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Preface

This book, containing 13 from the total of 40 submitted articles that were accepted and

published in the Special Issue “Fuzzy Sets, Fuzzy Logic and Their Applications, 2021” of the MDPI

“Mathematics” journal, is the third volume of a successful series that began with the Special Issue

“Fuzzy Sets, Fuzzy Logic and Their Applications” (2019, 20 papers) and was followed by the Special

Issue “Fuzzy Sets, Fuzzy Logic and Their Applications, 2020” (24 papers).

The 13 articles in the present book, which appear in the order that they were accepted and

published in “Mathematics”, cover a wide range of topics connected to the theory and applications

of fuzzy sets and systems, of fuzzy logic and of their extensions/generalizations.

More explicitly, the first paper, written by Shuling Wang and Haitao Lipaper, studies the

resolution of a kind of FRI with a Boolean semi-tensor product composition.

The second paper, by Andrei Alexandru and Gabriel Ciobanu, presents a survey of some results

recently published by the authors regarding the fuzzy aspects of finitely supported structures.

The third paper, by Hesham Alhumade, Hegazy Rezk, Abdulrahim A. Al-Zahrani, Sharif F.

Zaman and Ahmed Askalany, models the output performance of an adsorption water desalination

system (AWDS) in terms of switching and cycle time using artificial intelligence.

The fourth paper, by Amir Masoud Rahmani, Saqib Ali, Mohammad Sadegh Yousefpoor,

Efat Yousefpoor, Rizwan Ali Naqvi, Kamran Siddique and Mehdi Hosseinzadeh, develops an area

coverage scheme based on fuzzy logic and a shuffled frog-leaping algorithm (SFLA) in heterogeneous

wireless sensor networks.

The fifth paper, by Siukai Choy, Tszching Ng, Carisa Yu and Benson Lam, presents a novel

variational model based on fuzzy region competition and statistical image variation modeling for

image segmentation.

The sixth paper, by Pedro J. Correa-Caicedo, Martin A. Rodriguez-Licea, Óscar Octavio

Gutiérrez-Frı́as, Óscar Octavio Gutiérrez-Frı́as, Carlos Alonso Herrera-Ramı́rez, Iris I.

Méndez-Gurrola, Miroslava Cano-Lara and Alejandro I. Barranco-Gutiérrez, proposes an intelligent

system based on fuzzy logic, which takes the information from the sensors and corrects the vehicle’s

absolute position according to its latitude and longitude.

Shuker Khalil, Ahmed Hassan, Haya Alaskar, Wasiq Khan and Abir Hussain investigate in the

seventh paper the new types of cubic soft algebras and they study their applications.

In the next paper, Hennie Husniah and Asep K. Supriatna compute the number of failures for a

system which has Weibull failure distribution with a fuzzy shape parameter.

Susana Dı́az-Vázquez, Emilio Torres-Manzanera, Irene Dı́az and Susana Montes revisit in the

next paper the axioms that a measure of the difference between two interval-valued fuzzy sets should

satisfy, paying special attention to the condition of monotonicity in the sense that the closer the

intervals are, the smaller the measure of difference between them is.

In the tenth paper, Ibtesam Alshammar, Ibtesam Alshammar, Ibtesam Alshammar, Cenap Oze,

Muhammad Riaz and Rania Kammoun focus on several ideas associated with linear Diophantine

fuzzy soft sets, along with their algebraic structure.

In the next paper, Georgios Souliotis, Yousif Alanazi and Basil Papadopoulos present a

construction of fuzzy numbers via the cumulative distribution function.

ix



In a review paper, Michael Gr. Voskoglou details the main steps that were laid from Zadeh’s

fuzziness and Atanassov’s intuitionistic fuzzy sets, to Smarandache’s indeterminacy and Molodstov’s

soft sets.

The last paper, by Muhammad Bilal Khan, Hakeem A. Othman, Michael Gr. Voskoglou, Lazim

Abdullah and Alia M. Alzubaidi, studies the Aumann and fuzzy Aumann integrals which are

the most significant interval and fuzzy operators that allow the classical theory of integrals to be

generalized.

It is hoped that this book will be interesting and useful for those working in the areas of fuzzy

sets, fuzzy systems and fuzzy logic, as well as for those with a proper mathematical background and

those willing to become familiar with the recent advances in fuzzy mathematics and fuzzy logic.

As the Guest Editor of the present Special Issue, I am grateful to the authors of the papers for

their quality contributions, to the reviewers for their valuable comments toward improvements in the

submitted works and to the administrative staff of MDPI for the support in completing this project.

Special thanks are due to the Managing Editor of the three Special Issues (2019, 2020 and 2021) Ms.

Grace Du for her excellent collaboration and valuable assistance during all of these years.

Michael Voskoglou

Editor
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Abstract: Resolution of fuzzy relational inequalities (FRIs) plays a significant role in decision-making,
image compression and fuzzy control. This paper studies the resolution of a kind of FRIs with
Boolean semi-tensor product composition. First, by resorting to the column stacking technique, the
equivalent form of FRIs with Boolean semi-tensor product composition is obtained, which is a system
of FRIs (SFRIs) with max–min composition. Second, based on the semi-tensor product method, all the
solutions to FRIs with Boolean semi-tensor product composition are obtained by finding all possible
parameter set solutions. Finally, a general procedure is developed for the resolution of FRIs with
Boolean semi-tensor product composition. Two illustrative examples are worked out to show the
effectiveness of the obtained new results.

Keywords: fuzzy relational inequality; Boolean semi-tensor product composition; column stacking;
semi-tensor product of matrices

1. Introduction

Resolution of fuzzy relational equations (FREs) and fuzzy relational inequalities
(FRIs) has wide applications in several research fields including decision-making, image
compression, fuzzy control and so on [1–4]. E. Sanchez initiated the resolution theory
of FREs and applied it to medical research [5]. Since then, the resolution of FREs (FRIs)
has become a heated topic [6–8]. The resolution of FREs with max-product composition
was considered in [9–11]. Cornejo et al. [12,13] investigated the solvability of bipolar
max-product FREs. Several effective alternatives for solving fuzzy nonlinear equations
were proposed in [14–16]. An algorithm for solving FREs with max-T composition was
established in [17]. The resolution of FREs with max–min composition was investigated
in [18–20]. Besides the study of FREs and FRIs, the resolution of system of fuzzy relational
equations (SFREs) and system of fuzzy relational inequalities (SFRIs) has also been widely
studied [21,22].

Recently, the semi-tensor product of matrices has been put forward by Cheng [23],
which has been widely applied to the analysis and control of finite-value dynamical systems,
including controllability [24,25], observability [26], stability and stabilization [27–29], opti-
mal control [30], synchronization [31], game theory [32–36] and so on [37,38]. Lu et al. [39]
presented a detailed survey on the applications of semi-tensor product of matrices to finite-
value dynamical systems. In particular, the semi-tensor product method has also been
applied to the modeling of fuzzy systems [40,41] and resolution of FREs and FRIs [42,43].
Cheng et al. [44] first applied the semi-tensor product method to the resolution of FREs with
max–min composition. Based on the semi-tensor product of matrices, Li and Wang [45]
studied the resolution of FRIs with max–min composition. Several kinds of FRIs and SFRIs
with max–min composition were considered in [46] by virtue of a column stacking approach.

In the past decade, dimension-varying systems have received intensive attention due
to the wide applications in spacecrafts, vehicle clutch systems and biological systems [47].
When considering dimension-varying fuzzy systems, it is significant to deal with fuzzy

Mathematics 2021, 9, 937. https://doi.org/10.3390/math9090937 https://www.mdpi.com/journal/mathematics
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relations with incompatible dimensions. However, all the existing results on the resolution
of FREs and FRIs just considered the case where fuzzy matrices have compatible dimensions
(see Definition 2 below). When the dimensions of two fuzzy matrices are not compatible, we
call it Boolean semi-tensor product composition. Therefore, it is meaningful to investigate
the resolution of FREs and FRIs with Boolean semi-tensor product composition, and apply
the obtained results to the study of dimension-varying fuzzy systems. It is easy to see that
the max–min composition is a special case of Boolean semi-tensor product composition.

This paper focuses on the resolution of FRIs (see (11) below) and SFRIs (see (12) below)
with Boolean semi-tensor product composition, and aims to propose a general procedure to
obtain all the solutions. The main contributions of this paper are two-fold. On one hand,
we investigate the basic theory of Boolean semi-tensor product. Compared with semi-tensor
product, we find that some important properties of semi-tensor product such as associative
law, pseudo commutativity, and the properties of swap matrix and transpose operator still hold
for Boolean semi-tensor product. On the other hand, we establish a general procedure for the
resolution of FRIs and SFRIs with Boolean semi-tensor product composition, which facilitates
the application of fuzzy theory in dimension-varying systems.

The remainder of this paper is organized as follows. In Section 2, we recall some
necessary preliminaries. Section 3 formulates the problems studied in this paper and studies
the equivalent forms of FRIs and SFRIs with Boolean semi-tensor product composition.
In Section 4, a general procedure is established for the resolution of the considered FRIs
and SFRIs. Two numerical examples are given to support our new results in Section 5,
which is followed by a brief conclusion in Section 6.

2. Preliminaries

2.1. Semi-Tensor Product of Matrices

In this part, we present some necessary preliminaries on the semi-tensor product of
matrices. For details, please refer to [23,44].

Definition 1. Let P ∈ Mm×n, Q ∈ Ms×t. Denote the least common multiple of n and s by
α = lcm(n, s). Then, the semi-tensor product of P and Q is

P � Q = (P⊗ I α
n
)(Q⊗ I α

s
), (1)

where ⊗ is the Kronecker product.

Lemma 1. Let X ∈ Ms×1 be a column vector and P ∈ Mm×n. Then

X � P = (Is ⊗ P)� X. (2)

Denote Dk := {0, 1
k−1 , · · · , k−2

k−1 , 1}. When k = ∞, D∞ := [0, 1]. Define Δs := {δi
s : i =

1, 2, · · · , s}, where δi
s denotes the i-th column of identity matrix Is. Identify i

k−1 as δk−i
k ,

i = 0, 1, · · · , k− 1. Then, one can see thatDk ∼ Δk. δk−i
k is called the vector form of i

k−1 and
we do not distinguish δk−i

k and i
k−1 if no confusion arises in the sequel. For any a, b ∈ Dk,

a ∨k b = max{a, b}, a ∧k b = min{a, b}. When k = ∞, a ∨ b := a ∨∞ b and a ∧ b := a ∧∞ b.

Lemma 2. Let x, y ∈ Dk. Then

(i)
x ∨k y = Mk

d � x � y, (3)

where Mk
d = δk[P1 P2 · · · Pk], and Pr = [1 2 · · · r− 1 r · · · r︸ ︷︷ ︸

k−r+1

], r = 1, 2, · · · , k;

(ii)
x ∧k y = Mk

c � x � y, (4)

2
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where Mk
c = δk[Q1 Q2 · · · Qk], and Qr = [ r · · · r︸ ︷︷ ︸

r

r + 1 r + 2 · · · k], r = 1, 2, · · · , k.

2.2. Boolean Semi-Tensor Product Composition

To formulate the problem considered in this paper, we introduce some necessary
operators. Denote the set of s× t matrices with their entries in Dk by Ds×t

k .

Definition 2. Let P = (pi,j) ∈ Dm×n
∞ , Q = (qi,j) ∈ Dn×s

∞ . Then, the max–min composition
operator, denoted by “◦", is defined as

R = (ri,j) = P ◦Q ∈ Dm×s
∞ ,

where ri,j = ∨n
k=1(pi,k ∧ qk,j).

Definition 3. Let P = (pi,j) ∈ Dm×n
∞ , Q = (qi,j) ∈ Ds×t

∞ . Then, the Boolean Kronecker product
of P and Q, denoted by P⊗B Q ∈ Dms×nt

∞ , is

P⊗B Q =

⎡⎢⎣ p1,1 ⊗B Q · · · p1,n ⊗B Q
...

...
pm,1 ⊗B Q · · · pm,n ⊗B Q

⎤⎥⎦,

where

pi,j ⊗B Q =

⎡⎢⎣ pi,j ∧ q1,1 · · · pi,j ∧ q1,t
...

...
pi,j ∧ qs,1 · · · pi,j ∧ qs,t

⎤⎥⎦.

Similar to the ordinary Kronecker product, one can obtain the following properties of
Boolean Kronecker product.

Proposition 1. (i) Let P, Q, R be three real matrices with arbitrary dimensions. Then

P⊗B Q⊗B R = P⊗B (Q⊗B R). (5)

(ii) Let P ∈ Mm×n, Q ∈ Ms×t. Then

(P⊗B Q)� = P� ⊗B Q�. (6)

Definition 4. Let P = (pi,j) ∈ Dm×n
∞ , Q = (qi,j) ∈ Ds×t

∞ . Then, the Boolean semi-tensor
product composition operator, denoted by “�B", is defined as

P �B Q = (P⊗B I α
n
) ◦ (Q⊗B I α

s
), (7)

where α = lcm(n, s).

Remark 1. One can easily see from Definition 4 that P �B Q = P ◦Q holds for n = s.

Next, we present some important properties of Boolean semi-tensor product composition.

Proposition 2. Let P, Q, R be three real matrices with arbitrary dimensions. Then

P �B Q �B R = P �B (Q �B R). (8)

Proposition 3. Let P ∈ Mm×n, Q ∈ Ms×t. Then

(P �B Q)� = Q� �B P�. (9)

3
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Proof of Proposition 3. A simple calculation shows that

(P �B Q)� = [(P⊗B I α
n
) ◦ (Q⊗B I α

s
)]�

= (Q⊗B I α
s
)� ◦ (P⊗B I α

n
)�

= (Q� ⊗B I α
s
) ◦ (P� ⊗B I α

n
)

= Q��BP�,

where α = lcm(n, s).

Proposition 4. Let X ∈ Ds×1
∞ and Y ∈ Dt×1

∞ be two column vectors. Then

W[s,t] �B X �B Y = Y �B X, (10)

where W[s,t] := [It ⊗ δ1
s It ⊗ δ2

s · · · It ⊗ δs
s ].

Proof of Proposition 4. Set X = [x1 x2 · · · xs]
� and Y = [y1 y2 · · · yt]

�. Then, it holds that

X �B Y = (X⊗B It) ◦Y

= [x1 ∧ y1 x1 ∧ y2 · · · x1 ∧ yt x2 ∧ y1 x2 ∧ y2 · · · x2 ∧ yt

· · · xs ∧ y1 xs ∧ y2 · · · xs ∧ yt]
�.

Thus,

W[s,t] �B X �B Y = W[s,t] �B (X �B Y)

= [x1 ∧ y1 x2 ∧ y1 · · · xs ∧ y1 x1 ∧ y2 x2 ∧ y2· · ·xs ∧ y2

· · · x1 ∧ yt x2 ∧ yt · · · xs ∧ yt]
�

= Y �B X.

3. Problem Formulation

In this paper, we consider the following two problems:

• Problem 1: Solve the following FRI:

G � A �B X � H, (11)

where X ∈ Dp×q
∞ is an unknown matrix, A ∈ Dm×n

∞ , G, H ∈ D
αm
n ×

αq
p

∞ are known
matrices, and α = lcm(n, p).

• Problem 2: Solve the following SFRIs:⎧⎪⎪⎪⎨⎪⎪⎪⎩
G1 ≤ A1 �B X ≤ H1,
G2 ≤ A2 �B X ≤ H2,

...
GN ≤ AN �B X ≤ HN ,

(12)

where X ∈ Dp×q
∞ is an unknown matrix, Ai ∈ Dmi×ni

∞ , Gi, Hi ∈ D
αimi

ni
× αi q

p
∞ are known

matrices, αi = lcm(ni, p), i = 1, 2, · · · , N, and N ∈ Z+, N ≥ 2.

Let A = (ai,j) ∈ Ms×t. Then, the column stacking form of A, denoted by Vc(A) ∈ Mst×1,
is defined as

Vc(A) = [a1,1 a2,1 · · · as,1 · · · a1,t a2,t · · · as,t]
�.

4
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Using column stacking operator, we present the equivalent forms of FRI (11) and
SFRIs (12) successively.

Proposition 5. Let A ∈ Dm×n
∞ , B ∈ Dn×p

∞ . Then

Vc(A ◦ B) = (Ip ⊗B A) ◦Vc(B). (13)

Proof of Proposition 5. A direct calculation shows that

Vc(A ◦ B) = Vc

(
[A ◦ Col1(B) A ◦ Col2(B) · · · A ◦ Colp(B)]

)

=

⎡⎢⎢⎢⎣
A ◦ Col1(B)
A ◦ Col2(B)

...
A ◦ Colp(B)

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
A 0 · · · 0

0 A · · · 0
...

...
0 0 · · · A

⎤⎥⎥⎥⎦ ◦
⎡⎢⎢⎢⎣

Col1(B)
Col2(B)

...
Colp(B)

⎤⎥⎥⎥⎦
= (Ip ⊗B A) ◦Vc(B),

where Coli(B) denotes the i-th column of B, i = 1, 2, · · · , p.

Proposition 6. Let A ∈ Dp×q
∞ . Then

Vc(A⊗B Is) = Ts
p,q ◦Vc(A), (14)

where
Ts

p,q = W[s,q] �B W[pq,s] �B W[s2,pq] �B (Vc(Is)⊗B Ipq).

Proof of Proposition 6. Let

ξ
j
i = [a1,i ∧ (δ

j
s)
� a2,i ∧ (δ

j
s)
� · · · ap,i ∧ (δ

j
s)
�], i = 1, 2, · · · , q, j = 1, 2, · · · , s;

ζi,j = [ai,j ∧ (δ1
s )
� ai,j ∧ (δ2

s )
� · · · ai,j ∧ (δs

s)
�], i = 1, 2, · · · , p, j = 1, 2, · · · , q.

By Definition 4, it is easy to obtain that

Vc(A)�B Vc(Is) = [ζ1,1 ζ2,1 · · · ζp,1 ζ1,2 ζ2,2 · · · ζp,2 · · · ζ1,q ζ2,q · · · ζp,q]
�.

Then, we have

W[s,q] �B W[pq,s] �B Vc(A)�B Vc(Is)

= W[s,q] �B [ξ1
1 ξ1

2 · · · ξ1
q ξ2

1 ξ2
2 · · · ξ2

q · · · ξs
1 ξs

2 · · · ξs
q]
�

= [ξ1
1 ξ2

1 · · · ξs
1 ξ1

2 ξ2
2 · · · ξs

2 · · · ξ1
q ξ2

q · · · ξs
q]
�

= Vc(A⊗B Is),

which together with (8) and (10) shows that

Vc(A⊗B Is) = W[s,q] �B W[pq,s] �B Vc(A)�B Vc(Is)

= W[s,q] �B W[pq,s] �B W[s2,pq] �B Vc(Is)�B Vc(A)

= [W[s,q] �B W[pq,s] �B W[s2,pq] �B (Vc(Is)⊗B Ipq)] ◦Vc(A)

= Ts
p,q ◦Vc(A).

5
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Remark 2. Precisely, for (14), we have

Ts
p,q = W[s,q] �B W[pq,s] �B W[s2,pq] �B (Vc(Is)⊗B Ipq)

=
[

δ1
pq 0 · · · 0︸ ︷︷ ︸

s

· · · δ
p
pq 0 · · · 0︸ ︷︷ ︸

s

0 δ1
pq 0 · · · 0︸ ︷︷ ︸

s

· · · 0 δ
p
pq 0 · · · 0︸ ︷︷ ︸

s

· · · 0 · · · 0 δ1
pq︸ ︷︷ ︸

s

· · ·

0 · · · 0 δ
p
pq︸ ︷︷ ︸

s

δ
p+1
pq 0 · · · 0︸ ︷︷ ︸

s

· · · δ
2p
pq 0 · · · 0︸ ︷︷ ︸

s

0 δ
p+1
pq 0 · · · 0︸ ︷︷ ︸

s

· · · 0 δ
2p
pq 0 · · · 0︸ ︷︷ ︸

s

· · ·

0 · · · 0 δ
p+1
pq︸ ︷︷ ︸

s

· · · 0 · · · 0 δ
2p
pq︸ ︷︷ ︸

s

· · · δ
(q−1)p+1
pq 0 · · · 0︸ ︷︷ ︸

s

· · · δ
qp
pq 0 · · · 0︸ ︷︷ ︸

s

0 δ
(q−1)p+1
pq 0 · · · 0︸ ︷︷ ︸

s

· · · 0 δ
qp
pq 0 · · · 0︸ ︷︷ ︸

s

· · · 0 · · · 0 δ
(q−1)p+1
pq︸ ︷︷ ︸

s

· · ·

0 · · · 0 δ
qp
pq︸ ︷︷ ︸

s

]�
∈ Ds2 pq×pq

∞ .

Proposition 7. Let A ∈ Dm×n
∞ , B ∈ Dp×q

∞ . Then

Vc(A �B B) = K ◦Vc(B), (15)

where K = (I αq
p
⊗B A⊗B I α

n
) ◦ T

α
p

p,q ∈ D
α2mq

np ×pq
∞ and α = lcm(n, p).

Proof of Proposition 7. By Definition 4, Propositions 5 and 6, one can obtain that

Vc(A �B B) = Vc((A⊗B I α
n
) ◦ (B⊗B I α

p
))

= [I αq
p
⊗B (A⊗B I α

n
)] ◦Vc(B⊗B I α

p
)

= (I αq
p
⊗B A⊗B I α

n
) ◦ (T

α
p

p,q ◦Vc(B))

= [(I αq
p
⊗B A⊗B I α

n
) ◦ T

α
p

p,q] ◦Vc(B).

Remark 3. The matrix K in (15) can be represented as the following block matrix:

K =

⎡⎢⎢⎢⎣
K′ 0 · · · 0

0 K′ · · · 0
...

...
...

0 0 · · · K′

⎤⎥⎥⎥⎦,

where K′ = δ1
q
�
�B
[
(I αq

p
⊗B A⊗B I α

n
) ◦ T

α
p

p,q

]
�B δ1

q ∈ D
α2m
np ×p

∞ .

Next, we present an example to illustrate Proposition 7.

Example 1. Given A =

⎡⎣ 0.1 0.5 0.7 0.2
1 0.3 0.2 0.6
0 0.2 0.4 0.3

⎤⎦ ∈ D3×4
∞ , and assume that X = (xi,j) ∈

D2×3
∞ is an unknown matrix.

6
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By Proposition 7, we have

Vc(A �B X) = [(I6 ⊗B A) ◦ T2
2,3] ◦Vc(X),

where

I6 ⊗B A =

⎡⎢⎣ A · · · 0
...

...
0 · · · A

⎤⎥⎦ ∈ D18×24
∞

and T2
2,3 = [δ1

6 0 δ2
6 0 0 δ1

6 0 δ2
6 δ3

6 0 δ4
6 0 0 δ3

6 0 δ4
6 δ5

6 0 δ6
6 0 0 δ5

6 0 δ6
6 ]
�. Thus,

Vc(A �B X) = K ◦
[

x1,1 x2,1 x1,2 x2,2 x1,3 x2,3
]�,

where K =

⎡⎣ K′ 0 0

0 K′ 0

0 0 K′

⎤⎦, and K′ =
[

0.1 0.6 0.6 1 0.3 0.1
0.6 1 0.1 0.6 0.1 0.3

]�
.

Based on Proposition 7 and Remark 3, we have the following equivalent form of
FRI (11).

Theorem 1. FRI (11) is equivalent to the following SFRIs composed of FRIs with the max–min com-
position: ⎧⎪⎪⎪⎨⎪⎪⎪⎩

g1 ≤ K′ ◦ x1 ≤ h1,
g2 ≤ K′ ◦ x2 ≤ h2,

...
gq ≤ K′ ◦ xq ≤ hq,

(16)

where

g = Vc(G) = [(g1)� (g2)� · · · (gq)�]� ∈ D
α2mq

np ×1
∞ , gj ∈ D

α2m
np ×1

∞ , j = 1, 2, · · · , q;

h = Vc(H) = [(h1)� (h2)� · · · (hq)�]� ∈ D
α2mq

np ×1
∞ , hj ∈ D

α2m
np ×1

∞ , j = 1, 2, · · · , q;

x = Vc(X) = [(x1)� (x2)� · · · (xq)�]� ∈ Dpq×1
∞ , xj ∈ Dp×1

∞ , j = 1, 2, · · · , q;

and

K = (I αq
p
⊗B A⊗B I α

n
) ◦ T

α
p

p,q =

⎡⎢⎢⎢⎣
K′ 0 · · · 0

0 K′ · · · 0
...

...
...

0 0 · · · K′

⎤⎥⎥⎥⎦ ∈ D
α2mq

np ×pq
∞ ,

K′ = δ1
q
�
�B
[
(I αq

p
⊗B A⊗B I α

n
) ◦ T

α
p

p,q

]
�B δ1

q ∈ D
α2m
np ×p

∞ .

Proof of Proposition 1. The proof of this theorem is based on a straightforward calculation,
and thus we omit it here.

Example 2. Recall Example 1 and given

G =

⎡⎣ 0.1 0.2 0.4 0.3 0.2 0.3
0.2 0.1 0.3 0.1 0 0.2
0 0.1 0.2 0.2 0 0.2

⎤⎦, H =

⎡⎣ 0.3 0.5 1 0.5 0.4 0.5
0.4 0.4 0.6 0.3 0.4 0.5
0.3 0.2 0.5 0.3 0.3 1

⎤⎦.

