRB during the period 2001–2021,
we calculated the monthly and annual SbAI at the pixel scale. As shown in Figure 3a, the
west part of Area 1, the headwater region of the PRB, was the driest region in the PRB. The
southeast part of Area 2 and the east part of Area 3 were relatively dry regions in the PRB.
Collectively, the monthly and annual SbAI exhibited similar spatial patterns, showing that
Areas 1–3 were relatively dry regions in the PRB. Obviously, the SbAI in the dry season
was higher than that in the monsoon season, indicating that the dry season is much drier
than the monsoon season in the PRB due to low precipitation in the dry season, which has
the potential to cause seasonal water shortages in the PRB.
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Figure 3. Annual and monthly spatial patterns of the SbAI in the PRB: (a) Spatial patterns of annual
SbAI, 2001–2021; (b–m) spatial patterns of the monthly SbAI, 2001–2021. Note: numbers 1–7 represent
7 areas described in Section 2.1; Jan, Feb, Mar, etc. is the abbreviation of each month, respectively.

From June to September, almost all of the PRB was humid, with the SbAI mostly lower
than 90. Even in the relatively dry region of Area 1, the overall SbAI was also lower than
120, indicating that the region also experienced relative humidity. Areas 4–7 experienced
high humidity in the monsoon season. In the dry season, for instance in December, parts
of wettest region (Areas 4–7) in the PRB became dry, with the SbAI ranging from 120 to
180. From March to June, the switch from the dry season to the monsoon season, the wet
area significantly expanded in the PRB. In July and August, when the peak SbAI occurs
(Figures 3 and 4), the overall SbAI across the entire PRB is lower than 90; the SbAI for areas
1–7 was similar, and all areas were in the wet stage.

Figure 4. Monthly and annual statistics on the areal proportion of the SbAI in different ranges. Note:
Jan, Feb, Mar, etc. is the abbreviation of each month, respectively.Jan etc. is the abbreviation of
each month.

3.3. The M–K Test for the Spatiotemporal Trends of the SbAI

Figure 5 shows the significance level of SbAI trends assessed using the Mann–Kendall
test. As shown in Figure 5a, at the annual scale, areas that were statistically significantly
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drier were mainly distributed in the central area of Area 6 and some small patches in Areas
1–3. At the monthly scale (Figure 5b–m), the drier trend gradually weakened from the
center to the east and west directions. For April to September, many areas became drier,
especially in Areas 2–5. Areas with a wetter trend were mostly in Areas 1 and 7 in east
and west PRB, respectively. The fastest trend of becoming drier occurred in June, while the
fastest change in becoming wetter occurred in November.

Figure 5. Monthly and annual trends of the SbAI in the PRB during the period 2001–2021 based on
the Mann–Kendall test: (a) Annual trends of the SbAI during the period 2001–2021; (b–m) Monthly
trends of the SbAI, 2001–2021. Note: numbers 1–7 represent 7 areas described in Section 2.1; Jan,
Feb, Mar, etc. is the abbreviation of each month, respectively. (SD: significantly drier trend; ND: not
significantly drier trend; NW: not significantly wetter trend; SW: significantly wetter trend).

In accordance with Figure 6, excluding June, areas with a wetter trend were predom-
inant in the PRB. However, one interesting result should be highlighted: as shown in
Figure 3, Area 6 is among the wettest areas in the PRB, but a large part of Area 6 tended
to be drier according to the M–K test. Conversely, as one of the driest regions in the PRB,
Area 1 has become wetter according to the M–K test.

On the basis of Figure 5b–m with Figure 6, in the dry season, wetter areas were
predominant in the PRB, especially in November (almost the driest month according to
Figure 4), as the SbAI significantly decreased in almost the entire PRB in the dry season.
However, in the monsoon season, areas with a drier trend were much larger than drier
areas in the dry season. Therefore, despite high precipitation in the monsoon season, the
drier areas that occurred in the monsoon season were much larger than those that occurred
in the dry season. In summary, for the temporal trends of the SbAI in the PRB, the PRB
became wetter at the inter-annual scale, but the wetter trends in the dry season were more
significant than the drier trend in the monsoon season.
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Figure 6. The areal proportion of different trends in the PRB. Note: Jan etc. is the abbreviation of each
month. (SD: significantly drier trend; ND: not significantly drier trend; NW: not significantly wetter
trend; SW: significantly wetter trend).

3.4. Temporal Trends of the SbAI in the Representative Regions of Areas 1 and 6

Area 1 is the remote headwater region of the PRB, with a natural environment, rela-
tively less precipitation, and less impact from anthropogenic activities. Area 6 is the most
economically developed region and under most impact from anthropogenic activities, with
relatively higher precipitation and the highest and densest population. Thus, Areas 1 and
6 can be regarded as representatives of the most natural region and the most urbanized
region in the PRB. As mentioned in Section 3.2, as the driest region in the PRB, Area 1
was becoming wetter. Conversely, as one of the wettest regions in the PRB, Area 6 was
becoming drier. Thus, Areas 1 and 6 can be regarded as representative regions for the
further analysis of the trends of drought conditions in the PRB.

3.4.1. Temporal Trends of the SbAI in Areas 1 and 6

As shown in Table 1, trends of the SbAI in Area 1 showed similar patterns to that of
the entire PRB—a significantly wetter trend in the dry season, and an overall insignificantly
drier trend in the monsoon season (except for June). According to Table 3, in Area 1, at
the monthly scale, the SbAI decreased fastest in May, with a decreasing rate of −1.10/yr;
the SbAI decreased at the slowest rate in August, with a decreasing rate of only −0.07/yr.
The SbAI in Area 1 increased only in June, at a rate of 0.38/yr. The mean SbAI in Area 1 in
the dry season was obviously higher than that in the monsoon season. From January to
December, the SbAI firstly decreased and then increased, with a maximum value of 131.59
in February, and a minimum value of 81.33 in July.

Table 3. Monthly mean SbAI and changing rates for Area 1 and Area 6, 2001–2021.

Annual January February March April May June July August September October November December

Area 1
mean 124.30 130.21 131.59 127.53 130.67 128.19 99.13 81.33 84.11 92.87 105.62 122.58 128.33
slope −0.77 −0.93 −0.69 −0.33 −0.96 −1.10 0.38 −0.46 −0.07 −0.75 −0.20 −0.88 −0.83

Area 6
mean 87.86 96.77 94.40 85.36 80.65 67.05 55.27 49.92 58.11 64.57 78.22 93.88 98.97
slope −0.40 −0.51 −0.79 −0.77 −0.43 −0.75 −0.02 −0.69 −0.44 −0.14 −0.45 −1.56 −0.60

In Area 6, at the monthly and annual scales, the SbAI had a decreasing trend, with
a significant decrease in the dry season, in which the fastest decrease of −1.56/yr was
observed in November. An insignificant decrease was observed in the monsoon season,
with a slowest rate of −0.02/yr in June. From January to December, similar to the monthly
pattern in Area 1, the SbAI in Area 6 also firstly decreased and then increased, with a
maximum value of 98.97 in December and a minimum value of 19.92 in July.

3.4.2. Monthly Fluctuations of the SbAI in Areas 1 and 6

According to Figure 3, at all the time scales, the west part of Area 1 is much drier than
the east part due to lower precipitation in the west. With the switch from the dry season to
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the monsoon season, the difference in the SbAI between western and eastern Area 1 shrunk.
As shown in Figure 7, the drier part of Area 1 rapidly decreased in proportion after May.
However, the proportion of drier areas in Area 1 is still much higher than across the entire
PRB, as the absolute precipitation in Area 1 is still relatively low in the PRB [28].

Figure 7. Areal proportion of parts in different ranges of the SbAI in Area 1. Note: Jan etc. is the
abbreviation of each month.

According to Figure 8, at the monthly and annual scales, wetter areas were predomi-
nant in Area 1, indicating that Area 1 has become wetter in the past 20 years. Excluding
November, the proportion of NW areas are in Area 1 was higher than that of SD, ND and
SW areas (Figure 8). In November, the proportion of SW areas was greatest Area 1. In May,
however, the proportion of ND areas was greatest in Area 1. Collectively, in Area 1, the
wetter trend in the dry season was more significant than the drier trend in the monsoon
season, showing an overall inter-annual wetter trend in Area 1.

Figure 8. The areal proportions for different trends in Area 1. Note: Jan etc. is the abbreviation of
each month. (SD: significantly drier trend; ND: not significantly drier trend; NW: not significantly
wetter trend; SW: significantly wetter trend).

In Figure 3, Area 6 is generally humid. In the dry season, from November to April,
from the center Area 6 outward, the SbAI gradually increased. After the switch from the
dry season to the monsoon season, the SbAI difference in different parts of Area 6 rapidly
narrowed. As shown in Figure 9, similar to the entire PRB, the proportion of drier areas
decreased after April.
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Figure 9. Proportion of areas in different SbAI ranges in Area 6. Note: Jan etc. is the abbreviation of
each month.

According to Figure 10, in addition to June, most parts of Area 6 exhibited a wetter
trend at the monthly and annual scales. At the annual scale, more than 70% of Area 6
significantly became wetter. However, in June, in the monsoon season, more than 50% of
Area 6 became drier. The ratio is much higher than that in other sub-regions. Collectively,
in Area 6, the proportion of wetter areas in the dry season was slightly larger than that of
drier parts in the monsoon season. It should be pointed out that, Area 6 is among the areas
with the highest precipitation in the PRB; however, it had a higher proportion of drier areas
in the monsoon season. The possible causes were that Area 6 experienced more significant
impacts from human activities (i.e., fast industrialization and urbanization), resulting in a
decrease in water storage capacity and aggravating drought conditions.

Figure 10. The areal proportion of different trends in Area 6. Note: Jan etc. is the abbreviation of each
month. (SD: significantly drier trend; ND: not significantly drier trend; NW: not significantly wetter
trend; SW: significantly wetter trend).

4. Discussion

4.1. Accuracy Assessemnt

The SbAI was initially proposed by Kimura and was first used to determine surface
dryness in Northeast Asia [33]. Later, it was also used to determine land drought and land
degradation levels [43,44]. Using the SbAI to classify land drought levels was more accurate
than using a traditional drought index. The SbAI was also used to monitor drought in
Mongolia from 2001 to 2013 [45]. The results showed that the SbAI was able to accurately
identify drought using satellite images. The SPI is sometimes more promising than the
SBAI. However, the SPI relies heavily on observation data from meteorological stations.
The SPI may not be ideal for areas with few meteorological stations. In the PRB (with a
basin size of 440,000 km2), there are only approximately 80 meteorological stations available
(many county-level stations do not release their data publicly), especially in the upper
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reaches of the Pearl River which have fewer stations. This is why we used the SBAI for
this study.

Some studies have evaluated the accuracy of GPM data in the Pearl River Basin [46].
The assessments displayed that the accuracy of GPM data is satisfactory in the Pearl River
Basin. This study also made a simple verification of the GPM data through a comparison
with the precipitation data collected by the Pearl River Water Conservancy Commission
(PRWCC). As shown in Figure 11, the GPM data and the precipitation data of the PRWCC
show great correlation (R2 is greater than 0.9) across the entire basin and the seven sub-
regions. Therefore, we can verify our results using the drought trends obtained from the
GPM data.

Figure 11. (a) Correlation analysis between GPM data and precipitation data provided by the PRWCC
in PRB; (b–h) Correlation analysis between GPM data and precipitation data provided by the PRWCC
in Areas 1–7. Note: * represents multiplication sign.

We checked the accuracy of the SbAI using GPM data and the results are shown in
Figure 12. In this validation step, we compare the monthly GPM data from 2001 to 2019 and
the mean SbAI value for the entire Pearl River Basin and its seven sub-regions. Figure 12
shows the relationship between the two tends consistent. Across the entire Pearl River
Basin and seven sub-regions, R2 values are all greater than 0.3; half of the R2 values are
even greater than 0.4. The maximum R2 value is 0.563, and the minimum R2 value is 0.310.
Figure 12 shows that the SbAI and the GPM displayed a significant negative correlation.
The increase in rainfall can weaken the drought condition, thereby reducing the SbAI, and
vice versa. This trend is pronounced in all of the seven sub-regions. However, it should be
pointed out that GPM data and the SbAI data are not be completely consistent, because
the GPM data are the result of natural climate change, but the surface drought condition
monitored by the SbAI is the combined result of human activities and natural climate
change. Therefore, Figure 12 shows that the SbAI is directly affected by natural rainfall, but,
at the same time, is not completely regulated by natural rainfall. This shows the incomplete
consistency of the two. Therefore, the two trends are inconsistent in some sub-regions,
mainly because these areas are disturbed by human activities. For example, humans can
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increase water storage capacity by afforestation, thereby reducing the drought conditions.
Conversely, humans can also increase the impervious area through rapid urbanization,
resulting in a decrease in water storage capacity and aggravating drought conditions.

Figure 12. (a) Correlation analysis between SbAI and GPM data series in the PRB; (b–h) Correlation
analysis between SbAI and GPM data series in Areas 1–7. Note: * represents multiplication sign.

4.2. Comparisons with Previous Studies

Studies have shown that most of the arid and semi-arid regions in the world are
becoming drier, such as the west of America and the Middle East region [47–49]. Other areas,
for example the northwest and southwest regions of China, are becoming wetter [50,51].
Compared with most arid and semi-arid regions, the PRB has a wetter trend, and drought
in arid and semi-arid regions mainly occurs in summer, while drought in the PRB mainly
occurs in winter and spring.

He et al. [52] found that the NDVI in the Pearl River Basin showed a fluctuating
increasing trend (p < 0.01); 81.44% of the Pearl River Basin showed an increase in vegetation
coverage, mainly in the upper and middle reaches of the Pearl River Basin. The areas with
medium and low vegetation coverage are mainly located in the Pearl River Delta. Our
results are in good agreement with those of He et al. (Figure 13). In this study, the SbAI in
the Pearl River Basin showed a significant downward trend (p < 0.05). The SbAI decreased
in most areas of the Pearl River Basin. Areas with an SbAI are mainly distributed in the
Pearl River Delta. The study by He et al. [52] only analyzed the annual NDVI data for the
years before 2015. We obtained NDVI data for recent years and performed a correlation
analysis with the SbAI. The results are still consistent.
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Figure 13. Comparisons of SbAI and NDVI results: (a) Comparison of temporal trends; (b) Correlation
analysis of the two datasets. Note: * represents multiplication sign.

In addition, Zhang et al. [39] found that the Pearl River Basin has become drier in
the monsoon season and wetter in the dry season. Areas with relatively low rainfall are
distributed in the western part of the basin, while humid areas with high rainfall are
distributed in the southeastern part of the basin. The results of this study show that, in the
monsoon season, the basin became drier (the area with severer drought condition became
larger), while in the dry season, the basin became wetter (the area with a wetter condition
became larger). These conclusions are similar to Zhang’s findings.

Our results indicated that the Pearl River Basin presents a wetter trend over the
past two decades. As discussed in Section 4.1, the wetter trend presented by the SbAI
is affected by natural precipitation and human activities. For example, human activities
can change land use, among which afforestation and the resulting water storage capacity
are paramount [53]. In the Pearl River Delta, due to fast urbanization, a large number
of cultivated land and forests have been transformed into impervious areas. Studies [54]
have shown that the cultivated land, forests and waters in the Pearl River Delta decreased
by 15.64%, 2.9% and 7.45%, respectively, from 2000 to 2015, while the impervious surface
increased by 42.1%, of which the transfer ratios of the above three land use types are
23.09%, 11.29% and 7.04%, respectively. The studies by Zhang et al. and Chen et al. have
shown [55,56] that the Pearl River Delta is a high-risk area for decreasing water storage
capacity. In this study, the Pearl River Delta region was reported to gradually be drier. This
drought is not due to a reduction in natural rainfall, but rather a reduction in water storage
capacity caused by human activities.

4.3. Implications for Sustainable River Basin Management

In August 2022, as we wrote this paper, the world was experiencing the worst droughts
in recent decades. The droughts across the Northern Hemisphere—expanding from the
USA to Europe and China—are further adding pressure to global large river ecosystems
already under stress. In recent years, climate change has caused droughts to occur more
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frequently [57,58]. Based on the SbAI and satellite images, this study analyzed the spa-
tiotemporal changes in drought conditions over the past 20 years, providing a valuable
reference drought assessment across the Pearl River Basin. Our research results also provide
consultative information for watershed management, such as agricultural irrigation, water
resource management, and urbanization. Based on our findings, the headwaters of the
Pearl River have become wetter and may sustain more vegetation and agricultural activities.
Crops planted in the dry season should be prioritized. However, most areas of the Pearl
River Basin have displayed a slight trend towards becoming drier in the monsoon season,
which may be related to the rise in monsoon temperatures caused by climate change [38].
In the monsoon season, natural vegetation and human activities have a high demand for
water resources. A more scientific management of water resources is therefore required.
Our study also indicates that that uncontrolled human activities such as excessive water
withdrawal for irrigation and industrial use and fast urbanization to increase impervious
surfaces and reduce water storage capacity can worsen drought conditions. In the Pearl
River Delta region, with rapid urbanization and industrialization, more scientific man-
agement for urban development and more appropriate allocation of water resources are
required for sustainable development.

5. Conclusions

In this study, we calculated the daily SbAI for the whole Pearl River Basin for the
period 2001–2021 using MODIS surface reflectance and surface temperature data, and
further derived the annual and monthly SbAI. We investigated the spatiotemporal changes
in drought conditions in the Pearl River Basin. Based on the study results, we obtained the
following findings:

(1) The inter-annual SbAI in the Pearl River Basin exhibited a significant downward trend.
The decreasing trend in the SbAI was statistically significant in the dry season, and
the monsoon season also showed a decreasing except for an insignificant increase in
June.

(2) In the dry season, areas with droughts are mainly located in sub-regions of Areas
1, 2, and 3; as the flood season arrives, the basin receives more water and gradually
becomes humid, and the total area with droughts decreases rapidly.

(3) In the past 20 years, most parts of the Pearl River Basin have become wetter. However,
the drought conditions illustrated an insignificant increase in the monsoon season,
corresponding to a more statistically significant shrinking in the dry season.

(4) Overall, the Pearl River Basin has become wetter over the past two decades, which
may be the result of natural and human factors (i.e., increased precipitation and
vegetation coverage); areas with increased drought conditions were likely impacted
by human activities such as water withdrawal for irrigation and industrial uses, fast
urbanization and increased impervious surfaces and the resulting reduction in water
storage capacity.
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Abstract: Amazonas is a mountain region in Peru with high cloud cover, so using optical data in the
analysis of surface changes of water bodies (such as the Burlan and Pomacochas lakes in Peru) is
difficult, on the other hand, SAR images are suitable for the extraction of water bodies and delineation
of contours. Therefore, in this research, to determine the surface changes of Burlan and Pomacochas
lakes, we used Sentinel-1 A/B products to analyse the dynamics from 2014 to 2020, in addition to
evaluating the procedure we performed a photogrammetric flight and compared the shapes and
geometric attributes from each lake. For this, in Google Earth Engine (GEE), we processed 517 SAR
images for each lake using the following algorithms: a classification and regression tree (CART),
Random Forest (RF) and support vector machine (SVM).) 2021-02-10, then; the same value was
validated by comparing the area and perimeter values obtained from a photogrammetric flight, and
the classification of a SAR image of the same date. During the first months of the year, there were
slight increases in the area and perimeter of each lake, influenced by the increase in rainfall in the
area. CART and Random Forest obtained better results for image classification, and for regression
analysis, Support Vector Regression (SVR) and Random Forest Regression (RFR) were a better fit to
the data (higher R2), for Burlan and Pomacochas lakes, respectively. The shape of the lakes obtained
by classification was similar to that of the photogrammetric flight. For 2021-02-10, for Burlan Lake,
all 3 classifiers had area values between 42.48 and 43.53, RFR 44.47 and RPAS 45.63 hectares. For
Pomacohas Lake, the 3 classifiers had area values between 414.23 and 434.89, SVR 411.89 and RPAS
429.09 hectares. Ultimately, we seek to provide a rapid methodology to classify SAR images into two
categories and thus obtain the shape of water bodies and analyze their changes over short periods. A
methodological scheme is also provided to perform a regression analysis in GC using five methods
that can be replicated in different thematic areas.

Keywords: changes; Google Earth Engine; sentinel; random forest; SVM; CART; Colaboratory;
Amazonas region

1. Introduction

Only 2.5% of the planet’s water is fresh, of which only 1.2% is surface water, and
much of the latter is found in glaciers and 20.9% is found in lakes [1]. There are more than
1.43 million lakes and reservoirs [2,3]. This type of coastal and continental ecosystem is
important, being a source of nutritional resources for animals and humans, in addition to
providing various ecosystem services [4].

Surface water resources also play important roles in economic development, the bal-
ance of terrestrial and aquatic ecosystems, agriculture, and the environment [5]. Therefore,
it is crucial to monitor the dynamics of the area and water storage of a lake to evaluate
the impacts of climate change and to predict future scenarios [6]. In addition, monitoring
the extension of surface water supports the management of water resources and climate
modelling, among other functions [7].
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Detecting bodies of water near urban centres is also necessary for the delimitation of
flood zones and therefore water accumulation, which become possible sources of outbreaks
of water-borne diseases [8].

In recent years, with the increasing availability of free synthetic aperture radar (SAR)
data, research on water resources has increased, for example, for the monitoring of the
flooded surfaces of lakes in wet and dry seasons, especially small lakes [9], surface water
quality monitoring [10], humidity mapping [11], river mapping [12], and the analysis of
the spatiotemporal variation in the water surface of lakes [13].

In Jiangxi (China), the changes in the area of the water surface of Poyan Lake were
analysed during 2014–2016 using 33 SAR images of Sentinel-1 and were processed in the
Sentinel Application Platform (SNAP) [14]. In turn, Dongting Lake in China was monitored
using SAR images from Environmental Satellite (Envisat) during 2002–2009 [15]. In Latin
America, RADARSAT level 1 and 7 images, Japanese Earth Resources Satellite (JERS)-1
images, and aquatic vegetation were combined to calculate the area of the swamps of
southern Brazil [16]. The lakes of northern Alaska were also mapped in the winter season
of 2009 using European Remote Sensing satellite (ERS)-2 images to quantify the availability
of water in winter and summer [17].

The classification of satellite images through classification and regression trees (CART),
random forests (RF), and support vector machines (SVM) has achieved efficient and ac-
curate results [18]. The image classification process mainly involves the assignment of
pixels to a class based on spectral signatures, indices, contextual information, etc. [19]. For
this, two known methods of joint learning are boosting and bagging [20]. In boosting,
successive trees give extra weight to the points incorrectly predicted by previous predictors,
and then a weighted vote is taken for the prediction [20,21]. In bagging, successive trees do
not depend on previous trees, and each tree is constructed independently using an initial
sample of the dataset. Then, a simple majority vote is carried out for the prediction [20,22].
These processes were optimized with the launch of Google Earth Engine (GEE), allowing
the parallel processing of geospatial data at a global scale using the Google cloud [23,24].

Statistical models are a simplification of reality expressed in a mathematical language,
so to achieve such simplification assumptions must be made, such is the case of this research
that we simplify the behaviour model of the lakes based on different dates from 2014 to
2020. The regression tries to predict a quantity or an expected value, unlike classification
which tries to predict a category or class [25]. The main regression algorithms include
simple linear regression (SLR), polynomial regression (PR), random forest regression (RFR),
support vector regression (SVR), and decision tree regression (DTR), which can be quickly
executed in Google Colaboratory (GC).

We analysed the dynamics of the water surface of two lakes in the Amazonas region
of Peru. For this, (i) we processed 517 Sentinel-1 images for the period 2014–2020, using
the GEE platform, (ii) with the area and perimeter values of each lake we applied five
regression methods executed in Google Collaboratory, (iii) we calculated area and perimeter
by classifying a SAR image from 2021-02-10 and compared with the value predicted
by the best regressor and (iv) finally we compared the values calculated in iii with a
photogrammetric flight performed on the same date (2021-02-10). In effect, this research
sought to show the dynamics of the water surfaces of two lakes approximately 50 km apart,
with different climatic conditions, geographic, and socioeconomic conditions, relying on
the continuity of SAR image data from Sentinel-1.

In contrast to other studies, we calculated the water mask by classifying SAR images
in Google Earth Engine using Classification and Regression Trees, Random Forest and
Support Vector Machine, and compared them with a high-resolution orthomosaic obtained
by a Remote Pilot Aircraft System. We also show the flexibility of performing a regression
analysis in Google Colaboratory using Simple Linear Regression, Polynomial Regression,
Support Vector Regression, Decision Trees Regression and Random Forest Regression
methods, and the same regression methods can be applied to different thematic areas.
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2. Materials and Methods

2.1. Study Area

Burlan and Pomacochas are two of the main lakes in the Amazonas region (NW
Peru). Next, Figure 1 shows the geographic location of Burlan and Pomacochas Lake, in
Utcubamba and Bongará provinces, respectively, in Amazonas region, Peru.

At Burlan Lake, the climate is warm, with an average temperature of 24.9 ◦C and an
altitude of 450 m.a.s.l. [26]. Pomacochas Lake is in a warm and temperate climate, with an
average annual temperature of 15 ◦C and an altitude of 2220 m.a.s.l. [27].

Both lakes have socioeconomic and environmental importance in terms of tourism,
fishing and landscape services, water for agricultural activities, water resource regulation,
and biodiversity.

 

Figure 1. Geographic location of the study lakes in NW Peru.

2.2. Methodological Scheme

Figure 2 summarizes the procedure for analyzing the water surface dynamics of the
Burlan and Pomacochas lakes during 2014–2020 using images from the Sentinel-1 mission
in GEE and five regression methods: SLR, PR, SVR, DTR and RFR. For this, initially, the
speckle of the SAR images was reduced, for a subsequent classification using the CART, RF
and SVM algorithms, the classified images were processed in QGIS 3.10. Subsequently, in
Google Collaboratory through five regression methods and the area and perimeter values
calculated in QGis, the area and perimeter were predicted for 2021-02-10, calculating the R2

of each regression method. Finally, to validate the calculations performed in GEE and GC,
the area and perimeter of each lake were measured in the field using a remotely piloted
aircraft system (RPAS) for comparison to the area and perimeter obtained by the extraction
in GEE and regression estimation of the method of greater R2.
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Figure 2. Methodological design for analysing the dynamics of the water surface of Burlan and
Pomacochas Lakes during 2014–2020 using SAR images. * This procedure was performed internally
by GEE.

2.3. SAR Dataset and Training Points

Sentinel-1 A/B images (COPERNICUS/S1_GRD) available in GEE were used [28] with
a temporal resolution of 6 days. The data used were level 1 in the ground range detection
(GRD), interferometric wideband (IW) format (Beam Mode), with a 10 m resolution, using
the ascending and descending Flight Direction, in addition, VH and VV cross-polarized
scenes [29].

In the supervised classification of all SAR images, 23 and 12 training points were used
for Pomacochas and Burlan Lakes, respectively. The points were categorized as water (1)
and land (0), those labelled 1 were distributed in the center of the lake because the previous
inspection of images is an area where water is always present, on the other hand, the
points labelled 0 were distributed to the edges of the lakes, generally higher parts where
there is no water concurrence. For more details on the training points, check file 09 of the
web repository Available online: https://github.com/dargofer/SAR_image_classification
(accessed on 15 October 2022).

2.4. SAR Image Processing

The processing of the SAR images was carried out in the GEE platform [23]. For this,
a code was developed (check file 01 of the web repository), that included the import of
Sentinel-1 images speckle reduction, classification, and export of SAR images. In addition,
according to the availability of data and the objective of the research, water masks were
generated in four combinations. For this, Flight Direction and the polarization of the images
were combined. These combinations were Descending-VH (DVH), Ascending-VH (AVH),
Descending-VV (DVV), and Ascending-VV (AVV) from 2014 to 2020.

For a correct analysis of the SAR images, they must be corrected radiometrically and
geometrically, in addition, depending on the objective of the study, the speckle of the
images is reduced [30]. In our case, we use the Sentinel-1 images available in the GEE data
catalogue, as mentioned in the GEE processing guide for Sentinel-1 images. (Available
online: https://developers.google.com/earth-engine/guides/sentinel1 (accessed on 15
January 2021)) these images were already radiometrically and geometrically corrected [29],
so we only reduced the speckle of the images using ee.Image.focal_median [31].

A variable was created that contained the filtered collection and a band with the details
of each of the four combinations. Then, we performed supervised classification with three
machine learning algorithms [32], RF [33], CART [34], and SVM [35,36] algorithms, and
23 and 12 training points for Pomacochas and Burlan Lakes, respectively. Additionally, to
evaluate the accuracy of the classification, we calculated the confusion matrix and kappa in-
dex [37]. Finally, the images classified in GeoTIFF format and the EPSG coordinate reference
system were exported: 32,717 and 32,718 for Burlan and Pomacochas Lakes, respectively.

2.5. Calculation of the Geometric Attributes

The geometric attributes were calculated in the QGIS 3.10 LTR software, where the
classified images were vectorized using the raster polygonize tool executed in batches. The
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classified images were dissolved according to their coding to avoid calculation errors
because, in some images, separate polygons were generated with the same coding. Finally,
the geometric values of the area and perimeter were added for each group of images.

2.6. Regression Analysis

With the values obtained for the area and perimeter of each lake and each combination
and classifier, five regression methods were applied to estimate the area value of a lake at a
specific subsequent time. Simple Linear Regression, Polynomial Regression, Support Vector
Regression, Decisions Trees Regression and Random Forest Regression were executed in
scripts with Python coding language in Google Colaboratory.

Figure 3 shows the methodological flow chart used in the five regression methods,
initially, the Python libraries were imported to input the database, in all 5 methods the
database was split into training and evaluation, finally, a feature scaling and execution of
the regression method script was performed.

Figure 3. Methodological flow for the regression analysis.

The dependent variables were the area and perimeter (separately), and as an inde-
pendent variable, the date of acquisition of the SAR image was transformed to an ordinal
integer because, in the regressions, chains generate problems in the prediction. The main
library used was Scikit-learn [38], which contains all the regression methods used in this
research. Next, the procedure followed in each regression method is described.

For Simple Linear Regression, the Numpy, Pandas, Matplotlib, and Scikit-learn li-
braries were used. The fundamental equation of SLR was determined by the intercept (b0),
the slope (b1), the independent variable (X) and the Random error term (ei) (Equation (1));
since the goal of linear regression is to fit a straight line through the data that predicts Y
based on X, the calculation of b0 and b1 is usually estimated by the ordinary least squares
method (Equation (2)) [39,40]. The LinearRegression function was used as a regressor [41],
imported from the linear models module of the Scikit-learn library.

Yi = b0 + b1Xi + ei (1)

Σ (yi − ŷi)2 (2)

To build the polynomial regression we mainly used the “PolynomialFeatures” func-
tion [42], which belongs to the scikit-learn library, for which, we used a simple linear regression
equation, which was transformed to a second degree using the above-mentioned function.

For Support Vector Regression, the imported data were standardized using the Stan-
dard Scaler [43]. Then, to apply the principles of the theory of Vapnik Chervonenkis [44],
in which at least the epsilon insensitive tube width and kernel function are required, the
SVR function [45], from the Sklearn.svm module was imported. In addition, to complete
the regressor, we used the Gaussian Radial Basis Function (RBF) as a kernel function for
the Support Vector Regression [46], and 0.1 as the epsilon value.

To build the Random Forest Regression, we imported RandomForestRegressor [47], from
the Sklearn.ensemble module and we considered the default number of trees (n_estimator = 10)
and 0 as the state of randomness (random_state). Finally, to apply Decision Tree Regression
to the data, DecisionTreeRegressor was imported [48] as a regressor from the Sklearn.tree
module and the state of randomness was given the value of 0.
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2.7. Field Data and Validation

The validation of the area and perimeter of each lake was carried out using images
from photogrammetric flights performed on 2021-02-10 with a Phantom 4 RTK in post-
processed kinematic mode (PPK) and ground control points (GCPs) collected with a Trimble
R10 GNSS. For Pomacochas Lake, 2065 images with 4.57 cm average Ground Sampling
Distance (GSD) were obtained, and for Burlan Lake, 729 images with 4.01 cm average
GSD were obtained. All images were processed in PIX4D Mapper v 4.6.4 using 9 GCPs for
each lake, then to uniformize the images, the orthomosaics were exported at resolutions of
50 cm/pixel.

The measurement of the tie point errors was performed by calculating the root mean
square (RMS) error, because the RMS considers the mean error and the variance. Therefore,
for a given direction (X, Y, or Z) the RMS is defined as:

RMS =

√
Σ

ei
2

N
(3)

where, ei is the error of each point for the given direction, and N is the number of GCPs.
Finally, for each lake, a SAR image from 2021-02-10 was classified and overlaid with

the orthomosaics obtained by the RPAS.
On the other hand, the five regression methods were applied to each group with

the area and perimeter data according to each classifier, from which the coefficient of
determination (R2) available in Scikit-learn was calculated [49] to indicate the fit of the data.
The R2 values range from −∞ to 1, the best possible score is 1, and negative values refer to
the model can be arbitrarily worse. Therefore, if ŷi is the predicted value of the i-th sample,
and yi is the corresponding true value for the total of n samples, the R2 is defined as:

R2 (y, ŷ) = 1 − ∑n
i=1 (yi − ŷi)

2

∑n
i=1 (yi − −

yi)
2 and

−
y =

1
n ∑n

i=1 yi, ∑n
i=1 (yi − ŷi)

2 = ∑n
i=1 ε2

i (4)

3. Results

3.1. Distribution and Availability of SAR Data

Figure 4 shows the distribution and monthly availability of the SAR images used for
the analysis of the dynamics of Burlan and Pomacochas Lakes from 2014–2021.

M
on
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March
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May

June

July
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November

December

2014 2015 2016 2017 2018 2019 2020 2021
Year

Figure 4. Distribution and monthly availability of the Sentinel-1 images used for the analysis of the
dynamics of Burlan and Pomacochas Lakes from 2014 to 2021. The geometric figures represent the
number of images available in a month, where circles, triangles, and parallelograms represent 1, 2,
and 3 images, respectively. In addition, the colour of each represents the combination of the direction
of passage and polarization, where orange, green, blue, and black represent the combinations of DVV,
AVV, DVH, and AVH, respectively.
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A total of 517 Sentinel-1 images were analysed for each study lake from 2014/10/06
to 2021/01/29 (Table 1). In addition, due to the classification using CART, RF, and SVM,
3 products were obtained per image, generating a total of 3102 water masks for both lakes.

Table 1. Number of SAR images used to generate the water masks of Burlan and Pomacochas Lakes
using CART, RF, and SVM.

Lake

SAR Images Available Water Masks Analysed

DVV
2014/10/15–
2021/01/29

AVV
2014/10/06–
2021/01/20

DVH
2016/02/07–
2021/01/29

AVH
2017/05/17–
2021/01/20

Total CART RF SVM Total

Burlan 153 137 123 104 517 517 517 517 1551
Pomacochas 153 137 123 104 517 517 517 517 1551

Total 1034 3102

Table S1 shows the attributes of all the images used to obtain the water masks of
Burlan and Pomacochas Lakes from 2014–2021. We worked with the same scene because
we used IW products (250 km for each sweep), and the distance between the lakes was
approximately 50 km.

3.2. Obtaining the Geometric Attributes

Figure 5 shows the variation of area and perimeter for Burlan Lake (left) and Poma-
cochas (right). For Burlan Lake, the maximum values differ according to the flight direction
and polarization, for example, 2018 and 2019 show maximum values for VH, while for VV,
the maximum values are shown in 2016, 2017 and 2018. On the other hand, Pomacochas
Lake presents a homogenous trend, for example, VH presents maximum values in 2018
and 2019, while VV presents a homogeneous trend with maximum values in 2019.
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Figure 5. Variation in the area and perimeter of the Burlan and Pomacochas lakes using CART, RF,
and SVM as classifiers of the SAR images. The thick lines represent the area (ha), and the thin lines
represent the perimeter (km). In addition, the purple, green and blue lines represent the values
obtained by SVM, CART and RF, respectively. In addition, AVH, AVV, DVH and DVV, represents the
dataset obtained by: flight directions Ascending (A) and Descending (D), polarizations transmitted
and received vertically (VV) and transmitted vertically and received horizontally (VH).
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Table 2 shows the minimum, maximum and average values obtained for the area (A)
and perimeter (P) of Burlan and Pomacochas Lakes calculated according to the classification
of SAR images using CART, RF, and SVM. The behaviour of the values obtained by CART
and RF was similar for both lakes, while the SVM values were much higher, due to the
algorithm used in the classification.

Table 2. Minimum, maximum, and average values of the area and perimeter of the Burlan and
Pomacochas lakes obtained by classification of SAR images in the 2014–2020 period.

Classifier Geometric Attribute
Burlan Lake Pomacochas Lake

AVH AVV DVH DVV AVH AVV DVH DVV

Classification and
regression
tree(CART)

Area (ha)
Minimum 38.6 39 39.2 40.9 414 417.8 408.3 415.6
Maximum 45 48 48.1 50.2 441.4 455.8 430.1 452.2
Average 42.1 43.3 43 44.9 426.8 434.8 419.3 431.4

Perimeter (km)
Minimum 3.31 3.34 3.36 3.42 11.06 10.94 10.9 10.89
Maximum 3.72 4.8 4.46 4.72 17.59 20.06 13.54 17.26
Average 3.46 3.67 3.55 3.93 14.16 16.52 11.36 13.03

Random Forest(RF)

Area (ha)
Minimum 39.3 40 40.3 41.1 416 416.2 414.8 415.6
Maximum 45.6 48 47.6 49.3 441.4 455.8 426.5 456.5
Average 42.2 43.3 43 44.8 427.2 435.1 419.7 431.3

Perimeter (km)
Minimum 3.33 3.37 3.36 3.43 11.06 10.92 10.92 10.89
Maximum 3.67 4.8 4.12 4.72 17.79 19.79 13.2 18.52
Average 3.46 3.68 3.54 3.91 14.2 16.59 11.38 13.02

Support Vector
Machine(SVM)

Area (ha)
Minimum 38.9 39 39.2 39.8 409.2 405.4 405.5 405.4
Maximum 47.7 49.2 48.3 53 466.8 470.8 450.6 458
Average 42.1 42.8 43 44.9 430.5 433.5 420.1 434.3

Perimeter (km)
Minimum 3.33 3.34 3.36 3.37 11.14 10.87 10.88 10.8
Maximum 4.81 5.73 4.72 5.05 20.52 20.58 19.17 19.92
Average 3.55 3.66 3.57 3.95 14.72 16.43 11.65 13.86

Figure 6 compares the averaged values of the area (ha) and perimeter (km) of the
Pomacochas and Burlan lakes for the combinations AVH, AVV, DVH, and DVV resulting
from the classification of SAR images using CART, RF and SVM.

Figure 6. Average values of the (a) area and (b) perimeter of Pomacochas and Burlan Lakes.

142



ISPRS Int. J. Geo-Inf. 2022, 11, 534

3.3. Data Analysis and Prediction
3.3.1. Data Normalization

For each combination, graphs of letter values (Boxenplots) were created in Google
Colaboratory [50] because each batch of data was less than 200 elements [51].

Figure 7 shows the data distribution for each combination (AVV, AVH, DVV, and
DVH), where the subfigures of a—l, m—x of each lake represent the data distributions of
the area and perimeter, respectively.

Figure 7. Dispersion of the area and perimeter data for Burlan and Pomacochas Lakes, where the
black points represent outliers, and the rectangles represent the highest clustering of data according
to quantiles.

As shown in Figure 7, there are outliers for each lake dataset. For example, in sub-
figure (o) DVH of Burlan Lake, which represents the distribution of perimeter data obtained
in Sentinel-1 descending pass and VH polarization, the majority of data are grouped from
3.4 to 3.6 km, but there are outliers that exceed 4 km (4.2 and 4.4). For its part, the data
for Pomacochas Lake was also dispersed, for example, in sub-figure (i) AVH, most of the
area data were grouped from 420 to 440 ha, but there are also values that exceed 460 ha
and there are also values smaller than 415 ha. Therefore, to perform a correct regression
analysis without the inclusion of outliers that can negatively impact the regression models,
we proceeded to delete those values.
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3.3.2. Regression Methods

Table 3 shows the values of the area, perimeter, and coefficients of determination (R2)
that had the highest degree of fit estimated according to SLR, PR, SVR, DTR, and RFR
for 2021-02-10. Table S2 of the supplementary material shows all the R2 calculated in the
present investigation.

Table 3. Area (ha) and perimeter (km) estimated with SLR, PR, SVR, DTR and RFR of greater R2.

SLR PR SVR DTR RFR

Burlan Lake

Area 42.46 42.3 42.43 45.2 44.47

R2 0.12 0.15 0.22 0.37 0.46

Combination DVH DVH DVH AVV AVV
Perimeter 3.43 3.41 3.41 3.43 3.82

R2 0.15 0.2 0.29 0.23 0.43

Combination AVH AVH DVH DVV DVV

Pomacochas
Lake

Area 417.8 408 411.42 414 413.1
R2 -0.004 0.38 0.41 0.13 0.15

Combination DVH DVH DVH DVH DVH
Perimeter 13.28 16.5 15.14 17.1 17.46

R2 0.095 0.24 0.42 0.16 0.26
Combination DVV AVV AVH AVV AVV

To complement Table 3, Figures 8 and 9 show the best fit of the model to the area
and perimeter data. For Burlan Lake, SLR, PR, and SVR were better fit to the area data of
the DVH combination classified by SVM, while DTR and RFR were better fit to the AVV
combination classified by CART. For the perimeter, SLR and PR was a better fit to the AVH
combination classified by SVM, and SVR was a better fit to the DVH combination classified
by SVM. Finally, DTR and RFR were a better fit for the DVV combination classified by
CART. For Pomacochas Lake, all regression models were better fit to the area data of the
DVH combination classified by SVM; for the perimeter, SLR was better fit to the DVV
combination classified by CART, PR to AVV classified by SVM, SVR to AVH classified by
RF, and finally, DTR and RFR to DVV classified by CART.

Figure 8. Regression models with greater R2 for the area and perimeter data of Burlan Lake.
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Figure 9. Regression models with higher R2 for the area and perimeter data of Pomacochas Lake.

For Burlan Lake, with the AVV and DVV combinations classified by CART, RFR
obtained the best R2 for the area (0.46) and perimeter (0.43), respectively. In turn, for
Pomacochas Lake, the combination DVH classified by SVM and AVH classified by RF
obtained the best R2 for the area (0.41) and perimeter (0.42), respectively, according to SVR.

Next, Figure 10 compares the R2 of each regression method. It can be seen that for
Burlan Lake, RFR showed higher R2 in the area and perimeter data, thus showing an
average adaptation of the model to the data, while for Pomacochas Lake the model that
best fits the area and perimeter was the regression model by support vectors.
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Figure 10. Comparison of the R2 calculated for the models of SLR, PR, SVR, DTR, and RFR.

3.3.3. Validation

Figure 11 shows the polygons obtained from the classification of a SAR image of 2021-
02-10, using CART (green), RF (blue) and SVM (purple) and overlaid with the orthomosaic
of Burlan and Pomacochas lakes obtained by the RPAS on the same passage date.
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Figure 11. Overlapping of the SAR classification and orthomosaic of Burlan (top) and Pomacochas
(bottom) Lakes for 2021-02-10, and subfigures (a–d) represent a zooming of each zone to visualize the
classification result on the RPAS orthomosaic.
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The continuous lines were obtained from the classification of a descending combination
SAR image in VV polarization (DVV), while the discontinuous lines are the result of the
descending combination in VH polarization (DVH).

The orthomosaics had a mean RMS error of 0.043 m for pomacochas and 0.008 m
for Burlan lake. The area (A) and perimeter (P) in hectares and kilometres, respectively,
were calculated for each polygon extracted from the SAR image of the DVH and DVV
combinations. These values were compared with the estimation by the best regression
method and the flight with RPAS performed on Burlan and Pomacochas Lakes. In addition,
the percentage of variation of the SAR image and the regression estimation were calculated
with respect to the values obtained by the RPAS, as shown in Table 4.

Table 4. Cross comparison of area and perimeter of SAR classification, the method of regression of
higher R2 with respect to photogrammetric flight.

SAR Image

Best Regres-
sionmethod

Δ% RPASDVV DVH

CART Δ% RF Δ% SVM Δ% CART Δ% RF Δ% SVM Δ%

B
u

rl
a
n

la
k

e A 43.53 −3.27 42.89 −4.69 43.42 −3.51 42.46 −5.64 42.48 −5.60 42.48 −5.60 44.47 −1.18 45.63

P 3.4 −17.68 3.3 −20.10 3.38 −18.16 2.87 −30.51 2.87 −30.51 2.87 −30.51 3.82 −7.51 4.13

P
o

m
a
co

ch
a
s

la
k

e A 434.89 1.35 430.77 0.39 437.18 1.89 420.57 −1.99 420.57 −1.99 414.23 −3.46 411.89 −4.01 429.09

P 12.21 23.46 11.13 12.54 13.03 31.75 9.51 −3.84 9.49 −4.04 9.14 −7.58 17.46 76.54 9.89

4. Discussion

The monitoring of lakes using SAR images is very diverse, and commercial SAR
products [6,52] or free access products such as those of the Sentinel-1 mission [28] can
be used. In 2015, the launch of GEE [23] and the incorporation of the GRD products of
Sentinel-1 facilitated the management of and access to SAR images. In this study, we used
517 Sentinel-1 A/B images for both lakes under study, having greater data availability as of
2016, we considered the period 2014–2020, as did Zijie et al. [53], but we calculated water
masks by combining the polarizations and directions flight of the satellite. This approach
was proposed because the retrospection in the images is different according to the direct
flight or polarization considered; we based it on Table 4 and Figure 5.

To calibrate the first-level data of Sentinel-1, there are four look-up tables (LUTs). In
the case of the level 1 files in Sentinel-1 GRD format, the zero sigma correction type is
the most commonly used to generate the dispersion coefficient (σ◦) [54]. To perform the
correction of Sentinel-1 images, processes such as the application of orbit files, thermal
noise removal, border noise removal, speckle filtering, and range-Doppler terrain correction
are performed, all of which are performed in SNAP. In China, Zeng et al. [14] used this data
processing approach for their research. For our part, we used the Sentinel-1 GRD products
already available in GEE. This dataset provides images in which the pixel values are directly
related to the backscatter of the radar by scene. That is, they are radiometrically calibrated,
including thermal noise removal and terrain correction using Shuttle Radar Topography
Mission (SRTM) and Advanced Spaceborne Thermal Emission and Reflection Radiometer
(ASTER) digital elevation models (DEMs). Therefore, when using the GEE functions to
homogenize the images, we opted to eliminate the noise using reducing filtering.

There are several ways to approach the extraction of water bodies from SAR images,
for example, Otsu segmentation [55] and delineation through active contour models [56].
In this study, we used SAR images classified by three machine learning algorithms [32]
to compare the results of the classification and to take advantage of the versatility and
adaptability of GEE for the processing of SAR images, in addition to the parallel execution
of the three algorithms CART, RF, and SVM.

Because similar studies have not been reported for the study lakes, we cannot compare
the results of the classification, and we only lay the foundations for subsequent stud-
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ies framed in the sixth sustainable development goal (target 6.6, indicator 6.6.1), which
mentions that there are changes in the extent of water-related ecosystems over time [57].

Due to the geographical location of the study lakes, no marked trends were found
with respect to monthly changes in area and perimeter, with the exception of the month of
January, which is the month of greatest rainfall in the area. The area and perimeter values
obtained by CART and Random Forest were similar, but the Support Vector Machine yields
different values due to the input parameters of each algorithm, for example, the decision
trees (CART and Random Forest) and the types of kernels (SMV) used in the classification.
Several studies compare the performance of classifiers in different applications [58–60], and
obtain different accuracies by simply modifying the number of decision trees or the type
of kernel [61], so, at present, there are no defined parameters for image classification, and
it is the task of each researcher to use and modify the input parameters. In our case, the
accuracies were similar, but the values of the area and perimeter differed in some cases.

In China, Zijie et al. [53] found a slow upwards trend since 2014–2020 in Baiyangdian
Lake and that the area of the lake was greater in spring and winter; in our case, the
precipitation shows a similar behaviour with the area of Burlan lake, while for Pomacochas
lake there is no defined trend regarding precipitation. Indeed, in Figure 12, we show the
precipitation (mm/day) extracted from Climate Hazards Group InfraRed Precipitation
with Station data (CHIRPS) for the study lakes.
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Figure 12. Daily distribution of precipitation for (a) Burlan and (b) Pomacochas lakes.

We consider that in the high-resolution orthomosaic obtained by the RPAS, the contour
of the lakes is better defined than in the SAR image, these overlapping errors at the edges
of the lakes are due to the different spatial resolutions. Valdez-Lazalde et al. [62] used high
(Ikonos and QuickBird-2) and medium-resolution (SPOT-4 and Landsat-7 ETM+) images
for the estimation of the tree cover of a pine forest. In turn, Hernán et al. [63] found better
results with aerial and satellite images of 1m and 2.44 m spatial resolution, respectively,
for the estimation of biomass in vineyards. As shown in Figure 11 and Table 4, the area
and perimeter values of the images with the VH band were lower because the waves that
were transmitted vertically and those that return to the sensor horizontally are small. This
means that the intensity of the VH band was lower than that of the VV band [64].

In Peru, especially for the Amazonas region, there is no geospatial information with
high spatial resolution [65], which is why the regression analysis was limited regarding
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including other variables such as precipitation, evapotranspiration, and temperature, the
same variables that influence the dynamics of a lake [66]. For the calculation of meteo-
rological variables, established models can be used or calibrations can be performed to
obtain greater precision in the estimation of these variables [67]. In this investigation, we
tried to relate only the area and date of acquisition of the SAR image; for this purpose, the
dates were transformed to ordinal numbers, and taking advantage of the robustness of the
nonlinear regressors (RFR, SVR, and DTR), a correlation and predicted area and perimeter
data with a mean R2 fit (±0.4) were obtained.

Through the type of regression analysis used in this research, the area and perimeter
values were similar to those of the validation with the RPAS, unlike the perimeter of
Pomacochas lake, which was overestimated, in addition, the shape of the polygons extracted
from the SAR images classified by our approach differs slightly with the shape of each lake,
as shown in Figure 11. The variation in the contour shapes of each lake occurs because the
spatial resolution of the RPAS used is much higher (50 cm/pixel) than that of Sentinel-1
(approximately 10 m/pixel).

The use of single polarizations can help to detect water bodies, but double polariza-
tions have better performance [68,69]. In particular, we used dual polarizations, specifically
the data obtained from VV polarization obtained better consistency according to SVR for
Burlan Lake, while the VH polarization according to RFR for Pomacochas Lake. As shown
in Figure 10, the maximum R2 of the regression methods does not exceed 0.5, so data from
different sensors can be used to correct this [70].

Generating geospatial information from optical data in areas of cloud cover is a
challenge [71]. Additionally, analyzing the dynamics of lakes in the Amazonas using data
from all the factors that influence a lake continues to be a challenge due to the temporal
resolution (different acquisition dates), absence of historical climate data, and low density
of meteorological stations, which are issues to be resolved in future research. It should be
noted that there are various products that can be obtained from SAR images (vegetation
indices, and interferograms), but our research was focused only on providing a rapid
methodology for the analysis of the dynamics of two lakes using the area and perimeter
and their correlation with the date of acquisition of the GRD-type SAR images.

5. Conclusions

Processing Sentinel-1 data in GEE is efficient, fast, and suitable for studies of lake
dynamics located in areas with high cloud cover. In addition, the good spatial and temporal
resolution of Sentinel-1 data is suitable for an analysis of changes in short periods, helping
to show the multitemporal dynamics of water bodies. In particular, this research helped to
show the variation in the area and perimeter of the Burlan and Pomacochas lakes, which
was greater in the first months of each year.

On the other hand, GC was essential for quickly and easily executing five regression
methods, showing that Random Forest Regression worked better both as a classifier and as
a predictor. Variations of −1.18% and −7.51% were achieved with respect to the area and
perimeter of Burlan Lake obtained through the Remote Pilot Aircraft System. On the other
hand, for Pomacochas Lake, RFR underestimated the area of Pomacochas Lake by −4.01%
and overestimated the value of the perimeter by 76.54%.

Finally, this research provided a general methodology for the processing of Sentinel-1
data to analyse water bodies, using Classification and Regression Trees, Random Forests
and Support Vector Machines similar to a classifier. In addition, customizable scripts were
provided for prediction using five regression methods in Google Colaboratory.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijgi11110534/s1, Table S1: Sentinel-1 imagery used for Burlan and Pomacochas Lakes, Table S2:
Area, perimeter, and R2 of each dataset for the five regression methods.
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Abstract: Climate change and overpopulation have led to an increase in water demands worldwide.
As a result, land subsidence due to groundwater extraction and water level decline is causing damage
to communities in arid and semiarid regions. The agricultural plain of Samalghan in Iran has recently
experienced wide areas of land subsidence, which is hypothesized to be caused by groundwater
overexploitation. This hypothesis was assessed by estimating the amount of subsidence that occurred
in the Samalghan plain using DInSAR based on an analysis of 25 Sentinel-1 descending SAR images
over 6 years. To assess the influence of water level changes on this phenomenon, groundwater level
maps were produced, and their relationship with land subsidence was evaluated. Results showed
that one major cause of the subsidence in the Samalghan plain was groundwater overexploitation,
with the highest average land subsidence occurring in 2019 (34 cm) and the lowest in 2015 and
2018 (18 cm). Twelve Sentinel-1 ascending images were used for relative validation of the DInSAR
processing. The correlation value varied from 0.69 to 0.89 (an acceptable range). Finally, the aquifer
behavior was studied, and changes in cultivation patterns and optimal utilization of groundwater
resources were suggested as practical strategies to control the current situation.

Keywords: subsidence; DInSAR; Sentinel-1; groundwater extraction; aquifer behavior

1. Introduction

Groundwater aquifers are one of the most valuable water resources in many parts
of the world [1]. Climate change and rapid population growth, however, are putting
groundwater aquifers under pressure, particularly in densely populated areas in arid
and semiarid environments [2]. Hence, frequent monitoring of groundwater level is
essential to identify areas experiencing rapid depletion in groundwater resources and to
move toward sustainable water management of aquifers, especially in arid areas prone to
drought [3]. Land subsidence resulting from overexploitation of groundwater resources has
been reported in many different parts of the world [4]. The immediate factor driving force
the subsidence is considered to be the dropping of groundwater level; however, the primary
factor behind this phenomenon is the existence of unconsolidated sediment deposits in the
local aquifer system [5].

This phenomenon has affected many cities and regions in the world and caused serious
damage to infrastructures and buildings. For instance, Beijing, the capital city of China,
has suffered from land subsidence due to groundwater extraction since the 1950s [6]. The
subsidence rate in this city is more than 100 mm/year [7]. Subsidence has also occurred
in Mexico City in Mexico [8], California [9], Hue in Vietnam [10], Gorgan in Iran [11],
Semarang in Indonesia [12], Mashhad in Iran [13], and many other cities in the world [4].
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Dry climatic conditions in most inland areas of Iran have increased the dependency on
groundwater resources to meet different demands [14]. More than 600 plains in Iran have
confronted land subsidence due to excessive groundwater withdrawal [15]. In addition,
there have been some plains identified with subsidence of 1 mm per day, indicating a
critical situation [13].

A gradual or sudden settlement of the ground surface without any limitation on speed
or occurrence area is called subsidence [16]. Different processes such as fluid extraction
and mining result in the deformation or movement of soil materials, leading to land subsi-
dence [17]. Excessive groundwater extraction leads to a continuous decline in groundwater
level, reduces pore pressure [18], and results in compression and consolidation of the soil
layer and gradual settling of the ground surface [19].

Land subsidence may result from elastic or inelastic deformation [20,21], and is in
proportion to changes in the groundwater table and the compatible layer thickness [22]. For
an elastic deformation in aquifers with semipermeable layers, the groundwater head must
remain above the previous lowest level (stress before consolidation). If the groundwater
table falls below the previous lowest level, inelastic compaction leads to permanent shifts
in the solid grains, and porosity in the groundwater system will reduce [20]. Regions
with massive pumping of groundwater usually experience inelastic deformation [21]. By
introducing control strategies for groundwater pumping to limit its detrimental effects,
a low uplift value is often observed [23–25]. However, only a small part of the initial
compaction is recoverable when water is recharged into the aquifer [21].

To implement a proper analysis of the causing factor(s) of land subsidence in a partic-
ular site, a vital step is to obtain accurate measurements of the actual amount of subsidence
that occurred at multiple points in time. At present, various methods can be used to mea-
sure the subsidence amplitude, including precise differential leveling [26] and permanent
stations of the Global Positioning System (GPS), Light Detection and Ranging (LiDAR) [27],
and Interferometric Synthetic Aperture Radar (InSAR) [28].

One of the most accurate and economic techniques based on remote sensing is radar
interferometry. This technique evaluates the amount and range of subsidence over the
whole area under study (rather than at a small number of sample points) and provides
the possibility of repeated monitoring of the area relatively frequently (i.e., whenever
new satellite images of the site are acquired) [29,30]. Differential Interferometric Synthetic
Aperture Radar (DInSAR) is an efficient radar interferometry approach [31] that can be used
to accurately detect ground movements and land deformation patterns at a high spatial
resolution (~5 × 20 m in the case of the Sentinel-1) over large geographic areas [7]. DInSAR
analysis can achieve up to millimeter accuracy, making it a very capable tool for land
subsidence and uplift measurement under suitable conditions [32], such as short temporal
and perpendicular baseline, and suitable atmospheric conditions [33]. This technique’s
ability to determine land deformations from millimeters to centimeters in size makes it a
suitable method for monitoring slow-moving deformation [34].

Increasing water demands and urbanization has caused overexploitation and depletion
in many aquifers. Mexico, for example, includes a number of aquifers suffering from
depletion, and as a result, land subsidence combined with ground fracturing. Synthetic
aperture radar proved its ability to monitor land subsidence in this area for a long-term
period. Maximum settlement rates in this area were recognized as 14 cm/year in 1996
and 10 cm/year in 2010–2012, and these increased to 12 cm/year from 2015 to 2020 [35]
Excessive groundwater withdrawal has led to land subsidence and sinkholes in Central
Anatolia in Turkey. Interferometric Synthetic Aperture Radar was used to monitor and
better understand the relation between groundwater extractions and land subsidence in
this area. The investigations revealed subsidence of 70 mm/year in this area, which follows
the overall groundwater level changes with over 80% cross-correlation consistency [36].
The Tuscany region has been affected by land subsidence due to water overexploitation,
geothermal activity, and urbanization. This area was studied using SqueeSAR processing of
Sentinel-1 between 2014 and 2018. The descending images time series showed a maximum
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value of 55 mm/year subsidence in the Montemurlo area [37]. Sui et al. [30] studied
subsidence in the Loess Plateau of China using DInSAR due to underground extraction
using ALOS PALSAR data in 2007. They monitored subsidence with maximum values
of 20 cm in some areas. They proposed an approach to combine InSAR results with the
support vector machine regression algorithm to predict subsidence with a high level
of accuracy.

The Samalghan plain, located in the North Khorasan province of Iran, is one of the
most important agricultural plains in this country. It currently suffers, however, from
subsidence, causing irreversible damage to the plain. Groundwater conditions in the
mentioned area have become essential to be monitored and managed, as groundwater
overexploitation may be a causing factor. A prior study [38] found that subsidence in the
plain could be divided into two regions: a high-risk region in the west and northwest of
the plain, and a low-risk region in the eastern parts. During the past decades, surface
fractures have been created in the northwest Samalghan plain that is being developed.
Consequently, studying subsidence in this plain is of great importance. In the previous
studies conducted on Samalghan plain, subsidence was not measured over the entire plain
area, and the relationship between subsidence rates and the rate of groundwater decline
was not investigated. We aimed to fill these research gaps in the present study by detecting
land subsidence using the DInSAR method and quantitatively analyzing its relationship
with groundwater depletion. Then, the aquifer response to water recharge and discharge
in terms of changes in groundwater head and land subsidence was evaluated.

2. Materials and Methods

2.1. Study Area

The study area is an important agricultural plain located in the western part of North
Khorasan Province, Iran, covering an area of over 1100 km2 with an arid/semiarid climate.
The location and extent of this area, simplified geology, and the piezometric well locations
are presented as follows (Figure 1). This plain is located in the Kopeh Dagh geological
zone, and its geographical location is limited within 37◦21′–37◦39′ N in latitude and 56◦25′
to 57◦06′ E in longitude. The high demand for fresh water in this area relies mostly on
groundwater, which has increased due to growing agricultural consumption [39].

 
Figure 1. Location map of study area in North Khorasan Province of Iran.

The maximum elevation is in Korkhod Mountains, 2680 m above sea level, and the
minimum elevation, at the outlet of Darband, is 600 m above sea level. The average annual
precipitation of this basin is approximately 465 mm, with a mean annual temperature and
evapotranspiration of 11.1 ◦C and 1132 mm/year, respectively [40].
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Based on figures obtained from the regional water authority organization of North
Khorasan Province (NKHRW), this plain has 333 operational wells, with a discharge
rate of 37.65 million cubic meters (MCM) per year. The number of wells experiencing
overextraction in this area is 86, and the total volume of this overextraction is 17.17 MCM.
An additional 1.2 MCM is extracted annually from 15 aqueducts in this plain. The aquifer
recharge capacity of this plain—the maximum volume of water that can be recharged after
discharge each year—is about 5 MCM/year; the current amount of extraction has caused a
lack of balance in the aquifer. In terms of water quality, this plain is categorized as suitable
for agricultural use and acceptable for drinking.

According to data from NKHRW, 35 MCM of the annual groundwater consumption
is appertained by agriculture. The allocation of groundwater resources is represented in
Figure 2. The main farmed crops in this area are cotton, rice, wheat, and barley. The density
of farmlands is higher in the low-lying parts of the plain [39].

Figure 2. Percentage of different groundwater consumption sectors in Samalghan plain.

A prior study claimed that there have been fractures reported in the northwest parts of
the plain in a north–south direction. These fractures continue along a line several hundred
meters in length dictated by a fault in the rock. Most of these cracks were formed in the
agricultural lands and caused substantial damage to farmlands due to extra water escape
and leakage into them, as well as the change of slope. As a result, farmers are constantly
flattening the land and trying to eliminate the effects of cracks in agricultural lands [38].

Groundwater quality deterioration is another negative impact of these cracks. The
formation of cracks can be a channel for the transfer of surface pollutants, including
effluent and drainage from the agricultural lands following the use of chemical fertilizers
and pesticides to the aquifer [41].