Then, according to Theorem 1, FRI

G ≤ A �B X ≤ H (17)

7



Mathematics 2021, 9, 937

is equivalent to the following SFRIs composed of FRIs with the max–min composition:⎧⎨⎩
g1 ≤ K′ ◦ x1 ≤ h1,
g2 ≤ K′ ◦ x2 ≤ h2,
g3 ≤ K′ ◦ x3 ≤ h3,

(18)

where xi ∈ D2×1
∞ , gi, hi ∈ D6×1

∞ , i = 1, 2, 3 satisfy Vc(X) = [(x1)� (x2)� (x3)�]�,
Vc(G) = [(g1)� (g2)� (g3)�]� and Vc(H) = [(h1)� (h2)� (h3)�]�, respectively, and K′

is given in Example 1.

Similar to Theorem 1, we can also present the equivalent form of SFRIs (12).

Theorem 2. SFRIs (12) is equivalent to the following SFRIs composed of FRIs with the max–min com-
position: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g1,1 ≤ K1′ ◦ x1 ≤ h1,1,
g1,2 ≤ K1′ ◦ x2 ≤ h1,2,

...
g1,q ≤ K1′ ◦ xq ≤ h1,q,

...
gN,1 ≤ KN ′ ◦ x1 ≤ hN,1,
gN,2 ≤ KN ′ ◦ x2 ≤ hN,2,

...
gN,q ≤ KN ′ ◦ xq ≤ hN,q,

(19)

where

gi = Vc(Gi) = [(gi,1)� (gi,2)� · · · (gi,q)�]� ∈ D
α2

i miq
ni p ×1

∞ , gi,j ∈ D
α2

i mi
ni p ×1

∞ ;

hi = Vc(Hi) = [(hi,1)� (hi,2)� · · · (hi,q)�]� ∈ D
α2

i miq
ni p ×1

∞ , hi,j ∈ D
α2

i mi
ni p ×1

∞ ;

x = Vc(X) = [(x1)� (x2)� · · · (xq)�]� ∈ Dpq×1
∞ , xj ∈ Dp×1

∞ ;

Ki = (I αi q
p
⊗B Ai ⊗B I αi

ni
) ◦ T

αi
p

p,q =

⎡⎢⎢⎢⎢⎣
Ki ′ 0 · · · 0

0 Ki ′ · · · 0
...

...
...

0 0 · · · Ki ′

⎤⎥⎥⎥⎥⎦ ∈ D
α2

i miq
ni p ×pq

∞ ,

Ki ′ = δ1
q
�
�B
[
(I αi q

p
⊗B Ai ⊗B I αi

ni
) ◦ T

αi
p

p,q

]
�B δ1

q ∈ D
α2

i mi
ni p ×p

∞ ,

and i = 1, 2, · · · , N, j = 1, 2, · · · , q.

Example 3. Recall Examples 1 and 2. Given

A1 = [0.3 1 0.2 0.7], G1 = [0.2 0.6 0 0.7 0.2 0.1], H1 = [0.4 0.5 0.2 1 0.3 0.4].

Then, according to Theorem 2, SFRI{
G ≤ A �B X ≤ H,
G1 ≤ A1 �B X ≤ H1,

8
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is equivalent to the following SFRIs composed of FRIs with the max–min composition:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

g1 ≤ K′ ◦ x1 ≤ h1,
g2 ≤ K′ ◦ x2 ≤ h2,
g3 ≤ K′ ◦ x3 ≤ h3,
g1,1 ≤ K1′ ◦ x1 ≤ h1,1,
g1,2 ≤ K1′ ◦ x2 ≤ h1,2,
g1,3 ≤ K1′ ◦ x3 ≤ h1,3,

where K1′ =
[

0.3 0.2
1 0.7

]
, g1,i, h1,i ∈ D2×1

∞ , i = 1, 2, 3 satisfy Vc(G1) = [(g1,1)� (g1,2)�

(g1,3)�]� and Vc(H1) = [(h1,1)� (h1,2)� (h1,3)�]�, respectively, K′ is given in Example 1,
and xi, gi, hi, i = 1, 2, 3 are given in Example 2.

Remark 4. From Theorems 1 and 2, one can see that both FRI (11) and SFRIs (12) are equivalent
to SFRIs composed of FRIs with the max–min composition. Thus, the column stacking technique
unifies the resolution of (11) and (12), and converts Problems 1 and 2 into the resolution of FRIs
with the max–min composition. Therefore, one just needs to study the resolution of the following
FRI with the max–min composition:

u ≤ W ◦ x ≤ v, (20)

where u = [u1 u2 · · · um]
�, v = [v1 v2 · · · vm]

� ∈ Dm×1
∞ , W = (wi,j) ∈ Dm×n

∞ and
x = [x1 x2 · · · xn]

� ∈ Dn×1
∞ .

4. Resolution of FRI (20)

In this section, we investigate the resolution of FRI (11) and SFRIs (12) via solving
FRI (20). To this end, we recall some results on the resolution of FRI (20). For details, please
refer to [42,44,45].

Definition 5. Denote the solution set of FRI (20) by X(W, u, v) ⊆ Dn×1
∞ .

(i) If x ≥ x holds for any x ∈ X(W, u, v), then x ∈ X(W, u, v) is called the maximum solution;
(ii) If for any x ∈ X(W, u, v), x ≤ x implies x = x, then x ∈ X(W, u, v) is called a minimal so-

lution.

Denote the solution set of FRI (20) by Ω. It was pointed out in [45] that the solution set
of FRIs with max–min composition can be characterized by the unique maximum solution
and finite minimal solutions. More specifically, it holds that

Ω =
s⋃

i=1

⎡⎢⎢⎢⎣
xi

1 ≤ x1 ≤ x1
xi

2 ≤ x2 ≤ x2
...

xi
n ≤ xn ≤ xn

⎤⎥⎥⎥⎦, (21)

where xi = [xi
1 xi

2 · · · xi
n]
�, i = 1, 2, · · · , s are all the minimal solutions to (20), and

x = [x1 x2 · · · xn]
� is the unique maximum solution to (20). In addition, it shows that all

the minimal solutions and the unique maximum solution are within the set of parameter
set solutions. Keeping these points in mind, we calculate the set of parameter set solutions
to FRI (20) based on semi-tensor product of matrices.

9
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Denote the parameter set of FRI (20) by Φ = {ϕ1, ϕ2, · · · , ϕl}, and identify ϕi ∼ i−1
l−1 ∼

δl−i+1
l , ϕi ∈ Φ, i = 1, 2, · · · , l. Then, we have Φ ∼ Dl ∼ Δl . We say δl−i1+1

l ≤ δl−i2+1
l ,

if ϕi1 ≥ ϕi2 .
Then, for the i-th inequality of (20), i.e.,

ui ≤ (wi,1 ∧ x1) ∨ (wi,2 ∧ x2) ∨ · · · ∨ (wi,n ∧ xn) ≤ vi, (22)

by Lemma 1, we can convert the middle part of (22) into the following form:

(wi,1 ∧ x1) ∨ (wi,2 ∧ x2) ∨ · · · ∨ (wi,n ∧ xn)

= (Ml
d)

n−1 �n
t=1 [Ilt−1 ⊗ (Ml

c � wi,t)]�
n
j=1 xj

= Ni � x,

where Ni = (Ml
d)

n−1 �n
t=1 [Ilt−1 ⊗ (Ml

c � wi,t)], x = �n
j=1xj, and Ml

d, Ml
c are given in

Lemma 2. Then, (22) becomes
ui ≥ Ni � x ≥ vi, (23)

where Ni is a logical matrix, x ∈ Δln and ui, vi ∈ Δl .
Noting that Ni � δk

ln = Colk(Ni), then we can obtain the following result.

Lemma 3. x = [x1 x2 · · · xn]
� ∈ Dn×1

∞ with x = �n
j=1xj = δk

ln is a parameter set solution to
FRI (22), if and only if

ui ≥ Colk(Ni) ≥ vi.

The following proposition is crucial for the resolution of FRI (22), which can be
obtained by Lemma 3.

Lemma 4. Assume that Ki = {k : ui ≥ Colk(Ni) ≥ vi}, i = 1, 2, · · · , m. Then, the set of
parameter set solutions to FRI (22), denoted by Λi, is

Λi = {x = [x1 x2 · · · xn]
� ∈ Dn×1

∞ with �n
j=1 xj = δk

ln : k ∈ Ki}.

Thus, the set of parameter set solutions to (20) is

Λ = ∩m
i=1Λi.

Moreover, if Λ = ∅, then FRI (20) has no solution.

To sum up, we have the following procedure (Table 1) on the resolution of FRI (11)
and SFRIs (12). Figure 1 presents the flowchart of the procedure given in Table 1.

Remark 5. Since A �B X ≥ G and A �B X ≤ H can be converted into G ≤ A �B X ≤ 1

and 0 ≤ A �B X ≤ H, respectively, Table 1 can also be applied to the resolution of these two
kinds of FRIs. When G = H, FRI (11) becomes an FRE. Thus, Table 1 can be used to solve FRE
A �B X = G.

10
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Table 1. Procedure on the resolution of FRI (11) and SFRIs (12).

To obtain all the solutions to FRI (11) (resp. SFRIs (12)), one can proceed
by the following steps:

(1) Calculate the equivalent form of FRI (11) (resp. SFRIs (12)) by Theorem 1
(resp. Theorem 2);

(2) Construct the parameter set Φj of the j-th FRI in SFRIs (16) (resp. (19)), and
give the vector form of every element in Φj;

(3) Calculate Λj by Lemma 4;
(4) Obtain all the minimal solutions and the unique maximum solution to the

j-th FRI in (16) (resp. (19)) by comparing the finite number of elements in Λj;
(5) Obtain the solution set Ωj of the j-th FRI in (16) (resp. (19)) by (21);
(6) Obtain the solution set Ω of FRI (11) (resp. SFRIs (12)).

Remark 6. One can convert G̃ ≤ X �B Ã ≤ H̃ into G̃� ≤ Ã� �B X� ≤ H̃� by (9), which has
the same form with FRI (11). Therefore, Table 1 is also applicable to finding all the solutions to this
kind of FRI.

Figure 1. Flowchart of obtaining all the solutions to FRI (11) (resp. SFRIs (12)).

11
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5. Illustrative Examples

In this section, we give two examples to illustrate the main results.

Example 4. Recall Example 2 and consider the resolution of FRI (17).

In Example 2, we have obtained the equivalent form of FRI (17), i.e., SFRIs (18). In the
following, we solve every FRI in (18).

To obtain the solution set of the first FRI in (18), we first find the following parame-
ter set:

Φ1 = {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 1},

and identify each element of Φ1 by vector form as

0 ∼ δ8
8, 0.1 ∼ δ7

8, 0.2 ∼ δ6
8, 0.3 ∼ δ5

8, 0.4 ∼ δ4
8, 0.5 ∼ δ3

8, 0.6 ∼ δ2
8, 1 ∼ δ1

8.

Next, we calculate all the parameter set solutions to the first FRI in (18).
For the following first inequality of the first FRI in (18):

0.1 ≤ (0.1∧ x1,1) ∨ (0.6∧ x2,1) ≤ 0.3,

by Lemmas 1 and 2, we obtain its algebraic form as follows:

δ7
8 ≥ M1,1 � x1 ≥ δ5

8,

where

M1,1 = M8
d �

2
t=1 [I8t−1 ⊗ (M8

c � k′1,t)] = δ8[2 2 3 4 5 6 7 7 · · · 2 2 3 4 5 6 7 8]

and x1 = x1,1 � x2,1. Then, according to Lemma 4, the set of parameter set solutions to the
first inequality of the first FRI in (18) is

Λ1,1 = {δ5
64, · · · , δ8

64, δ13
64, · · · , δ16

64, δ21
64, · · · , δ24

64, δ29
64, · · · , δ32

64,

δ37
64, · · · , δ40

64, δ45
64, · · · , δ48

64, δ53
64, · · · , δ56

64, δ61
64, · · · , δ63

64}.

Similarly, we can respectively convert other inequalities of the first FRI in (18) into the
following algebraic forms:

δ6
8 ≥ M1,2 � x1 ≥ δ4

8, δ8
8 ≥ M1,3 � x1 ≥ δ5

8,

δ6
8 ≥ M1,4 � x1 ≥ δ3

8, δ7
8 ≥ M1,5 � x1 ≥ δ4

8,

δ7
8 ≥ M1,6 � x1 ≥ δ6

8,

where

M1,2 = M8
d �

2
t=1 [I8t−1 ⊗ (M8

c � k′2,t)] = δ8[1 2 2 2 2 2 2 2 · · · 1 2 3 4 5 6 7 8],

M1,3 = M8
d �

2
t=1 [I8t−1 ⊗ (M8

c � k′3,t)] = δ8[2 2 2 2 2 2 2 2 · · · 7 7 7 7 7 7 7 8],

M1,4 = M8
d �

2
t=1 [I8t−1 ⊗ (M8

c � k′4,t)] = δ8[1 1 1 1 1 1 1 1 · · · 2 2 3 4 5 6 7 8],

M1,5 = M8
d �

2
t=1 [I8t−1 ⊗ (M8

c � k′5,t)] = δ8[5 5 5 5 5 5 5 5 · · · 7 7 7 7 7 7 7 8],

M1,6 = M8
d �

2
t=1 [I8t−1 ⊗ (M8

c � k′6,t)] = δ8[5 5 5 5 5 6 7 7 · · · 5 5 5 5 5 6 7 8].

12
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Then, the corresponding set of parameter set solutions to each inequality is

Λ1,2 = {δ28
64, · · · , δ32

64, δ36
64, · · · , δ40

64, δ44
64, · · · , δ48

64, δ52
64, · · · , δ54

64, δ60
64, · · · , δ62

64},

Λ1,3 = {δ33
64, δ34

64 · · · , δ64
64},

Λ1,4 = {δ19
64, · · · , δ24

64, δ27
64, · · · , δ32

64, δ35
64, · · · , δ40

64, δ43
64, · · · , δ48

64, δ51
64, · · · , δ54

64,

δ58
64, · · · , δ62

64},

Λ1,5 = {δ1
64, δ2

64 · · · , δ63
64},

Λ1,6 = {δ6
64, · · · , δ8

64, δ14
64, · · · , δ16

64, δ22
64, · · · , δ24

64, δ30
64, · · · , δ32

64, δ38
64, · · · , δ40

64,

δ46
64, · · · , δ48

64, δ54
64, · · · , δ56

64, δ62
64, · · · , δ63

64}.

Thus, by resorting to Lemma 4, the set of parameter set solutions to the first FRI
in (18) is

Λ1 = Λ1,1 ∩Λ1,2 ∩Λ1,3 ∩Λ1,4 ∩Λ1,5 ∩Λ1,6

= {δ38
64, · · · , δ40

64, δ46
64, · · · , δ48

64, δ54
64, δ62

64}.

Comparing all the parameter set solutions to the first FRI in (18), we obtain the maximum
solution to it as

δ38
64 = δ5

8 � δ6
8 ∼ [0.3 0.2]�,

and the minimal solutions as

δ48
64 = δ6

8 � δ8
8 ∼ [0.2 0]�,

δ62
64 = δ8

8 � δ6
8 ∼ [0 0.2]�.

Therefore, by (21), the solution set of the first FRI in (18) is

Ω1 =

[
0.2 ≤ x1,1 ≤ 0.3
0 ≤ x2,1 ≤ 0.2

]⋃[ 0 ≤ x1,1 ≤ 0.3
0.2

]
.

Similar to the resolution of the first FRI in (18), all the parameter set solutions to the
second and third FRIs in (18) can be successively obtained as

Λ2 = {δ19
64, δ20

64, δ27
64, δ28

64, δ35
64, δ36

64 δ43
64, δ44

64},

Λ3 = {δ36
64, δ37

64, δ38
64, δ44

64, δ45
64}.

Then, we can obtain their solution sets as

Ω2 =

[
0.2 ≤ x1,2 ≤ 0.5
0.4 ≤ x2,2 ≤ 0.5

]
,

Ω3 =

[
0.3

0.2 ≤ x2,3 ≤ 0.4

]⋃[ 0.2 ≤ x1,3 ≤ 0.3
0.3 ≤ x2,3 ≤ 0.4

]
.

To sum up, the solution set of (17) is

Ω =

[
0.2 ≤ x1,1 ≤ 0.3 0.2 ≤ x1,2 ≤ 0.5 0.3
0 ≤ x2,1 ≤ 0.2 0.4 ≤ x2,2 ≤ 0.5 0.2 ≤ x2,3 ≤ 0.4

]
⋃[ 0.2 ≤ x1,1 ≤ 0.3 0.2 ≤ x1,2 ≤ 0.5 0.2 ≤ x1,3 ≤ 0.3

0 ≤ x2,1 ≤ 0.2 0.4 ≤ x2,2 ≤ 0.5 0.3 ≤ x2,3 ≤ 0.4

]
⋃[ 0 ≤ x1,1 ≤ 0.3 0.2 ≤ x1,2 ≤ 0.5 0.3

0.2 0.4 ≤ x2,2 ≤ 0.5 0.2 ≤ x2,3 ≤ 0.4

]
⋃[ 0 ≤ x1,1 ≤ 0.3 0.2 ≤ x1,2 ≤ 0.5 0.2 ≤ x1,3 ≤ 0.3

0.2 0.4 ≤ x2,2 ≤ 0.5 0.3 ≤ x2,3 ≤ 0.4

]
.
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Consider the entry in the first row and second column of H. In fact, for any 0 < |ε| < 0.1,
we have

0.4 < 0.5 + ε < 0.6,

which implies that Φ1 is unchangeable. Thus, the solution set of the first FRI in (18) is
unchangeable and the solution set of (17) is unchangeable.

Example 5. Solve the following latticized linear programming:

min z =
[

0.2 1
]
◦
[

x1
x2

]
(24)

s.t.

⎡⎣ 0 0.1
0.1 0
0.3 0.1

⎤⎦ ≤
⎡⎣ 0.1 0.2 0.7 0.5

0.4 0.2 0.3 0.1
0.2 0.7 0.4 0.3

⎤⎦�B

[
x1
x2

]
≤

⎡⎣ 0.3 0.4
0.7 0.2
1 0.4

⎤⎦. (25)

Step 1: Solve FRI constraint (25).
The equivalent form of (25) is[

0 0.1 0.3 0.1 0 0.1
]� ≤ K′ ◦

[
x1 x2

]� ≤ [ 0.3 0.7 1 0.4 0.2 0.4
]�, (26)

where K′ =
[

0.1 0.4 0.2 0.2 0.2 0.7
0.7 0.3 0.4 0.5 0.1 0.3

]�
:= (k′i,j), i = 1, 2, · · · , 6, j = 1, 2.

The parameter set of (26) is

Φ = {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 1},

and each element in Φ can be identified by vector form as

0 ∼ δ8
8, 0.1 ∼ δ7

8, 0.2 ∼ δ6
8, 0.3 ∼ δ5

8, 0.4 ∼ δ4
8, 0.5 ∼ δ3

8, 0.7 ∼ δ2
8, 1 ∼ δ1

8.

Then, the inequalities of (26) can be respectively converted into the following alge-
braic forms:

δ8
8 ≥ M1 � x ≥ δ5

8, δ7
8 ≥ M2 � x ≥ δ2

8,

δ5
8 ≥ M3 � x ≥ δ1

8, δ7
8 ≥ M4 � x ≥ δ4

8,

δ8
8 ≥ M5 � x ≥ δ6

8, δ7
8 ≥ M6 � x ≥ δ4

8,

where

M1 = M8
d �

2
t=1 [I8t−1 ⊗ (M8

c � k′1,t)] = δ8[2 2 3 4 5 6 7 7 · · · 2 2 3 4 5 6 7 8],

M2 = M8
d �

2
t=1 [I8t−1 ⊗ (M8

c � k′2,t)] = δ8[4 4 4 4 4 4 4 4 · · · 5 5 5 5 5 6 7 8],

M3 = M8
d �

2
t=1 [I8t−1 ⊗ (M8

c � k′3,t)] = δ8[4 4 4 4 5 6 6 6 · · · 4 4 4 4 5 6 7 8],

M4 = M8
d �

2
t=1 [I8t−1 ⊗ (M8

c � k′4,t)] = δ8[3 3 3 4 5 6 6 6 · · · 3 3 3 4 5 6 7 8],

M5 = M8
d �

2
t=1 [I8t−1 ⊗ (M8

c � k′5,t)] = δ8[6 6 6 6 6 6 6 6 · · · 7 7 7 7 7 7 7 8],

M6 = M8
d �

2
t=1 [I8t−1 ⊗ (M8

c � k′6,t)] = δ8[2 2 2 2 2 2 2 2 · · · 5 5 5 5 5 6 7 8],

and x = x1 � x2. Thus, one can obtain the set of parameter solutions to (26), denoted by Λ.
Comparing all the elements in Λ, we obtain the maximum solution to (26) as

δ29
64 = δ4

8 � δ5
8 ∼ [0.4 0.3]�,

and the minimal solution as

δ61
64 = δ8

8 � δ5
8 ∼ [0 0.3]�.

14
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Therefore, according to (21), it is easy to obtain the solution set of FRI (26) as

Ω =

[
0 ≤ x1 ≤ 0.4

0.3

]
.

Step 2: Calculate the optimal value of the objective function z.
The optimal value of z can be calculated as

zmin =
[
0.2 1

]
◦
[

0
0.3

]
= 0.3.

Step 3: Solve the following FRE:

[
0.2 1

]
◦
[

x1
x2

]
= 0.3. (27)

To obtain all the optimal solutions to (24) and (25), we just need to solve FRE (27) in Ω.
The parameter set of (27) is

Φ′ = {0, 0.2, 0.3, 1},

and each element in Φ′ is identified by

0 ∼ δ4
4, 0.2 ∼ δ3

4, 0.3 ∼ δ2
4, 1 ∼ δ1

4.

Next, we calculate the parameter set solutions to (27).
By Lemma 1, one can obtain the following algebraic form of (27):

M′ � x1 � x2 = δ2
4,

where

M′ = M4
d � M4

c � δ3
4 � [I4 ⊗ (Mk

c � δ1
4)] = δ4[1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 4].

Then, by Lemma 4, we can obtain all the parameter set solutions to (27), denoted
by Λ′.

Comparing all the elements in Λ′, we find the maximum solution to (27) as

δ2
16 = δ1

4 � δ2
4 ∼ [1 0.3]�,

and the minimal solution as

δ14
16 = δ4

4 � δ2
4 ∼ [0 0.3]�.

Therefore, according to (21), the solution set of (27) is

Ω′ =
[

0 ≤ x1 ≤ 1
0.3

]
.

Step 4: Calculate the optimal solution set of latticized linear programming (24) and (25).
The optimal solution set of (24) and (25) is

Υ = Ω ∩Ω′

=

[
0 ≤ x1 ≤ 0.4

0.3

]⋂[0 ≤ x1 ≤ 1
0.3

]
=

[
0 ≤ x1 ≤ 0.4

0.3

]
.
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6. Conclusions

In this paper, we have investigated the resolution of a kind of FRIs with the Boolean
semi-tensor product composition. By using the column stacking operator, we have obtained
the equivalent column stacking form of FRIs with Boolean semi-tensor product composi-
tion, which has the form of SFRIs with max–min composition. Based on the semi-tensor
product of matrices, we have obtained the solution set of FRIs with Boolean semi-tensor
product composition by finding all possible parameter set solutions, and a general pro-
cedure has been developed. It should be pointed out that when fuzzy matrices in FRIs
are with compatible dimension, the Boolean semi-tensor product composition coincides
with max–min composition. As a result, Boolean semi-tensor product composition is a
generalization of max–min composition. Although this paper has obtained all the solutions
for FRIs with Boolean semi-tensor product composition, the computational complexity
may limit the application of the method proposed in this paper.

Fuzzy relation-based fuzzy control is an important research topic [48]. In the future,
we will investigate the fuzzy controller design based on the resolution of FRIs with Boolean
semi-tensor product composition. In addition, the sensitivity analysis of FRIs with Boolean
semi-tensor product composition is another interesting research topic.
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1. Introduction

1.1. General Aspects

Lotfi Zadeh published in 1965 his pioneering article[1] that has over 100,000 citations
today. The theory of fuzzy sets was introduced in Zermelo–Fraenkel set theory (ZF)
as a framework for studying the concepts of vagueness and uncertainty. Each element
of a fuzzy set has a certain degree of membership belonging to the real interval [0, 1].
Fuzzy aspects can be applied in various fields of mathematics and computer science such
as algebra, logic, analysis, operational research, control theory, decision theory, artificial
intelligence and expert systems [2].

We extended the classical approach of fuzzy theory to characterise fuzzy sets over
finitely supported structures. The finitely supported sets and structures are related to
permutation models from Zermelo–Fraenkel set theory with atoms (ZFA) and to admissible
sets (particularly to hereditary finite sets) described in [3]. They were originally introduced
by Fraenkel, Lindenbaum and Mostowski during the period 1922–1938 in order to prove
the independence of the axiom of choice and the other axioms in ZFA. The axioms of the
recently introduced Fraenkel–Mostowski set theory are precisely the axioms of ZFA set
theory together with an additional axiom for finite support. They are involved in the (hi-
erarchical) construction of finitely supported sets; hereditary finitely supported sets are
the sets constructed with respect to Fraenkel–Mostowski axioms over an infinite family
of basic elements called atoms.
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1.2. Motivation and Novelties

The motivation for studying finitely supported sets comes from the idea of dealing
in a discrete manner with infinite algebraic structures (hierarchically constructed from
atoms) by analysing their finite supports. Even thoughwe admit the existence of infinite
atomic sets for such a structure, we are focused only on a finite family of its elements
(namely, its ‘finite support’, a set which is able to characterise the entire structure).

The finitely supported structures can be described both in the ZF framework and
in the ZFA framework. We follow the approach presented in [4] as an alternative to
the Fraenkel–Mostowski set theory, and work over the classical ZF set theory. We define
invariant sets as ZF sets equipped with actions of the group of all permutations of a certain
fixed set A (formed by elements whose internal structure is ignored, called atoms) satisfying
a certain finite support requirement. The related requirement states that any element of an
invariant set is left unchanged under the effect of each permutation of A that fixes pointwise,
finitely,many atoms. Finitely supported sets are defined as finitely supported elements
in the powerset of an invariant set. Finitely supported structures are finitely supported
sets endowed with finitely supported internal laws (that are supported as functions, i.e.,
as subsets in a Cartesian product of invariant set); more details can be found in [5,6]. The
theory of finitely supported sets allows the computational study of structures which may
be infinite, but contain enough symmetries such that they can be concisely represented [6].

Finitely supported sets include ZF sets that are trivial invariant sets. However, translating
ZF results in the framework of finitely supported sets is not an easy task because the family
of finitely supported sets is not closed under subset constructions (there exist subsets of finitely
supported sets that fail to be finitely supported; for instance, the ZF infinite and coinfinite
subsets of the set A of all atoms). In order to prove results for the finitely supported sets, we
cannot use results from ZF without reformulating them with respect to the finite support
requirement. As a consequence, there exist results which are valid in ZF, but fail to be valid
for finitely supported sets (e.g., choice principles and Stone duality) [6].

Our main purpose is to analyse whether a non-atomic ZF result can be adequately
reformulated by replacing ‘non-atomic ZF element/set/structure’ with ‘atomic, finitely sup-
ported element/set/structure’. A proof of a result in the framework of finitely supported
structures should involve only finitely supported constructions even in the intermediate
steps. The meta-theoretical techniques for the translation of a result from non-atomic struc-
tures to finitely supported atomic structures are based on a refinement of the finite support
principle from [4], presented in [6] and called the ‘S-finite support principle’ claiming
that ‘for any finite set S ⊆ A, anything that is definable under the rules in higher-order
logic from S-supported structures by involving only S-supported constructions is also
S-supported’. The formal use of this principle implies a hierarchical construction of the
support of a structure by employing, step-by-step, the supports of the substructures of a
related structure.

Here, we present an overview of results dealing with fuzzy aspects of finitely sup-
ported structures (fss). Essentially, by employing the notion of ‘finite support’, we extend
the fuzzy aspects from a finite framework to a (finitely supported) infinite one. Using
specific proof techniques that are extensively presented in [5,6], we obtain new algebraic
properties of the fuzzy sets over fss, including some that cannot be obtained in ZF set
theory. We introduce a new (infinite) fss degree of membership association, and connect
it to the notions of invariant monoids and invariant complete lattices. We also show that
the family of finitely supported (fuzzy) subgroups of an invariant group forms an invariant
complete lattice, and that the family of finitely supported fuzzy normal subgroups forms
an invariant modular lattice. We present some fixed point theorems for finitely supported
structures that are preserving the validity the classical fixed point theorems, but also some
fixed point properties of the finitely supported algebraic structures without corresponding
results in ZF set theory. As applications of the fixed point theorems, we present some
examples of finitely supported ordered structures for which these results can be used; in
particular, properties of L-fuzzy and T-fuzzy sets defined in the framework of finitely
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supported structures, where L is an invariant complete lattice and T is an invariant strong
inductive set.

2. Finitely Supported Sets: Preliminaries

We consider a fixed infinite ZF set A without involving any internal structure for its
elements. As usual, a transposition is a function (x y) : A → A defined by (x y)(x) = y,
(x y)(y) = x and (x y)(z) = z for z �= x, y. The permutations of A are bijections of A
generated by finitely composing many transpositions, i.e., bijections of A leaving unchanged
all but the finiteelements of A. The set of all permutations of A is denoted by SA. We proved
in [5] that any finitely supported bijection of A should be necessarily a permutation of A, i.e.,
it should be expressed as a finite composition of transpositions. Thus, the notions ‘bijection
of A’ and ‘permutation of A’ coincide in finitely supported structures.

Definition 1. Let X be a ZF set.

1. An SA-action on X is a group action of SA on X. An SA-set is a pair (X, ·), where X is a ZF
set and · : SA × X → X is an SA-action on X.

2. Let (X, ·) be an SA-set. We say that S ⊂ A supports x (or x is S-supported) if for each
π ∈ Fix(S) we have π · x = x, where Fix(S) = {π |π(a) = a for all a ∈ S}. An element
which is supported by a finite subset of atoms is called finitely supported.

3. Let (X, ·) be an SA-set. We say that set X is an invariant set whenever for each x ∈ X there
is a finite set Sx ⊂ A supporting x.

4. Let X be an SA-set, and x ∈ X. If there is a finite set supporting x, then a least finite set
supp(x) supporting x [5], defined as the intersection of all sets supporting x, which is called
the support of x. An empty supported element is equivariant; z ∈ X is equivariant if and
only if π · z = z for all π ∈ SA.

Let (X, ·) and (Y, �) be SA-sets. According to [6], the set A of atoms is an invariant
set with the SA-action · : SA × A → A defined by π · a := π(a) for all π ∈ SA and a ∈ A.
Moreover, supp(a) = {a} for each a ∈ A. If π ∈ SA and x ∈ X is finitely supported,
then π · x is finitely supported and supp(π · x) = {π(u) | u ∈ supp(x)} := π(supp(x)).
The Cartesian product X × Y is an SA-set with the SA-action ⊗ defined by π ⊗ (x, y) =
(π · x, π � y) for all π ∈ SA and all x ∈ X, y ∈ Y. For (X, ·) and (Y, �) invariant sets,
(X × Y,⊗) is also an invariant set. The powerset ℘(X) = {Z | Z ⊆ X} is an SA-set with
the SA-action � : SA × ℘(X)→ ℘(X) defined by π � Z := {π · z | z ∈ Z} for all π ∈ SA and
Z ⊆ X. For an invariant set (X, ·), ℘ f s(X) denotes the set formed from those subsets of X
that are finitely supported in the sense of Definition 1(2) as elements in ℘(X) with respect to
the action �; (℘ f s(X), �|℘ f s(X)) is also an invariant set, where �|℘ f s(X) represents the action
� restricted to ℘ f s(X). Non-atomic sets are trivially invariant, i.e., they are equipped with
the action (π, x) �→ x.

A subset Z of an invariant set (X, ·) is called finitely supported if and only if Z ∈ ℘ f s(X),
i.e., if and only if Z is finitely supported as an element of the SA-set ℘(X) with respect to
the action � defined on ℘(X). A subset Z of X is uniformly supported if all of its elements are
supported by the same finite set of atoms (elements of A). Certainly, a finite subset of an
invariant set should be uniformly supported (by the union of the supports of its elements),
but there may exist invariant sets that do not contain uniformly supported, infinite subsets,
as we will prove below.

Let us notice that not any subset of an invariant set is finitely supported. For instance,
if X ⊂ A and X is finite, then it is finitely supported with supp(X) = X. If Y ⊆ A and Y is
cofinite (i.e., its complement is finite), then it is finitely supported with supp(Y) = A \Y.
Whenever Z ⊆ A is neither finite nor cofinite, then Z is not finitely supported. It is
proven that a subset of A is finitely supported if and only if it is either finite or cofinite [7].
Moreover, if π is a permutation of A and X is a subset of an SA-set Y, then π � X = X if
and only if π � X ⊆ X, considering � defined on ℘(Y). As a consequence of the previous
definitions, a subset Z of an invariant set (X, ·) is supported by a finite set S ⊆ A if and only
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if π � Z ⊆ Z for all π ∈ Fix(S), i.e., if and only if π · z ∈ Z for all z ∈ Z and π ∈ Fix(S) (this
happens because permutations of atoms are of a finite order). If X is an invariant set, its
finite powerset ℘ f in(X) (namely, the set of all finite subsets of X) and its cofinite powerset
℘co f in(X) (namely, the set of all cofinite subsets of X) are equivariant subsets of ℘ f s(X),
meaning that they are themselves invariant sets having the restrictions of the action �
on ℘ f s(X). In [6], we proved that supp(X) = ∪

x∈X
supp(x) whenever X is a uniformly

supported subset of an invariant set.
As functions are specific relations (i.e., subsets of a Cartesian product of two sets),

for two invariant sets (X, ·) and (Y, �), Z, a finitely supported subset of X, and T, a finitely
supported subset of Y, we say that a function f : Z → T is finitely supported if f ∈
℘ f s(X × Y). Note that YX is an SA-set with the SA-action �̃ : SA × YX → YX defined
by (π�̃ f )(x) = π � ( f (π−1 · x)) for all π ∈ SA, f ∈ YX and x ∈ X. A function f : X → Y is
finitely supported (in the sense of the above definition) if and only if it is finitely supported
with respect to the permutation action �̃. The set of all finitely supported functions from Z
to T is denoted by TZ

f s. As an immediate characterisation, a function f : Z → T is supported
by a finite set S ⊆ A if and only if for all x ∈ Z and all π ∈ Fix(S) we have π · x ∈ Z,
π � f (x) ∈ T and f (π · x) = π � f (x).

An invariant, partially ordered set (invariant poset) is an invariant set (P, ·,�) equipped
with an equivariant partial order relation � on P. A finitely supported, partially ordered set is
a finitely supported subset Q of an invariant set together with a finitely supported partial
order relation. An invariant complete lattice is an invariant partially ordered set (L, ·,�)
such that every finitely supported subset X ⊆ L has a least upper bound with respect to
the order relation �. It is proven [6] that in an invariant complete lattice, every finitely
supported subset X ⊆ L has a greatest upper bound with respect to the order relation
� . A finitely supported complete lattice is a finitely supported subset L of an invariant set,
equipped with a finitely supported order � such that every finitely supported subset of L
has a least upper bound with respect to �.

In both [5,6], several examples of invariant/finitely supported partially ordered sets
are presented. For example, if X is an invariant/finitely supported set, then (℘ f s(X), �,⊆)
is an invariant/finitely supported complete lattice. Here, we focus on the fuzzy theory
over invariant sets, mainly presenting the results of [6–10].

3. Fuzziness over Invariant Sets

Let us consider a set U called the universal set (or the universe of discourse). Recall
that a crisp set Z in the universe of discourse U can be described by mentioning all of its
members or by specifying the properties that have to be be satisfied by its members. The
theory of fuzzy sets is a generalisation of this classical view: a fuzzy set is represented
by a subset Z of the universal set U which has associated a related membership function
generalising the characteristic function from the classical set theory. More exactly, the mem-
bership function associated to Z could take any values in the interval [0,1] (modelling a
certain degree of membership), while the classical characteristic function of Z can only
take two values: 0 (for non-membership) and 1 (for membership). Fuzzy sets over infinite
invariant sets were introduced and studied first in [8], and then extended in [9].

Definition 2. A fuzzy set over the invariant set (U, ·) is a finitely supported subset Z of (U, ·)
together with a finitely supported membership function μZ : U → [0, 1].

We say simply that (Z, μZ) is a fuzzy set over (U, ·). In our approach, a fuzzy set
over the invariant set U is a (finitely supported) element in the invariant set (℘ f s(U)×
[0, 1]Uf s,⊗). It is easy to see that in such a Cartesian pair, there is no precise fss association
between the crisp finitely supported subset of U and the related finitely supported function
belonging to [0, 1]Uf s. Therefore, we allow more than one finitely supported membership
function to be associated with the same finitely supported subset of U.
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We decided to not yet define such an fss association because it is not necessary
to assume the existence of an explicit finitely supported relation on ℘ f s(U) and [0, 1]Uf s
for proving the properties of fuzzy sets for fss. On the other hand, the case when certain
fss relations are defined between ℘ f s(U) and [0, 1]Uf s is analysed later in Section 4.

In the theory of fuzzy sets in ZF, we have two useful notions: α-cut and fuzzy support.
For fss, an α-cut of a fuzzy set (Z, μZ) over the invariant set (U, ·) is a crisp set Zα

containing all the elements in U with membership values greater than or equal to α, i.e.,
Zα = {z ∈ U | μZ(z) ≥ α}.

Proposition 1. Any α-cut Zα of a fuzzy set (Z, μZ) over the invariant set (U, ·) is a finitely
supported subset of U with the property that supp(Zα) ⊆ supp(μZ).

Definition 3. The fuzzy support of a fuzzy set (Z, μZ) over the invariant set (U, ·) (also called
the algebraic support of μZ) is a crisp set FZS(Z, μZ) containing all the elements in U with
membership values greater than 0, i.e., FZS(Z, μZ) = {z ∈ U | μZ(z) > 0}.

We prove (similar to Proposition 1) that the fuzzy support FZS(Z, μZ) of a fuzzy set
(Z, μZ) over the invariant set (U, ·) is a finitely supported subset of U with the property that
supp(FZS(Z, μZ)) ⊆ supp(μZ). Moreover, in the particular case when the fuzzy support
FZS(Z, μZ) is finite, we have the following result that presents a relationship between
the (fuzzy) support and the atomic support of a fuzzy set.

Proposition 2. Considering the fuzzy set (Z, μZ) over the invariant set (U, ·), if FZS(Z, μZ)
is finite, then supp(FZS(Z, μZ)) = supp(μZ). Particularly, if (Z, μZ) is a fuzzy set over
the invariant set A of atoms and FZS(Z, μZ) is finite, then we have FZS(Z, μZ) = supp(μZ).

More generally, finitely supported functions from the set of atoms A to a non-atomic
ZF set Z (e.g., Z can be the unit interval [0,1] have the following property which allows to
connect our notion of support with the classical notion of algebraic support.

Theorem 1. Let (Z, �) be an infinite non-atomic ZF set and f : A → Z a function.

1. If f is finitely supported, then there is z0 ∈ Z such that {a ∈ A | f (a) �= z0} is finite.
2. If there is z0 ∈ Z such that {a ∈ A | f (a) �= z0} is finite, then f is finitely supported and

supp( f ) = {a ∈ A | f (a) �= z0}.

For the fuzzy sets over invariant sets, we define operations similarly to those in ZF.

Lemma 1. Let (X, μX) and (Y, μY) be fuzzy sets over the invariant set (U, ·).
1. Then X ∪Y is finitely supported, and the function x �→ max[μX(x), μY(x)] defined on U is

also finitely supported.
2. Then X ∩ Y is finitely supported and, furthermore, the function x �→ min[μX(x), μY(x)]

defined on U is also finitely supported.
3. Both the complementary of X (denoted by CX) and the function x �→ 1− μX(x) defined on U

are finitely supported.

According to Lemma 1, the following definition is valid for fss.

Definition 4. Let (X, μX) and (Y, μY) be two fuzzy sets over the invariant set (U, ·).
1. The union of two fuzzy sets X and Y is a fuzzy set over the invariant set U given by the finitely

supported subset X ∪Y of U with the finitely supported membership function μX∪Y : U →
[0, 1] defined by μX∪Y(x) = max[μX(x), μY(x)] for all x ∈ U.

2. The intersection of two fuzzy sets X and Y is a fuzzy set over the invariant set U given
by the finitely supported subset X ∩Y of U with the finitely supported membership function
μX∩Y : U → [0, 1] defined by μX∩Y(x) = min[μX(x), μY(x)] for all x ∈ U.
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3. The complement of a fuzzy set X is a fuzzy set over the invariant set U given by the finitely
supported subset CX of U together with the finitely supported membership function μCX :
U → [0, 1] defined by μCX (x) = 1− μX(x) for all x ∈ U.

Proposition 3. Let (X, μX) and (Y, μY) be fuzzy sets over the invariant set (U, ·). Then, we have
the following relations:

1. C(X,μX)∩(Y,μY)
= C(X,μX)

∪ C(Y,μY)
;

2. C(X,μX)∪(Y,μY)
= C(X,μX)

∩ C(Y,μY)
.

Lemma 2. Let F = (Zi, μZi )i∈I be a family of fuzzy sets over the invariant set (U, ·) which
is finitely supported as a subset of (℘ f s(U) × [0, 1]Uf s,⊗). Then, ∪

i∈I
Zi is finitely supported

by supp(F ), and the function z �→ ∨
i∈I
{μZi (z) | i ∈ I} defined on U is finitely supported

by supp(F ), where ∨ represents the notation for supremum (least upper bound).

Lemma 3. Let F = (Zi, μZi )i∈I be a family of fuzzy sets over the invariant set (U, ·) which
is finitely supported as a subset of (℘ f s(U) × [0, 1]Uf s,⊗). Then, ∩

i∈I
Zi is finitely supported

by supp(F ), and the function z �→ ∧
i∈I
{μZi (z) | i ∈ I} defined on U is also finitely supported

by supp(F ), where ∧ represents the notation for infimum (greatest lower bound).

Due to Lemmas 2 and 3, the next definition is also valid for finitely supported structures.

Definition 5. Let F = (Zi, μZi )i∈I be a family of fuzzy sets over the invariant set (U, ·) which is
finitely supported as a subset of (℘ f s(U)× [0, 1]Uf s,⊗).
1. The arbitrary union of the fuzzy sets (Zi, μZi )i∈I is a fuzzy set over the invariant set U

represented by the finitely supported subset ∪
i∈I

Zi of U together with the finitely supported

function μ ∪
i∈I

Zi : U → [0, 1] defined by μ ∪
i∈I

Zi (z) = ∨
i∈I
{μZi (z) | i ∈ I}.

2. The arbitrary intersection of the family of fuzzy sets (Zi, μZi )i∈I is a fuzzy set over the in-
variant set U represented by the finitely supported subset ∩

i∈I
Zi of U together with the finitely

supported function μ ∩
i∈I

Zi : U → [0, 1] defined by μ ∩
i∈I

Zi (z) = ∧
i∈I
{μZi (z) | i ∈ I}.

According to the extension principle in the classical theory of fuzzy sets, the domain
of a function to be extended from crisp points in the universe U to fuzzy sets in U is
allowed. More precisely, let f : U → V be a function from a crisp set U to a crisp set V.
Suppose that we have a given fuzzy set Z in U, and want to determine a fuzzy set Y in V
induced by f (i.e., Y = f (Z)). In general, the membership function for Y is defined by

μY(y) = ∨
z∈ f−1(y)

μZ(z), where y ∈ V and f−1(y) = {z ∈ U | f (z) = y}.

Theorem 2. Let (U, ·) and (V, �) be two invariant sets, and consider a finitely supported function
f : U → V. If (Z, μZ) is a fuzzy set over the invariant set (U, ·); then, Y = f (Z) is a fuzzy set
over the invariant set (V, �) with the finitely supported membership function μY : V → [0, 1]
defined as follows:

μY(y) =

{ ∨
z∈ f−1(y)

μZ(z) for y ∈ V, f−1(y) �= ∅

0 for y ∈ V, f−1(y) = ∅
.

Moreover, we have supp(Y) ⊆ supp( f )∪ supp(Z), and supp(μY) ⊆ supp( f )∪ supp(μZ).

Theorem 3. Let (U1, ·1), . . . , (Un, ·n) and (V, �) be invariant sets, and a finitely supported
function f : U1 × . . .×Un → V. If (Zi, μZi ) is a fuzzy set over the invariant set (Ui, ·i) for all
i ∈ {1, . . . n}, then Y = f (Z1 × . . . × Zn) is a fuzzy set over the invariant set (V, �) with
the finitely supported membership function μY : V → [0, 1] defined as follows:
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μY(y) = ∨
y= f (z1,...,zn)

[min(μZ1(z1), . . . , μZn(zn))]

for y ∈ V and f−1(y) �= ∅ ;
μY(y) = 0 for y ∈ V and f−1(y) = ∅.

Moreover, we have that supp(Y) ⊆ supp( f )∪ supp(Z1)∪ . . .∪ supp(Zn), and supp(μY) ⊆
supp( f ) ∪ supp(μZ1) ∪ . . . ∪ supp(μZn).

4. Degree of Membership Association for Invariant Sets

A fuzzy set is an element of the invariant set (℘ f s(U)× [0, 1]Uf s, �). In such a Carte-
sian pair, we have not yet required the existence of an fss association between the crisp
finitely supported subset of U and the related finitely supported function in [0, 1]Uf s; such
a firm fss association should itself preserve the finite support requirement, and for the
previous results, such a condition was not mandatory. We now analyse the case when such
an relationship between ℘ f s(U) and [0, 1]Uf s is defined.

Definition 6. Let us consider the invariant set (U, ·). A fss degree of membership association
over U is an equivariant binary relation R on ℘ f s(U) and [0, 1]Uf s, i.e., an equivariant (i.e., empty

supported) subset R of ℘ f s(U)× [0, 1]Uf s.

Lemma 4. Let Y be a finitely supported subset of an invariant set (U, ·), and χY be the character-
istic function on Y, i.e.,

χY(y)
de f
=

{
1 for y ∈ Y
0 for y ∈ U \Y

.

Then χY : U → [0, 1] is a finitely supported function for any Y ∈ ℘ f s(U), and the function
Z �→ χZ defined on ℘ f s(U) is equivariant.

Let algsup( f )
de f
= {z ∈ U | f (z) > 0} be the algebraic support of f , where (U, ·) is

an invariant set and f : U → [0, 1] a finitely supported function.

Lemma 5. The algebraic support algsup( f ) is a finitely supported subset of U. Moreover, the func-
tion f �→ algsup( f ) defined on [0, 1]Uf s is equivariant.

We provide some examples of fss degree of membership associations.

Example 1. Let (U, ·) be an invariant set.

1. We define R = {(Y, χY) | Y ∈ ℘ f s(U)}, where χY represents the characteristic function
of Y. According to Lemma 4, R is equivariant, and so R is a fss degree of membership
association over U.

2. We define R = {(algsup( f ), f ) | f ∈ [0, 1]Uf s}, where algsup( f ) represents the algebraic
support of f . According to Lemma 5, R is equivariant, and so R is a fss degree of membership
association over U.

Definition 7. Let (U, ·) be an invariant set. A full fss degree of membership association over
the invariant set U is an equivariant binary relation F on ℘ f s(U) and [0, 1]Uf s (i.e., an equivariant

subset F of the invariant set ℘ f s(U)× [0, 1]Uf s) satisfying the following conditions:

1. F is a left-total binary relation; namely, for any finitely supported subset Z of U, a finitely
supported function f : U → [0, 1] called F-degree of membership function of Z such that
(Z, f ) ∈ F.

2. F is an onto binary relation; namely, for every finitely supported function f : U → [0, 1],
Z ∈ ℘ f s(U) such that (Z, f ) ∈ F.
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The conditions in Definition 7 correspond to our intuition of how a full fss degree
of membership association over an invariant set should be defined.

1. The first condition in Definition 7 means that for each element in ℘ f s(U), we should
find at least one associated fss degree of membership function which models the de-
gree of membership in X for each element in U (at least the characteristic function
of X is such a finitely supported function).

2. The second condition in Definition 7 means that any element of [0, 1]Uf s should be a fss
degree of membership function associated with a certain element of ℘ f s(U). For each
f ∈ [0, 1]Uf s, we could consider that f is associated to at least its algebraic support.

Example 2. Let (U, ·) be an invariant set.
Let F = {(Y, χY) | Y ∈ ℘ f s(U)} ∪ {(algsup( f ), f ) | f ∈ [0, 1]Uf s}, where χY represents
the characteristic function of Y and algsup( f ) represents the algebraic support of f . Then F is
equivariant. Furthermore, F is a full fss degree of membership association over U.

Proposition 4.

1. Let (U, ·) be an invariant set such that there is a fss degree of membership association F

over it. Then the set of all F-degree of membership functions of U, i.e., ℘F
f uzzy(U)

de f
= { f ∈

[0, 1]Uf s | ∃Z ∈ ℘ f s(U), (Z, f ) ∈ F} = Im(F) is an equivariant subset of ([0, 1]Uf s, �̃), where

�̃ is the standard SA-action on [0, 1]Uf s.
2. Let (U, ·) be an invariant set such that there is a full fss degree of membership association

F over it. Then the set of all F-degrees of membership functions defined on U, namely,
℘F

f uzzy(U), is an invariant set that coincides with ([0, 1]Uf s, �̃).

Theorem 4. Let (U, ·) be an invariant set such that there is a full fss degree of membership
association F over the invariant set U. Then (℘F

f uzzy(U), �̃,�) is an invariant complete lattice,
where � is an equivariant order relation on ℘F

f uzzy(U) = { f ∈ [0, 1]Uf s | ∃Z ∈ ℘ f s(U), (Z, f ) ∈
F} defined by: f � g is and only if f (x) ≤ g(x) for all x ∈ U.

To prove Theorem 4, when F = ( fi)i∈I is a finitely supported family of elements
from [0, 1]Uf s, we define �

i∈I
fi : U → [0, 1] by ( �

i∈I
fi)(x) = supremum

i∈I
{ fi(x) | i ∈ I} for all

x ∈ U, where by supremum we denoted the least upper bounds in the set of real numbers.
Using the fact that, whenever π ∈ Fix(supp(F )), for any i ∈ I there is a unique j ∈ I
such that fi = π−1�̃ f j (where �̃ is the SA-action on [0, 1]Uf s), we obtain that for each i ∈ I
there is a unique j ∈ I such that fi(x) = f j(π · x) for all x ∈ U. Then we concluded
that supremum

i∈I
{ fi(π · x) | i ∈ I} = supremum

i∈I
{ fi(x) | i ∈ I} for all x ∈ U and all

π ∈ Fix(supp(F )), from which we obtained that supp(F ) supports �
i∈I

fi, which means

�
i∈I

fi is the least upper bound of F in [0, 1]Uf s = ℘F
f uzzy(U) (for the last relation we used

Proposition 4(2)).
Several properties of (℘F

f uzzy(U), �̃,�) are obtained from the general properties of in-
variant complete lattices [6].