The underground geological investigations of the Samalghan plain show the variable
thickness of the alluvium of this plain. In the northern part of this plain, the Tirgan
formation can be observed in both the surface and the depth. The groundwater level is low
in this area; therefore, most of the exploitation wells are located in this part. In the eastern
part of the plain, Neogene sediments are located on the Tirgan formation, and the main
lithology of these sediments is conglomerate, marl, and evaporite rocks.

The underground geological layers investigated using the log information of the
existing wells in the region in three directions is shown in Figure 3a. Examining the well
logs in the direction of AA’ shows that the sediments in the northeast of the aquifer are
fine-grained, and the sediments change to coarse-grained towards the southwest of the
area. In this regard, the thickness of the alluvium is so high that it did not meet the bedrock
in the SW15 well, with a depth of 140 m. The SW2 well has encountered limestone due to
its proximity to the Tirgan limestone formation. This means that along the AA’ direction,
the bedrock has a great depth, and in some places it is formed of limestone.
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(a) 

(b) 

(c) 

Figure 3. Cont.
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(d) 

Figure 3. The location of drilling wells for the investigation of well logs (a); (b) the log of wells in
AA’; (c) the log of wells in BB’ direction; and (d) the log of wells in CC’ section.

Excavation of the drilling wells in the direction of BB’ indicates that the sediments
become mostly coarse, and as the thickness of the fine-grained sediments decreases, the
thickness of the coarse-grained sediments increases from east to west. In the western part
of the Tirgan plain, limestone can be seen on the ground; it can also be seen in the deep
parts of the northwest of the plain.

Surveys in the direction of CC’ reveal that the topographical changes decrease from
the south to the north of the plain. There is a height difference of 94 m between the two
wells; the water depth increases from the south to the north of the plain. Investigations
in this direction indicate that the thickness of coarse-grained sediments increase from the
south to the north of the plain [42].

2.2. Dataset

To study land subsidence in this plain, two series of datasets have been used: ground-
water time-series data and SAR remote sensing imagery. In this section, these two datasets
will be introduced.

2.2.1. Groundwater Data

To prepare and study the groundwater level change maps, piezometric data of the
studying area are needed. In this study, the piezometric data consist of monthly groundwa-
ter level time series at 16 well sites covering the period of 2008–2018, provided by the Iran
Water Resources Management Company (http://wrs.wrm.ir/ (accessed on 27 December
2019)). First, the historical groundwater level data were collected and sorted by year, then
the trend changes in water level over each well, and also the average changes in water level
in the area were studied. The groundwater level for 2019 and 2020 was predicted with the
use of historical data and the best-fitted trend line in Excel. Therefore, various trendlines
were fitted in this process, and the most accurate estimation was implemented according
to the available data. To carry this out, exponential, linear, logarithmic, polymonal with
power 2, and power trendlines were evaluated using cross-validation. The well locations
can be seen as presented in Figure 1. In this study, the IDW (inverse distance weighted)
method with a power value of 1, 2, 3, and 4, and ordinary Kriging and Spline methods were
conducted for interpolation of groundwater levels, and their performances were evaluated
by cross-validation. Then, the most accurate method was chosen as the interpolation
method to develop wall-to-wall groundwater level maps of the study site.
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2.2.2. SAR Data

Utilizing the radar interferometry method, the rate and trend of subsidence in Samal-
ghan plain were investigated using the Single Look Complex (SLC) radar data stacks of the
Sentinel-1 Satellite. In this study, Sentinel-1A data provided in the Copernicus database
Sentinel-1 SAR, which is freely available through https://asf.alaska.edu/ (accessed on 22
January 2021), were used. The 12-day repeat orbit cycle is expected to increase the coherence
value of interferometric pairs for land deformation monitoring. The Sentinel-1 data were
acquired in interferometric wide (IW) swath mode, which is made up of three subswathes
(IW1, IW2, and IW3) with a total swath of 250 km [8]. This mode enables coverage of a
large area with a good spatial resolution [43] of 5 × 20 m for SLC-type data [44].

A total of 24 pairs of images in VV polarization were processed with the use of the
conventional DInSAR technique. Appropriate selection of the data pair is a vital step
because the results are highly dependent on coherence values [34]. In order to increase the
coherence value and reduce the speckle noise in the interferograms and enhance the results,
images with the least perpendicular baseline and the temporal baseline difference between
acquisition dates were selected. The data are used in a way that every 4 interferograms
contain 4 seasons for each year, with the optimal perpendicular baseline value. The
interferometric pairs were chosen as given in Table 1.

Table 1. Analyzed descending datasets information, including interferogram ID (Int ID), master date,
slave date, temporal baseline (days), and perpendicular baseline (meters).

Int ID Master Slave TB (Days) PB (m) Int ID Master Slave TB (Days) PB (m)

D1 2020.11.07 2020.08.27 73 19 D13 2017.11.11 2017.08.19 84 20

D2 2020.08.27 2020.05.23 96 7 D14 2017.08.19 2017.05.27 74 17

D3 2020.05.23 2020.02.29 84 55 D15 2017.05.27 2017.02.08 108 33

D4 2020.02.29 2019.12.07 84 1 D16 2017.02.08 2016.11.04 96 36

D5 2019.12.07 2019.08.21 108 61 D17 2016.11.04 2016.08.24 72 66

D6 2019.08.21 2019.05.29 84 11 D18 2016.08.24 2016.05.20 96 0

D7 2019.05.29 2019.02.22 96 55 D19 2016.05.20 2016.02.14 96 26

D8 2019.02.22 2018.11.06 108 30 D20 2016.02.14 2015.11.10 96 6

D9 2018.11.06 2018.08.14 84 52 D21 2015.11.10 2015.08.06 96 19

D10 2018.08.14 2018.05.10 96 10 D22 2015.08.06 2015.05.26 168 38

D11 2018.05.10 2018.03.11 60 64 D23 2015.05.26 2015.02.07 108 13

D12 2018.03.11 2017.11.11 120 63 D24 2015.02.07 2014.11.03 180 66

The 30 m Shuttle Radar Topography Mission (SRTM) digital elevation model was
used for co-registration of the data stack. Due to the nonexistence of either previous land
subsidence measurement data in the study area, GPS measurement data, or precise leveling
data, the displacement results could not be validated; however, the results could be deemed
to be acceptable, since DInSAR is known as an acceptable methodology giving accurate
results for deformation in most areas [5]. Therefore, 11 pairs of ascending-direction images
from 2018 to 2020, which were available with the optimum baseline value in the same path,
were used for the validation of DInSAR the process.

2.2.3. Additional Data

In order to investigate the hypothesis that groundwater has an impact on land subsi-
dence in the Samalghan plain, the impact of other factors such as railways and earthquakes
was also examined. In order to investigate the effect of tectonic conditions and continu-
ous earthquakes on subsidence in the region, earthquakes with a magnitude of 4 [45] or
above on the Richter scale were prepared from the Seismological Center of the Institute
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of Geophysics, University of Tehran. In the period under study, there is no earthquake
above magnitude of 4 with its center in Samalghan plain or a short distance from the region.
These earthquakes do not have much effect (in centimeters) on the displacement of the
study area. In addition, there is no rail line in the study area, so the impact of these two
cases was ignored.

Soil type data were not available in the area, so geological information from the area
was used. The information obtained from a previous study [42]. Finally, according to the
study of geological maps in the study area, the relationship between subsidence loss and
soil granulation was studied.

2.3. DInSAR Method

As mentioned earlier, the method employed to monitor subsidence in the Samalghan
plain was DInSAR, due to its high accuracy and speed of monitoring. With the usage of
this technique, accuracy in millimeters or centimeters is achievable for the velocity of land
deformation [46].

The DInSAR process is conducted using the SNAP software developed by the Euro-
pean Space Agency (ESA) (https://step.esa.int/main/toolboxes/snap/ (accessed on 31
March 2020)). The conventional DInSAR process is shown in Figure 4 for a single-pair
DInSAR. To reduce the decorrelation in interferograms and its relevant errors, the master
acquisition was chosen based on the measured temporal and spatial baselines to achieve
an appropriate coherence in interferograms [47]. For the descending data, the image taken
later (after the event, e.g., 2020) was used as the master. In order to perform interferometric
processing, two or more images were coregistered as a stack [48,49]. This step causes
each ground target in both images to be identified in the same position [50]. At this point,
to correct azimuth and amplitude estimations, enhanced spectral diversity (ESD) [51]
was used.

 

Figure 4. Conventional DInSAR workflow in SNAP.

An interferogram contains information about both topographic and surface movement.
In other words, the interferometric phase is a measure of the difference in the path length
between the target and the two sensor positions [28,52]. The DInSAR technique aims to
separate the contribution of the topographic phase of the earth’s surface and the portion
of the displacement phase to show the extent of the displacement. In order to remove
the topographic phase effect, an additional interferogram or a digital elevation model is
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required [53]. The 30 m SRTM Dem was used to remove the flat earth effect [54,55] and
phase pixels due to the topography.

The interferograms were then filtered by Goldstein phase filtering [56] in order to remove
the noise from radar instruments and temporal decorrelation [5]. Subsequently, they were
unwrapped using the minimum cost flow (MCF) algorithm with SNAPHU [57,58]. Then, the
unwrapped interferograms were converted into line-of-sight (LOS) displacement maps.

The vertical displacement map of the earth was prepared and geocoded. After devel-
oping Samalghan land subsidence maps, a cumulative displacement map, which is the
sum of all displacements of all segments, was produced for each year. Next, the maps were
examined, and the relationship between land subsidence and groundwater changes in the
study area was investigated.

3. Results and Discussion

To investigate the interaction behavior of the aquifer and to evaluate the land subsi-
dence in the Samalghan plain, radar images were processed. Secondly, the piezometric
well data in the area were used to investigate groundwater level changes, then the relation
between groundwater level changes and land subsidence was studied. This section will
discuss the findings of the research.

3.1. Groundwater Level Variation

The trend in average annual groundwater level in the study period was plotted, and
the best trend line was fitted, as shown in Figure 5. From this, it can be seen that the average
depth of groundwater increased from 2008 to 2018 (i.e., groundwater level decreased). Thus,
the recharge rate is significantly less than the rate of groundwater extraction. Exponential,
linear, logarithmic, polymonal with power 2, and power trendlines were evaluated. The
results showed that the best fitted trend line is the polymonal trendline, with a root-mean-
square error (RMSE) of 0.4 (m) and correlation coefficient (CC) of 0.95 (Table 2). Using the
fitted diagram trendline, the average groundwater level in 2019 and 2020 was estimated to
be 24.1 and 24.9 m, respectively.

 
Figure 5. Variations in average groundwater level in Samalghan plain.
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Table 2. The CC and RMSE value of the selected trendlines to estimate groundwater level.

Trendline Method CC RMSE (m)

Exponential 0.93 0.58
Linear 0.92 0.51

Logarithmic 0.81 1.00
Polymonal—power 2 0.95 0.40

Power 0.82 0.76

Of the different interpolation methods and weighting parameters tested (Table 3), the
ordinary Kriging method showed the lowest RMSE (1.6 m). This result is similar to that of
other studies’ findings that Kriging tends to outperform IDW methods [59].

Table 3. The RMSE value of the interpolation methods to generate the groundwater level maps.

Trendline Method RMSE (m)

IDW—power1 2.3
IDW—power2 2.1
IDW—power3 2.1
IDW—power4 2.2

Spline 2.7
Ordinary Kriging 1.6

Thus, using the observed well data, wall-to-wall groundwater level maps of the plain
were generated using the ordinary Kriging interpolation method in low-height parts of
the area (less than 1100 m). By overlaying the 2008 and 2018 groundwater level maps and
calculating the difference (Figure 6), it is clear that the northern area saw the most significant
groundwater level drop, being up to 20 m in some areas. In general, the whole plain was
found to have been affected by groundwater fall. It is worthwhile to mention the fact that
there are uncertainties in some parts of the region due to the lack of data and the absence
of observational wells (e.g., north-west and south-east of the plain). Nevertheless, some
external data (i.e., piezometric wells in a northern adjacent plain) were used to increase the
accuracy in these areas.

 

Figure 6. Groundwater level change map between 2008 and 2018.
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3.2. Displacement Maps

The results of DInSAR processing and investigation of the annual displacement maps
show the pattern of subsidence over time in the study area (Figure 7). In a previous
study [38], the authors pointed out that cracks have been created in the northwest of the
plain, moving towards the east of the region. It can be seen that land subsidence in the
Samalghan plain mainly occurred in the northern and northwestern parts of the region.

Figure 7. Cumulative annual vertical displacement maps for 2015–2020 using descending data.

Based on deformation maps in the region, the land subsidence occurred in 2015 in
all northern parts of the Samalghan plain. There was no subsidence in the south and
southwest of the area in 2015. This pattern also took place in 2016. Moreover, by 2016, the
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maximum subsidence had reached a new peak compared to the previous year. In 2017, the
land subsidence pattern changed slightly and spread to almost the entire plain. In the north
of the city of Ashkhane, a slight uplift spread lightly towards the northeast–southwest of
the plain. In 2018, a subsidence pattern similar to the pattern in 2015 and 2016 was detected
in the Samalghan plain, which happened in all northern parts of Samalghan plain, and the
pattern continues towards the central parts of the plain. Examination of the displacement
maps shows the recurrence of subsidence in the north and northwest of Samalghan plain,
the central part containing an aquifer, and the western part near Chamanbid in recent years.
The subsidence in western parts is developing towards the Chamanbid, and if not properly
managed will cause damage to residential areas. The results of field research in the city
of Ashkhane and the surrounding areas showed a lot of damage to these areas, including
cracks in the walls, well casing protruding, and holes in the ground.

The uplift observed in mountains is sought to have various reasons. According to
information from organizations, major activities had been performed in highly elevated
areas in this region. Firstly, afforestation is being conducted on an annual scale of around
70 hectares. A part of the vegetation growth can be misrecognized by uplift, as an error.
Moreover, there are many villages located in mountainous areas, expanding their farmlands
and plowing the bare lands, and transforming them into rainfed cultivation areas. The
agricultural and urban activities in these villages are detected as uplift as well.

Following the trend of land surface changes during the study period, it is possible to
observe the uplift of the ground surface after its subsidence in some places. For instance,
around Chamanbid, Ashkhane, some parts of the southern part of the plain, and even
the northern part of the plain in 2016, the ground surface recovered after its previous
subsidence. In addition, in some areas that had been involved in subsidence in 2017,
including south of the Samalghan aquifer, west and north of the Samalghan plain, and
south-east of the plain, an uplift was observed in the following years. As a result, the
possibility of the elastic ground behavior is high, which needs further investigation. In
Figure 8, the land subsidence in the two major cities in the study area has been shown.
As can be seen from the provided figure, in the city of Ashkhane, after two consecutive
years of subsidence, in 2017 and 2018, an uplift was observed, and after that, two years of
subsidence occurred again; however, the effect of subsidence was greater, and overall, a
cumulative subsidence of 39 cm occurred at this point. In Chamanbid, the situation was
different: from 2015 to 2018, an uplift was detected, while in 2019 and 2020, the trend
changed and subsidence occurred.

Figure 8. The trend of annual and cumulative land deformation in Ashkhane and Chamanbid cities.

3.3. Validation

Since neither precise leveling nor GPS station data were available during the study
period over the area, it is not possible to evaluate the results of InSAR processing using Earth
observations. Moreover, there were no other sufficient SAR data available for the plain.
Hence, a comparative validation method was used to validate the processing results in this
region. For this purpose, the InSAR processing was performed using data with a different
path and direction. The results were deemed acceptable if the interferometric processing
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results of ascending and descending satellite images of one sensor were similar [60]. The
subsidence values at the piezometric well locations were also extracted in the ascending
and descending displacement maps for comparison. The results showed a satisfactory
result quantitatively, with a correlation of 0.69–0.89 between the subsidence estimates given
by the ascending/descending data (Table 4), and a similar visual pattern in the Figure 9
maps. The slight differences between the datasets may be partially explained by the time
differences between the image acquisitions.

Table 4. Correlation of monitored subsidence for ascending and descending data at the position of
piezometric wells in Samalghan plain.

Year CC

2018 0.72
2019 0.69
2020 0.89

Furthermore, to determine the validity of the research findings and also to collect
field evidence of subsidence in the Samalghan plain, a field operation was conducted.
Subsidence has had various effects on plain areas (Figure 10). From this, we found that
the effects of subsidence can be seen in the form of cracks in the ground, cracks in the
walls, well casing protruding, and holes in the ground. The subsidence in some parts of the
plain is accompanied by surface cracks, but in other places, it is observed as a uniform and
homogeneous subsidence.

Figure 9. Cont.
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Figure 9. Annual cumulative displacement maps for the ascending and descending data in (a) 2020,
(b) 2019, and (c) 2018.

Figure 10. Evidence of land subsidence in the study area as cracks and holes (Photographs were
taken at Ashkhane on 25 February, 2021 by Rafiei, F.).
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3.4. Groundwater Related Subsidence

Since this paper aimed to study the whole plain, we decided to investigate the ground-
water level drop over the whole area, and although there are piezometric wells in the
aquifer, there are some extraction wells outside of the aquifer (Figure 6). In addition, as
can be seen, there is land subsidence in the north of the plain, even in the areas without
piezometric data, but the groundwater level maps indicate that a groundwater level drop
is happening there. However, to increase the accuracy, we investigated the relationship
between the groundwater drop and subsidence in well locations in more detail.

To investigate the relation between water level decline and land subsidence, water
level variations in the piezometric wells were overlaid with the cumulative displacement
map. As shown in Figure 11, subsidence occurred in all points experiencing water level falls.
In addition, in the areas where the water decline was lower, the subsidence radius value
was smaller around the well. Conversely, the subsidence around the wells with a higher
water level drop was spread with a greater radius. The subsidence has entirely affected the
low-height parts of Samalghan, which contain a high concentration of agricultural lands
and experience noticeable water extraction.

To better understand the relationship between water level changes and land subsi-
dence, two sections (profiles) were considered in the Samalghan aquifer. Their locations are
indicated by the two lines shown in Figure 11a. The first line was drawn to cover a longer
length of the aquifer in the plain and passes through the position of more piezometers. The
graphs of land surface change and water level decline were then plotted in Figure 11b. It
can be seen that the higher the drop in water level, the more subsidence occurs in the area.
A few examples of extents with a stronger connection between water level drop and land
subsidence are shown in Figure 11, indicated with the red boxes. With the lower water
level fall, the rate of subsidence also decreased.

In the next step, the temporal evolution of groundwater changes and land deformation
at piezometric wells are drawn on a dual-axis chart. According to Figure 12, at some
wells, both changes follow almost a similar trend (Figure 12a,b), and with subsidence of
groundwater, subsidence is observed. Similarly, with the recovery of the water level in the
wells, an uplift is detected. However, in some wells, the ground surface with a one-year lag
showed similar behavior to the water surface, as shown in Figure 12b,c.

 
(a) 

Figure 11. Cont.
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(b) 

Figure 11. (a) Change in water level and position of the piezometric wells overlaid with subsidence
in the region from 2015 to 2020, with purple lines as section. (b) Sections in the aquifer showing the
groundwater level drop and displacement plots.

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 12. Temporal evolution of deformation (InSAR estimations) (orange line), groundwater level
change (blue line) at (a) well 1, (b) well 14, (c) well 15, and (d) well 16, and the groundwater level
change with a one-year lag in (b,c) (gray-dashed line).
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3.5. Aquifer Behavior

The following section discusses subsidence in piezometric wells in the plain, consider-
ing changes in subsidence over time.

One procedure for monitoring the relationship between the groundwater level vari-
ations and land surface changes is to plot these two parameters (groundwater level and
land deformation). The authors of [61] claimed that a method can be used to estimate the
approximate value of the storage coefficient of an aquifer. Based on this technique, the
y-axis indicates the water level change, while the ground level changes (derived from the
Interferometric processing) are plotted on the x-axis. In the next step, a linear trendline
is fitted on these datasets, and the inverse slope of this line represents the aquifer storage
coefficient. The trendline can estimate the approximate value of subsidence for a certain
amount of water drop [61,62]. Based on this method, the storage coefficient value around
the piezometric wells was calculated with the minimum value of 0.04, and the maximum
value of 0.36. The higher the computational storage coefficient, the more sensitivity of
the ground surface to respond to the water level changes. After that, using the Kriging
interpolation method, a map of changes in the approximate storage coefficient of the aquifer
was calculated (Figure 13).

Figure 13. The value of the interpolated storage coefficient of the Samalghan aquifer, using the
ordinary Kriging method.

To study the aquifer behavior, the relationship between the DInSAR displacements for
every extraction–recovery period concerning the distance to the wells was measured. For
this purpose, in every extraction–recovery cycle at a radial distance varying from 250 to
4000 m from the observation wells (Figure 14), the average displacement was measured
in the desired buffer area. Then, the maximum and minimum subsidence rates for the
generated maps and their average were plotted on a graph. It was noted that the results
were not significant and effective at a distance of 4000 m and they were rather homogeneous
and intense from 1000 to 4000 m. On the other hand, at a radius of 1000 m, the effect of
adjacent wells could be seen to some extent. Therefore, the greatest influence area of the
aquifer exploitation is limited to the 1000 m-radius circle around the wells, and the values
extracted from a radial distance of 4000 m were excluded from the analysis. The averages
of the displacement data collected for each year were then plotted at a distance of 250 m,
which was closest to each well, as shown in Figure 15.
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Figure 14. Buffer areas with different radius values and locations around well fields in the study area
on the displacement maps.

 

Figure 15. Graph of average surface changes at a distance of 250 m from observation wells (green
and orange-dashed rectangles representing recovery and extraction periods, respectively).

According to the trend of land surface changes in the study period (Figure 15), the
whole time range was divided into four periods, including both uplift and subsidence. The
data order in Figure 15 is ascending, with 1 representing the first interferogram produced
in 2014, and 24 representing the last interferogram produced in 2020 (Table 5). A trend line
was also fitted on the chart, representing the inelastic behavior in the region.
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Table 5. Interferogram ID and its corresponding number in Figure 15 X-axis.

Interferogram
ID

Number
Interferogram

ID
Number

Interferogram
ID

Number

D24 1 D23 2 D22 3
D21 4 D20 5 D19 6
D18 7 D17 8 D16 9
D15 10 D14 11 D13 12
D12 13 D11 14 D10 15
D9 16 D8 17 D7 18
D6 19 D5 20 D4 21
D3 22 D2 23 D1 24

The expected inelastic behavior in the region should be in accordance with the fitting
line as represented in Figure 15. Due to the noncompliance of the aquifer system with this
trend or behaving at the closest distance to this trend, it can be said that the behavior of the
Samalghan aquifer might be elastic.

After the investigation of the selected periods, the relation between differential ground
surface displacements and the duration of the extraction–recovery phases for every cycle
was also analyzed. To reach this goal, the ratio of uplift–subsidence ratio (SR) and the
cycle temporal ratio (TR) were calculated according to Table 6. The SR ratio represents
the dependence between ground surface uplift during recovery and the subsidence that
occurred in the extraction phase [29]. The results not only showed the highest average of
subsidence in cycle 2, but also included the highest amount of uplift in the same period.
The highest ratio of uplift to subsidence is in the fourth period, with a value of 1800%
with a radius of 250 m around the wells. As is advised by [29], to achieve optimal aquifer
management, the best time ratio is between 2 and 4. The closer the value obtained to this
interval, the better the time frame for managing the area. Therefore, the first period has the
best time interval, with a recovery period of 276 days and a subsidence period of 192 days.
The third cycle also had a good value of TR, in which the recovery period was 444 days
and the extraction period was 360 days. According to SR values, the smaller the time ratio
in each period, the higher the monitored uplift to subsidence ratio. In agreement with
the optimal number mentioned earlier, to reduce the damages caused by subsidence with
proper management of water resources, for each year of uncontrolled extraction of plain
resources, two years of plain could be considered as the recovery phase.

According to Table 6, for cycle 1, ground surface subsidence related to the extraction
phase represented the minimum value compared to the other cycles’ SR values of 32%,
20%, and 33% for 250 m, 500 m, and 1000 m from well fields, respectively. Meanwhile,
the maximum TR value was represented in cycle 1, with the optimum amount of 1.43. In
cycle 2, although the amount of uplift was on average about 3 times bigger than the phase
1 recovery, the value of subsidence compensated for both values of uplift in cycles 1 and
2. However, it was noticeable that the SR increased significantly. In the third cycle, the
SR value decreased, while the TR value in this cycle rose. This procedure was reversed in
the fourth cycle. While the time ratio decreased, the value of uplift increased significantly
compared to subsidence in the extraction phase. The regional water company of North
Khorasan proposed to rehabilitate water resources in 2016 and took action in 2018. Strict
enforcement of groundwater extraction seems to have been effective in the study area.
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Table 6. Average changes of the land surface in the four selected periods studied at different
distances from observation wells, the ratio of uplift to subsidence values, and the ratio of uplift to
subsidence phase.

Cycle Phase 250 m from Well Field 500 m from Well Field
1000 m from Well

Field

Cycle 1
Recovery:

3 November 2014–6
August 2015
Extraction:

6 August 2015–14
February 2016

Recovery (277 days) 1.19 0.93 1.34
Extraction (193 days) −3.65 −4.45 −3.95

SR 32% 20% 33%

TR 1.43 1.43 1.43

Cycle 2
Recovery:

14 February 2016–20
May 2016
Extraction:

20 May 2016–24 August
2016

Recovery (97 days) 7.65 8.15 9.15
Extraction (97 days) −9.35 −9.55 −9.35

SR 81% 85% 97%

TR 1.00 1.00 1.00

Cycle 3
Recovery:

24 August 2016–11
November 2017

Extraction:
11 November 2017–6

November 2018

Recovery (445 days) 0.83 0.88 1.23
Extraction (371 days) −2.26 −2.45 −2.99

SR 36% 35.9% 41%

TR 1.19 1.19 1.19

Cycle 4
Recovery:

6 November 2018–21
August 2019
Extraction:

21 August 2019–7
November 2020

Recovery (289 days) 4.27 3.78 3.51
Extraction (445 days) −1.83 −2.05 −2.42

SR 233% 184% 145%

TR 0.65 0.65 0.65

Lastly, the stress–displacement relationship, which delivers a relationship between the
measured displacement (ΔD) caused by a groundwater level fall (Δh), was computed for the
water level drop–subsidence temporal series shown in Table 7 using Equation (1) [63,64]:

Ske =
ΔD
Δh

(1)

Table 7. Computed elastic storage coefficient for wells shown in Figure 1.

Well ID Ske Well ID Ske Well ID Ske

W1 2.1 × 10−5 W7 5.3 × 10−5 W13 1.6 × 10−4

W2 1.6 × 10−5 W8 1.7 × 10−4 W14 4.3 × 10−5

W3 1.6 × 10−5 W9 5.4 × 10−5 W15 1 × 10−4

W4 2.1 × 10−4 W10 3 × 10−6 W16 1.9 × 10−4

W5 1.5 × 10−5 W11 8 × 10−6 W17 4.7 × 10−5

W6 1.3 × 10−5 W12 1.6 × 10−4

The calculated value represents the deformability, and adopts different values with the
stress rate according to the piezometric level [64]. When the stress induced by the hydraulic
head variation overreaches the maximum pre-existing stress, as with preconsolidation
stress, deformation rates could be largely high and irrecoverable in most cases due to the
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changes in arrangement and compaction of the soils. However, if induced stress does not
exceed the preconsolidation stress, the deformations are much smaller and mostly elastic.
This different soil behavior can be introduced to Equation 1 by assigning two different
skeletal specific storages, elastic (Sske) and inelastic (Sskv), according to the state of stress
concerning the preconsolidation stress.

In this work, the elastic storage coefficients Ske of the Samalghan aquifer were cal-
culated for the period 2015–2020 using piezometric data for the 17 available wells where
DInSAR retrieved deformations were also observed (Figure 16). These data applied for
plotting the stress–strain curves that represent the relationship between piezometric level
changes and aquifer system deformations, from which elastic storage coefficients were
determined consisting of the slope of the branch of the stress–strain curve [29,64].

 
(a) (b) 

 
(c) (d) 

 
(e) (f) 

Figure 16. Stress–strain analysis for wells W3 (a), W4 (b), W8 (c), W 12 (d), W13 (e), and W17 (f).

Figure 16 shows the stress–strain relationship at six well locations in the study area.
Groundwater level drops define the stresses, and the ground displacements represent the
vertical deformation of the aquifer system. The stress–strain trajectories during the period
are similar in most of the wells. The Ske values of each well site obtained using the slope of
the trendline for each well are shown in Table 7. Ske values vary from 3 × 10−6 at well 10
to 2.1 × 10−4 at well 4.

If the aquifer system is not stressed exceeding its preconsolidation stress, the Ske values
are quite stable and independent of the considered time interval. The Ske computed values
can be applied to estimate groundwater levels at well locations during the desired SAR
acquisition time interval and compared with observed groundwater level values [3].
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3.6. Suggestions

One of the complex issues that will arise with population growth in the future is the
management of water resources in order to meet the demands and reduce the damage
caused by the excessive extraction of groundwater.

Various factors have an impact on groundwater level drop [65], which can be controlled
by proper management. First and foremost, one crucial step is increasing public awareness
and attracting public participation [66] and implementing operational strategies. Water
resources can be used optimally and these valuable resources can be protected. In order to
manage the groundwater drop, several steps can be taken, some of which are addressed in
this section.

3.6.1. Aquifer Conservation

The first action is the protection of groundwater aquifers. This is an important step
to reduce the rate of groundwater depletion. There are several steps that can be taken to
achieve this aim:

• Decentralization of exploitation wells [67];
• Increasing infiltration by restoring vegetation [68] in pastures;
• Construction control in aquifer recharge areas and preventing reduction of irrigation level;
• Increasing aquifer recharge through the use of injection wells [69], increasing infiltra-

tion of rivers and canals [70], flood infiltration in dried aqueducts, and recharging
through infiltration of the surface water from natural pits.

3.6.2. Reduce Water Consumption

Reducing water consumption helps to reduce water loss in the region in several
ways: first, by reducing groundwater extraction, and second, by reducing surface water
consumption and increasing aquifer infiltration. There are several ways to do this:

• Explaining the leading problems and also increasing the level of awareness of con-
sumers [71];

• Treatment of wastewater and effluents and their reuse [72];
• Improving soil conditions by using modern irrigation methods [73] and reducing

evaporation;
• Reducing water transmission losses;
• Promoting greenhouse cultivation [74] in high-consumption areas;
• Promoting and developing hydroponics [75] and providing budgets for these facilities.

3.6.3. Soil Amendation

By improving collapsible soils, the development process of cracks in the Samalghan
plain can be reduced. Due to the fact that the fractures in the plain have reached some
roads and caused damage to them, it is possible to reduce further damages during the
construction or repair of roads by using some techniques. Soil collection, replacement, and
compaction; collection of moisture-sensitive soils; chemical stabilization by injection; and
the use of piles or foundations are some of the steps that can be taken in this regard.

3.7. Geological Investigation

By comparing the results of annual cumulative displacement with the geological map
(Figure 17), it is possible to identify the areas in which more subsidence has occurred.
According to the given information in the previous study [42], the soil texture of the plain
can be identified. Land deformation has occurred in different parts of the Samalghan plain,
which is discussed as follows:

1. East of the plain, on the Marl Formation, including fine sediments;
2. North of the plain, on the Tirgan formation (Ktr), and composed of orbitoline limestone;
3. Sarcheshmeh formation (Ksr) in the eastern Samalghan plain, containing marl (con-

sisting of a high percentage of clay);
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4. The center of the plain where the aquifer is located, on new deposits (Qft2) composed
of coarse- to fine-grained sediments including clay, sand, and silt, and Khangiran
formation (Ekh), formed of sandstone;

5. Some parts of eastern Chamanbid at a radius of 14 kms, and the south of Chamanbid
at a distance of 2 km from the city on the Pliocene conglomerate (P1QC), which
consists of sandstone and conglomerate, and some parts of Kalat Formation (Kk),
including fine sand and erodible limestone;

6. West of the plain at a distance of 4 km to the north of Chamanbid on a small part of
the Jmz formation, composed of lime and dolomite;

7. At 5 km to the northeast of Chamanbid, and southwest of Samalghan aquifer, which
is located on a part of the Chamanbid formation (Jd).

 

Figure 17. Geological map of the Samalghan plain [42].

The textures of the mentioned formations are mostly fine-grained and soluble rocks.
Most of the constituent particles of these sections—lime, clay, and silty sediments—are
fine-grained, which confirms that subsidence occurs mostly in fine-grained soils. Due to the
clayey texture of the soil in most of these areas, the elastic behavior of the ground cannot
be expected. Therefore, in these areas (Sanganeh, Marl, Qft2), it is not possible to propose
new suggestions for the land recovery. In addition, the groundwater flow direction [39] is
towards the center of the plain, and these areas outside the aquifer are not recharged at a
high velocity; so in these areas, groundwater should be extracted under management.

According to the given information, from east to west and from south to north of
the Samalghan aquifer, the soil texture varies from fine-grained to coarse-grained. For
this reason, decision making in these sections should be different. In the western and
northern aquifer, elastic behavior can be expected, so the subsidence can be recovered to an
acceptable range by recharging this area or transferring surface water from the highlands
to these areas. In contrast, the eastern and southern Samalghan aquifer, subsidence should
be managed by overseeing and controlling the withdrawal from wells and managing the
consumption of water resources, for example, reducing farmers’ water needs by modifying
the cultivation pattern and increasing the irrigation system efficiency. To control subsidence
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in the Samalghan aquifer, the aquifer layers can be examined more closely using well log
information, which will be available in extended studies.

3.8. Soft Soil Thickness

It is well-known that when the piezometric level falls, the land subsidence is greater
if the accumulated compressible layer is thicker [76]. In this section, the distribution of
soft soil thickness derived from boreholes located in the aquifer is compared to the land
subsidence measured by DInSAR. The land subsidence in the Samalghan plain is developed
in the sand, gravel, and clayey layer. Figure 18 represents the distribution of the mentioned
soft soil layer existing in the Samalghan aquifer overlayed with the slope map. The clayey
layer is one of the biggest contributors to land subsidence. As can be seen from Figure 18,
the layer thickness from the surface ranges between ~30 to 140 m, and as shown in the
deformation maps, all of these areas are affected by land subsidence.

 
(a) 

 
(b) 

Figure 18. Soft soil thickness map of the Samalghan plain (a); the line shows the section used for
investigating the soft soil section along the southwest–northeast direction (b).
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For better investigation, a cross section was employed to better interpret the relation
between the soft soil and the deformation. Although there is some correlation between
these two (as shown in red boxes in some places), there are some areas that are not
completely affected by soft soil. For example, in the first box, the figure for accumulated
subsidence reached 40 cm, where the soil thickness increased to its highest value, and in the
second box, the accumulated subsidence decreased to approximately 25 cm as the thickness
decreased to just below 70 m. However, this trend is not always the same along the area,
e.g., in the distance of 15000–2000 m, which shows that the subsidence is not completely
affected by the soil thickness. Although subsidence affected some areas according to their
thickness, the relation between the subsidence and the groundwater drop was stronger in
the deformed area.

4. Conclusions

Most of the previous studies have illustrated plastic or elastoplastic deformation
in aquifers [4,6,9,11]. Overexploitation and continuous piezometric level decline [7] act
together with seasonal variations [11] as the main driving factors of land subsidence. These
variations are usually the reason for continuous plastic deformation and cyclic elastic
deformations in aquifers [29].

The present study aimed to monitor land subsidence using the Sentinel-1 radar images
in Samalghan plain and investigate its relationship with changes in groundwater level
and aquifer behavior. The spatial and temporal evolution of ground surface displacement
was evaluated using radar interferometry by processing datasets of Sentinel-1 SLC from
November 2014 to November 2020, with results showing that subsidence occurred over
most of the Samalghan plain, while in a few areas uplift was also observed in one or more
years. It shows that the aquifer behavior showed an elastic deformation in some areas,
but in other parts of the region, plastic deformation was detected. With the examination
of groundwater level changes in Samalghan plain and land deformation in this area, it
can be concluded that the subsidence in this plain is affected by groundwater depletion
and uncontrolled extraction from the aquifer. The study of the aquifer interaction in the
area concerning the variation of land deformation caused by changes in the groundwa-
ter level represents an elastic behavior of the land in the Samalghan aquifer and around
Chamanbid city, and the inelastic behavior of the land surface in other parts of the plain.
It is undeniable that understanding the land surface response to water level decline is
essential in arid and semiarid areas to reduce damage and achieve sustainable water re-
source management. These results showed that the quasi-elastic aquifer deformational
behavior is influenced by groundwater withdrawal in Samalghan plain. Applying ground-
water management exploitation seems reasonable because the piezometric level in wells
is mostly recovered after the extraction periods. To illustrate, it can be advised that after
1–2 years of overexploitation, the aquifer should enter 2–4 years of recovery. In addition,
the identified displacements show a modest subsidence phenomenon influencing a broad
area. With reference to the continuous groundwater depletion in the Samalghan plain,
both aquifer conservation and reducing water consumption would alleviate the current
situation. However, some actions could be taken specifically in areas pursuant to their
subsidence situation. We advise that according to the subsidence pattern and the geological
structures (Figures 7 and 17), proposed methods of reducing water consumption should
be applied to the Ktr, Ekh, and Mur sections to manage water consumption. Furthermore,
aquifer conservation would be practical in some parts of the PlQC, Kad, Jmz, Qft2, and
northern parts of Ktr geological sections. The investigation of the relationship between
land subsidences showed that although there is a small correlation between the soft soil
thickness and the land deformation, the subsidence in this area is mostly affected by the
groundwater level variations.
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Abstract: The geomorphology of a basin makes it possible for us to understand its hydrological
pattern. Accordingly, satellite-based remote sensing and geo-information technologies have proven
to be effective tools in the morphology analysis at the basin level. Consequently, this present study
carried out a morphological analysis of the Sinú river basin, analyzing its geometric characteristics,
drainage networks, and relief to develop integrated water resource management. The analyzed
zone comprises an area of 13,971.7 km2 with three sub-basins, the upper, the middle, and the
lower Sinú sub-basins, where seventeen morphometric parameters were evaluated using remote
sensing (RS) and geographical information system (GIS) tools to identify the rainwater harvesting
potential index. The Sinú basin has a dendritic drainage pattern, and the results of the drainage
network parameters make it possible for us to infer that the middle and lower Sinú areas are the ones
mainly affected by floods. The basin geometry parameters indicate an elongated shape, implying
a lesser probability of uniform and homogeneous rainfall. Additionally, the hypsometric curve
shape indicates that active fluvial and alluvial sedimentary processes are present, allowing us to
conclude that much of the material has been eroded and deposited in the basin’s lower zones as it
could be confirmed with the geological information available. The obtained results and GIS tools
confirm the basin’s geological heterogeneity. Furthermore, they were used to delimit the potential
water harvesting zones following the rainwater harvesting potential index (RWHPI) methodology.
The research demonstrates that drainage morphometry has a substantial impact on understanding
landform processes, soil characteristics, and erosional characteristics. Additionally, the results help
us understand the relationship between hydrological variables and geomorphological parameters as
guidance and/or decision-making instruments for the competent authorities to establish actions for
the sustainable development of the basin, flood control, water supply planning, water budgeting,
and disaster mitigation within the Sinú river basin.

Keywords: watershed management; watershed land surface; geo-information technology;
morphology; relief

1. Introduction

A hydrographic basin is an area partly or entirely drained by several watercourses
and delimited by an imaginary line formed by points of the highest topographic elevation

ISPRS Int. J. Geo-Inf. 2022, 11, 459. https://doi.org/10.3390/ijgi11090459 https://www.mdpi.com/journal/ijgi
183



ISPRS Int. J. Geo-Inf. 2022, 11, 459

called watershed, which separates it from neighboring basins [1]. To this extent, just as the
hydrological cycle is the fundamental concept in hydrology, the hydrographic basin is a
naturally defined hydrological unit that becomes the basis for any study of water resource
management [2]. In a basin, morphometry makes it possible to quantitatively study, from a
mathematical point of view, the surface configuration as well as the shape and relief [3].
Horton [4] proposed the bases for the quantitative description of a hydrographic basin’s
shape and drainage network in addition to the interrelationships between morphometry,
climate, vegetation, and soil properties. Similarly, it has been established that given
the unidirectional water flow, processes in the upper parts of the basin invariably have
repercussions in the lower part and the basin morphometric characteristics have a decisive
influence on its hydrological response [5]. It is also paramount to note that through
morphometry study, it is possible to describe and even predict flow behavior corresponding
to the water courses that drain it, and thus, quantify the surface and underground water
potential, making it possible to analyze alternatives to the use of water resources in areas
where it is required [6,7].

Contrastingly, the hydrological response of a basin and its geological history can be
described from morphometric parameters such as area, altitude, slope, shape, drainage
density, and length of streams by correlating them with hydrological phenomena such as
runoff [8]. In other words, the basin response to a series of precipitation events depends,
on one hand, on the rain properties (intensity, duration, frequency, and so on) and, on the
other, on the basin’s morphological and geological features.

Therefore, morphometric characterization is significant in hydrological research and
in studies regarding the management and conservation of natural resources. Such is the
case of the Adnan et al. [9] research, which estimated the morphometric parameters of the
Karnaphuli and Sangu basins in Bangladesh to assess the region’s susceptibility to flash
flood events and obtain a flood risk map for the area.

In the case of Gajbhiye et al., Malik et al., Nitheshnirmal et al., and Rahmati [10–13],
they determined the morphometric parameters in different drainage basins to assess the
susceptibility to erosion and concluded that it was necessary to establish effective practices
for land use and water resource management in these basins. In a similar manner, using
geographic information systems and the morphometric characteristics of a basin, potential
rainwater harvesting (RWH) zones can be determined through multi-criteria decision anal-
ysis, which involves establishing suitability criteria and Boolean logic [14,15]. Regarding
the study of the rain-runoff phenomenon in hydrographic basins, Jena and Tiwari [16]
performed a correlation analysis between morphometric parameters and the features of
the unit hydrographs of the Tarafeni and Bhairabbanki basins in India, thus obtaining
nonlinear regression models to generate synthetic unit hydrographs.

Meanwhile, Viramontes-Olivas et al. [17] analyzed the morphometric parameters of
the San Pedro Chonchos river basin in Chihuahua, Mexico, noticing that drainage density is
influenced by vegetation cover and lithology, since it regulates infiltration rates and feeding
of the subsurface flow, thus reducing the effects and impact of possible floods in the basin.

The geomorphological features of a basin can also be used to determine the homoge-
neous regions in which hydrological response to a precipitation event is similar. In that
aspect, from the correlation of these features with the hydrological variables, it becomes
possible to transfer hydrological information in sites with missing or incomplete data [18].
Hence, based on the methods proposed by Horton [4,19], Schumm [20], Strahler [21], and
Shreve [22], the characterization of multiple basins has been successfully achieved to obtain
reliable information on the hydrological response and physical characteristics of the soil,
such as permeability and even from the present parent rock.

Nonetheless, these methods are usually complex and time-consuming (weeks, even
months) when used to analyze large areas, especially when there are basins that can
exceed 1000 km2 [23]. As a result, in recent years, hydrological research has been supported
through geographic information systems (GIS) since it is a technique specialized in handling
large data sets, allowing time optimization for its analysis and understanding of the
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spatial distribution of the variables to analyze. This represents an improvement in the
systematization of the description, comparison, and classification of hydrographic basins
regardless of their extension, this being of great use and applicability in hydrology [24–29].

Consequently, this study aims to; (1) determine the morphometric parameters of the
Sinú river basin in Colombia through GIS and existing cartography to characterize its
drainage network and morphology; (2) analyze the morphometric parameters relationship
with erosion and floods in the Sinú river basin; and (3) based on the obtained results,
determine the areas with rainwater harvesting potential within the basin as an alternative
to mitigate floods and drought situations in the study area. Moreover, considering the
lack of hydrological information in the basin, these analyses provide valuable information
to improve hydrological models and to integrally manage the basin’s water resources,
since these results can be the foundations for decision-making standards and guidelines
focused on sustainable development, natural resource conservation, land use planning
and management, flood risk mitigation, and water supply for the communities of the
study area.

2. Area of Study

The Sinú river basin is located in the northwestern part of Colombia, between 9◦30′ N
to 7◦05′ N and 76◦35′ W to 75◦15′ W. It has an area of 13,972 km2, in the jurisdiction of
the departments of Córdoba, Sucre, and Antioquia, and according to the provisions of the
Regional Autonomous Corporation of the Sinú and San Jorge Valleys, CVS (for its acronym
in Spanish), it is divided in accordance with its geographical and biotic characteristics in
three zones: the upper, middle and lower Sinú zones or regions, CVS [30].

The geographical location, municipalities, and departments in which the Sinú river
basin is located can be seen in Figure 1. Mainly, the basin consists of elevations below
300 masl in the lower and middle Sinú region, while in the upper Sinú region there are
heights higher than 1000 masl. The Sinú river has its source in this area, specifically in the
Nudo del Paramillo at an altitude of 3400 masl, crossing the basin from south to north until
reaching its mouth at the Caribbean Sea in Boca de Tinajones through three mouths called
Mireya, Medio, and Corea, in the municipality of San Bernardo del Viento, CVS [30].

Conversely, the main population centers of the basin are: Tierralta and Valencia in the
upper basin, Montería (capital of the Córdoba department) in the middle, and Lorica in the
lower basin. Furthermore, in the upper basin there is also the URRÁ hydroelectric plant
and the Paramillo National Natural Park [31].

According to the Agustín Codazzi Geographical Institute, IGAC (for its acronym in
Spanish) [32], there are different types of landscapes in the basin distributed within the two
large geo-structures, where the region’s great geomorphological diversity is evident. In
the mountain range (Cordillera), landscapes of high hills and ridges represent 19.72% of
the area, while in the sedimentation mega basin, the greatest diversity of landscapes are
found, with a predominance of lowland landscape, occupying 70.02% of the basin, and the
hillside, 7.99% of the territory.

Figure 2 presents the map of the chronostratigraphic units (CSU) and geological faults
of the study area, identified by bearing in mind the International Chronostratigraphic
Chart [33], corresponding to a code formed by the geochronological age notation separated
with a hyphen of an acronym that indicates the rock type and its formation environment (V:
volcanic, H: hypabyssal, P: plutonic, VC: volcanoclastic, S: sedimentary, and M: metamor-
phic) followed by a lower case letter representing its composition, metamorphism grade,
or accumulation environment depending on whether igneous, metamorphic, or sedimen-
tary rocks are involved, respectively, e.g., u: ultramafic, lg: low grade of metamorphism,
ct: continental-transitional [34]. In the case of the study area, it is evident that UC Q-al,
e3e4-Sm, and n6n7-Sm prevail, corresponding, respectively to alluvial and alluvial plain
deposits, grainy-decreasing conglomeratic lithic arenites and intercalations of mudstones,
and calcareous arenites and coarse-grained to conglomeratic quartz sandstones.
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It is estimated that the 2010–2011 flood event affected 178,124 people in the Sinú River
basin, representing 18% of the population of the affected municipalities, and 30,257 houses,
representing 15.9% of the households. In addition, it is estimated that 50–60% of this
population was in a critical condition, with percentage of unmet basic needs (UBN) values
of 40%, suggesting that the greatest impacts were received by municipalities with highly
deficient structural conditions [35].

Figure 1. Location of the Sinú river basin in Colombia. The map shows the position of Montería city
as the most representative urban area, the Sinú river, and the Urrá hydroelectric dam.

186



ISPRS Int. J. Geo-Inf. 2022, 11, 459

Figure 2. Chronostratigraphic units (CSU) and geological faults of the study area.

This impact caused by floods in the Sinú basin is closely linked to the development
of activities in potentially floodable zones (PFZ). The National Water Study prepared
by the Institute of Hydrology, Meteorology, and Environmental Studies, IDEAM (for its
acronym in Spanish) [36] estimated that for the Sinú basin, about 76% of the PFZ has been
transformed into agricultural territories or artificial zones. According to information from
CVS [37], the points identified by drainage erosion problems and those present threats
due to flooding on the Sinú river are located in the municipalities of Tierralta and Valencia
in the upper Sinú sub-basin; Montería, Cereté, and San Pelayo in the middle Sinú, and
Cotorra, Lorica, and San Bernardo del Viento in the lower Sinú sub-basin, occurring mostly
in Lorica (24%), Tierralta (22%), and Montería (21%). The largest number of people who
have been affected due to flood events are in the San Pelayo Municipality, followed by the
Lorica and Cotorra municipalities. Regarding economic affectations, they are related to
the productive and agro-industrial system and the most affected municipalities are: San
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Pelayo, San Bernardo del Viento, and Tierralta. Finally, in terms of territorial effects, the
municipalities in the basin with the largest number of flooded hectares are usually Cotorra
and Lorica.

3. Materials and Methods

For the morphometric analysis of the basin through GIS, the use of a digital eleva-
tion model (DEM) was required, which, according to Felicísimo [38], is a numerical data
structure that represents the spatial distribution of altitude on the earth’s surface, i.e., it
is a set of matrices resulting from superimposing a grid on the terrain and extracting the
average altitude of each cell, so they are a regular square mesh network with equally spaced
rows and columns. To delimit the watershed, different elevation models were used: SRTM
from the Shuttle Radar Topographic Mission with 30-m resolution, the ALOS PALSAR
RTC with 12.5 m resolution, and the Hydroshed Digital Elevation Model developed by
the United States Geological Survey—USGS, which was validated by the Inter-American
Development Bank (IDB) in the framework of the Integrated Model of Climate Change and
Water Resources with a 460 m × 460 m resolution [39,40].

To evaluate the accuracy of the DEM, the generation of stream definition was per-
formed using several thresholds, and the result was compared with the official cartographic
plates, determining that, since most of the study area is characterized by being flat and
with little slope, there was a considerable difference between the real drainage network
and the one obtained using the GIS tools, especially when generating the main stream, the
Sinú river in this case. Additionally, control points were taken in order to estimate the
mean squared error (MSE) of the elevations, concluding that the DEMs had MSEs in the
order of 5 to 20 m in some sectors, especially in the middle and lower basin of the Sinú
river. Finally, it was found that none of the digital elevation models (DEMs) satisfactorily
represented the drainage network; however, although the HydroSHED Digital Elevation
Model was the one that best represented the basin polygon, no significant differences were
found regarding the other analyzed models, the reason for which it was decided to use the
ALOS PALSAR RTC DEM to delineate the basin and use the digitized drainage network of
the cartographic plates to estimate the basin morphometric parameters. This DEM made it
possible to know the spatial distribution of the terrain elevations in the study area and, from
this, estimate slopes and other relief aspects. In this manner, with the GIS, it was possible
to determine the directions of flow, the delimitation of sub-basins, and the schematization
of streams that drain it from a threshold.

The methodology used to obtain the drainage network of the Sinú river basin is shown
in Figure 3, where the input parameters are shown in blue, the procedures carried out
on the information in yellow, and the files names generated at each step in green. Thus,
through GIS, a filling of the sinks was carried out to correct errors that could occur due to
the data resolution or the rounding of elevations to the nearest integer value, and, once
a DEM without sinks was obtained, the flow direction from the differences in elevation
and slope was determined [41]. Later, to outline the water courses that drain the Sinú river
basin, flow accumulation was estimated, which is just the number of cells on the slope that
flow towards each cell, and thus the streams were defined.

Afterwards, the order of the streams was established with the Horton classification
system [4] to subsequently generate the polygons of the sub-basins and make manual
corrections to calibrate the model, obtaining a total of 65 sub-basins: 6 corresponding to the
lower Sinú, 18 to the middle Sinú, and the remaining 41 to the upper Sinú region (Figure 4).

With the information generated from the terrain modeling, the morphometric pa-
rameters were estimated from the methods and formulas proposed by Horton [4,19],
Schumm [20], Strahler [21], and Mueller [42] (Table 1). Results were also used to de-
termine the potential rainwater harvesting areas using GIS-based multi-criteria decision
analysis [14,43]. Finally, the existing cartography for the area was consulted to compare
and validate the results of the morphometric parameters of the drainage network, such as
drainage density and channel frequency, with those obtained from the modeling data, given
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that these parameters are sensitive to scale and, thus, results of the parameters estimated
from the analysis with a threshold of 25 km2 would not be the same as those estimated
when using the 1:25,000 scale cartographic plates from the IGAC [44].

Figure 3. Flowchart of the methodology for watershed characterization through GIS.

The morphometric parameters calculated can be defined as follows:

Table 1. Morphometric Parameters used in the Study.

Morphometric Parameter Formula/Definition Reference

Drainage network
Stream order Hierarchical rank. [4,21]

Stream length (L) Main channel length of the stream (km) [4]
Stream length (Lu) Total stream length (km)/GIS software analysis [4]

Number of streams (Nu)
Total stream number of a given order/GIS

software analysis [4]

Stream axial length (La)
Shortest distance between the beginning and the

outlet of a stream (km)/GIS software analysis [42]

Drainage density (Dd) Dd = L
Ad

, km/km2 [4]
Length of overland flow (LOF) L f t =

1
2Dd

, km [4]
Constant of channel maintenance (Cm) Cm = 1

Dd
, km2

km
[20]

Stream frequency (F) F = N
Ad

, streams/km2 [4]
Average stream length (Lm) Lm = Lu

Nu
[4]

Sinuosity (S) S = L
La

[42]
Bifurcation ratio (Rb) Rb = Nu

Nu+1
[4]

Mean bifurcation ratio (Rbm) Rbm = ∑(Rbu/Rbu+1)(Nu+Nu+1)
∑(Nu+Nu+1)

[20]

Stream length ratio (Rl) Rl =
Lu

Lu−1
[4]

Basin geometry

Basin area (Ad) Plan area of the watershed (km2) [4]
Basin perimeter (P) GIS software analysis (km) [4]

Basin length (Lc)
Maximum basin length (km)/GIS software

analysis. [19]

Form factor (Ff ) Ff =
Ad
Lc2 [19]

Circularity ratio (Rc) Rc =
Ad
P2
4π

[45]
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Table 1. Cont.

Morphometric Parameter Formula/Definition Reference

Elongation ratio (Re) Re =
Dc
Lc

[20]
Compactness coefficient (Kc) Kc =

P
2
√

πAd
[19]

Basin relief
Minimum basin height (Hmin) GIS software analysis (masl). [20]
Maximum basin height (Hmax) GIS software analysis (masl). [20]

Mean basin slope (Sc) GIS software analysis (%). [20]
Basin relief (H) H = Hmax − Hmin [20]
Relief ratio (FH) FH = H

Lc
[20]

Figure 4. Characterization of the Sinú river basin in Colombia through GIS. The drainage network of
the basin and the 65 sub-basins obtained are shown.

3.1. Stream Order

The stream order makes it possible to explain the hydrological behavior of a basin,
since it is directly proportional to the area, the cross section of the course, and the flow that
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it transports. This way, it is expected that the channels of higher order drain larger areas
and, thus, transport a much higher flow [6,46].

3.2. Number of Channels of Order u (Nu)

According to the stream number law established by Horton [4], “the number of streams
of different orders in any basin tends to be estimated as inverse geometric series, of which
the first term is unity and the ratio is the bifurcation ratio”.

3.3. Length of Channels of Order u (Lu)

Length of channels of order u is calculated by measuring the length of all streams of a
given order within the catchment [4].

3.4. Drainage Density (Dd)

Drainage density corresponds to the total length of streams per unit area and makes
quantitative determination of whether a basin is well or poorly drained possible [4]. This
parameter is related (together with the number of channels of order u) to aspects such as
soil erosion and runoff, since the flow is directly proportional to the drainage density, which
translates into rapid runoff that implies an increase in the peak flow of the hydrograph.
Additionally, drainage density has an inverse relationship with infiltration, since high
infiltration tends to inhibit the development of longer drainages, i.e., the lowest drainage
densities correspond to regions with permeable soil types, dense vegetation, and low
relief, while the high drainage density prevails in regions with impermeable soils, sparse
vegetation, and high relief [10,21,47].

3.5. Overland Flow Length (LOF)

Horton [4] defined the length of the overland flow as the distance that the water must
travel on the ground surface before reaching the channels of the drainage network, and
also estimated that it is approximately equal to half the reciprocal of the density drainage.

3.6. Constant of Channel Maintenance (Cm)

This parameter corresponds to the inverse of the drainage density and makes it
possible to estimate the amount of area in km2 necessary for the maintenance of 1 km of
channel [20,48].

3.7. Stream Frequency (F)

Stream frequency was defined by Horton [4] as the number of stream channels per
unit area.

3.8. Sinuosity of Currents (S)

Considering that all watercourses must adjust to the terrain irregularities along their
route, Mueller [42] proposed sinuosity as an index that allows these variations in the course
of the channel to be measured from the ratio between the stream total length (km) and the
shortest distance between its beginning and mouth (km).

3.9. Bifurcation Ratio (Rb)

The bifurcation ratio is the ratio of the number of channels of a specific order and the
number of streams of the next order [4]. It is a parameter that reflects both the complexity
of the ramifications in the basin and its geometric shape, and it is also related to factors
such as slope and area physiography.

3.10. Length Ratio (Rl)

According to Horton’s research [4], length ratio is the result of dividing average length
of the flow of any order by average length of the next lower order.

191



ISPRS Int. J. Geo-Inf. 2022, 11, 459

3.11. Form Factor (Ff )

The shape factor of the basin is a parameter that makes it possible to know the
geometry of the basin and is also related to the flows of the drainage network [19].

3.12. Circular Ratio (Rc)

Miller [45] defines this parameter as the ratio between area of the basin and area of a
circle that has the same circumference as the basin perimeter and in this manner, if it takes
values close to the unit, it indicates that the shape of the basin resembles a circle.

3.13. Elongation Ratio (Re)

The elongation ratio corresponds to the ratio between the diameter of a circle with the
same basin area (Dc) and the maximum basin length (Lc), and like Rc, it has a maximum
value of one for perfectly round basins [20]. The Re generally varies from 0.6 to 1.0 and
depends on climate and the geology of the study area. Furthermore, these values can be
grouped into: circular for Re > 0.9, oval for 0.9 > Re > 0.8, and less elongated when
Re < 0.7 [49].

3.14. Compactness Coefficient (Kc)

According to Horton’s research [19], compactness coefficient is the relationship be-
tween the basin’s perimeter and a circle with the same area, thus, the closer the result is to
the unit, the more circular the basin will be.

3.15. Mean Slope of the Basin (Sc)

The study of slope distribution is important because it provides data for activities
such as planning of engineering works, reforestation, mechanization of agriculture, and
others [50]. Additionally, it makes the evaluation of the volumes and direction of surface
runoff possible [51].

3.16. Relief Factor (FH)

The basin relief features play an important role in the development of the drainage
network, superficial flow, permeability, and susceptibility to soil erosion. The basin relief
(H) is then defined as the difference between maximum and minimum height.

3.17. Hypsometric Curve of the Basin

The hypsometric curve is the graphic representation of the basin relief, where its
ordinate represents elevation in meters above sea level, and its abscissa, the area in km2

that is between two levels.

3.18. Rainwater Harvesting Potential Index (RWHPI)

According to the conducted literature review, rainwater harvesting (RWH) is one of the
most usual practices as an alternative to mitigate water scarcity and other environmental
problems; moreover, as stated by Singh et al. [14], the planning and implementation of
water harvesting projects is a multi-criteria and multi-objective problem because it depends
on several factors.

In order to identify sites where the implementation of water harvesting techniques
is viable, GIS tools were used to delimit the potential water harvesting zones follow-
ing the methodology of rainwater harvesting potential index (RWHPI) proposed by
Singh et al. [14]. Thus, the runoff coefficient, slope, and drainage density layers were used.

4. Results

4.1. Drainage Network

The DEM was used to determine the basin relief analysis including the hypsometric
curve and slope calculation. From the information mentioned, it was found that the
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maximum order of the basin is 5, corresponding in this case to the courses of 4 and 5 order
for the Sinú river (Figure 5).

Figure 5. Stream order of the drainage network of the Sinú river basin (Colombia), schematized
by GIS.

In the analysis, the Sinú river basin shows an order of 5 value with a dendritic drainage
pattern, characterized by having a tree-like distribution with tributary branches in many
directions and with variable angles [52]. It was also found that 66.2% of the sub-basins
are of orders 1 and 2 (Table 2). Overall, the number of streams tends to decrease as the
order increases, as does the number of sub-basins corresponding to each order. On the
other hand, it was shown that the area of the sub-basins of order 5 was greater than those
of order 1, despite the fact that the amount is much smaller. Consequently, it can be said
that the stream order is directly proportional to the drained area under normal conditions,
and thus to the flow rate, as previously described.
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Table 2. Stream order of the Sinú river basin.

Order
Stream

Number
Number of
Sub-Basins

Sub Sub-Basins
(km2)

Total Streams
Length (km)

Average Stream
Length (km)

Stream Length
Ratio (Rl)

Bifurcation
Ratio (Rb)

1 166 22 4290.49 680.47 4.10
8.30 7.22

2 23 21 4952.43 782.76 34.03
1.05 3.83

3 6 8 1183.88 214.21 35.7
1.19 2.00

4 3 6 832.1 127.39 42.46
11.41 3

5 1 8 2712.76 484.66 484.66
199 65 13,971.7 2289.50 5.50 7.60

Additionally, during the analysis it was found that the number of streams progressively
decreased as the order increased (Table 2). Out of the total of 199 streams found in the
basin, 83% (166) are of order 1, 11.5% (23) of order 2, 3% (6) are of order 3, 1.5% (3) of order
4, and the main current is order of 5.

The values of the total and average length of the channels for each order can be seen in
Table 2, where it is evident that 54.4% (1245.5 km) of the streams in the basin are of orders 1
and 2. These results corroborate the law of Horton stream lengths [4], which states that:
“the average stream lengths of each order in a drainage basin tend to approximate a direct
geometric series in which the first term is the average length of streams of order 1”. This is
because, when making the graph of the logarithm of the length means against the stream
order (Figure 6), it is evident that the points tend to a straight line. In this manner, it can be
stated that the drainage network of the Sinú river complies with what was established by
Horton [4] in terms of the behavior of the quantity and average length of the streams of a
certain order. This implies that in the study area, the streams of order 1, having a lower
mean length than the others, prevail in the areas where the steepest slopes are found.

Figure 6. Horton’s law of stream length for Sinú river basin, Colombia.

The obtained values of Rl for the different stream orders in the study area can be seen
in Table 2, where it is evident that they range from 1.05 to 11.41.

In addition, the highest Rb was 7.22 and was calculated between the first and second
order streams (Table 2), indicating that the longest overland flow lengths and the highest
flows occur in these channels. The weighted average of the bifurcation ratio Rbm allows a
representative value to be determined for the entire study area, estimated by multiplying
the bifurcation ratio for each successive pair of orders times the total number of flows
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involved in the ratio and taking the mean of the sum of these values [20,21]. For the study
area, the Rbm was 7.6, which is higher than the arithmetic average of the estimated Rb (4.01).

When estimating drainage density from the results of the terrain modeling, it was
found that it ranges between 0.06 km/km2 and 0.24 km/km2 for the 65 sub-basins obtained,
0.16 km/km2 being the value obtained when analyzing the basin as a single area.

That said, it is necessary to clarify that this parameter is sensitive to the used threshold,
so its interpretation must be carried out considering the other basin morphometric features.
As a result, it was decided to corroborate the values obtained for these parameters using
the cartographic plates at a scale of 1: 25,000 from the IGAC [44]. In this sense, when
estimating the drainage density of the Sinú river basin from the available cartography, it
was found that Dd is 1.59 km/km2, i.e., the drainage density obtained through modeling is
not consistent with the one from the cartography. This is due, as explained above, to the
resolution of the DEM and the threshold used in the analysis, since these parameters are
sensitive to scale, as mentioned by Londoño [53] in his research. Even though these values
are higher than those obtained from the terrain modeling, according to what is mentioned
by the CVS [30], it can be affirmed that the Sinú river basin shows a low drainage density
for the magnitudes of flows found.

On the other hand, the LOF provides information on the hydrological response and
the basin topography. In the case of the study area, it was found that the LOF has a
value of 0.31 km (Table 3), while in the sub-basins it ranges between 0.14 km and 29 km,
reflecting that there is a significant variation in the basin relief features such as elevations
and slope (See Figures 7 and 8). Correspondingly, Figure 7 shows that the upper Sinú is
characterized by elevations higher than 150 masl, classified as hillside, mountain range,
and ridges, whereas in the lower and middle Sinú there is a predominance of elevations
below 350 masl (lowland and hillside).

Table 3. Morphometric Parameters: Drainage network of Sinú River Watershed.

Morphometric Parameter Results

Drainage network
Stream order 5.00

Stream length (L) in km 243.80
Stream length (Lu) -

Number of streams (Nu) -
Stream axial length (La) in km 184.90

Drainage density (Dd) km/km2 1.59
Length of overland flow (LOF) in km 0.31

Constant of channel maintenance (Cm) in km/km2 0.63
Stream frequency (F) in channels/km2 1.82

Average stream length (Lm) in km -
Sinuosity (S) 1.32

Bifurcation ratio (Rb) -
Mean bifurcation ratio (Rbm) 2.88

Stream length ratio (Rl) -

The Cm depends on factors such as relief and lithology, which in the case of the study
area ranges between 0.28 km/km2 and 59 km/km2 for the sub-basins, with prevailing
values of less than 10 km/km2. The value obtained for the entire basin (total area) was
0.63 km/km2, which is below the average of the values obtained in the sub-basins. This
confirms what was previously described, where it was established that there are areas in
the basin more susceptible to erosion due to the high slopes.

When analyzing the stream frequency (F) for the case under study, it was found
that in the sub-basins of the Sinú river, values lower than 4 channels/km2 prevail, with
the arithmetic mean being 1.68 channels/km2 and the value for the entire basin being
1.82 channels/km2 (Table 3).
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In the study area, it was found that the stream sinuosity of the Sinú river is 1.32,
indicating that the stream is sinuous according to what was found by Ahmed [52]. Addi-
tionally, it was observed that 87.7% (57) of the main streams of the sub-basins obtained in
the modeling have a sinuosity lower than 1.25, indicating that their alignments tend to be
straight and that the runoff speed is relatively high compared to the rest of the sub-basins.

Figure 7. Elevation map of the Sinú river basin, Colombia.
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Figure 8. Slope distribution map of the Sinú river basin, Colombia.

4.2. Basin Geometry

The calculated geometry parameters can be found in Table 4. In the case of this research,
the Ff for the sub-basins ranged between 0.186 and 0.721, with 90.8% (59 sub-basins) being
less than 0.57, while the entire basin has an Ff of 0.22, indicating that it has an elongated
shape. Similarly, the Rc values obtained for the 65 sub-basins vary between 0.17 and 0.49,
0.17 being for the complete basin. Additionally, the study area has an Re of 0.53, making
it an elongated basin, while the sub-basins have values that oscillate between 0.49 and
0.96, where 81.5% (53 sub- basins) show an Re of less than 0.79. The estimated value of Kc
was 2.43, while in the sub-basins values were between 1.42 and 2.40. This way, it becomes
evident that all the sub-basins have elongated shapes according to this parameter.
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Table 4. Morphometric Parameters: Geometry of Sinú River Watershed.

Morphometric Parameter Results

Basin geometry

Basin area (Ad) in km2 13,971.70
Basin perimeter (P) in km 1025.90

Basin length (Lc) in km 252.40
Form factor

(
Ff

)
0.22

Circularity ratio (Rc) 0.17
Elongation ratio (Re) 0.53

Compactness coefficient (Kc) 2.43

4.3. Basin Relief

The relief of the basin was analyzed through GIS, the basin average slope was esti-
mated as the average of the values of the slope grid generated from the elevation map
(Figure 7), obtaining a value of 5.5%. Similarly, the map of the slopes of the study area
was obtained (Figure 8) in which it can be observed that the upper Sinú basin is where the
highest slopes occur, which may be responsible for the highest flows, while in the lower
and middle Sinú basins, they decrease, forming extensive plains.

Additionally, H is 3493 m above sea level and 0 m above sea level, respectively, so the
relief of the basin is 3493 m (Table 5).

Table 5. Morphometric Parameters: Relief of Sinú River Watershed.

Morphometric Parameter Results

Basin relief
Minimum basin height (Hmin) in masl 3493
Maximum basin height (Hmax) in masl 0.00

Mean basin slope (Sc) in percentage 5.50
Basin relief (H) 3493
Relief ratio (FH) 13.83

Similarly, Schumm [20] defined the relief factor (FH) as the ratio between the basin re-
lief (H) and its maximum length (Lc). For the Sinú river basin, the estimated FH was 13.83.

On the other hand, Figure 9 shows the hypsometric curve of the Sinú river basin,
where the highest slopes occur at the maximum elevations, which translates into areas
with steep and mountainous terrain. Similarly, it is evident that most of the terrain has
gentle slopes and uniform heights, which, according to Richardson et al. [54], suggests the
existence of plains within the basin.

Figure 9. Hypsometric curve of the Sinú river basin.
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4.4. Rainwater Harvesting Potential Index (RWHPI)

The obtained results for RWHPI were classified using the quantile technique. Thus,
for the Sinú river basin, the potential rainwater harvesting zones are classified as (a)
‘Very high’ (RWHPI = 0.266–0.334), (b) ‘High’ (RWHPI = 0.265–0.259), (c) ‘Moderate’
(RWHPI = 0.250–0.258), and (d) ‘Poor’ (RWHPI = 0.189–0.249). Figure 10 shows the rain-
water harvesting potential zones for the Sinú river basin.

Figure 10. Map of the Sinú River Basin depicting Rainwater Harvesting Potential Zones.

5. Discussion

5.1. Drainage Network

The results of the morphometric parameters of the drainage network allow us to
understand the basin hydrological behavior. First, the number of channels of order u is
relevant, given that, if two basins are compared, the number of channels is an important
factor, because if there is a greater number of streams, it can be inferred that there is better
drainage and thus less permeability and infiltration, as mentioned by Rai et al. [6].

In accordance with the research of Ahmed et al. [55] and Rai et al. [6], the obtained
results from the analysis of drainage density indicate that it is a basin with poor drainage
where surface runoff cannot be quickly evacuated and, therefore, it is highly susceptible
to floods. This parameter is also related to aspects such as soil erosion and runoff, since
flow is directly proportional to drainage density, which translates into rapid runoff that
implies, in turn, a flow of greater magnitude. Furthermore, it has an inverse relationship
with infiltration, since high infiltration tends to inhibit the development of longer drains,
i.e., as mentioned by Strahler [21], Bhagwat et al. [47], and Gajbhiye et al. [10,13], the lowest
drainage densities correspond to regions with permeable soil types, dense vegetation, and
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low relief, while high drainage density prevails in regions with impermeable soils, sparse
vegetation, and high relief.

Figure 11 shows the histogram built to analyze the drainage density behavior in the
65 sub-basins, finding that values less than 1.6 km/km2 predominate in the basin and that
there are some sub-basins where the value of Dd is less than unity. These results indicate
that there are areas within the basin, such as the middle and lower Sinú areas, characterized
by permeable soils and floodplains, while the upper Sinú is a region where impermeable
soils with scarce vegetation that favor erosive processes and rapid flows prevail. It should
be noted that for the variation analysis of the morphometric parameters in the sub-basins
of the study area, histograms were constructed for each.

Figure 11. Histogram for drainage density analysis in the Sinú river basin.

Similarly, according to the research of Gayen et al. [56], Abboud and Nofal [57],
Rai et al. [23], and Ameri et al. [7], it can be stated that the areas where the length of the
overland flow is greater, are more susceptible to erosion and also reflect the presence
of steep slopes. While the regions where this parameter is lower, are areas where less
rain is required to generate significant flows. With these results, the heterogeneity of the
geomorphological features of the basin is confirmed and it is inferred that the areas with
the greatest susceptibility to erosion correspond to the upper Sinú, while the middle and
lower Sinú are susceptible to flooding due to the fact that less precipitation is required to
generate surface runoff.

Likewise, the variation in the results of the constant of channel maintenance corrobo-
rates the previous statement, due to the fact that values that exceed the mean value allow
us to infer that a larger area is required to produce surface runoff towards the drainage
network, which, as reported by Bhagwat et al. [47], favors losses by evaporation and in-
filtration. Otherwise, it happens with values below the average, since these favor rapid
runoff and minimize the likelihood of these losses to occur. From the above, it follows that
the high values correspond to the lower and middle Sinú where the terrain is relatively flat,
while the low values are linked to the upper Sinú where slopes are higher.

According to what was found by Ozdemir and Bird [58] and Ameri et al. [7], the stream
frequency is related to relief, vegetation cover, soil infiltration capacity, and susceptibility
to erosion of a basin. Thus, it can be inferred that the areas where the highest drainage
frequencies occur imply the presence of rocky surfaces, with low infiltration capacity
and susceptibility to erosion. In the case of the Sinú river basin, values of F less than
1.68 channels/km2 predominate in the middle and lower Sinú regions, where the low slope
and the uniformity of the elevations inhibit the generation of water currents, while the
upper Sinú shows higher values of F due to the high slopes, coinciding with what was
found when analyzing Dd.
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Furthermore, the bifurcation ratio between the first and second order streams is much
higher than those obtained for the rest of the orders, so it is indicative that in the areas
where streams of these orders predominate, runoff is faster than in the rest of the basin, and
thus, said areas are more susceptible to flooding during precipitation events, as mentioned
by Hajam et al. [59]. Additionally, according to the research by Magesh et al. [60], Rbm
values range between 3 and 5 for basins where the influence of the geological structure on
the drainage network is negligible, so it is inferred that the characteristics of the drainage
network of the Sinú river basin are strictly linked to geology and relief. Similarly, as
reported by Arulbalaji and Gurugnanam [61], Rb variation, which in this case ranges from
2 to 7.22, indicates that there is geological heterogeneity in the basin, so that the lowest Rb
values indicate high permeability while higher Rb imply low permeability.

Moreover, there was a significant variation in the values obtained for length ratio,
which, according to Singh et al. [59], is indicative of the fact that there is an important
change in the hydrological characteristics of the underlying rock surfaces over the areas
of consecutive flow orders. In other words, the behavior of the Rl indicates that there is
geological heterogeneity in the basin and also, according to Bali et al. [62], that there are
considerable differences in the topography and slope of the different sub-basins in the
study area.

It can be stated that the obtained results for the parameters of the drainage network
are consistent with the available information for the study area. The estimated parameters
for the middle and lower Sinu indicate that these are areas characterized by low relief,
slope, and susceptibility to floods such as the one occurred in 2010 [37] in accordance with
the topography, given that, as mentioned in the study area description, lowland landscapes
prevail in the region. Moreover, the prevalence of alluvial deposits (Q-al) confirms the
erosion and sedimentation processes inferred from the estimated parameters, since these
deposits are the result of erosion and deposition of materials associated with the dynamics
of rivers, in times of both high flow and dry periods, and which are typical of meandering
rivers such as the Sinú river [63].

5.2. Basin Geometry

The geometric parameters of the basin show that it has an elongated shape. In the
investigations of Javed et al. [64], Iqbal et al. [1], Patel et al. [65], and Nanda et al. [66], it is
established that the basins with a high Ff (circular) have a maximum flow of greater mag-
nitude and shorter duration, while the basins with a low Ff (elongated) have a maximum
flow of lesser magnitude with a longer duration. This means that there is an inversely
proportional relationship between concentration time and Ff. The obtained results for
this parameter indicate that the sub-basins are characterized by having elongated shapes,
and thus, high concentration times compared to circular basins that have the same area.
Nonetheless, the variation in the obtained values implies that there are areas within the
basin that are more susceptible to flooding, such as the middle and lower Sinú basins.

As for the obtained results for the circular ratio, it is established that the basin, in
addition to having an elongated shape, shows variation in the Rc values, which, considering
that it is influenced by multiple characteristics such as length and frequency of the channels,
geology, climate, and slope, reflects the heterogeneity of the physical features of the area of
study, as mentioned by Ameri et al. [7].

The elongation ratio allows to study a basin hydrological response, since for a given
precipitation, the less elongated basins will have a higher peak discharge and higher flow
velocities [67]. Consequently, according to the results of Magesh [60], the results obtained
indicate the presence of steep slopes in the study area, as observed in the upper Sinú area
(Figure 8).

Additionally, considering that the regions with circular shapes require less time to
produce a maximum flow, and that low values of compactness coefficient imply greater
susceptibility to erosion, the variation in the results confirms that there is an important
variability in the relief of the study area [7,64].
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5.3. Basin Relief

According to Reddy et al. [68] and Sreedevi et al. [50], high values of H, such as the one
obtained, indicate that there are conditions of low infiltration and high surface runoff in the
Sinú river basin. Additionally, the obtained the results for relief factor reflects the presence
of steep slopes and consequently, the high intensity of erosion processes that occur on the
slopes and the sediment load downstream according to the work of Thomas et al. [69].

The results shown in the slope maps allows us to infer that the areas where the slope
is low is where the mirrors or surface water bodies of the basin are located (lower and
middle Sinú), while the highest percentage of the flow of the main currents comes from the
southern area where the elevations and slopes are higher, favoring high drainage density
and channel frequency [65,68].

Similarly, the hypsometric curve reflects the geomorphology of the area, with the
upper Sinú region being the area characterized by the presence of steep mountains and
the middle and lower Sinú, the areas of plains. According to Strahler [21,70], through
features such as the area under the hypsometric curve, slope, inflection point, and sinuosity,
information about the geology of the basin can be inferred, given that we generally have
the same family of curves for a specific geological and climatic combination. In the case
of the Sinú river basin, it is inferred that having an upwardly concave hypsometric curve,
active fluvial and alluvial sedimentary processes prevail, the reason for which the material
has been eroded and deposited in the lower parts of the basin. Moreover, these types of
curves indicate that the basin area is concentrated in the lower parts, which implies the
presence of deep boxed valleys characteristic of foothills and savannahs.

5.4. Rainwater Harvesting Potential Zones

According to the analysis conducted, more than 70% of the basin area has character-
istics suitable for rainwater harvesting. Particularly, it was identified that the areas with
a ‘very high’ RWHPI correspond mainly to the middle and lower Sinú regions. Most of
the upper Sinú is characterized by a ‘High’ RWHPI; however, it is also evident that most
of the zones with ‘Poor’ RWHPI are concentrated in the upper Sinú, specifically in the
region close to the middle Sinú. On the other hand, the zones with ‘moderate’ RWHPI are
scattered in small patches throughout the middle and lower Sinú. Finally, it is important to
note that the areas with a ‘very high’ RWHPI coincide with the presence of water bodies
such as reservoirs and swamps.

6. Conclusions

The morphometric analysis carried out from the terrain modeling in the Sinú river
basin through GIS, the existing cartography review, and the estimation of physiographic
parameters made it possible to establish the following conclusions:

The obtained results for morphometric parameters, such as hypsometric curve of the
basin, Dd, F, stream order, and LOF corroborated that the lower and middle Sinu sub-basins
are susceptible to floods as evidenced by the flood events that have historically occurred
in the study area. Concomitantly, the results indicate that the upper Sinú sub-basin is
susceptible to erosive processes, which was confirmed by the review of the available
information on the geology and geomorphology of the study area, establishing that the
basin is framed within two large geo-structures: the mountain range or Cordillera (upper
Sinú) and the sedimentation mega-basin (middle and lower Sinú). Thus, it is established
that the prevalence of alluvial deposits in the basin is due to the material resulting from
erosive processes in the upper Sinú that ends up being transported to the rest of the basin.
Therefore, the results validate the basin geological heterogeneity.

The results allow us to affirm that the study area shows favorable characteristics for
implementing water catchment techniques that contribute to the integrated management
of the basin’s water resources. However, so far, adequate management has not been carried
out, leaving all this water to be lost when it reaches the ocean, even though there are
problems in most of the lower and middle Sinú basins, especially during the dry season,
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where dead animals and the lack of water availability for human consumption are evident
in some sectors. Considering the characteristics of the study area, techniques such as
furrows and ridges built along contour lines and dams would be strategies that would
make it possible to take advantage of and store water resources during the winter season
to be used during the dry season. From the review of the results and the literature, it
can be inferred that, under normal conditions, there is a directly proportional relationship
between drainage order and flow, since stream order is directly proportional to watershed
size, channel dimensions, and stream flow. Nonetheless, sometimes smaller areas have
greater flow due to rainfall behavior or other factors. Runoff is a complex variable that
depends on multiple conditions. In the specific case of the Sinú river basin, it was possible
to establish that, due to flow regulation by the Urrá hydroelectric plant (upper Sinú), flows
remain stable throughout the basin.

Finally, these findings will help for the further modeling of an integrated watershed
for sustainable hydrological and hydrograph models that, besides, will help understand the
relationship between hydrological variables and geomorphological parameters as guidance
and decision-making instruments for the competent authorities to establish actions for the
sustainable development of the watershed, flood control, water supply planning, water
budgeting, and disaster mitigation within the Sinú river basin.
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Abstract: The Mara River Basin of Africa has a world-famous ecosystem with vast vegetation, which
is home to many wild animals. However, the basin is experiencing vegetation degradation and
bad climate change, which has caused conflicts between people and wild animals, especially in dry
seasons. This paper studied the vegetation greenness (VG), vegetation greenness trends (VGT), and
their responses to climate change in dry seasons in the Mara River Basin, Africa. Firstly, based on
Google Earth Engine (GEE) platform and Sentinel-2 images, the vegetation distribution map of the
Mara River Basin was drawn. Then dry seasons MODIS NDVI data (January to February and June
to September) were used to analyze the VGT. Finally, a random forest regression algorithm was
used to evaluate the response of VG and VGT to temperature and precipitation derived from ERA5
from 2000 to 2019 at a resolution of 250 m. The results showed that the VGT was fluctuating in dry
seasons, and the spatial differentiation was obvious. The greenness increasing trends both upstream
and downstream were significantly larger than that of in the midstream. The responses of VG to
precipitation were almost twice larger than temperature, and the responses of VGT to temperature
were about 1.5 times larger than precipitation. The climate change trend of rising temperature and
falling precipitation will lead to the degradation of vegetation and the reduction of crop production.
There will be a vegetation degradation crisis in dry seasons in the Mara River Basin in the future.
Identifying the spatiotemporal changes of VGT in dry seasons will be helpful to understand the
response of VG and VGT to climate change and could also provide technical support to cope with
climate-change-related issues for the basin.

Keywords: Mara River Basin; dry seasons; vegetation greenness; random forest regression;
spatiotemporal differentiation

1. Introduction

The dynamic of vegetation greenness (VG) is important for understanding the effect
of climate change and human encroachment on land surfaces [1]. In general, vegetation
greenness can be explained as the growth of surface green vegetation. The East African
region is classified as semi-arid land that is sensitive to human intrusion on vegetation and
climate variation [2]. This region is one of the most important land ecosystems specified by
the codominance of grasses, forests, and shrubs, and it covers 20% of the world’s land [3].
However, vegetation is almost brown in the late dry seasons [4]. It was found that the
deforestation rate increased from 0.22% (1900) to 0.39% (2000) in the East African region [5].
In recent years, frequent drought disasters have caused a continuous decline in vegetation
greenness from Central Kenya to Central Tanzania during the El-Nino period [6]. Therefore,
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it is important to monitor vegetation greenness change to mitigate the natural disaster in
the East African region.

Remote sensing is the most widely used tool for monitoring vegetation change, deser-
tification, and agriculture activity on a global scale [7]. In recent decades, various satellite
products at different temporal, spatial, and spectral resolutions have provided accurate
datasets for the earth’s surface [8]. The high-spatial-resolution satellite imagery, such
as LANDSAT (30 m) and Sentinel-2 (10 m), provides timely and accurate monitoring of
vegetation classes [9]. Sentinel-2 optical image especially gives an additional advantage
in monitoring vegetation changes due to their red edge bands [10]. Moreover, the short-
wave infrared and optical bands in the satellite sensor have the capability to construct a
band-ratio such as the normalized difference vegetation index (NDVI) [11]. However, due
to their short observation period, the Landsat and Sentinel-2A sensors cannot be used for
near-real-time monitoring and long-term changes in VG [12]. The Moderate Resolution
Imaging Spectroradiometer (MODIS) sensor has 36 spectral bands, including two vegeta-
tion indices (NDVI and EVI) for comparison of global vegetation change [13]. In addition,
the MODIS NDVI product allows for the monitoring of vegetation dynamics for a long
period of time, at a high spatial (250 m) and temporal (16-day composite) resolution [14].

The normalized difference vegetation index (NDVI) has been proved to be the best
indicator of vegetation greenness [15,16]. Most of the previous studies used MODIS
NDVI products for long-term VG monitoring at a both the regional and global scale.
Hmimina et al. [17] investigated the usefulness of MODIS NDVI data for monitoring the
seasonal changes of VG in the African savanna, including terrestrial biomes and deciduous
and evergreen forests. This study found that the 16-day composite of MODIS NDVI
allows for accurate estimation of greenness in the spring season. Potter [18] analyzed
the recovery rates of VG by using MODIS NDVI in Alaska’s severely burned wetland
ecosystem. Fang et al. [19] reported vegetation dynamics by using the Breaks for Additive
Seasonal and Trend (BFAST) method and MODIS NDVI product in Quebec, Canada, from
2000 to 2011. Wang et al. [20] monitored VG change by using MODIS NDVI data at three
river source regions in China. Similarly, Gillespie et al. [21] investigated the spatial and
temporal pattern of vegetation changes in Southern California by using MODIS NDVI data
from 2000 to 2016. In recent years, Touhami et al. [22] evaluated the MODIS NDVI time
series to monitor the vegetation dynamic over the Mediterranean forest region in Northeast
Tunisia in response to the climatic variable. Therefore, this study considers MODIS NDVI
products to monitor VG over the Mara River Basin in East Africa.

The greenness of grass and shrub was more sensitive to climate change than forests [5].
Generally, the NDVI had a linear relationship with average annual precipitation. However,
the response of NDVI to precipitation was more significant than temperature [1]. The
increase in precipitation can promote a vegetation greenness trend (VGT), while the increase
in temperature will inhibit the VGT of a region [6]. Nicholson et al. [2] showed that NDVI
variability is closely related to climate factors. Therefore, it is important to monitor climate
factors on VG. For African Savannas, most of the previous studies proved that the VG
presented a decreasing trend in dry seasons, using NDVI, which is retrieved from various
satellite sensors, such as Advanced Very High Resolution Radiometer (AVHRR), the Global
Inventory Monitoring Modeling System (GIMMS), and MODIS [1,5,23]. The Maasai Nara
National Park in East Africa especially showed decreasing rainfall and a rising temperature
in the dry seasons, thus causing the forests and shrubs to show a preceding greening trend,
and the grass showed a browning trend [24,25]. In general, climate change significantly
impacted VG in the Mara River Basin [26], and vegetation degradation seriously threatened
the survival of livestock and wildlife in the Mara River Basin [27]. However, there is still
little known about the VGT in dry seasons and its responses to climate change in the
Mara River Basin. Currently, most studies consider only the temporal differentiation and
responses of VG to environmental factors and ignore the spatial differences. In addition,
most studies focus only on the Maasai/Serengeti ecosystem, whereas few studies consider
the whole basin. In addition, most studies choose a large area to establish the relationship
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between VG and climatic variables (precipitation and temperature). However, no studies
have shown the VG on a basin scale. Therefore, this paper considers the Mara River Basin
for analyzing the responses of VG to climate change.

Based on the spatial vegetation distribution maps of the Mara River Basin drawn on
the GEE platform, this paper uses the MODIS NDVI product and climate data for dry
seasons in the Mara River Basin from 2000 to 2019. Our study analyzed the relationship
between VG and climate change. The main objectives of this study were (i) to estimate
the spatial and temporal distribution of VG by using the random forest (RF) regression
algorithm in the Mara River Basin; (ii) to investigate the trend of VG and climatic variables
(precipitation and temperature), using the Sen+Mann–Kendall test of the studied region;
and (iii) to provide a clear view of the spatial distribution of VG, VGT, and their responses
to climate change on a basin scale. In addition, this paper provides a theoretical basis for
scientific assessment and reference to formulate ecological protection policies in the Mara
River Basin.

2. The Study Area and Data

2.1. The Study Area

The Mara River (Figure 1) is the transboundary between Tanzania and Kenya in
East Africa (Location: 33◦88′ E to 35◦90′ E and 0◦28′ S to 1◦97′ S). The basin contributed
65% of its area in Kenya and 35% in Tanzania. The river originates at the Mau Forest
Escarpment and merges at the rural Musuma in Tanzania to Lake Victoria, passing group
ranches, Maasai-Mara National Reserve, and Serengeti National Park. The Mara River is
the only perennial river in the region that plays an important role in the ecohydrology of the
basin [28]. The upstream of the Mau Forest Escarpment is a protected complex forest, and
the rest of the areas in the upstream are almost farmland. The midstream mainly consists
of grass and ranches, including two international wildlife reserves, which are the main
wildlife tourist attractions in the basin. The downstream includes the Mara wetland and
Mara mine. Moreover, it is the main source of production and living materials for residents
and wild animals [29].

Figure 1. Location Map of the Mara River Basin.
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The precipitation in the basin is bimodal with two rainy and dry seasons. The long
dry season is from June to September, and the short dry season is from January to February.
The average temperature is 18~23 ◦C, and the annual total precipitation is 200~500 mm in
the dry season [30]. The dry season is the time for the great migration of wild animals [31],
and also the time for the largest water requirement for agricultural irrigation upstream [32].
The more frequent and severe drought disasters in the dry seasons [24] have caused rapidly
increasing water demand for agricultural irrigation [32]. The ecological environment in
this region is fragile, which has led to a terrible impact on the basin’s ecosystem.

2.2. Data

The data used in this paper include Sentinel-2 images and MODIS NDVI, temperature,
and precipitation data. The time series of Sentinel-2 images were from June 2015 to
June 2020 and were obtained from the Google Earth Engine (GEE) platform (https://
earthengine.google.com/, accessed on 30 July 2021). This paper used Sentinel-2 images to
draw vegetation distribution map referring to some relevant references [33,34]. The VG
(NDVI) data were derived from MODIS sensor (MOD13Q1) from Aeronautics and Space
Administration (NASA) (https://modis.gsfc.nasa.gov/, accessed on 10 August 2021). The
time series of the MODIS NDVI data were from January to February and June to September
during 2000–2019. The temperature and precipitation data were obtained from ERA5-Land
monthly averaged data from 1950 to present from the European Centre for Medium-Range
Weather Forecasts (https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/
era5, accessed on 20 August 2021), during January/February, and June–September from
2000 to 2019. The temperature and precipitation data were resampled to a 250 m resolution
to match with the spatial resolution of MODIS NDVI products.

3. Methods

The overall workflow of our study was structured with three sections (Figure 2).
First, this study used the random forest (RF) algorithm to classify Sentinel-2 images into
four main vegetation types (forest, crop, shrub, and grass) and obtained the vegetation
distribution map in GEE platform. Second, the RF regression algorithm was used for
MODIS NDVI, temperature, and precipitation data to analyze the response of VG to climate
change. Then Thiel–Sen/Mann–Kendall trend-testing was used for the VG, temperature
and precipitation. Finally, the RF regression algorithm was used again to investigate the
response of VGT to temperature and precipitation.

Figure 2. Flowchart of the methodology.
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3.1. Random Forest Algorithm

The random forest algorithm is an algorithm based on the classification tree, combining
bagging, random subspace, and decision tree methods [35,36]. The algorithm integrates
the bootstrap aggregation method to generate subsets; that is, M (M = 1, 2, 3, . . . , n)
training sample sets with the same size as the original sample sets are randomly selected
from the original sample set through bootstrap aggregation, and multiple decision trees
are constructed accordingly. When splitting each node of the decision trees, the random
subspace method is introduced to evenly and randomly extract a feature subset from all
K features, and then an optimal splitting feature from the subset is selected. Finally, the
mean value of multiple decision trees is taken as the final result. The RF algorithm has
been widely used in classification and regression [37,38]. When the dependent variable
is a classified variable, the algorithm is a classification algorithm. When the dependent
variable is a continuous variable, the algorithm is a regression algorithm. The random
forest algorithm can be briefly expressed as follows:

f̂ =
1
B ∑B

b=1 fb(x) (1)

where f̂ represents the final results, B is the number of the trees, fb is the classification or
regression function, and x represents the training sample values.

The RF algorithm improves the accuracy of results using bootstrap to alleviate high
variance and weak the correlation between decision trees. It is easily operated by only
adjusting the number of trees in the forest and debugging the number of features of each
node is needed to generate a reasonable model quickly and efficiently. Compared with other
machine learning algorithms, the RF algorithm can incorporate nonlinear relationships
and explain complex relationships between variables [39]. Therefore, this study used RF
algorithms to draw a vegetation distribution map and to analyze the responses of VG and
VGT to climate change in dry seasons of the Mara River Basin.

3.2. Vegetation Distribution Mapping Based on GEE Platform

The RF algorithm was used to create a vegetation distribution map from Sentinel-2
images on the GEE platform. The classification process was as follows.

Savanna is dominated by grass, forests, and shrubs, so the vegetation was planned
to be classified into four types (forest, crop, shrub, and grass), according to the refer-
ences [33,34] and the consideration for saving classification time and observability. Then
we extracted ROIs for each vegetation type. Considering the above ROIs should be evenly
distributed in the whole basin and proportional to the area of each vegetation, 20,000 ROIs
were finally extracted: forest (2240), crop (3620), grass (10,500), and shrub (3640), respec-
tively, on the GEE platform as the training samples for the supervised classification. After
exporting Sentinel-2 images into the GEE platform, the QA60 band was used to remove
the clouds from the study area, and we calculated the 5-day cycle of NDVI. The Max Value
Compound (MVC) method [40] was used to synthesize the maximum monthly NDVI to
generate 12 months of monthly NDVI for every year. To further eliminate clouds and
smooth the filtering, we used the time series harmonic analysis method (HANTS) to re-
construct the monthly NDVI [41]. Before the supervised classification, the importance of
monthly NDVI was evaluated by RF regression, and only the months with the importance
greater than 50% (January, February, June, July, August, and November) were selected as
the characteristic months [42]. The 20,000 samples were randomly split into two groups
during classification by the RF algorithm: 70% for training and 30% for validation. Then the
yearly vegetation distribution maps from 2015 to 2019 were drawn. Based on the vegetation
distribution maps from 2015 to 2019, the final vegetation distribution map of the Mara
River Basin was created from the dominant vegetation type of each grid.
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3.3. Thiel–Sen/Mann–Kendall Trend-Testing Approach

Thiel–Sen/Mann–Kendall trend-testing [43] was used to investigate the trends of
VG, temperature, and precipitation. This approach uses the Sen trend degree S-value to
reduce the interference of images’ noise and to judge whether the images show increased
or decreased trends. The S-value is calculated by Formula (2):

S =
n−1

∑
i=1

n

∑
j=i+1

sgn
(
xj − xi

)
(2)

sgn
(
xj − xi

)
=

⎧⎨
⎩
+1, xj − xi > 0
0, xj − xi = 0
−1, xj − xi < 0

(3)

For vegetation, a positive value of S-value indicated a greening trend, and a negative
S-value indicated a browning trend. For temperature and precipitation, a positive S-value
presented an increasing trend for climate factors, while a negative S-value presented a
decreasing trend.

Then this approach uses Mann–Kendall Z-value to test the significance of the long-
term sequence trend, which can better detect areas with minor changes and judge the
change trends more accurately. The length of time series in this paper is 20 (n ≥ 10); the
S-value approximately obeys the standard normal distribution, and then the Z-value can
be used for trend testing.

Z =

⎧⎪⎪⎨
⎪⎪⎩

S−1√
VAR(S)

, S > 0

0, S = 0
S+1√
VAR(S)

, S < 0
(4)

VAR(S) =
n(n − 1)(2n + 5)− ∑m

i=1 ti(ti − 1)(2ti + 5)
18

(5)

where n is the number of time series, m is the number of ties (repeated data groups) in the
time series, ti is the extent of any given tie (numbers of repeated data in group i), and the
bilateral trend test is performed for Z-value.

When taking significance level α as 0.05, the significant change trend |Z-value| is
1.96. When the |Z-value| is more than 1.96, this means that the VG or climate factors
changed rapidly, and when the |Z-value| is less than 1.96, this means that there was no
rapid change.

3.4. The Relationship between VG and Climate Factors

To analyze the responses of VG and VGT to temperature and precipitation, this study
first converted all the rasters to ASCIIs in ArcGIS, including dry seasons’ MODIS NDVI,
temperature and precipitation, and NDVI trend during 2000–2019. Then a RF regression
model was built for MODIS NDVI and climate factors to analyze the response of VG to
temperature and precipitation. The importance function in the Random Forest R package
was used to investigate the contribution of temperature and precipitation to the VG. The
importance of the responses was quantified by how much the model accuracy decreases
(%IncMSE) when the variable was excluded. Finally, after all the ASCIIs were reconverted
into rasters in ArcGIS, the importance of the four vegetation types (forest, crop, grass, and
shrub) was extracted, respectively, and the mean importance was used as the response. The
same work was performed to analyze of VGT to temperature and precipitation by using
NDVI trend, temperature, and precipitation data. We used the coefficient of determination
(R2) and root means square error (RMSE) to evaluate the model-fitting results.
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4. Results

4.1. Vegetation Distribution Mapping of Mara River Basin

The random forest algorithm was used to classify the vegetation into four types (forest,
shrub, grass, and crop), and then we used producer’s accuracies, user’s accuracies, Kappa
coefficients, and overall accuracies to evaluate the classification results of each year. The
producer’s accuracies from 2015 to 2019 for forest were 0.98%, 0.95%, 0.96%, 0.98%, and
0.90%; for crop, they were 0.95%, 0.88%, 0.90%, 0.96%, and 0.84%; for grass, they were
0.88%, 0.85%, 0.87%, 0.90%, and 0.83%; and for shrub, they were 0.82%, 0.80%, 0.80%,
0.85%, and 0.87%. The user’s accuracies from 2015 to 2019 for forest were 0.90%, 0.86%,
0.89%, 0.95%, and 0.83%; for crop, they were 0.86%, 0.81%, 0.84%, 0.82%, and 0.88%; for
grass, they were 0.83%, 0.84%, 0.86%, 0.85%, and 0.85%; and for shrub, they were 0.80%,
0.82%, 0.85%, 0.87%, and 0.80%. The overall accuracies from 2015 to 2019 were 90.00%,
87.25%, 88.75%, 91.25%, and 84.37%, respectively, and the Kappa coefficients were all above
0.8. The vegetation distribution map of the Mara River Basin was drawn by the dominant
vegetation type of each grid (Figure 3). The basin’s forest, shrub, grass, and crop areas
were 1541.68, 2488.49, 7214.55, and 2505.44 km2, respectively. Forests were distributed in
upstream and downstream areas, crops were distributed in upstream area, and grass and
shrubs were mainly distributed in the midstream area.

Figure 3. Vegetation distribution map of Mara River Basin.

4.2. Spatiotemporal Trend of VG in Dry Seasons

The average NDVI in the dry seasons (January/February and June–September) from
2000 to 2019 was 0.53. The maximum NDVI (0.63) was observed in the year 2007. The
minimum NDVI (0.39) was observed in the year 2000. The mean NDVI in the dry seasons
showed a fluctuating trend (Figure 4). The greenness in the upstream and downstream
vegetation was relatively high, and the greenness of the midstream was low (Figure 5b).
The greenness of each vegetation type from high to low was forest (0.665), crop (0.629),
shrub (0.532), and grass (0.474), respectively. The VG in the reclamation area was higher
than 0.6 and lower than 0.8 in Mau Forest Escarpment due to irrigation, sufficient heat, and
relatively sufficient rainfall in the lower latitude. The VG was mostly 0.7~0.8 in the Mara
wetland, the highest in the basin due to Lake Victoria’s plenty of water supply. However,
the VG was lower than 0.5 due to insufficient water supply in the reserves in the midstream
area. Generally, the spatial distribution of greenness in the Mara River Basin is closely
related to climate conditions. The VG was high in the regions with more precipitation and
sufficient heat and low in the regions with less rainfall.

213



ISPRS Int. J. Geo-Inf. 2022, 11, 426

Figure 4. Temporal trend of VG in dry seasons of Mara River Basin.

Figure 5 shows the spatial distribution of VGT in dry seasons in Mara River basin.
The VG in the dry seasons showed a greening trend in the Mara River Basin, especially
in areas where forests and crops are widely distributed (Figure 5c). Meanwhile, in the
midstream, where dominant vegetation types were shrub and grass, the VG often presented
a browning trend (Figure 5c). In terms of the significant changes, most of the areas showed
a non-significant increase trend. The significant change trend presented concentrated in the
upstream and downstream areas, where forests and crops were the dominant vegetation
types (Figure 5d). The significant decrease change trend and non-significant decrease
change trend were often staggered in the midstream and downstream areas (Figure 5d).

Table 1 shows the proportions of area for vegetation in significantly different change
trends. Forest had the most proportion in significant increase change trend of all vegetation
types, and grass had the most proportion in significant decline trend. In general, the most
vegetation was in non-significant increase change trend (62.17%), and the least vegetation
was in significant decline change trend (2.26%).

Figure 5. Cont.
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Figure 5. Spatial distribution of VGT in dry seasons in Mara River Basin: (a) NDVI variation in dry
seasons; (b) average NDVI in dry seasons; (c) NDVI change trends in dry seasons (S-value); (d) NDVI
significant change trends in dry seasons (Z-value).

Table 1. Proportion of area with different VG trends (%).

Change Trend Forest Crop Grass Shrub Total Area (km2)

Significant Decline 2.02 1.20 2.62 2.47 312.10
Non-significant Decline 6.58 7.72 16.12 19.73 1950.59
Non-significant Increase 37.54 46.34 68.62 74.44 8547.90

Significant Increase 53.87 44.74 12.64 3.36 2939.57
Total Area (km2) 1541.68 2488.49 7214.55 2505.44 13,750.16

4.3. Responses of VG and VGT to Climate Change in Dry Seasons

The average temperature in the dry seasons (January to February and June to Septem-
ber) in the Mara River Basin was 19.4 ◦C from 2000 to 2019, whereas the highest temperature
was recorded in the year 2017 (20.5 ◦C), and the lowest temperature was recorded in the
year 2001 (18.4 ◦C). The average total precipitation in the dry seasons was 445.8 mm, the
maximum precipitation was observed in the year 2007 (660.8 mm), and the minimum
was observed in the year 2015 (318.2 mm). Moreover, the temperature and precipitation
fluctuated during 2000–2019 (Figure 6). Compared with the VG, the precipitation was
highest at the same time in the year 2007. The fluctuation trend of precipitation and VG
was more similar compared to the temperature. The VG was smaller when there was a
high temperature and less precipitation. On the contrary, the VG had a greater probability
to show a high value with low temperature and much precipitation.
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Figure 6. Annual average temperature and total precipitation of dry seasons in Mara River Basin.

Figure 7 shows the spatial trend of precipitation and temperature in the dry seasons
from 2000 to 2019. A total of 84.16% of the precipitation in the basin showed a declining
trend, especially in the downstream area, while only 15.84% of the precipitation showed
an increasing trend. The eastern region of the basin had the largest increasing trend.
For the significance of the precipitation change trend, 0.29% of the precipitation in the
basin showed a significant decline trend, and 83.87% of the precipitation showed a non-
significant decrease trend. Only the precipitation in the eastern region showed increase
trends, whereas 15.42% of the precipitation in the basin showed a non-significant increase
trend, and 0.42% in the basin showed a significant increasing trend. The temperature
showed an increasing trend in the whole basin. For the significance of the temperature
change trends, 82.88% of the temperature in the basin showed a non-significant increase
trend, and 17.12% of the of the temperature in the basin showed a significant increasing
trend, which was concentrated in the upstream and midstream areas.

Figure 8 showed the density scatter plots of RF regression for VG and VGT, the R2

values were 0.95 and 0.91, respectively; the RMSE values were both 0.023. The fitting degree
of the models were high, which verified the feasibility of the RF algorithm in analyzing the
responses of VG and VGT to temperature and precipitation in the Mara River Basin.

To clearly understand the spatial responses of VG and VGT to precipitation and
temperature, we used the natural breakpoint method to divide the importance into four
segments and named the importance from low to high as I, II, III, and IV, respectively
(Figure 9). The high importance indicated great responses of VG or VGT to precipitation
and temperature.

The VG in the east of the basin had the most responses to precipitation, while the
greenness concentrated in the midstream had the least responses to precipitation. The
greenness that had the most responses to precipitation scattered around the greenness had
the least responses in the downstream. Specifically, crops in the upstream area and some
grass in the mid-low stream area had more responses to precipitation. In contrast, the forest
in and around the Mara wetland and the shrub in Masai Mara National Park and Serengeti
National Park had few responses to precipitation (Figure 9a). The VG in the upstream area
had the most responses to temperature, and the greenness in the midstream had the least
responses to temperature. Specific to vegetation types, shrub in the midstream had the
least responses to temperature changes, while crop had the most responses to temperature
changes. The response to temperature in the downstream area was low, expect in the Mara
wetland (Figure 9b). The spatial responses of greenness to temperature were similar to
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precipitation in the upstream and midstream areas, with both showing a great response.
The spatial responses of VG to temperature were opposite to the responses to precipitation
in the downstream.

Figure 7. Spatial distribution of temperature and precipitation change trends in dry seasons in
Mara River Basin: (a) Precipitation change trend in dry seasons (S-value); (b) precipitation signifi-
cant change trend in dry seasons (Z-value); (c) temperature change trend in dry seasons (S-value);
(d) temperature significant change trend in dry seasons (Z-value).
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Figure 8. Performance of random forest regression on the responses of VG and VGT to precipitation
and temperature in dry seasons: (a) VG and (b) VGT.

Figure 9. Responses of VG and VGT to climate factors in Mara River Basin in dry seasons:
(a) responses of greenness to precipitation in dry seasons; (b) responses of greenness to temperature
in dry seasons; (c) responses of greenness trend to precipitation in dry seasons; and (d) responses of
greenness trend to temperature in dry seasons.
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The spatial responses of VGT to climate were not consistent. The VGT in national parks
had great responses to precipitation, while VGT in the upstream area and around the Mara
wetland had less responses to precipitation. Specific to vegetation types, crops north of the
forest and grass downstream had the least responses to precipitation, while forest and grass
in the midstream area had the most responses to precipitation (Figure 9c). The response of
VGT to temperature was great from the Mau Forest down to all of the midstream, and crops
north of the Mau Forest had the least response to temperature (Figure 9d). The responses
of VGT to precipitation were consistent with temperature in the upstream and midstream
areas. However, there was a slight difference in the downstream.

Tables 2 and 3 showed the responses of VG and VGT to climate change, respectively.
We considered the importance of temperature and precipitation. The greenness of all
vegetation types had more responses to precipitation than to temperature. Crop greenness
had the most responses to precipitation, and forest greenness had the least responses to
precipitation. Forest greenness had the most responses to temperature, and grass greenness
had the least responses to temperature. The Pearson correlation showed that precipitation
had a positive impact on VG, while temperature had a negative impact on the greenness of
forests and crops and had a positive impact on the greenness of grass and shrubs (Table 2).
The crop is rain-fed and more affected by human activities, such as irrigation, so it had less
correlation with climate. As a result, the crop greenness will be increased even under the
climate change condition, where the temperature is rising and precipitation is falling. The
greenness of grass and shrub can decrease if there is no interference from human activities.
The VG in the Mara River Basin would decline rapidly because the VG had many more
responses to decreasing precipitation than rising temperature.

Table 2. Response of VG to climate change in dry seasons in Mara River Basin.

Vegetation r Temperature Precipitation

Forest 0.42 25.68(−) 35.36(+)
Crop 0.28 30.65(−) 70.23(+)
Grass 0.62 18.78(+) 60.04(+)
Shrub 0.45 22.43(+) 47.55(+)

r is the Pearson’s coefficient between the predicted and observed cover based on the independent validation
samples. The signs in the brackets represent the sign of Pearson’s coefficient between the given vegetation and
climate factors (n = non-significant).

Table 3. Responses of VGT to climate change in dry seasons in Mara River Basin.

Vegetation r Temperature Precipitation

Forest 0.36 40.10(−) 27.46(−)
Crop 0.42 26.64(−) 70.23(+)
Grass 0.57 44.81(−) 34.64(+)
Shrub 0.48 42.27(−) 50.48(n)

r is the Pearson’s coefficient between the predicted and observed cover based on the independent validation
samples. The signs in the brackets represent the sign of Pearson’s coefficient between the given vegetation and
climate factors (n = non-significant).

The responses of VGT to temperature were greater than to precipitation, except for
crops. The grass greenness trend had the most responses to temperature, and the crop
greenness trend had the least responses to temperature. The shrub greenness trend had
the most responses to precipitation, and the crop greenness trend had the least responses
to precipitation. The responses were twice as different. The Pearson correlation showed
that temperature had negative impacts on all VGTs. Precipitation had a negative impact on
forests, it had no significant impact on shrubs, and it had a positive impact on grass and
crops (Table 3). The forests in the Mara River Basin are dominated by sparse forests with
strong drought resistance; this means that, no matter how much worse the climate gets,
forests can maintain green in dry seasons. However, in general, the increasing temperature
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and decreasing precipitation were a disadvantage for VGTs. Climate change will lead to
vegetation degradation, which will seriously reduce the food sources of wild animals and
residents, threaten the production and living of residents, hinder economic development,
and ultimately lead to further aggravation of poverty.

5. Discussion

High temperature accelerates the transpiration of vegetation and inhibits the growth
of vegetation. As a result, when the temperature was high, the VG was low. Precipitation in
the Mara River Basin is controlled by the Indian Ocean El Nino. The precipitation increases
in El Nino, and it decreases in La Nina. Under the strong control of La Nina in year 2000,
the basin experienced extreme arid conditions all year long; it was the severest drought in
nearly a century [44]. The temperature in the year 2000 was also high. Therefore, the VG
was lowest in the year 2000. Controlled by the extremely strong El Nino, the precipitation
in the dry season increased significantly in year 2007, which was an extremely humid
year [45]. Moreover, the temperature was very low, so the VG was highest in year 2007.

The spatial differentiation of VG in the dry seasons of the Mara River Basin was signif-
icantly different. The agricultural reclamation in the upstream area in Kenya accounted for
the largest proportion of the significant increasing trend, and the grass in the midstream
accounted for the largest decline trend. There was an obvious correlation between VG
and climate factors [23]. The greenness of grass and shrubs was more sensitive to climate
change than forests, as was consistent with the research results of Ghebrezgabher et al. [5].
The responses of VG to precipitation were greater than those to temperature [1]. Increased
precipitation will promote greening, and rising temperatures will lead to the greening of
grass and shrubs, but the browning of forests and crops.

The climate change trend of decreasing precipitation and increasing temperature in
the dry seasons in the Mara River Basin will lead to significant vegetation browning, a
finding that is consistent with the findings of Ogutu et al. [44]. The VG in the upstream
area should show a significant browning due to the reduction of precipitation, but the
crop greenness increased significantly due to a large amount of irrigation water added to
ensure the growth of crops in dry seasons. The shrub and grass were staggered around the
forest in Serengeti National Park, due to the manmade drainage channel in the southeast
which supplied sufficient water sources to promote vegetation greening [46]. Affected by
the reclamation in the upstream area and overgrazing in the midstream area, the runoff
and suspended sediment increased greatly in the Mara River [33,47]. As a result, the
downstream diverged, and the runoff increased greatly [48], leading to the expansion of the
Mara wetland. The rich swamps in the wetlands provided sufficient water and nutrients
for vegetation growth, promoting the VG near the Mara wetlands to increase rapidly. In
order to support the mining of the Mara Mine, the Tanzanian government destroyed the
vegetation and built corresponding infrastructure [49], which led to a significant decrease
in VG near the Mara Mine.

The responses of VGT to temperature were more significant than those to precipitation.
The increasing temperature will inhibit VGT, and decreasing precipitation will promote the
grass greening trend and lead to the forest and crop browning trend, as is consistent with the
findings of Li et al. [25]. The VGT had little response to climate due to sufficient irrigation
water. The rising temperature in the dry seasons strongly impacted the greenness trend of
shrubs and forests in the midstream. The reduction of precipitation led to obvious browning
in the Mara wetland. This VGT will threaten the ecological environment and economy [33].
The rain-fed crop relies on the rainfall in the rainy seasons to irrigate, and the growth in the
dry seasons requires large-scale irrigation. Due to the rapid population growth in Kenya
subbasin, the irrigated area has grown rapidly to ensure food production [50]. For instance,
the irrigated area had reached 1000 ha, with a total annual irrigation water volume of
12.25 million m3 in year 2015, and the irrigated area maintains an annual growth rate of
100 ha [29]. The decrease in runoff and the rapid increase in water demand in irrigation
caused a water shortage in the midstream and downstream [51]. Degraded grass in the
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midstream reduces food sources for wildlife and forces animals in areas where the grass
degrades most to travel farther to obtain enough food.

The climate change trend of the Mara River Basin is consistent with that of Africa. It
is expected that, by the end of this century, the average temperature in the dry seasons
will increase by up to 7 ◦C, and precipitation will decline [52]. Climate change has already
had an enormous impact on the habitats of Africa. Reduced rainfall in the dry season
can lead to vegetation degradation and threaten livestock and wildlife survival, even in
national parks [53]. Climate change has led to a significant reduction of species [54]. The
rising temperature and more severe drought will destroy suitable habitats and increase the
risk of species extinction [55,56]. For the Mara River Basin, climate change will increase
the probability of droughts and floods [57], which will profoundly negatively impact bio-
diversity, agriculture, animals, and even human society. Accelerated drying of wildlife
habitats has resulted in degraded vegetation and changes in savannah phenology [58,59],
which will change the migration routes of wildlife [39] and increase animal diseases such
as anthrax and Rift Valley fever [51]. Therefore, corresponding water resources and en-
vironmental management policies should be formulated to adapt to climate change and
achieve sustainable development of the Mara River Basin.

6. Conclusions

The vegetation greenness of the Mara River Basin in the dry season was fluctuating,
especially in the agricultural area in the upstream, from 2000 to 2019. The response of
VG to precipitation was much greater than temperature. The increase in precipitation
can promote vegetation greening, and the increase in temperature can inhibit greening.
The vegetation browning was related to the increasing temperature and the decreasing
precipitation, while vegetation greening was related to the increasing precipitation. There
were quite differences in the greening trend for different vegetations. The grass browning
trend in the midstream was the most obvious due to the decreasing precipitation and the
increasing temperature. The decreasing precipitation and increasing temperature in the
Mara River Basin will accelerate vegetation degradation and threaten the ecological security
of the Masai Mara National Park. Vegetation degradation will make it difficult for animals
to obtain food, seriously destroying wild animals’ habitat and safety and causing more
frequent ecological disasters. Considering that the decreasing trend of precipitation is much
greater than the increasing trend of temperature, VG will experience serious degradation
in the dry seasons. Therefore, it is necessary to actively formulate related environmental
management policies to address climate change.
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Abstract: Identifying suitable watersheds is a prerequisite to operationalizing planning interven-
tions for agricultural development. With the help of geospatial tools, this paper identified suitable
watersheds across Nigeria using biophysical parameters to aid agricultural planning. Our study in-
cluded various critical thematic layers such as precipitation, temperature, slope, land-use/land-cover
(LULC), soil texture, soil depth, and length of growing period, prepared and modeled on the Google
Earth Engine (GEE) platform. Using expert knowledge, scores were assigned to these thematic layers,
and a priority map was prepared based on the combined weighted average score. We also validated
priority watersheds. For this, the study area was classified into three priority zones ranging from
‘high’ to ‘low’. Of the 277 watersheds identified, 57 fell in the high priority category, implying that
they are highly favorable for interventions. This would be useful for regional-scale water resource
planning for agricultural landscape development.

Keywords: water; watershed proritization; agriculture; dryland; Google Earth Engine

1. Introduction

The population of the world is projected to reach 10 billion by 2050, which means
that we will require a higher rate of food production than we have now (World Population
Data Sheet 2020). In Nigeria, the rapidly expanding and urbanizing population—which
is expected to more than double in the next 35 years—has long exceeded domestic food
production capability [1,2]. This makes it imperative that activities that help in attaining a
high rate of food production and food self-sufficiency are more sharply focused. As part of
the efforts needed to regain food self-sufficiency, Natural Resource Management (NRM) de-
velopment programs must be conducted at the watershed level [3]. Moreover, there should
be a focus on the fundamental principles of land and water resources management, such
as watershed development and development of catchments and sub-catchments, which
are critical to securing Nigeria’s environmental and agricultural resilience [4]. Presently,
irrigation covers only 7% of the irrigable land in Nigeria [1]. While rapid expansion of
agricultural capacity, including through private investment [2], is indeed making more
lands productive as an objective toward bridging the food deficit, there are warning signals
like drought, gully formation, overgrazing, and erosion that need to be taken into account
in agricultural initiatives across Africa (World Bank 2012). Identification of hotspots inte-
grating various parameters like population, land-use/land-cover (LULC), and drainage
networks can lead us to better solutions in agricultural development [5,6]. This approach
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takes into account the possible social aspects of the challenge too. Further, running decision
tools can give satisfying results by aiding decision-making in relation to the implemen-
tation and development of natural resources. However, NRM has thus far been poorly
implemented for agriculture development as well as for water supply. While Africa has
rich natural resources and Nigeria has abundant water resources, there is an absence of
efficient use of such resources. Preparation of watershed prioritization maps can help us
enhance efficient utilization of natural resources, which currently are largely untapped in
Nigeria [7].

Characterization of natural resources needs multidisciplinary investigations carried
out by experts from different areas of expertise. In the present study, we prioritized water-
shed areas based on different biophysical parameters, such as population, soil, precipitation,
landscape, LULC, and social parameters. Climate parameters, such as temperature and
precipitation, highly influence the performance of watersheds: Low and very high rainfall
negatively affects agriculture, as do extremes of temperature. Moderate climatic conditions
are better for rainfed agriculture. In general, land resource management acknowledges the
association between social and biophysical factors in attaining satisfying results [8–11].

Several studies have used the approach of integrating various thematic maps using
geospatial tools for locating potential groundwater zones [12–16]. Similarly, studies have
also been carried out on aspects of natural resources and development planning using
remote sensing and GIS technologies [14,17–22]. Using various biophysical, socioeconomic,
and technical parameters with a multi-criteria approach, geospatial techniques have been
widely used in the assessment of land suitability for prioritization [23–29]. Specifically,
several studies have shown that the weighted sum method is the most efficient method for
prioritizing watersheds in developing countries [5,30].

The purpose of prioritizing watersheds is to identify focus watersheds for restoration
activities that can address their critical needs and for intervention planning. It is a useful tool
for decision-makers as it combines all the necessary information and allows a comparison
of watersheds within the same cluster. This approach allows researchers to develop a
summary of the watersheds of interest by spatially locating them and obtaining relevant
information about their vulnerability. This process can also help in locating multiple
watersheds with regard to prioritizing watershed protection and restoration.

In this study, we conducted a prioritization of watersheds across Nigeria to support
natural resource management and agricultural planning. We identified, on the basis of
biophysical parameters, an optimum number of watersheds ranging from low to high
priority so that specific watersheds could be targeted for interventions. Further, with the
help of geospatial inputs, thematic spatial data layers were used to construct a spatial model.
We identified priority watersheds by allotting different weights based on the opinion of
subject matter specialists (SMS). This scientific approach allowed us to prioritize watersheds
strategically using multiple biophysical parameters at a time. This high-precision technique
helps in delineating watersheds with utmost care and confidence.

2. Materials and Methods

2.1. Study Area

Nigeria lies between latitudes 4◦ N and 14◦ N and longitudes 4◦ E and 15◦ E. It is
bordered on the north, east, west, and south by the Republic of Niger, the Republic of Benin,
Cameroon, and the Gulf of Guinea, respectively (Figure 1). This location in West Africa
gives the country a very wide range of climatic patterns. According to Odekunle (2004),
Nigeria’s climate is dominated by the influence of three major atmospheric phenomena:
Maritime tropical (mT) air mass, continental tropical air mass, and equatorial easterlies.
Rainfall varies within the country with a mean annual rainfall in the range of 1000–2000 mm
in humid areas and 300–1100 mm in semi-arid areas. There is a slight variability of climate
from south to north. In the north, the mean maximum temperatures are higher (32 ◦C)
than in the south, while the mean minimum temperatures are lower (24 ◦C). As per the
FAO’s soil taxonomy, the major soil types in Nigeria are Fluvisols, Regosols, Gleysols,
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Acrisols, Ferrasols, Alisols, Lixisols, Cambisols, Luvisols, Nitosols, Arenosols, and Vertisols
with varied potential for agricultural use. The Niger and Benue rivers are the major rivers
in Nigeria. The Niger River has an irrigation potential of 1.68 million hectares (Mha) in
Nigeria, but its use is limited to only 0.68 Mha. The country has six distinct agroecological
zones varying from the Atlantic coast to the arid savanna of the Sahel. The major staple
crops in the humid parts of Nigeria are cassava, yam, cocoyam, and maize, whereas in the
subhumid and semi-arid parts, maize, sorghum, millet, cowpea, and groundnut are grown.
The major commercial crops include cocoa, oil palm, cotton, ginger, and sesame.

Figure 1. Location map of Nigeria with stream networks and agroecological zones (FAO).

2.2. Methodology

For identifying priority watersheds, we applied the methodology of weighted integra-
tion of multiple thematic layers using the geographic information system (GIS) (Figure 2).
We used thematic spatial layers of both biophysical and social parameters that are impor-
tant for agriculture. The priority order, i.e., ranking, of every spatial layer was obtained
from subject matter experts, including NARS scientists in Nigeria. The priority classes were
decided on the basis of the multi-criteria decision rule.

For thematic layers, such as LULC, a map of the year 2014 was prepared from MODIS
250 m satellite imagery using Normalized Difference Vegetation Index (NDVI) time-series
data. The slope map was prepared from SRTM 30 m data. Similarly, other thematic spatial
layers were acquired from the public domain using Google Earth Engine. The weightage
and scores for the values in the thematic layers were given in relation to their positive effect
on watershed and agricultural development. Thematic layers with a high positive value
were given the highest weightage and vice versa. Upon integration of multiple spatial
layers, the sum of all weights was calculated. High priority was given to the thematic layer
that obtained the highest score and vice versa.
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Figure 2. Methodology of watershed prioritization using geo-spatial layers.

2.3. Criteria and Determining Factors

Various thematic layers, such as soil, slope, LULC, rainfall, maximum and minimum
temperature, length of growing period (LGP) (see Appendix A) were considered for the
prioritization analysis based on their importance and relationship with other thematic lay-
ers. Based on the rating given by subject matter experts, the criteria to define prioritization
was the sum of weights for all thematic layers (Table 1).

Table 1. Priority levels for thematic layers.

Suitability Criteria
Priority Level

Low (1) Moderate (2) High (3)

Average min. temp (◦C) 0–15 15–20 20–25
Average max. temp (◦C) Up to 20 and >40 20–30 30–40
Average precipitation (mm) Up to 250 250–1000 >1000
Slope (% rise) >20 5–20 <5
Soil texture (class values) 5, 6, 8 2, 3, 4, 7 1
Soil depth (mm) <5 5–20 >20
LGP (No. of Days) >240 150–240 60–150

2.3.1. Land-Use/Land-Cover

Land-use/land-cover (LULC) patterns were mapped for the year 2014 using MODIS
250 m resolution satellite imagery, targeting major land-use classes like croplands (Figure 3),
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shrub lands, water bodies, and built-up/open lands [31,32]. Among these LULC classes,
the dominant class with the highest score was cropland. Rainfed croplands were chosen
rather than irrigated cropland because of their higher priority in watershed development.
Classes like built-up land and water bodies were given less priority, whereas shrub lands
and grassland were given medium priority because of their vegetation status. The LULC
layer was assigned the weightage of 3.

Figure 3. LULC classes in Nigeria.

2.3.2. Slope

The slope map was derived from SRTM 30 m DEM data (Figure 4). The map was
stratified in terms of percentage change showing the rise or fall of land surface, which is a
crucial factor in determining water flow. Lower percent change of elevation, i.e., slope, was
given a high priority because of ease during cultivation and high groundwater potential.
High percent change was given low priority in the estimation. This layer was given a low
weightage of 1.

Figure 4. Slope map of Nigeria (SRTM DEM: http://srtm.sci.cgiar.org/) (accessed on 11 January 2022).
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2.3.3. Soils

Soil parameters [33] (soil texture and soil depth) play a vital role in watershed prioriti-
zation because of their critical role in runoff. The water withstanding capacity of a location
depends upon the soil type/texture and permeability at that location. The experts’ scores
were assigned for both layers, i.e., soil texture and soil depth, based on priority. Soil texture
was classified into eight types (clay, clay loam, loamy sand, loam, sand, sandy clay loam,
sandy clay, and sandy loam). Clay soils were given high priority, and sandy soils were
given low priority (Figure 5a). Soil depth was classified into six classes (Figure 5b). Deeper
soils were given a higher priority than lower-depth soils. These layers were assigned a
weightage of 3.

Figure 5. (a) Soil texture and its priority map and (b) soil depth and its priority map.

2.3.4. Rainfall

The annual rainfall data (2010–2018) were downloaded from Terra Climate [34]
(Figure 6). Average rainfall was classified into 10 classes. The areas receiving less than
250 mm of rainfall were given a low priority and areas with rainfall greater than 1000 mm
were given high priority, and medium range of rainfall was allotted moderate priority. A
weightage of 3 was given to this layer.
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Figure 6. Mean annual rainfall in Nigeria (TerraClimate).