Corollary 1. Let (U, ·) be an invariant set such that there is a full fss degree of membership
association F over U.

1. Let ϕ : ℘F
f uzzy(U) → ℘F

f uzzy(U) be a finitely supported order preserving function over
(℘F

f uzzy(U), �̃,�). Then there is a greatest f ∈ ℘F
f uzzy(U) such that ϕ( f ) = f , as well as a

least g ∈ ℘F
f uzzy(U) such that ϕ(g) = g.
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2. Let ϕ : ℘F
f uzzy(U) → ℘F

f uzzy(U) be a finitely supported order-preserving function over
(℘F

f uzzy(U), �̃,�). Let P be the set of fixed points of ϕ. Then (P, �̃,�) is a finitely supported
(by supp(ϕ)) complete lattice.

It is worth noting that we obtain properties that cannot be obtained with standard
fuzzy techniques in ZF. For instance, there exist lattices that are invariant complete, but
fail to be complete in the ZF framework. A related example is presented in [11], where we
proved that the set of those subsets of A which are either finite or cofinite is an invariant
complete lattice (with the classical inclusion order), but it fails to be a complete lattice in ZF.
Another such example is presented in Proposition 4.

Proposition 5. Let us assume that there is a full fss degree of membership association F over the
invariant set of atoms A. Then (℘F

f uzzy(A), �̃,�) is an invariant complete lattice, but it fails to be
a complete lattice in ZF framework when A is considered as a set in ZF.

In order to prove Proposition 5, we considered P to be a fixed ZF simultaneously
infinite and coinfinite subset of A. For each a ∈ A we defined ϕa : A → [0, 1] by ϕa(b) ={

1 for b = a
0 for b ∈ A \ {a} . Any function ϕa is supported by supp(a). Moreover, we proved

that the function j : A → [0, 1]Af s defined by j(a) = ϕa for all a ∈ A is equivariant.

We considered the infinite family F from [0, 1]Af s defined by F = {ϕa | a ∈ P}. The only
possible least upper bound of F would have been the function ψ : A → [0, 1] defined

by ψ(x) =
{

1 for x ∈ P
0 for x ∈ A \ P

. Since P is not finitely supported, it followed that ψ is not

finitely supported, and so F does not have a least upper bound in [0, 1]Af s.

Since the construction of ℘F
f uzzy(A) = [0, 1]Af s makes sense in ZF, the previous result

shows that ℘F
f uzzy(A) is a lattice which is not complete in ZF, but is the only invariantcom-

plete. This aspect emphasises one benefit of this approach: even though we have only
a refined form of completeness (namely, the invariant completeness) in ZF for ℘F

f uzzy(A),

we can provide new properties of ℘F
f uzzy(A) derived from the general properties of the

invariant complete lattices (presented in [6]).
Invariant monoids were introduced in [12] as invariant sets equipped with equivariant

internal monoid laws. More exactly, (M,+, ·) is an invariant monoid if (M, ·) is an invariant
set and (M,+, 0) is a monoid having the properties that π · (x + y) = (π · x) + (π · y),
π · 0 = 0 for all x, y ∈ M and π ∈ SA.

Theorem 5. Let (U, ·) be an invariant set such that there is a full fss degree of membership
association F over it. Then ℘F

f uzzy(U) can be organised as an invariant monoid in the following
two forms:

1. (℘F
f uzzy(U),⊗, �̃) is an invariant commutative monoid, where �̃ is the SA-action on [0, 1]Uf s,

and f ⊗ g : U → [0, 1] is defined by the relation ( f ⊗ g)(x) = f (x)g(x) for all x ∈ U. The
neutral element is the equivariant function 1U : U → [0, 1] defined by 1U(x) = 1 for all
x ∈ U.

2. (℘F
f uzzy(U),�, �̃) is an invariant commutative monoid, where �̃ is the SA-action on [0, 1]Uf s,

and f � g : U → [0, 1] is defined by the relation ( f � g)(x) = supremum{ f (x), g(x)}
for all x ∈ U. The neutral element is the equivariant function 0U : U → [0, 1] defined
by 0U(x) = 0 for all x ∈ U.

The general properties of invariant monoids presented in [12] lead to new properties
of ℘F

f uzzy(U) (equipped with one of the two internal laws defined in Theorem 5). Some
of them are related to the invariant isomorphism theorems, to invariant universality
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theorems or to Cayley monoids theorem. We present here an fss Cayley-type embedding
theorem for ℘F

f uzzy(U) which follows from Theorem 7 in [12].

Theorem 6. Let (U, ·) be an invariant set with the property that there is a full fss degree of mem-
bership association F over it. Then there is an equivariant isomorphism between ℘F

f uzzy(U)

and an invariant submonoid of the invariant monoid formed by the finitely supported elements

of ℘F
f uzzy(U)

℘F
f uzzy(U).

The universality properties for invariant monoids [12] allow us to establish connectiv-
ity results between the set of all fuzzy sets over an invariant set U, the free monoid over
U and the set of all extended multisets over U.

Let (U, ·) be an invariant set such that there is a full fss degree of membership associa-
tion F over it. Let Next(U) be the set of all extended multisets over U (defined as functions
f : U → N with finite algebraic supports, which are proved to be finitely supported
by their algebraic supports, where N is the set of all positive integers). Then, Next(U)
endowed with the classical pointwise sum of extended multisets is an invariant monoid
with the same SA-action as NU

f s. If U∗ is the free monoid on U, then U∗ endowed with
the classical juxtaposition of words is an invariant monoid with the SA action � defined
by π � x1 . . . xn = (π · x1) . . . (π · xn) for all π ∈ SA, x1 . . . xn ∈ U∗ \ {1}, and π � 1 = 1
for all π ∈ SA (where 1 is the empty word).

Theorem 7. Let U, V be invariant sets with the property that there is a full fss degree of mem-
bership association with V. Let j : U → Next(U) be the function which maps each x ∈ U into
the characteristic function χ{x}. If φ : U → ℘F

f uzzy(V) is an arbitrary finitely supported func-
tion, then there is a unique finitely supported homomorphism of invariant commutative monoids
ψ : Next(U) → ℘F

f uzzy(V) with ψ ◦ j = φ, i.e., ψ(χ{x}) = φ(x) for all x ∈ U. Furthermore,
supp(ψ) ⊆ supp(φ).

Theorem 8. Let U, V be invariant sets with the property that there is a full fss degree of membership
association with V. Let i : U → U∗ be the standard inclusion of U into U∗ which maps each
element x ∈ U into the word x. If φ : U → ℘F

f uzzy(V) is an arbitrary finitely supported function,
then there is a unique finitely supported homomorphism of invariant monoids ψ : U∗ → ℘F

f uzzy(V)

with ψ ◦ i = φ. Furthermore, supp(ψ) ⊆ supp(φ).

The following isomorphism theorem can be proved from the general properties
of invariant monoids [5]. For its corollaries, we involve Theorem 5 and the fact that
the function f �→ FZS(X, f ) is an equivariant homomorphism between (FAS(X),�, �̃) and
(℘ f in(X),∪, �) with the notations in Corollary 3.

Theorem 9. Let (M,+M, ·) and (N,+N , �) be invariant monoids and let f : M → N be
an equivariant homomorphism. On M we define the relation ∼ f by: m1 ∼ f m2 if f (m1) = f (m2).
Then ∼ f is an equivariant equivalence relation and there is an equivariant isomorphism ϕ between
the invariant factor monoid (M/ ∼ f ,+, �) and the invariant monoid Im( f ), defined by ϕ([m]) =
f (m) for all m ∈ M, whereby [m] we denoted the equivalence class of m modulo ∼ f ; the internal
law + is defined by : [m] + [m′] = [m +M m′] for all [m], [m′] ∈ M/ ∼ f and the SA-action � is
defined by π � [m] = [π ·m] for all [m] ∈ M/ ∼ f .

Corollary 2. Let (X, ·) be an invariant set with the property that there is a full fss degree of mem-
bership association with X, and let (N,+N , �N) be an invariant monoid. Let ψ : ℘F

f uzzy(X)→ N
be an equivariant homomorphism. On ℘F

f uzzy(X) (equipped with the internal laws ⊗ or �), we
define the relation ∼ψ by: f1 ∼ψ f2 if ψ( f1) = ψ( f2). Then ∼ψ is an equivariant equivalence
relation and there is an equivariant isomorphism ϕ between the invariant monoid ℘F

f uzzy(X)/ ∼ψ
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and the invariant monoid Im(ψ), defined by ϕ([ f ]) = ψ( f ) for all f ∈ ℘F
f uzzy(X), whereby [ f ]

we denoted the equivalence class of f modulo ∼ψ.

Corollary 3. Let (X, ·) be an invariant set with the property that there is a full fss degree of mem-
bership association with X. Let FAS(X) = { f : X → [0, 1] | FZS(X, f ) is finite}. On FAS(X)
we define the relation ∼ by: f ∼ g if and only if FZS(X, f ) = FZS(X, f ). Then FAS(X) is
an equivariant submonoid of (℘F

f uzzy(X),�, �̃) and there is an equivariant isomorphism ϕ be-
tween the invariant factor monoid FAS(X)/ ∼ and the invariant monoid (℘ f in(X),∪, �) defined
by ϕ([ f ]) = FZS(X, f ) for all f ∈ FAS(X), whereby [ f ] we denoted the family of functions
from X to [0, 1] having the same algebraic support as f .

5. L-Fuzzy Sets and Invariant Complete Lattices

We present the notion of L-fuzzy set and several fixed point properties in this frame-
work. By now on, we implicitly assume that the invariant sets we involve are endowed
with a full fss degree of membership associations. Therefore, for an invariant algebraic
structure P, the P-fuzzy sets over an invariant set U will be defined as finitely supported
functions from U to P.

Definition 8. Let (L, ·,�) be an invariant complete lattice and (U, �) an invariant set.

• An L-fuzzy set over U is a finitely supported function μ : U → L.
• The algebraic support of a function f : U → L is the crisp set FZS(U, f ) = {x ∈

U | 0 � f (x)}.

Example 3.

• Let U be an invariant set. The function f : U → ℘ f s(A) defined by f (x) = supp(x) for all
x ∈ U is an equivariant L-fuzzy set over U. This is because ℘ f s(A) is an invariant complete
lattice and, for all π ∈ SA, we have supp(π · x) = π(supp(x)) = π � supp(x) for all x ∈ X.

• Let (X, ·) be an invariant set. Let ϕ : [0, 1]Xf s → ℘ f s(X), ϕ( f ) = FZS(X, f ). For
π ∈ SA we verify that π � FZS(X, f ) = FZS(X, π�̃ f ) for all f ∈ [0, 1]Xf s. Fix f and
let z ∈ π � FZS(X, f ). Then z = π · x with x ∈ FZS(X, f ), and hence (π�̃ f )(z) =
f (π−1 · z) = f (x) > 0, i.e., z ∈ FZS(X, π�̃ f ). Conversely, let z ∈ FZS(X, π�̃ f ). It
follows that f (π−1 · z) > 0. Thus, z = π · (π−1 · z) with π−1 · z ∈ FZS(X, f ), and so
z ∈ π � FZS(X, f ). Thus, since ℘ f s(X) is an invariant complete lattice, we have that ϕ is
an equivariant L-fuzzy set over [0, 1]Xf s.

Theorem 10. Let (L, ·,�) be an invariant complete lattice and (U, �) an invariant set. Any
function f : U → L has the following properties:

1. If f is an L-fuzzy set over U, then FZS(U, f ) is finitely supported, and:

• supp(FZS(U, f )) ⊆ supp( f );
• supp( f (FZS(U, f ))) ⊆ supp(FZS(U, f )) ∪ supp( f );

2. If the algebraic support of f is finite, then f is an L-fuzzy set over U (i.e., f is finitely
supported) and supp( f ) ⊆ supp(FZS(U, f )) ∪ supp( f (FZS(U, f ))).

3. If the algebraic support of f is finite, then supp( f (FZS(U, f ))) \ supp(FZS(U, f )) =
supp( f ) \ supp(FZS(U, f )).

The L-fuzzy sets are characterised by the following property.

Theorem 11. Let (U, �) be an invariant set and (L, ·,�) an invariant complete lattice.

• The family of those finitely supported functions f : U → L (i.e., the family LU
f s of all L-fuzzy

sets over the invariant set U) is an invariant complete lattice with the order relation ≤ defined
by f ≤ g if and only if f (x) � g(x) for all x ∈ U.
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• Furthermore, if F = ( fi)i∈I is a finitely supported family of L-fuzzy sets over the invariant
set U, its least upper bound with respect to ≤ is ∨

i∈I
fi : U → L defined by ( ∨

i∈I
fi)(x) =

�
i∈I
{ fi(x) | i ∈ I} for all x ∈ U, whereby � we denoted least upper bounds in L with respect

to �.

The requirement that L is invariant complete in Theorem 11 is necessary. For example,
let us fix an element a ∈ A; the family ( fn)n∈N of functions from A to N defined by

fi(b) =
{

i for b = a
0 for b ∈ A \ {a} for all i ∈ N is finitely supported (each fi is supported by

the same set {a}), but it does not have a supremum modulo �.
It is worth noting that some ZF structures are not finitely supported. The family

of finitely supported functions from U to L makes sense in ZF, but it is an invariant
complete lattice and not a fully ZF complete lattice in respect with all atomic sets.

According to Theorem 11, the following fixed point results can provide properties
of finitely supported L-fuzzy sets over an invariant set. We chose to present the results
in the general case, making them also applicable for other finitely supported structures
(not only for finitely supported L-fuzzy sets).

In this section, we present fixed point theorems of Tarski’s type in the framework
of finitely supported structures. Tarski’s theorem plays an important role in the theory
of abstract interpretation of programming languages reformulated in the world of finitely
supported structures [11].

Theorem 12 (Strong Tarski Theorem for fss). Let (L, ·,�) be an invariant complete lattice and
f : L → L a finitely supported, order-preserving function. Let F be the set of all fixed points of f .
Then (F, ·,�) is itself a non-empty, finitely supported (by supp( f )), complete lattice.

In terms of L-fuzzy sets, this result states that, if (L, ·,�) is an invariant complete
lattice and f is an order-preserving L-fuzzy set over the invariant set L, then the set of fixed
points of f is itself a non-empty finitely supported (by supp( f )) complete lattice.

Corollary 4. Let (L, ·,�) be an invariant complete lattice and f : L → L a finitely supported,
order-preserving function. Then f has a least-fixed point defined as �{x ∈ L | f (x) � x} and
a greatest-fixed point defined as �{x ∈ L | x � f (x)}, which are both supported by supp( f ).

Corollary 5. Let (L, ·,�) be an invariant complete lattice and f : L → L an equivariant order-
preserving function. Let F be the set of all fixed points of f . Then (F, ·,�) is itself an invariant
complete lattice.

According to Theorem 13, Tarski’s fixed-point theorem can be applied for finitely sup-
ported self-functions on the family of those finitely supported subsets of an invariant set [9].

Theorem 13. If (X, ·) is an invariant set, then (℘ f s(X), �,⊆) is an invariant complete lattice.

Theorem 12 can be extended. We were able to prove the existence of fixed points
of a finitely supported, order preserving self-function on an invariant partially ordered
set, by imposing the existence condition of least upper bounds only for those uniformly
supported subsets of the invariant, partially ordered set, and not for all finitely supported
subsets of the related invariant, partially ordered set [10].

Theorem 14. Let (X, ·,�) be a non-empty invariant partially ordered set having the additional
property that every uniformly supported subset of X has a least upper bound. Let f : X → X be
a finitely supported, order-preserving function with the property that there is x0 ∈ X such that
x0 � f (x0). Then there is u ∈ X with x0 � u such that f (u) = u.
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From Theorems 11 and 12, we obtain the following fixed point result for L-fuzzy sets
over invariant sets.

Theorem 15. Let (U, �) be an invariant set, (L, ·,�) an invariant complete lattice and ϕ : LU
f s →

LU
f s a finitely supported, order-preserving function over LU

f s. Let F be the set of fixed points
of ϕ. Then (F, �̃,≤) is a non-empty, finitely supported (by supp( f )) complete lattice, where �̃ is
the induced SA-action on the function space LU

f s, and ≤ is the order relation of the family LU
f s of all

L-fuzzy sets over the invariant set U defined by f ≤ g if and only if f (x) � g(x) for all x ∈ U.

6. Fuzzy Subgroups of an Invariant Group

Rosenfeld introduced the notion of a fuzzy group and proved that many concepts
of group theory can naturally be extended in order to develop the theory of fuzzy groups [13].
A survey of the development of fuzzy group theory can be found in [14].
Let us recall some results of the classical Zermelo–Fraenkel theory of fuzzy groups.

Definition 9. Let (G, ·, 1) be a group. On the family {ν | ν : G → [0, 1]} of all fuzzy sets on G
we define a partial order relation �, called fuzzy sets inclusion by η � μ if and only if η(x) ≤ μ(x)
for all x ∈ G.

Definition 10. Let (G, ·, 1) be a group. A fuzzy set η over the group G (i.e., a function η : G →
[0, 1]) is called fuzzy subgroup of G if the following conditions are satisfied:

• η(x · y) ≥ min{η(x), η(y)} for all x, y ∈ G;
• η(x−1) ≥ η(x) for all x ∈ G.

Definition 11. Let (G, ·, 1) be a group. A fuzzy subgroup μ of G that satisfies the additional
condition μ(x · y) = μ(y · x) for all x, y ∈ G is called a fuzzy normal subgroup of G.

Theorem 16. Let (G, ·, 1) be a group.

• The set FL(G) formed by all fuzzy subgroups of G is a complete lattice with respect to fuzzy
sets inclusion.

• The set FN(G) formed by all fuzzy normal subgroups of G is a modular lattice with respect to
fuzzy sets inclusion.

We translate the above results in the framework of finitely supported structures,
proving their consistency within the new framework.

Definition 12. An invariant group is a triple (G, ·, �) with the property that the following
conditions are satisfied:

• G is a group with the internal law ·;
• G is a non-trivial invariant set with the SA-action �;
• for each π ∈ SA and each x, y ∈ G we have π � (x · y) = (π � x) · (π � y), meaning that

the internal law on G is equivariant.

Proposition 6. (G, ·, �) be an invariant group. We have the following properties:

1. π � e = e for all π ∈ SA, where e is the neutral element of G.
2. π � x−1 = (π � x)−1 for all π ∈ SA and x ∈ G.

We provide the following examples of invariant groups.

Example 4.

1. The group (SA, ◦, ·) is an invariant group, where ◦ is the composition of permutations and · is
the SA-action on SA defined by π · σ := π ◦ σ ◦π−1 for all π, σ ∈ SA. Since the composition
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of functions is associative, it is easy to verify that π · (σ ◦ τ) = (π · σ) ◦ (π · τ) for all
π, σ, τ ∈ SA.

2. The free group (F(X),ᵀ, �̃) over an invariant set (X, �) (formed by those equivalence classes
[w] of words w, where two words are in the same equivalence class if one can be obtained from
another by repeatedly inserting or cancelling terms of the form u−1u or uu−1 for u ∈ X) is
an invariant group, where �̃ : SA × F(X)→ F(X) is defined by π�̃[xε1

1 xε2
2 . . . xε l

l ] = [(π �
x1)

ε1 . . . (π � xl)
ε l ], and [xε1

1 xε2
2 . . . xεn

n ] ᵀ [yδ1
1 yδ2

2 . . . yδm
m ] = [xε1

1 xε2
2 . . . xεn

n yδ1
1 yδ2

2 . . . yδm
m ].

3. Given an invariant set (X, �), any function f : X → Z (where Z is the set of all integers)

with the property that S f
de f
= {x ∈ X | f (x) �= 0} is finite is called an extended generalised

multiset over X. The set of all extended generalised multisets over X is denoted by Zext(X).
Each function f ∈ Zext(X) is finitely supported with supp( f ) = supp(S f ). The set
(Zext(X),+, �̃) is an invariant commutative group, where f+g: X→Z is defined pointwise
by ( f + g)(x) = f (x) + g(x) for all x ∈ X and �̃ is the standard SA-action on ZX

f s.

Definition 13. Let (G, ·, �) be an invariant group. A finitely supported subgroup of G is a sub-
group of G, which is also an element of ℘ f s(G).

Example 5.

1. Let (G, ·, �) be an invariant group. The centre of G (namely, C(G) := {g ∈ G | g · u = u · g
for all u ∈ G}) is a finitely supported subgroup of G, and it is itself an invariant group
because it is empty-supported as an element of ℘(G).

2. Let X be a finitely supported subset of G. The subgroup of G generated by X (denoted by [X])
is a finitely supported (by supp(X)) subgroup of G, but not itself an invariant group.

If (G, ·, �) is an invariant group, we denote by L f s(G) the family of all finitely sup-
ported subgroups of G ordered by inclusion.

Theorem 17.

• Let (G, ·, �) be an invariant group. Then (L f s(G), �,⊆) is an invariant complete lattice,
where ⊆ represents the classical inclusion relation on ℘(G) and � is the SA-action on ℘(G).

• Furthermore, if F = (Hi)i∈I is a finitely supported family of finitely supported subgroups
of G, then its least upper bound is [ ∪

i∈I
Hi] which is supported by supp(F ).

From Tarski’s theorem (Theorem 12), we obtain the next result.

Corollary 6. Let (G, ·, �) be an invariant group and f : L f s(G)→ L f s(G) a finitely supported,
order-preserving function. The set of all fixed points of f is itself a finitely supported (by supp( f ))
complete lattice.

Definition 14. Let (G, ·, �) be an invariant group. A fuzzy set η over the invariant set G (i.e.,
a finitely supported function η : G → [0, 1]) is called a finitely supported fuzzy subgroup of G
if the following conditions are satisfied:

• η(x · y) ≥ min{η(x), η(y)} for all x, y ∈ G;
• η(x−1) ≥ η(x) for all x ∈ G.

Example 6. Let (F(A),ᵀ, �̃) be the invariant free group over the set A of atoms defined as in
Example 4(2). For an element [w] = [xε1

1 xε2
2 . . . xεk

k ] in F(A), we define sum([w]) = ε1 + ε2 +
. . . + εk. Whenever [w] = [w′], we have sum([w]) = sum([w′]), and so sum is well defined.
It can be proved that sum is an equivariant (empty-supported) group homomorphism between
the invariant groups F(A) and Z (the set of all integers being a trivial invariant group).

Let us consider ηA : F(A)→ [0, 1] defined by
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ηA([w]) =

⎧⎨⎩
0, if sum([w]) is an odd integer;
1− 1

n , if sum([w]) = m · 2n where m is an odd integer and n ∈ N;
1, if sum([w]) = 0 .

It can be proved that μA is a finitely supported fuzzy subgroup of F(A).

Theorem 18. Let (G, ·, �) be an invariant group. The set FL f s(G) consisting of all finitely sup-
ported fuzzy subgroups of G forms an invariant complete lattice with respect to fuzzy sets inclusion.

In order to prove Theorem 18, the construction of least upper bounds for finitely
supported subsets of FL f s(G) follows the next steps [9]:

• First, we proved that FL f s(G) is itself an invariant set; that is, we verified that π�̃μ is
a finitely supported fuzzy subgroup of G for all π ∈ SA and μ ∈ FL f s(G) (it satisfies
the conditions in Definition 14), where �̃ is the SA-action on [0, 1]Gf s.

• We remarked that the inclusion relation � on FL f s(G), defined by μ � η if and only if
μ(x) ≤ η(x) for all x ∈ G, is equivariant.

• For each α ∈ [0, 1] and each ν ∈ [0, 1]Gf s, we defined Gν
α = {x ∈ G | ν(x) ≥ α} (which

corresponds to the concept of α-cut). We obtained that each Gν
α is finitely supported

by supp(ν).
• As in Example 5(2), we obtained that each subgroup [Gν

α] generated by Gν
α is finitely

supported by supp(ν).
• For any finitely supported function μ : G → [0, 1], we defined the function μ∗ : G →

[0, 1] by μ∗(x) = supremum{α ∈ [0, 1] | x ∈ [Gμ
α ]} for any x ∈ G, whereby supremum

we denoted the least upper bounds in the set of real numbers. We proved that μ� is
supported by supp(μ).

• If F = (μi)i∈I is a finitely supported family of elements from FL f s(G), we defined
�

i∈I
μi : G → [0, 1] by �

i∈I
μi(x) = supremum

i∈I
{μi(x) | i ∈ I} for all x ∈ G. Since [0, 1]

is a ZF (trivial invariant) complete lattice, from Theorem 11 we have that supp(F )
supports �

i∈I
μi. Therefore, we have that ( �

i∈I
μi)

∗ is finitely supported by supp( �
i∈I

μi) ⊆
supp(F ).

• As in the standard fuzzy groups theory, we found that ( �
i∈I

μi)
∗ is a fuzzy subgroup

of G (in the sense of Definition 14) and it is the least upper bound of F in FL f s(G)
with respect to the order relation �.

From Tarski’s theorem (Theorem 12), the next result follows.

Corollary 7. Let (G, ·, �) be an invariant group and f : FL f s(G)→ FL f s(G) a finitely supported,
order-preserving function. The set of all fixed points of f is itself a finitely supported (by supp( f ))
complete lattice.

Theorem 19. Let (G, ·, �) be an invariant group. The set FNf s(G) consisting of all finitely
supported fuzzy normal subgroups of G forms an invariant modular lattice with respect to fuzzy
sets inclusion.