2.3.5. Length of Growing Period (LGP)

The length of the growing period (LGP) is one of the factors that determine the
vegetation in an area in a year [35]. LGP was classified into seven classes in which two
classes, <60 days and >240 days, were given low priority, while the LGP class 60–150 days
was given high priority and 150–240 days moderate priority (Figure 7). A weightage of
2 was given to this layer. The LGP product was prepared by FAO as a part of the World
Bank’s review of its rural development strategy. It was prepared using vegetation indices
as well as annual rainfall.

Figure 7. Length of the growing period (LGP) in Nigeria.

2.3.6. Temperature

Minimum temperature: Average minimum temperature data were downloaded from
WorldClim and classified into four classes with 5 ◦C intervals (Figure 8a). The areas with an
average minimum temperature <5 ◦C were allotted a very low priority, and those between 5
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and 15 ◦C were given low priority. Areas with average minimum temperatures between 20
and 25 ◦C were given a high priority, whereas those with 15–20 ◦C were assigned moderate
priority. This layer was given a weightage of 2.

Figure 8. (a) Average annual minimum temperature and it priority map. (b) Average annual
maximum temperature and its priority map.

Maximum temperature: Average maximum temperature data were downloaded
from WorldClim and classified into six classes (Figure 8b). Areas having a mean maximum
temperature of <20 ◦C or >40 ◦C were given low priority. Those areas with a mean
maximum temperature of 20–30 ◦C were given moderate priority, whereas areas with
maximum temperature varying in the 30–40 ◦C range were given a high priority. This layer
was given a weightage of 3.

2.4. Determining Thematic Layer Weights

On the basis of expert/scientists’ knowledge and a review of published papers [8,14,
16,36,37], weights were allotted to different layers. The layers most favorable to watershed
interventions were those that received a high weightage of 3. The layers least favorable
to interventions were those that had a weightage of 1, while a weightage of 2 indicated
moderately favorable layers. Layers like average annual maximum temperature, annual
average precipitation, LULC, soil texture, and soil depth were given a high weightage of 3.
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Annual average minimum temperature and LGP were given a weightage of 2. The slope
map was given a low weightage of 1.

2.5. Integration of Thematic Layers Using Spatial Models

The integration of these thematic layers was carried out by developing a spatial model
on GEE. The classes within each layer were reclassified on the basis of their scores given by
experts (Equation (1)). Then, using the raster calculator, the weightages given by experts
were multiplied by the respective layers (Equation (2)).

Tsw = Tr × W (1)

Tsw = Thematic layer with weighted score
Tr = Reclassified thematic layer
W = Weights

Then, all the weighted thematic layers were summed up and integrated to get the
priority map

Pm = ΣTsw (2)

Pm = Priority map

2.6. Spatial Modeling Using Machine Learning Algorithms on Google Earth Engine Platform

Layers such as rainfall and temperature from WorldClim and slope maps from SRTM
DEM were available on the GEE platform. Other layers, such as LULC, LGP, and soil maps,
were ingested into GEE assets.

The layers were reclassified using decision tree algorithms incorporating the expert-
given values using code as in the example below.

Example for rainfall reclassification:
“
var DTstring_prep =
[‘1) root 9999 9999 9999’, ‘2) prec<=250 9999 9999 1 *’,//Allocated value 1
‘3) prec>250 9999 9999 9999’, ‘6) prec<=1000 9999 9999 2 *’,//Allocated value 2
‘7) prec>1000 9999 9999 3 *’].join(“\n”); Allocated value 3
var classifier_prep = ee.Classifier.decisionTree(DTstring_prep);
var reclassifiedImage_prep = prep.select(‘prec’).classify(classifier_prep);
”

In the above example of a decision tree algorithm, it reclassified pixels with a value
<250 m as 1, whereas values between 250 and 1000 mm were reclassified as 2 and those
>1000 mm were 3.

A similar procedure was used for all the layers by giving scores to the respective
pixels that are favorable to watershed interventions. The weightages are then multiplied
with the scores of respective layers as per expert opinion and were summed up as in the
example below.

For example:
“var weighted=
reclassifiedImage_minTem.add(reclassifiedImage_maxTem).add(reclassifiedImage_slop).add
(reclassifiedImage_prep)
”

The above example shows the addition of the reclassified layers of minimum tempera-
ture, maximum temperature, and precipitation. Then, the summed-up layer is reclassified
as per priority, low, medium, or high, based on the values attained by each pixel.
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2.7. Watershed Delineation

The major input data for delineating the watersheds were drawn from SRTM 30 m
horizontal resolution DEM obtained from the web portal of the Consortium for Spatial
Information [38] (http://srtm.csi.cgiar.org/) (accessed on 11 January 2022). These data
were utilized to delineate the stream network and the slope map using ArcGIS tools. The
sequence of steps followed to delineate the stream network, as well as watersheds, is
illustrated in Figure 2.

The process starts with filling the sinks by comparing the values of neighboring cells.
The filled sinks help in the generation of flow direction by finding the steepest descent
of every cell. Then, flow accumulation is calculated using flow direction by counting
the number of cells that are flowing to a particular cell. A set of thresholds for flow
accumulation and flow direction generates the stream network.

The generation of pour points at the sixth stream order for the entire study area helps
in the generation of watersheds (Figure 9a,b).

Figure 9. (a) Watershed and stream network delineation in Nigeria. (b) Spatial distribution of
watersheds and their priority in Nigeria.

3. Results and Discussion

3.1. Watershed Analysis and Prioritization of Watersheds

Among all the watersheds identified throughout Nigeria, 277 were identified as having
an area greater than 100 ha. Out of these, 144 watersheds were found to have an area less
than 0.2 Mha, 71 were in the range of 0.2–0.4 Mha, and 26 in the range of 0.4–0.6 Mha. Only
about 30 watersheds have an area greater than 0.6 Mha (Table 2).

Table 2. Area-wise classification of watersheds in Nigeria.

Area (Mha) No. of Watersheds

<0.2 144
0.2 to 0.4 71
0.4 to 0.6 26
0.6 to 0.8 15
0.8 to 1.0 8
1.0 to 1.2 6
1.2 to 1.4 3
1.4 to 1.6 2

>1.6 2
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The watershed prioritization map of Nigeria was derived after integration of the
allocated priority values for different thematic layers. The priority map was categorized
into three classes: High, moderate/medium, and low priority. The areas identified as
high-priority are very favorable to watershed development, and the low-priority zones
are the least favorable. Most of the watersheds in Nigeria fell in the moderate-priority
class. The defined watershed map of Nigeria was overlaid on the priority map to identify
strategic watersheds for agricultural development (Figure 9a,b).

3.2. Integration of Watershed Map with Thematic Layers

For a more detailed understanding of the watersheds, priority maps were prepared as
per each thematic layer (Figure 10a–g). Table 3 shows the number of watersheds in every
thematic category.

Figure 10. (a–g) Prioritized watershed maps as per thematic layer. (h) Prioritized watersheds after
integration of all thematic layers in the study area.

The watershed map with the integration of all thematic layers is shown in Figure 10h.
Considering only the precipitation layer, we found that only 98 watersheds had highly
suitable rainfall conditions, which is a crucial layer for agriculture planning. About
159 watersheds fell in the moderate-priority class. For maximum and minimum tem-
perature, almost all watersheds had moderately suitable or highly suitable conditions.
Soil conditions too showed a favorable tendency. These findings show the importance of
watersheds in this country.
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Table 3. Number of proritized watersheds by thematic layer.

Thematic Layers
Number of Watersheds

Low Priority Moderate Priority High Priority

Maximum temperature 0 47 230
Minimum temperature 0 98 179
Precipitation 20 159 98
Slope 2 6 269
Soil depth 6 59 212
Soil texture 5 153 119
LGP 51 148 78

Final map 21 199 57

3.3. Validation of Priority Watersheds

On the basis of the available data, we validated the priority watersheds in relation
to dams constructed in Nigeria (Figure 11). The details of dams and their purpose are
illustrated in Table 4.

Figure 11. Map showing the location of dams in Nigeria.

We found that most of the dams constructed for the purpose of irrigation lie within
moderate and high-priority watersheds. Dams constructed for multiple purposes, such
as irrigation, as well as hydroelectric power generation, were mostly in moderate-priority
watersheds, whereas dams located within high-priority watersheds were those built only
for irrigation. The Mambila Plateau dam constructed for hydroelectric power generation
lies in a low-priority zone. This validation indicated that the study correctly prioritized
watersheds for agricultural planning and development.
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Table 4. Locations of dams and their purpose.

FID Long. Lat. Name Objective State Priority

0 8.52168 12.340262 Audu Bako Irr/ws Kano High

1 8.319344 12.449709 Gari Irr/ws Kano High

2 8.750295 12.101573 Watari Irr/ws Kano Moderate

3 8.026064 11.816966 Kusala Dam Irr/ws Kano High

4 8.013794 11.719821 Challawa Gorge Dam Irr/ws Kano High

5 8.55439 11.939492 Adu Bayero Irr/ws Kano High

6 8.32209 11.650109 Baguada Irr/ws Kano High

7 8.010376 11.785614 Karaye Irr/ws Kano High

8 8.491756 11.982099 Watari Irr/ws Kano High

9 8.170203 11.856063 Tomas dam Irr/ws Kano High

10 7.933704 11.915973 Rudwan kanya Irr/ws Kano High

11 8.2476 11.967202 Pada Irr/ws Kano High

12 8.329988 12.10452 Guzuguzu Irr/ws Kano High

13 9.50311 12.173312 Hadejia Irr Jigawa Moderate

14 8.701458 11.866207 Mahamadu Ayuba Irr/ws Kano Moderate

15 9.108804 11.575692 Merashi Irr/ws Kano Moderate

16 8.885244 12.100326 Magaga Irr/ws Kano Moderate

17 9.481497 11.450196 Birmin kudu Irr/ws Jigawa Moderate

18 8.409686 11.413934 Tiga Dam Irr/ws Kano Moderate

19 8.402408 11.25013 Tundun Wada Irr/ws Kano Moderate

20 8.184803 11.004238 Galma Irr/ws/HP Kaduna Moderate

21 7.6548271 11.135078 Birni Gwari Irr/ws Kaduna Moderate

22 7.6548271 11.135078 ABU Dam Irr/ws Kaduna Moderate

23 7.596162 10.639892 Kangimi Dam Pier Irr/ws Kaduna Moderate

24 9.881125 10.418291 Gubi Dam Irr/ws Bauchi Moderate

25 9.80136 10.30249 Waya dam Irr/ws/HP Bauchi Moderate

26 11.481694 10.322154 Dadin Kowa Dam Irr/ws/HP Gombe High

27 11.6613 9.8329 Cham dam Irr/ws Gombe High

28 11.72 7.33 Mambilla Plateau HP Taraba Low

29 9.761765 6.873387 Kashimbila Dam Irr/ws Taraba Moderate

Irr = Irrigation; ws = Water Supply; HP = Hydroelectric power.

4. Discussion

Natural resource management plays a crucial role in the sustainable utilization of the
available natural resources. In the context of watershed management, prioritization of
watersheds helps in the effective use of natural resources for agricultural development in a
shorter period of time. Watershed prioritization using remote sensing and GIS techniques is
an easy and convenient approach based on weighted scores provided by SMS/scientists. In
past studies, watershed prioritization was carried out using quantitative analysis, statistical
methods, fuzzy and AHP techniques [39–41], morphometric analysis [42], delineation of
groundwater potential zones [43], prioritization of sub-watersheds [44,45], prioritization
of semi-arid agricultural watersheds [46], spatial assessment of soil erosion risk [47,48],
and many other parameters. Our study considered biophysical parameters and major
LULC classes to carry out watershed prioritization in Nigeria as a tool for agricultural
development and planning. These parameters included average minimum temperature,
average maximum temperature, average precipitation, slope, soil depth, and length of the
growing period, which have a major role in watershed development and management.
Analyzing these biophysical parameters and rating them with the help of subject experts,
we carried out prioritization of watersheds in Nigeria using SRTM DEM-delineated data.
Various studies have employed different methods of watershed prioritization for expansion
of agriculture [5,49], critical sub-basins in mountainous watersheds [50], natural resource
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management [40,51], sediment yield index [52], LULC change impacts [53], assessment
of flash flood risk with the help of weighted-sum models [54], etc. However, in all these
methods, prioritization of watersheds was analyzed based on individual biophysical
parameters such as topographical information, LULC, weather data, soil texture, soil depth
and slope, etc. Nevertheless, the multi-criteria decision-making approach depends on the
total score obtained after applying each thematic layer, and the accuracy of analysis of each
input parameter.

It is very important to identify high-priority watersheds in Africa as land resource de-
velopment programs are generally designed on a watershed basis. Therefore, appropriate
prioritization is required for proper intervention and management. In our study, based
on priority classification for every parameter, priority-wise watersheds were delineated
and mapped. This helps various stakeholders in making decisions appropriate to their
requirements. Various stakeholders in Nigeria will significantly benefit from the findings
of this study. Integration of slope, soil depth, and soil texture maps and prioritization on
the basis of those parameters should help in planning for soil conservation measures and
watershed interventions. The maximum and minimum temperature layers in our study
indicate the direct or indirect effects on soil moisture as well as evapotranspiration [55]. Pri-
oritization of watersheds as per the precipitation layer clearly indicates the water-sufficient
and water-deficient areas. Flood-prone and drought-prone watersheds can also be identi-
fied by considering the relevant parameters. Prioritization of watersheds in terms of the
LGP indicated the vegetation levels throughout the year. Every parameter has a favorable
and non-favorable relation with the watershed. Some parameters positively impact the wa-
tershed and others negatively. The integration of all such parameters can provide insights
to mitigate risks. Integration of all parameters in a systematic and scientific manner can
help in precise targeting of watershed interventions and agricultural development plans.

High-priority and moderate-priority watersheds are the best-suited sites for NRM
interventions, such as construction of water structures, whereas low-priority areas have
less a suitable environment potential for agricultural development. High-priority wa-
tersheds are highly suitable for constructing structures for irrigation, whereas moderate-
priority watersheds can be utilized for multipurpose projects. Low-priority watersheds
can be used for other purposes. The identification and delineation of such watershed
areas help in better agricultural development planning, as well as implementation of
appropriate interventions.

5. Conclusions

Identifying watersheds suitable for interventions is important for efficient utilization
of natural resources. Prioritization is an important step for efficient natural resource
management and increasing crop-water productivity. Using data generated from satellite
imagery and information adapted from available open-source global data sets and national
sources, we prepared spatial maps of watersheds in Nigeria. From this, we identified
and prioritized suitable watersheds across the country for better agricultural, as well as
livelihood, development. We integrated thematic layers prevailing in these watersheds
and gave weighted scores to them with the help of experts and published papers. By
the integration of these weighted layers, we generated a priority map of watersheds in
Nigeria. The analysis showed that most of the areas in Nigeria fall in the class of moderate
priority. Higher-resolution datasets can further improve these maps, and the method can
be applicable to small areas to implement watershed interventions.
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Appendix A

Table A1. Parameters related information and their sources.

Variable Year Type Resolution Source

Maximum Temperature 2010–2018 Raster ~4 km TerraClimate

Minimum Temperature 2010–2018 Raster ~4 km TerraClimate

Precipitation 2010–2018 Raster ~4 km TerraClimate

Slope 2014 Raster 90 m SRTM

Soil 1994 Vector 1:5,000,000 FAO [33]

LULC 2014 Raster 250 m LULC [31]

LGP 2011 Raster 8 km LGP [35]

References

1. Groninger, J.W. Building watershed management capacity in Nigeria: Expanding the role of agriculture colleges. J. Contemp.
Water Res. Educ. 2016, 158, 78–84.

2. Adesina, A. Investing in Nigeria’s Agricultural Value Chain. Presented at the Bank of Industry’s Nigerian Investment Forum, Lon-
don, UK, 30 July 2012; Available online: http://www.newworldnigeria.com/pdf/AdesinaLondonBOIForumfinal.pdf (accessed
on 4 May 2020).

3. Khan, M.A.; Gupta, V.P.; Moharana, P.C. Watershed prioritization using remote sensing and geographical information system: A
case study from Guhiya, India. J. Arid. Environ. 2001, 49, 465–475. [CrossRef]

4. Jewitt, G. Can integrated water resources management sustain the provision of ecosystem goods and services? Phys. Chem. Earth
Parts A/B/C 2002, 27, 887–895. [CrossRef]

5. Gumma, M.K.; Birhanu, B.Z.; Mohammed, I.A.; Tabo, R.; Whitbread, A.M. Prioritization of watersheds across Mali using remote
sensing data and GIS techniques for agricultural development planning. Water 2016, 8, 260. [CrossRef]

6. Gumma, M.; Thenkabail, P.S.; Fujii, H.; Namara, R. Spatial models for selecting the most suitable areas of rice cultivation in the
Inland Valley Wetlands of Ghana using remote sensing and geographic information systems. J. Appl. Remote Sens. 2009, 3, 033537.

7. Bazzi, H.; Baghdadi, N.; Ienco, D.; El Hajj, M.; Zribi, M.; Belhouchette, H.; Escorihuela, M.J.; Demarez, V. Mapping irrigated areas
using Sentinel-1 Time series in Catalonia, Spain. Remote Sens. 2019, 11, 1836. [CrossRef]

8. Moore, I.D.; Grayson, R.; Ladson, A. Digital terrain modelling: A review of hydrological, geomorphological, and biological
applications. Hydrol. Process. 1991, 5, 3–30. [CrossRef]

9. Panhalkar, S.; Pawar, C. Watershed Development Prioritization by applying WERM model and GIS techniques in Vedganga Basin
(INDIA). ARPN J. Agric. Biol. Sci. 2011, 6, 38–44.

10. Vittala, S.S.; Govindaiah, S.; Gowda, H.H. Prioritization of sub-watersheds for sustainable development and management of
natural resources: An integrated approach using remote sensing, GIS and socio-economic data. Curr. Sci. 2008, 95, 345–354.

11. Iqbal, M.; Sajjad, H. Prioritization based on Morphometric Analysis of Dudhganga Catchment, Kashmir Valley, India using
Remote Sensing and Geographical Information System. Afr. J. Geo-Sci. Res. 2014, 2, 1–6.

12. Kamaraju, M.V.V.; Bhattacharya, A.; Sreenivasa, R.; Chandrasekhar, R.; Murthy, G.S.; Rao, T.C.H.M. Ground-water potential
evaluation of West Godavari district, Andhra Pradesh State, India-a GIS Approach. Ground Water 1996, 34, 318–325. [CrossRef]

13. Mattikalli, H.M.; Devereux, B.J.; Richards, K.S. Integration of remote sensedsatellite images with a Geographical Information
System. Comput. Geosci. 1995, 21, 947–956. [CrossRef]

14. Murthy, K.S.R. Groundwater potential in a semi-arid region of Andhra Pradesh—A geographical information system approach.
Int. J. Remote Sens. 2000, 21, 1867–1884. [CrossRef]

239



ISPRS Int. J. Geo-Inf. 2022, 11, 416

15. Sidhu, R.S.; Mehta, R.S. Delineation of groundwater potential zones in Kushawati river watershed a tributary of Zauri river in
Goa, using remotely sensed data. In Proceedings of the National Symposium on Engineering Applications of Remote Sensing
and Recent Advantages, Indore, India, 21–23 December 1989; pp. 41–46.

16. Gumma, M.K.; Pavelic, P. Mapping of groundwater potential zones across Ghana using remote sensing, geographic information
systems, and spatial modeling. Environ. Monit. Assess. 2013, 185, 3561–3579. [CrossRef]

17. Hellden, U.; Olsson, L.; Stern, M. Approaches to desertification monitoring in Sudan. In Satellite Remote Sensing in Developing
Counties; Lery, L.G., Ed.; European Space Agency: Paris, France, 1982; pp. 131–144.

18. Kushwaha, S.P.S. Application of Remote Sensing in Shifting Cultivation Areas; Technical Report; Abteilung Luftbildmessung and
Fernerkundung, Universitat Freiburg: Freiburg, Germany, 1993; pp. 23–28.

19. Smith, A.Y.; Blackwell, R.J. Development of an information data base for watershed monitoring. Photogramm. Eng. Remote Sens.
1980, 46, 1027–1038.

20. Trotter, C.M. Remotely sensed data as information source for geographical information system in natural resources management:
A review. Int. J. Remote Sens. 1991, 5, 225–239. [CrossRef]

21. Said, S.; Siddique, R.; Shakeel, M. Morphometric analysis and sub-watersheds prioritization of Nagmati River watershed, Kutch
District, Gujarat using GIS based approach. J. Water Land Dev. 2018, 39, 131–139. [CrossRef]

22. Zheng, J.; Fu, H.; Li, W.; Wu, W.; Zhao, Y.; Dong, R.; Yu, L. Cross-regional oil palm tree counting and detection via a multi-level
attention domain adaptation network. ISPRS J. Photogramm. Remote Sens. 2020, 167, 154–177. [CrossRef]

23. Singh, L.; Saravanan, S.; Jennifer, J.J.; Abijith, D. Application of multi-influence factor (MIF) technique for the identification of
suitable sites for urban settlement in Tiruchirappalli City, Tamil Nadu, India. Asia-Pac. J. Reg. Sci. 2021, 5, 797–823. [CrossRef]

24. Roy, S.; Hazra, S.; Chanda, A.; Das, S. Assessment of groundwater potential zones using multi-criteria decision-making technique:
A micro-level case study from red and lateritic zone (RLZ) of West Bengal, India. Sustain. Water Resour. Manag. 2020, 6, 4.
[CrossRef]

25. Serele, C.; Pérez-Hoyos, A.; Kayitakire, F. Mapping of groundwater potential zones in the drought-prone areas of south
Madagascar using geospatial techniques. Geosci. Front. 2020, 11, 1403–1413. [CrossRef]

26. Abd Manap, M.; Nampak, H.; Pradhan, B.; Lee, S.; Sulaiman, W.N.A.; Ramli, M.F. Application of probabilistic-based frequency
ratio model in groundwater potential mapping using remote sensing data and GIS. Arab. J. Geosci. 2014, 7, 711–724. [CrossRef]

27. Rahmati, O.; Samadi, M.; Shahabi, H.; Azareh, A.; Rafiei-Sardooi, E.; Alilou, H.; Melesse, A.M.; Pradhan, B.; Chapi, K.; Shirzadi, A.
SWPT: An automated GIS-based tool for prioritization of sub-watersheds based on morphometric and topo-hydrological factors.
Geosci. Front. 2019, 10, 2167–2175. [CrossRef]

28. Kumar, K.C.A.; Reddy, G.P.O.; Masilamani, P.; Sandeep, P. Spatial modelling for identification of groundwater potential zones in
semi-arid ecosystem of southern India using Sentinel-2 data, GIS and bivariate statistical models. Arab. J. Geosci. 2021, 14, 1362.
[CrossRef]

29. Pandey, M.; Sharma, P.K. Remote sensing and GIS based watershed prioritization. In Proceedings of the 2017 IEEE International
Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 6182–6185.

30. Aher, P.; Adinarayana, J.; Gorantiwar, S. Quantification of morphometric characterization and prioritization for management
planning in semi-arid tropics of India: A remote sensing and GIS approach. J. Hydrol. 2014, 511, 850–860. [CrossRef]

31. Xiong, J.; Thenkabail, P.S.; Gumma, M.K.; Teluguntla, P.; Poehnelt, J.; Congalton, R.G.; Yadav, K.; Thau, D. Automated cropland
mapping of continental Africa using Google Earth Engine cloud computing. ISPRS J. Photogramm. Remote Sens. 2017, 126, 225–244.
[CrossRef]

32. Gumma, M.K.; Thenkabail, P.S.; Hideto, F.; Nelson, A.; Dheeravath, V.; Busia, D.; Rala, A. Mapping irrigated areas of Ghana using
fusion of 30 m and 250 m resolution remote-sensing data. Remote Sens. 2011, 3, 816–835. [CrossRef]

33. FAO. AQUASTAT—FAO Water Report 29. 2005. Available online: http://www.fao.org/nr/water/aquastat/countries/ghana/
index.stm (accessed on 11 February 2022).

34. Abatzoglou, J.T.; Dobrowski, S.Z.; Parks, S.A.; Hegewisch, K.C. TerraClimate, a high-resolution global dataset of monthly climate
and climatic water balance from 1958–2015. Sci. Data 2018, 5, 170191. [CrossRef]

35. Vrieling, A.; De Leeuw, J.; Said, M.Y. Length of growing period over Africa: Variability and trends from 30 years of NDVI time
series. Remote Sens. 2013, 5, 982–1000. [CrossRef]

36. Murthy, K.S.R.; Mamo, A.G. Multi-criteria decision evaluation in groundwater zones identification in Moyale-Teltele subbasin,
South Ethiopia. Int. J. Remote Sens. 2009, 30, 2729–2740. [CrossRef]

37. Moran, M.S.; Peters-Lidard, C.D.; Watts, J.M.; McElroy, S. Estimating soil moisture at the watershed scale with satellite-based
radar and land surface models. Can. J. Remote Sens. 2004, 30, 805–826. [CrossRef]

38. Belgiu, M.; Csillik, O. Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping
analysis. Remote Sens. Environ. 2018, 204, 509–523. [CrossRef]

39. Baja, S.; Chapman, D.M.; Dragovich, D. A conceptual model for defining and assessing land management units using a fuzzy
modeling approach in GIS environment. Environ. Manag. 2002, 29, 647–661. [CrossRef]

40. Chowdary, V.; Chakraborthy, D.; Jeyaram, A.; Murthy, Y.K.; Sharma, J.; Dadhwal, V. Multi-criteria decision making approach for
watershed prioritization using analytic hierarchy process technique and GIS. Water Resour. Manag. 2013, 27, 3555–3571. [CrossRef]

41. Jaiswal, R.; Thomas, T.; Galkate, R.; Ghosh, N.; Singh, S. Watershed prioritization using Saaty’s AHP based decision support for
soil conservation measures. Water Resour. Manag. 2014, 28, 475–494. [CrossRef]

240



ISPRS Int. J. Geo-Inf. 2022, 11, 416

42. Gopinath, G.; Nair, A.G.; Ambili, G.; Swetha, T. Watershed prioritization based on morphometric analysis coupled with multi
criteria decision making. Arab. J. Geosci. 2016, 9, 129. [CrossRef]

43. Fashae, O.A.; Tijani, M.N.; Talabi, A.O.; Adedeji, O.I. Delineation of groundwater potential zones in the crystalline basement
terrain of SW-Nigeria: An integrated GIS and remote sensing approach. Appl. Water Sci. 2014, 4, 19–38. [CrossRef]

44. Welde, K. Identification and prioritization of subwatersheds for land and water management in Tekeze dam watershed, Northern
Ethiopia. Int. Soil Water Conserv. Res. 2016, 4, 30–38. [CrossRef]

45. Biswas, S.; Sudhakar, S.; Desai, V.R. Prioritisation of subwatersheds based on morphometric analysis of drainage basin: A remote
sensing and gis approach. J. Indian Soc. Remote Sens. 1999, 27, 155. [CrossRef]

46. Farhan, Y.; Anbar, A.; Al-Shaikh, N.; Mousa, R. Prioritization of semi-arid agricultural watershed using morphometric and
principal component analysis, remote sensing, and GIS techniques, the Zerqa River Watershed, Northern Jordan. Agric. Sci. 2016,
8, 113–148. [CrossRef]

47. Farhan, Y.; Nawaiseh, S. Spatial assessment of soil erosion risk using RUSLE and GIS techniques. Environ. Earth Sci. 2015,
74, 4649–4669.

48. Gajbhiye, S.; Mishra, S.; Pandey, A. Prioritizing erosion-prone area through morphometric analysis: An RS and GIS perspective.
Appl. Water Sci. 2014, 4, 51–61. [CrossRef]

49. Kalin, L.; Hantush, M.M. An auxiliary method to reduce potential adverse impacts of projected land developments: Subwatershed
prioritization. Environ. Manag. 2009, 43, 311. [CrossRef] [PubMed]

50. Besalatpour, A.; Hajabbasi, M.A.; Ayoubi, S.; Jalalian, A. Identification and prioritization of critical sub-basins in a highly
mountainous watershed using SWAT model. Eurasian J. Soil Sci. 2012, 1, 58–64.

51. Aouragh, M.H.; Essahlaoui, A. A TOPSIS approach-based morphometric analysis for sub-watersheds prioritization of high Oum
Er-Rbia basin, Morocco. Spat. Inf. Res. 2018, 26, 187–202. [CrossRef]

52. Rawat, K.S.; Tripathi, V.K.; Mishra, A.K. Sediment yield index mapping and prioritization of Madia subwatershed, Sagar District
of Madhya Pradesh (India). Arab. J. Geosci. 2014, 7, 3131–3145. [CrossRef]

53. Kundu, S.; Khare, D.; Mondal, A. Landuse change impact on sub-watersheds prioritization by analytical hierarchy process (AHP).
Ecol. Inform. 2017, 42, 100–113. [CrossRef]

54. Prasad, R.N.; Pani, P. Geo-hydrological analysis and sub watershed prioritization for flash flood risk using weighted sum model
and Snyder’s synthetic unit hydrograph. Model. Earth Syst. Environ. 2017, 3, 1491–1502. [CrossRef]

55. Ekness, P.; Randhir, T.O. Effect of climate and land cover changes on watershed runoff: A multivariate assessment for storm
water management. J. Geophys. Res. Biogeosci. 2015, 120, 1785–1796. [CrossRef]

241





Citation: Zhang, Y.; Yan, Q.

Landslide Susceptibility Prediction

Based on High-Trust Non-Landslide

Point Selection. ISPRS Int. J. Geo-Inf.

2022, 11, 398. https://doi.org/

10.3390/ijgi11070398

Academic Editors: Walter Chen,

Fuan Tsai and Wolfgang Kainz

Received: 2 June 2022

Accepted: 12 July 2022

Published: 13 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of

Geo-Information

Article

Landslide Susceptibility Prediction Based on High-Trust
Non-Landslide Point Selection

Yizhun Zhang 1 and Qisheng Yan 2,*

1 School of Earth Sciences, East China University of Technology, Nanchang 330013, China;
2020120017@ecut.edu.cn

2 School of Science, East China University of Technology, Nanchang 330013, China
* Correspondence: 199760023@ecut.edu.cn

Abstract: Landslide susceptibility prediction has the disadvantages of being challenging to apply to
expanding landslide samples and the low accuracy of a subjective random selection of non-landslide
samples. Taking Fu’an City, Fujian Province, as an example, a model based on a semi-supervised
framework using particle swarm optimization to optimize extreme learning machines (SS-PSO-ELM)
is proposed. Based on the landslide samples, a semi-supervised learning framework is constructed
through Density Peak Clustering (DPC), Frequency Ratio (FR), and Random Forest (RF) models
to expand and divide the landslide sample data. The landslide susceptibility was predicted using
high-trust sample data as the input variables of the data-driven model. The results show that the
area under the curve (AUC) valued at the SS-PSO-ELM model for landslide susceptibility prediction
is 0.893 and the root means square error (RMSE) is 0.370, which is better than ELM and PSO-ELM
models without the semi-supervised framework. It shows that the SS-PSO-ELM model is more
effective in landslide susceptibility. Thus, it provides a new research idea for predicting landslide
susceptibility.

Keywords: landslide susceptibility prediction; semi-supervised learning; clustering by fast search
and finding density peaks; random forest; extreme learning machine

1. Introduction

Landslide is a complex geological phenomenon, determined by how the rock mass
on the slope is affected by rainwater soaking and artificial factors and how it slides down
due to gravity. It is the most common geological disaster in the world [1]. Landslides
cause severe casualties and economic losses every year, seriously restricting the economic
development of some regions. In many areas, disasters have hindered the development
of cities and become a barrier to poverty alleviation in various countries [2,3]. Therefore,
how to effectively predict the susceptibility to landslides has become a hotspot in current
landslide research [4]. Drawing accurate landslide susceptibility maps can provide essential
guidance for early warning and prevention and provide a basis and suggestions for disaster
prevention and mitigation work.

Many scholars have researched landslide disasters, including susceptibility prediction,
disaster risk assessment, landslide mechanism analysis, and detection [5–9]. Landslide
susceptibility prediction comprehensively analyzes various geological and environmen-
tal factors, historical landslide data, and physical laws of landslides in the study area to
identify the probability of future landslides in the study area [10]. The principal meth-
ods of landslide susceptibility prediction are empirical models, statistical models, and
machine learning models. Lyu et al. [11] used the analytic hierarchy process to predict
the susceptibility to geological disasters and assess the disaster risk in Lanzhou. They
provided suggestions and a basis for disaster prevention work in Lanzhou. In a statistical
model, Khan et al. [12] used frequency ratio techniques to map landslide susceptibility
in the northern region of Pakistan. They drew a landslide susceptibility map based on
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the relationship between landslide inventories and landslide causative factors compiled
from visual interpretations of SPOT-5 images, providing a basis for relevant agencies to
formulate and implement landslide mitigation measures.

The development of machine learning, compared with previous empirical and sta-
tistical models, has a better nonlinear predictive ability in landslide susceptibility predic-
tion [13]. Nevertheless, from the current research results, almost all machine learning
methods for analyzing the potential risk of landslides rely heavily on inventory datasets
of the known spatial extent of landslides or the characteristic GPS location of each known
landslide in the target study area [14]. Therefore, landslide susceptibility prediction requires
more detailed and accurate maps and inventories [15]. Thus, evaluating the application of
different machine learning methods and deep learning convolutional neural networks in
landslide detection and susceptibility prediction has become an essential task for landslide
applications. For example, Ghorbanzadeh et al. used deep learning models to study land-
slide detection and the development and validation of methods for systematically updating
landslide lists [16]. Balogun et al. [17] used the gray wolf optimization algorithm, the bat
algorithm, and the cuckoo algorithm to jointly optimize the support vector machine regres-
sion model’s parameters, which improved the landslide susceptibility prediction accuracy
in western Serbia. Ivan et al. [18] employed a statistically calibrated Bayesian framework
and introduced an approximate likelihood formulation, leading to the improved prediction
accuracy of landslide susceptibility. Guo et al. [19] proposed a prediction model of back
propagation neural network based on wavelet analysis and a gray wolf optimization algo-
rithm. Taking China’s Three Gorges Reservoir area as an example, landslide displacement
was predicted, providing the basis for landslide warning. Zhang et al. [20] proposed a BP
neural network model optimized by a new water cycle algorithm. The model was used to
predict landslides in the Three Gorges Reservoir area. It has a faster convergence speed
and higher prediction accuracy than the traditional BPNN model. Benbouras used particle
swarm optimization (PSO), genetic algorithm (GA), and nine other hybrid meta-heuristic
algorithms to spatially predict landslide susceptibility in the Sahel region of Algeria. More-
over, it draws an accurate map to help land-use managers and policymakers mitigate
landslide hazards [21].

Although machine learning models have achieved a series of results in predicting
landslide susceptibility, there are still some deficiencies in the use of machine learning
models in landslide susceptibility prediction. For example, when using machine learning
models to predict landslide susceptibility. It is difficult to obtain landslide sample data in
the wild [22]. Moreover, the existing research is challenging to select valuable non-landslide
raster data [23]. In a previous study, non-landslide points were randomly selected in the
study area or based on expert experience. This decision can lead to bias and overfitting,
leading to immeasurable errors in data processing, resulting in reduced model prediction
accuracy [24]. This paper proposes an extreme learning machine model based on a semi-
supervised framework and uses the particle swarm optimization algorithm to optimize
the parameters of the extreme learning machine (SS-PSO-ELM). The model is used to
expand the landslide sample data and divide the high-trust non-landslide sample data,
which solves the shortcomings of the existing model and further improves the accuracy of
landslide sensitivity mapping.

The semi-supervised learning method divides the unlabeled sample data according
to the labeled sample data. The method’s core assumes that the unlabeled samples can
provide helpful feature space distribution information [25]. Using the clustering algorithm
to realize the pre-training and classification of data pseudo-labels can alleviate the difficulty
in obtaining accurate sample data to the greatest extent. Semi-supervised learning has been
widely used in sample data analysis and evaluation [26–28]. In landslide susceptibility
prediction and landslide detection, supervised learning frameworks, semi-supervised
learning frameworks, and unsupervised learning frameworks have also demonstrated their
superiority [29–31]. This paper selects Fu’an City, Fujian Province, China, as the research
area. The SS-PSO-ELM and the ELM and PSO-ELM models without a semi-supervised
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framework are used for comparative analysis to explore the semi-supervised learning
framework’s modeling effect.

2. Overview and Data of the Study Area

2.1. Study Area

The study area is Fu’an City, Fujian Province, China, located in the northeastern part
of Fujian province. As shown in Figure 1, between 119◦23′~119◦52′ E and 26◦41′~27◦24′ N,
the total area is 1880 km2. The study area is located near the ocean, the climate is warm
and humid, and the climate is a subtropical marine monsoon climate. The study area
contains three major mountain ranges: the southeast slope of the Jiufeng mountains, the
southwest Taimu mountains, and the Donggong mountains. The mountain trend is roughly
northeast-southwest, and the terrain is inclined to the south. The east and west are high,
and the middle is low-lying. The study area forms a north-south valley. The stratigraphic
Mesozoic in the study area has an extensive distribution range, and the Cenozoic and
Sinian sub-world are only exposed in small spaces. Landforms are divided into five types:
mountains, hills, valleys, plains, and beaches [32].

Figure 1. Geographical location and landslide location map of Fu’an.

2.2. Data Sources

The primary data sources are: (1) Field investigation and relevant landslide data
obtained by Fu’an Natural Resources Bureau; (2) From Geospatial Data Cloud (https:
//www.gscloud.cn/) (accessed date: 19 November 2021), 30 m resolution DEM data and
Landsat 8 remote sensing images to extract elevation, slope, NDVI, plane curvature, profile
curvature, river system distance, slope aspect, and other information, as shown in Figure 2;
(3) A 1:200,000 geological map to obtain the lithological data of the study area, as shown in
Figure 2h.
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Figure 2. Environmental factors of landslides in Fu’an. (a) Elevation map. (b) Plane curvature map.
(c) Profile curvature map. (d) Slope direction map. (e) Slope map. (f) NDVI map. (g) Water system
distance map. (h) Lithology map.

2.3. Environmental Factors

According to the geographical situation of Fu’an City, the existing landslide research,
and the introduction of relevant references, most of the landslides in Fu’an City are located
in relatively high terrain. Landslides are mainly distributed over the eastern and surround-
ing areas and more minor in the central and western regions. This paper extracts eight
landslide environmental factors: elevation, slope, NDVI, plane curvature, section curvature,
water system distance, slope aspect, and lithology.

3. Methods

The flow of the SS-PSO-ELM model proposed in this paper is shown in Figure 3:
(1) Landslide location information and environmental factor data in the study area are
obtained based on field surveys; (2) A semi-supervised learning framework is constructed
based on a density peak clustering algorithm, random forest model, and frequency ratio
method, and using a semi-supervised learning framework to convert landslide information
and environmental factor data from field surveys into high-trust non-landslide data and
landslide data; (3) High-trust data are weighted using a max-correlation min-redundancy
algorithm; (4) The weighted data are substituted onto the PSO-ELM model to predict
landslide susceptibility and draw a landslide susceptibility map; (5) Using ROC curve,
landslide susceptibility index, and root mean square error, the prediction accuracy of the
landslide is evaluated, to provide new research ideas and theoretical guidance for landslide
susceptibility prediction.
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Figure 3. Landslide susceptibility prediction modeling flowchart.

3.1. Density Peak Clustering Algorithm

The density peak clustering algorithm is a new clustering algorithm proposed by
Rodriguez in 2014 [33]. The algorithm has the advantages of the mean clustering method,
hierarchical clustering method, grid clustering algorithm, and density clustering algorithm,
which are fast and straightforward, and insensitive to noise, and overcomes the shortcom-
ings of the high computational complexity of the existing traditional clustering algorithms.
The density peak clustering algorithm defines new clustering metrics: Minimum Density
Distance and Local Density. The algorithm uses low-density areas to distinguish high-
density areas and can quickly and effectively identify cluster centers in many data. This is
suitable for data of any distribution type [34].

Let the local density be ρ, the minimum density distance be δ, the local density of the
data point xa be ρa, and the reach of data point xa to the nearest data point xb whose local
density is more significant than itself be δa.

The local density formula of the density peak clustering algorithm is:

ρa = ∑
a �=b

χ(dab − dc) (1)

The minimum density distance formula is:

δa = min
b:ρb>ρa

(dab) (2)

In the procedure, χ(•) is the logical judgment function, (•) < 0, χ(•) = 1, otherwise
χ(•) = 0, dab is the distance between xa and xb, and dc is the cut-off distance. Take δ as
the abscissa and ρ as the ordinate to get the clustering decision diagram of the density

247



ISPRS Int. J. Geo-Inf. 2022, 11, 398

peak clustering algorithm. Select several points of the relatively large distance between
local density and minimum density as cluster center points and remove noise points with
relatively low local density but rather large minimum density distance. Finally, the data
close to the cluster center are grouped into a cluster to complete the clustering.

3.2. Max-Correlation Min-Redundancy Algorithm

The maximum correlation minimum redundancy algorithm was first proposed by
Peng [35] to extract optimal eigenvalues. The algorithm’s core is to find the feature of
the most significant correlation between the dependent variable and the little correlation
between the independent variables in a part set to delete and simplify the feature set and
eliminate redundant variables.

The maximum correlation minimum redundancy algorithm calculates the correlation
and redundancy between features based on mutual information. Let the two variables be
X and Y. The mutual information formula is:

I(X; Y) =
∫ ∫

P(x, y) log
P(X, Y)

P(X)P(Y)
dXdY (3)

where P(X, Y) is the joint probability function of X and Y and P(X) and P(Y) are the prob-
ability density functions of X and Y, respectively. Mutual information can be understood
as the amount of data that contains the Y variable in the X variable.

The maximum correlation is defined as:⎧⎨
⎩

maxD(S, c)

D = 1
|s|

s
∑

i=1
I(xi; c) (4)

The minimum redundancy is defined as:⎧⎪⎨
⎪⎩

minR(S)

R = 1
|S|2

s−1
∑

i=1

s
∑

j=i+1
I(xi, xj)

(5)

where S is the feature set composed of factors, c is the target value, and I(Xi; c) is the
mutual information between the factor features and the target.

The feature selection criteria of the maximum correlation minimum redundancy
algorithm are:

Information subtraction: {
maxϕ(D, R)
ϕ(D, R) = D − R

(6)

Information entropy: {
maxϕ(D, R)
ϕ(D, R) = D/R

(7)

According to information entropy or information subtraction, the total score of correla-
tion and redundancy between factors is obtained. Then, factors are selected to be removed
based on the score or the weight of each factor is calculated.

3.3. Extreme Learning Machine

Huang [36] proposed the extreme learning machine, which improved the traditional
feedforward neural network’s slow learning speed, making it easy to fall into a local
minimum, making it easy to overtrain, and causing the generalization performance to
decline. Extreme Learning Machine is a machine learning based on a feedforward neural
network. The innovations include: (1) The connection weights and thresholds of the input
layer and the hidden layer can be set randomly; there is no need to adjust after setting,
reducing the amount of calculation. (2) The weight between the hidden layer and the
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output layer does not need to be iteratively adjusted and is converted into a method for
solving the equation system.

The calculation process of extreme learning machine can be expressed as:

fL(x) =
L

∑
i=1

βig(wi ∗ xj + bj), j = 1, . . . , N (8)

where L is the number of hidden units, βi is the weight vector between the ith hidden layer
and the output layer, g is the activation function, b is the bias vector, wi is the weight vector
between the input layer and the hidden layer, and N is the number of training samples.

T = H · β (9)

Formula (8) can be transformed into Formula (9), where H is the output matrix of the
hidden layer, β is the output weight, and T is the output result. Once the input weight
wi and the paranoid vector b are randomly determined, the output matrix H is uniquely
determined, and the output weight β can be determined.

β̂ = H†T (10)

In Formula (10), H† is the Moore-Penrose generalized matrix of H.

Y = H′ β̂ (11)

Substitute the test set into Formula (10) to calculate the hidden layer output matrix H′ ,
and obtain the test set result.

3.4. Random Forest

Breiman first proposed random forest [37]. Random forest is based on a decision tree
model. A more stable model is obtained by fusion of multiple decision trees, combining
a random selection of features and integration ideas. The model randomly selects com-
ponents and samples, so each tree has differences and similarities. Each tree predicts the
pieces and obtains the final decision through voting [3].

3.5. Particle Swarm Optimization Algorithm

Particle swarm optimization is an evolutionary algorithm that imitates the foraging
behavior of birds, first proposed by Kennedy and Eberhart [38,39]. Particle swarm opti-
mization has the advantages of fast convergence speed and high optimization performance.
Moreover, it will not fall into a local optimum.

The core of particle swarm optimization is that in the D-dimensional particle search
space, there are n particles. All particles have a fitness value determined by the optimized
function. Each particle’s vector velocity determines the distance and direction they fly.
The particles will follow the current optimal particle to search in the space, and finally, all
converge to the vicinity of the optimal value [40].

3.6. Uncertainty Analysis Method
3.6.1. ROC Curve Precision Analysis

The ROC curve is drawn by taking the valid positive rate (sensitivity) as the ordinate
and the false positive rate (1-specificity) as the abscissa. The closer the curve is to the upper
left corner, the higher the accuracy, and the larger the area under the ROC curve, the better
the effect. The ROC curve indicator is defined as:

Sensitivity:

SST =
TP

TP + FN
(12)
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Specificity:

SPF =
TN

TN + FP
(13)

From the sample results, the data can be divided into two categories. For example, in
this paper, the positive data are the sample data of landslides, and the negative data are
the non-landslide sample data. (1) TP: Positive data predict the correct number. (2) TN:
Negative data predict the correct number. (3) FP: Number of positive data prediction errors.
(4) FN: Number of negative data prediction errors. (5) SST: The proportion of positive
samples that are correctly classified. (6) SPF: The proportion of negative samples that are
correctly classified.

3.6.2. Frequency Ratio

The frequency ratio reflects the distribution of factors of the class and can well explain
the intrinsic relationship between factors and classes [41]. The formula for calculating the
frequency ratio is:

FR =
Nj/N
Sj/S

(14)

where Nj is the number of landslide grids in a cluster, N is the number of landslide grids in
all groups, Sj is the number of units in the bunch, and S is the total number of grids shared
by all clusters.

3.6.3. Root Mean Square Error Analysis

The root mean square error is the square root of the square ratio of the deviation from
the observed value and the actual value and the number of observations n. RMSE is very
sensitive to the large and small errors of measurement data, so RMSE can well reflect the
accuracy of the measurement. The mathematical formula for the root mean square error is:

RMSE =

√
1
n

n

∑
i=1

(ŷi − yi)2 (15)

where ŷi is the actual value, yi is the predicted value, and n is the number of observations.

4. Modeling of Landslide Susceptibility Assessment in Fu’an

4.1. Semi-Supervised Learning Framework Construction

Before making a landslide susceptibility prediction, high-trust non-landslide points
were selected and high-trust landslide points were expanded to compensate for the lack
of landslide data and the uncertainty caused by the random selection of non-landslide
problems.

The flowchart of the semi-supervised learning framework is shown in Figure 4: (1) The
data of the study area were organized into raster data. A total of 2,191,350 grid cells were
obtained in the study area, with randomly selected 622 raster cell data from which landslide
data and non-landslide data are 1:1, and the 622 data are clustered by the density peak
clustering algorithm, as shown in Figure 5. Figure 5a is the cluster center selection diagram,
the abscissa is the density of data points, and the ordinate is the distance from the point
to the nearest higher density point. The density peak clustering algorithm selects a point
with a higher density and no higher density nearby as the cluster center point. Therefore,
according to Figure 5a, 489, 324, 367, 455, and 388 were selected as the cluster center points.
Figure 5b shows that the remaining points are divided according to the five cluster center
points. All the data are divided into five categories, and the cross symbols indicate the
positions of the five cluster centers. (2) The categories calculated by the clustering algorithm
were analyzed according to the frequency ratio method, and category a, with the most
landslide data, and category b, with the most non-landslide data, were selected. The
optimal condition is that both the proportion of landslide data in a and the ratio of non-
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landslide data in b exceed 0.7 (according to the existing research foundation and multiple
experiments, it has been proved that 0.7 is the best threshold for experimental results; less
than 0.7 is not ideal, and data with a threshold over 0.7 are prone to local redundancy).
Otherwise, repeat step 1. The meaning of this step is to select two types of data from
the five types of data, one of which has a landslide ratio higher than 0.7 and the other
type of data whose non-landslide percentage is higher than 0.7. According to the density
peak clustering algorithm, the same kind of data approximates in space if the proportion
of landslide or non-landslide in a data class is the majority. It can be demonstrated that
landslides or non-landslides in such data may be a standard feature. (3) The high-trust
clustering data is used as training data on the random forest. Predict existing high-trust
clustered data (the data for the first loop is itself). Assign prediction results to pseudo
labels. In this step, the cluster data obtained in the above steps are added to the training
data of the random forest model, and then the data are predicted and classified. Suppose
the label of the predicted class is the same as the label of the previous step. The credibility
of this piece of data will increase. (4) Add frequency labels. When the pseudo-labels and
clustering labels are the same, the frequency label is increased by one. When the number
of program loops gradually increases, the training data of the random forest will also
gradually increase, which will cause the prediction results of the random forest model to
fluctuate. As the number of loops increases, the larger the value of the frequency label, the
more it can be proved that when the training data increase, the data have little effect on it.
It is proved that the landslides (non-landslides) in the data have more in common with the
data of multiple cluster classifications, indicating that the cluster labels of the data are more
credible. (5) Determine whether the value of the frequency label reaches the threshold set
by the end condition (when the frequency label value of a certain piece of data reaches 10,
select all data with a frequency label greater than seven as high-confidence data). If not,
return to step 1. Change the raster data selection method selected in step 1. A random
selection of 622 cell data from all raster cells, regardless of the proportion of landslide and
non-landslide data. Moreover, the data were compared with existing high-confidence data
to remove redundant data.

The final high-trust data obtained are shown in Table 1. The more matching values,
the higher the reliability of the data, and the smaller the number of matching values, which
proves that the data fluctuate wildly and cannot be accepted as high-trust data.

Figure 6 shows the high-trust non-landslide points distribution in the study area. It
can be seen from Figure 6a that a large part of the high-trust non-landslide point data are
on the water surface. Figure 6b shows that most high-trust non-landslide point data are
distributed over low-altitude areas, proving that it is advisable to adopt a semi-supervised
framework to select high-trust non-landslide points.

Table 1. Highly trusted data (excerpt).

Grid Cell
Number

Elevation (m)
Slope

Direction
(◦)

Slope (◦)
Distance

from Water
System (m)

Cluster Labels
Match
Count

1,994,470 0 −1.00 0.00 0 No landslide 10
392,364 93 343.98 25.87 100 No landslide 10

1,160,375 30 282.52 4.27 200 No landslide 6
1,161,694 37 67.28 20.70 100 No landslide 5
153,813 478 109.13 11.87 500 Landslide 10
888,368 429 135.66 44.76 300 Landslide 10

1,784,541 271 203.08 28.26 100 Landslide 5

251



ISPRS Int. J. Geo-Inf. 2022, 11, 398

 

Figure 4. Flowchart of the semi-supervised learning framework.

(a) (b) 

Figure 5. Flowchart of the semi-supervised learning framework. (a) Cluster center distribution map.
(b) Cluster distribution map.
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(a) (b) 

Figure 6. High-trust non-landslide location map. (a) High-trust non-landslide satellite imagery.
(b) High-trust non-landslide elevation map.

4.2. Weight Determination Analysis

Based on the high-trust data obtained above, the maximum correlation minimum
redundancy algorithm is used to calculate the weight of the landslide environmental
factors. The mutual information on each environmental element and the landslide is shown
in Figure 7, and the weights of environmental factors are shown in Figure 8. Mutual
information represents the amount of information one random variable contains in another.
Therefore, the higher the mutual information, the closer the relationship between the two
variables. Figure 7 shows the mutual information between various environmental factors.
It can be seen from the mutual information between each environmental element and
landslide in Figure 7 that the mutual information between the slope aspect and landslide
is the largest, with a value of 0.86. However, in the final weights shown in Figure 8, the
influence of the slope direction on the landslide is ranked second. The slope direction and
landslide have high mutual information, and the slope direction and other environmental
factors also have high mutual information. Therefore, when the slope direction is used
as the input for landslide prediction, if the weight of the slope direction is too high, it
will lead to more redundancy and more significant prediction errors. Therefore, in the
final weights calculated by the maximum correlation minimum redundancy algorithm,
the weight of the slope direction is less than the weight of the elevation. This proves that
it is feasible to calculate the importance of the landslide factor based on the maximum
correlation minimum redundancy algorithm.
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Figure 7. Environmental factor mutual information.

Figure 8. Environmental factor weight.

4.3. PSO-ELM Prediction Model

The model flow of the extreme learning machine optimized by the particle swarm
optimization algorithm is shown in Figure 9: (1) To posit the velocity of the random
particle swarm; (2) To evaluate the fitness value of all particles to get the optimal global
position; (3) To update the velocity and position of each particle; (4) To evaluate the optimal
fitness value of each particle of the previous iteration process, compare it with its own

254



ISPRS Int. J. Geo-Inf. 2022, 11, 398

historical optimal fitness value, and select a better one; (5) To update the optimal global
position—each particle moves towards the optimal global position and its optimal historical
position; (6) To predict landslide susceptibility by assigning optimal parameters to an
extreme learning machine.

 

Figure 9. PSO-ELM flowchart.

4.4. Landslide Susceptibility Mapping

The landslide susceptibility mapping of the study area is shown in Figure 10. The
natural discontinuity method divides landslide susceptibility into five zones: very low, low,
medium, high, and very high. Figure 10 indicates that:

(1) The landslide points in the figure are landslide high-trust points expanded by the
semi-supervised learning framework. Because the original landslide point may be
accidental, it may be difficult for subsequent landslides to occur in this area over time.
Therefore, this paper uses the expanded landslide high-confidence points to test the
landslide susceptibility mapping.

(2) The results of the four models, SS-PSO-ELM, SS-ELM, PSO-ELM, and ELM, are shown
in the figure. The high-trust landslide points all fall in the high-risk and very high-risk
areas, proving that the four models can effectively predict landslides. However, in the
PSO-ELM model and the ELM model, the high-risk and very high-risk areas account
for a large proportion of the entire study area, which is inconsistent with reality. The
SS-PSO-ELM model and the SS-ELM model are more realistic.

(3) In the northwest corner of the study area, the SS-PSO-ELM model and the SS-ELM
model predicted a very high-risk area. The prediction results in the PSO-ELM and
ELM models are low-risk and very low-risk areas. After data inspection and analysis,
the reason is that the non-landslide points of the model without the semi-supervised
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learning framework are randomly selected in the study area. However, randomly
selected points within the study area do not guarantee that they are credible non-
landslide points. As shown in this case, the area that was initially a high risk of the
landslide was used as a sample to enter the training data into non-landslide points,
resulting in a large discrepancy between the results and the actual results.

  

 

Figure 10. Landslide susceptibility map.

5. Modeling Uncertainty Analysis

5.1. ROC Accuracy Evaluation

As shown in Figure 11, the model’s prediction accuracy is evaluated by the AUC area
under the ROC curve. The AUCs of SS-PSO-ELM, SS-ELM, PSO-ELM, and ELM was 0.893,
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0.867, 0.788, and 0.710, respectively. From the image, SS-PSO-ELM and SS-ELM have better
prediction performance of landslide susceptibility. However, the curve of the SS-ELM
model rises slowly in the later stage, and the prediction performance fluctuates wildly.
Furthermore, this proves that the extreme learning machine model optimized by particle
swarm optimization algorithm has higher accuracy and stability in landslide susceptibility
prediction. The AUC accuracy of the SS-PSO-ELM model is 0.105 more increased than that
of the PSO-ELM model without the semi-supervised learning framework. This shows that
using a semi-supervised learning framework to screen non-landslide high-trust points can
significantly improve the performance of landslide susceptibility prediction.

Figure 11. ROC accuracy plot.

5.2. Susceptibility Index Distribution

The distribution of the susceptibility index can visually observe the number of indi-
viduals in the specific susceptibility index interval in the study area. In practice, the range
of landslide sites is much smaller than that of non-landslide sites. Therefore, we will focus
on the very high-risk and very low-risk areas’ scale when judging the model’s performance
in landslide susceptibility prediction. The larger the scale of the two areas, the better the
model’s ability to identify landslides. Therefore, the distribution of the susceptibility index
can intuitively see the proportion of each risk area of the model and can more intuitively
reflect the predictive performance of the model.

Figure 12 shows the susceptibility index distribution, showing the amount included in
each landslide probability interval. The mean and standard deviation is shown in Figure 12
can better reflect the prediction level of the four models and the dispersion degree of the
predicted landslide data. Figure 13 demonstrates the proportion of each landslide-prone
zone in the study area. Both figures can show the stability of the model for landslide
prediction and judge whether the model prediction is in line with the actual situation.

257



ISPRS Int. J. Geo-Inf. 2022, 11, 398

Figure 12. Distribution map of landslide susceptibility index.
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Figure 13. Model classification ratio chart.

(1) The landslide risk areas of the SS-PSO-ELM model and the SS-ELM model are con-
centrated in low-risk and very low-risk areas and less in high-risk and very high-risk
areas. The overall trend of landslide susceptibility is that the area from low risk to
high risk gradually decreases, which is more in line with reality.

(2) The mean value of landslide occurrence probability of SS-PSO-ELM and SS-ELM
models is smaller than that of the PSO-ELM model and ELM model. It is proved that
the semi-supervised learning framework’s prediction of landslide susceptibility is in
line with reality, and the extremely low-susceptibility and low-susceptibility areas of
landslides are the mainstream in the study area.

(3) In Figure 12, the standard deviations of the four models are compared from large to
small, namely SS-PSO-ELM, SS-ELM, PSO-ELM, and ELM. The SS-PSO-ELM standard
deviation is the largest, proving that the SS-PSO-ELM model can distinguish and
identify landslides and better reflect the differences in landslide susceptibility to the
study area. However, since the PSO-ELM and ELM models do not use high-trust
non-landslide points as training data, the probability of landslides in most places
is concentrated between 0.4 and 0.6, and there is no good ability to discriminate
landslides. Furthermore, most of the predicted areas are in the high-risk prone regions
to landslides, which is inconsistent with the actual situation.

5.3. Model Evaluation

The evaluation indexes of each model are shown in Table 2. The RMSE of the particle
swarm optimized SS-PSO-ELM model is smaller than that of the PSO-ELM model. Fur-
thermore, the small model volatility indicates that the extreme learning machine model
optimized by the particle swarm optimization algorithm has significantly improved the
landslide susceptibility prediction performance. The AUC values of the SS-PSO-ELM
model and the SS-ELM model are higher than those of the PSO-ELM model and the ELM
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model, proving that the semi-supervised learning framework can significantly improve the
performance of the model. Figures 12 and 13 and Table 2 indicate that SS-PSO-ELM has a
higher performance in predicting landslide susceptibility, which is more in line with reality.

Table 2. Model evaluation metrics.

Model Mean Standard Deviation AUC RMSE

SS-PSO-ELM 0.452 0.126 0.893 0.370
SS-ELM 0.358 0.100 0.867 0.438

PSO-ELM 0.514 0.050 0.788 0.417
ELM 0.471 0.042 0.710 0.442

6. Conclusions

This paper takes Fu’an City, Fujian Province, as the research object and selects eight
environmental factors: elevation, slope, NDVI, plane curvature, section curvature, water
system distance, slope aspect, and lithology. A model evaluating landslide susceptibility
is established with semi-supervised learning as the framework and the extreme learning
machine of particle swarm optimization as the driving model. A comparative analysis was
conducted with SS-ELM, PSO-ELM, and ELM as contrast models.

The SS-PSO-ELM model has the highest AUC accuracy, indicating that the model has
the best performance in landslide susceptibility prediction. The mean value of SS-PSO-ELM
is small, which is in line with the actual situation because the landslide area in the study
area is much smaller than the non-landslide area. The standard deviation of SS-PSO-ELM
is the largest, which proves that the landslide probability values of landslide sites are
higher, the landslide probability values of non-landslide sites are lower, and they have
better landslide identification ability. In addition, the RMSE of the SS-PSO-ELM model is
the smallest, proving that the model is less volatile in landslide susceptibility prediction.

The high-trust landslide points and high-trust non-landslide points selected accord-
ing to the semi-supervised learning framework can effectively improve the accuracy of
landslide susceptibility prediction by the data-driven model. High-trust landslide points
can delete occasional landslide points, avoiding the problem of many high-risk and very
high-risk areas when data-driven models predict landslide susceptibility, which is more in
line with this reality.

Because the purpose of the clustering algorithm is to cluster similar data together, it
may lead to overfitting of the high-trust non-landslide data, and the selected high-trust
non-landslide data may belong to an approximate area or a geographically similar area. In
the next step, the research area can be divided into several areas to ensure that the number
of grid cells in each area can meet the highest performance of the clustering algorithm and
the diversity of data. The landslide sensitivity of the prediction accuracy can be further
improved, and the drawing is more reasonable.
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Abstract: The 1999 Chichi earthquake and Typhoon Morakot in 2009 caused two serious landslide
events in the Chishan river watershed in southern Taiwan. In this study, certainty factor analysis was
used to evaluate the effectiveness of landslide occurrence, and spatiotemporal hotspot analysis was
used to explain the pattern and distribution of landslide hotspots. The Z-values from the Getis–Ord
formula were used to assess the clustering strength of landslide evolution on different scales and
with different landslide sizes in different time periods. The landslide-prone area had an elevation
of 1000–1750 m, a slope of >40◦, and hillslopes with N, NE, E, and SE aspects and was within
100 m of rivers. The main spatiotemporal hotspot patterns of landslide evolution during 1999–2017
were oscillating hotspots, intensifying hotspots, and persistent hotspots, and the three main hotspot
patterns occupied 80.1–89.4% of all hotspot areas. The main spatiotemporal landslide hotspots were
concentrated in the core landslide areas and the downslopes of riverbank landslide areas, especially
in the upstream subwatersheds. The landslide clustered strength in the upstream watershed was
3.4 times larger than that in the Chishan river watershed, and that in large landslides was 2.4 and
6.6 times larger than those in medium and small landslides, respectively.

Keywords: landslide evolution; landslide recovery; spatiotemporal hotspot; certainty factor analysis

1. Introduction

Extreme rainfall and large earthquake events have caused severe landslides in several
countries; examples of such events include the 1999 Chichi earthquake in Taiwan [1], the
2005 Kashmir earthquake in Pakistan [2,3], the 2008 Wenchuan earthquake in China [4–6],
Typhoon Morakot in 2009 in Taiwan [7,8], the 2015 Gorkha earthquake in Nepal [9], and
the 2017 Jiuzhaigou earthquake in China [10]. Consequently, the areas affected by such
events have become fragile and susceptible to landslides in subsequent years. The landslide
susceptibility of mountainous areas after extreme rainfall or large earthquakes changes
with time and space. Watersheds that experience numerous earthquake- or extreme-rainfall-
induced landslides usually require more than 10 years to recover from such landslides.
Moreover, sediment generated by continuous landslides in fragile watersheds is transported
to rivers and dominates the subsequent geomorphologic evolution of these rivers. The
unstable sediment yield from numerous landslides induced by large earthquake or extreme
rainfall events in mountainous regions can cause further sediment disasters in the following
years [7,8,11].

Research on post-extreme rainfall and postearthquake landslide evolution is essential
for disaster prevention and reduction [4–8]. Accordingly, the spatiotemporal characteristics
of landslide evolution and the dominant factors affecting it must be determined to ensure
effective watershed management in the years after severe landslide events. Several studies
have analyzed the relationship between geomorphological factors—including elevation,
slope, aspect, and distance to river—and annual landslide distributions in subsequent years
to determine the dominant factors influencing landslide evolution [4,5] and determine
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the sensitivity of geomorphological factors affecting landslide occurrence [6]. Because of
numerous landslide distributed in the mountainous regions, the thresholds of rainfall for
triggering the debris flows in southern Taiwan sharply decreased [7,8]. Furthermore, the
distribution and concentration of landslides in the years that follow extreme-rainfall- and
large-earthquake-induced landslide events must be compared. Some spatial differences
in the distribution of landslide evolution before and after large-earthquake- and extreme-
rainfall-induced landslide events have been found [4,7,8]. In the years that follow large
earthquake-induced landslide events, the subsequent landslides that occur are typically
concentrated in areas with elevations of <2000 m, slopes of 30–50◦, aspects identical to the
thrust directions of earthquake-induced faults, and slope toes located near rivers [2,4,6].
Nevertheless, few studies have discussed the distribution and concentration of landslides in
the years following extreme-rainfall-induced landslide events [12,13]. Landslide recovery
time after large earthquake and extreme rainfall events is a key factor for watershed
management and has been assessed by several methods. The landslide recovery time was
estimated as 2 years by assessing the landslide activity after the 2005 Kashimir earthquake
in northern Pakistan [2]; 3–4 years by observing the number and area of annual landslides
after the 2008 Wenchuan earthquake in Sichuan, China [5,14]; and 5 years by assessing the
ratios of the annual decline in landslide area after Typhoon Morakot in 2009 in southern
Taiwan [7,8].

The emerging hotspot analysis technique for spatiotemporal analysis has been used
by several scholars to investigate the transmission of the COVID-19 virus [15–17], explore
temporal changes in the volume of capture fisheries [18], investigate the distribution of
traffic accidents [19,20], track pollutant emissions [21], and analyze the relationship between
urban growth and urban fire [22]. Moreover, this new technique has been used to explain
the patterns and characteristics of the long-term landslide evolution after extreme-rainfall-
induced landslide events in Taiwan [12,13]. Spatiotemporal analysis has been used to
explore the spatiotemporal distribution of landslide hotspots [12] and analyze differences
in landslide spatiotemporal distribution based on different bin sizes [13] in the landslide-
prone watersheds in southern Taiwan. The traditional hotspot analysis approach considers
the spatial distribution and clustering of landslides by using a specific time database; by
contrast, the emerging hotspot analysis technique can consider the spatial distribution and
clustering of landslides by using multiple time databases. The new technique can provide
spatiotemporal plots of landslide hotspots, which can be used to explain changes in the
spatial patterns and distributions of landslides over time. Accordingly, the spatiotemporal
distribution of landslide clustering can be used to explain landslide recovery and watershed
evolution in the years that follow severe landslide events.

Southwestern Taiwan experienced substantial rainfall during Typhoon Morakot in
2009. Consequently, severe landslides, including the well-known Xiaolin landslide, oc-
curred in the Chishan river watershed [7,8]. The sediment yield induced by this typhoon
in the Chishan river watershed was estimated to exceed 108 m3 [23]. Therefore, this study
investigated the effect of the typhoon-induced sediment yield on watershed evolution in
the years that followed Typhoon Morakot. The spatial and temporal changes in landslide
clustering intensity in the landslide-prone watershed have never been discussed. This study
focused on explaining the spatial and temporal changes in landslide clustering intensity in
the landslide-prone watershed in Taiwan by using spatiotemporal analysis and the Z-score
of the Getis–Ord formula. The study also compared the landslide recovery after the 1999
Chichi earthquake (ML = 7.2) with that after Typhoon Morakot in 2009 in the Chishan
river watershed to determine the differences between and characteristics of the recovery
processes after earthquake- and rainfall-induced landslides. The long-term observation of
the evolution of landslides in the Chishan river watershed could provide valuable insights
for understanding landslide recovery and evolution in southern Taiwan.
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2. Research Area

The study area was the Chishan river watershed in southwestern Taiwan and covered
an area of 612.8 km2 (Figure 1). The elevation in the study area ranged from 40 to 3950 m
above sea level, and the area with elevation <1000 m occupied 51.9% of the study area. The
slope in the study area ranged from 0 to 85◦, and more than 79.3% of the total study area had
a slope <40◦. Around 88.2% of the study area was covered by natural forest and agriculture.
The Chishan river was the main river in the study area, and its average discharge was
30.1 m3/day. The study area was surrounded by 11 faults (Figure 2), including 2 faults
passing through the C10 watershed (Figure 1) and 9 faults passing through the C01 to
C06 subwatersheds (Figure 1). The lithology in the study area was characterized by
sandstone, shale, clay, slate, and interlayered sandstone and shale from the mid-Miocene
to the Holocene. The weak geological formations in the study area lead to poor lithologic
resistance to landslides and erosion, and the decadal erosion rate was estimated to be
around 30 mm/year [24]. The mean suspended-sediment concentration measured at the
Shanlin bridge in the downstream of the Chishan river watershed was 696 ppm, and the
annual sediment yield was estimated to be around 1.06 Mt/year [24].

Figure 1. The distributions of elevation, rivers (main plot), and subwatersheds (left-down plot) in the
Chishan river watershed.
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Figure 2. The geological settings in the Chishan river watershed.

The average annual rainfall at the Jiasian (low altitude, Figure 1) and Singaokou
rainfall stations (high altitude, Figure 1) was around 2845 mm in 1951–2020 and 2908 mm
in 1983–2020. The accumulated rainfall in the rainy season (from May to October) occupied
>80% of the annual rainfall in the Chishan river watershed [18], and the heavy rainfall
and typhoon events from June to September were the main reasons why. The Chishan
river watershed is prone to natural disasters (e.g., floods, soil erosion, landslides, and
debris flow). The two main geohazards in the Chishan river watershed are landslides and
debris flow, and the main landslide-trigger event in 1999–2017 was Typhoon Morakot in
2009. Typhoon Morakot dumped record-breaking rainfall, over 2000 mm in 4 days, and
caused very serious landslide disaster events in the Chishan river watershed [7]. As of 2021,
the ratio and severity of extreme-rainfall-triggered landsliding from Typhoon Morakot in
southern Taiwan were historical highs. Based on the rainfall record of the Jiasian rainfall
station, the accumulated rainfall during Typhoon Morakot was 2142 mm, 72.3% of the
annual rainfall in 2009. During Typhoon Morakot, there was 31.5 km2 of landslide area,
including 3.8 km2 and 12.3 km2 located in the upslope and downslope, respectively, in the
Chishan river watershed, and the landslide ratio was estimated to be larger than 7.0% [7].
There were also 39 potential debris flow torrents in the Chishan river watershed in 2021.

3. Materials and Methods

3.1. Materials

This study selected the Jiasian and Singaokou rainfall stations (Figure 1) as the repre-
sentative stations in the Chishan river watershed. The study used rainfall records collected
at these two stations for the 1999–2017 period to analyze rainfall characteristics in the study
area. The Central Geological Survey and Forestry Bureau of Taiwan provided annual land-
slide inventories during 1999–2017 in the Chishan river watershed. From these inventories,
landslides that occurred during 1999–2002 were identified from SPOT 1 and 2 images with
spatial resolutions of 10 m, and those that occurred during 2003–2017 were identified from
Formosat-2 images with spatial resolutions of 2 m. The annual landslide inventories during
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1999–2002 in Taiwan were produced by using supervised classification to delineate the
landslide polygons, and those during 2003–2017 were produced by using the Formosat-2
automatic image processing system [25] and the Expert Landslide and Shaded Area Delin-
eation System (ELSADS) [26] to delineate the landslide polygons. The Formosat-2 imagery
during 2003–2017 was preprocessed by using the Formosat-2 automatic image processing
system [25]. The Formosat-2 automatic image processing system was able to conduct
band-to-band coregistration [25], automatic orthorectification [26], and multitemporal im-
age geometrical registration [27], and it was the main system for producing the annual
landslide inventories during 2003–2017 in Taiwan. The Expert Landslide and Shaded Area
Delineation System (ELSADS) was used to delineate the polygons of landslides [28]. The
landslide distribution maps during 1999–2017 and the landslide susceptibility maps after
Typhoon Morakot in 2009 [23] are shown in Figure 3. The landslide cases were classified
into three types for further analysis: large (area > 100,000 m2), medium (area = 10,000–
100,000 m2), and small (area < 10,000 m2) landslides. The study used a digital elevation
model (DEM) with a spatial resolution of 5 m; moreover, a 5 m × 5 m grid was used as the
unit of analysis. The study area was classified into 10 subwatersheds (C01–C10, as shown
in Figure 1, lower left panel) on the basis of the delineation of subwatersheds in Taiwan.

 
Figure 3. The landslide distribution during 1999–2017 (right figures) and the landslide susceptibility
map (left figure) in the Chishan river watershed.

3.2. Certainty Factor Analyies

A certainty factor analysis and an effectiveness index were used to evaluate the
effectiveness of factors on landslide occurrence in the study area. The certainty factor [29,30]
can be used to analyze the effectiveness of different factors on the occurrence of events. This
study used a certainty factor to identify the main factors influencing landslide occurrence
and evolution after the 2008 Wenchuan earthquake in China [6,31]. The present study
adapted the following certainty factor [32] for analysis:

CF =
Pa − PS

Pa × (1 − Ps)
if Pa ≥ Ps;

Pa − PS
PS × (1 − Pa)

if Pa < PS (1)

where CF denotes the certainty factor, Pa denotes the ratio of the landslide area within a
subcategory of a factor category to the landslide area in the factor category, and PS denotes
the ratio of the landslide area to the watershed area. The certainty factor value ranges from
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−1 to 1, with positive and negative values indicating increasing and decreasing certainty
of landslide occurrence.

This study also used an effectiveness index (E) to compare the effectiveness of various
factors on landslide occurrence. The effectiveness index (E) can be defined as the difference
between the maximum and minimum values of the certainty factor and can be used to
quantify the influence of each factor on landslide occurrence and evolution.

3.3. Local Outlier Analysis

The study used the Anselin local Moran’s I index [33] to analyze the clusters and
outliers of landslide evolution in the Chishan river watershed. The Anselin local Moran’s
I index was used to identify local clusters and outliers of landslide in the space and time
dimensions. Six kinds of patterns were defined: high–high cluster (HH), only high–low
outlier (HL), only low–high outlier (LH), only low–low cluster (LL), multiple types (Mul.),
and never significant (NS) based on the results of Anselin local Moran’s I index. The low–
low (LL) pattern revealed the bins that, along with their neighborhoods, had low landslide
ratios or obvious landslide outliers, while the high–high (HH) pattern revealed the bins that,
along with their neighborhoods, had high landslide ratios or obvious landslide clusters.

3.4. Spatiotemporal Hotspot Analysis

This study mainly used the Getis–Ord formula [34] and the emerging hotspot analysis
technique to analyze the spatiotemporal trends of landslide evolution in the Chishan river
watershed. The annual landslide inventories for the Chishan river watershed during
1999–2017 were used to establish a space–time cube model. Moreover, the annual landslide
inventories during 1999–2008 were used to establish a space–time cube model to analyze
the long-term evolution of landslides induced by the 1999 Chichi earthquake; this model
comprised 797,912 bins. The annual landslide inventories during 2008–2017 were used to
establish a space–time cube model to analyze the long-term evolution of landslides induced
by Typhoon Morakot in 2009; this model comprised 1,946,705 bins. In each of these models,
a bin represented a 5 m × 5 m grid that had been identified as landslide during 1999–2017.
The x- and y-axes in the space–time cube model represented the longitude and latitude
coordinate information of the bins, and the z-axis represented the years in which the bins
were identified as being affected by landslides.

The Getis–Ord formula was used to explain the distribution of landslide clustering
intensity and statistical significance, and the emerging hotspot analysis technique was used
to analyze the spatiotemporal distribution and pattern of landslide hotspots. A Z-score was
derived using the Getis–Ord formula; this measure indicated the strength and statistical
significance of landslide clustering hotspots and cold spots (Table 1).

Table 1. Classification and statistical significance of hotspot and cold spots based on Z-scores.

Z-Score Hotspot or Cold Spot Confidence Level

>2.58 Hotspot 99% confidence level
1.96–2.58 Hotspot 95% confidence level
1.65–1.96 Hotspot 90% confidence level
−1.65–1.65 No statistical significance
−1.96–−1.65 Cold spot 90% confidence level
−2.58–−1.96 Cold spot 95% confidence level

<−2.58 Cold spot 99% confidence level

The emerging hotspot analysis technique, available as a tool in the space–time pattern
mining module of the Arc Pro software suite, was used to evaluate temporal evolution
trends and characterize landslide clustering patterns. The spatial and temporal bins were
set to 5 m × 5 m and 1 year, respectively, and the spatial and temporal search radii were
set to 25 m and 5 years, respectively. The derived landslide clustering patterns were
classified into 17 categories: 8 hotspot patterns, 8 cold spot patterns, and no pattern. The
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8 hotspot and cold spot patterns were denoted as consecutive, diminishing, historical,
intensifying, new, oscillating, persistent, and sporadic hotspots or cold spots, depending
on the number of times the landslide bins were identified, the increases and decreases in
landslide clustering intensity, and statistical significance (Table 2).

Table 2. The definition of spatiotemporal hotspot patterns by emerging hotspot analysis.

Pattern Abbr. 1 Definition

No pattern detected — A bin that did not fall into any of the hotspot or cold spot patterns
defined below.

New hotspot (cold spot) NHS (NCS)
A bin that was a statistically significant hotspot (cold spot) for the
final year and had never been a statistically significant hotspot
(cold spot) before.

Consecutive hotspot (cold spot) CHS (CCS)

A bin with a single, uninterrupted run of statistically significant
hotspot (cold spot) bins in the final year. The bin had never been a
statistically significant hotspot (cold spot) prior to the final hotspot
(cold spot) run, and less than 90% of all bins were statistically
significant hotspots (cold spots).

Intensifying hotspot (cold spot) IHS (ICS)

A bin that was a statistically significant hotspot (cold spot) for 90%
of the year intervals, including the final year. In addition, the
intensity of clustering of high counts in each year was increasing
overall, and that increase was statistically significant.

Persistent hotspot (cold spot) PHS (PCS)
A bin that was a statistically significant hotspot (cold spot) for 90%
of the year intervals with no discernible trend indicating an
increase or decrease in the intensity of clustering over time.

Diminishing hotspot (cold spot) DHS (DCS)

A bin that was a statistically significant hotspot (cold spot) for 90%
of the year intervals, including the final year. In addition, the
intensity of clustering in each year was decreasing overall, and that
decrease was statistically significant.

Sporadic hotspot (cold spot) SHS (SCS)

A bin that was an on-again then off-again hot spot. Less than 90%
of the year intervals were statistically significant hotspots (cold
spot), and none of the year intervals were statistically significant
cold spots (hotspots).

Oscillating hotspot (cold spot) OHS (OCS)

A statistically significant hotspot (cold spot) for the final year that
had a history of also being a statistically significant cold spot
(hotspot) during a prior year. Less than 90% of the time-step
intervals were statistically significant hotspots (cold spots).

Historical hotspot (cold spot) HHS (HCS) The most recent year was not hot (cold), but at least 90% of the year
intervals were statistically significant hotspots (cold spots).

1 Abbr. means the abbreviation for the pattern.

4. Results

4.1. Annual Rainfall and Landslide Records in 1999–2017

The annual rainfall data from the Jiasian and Singaokou stations were used to analyze
the temporal changes in annual rainfall in the Chishan river watershed during 1999–2017.
The rainfall characteristics of the Chishan river watershed during 1999–2017 are presented
in Figure 4 and summarized in Table 3. At the Jiasian station, the average annual rainfall
during 1999–2017 was higher than that during 1950–2020; moreover, at the Singaokou sta-
tion, the average annual rainfall during 1999–2017 was higher than that during 1983–2020.
The annual rainfall during 1999–2017 was higher than that during 1950–1998. The accu-
mulated rainfall in the rainy season at the Jiasian station during 1999–2017 accounted for
92.2–93.8% of the average annual rainfall, and that at the Singaokou station accounted
for 78.6–82.8%. Typhoon Morakot in 2009, a heavy-rainfall event with a return period of
>200 years [7], was the strongest heavy-rainfall event during 1999–2017 in the Chishan
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river watershed. This study compared the rainfall characteristics before and after Typhoon
Morakot.

 
Figure 4. The distribution of monthly rainfall at the Jiasian (down plot) and Singaokou (middle plot)
stations and the annual landslide number (blue line in upper plot) and area (red line in upper plot)
during 1999–2017 in the Chishan river watershed.

Table 3. The rainfall characteristics at the Jiasian and Singaokou rainfall stations in 1999–2017 in the
Chishan river watershed.

Time Rainfall Characteristic Jiasian Singaokou

1999–2017
Average annual rainfall 3100 mm 3323 mm
Average accumulated rainfall in rainy seasons 2886 mm 2683 mm

1999–2008

Average annual rainfall 3208 mm 3233 mm
Average accumulated rainfall in rainy seasons 3010 mm 2678 mm
Number of monthly rainfalls >1000 mm 7 6
Number of daily rainfalls >652.8 mm 1 1 1

2009–2017

Average annual rainfall 2980 mm 3423 mm
Average accumulated rainfall in rainy seasons 2748 mm 2689 mm
Number of monthly rainfalls >1000 mm 4 4
Number of daily rainfalls >659.6 mm 1 1 2

1 The 652.8 mm and 659.6 mm measurements represent the daily rainfalls with return periods of 50 years at the
Jiasian and Singaokou stations based on empirical equations from the regulations on soil and water conservation
in Taiwan.

The accumulated rainfall in the rainy seasons, i.e., from May to October, and the
number of monthly rainfalls >1000 mm at the Jiasian and Singaokou stations were used to
describe the temporal distribution during 1999–2008 in the Chishan river watershed. The
accumulated rainfall in the rainy seasons and the number of monthly rainfalls >1000 mm
during 1999–2008 were greater than or close to those during 2009–2017. Using empirical
equations provided in the regulations on soil and water conservation in Taiwan, this study
estimated that the amounts of daily rainfall with return periods of 50 and 200 years were
601.3 and 704.3 mm, respectively, at the Jiasian rainfall station and 607.6 and 711.6 mm,
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respectively, at the Singaokou rainfall station. During 1999–2017, the numbers of daily
rainfall events in which the amount of rainfall exceeded 601.3 mm at the Jiasian station
and 607.6 mm at the Singaokou station were two and three, respectively. The two events
recorded at the Jiasian station were Typhoon Kalmaegi (629.5 mm on 17 July 2008) and
Typhoon Morakot (1072.0 mm on 8 August 2009), and the three events recorded at the
Singaokou station were Typhoon Kalmaegi (609.5 mm on 9 June 2005), Typhoon Morakot
(833.0 mm on 8 August 2009), and Typhoon Morakot (780.0 mm on 9 August 2009). The
rainfall characteristics in the Chishan river watershed during 1999–2017 featured plenty
of rainfall with high rainfall intensity, concentrated in the rainy seasons. These results
indicated that the strengths of rainfall-induced landslides during 1999–2008 in the Chishan
river watershed were greater than those during 2009–2017, except for the landslides induced
by Typhoon Morakot.

Data on the numbers and areas of landslides during 1999–2017 in the Chishan river
watershed were used to explain temporal changes in landslides. The results revealed
obvious differences between the numbers and areas of landslides before and after Typhoon
Morakot. Analysis of landslide disaster data during 1999–2017 showed that the considerable
number of landslide disasters during 2008–2017 was larger than that during 1999–2008.
The numbers of landslides were 385–927 during 1999–2008, 1494 after Typhoon Morakot,
and 1258–2581 during 2010–2017. The landslide areas were 4.4–9.7 km2 during 1999–2008,
40.4 km2 after Typhoon Morakot, and 19.2–35.6 km2 during 2010–2017. The numbers and
areas of landslides during 2010–2017 were 2.8–3.3 and 3.7–4.4 times higher, respectively,
than those during 1999–2008. The obvious increases in the numbers and areas of landslides
demonstrated the considerable impact of Typhoon Morakot on the landslide susceptibility
of the Chishan river watershed.

The frequency of landslides [13] was defined as the total number of landslides oc-
curring in each grid during 1999–2017, as shown in Figure 5. This information was used
to explain the spatial changes in landslide susceptibility in the Chishan river watershed.
Areas with a landslide frequency of 0 accounted for 91.0% of the study area, and those
with a landslide frequency of >5 accounted for 3.0% of the area. Areas with a landslide fre-
quency of >5 were concentrated along the rivers and in the sources of rivers in the C04–C10
subwatersheds, especially in the C07–C10 subwatersheds. These results indicated that the
landslide distributions during 1999–2017 in the Chishan river watershed were related to the
distribution of rivers. The landslide distributions in 1999, 2003, 2005, 2008, 2009, 2012, 2013,
2016, and 2017 in the Chishan river watershed are illustrated in Figure 4. Landslides were
distributed in the C08–C10 subwatersheds before 2009 and then distributed densely in the
C03–C10 subwatersheds after Typhoon Morakot. The landslide distribution narrowed, but
it was still densely spread in the C04–C05 and C07–C10 subwatersheds during 2010–2017.
The upstream subwatersheds, including C07–C10, were always susceptible to landslides,
but the midstream subwatersheds, including C04–C05, became susceptible to landslides
after Typhoon Morakot.

Rainfall events primarily triggered the evolution of large-earthquake-induced land-
slides [1,4], but they were not the only triggers for the evolution of extreme-rainfall-induced
landslides [7,8]. According to the spatial and temporal distributions of landslides during
1999–2017, differences existed between the landslide distributions before and after Typhoon
Morakot in the Chishan river watershed. Despite the decreasing strength and numbers of
rainfall-induced landslides after Typhoon Morakot, the landslide area tended to decrease
continuously, but the number of landslides tended to fluctuate in the Chishan river wa-
tershed. This fluctuation indicates that recovery from landslides was difficult and that
landslides were easily reinduced.
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Figure 5. The distribution of landslide frequency from 1999 to 2017 in the Chishan river watershed.

4.2. Certainty Factor Analyses of Landslide Occurrence in 1999–2017

This study applied a certainty factor to analyze the effectiveness of four geomor-
phologic factors—namely elevation, slope, aspect, and distance to rivers—at affecting the
occurrence of landslides during 1999–2017 in the Chishan river watershed by using the land-
slide inventories of 1999, 2001, 2005, 2006, 2009, 2010, 2012, 2013, 2015, and 2017. Most of
the landslides in the Chishan river watershed were induced by rainfall events. The analysis
results obtained in the Chishan river watershed by using the certainty factor were compared
with those obtained in other earthquake-induced landslide areas [6,31]. Figure 6 presents
the relationships between landslide occurrence and the four geomorphologic factors.

Positive certainty factor values were derived in areas with elevations of >1000 m
during 1999–2008. Moreover, the certainty factor values in areas with elevations of >2000 m
increased with time. In 2009, positive certainty factor values were obtained in areas with
elevations of 500–1750 m, but the certainty factor values in the areas with elevations of
>2000 m were negative. The certainty values in areas with elevations of <1000, 1000–1750,
and >1750 m decreased, were positive, and increased, respectively. In areas with elevations
of >2000 m, recovery from landslides was difficult, and landslides were easily reinduced,
as determined on the basis of the long-term distribution of certainty factor values with
respect to elevation during 1999–2017. The areas in which recovery from landslides was
difficult and in which landslides were easily reinduced were determined to be valuable
for the analysis of landslide evolution. The elevations of these areas in the Chishan river
watershed after Typhoon Morakot were similar to the elevations observed after the 2008
Wenchuan earthquake in Sichuan, China [6].

The areas with positive certainty factor values during 1999–2008, 2009, and 2010–2017
in the Chishan river watershed had slopes of >40◦. The certainty factor values in these areas
during 2010–2017 increased gradually. The certainty factor values were higher in areas
with steeper slopes. In these areas, recovery from landslides was difficult, and landslides
were easily reinduced, as determined on the basis of the long-term distribution of the
certainty factor values with respect to slope during 1999–2017. The slopes in these areas in
the Chishan river watershed after Typhoon Morakot were the same as those observed after
the 2008 Wenchuan earthquake in Sichuan, China [6].
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Figure 6. The certainty factor analysis in regard to elevation (a), slope (b), aspect (c), and distance to
the rivers (d) and the E index values for these four factors (e) in the Chishan river watershed.

The slopes of the areas with positive certainty factor values during 1999–2008 had NE,
E, and SE aspects. After Typhoon Morakot, the slopes of the areas with positive certainty
factor values were in all aspects except for the flat aspect. Furthermore, the slopes of the
areas with positive certainty factor values during 2009–2017 had N, NE, E, and SE aspects.
In the Chishan river watershed, the slopes of the areas with high landslide susceptibility
and difficulty recovering from landslides had N, NE, E, and SE aspects, as determined
on the basis of the long-term distribution of certainty factor values with respect to aspect
during 1999–2017. The aspects of slopes in the landslide-prone areas after large-earthquake-
induced landslide events were similar to the directions of earthquake-causing faults [6],
but the aspects of slopes in the landslide-prone areas in the Chishan river watershed after
extreme-rainfall-induced landslide events were similar to windward side of the monsoon.

Studies have reported that the surroundings of rivers in upstream watersheds in
Taiwan are susceptible to landslides [9,10]. This study revealed that the certainty factor
values derived in areas within 400 m of rivers in the Chishan river watershed were negative
after the 1999 Chichi earthquake event, indicating that the surroundings of rivers are not
earthquake-induced landslide-prone areas. The certainty factor values derived in areas
within 100 m of rivers were positive during 2005–2008. The certainty factor values reached
their maximum during 1999–2017, 0.4, in areas within 100 m of rivers after Typhoon
Morakot in the Chishan river watershed. The certainty factor values derived in areas within
100 m of rivers in the Chishan river watershed were greater than 0.15 during 2010–2017, and
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those derived in areas within 100–200 m of rivers were positive during 2012–2017. These
results indicated that in terms of long-term landslide evolution after extreme rainfall or
large earthquake events, areas around rivers in the Chishan river watershed had difficulty
recovering from landslides, and landslides were easily reinduced in these areas.

The effectiveness index (E) was used to compare changes in the temporal effect of each
factor on landslide occurrence during 1999–2017 in the Chishan river watershed (Figure 6e).
The top two factors affecting landslide occurrence during 1999–2017 were elevation and
slope, meaning that landslide location was a major factor affecting landslide evolution
in the Chishan river watershed. Distance to rivers did not seem to have a clear effect on
landslide evolution in the Chishan river watershed. Distance to rivers had the lowest
effectiveness index (E) among all four factors, and its effectiveness index decreased rapidly
after Typhoon Morakot.

4.3. Result of Local Outlier Analysis

The study conducted local outlier analysis to recognize the bins with landslide spa-
tiotemporal statistical significance by using the local Anselin Moran’s I index, and the
statistical results are shown in Table 4. The multiple type dominated the spatiotemporal
clustering pattern of landslide evolution during 1999–2008 and 2008–2017 in the Chishan
river watershed. The areas of only high–high and low–low cluster patterns during 2008–
2017 in the Chishan river watershed were obviously larger than those during 1999–2008.
The distribution trend of the spatiotemporal clustering patterns of landslide evolution in
the C10 subwatershed was similar to that in the Chishan river watershed. The distribution
maps of local outlier analysis in the C10 subwatershed and Chishan river watershed are
shown in Figure 7. The multiple types were widely spread in the C04 to C10 subwa-
tersheds from 1999–2008 to 2008–2017. The only high–high clusters were recognized in
the source areas of creeks and the neighborhoods of sinuous rivers, especially in the C10
subwatershed.

Table 4. The statistical results of local outlier analysis during 1999–2008 and 2008–2017 in the C10
subwatershed and the Chishan river watershed.

Patterns

Chishan River Watershed C10 Subwatershed

1999–2008 2008–2017 1999–2008 2008–2017

A (ha) 1 Per. 1 A (ha) Per. A (ha) Per. A (ha) Per.

Mul. 1 1881.2 94.3 4073.7 83.7 703.0 94.8 798.3 83.1
NS.1 0.1 0.0 0.4 0.0 0.0 0.0 0.1 0.0
HH 1 42.3 2.1 413.5 8.5 17.2 2.3 91.3 9.5
HL 1 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0
LH 1 2.3 0.1 11.3 0.2 1.1 0.2 3.1 0.3
LL 1 68.9 3.5 368.4 7.6 20.3 2.7 68.3 7.1

1 Mul., NS., HH, HL, LH, and LL mean multiple types, never significant, only high–high cluster, only high–
low cluster, only low–high cluster, and only low–low cluster, respectively. A and Per. mean area and
percentage, respectively.
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Figure 7. Local outlier analysis of landslide evolution during 1999–2008 (left figure) and 2008–2017
(right figure) in the Chishan river watershed.

4.4. Spatiotemporal Hotspot Distribution

Emerging hotspot analysis was used to explore the spatiotemporal hotspot distribution
and patterns of landslide evolution during 1999–2017 in the Chishan river watershed.
Previous studies have not examined the evolution trends of landslide clustering before
and after Typhoon Morakot in the Chishan river watershed. A spatiotemporal analysis
can provide a comprehensive view of landslide clustering locations. Accordingly, the
present study performed the Mann–Kendall trend test to demonstrate changes in the
spatial clustering of landslides in each grid during 1999–2008 and 2008–2017 (Figure 6).
The spatial clustering distributions of landslides in the Chishan river watershed during
1999–2008 (Figure 6a) and 2008–2017 (Figure 6b) were remarkably different; areas with
increasing landslide occurrence trends are clearly highlighted in Figure 6. The numbers of
grids with no significant trend, declining trends, and increasing trends during 2008–2017
were 1.1, 3.1, and 8.9 times larger, respectively, than those during 1999–2008. These results
imply that the trends of landslide clustering in the Chishan river watershed after Typhoon
Morakot were clearer than those after the 1999 Chichi earthquake.

Moreover, grids with increasing trends were concentrated in the upstream subwa-
tersheds (C07–C10) during 2008–2017. The numbers of grids with no significant trend,
declining trends, and increasing trends during 2008–2017 in the upstream subwatersheds
were 0.89, 1.07, and 9.06 times larger, respectively, than those during 1999–2008. The
number of grids with increasing trends in the upstream subwatersheds during 2008–2017
accounted for 82.6% of those in the Chishan river watershed, meaning that the upstream
subwatersheds represented the main areas with landslide clustering in the Chishan river
watershed during 2008–2017. The spatial distribution of landslide clustering in C10 is
illustrated in Figure 8. The grids with increasing trends in C10 were clustered along the
rivers, in the source areas of the rivers, and in the surroundings of large landslides. In
Taiwan, the locations of landslides have been reported to be related to geomorphologi-
cal factors and rainfall distribution during heavy rainfall events [1,7,8,12]. However, the
present study revealed that river systems and large landslide cases influenced the locations
where landslides were difficult to recover from and easy to reinduce in the upstream of the
Chishan river watershed during 2008–2017.
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Figure 8. The spatial clustering distributions of landslides in 1999–2008 (a) and 2008–2017 (b) as
assessed by using the Mann–Kendall trend test in the Chishan river watershed. The upper-left plots
show the spatial clustering distribution of landslides in the C10 subwatershed in 1999–2008 (a) and
2008–2017 (b).

Figure 9 shows the differences in the spatiotemporal patterns and distributions of
landslide hotspots during 1999–2008 and 2008–2017. The three main cold spot patterns
during 1999–2008 were oscillating cold spots (OCS), persistent cold spots (PCS), and intensi-
fying cold spots (ICS), and those during 2008–2017 were OCS, PCS, and sporadic cold spots
(SCS). The three main hotspot patterns during 1999–2008 were oscillating hotspots (OHS),
persistent hotspots (PHS), and intensifying hotspots (IHS), and those during 2008–2017
were OHS, HIS, and PHS. The characteristics of the main hotspot and cold spot patterns
before and after Typhoon Morakot were oscillating and persistent, respectively.

During 1999–2017, the landslide hotspots were mainly distributed upstream of the
Chishan river watershed. The main landslide hotspots in the upstream subwatersheds
during 1999–2008 and 2008–2017 occupied 89.4% and 80.1%, respectively, of those in the
Chishan river watershed. The main landslide hotspot in the upstream subwatersheds
during 2008–2017 was 3.2 times larger than that during 1999–2008. OHS appeared in all
upstream subwatersheds, but they were centralized in the surroundings of rivers and
gullies and in the source areas of landslides. IHS and PHS were centralized in the core
landslide areas and the downslopes of riverbank landslide areas.

The spatiotemporal patterns and distributions of the main landslide hotspots in the
Chishan river watershed were related to the landslide area. The main landslide hotspot
areas occupied 42.3%, 50.1%, and 59.1% of the large-, medium-, and small-landslide areas,
respectively.
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Figure 9. The patterns and distributions of landslide spatiotemporal hotspots in 1999~2008 (a)
and 2008~2017 (b) in the Chishan river watershed. (c) shows the occupied percentage of each
spatiotemporal hotspot pattern in 1999~2008 (blue line) and 2008~2017 (red line).

4.5. Clustering Strength of Small, Medium, and Large Landslides

In the Getis–Ord formula for hotspot analysis, the Z-score indicates the statistical
significance of hotspots and cold spots; this study used it as an index to assess the strength
of landslide clustering and estimate oscillation periods. A higher Z-score was considered
to indicate more obvious landslide clustering, with a Z-score of 0 or a negative Z-score
indicating the absence of landslide clustering. Figure 10 presents the average Z-scores
during 1999–2008 and 2008–2017 in the Chishan river watershed.

Figure 10. Temporal distribution of average Z-scores in the Chishan river watershed (black line), up-
stream subwatersheds (C07–C10, black dash line), large landslide cases (red line), medium landslide
cases (blue line), and small landslide cases (green line) in 1999–2008 (a) and 2008–2017 (b).
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The temporal distributions of the clustering strengths of large, medium, and small
landslides during 1999–2008 were similar, and those of landslides during 2008–2017 were
also similar. During 1999–2004, the landslides could be ordered as follows in terms of
strength (in decreasing order): large, medium, and small landslides. Moreover, during
2005–2008, they could be ordered as follows in terms of strength (in decreasing order):
medium, small, and large landslides. These results demonstrate that the clustering strength
of large landslides in the Chishan river watershed was high only in the early years after the
1999 Chichi earthquake.

The distributions of the clustering strength of the large, medium, and small landslides
during 2010–2014 fluctuated, and the strength decreased rapidly from 2015 onward. The
clustering of small landslides induced by Typhoon Morakot was not obvious, and the
average Z-score derived for small landslides was positive only during 2010–2012 and in
2014. The average Z-scores derived for large and medium landslides induced by Typhoon
Morakot were positive in the subsequent 5 years, and they started to decrease rapidly from
2015 onward.

5. Discussion

The spatiotemporal hotspots and cold spots of landslides can indicate the clustering
strength of landslides and the patterns of landslide locations. Moreover, the spatiotemporal
distribution of landslide hotspots is directly related to the evolution and recovery of a
watershed after extreme-rainfall-induced landslide events, and it exerts a strong negative
effect on the sustainability of watershed management. The oscillation period [9] can be
defined as the period during which the number or area of landslides fluctuates in the
years that follow severe landslide events. The oscillation period can also be defined as
the time needed for the watershed to stably recover from landslides. Landslide evolution
research has used different methods to assess landslide recovery time and the oscillation
period after large-earthquake- and extreme-rainfall-induced serious landslide events. The
spatial distribution of landslide recovery has been assessed by estimating the landslide
activity, and the temporal changes in landslide recovery have been assessed by observing
the numbers and areas of landslides every year after serious landslide events, after the 2005
Kashimir earthquake [2] and the 2008 Wenchuan earthquake [4–6]. The oscillation period
was estimated to be 3–5 years after the 2005 Kashmir earthquake and the 2008 Wenchuan
earthquake and 5 years after Typhoon Morakot in southern Taiwan [9].

The 1999 Chichi earthquake induced 439 landslide cases covering a total area of 9.5 km2

in the Chishan river watershed. The average Z-score in the Chishan river watershed
(Figure 10) was 2.15 in 1999; it increased to 3.04–3.68 in 2000–2002 and then started to
decrease in 2003 before finally dropping to −1.48 in 2008. Typhoon Morakot in 2009 induced
1494 landslide cases covering a total area of 40.3 km2 in the Chishan river watershed. The
average Z-score in the Chishan river watershed was 0.31 in 2009; it increased rapidly to
29.43 in 2010 and fluctuated between 26.02 and 29.78 during 2010–2014, after which it
started to decrease in 2015 until reaching −5.37 in 2017. The average Z-score after the 1999
Chichi earthquake in the Chishan river watershed was 1.41 times greater than that before
1999, and the average Z-score after Typhoon Morakot was 94.94 times greater than that
before 2009. These results demonstrate that the clustering strength of landslides induced
by Typhoon Morakot in the Chishan river watershed was considerably greater than that
of landslides induced by the 1999 Chichi earthquake. According to the temporal changes
in the average Z-scores, the Chishan river watershed required 2 years to achieve stable
recovery after the 1999 Chichi earthquake but 4 years after Typhoon Morakot. Accordingly,
the oscillation period after Typhoon Morakot in the Chishan river watershed was twice as
long as that after the 1999 Chichi earthquake. The results also indicated that recovery from
landslides induced by a large earthquake (ML = 7.3) in Taiwan was faster than from those
induced by an extreme rainfall event with accumulated rainfall of >2000 mm.

The average Z-scores in the upstream subwatersheds during 1999–2008 ranged from
−0.95 to 5.66, and they were marginally higher than those in the Chishan river watershed.
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However, the average Z-scores in the upstream subwatersheds during 2008–2017 ranged
from −63.70 to 101.38, and those after 2010 were higher than those in the Chishan river
watershed. The average Z-score in the upstream subwatersheds during 2016–2017 was
approximately 70.0, and that in the other area of the Chishan river watershed was negative.
These results indicate that the landslide recovery period in the upstream subwatersheds
was longer than that in the Chishan river watershed.

The spatial resolution of images that were used to identify the landslide was the major
factor for the number of identified small landslides. The images used to identify landslides
were Spot 1 and Spot 2 images with spatial resolution of 10 m during 1999–2002 and
Formosat-2 images with spatial resolution of 2 m during 2003–2017. The number of small
landslides ranged from 238 to 550 during 1999–2002, from 503 to 604 during 2003–2008,
and from 1411 to 1930 during 2009–2017. The number of small landslides in the Chishan
river watershed increased obviously after 2003, especially after Typhoon Morakot in 2009.

The number of small landslides was also the major reason explaining the temporal
changes in Z-values. The number of small landslides was 54.2 to 71.8% of the total number
of landslides during 1999–2002 and 70.2 to 80.4% during 2003–2017. The number of small
landslide was 1494 in 2009, peaked at 1930 in 2014, and ended at 1411 in 2017. The
fluctuation in the number of small landslides was similar to the temporal change in Z-
values during 2009–2017. We suggest that the number of small landslides was the major
factor for the average Z-value and that the location of medium and large landslides was the
major factor for the distribution and patterns of spatiotemporal landslide hotspots based
on the results on long-term landslide evolution in the Chishan river watershed.

The Z-values in the study provided quantified data on landslide clustering at different
scales (watershed or subwatershed) and different landslide sizes (small, medium, and
large) in different time periods. Using Z-values to explain the spatial distribution of and
temporal changes in landslide recovery can be a convincing method for explaining landslide
evolution.

Using spatiotemporal hotspot analysis to analyze landslide evolution in the study
provided powerful theoretical evidence to explain the spatial and temporal distribution of
landslide clustering. The patterns and distributions of landslide spatiotemporal hotspots
can also explain the characteristics of watershed recovery after serious landslide events
and can thus represent useful information for formulating policies for watershed recovery.

6. Conclusions

We analyzed the effectiveness of landslide occurrence and recovery and explained
the patterns and distributions of landslide hotspots in the Chishan river watershed during
1999–2017. The numbers and areas of landslides in the Chishan river watershed after
Typhoon Morakot in 2009 were around three times larger than those after the 1999 Chichi
earthquake, and this result indicated that the impact of Typhoon Morakot on the landslide
susceptibility in the Chishan river watershed was stronger and more obvious than that
of the 1999 Chichi earthquake. We evaluated the effectiveness of landslide occurrence
and recovery during 1999–2017 by using a certainty factor and compared the importance
of four geomorphologic factors affecting the landslide occurrence. The concentration of
landslide occurrence and evolution in the Chishan river watershed was more related to the
factors of elevation and slope than to those of aspect and distance to the river. We built a
spatiotemporal cube model by using the annual landslide inventories during 1999–2017
and explained the spatiotemporal characteristics of landslide hotspots by using emerging
hotspot analysis. The main hotspot patterns in the Chishan river watershed were OHS,
PHS, and IHS, while the main cold spot patterns were OCS, PCS, and SCS. We explained
the temporal changes in landslide clustering by using the Z-score and found that the core
landslide areas and the downslopes of riverbank landslide areas in the upstream of the
Chishan river watershed were the areas of highest landslide susceptibility. The long-term
monitoring of landslide occurrence and recovery is useful for understanding the recovery
time after landslides and temporal changes in landslide susceptibility. The findings on the
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evolution of postearthquake and post-extreme rainfall landslides in this study are valuable
for the prediction and disaster prevention of future geohazards.
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Abstract: In aeolian sandy grass shoal catchment areas that rely heavily on groundwater, mining-
induced geological deformation and aquifer drainage are likely to cause irreversible damage to
natural groundwater systems and affect the original circulation of groundwater, thus threatening
the ecological environment. This study aimed to predict the impact of groundwater level decline on
vegetation growth in the Hailiutu River Basin (HRB), which is a coal-field area. Based on remote-
sensing data, the land use/cover change was interpreted and analyzed, and the central areas of
greensward land in the basin were determined. Subsequently, the correlation between groundwater
depth and grassland distribution was analyzed. Then, the groundwater system under natural
conditions was modeled using MODFLOW, and the groundwater flow field in 2029 was predicted
by loading the generalized treatment of coal mine drainage water to the model. The change in
groundwater depth caused by coal mining and its influence on the grassland were obtained. The
results show that coal mining will decrease the groundwater depth, which would induce degradation
risks in 4 of the original 34 aggregation centers of greensward land that originally depended on
groundwater for growth in HRB because they exceeded the groundwater threshold. The prediction
results show that the maximum settlement of groundwater level can reach 5 m in the northern
(Yinpanhao), 6 m in the eastern (Dahaize), and 10 m in the southern (Balasu) region of HRB. Attention
should be paid to vegetation degradation in areas where groundwater depth exceeds the minimum
threshold for plant growth.

Keywords: groundwater depth; greensward land; MODFLOW; coal mining; Hailiutu River
Basin (HRB)

1. Introduction

As the transfer base of coal mining in China, the Inner Mongolia Autonomous Region
and Shaanxi province are gaining importance [1,2]. Controlled by the burial characteristics,
more than 90% of coal resources in China are extracted by underground mining [3]. How-
ever, high-intensity underground coal mining has brought about a series of water resource
and ecological environmental problems [4,5]. Continuous development of underground
coal mining would lead to the deformation and collapse of the overlying strata, resulting in
fissures and subsidence, which will destroy the groundwater aquifer system [6], reduce
the regional groundwater level, and affect the surface ecological environment. Unlike
other regions, coal deposits in Inner Mongolia and Shaanxi are located in arid and semi-
arid regions [7–9], which are areas of serious soil erosion in China, and their ecological
environment is very fragile. Consequently, there is a major contradiction between ground-
water loss through drainage by coal mining and the lack of water resources for vegetation
growth. Therefore, it is meaningful to study the ecological changes caused by the decline
of groundwater level due to coal mining.
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Coal burial in China is characterized by strong geological reconstruction after coal
formation due to which water inrush accidents occur frequently during coal mining [10].
Such accidents pose serious threats to the safety of miners and mine production equipment,
hinder the development of coal industry and mining operations [11], and even bring
a series of ecological and environmental problems. Therefore, it is necessary to study
the groundwater system of coal mining areas. For example, Yu et al. [12] carried out
field trials on coal mine geological engineering in the Bucun coal mine, China, based on
theoretical calculation and numerical simulation, and proposed a combined controlling
measure considering underground coal mining and the water environment. Andres and
Jose [13] presented a conceptual and numerical model of two linked mines in Spain for
the assessment of possible environmental risks following closure. Wu and Wang [14]
presented a conceptual framework with multilayered groundwater flow systems for the
characterization of water bursting and discharge in underground mines, based on the
characteristics of regional geological conditions, and they analyzed mine water inrush and
flooding events in the north China coal basin.

With the gradual improvement of governmental efforts and increase in people’s aware-
ness on the protection of the ecological environment [15], the impact of coal mining on the
ecological environment is receiving increasingly more attention [4]. For example, in order
to evaluate related effects in mining areas and non-mining areas from an ecological view-
point, Xiao et al. [16] constructed an ecosystem service measurement and evaluation index
system in a typical high-intensity coal mining area using remote sensing and geographic
information system (GIS) and obtained good application results. Aiming to investigate the
contamination level, distribution, and possible sources of polycyclic aromatic hydrocarbons
(PAHs) in six coal mines in Xuzhou, China, and assess their ecological risks, Chen et al. [17]
determined the concentrations of 16 PAHs in 26 underground samples, including coal,
mine water, and underground sludge. Quaranta et al. [18] studied the influence of coal
slurry injection in two underground coal mines on the potential water quality of surface
water and groundwater in the central Appalachians and predicted the standard excess of
surface water and groundwater using a dilution analysis model.

Recent studies have defined three stages of impact (damage phase, post-damage
phase, and restoration phase) based on the effect of mining-induced groundwater changes
on vegetation conditions [19]. Xie et al. [20] established a hydrogeological conceptual
model and a groundwater flow numerical model to predict mining-induced changes in
the groundwater flow field over five years (30 April 2015 to 30 April 2020). Based on the
vegetation index determined using remote-sensing data, Zhang and Wang [21] reported
that groundwater depth has a prominent effect on the spatial variation of vegetation
distribution in the Ordos Plateau of China.

The border between Inner Mongolia and Shaanxi feature mega-coal fields, which are
slated for mining in the next decade [1,22]. However, these coal fields occur below the Mu
Us Sandy Land, which has the most vulnerable environment in China [23,24]. Therefore,
changes in the groundwater and natural environment induced by coal mining are bound to
affect the sustainable development of the region. These effects are mainly manifested in the
reduction in groundwater, deterioration of vegetation that relies heavily on groundwater
for growth, and regional vegetation shifting toward more drought-tolerant species [25],
which are not suitable for grazing. More seriously, when groundwater shortage exceeds
the basic threshold for maintaining vegetation growth, desertification will occur, making
the area unsuitable for human habitation. Therefore, when groundwater discharge by coal
mining exceeds natural recharge, groundwater resources will inevitably decrease sharply,
ultimately threatening the healthy development of regional agriculture, animal husbandry,
and industry. In particular, the Hailiutu River Basin (HRB) is a typical representative of this
area. HRB has multiple planned coal fields, and its ecological vegetation and agricultural
development mainly depend on groundwater recharge [26]. The relationship between the
groundwater and ecology of HRB and its surrounding areas has been widely studied. In
areas with groundwater depth less than 10 m within the HRB, the mean and standard
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deviation of normalized difference vegetation index (NDVI) values have been found to
decrease with increasing groundwater depth [27]. Mata-González et al. [28] reported that
vegetation growth and plant diversity are closely related to groundwater depth, especially
in arid and semi-arid regions, and areas with shallow groundwater have higher vegetation
coverage and plant diversity. Accordingly, the decline of groundwater level caused by coal
mining will inevitably affect the status of vegetation growth, especially in the aeolian sand
grass shoal catchment area, which is heavily dependent on groundwater [29]. Previous
studies have investigated and predicted the influence of coal mining on groundwater
mainly by establishing groundwater models [30,31]. In these models, the drainage by coal
mining is used as input [32]. Subsequently, future changes in the groundwater flow field
are predicted after model calibration and verification [33]. However, the prediction of the
impact of groundwater change on the ecological environment has not been comprehensively
analyzed thus far. In particular, detailed information on the specific impact of model
predictions on the corresponding spatial distribution of a certain vegetation type after
water level changes is lacking.

To address this gap, this study predicted the grassland degradation risk associated with
groundwater decline induced by coal mining. Selecting HRB as a representative of the coal
fields of Inner Mongolia and Shaanxi, mining-induced changes in groundwater circulation
and their effects on the ecological environment were investigated. The groundwater
depth of HRB was determined by measuring submersible wells, and the distribution
of greensward land in the basin was interpreted using remote-sensing satellite images.
Finally, changes in the groundwater flow field in the next 10 years (2020–2029), after the
commencement of mining in first three mining areas in the basin, were simulated using a
numerical model.

2. Materials and Methods

2.1. Study Area

HRB is located at the junction of Inner Mongolia and Shaanxi (Figure 1), which is an
important coal mining base in northwest China. This basin belongs to the middle course of
the Yellow River Basin. HRB is a small multiple bottomland basin in the transition area from
the Ordos Plateau to the northern Shaanxi Loess Plateau [34]. The entire basin lies above
the Mu Us Sandy Land, and the surface is mainly covered by Quaternary aeolian sand and
lacustrine sand [35] (Figure 1). The basin covers an area of approximately 2600 km2 and
has a surface elevation ranging from 1020 m in the southeast to 1480 m above mean sea
level in the northwest [36]. The perennial Hailiutu River flows from the northwest to the
southeast of the basin and enters the Wuding River, the main tributary of the middle Yellow
River. The Hanjiamao hydrological station is located at the outlet of watershed catchments,
which had an average annual runoff of 0.8 × 106 m3 from 1957 to 2014. HRB has a typical
steppe environment with arid, semi-arid sandy land and beach land. It has a temperate
continental monsoon climate, and atmospheric precipitation is the main source of water
supply. The annual precipitation is 370 mm, and the annual average potential evaporation
is 2000 mm [37]. The precipitation is mainly concentrated between July and September,
and the wind direction is mainly northwest.

2.2. Geology and Hydrogeology

The study area has flat terrain, gentle strata, simple geological structure, and no distinct
faults. The tectonic activity is not strong [38], and the watershed of HRB is composed of
denudation loess ridges and high dunes [39]. Along at the river channel, the topography is
steep, mainly due to river scouring and cutting of Cretaceous strata through flow erosion at
the outlet of the basin. In addition to psammophytes, grass, and farmland, most of the land
surface is covered by Quaternary sand dunes, with scattered spots of small ponds formed
by groundwater. The Quaternary layer has various diagenetic features, but the thickness is
generally small. Mesozoic and Cenozoic strata are widely exposed and generally water
bearing, and the Lower Cretaceous Huanhe Formation of the Baoan Group is exposed
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only in some areas [40]. Within the basin, the Quaternary and Cretaceous aquifers exhibit
distinct vertical variation, and their thickness varies widely.

 

Figure 1. Location of the study area: (a) Location of the studied river basin in China; (b) Location of
wells, hydrological stations, and first mining areas of coal mines in the basin; (c) Borehole drilling
sites and geological background.

The average thickness of the upper Quaternary loose rock soil is approximately 50 m.
The thickness of the Cretaceous sandstone aquifers is approximately 350 m. Between
the main 2# coal seam and the Cretaceous floor is a special aquifer group formed by the
alternate deposition of sandstone aquifers and impervious layers, which is the main source
of mine water inrush [41]. The thickness of this special aquifer group is approximately
180 m. The Jurassic 2# coal seam in the study area is the first mining coal seam with an
average thickness of 5 m (Figure 2). Restricted by the paleotopography during deposition,
the thickness of each stratum in the basin varies greatly [42]. Generally, the strata are the
thickest in the paleochannel and low-lying center, gradually thinning to both sides, and nip-
out at the watershed [43]. However, the thickness of Quaternary strata gradually decreases
from downstream to upstream, and the thickness of some beach land in the middle of the
basin increases. The thickness of Cretaceous strata gradually increases from downstream
to upstream, forming a large aquifer. Among them, there is no continuous and effective
aquifuge between Quaternary and Cretaceous aquifers, but there are multiple aquifuge
and aquifer alternations in the Jurassic strata [44]. Therefore, the aquifer above Cretaceous
strata is regarded as a water-rich layer, and the aquifer below is regarded as a weak aquifer.
Based on the above, the Quaternary and Cretaceous strata in the study area can be regarded
as a unified phreatic aquifer group. The Quaternary and Cretaceous aquifer groups have
different thicknesses, but they generally exhibit a continuous distribution. Stratigraphic
integration is relatively gentle among the Jurassic strata, and the 2# coal seam is also evenly
distributed in the basin because of the stress action of the upper strata [45].
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Figure 2. Schematic stratigraphic section of the study area.

2.3. Land Use/Cover Classification

Land use/cover change (LUCC) can provide crucial information for global environ-
mental change and human environmental science [46]. LUCC can directly reflect the way
humans utilize the land and the influence of human activities on the ecological environ-
ment [47]. In this study, we used Landsat images (TM/ETM+/OLI) of moderate resolution
(30 m), remote-sensing data, and optical images from October 2019 acquired from the
United States Geological Survey (USGS). We selected remote-sensing images with no or
less cloud cover to improve the accuracy of land cover classification. For HRB, only one-
scene images are required. Regarding the images, the cloud cover was 0.49%, and the
Landsat path/row numbers were 128/33. After pretreatment, which involved radiometric
calibration and atmospheric correction, land cover information was extracted using a super-
vised classification method [48]. In this study, land cover was classified into seven classes:
greensward, psammophyte, water bodies, roads, buildings, farmland, and bare sand. The
classification was performed according to the quantity and distribution characteristics in
land use/cover types of the study area determined through field surveying and the research
objectives of this study. We selected training samples from field investigations and Google
Earth Engine for land use classification. A total of 287 samples were selected from evenly
distributed sampling points in the watershed, including 58 greensward, 23 psmmophyte,
6 water bodies, 20 roads, 45 buildings, 68 farmlands, and 67 bare sandy lands. For pixel
sample training, 70% of the samples were employed, and the remaining samples were used
for testing (Table 1).

Table 1. Description of land use/cover classification.

LUCC Training Testing Total Description

Greensward 144,330 61,855 206,185 Emergence of green

Psammophyte 857,465 367,485 1,224,950
No obvious geometric

features, mostly dark green
or brown in color

Water bodies 3331 1427 4758 Lakes and reservoirs, and
some wide rivers

Roads 7146 3063 10,209 Usually near buildings, in
a regular straight line

Buildings 45,126 19,340 64,466
Regular geometry exists,

concentrated distribution,
with red or blue roofs

Farmland 348,413 149,320 497,733 Emergence of green, with
clear geometric boundaries

Bare sand 622,805 266,916 889,721 Yellow, with the feeling of
sand flowing
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The distribution of greensward area in HRB was processed in the ENVI software,
which was used to validate the classification results. Although greensward area accounts
for only 7.1% of the basin, its sensitivity to changes in groundwater depth is the highest
among all land use types.

2.4. Interpolation of Groundwater Depth

Spatial interpolation is an effective tool for studying groundwater distribution and
has been widely used in the field of groundwater resources [49]. As only limited point-
scale groundwater depth information can be obtained through monitoring stations in
HRB, we used spatial interpolation to process the measured 100 wells and obtain spatially
continuous groundwater depth data. To ensure that the wells were spatially representative,
we selected 21 wells for continuous monitoring from July to early September (Figure 3).
The monitoring showed that the average variation of groundwater level was only 0.1 m. To
gain a more realistic view of groundwater depth in the watershed, we used the measured
groundwater depth as the main variable and some small lakes and river node locations in
the watershed as auxiliary variables, and we used the Co-kriging method of the ArcGIS
software for interpolation [50]. Co-kriging is an extension of ordinary kriging, in which the
best estimation method of regionalized variables is developed from a single attribute to
two or more synergistic regionalized attributes, and one or more auxiliary variables are
applied. These auxiliary variables, which are interpolated and estimated, are related to
the main variables, and the correlations between the variables are assumed to be used to
improve the accuracy of the main prediction target [51]. The interpolation of groundwater
depth is mainly based on the following equation:

Z∗(x0) =
n

∑
i=1

λ1iZ1(xi) +
m

∑
j=1

λ2jZ2
(
xj
)

(1)

where x is variable location, Z∗(x0) is the predicted value for the x position, is the measured
value of the primary variable, Z2

(
xj
)

is the measured value of the covariate, λ is Co-kriging
weights for Z, n is the number of the primary variable, and m is the number of the covariate.

Figure 3. Groundwater depth interpolation and well location.
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2.5. Model Description and Setup

Groundwater was simulated to predict changes in groundwater level in the basin
under the combined exploitation of multiple underground mines and to study the change in
groundwater resources using the simulated water level. The circulation of the groundwater
system was simulated using the MODFLOW groundwater model, based on Darcy’s law
and the foundation of Dupuit, which are widely used in groundwater research [52,53].
MODFLOW was implemented in the GMS software platform to simulate the watershed.
Through MODFLOW finite difference numerical simulation, HRB was subdivided into
square meshes of 200 rows and 200 columns, on average. Finally, the watershed was divided
into 20,986 grids. To establish the model, hydrological data, hydrogeological information,
meteorological data, and groundwater level data were acquired from various sources.
Geological drilling information and topographic elevation data are needed in the initial
stage of the model. Hydrogeological parameters, water level, evaporation, and rainfall were
applied as the driving forces of the hydrological cycle. For the initial groundwater flow
field, important data were acquired through a groundwater survey from April to May 2019.
Simulated and measured values were compared according to various evaluation metrics,
and the model was optimized by fitting the actual values. The optimized model was finally
used to predict the future conditions. In the groundwater simulation, the input factor
values required adjustments within a certain range for adaptation to the ground conditions.

In order to establish an effective groundwater model, the aquifer system was general-
ized into three layers consisting of Quaternary aquifers, Cretaceous aquifers, and Jurassic
strata above the 2# coal seam considering the strata lithology, groundwater occurrence, and
hydrodynamic characteristics of the study area. In addition, the boundary conditions and
internal structure of the study area were generalized according to the actual relationship
between water supply and discharge (Figure 4). The phreatic aquifer in the basin is directly
related to the atmosphere and vertical water exchange through surface processes such as
precipitation infiltration, evaporation and drainage, and farmland irrigation. Horizontal
groundwater movement is determined by the topography and geological characteristics of
the study area. Based on the accurate description of the conceptual hydrogeological model
of groundwater system, a mathematical model of the basin was established. This three-
dimensional and finite difference groundwater flow model is based on the groundwater
flow equation, combined with the three-dimensional mathematical model of non-steady
flow. The model was visualized in GMS. The final mathematical model of the basin is
as follows:

∂

∂x

(
Kh

∂h
∂x

)
+

∂

∂y

(
Kh

∂h
∂y

)
+

∂

∂z

(
Kz

∂h
∂z

)
+ W = μs

∂h
∂t

(2)

h|t=0 = h0(x, y, z) (x, y, z) ∈ Ω (3)

K
∂h
∂n

∣∣∣∣Γ = q(x, y, z, t) (x, y, z) ∈ Ω (4)

h(x, y, z, t)|И = h (x, y, z) ∈ Ω (5)

Kr A
Mr

(Hr − h) = Qr (6)

where μs is the water storage coefficient, h is the groundwater head or elevation (m),
Kh is the hydraulic conductivity in the horizontal direction (m/d), Kz is the hydraulic
conductivity in the perpendicular direction (m/d), W is the strength of source and sink
(m3/d), q(x,y,z,t) is the inflow or outflow function from a unit area in a unit time of the
second boundary condition, Γ is the flow boundary, И is the head boundary, Ω is the
scope of the model, Kr is the river permeability coefficient (m/d), Mr is the sedimentation
thickness of the river channel (m), Hr is the water level in the river (m), and Qr is the stream
flow (m3/d).
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Figure 4. Division of recharge and discharge areas in the basin.

According to the characteristics of aquifers in the watershed and the distribution
of the groundwater flow field, shallow water aquifers in the watershed were divided
into flow boundary and closed boundary aquifers. Along the streamflow direction of
groundwater, the north of the watershed is the recharge boundary, and the south is the
discharge boundary. The Hailiutu River receives water from continuous groundwater
discharge, and it was thus simulated as a drain [21,36]. In order to characterize the discharge
process of the river in detail, the river course was divided into 7 sections, and the actual
flow was measured in each section. The measured average flow was input into the model.
The phreatic aquifer in HRB is directly recharged by atmospheric precipitation. As the
sandy land is characterized by a high infiltration rate, scarce vegetation on the surface,
and low evaporation capacity, the free surface of the phreatic aquifer is regarded as the
boundary surface of vertical recharge. In the model setting, precipitation directly recharges
groundwater, and evaporation is affected by groundwater depth. Moreover, farmland
irrigation wells are evenly distributed in the basin, which can be regarded as the surface
discharge of groundwater resources. For the simulation of recharge and evaporation
processes, the Recharge Package and Evapotranspiration Package of MODFLOW were
implemented [54], with data obtained from the measured precipitation and evaporation at
the meteorological stations of Yulin City near the basin. The groundwater flow conditions
of all aquifers in the study area are essentially similar, but the hydrogeological parameters
are spatially different. The hydrogeological parameters were mainly determined through
pumping tests, but the initial hydrogeological parameters simulated by the model may
not closely match the actual situation. This is because the parameters obtained by the
pumping test are only point data, while the model requires area data. Considering the
characteristics of the groundwater flow field and hydrogeology data collected during the
geological survey, based on hydrogeological parameters, the phreatic aquifer was divided
into 4 zones (Quaternary) and 3 zones (Cretaceous), and the confined aquifer (Jurassic)
was divided into 4 zones (Figure 5). Groundwater in the study area is mainly recharged
by atmospheric precipitation, and the infiltration coefficient of precipitation is determined
by the surface geotechnical properties. The infiltration coefficients of precipitation are 0.34
(aeolian sand), 0.26 (lacustrine sand), 0.29 (valley sediment sand), 0.07 (eolian loess), and
0.09 (Cretaceous sandstone) for the five zones of the top layer (Figure 1c). The depth limit
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of phreatic evaporation was defined as 4 m according to preliminary knowledge of the
investigator. Water quotas for farmland irrigation were recorded from actual observations.