7. T-Fuzzy Sets and Invariant Strong Inductive Sets

We introduce the concept of the T-fuzzy set, where T is an invariant partially ordered
set having the property that every finitely supported totally ordered subset of T has a least
upper bound in T. We present some fixed point results in a more general framework; they
can be also applied to T-fuzzy sets.

33



Mathematics 2021, 9, 1651

Definition 15.

1. An invariant strong inductive set is an invariant partially ordered set (T, ·,�) with the prop-
erty that every finitely supported totally ordered subset (i.e., every finitely supported chain)
of T has a least upper bound in T.

2. Let (X, ·X ,�X) and (Y, ·Y,�Y) be two invariant partially ordered sets. A finitely supported
function f : X → Y is c-continuous if and only if for each finitely supported, countable
sequence (un)n∈N in X which has a least upper bound, we have that f ((un)n∈N) has a least
upper bound in Y and f ( �

n∈N
un) = �

n∈N
( f (un)).

Definition 16. Let (T, ·,�) be an invariant strong inductive set and (U, �) an invariant set.
A T-fuzzy set over U is a finitely supported function μ : U → T.

The T-fuzzy sets are characterised by the following property.

Theorem 20.

• Let (U, �) be an invariant set and (T, ·,�) an invariant strong inductive set. The family
of those finitely supported functions f : U → T (i.e., the family of all finitely supported
T-fuzzy sets over U) is an invariant strong inductive set with the order relation ≤ defined
by f ≤ g if and only if f (x) � g(x) for all x ∈ U.

• Furthermore, if F = ( fi)i∈I is a finitely supported, totally ordered family of T-fuzzy sets
over the invariant set U, its least upper bound with respect to ≤ is ∨

i∈I
fi : U → T defined

by ( ∨
i∈I

fi)(x) = �
i∈I
{ fi(x) | i ∈ I} for all x ∈ U, whereby � we denoted least upper bounds

in T of finitely supported totally ordered subsets (with respect to �).

The following theorem connects the concept of a ‘uniformly supported set’ with the
concept of a ‘invariant strong inductive set’.

Theorem 21.

• An invariant partially ordered set (T, ·,�) with the property that every uniformly supported
subset of T has a least upper bound in T is an invariant strong inductive set.

• An invariant partially ordered lattice (not necessarily complete) (T, ·,�) with the property that
T does not contain a uniformly supported, infinite subset is an invariant strong inductive set.

The following result presents a hierarchical construction of invariant sets contain-
ing no uniformly supported, infinite subsets [6,7]. We were able to prove this property
for apparently large finitely supported sets that are presented as functions spaces.

Theorem 22.

1. Let A≤n = {(a1, . . . , ak) | a1, . . . , ak ∈ A, k ≤ n}. Let T be a finitely supported subset of an
invariant set such that T does not contain a uniformly supported, infinite subset. The function
space TA≤n

f s does not contain a uniformly supported, infinite subset, whenever n ∈ N.
2. Let ℘≤n(A) = {Z ∈ ℘ f in(A) | Z ∈ ℘m(A) for some m ≤ n}, where ℘m(A) is the family

of all m-sized subsets of A. Let T be a finitely supported subset of an invariant set such that T
does not contain a uniformly supported, infinite subset. The function space T℘≤n(A)

f s does not
contain a uniformly supported, infinite subset, whenever n ∈ N.

Corollary 8. Let T be a finitely supported subset of an invariant set such that T does not contain
a uniformly supported, infinite subset. For any n ∈ N,

1. The function space TAn

f s does not contain a uniformly supported, infinite subset;

2. The function space T℘n(A)
f s does not contain a uniformly supported, infinite subset.
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Corollary 9. Let P be an invariant set (in particular, P could be an invariant complete lattice or an
invariant strong inductive set) that does not contain a uniformly supported, infinite subset. Let
X be one of the sets An, A≤n,℘n(A),℘≤n(A) for some n ∈ N. The set of all P-fuzzy sets over
the invariant set X does not contain a uniformly supported, infinite subset.

The following four results are specific to finitely supported sets, i.e., they do not have
ZF correspondents. We present some examples of finite powersets that are invariant strong
inductive sets. Such a result does not hold in ZF since a ZF set could admit an unbounded
countable ascending chain of finite subsets.

Theorem 23. Let (T, ·) be an invariant set such that T does not contain a uniformly supported,
infinite subset. Then (℘ f in(T), �,⊆) does not contain a uniformly supported, infinite subset, and
so it is an invariant strong inductive set.

Corollary 10. Let (T, ·) be an invariant set such that T does not contain a uniformly supported,
infinite subset. Then (℘ f in(TAn

f s ), �,⊆) is an invariant strong inductive set, n ∈ N.

Corollary 11. Let (T, ·) be an invariant set such that T does not contain a uniformly supported,
infinite subset. Then (℘ f in(T

℘n(A)
f s ), �,⊆) is an invariant strong inductive set, n ∈ N.

Corollary 12. Let (T, ·) be an invariant set such that T does not contain a uniformly supported,
infinite subset. Then (℘ f in(℘ f s(An)), �,⊆) is an invariant strong inductive set, n ∈ N.

Example 7.

• Let X be an invariant set. The function f : X → ℘ f in(A) defined by f (x) = supp(x)
for all x ∈ X is an equivariant T-fuzzy set over X. This is because (℘ f in(A), �,⊆) is
an invariant strong inductive set according to Theorem 23 and, for all π ∈ SA, we have
supp(π · x) = π(supp(x)) = π � supp(x).

• Let (X, ·) be an invariant set which does not contain an infinite uniformly supported sub-
set. According to Theorem 23, (℘ f in(X), �,⊆) is an invariant, strong inductive set. Let
FAS(X) = { f : X → [0, 1] | FZS(X, f ) is finite}. Since [0, 1] is a trivial invariant com-
plete lattice, according to Theorem 10(2), every function f ∈ FAS(X) is finitely supported.
As in Example 3(2), for all π ∈ SA, we have FZS(X, π�̃ f ) = π � FZS(X, f ) for all
f ∈ FAS(X), and so FAS(X) is an invariant set. The equivariant function ψ between
the invariant set FAS(X) and the invariant set (℘ f in(X), �) defined by ψ( f ) = FZS(X, f )
for all f ∈ FAS(X) is a T-fuzzy set over FAS(X).

• Let (X, ·) be an invariant set which does not contain an infinite uniformly supported subset.
On FAS(X) we define the relation∼ by: f ∼ g if and only if FZS(X, f ) = FZS(X, g). Then,
according to Corollary 3, since equivariant isomorphisms of monoids are also equivariant func-
tions, we know that there is an equivariant function ϕ between the invariant set FAS(X)/ ∼
and the invariant set (℘ f in(X), �) defined by ϕ([ f ]) = FZS(X, f ) for all f ∈ FAS(X),
where by [ f ] we denoted the family of functions from X to [0, 1] having the same algebraic
support as f . Thus, ϕ is a T-fuzzy set over FAS(X)/ ∼.

From Theorem 20, Theorem 23, Corollary 10, Corollary 11 and Theorem 22, the follow-
ing property of T-fuzzy sets can be presented.

Theorem 24. Let (U, �) be an invariant set.

1. Let T be an invariant set such that T does not contain a uniformly supported, infinite subset.
The family of all ℘ f in(T)-fuzzy sets over the invariant set U is an invariant strong inductive
set with the order relation ≤ defined by f ≤ g if and only if f (x) ⊆ g(x) for all x ∈ U.

2. Let (T, ·) be an invariant set such that T does not contain a uniformly supported, infinite
subset. For each n ∈ N, the family of all ℘ f in(TAn

f s )-fuzzy sets over the invariant set U is
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an invariant strong inductive set with the order relation ≤ defined by f ≤ g if and only if
f (x) ⊆ g(x) for all x ∈ U.

3. Let (T, ·) be an invariant set such that T does not contain a uniformly supported, infinite

subset. For each n ∈ N, the family of all ℘ f in(T
℘n(A)
f s )-fuzzy sets over the invariant set U is

an invariant strong inductive set with the order relation ≤ defined by f ≤ g if and only if
f (x) ⊆ g(x) for all x ∈ U.

According to Theorem 20, the following fixed point results can provide properties
of finitely supported T-fuzzy sets over an invariant set. We chose to present the results
in the general case, making them applicable also for other finitely supported structures.

The Bourbaki–Witt theorem is an important fixed-point result in mathematics. Its ZF
formulation is used to define recursive data types (e.g., linked lists in domain theory).
Other applications can be found in logic or in the theory of computable functions. This
theorem is also valid for finitely supported progressive self-functions on invariant sets.

Theorem 25 (Bourbaki–Witt Theorem for fss). Let (T, ·,�) be an invariant strong inductive
set. Let f : T → T be a finitely supported function having the additional property that x � f (x)
for all x ∈ T. Then there is u ∈ T such that f (u) = u.

In terms of T-fuzzy sets, this result states that, if (T, ·,�) is an invariant strong
inductive set and f is a T-fuzzy set over the invariant set T with the additional property
that x � f (x) for all x ∈ T, then f has a fixed point.

Corollary 13. Let (T, ·,�) be an invariant strong inductive set. Let f : T → T be a finitely
supported function having the additional property that x � f (x) for all x ∈ T. Then for any y ∈ T,
there is u ∈ T such that f (u) = u and y � u.

If in the statement of Theorem 25 we impose the requirement regarding the existence
of least upper bounds for all uniformly supported subsets of an invariant set (instead
of for all finitely supported totally ordered subsets of an invariant set), we obtain the fol-
lowing result of Bourbaki–Witt type [6,10].

Theorem 26. Let (T, ·,�) be a non-empty invariant partially ordered set with the property that
every uniformly supported subset of T has a least upper bound. Let f : T → T be a finitely
supported function having the additional property that x � f (x) for all x ∈ T. Then there is u ∈ T
such that f (u) = u.

We proved in [6] that the existence of fixed points for a finitely supported, order-
preserving function is possible even in the case when the related function is defined
on an invariant strong inductive set (instead on an invariant complete lattice).

Theorem 27 (Tarski—Extended Theorem for fss). Let (T, ·,�) be an invariant strong inductive
set. Let f : T → T be a finitely supported, order preserving function having the additional property
that there is x0 ∈ T such that x0 � f (x0). Then there is u ∈ T such that f (u) = u.

In terms of T-fuzzy sets, this result states that, if (T, ·,�) is an invariant strong
inductive set and f is an order-preserving T-fuzzy set over the invariant set T having
the additional property that x0 ∈ T with x0 � f (x0) exists, then f has a fixed point.

From Theorems 20, 25 and 27 we obtain the following fixed point result for T-fuzzy sets.

Theorem 28. Let (U, �) be an invariant set and (T, ·,�) an invariant strong inductive set.

1. Let ϕ : TU
f s → TU

f s be a finitely supported function with the property that f ≤ ϕ( f ) for all

f ∈ TU
f s, where ≤ is the order relation on the family of all T-fuzzy sets over the invariant set
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U defined by f1 ≤ f2 if and only if f1(x) � f2(x) for all x ∈ U. Then there is g ∈ TU
f s such

that ϕ(g) = g.
2. Let ϕ : TU

f s → TU
f s be a finitely supported, order-preserving function with the property that

f0 ∈ TU
f s exists such that f0 ≤ ϕ( f0), where ≤ is the order relation on the family of all

T-fuzzy sets over the invariant set U defined by f1 ≤ f2 if and only if f1(x) � f2(x) for all
x ∈ U. Then g ∈ TU

f s is with f0 � g such that ϕ(g) = g.

In ZF, the following two fixed point theorems (known as the Tarski–Kantorovitch
theorem and Scott theorem, respectively) have applications in domain theory, in formal
semantics of programming languages, in the theory of iterated function systems and
in abstract interpretation. We adequately reformulate them for finitely supported sets.

Theorem 29 (Tarski–Kantorovitch Theorem for fss). Let (T, ·,�) be an invariant partially
ordered set and f : T → T a finitely supported c-continuous function. Assume that x0 ∈ T,
having the following properties:

• x0 � f (x0);
• Every finitely supported countable chain in ↑x0= {x ∈ T | x0 � x} has a least upper bound

in T.

Then f has a fixed point u = �
n∈N

f n(x0) with the property that supp(u) ⊆ supp( f ) ∪
supp(x0).

Corollary 14 (Scott Theorem for fss). Let (T, ·,�, 0) be an invariant, partially ordered set with
a least element 0 and with the additional property that any finitely supported countable ascending
chain in T has a least upper bound. Every finitely supported c-continuous function f : T → T has
a least fixed point u = �

n∈N
f n(0) with the property that supp(u) ⊆ supp( f ).

Corollary 15. Let (T, ·,�, 0) be an invariant strong inductive set with a least element 0. Every
finitely supported c-continuous function f : T → T has a least fixed point u = �

n∈N
f n(0) with

the property that supp(u) ⊆ supp( f ).

From Corollary 15 we conclude that if (T, ·,�, 0) is an invariant strong inductive set
with a least element 0 and f is an c-continuous T-fuzzy set over the invariant set T, then
�

n∈N
f n(0) is the least fixed point of f .

Theorem 29 was generalised in [10] to the following result.

Theorem 30. Let (T, ·,�) be an invariant partially ordered set with the property that every
uniformly supported subset has a least upper bound. If f : T → T is a finitely supported c-
continuous function having the additional property that x0 ∈ T and k ∈ N∗ such that x0 � f k(x0),
then �

n∈N
f n(x0) is a fixed point of f .

Proposition 7. Let (T, ·,�) be an invariant partially ordered set containing no uniformly sup-
ported, infinite subset and f : T → T a finitely supported, order-preserving function over T.

• If the set X = {x ∈ T | x � f (x)} is non-empty and totally ordered, then f has the greatest
fixed point defined as gfp( f ) = �X.

• If the set X′ = {x ∈ T | f (x) � x} is non-empty and totally ordered, then f has the least
fixed point defined as lfp( f ) = �X′.

In either of the above cases, f only has many finitely fixed points that form a finitely supported
complete lattice.

We presented above examples of invariant partially ordered sets that do not contain
uniformly supported, infinite subsets. For these sets, some fixed point properties hold.
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Theorem 31. Let (T, ·,�) be an invariant partially ordered set that does not contain a uniformly
supported, infinite subset. Let f : T → T be a finitely supported function having the additional
property that x � f (x) for all x ∈ T. Then for each x ∈ T n ∈ N exists, such that f k(x) is a fixed
point of f for all k ≥ n.

Theorem 32. Let (T, ·,�) be an invariant, partially ordered set that does not contain a uniformly
supported, infinite subset. Let f : T → T be a finitely supported, order-preserving function having
the additional property that there is x0 ∈ T such that x0 � f (x0). Then there is n ∈ N such that
f k(x0) is a fixed point of f for all k ≥ n.

From Theorems 22, 23, 31 and 32, we obtain the following corollaries.

Corollary 16. Let (T, ·) be an invariant set such that T does not contain a uniformly supported,
infinite subset. Let f : ℘ f in(T)→ ℘ f in(T) be a ℘ f in(T)-fuzzy set over the invariant set ℘ f in(T)
and let T0 ∈ ℘ f in(T) such that T0 ⊆ f (T0). If f is order-preserving or progressive (i.e., f has
the property that Y ⊆ f (Y) for all Y ∈ ℘ f in(T)), then n ∈ N exists, such that f k(T0) is a fixed
point of f for all k ≥ n.

Corollary 17. Let (T, ·) be an invariant set such that T does not contain a uniformly supported, in-
finite subset. Let f be a ℘ f in(TAn

f s )-fuzzy set over the invariant set ℘ f in(TAn

f s ) having the additional

property that f is a progressive function. Then T0 ∈ ℘ f in(TAn

f s ) such that f (T0) = T0.

Corollary 18. Let (T, ·) be an invariant set such that T does not contain a uniformly supported,
infinite subset. Let f be a ℘ f in(TAn

f s )-fuzzy set over the invariant set ℘ f in(TAn

f s ) which is order-

preserving. Then a least T0 ∈ ℘ f in(TAn

f s ) supported by supp( f ) such that f (T0) = T0.

Corollary 19. Let (T, ·) be an invariant set such that T does not contain a uniformly supported,
infinite subset. Let f be a ℘ f in(T

℘n(A)
f s )-fuzzy set over the invariant set ℘ f in(T

℘n(A)
f s ) having

the additional property that f is a progressive function. Then T0 ∈ ℘ f in(T
℘n(A)
f s ) such that

f (T0) = T0.

Corollary 20. Let (T, ·) be an invariant set such that T does not contain a uniformly supported,
infinite subset. Let f be a ℘ f in(T

℘n(A)
f s )-fuzzy set over the invariant set ℘ f in(T

℘n(A)
f s ) which

is order-preserving. Then there is a least T0 ∈ ℘ f in(T
℘n(A)
f s ) supported by supp( f ) such that

f (T0) = T0.

For a particular class of T-fuzzy sets, i.e., for those ℘ f in(A)-fuzzy sets over the invari-
ant set ℘ f in(A) (which are actually finitely supported self-functions defined on the finite
powerset of atoms) that satisfy some additional conditions such as injectivity, surjectivity,
monotony or progressivity, we were able to prove stronger fixed point properties than
in the general case; we mention some of them here.

Proposition 8. Let f be a ℘ f in(A)-fuzzy set over the invariant set ℘ f in(A) which is strictly
order-preserving (i.e., f has the property that U � V implies f (U) � f (V)). Then we have
Z \ supp( f ) = f (Z \ supp( f )) for all Z ∈ ℘ f in(A).

Proposition 9. Let f be a ℘ f in(A)-fuzzy set over the invariant set ℘ f in(A) with the property that
Y ⊆ f (Y) for all Y ∈ ℘ f in(A). There are infinitefixed points of f , namely, those finite subsets of A
containing all the elements of supp( f ).
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Proposition 10. Let f be a ℘ f in(A)-fuzzy set over the invariant set ℘ f in(A) which is injective.
For each Y ∈ ℘ f in(A) we have Y \ supp( f ) �= ∅ if and only if f (Y) \ supp( f ) �= ∅. Furthermore,
Y \ supp( f ) = f (Y) \ supp( f ).

Proposition 11. Let f be a ℘ f in(A)-fuzzy set over the invariant set ℘ f in(A) which is surjective.
For each Y ∈ ℘ f in(A) we have Y \ supp( f ) �= ∅ if and only if f (Y) \ supp( f ) �= ∅. Furthermore,
Y \ supp( f ) = f (Y) \ supp( f ).

Proposition 12. Let f be a ℘ f in(A)-fuzzy set over the invariant set ℘ f in(A) having the properties
that f (Y) ⊆ Y for all Y ∈ ℘ f in(A) and f (Y) �= ∅ for all Y �= ∅. Then f (Z) = Z for all
Z ∈ ℘ f in(A) with Z ∩ supp( f ) = ∅.

From Theorems 20 and 14 we obtain the following fixed point result for T-fuzzy sets.

Theorem 33. Let (U, �) be an invariant set and (T, ·,�) an invariant, strong inductive set with
a least element 0. Let ϕ : TU

f s → TU
f s be a finitely supported, c-continuous function defined

on the family of all T-fuzzy sets over the invariant set U. Then a least g ∈ TU
f s with the property

that ϕ(g) = g. Furthermore, g = ∨
n∈N

ϕn(0U), whereby ∨ we denoted the least upper bounds

in TU
f s with respect to the relation ≤ defined by f1 ≤ f2 if and only if f1(x) � f2(x) for all x ∈ U,

and 0U : U → T, 0U(x) = 0 for all x ∈ U.

8. Conclusions

This article represents an overview of the properties of L-fuzzy sets and T-fuzzy sets
over possibly infinite universes, properties presented in a discrete manner by involving
the notion of finite support. We presented a relationship between the algebraic support and
the finite support of an (L-)fuzzy set over an invariant set. We translated several concepts
from the framework of classical ZF fuzzy sets (such as α− cut, operations with fuzzy sets,
fuzzy extension principles, fuzzy subgroups) into the framework of finitely supported
structures, and proved the consistency of their related results in the new framework
of finitely supported structures.

Several fixed-point theorems for partially ordered sets (that can be particularly ap-
plied to the families of L-fuzzy sets and T-fuzzy sets over invariant sets) are adequately
reformulated in the framework of finitely supported sets; they can also be generalised
by imposing requirements only for uniformly supported subsets. Also presented are other
fixed point properties for functions defined on invariant sets containing no uniformly
supported, infinite subsets. Specific properties of self-functions defined on finite powersets
are presented as corollaries of some general results. We presented even stronger fixed-point
properties for order preserving, injective, surjective or progressive self-functions defined
on the finite powerset of atoms. We introduced and described lattices and inductive sets
in the framework of finitely supported structures. We connected the concept of L-fuzzy
set with the concept of invariant complete lattice, and the concept of T-fuzzy set with
the concept of invariant strong inductive set. Some particular invariant complete lattices
were studied. We mentioned the finitely supported subsets of an invariant set, the finitely
supported functions from an invariant set to an invariant complete lattice (i.e., the finitely
supported L-fuzzy sets with L being an invariant complete lattice) and the finitely sup-
ported (fuzzy) subgroups of an invariant group. For these particular invariant complete
lattices, the theorems presented in this article can provide new properties. We also pre-
sented some examples of invariant strong inductive sets, such as the finite powerset of a
set containing no uniformly supported, infinite subset. For the finitely supported self-
functions on invariant strong inductive sets, some fixed point properties are mentioned.
The related fixed-point properties (presented in the general case) lead to applications
in the theory of L-fuzzy sets and T-fuzzy sets over invariant sets (e.g., Theorems 15, 28
and 33). According to Examples 3 and 7, the functions which associate with any classical
fuzzy set on an invariant set means its algebraic support or its finite support are fss L-fuzzy
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sets, and in some cases, fss T-fuzzy sets. In this way, we can discretely model the infinite
classical fuzzy sets over invariant sets in terms of finite supports or algebraic supports
using the properties of fss L-fuzzy sets or fss T-fuzzy sets, respectively.

9. Future Research

We mention below some future work directions.

• Finitely supported monoids can be used to describe automata and languages over infi-
nite alphabets. A relaxed notion of ‘finite’ called ‘orbit finite’ is defined; it means ‘hav-
ing a finite number of orbits (equivalence classes) under a certain group action’ [15].
A future goal is to describe and study finitely supported M-fuzzy sets, where M is
a finitely supported monoid (similarly to finitely supported T-fuzzy sets) and finitely
supported fuzzy submonoids (similarly to finitely supported fuzzy sugbroups). For
these fuzzy structures, we would provide embedding theorems, isomorphism proper-
ties, universality theorems and applications in automata theory and programming
languages.

• The study of fixed points is important since they can encode recursion or model induc-
tive reasoning. Other applications can be found in the theory of computable functions,
in logic, in abstract interpretation to prove the existence of least fixed points for specific
mappings (defined on chain complete sets of properties) modelling the transitions
between properties of programming languages, in formal semantics of programming
languages and in the theory of iterated function systems. A fixed-point induction
technique in the framework of finitely supported structures could be presented,
to prove even stronger properties than those that would lead to usual replacement
of ‘non-atomic structure’ with ‘atomic, finitely supported structure’ in a related ZF
result. For example, a fixed-point theorem of Knaster–Tarski type claims that a finitely
supported, monotone self-function defined on a finitely supported partially ordered
set having the property that any finitely supported subset has a least upper bound
is valid in fss if we require the existence of least upper bounds only for uniformly
supported subsets, and not for all finitely supported subsets of the domain of the
related function.

• We intend to present some examples of apparently large sets (such as finite powersets
or functions spaces) that satisfy some Dedekind-finiteness properties and for which
the fss fixed-point properties can provide a certain form of stability. We particularly

mention ℘ f in(X), ℘ f in(XA≤n

f s ), ℘ f in(X℘≤n(A)
f s ) that are proved to be fss Dedekind finite

whenever X is a finitely supported Dedekind finite set (i.e., whenever X has the prop-
erty that every finitely supported injection f : X → X is also surjective). Many
other pair-wise, non-equivalent forms of infinity such as Levy infinity, Tarski infinity,
Kuratowski infinity, Mostowski infinity, ascending infinity, etc. can be defined and
compared; for functions on sets satisfying these forms of infinity, new calculability
and stability properties could be presented.

• Uncertainty is an inherent property of all living systems. P systems are models used
in membrane computing inspired by the behaviour of living cells [16]. There have
been a few defined fuzzy P systems: fuzzy cell-like P systems and fuzzy reasoning
spiking neural P systems. Fuzzy aspects have been used to handle the uncertainty
in the number of copies of the reactants, imperfectness of objects in membranes
and approximate copies of reactants used in reactions. A possible future work is
to continue the existing development by introducing fss L-fuzzy sets in membrane
computing, and studying them together with the natural finiteness properties.
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Abstract: The main target of this research work is to model the output performance of adsorption
water desalination system (AWDS) in terms of switching and cycle time using artificial intelligence.
The output performance of the ADC system is expressed by the specific daily water production
(SDWP), the coefficient of performance (COP), and specific cooling power (SCP). A robust Adaptive
Network-based Fuzzy Inference System (ANFIS) model of SDWP, COP, and SCP was built using the
measured data. To demonstrate the superiority of the suggested ANFIS model, the model results
were compared with those achieved by Analysis of Variance (ANOVA) based on the maximum
coefficient of determination and minimum error between measured and estimated data in addition
to the mean square error (MSE). Applying ANOVA, the average coefficient-of-determination values
were 0.8872 and 0.8223, respectively, for training and testing. These values are increased to 1.0 and
0.9673, respectively, for training and testing thanks to ANFIS based modeling. In addition, ANFIS
modelling decreased the RMSE value of all datasets by 83% compared with ANOVA. In sum, the
main findings confirmed the superiority of ANFIS modeling of the output performance of adsorption
water desalination system compared with ANOVA.