Figure 5. Three-dimensional hydrogeological solid model and hydrogeological parameter partitioning.

2.6. Model Calibration and Validation

Through the accurate calibration of the measured and calculated water levels, the
groundwater flow in HRB was successfully simulated. The actual observed groundwater
level and flow field were mainly fitted by trial-and-error calibration, such that the simulated
groundwater levels are reasonably coordinated with the observed values. The observed
groundwater level data from July 2019 to December 2019 (184 days in total) were used
for model calibration. To ensure that the dynamic change in the simulated groundwater
level was as close as possible to the observed data, the hydrogeological parameters were
constantly adjusted [55]. At the end of the simulation (184 days), no significant difference
was observed between the simulated non-pressurized aquifer flow field and the measured
groundwater flow field.

As shown in Figures 6 and 7, the simulated groundwater level and the observed
groundwater level were in line with the groundwater hydraulic properties of the basin.
The groundwater levels of our long-term observation wells in Huhetala and Xinmiaotan
are in good agreement with the simulated values. According to the centralized survey of
the 21 selected wells at the beginning of each month from July to September, the water
levels in the observation wells agree with the simulated values (Figure 7). Moreover, the
maximum groundwater level error between the observed data and the simulated data of
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the two observation wells was 0.5 m, which is negligible compared to the natural variation
of groundwater level. In the fitting process, hydrogeological parameters, as important
data, were repeatedly adjusted manually to meet the actual situation, and the spatial
distribution of hydrogeological parameters was finally determined. The hydrogeological
parameters determined after model verification are shown in Table 2. In addition, as
shown in Table 3, the discharge term in the basin was basically equal to the recharge
term, indicating that the water cycle of HRB is in a dynamic equilibrium state, further
indicating that the generalization of the water resources cycle in the study area is valid.
Groundwater recharge mainly occurs through meteoric precipitation and lateral recharge,
and drainage occurs mainly through surface evaporation, overflow to surface water, lateral
discharge of groundwater, and artificial exploitation. The final verification results show
that the groundwater model of HRB meets the accuracy requirements, which can reflect
the hydraulic characteristics of the groundwater system in the basin and can be used to
predict the change of groundwater level in the basin after coal mining.

 

Figure 6. Comparison of observed head and calculated head.

(a) (b) (c) 

Figure 7. Comparison of observation head and calculated head of 21 monthly continuous monitor-
ing wells.
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Table 2. Hydrogeological parameters of aquifers.

Stratum Area Hydraulic Conductivity (m/d) Specific Yield Storage Coefficient (m−1)

Q

I 7 0.26 -
II 3.5 0.2 -
III 1.5 0.06 -
VI 0.8 0.01 -

K1

I 0.25 0.05 -
II 0.3 0.05 -
III 0.3 0.06 -

J2

I 0.003 - 1.5 × 10−7

II 0.004 - 1.9 × 10−8

III 0.008 - 3.3 × 10−7

VI 0.007 - 4.0 × 10−8

Table 3. Results of groundwater budget in the study area.

Balance Project Annual Amount (×106 m3/a)

Recharge Precipitation 361.83
Lateral recharge 3.23

Discharge

Evaporation 197.58
Lateral discharge 4.17
River discharge 81.99

Artificial exploitation 80.43
- 0.89

2.7. Mine Inflow

In order to ensure the safety of underground mining, groundwater in the upper
aquifer of the coal seam and water inrush will be drained, which will significantly affect the
groundwater flow field of the overlying aquifer and the natural circulation of groundwater
resources in the region. Using the established numerical model of groundwater flow, the re-
lationship between groundwater level and drainage in the mining area can be quantitatively
described and predicted, and the possible impact can be analyzed. For the prediction, coal
mine drainage should be preliminarily input to the model, while other hydrological data
remain unchanged. After coal seam mining, the deformation and failure of the overlying
strata would generate caved, fractured, and continuous deformation zones [6,56], which
is the main reason for the change in the groundwater system. Considering that the study
area has thick coal seams for mining, the combined thickness of caved and fractured zones
corresponds to the major drained aquifers. Through the field investigation of the study
area and surrounding coal mines, the water conductive fracture zone of the coal mine
was found to develop only in the area above the working face, and the strata outside the
mining face remained largely unaffected. Therefore, the effective thickness of the drainage
layer is defined as the distance between the top boundary of the fractured zone with water
flow and the bottom boundary of the coal seam. Considering the current situation of deep
buried coal seams in HRB [45], with coal mining, the largest water-conducting layer would
include only the Jurassic formation, and it would be separated from the Cretaceous bottom
by a certain distance. The distance would be 100.87 m in the Yinpanhao (Yph) coal mine,
94.22 m in the Dahaize (Dhz) coal mine, and 110.9 m in the Balasu (Bls) coal mine. Pumping
wells for simulating mine inflow were expanded to the drainage layer previously defined
on the basis of the first mining area. According to the prediction report of the collected
mine water inflows, the drainage water of the three coal mines was 13,549.8 m3/d (Yph),
35,520 m3/d (Dhz), and 37,000.8 m3/d (Bls), and the planned mining volume of the three
coal mines was 15 Mt/a (Yph), 15 Mt/a (Dhz), and 10 Mt/a (Bls). The drainage water of
Bls was equal to that of Dhz, and the drainage water of Yph was the smallest. The drainage
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water increased gradually from upstream to downstream, according to the location of the
coal mines in the basin.

3. Results and Discussion

3.1. Relationship between Vegetation and Groundwater Depth

Compared with the use of only groundwater depth as the interpolation factor, Co-
kriging interpolation provides results with smoother spatial distribution without any
sudden point aggregation characteristics, which can better reflect the spatial distribution of
groundwater [57]. Therefore, during the field survey of 100 wells (Figure 3) in October 2019,
the groundwater depth of the basin (Figure 8a) was acquired by Co-kriging interpolation.
The results show that groundwater depth exhibits wide spatial variability across the study
area. Specifically, groundwater depth is relatively large in the south and northwest regions,
mainly distributed in the loess ridge and high dunes. On the basin scale, areas with suitable
groundwater depth for vegetation are mainly distributed in the upper and middle reaches.
According to the results of the land use type distribution (Figure 8b), vegetation coverage
is relatively high in the areas with suitable groundwater depth, concentrated in the middle
and upper reaches of the basin. Comparing Figure 8a,b, it can be ascertained that the
location of shallow groundwater depth coincides with the dominant greensward area,
which exhibits central aggregation points. Accordingly, the frequency graph of each pixel
was plotted cumulatively, and the value of central aggregation points was determined
based on the following conditions: greensward land use type with a resolution of 1500 m
and dominant greensward pixels over other land use classifications. The dependency
of greensward land on groundwater depth was investigated by organizing pair data of
greensward land and groundwater depth on the same base map (Figure 8c). The diagram
of the final results reveals 34 central aggregation points of greensward land, of which 24%
are distributed in areas with groundwater depth less than 3 m and 11.17% in areas with
groundwater depth more than 10 m.

(a) (b) (c) 

Figure 8. (a) Interpolation of groundwater depth in the watershed; (b) Distribution of greensward
land use type in the watershed; (c) Location of the center of greensward land in the watershed (colors
of the groundwater flow field are illuminated for contrast).

The dominant spatial pattern of the distribution of greensward land in HRB is pre-
sented in Figure 8b. Greensward land clearly occupies a relatively independent niche in
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space, which is related to groundwater depth, and indirectly reflects its different depen-
dences on different groundwater depth conditions. The pixel number of greensward land
was counted from LUCC data, and 82% of the greensward area was found to be distributed
in areas with groundwater depth of 0–4 m (Figure 9). From the relationship between the
distribution of groundwater depth and the number of greensward pixels, the groundwater
depth of 4 m can be ascertained to be an important threshold. In aeolian sandy soil, grass
can grow normally only when the deep roots of grass have access to groundwater. If the
groundwater depth exceeds the root depth, the survivability of grass significantly declines.
For example, greensward land is unlikely to develop in sand dunes because the groundwa-
ter level exceeds 8 m. The results suggest that grass growth is seriously limited in areas
where the groundwater depth exceeds 4 m. It is noteworthy that groundwater irrigation
also determines the coverage of green space. Figure 8c also confirms this, but this aspect is
not the focus of our study.

Figure 9. Distribution area of groundwater depth and the number of greensward pixels.

The relationship between groundwater and ecological vegetation has always been an
important issue for research [58,59]. In particular, the relationship between vegetation and
groundwater is very complex in arid and semi-arid areas, where plant roots have a strong
response to changes in groundwater [60]. It is not sufficient to discuss the relationship
between vegetation and groundwater depth by taking only a specific area of HRB as an
example. To comprehensively present the characteristics of vegetation coverage in arid
and semi-arid regions suitable for groundwater burial depth, we compared studies on
vegetation and groundwater in similar regions to confirm the credibility of our conclu-
sions [61–66]. As shown in Table 4, some arid and semi-arid regions around the world have
a limited range of groundwater levels for the healthy growth of vegetation. If the mini-
mum threshold of groundwater required for vegetation growth is exceeded, the growth of
vegetation will be affected. Attributable to the difference in hydrogeology, different study
areas exhibit distinct differences in the threshold. Nevertheless, comparing the conclusions
of previous studies, the threshold of groundwater burial depth for the normal growth of
herbs was found to be approximately 2–5 m, which is essentially the same as the results
obtained in this study. This can be explained by the limited root systems of herbs.
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Table 4. Relationship between vegetation growth and groundwater level in different areas.

Research Objectives Number of Studies
The Link between Vegetation and

Groundwater Levels

The Owens Valley of California, USA
(1991–2004) 30 permanent monitoring sites About 3.5 m is the groundwater threshold for

normal vegetation coverage in most areas
The riparian area in southeastern

Arizona, USA (2003) Three sites The average annual groundwater depth of
the grassland is 2.6 m

The lower section of the Tarim River,
China (2005) Nine 50 m wide transects

When the groundwater depth is −3.14 m, the
density and diversity of above-ground plants

are significantly improved

The hinterland of the Badain Jaran Desert,
China (2014) 10 long-term observation sites

In the area where the groundwater depth is
0–2 m, the growth of vegetation is

more vigorous
Al Qunfudah City and the surrounding

coastal plain in southwest Saudi
Arabia (2018)

Six locations Vegetation coverage is higher in areas where
the groundwater depth is less than 5 m

The Manasi River riparian zone, China
(2018–2019) 13 sites The water-table depth appropriate for herbs

is 1–1.5 m

3.2. Groundwater Level Prediction

According to the groundwater model established after verification, aquifer drainage
caused by coal seam mining was separated, and mine gushing water was set as the output
of the model. Finally, the model was used to predict future changes in groundwater
induced by coal mining. In the model, wells were used to simulate mine water inflow. A
simulation was performed for each grid of the first mining area, and the inflow was then
interpolated within the effective mining drainage layer of the Jurassic strata. The value of
total mine water inflow of the grids should be close to the value of the previously mentioned
prediction report. Therefore, to ensure accurate simulation results, all pumping wells were
set in the mesh grids. These wells, representing mine water inflow, were negative and
were evenly distributed in the first mining area of Yph, Dhz, and Bls. In the model, the
first mining area of the three coal mines was assumed to satisfy the designed production
volume in the future. By running the model, the groundwater flow field of the aquifers in
the next 10 years (2020–2029) could be predicted. Figure 10a shows the simulated flow of
the phreatic aquifer in December 2029.

The change of the flow field curve represents the influence of coal mine drainage.
Therefore, the flow field curve of the phreatic aquifer above the first mining area of the coal
mine is different from that of other areas of the basin. It can be observed that the maximum
drawdown may be as high as 5 m (Yph), 6 m (Dhz), and 10 m (Bls), indicating three cones of
depression centered on the three mines. The cone of depression exerts a distinct influence
in Yph, but the change of flow field in Dhz and Bls coal mines is more complicated because
of the influence of groundwater watershed on the hydraulic gradient. Overall, mining
activities affected groundwater in phreatic aquifers within a certain range [2]. The size of
groundwater depression is closely related not only to the amount of drainage by the coal
mine but also to the geographical location of coal mines in the basin. An obvious drop
of groundwater levels could be observed for floor leakages in the first mining area of the
three coal mines (Figure 10b), and the groundwater depth shows no significant change in
the upstream of HRB because it is located far away from coal mining sites. It is essentially
certain that, as coal mining continues, groundwater depression will continue to expand,
thereby affecting the hydrological cycle of the basin.
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(a) (b) (c) 

Figure 10. (a) Groundwater simulation flow field in the watershed; (b) Interpolation of simulated
groundwater depth in the watershed; (c) Location of greensward aggregation centers in the watershed
(colors of the groundwater flow field are illuminated for contrast).

3.3. Vegetation Change Prediction

Given the single vegetation structure and sensitive environment of the study area,
the ecological function of the vegetation community is susceptible to interference from
climate change and human activities, which may even completely destroy the original
vegetation cover [21]. Because HRB is the recharge source area of the Wuding River Basin,
and precipitation is the main source of groundwater recharge in the basin, groundwater
resources are important ecological factors. The greensward land in the basin is mainly
supported by groundwater. Therefore, groundwater depth is the decisive factor controlling
the distribution of greensward land. Grass coverage and occurrence frequency are related
to groundwater depth. With the increase in groundwater depth, the coverage, density,
and population richness of grass decrease. The growth and development of grass is
higher in areas with suitable groundwater depth, with higher frequency and coverage. On
the contrary, in water deficit areas, the growth and development of grass are relatively
poor, with low occurrence frequency and corresponding coverage. The most suitable
groundwater level for grass growth in HRB is 0–4 m, and this groundwater depth range
is also the key guarantee to maintaining the sustainable development of the ecosystem
in arid and semi-arid greensward areas [67,68]. If the groundwater level continues to
decline below 4 m, the growth and development of greensward vegetation in pastoral areas
will be limited, and the number of biological populations will gradually decrease. As the
groundwater depth continues to drop below 7 m, arid greensward areas will undoubtedly
undergo irreversible desertification. Therefore, the upper limit for the stable survival of the
existing greensward vegetation can be determined to be 0 m and the lower limit to be 4 m.

Using MODFLOW to predict the groundwater flow field in the basin after 10 years,
we obtained the groundwater depth of the future basin, and central aggregation points
of greensward land over the spatial distribution of groundwater depth were determined
(Figure 10c). Compared with Figure 8b, the groundwater level in the first mining area of
Yph decreased significantly, and the groundwater depth increased. The change of the flow
field above the first mining area causes the increase in groundwater depth near the river,
and this area is the central aggregation point of greensward land in the basin. The increase
in groundwater depth will seriously affect the normal growth of grass vegetation. Therefore,
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these regions require serious attention. As mentioned earlier, the groundwater depth of 4 m
is an important threshold. However, in order to take necessary measures before reaching
the warning line, attention should be paid to affected areas when the groundwater depth
drops below 3 m. Accordingly, the central aggregation point of greensward land in this
region is marked as red to alert the government and local population of the degradation
risk. By red tagging, four greensward degradation risk areas were found to be concentrated
in the area and surroundings of Yph in the midstream of the basin. As clearly shown in
Figure 11, the predicted groundwater depth in this area after coal mining exceeds 3 m,
increasing the proportion central aggregation points with groundwater depth greater than
3 m to 35%. Although the greensward coverage near Dhz and Bls is small, and there is
no major central aggregation point of the greensward land, attention should also be paid
to the impact of groundwater level decline on ecological vegetation diversity. Finally, the
prediction of groundwater and grassland coverage under multi-mining conditions shows
that the overall ecological prospect of the basin is negative without the protection of the
ecological environment. From the final research results, the change of groundwater in the
next 10 years will affect only the growth of vegetation within a certain range. However,
the influence of groundwater depth change caused by coal mining on natural vegetation
should be carefully examined at the watershed scale.

Figure 11. Proportion and number of greensward aggregation centers at different groundwa-
ter depths.

Although vegetation can adapt to changes in the environment, some vegetation
types [69] require a certain amount of groundwater to maintain normal growth. With
changes in groundwater, groundwater-sensitive plants may completely disappear from
the corresponding area. Although the environmental crisis caused by coal mining is glob-
ally widespread [70], the coal industry is particularly important for regional economic
development and national energy security in developing regions. Unless a breakthrough is
achieved in the technology of renewable energy, and renewable energy is made affordable,
coal mines will continue to operate, which will lead to the deterioration of the ecological
environment after the drainage of groundwater [71]. Indeed, the best solution is to prevent
mining and stop the destruction, but this solution is not feasible for developing countries
and poor countries. We believe that coal mining activities in developed countries should be
gradually discontinued, and clean energy measures should be increasingly implemented,
such as in Germany [72]. For developing countries, the mining of coal resources should
be limited by environmental protection. Under the condition of maintaining environmen-
tal sustainability, underground resources should be gradually exploited, and part of the
profits from coal mining should be used for the management of hazards caused by coal
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mining, such as in China [73]. The contradiction between coal mining and environmental
protection requires the preliminary intervention of government departments, for which
the prediction of potential environmental changes caused by coal mining and subsequent
active formulation of environmental protection policies are necessary.

4. Conclusions

In this study, variations in the flow field of phreatic groundwater caused by the joint
action of multiple coal mines in a basin were explored, and the groundwater flow field in
the basin in the next few years was predicted. The results show that the MODFLOW model
exhibits good performance in simulating the variation law of the groundwater flow field.
The law of groundwater movement in the natural state of the basin was first determined
by simulating groundwater movement in the basin under non-mining conditions, and
the model as well as the accuracy of the completed system were verified. The drainage
attributable to underground coal mining was input to the established MODFLOW model,
and potential changes in groundwater depth throughout the basin were simulated. Through
the correlation between groundwater depth and distribution of greensward land obtained
by remote-sensing interpretation, the influence of mining on the future distribution of
greensward land was predicted. The following conclusions can be drawn:

1. The topographical features of HRB comprise arid and semi-arid dunes and denuded
loess ridges. The distribution of greensward land is closely related to aquifer thickness
and groundwater depth. Greensward land is mainly distributed in the upstream and
midstream of the basin, especially in areas with shallow groundwater depth and
thicker aquifers. The sporadic distribution of greensward land in some areas is related
to artificial pumping irrigation. There are 34 central aggregation points of greensward
land in HRB. Among them, 24% is distributed in areas with groundwater depth
less than 3 m and only 8.82% in areas with groundwater depth more than 10 m.
Furthermore, grassland accounts for only 11.11% of the total area in the downstream
of the basin. The relationship between groundwater depth and central aggregation
points of greensward land in the basin contributes to deeper understanding of the
distribution of vulnerable vegetation in the Mu Us Sandy Land.

2. The combined action of multiple underground mines has a strong impact on the
phreatic aquifer system in the basin, and coal mine drainage changes the flow field and
increases the depth of groundwater. The MODFLOW simulation of the groundwater
aquifer flow field in 2020–2029 suggests that coal mining will have distinct effects
on the groundwater aquifer above the first mining area. However, variations in the
groundwater hydraulic gradient induced by coal mining would not be prominent
in the next 10 years compared with the hydraulic gradient caused by differences
in terrain. The groundwater model reveals three cones of groundwater depression
centered on three mines, and the maximum drawdown may be as high as 5 m (Yph),
6 m (Dhz), and 10 m (Bls).

3. According to the prediction of changes in groundwater depth induced by the com-
bined mining of multiple underground mines in HRB, the groundwater level will
prominently decrease around Yph, posing degradation risks to four central aggre-
gation points of greensward land in the basin. It is necessary to implement timely
measures to counter the changes. Although the coverage of greensward land is small
in the first mining area of Dhz and Bls, the depth of groundwater decline is greater
than that of Yph, and its impact on plant growth is more serious. This simulation
approach provides a reference for the prediction of the distribution of vegetation with
changes in groundwater depth.
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Abstract: The Yellow River Basin (YRB) has been facing severe water shortages; hence, the long-term
dynamic monitoring of its surface water area (SWA) is essential for the efficient utilization of its water
resources and sustainable socioeconomic development. In order to detect the changing trajectory of
the SWA of the YRB and its influencing factors, we used available Landsat images from 1986 through
to 2019 and a water and vegetation indices-based method to analyze the spatial–temporal variability
of four types of SWAs (permanent, seasonal, maximum and average extents), and their relationship
with precipitation (Pre), temperature (Temp), leaf area index (LAI) and surface soil moisture (SM).The
multi-year average permanent surface water area (SWA) and seasonal SWA accounted for 46.48%
and 53.52% in the Yellow River Basin (YRB), respectively. The permanent and seasonal water bodies
were dominantly distributed in the upper reaches, accounting for 70.22% and 48.79% of these types,
respectively. The rate of increase of the permanent SWA was 49.82 km2/a, of which the lower
reaches contributed the most (34.34%), and the rate of decrease of the seasonal SWA was 79.18 km2/a,
of which the contribution of the source region was the highest (25.99%). The seasonal SWA only
exhibited decreasing trends in 13 sub-basins, accounting for 15% of all of the sub-basins, which
indicates that the decrease in the seasonal SWA was dominantly caused by the change in the SWA in
the main river channel region. The conversions from seasonal water to non-water bodies, and from
seasonal to permanent water bodies were the dominant trends from 1986 to 2019 in the YRB. The SWA
was positively correlated with precipitation, and was negatively correlated with the temperature.
Because the permanent and seasonal water bodies were dominantly distributed in the river channel
region and sub-basins, respectively, the change in the permanent SWA was significantly affected by
the regulation of the major reservoirs, whereas the change in the seasonal SWA was more closely
related to climate change. The increase in the soil moisture was helpful in the formation of the
permanent water bodies. The increased evapotranspiration induced by vegetation greening played
a significant positive role in the SWA increase via the local cooling and humidifying effects, which
offset the accelerated water surface evaporation caused by the atmospheric warming.

Keywords: Yellow River Basin; surface water area; Google Earth Engine; spatio-temporal change;
influencing factors

1. Introduction

Water resources are vital to human economic prosperity, production development, the
maintenance of ecosystem functions, and the promotion of sustainable development [1].
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As an essential component of water resources, surface water bodies (i.e., lakes, reservoirs,
rivers, streams, and ponds) provide a series of ecosystem services, such as water sup-
ply and regulation, climate regulation, and food production [2,3]. Therefore, the spatial
distribution of surface water and its changes over time are central to many agricultural,
environmental, and ecological issues, and are important factors for human socioeconomic
development [4–6]. Global climate change and anthropogenic activities can have dramatic
impacts on the inter-annual and intra-annual variations in surface water bodies, which
can have profound influences on human society and natural ecosystems [6–8]. Therefore,
monitoring the spatial–temporal dynamics of the Surface Water Area (SWA) using remote
sensing technology is crucial for scientific research, as well as for adaptive and sustainable
ecosystem management and social development [9–11].

Due to the convenient data acquisition, simple preprocessing, large range of obser-
vations, and relatively high accuracy of the automatic detection of water bodies, optical
remote sensing imagery has become the primary data source for the long-term dynamic
monitoring of surface water in large areas, especially on global and continental scales.
The single-band surface reflectance threshold method [12,13] was first employed to au-
tomatically extract surface water bodies. Although it is simple and straightforward to
use, it has difficulty extracting small surface water bodies, and the separation of shadows
and water bodies is problematic [14]. Subsequently, Mcfeeters et al. [15] introduced the
Normalized Difference Water Index (NDWI), and the threshold approach based on this
index considerably enhances water body extraction accuracy; however, it is still ineffective
when the water body exists in a background with buildings. In order to address this issue,
Xu et al. [16] proposed the modified NDWI (mNDWI), which has become one of the most
extensively used and effective methods for the delineation of open water bodies using the
Landsat Thematic Mapper™ green (band 2) and short-wave infrared (band 5) channels,
which can effectively suppress the signal from built-up land noise [17]. The mNDWI
still makes mistakes when distinguishing between water bodies and vegetation [18,19].
Wetland vegetation is the main factor leading to classification mistakes due to the mixed
distributions of water and grasses in wetlands [20].

This has become one of the most commonly used water indexes. Although the water
index and threshold-based water body mapping approaches are computationally efficient,
there is much uncertainty in the determination of the optimal threshold for classifying
water and non-water areas. Although supervised classification algorithms—such as the
Support Vector Machine (SVM), Maximum Likelihood (ML), and Random Forest (RF)
algorithms [21,22]—can also be used for water body classification, the computational
processes of these machine learning algorithms are time-consuming, and the accuracy of
the identified water body is strongly influenced by the training samples. Recently, Zou
et al. [23] combined the mNDWI and vegetation indices, including the Enhanced Vegetation
Index (EVI) and the Normalized Difference Vegetation Index (NDVI), to map water bodies,
which did not require a unique threshold value for the water index. Recently, it has been
proposed that combining the mNDWI, NDVI, and EVI could produce better results and
would be more stable than using the individual indexes [24–26], especially for wetlands [27].
This method has been used predominantly in the mapping of surface water bodies on the
global and continental scales [24].

With the rapid development of cloud computing platform technology (e.g., Google
Earth Engine) in recent years, it has become more practical and more efficient to map land
cover types at the global and continental scales using dense time-series remote sensing
data stacked at a medium spatial resolution (e.g., Landsat and Sentinel) [25,28]. Using
the Google Earth Engine cloud platform, Pekel et al. [29] created the first global remote
sensing continuous surface water dynamics product with a 30-m resolution. The Google
Earth Engine has also been used to reveal the spatial–temporal dynamics of the SWA and
its driving factors in Australia [30], Inner Mongolia Plateau [31], and China [32].

The Yellow River Basin (YRB), which only accounts for 2.2% of China’s total runoff, is
responsible for supplying water for 15% of the arable land and 12% of the population in
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China [33,34]. The contradiction between the supply and demand for the water resources
in the YRB has become increasingly prominent under the influences of climate change
and human activities, and the YRB is becoming one of the regions with the most serious
water resource shortages in China [35,36]. Because surface water resources are very signifi-
cant for the preservation of ecosystem stability and for economic and social sustainable
development in the YRB, it is critical to monitor the continuous changes in the SWA using
satellite remote sensing observations. However, previous studies have primarily focused
on sub-regions of the YRB, such as the Hetao irrigation area [37], Hongjiannao Lake [38],
and the headwater region [39], and no study has continuously tracked the changes in the
SWA in the entire YRB over the last few decades. Therefore, in this study, we used surface
water body time-series data with a 30-m resolution for 1986–2019 based on the Google
Earth Engine to reveal the historical variation characteristics of the different types of surface
water bodies in the different sub-regions of the YRB, and we analyzed the relationships
between the SWA and climate and vegetation changes.

2. Materials and Methods

2.1. Study Area and Data Processing

The Yellow River is the second-longest river in China, with a total length of 5464 km.
The YRB is mostly located in the semi-arid to semi-humid regions, where the mean annual
precipitation ranges from 300 to 700 mm, and the average multi-year temperatures range
from −4 to 14 ◦C. The multi-year average runoff volume and sediment discharge in the
main river channel are 58 billion m3 and 1.6 billion tons [40], respectively. The top parts
of the river are where the Yellow River flow originates, whereas the middle reaches are
where the Yellow River sediment originates. In the upper and intermediate reaches, his-
toric climate change and intensive human activities have resulted in substantial ecosystem
deterioration. It has been reported that the underlying surface conditions have been dra-
matically changed, and that the ecological environment and the soil and water conservation
capacity significantly improved after 2000, when extensive ecological restoration projects
were implemented [41]. In addition, several large reservoirs have been gradually built on
the main river channel by the national government for flow and sediment regulation and
the optimal allocation of water resources in the YRB. In this study, the YRB was divided
into six sub-regions based on the geographic locations of six key hydrological stations,
including the Tangnaihai (TNH), Qingtongxia (QTX), Toudaoguai (TDG), Longmen (LM),
Huayuankou (HYK), and Lijin (LJ) stations, located along the main river channel (Figure 1).
The area above TNH is the source region of the YRB, and the area above TDG is the upper
reaches of the YRB. The QTX-TDG sub-region is a typical windy desert area, and an irri-
gation area. The area between TDG and HYK is the middle reaches of the YRB, and the
TDG-LM section is the main sediment formation area. The area between HKY and LJ is the
upper reaches of the YRB. The upper reaches of the YRB are the main source area of the
river runoff, and the middle reaches are the main source area of the sediments.

All of the available Landsat satellite images with a 30-m resolution (Landsat5 TM,
Landsat7 ETM+ and Landsat8 OLI) covering the entire YRB from 1986 to 2019 were used
in this study based on the Google Earth Engine platform (https://earthengine.google.
com/, accessed on 16 March 2022), for which the Landsat ecosystem disturbance adaptive
processing system (LEDAPS) [42] was employed to produce the surface reflectance of each
Landsat pixel, and an F-mask algorithm [26,43] was then used to identify the contaminated
pixels, such as clouds, cloud shadows and snow cover. The spatial distribution of the
frequency of clear Landsat observations over the YRB from 1986 to 2019 is shown in the
Figure 2, in which the effective number of observations in the northern region is larger
than that in the southern region with more cloud coverage; the high values of observations
occur in the area of overlapping satellite observations, and the low values are mainly
distributed in the headwater region. Figure 3 depicts the interannual variation of the area
ratio of the frequency with different levels (0–4, 5–10, 10–20, 20–40, 40–70, and 70–100)
of clear Landsat observations over the YRB. It can be seen that as the Landsat satellite
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sensors were updated, the number of clear Landsat observations increased gradually. In
addition, meteorological parameters including the daily precipitation (pre) and temperature
(temp) during 1986–2019 of 295 stations located in the YRB were acquired from the China
Meteorological Science Data Sharing Service (http://data.cma.cn/, accessed on 16 March
2022), and the raster data of the precipitation and temperature at the 1-km scale were
produced using a spatial interpolation algorithm in the AUSPLINE software [44].

 

Figure 1. Spatial distribution of the meteorological and gauging stations in the YRB. The gauge
stations are TNH, QTX, TDG, LM, HYK and LJ from upstream to downstream, respectively.

 

Figure 2. Spatial distribution of the frequency of clear Landsat observations in the YRB from 1986
to 2019.

The global land surface satellite (GLASS) (http://www.glass.umd.edu/, accessed
on 16 March 2022) [45] leaf area index (LAI) product with 8-day and 1-km resolution
was selected to characterize the vegetation structure change during 1986–2019. Daily
evapotranspiration (ET) and surface soil moisture (SM) data at 0.25◦ during 1986–2019
were derived from the Global Land Evaporation Amsterdam Model (GLEAM) (https:
//www.gleam.eu/, accessed on 16 March 2022 ) [46] v3.5a product. Finally, the daily
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meteorological parameters, 8-day LAI, daily ET and SM were temporally upscaled into
annual total Pre and ET, and the annual average temp, LAI and SM.

 
Figure 3. Interannual variation in the area ratio of the frequency with different levels of clear Landsat
observations in the YRB.

2.2. Surface Water Body Mapping Algorithm

The water and vegetation index and the threshold-based method proposed by Zou
et al. [23] were used in this study. The algorithms for the water and vegetation indices and
threshold rules are as follows:

NDVI =
ρNIR − ρred
ρNIR + ρred

, (1)

MNDWI =
ρgreen − ρSWIR1

ρgreen − ρSWIR1
, (2)

EVI = 2.5 × ρNIR − ρred
ρNIR + 6 × ρred − 7.5 × ρbiue + 1

, (3)

EVI < 0.1 and(mNDWI > NDVI or mNDWI > EVI) (4)

where ρred, ρgreen, ρblue, ρNIR, and ρSWIR1 are the surface reflectance of the red, green, blue,
near-infrared, and short-wave infrared wavelengths, respectively.

Because there are serious commission errors in the classified water bodies in shaded
hills, the rule of terrain slopes of <8◦ was also employed in order to improve the identifica-
tion accuracy of the water bodies in the hilly and mountainous areas [47]. Then, the Water
Inundation Frequency (WIF) was calculated by dividing the number of identified water
bodies by the number of clear Landsat observations in a year (Equation (4)). Water bodies
with 25% ≤ WIF ≤ 75% were defined as seasonal water bodies, and water bodies with
WIF > 75% were defined as permanent water bodies based on previous studies [48,49].

WIF =
W
N

× 100%, (5)

where N is the total number of valid observations in a year, and W is the total number of
times the water body was detected.

Except for the SWA of the seasonal and permanent water bodies, the annual maximum
SWA was calculated based on the water bodies with WIF ≥ 25%, and the annual average
SWA was defined as the sum of all of the effective areas (900 m2) in one Landsat pixel
multiplied by the WIF [23,24]. Therefore, the inter-annual time series of the four types
of SWA (permanent, seasonal, annual maximum, and annual average water body areas)
for the different sub-regions and different sub-basins was derived in order to analyze the
spatial–temporal changes.
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2.3. Accuracy Assessment

In order to assess the classification accuracy of the water bodies derived in this study,
we selected 995 samples containing typical types of water bodies (rivers, lakes, reservoirs,
and check dams) via artificial visual interpretation based on the high spatial resolution
Google Earth images. Because the high-resolution Google Earth images were all acquired
during 2019–2020, we only evaluated the accuracy of the water body classification in 2019
using the Google Earth Engine. In addition, we compared the accuracies of the water
bodies identified using different WIF thresholds (5%, 10%, 15%, 25%, 35%, 50%, and 75%).

2.4. Linear Slope Calculation

In order to reveal the temporal variation characteristics of the SWA over time in the
YRB, we used the slope of the linear regression model to characterize the interannual rate
of change of the SWA during 1986–2019 in the YRB. The slope was calculated as follows:

Slope =
n × ∑n

i i × Xi − ∑n
i=1 i ∑n

i=1 Xi

n × ∑n
i=1 i2 − (∑n

i=1 i)2 (6)

where Xi is the SWA in year i, and n is the total number of years. When the slope is >0, the
SWA is increasing; and when the slope is <0, the SWA is decreasing.

Then, the slopes of the seasonal, permanent, annual maximum, and annual average
SWAs in the entire YRB were analyzed, and the contributions of the SWAs in the different
sub-regions and different sub-basins were compared.

2.5. Partial Correlation Analysis

Rainfall is the main source of surface water bodies, an increased temperature can
increase the evaporation from surface water surfaces, vegetation is linked to evapotranspi-
ration from surface water surfaces, and soil moisture influences temperature and rainfall. In
order to explore the impacts of the natural water supply, atmospheric warming, vegetation
greening, and SM on the SWA, we conducted a partial correlation analysis to examine the
relationships between the SWA and the climatic parameters, vegetation status, and water
storage status of the surface soil. Partial correlation analysis measures the strength and
direction of a linear relationship between two variables while the effect of one or more
other variables is controlled. In this way, the individual roles of the influencing factors in
the SWA dynamics can be determined. The partial correlation coefficient was calculated
as follows:

ri,j·l1l2...... ln =
ri,j·l1l2...... ln−1 − ri,ln ·l1l2...... ln−1 ·rj,ln ·l1l2...... ln−1√(

1 − r2
i,ln ·l1l2...... ln−1

)
·
(

1 − r2
j,ln ·l1l2...... ln−1

) (7)

where ri,j·l1l2...... ln is the nth (n = k − 2) order partial correlation coefficient between i and
j when l1, l2 . . . ln are controlled, and k is the total number of variables. r2

i,ln ·l1l2...... ln−1
and

r2
j,ln ·l1l2...... ln−1

are the (n − 1)th order partial correlation coefficient. When ri,j·l1l2...... ln > 0, the
relationship between i and j is positive; otherwise, it is negative.

We also examined the significance of this correlation by performing hypothesis testing.

t =

√
m − k − 2·ri,j·l1l2...... ln√

1 − r2
i,j·l1l2...... ln−1

(8)

where t is the t-test value, m is the sample size (here m = 34), and k is the degree of
freedom. When t < 0.05, the partial correlation is statistically significant (at the 95%
statistical significance level).
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3. Results

3.1. Surface Water Body Classification Results and Accuracy Validation

The WIF in the YRB was calculated for each year from 1986 to 2019, and the WIFs
of six typical surface water bodies in the YRB are presented in Figure 4. The SWA of
Hongjiannao Lake gradually decreased, whereas the SWA of Longyangxia Reservoir in-
creased. The SWA of the Xiaolangdi Reservoir increased abruptly due to reservoir storage
after it began operating. The SWA of Wuliangsuhai Lake fluctuated sharply between years
due to rainfall and artificial water diversion. It can be seen that the SWA in the check dam
increased gradually, which demonstrates that the check dam constructed in the 1980s not
only intercepted large amounts of sediment but also served as a water storage facility for
local irrigation. It can also be seen that the downstream river regime in Kaifeng changed
dramatically, and the river regime became relatively stable after 2015. It can be reasonably
concluded that the temporal variation in the WIF can effectively reflect the dynamics of the
different surface water bodies in the different regions.

 
Figure 4. Variations in the WIFs of different types of typical water bodies in the YRB during 1986–2019.

The classification accuracy of the surface water bodies derived using different WIF
thresholds was validated based on selected samples of typical types of water bodies. The
results show that the classification accuracies of the water bodies using WIF thresholds
of 5%, 10%, 15%, 25%, 35%, 50%, and 75% were 97.33%, 97.23%, 97.17%, 97.12%, 97.00%,
96.86%, and 96.38%, respectively (Figure 5). The average value of the classification accuracy
was as high as 97.01%, indicating that the surface water identification algorithm used in
this study is very accurate and robust.
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Figure 5. Validation of the accuracy of the water body classification in 2019 using different WIF thresholds.

3.2. Spatial Distribution of the Surface Water Bodies in the YRB

The spatial distribution of permanent and seasonal water bodies derived from the
multi-year average WIF during 1986–2019 is shown in Figure 6. It can be seen that the
seasonal water bodies always existed in the transition areas between the permanent water
bodies and the non-water bodies, and there were more seasonal water bodies near the
river channel.

 

Lake Ealing Long Yangxia Wuliangsu Lake

Kaifeng sectionXiaolangdi ReservoirHongjiannao Lake

Figure 6. The spatial distribution of the surface water bodies derived from the multi-year average
WIF during 1986–2019.
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The different types of SWAs in all of the sub-regions of the YRB were calculated
(Figure 7). For the entire YRB, the permanent water bodies covered an area of 4048.76 km2,
and the seasonal water bodies covered an area of 4661.69 km2, accounting for 46.48% and
53.52% of the surface water bodies in the YRB, respectively. The maximum water body
area was 8710.45 km2, and the annual average water body area was 5853.17 km2. The SWA
in the source area of the upper reaches and the upstream area of the Yellow River (above
Toudaoguai) contained 58.75% of the water bodies in the YRB, while the Huayuankou-
Lijin segment contained 18.86%. The Toudaoguai–Longmen and Longmen–Huayuankou
intervals contained 9.74% and 12.86% of the maximum water bodies in the YRB, respectively.
These results indicate that the YRB was dominated by seasonal water bodies. However, it
can be seen that the Tangnaihai section had far more permanent water bodies than seasonal
water bodies. In the source region, the ratio of permanent to seasonal water bodies was 3.24,
whereas the ratios in the Tangnaihai–Qingtongxia, Qingtongxia–Toudaoguai, Toudaoguai–
Longmen, Longmen–Huayuankou, and Huayuankou–Lijin sections were 1.55, 0.27, 0.70,
0.33, and 0.55, respectively.

Figure 7. The areas of the different types of surface water bodies derived from the multi-year average
WIF during 1986–2019 in the YRB.

Figure 8 shows the statistical areas of the different types of water bodies in the selected
86 sub-basins in the YRB. The Wei River (101.18 km2) was the largest seasonal water body,
and the Xianchuan River (0.07 km2) was the smallest. The Shushui River (58.96 km2) was
the largest permanent water body, and the Mangla River was the smallest (0 km2). In
terms of the major water bodies, the Wei River had the largest area (135.63 km2), and the
Mangla River had the smallest area (0.08 km2). For the annual average water bodies, the
Shushui River (80.94 km2) had the largest area, and the Mangla River (0.03 km2) had the
smallest area.
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Figure 8. Different types of water bodies in each sub-basin derived from the multi-year average WIF
during 1986–2019. Panels (a–d) are for the seasonal, permanent, maximum, and annual average water
bodies, respectively.

3.3. Changes in the SWA in the YRB from 1986 to 2019

Figure 9 shows the continuous dynamic changes in the different types of water bodies—
including the seasonal, permanent, maximum, and annual average water bodies—in the
entire YRB during 1986–2019. The maximum and seasonal water body areas exhibited
typical decreasing trends from 1986 to 2019, but the permanent and annual water areas
exhibited slightly increasing trends. The maximum water area varied from 7984.02 km2 to
13,145.55 km2, i.e., 35.75% higher and 18.48% lower than the average area of 9683.99 km2,
respectively. The permanent water area varied from 4547.8 km2 to 7109.7 km2, i.e., 16.95%
lower and 29.84% higher than the average value (5475.95 km2), respectively. The seasonal
water area varied from 2624.57 km2 to 7595.80 km2 during a single year, i.e., 37.63%
lower and 80.51% higher than the average value (4208.04 km2), respectively. Because
the average water area was based on the pixel level of the water bodies, it reflects the
changes in the water bodies in one year the best. The annual water area varied from
5708.17 km2 to 8344.84 km2, i.e., 16.8% lower and 21.64% higher than the average value
(6860.40 km2), respectively. As is shown in Figure 6, the statistics of the water bodies reveal
decreasing trends in the maximum water body area (p < 0.01) and the seasonal water body
area (p < 0.01) from 1986 to 2019. The permanent water area (p < 0.01) and the annual
water body area (p < 0.01) exhibited increasing trends. The total SWA of the YRB initially
decreased and then increased during the study period. According to the linear regression
model, the annual water area in the YRB increased by 27.2 km2 per year from 1986 to 2019.

Figure 10 depicts the changes in the different types of water bodies in six sub-regions in
the YRB. The seasonal water bodies exhibited decreasing trends in all six sub-regions. The
source area had the largest rate of change of −20.66 km2/a, accounting for 25.99%. The per-
manent water bodies exhibited increasing trends in all six sub-regions. The Huayuankou–
Lijin section had the largest rate of change of 17.1 km2/a, accounting for 34.34%. Among the
remaining subdivisions, in section Huayuankou–Lijin, the largest water body exhibited an
increasing trend (9.33 km2/a); the source area had the largest negative trend (16.85 km2/a),
accounting for 34.87%. Except for in the source region and the Toudaoguai–Longmen
section, which exhibited minor decreasing trends of roughly −1 km2/a, the Huayuankou–
Lijin section continued to have the strongest increasing trend in terms of the annual mean
water bodies (13.85 km2/a), accounting for 44.48% in the entire YRB.
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Figure 9. Continuous dynamic changes in the different types of water bodies—including the seasonal,
permanent, maximum, and annual average water bodies—in the entire YRB during 1986–2019.

Figure 10. Interannual rates of change for the different types of water bodies in six sub-regions from
the upper to the lower reaches in the YRB during 1986–2019.

Figure 11 depicts the rates of change of the various types of water bodies in the
86 sub-basins of the YRB from 1986 to 2019. The Dawen River basin had the highest
permanent SWA growth rate (1.63 km2/a), whereas the Kequ River basin had the highest
permanent SWA reduction rate (−0.24 km2/a). The Yiluohe River (0.54 km2/a) had the
highest seasonal SWA growth rate, and the Wei River (−5.56 km2/a) had the highest
seasonal SWA reduction rate. The Yiluohe River (1.89 km2/a) had the highest maximum
SWA growth rate, and the Wei River (−4.99 km2/a) had the highest maximum SWA
reduction rate. The Dawen River (1.63 km2/a) had the highest annual average SWA growth
rate, and the Huangshui (−0.74 km2/a) had the highest reduction rate.

313



ISPRS Int. J. Geo-Inf. 2022, 11, 305

 

Figure 11. Changes in the different types of water bodies in each sub-basin in the YRB during 1986–2019.
Panels (a–d) are for the permanent, seasonal, maximum, and annual average SWAs, respectively.

3.4. Conversions of Different Types of Surface Water Bodies

The types of conversions between different water bodies from 1986 to 2019 were di-
vided into non-water to seasonal, non-water to permanent, seasonal to non-water, seasonal
to permanent, permanent to non-water, and permanent to seasonal conversions. The spatial
pattern of the different conversion types is shown in Figures 12 and 13. The most common
conversion in the source region was from seasonal to non-water bodies, with a conversion
area of 357.05 km2, while the least common conversion was from non-water bodies to
permanent water bodies, with a conversion area of 39.7 km2. With a conversion area of
241.87 km2, the conversions from seasonal to non-water bodies were the most prevalent in
the Tangnaihai–Qingtongxia section. Conversely, the conversions from non-water bodies
to seasonal water bodies were the least common, with a conversion area of 10.03 km2. The
transition from non-water bodies to permanent water bodies was the least common in the
Qingtongxia–Toudaoguai section, whereas the transition from seasonal to non-water bodies
was the most common, with a conversion area of 414.35 km2. In the Toudaoguai–Longmen
section, the most common transformation was from seasonal to permanent water bodies,
with a conversion area of 104.5 km2, while the least common transformation was from
non-water bodies to seasonal water bodies, with a conversion area of 19.62 km2. Hua’s long
scenario is comparable to that in the Qingtongxia–Toudaoguai section, in which the least
common change was from non-water bodies to permanent water bodies, with a conversion
area of 12.2 km2, while the most frequent transformation was from seasonal to non-water
bodies, with a conversion area of 173.75 km2.

Figure 14 further shows the SWAs of the different water body conversion types in
each sub-basin. It can be seen that the conversion of water bodies in the YRB exhibited
strong spatial heterogeneity. The largest conversion of non-water bodies to permanent
water bodies occurred in the Dawen River (2.58 km2), and the smallest occurred in Jiaqu
(0 km2). The largest conversion of non-water bodies to seasonal water bodies occurred in
the Duoqu (11.23 km2) and the smallest occurred in Jiaqu (0 km2). The largest conversion
of seasonal water bodies to non-water bodies occurred in Huangshui (122.51 km2) and the
smallest occurred in Yangjiachuan (0 km2). The largest conversion of seasonal water bodies
to permanent water bodies occurred in Weihe (18.60 km2) and the smallest occurred in
Hulouhe (0 km2). The largest conversion of permanent water bodies to non-water bodies
occurred in Huangshui (22.31 km2) and the smallest occurred in the Pianguan River (0 km2).
The largest conversion of permanent water bodies to seasonal water bodies occurred in
Huangshui (13.96 km2) and the smallest occurred in the Quchan River (0 km2).
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Liujiaxia Reservoir Wuliangsuhai Lake

Dongping LakeThe downstream channelHudongchagancuo Lake

Zalin Lake

Figure 12. The spatial pattern of the conversion of surface water bodies from 1986 to 2019 in the YRB.
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sub-region in the YRB.
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(a) (b) 

(c) (d) 

(f) (e) 

Figure 14. The different water body conversion types from 1986 to 2019 in the YRB. Panels (a–f) are
for non-water to permanent, non-water to seasonal, seasonal to non-water, seasonal to permanent,
permanent to non-water, and permanent to seasonal conversions, respectively.

3.5. Relationship between SWA and Environmental Factors

In order to explore the impacts of the water supply, atmospheric warming, vegetation
greening, and surface SM on the SWA, we conducted partial correlation analysis to derive
the correlations between the SWA and the Pre, Temp, LAI, and SM. During 1986–2019, the
Pre, LAI, Temp, and SM in the entire YRB all increased, with the rate of change of Pre was
1.69 km2/a, and the rates of change of LAI, Temp, and SM were not as large (Figure 15a).
The partial correlation coefficients between the different types of water bodies and the Pre,
Temp, LAI, and SM are shown in Figure 15b. The different types of water bodies were
negatively correlated with temperature, while the LAI was positively correlated with the
different types of water bodies. The creation of permanent water bodies was aided by an
increase in the surface SM, which led to a small decrease in the seasonal water bodies. None
of the correlations between Pre and the different types of water bodies were significant.

Divergent correlations between the SWA and the Pre, Temp, LAI, and SM were
observed in the 86 sub-basins (Figures 16 and 17). In terms of the permanent water bodies,
in 62.8% of the sub-basins, which were primarily located in the source area, the correlation
between Pre and SWA was negative, and the Longwu River had the highest negative
correlation coefficient. The increase in temperature reduced the SWA in 76.7% of the
watersheds, mostly in the source area and the upper and middle reaches, and the Fen River
had the largest negative correlation coefficient. The correlation between the LAI and SWA
was positive in 86% of the watersheds, spanning the entire YRB, and the Hantai River had
the highest positive correlation coefficient. The correlation between the SM and SWA was
positive in 70.9% of the watersheds, mostly in the middle reaches, and the Kuye River had
the highest positive correlation coefficient. The correlations between Pre and SWA were
essentially not significant, whereas the associations between the SWA and the temperature,
LAI, and SM were all significant to varying degrees.
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(a)                    (b) 

Figure 15. (a) Interannual variations in the environmental factors, and (b) the correlation coefficients
between the environmental factors and the different types of water bodies in the entire YRB. ** denotes
p < 0.01; * denotes p < 0.05.

 

Figure 16. Correlation coefficients between the SWA and the Pre (a), Temp (b), LAI (c), and SM (d)
for the permanent water bodies in each sub-basin.

 

Figure 17. Correlation coefficients between the SWA and the Pre (a), Temp (b), LAI (c), and SM (d)
for the seasonal water bodies in each sub-basin.
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In terms of the seasonal water bodies, the correlation between Pre and SWA was
positive in 67.4% of the sub-basins, mostly in the middle reaches, and the Qin River had the
highest positive correlation coefficient. The SWA decreased with the increasing temperature
in 94.2% of the watersheds in the YRB, and the negative correlation coefficient of Kariqu
was the highest. In 55.8% of the watersheds, LAI was positively correlated with SWA,
primarily in the middle reaches, and the Hashila River had the largest positive effect on the
SWA. In 55.8% of the watersheds, SM was positively correlated with the SWA, primarily in
the source and upstream areas, and Lenaqu had the highest positive correlation coefficient.
LAI was insignificantly correlated with the SWA, but the correlations between the SWA
and the Pre, Temp, and SM were all significant at different levels.

4. Discussion

4.1. Potential Influence Mechanism of the Environmental Factors on the SWA

Natural rainfall is the main water resource of the surface water bodies in the YRB;
however, insignificant correlations between Pre and the different types of water bodies
were observed (Figure 15), which indicate that Pre was not the dominant factor influencing
the change in the SWA in the YRB during 1986–2019. An increase in temperature can
increase the potential evaporation and the atmospheric vapor pressure deficit, accelerating
the actual evaporation of surface water bodies [23]; Xia et al. came to the same conclusion
in their study of the Huai River [26].

According to studies, a considerable increase or decrease in plant cover can alter sur-
face water patterns [50]. An increase in the LAI can lower the land surface albedo, increase
the solar radiation absorbed by the vegetation canopy, and increase the transpiration and
interception evaporation from the vegetation [51] (Figure 18a). An increase in the latent heat
can lead to a decrease in the land surface temperature and an increase in the air humidity,
resulting in a decrease in the evaporation from surface water bodies [52]. Therefore, an
increase in the vegetation LAI contributes to an increase in SWA [53,54], and Zeng et al.
found the same pattern in studies in the Northeast China and Loess Plateau regions [55].
In addition, vegetation improves the surface runoff impedance and greatly enhances the
trapped ET and soil water storage [56], which may alter the development of seasonal water
bodies. Thus, seasonal water bodies are not strongly correlated with the LAI.
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Figure 18. (a) Relationship between ET and LAI in the entire YRB, and (b) the water body area
percentage in the main river channel region and the sub-basins for the permanent and seasonal
water bodies.

Soil moisture is an important variable in the water and energy cycle because it impacts
how rainfall is divided into runoff, surface storage, and infiltration components, and how
entering solar and long-wave radiation is divided into outgoing long-wave radiation, latent
heat, and so on. Soil moisture is an important variable in the water and energy cycle.
The surface temperature, on the other hand, is a key component in establishing the land
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surface’s heat and moisture balance. The surface temperature determines the incoming
long-wave, sensible heat, and surface heat flow. Generally, the surface temperature shows
an increase that corresponds to a decrease in the soil moisture [57]. However, the greater
the surface SM is, the more easily the water storage soil layer becomes saturated, the
longer the surface water body may persist after formation, and the more likely it is that
a permanent water body will be established. As is illustrated in Figures 15 and 16, the
correlation between the SM and the SWA was positive for the permanent water bodies and
negative for the seasonal water bodies.

Due to the definition of permanent and seasonal water bodies, a rise in permanent
water bodies equals a loss in seasonal water bodies, with opposite trends in their changes
and thus major variations in the impact of influencing variables on both. It should be noted
that compared with the seasonal water bodies, the SWA of the permanent water bodies
was less strongly correlated with the Pre and Temp, and was even negatively correlated
with Pre (Figures 15 and 16). This is mainly because most of the permanent water bodies
are distributed in the main channel area (Figure 18b), and the storage and regulation effects
of the large reservoirs located on the main channel have significantly influenced the SWA
change in the channel area.

In contrast, the seasonal water bodies were generally located in the sub-basins where
the effect of small-size reservoirs on SWA was less than that from large reservoirs located
in the main channel; thus, the SWA change of the seasonal water bodies was more de-
pendent on the natural precipitation and hydrological processes. However, the massive
expansion of vegetation and water conservation engineering measures have significantly
altered the precipitation redistribution through canopy interception, litter, and soil absorp-
tion [58,59], resulting in an insignificant correlation between the precipitation and surface
water area [60].

4.2. Uncertainties

Despite the F-mask method having removed some clouds and cloud shadows from the
remote sensing imagery, undetected thin clouds or mountain shadow areas still had an im-
pact on the water body extraction in this investigation. Although the adopted hybrid index
rule set for the water extraction had a high degree of accuracy, there were still some recog-
nition mistakes based on comparisons with the Google Earth high-resolution photographs.
The WIF thresholds used to distinguish between permanent and seasonal water bodies
in this study were based on the findings of a vast number of previous studies, but these
thresholds may vary with the location. In this study, the correlations between the SWA and
various influencing factors were calculated using the partial correlation coefficient method,
which only statistically analyzed the degree of correlation between the two changes, and
did not quantitatively calculate the effects of the various influencing factors on the SWA.
However, this study has taken into account the effects of the interactions between several
contributing factors, which could reduce some uncertainties of the influence analysis. It
should be also noted that due to the lack of groundwater observations, the effect of the
groundwater supply on the SWA was neglected in this study.

5. Conclusions

In this study, we analyzed the spatial–temporal variability of the SWAs of four types of
water bodies (permanent, seasonal, maximum, and average extents) and their relationships
with precipitation (Pre), temperature (Temp), LAI, and surface SM using all of the available
Landsat images acquired from 1986 to 2019 and a water and vegetation index-based method.
The results demonstrate that the accuracy of the water body identification method used in
this study was 97%, according to an accuracy verification based on high-resolution Google
Earth images.

The YRB’s permanent SWA increased at a rate of 49.82 km2/y, with the largest
proportion—34.34%—occurring in the downstream area, while the seasonal SWA decreased
at a rate of 79.18 km2/y, with the largest proportion—25.99%—occurring in the source
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area. In 50 of the 86 sub-basins, the SWA of the permanent water bodies increased, and
these sub-basins were mainly located in the middle and lower reaches. The SWA of the
seasonal water bodies increased in five of the sub-basins, accounting for just 5.8% of the
total, indicating that the changes in the SWA in the sub-basin areas were the primary driver
of the decrease in the SWA of the seasonal water bodies. The conversions from seasonal
water bodies to non-water and from seasonal to permanent water bodies were the dominant
trends from 1986 to 2019 in the YRB.

For the permanent water bodies, the SWA was less strongly correlated with Pre and
Temp, and it was negatively correlated with Pre (Figures 15 and 16) because most of the
permanent water bodies were distributed in the main channel area (Figure 18a), and the
storage and regulation effects of the large terrace reservoirs located on the main channel
significantly influenced the changes in the SWA in the channel area.

The seasonal water bodies were primarily located in the sub-basins, and the surface
water was mostly controlled by natural hydrological processes. Thus, the SWA was more
dependent on the climatic factors. An increase in the surface SM can lead to the estab-
lishment of permanent water bodies, as well as a reduction in seasonal water bodies. By
modifying the local climatic conditions, a considerable increase in the ET due to increased
vegetation may decrease the evaporation of the surface water, partially compensating for
the faster evaporation of the water surface caused by the increased air temperature.
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Abstract: Climate variability, land use and land cover changes (LULCC) have a considerable impact
on runoff–erosion processes. This study analyzed the relationships between climate variability and
spatiotemporal LULCC on runoff–erosion processes in different scenarios of land use and land cover
(LULC) for the Almas River basin, located in the Cerrado biome in Brazil. Landsat images from 1991,
2006, and 2017 were used to analyze changes and the LULC scenarios. Two simulations based on the
Soil and Water Assessment Tool (SWAT) were compared: (1) default application using the standard
model database (SWATd), and (2) application using remote sensing multiple gridded datasets (albedo
and leaf area index) downloaded using the Google Earth Engine (SWATrs). In addition, the SWAT
model was applied to analyze the impacts of streamflow and erosion in two hypothetical scenarios of
LULC. The first scenario was the optimistic scenario (OS), which represents the sustainable use and
preservation of natural vegetation, emphasizing the recovery of permanent preservation areas close
to watercourses, hilltops, and mountains, based on the Brazilian forest code. The second scenario
was the pessimistic scenario (PS), which presents increased deforestation and expansion of farming
activities. The results of the LULC changes show that between 1991 and 2017, the area occupied by
agriculture and livestock increased by 75.38%. These results confirmed an increase in the sugarcane
plantation and the number of cattle in the basin. The SWAT results showed that the difference
between the simulated streamflow for the PS was 26.42%, compared with the OS. The sediment yield
average estimation in the PS was 0.035 ton/ha/year, whereas in the OS, it was 0.025 ton/ha/year
(i.e., a decrease of 21.88%). The results demonstrated that the basin has a greater predisposition
for increased streamflow and sediment yield due to the LULC changes. In addition, measures to
contain the increase in agriculture should be analyzed by regional managers to reduce soil erosion in
this biome.

Keywords: agricultural data; geoinformation; LULC changes; modeling; observation; SWAT

1. Introduction

Land use and land cover changes (LULCC) caused by the advance of agriculture have
been causing severe environmental problems worldwide, mainly in Brazil [1]. Some of
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the LULCC are caused by climate variability that is independent of human activity [2];
however, in the Cerrado biome in Brazil, especially in an environment like the Almas
River basin, the LULCC have been caused by the intense advancement of agriculture
(e.g., sugarcane) [3]. LULCC lead to decreased fauna and flora biodiversity [4], and they
affect streamflow and sediment yield [5]. This study investigates the relationships between
LULCC and runoff–erosion processes using remote sensing multiple gridded datasets. In
recent years, the relationship between LULC, climate, streamflow, and sediment yield has
attracted the attention of society and researchers [6]; however, there is a lack of data to
create a scientific basis for subjects such as the properties of the streamflow and sediment
yield in the Savanna biome (e.g., the Cerrado biome of Brazil). Knowing these data is
crucial to control erosion and sedimentation effectively because plans made without being
based on scientific evidence can cause greater expense.

Although the importance of studying the relationships between the runoff–erosion
process and LULCC using remote sensing multiple gridded datasets is well-understood, de-
termining the spatial distribution of the runoff–erosion process is an essential prerequisite
for the establishment of erosion management plans in any catchment. The advancement
of agriculture and the influence of different LULC scenarios has been significantly stud-
ied [7–10]; however, research involving the impacts of LULC on runoff–erosion processes
using estimated satellite data and runoff–erosion models in some regions of the planet,
such as Brazil, is still scarce [11–13]. In addition, the published studies did not carry out
estimates of runoff and sediment yield considering different LULC scenarios at watershed
scales. In this sense, this study can be used in other hydrologically homogeneous regions
because the methodology used can be easily replicated in other regions with the same type
of data used in this study.

In Brazil, LULCC have impacted the quality and quantity of water in the basins [1].
This change is due to deforestation for the sale of wood and the increase in agricultural activ-
ities [14]. Such a change intensified from the 1990s onwards, causing a reduction in the area
occupied with native vegetation cover. The expansion of cattle ranching played an essential
role in the historical process of occupation of this biome, as it has transformed cattle raising
in recent decades into one of the main economic activities within this biome [15–17]. Since
the 1960s, the Cerrado biome has been marked by constant tax incentives and investments
in agriculture, which favored the increase in agricultural activity and pastures [18]. This
biome has been occupied due to an agricultural model focused on agribusiness without
worrying about environmental preservation, which occurs in large parts of Brazil [19,20]. In
recent years, extensive areas of native vegetation have been deforested because of LULCC,
with the conversion of native vegetation into agricultural spaces and pastures [21]. The
intense pace of deforestation in the Cerrado biome has caused several environmental
impacts, such as ecosystem fragmentation, reduced soil quality, increased water erosion,
siltation of water bodies, and increased sediment yield [22]. On the other hand, ignoring
any historical LULCC and climatic variations within the Cerrado area means ignoring the
cause-and-effect relationships of the hydrological cycle and the physical characteristics of a
river basin, which can lead to numerous environmental problems.

The problem of the impacts of agricultural expansion and its implications on runoff–
erosion processes in the Cerrado biome has been widely studied [23–26]; however, studies
involving the flow behavior and the sediment yield in hypothetical LULC scenarios at a
basin-scale in this Brazilian biome are still scarce [27–29]. For these reasons, the impacts
of LULCC on streamflow and sediment yield still need to be further investigated in the
Cerrado biome, which is of extreme importance for water resources and electrical produc-
tion in Brazil [30]. Understanding the runoff–erosion behavior of this basin is vital for
good planning of the service life of the Serra da Mesa hydroelectric power plant for energy
generation. This hydroelectric plant totals 1275 MW and is strategic for the development
of Brazil, as it produces electricity for all Brazilian regions [31]; therefore, knowing the
contribution of sediments and inflow is essential for decision makers of water resources to
estimate the reservoir service life and plan the water supply and electric energy generation.
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This study also explores the applicability of remote sensing in ungauged basins to
contribute to new research avenues on data-scarce regions, such as the Cerrado biome
in Brazil. The availability of input parameter data for physically-based models is one
of the most significant challenges for applying hydrological models today. This paper
demonstrates how LULC, soil parameters, albedo, and leaf area index (LAI), obtained from
remote sensing datasets, can successfully calibrate distributed hydrological models. In
addition, this study seeks to analyze the satellite-estimated data quality for use as input data
in hydrological modeling to estimate runoff and sediment yield at a basin scale [32,33]. This
application would open up many possibilities in this biome where hydrological information
is scarce, and it would help to improve the simulation accuracy. In this study, we choose the
Almas River basin, which is representative of a typical humid tropical basin in the Cerrado
biome in Brazil.

The Soil and Water Assessment Tool (SWAT) model has already been widely applied
to basins worldwide [34–37]; however, this model performs poorly for tropical areas
using the standard model dataset’s soil parameters (e.g., albedo and LAI). Thus, many
improvements to the SWAT model have been developed, such as SWAT-T [36]. In this study,
two simulations based on the SWAT model are compared: (1) default application using
the standard model database (SWATd); and (2) application using remote sensing multiple
gridded datasets (albedo and LAI), downloaded using the Google Earth Engine (SWATrs).
Thus, the objective of this study is to analyze the relationships between runoff–erosion
processes and LULC under agricultural shift, comparing two simulations of the SWAT
model, with and without remote sensing multiple gridded datasets, in a typical river basin
of the Cerrado biome in Brazil.

2. Materials and Methods

2.1. Study Area

The Almas River basin has an area of 18,838 km2 and is within the Cerrado biome. This
basin is located between latitudes 14◦37′00′′ S and 16◦15′00′′ S and longitudes 50◦08′00′′ W
and 48◦49′00′′ W (Figure 1). The Cerrado biome occupies an area of approximately
2,036,448 km2 (24%) of the territory of Brazil. It is the second-largest biome in South
America [5], recognized for the variability of the phytophysiognomy and the biodiversity
of its flora and very rich fauna, with numerous species of plants and animals [38]. From a
hydrological point of view, the Cerrado biome plays a fundamental role in producing water
that flows into the main Brazilian river basins, such as Tocantins-Araguaia, Amazonia,
Paraná, Paraguay, and São Francisco [39]. The Almas River basin is fundamental for energy
generation, as is the Serra da Mesa Hydroelectric Power Plant, located in the basin outlet.
This hydroelectric plant was inaugurated in March 1997 with a water volume capacity
equivalent to 54.4 billion m3 [40]. This plant is essential for power generation, supporting
South, Southeast, Midwest, and North Brazil [41]. This basin has species of heteroge-
neous vegetation with arboreal and forest, herbaceous-shrubby, and herbaceous-grassy
strata, with spaced and gnarled trees, which are generally endowed with thick bark deep
roots [42]. This basin is represented by several phytophysiognomies, such as savannah
formations (Cerradão/Forest and typical Savanna), grassy formations (grassy field, clean
field, and rupestrian field), and forest formations (riparian forest, gallery forest, dry forest,
and Cerradão).

According to the Köppen classification, the region’s climate is Aw type (warm sub-
humid tropical), and the average annual rainfall is approximately 1800 mm [43]. This
region is marked by two well-defined seasons, a rainy season from October to April,
with an average monthly rainfall of 250 mm, and a dry season from May to September
with an average monthly of 10 mm [44]. The primary meteorological phenomenon that
influences rainfall in the region during the rainy season is the South Atlantic Convergence
Zone, formed from the arrival of subtropical fronts in central Brazil and is associated
with moisture from the Amazon region, favoring the occurrence of rainfalls with large
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volumes [45]. Temperatures in the basin range from 17 ◦C to 34 ◦C, with an average relative
humidity of approximately 80% [46].

Figure 1. The geographic location of the Almas River basin in Brazil, Goiás State, and the federal
district (DF), altimetry of the basin, rain gauges, and streamflow stations used in this study.

The population in this basin is approximately 729,108 inhabitants, being mainly com-
posed of an urban population (89%) [47]. The demographic structure of the basin has
undergone an intense transformation since 1970, when the population changed from rural
to urban. This phenomenon directly results from the change in economic and production
base that this region has gone through. The expansion of the industrial park, notably that
of agribusiness, and the strengthening of the service sector, boosted the local economy,
attracting immigrants [48].

This basin has a great diversity of habitats. Since the 1970s, this region has suffered
several environmental impacts on flora due to fragmentation and habitat loss, which affect
the region’s fauna [49]. These modifications cause a disturbance and dispersion of the
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gene flow, influencing population density and genetic diversity, and occasionally causing
local extinctions [50]. In addition to the local and regional effects of agricultural activities,
global change is another critical factor that can impact the diversity and distribution
of animal species such as the Quenquém (Acromyrmex diasi) and Ground-web Spider
(Anapistula guyri) [49], and vegetation such as the Baru tree (Dipteryx alata Vogel) [50].
According to Ref. [49], there are currently more than 130 species of amphibians, birds,
aquatic invertebrates, terrestrial invertebrates, mammals, fish, and reptiles in the Cerrado
biome that are threatened with extinction.

There are large extensions of crops with intense mechanization and significant in-
vestments in technology and inputs in the Almas River basin. The region’s crops are also
characterized by the diversification of products, such as rice, sugarcane, beans, corn, soy,
and sorghum. Agricultural production in the region is geared towards meeting regional
particularities and commercial prospects as the demand for the products in international
markets increases [51,52].

2.2. Evolution of Agriculture in the Region

This study collected data on the planted area of temporary agriculture of rice, sugar-
cane, beans, corn, soybean, and sorghum for 1991, 2000, 2006, 2011, and 2017 [53]. These
years were chosen due to the advance of LULCC for agriculture and livestock. The data are
available on the Automatic Recovery System (SIDRA)/Municipal Agricultural Production
platform [54]. In addition, the data from the Municipal Cattle Raising Survey for 1991,
2000, 2006, 2011, 2016, and 2017 were also used to analyze the impact of changes in LULC
arising from cattle ranching. These databases are the only official agricultural data sources
in Brazil [53–57].

2.3. Hydrometeorological and Sediment Yield Data

Several data were used, such as the daily data of maximum and minimum air tem-
peratures (◦C), incident solar radiation (MJ/m2/day), wind speed (m/s), and relative
air humidity (%) from the Pirenópolis and Goiás meteorological stations. These data are
from 1971 to 1994 and were collected from the Meteorological Database for Teaching and
Research platform [58]. Those data were used in the modeling to analyze the behavior of
the hydrological processes within the basin. For the rainfall time series, daily data from five
rain gauges from 1971 to 1994 were used: Jaraguá (ID #01549003), Uruana (ID #01549009),
HPP Serra da Mesa Fazenda Cajupira (ID #01449005), Goianésia (ID #01549001), and HPP
Serra da Mesa Ceres (ID #01549000) (Figure 1). In addition, streamflow data were acquired
for the following stream stations: Colônia dos Americanos (ID #20490000) and Jaraguá (ID
#20100000), for the period from 1974 to 1994. Rainfall and streamflow data were obtained
from the website of the National Water Agency [59].

The validation of the SWAT model was performed by comparing calculated and
observed sediment yield data. The estimated sediment yield (TS), in ton/ha/year, was
determined according to:

TS= 0.0864 × Q × CSS (1)

where Q is the water discharge (m3/s), and CSS is the suspended sediment concentration
(mg/L). After calculating the suspended sediment discharge for each measurement, the
sediment rating curve for each station was then established. Two criteria were used to
evaluate the sediment rating curve quality: (a) the first was that the R2 value must be higher
than 60%, and (b) the second involved a visual assessment of how closely the exponential
form of the generated curve followed the measured points.

The annual sediment transported by the Almas River basin was calculated, taking
into account the discharge curve and the daily water flow dataset, the latter of which was
obtained from the National Water Agency [59]. To develop this curve, total solids in the
water and the respective discharge were collected between 2000 and 2019 in the São Félix
do Araguaia gauging station (code 26350000), located near the study area, more precisely
between coordinates latitude 11◦37′02′′ S and longitude 50◦40′10′′ W. Measured CSS data
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were collected, which generated a good correlation curve between the flow data and the
measured suspended sediment. After 2019, data were not used because the monitoring
at the gauging station was discontinued after this date. The relationship between TS and
observed discharge was obtained, which presented an R2 greater than 0.95 (Figure 2). In
addition, the results obtained were discussed and compared to other studies, i.e., [60–62].

Figure 2. Correlation between annual sediment yield and water discharge.

2.4. SWAT Model

In the SWAT, the land phase of the streamflow process, the driving force behind the
movement of sediments, nutrients, or pesticides, was examined. In the SWAT model, the
water balance is based on the following equation:

SWt= SW0 +
t

∑
i=1

(
Pi − Qi − ETi − Ri − QGi

)
(2)

where SWt is the final soil water content (mm), SW0 is the initial soil water content on day
i (mm), t is the time (days), P is the rainfall depth for the day i (mm), Q is the amount of
daily streamflow on day i (mm), ET is the amount of evapotranspiration on day i (mm), R
is the amount of water entering the vadose zone from the soil profile on day i (mm), and
QG is the amount of return flow on day i (mm).

The streamflow was estimated using the Soil Conservation Service (SCS) curve number
(CN) method. The amount of daily streamflow is given as:

Q =
(R − Ia)

2

(R − Ia + S)
(3)

where Ia is the initial abstractions, including surface storage, interception, and infiltration
prior to runoff (mm), and S is the retention parameter (mm). The retention parameter is
defined as:

S = 25.4 ×
(

1000
CN

− 10
)

(4)

where CN is the applicable curve number for the day. The initial abstractions, Ia, is
commonly approximated as 0.2 × S; hence, Equation (3) can be given as:

Q =
(R − 0.2 × S)2

(R − 8 × S)
(5)

The peak streamflow rate, which is the maximum runoff rate that occurs with a given
rainfall event, is an indicator of the erosive power of a storm. It is used to calculate the
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sediment loss from the unit. SWAT calculates the peak runoff rate with a modified rational
method, which is given as:

qpeak =
C × I × A

3.6
(6)

where qpeak is the peak runoff rate (m3/s), C is the runoff coefficient, I is the rainfall intensity
(mm/h), A is the sub-catchment area (km2), and 3.6 is a unit conversion factor from (mm/h)
(km2) to m3/s.

The SWAT model uses the soil evaporation compensation factor (ESCO) to estimate
the evaporation distribution better. The ESCO parameter must be between 0.01 and 1.0
and is used to adjust the depth distribution for evaporation from the soil to account for
the effect of capillary action, crusting, and cracks. Calibrating this parameter is considered
critical since it may vary from one catchment to another, even within the same geographical
area. As the value for ESCO is reduced, the model can extract more of the evaporative
demand from lower levels. ESCO coefficient is a calibration parameter and not a property
that can be directly measured.

The SWAT model calculates sediment yield for each sub-basin using the Modified
Universal Soil Loss Equation (MUSLE) [63]. MUSLE is a modified version of the Universal
Soil Loss Equation (USLE) [64]. The MUSLE is given as:

SY = 11.8 × (Q × qp × Ah)0.56 × K × C × P × LS × CFRG (7)

where SY is the sediment yield on a given day (t), Q is the surface runoff volume (mm),
qp is the peak runoff rate (m3/s), Ah is the area of the hydrologic response units (HRU) in
ha, K is the soil erodibility factor (t·ha/MJ/mm), C is the USLE cover and management
factor (dimensionless), P is the USLE support practice factor (dimensionless), LS is the
USLE topographic factor, and CFRG is the coarse fragmentation factor (dimensionless).

The SWAT allows simultaneous computations in each sub-basin and routes the water,
sediment, and nutrients from the sub-basin outlets to the basin outlet. The routing model
consists of two components, deposition and degradation, which operate simultaneously.
The amount of sediment finally reaching the basin outlet, Sout, is given as:

Sout = Sin − Sd + Dt (8)

where Sin is the sediment entering the last or final reach, Sd is the sediment deposited, and
Dt is the total degradation. The total degradation is the sum of re-entrainment and bed
degradation components, and it is given as:

DT = (Dr + DB)× (1 − DR) (9)

where Dr is the sediment re-entrained, DB is the bed material degradation component,
and DR is the sediment delivery ratio. Detailed theoretical documentation for the model
is given by Neitsch [65]. More information about SWAT’s equations can be founded in
Arnold et al. [66], Silva et al. [67], Gassman et al. [68], and Neitsch et al. [69].

2.5. Application of the SWAT Model and Performance Indices

The Soil and Water Assessment Tool (SWAT) model [66] simulated the streamflow
and sediment yield using different LULC scenarios for the Almas River basin. SWAT is
a semi-distributed and continuous over time model that simulates the streamflow and
sediment yield processes for long periods. The digital elevation model (DEM) used for
the SWAT application was the Shuttle Radar Topographic Mission (SRTM) 1 Arc-Second
Global, with a resolution of 30 m × 30 m. This DEM was used to determine the sub-basins
(Figure 3a) and the slopes within the basin (Figure 3b). In this study, the LULC used in the
modeling was obtained from Landsat 5/TM images (Figure 3c) path 222, and rows 070 and
071, downloaded from the USGS platform [70].
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Figure 3. (a) Digital elevation model (DEM), (b) slopes, (c) soil types, (d) LULC, (e) albedo, and
(f) LAI.

In this study, we chose to define the scenarios using Landsat image classification based
on the research team’s expertise in the chosen method and its knowledge of the study area.
The classification validation process was based on the confusion matrix, using the user’s
accuracy, producer’s accuracy, omission, and commission measures [71]. Fieldwork in the

330



ISPRS Int. J. Geo-Inf. 2022, 11, 272

basin was carried out during research development when data on LULC were collected
to check the errors and successes of the classification. The classified map was statistically
tested with random validation samples collected from orbital imagery and samples verified
in the field. An independent collection of points of each LULC class was used to validate the
classified classes that remained unchanged in the analyzed image. A group of 800 samples
was randomly selected after image fusion and checked in the field.

The accuracy statistics for the classification and image commission, and the omission
results, showed that the accuracy ranged from 81.5% to 84.6%, and the kappa coefficient
ranged from 86.6% to 89.9%. The overall kappa coefficient and overall accuracy calculated
for the entire image were 89.3% and 79.7%, respectively. The results of commission and
omission show that all classes had suitable adjustments in the classification. To analyze
the accuracy of image classification, the kappa index was used. This test is a discrete
multivariate measure of actual concordance minus the concordance due to chance [1,3]
(i.e., it is a measure of the consistency between the classification and the reference data).
The kappa index (κ) can be calculated by:

κ =
Do − De

1 − De
(10)

where Do represents the accuracy of the observed classifications, and De represents the
accuracy of the expected classifications.

The soil map (Figure 3d) used was on a 1:250,000 scale [72]. The albedo data were
obtained from the MCD43A3 V6 Albedo Model dataset (Figure 3d), a product used daily
for 16 days, with spatial resolution of 500 m, for the 2000–2018 period [73]. The LAI was
obtained using the MCD15A3H V6 level 4, a product from a 4-day composite dataset with
spatial resolution of 500 m (Figure 3e). For this product, the algorithm chooses the best
pixel available from all the acquisitions of both MODIS sensors located on NASA’s Terra
and Aqua satellites within 4 days [74]. Albedo and LAI data were used for simulations
using the SWAT model with grids at 500 m. All spatial bases were processed using ArcGIS
10.2® software.

2.6. Calibration, Validation, and Sensitivity Analysis

The Nash–Sutcliffe (NS) efficiency coefficient [75], the Pearson coefficient of determi-
nation (R2), and the BIAS percentage (PBIAS) were used to evaluate the efficiency of the
simulated data in the SWAT model. In addition, the performance of the calibration and
validation results of the SWAT model was assessed based on the criteria recommended
by Moriasi et al. [76]. These criteria establish guidelines for evaluating the model’s per-
formance by comparing observed and simulated values. A perfect simulation, which is
unlikely to happen, would have NS = 1, R2 = 1, and PBIAS = 0%. The calibrated parameters
and initial intervals are summarized in Table 1.

Table 1. Parameters and ranges of variation used in the model calibration.

Parameter Description
Inferior Limit Upper Limit Initial Simulation Best Found Value Adjusted Value

Method
SWATd SWATrs SWATd SWATrs SWATd SWATrs SWATd SWATrs SWATd SWATrs

ALPHA_BF Baseflow alpha
factor (days) 0 0 1 1 0.048 0.048 0.7871 0.7871 0.7871 0.7871 −

CN2
Initial SCS runoff curve

number for moisture
condition II

−1 −1 100 100 79 79 −0.407249 −0.407249 47 47 ×

SOL_K Saturated hydraulic
conductivity (mm/h) −0.8 −0.8 100 100 2.3 2.3 15.49457 15.49457 38 38 ×

ESCO Soil evaporation
compensation factor 0.5 0.5 1.0 1.0 0.95 0.95 0.7195 0.7195 0.7195 0.7195 −

GW_DELAY Aquifer recharge
time (days) −30 −30 450 450 31 31 168.5042 168.5042 199.5042 199.5042 +
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Table 1. Cont.

Parameter Description
Inferior Limit Upper Limit Initial Simulation Best Found Value Adjusted Value

Method
SWATd SWATrs SWATd SWATrs SWATd SWATrs SWATd SWATrs SWATd SWATrs

SURLAG

Delay coefficient of
runoff (dimensionless).

Smaller values represent
greater delay in runoff

0 0 24 24 2 2 20.7109 20.7109 20.7109 20.7109 −

SOL_AWC
Available water capacity

of the soil layer (mm
water /mm soil)

−0.25 −0.25 1 1 0.18 0.18 0.189402 0.189402 0.218 0.218 ×

CH_N2 Manning’s n value for
the main channel 0 0 0.3 0.3 0.014 0.014 0.176768 0.176768 0.176768 0.176768 −

GWQMN

Threshold depth of water
in the shallow aquifer

required for return flow
to occur (mm water)

0 0 1000 1000 1000 1000 826.7252 826.7252 826.7252 826.7252 −

RCHRG_DP Deep aquifer
percolation fraction 0.1 0.1 1 1 0.05 0.05 0.767757 0.767757 0.088 0.088 ×

GW_REVAP Groundwater coefficient 0 0 0.2 0.2 0.02 0.02 0.1473 0.1473 0.1473 0.1473 −

CANMX
Maximum water storage

in the vegetative
canopy (mm)

0 0 100 100 0 0 52.6664 52.6664 52.6664 52.6664 −

SOL_ALB

The ratio of the amount
of solar radiation

reflected by a body to the
amount incident upon its

soil albedo

— 0.10 — 0.80 — 0.10 — 0.70 — 0.70 −

BLAI
Potential maximum of

leaf area index for
the plant

— 0 — 7 — 0 — 3 — 3 −

Values: substitution (−), addition (+), and multiplication (×).

The calibration of the SWAT model was performed using the observed streamflow
data from the Jaraguá and Colônia dos Americanos streamflow stations for the period
from 1 January 1974 to 31 December 1980. The period for the validation process was
from 1 January 1985 to 31 December 1994. The SWAT model possesses many parameters
that can be used; thus, the most sensitive parameters were initially analyzed during the
calibration process. This procedure was possible using the SWAT calibration and uncer-
tainty program—SWAT-CUP [77]. To determine the parameter values in the calibration
and the uncertainty of hydrological modeling, the Sequential Uncertainty Fitting (SUFI-
2) algorithm [78] was used. Two sensitivity analysis methods were performed (i.e., the
Latin hypercube and the one-factor-at-a-time methods [77]). A sensitivity analysis was
performed using these two methods, based on observed and simulated streamflow data.
The percentage of measured data bracketed by the 95% prediction boundary (p-factor)
was used to quantify all the uncertainties associated with the SWAT model [79]. In this
study, a sensitivity analysis of the SWAT model parameters was performed using t-stat and
p-value [61]. The t-stat was used to provide a sensitivity measurement, and the higher its
value is, the more sensitive the parameter would be. After this step, 19 parameters were
selected for further calibration.

The SWAT model was applied based on two datasets: (1) without RS data and (2)
using RS data obtained using GEE. The RS data corresponded to soil albedo and LAI.
These parameters are highly complex and challenging to obtain in the field. RS-estimated
values can improve the calibration of physically-based models, such as the SWAT model,
for ungauged or poorly gauged basins; thus, this study involves essential RS products
obtained by the MODIS sensor using advanced techniques in the GEE environment. Both
products and techniques used in this study are of great interest to the geo-information user
community, which focuses on hydrological modeling. Finally, the data were downloaded
and organized into the standard SWAT input format.

Landsat and SRTM data have the exact spatial resolution. They are imported directly
into the SWAT model, which discretizes the basin into portions that possess unique land
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use/management/soil attributes, called HRU. The MODIS data, which have a spatial
resolution different from the others, were treated and organized in a regular grid of 10 km.
These datasets were imported into the SWAT model in tabular format, representing a
regular mesh of stations. In this study, the sediment yield was divided into classes to
represent better the spatialization of the results obtained. As described in Table 2, the data
were classified to represent the spatialization of the sediment yield in the study area.

Table 2. Classes for sediment yield used in this study.

Number Class Sediment Yield (ton/ha/Year)

1 Very low <0.01
2 Low 0.01–0.05
3 Moderate 0.06–0.10
4 High 0.11–0.15
5 Very high 0.16–0.20
6 Extremely high >0.20

2.7. Recent Changes in LULC and Future LULC Scenarios

The years 1991, 2006, and 2017 were analyzed to assess changes in LULC. These years
were selected because they contain dates with available images without clouds and with
the most prolonged time interval to analyze changes in LULC for this basin. The LULC
classification was performed using the maximum likelihood unsupervised classification
method. The mappings used in this study were (a) LULC for 1991 (S1) using images from
the TM/LANDSAT-5 sensor dated 13 June 1991, (b) LULC for 2006 (S2) using images of the
TM/LANDSAT-5 sensor dated 13 June 2006, and (c) LULC for 2017 (S3) using images from
the OLI/LANDSAT-8 sensor dated 13 June 2017. For the Almas River basin, the LULC
identified were the following classes: cerradão/forest, typical Savanna, riparian forest,
agriculture, pasture, and built-up area.

Two hypothetical LULC scenarios were proposed to evaluate the runoff–erosion
processes in the basin, the (a) optimistic scenario (OS) and the (b) pessimistic scenario
(PS). Based on the Brazilian forest code, the OS is considered the ideal LULC and was
developed based on LULC S3 and the hypothetical recovery of permanent preservation
areas close to watercourses, hilltops, and mountains. The future PS was simulated based
on land use transformations that follow a historical trend in the basin, such as increased
deforestation and growth in agricultural activities. The scenarios OS and PS were compared
with observed and calibrated streamflows, the natural streamflow data measured at the
streamflow stations, and simulated streamflow using the SWAT model based on the S1, OS,
and PS scenarios. In addition, the OS maintained the existing native vegetation classes and
estimated an increase in the remnant areas of the Cerrado biome (Cerradão/forest, typical
Savanna, and riparian forest). The hypothetical PS is based on increased deforestation
and the growth of agricultural activities, based on recent transformations of LULC that
have taken place in recent years. The OS and PS scenarios were used as input data in the
SWAT model, along with parameter values and meteorological data used in the calibration
period. These simulations made it possible to compare the streamflow and sediment yield
that occurred in these two scenarios with the simulations that took place in S1. Thus, the
impacts of LULC changes on runoff–erosion processes are analyzed.

The different products used in this study aimed to provide the best historical repre-
sentation of the analyzed processes. Unfortunately, the various datasets used do not have
the same period. This limitation did not influence the methodology since the different
products allowed for analyzing the phenomena separately. The integrated analysis of
different products allowed a study in different stages: (a) LULCC, (b) simulation of LULC
scenarios, (c) calibration and validation of the SWAT model with the longest existing time
series, (d) validation of the sediment yield using the largest amount of data available, and
(e) simulation of the runoff–erosion process in different LULC scenarios. Table 3 shows the
period and source from which each product was obtained.
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Table 3. Datasets, periods, and sources used in this study.

Dataset Period Source

Land use and land cover 1991–2017 https://earthexplorer.usgs.gov (accessed
on 12 March 2021)

Agricultural production
data 1991–2017 https://sidra.ibge.gov.br/ (accessed on 13

February 2021)

Weather data 1971–1994 http://www.inmet.gov.br/projetos/rede/
pesquisa (accessed on 11 November 2021)

Hydrometeorological data 1971–1994 http://www.snirh.gov.br/hidroweb
(accessed on 01 October 2021)

Albedo data 2000–2018 https://lpdaac.usgs.gov/products/mcd4
3a3v006 (accessed on 20 November 2021)

Leaf area index data 2000–2018 https://lpdaac.usgs.gov/products/mod1
5a2hv006 (accessed on 21 December 2021)

Total solid discharge 2000–2019 http://www.snirh.gov.br/hidroweb
(accessed on 15 January 2022)

3. Results

3.1. Changes in LULC between 1991 and 2017

Figure 4a–c shows the spatial distribution of LULC in S1, S2, and S3. It is noticed that
the agriculture and pasture classes occur in all portions of the basin and that in S3, there is
an increase in these classes compared with S1 and S2. These classes predominate in the
basin, and the agriculture class has constantly been increasing, whereas the pasture class
showed a small oscillation. The results show that in S1, the agriculture and pasture classes
accounted for 56.41% of the basin area. An advance can be seen in the agriculture and
pasture classes, which influenced the growth of agriculture in the basin, mainly due to the
increase in sugarcane being planted and cattle being raised in the area. Food crops of corn,
beans, and rice were of lesser importance in the agricultural class of the region [20,21].

Figure 4. Land use and cover mapping of the Almas River basin in (a) 1991, (b) 2006, and (c) 2017.

The results show that in S3, the agriculture and pasture classes occupy approximately
71% of the basin area. In comparison, the Cerradão/forest and typical Savanna classes
occupy 21%, whereas the other classes occupy only 8% of the basin’s total area (Table 4).
It should be noted that the pasture areas have expanded over the gently undulating and
moderately undulating relief areas.
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Table 4. Classified area and temporal variation of LULC for the Almas River basin.

LULC
S1 (1991) S2 (2006) Variation

S1–S2 (%)

S3 (2017) Variation
S1–S3 (%)Area (km2) Area (%) Area (km2) Area (%) Area (km2) Area (%)

Pasture 5427.32 28.8 6364.46 33.8 17.27 6791.82 36.1 25.14
Agriculture 3620.07 19.2 5790.45 30.7 59.95 6348.93 33.7 75.38

Cerradão/Forest 2366.42 12.6 2028.36 10.8 −14.29 2008.49 10.7 −15.13
Typical Savanna 1386.46 7.4 1936.24 10.3 39.65 1937.62 10.3 39.75
Riparian Forest 1566.73 8.3 1254.00 6.7 −19.96 956.39 5.1 −38.96

Exposed soil 1667.71 8.9 648.65 3.4 −61.11 402 2.1 −75.90
Water bodies 95.80 0.5 112.24 0.6 17.16 104.94 0.6 9.54
Urban area 40.61 0.2 55.78 0.3 37.36 86.64 0.5 113.35

The results show that in S1, there was a decline in corn, bean, and rice areas, and
a steady decline from S2 onwards. In the period analyzed, the planted area of sorghum
remained practically unchanged due to it being used in conjunction with soybean and
corn. The relationships concerning the runoff–erosion process are similar to those obtained
in various studies [22,23], which analyzed the streamflow in river basins in the Cerrado
biome. The results show that uncertainties were high because the basin has a significant
heterogeneity of soil physical parameters; however, the statistical results obtained show a
good fit between the observed and estimated data in the basin.

The transformations in the basin landscape between S1 and S3 occurred with the
association of the crop–pasture system (i.e., a production system that prioritized some
commodity crops, such as soybeans and sugarcane). In addition, it strengthened pasture
areas that are cultivated with incorporated agriculture, which made the use of pasture in
confinement more profitable. The increase in cropland reduced occupied areas with exposed
soil, riparian forest, and cerradão/forest by −76%, −38.96%, and −15.13%, respectively
(Table 4). The results show that the agriculture and pasture classes significantly increased
(75.38% and 25.14%, respectively), while the typical savanna class increased by 39.75%
(Table 4). The classes of native vegetation (Cerradão/forest, typical Savanna, and riparian
forest) decreased by 7.8%. The change between S1 and S3 represented the scenario of the
advance of agriculture in the region. The comparison between S1 and S3 is helpful to
understand the total changes over the entire period studied.

3.2. Advances in Agriculture between 1991 and 2017

Figure 5a–c shows the number of cattle in S1, S2, and S3 for each municipality within
the basin. The results show the municipalities that have the highest concentration of cattle
within the basin, which are Pirenópolis, Goiás, Goianésia, Itapuranga, Itaberaí, Uruaçu,
Jaraguá, and Barro Alto. Together, these municipalities have a total of 1,095,085 cattle (58.8%
of the basin’s total). The results show that these municipalities grew by 18.6% during the
study period, and that there was a more significant increase in the number of cattle in the
municipalities in the southern portion of the basin (Figure 5c). It can also be highlighted
that the municipalities of Santa Rosa de Goiás, Petrolina de Goiás, and Pilar de Goiás
had a growth rate of 113.84%, 102.02%, and 101.66%, respectively. The cattle herd has
expanded the number of cattle over the years, and the results show that the livestock area
increased by 31% in the period. Figure 5d shows the areas planted with temporary crops
and livestock between 1991 and 2017. As can be seen, the planted area data shows that
soybean and sugarcane crops grew by 287% and 650%, respectively, whereas corn, bean,
and rice crops showed a more significant decrease in the period analyzed. After 2000, the
area planted with soybean crops predominated in the basin; therefore, such areas did not
suffer reductions, even with the drop in the price of soybeans on the international market
and the climate variations between 2006 and 2017. The same happened with the area
planted with sugarcane because this crop had an appreciation in the international market
during the same period. In addition, with tax incentives from the Government of Goiás
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State, new sugar and alcohol plants were reactivated and built, and improvements in the
region’s agro-industrial complex enabled the expansion of sugarcane within the basin [37].

Figure 5. The number of cattle per municipality in (a) 1991, (b) 2006, (c) 2017, and (d) planted area of
temporary crops and livestock between 1991 and 2017.

Figure 6a–f shows the spatial variation of the area planted with rice, sugarcane, beans,
corn, soybean, and sorghum between 1991 and 2017 for each municipality within the basin.
Figure 6a shows that most municipalities showed a decrease in the area planted with rice,
and it is notable that the area planted with rice decreased by 96.9% between 1991 and 2017.
The sugarcane planted area data show a significant increase in the period analyzed, and
the incorporation of more municipalities in sugarcane production (28,972 ha in 1991 and
111,681 ha in 2017) represents an increase of approximately four times the area planted in
the basin (Figure 6b). The results show that the area planted with beans within the basin
showed a reduction of 95.4% (Figure 6c).

Figure 6d shows the spatiotemporal variation of the area planted with corn between
1991 and 2017. The results show a reduction of 75.4% in the period analyzed, which was
similar to the cultivation of beans. On the other hand, the area planted with soybeans
(Figure 6e) showed a significant increase (694.5%). Figure 6f shows the temporal variation
from 1991 to 2017 in the area planted with sorghum. The results show an increase in the
area with sorghum. The crop was spread in different portions of the basin (north and
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south), whereas the other areas did not show crop production, or they kept their planted
area unchanged in the period analyzed.

Figure 6. Spatial variation of (a) rice, (b) sugarcane and location of alcohol plants, (c) beans, (d) corn,
(e) soybean, and (f) sorghum crops per cultivated area between 1991 and 2017.
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3.3. Runoff–Erosion Modeling
3.3.1. Sensitivity Analysis

The results of the sensitivity of the best parameters assigned by SWAT-CUP are
shown in Figure 7. The most sensitive parameters based on the p-value are grouped in
descending order according to their greatest significance (i.e., closer to one). On the other
hand, the t-stat is used to identify the relative significance of each parameter, estimating
how changes in the value of a given parameter influence the results of the objective
function. These two tests are used to analyze the sensitivity of the modeling (i.e., how the
uncertainty in the modeling results can be attributed to different parameters that deal with
the behavior of water in the basin, in such a way that it considers the entire amplitude of
variation in the input data). Thus, the higher the p-value and the lower the t-stat value,
the greater the sensitivity of the parameter in the modeling; therefore, it is not possible
to group them by category. According to this figure, the most sensitive parameters in
the modeling were CN2 and SOL_K. The other parameters that were also sensitive in the
streamflow simulation were GWQMN, SOL_AWC, RCHRG_DP, GW-DELAY, SURLAG,
CAMIX, CH_N2, ALFA_BF, GW_REVAP, and ESCO. The results show that the parameters
which were considered more sensitive and influential for streamflow calibration are related
to streamflow (CN2, SURLAG, and CH_N2), evapotranspiration (ESCO and CAMIX), soil
water, and soil physical characteristics (SOL_K and SOL_AWC). It should also be noted
that the groundwater parameters (ALFA_BF, GWQMN, GW_REVAP, GW_DELAY, and
RCHRG_DP) were relevant in the modeling.

Figure 7. Sensitivity analysis of the SWAT model parameters used in the modeling for the Almas
River basin.

3.3.2. Calibration and Validation

Figure 8a,b shows the observed and simulated streamflow time series after model
calibration for the Jaraguá and Colonia dos Americanos stations. The calibration results
for the Jaraguá station showed a satisfactory fit between the observed and simulated
monthly streamflow (R2 = 0.8 and NS = 0.61) and in the validation period (R2 = 0.76 and
NS = 0.5). The annual average of the observed streamflow was 35.44 m3/s, whereas the
simulated streamflow was 41.48 m3/s, a difference of 17%. The PBIAS value for the Jaraguá
station in the calibration period was −20.3% and −28.5% in the validation, indicating an
overestimation bias.
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Figure 8. Comparison of calibration and flow validation in the SWAT model for (a) Colonia dos
Americanos and (b) Jaraguá stations.

For the Colonia dos Americanos station, the results presented a very good performance
in the calibration and validation, presenting R2 = 0.85, NS = 0.82, and PBIAS = 0.9% for the
calibration, whereas in the validation period, the values were R2 = 0.84, NS = 0.80, and
PBIAS = −15.5%. The Colonia dos Americanos station results also showed an overestima-
tion bias to the observed values. The average observed streamflow was 337.80 m3/s, and
the simulated streamflow was 360.60 m3/s, an increase of 6.74%, which can be considered
low between the measured and simulated streamflow.

3.4. Estimate Sediment Yield

Figure 9a shows the spatial distribution of sediment yield in the Almas River basin
between 1974 and 1994. Figure 9a also shows that the sediment yield is very variable
and that the most significant amount of sediment occurs in the elevated regions, which
are moderately wavy. The results show that the sediment yield in the sub-basins varied
between 0.01 and 0.2 ton/ha/year. It is notable that the most significant volume of sediment
occurred in areas with agriculture, pasture, exposed soil, and types of cambisols and red
clay soils located in the eastern portion of the basin. In contrast, the smallest volumes of
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sediment occurred in areas with natural vegetation cover. The basin areas with agriculture,
pasture, exposed soil, and red oxisol type soils, with slopes varying between 0% and 5%,
had sediment yields between 0.01 and 0.12 ton/ha/year.

Figure 9. (a) Spatial distribution of sediment yield per sub-basins, and (b) sediment fraction trans-
ported per stretch between 1974 and 1994.

Figure 9b shows the sediment fraction that each segment of the drainage network
transports to the subsequent channel stretch. Again, the pattern of the sediment fraction of
river stretches can be seen located in the upper and middle portions of the basin, which
show more significant sediment deposition. In contrast, the sub-basins close to the basin
boundary had little or no sediment deposition.

Table 5 shows statistics of sediment yield and estimation errors between observed and
calculated data. The results highlight that the calculated sediment yield underestimated
the observed data by 22.42%. The curve fitting for the relationship between sediment yield
and observed discharge presented R2 equal to 0.97. This relationship can be considered
very good due to the uncertainties in estimating sediments in rivers with a large volume
of suspended sediments and non-continuous data collection. Furthermore, as the station
used to measure the observed data is downstream of the Almas River basin (i.e., it has
a water catchment area more extensive than the studied basin), it was expected that the
data collected in situ would present an overestimation. This sediment measurement
station is close to the basin outlet and past the Serra da Mesa hydroelectric plant; thus,
the contribution area chosen as the study area comprises the catchment area up to the
hydroelectric plant and the results of the SWAT model can be considered satisfactory.

Table 5. Observed and calculated sediment yield and estimation errors for the study area.

Years
Sediment Yield (ton/ha/Year)

Observed Calculated Estimation Error (%)

Average 0.032 0.025

−21.88
Standard deviation 0.041 0.016

Mean deviation 0.031 0.013
Coefficient of

variation 1.288 0.646

3.5. Hypothetical Land Use Scenarios and Simulation of Runoff–Erosion Processes

Table 6 and Figure 10a,b show the classes of hypothetical scenarios of optimistic and
pessimistic LULC. The OS simulation results showed that the natural vegetation classes
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represent 63% of the basin’s total area (i.e., 23.25% Cerradão/forest, 24.77% typical Savanna,
and 14.32% riparian forests). The agriculture, pasture, and urban area classes represent
17.12%, 20.21%, and 0.34% of the basin’s total area, respectively. The spatial distribution of
the simulated LULC for the PS is shown in Figure 10b. The PS shows an intense change
in land use, in which the natural vegetation was entirely replaced by agriculture (70.07%),
pasture (6.34%), and urban area (0.46%), which represents 76.86% of the total area of the
basin. The other LULC occupied 23.14% of the basin area (i.e., a reduction rate of 62.88%
for the OS scenario). Changes in the PS indicate less protection against the direct impact of
rainwater drops in the soil, which favors the runoff and the detachment and transport of
sediment particles.

Table 6. Land use class data for the two hypothetical land-use scenarios, simulated with the SWAT
model.

LULC
Optimistic LULC (OS) Pessimistic LULC (PS)

Area (km2) Area (%) Area (km2) Area (%)

Typical Savanna 4615.64 24.77 4312.03 23.14
Cerradão/Forest 4333.38 23.25 − −

Pasture 3765.72 20.21 1181.39 6.34
Agriculture 3190.74 17.12 13,058.11 70.07

Riparian forest 2668.76 14.33 − −
Urban area 62.59 0.34 85.31 0.46

Figure 10. Proposed hypothetical scenarios: (a) OS and (b) PS.

To assess the efficiency of the SWAT model, we compared simulated monthly average
streamflow data based on hypothetical scenarios with the observed data. Figure 11 shows
the SWAT model simulations for the OS and PS scenarios for the Colonia dos Americanos
stations. Table 7 presents the comparison of the observed, calibrated, and simulated
streamflows for the OS and PS scenarios. The results of the monthly average streamflow
for the OS showed that the simulated streamflow was 337.80 m3/s and the observed value
was 455.88 m3/s, a difference of −25.9% for the Jaraguá station. For the Colonia dos
Americanos station, the simulated streamflow was 504.17 m3/s and the observed value was
514.17 m3/s, a difference of −1.9%. The comparison between the observed and simulated
streamflow using the PS at the Jaraguá station show that the streamflow was 500.44 m3/s,
presenting an increase of approximately 9.8%. For the Colonia dos Americanos station, the
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simulated streamflow was 547.23 m3/s (i.e., a difference of 6.4%). The obtained coefficients
of determination confirmed that the simulated flows accurately replicated the measured
flows in the present research. The statistical indicators of the calibration and validation
phases show the satisfactory performance of the model throughout the basin, mainly
upstream and downstream. The obtained results follow other studies, which emphasize the
good performance of the SWAT model in modeling Cerrado basins (e.g., [21,27,28,30,31,71]);
therefore, the impacts of LULCC on the streamflow time series can be assessed using the
calibrated and validated SWAT model.

Figure 11. Comparison of observed streamflow and pessimistic and optimistic scenarios simulated
using a SWAT model for Colonia dos Americanos station.

Table 7. Statistical comparison of mean streamflow and sediment yield for S1, OS, and PS scenarios.

Statistics Rainfall (mm)
Streamflow (m3/s) Sediment Yield (ton/ha/Year)

S1 OS PS S1 OS PS

Mean 1612.23 514.17 504.17 547.23 0.026 0.023 0.035
Maximum 2245.62 766.42 622.64 839.94 0.049 0.039 0.063
Minimum 1075.84 323.84 297.96 359.21 0.010 0.011 0.020

Standard deviation 285.70 133.66 104.56 140.74 0.011 0.007 0.011

Figure 12 compares annual differences in sediment yield for scenarios S1, OS, and
PS. As can be seen, there is a significant discrepancy between the results of the three
simulations. The results show an intensification of soil erosion when comparing the PS and
OS, by approximately 54%. The results also show that the sediment yield in the OS scenario
decreased by around 11% compared to the S1 scenario. LULC variation in the OS seems
to cause less erosion and much more deposition than the S1 and PS variation. Comparing
the S1 scenario with the OS, it is expected that native vegetation can reduce erosion, as it
directly changes the infiltration parameters and especially the protection given to the soil
against the direct impact of raindrops and increased surface roughness, as reported by [60].

Figure 13 shows the spatial distribution of sub-basin sediment yield classification in
hypothetical optimistic (Figure 13a) and pessimistic (Figure 13b) land use scenarios. The
results show that both LULC scenarios significantly influence the sediment yield since there
are mainly occurrences of very low and low classes in the OS compared to PS. The total
impact of the PS on the increase in the sediment yield is much more significant than in other
scenarios; however, the differences comparing the OS and PS are not linear, mainly due to
the different geographic locations occupied by native vegetation in both scenarios. As in
OS, the LULC that predominated in steep areas was native forest vegetation, which acted
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as a barrier to sediments and areas with very low sediment yields. When the runoff passes
from a sugarcane area to a native vegetation area, the flow velocity decreases because of
the high surface roughness due to the vegetation. This characteristic of LULC reduces the
sediment transport capacity, preventing them from reaching the drainage network due
to the early sediment deposition. Considering that the riparian forest in the Almas River
basin is in a good state of preservation, we can highlight how this LULC acts as a protective
barrier to sediments, mainly reducing the flow rate and retaining sediments.

Figure 12. Comparison between estimated mean annual sediment yield for S1, OS, PS, and mean
annual rainfall.

Figure 13. Classification of sub-basin sediment yield losses for the hypothetical scenarios (a) OS and
(b) PS.

The results show that in the OS, there was a predominance of sub-basins classified
as very low risk to erosion (88% of the basin), which can be due to the hypothetical
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regeneration of vegetation cover and linear corridors of riparian forest, which acted as a
physical barrier to retain sediment from the slopes. The agricultural class occupied the
sub-basins with greater erosion susceptibility with cambisol soils and slopes ranging from
0 to 5%. The erosion results in the PS were very variable, and the moderate erosion risk
class was the one with the most significant predominance (71%). The results for the PS
scenario showed that 50 sub-basins (10.3% of the basin area) presented sediment yield in
the moderate class (i.e., such sub-basins are areas susceptible to the erosion process). When
comparing the areas susceptible to sediment yield among the hypothetical scenarios, the
OS had a significant increase of 1725.21% compared to the OS. The hypothetical simulated
land use scenarios had significant differences. The optimistic scenario presented a very low
to low risk of sheet erosion. In contrast, the other pessimistic scenario was unfavorable,
presenting a high risk of erosion susceptibility and a high predisposition for the sediments
to be transported to the drainage channels. These results highlight the importance of land
cover in protecting the soil against erosion processes.

4. Discussion

Knowing the influence that changes in the LULC can have on the quantity and quality
of sediments, and how streamflow can affect energy generation, ecosystems in the basin,
and impact freshwater availability for human consumption and agro-industrial production,
changes in the LULC influence streamflow and sediment yield behavior, as demonstrated
in the simulations of the two LULC scenarios. The study highlighted that the increase in
agricultural and pasture areas and the decrease in native vegetation cover caused severe
environmental impacts, reinforcing the need to manage the LULC at a basin-scale in a
biome such as the Cerrado. This methodology can be tested in ungauged or data-poor
watersheds as it uses freely available datasets and consolidated and widely used methods.
In addition, the applicability of this study allows the simulation of LULC future scenarios
at a low cost, and it gives an estimation of streamflow and sediment yield time series.

The results of this study can help decision makers understand the changes to the
landscape in recent decades and allow them to make future predictions about public policies
for environmental preservation or the liberation of areas from pasture or agricultural
activities. As a result, the OS and PS scenarios were proposed, and the streamflow and
sediment yield behavior results were analyzed.

The calibration and validation results show that the LULCC in this region severely
influence the streamflow pattern. The results of this modeling are similar to the results ob-
tained in the Cerrado area by [29,30,32,33]. As expected, the sediment yield and streamflow
results show that the highest values occurred in the PS, whereas a significant decrease was
observed in the OS, considering the S1 scenario. The average annual sediment yield for
the OS was 0.023 ton/ha/year, whereas for the PS, it was 0.035 ton/ha/year, representing
a difference of 21.88% (Table 5). These results show that LULC greatly influences runoff–
erosion processes in the region [67]. Vegetation cover plays a fundamental role in water
conservation and supply, nutrient cycling, soil protection against erosion, temperature
regulation, water cycling, and returning water to the atmosphere by evapotranspiration.
For this reason, one may say that deforestation and LULCC are two of the world’s leading
environmental concerns, especially in Brazil, which is currently the country that devastates
its native vegetation most (e.g., the Cerrado biome).

The estimate of sediment yield in S1 shows a reduction of 10.96% in the OS, and when
compared to the PS, it shows an increase of 37.4% (Table 5). These results highlight the
influence of LULC as one of the main controlling factors of hydrological processes, as it was
possible to compare the results of streamflow and sediment yield with the same amount of
rainfall but with different conditions of LULC.

Changes in areas of the pasture class by native vegetation reduced the erosion process.
According to Falcão [12], grazing under adequate conditions usually does not increase
sediment in water bodies after heavy rains. Nevertheless, intensive grazing on sloping
terrain and fragile soils can cause severe erosion problems. In addition, according to the
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authors, the sediment yield increases when riparian areas are used as pasture, which leads
to erosion of the riverbanks and deposition directly on the bed. There is still no accurate
data on erosion from cultivated areas in Brazil. According to USDA [80], for instance,
in the United States, erosion generated in cultivated areas is approximately 38%, while
pasture erosion accounts for 26% of the sediments reaching water bodies. According to
Santos et al. [61] surface roughness is the main factor in reducing surface streamflow, and
consequently, the sediment yield.

The hypothetical land use scenarios of the Almas River basin alerted possible future
situations in a river basin for issues related to runoff–erosion processes. Taking rigorous
measures to preserve the vegetation cover and reforestation implies reducing environ-
mental impacts and sediment yield within the basin. In this context, the methodology
adopted to generate these hypothetical scenarios allowed us to satisfactorily show that the
hydrological processes associated with land use and management play a fundamental role
in understanding the water and sediment yield within the river basin.

Despite the SWAT model’s many qualities, its limitations must be further discussed
and analyzed. The SWAT model was developed for rural watersheds, and therefore, there
is a need for parameter calibration; thus, identifying the parameters that have or do not
have a significant influence on the model simulation is fundamental not only to reducing
the modeling uncertainty but also to reduce the number of excessive parameters in the
model calibration process, which can harm the physical representation of the basin in the
model. In this regard, please see [61,67], which provide more details on SWAT’s capabilities
and limitations.

5. Conclusions

This study evaluated the impacts of historical LULCC on hydrological processes using
the SWAT model and remote sensing multiple gridded datasets for a humid tropical basin
in the Cerrado biome in Brazil. With the calibration of the SWAT model, it was possible
to observe that some parameters are more influenced by the runoff–erosion process than
others, providing the conditions to improve the simulation in the basin. After validation,
the hydrological simulation satisfactorily represented the streamflow variability and the
estimated sediment yield during the period studied. The temporal evolution of the changes
in the LULC increased the mean streamflow and the sediment yield. This study highlighted
that the LULCC in the study area play an essential role in the runoff–erosion process in the
Cerrado biome, and consequently, impacts various human activities such as agribusiness,
livestock, energy production, food security, and public water supply. The purpose of the
study was to simulate the influence of LULCC on the amount of streamflow and sediment
yield in the basin in different scenarios. Nevertheless, the water quality in the basin was
not analyzed due to the methodology tested. The results alert decision makers about
the importance of proper LULC management in the streamflow and sediment yield in
the basin.

This study discussed the LULCC due to agricultural advances that caused a shift in
the runoff–erosion dynamics, exploring the applicability of remote sensing in an ungauged
basin in the Cerrado biome in Brazil that underwent intense modification in LULC. The
analysis of the LULCC for 1991, 2006, and 2017, and the agricultural census data, allowed
us to understand the reconfiguration of the basin’s landscape over the twenty-six years,
which proved to be fast and progressive in the process of expansion of the economic activity.
This complexity involves replacing food grains (rice and beans) to incorporate crops in an
area planted with sugarcane and soy and the expansion of cattle ranching. Reconciling
the pressure of agribusiness with the preservation of natural areas is a challenge for
environmental planning and management of water resources. The changes in LULC and
deforestation interfere with the hydrological cycle, causing a reduction in water infiltration
into the soil and increasing the streamflow, which affects the fluvial dynamics and erosion
process. In addition, this paper demonstrated how LULC, soil parameters, albedo, and LAI
obtained from RS datasets could successfully calibrate distributed hydrological models
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such as the SWAT model. This research showed that the influence of LULC on the runoff–
erosion process using estimated satellite data and runoff–erosion models in the Cerrado
biome is still scarce in Brazil. We can conclude that the current simulations are classified as
good according to Moriasi [76].

The runoff–erosion modeling allowed us to understand the runoff–erosion process,
helping the future planning and territorial management of water resources in this basin.
This modeling also helps define public policies to control deforestation and preserve,
maintain, and recover the Cerrado biome. From these future perspectives of land use in the
hypothetical scenarios in different landscapes, it allowed us to analyze the responses in
terms of the effects of anthropic action on the runoff–erosion processes within the basin.

The continuous agricultural activity in the basin permeates the confrontation and
pressure from agribusiness on land regulation, the control of burning in the area in the
Cerrado biome, and the lack of inspection and regulation of the forest code. Given the
data from the pessimistic scenario simulated in the model, the trend is clear for the growth
of social and environmental practices such as deforestation, climate change, water use
for agricultural irrigation, water erosion, siltation of watercourses, and sediment yield,
among others. It can be concluded that the parameters calibrated in this study are valid and
correspond with all types of landscape and land use based on the performance of the SWAT
model, and after comparing observed and calculated streamflow and sediment yield data.
It can be concluded that estimated values of soil parameters obtained by remote sensing
slightly improved the model’s calibration. These results can be significantly valuable to
governmental agencies as a communication model for better water resource management
and energy generation. Furthermore, these results are highly relevant to the sustainable
management of water resources within the region, as such obtained results allow decision
makers to observe how water variables behave with changes in LULC caused by human
actions; thus, managers can know in advance in which sub-basins this conditioning is
more prominent, especially in areas with remnants of forests, or areas characterized by the
advance of agriculture in recent years.
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Abstract: Soil erosion worldwide is an intense, poorly controlled process. In many respects, this is a
consequence of the lack of up-to-date high-resolution erosion maps. All over the world, the problem
of insufficient information is solved in different ways, mainly on a point-by-point basis, within local
areas. Extrapolation of the results obtained locally to a more extensive territory produces inevitable
uncertainties and errors. For the anthropogenic-developed part of Russia, this problem is especially
urgent because the assessment of the intensity of erosion processes, even with the use of erosion
models, does not reach the necessary scale due to the lack of all the required global large-scale remote
sensing data and the complexity of considering regional features of erosion processes over such vast
areas. This study aims to propose a new methodology for large-scale automated mapping of rill
erosion networks based on Sentinel-2 data. A LinkNet deep neural network with a DenseNet encoder
was used to solve the problem of automated rill erosion mapping. The recognition results for the study
area of more than 345,000 sq. km were summarized to a grid of 3037 basins and analyzed to assess the
relationship with the main natural-anthropogenic factors. Generalized additive models (GAM) were
used to model the dependency of rill erosion density to explore complex relationships. A complex
nonlinear relationship between erosion processes and topographic, meteorological, geomorphological,
and anthropogenic factors was shown.

Keywords: rill; soil erosion; neural networks; remote sensing; relationship modeling

1. Introduction

Soil erosion became the main factor in degrading a fertile layer of agricultural lands.
Intensive land use combined with natural factors creates conditions for increased develop-
ment of soil erosion, including rills, erosion furrows, and ephemeral gullies. Often, these
erosion forms turn into permanent gullies, completely removing the area from agricultural
turnover. Therefore, it is not surprising that researchers worldwide pay special attention to
the study of soil erosion and, in particular, rill erosion.

Both field and mathematical methods are the main methods for studying soil erosion.
The field method is very accurate in estimating the volume of erosion changes on local
areas, which somewhat complicates the spatial interpretation of the results at the region or
landscape levels. Such methods include the classical methods of reference sites, landmarks,
microprofiling, and measuring the length and width of washouts with a tape measure.
Reference sites allow estimating the direct volume of soil washed away from the territory,
providing an opportunity to artificially change the conditions of the “environment” [1].
Based on the data from such sites, the data for creating mathematical models of soil erosion
assessment, which will be discussed below, were obtained. The method of landmarks and
microprofiling makes it possible to accurately estimate the depth of washout in representa-
tive sites [2]. Studies using these techniques helped find a strong correlation between the
width of washout and its depth, which, in turn, estimates the volumes of soil washed away
from the territory [3,4]. At present, geodetic methods based on relief reconstruction using
scanning data or photogrammetry, both ground and airborne, are being developed to assess
erosion. The most accurate results can be achieved using ground-based laser scanning data
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using reference points [5]. Researchers from all over the world manage to record in this
way, not only gully [6] or rill [7] soil erosion but also micro-rill and sheet soil erosion [8],
the changes of which are within the first millimeters. Unfortunately, it is problematic to
use such technologies for direct monitoring in areas larger than 1 hectare. This problem
is attempted to be solved using airborne laser scanning; however, this technology has
its limitations related to the positioning of the scanning equipment for the subsequent
alignment of the repeated survey. This fact immediately precludes the use of airborne
scanning to evaluate the dynamics of micro-rill and sheet erosion, but it does allow for
more or less automated estimation of the total length and width of rill and gully erosion.
Different approaches are used for this. For example, the most common one is based on
the threshold value of the number of digital elevation model (DEM) cells, from which
runoff into neighboring cells is possible. Depending on the resolution of the initial DEM
obtained from scanning data, this approach allows recognizing rills depths from 5 cm.
However, airborne laser scanning is not widely used due to the high cost of the scanning
equipment. Nowadays, more affordable scanning sensors appeared installed on manned
aircraft and unmanned aerial vehicles (UAV). Nevertheless, the applicability of such devices
for solving the problem of soil erosion assessment has yet to be discovered—the analysis
of the existing experience has demonstrated that the most significant relevance of such
devices is in forestry [9]. Despite the current trend toward cheaper scanning systems, they
are still not widely available to most researchers. Combining these factors has led to the
most widespread use of photosensors as payloads for UAVs [10]. UAV photogrammetry
makes it possible to achieve comparable point cloud densities with scanning systems’
competitive accuracy of the resulting models and allows one of the end products to be
an ultra-high-resolution orthophotoplane. The use of UAVs makes it possible to provide
geomorphological surveys with up-to-date information about the condition of the survey
area cheaply, quickly, and accurately enough. Unfortunately, despite the overall high
productivity, the use of UAVs does not allow for making a continuous survey of large
regions [11,12]; however, it will enable verification model data.

Model data obtained from office studies make it possible to estimate the intensity
of exogenous processes at both local and global levels. A whole range of mathematical
models has been developed to assess soil and gully erosion, subdivided into empirically
and physically based [13]. The most well-known and widely used soil erosion models are
USLE [14], RUSLE [15], MUSLE [16], CREAMS [17], LISEM [18], and so on. WEPP [19],
RillGrow [20], GUEST [21,22], and EUROSEM [23] models are used to estimate rill erosion.
All these models have their advantages and disadvantages, and the latter does not allow
using these models everywhere. The main limitations are related to the lack of publicly
available large-scale remote sensing data [24], such as terrain models [25] and detailed
comparable climate data [26,27], which does not allow the mathematical simulations
needed to map streamflow paths. The lack of detailed remote sensing data also limits
the possibility of applying object-oriented recognition of rill erosion [28] and stochastic
modeling of erosion exposure [29,30].

The data obtained by erosion models in the form of erosion and accumulation balances
often do not reflect the actual development of rill erosion processes. For example, in the
catchments of the European part of Russia, it is not uncommon that the rate of accumulation
in the bottoms of dry valleys tends to decrease [31–33], while the number, total length, and,
accordingly, the density of rill network increases from year to year [34]. This is often due to
the peculiarities of plowing with the creation of special sloughs that retain runoff from the
fields, corrupting the results obtained by erosion models.

Considering the existing limitations, approaches based on manual extraction of
washouts from remote sensing data, namely space images [35,36], are applied to solve the
problem of rill erosion mapping. Remote sensing mapping of rill erosion was carried out
using Landsat-5 (30 m) [37,38], QuickBird (0.6 m) and SPOT (5 m) satellite imagery [39],
GeoEye-1 stereo pair [40], and UAV data [41]. Sentinel-2 (10 m) images were also used to
create NDVI-images during the predictive model development [42], but the mapping has
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not been carried out directly based on them before. Such solutions allow for achieving
the best accuracy but are labor consuming and low productive. To solve this problem,
the development of approaches based on the automation of rills washout extraction is
necessary, which is the goal of this work. The source data used as a cartographic basis
sets a list of possible approaches that can be applied to solve the purpose. The simplest
of them is object recognition based on a thresholding approach, where the threshold de-
fines the boundary of the reflectivity of the spectral data characteristic of the study object.
Such methods are suitable for identifying different land-use types [43,44]. However, the
result will be unpredictable when recognizing rills using a similar approach on different
types of soils. Machine learning methods can be used to consider the spatial variability
of environmental factors, such as the highly proven Random Forest or Support Vector
Machine method [45,46]. However, such approaches only give a probability of soil erosion
in a particular pixel, while not distinguishing the erosions themselves into a “tree-like
pattern” in the landscape. In addition, the methods are very sensitive to the amount of
input data—the more information used for analysis, the more consistent the results will be.
On small watersheds, such approaches can be successfully applied; for large areas, their
applicability is questionable.

Recently, there has been a rapid increase in the number of works related to deep neural
networks (DNNs) for the semantic segmentation of remote sensing data. This has been
facilitated by the increased quality of remote sensing data, user-friendly deep-learning
framework availability, and the increased computing power available to researchers. At
present, DNNs enable successful automated interpretation of anthropogenic objects [47–49],
shorelines [50,51], land use [52–54], vegetation cover dynamics [55,56], and exogenous
processes [57,58]. In all cases, the authors note the higher recognition accuracy of the
objects of interest than other methods and emphasize scaling the trained models. Deep
neural networks have not been applied to the recognition and mapping of rill erosion.
Nevertheless, the importance of the problem under study and the promising use of ar-
tificial intelligence for solving this problem determines the necessity of developing an
appropriate methodology.

Given the intensification of rill erosion, the necessity of mapping it, and the limitations
of field survey and modeling, this study aims to develop and apply a deep neural network-
based methodology for automated rill erosion detection from remote sensing data.

2. Study Area

The study area is the Middle Volga region of Russia. The territory is located in the
central part of the East European Plain [59]. The Middle Volga region’s agro-industrial
complex (AIC) is of all-Russian importance. The region holds one of the top places in
the country to produce grain, including the valuable grain crop—wheat. Agriculture is
characterized by high efficiency due to very favorable natural conditions. At the same
time, the agricultural sector of the territory has a substantial impact on natural-territorial
complexes, primarily on the soil cover. Given the intensity of plowing, cattle grazing, and
natural conditions conducive to the development of exogenous processes, this area is highly
affected by soil erosion. This situation is not new; it is not accidental that the territory of
the Middle Volga region is historically called an erosion belt. At the same time, anti-erosion
measures in recent decades are of a point and haphazard nature, mainly due to the poor
study of the rate and development direction of the process, primarily rill erosion.

The study area is 345,477 sq. km. The macroregion includes Mari El, Tatarstan,
Chuvashia, Saratov, Samara, Ulyanovsk, and Penza regions. The Middle Volga region is
located in the forest landscape zone in the north, the forest-steppe landscape zone in the
center, and the steppe landscape zone in the south (Figure 1).
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Figure 1. The study area. The 0—Saratov region, 1—Penza region, 2—Republic of Chuvashia,
3—Samara region, 4—Republic of Tatarstan, 5—Republic of Mari El, and 6—Ulyanovsk region.

The relief of the Middle Volga region has a spotted asymmetry of slopes: the average
height—146 m, maximum elevation—316.8 m, and minimum—13.2 m [60]. The region’s
climate is moderately continental and continental in the south, varying wildly from re-
gion to region. Average annual precipitation ranges from 471 to 549 mm in the north to
264–424 mm in the south.

The steepness of the slopes of the territory, in general, is favorable for agriculture;
a quarter of the region is steep to 1 degree, and a significant part of the territory is char-
acterized by steepness in the range of 1–2.5 degrees, rising to 5 degrees in the area of
Bugulminsko-Belebeyevskaya upland [60]. Erosion risks are not uniform and vary from
region to region [61]. Soil-forming rocks are not homogeneous and are mainly clayey and
heavy loam. There are sandy soils and medium-loam in the north of the Republic of Mari
El region and light loam in the forest-steppe zone (Penza Oblast). Soils vary; chernozems
of various subtypes predominate, mostly leached (Haplic Chernozems), as well as ordinary
(Calcic Chernozems), typical (also Haplic Chernozems), and southern (Haplic Chernozems
too)(steppe soils). The remaining types have a clearly expressed zonal pattern, where
the gray forests (Haplic Greyzems) are typical for the forest territories and north of the
forest-steppe zone [60].
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3. Materials and Methods

The development and implementation of a methodology for automatic rill erosion
recognition involve several interrelated points:

1. Selection and preparation of remote sensing data from space;
2. Preparation of training and test sets;
3. Training the neural network and evaluating the quality of rill recognition;
4. Implementation of the neural network for the entire study area and vectorization of

recognition results;
5. Calculation of rill erosion length as a measure of rill erosion density index in the basins;
6. Analysis of the obtained results.