Keywords: artificial intelligence; modelling based ANFIS; adsorption desalination

1. Introduction

It has become evident that the energy and water dilemmas are escalating day by
day to the point where they threaten the lives of many people and fuel conflicts between
societies [1]. And that the two problems have become so intertwined that they cannot be
separated, because if you want to save water, you must consume the scarce energy in the
first place. It is also noticeable that the areas that suffer from severe water shortages are
mostly desert areas and have untapped solar energy available [2]. Therefore, researchers
in this field should think about how to link the parties to this puzzle and use that wasted
energy to provide the required water, especially in light of the availability of seawater
and wells that are not suitable for drinking [3]. The researchers have improved in this
way and made a great effort until they presented many ideas that can be built upon
and developed. Among these ideas was the idea to use the phenomenon of adsorption
to desalinate water with solar energy or waste energy. This idea went through many
stages until prototypes were built and work was carried out to improve its performance
in several ways, including improving the properties of the used materials. One of these
methods is to improve the properties of the used materials, and also to improve the
working cycle and try to make it work efficiently at lower temperatures, which was a great
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challenge. The strength of adsorption desalination systems is that they are suitable for
being run with solar energy or waste energy, but they have a weak point, which is their low
productivity compared to widespread systems such as reverse osmosis systems (RO) [4].
Hence, researches were conducted theoretically and experimentally on improving and
promoting the system performance. Different ways of researches had been followed like
presenting new adsorbents and merging this technology with others like RO. Among these
research ways were attempts to improve the performance by controlling cycle time and
heating and cooling times.

Heat recovery has been presented by Ng et al. [5] between evaporator and condenser
to produce a SDWP of about 27 m3/ton per day of silica gel every day. Also, heat re-
covery between the adsorption beds has been examined by Ma et al. [6] reaching SDWP
4.69 m3/ton of silica gel and COP of 0.766. Four adsorption beds connected to two evap-
orators have been studied theoretically by Ali et al. [7]. SDWP of 8.84 m3/ton/day has
been reached in this study at a COP of 0.52 employing 95 ◦C driving temperature. At 80 ◦C
driving temperature, the AD cycle showed its ability to be work as shown by Olkis et al. [8]
experimentally where the studied AD system produced a SDWP of 10.9 m3/ton/day. The
effect of the temperatures of the condenser and the evaporator on the AD productivity
has been studied numerically by Youssef et al. [9] to optimize the system performance.
SDWP of 10 m3/ton/day has been recorded at a condenser temperature of 10 ◦C and an
evaporator temperature of 30 ◦C.

Using heat and mass recovery, the performance of a 2-bed AD system has been studied
by Amirfakhraei et al. [10]. The theoretical study showed that the cycle could reach a SDWP
of 9.58 m3/ton of silica gel daily by using heating and cooling temperatures of 95 ◦C and
30 ◦C, respectively. Zhang et al. [11] presented an experimental optimization study for an
AD system by operating conditions. Desalinated water of 191.3 kg/h has been reached at
a heating temperature of 80 ◦C. Another optimization study has been presented by Rezk
et al. [12] using a model optimization method to declare the optimal operating conditions
of solar-driven AD cycle. The optimal cycle could produce a SDWP of about 6.9 m3/ton
silica gel/day, a SCP of 191 W/kg, and a COP of 0.961.

Based on the above, it becomes clear to us that many efforts are being made to improve
and raise the performance of the adsorption desalination systems; however, these efforts
must be continued. It is worth mentioning here that there is something that can be added
in this area if the operating cycle is well examined and modeled to extract the highest
possible productivity without changing the construction or the content of the system, only
by reaching the best-operating conditions. The model has been presented here employing
artificial intelligence (AI) based on an experimental dataset to save money, effort, and time.
Artificial intelligence tools conquered many fields of applications. Systems modeling is one
of these fields [13,14]. The choice of the AI modeling tool depends mainly on the nature of
the application and the available dataset. Fuzzy Logic (FL) and Artificial Neural Networks
(ANN) are two popular and efficient AI techniques. Therefore, the main target of this
research work is to model the output performance of adsorption water desalination system
(AWDS) in terms of switching and cycle time using an Adaptive Network-based Fuzzy
Inference System (ANFIS). The output performance of the SADC system is expressed by the
specific daily water production (SDWP), the coefficient of performance (COP) and specific
cooling power (SCP). A robust ANFIS model of SDWP, COP, and SCP was built using the
measured data. To demonstrate the superiority of the suggested ANFIS model, the model
results were compared with those achieved by Analysis of Variance (ANOVA) based on
the maximum coefficient of determination and minimum error between measured and
estimated data. AVOVA has been used in several applications such as a bioelectrochemical
desalination process [15], biodesalination of Seawater [16] and desalination by reverse
osmosis [17]. Therefore, it has been used as a benchmark for the problem under study.

The rest of the paper is organized as follows. Section 2 briefly presents the experi-
mental work. The proposed methodology is explained in Section 3. Section 4 presents the
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discussion of the obtained results. Finally, the main finding and future work are outlined
in Section 5.

2. Experimental Work

An adsorption water desalination system has been built of two adsorption beds
containing metal-organic framework MOF (CPO-27(Ni)). The system has a condenser and
evaporator as shown in Figure 1. The system works in a semi-continuous mode where
Bed1 and Bed 2 work interchangeably. When Bed1 is in adsorption mode, Bed2 is in the
desorption mode. During the adsorption mode, the bed is cooled down by using cold water
and during the desorption mode, the bed has been heated up using hot water. This system
has been presented elsewhere and it is still under review. The condenser and the evaporator
are connected to perform internal heat recovery which improves the performance of the
system by raising the produced desalinated water. The operating conditions such as driving
temperature, cooling temperature, switching time, and cycle time have been studied.

Figure 1. Schematic diagram of the adsorption water desalination system.

3. Methodology

In this work, both ANOVA and ANFIS are considered. ANOVA is nominated in many
experimental applications [15–17]. ANOVA mathematically quantifies the relationship
between the output and inputs based on linear regression. The significance of every factor
is considered based on its significant value, p-value. For input to be significant, its p-value
must be lower than 5%.

ANFIS is featured with the advantages of FL and ANN. Modeling by ANFIS involves
three phases. The first phase consists of fuzzifying the values of the input signals. This is
performed by mapping the crisp values, through their corresponding membership func-
tions (MFs), to fuzzy values. This phase is called fuzzification. These MFs can take either
Gaussian or triangular shapes, depending on the application. The fuzzified inputs are
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logically processed to obtain the fuzzy output according to the pre-set fuzzy rules [14,18].
The second phase is the fuzzy inference system. In this phase, the fuzzy output is then
passed to the defuzzification in order to return the output to its crisp values. There are two
common methods of fuzzification: center of gravity and weighted average. Unlike mathe-
matical modeling, which formulates the relation between the inputs and the corresponding
output as a mathematical equation, fuzzy modeling describes this relationship via a set
of IF (premise) THEN (consequence) rules. These rules are generally created based on
experimental datasets. An example of a fuzzy rule statement, for a two-input single-output
system, simply takes the form:

IF a is MFa and b is MFb, THEN c is MFc,

where MFa and MFb denote the fuzzy membership functions of the two inputs a and b,
respectively, and MFc is the fuzzy membership function of the output c.

4. Results and Discussion

4.1. Modelling Based ANOVA

Tables 1–3 present the ANOVA results for modeling COP, SCP, and SDWP, respectively.
Considering Table 1, for the first output response, the Model F-value of 60.33 implies the
model is significant. There is only a 0.01% chance that an F-value this large could occur
due to noise. The p-values less than 0.05 indicate model terms are significant. In this
case A, A2 are significant model terms. Values greater than 0.1 indicate the model terms
are not significant. The following relation in terms of actual factors can be used to make
predictions about the first output response.

XCOP = −0.15017 + 0.00249A + 0.00071B + 9.132× 10−07 A× B− 2.336× 10−06 A2 − 0.000018B2 (1)

Table 1. ANOVA table for first output response (COP).

Source Sum of Squares df Mean Square F-Value p-Value

Model 0.0706 5 0.0141 60.33 <0.0001 significant
A 0.0558 1 0.0558 238.62 <0.0001
B 0.0005 1 0.0005 1.98 0.1932

AB 0.0000 1 0.0000 0.1686 0.6910
A2 0.0253 1 0.0253 108.04 <0.0001
B2 0.0001 1 0.0001 0.2279 0.6445

Residual 0.0021 9 0.0002
Cor Total 0.0727 14

Table 2. ANOVA table for second output response (SCP).

Source Sum of Squares df Mean Square F-Value p-Value

Model 6463.77 5 1292.75 12.94 0.0007 significant
A 524.94 1 524.94 5.25 0.0476
B 735.63 1 735.63 7.36 0.0239

AB 65.40 1 65.40 0.6546 0.4393
A2 4458.14 1 4458.14 44.62 <0.0001
B2 6.53 1 6.53 0.0654 0.8039

Residual 899.16 9 99.91
Cor Total 7362.93 14
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Table 3. ANOVA table for third output response (SDWP).

Source Sum of Squares df Mean Square F-Value p-Value

Model 42.93 5 8.59 25.35 <0.0001 significant
A 15.84 1 15.84 46.76 <0.0001
B 0.9132 1 0.9132 2.70 0.1350

AB 0.0012 1 0.0012 0.0035 0.9543
A2 18.49 1 18.49 54.59 <0.0001
B2 0.0106 1 0.0106 0.0314 0.8632

Residual 3.05 9 0.3388
Cor Total 45.98 14

Regarding the second output response, the AVOVA data shown in Table 2, the Model
F-value of 12.94 indicates the model is significant. There is only a 0.07% chance that an
F-value this large could occur due to noise. The p-values less than 0.05 show model terms
are significant. In this case, A, B, A2 are significant model terms. Values greater than 0.1000
indicate the model terms are not significant. The next relation in terms of actual factors can
be used to make predictions about the second output response.

XSCP = 70.54652 + 0.894124A− 0.641050B− 0.001176A× B− 0.000981A2 + 0.006222B2 (2)

Regarding the third output response, the AVOVA data shown in Table 3, the Model
F-value of 25.35 indicates the model is significant. There is only a 0.01% chance that an
F-value this large could occur due to noise. The p-values less than 0.05 indicate model
terms are significant. In this case A, A2 are significant model terms. Values greater than 0.1
indicate the model terms are not significant. The next relation in terms of actual factors can
be used to make predictions about the second output response.

XSDWP = 0.054238 + 0.049419A− 0.001139B + 4.98791× 10−06 A× B− 0.000063A2 − 0.000251B2 (3)

The statical analysis of different ANOVA models are presented in Table 4. For COP
model, the predicted R2 of 0.9399 is in reasonable agreement with the adjusted R2 of 0.9549;
i.e., the difference is less than 0.2. The value of RMSE is 0.6552. The adequate precision
measures the signal to noise ratio. It compares the range of the predicted values at the
design points to the average prediction error. Ratios greater than 4 indicate adequate model
discrimination [19]. For COP model, the ratio of 20.228 indicates an adequate signal. This
model can be used to navigate the design space.

Table 4. Statical analysis of the ANOVA model.

First ANOVA Model of COP Second ANOVA Model of SCP

Std. Dev. 0.0153 R2 0.9710 Std. Dev. 10.00 R2 0.8779

MSE 0.4293 Adjusted R2 0.9549 MSE 213.93 Adjusted R2 0.8100

C.V.% 3.56 Predicted R2 0.9399 C.V.% 4.67 Predicted R2 0.6760

RMSE 0.6552 Adeq Precision 20.2281 RMSE 14.6263 Adeq Precision 11.6747

Third ANOVA model of SDWP

Std. Dev. 0.582 R2 0.9337

MSE 7.88 Adjusted R2 0.8969

C.V.% 7.38 Predicted R2 0.8512

RMSE 2.8071 Adeq
Precision 13.8258

For SCP, the predicted R2 of 0.6760 is in reasonable agreement with the adjusted R2

of 0.8100. The value of RMSE is 14.6263. Also, the adequate precision (11.675) is greater
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than 4 is desirable that indicates an adequate signal. This model can be used to navigate
the design space. Finally, for SDWP, the predicted R2 of 0.8512 is in reasonable agreement
with the adjusted R2 of 0.8969. The value of RMSE is 2.8071. The signal to noise of 13.826
indicates an adequate signal. This model can be used to navigate the design space. In sum,
the average value of RMSE for the three models is 8.607.

Figure 2 illustrates the 3-D surface plots for the three output response models. The
red-filled circles show the response values above the predicted values, and the pink-filled
circles show the values below the predicted one. The yellow curvature lines show the high
output performances. As demonstrated in Figure 3, the actual values are the measured
response, and the predicted response is determined by using the approximate function
values to evaluate the model. Most of the results of both models are close to the diagonal,
indicating an excellent correlation between the expected and the actual values.

Figure 2. 3-D response surface plots for output responses (a) COP; (b) SCP, and (c) SDWP.
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Figure 3. Comparison of the predicted values of output response (a) COP; (b) SCP, and (c) SDWP.

4.2. Modelling Based ANFIS

Based on the experimental dataset, a model based ANFIS has been created to simulate
the output performance of AWDS in terms of switching and cycle time. Three ANFIS
models respectively for COP, SCP, and SDWP are created. The experimental dataset (15 ex-
periments) was divided into two parts with a ratio of 70:30 for the training (10 experiments)
and testing (5 experiments) stages. In the current model modeling, the Takagi-Sugeno
ANFIS is adopted because of its ability to track the nonlinear data precisely. Also, the
subtractive clustering method has been applied to build the fuzzy rules. The number of
fuzzy rules is 9, 9, and 10, respectively, for COP, SCP, and SDWP. The minimum, maximum,
and Wavg were used for the implication, aggregation, and defuzzification methods, respec-
tively. Additionally, the inputs’ MFs were chosen as the Gaussian shape for the fuzzification
procedure, and only 10 epochs were found to be enough for the training. The MSE, RMSE,
and the coefficient of determination (R2) between the measured data and estimated data are
used to evaluate the accuracy of the ANFIS model. The statistical assessment of the ANFIS
models of COP, SCP, and SDWP is presented in Table 5. Applying ANOVA, the average
coefficient-of-determination values were 0.8872 and 0.8223, respectively, for training and
testing. These values are increased to 1.0 and 0.9673, respectively, for training and testing
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thanks to ANFIS based modeling. In addition, RMSE values using ANFIS were 0.00117,
2.5201 and 1.46 respectively, for training, testing and all datasets. Compared with ANOVA,
the average RMSE value based on all datasets is decreased from 8.607 (ANOVA) to 1.46
by using ANFIS. This means ANFIS modelling decreased the RMSE of all datasets by 83%
compared with ANOVA.

Table 5. Statistical assessment of the ANFIS models of COP, SCP, and SDWP.

MSE RMSE Coefficient of Determination (R2)

Train Test All Train Test All Train Test All

First fuzzy model of COP

2.71 × 10−10 0.0002 0.0001 0 0.0154 0.0089 1 0.9751 0.9867

Second fuzzy model of SCP

1.14 × 10−5 49.0493 16.3498 0.0034 7.0035 4.0435 1 0.9916 0.9791

Third fuzzy model of SDWP

5.29 × 10−9 0.2934 0.0978 0.0001 0.5416 0.3127 1 0.9352 0.9712

Average

3.80 × 10−6 1.64 × 101 5.480 0.000117 2.52 1.46 1 0.967 0.979

Figure 4 demonstrates the fuzzification phase in establishing an ANFIS model, in
which the ANFIS model has two inputs (switching and cycle time) and one output for each
model. The 3-D surface plot of the three output responses with varying input is shown in
Figure 5. Whereas Figure 6. illustrates the input and the output membership functions of
the fuzzy system for COP, SCP, and SDWP.

Figure 4. Inputs and outputs of ANFIS model (a) COP; (b) SCP, and (c) SDWP.
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Figure 5. 3-D surface plot of output performance changing values related to input parameters (a) COP; (b) SCP, and
(c) SDWP.

The main goal of this research and this technique is that we can study many cases and
study the effect of changing many factors at the same time, which saves a lot of time and
effort. It would be difficult to study these factors together in a laboratory, so this study
explores what we can do and summarizes many practical experiments to bring us to the
best-operating conditions as shown in Figure 5. The figure shows the effect of cycle time
and switching time on the performance parameters of the systems which are COP, SCP, and
SDWP. The COP could be reached up to 0.5 by increasing the cycle time were changing the
switching time has a marginally effect on the COP. By longing the cycle time more amount
of pure water is generated which raises the COP.

The effect of changing cycle time is very clear when dealing with SDWP as shown in
Figure 5c. Increasing half-cycle time up to 300 s has a good impact on the SDWP however
behind this limit, the SDWP shows a drop. This indicates that however, the desalinated
water amount may increase by increasing cycle time, the benefits of this are dissipated
because of the decrease in the number of cycles that can be performed per day with the
increase in cycle time.
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Figure 6. Inputs membership functions of the fuzzy system (a) COP; (b) SCP, and (c) SDWP.

A significant measure to assess the model’s prediction precision is to plot these pre-
dictions versus their corresponding targets. Consequently, Figure 7 presents the accuracy
plots of COP, SCP, and SDWP models. Considering Figure 7, it is clear that for COP, SCP,
and SDWP models, the training and the testing predictions are distributed closer to the
one hundred percent accuracy line that matches with the obtained high values of the R2.
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Figure 7. Comparison of the training and testing data (a) COP; (b) SCP, and (c) SDWP.

5. Conclusions

Based on the measured data of adsorption water desalination system (AWDS), an
accurate model has been created to simulate the specific daily water production (SDWP), the
coefficient of performance (COP), and specific cooling power (SCP) in terms of switching
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and cycle time. Adaptive Network-based Fuzzy Inference System (ANFIS) is selected to
do this job because it is the beneficial product of the combination between fuzzy logic
and artificial neural networks. For comparison purposes, an ANOVA model was also
created. Applying ANOVA, the average coefficient-of-determination values were 0.8872
and 0.8223, respectively, for training and testing. These values are increased to 1.0 and
0.9673, respectively, for training and testing thanks to ANFIS based modeling. In addition,
RMSE values using ANFIS were 0.00117, 2.5201 and 1.46 respectively, for training, testing
and all data. Compared with ANOVA, the average RMSE value based on all datasets is
decreased from 8.607 (ANOVA) to 1.46 by using ANFIS. This means ANFIS modelling
decreased the RMSE of all datasets by 83% compared with ANOVA. In sum, the main
findings confirmed the superiority of ANFIS modeling of the output performance of
AWDS compared with ANOVA. In future work, modern optimization algorithms will be
integrated with ANFIS modeling to identify the best operating parameters AWDS.
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Abstract: Coverage is a fundamental issue in wireless sensor networks (WSNs). It plays a important
role in network efficiency and performance. When sensor nodes are randomly scattered in the
network environment, an ON/OFF scheduling mechanism can be designed for these nodes to ensure
network coverage and increase the network lifetime. In this paper, we propose an appropriate
and optimal area coverage method. The proposed area coverage scheme includes four phases:
(1) Calculating the overlap between the sensing ranges of sensor nodes in the network. In this phase,
we present a novel, distributed, and efficient method based on the digital matrix so that each sensor
node can estimate the overlap between its sensing range and other neighboring nodes. (2) Designing
a fuzzy scheduling mechanism. In this phase, an ON/OFF scheduling mechanism is designed using
fuzzy logic. In this fuzzy system, if a sensor node has a high energy level, a low distance to the base
station, and a low overlap between its sensing range and other neighboring nodes, then this node
will be in the ON state for more time. (3) Predicting the node replacement time. In this phase, we seek
to provide a suitable method to estimate the death time of sensor nodes and prevent possible holes in
the network, and thus the data transmission process is not disturbed. (4) Reconstructing and covering
the holes created in the network. In this phase, the goal is to find the best replacement strategy of
mobile nodes to maximize the coverage rate and minimize the number of mobile sensor nodes used
for covering the hole. For this purpose, we apply the shuffled frog-leaping algorithm (SFLA) and
propose an appropriate multi-objective fitness function. To evaluate the performance of the proposed
scheme, we simulate it using NS2 simulator and compare our scheme with three methods, including
CCM-RL, CCA, and PCLA. The simulation results show that our proposed scheme outperformed
the other methods in terms of the average number of active sensor nodes, coverage rate, energy
consumption, and network lifetime.

Keywords: wireless sensor networks (WSNs); coverage; fuzzy logic; metaheuristic algorithms;
Internet of Things (IoT)
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1. Introduction

Today, wireless sensor networks (WSNs) have been transformed into an attractive
research field for many researchers in industry and academia. These networks include a
large number of sensor nodes, which are randomly or deterministically deployed in the
network environment without any infrastructure [1,2]. Sensor nodes have been tasked to
monitor the Region of Interest (RoI).

WSNs are applied in many applications, such as industry [3], agriculture [3], mili-
tary [4], medicine [3,5], and Internet of Things (IoT) [4]. Today, micro-electro-mechanical
systems have grown dramatically. As a result, many low-cost and robust sensor nodes
have been produced [6]. Each sensor node is a multi-functional device including a sensing
unit, processing unit, memory unit, communication unit, energy unit, and so on [7,8]. They
can sense a target or phenomenon that occurs in their sensing range, they then process
the data received from the environment, and finally forward their data packets to the base
station (BS) in a single-hop or multi-hop manner [9,10].

Sensor nodes have small sensing and communication ranges. Furthermore, they
have limited energy resources [11,12]. In WSNs, quality of service (QoS) and resource
management are two critical issues that must be addressed. QoS is measured based
on connectivity and coverage [13,14]. Thus, appropriate coverage and maintenance of
connectivity play a important role in the network performance.

Coverage is defined as the area/point covered or monitored by the sensor nodes
deployed in the network area. If an area/point is inside the sensing range of at least
one active sensor node; then, it can be said that this area/point have been covered or
monitored [15,16]. In general, coverage is classified into several groups according to what
exactly is monitored:

• Area coverage: In this coverage, the main goal is to cover or monitor the RoI so that
any point in this area should be covered [17,18]. See this coverage type in Figure 1.
Area coverage is divided into two categories based on the desired application, includ-
ing partial and full coverage:

Partial coverage

In this coverage, the area is partially covered to guarantee the efficient and acceptable
coverage degree according to the desired application. In partial coverage, the goal
is to cover the P percentage of the area. This coverage type is also called P-coverage.
Partial coverage can save energy of sensor nodes and increase network lifetime.
Moreover, it requires a less number of sensor nodes compared to the full coverage [18].
For example, it is sufficient to achieve 80% area coverage in applications, such as
environment monitoring, calculating the environment temperature, and forest fire
detection during rainy seasons.

Full coverage

When it is necessary to cover the entire area, the full coverage is applied. In the full
coverage, any point of RoI should be monitored by at least one sensor node. Full
area coverage is very costly because it requires a large number of sensor nodes [19].
In addition, the coverage degree is defined based on the application requirements.
In some applications, simple coverage is required, i.e., one sensor node is sufficient
to cover each point of RoI. However, in other applications, at least k sensor nodes
(k > 1) must cover any point of RoI. In this case, the network is fault-tolerant, and, if
a sensor node dies, then the network will continue its normal performance with the
k− 1 sensor nodes; however, this is impossible in simple coverage.

• Point coverage: In this coverage, it is sufficient to monitor some points of RoI depend-
ing on the application. It has a low-cost network deployment because fewer sensor
nodes are used to cover the target points [20,21]. Figure 2 shows the point coverage.

• Barrier coverage: In this coverage, the purpose is to create a barrier using sensor
nodes deployed in the network. When sensor nodes sense some subversive activ-
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ities of attackers at this barrier, they transmit their sensed data to the base station.
Barrier coverage is applied in some applications, such as creating infrastructure mar-
gins or monitoring important areas, such as country borders, coastlines, battlefield
boundaries, and so on [18]. This coverage is shown in Figure 3.

• Sweep coverage: In this coverage, some points of RoI must be monitored periodically,
i.e., target points are covered at a certain time interval. Therefore, it is better to
cover the target points using a minimum number of mobile sensor nodes [19,22].
Sweep coverage should not be done using static sensor nodes because they have weak
performance and additional overhead. This coverage is illustrated in Figure 4.

Figure 1. Area coverage.

On the other hand, coverage methods are classified into two categories: centralized
coverage schemes and distributed (decentralized) coverage schemes. In centralized cover-
age methods, only the base station is tasked to manage the coverage process in the network.
Whereas, in distributed coverage methods, sensor nodes also participate in this process.
In large-scale WSNs, distributed coverage schemes are more efficient because they do
not require global information of all sensor nodes in the network, and each sensor node
manages the coverage process based on local information received from its neighboring
nodes. Coverage methods can be categorized into static and dynamic classes.

In static coverage schemes, the best replacement strategy of sensor nodes is first deter-
mined in the network so that proper coverage rate is ensured. Then, this strategy is fixed
throughout the network lifetime. However, in dynamic coverage methods, this strategy is
always not fixed and updated periodically or when an event occurs [23]. Dynamic coverage
methods are more suitable for WSNs due to their limited resources, failure of sensor nodes,
and establishing holes.

In most engineering and science problems, it is important to find the maximum or
minimum value of a function with different variables. In some cases, there are algorithms
based on applied analysis, such as linear programming, that can be used to find the global
optimum solution. However, in hybrid or discrete optimization problems, there is no
efficient algorithm to find the optimum solution. In the real world, optimization problems
are very complex, high dimensions, and highly dynamic.
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Figure 2. Point coverage.

Figure 3. Barrier coverage.
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Figure 4. Sweep coverage.

As a result, it is necessary to use heuristic or metaheuristic methods as algorithms, such
as dynamic programming or divide and conquer, have a lot of computational overhead.
Today, the metaheuristic algorithms are dramatically becoming popular because they can
find acceptable solutions for NP-Hard and nonlinear optimization problems. Metaheuristic
algorithms provide a general framework for solving complex optimization problems [24].

These methods are generally inspired by a natural phenomenon. Today, many bio-
logical algorithms have been invented or improved. They have successfully been used
to solve hybrid and numerical optimization problems—for example, ant colony opti-
mization (ACO) [25], particle swarm optimization (PSO) [26], artificial bee colony (ABC)
algorithm [27], shuffled frog-leaping algorithm (SFLA) [28], and artificial immune system
(AIS) [29].

Many studies have been presented to solve the coverage problem in WSNs. Coverage
techniques focus on several issues: designing a replacement strategy for sensor nodes in the
network environment, designing a scheduling mechanism for sensor nodes, and selecting
a subset of nodes for full coverage. We review a number of papers related to the research
subject in Section 2 and express their strengths and weaknesses.

Most of these methods do not consider the energy of the sensor nodes in the net-
work. They have a lot of communication overhead, which threatens the network lifetime.
Moreover, they are often centralized and static schemes and propose no useful strategy for
reconstructing holes created in the network. These problems reduce their scalability and
network lifetime. Therefore, it is necessary to design an efficient area coverage method,
which schedules the activity of sensor nodes in the network intelligently.

We design an appropriate strategy for reconstructing holes in the network. Further-
more, it is important and critical to calculate the overlap of nodes to select the lowest
number of active sensor nodes in the network. However, calculating the overlap between
the sensing ranges of sensor nodes is a complicated, time-consuming, and difficult task
due to limited resources and low energy of sensor nodes.

In this paper, we present a simple, efficient, and distributed method to calculate the
overlap between sensor nodes. The purpose of this paper is to present a suitable area
coverage scheme for heterogeneous WSNs, and thus this method can balance the energy
consumption of sensor nodes in the network and improve network lifetime. We attempt
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to increase the coverage quality in the network. The main contributions of the paper are
expressed as follows:

• In the first phase, each sensor node estimates the overlap between its sensing range and
sensing ranges of neighboring nodes using a distributed method based on geometric
mathematics. Calculating the overlap between the sensing range of a sensor node and
its neighboring nodes is a complex operation with a lot of computational overhead and
high time complexity. In the proposed method, we attempt to reduce computational
overhead and introduce a new, efficient and distributed method based on a digital
matrix to calculate the overlap.

• In the second phase, the goal is to design an ON/OFF scheduling mechanism based
on fuzzy logic. This fuzzy system has three inputs: the overlap between sensing
range of a sensor node and sensing ranges of its neighboring nodes, the residual
energy, and the distance between a sensor node and BS. The fuzzy system output is
the activity time of each sensor node (ON time). In this fuzzy system, if the overlap
between the sensing range of a sensor node and sensing ranges of neighboring nodes
is low and its energy level is high and the distance between this node and BS is low,
then this node stays at the ON state for more time slots.

• In the third phase, we attempt to present a suitable method that predicts the death
time of sensor nodes and prevents possible holes in the network, and thus there is no
interruption in the data transmission process to the base station.

• In the fourth phase, the goal is to find the best replacement strategy for mobile nodes
to maximize the coverage rate and minimize the number of mobile nodes applied for
covering holes. For this purpose, we use the shuffled frog-leaping algorithm (SFLA)
and present a suitable and multi-objective fitness function.

The rest of paper is organized as follows: In Section 2, some recent studies are reviewed
in the coverage field for WSNs. In Section 3, the basic concepts used in the proposed scheme,
namely the fuzzy logic and the shuffled frog-leaping algorithm (SFLA), are described briefly.
In Section 4, we present the system model in the proposed method. This model includes
the network model, energy model, sensing model, and communication model. In Section 5,
we define the problem studied in this paper. In Section 6, the proposed scheme is described in
detail. In Section 7, the simulation results of the proposed scheme are presented and compared
with some coverage methods. Finally, our conclusions are presented in Section 8.

2. Related Works

Coverage is one of the most important and fundamental issues in WSNs, because it has
a direct effect on the energy consumption of sensor nodes and network lifetime. Generally,
coverage is defined as monitoring on the network environment effectively and efficiently.
Today, many papers have been published in the coverage field in WSNs. These papers often
focus on three concepts: deploying sensor nodes in a predetermined manner, designing a
scheduling mechanism, and selecting a subset of sensor nodes for ensuring full coverage.
In the following, we briefly introduce some coverage methods .

Sharma et al. [30] suggested the coverage connectivity maintenance based on reinforce-
ment learning (CCM-RL) protocol in wireless sensor networks. The purpose of this method
is to achieve the maximum coverage rate, maintain connectivity, and save energy efficiently.
In this scheme, the learning algorithm is implemented in each sensor node. This algorithm
allows them to automatically learn their optimal activity. The purpose of this algorithm
is that only subsets of sensor nodes are activated in each scheduling round to minimize
energy consumption, maximize the coverage rate, and maintain network connectivity.

In addition, CCM-RL presents a sensing range customization mechanism for removing
coverage redundancy. After executing the learning algorithm, active sensor nodes, which
overlap with each other, should customize their sensing range using this mechanism to
maintain network resources, such as energy and memory, reduce duplicated data packets,
and lower network congestion. CCM-RL is a dynamic and distributed coverage method,
that is, the sensor nodes participate in the scheduling process.
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As a result, CCM-RL is a scalable scheme. However, CCM-RL schedules sensor
nodes based on only two parameters, including distance and coverage rate. It ignores
energy parameters in this process. Furthermore, CCM-RL may have a lot of delay. This
method does not provide any mechanism for detecting or reconstructing coverage holes in
the network.

Yu et al. [31] presented two centralized and distributed protocols based on the coverage
contribution area (CCA) concept to solve the K-coverage problem in homogeneous wireless
sensor networks. The purpose of this method is to achieve K-coverage with a minimum
number of sensor nodes and improve network lifetime. CCA presents a scheduling process
to activate a subset of sensor nodes for covering the RoI. This process is based on two
criteria, including energy and distance. After implementing this algorithm, nodes are in
two modes, including ON (active) or OFF (inactive).

Yu et al. introduced the centralized k-coverage protocol in two dynamic and static
modes. However, the dynamic scheme has a higher delay than the static method; but it
provides better coverage. In general, the centralized CCA is not scalable. As a result, it is
not suitable for the large scale WSN. As the sink node requires global information of all
sensor nodes in the network. The distributed CCA is scalable and solves the problem of
the centralized CCA method, but it has high communication overhead. CCA presents no
detection and reconstruction mechanism for repairing network holes.

Mostafaei et al. [32] offered a partial coverage with learning automata (PCLA) scheme
in WSNs. The main purpose of this method is to minimize the number of sensor nodes
required for covering RoI and maintain connectivity. PCLA uses the learning automata
(LA) for scheduling sensor nodes. This scheme provides a probabilistic framework to
select the subset of the sensor nodes to create a backbone to improve the coverage rate and
guarantee network connectivity.

PCLA has two phases: (1) The learning phase. In this phase, subsets of sensor nodes
are selected to create a backbone in the network so that network connectivity is guaranteed.
(2) The partial coverage phase. If the selected subset in the first phase cannot provide a
suitable coverage rate of the RoI, additional nodes are added to this subset to satisfy the
appropriate coverage level. PCLA is a distributed, dynamic and scalable method. However,
it has a lot of communication overhead. Moreover, PCLA does not present any mechanism
for detecting and reconstructing network holes.

Hanh et al. [33] proposed an area coverage method based on genetic algorithm (GA)
called MIGA in heterogeneous WSNs. MIGA is an improved version of IGA. In this
method, a stable and reliable fitness function was presented to evaluate the area coverage
approximately.

MIGA has five phases: (1) Individual representation. In this phase, each genotype
is divided into k sections corresponding to k sensor types and each section has several
genes. (2) Population initialization. In this phase, population initialization is not random.
In fact, it is done based on a heuristic algorithm. (3) Genetic operators. In MIGA, two
crossover operators are used, namely Laplace crossover (LX) and Arithmetic crossover
method (AMXO). Then, generated individuals are sorted based on location of sensor nodes
in the network. (4) Designing the fitness function. In MIGA, an integral-based fitness
function has been proposed to evaluate the RoI coverage. (5) VFA Optimization.

When the MIGA algorithm is stopped, the best solution can be improved using Virtual
Force Algorithm (VFA) to maximize area coverage. In this phase, the overlapping sensor
nodes are slightly spaced apart to reduce their overlap. As a result, each sensor node
executes a local search with neighboring nodes to optimize the final solution. MIGA has
several advantages: achieving a stable and quality solution and maximizing area coverage.

Furthermore, this method has certain disadvantages: (1) The integral-based fitness
function is not comprehensive and cannot cover all different cases that two sensor nodes
may overlap with each other. However, this method introduce a new idea for calculating
the overlap between different sensor nodes and can be improved. (2) In this MIGA, the
authors attempted to reduce the computational overhead, but they achieved little success.
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(3) In this method, a centralized area coverage scheme was presented. Therefore, it was
not scalable.

Luo et al. [34] introduced the maximum coverage sets scheduling (MCSS) problem
in WSNs. The purpose of this scheme is to find the optimal scheduling strategy for
coverage sets to maximize the network lifetime. In this method, two algorithms, called
greedy-MCSS and MCSSA, were presented to solve this problem. This method has the
advantages: (1) acceptable time complexity, (2) appropriate computational complexity, and
(3) improving the network lifetime through the proper scheduling of coverage sets.

However, this method also has disadvantages: (1) It is assumed that the coverage sets
are predetermined (the coverage set represents a subset of sensor nodes in the network
that can cover the entire network). However, it is important to define these sets. However,
the authors ignored this problem. (2) Furthermore, it is assumed that the time slots required
for the activity of sensor nodes are already known, whereas this is a false hypothesis that
can limit the application of this method. (3) The MCSSA algorithm is a centralized method.
As a result, it is not scalable and cannot be desirable for large-scale WSNs. (4) The authors
only considered the activity time of the sensor nodes for solving the MCSS problem.
However, this is an important weakness because other parameters, such as the energy and
distance of nodes from each other, are critical.

Benahmed et al. [35] presented an optimal barrier coverage method that minimizes
the number of sensor nodes and maximizes the coverage rate in homogeneous WSNs. This
method can calculate the minimum number of sensor nodes that cover a 2D area com-
pletely. Moreover, a geometric mathematics-based formula was proposed for calculating
the coverage value. In this method, the minimum number of sensor nodes was calculated
based on the distance and angle between two neighboring nodes that have overlap.

In addition, the authors presented an algorithm to reduce overlap between sensor
nodes as much as possible so that appropriate distance between two sensor nodes is
obtained based on the optimal number of nodes and the maximum coverage rate. They
proposed a mechanism for detecting failed nodes and reconstructing holes created in the
network. The most important advantage of this method is the appropriate coverage rate
with the minimum number of sensor nodes.

On the other hand, the geometric mathematical model presented in this method is
a novel and attractive solution that can be improved. This method takes into account
parameters, like the distance and the overlap between the sensor nodes, to determine
the coverage rate of the network. This method can be improved by considering more
parameters, such as the energy of the sensor nodes.

One of the disadvantages of this scheme is that it applied a reactive mechanism for
detecting failed nodes and reconstructing holes in the network, i.e., when a failed node or
hole is identified, then this mechanism is executed to repair it. This can disrupt network
performance and increase delay in the data transmission process to BS. Therefore, it is
better to use predictive methods to detect nodes that may be damaged in the near future.

Saha et al. [36] introduced a suitable and rapid scheme to approximate the area covered
in homogeneous WSNs. This approach utilizes digital geometry to approximate a real
circle (i.e., sensing range of each sensor node) using a digital circle. The authors argue that
their proposed algorithm has less computational complexity and lower time complexity
than geometric mathematics-based operations executed on a real circle.

In addition, each digital circle is estimated using two squares: (1) the largest square
inside the circle and (2) the smallest square outside the circle. As a result, this method can
estimate the area covered by each sensor node with an acceptable error rate and appropriate
time complexity. The authors proposed a fast, simple and distributed algorithm, which has
low computational overhead, to estimate the total area covered in the network. As a result,
it is suitable for energy-limited WSN.

However, the authors added some points to improve the performance of this method:
(1) In this method, a suitable scheduling mechanism was not designed to adjust the activity
time of nodes. Moreover, it is important to take into account various parameters, such as
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the node energy for modeling this mechanism. (2) This method ignores a reconstruction
and detection mechanism to repair holes created in the network due to the death of some
sensor nodes. (3) This method is a static area coverage scheme, whereas, WSNs have a
dynamic topology and are more compatible with dynamic schemes.

Binh et al. [37] proposed two nature-based algorithms, including improved cuckoo
search (ICS) and chaotic flower pollination algorithm (CFPA), to improve area coverage
in heterogeneous WSNs. The purpose of this method is to reduce energy consumption
of sensor nodes. This method has several steps, including individual representation,
initialization and fitness function, and updating individuals. Refer to [37] for more details.

The proposed fitness function in these algorithms is based on the overlap between
sensing range of sensor nodes. Obviously, if the overlap between sensor nodes is reduced,
then they can cover a larger area. ICS and CFPA algorithms can reduce computational
complexity and generate high quality responses. Another advantage of these algorithms is
their simplicity and high convergence speed.

However, these two algorithms also have disadvantages: (1) The fitness function
considers only one parameter, namely the overlap between the sensor nodes. However, it
can improve with considering more parameters. (2) This method is a static area coverage.
It searches for the best replacement strategy for sensor nodes. However, it does not provide
a reconstruction and detection mechanism to resolve problems related to death of some
sensor nodes and hole establishment in the network.

Binh et al. [38] proposed two meta-heuristic algorithms, namely genetic algorithm
(GA) and particle swarm optimization (PSO) to maximize the area coverage in a hetero-
geneous WSN. It is assumed that network includes a number of obstacles, which block
communications between sensor nodes. Therefore, the authors have defined the maximum
area coverage problem in a network having obstacles and have proposed two algorithms
GA and PSO to solve this problem.

In this method, a novel fitness function was designed based on the overlap between
sensing ranges of the sensor nodes with respect to obstacles in the network. The purpose
of these algorithms is to reduce the overlap between sensor nodes in the network. Refer
to [38] for more details. These algorithms have an important advantage: maximizing the
area coverage with acceptable computational overhead.

However, this method also has disadvantages: (1) It considers only one parameter
i.e., the overlap for designing fitness function. (2) In this method, the aim is maximum
area coverage. However, the maximum network lifetime is also important. If the residual
energy of the sensor nodes has been considered in the fitness function, then it can also
improve network lifetime. (3) This is a static and centralized area coverage method. Thus,
it has low scalability.

Li et al. [39] presented a reasonable mathematical model to solve the weak coverage
problem in WSNs. The area coverage algorithm can adjust movement direction of the
sensor nodes toward low-density areas, and thus that the area coverage is maximized.
As a result, sensor nodes are almost distributed in the network uniformly. The authors
improved the virtual force algorithm. Refer to [39] for more details.

This method has several advantages: (1) maximizing the network coverage rate and
(2) a low computational complexity. However, this method also has some disadvantages:
(1) It is a centralized area coverage method, whereas distributed area coverage schemes are
more desirable for WSNs. (2) This method does not take into account the network lifetime.
Considering energy of the nodes is important in WSNs. (3) This area coverage method is
static. This can weaken its efficiency.

Kashi et al. [40] proposed a heterogeneous distributed precise coverage rate (HDPCR)
mechanism, which calculates the area coverage in a distributed manner. This method can
detect the network boundaries, holes, and stains using simple mathematical calculations
and compute the entire area covered in the network exactly. This process is locally done and
each sensor node participates in it. This method includes several important advantages:
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(1) a low computational overhead and (2) a distributed area coverage method that is more
suitable for WSNs than for centralized schemes.

However, it suffers from several major weaknesses: (1) High communication overhead.
(2) This method only calculates the area covered in the network. It does not describe the
purpose of these operations. Generally, the main purposes of an area coverage method
are searching for the best replacement strategy for sensor nodes in the network, obtaining
the best area coverage quality with the minimum sensor nodes, achieving the maximum
network lifetime, designing suitable scheduling schemes, and so on.

Therefore, calculating the area covered in the network alone is not the main goal of an
area coverage method. (3) In this approach, the covered area is locally calculated through
the sensor nodes in the network. If one of the sensor nodes performs its calculations
incorrectly, then the final result will not be accurate.

Miao et al. [41] introduced a grey wolf optimizer with enhanced hierarchy (GWO-
EH) that improved the grey wolf optimizer (GWO) algorithm. The authors claimed that
GWO-EH can solve certain weaknesses of GWO, such as the low convergence speed and
becoming trapped in local optimum. They solved the convergence rate by improving
the weight coefficients. To balance global and local searches, they improve the position
updating equation. Then, they applied GWO-EH to solve the area coverage problem in
homogeneous WSNs.

The experiments indicate that this method has a suitable convergence rate. However,
this method also has some disadvantages: (1) In this scheme, if the number of sensor nodes
in the network is increased, then the convergence rate will be reduced. Therefore, this
method is not scalable. (2) Its computational complexity is high. (3) This is a centralized
area coverage method. (4) It is a static coverage scheme and cannot provide a suitable
reconstruction and detection mechanism for covering holes established in the network.

Table 1 lists the advantages and disadvantages of different coverage schemes, which
were briefly reviewed in this section.

3. Basic Concepts

In this section, we illustrate some the basic concepts, including fuzzy logic and
the shuffled frog-leaping algorithm (SFLA). These concepts have been applied in the
proposed scheme.

3.1. Fuzzy Logic

Based on the research studies, it can be deduced that measuring, modeling, and con-
trolling real and complex processes are not accurate because there are uncertainties, such
as incompleteness, randomness and data loss. Fuzzy logic (FL) is a mathematical tech-
nique [42]. Its aim is to describe approximately human thinking. Unlike classical set theory,
in which the outputs are either true or false, fuzzy logic generates partial values based on
inference rules and linguistic variables.

Table 1. Various coverage methods.

Number Scheme Purpose Advantages Disadvantages

1 [30] Achieving energy-efficient cov-

erage, and maintaining connec-

tivity

Scalability, designing the dynamic and dis-

tributed coverage method, presenting the

sensing range customization mechanism, low

network congestion, low energy consumption,

high coverage rate

High delay, ignoring energy of nodes in the scheduling

process, not designing a detection and reconstruction

mechanism for covering holes

2 [31] Solving the K-coverage prob-

lem with the minimum sensor

nodes

Scalability, appropriate computational over-

head, considering energy of nodes in the

scheduling process, presenting a dynamic

and distributed K-coverage scheme, improv-

ing network lifetime

High delay, high communication overhead, not design-

ing a detection and reconstruction mechanism for cov-

ering holes
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Table 1. Cont.

Number Scheme Purpose Advantages Disadvantages

3 [32] Minimizing the number of sen-

sor nodes required for par-

tial area coverage and network

connectivity maintenance

Scalability, presenting a dynamic and dis-

tributed coverage scheme, guaranteeing net-

work connectivity, achieving an appropriate

coverage level of the RoI

High communication overhead, not designing a detec-

tion and reconstruction mechanism for covering holes

4 [33] Maximizing area coverage Achieving a high quality and appropriate so-

lution, increasing area coverage

Incomplete fitness function for evaluating area covered,

high computational overhead, a centralized area cover-

age, low scalability

5 [34] Finding the optimal schedul-

ing strategy for coverage sets

and maximizing network life-

time

Acceptable time complexity, appropriate com-

putational complexity, improving network

lifetime using a suitable scheduling mecha-

nism

Not designing a mechanism for determining coverage

sets, considering predetermined time slots for sensor

node activity, presenting a centralized algorithm, low

scalability, ignoring parameters, such as the distance be-

tween sensor nodes and energy

6 [35] Designing a barrier coverage

method with minimum sensor

nodes and maximizing the cov-

erage rate

Achieving a suitable coverage rate with a min-

imum number of sensor nodes, presenting

a novel scheme for calculating coverage rate

based on geometric mathematics

Considering insufficient parameters for calculating the

coverage rate, designing a reactive detection and recon-

struction mechanism for repairing network holes, mak-

ing interruption and delay in the network performance

7 [36] Presenting a fast and efficient

method for estimating area

covered

Appropriate time complexity, acceptable com-

putational complexity, low error rate (high ac-

curacy), introducing a distributed method for

estimating the total area covered in the net-

work

Not designing a proper scheduling mechanism, not

designing a detection and reconstruction mechanism

for covering holes, presenting a static area coverage

method

8 [37] Maximizing area coverage in

the network

Appropriate computational complexity, gener-

ating high quality solutions, simplicity and ap-

propriate convergence rate

Not considering various parameters in the fitness func-

tion, proposing a static area coverage method

9 [38] Maximizing area coverage in a

network with obstacles

Achieving the maximum area coverage rate,

appropriate computational overhead

Not considering various parameters in the fitness func-

tion, not considering the maximization network life-

time, proposing a static area coverage method, low scal-

ability

10 [39] Improving area coverage and

reducing the distance traveled

by mobile nodes

Maximizing coverage rate, very low computa-

tional complexity

Presenting a static and centralized area coverage

scheme, not considering the node energy for improving

the network lifetime

11 [40] Calculating coverage rate in a

distributed manner

Low computational overhead, introducing a

distributed area coverage scheme

High communication overhead, not designing a suit-

able coverage mechanism, high error rate for calculat-

ing the coverage rate

12 [41] Maximizing area coverage Proper convergence rate, ability for finding op-

timal solution

Low scalability, high computational complexity, provid-

ing a centralized and static area coverage method

Today, fuzzy inference mechanisms are widely applied in various applications. In the
following, we refer to some applications. Vilela et al. in [43] combined fuzzy logic with the
Value of Information (VoI) assessment system. This scheme has been developed to evaluate
the oil and gas subsurface. Nguyen et al. [44] presented the Fuzzy Q-Charging method to
determine the optimal amount of energy charging for sensor nodes using fuzzy logic.

Bayrakdar in [45] used the fuzzy logic technique to select the lowest number of sensor
nodes for monitoring the agricultural environment. Peng et al. [46] used fuzzy logic to
design a transmission power allocation strategy (TPA) to maximize the lifetime of WSN.
Baradaran and Navi in [47] proposed the HQCA clustering method, which uses fuzzy logic
to choose the cluster head nodes in WSNs. We used fuzzy logic in our paper to design a
scheduling mechanism for sensor nodes in the network. Two well-known fuzzy inference
mechanisms are Mamdani fuzzy inference and Sugeno fuzzy inference (TSK).
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A fuzzy system has four main modules: fuzzification, defuzzification, a fuzzy rule
base, and a fuzzy inference engine. A fuzzy system is shown in Figure 5. The fuzzification
module maps the system inputs to the fuzzy sets and determines their fuzzy membership
degree. These fuzzy values are simulated using an inference engine that uses fuzzy rules
stored as IF-THEN rules. The results of the inference system are in the fuzzy form, which
are transformed into crisp values using a defuzzification module, such as an averaging
scheme and the centroid scheme [42].

Today, fuzzy inference mechanisms are widely applied in various applications. In the
following, we refer to some applications. Vilela et al. in [43] combined fuzzy logic with the
Value of Information (VoI) assessment system. This scheme has been developed to evaluate
the oil and gas subsurface. Nguyen et al. [44] presented the Fuzzy Q-Charging method to
determine the optimal amount of energy charging for sensor nodes using fuzzy logic.

Figure 5. Fuzzy system model.

3.2. Shuffled Frog-Leaping Algorithm (SFLA)

The shuffled frog-leaping algorithm (SFLA) is a metaheuristic algorithm inspired
by the foraging behavior of frogs. Eusuff et al. [28] introduced the SFLA in 2006. This
algorithm has two elements, including local search and global information exchange.
In SFLA, an initial population of frogs is divided into several groups called memeplexes.
In general, there are two search methods: (1) local search, which searches the optimal
position in each group, and (2) Global search, in which information is exchanged between
different groups.

In the local search process, each memeplex is partitioned into a number of sub-
memeplexes. Then, frogs are evaluated based on a fitness function and are sorted in descend-
ing order according to their fitness values to determine the best and worst frogs in each the
sub-memeplex, which are described as PB and Pw, respectively. Then, the position of the
worst frog (Pw) is improved toward the best frog (PB) using Equation (1):

U(q) = Pw + Si (1)

where U(q) is the new position frog, Si indicates the step size, and thus Smin ≤ Si ≤ Smax.

Si = Rand× (PB − Pw) (2)

where Rand is a random number in [0, 1]. If the fitness value of the new position is better
than the old position, then the new position is replaced with the old position. Otherwise,
the new position is removed, and a new position is calculated based on Equation (3):

Si = Rand× (PX − Pw) (3)

where PX represents the best position in the memeplex. If the new position is better than
the old position, then it is replaced with the old position. Otherwise, the new position
is deleted. Then, a new solution is randomly calculated according to Equation (4) and is
replaced with the old position:

U(q) = r (4)

where r is a new frog, which was randomly generated.
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We used SFLA in our proposed method because this algorithm has many advantages,
including simplicity, low number of parameters, high global search capability, and easy
implementation.

4. System Model

This section includes four sub-sections, including the network model, the energy
model, the sensing model, and the communication model. In the following, we explain
each of these models in detail.

4.1. Network Model

In the proposed method, the wireless sensor network includes N heterogeneous sensor
nodes. Sensor nodes are different in terms of energy source, sensing range, and commu-
nication range. These nodes are randomly scattered in the network environment. Each
sensor node SNi (where i = 1, 2, ..., N) knows its spatial coordinates (xi, yi) in the network
at any time using a positioning system, like GPS.