3.1. Remote Sensing Data

Data from the Sentinel-2 satellite constellation was used for recognition. Unlike other
sources of multispectral remote sensing data, such as Landsat, MODIS, SPOT, RapidEye and
so on, Sentinel-2 imagery provides the best resolution in the target bands (10 m) at no charge.
The cloudless composite data of the Sentinel-2 mission for the spring period, April-June,
were used as input data to develop the rill erosion recognition technique. Near-infrared
images with baseline resolution (10 m) were used for recognition. The composite was
created using the Google Earth Engine (GEE) [62], product “Sentinel-2 MSI: MultiSpectral
Instrument, Level-2A” (COPERNICUS/S2_SR). GEE allows the processing of big remote
sensing data and facilitates some routine operations. A total of 2988 scenes from both S2A
and S2B satellites were used to create the composite. To create the composite, the 2018–2019
images were filtered by date, images were cleaned from clouds and shadows, median pixel
brightness values were calculated, and imagery was clipped to the boundaries of the study
area and reprojected into the WGS 84/Pseudo-Mercator (EPSG:3857) projection coordinate
system. A cloud probability raster was used to clear the imagery from the clouds. The S2
cloud probability is created using the sentinel2-cloud-detector library (LightGBM [63]). All
bands are upsampled using bilinear interpolation to 10 m resolution before the gradient
boost base algorithm is applied. The resulting 0 to 1 floating point probability is scaled to
0–100 and stored as a UINT8. Areas missing any or all of the bands are masked out. Higher
values are more likely to be clouds or highly reflective surfaces (e.g., roof tops or snow). A
15% probability of having clouds on the scene was used as the cloud threshold.

3.2. Preparation of the Training Dataset

In the resulting spring composite, an area with visually the densest rill network and
the presence of major land-use classes of water, anthropogenic, forest, and agricultural
features was selected and clipped. For this area of more than 2500 square kilometers,
continuous manual rill erosion recognition was performed to create a set of reference data
samples (Ground truth, GT) (Figure 2). Manual recognition was made by QGIS tools
using Sentinel-2 data and ultra-high resolution (UHR) images (Bing, Google, and so on,
available as a substrate at no charge). The main selection was made on the S2 images. In
controversial cases, the UHR images were used. They were also used for the non-selection
of permanent gullies. Due to the difficulty of classifying erosion forms on such a vast
territory with different natural conditions, the differentiation of erosion forms was not
carried out. Ephemeral gullies” and “rills” were defined as all erosion forms that can be
interpreted on satellite images but do not belong to permanent gullies. Considering the
resolution of the satellite image, rills are the most minor erosion form, which transforms
into an ephemeral gully.
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Figure 2. Fragment of a rill erosion ground truth data (GT).

The resulting sample was rasterized and reduced to the resolution of the satellite
image fragment, and then both images were cut into 256 × 256 pixels patches. In total,
10,933 satellite image-binary mask pairs have been obtained this way (Figure 3). The
resulting rasters were further randomly transformed to augment the number of rasters by
three times artificially. The resulting dataset was divided into training and test sets in the
ratio of 1/5.

(A) (B)

Figure 3. Example of a satellite image patch (A) and a binary mask (B) of rill erosion.

3.3. Training a Deep Neural Network

A convolutional neural network is a class of artificial neural network that uses convo-
lutional layers to filter inputs for useful information. The convolution operation involves
combining input data (feature map) with a convolution kernel (filter) to form a trans-
formed feature map. The filters in the convolutional layers (conv layers) are modified
based on learned parameters to extract the most useful information for a specific task.
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Convolutional networks adjust automatically to find the best feature based on the task.
Applications of convolutional neural networks include various image (image recognition,
image classification, video labeling, text analysis) and speech (speech recognition, natural
language processing, and text classification) processing systems, along with state-of-the-art
AI systems, such as robots, virtual assistants, and self-driving cars.

LinkNet (Figure 4), a fully convolutional neural network for semantic image segmen-
tation, was chosen as a neural network architecture [64]. In contrast to the well-known
and well-proven U-NET architecture [57], which has been used for semantic segmentation
of satellite images in geomorphological studies [65], LinkNet uses residual blocks instead
of convolutional blocks in its encoder and decoder networks. The LinkNet deep neural
network architecture efficiently exchanges the information received by the encoder with
the decoder after each downsampling block. This turns out to be better than using pooling
indices in the decoder, or just using fully convolutional networks in the decoder. This
feature transfer technique not only gives good accuracy, but also allows a small number of
parameters to be used in the decoder.

Figure 4. DNN LinkNet architecture scheme [64].

The initial block contains a convolution layer with a kernel size of 7 × 7 and a stride
of 2, then a max-pool layer with a window size of 2 × 2 and a stride of 2. Similarly,
the last block performs a full convolution, taking feature maps from 64 to 32, then a 2D
convolution. Finally, a full convolution is used as a classifier with a kernel size of 2 × 2.
As practice has shown, this allows for better semantic aggregation, including dendro-like
constructions (tree-like patterns on the landscape) and rill networks. By trial-and-error
method, it became clear that the best results in decoding rills can be achieved using
transfer learning, a deep neural network learning method that allows using the knowledge
obtained about one deep learning problem and applying it to another, but with a similar
problem. The encoders used for DenseNet image classification [66] were used in our case.
In contrast to similar models, the features are not summed up but concatenated (channel-
wise concatenation) into a single tensor before passing them to the next layer. The model
learning and implementation algorithm was performed in the Python 3.7 programming
environment using the Tensorflow library. The input of the neural network was a stack
of image-mask pairs prepared in the previous step. EarlyStopping monitoring was used
to prevent overtraining of the model, and the IOU Score metric, Jaccard’s coefficient, was
used to check the model’s learning capability [67].
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3.4. Statistical Analysis of the Obtained Results

Further research was conducted to analyze the influence of various natural–anthropogenic
factors on the intensity of erosion processes in the study area. Classical correlation, re-
gression analysis, and analysis of variance (AOV) (one-way [68] and multivariate [69])
were used to analyze the relationship between natural and anthropogenic factors on the
density of the rill network. The AOV was performed using the Statsmodel package for
Python 3. To analyze complex relationships, an analysis based on generalized additive
models was used. The generalized additive model (GAM) is a generalized linear model in
which a linear predictor depends linearly on unknown smooth functions of some predictor
variables, and interest is focused on inference about these smooth functions. GAM uses
spline functions, functions that can be combined to approximate arbitrary functions. GAM
introduces penalties for the weights so that they remain close to zero, which effectively
reduces the flexibility of the splines and reduces the possibility of overfitting. The smooth-
ness parameter, which is normally used to control curve flexibility, is then adjusted using
cross-validation. The natural–anthropogenic factors presented in Table 1 [60] were used for
the analysis.

Table 1. Natural–anthropogenic factors of rill erosion selected for analysis [60].

Name Description

AREA Basin area (sq. km)
SLOPE Average slope of the basin (degrees)

HMEAN Average elevation in the basin (m)
HMAXMIN Elevation range in the basin (m)

TMEAN Mean annual air temperature (degrees C) in the basin
TMAX Mean annual maximum temperature (degrees C) in the basin
TMIN Mean annual minimums temperature (degrees C) in the basin
TAMP Mean annual variation of air temperature (degrees C) in the basin

T1MEAN Mean air temperature in January (deg. C) in the basin
TAKT Sum of active temperatures (degrees C) in the basin

RMEAN Mean annual precipitation in the basin (mm)
R58 Mean May-August precipitation (mm) in the basin

RCOLD Mean precipitation for the cold period of the year (mm) in the basin
RWARM Mean precipitation for warm period of the year (mm) in the basin

RVC Mean annual precipitation variation coefficient (%) in the basin
GTK Mean value of the hydrothermal coefficient in the basin

PARENT1 Predominant type of soil-forming rocks
SOIL0 Predominant soil type

LES_PROC Forest cover of the basin (%)
LAND_COD Landscape subtype
PLT_RANGE Population density (people/square km)

ANTR1 Anthropogenic load (score)
X Longitude of the basin centroid
Y Latitude of the basin centroid

4. Results and Discussion

The trained RECNN (rill erosion convolutional neural network) was tested on an
independent test dataset. The recognition accuracy was 0.62, F1-measure was 0.76, and
loss-function was 0.27. Qualitatively analyzing the obtained evaluation results (Figure 5),
we can note a relatively high level of recognition of the rill erosion network. It is crucial
that not a single case of detection of gullies or ground roads, which are abundant in the
study area, instead of rills, was recorded.
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Figure 5. An example of the results of applying RECNN to a test dataset.

The trained and tested model was decided to apply to the entire study area (Figure 6).
For the obtained geometry, the length was calculated, which was aggregated to a grid
of basins [60] (Figure 7). Analyzing the obtained maps, the presence of specific clusters
becomes evident. The first cluster—the highest density of rill erosion—is located in the
left-bank part of the Volga River in the Saratov region. The second cluster—the area of
medium erosion—characterizes the right bank of the Volga in the Saratov region and
Zakamye of the Republic of Tatarstan. The Republics of Mari El and Chuvashia territories
are characterized mainly by low rill erosion, forming the third cluster.
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Figure 6. Results of rill erosion recognition over the entire study area (A) and enlarged area with
recognized streams in Sentinel 2 image (B).

Figure 7. Map of rill erosion density. Quartiles calculate intervals.
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In total, information in the study area is aggregated on 3037 basins with an average
area of 117.83 sq. km. The average density of rill erosion over the entire study area is
0.23 km/sq. km, and the maximum density is 3.79 km/sq. km. In general, the distribu-
tion of the total length of rill erosion in the study area is lognormal; that is, most of the
measurements contain, in general, relatively small values of the total length (Figure 8).

(A) (B)

Figure 8. Distribution of total rill erosion length (m) (A) and normalized distribution of total rill
erosion length (B).

For most of the selected factors, no strong correlations were found with the total
length of rill erosion. Only some factors revealed statistically significant (p < 0.001) weak
relationships (r > |0.3|). For example, an inverse correlation describes the relationship
between total rill erosion length and forest cover, hydrothermal coefficient, mean annual
precipitation, mean May-August precipitation, and mean warm-season precipitation. The
inverse relationship with forest cover is more than obvious and only states a well-known
fact—the less forest cover of the territory, the greater the risk of soil and gully erosion. The
inverse relationship with the other indicators is not so obvious. Selyaninov’s hydrothermal
coefficient of wetness (GTK) is a characteristic of the level of moisture availability of the
territory. It is widely used in agronomy for general climate assessment and allocation
of zones with different levels of moisture availability to determine the usefulness of the
cultivation of various crops. The factor is closely related to the amount of precipitation in
the territory. The inverse relationship here is explained not so much by the very nature
of the dependence “the more precipitation, the less erosion”, which cannot be, as by the
influence of climatic conditions in general. This is partly confirmed by a direct relationship
between the total length of the rill network and such factors, such as the sum of active
temperatures and the average annual maximum temperature for the year. Apparently,
with increasing temperature and climate change due to global warming, the character of
precipitation changes—they may fall rarely, but with great intensity [70–74]. Unfortunately,
it is impossible to check this hypothesis directly due to the lack of data on mean annual
precipitation intensity changes. However, the same conclusions are drawn by other re-
searchers who have worked in the study area [31,32,75,76]. Nevertheless, there is still no
clear answer to this question.

Another question is how classical methods of relationship analysis can assess the effect
of a single factor on the dependent variable. Linear dependencies are rare in nature, and
polynomial dependencies of high degrees are even rarer. The analysis demonstrated poor
applicability of classic correlation and regression analysis for revealing the relationships be-
tween natural–anthropogenic factors and the length of the erosion network. Some examples
(Figures 9–11) demonstrate that the dependencies are close to the logistic or exponential
type but more complex. Therefore, it was decided to use generalized additive models
(GAM) for dependence analysis [77]. These models allow estimating the dependencies
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in the form of spline functions, which allows one to make better approximations and
comprehensively study the dependence of a factor on a variable [24,78].

Figure 9. Linear relation of the total length of rill erosion to maximum air temperatures.

Figure 10. Linear relation of the total length of rill erosion to the elevation variation in the basin.
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Figure 11. Linear relation of the total length of rill erosion to mean annual precipitation from May
to August.

Modeling of generalized relationships was performed in a package for building gen-
eralized additive models in the Python language [79]. During modeling, statistically
significant (p < 0.001), stable, and strong relationships were found between the density
of rill erosion and such natural factors as mean basin elevation (Figure 12A), mean basin
slope (Figure 12B), basin elevation range (Figure 13A), basin forest cover (Figure 13B),
average air temperature in January (Figure 14A), average annual long-term maximum
temperature (Figure 14B), average warm-season precipitation (Figure 15A), average basin
hydrothermal coefficient (Figure 15B), longitude (Figure 16A), and latitude (Figure 16B) of
the basin centroid.

(A) (B)

Figure 12. Dependence of rill erosion density on topography factors—average height (m) (A) and
average slope steepness (deg) (B) in the basin.
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(A) (B)

Figure 13. Dependence of rill erosion density on elevation range (m) (A) and average forest cover (%)
(B) in the basin.

(A) (B)

Figure 14. Dependence of rill erosion density on temperature factors (◦C)—mean annual temperature
in January (A) and mean annual maximum temperature in the warm season (B).
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(A) (B)

Figure 15. Dependence of rill erosion density on mean annual precipitation in the warm period (mm)
(A) and the value of the hydrothermal coefficient (GTK) (B) in the basin.

(A) (B)

Figure 16. Dependence of rill erosion density on geographical location: (A)—longitude (m),
(B)—latitude (m).

Generalized models confirmed the known relationships between soil erosion and
natural factors and revealed complex nonlinear relationships. It is observed that the density
of the erosion network is stable with an increase in the average elevation of the basin, but
up to 100 m, after which the growth of density is replaced by a decrease in the density
and its stabilization (Figure 12A). In our opinion, this dependence should be considered
in combination with the effect of average slope steepness on the density of the erosion
network. In this case, the relationship is more superficial and closer to a direct linear
relationship—the higher the steepness, the greater the density (Figure 12B). However,
when analyzing steepness in basins with an average elevation of less than 100 m, a pattern
becomes apparent—steepness does not exceed 3 degrees, and the slopes of these basins are
well suited for farming, particularly as arable land. Indeed, in these areas, the percentage
of the plowed area exceeds 50%.
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The effect of relief morphometry is also confirmed by the dependence of the density
of rill erosion on the height dispersion index in the basin—the difference between the
maximum and minimum heights. In general, the smaller the height difference, the lower
the density, but fundamentally, the most significant decrease in rill erosion intensity is
observed in basins with a small height difference (up to ~70 m), after which the intensity
of density reduction is not as pronounced and essentially remains constant (Figure 13A).
The influence of anthropogenic development on the intensity of erosion processes is also
confirmed by the inverse relationship between forest cover and the density of the rill
network (Figure 13B).

Climatic factors have no less influence on the character of erosion processes in the
study area, partly complementing the topographic and economic predisposition of the
area to the development of rills. The relationship between the density of rill erosion
and the average air temperature in January is interesting—the lower the mean annual
temperature in the coldest month of the year, the more intense the process’s pattern is
(Figure 14A). It seems to be related to the soil freezing capacity, which ensures the intensity
of the erosion processes. However, it is impossible to verify this reliably due to the lack of
adequate models of soil freezing in the study area. Temperature influences the character
of erosion processes in summer as well—there is a strong direct correlation between the
intensity of the process and the maximum air temperature starting from 36 degrees Celsius
(Figure 14B). Initially, the authors attributed this to the potentially high evaporation capacity
at such temperatures and the possible high precipitation intensity. However, analysis of
the dependence of erosion processes on the precipitation layer in the warm season and the
zoning map of the study area by the maximum temperature rejected this hypothesis. The
maximum air temperatures are associated with erosion processes indirectly through the
prevailing soil types, as the conditions for the emergence of one or another type. This is
confirmed because the areas with maximum temperatures over 36 degrees are located in
the transition zone of semi-deserts and dry-steppes with prevailing chestnut and solonetz
soil types. These types of soils are characterized by a large number of cracks reaching
a depth of 5–6 cm [80]. Even with an aggregate not large annual precipitation layer, the
passing rains create a continuous surface runoff on the dry soils, which erodes the soils
along the available cracks, forming stable washouts.

In general, the relationship between the intensity of rill erosion and moisture is di-
rect; there is a steady trend to an increase in the density of the erosion network with
increasing precipitation in the warm period up to ~270 mm, after which the role of precipi-
tation decreases while maintaining the rule—“much precipitation—more intense erosion”
(Figure 15A). Stabilization of the trend, in this case, is explained by the fact that 270 mm is
a kind of boundary between steppe and forest-steppe zones, in which there is a clear sea-
sonality of precipitation. By the time of the most intensive precipitation (summer-autumn
period), vegetation with good soil-protective properties develops on these territories [24],
which becomes the dominant factor of soil erosion intensification. The influence of moisture
factors most clearly shows the relationship between the density of rill erosion and the value
of the hydrothermal coefficient of the territory (Figure 15B). The density of the erosion
network decreases with increasing GTK up to the value of 0.7—a clear border between
arid area and wetted area. The intensity of soil-protecting vegetation increases with the
increase of the SCC, but the precipitation becomes sufficient for the vegetation to perform
its soil-protecting functions less effectively when moving into the wetted zone.

The analysis of the influence of the geographical location of the basin on the intensity
of erosion processes also demonstrated statistically significant relationships. The density of
rill erosion decreases linearly as one move to the east of the study area (Figure 16A), which
is explained by the fact that the western part of the study area has a higher right bank of
the Volga River and, as a result, higher values of slope steepness, which, as shown earlier,
directly affect the intensity of the process. The latitudinal pattern is not so linear and more
complex (Figure 16B)—with moving from the south to the north up to the zone of typical
steppes, there is a systematic increase in the density of rill erosion, after which there is some
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decrease in the intensity of soil erosion and its stabilization, after which, starting from the
northern part of the forest-steppe zone there is another gradual increase in the intensity of
erosion activity. The reasons for this, as previously shown, lie in the zonal features of the
study area, changes in the degree of moisture, as well as the types of plant communities,
including agricultural ones, growing in a particular area.

It is worth separately considering the influence of soil-geological conditions of erosion
processes. A one-factor analysis of variance was conducted to analyze the relationship
between the prevailing soil type and total rill erosion length (Figure 17).

Figure 17. Dependence of the length of the erosion network on the prevailing soil type. Soil types are
given in the Supplementary Materials.

The basic soils of taiga and coniferous-broadleaved forests, as well as hydromorphic
soils, are least susceptible to erosion activity. The smallest total length of rills is observed on
sod-podzol soils (shallow-podzol and deep-podzol). These taiga soils, as a rule, are covered
by mixed forests with a dense canopy and good protection against the formation of surface
runoff. Moving southward, there is a slight increase in the total length of the rill network
on gray forest soils of various subtypes. These soils are actively involved in agricultural
management and have suitable hydrometeorological conditions. Weak susceptibility to
erosion of territories with hydromorphic soils is, in our opinion, evident and connected, by
and large, with land use on such soils—these are meadows with maximum soil-protective
properties. The next group of soils is more affected by erosion processes—steppe soils.
These are all kinds of chernozems, starting from leached chernozems. Southern chernozems,
which are peculiar “record-breakers” by erosion susceptibility among typical steppes soils,
are distinguished. Southern chernozems are in the cluster with the highest density of
erosion network (Figure 7). Southern chernozems are spread in the southern part of the
steppe zone. They are formed in the conditions of semiarid climate under soddy-cereal
medium steppes. Grass cover is sparse, clearly expressed summer semi-rest period for
most dominant cereals. Soil-forming rocks are represented mainly by loess and loess-like
loams, often containing easily soluble salts, as well as eluvial-deluvial deposits. Water
conditions of soils are solid. Agricultural development of southern chernozems is high: in
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the European part of Russia, it exceeds 50%, while moving to the east, plowing decreases
and the number of pastures increases. The main crops grown are cereals (wheat and corn)
and legumes; considerable areas are occupied by industrial crops (sugar beet and tobacco),
vegetable, and melon crops. Plowed soils are prone to water and wind erosion, structural
degradation, and slitization under irrigation. The last group is soils with a maximum
total length of erosion network—soils of dry steppes and semi-deserts. These are different
subtypes of chestnut soils and solonetz soils, a description of which was given earlier.

The one-factor analysis of variance was also applied to analyze the relationship be-
tween erosion activity and the predominant type of soil-forming rocks (Figure 18). In this
case, grouping types is problematic due to implicit clustering; however, certain patterns are
still observed. The increase in total length of rill erosion directly depends on clay content
in the soil-forming rock and—in its water-holding capacity, drainability. The minimum,
near-zero erosion network length is observed on weakly erodible shales. Analyzing the
rocks on which erosion is observed, the minimum length of the erosion network falls on
the group of rocks conditionally united into the so-called “sands”—these are sandy rocks
and sandstones. These rocks have the maximum infiltration capacity, not allowing the
formation of washout surface runoff and coming to the soils with minimal humus horizons.
Slightly better eroded areas are composed of clayey and loamy rocks, underlain by sandy
and sandy loam rocks, as well as light loam rocks themselves. Medium loamy rocks and
rocks of different textures with a predominance of loam and clay are better eroded. On av-
erage, easily erodible chalky rocks—limestone and other carbonate rocks—are even better
erodible. They usually form gray forest soils and leached chernozems, heavily involved
in agricultural production. The most significant total length of the erosion network is
expected to be in water-resistant clay and heavy loam rocks, on which surface runoff is
formed, eroding fertile soil layers. Separately, sandy loam rocks, for which we could not
find a reliable relationship—these rocks, draining well the surface runoff, can be resistant
to erosion processes and, folding typical chernozems, due to active economic activity falls
in the area of maximum rill erosion.

Figure 18. Dependence of the length of the erosion network on the prevailing type of soil-forming
rocks. The rock types are given in the Supplementary Materials.
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The analysis of variance was conducted separately by landscape zones, and the result
can be observed in Figure 19. The results confirm the earlier conclusions—the zones of dry
and typical steppes and semi-deserts are most susceptible to erosion processes.

Figure 19. Relationship between the rill erosion network length and landscape zone.

The analysis of the relationship between erosion processes and anthropogenic load
also confirms the previous conclusions (Figure 20). The score of the anthropogenic load is
given based on the development of the territory, the presence of settlements, industry, and
roads of various types, as well as population density.

Figure 20. The dependence of the length of the rill erosion network on the anthropogenic load.
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The intensity of erosion processes increases with increasing anthropogenic load, but
not linearly. The maximum intensity of erosion is observed under moderate anthropogenic
load. Decrease of the total length of erosion forms with further increase of anthropogenic
load is related to decrease of the area not occupied by cities, manufactories, and other
anthropogenic objects.

The cumulative effect of anthropogenic load, forest cover, prevailing soil type, and
soil-forming rocks has the most significant contribution to the development of erosion
processes in the study area (Figure 21).

Figure 21. QQ–plot of MANOVA between rill network and forest cover, anthropogenic load, prevail-
ing soil type, and soil-forming rocks.

5. Conclusions

Deep neural networks can effectively solve geomorphological problems, allowing
large-scale mapping of erosion processes. For the first time in the world, a detailed assess-
ment of the density of rill erosion and its relation to the main natural–anthropogenic factors
is given. In this case, preparation of the training sample is the most time-consuming stage,
taking 2/3 of the whole time of the study. The trained model allows highly efficient and
at an acceptable level of recognition of the erosion network on high-resolution images, in
our case using Sentinel-2 images. We investigated which Sentinel-2 bands allow the most
efficient visual recognition at the preliminary stage. As a result of numerous experiments,
the best “readability” of the image was demonstrated by a separate near-infrared band,
winning in comparison with RGB-synthesis, synthesis of artificial colors in various com-
binations, and other channels, separately. Another sensitive point of the research is the
choice of neural network architecture for semantic segmentation. Experiments were carried
out with the most common architectures for such tasks, including the well-known U-Net
architecture, as well as FPN, PSPNet, and LinkNet in combination with the most popu-
lar encoder groups, such as VGG, ResNet, SE-ResNet, ResNeXt, SE-ResNeXt, SENet154,
DenseNet, Inception, MobileNet, and EfficientNet. The best recognition accuracy on the
test set showed the FPN + EfficientNet combination; however, when applying the trained
model, the recognition results were poor. The best results in terms of real-world applica-
tions were achieved using LinkNet + DenseNet (DenseNet201). In the future, it is planned
to use the trained model to recognize the erosion network for 2019–2020 to assess the
dynamics of erosion processes in time.

The analysis made it possible to assess the key factors influencing the intensity of
rill erosion processes at a high level of confidence. In some cases, existing knowledge
about the influence of certain factors on soil erosion was confirmed. Particular interest is
the possibility of mapping the territories with the highest risk of erosion processes due
to natural–anthropogenic conditions, which will allow producing precise and effective
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measures to minimize the risks. Under the conditions of intensive agricultural development,
no reduction of anthropogenic load can be discussed; however, proper crop rotations,
regular sowing of perennial grasses, and proper plowing will reduce the existing risks
many times.

The use of generalized additive models (GAM) to analyze dependencies made it
possible to describe complex relationships between the density of rill erosion and climate,
geomorphological, and other geographic factors. Unfortunately, not all parameters could
be used in the analysis; in the future, detailed modeling of the dependence of erosion
processes on factors of soil freezing, and the intensity of precipitation, especially changes
in intensity in time series, should be conducted.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijgi11030197/s1, Table S1: Prevailing soil type list; Table S2:
Prevailing type of soil-forming rocks list.
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Abstract: Soil erosion is a form of land degradation. It is the process of moving surface soil with the
action of external forces such as wind or water. Tillage also causes soil erosion. As outlined by the
United Nations Sustainable Development Goal (UN SDG) #15, it is a global challenge to “combat
desertification, and halt and reverse land degradation and halt biodiversity loss.” In order to advance
this goal, we studied and modeled the soil erosion depth of a typical watershed in Taiwan using
26 morphometric factors derived from a digital elevation model (DEM) and 10 environmental factors.
Feature selection was performed using the Boruta algorithm to determine 15 factors with confirmed
importance and one tentative factor. Then, machine learning models, including the random forest (RF)
and gradient boosting machine (GBM), were used to create prediction models validated by erosion
pin measurements. The results show that GBM, coupled with 15 important factors (confirmed),
achieved the best result in the context of root mean square error (RMSE) and Nash–Sutcliffe efficiency
(NSE). Finally, we present the maps of soil erosion depth using the two machine learning models.
The maps are useful for conservation planning and mitigating future soil erosion.

Keywords: soil erosion; erosion pin; machine learning; morphometric factor; Shihmen Reservoir watershed

1. Introduction

The United Nations General Assembly adopted 17 sustainable development goals
(SDGs) in September 2015, which apply to all countries on the planet. Soil science is
intertwined with a number of the SDGs. Among them, soils especially play an essential
role in SDGs 2, 3, 6, 7, 12–15 [1].

Soil erosion is a form of land degradation and a severe threat to sustainable devel-
opment. It is the process of moving surface soil with the action of external forces such as
wind or water. Tillage also causes soil erosion. Among them, water erosion is the most
tangible form of soil erosion in Taiwan. Soil erosion and sediment movement caused by
rainfall and flooding, intense and persistent winds, agricultural activities, grazing, logging,
mining, and construction result in significant damage to properties and potentially result
in loss of lives, not to mention the livelihood support the land provides for communities.
Therefore, it is a global challenge by 2030 to “combat desertification, and halt and reverse
land degradation and halt biodiversity loss,” as outlined by SDG 15.

Although the soil erosion process may seem to be slow at times, it dramatically impacts
soil fertility, agriculture, and the ecosystem. Globally, it is estimated that the average soil
erosion from agriculture is 75 billion tons/year ([2,3], as cited in [4]). Other scholars point
out that about 85% of the 2 billion hectares of worldwide surface soil degradation stem
from wind and water erosion ([5], based on [6,7]). The economic costs of erosion and
sedimentation are substantial. For example, the cost of removing sediments alone could be
somewhere between USD 7 and USD 68/yard3 (or USD $9.16–USD 88.94/m3) in the US
([8], as cited in [9]). In Iran, the economic costs associated with soil erosion are thought to
be around 10 trillion rials or USD 23,750,148 ([10], as cited in [11]). As a result, soil erosion
modeling is critical to understanding soil erosion processes and preventing future soil loss.
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Recently, the Global Applications of Soil Erosion Modeling Tracker (GASEMT) database
was developed using peer-reviewed soil erosion modeling research literature published
between 1994 and 2017 and is used to help the UN’s global soil erosion assessment. The
database contains the most up-to-date information on soil erosion modeling applications
from around the world. In total, the GASEMT database contains 435 distinct soil erosion
models and model variants. Despite the numerous models available for soil erosion model-
ing in the GASEMT database, statistics show that entries for watershed-scale applications
are the most numerous (59%), and the (revised) universal soil loss equation ((R)USLE)
family of models is the most commonly used soil erosion prediction models in the world,
at about 41% [12]. Moreover, if USLE-based models such as the water and tillage erosion
model/the sediment delivery model (WaTEM/SEDEM), erosion-productivity impact cal-
culator (EPIC), and soil and water assessment tool (SWAT) are included in the same group,
then this value could rise to 55%. Since the (R)USLE family is limited to sheet and rill
erosion, the great majority of the model applications estimate only sheet and rill erosion
amounts. Other types of erosion, notably stream bank erosion, gully erosion, and wind
erosion, only account for 3.6% of the model applications combined. Finally, according to
the bibliometric analysis based on the enhanced version of the GASEMT database, the
(R)USLE model alone also has the largest number of total citations [13].

Understandably, the (R)USLE-family of models are also the most widely used soil
erosion prediction models in Taiwan. For example, Chen et al. [14] applied the universal
soil loss equation (USLE) model to reduce the order-of-magnitude discrepancy of soil loss
estimates in the literature. Liu et al. [15] used two variants of the USLE model (grid cells
and slope units) to calculate the soil loss due to sheet and rill erosion.

Beyond the traditional soil erosion models ((R)USLE, EPIC, SWAT, etc.), whether they
are classified as empirical, conceptual, or process oriented, a growing alternative is to use
machine learning (ML) or multicriteria decision making (MCDM) to improve the modeling
ability of soil loss [11,16–19]. However, there are three significant limitations of these ML
and ML-like studies. First, many of them only evaluate the presence or absence of soil
erosion similar to landslide susceptibility modeling without considering the quantitative
amount of soil loss [9,16–18]. Second, they tend to focus on or include gully erosion [16–19].
Third, and most distinctively, some of these studies use subjective evaluation, such as
expert opinions, or results from other soil erosion models, as their validation [11,19], thus
equivalently training models from subjective judgment and not from objective data such as
field measurements.

Nguyen et al. [20] were the first to create machine learning models from field erosion
pin measurements, a critical difference from other ML studies on soil erosion. The analysis
was improved and expanded to different ML algorithms, including ensemble learning
methods [21–23]. However, because some of the environmental factors used in the studies
mentioned above were point data, the resulting models could not be directly applied to the
entire study area (watershed) without interpolation.

The current study aims to improve the past studies by incorporating more independent
variables (factors) derived from the watershed digital elevation model (DEM) and eliminate
the dependence on the point data. The purpose is to create a comprehensive ML model
that applies to the entire watershed.

2. Materials

Shihmen Reservoir watershed is located in northern Taiwan, which plays a crucial
role in the metropolitan and irrigation areas of Taipei and Taoyuan [14]. It is also the
third-largest reservoir in Taiwan. Typhoons bring the majority of the annual rainfall of
2350 mm to the Shihmen Reservoir watershed between May and October [24].

2.1. Environmental Factors and Erosion Pin Measurements

The 10 environmental factors (or parameters, or features, or variables, or attributes)
examined in this study are main subwatershed, distance to river, distance to road, type
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of slope, slope direction, rainfall amount, lithology, epoch, elevation, and slope class.
Environmental factors were obtained from various GIS sources such as land use/land
cover maps, geological maps, river maps, and road system maps. These factors and four
additional factors (% sand, % silt, % clay, and % organic) were previously analyzed in
Nguyen et al. [22]. However, the four additional factors were removed from this study
because they were point data and could not be directly mapped to the entire study area
(watershed). We used morphometric factors to replace the point data.

The erosion pin data used in this study came from field surveys conducted over three
years (September 2008 to October 2011). The erosion pins were mounted on 55 slopes in
17 of the 93 subwatersheds of the study area (Figure 1). Each slope had 10 erosion pins
mounted, and the average value of the 10 pins represents the slope’s erosion depth [25].
The measurements of erosion pins were taken with a caliper, as shown in Figure 2.

 

Figure 1. The study area of the Shihmen Reservoir watershed.
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(a) (b) (c) 

Figure 2. Illustration of field measurements in the Shihmen Reservoir watershed: (a) a natural slope,
(b) an erosion pin and its label, and (c) measuring with a caliper ((c) from [22]).

2.2. Morphometric Factors

Morphometric analysis is the “quantitative description and analysis of landforms
as practiced in geomorphology that may be applied to a particular kind of landform or
to drainage basins and large regions generally” [26]. It is a technique for determining
the scale and shape of watersheds, including two types of descriptive numbers: linear
scale measurements and dimensionless numbers [27]. This approach can quantify the
erosional growth of streams and their drainage watersheds, and compare geomorphic
characteristics [28,29].

For this study, the Shihmen Reservoir watershed was divided into 93 subwatersheds
to calculate the morphometric factors (or parameters, or features, or variables, or attributes)
using the Central Geological Survey (CGS) DEM of Taiwan (10 m resolution) and ArcGIS
10.4.1. First, the DEM was filled in order to create flow paths and flow accumulations.
Then, the stream networks were generated based on the flow accumulations of individual
cells with a threshold value of 500. Finally, ArcGIS’s Stream Link and Watershed functions
were used to construct the subwatershed polygons. A total of 26 morphometric factors
were calculated and described below (also see Table 1).

Subwatershed area (A) is the total area of a subwatershed. It ranged from 2.88 km2

to 26.84 km2 in this study. Research has indicated that total runoff or sediment yield is
primarily determined by the subwatershed area [27].

Subwatershed perimeter (P) is the length of the boundary that surrounds a subwatershed.
Its value varied between 10.70 and 37.29 km in the study area.

Stream order (U) indicates the complexity of a stream drainage system. The trunk river
has the highest stream order and defines the order of a subwatershed [28]. An example of
the stream order of a subwatershed is shown in Figure 3.

Number of streams (Nu) is the number of streams of a given stream order in a subwater-
shed. Figure 3 shows an example of the number of streams. The total number of streams
(ΣNu) is the summation of the number of streams of all orders.

Stream length (Lu) is the total channel length of a given stream order in this study for
compatibility with the definition of the number of streams. It is not the cumulative channel
length of a given order that includes all lesser orders, as sometimes defined [27]. The total
stream length (ΣLu) is the summation of the stream length of all orders.

Mean subwatershed slope (S) is the average slope of a subwatershed. It is calculated by
the Slope function of ArcGIS and characterizes the steepness of a subwatershed.

Mean stream length (Lsm) is defined as the ratio between the stream length and the
number of streams of a given stream order in a subwatershed in this study. We com-
puted the average of the mean stream lengths as the characteristic mean stream length of
the subwatershed.
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Table 1. The morphometric factors used in this study.

Morphometric Factor Unit Formula/Software

1 Subwatershed area (A) km2 ArcGIS (Calculate Geometry)
2 Subwatershed perimeter (P) km ArcGIS (Calculate Geometry)
3 Stream order (U) - ArcGIS (Calculate Geometry)
4 Total number of streams (ΣNu ) - ArcGIS (Stream Order)
5 Total stream length (ΣLu ) km ArcGIS (Calculate Geometry)
6 Mean subwatershed slope (S) Degree ArcGIS (Slope)
7 Mean stream length (Lsm) km Lsm = avg(Lu/Nu)
8 Subwatershed length (Lb) km ArcGIS
9 Stream frequency (Fs) 1/km2 Fs = ΣNu/A
10 Drainage density (Dd) 1/km Dd = ΣLu/A
11 Constant of channel maintenance (C) km C = 1/Dd
12 Length of overland flow (Lo) km Lo = 1/(2Dd)
13 Infiltration number (If ) 1/km3 I f = Fs × Dd
14 Subwatershed relief (H) km H = hmax − hmin
15 Relief ratio (R) - R = H/Lb
16 Melton index (M) - M = H/

√
A

17 Ruggedness number (Rn) - Rn = Dd × H
18 Bifurcation ratio (Rb) - Rb = avg(Nu/Nu+1)
19 Stream length ratio (Rl) - Rl = avg((Lu+1/Nu+1)/(Lu/Nu))
20 Ratio Rho (ρ) - ρ = Rl/Rb
21 Elongation ratio (Re) - Re =

(
2
√

A/π
)
/Lb

22 Circularity ratio (Rc) - Rc = 2
√

πA/P
23 Form factor (Ff ) - F f = A/Lb2

24 Shape factor (Bs) - Bs = Lb2/A
25 Compactness coefficient (Cc) - Cc = P2

√
πA

26 Texture ratio (T) 1/km T = ΣNu/P

 

Figure 3. Stream order and the number of streams in a typical subwatershed.

Subwatershed length (Lb) in this study is defined as “the longest dimension of the basin
parallel to the principal drainage line,” as in the definition of relief ratio below [29]. The
length is determined by ArcGIS 10.4.1.
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Stream frequency (Fs) is the number of streams per unit area [28]. This value ranged
from 0.47 to 2.46 streams/km2 in this study.

Drainage density (Dd) is defined as the sum of the stream lengths divided by the
subwatershed area. It is a crucial indicator of the linear scale of landform elements in a
subwatershed [27].

Constant of channel maintenance (C) is defined as the inverse of drainage density. Along
with drainage density, this value compares soil’s erodibility or other factors influencing
surface erosion [29]. Here, metric units were used, and the conversion factor of 5280 (from
miles to feet) was ignored.

Length of overland flow (Lo) ranged from 0.32 km to 0.64 km in the study area. It is the
length of runoff over the ground surface until it concentrates in definite stream channels
and is half the reciprocal of drainage density [28].

Infiltration number (If) is the product of stream frequency and drainage density ([30],
as cited in [31]). This value ranged from 0.44 to 2.98 in this study.

Subwatershed relief (H) is the difference in elevations between the lowest (hmin) and the
highest (hmax) points in a subwatershed.

Relief ratio (R) is “the ratio between the total relief of a basin” and “the longest dimen-
sion of the basin parallel to the principal drainage line” [29]. For the study area, the relief
ratio varied from 0.07 to 0.57.

Melton index (M), or the ruggedness of a subwatershed, is characterized by the dimen-
sionless ratio between the subwatershed relief and the square root of the subwatershed
area [32].

Ruggedness number (Rn) is known as the dimensionless product of drainage density
and relief. As a result, high drainage density and low relief areas are just as rugged as low
drainage density and high relief areas ([33], as cited in [34]).

Bifurcation ratio (Rb) is the average number of branchings or bifurcations of streams. It
is defined as the number of streams of a given stream order to that of streams of the next
higher order [28]. For a subwatershed, there are different bifurcation ratios for different
stream orders. Following the example of Jothimani et al. [35], we computed the average of
the bifurcation ratios as the characteristic bifurcation ratio of the subwatershed. For the
93 subwatersheds in the study area, the bifurcation ratio ranged from 0.50 to 8.00.

Stream length ratio (Rl) is defined by the average length of streams of a stream order
to the next lower order [28]. Various stream length ratios exist for various stream orders.
Therefore, we computed the average of the stream length ratios as the characteristic stream
length ratio of the subwatershed, similar to Jothimani et al. [35]. For the 93 subwatersheds
in the study area, the stream length ratio ranged from 0.46 to 5.86.

Ratio Rho (ρ) is the stream length ratio divided by the bifurcation ratio [28].
Elongation ratio (Re) is the ratio between the diameter of a circle with the same area

as the subwatershed and the longest dimension of the subwatershed parallel to the main
drainage line [29], as determined for the relief ratio.

Circularity ratio (Rc) is the circumference of a circle with the same area as the subwater-
shed divided by the subwatershed perimeter [29].

Form factor (Ff) is the ratio of the width to the length of a subwatershed and is defined
as the subwatershed area divided by the square of the length of the subwatershed [36].
The subwatershed length is “measured from a point on the watershed-line opposite the
head of the main stream” [36]. Here, we used subwatershed length (Lb) to be the length of
the subwatershed.

Shape factor (Bs) is defined as the square of the length of a subwatershed divided by
the area of the subwatershed, although other definitions have also been proposed ([37], as
cited in [38]). The length of a subwatershed is defined as “the longest dimension from the
mouth to the opposite side.” Here, we used the subwatershed length (Lb) to represent the
length of the subwatershed.

Compactness or compactness coefficient (Cc) is the ratio of the perimeter of the subwater-
shed to that of a circle with an equal area [36].
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Texture ratio is the ratio of the number of crenulations on the contour with the maxi-
mum number of crenulations within the subwatershed to the length of the perimeter of the
subwatershed [39]. Crenulations are chosen because they indicate streams too small to be
shown on a topographic map [27]. The ratio is a measure of channel spacing closeness and
thus is related to drainage density. For ease of computation, we used the total number of
streams to replace the crenulations in this study. The texture ratio ranged from 0.16 to 1.27.

3. Methods

This study had five objectives: first, to identify and collect morphometric factors and
environmental factors that affect soil erosion; second, to use feature selection to identify
critical factors that can be used to model soil erosion depths; third, to apply machine
learning algorithms to create models that can be used to predict soil erosion depth in the
study area; fourth, to assess the validity of the models using statistical indices and threefold
cross-validation; fifth and finally, to produce prediction maps of soil erosion depth for the
study area.

3.1. Research Framework

Figure 4 depicts the five research steps of this analysis. First, we created an input
dataset of 36 independent factors by combining 26 morphometric and 10 environmental
factors. Second, we divided the dataset into three folds of roughly the same size based
on the main subwatershed attribute to balance the class distribution from the five main
subwatersheds [40]. We also used the erosion pin measurement as the target variable. Each
time one of the three folds was held as the test data for testing the model, the remaining
two folds were used as the training data. The whole process was repeated three times.
Third, we applied the random forest (RF) and gradient boosting machine (GBM) to create
erosion models based on the training data. Fourth, we assessed the models with the test
data. In the process, we eliminated the unessential factors and kept the best models. Finally,
we created the spatial distribution maps of soil erosion depth of the study area using the
machine learning models.

3.2. Feature Selection

In order to identify the key factors that will generate the most credible soil erosion
models, we used feature selection to rank the 36 morphometric and environmental factors
in the study. Specifically, the Boruta algorithm was used to select the subsets of factors
(predictors) for ML model building.

Boruta is a feature selection algorithm and feature ranking tool based on the RF
algorithm and introduced by Kursa et al. [41]. It works by creating a randomized copy
of the input dataset, merging it with the original dataset, and constructing the expanded
system’s classifier. Then, Boruta compares the importance of the factors in the original
dataset to those of the randomized factors to identify the key factors. Only factors with
greater importance than the randomized factors are considered essential. The advantage of
Boruta is that it allows researchers to choose the most significant factors that influence the
outcome. For this study, the Boruta package in the R software was used, and the maximum
number of times the algorithm was run (maxRun) was set to the default value of 1000.

3.3. Machine Learning Models

In this analysis, two machine learning methods were used. They are the random forest
and the gradient boosting machine.
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Figure 4. Research flowchart of this study.

Random forest (RF) was proposed by Breiman [42]. It is a supervised ML method that
combines all tree-based results into the most appropriate model for the application. The
RF algorithm runs many iterations and divides the training dataset (in terms of data and
attributes) into many subsets at random to create many trees and produce better results
than individual decision trees. The randomForest() package in the R software was used to
implement random forest in this analysis, which uses the Gini index to separate data in
order to minimize impurity at each node. Tsai et al. [23] provided a more detailed overview
of the Gini index and random forest.

Friedman [43] proposed the gradient boosting machine as a simple and highly flexible
machine learning tool. It is a widely used machine learning algorithm that has been shown
to be effective in a variety of applications [44–46]. The basic idea behind GBM is to build a
prediction model using a set of poor learning algorithms, most commonly decision trees.
Unlike RF, which produces an ensemble of individual trees in parallel, GBM creates a
sequenced tree ensemble. The knowledge gained from previously grown trees is used
to grow new trees in a sequential manner. The GBM model was once used to model soil
erosion [22]. It was implemented in this study using R software’s “gbm” package.

3.4. Assessment of Models

In this study, the ML model performance was evaluated using two statistical indices.
As shown in Equations (1) and (2), they are the root mean square error (RMSE) and the
Nash–Sutcliffe efficiency (NSE).
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RMSE =

√
∑(P − O)2

n
(1)

NSE = 1 − ∑(P − O)2

∑
(
O − O

)2 (2)

where P is the predicted value, O is the observed value, and O is the mean observed value.
RMSE was used to compare the difference between the expected values (model out-

puts) and the observed values (erosion pin measurements) in the two indices, while
NSE was used to determine the effectiveness of the model against the average observed
value [20–22].

4. Results

In this analysis, we used R version 4.0.5. In order to assess soil erosion in the Shihmen
Reservoir watershed, this study employed two machine learning models, RF and GBM. To
substitute four factors that were only point data, 26 morphometric factors were added to
the original dataset of 14 environmental factors. In total, 36 variables were examined for
their relationship with soil erosion depth (erosion pin measurement). The training data
(used to create the ML models) made up two folds of the dataset, while the remaining
fold was used to evaluate the models based on RMSE and NSE. Finally, through spatial
mapping, machine learning models were used to predict the soil erosion depth for the
entire Shihmen Reservoir watershed.

4.1. Feature Selection

Boruta was used as a feature selection tool to assess the relative importance of vari-
ables that influence soil erosion. Table 2 and Figure 5 depict the findings. It can be seen
that Table 2 was divided into three categories based on decisions: rejected, tentative, and
confirmed. They are also ranked by median importance. In total, 15 factors were identified
as important, which includes texture ratio, subwatershed length, epoch, elongation ratio,
lithology, subwatershed perimeter, form factor, relief ratio, total stream length, Melton
index, the total number of streams, elevation, shape factor, subwatershed area, and type
of slope. One factor was considered tentative, i.e., the main subwatershed. Moreover,
20 variables were ruled out, which consist of distance to river, mean stream length, rugged-
ness number, slope direction, ratio Rho, circularity ratio, distance to road, stream length
ratio, stream frequency, rainfall, compactness coefficient, stream order, constant of channel
maintenance, drainage density, length of overland flow, infiltration number, slope class,
subwatershed slope, bifurcation ratio, and subwatershed relief. They should play no im-
portant role in the prediction of soil erosion. According to the Boruta analysis, the type of
slope, subwatershed area, and shape factor are the three most significant variables among
the factors that are shown to be important.

Boruta generates a corresponding “shadow” factor for each factor, whose values
were obtained by shuffling the original factor’s values across objects. The system then
classifies these using all of the extended system’s factors and calculates the importance
of each factor [47]. Green is used to color the 15 factors listed as important in Figure 5.
The 20 rejected factors are colored red, while the one tentative factor is colored yellow.
To differentiate the variables, Figure 5 also shows the minimum, mean, and maximum of
shadow factors. In general, factors ranked higher than the shadow maximum have been
tested to be more significant than chance.
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Table 2. Variable importance using Boruta feature selection.

meanImp medianImp minImp maxImp Decision

Type of slope 8.162273 8.243055 3.952560 10.425924 Confirmed
Subwatershed area 5.019874 5.052494 2.343560 7.383705 Confirmed

Shape factor 4.976153 5.010055 2.159306 7.532354 Confirmed
Elevation 4.988711 5.000990 2.069170 7.789953 Confirmed

Total number of streams 4.907324 4.938526 2.276170 7.150461 Confirmed
Melton index 4.409082 4.469957 1.627233 7.206727 Confirmed

Total stream length 4.447973 4.438060 1.872146 6.785887 Confirmed
Relief ratio 4.348566 4.412615 0.893647 6.730493 Confirmed
Form factor 4.209047 4.230464 1.780136 6.776284 Confirmed

Subwatershed perimeter 4.064281 4.095632 0.925774 6.298489 Confirmed
Lithology 3.898596 3.915257 0.934244 6.630224 Confirmed

Elongation ratio 3.788302 3.794716 1.129358 5.898901 Confirmed
Epoch 3.517687 3.528155 0.622912 6.683233 Confirmed

Subwatershed length 3.421194 3.444065 0.453943 6.157326 Confirmed
Texture ratio 3.420789 3.421103 0.778195 5.719445 Confirmed

Subwatershed 2.952157 2.983119 −0.229199 5.487332 Tentative

Subwatershed relief 2.355625 2.315015 −0.156997 4.560039 Rejected
Bifurcation ratio 2.122521 2.217065 0.894857 3.185164 Rejected

Mean subwatershed slope 1.990054 2.069925 0.119557 3.807072 Rejected
Slope class 1.999188 2.035054 −0.586225 4.019329 Rejected

Infiltration number 1.761100 1.736976 −0.027713 3.775921 Rejected
Length of overland flow 1.757534 1.690870 −0.044952 3.617237 Rejected

Drainage density 1.674382 1.671754 0.212803 2.613970 Rejected
Constant of channel maintenance 1.412327 1.563865 −1.125096 2.720770 Rejected

Stream order 1.460165 1.537092 −0.199118 2.561430 Rejected
Compactness coefficient 1.492243 1.527261 −0.460479 2.733053 Rejected

Rainfall 1.601451 1.490486 0.124088 3.313065 Rejected
Stream frequency 1.359127 1.464677 −0.542830 2.702161 Rejected

Stream length ratio 1.090233 1.124972 −1.164121 2.851477 Rejected
Distance to road 0.998904 0.815334 −0.609436 2.881991 Rejected
Circularity ratio 0.975395 0.711048 −0.379865 2.311318 Rejected

Ratio Rho 0.518910 0.549485 −0.944962 2.122957 Rejected
Slope direction 0.692622 0.536967 −0.820490 2.884595 Rejected

Ruggedness number 0.183690 0.291990 −2.038411 1.565565 Rejected
Mean stream length 0.486127 0.288427 −1.123192 1.989272 Rejected

Distance to river −0.937049 −0.925128 −2.557384 0.647234 Rejected

Among the green (important) factors, 4 are environmental factors, while the remaining
11 are morphometric factors. The percentage of the environmental factors in the confirmed
group (4/15 = 27%) is slightly less than the overall percentage of the environmental factors
in the dataset (10/36 = 28%). On the other hand, the environmental factors account for
100% of the tentative factor (1/1) and 25% (5/20) of the rejected factors. Furthermore, the
environmental factors selected in the confirmed group are the type of slope, elevation,
lithology, and epoch. Compared to the study by Nguyen et al. [22], which also reported
the relative importance of environmental factors, we can see some similarities. The top
four factors from Nguyen et al. [22] were slope direction, type of slope, % organic, and
elevation. Two (type of slope and elevation) were also selected for this study, while one
(slope direction) was not, and the other (% organic) was not included in this study because
it is a point data. It is worth noting that Nguyen et al. [22] used 70% training and 30% test
data, while this study used threefold cross-validation.
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Figure 5. Feature selection with Boruta: 1: shadow min, 2: distance to the river, 3: shadow mean, 4: mean stream length,
5: ruggedness number, 6: slope direction, 7: ratio Rho, 8: circularity ratio, 9: distance to road, 10: stream length ratio,
11: stream frequency, 12: rainfall, 13: compactness coefficient, 14: stream order, 15: constant of channel maintenance, 16:
drainage density, 17: length of overland flow, 18: infiltration number, 19: slope class, 20: subwatershed slope, 21: bifurcation
ratio, 22: subwatershed relief, 23: main subwatershed, 24: shadow max, 25: texture ratio, 26: subwatershed length, 27:
epoch, 28: elongation ratio, 29: lithology, 30: subwatershed perimeter, 31: form factor, 32: relief ratio, 33: total stream length,
34: Melton index, 35: total number of streams, 36: elevation, 37: shape factor, 38: subwatershed area, 39: type of slope.

4.2. Machine Learning

Based on the results of feature selection, we performed machine learning on three sets
of factors separately: (1) all 36 factors, (2) 15 confirmed factors, and (3) 15 confirmed factors
plus 1 tentative factor. Using threefold cross-validation in each set of factors, the dataset
was divided into three, roughly equal folds. Then, two folds were used as the training data,
and the other fold was used as the test data. The process was repeated three times so that
every fold was used as the test data in the analysis. Both RF and GBM were used to analyze
the same data. Finally, the results (RMSE and NSE) of three attempts were averaged. They
are shown in Table 3 and Figure 6.

Table 3. Performance comparison of machine learning models using threefold cross-validation.

Model and Factors No. of Factors Average RMSE (mm/yr) Average NSE

Training Test Training Test

RF (all) 36 0.96 2.01 0.83 0.25

GBM (all) 36 0.88 1.84 0.84 0.39

RF (confirmed) 15 1.08 1.91 0.79 0.31

GBM (confirmed) 15 0.79 1.50 0.88 0.59

RF (nonrejected) 16 1.09 1.96 0.79 0.27

GBM (nonrejected) 16 0.82 1.52 0.87 0.57
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(a) 

 

(b) 

Figure 6. Comparison between parameter selections: (a) training data and (b) test data (lower
is better).

The findings (Table 3) reveal that the ML models delivered good results. Both the
average values of RMSE and NSE in Table 3 exhibit the same trend. The smaller the
RMSE and the higher the NSE were, the better the model was. As shown in Figure 6, GBM
consistently outperforms RF in both training data and test data. GBM also edges out RF
in all three datasets that used different factors (all, confirmed, and nonrejected). For the
training data, the best RF model result was obtained with the all-factor group, followed
by the confirmed group and then the nonrejected group. However, for the test data, the
confirmed group is the best, followed by the nonrejected group and then the all-factor
group. This shows that the RF models were overfitted with more factors, and that feature
selection indeed contributes to improving the ML models when facing unknown data.
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On the other hand, the GBM model does not exhibit an overfit bias. For both the
training and test data, the confirmed group is the best, followed by the nonrejected group
and then the all-factor group.

Overall, the best test result obtained in this study is 1.50 mm/yr (GBM) and 1.91 mm/yr
(RF). Both of them are from the confirmed group. Compared to the previous study [22],
which used a 70/30 split and only 14 environmental factors, the results are mixed. In terms
of RF, the Nguyen et al. [22] result was 1.75 mm/yr, which is better than the current study
(1.91 mm/yr). However, in terms of GBM, the present study (1.50 mm/yr) is better than
the previous study (1.72 mm/yr). If we only consider the best model, which is GBM in this
case, this study is better than the previous study.

4.3. Model Prediction

Using the RF and GBM models, we predicted the soil erosion depth of the entire study
area, as shown in Figure 7. The data of the whole Shihmen Reservoir watershed were
investigated and then entered into the R software after the preparation of the machine
learning models for predicting the soil erosion depth. The results were transferred to
the ArcGIS software to create the soil erosion depth maps. Figure 7 showed the spatial
distribution of soil erosion depth (in mm/yr) over the Shihmen Reservoir watershed
produced by each model’s three sets of factors: all, confirmed, and nonrejected. The
red area represents a high erosion depth, whereas the blue area has a low erosion depth.
Due to the morphometric factors used in the ML models, it is clear that the individual
subwatershed has a significant impact on the soil erosion depth distribution.

Figure 7 shows that the all-factor group’s maps (a and b) have more variance within
individual subwatersheds than the confirmed group’s (c and d) and the nonrejected group’s
maps (e and f). This is most likely due to the fact that there are more variables used in
the mapping of all factors (36). The confirmed and nonrejected maps, on the other hand,
appear to be more uniform in color throughout each subwatershed. They both have a
similar appearance because they used a similar number of variables (15 and 16).

(a) (b) 

Figure 7. Cont.
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(c) (d) 

(e) (f) 

Figure 7. Prediction of soil erosion depth of the entire Shihmen Reservoir watershed using machine learning: (a) RF (all),
(b) GBM (all), (c) RF (confirmed), (d) GBM (confirmed), (e) RF (nonrejected), and (f) GBM (nonrejected).

The minimum, mean, and maximum erosion depths expected for the entire Shihmen
Reservoir watershed from different model/factor combinations are shown in Table 4. The
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table also includes field measurements of erosion pins for comparison. The table shows
that the averages of various model/factor combinations are quite similar to the average
of erosion pins. However, no model/factor combination accurately forecasts the extreme
values of real-world measurements. The predictions are too high for the minimum value
and too low for the maximum value.

Table 4. Comparing ML model results with erosion pin measurements.

Erosion Depth (mm/yr) Min (mm/yr) Mean (mm/yr) Max (mm/yr)

RF (all) 4.60 6.77 9.33
GBM (all) 3.79 6.73 9.73

RF (confirmed) 4.65 6.68 10.10
GBM (confirmed) 3.25 6.68 11.53
RF (nonrejected) 4.63 6.67 10.14

GBM (nonrejected) 3.22 6.67 11.60

Erosion Pin measurements 2.17 6.50 13.03

5. Discussion

This study continues to model the soil erosion depth as measured by erosion pins in
the Shihmen Reservoir watershed because of the watershed’s significance and the degree to
which it is affected by soil erosion [20–22]. Since the morphometric features of a watershed
influence surface runoff and water erosion, they were included in this research to create
a complete picture of the erosion activity in the study region and to improve the ML
models. However, due to the overlapping (and sometimes conflicting) nature of some
of the morphometric features, the overwhelming number of factors extracted from the
morphometric analysis may be a deterrent to further analysis. As a result, feature selection
was performed in this study before machine learning modeling. The widely used Boruta
algorithm was used to separate the important from the nonimportant factors. In the end,
11 morphometric factors were identified as influential in estimating the soil erosion depth.
They are texture ratio, subwatershed length, elongation ratio, subwatershed perimeter,
form factor, relief ratio, total stream length, Melton index, total number of streams, shape
factor, and subwatershed area. Overall, the morphometric factors were chosen in 42 percent
(=11/26) of the cases. On the other hand, only four environmental factors (slope type,
elevation, lithology, and epoch) were chosen as important. They account for 40% (=4/10)
of the overall environmental factors.

Note that the point data (% sand, % silt, % clay, and % organic) in the original
14 environmental factors had to be removed because they were not available watershed-
wide and cannot be used for model prediction of the entire Shihmen Reservoir watershed.
Therefore, the lower selection rate of the environmental factors than the morphometric
factors in this study could be attributed to the removal of these point data because some of
them were shown to be important in the previous study [22].

Another aspect that distinguishes this study from the previous studies [20–22] is the
use of threefold cross-validation instead of the 70/30 split with stratified random sampling.
The threefold cross-validation divides the dataset into three roughly equal folds with a
balanced class distribution. Therefore, each class (stratum) is adequately represented, as
with the stratified random sampling. However, in the threefold cross-validation, two folds
were used as the training data, and the third fold was used as the test data. The procedure
was replicated three times so that the algorithm takes turns using two-thirds of the data as
the training data, and each fold was used as the test data only once. The 70/30 split with
stratified random sampling, on the other hand, did not rotate the training and test data. To
find the average answer, the 70/30 split had to be repeated three times from the beginning
using different random seeds.

Regardless of which set of factors was used (all, confirmed, or nonrejected), our
analysis shows that GBM consistently outperforms RF in terms of RMSE and NSE. As
compared to the previous study [22], the best RMSE value was noticeably reduced from
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1.72 mm/yr to 1.50 mm/yr (GBM with confirmed factors). This demonstrates that, despite
the elimination of potentially valuable point data, the inclusion of morphometric factors
improves the soil erosion modeling.

Additionally, unlike the previous study that used point data [22], this study does not
need to interpolate the modeling prediction for the entire research area. Instead, complete
maps of the spatial distribution of soil erosion depth can be produced from the ML models
directly. The resulting maps (Figure 7) show finer resolution of change with more features
in color variation. There is densely packed information not present in the previous maps.
It is a huge step forward for soil erosion control and prioritization.

6. Conclusions

To sum up, previous studies built machine learning models for the Shihmen Reservoir
watershed using point data that were only available at individual slopes monitored with
erosion pins. The current research improved upon past studies by incorporating new inde-
pendent variables (morphometric factors) derived from the watershed digital elevation
model and eliminating the dependence on the point data. A dataset of 36 predictive factors
and one target factor was created. Feature selection was performed to remove redundant
factors and to avoid the overfitting of models. In the end, 15 important factors were identi-
fied that include 4 environmental factors and 11 morphometric factors. Two ML algorithms,
RF and GBM, were used in the analysis. Despite the removal of four environmental factors
used in previous studies (point data that were not available watershed-wide), the new GBM
model in this study shows an improvement in RMSE, which was reduced from 1.72 mm/yr
to 1.50 mm/yr. Consequently, we were able to create the most accurate ML model to date
of the distribution of soil erosion depth in the study area. This proves the value of adding
morphometric factors to soil erosion analysis. Furthermore, the ML models were used to
create prediction maps of soil erosion depth of the entire Shihmen Reservoir watershed,
which were not possible, and only interpolation approximation was achieved previously
(due to the point data issue). The new maps show great details of what needs attention for
soil erosion control and prioritization. It is a valuable advancement of our understanding
and future study of soil erosion modeling. Since the ML models are data-driven and rely on
sufficient monitoring data, it is crucial to improve our data collection methods and use the
latest technologies to record information. Solar-powered Internet of Things (IoT) devices
that can monitor the change of slope surfaces are currently being experimented with in the
Shihmen Reservoir watershed. The inexpensive and large amount of data generated by
these devices will likely be the key driver for future research on this topic.
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The authors of the published paper [1] would like to make the following corrections:

(1) The last four numbers in the second column (No. of Factors) of Table 3 should read
15, 15, 16, and 16 (instead of 16, 16, 19, and 19)

Original:

Table 3. Performance comparison of machine learning models using threefold cross-validation.

Model and Factors No. of Factors Average RMSE (mm/yr) Average NSE

Training Test Training Test

RF (all) 36 0.96 2.01 0.83 0.25

GBM (all) 36 0.88 1.84 0.84 0.39

RF (confirmed) 16 1.08 1.91 0.79 0.31

GBM (confirmed) 16 0.79 1.50 0.88 0.59

RF (nonrejected) 19 1.09 1.96 0.79 0.27

GBM (nonrejected) 19 0.82 1.52 0.87 0.57

Corrected:

Table 3. Performance comparison of machine learning models using threefold cross-validation.

Model and Factors No. of Factors Average RMSE (mm/yr) Average NSE

Training Test Training Test

RF (all) 36 0.96 2.01 0.83 0.25

GBM (all) 36 0.88 1.84 0.84 0.39

RF (confirmed) 15 1.08 1.91 0.79 0.31

GBM (confirmed) 15 0.79 1.50 0.88 0.59

RF (nonrejected) 16 1.09 1.96 0.79 0.27

GBM (nonrejected) 16 0.82 1.52 0.87 0.57

(2) The last parentheses on page 13 (4.3 Model Prediction) should contain the numbers
15 and 16 (instead of 16 and 19)

Original:
They both have a similar appearance because they used a similar number of variables

(16 and 19).
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Corrected:
They both have a similar appearance because they used a similar number of variables

(15 and 16).
The authors apologize for any inconvenience caused and state that the scientific

conclusions are unaffected. The original article has been updated.
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