Furthermore, all sensor nodes are aware of the spatial coordinates of the base station
(xBS, yBS) in the network. In addition, they are aware of their residual energy (Eresidual)
at any time. A sensor node can communicate directly with other sensor nodes in its
communication range using a wireless communication channel. In this model, the network
includes a BS, NStatic static sensor nodes, and NDynamic mobile sensor nodes, where NStatic +
NDynamic = N and NDynamic ≤ NStatic. Figure 6 depicts the network model used in our
proposed method. In the following, we describe the tasks of each sensor node:

• Base station (BS): It is responsible for processing the data received from sensor nodes
in the network.

• Static sensor nodes:These nodes are tasked to sense the RoI and send the sensed data
to BS. It is assumed that these sensor nodes completely cover the entire RoI and may
overlap with each other.

• Mobile sensor nodes:These sensor nodes are tasked to reconstruct the holes created
in the network. Thus, the data transmission process will not be disrupted. The number
of these nodes is limited, and they have been scattered in the network.

4.2. Energy Model

In WSNs, the sensor nodes have extremely limited energy. As a result, one of the
most important issues is energy conservation in these networks. Each sensor node is
a multifunctional device, which includes a sensing unit, processing unit, memory unit,
communication unit, energy unit, and so on.

The communication unit consumes the most energy compared to other units, because it
is responsible for sending and receiving data. Based on energy model, if the sensor node
SNi transmits k bits to the sensor node SNj, where the distance between them is equal to d.
Then, the energy consumed by the sensor node SNi is calculated using Equation (5):

ETX(k, d) =
{

Eelec × k + Ef s × k + d2, d < d0
Eelec × k + Emp × k + d4, d ≥ d0

(5)

In addition, the energy consumed by SNj is calculated based on Equation (6):

ERX(k, d) = Eelec × k (6)

where Eelec is the energy consumed by the transmitter/receiver circuitry. Moreover, Ef s
and Emp indicate the energy consumed by the transmitter amplifier for the free space model
and multipath model, respectively. Furthermore, d0 is the threshold transmission distance,

and thus d0 =

√
Ef s
Emp

.
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Figure 6. Network model in the proposed scheme.

4.3. Sensing Model

In the proposed scheme, we apply the binary sensing model (0/1 model). This model
is shown in Figure 7. In this model, each sensor node SNi can sense a circle with radius
RSi. Assume that P = (xp, yp) is a point in RoI. According to this model, if the Euclidean
distance between SNi and P is less than RSi, then SNi senses this point because P is within
its sensing range. Otherwise, SNi cannot sense P. This is stated in Equation (7):

C(S, P) =
{

1 d(SNi, P) ≤ RSi
0 d(SNi, P) > RSi

(7)

where
d(SNi, P) =

√
(xi − xp)2 + (yi − yp)2 (8)

where d(SNi, P) represents the Euclidean distance between SNi and P. (xi, yi) and (xp, yp)
represent the spatial coordinates of SNi and P, respectively.

4.4. Communication Model

The communication model used in the proposed method is the binary disk model.
In this model, the communication radius (RC) is defined as the upper bound, in which a
sensor node can communicate with other nodes in the network. Therefore, if two sensor
nodes are within the communication range of each other, then they can communicate
directly with each other. See Figure 8. The sensing radius (RS) is smaller than the commu-
nication radius (RC), and thus:

RS < RC (9)
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Figure 7. Sensing model in the proposed scheme.

Figure 8. Communication range in the proposed method.

5. Problem Definition

In this paper, the problem is to maximize network lifetime by designing an appropriate
ON/OFF scheduling mechanism for sensor nodes in a heterogeneous WSN. Therefore, a 2D
area is considered as R : X×Y. The network consists of N heterogeneous sensor nodes.

We assume that sensor nodes are T different types in the network, and thus each sensor
node has its own initial energy, communication range, and sensing range. The purpose of
the problem is to set the activity time of the sensor nodes (TimeON) in the network so that
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the entire area is covered and the maximum network lifetime is achieved. In general, this
problem is formulated as follows:

Inputs:

• The Region of Interest (RoI) in area coverage problem is:

R : X×Y (10)

• Sensor nodes are T different types, and the total number of them is N:⎧⎪⎪⎪⎨⎪⎪⎪⎩
Type1 : SN1, SN2, . . . , SNn1 , Sensing radius = RS1
Type2 : SN1, SN2, . . . , SNn2 , Sensing radius = RS2

...
TypeT : SN1, SN2, . . . , SNnT , Sensing radius = RST

(11)

where n1 + n2 + . . . + nT = N.

Output:

• Designing a mechanism to schedule the activity of sensor nodes in the network
(ON/OFF mechanism).

Objective:

• The activity time of the sensor nodes (TimeON) in the network is adjusted so that the
entire area is covered and the maximum network lifetime is achieved.

In Table 2, we introduce some symbols used in the proposed method.

Table 2. Symbols used in the proposed scheme.

Symbols Definition

N The number of sensor nodes in the network

SNi Sensor node i

BS The base station

(xi , yi) The spatial coordinates of SNi

(xBS , yBS) The spatial coordinates of BS

Eresidual The residual energy of SNi

NStatic The number of static sensor nodes

NDynamic The number of mobile sensor nodes

RSi The sensing radius of SNi

RCi The communication radius of SNi

TimeON The activity time of the sensor nodes

Ci The sensing range of SNi

n The number of circle sectors

s
�
e cp Circle sector p

Δθ The angle of each circle sector

m The number of small circles (cq)

cq Small circle q, which partitions Ci

ΔR The radius of smallest cq (i.e., cm)

rq The radius of each circle cq
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Table 2. Cont.

Symbols Definition

DigitCi Digital matrix corresponding to Ci

aqp Matrix element corresponding to the row cq and the column s
�
e cp

IDi The identifier of SNi

Tableneighbor The neighborhood table of sensor nodes

dij Euclidean distance between SNi and SNj

α The angle of the center of the circle Cj with respect to SNi

γq The overlapping area between cq and Cj

Overlapi The overlap between the sensing range of SNi and the sensing range of its neighboring nodes

Aqp Rectangular area of Ci corresponding to cq and s
�
e cp

Di−BS Distance between SNi and BS

Priorityi The importance degree of SNi

Packetsizei The number of data packets in the buffer of SNi

Bu f f ersizei Buffer capacity of SNi

si Mobile sensor nodes i

RS The mean sensing radius of sensor nodes

6. Proposed Method

The purpose of this paper is to present an appropriate area coverage scheme to balance
the energy consumption of sensor nodes in the network and improve network lifetime.
We seek to increase and optimize the network coverage quality. The proposed method
includes four phases:

• Calculating the overlap between sensing ranges of sensor nodes in the network.
• Designing a fuzzy scheduling mechanism.
• Predicting node replacement time.
• Reconstructing and covering of holes created in the network.

In the following, we explain each of these phases in detail.

6.1. Phase 1, Calculating the Overlap between Sensing Ranges of Sensor Nodes in the Network

In this phase, we propose a distributed scheme based on geometric mathematics
so that each sensor node can estimate the overlap between its sensing range and the
sensing ranges of neighboring nodes. In this scheme, the sensing range of a sensor node
is represented using a digital matrix. This scheme is a simple and efficient solution to
calculate the overlap between the sensing range of a sensor node and sensing ranges of its
neighboring nodes.

Accurate calculation of the overlap is not easy, because it is not clear what nodes
overlap with a sensor node and it is in what form. Therefore, calculating the overlap
is a complex and time-consuming operation with high computational overhead. In the
following, we describe how to calculate the overlap between the sensing range of a sensor
node and the sensing ranges of its neighboring nodes using a 0/1 matrix. This matrix is
called the digital matrix. This process includes the following steps:

6.1.1. Transforming the Sensing Range of a Sensor Node into a Digital Matrix

In this section, we describe how to transform the sensing range of a sensor node (SNi)
into a digital matrix. First, SNi is assumed as the center of a coordinate axis. In this paper,
the sensing range of SNi is represented as Ci that has the sensing radius RSi. Then, we
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divide the area Ci into n circle sectors (s
�
e cp) where p = 1, 2, . . . , n; so that n = 2π

Δθ . The
angle of each circle sector (s êcp) is equal to Δθ. This is expressed in Equation (12):

Ci =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
s
�
e c1 : θ ≤ sêc1 ≤ θ + Δθ

s
�
e c2 : θ + Δθ ≤ sêc2 ≤ θ + 2Δθ

...
s
�
e cn : θ + (n− 1)Δθ ≤ sêcn ≤ θ + nΔθ

(12)

Then, we partition the area Ci into m smaller circles (cq), where their center is SNi, and
thus q = 1, 2, . . . , m and m = RSi

ΔR . The radius of each circle cq is equal to rq, which has been
stated in Equation (13):

Ci =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
c1 : r1 = mΔR

c2 : r2 = (m− 1)ΔR
...

cm : rm = ΔR

(13)

This process has been illustrated in Figure 9. As shown in Figure 9, the sensing range
of the sensor node SNi is divided into 16 sectors and 8 smaller circles. Two parameters, Δθ
and ΔR, are adjustable. If the value of these parameters is close to zero, then the results will
be more accurate. However, the memory and computational overhead are also increased.

Figure 9. Partitioning the sensing range of the sensor node SNi.

Finally, the circle Ci is divided into almost rectangular areas. We simulate this circle
using a digital matrix (DigitCi), where its size is equal to m × n. Furthermore, its rows
represent small circles (cq) and its columns represent sectors (s

�
e cp). DigitCi is shown in

Equation (14):

DigitCi =

⎛⎜⎝ a11 . . . a1n
...

. . .
...

am1 · · · amn

⎞⎟⎠
m×n

(14)

In the example presented in Figure 9, the dimensions of the matrix are equal to
m = 8 and n = 16. Each matrix element (aqp) corresponds to a rectangular area, such that
q = 1, . . . , m and p = 1, . . . , n. Moreover, each matrix element can be zero or one. If a
rectangular area is covered by the sensing range of at least one of the neighboring nodes,
then corresponding matrix element is equal to one. Otherwise, its value is equal to zero.

aqp =

{
1 , I f Ci ovrlaps with other its neighbor

0 , otherwise
(15)

74



Mathematics 2021, 9, 2251

The pseudocode of this process is expressed in Algorithm 1. According to this algo-
rithm, it can be deduced that its time complexity is O(nm).

Algorithm 1 Transforming Ci into digital matrix (DigitCi)

Input: (xi, yi), RSi, Δθ, ΔR
Output: DigitCi

Begin
1: n = 2π

Δθ ; {n is the number of circle sectors.}
2: m = RSi

ΔR ; {m is the number of small circles.}
3: Create an m× n digital matrix that is called DigitCi;
4: for q = 1 to m do
5: for p = 1 to n do
6: if (Ci overlaps with its neighbors) then
7: aqp = 1; {DigitCi matrix elements.}
8: else
9: aqp = 0; {DigitCi matrix elements.}

10: end if
11: end for
12: end for

End

6.1.2. Digital Matrix Initialization Process

In this section, we present an example to illustrate how to quantify the matrix DigitCi.
Assume that the sensing range of the sensor node SNi (i.e., the circle Ci with center (xi, yi))
overlaps with the sensing ranges of two sensor nodes SNj and SNk, see Figure 10. The val-
ues corresponding to the elements of the matrix DigitCi are plotted on the rectangular areas.
As shown in Figure 10, if a rectangular area is not completely covered by the sensing ranges
of neighboring nodes, the corresponding matrix element is equal to zero. We believe that it
is a simple and intelligent estimation scheme, which can accurately calculate overlapping
areas. It should be remembered that traditional methods for calculating the overlap have
high computational complexity.

Figure 10. Overlap between SNi and two sensor nodes SNj and SNk.

In the following, we explain the initialization process of the matrix elements in detail.
First, we calculate the overlap between the sensing ranges of SNi and SNj in detail. A simi-
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lar process is executed to calculate the overlap between SNi and other neighboring nodes.
This process includes the following steps:

• Each sensor node (SNi, and thus i = 1, 2, ..., N) broadcasts a Hello message to its neigh-
bors. This message includes its ID (IDi), its spatial coordinates (xi, yi), its residual
energy

(
EResiduali

)
, and its sensing radius (RSi). This message is only broadcast to

single-hop neighboring nodes. Therefore, it requires low energy for sending.
• The sensor node SNi (i = 1, 2, ..., N) records information of the neighboring nodes in

its own neighborhood table (Tableneighbor). This information is applied to quantify the
matrix DigitCi. The information inserted into Tableneighbor is listed in Table 3.

Table 3. Tableneighbor corresponding to SNi.

Number Node ID Spatial Coordinates Sensing Range Residual Energy

1 IDj
(

xj , yj
)

RSj Eresidualj

2 IDk (xk , yk) RSk Eresidualk

• Assume that the sensing range and sensing radius of the sensor node SNj are displayed
as Cj and RSj, respectively. The sensing range and sensing radius of SNi are considered
as Ci and RSi, respectively.

• As stated in Section 6.1.1, the radii of smaller circles (cq) are calculated based on
Equation (13). The radii of c1, . . . , c8 are equal to r1, . . . , r8, respectively.

• Then, SNi calculates the Euclidean distance between itself and SNj (i.e., its neighboring
node in Tableneighbor) using Equation (16):

dij =
√(

xi − xj
)2

+
(
yi − yj

)2 (16)

where (xi, yi) is spatial coordinates of SNi and
(
xj, yj

)
indicates spatial coordinates

of SNj.
• According to Figure 11, if Mode 2 is met, then the two nodes SNi and SNj do not

overlap within their sensing ranges. As a result, all the elements of the matrix DigitCi
are equal to zero. If Mode 1 or Mode 3 is met, then the two nodes overlap within their
sensing ranges. If Mode 1 is met, then all the elements of the matrix DigitCi will be
equal to one. Otherwise, if Mode 3 is satisfied, then the angle of the center of the circle
Cj with respect to a coordinates axis with center SNi is calculated using Equation (17):

α = arctan

(
xj − xi

yj − yi

)
, 0 ≤ α ≤ 2π (17)

Then, the process of calculating the overlap between SNi and SNj (quantifying the
elements of the matrix DigitCi) follows the following rules.

– If dij ≥ Rj + rq; where 1 ≤ q ≤ 8 (Mode 2 in Figure 11), then the circle cq and all
the circles, which are smaller than cq (i.e., cq+1, . . . , c8), are outside the circle Cj.
As a result, the matrix elements in the rows cq, cq+1, . . . , c8 are zero.

– If dij ≤ Rj − rq; where 1 ≤ q ≤ 8 (Mode 1 in Figure 11), then the circle cq
and all the circles, which are smaller than cq (i.e., cq+1, . . . , c8), are inside the
circle Cj. Thus, the matrix elements in rows cq, cq+1, . . . , c8 are equal to one (see,
for example, circles c7 and c8 (gray circles) in Figure 13).
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Figure 11. Different modes of two sensor nodes.

See Figure 12.

Figure 12. Calculating the angle of SNj with respect to SNi.
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Figure 13. Filling process of the matrix DigitCi.

• If Rj − rq < dij < Rj + rq; where 1 ≤ q ≤ 8 (Mode 3 in Figure 11), it means that the circle
cq and the circle Cj intersect with each other (see, for example, the circle c6 (blue circle)
in Figure 14). The overlapping area between these two circles is calculated as follows:

– Draw a triangle including three vertices (xi, yi),
(
xj, yj

)
, and the intersection

point of the circles cq and Cj. This triangle is shown in Figure 14.
– We can easily obtain the length of three sides of this triangle. Therefore, we apply

the law of cosines to calculate the angle θ1 = θ2:

R2
j = r2

q + d2
ij − 2rqdij cos θ1 (18)

Therefore, we have:

θ1 = arccos

(
r2

q + d2
ij − R2

j

2rqdij

)
, 0 ≤ θ1 ≤ π (19)

Figure 14. Calculating the overlapping area between c6 (the blue circle) and Cj.

– The overlapping area between these two circles cq and Cj (γq) is calculated using
Equation (20):

α− θ1 ≤ γq ≤ α + θ1, 0 ≤ γq ≤ 2π (20)
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– In the matrix DigitCi, the matrix element corresponding to the row cq and the
column s

�
e cp is determined based on Equation (21).

aqp =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, IF

⎧⎨⎩
Rj − rq < dij < Rj + rq

AND
α− θ1 ≤ s êcp ≤ α + θ1

0, otherwise

(21)

This process is repeated for all intersecting circles to determine all elements of the matrix
DigitCi. Figure 15 shows the triangles formed between the circles c1, . . . , c8 and the circle Cj.
Algorithm 2 illustrates the pseudocode of the filling process of matrix DigitCi. According to
Algorithm 2, it can be deduced that the time complexity of this algorithm is O(ηmn).

Figure 15. Triangles formed between the circles c1, . . . , c8 and the circle Cj.

6.2. Phase 2, Designing Fuzzy Scheduling Mechanism

In this phase, the purpose is to design a fuzzy logic-based scheduling mechanism
to determine the appropriate time slots to put a sensor node in ON state so that the
network lifetime is maximized and energy is saved. In our proposed method, we used the
Mamdani fuzzy inference system. The proposed fuzzy system includes three main parts:
fuzzy inputs, fuzzy system outputs, and the rule base. In the following, these parts are
introduced in detail.

6.2.1. Fuzzy System Inputs

Our proposed fuzzy system includes three inputs:

• The overlap between the sensing range of a sensor node and the sensing range of its
neighboring nodes (Overlapi): This parameter was selected as a fuzzy input to be
taken into account the density of sensor nodes in the network when designing the
ON/OFF mechanism for them. If the density of the sensor nodes in the network is
high, then they overlap with each other extremely. As a result, they should be in the
OFF state for more time. Therefore, their energy will be saved.
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Algorithm 2 The digital matrix filling process

Input: Δθ, ΔR, m, n,
N {N is the number of sensor nodes in the network.}
SNi: DigitCi, (xi, yi), RSi, Ci
SNj:

(
xj, yj

)
, RSj, Cj

SNk: (xk, yk), RSk, Ck
Output: DigitCi

Begin
1: for i = 1 to N do
2: SNi: Broadcast a HELLO message for its neighbors;
3: end for
4: η = numberneighbor {η is the number of neighbors of SNi. In this example,η = 2.}
5: while η �= 0 do
6: SNi: Compute Euclidean distance (di,η) between SNi and SNη ;

{In the following, it is examined whether the two nodes are in the communication range of
each other or not.}

7: if (di,η < RSi + RSη) then
8: SNi: Compute the angle α using Equation (17);
9: for q = 1 to m do

10: if (di,η ≥ RSη + rq) then
11: for p = 1 to n do
12: aqp = 0;
13: end for
14: else if (di,η ≤ RSη − rq) then
15: for p = 1 to n do
16: aqp = 1;
17: end for
18: else if (RSη − rq < di,η < RSη + rq) then
19: SNi: Compute the angle θ1 based Equation (19);
20: for p = 1 to n do
21: if (α− θ1 ≤ s êcp ≤ α + θ1) then
22: aqp = 1;
23: else
24: aqp = 0;
25: end if
26: end for
27: end if
28: end for
29: end if
30: η = η − 1;
31: end while

End

In Phase 1, we expressed how to transform the sensing range of a sensor node into a
digital matrix. After accurately calculating the matrix DigitCi corresponding to SNi
(so that i = 1, 2, ..., N and N is the number of sensor nodes in the network), its overlap
area (i.e., digital matrix elements that are equal to one) are calculated as follows.
First, we calculate the rectangular area Aqp (gray rectangular area), which is shown in
Figure 16, according to Equation (22):

Aqp = AreaCircle sectorqp − AreaCircle sector(q−1)p
(22)

where AreaCircle sectorqp represents the circle sector area p of the circle cq, which is
obtained using Equation (23):

AreaCircle sectorqp =
1
2

r2
qΔθ (23)
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We place Equation (23) in Equation (22):

Aqp =
1
2

r2
qΔθ − 1

2
r2

q−1Δθ =
1
2

Δθ
(

r2
q − r2

q−1

)
(24)

According to Equation (13), we have:

rq = (m− (q− 1))ΔR
rq−1 = (m− (q− 2))ΔR (25)

Therefore, Aqp is calculated using Equation (26):

Aqp = 1
2 Δθ ΔR2

(
(m− (q− 1))2 − (m− (q− 2))2

)
= 1

2 Δθ ΔR2(2(q−m)− 3)
(26)

As a result, the total area of the overlap (Overlapi) is obtained according to Algorithm 3.
The time complexity of this algorithm is O(mn), and thus m and n represent the dimen-
sions of the matrix DigitCi. The normalization process of this parameter is expressed
in Equation (27):

Overlapnorm =
Overlapi

AreaCi

(27)

where AreaCi is the area of the sensing range of SNi.

AreaCi = πRS2
i (28)

where RSi is the sensing radius of SNi.
This fuzzy parameter (Overlapnorm) consists of three modes (low, medium, and high).
Figure 17 illustrates its fuzzy membership function.

Figure 16. Calculating the area of Aqp.
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Figure 17. Diagram of the fuzzy membership function corresponding to the parameter Overlapnorm.

• Residual energy (Eresidual): This parameter was selected as a fuzzy input because it
helps sensor nodes with more energy to be at the ON state for more time. Low-energy
nodes perform their activities at shorter time slots. Hence, their lifetime will be
increased. As a result, this parameter can balance the energy consumption in the
network. Sensor nodes are aware of their own residual energy at any time. This
parameter is normalized using Equation (29).

Enorm−residual =
Eresidual

Emax
(29)

where Emax is the maximum energy of a sensor node in the network. This fuzzy
parameter includes three modes (low, medium, and high). The fuzzy membership
function diagram of Enorm−residual is shown in Figure 18.

Figure 18. Diagram of the fuzzy membership function corresponding to the parameter Enorm−residual .

Algorithm 3 Calculating the Overlap area

Input: (xi, yi), RSi, Δθ, ΔR
Output: Overlapi

Begin
1: n = 2π

Δθ ; {n the number of circle sectors.}
2: m = RSi

ΔR ; {m the number of small circles.}
3: for q = 1 to m do
4: for p = 1 to n do

5: Overlapi = Overlapi +
(
aqp
) 1

2 Δθ ΔR2(2(q−m)− 3) {aqp is the matrix element that
is equal to 0 or 1.}

6: end for
7: end for
8: return Overlapi;

End

• Distance between a sensor node and the base station (Di−BS): This parameter was
selected as a fuzzy input to help the nodes close to the BS to be at ON state for
more time slots because these nodes are more active than other nodes in the network.
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Therefore, these nodes require more time to perform their activities. This parameter is
calculated based on the Euclidean distance between node SNi and the base station.

Di−BS =

√
(xi − xBS)

2 + (yi − yBS)
2 (30)

Moreover, this parameter is normalized based on Equation (31):

Dnorm−i−BS =
Di−BS
Dmax

(31)

where Dmax represents the maximum distance in the network. For example, assume
that the network is a rectangular area with dimensions X×Y, and, as a result, Dmax
is obtained using Equation (32):

Dmax =
√

X2 + Y2 (32)

Figure 19 illustrates the fuzzy membership function diagram of Dnorm−i−BS. This
fuzzy parameter includes three modes (low, medium, and high).

Figure 19. Diagram of the fuzzy membership function corresponding to the parameter Dnorm−i−BS.

6.2.2. Fuzzy System Output

In the proposed fuzzy system, the fuzzy output is the activity time of each sensor
node (TimeON). In this fuzzy system, if a sensor node has the low overlap with neighboring
nodes, and its energy level is high, and its distance from BS is low, it stays at the ON state
for more time slots. This fuzzy output includes seven modes, including very very low, very
low, low, medium, high, very high, and very very high. The fuzzy membership function
diagram is shown in Figure 20.

Figure 20. Diagram of the fuzzy membership function corresponding to the parameter TimeON .

6.2.3. Rule Base

Our proposed fuzzy system consists of 27 fuzzy rules listed in Table 4. For example,
rule 1 is expressed as follows:

Rule1: IF Overlapnorm is low AND Enorm−residual is low AND Dnorm−i−BS is low THEN

TimeON is high.
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Table 4. Rule base in the proposed fuzzy system.

Number Fuzzy System Inputs Fuzzy System Output

Overlapnorm Enorm−residual DNorm−I−Bs TimeON

1 Low Low Low High

2 Low Low Medium Medium

3 Low Low High Low

4 Low Medium Low Very high

5 Low Medium Medium High

6 Low Medium High Medium

7 Low High Low Very very high

8 Low High Medium Very high

9 Low High High High

10 Medium Low Low Medium

11 Medium Low Medium Low

12 Medium Low High Very low

13 Medium Medium Low High

14 Medium Medium Medium Medium

15 Medium Medium High Low

16 Medium High Low Very high

17 Medium High Medium High

18 Medium High High Medium

19 High Low Low Low

20 High Low Medium Very low

21 High Low High Very very low

22 High Medium Low Medium

23 High Medium Medium Low

24 High Medium High Very low

25 High High Low High

26 High High Medium Medium

27 High High High Low

Algorithm 4 describes the pseudocode of the proposed fuzzy system. The time
complexity of this algorithm is O(mn).

6.3. Phase 3, Predicting the Node Replacement Time

Once the network is running, the sensor nodes start their activities, such as sensing
the environment, processing data, sending/receiving data, etc., based on the time slots
determined in Section 6.2. These activities reduce the energy of the sensor nodes. In WSNs,
the energy required for each node is supplied by a small battery, which cannot be recharged
or replaced. These nodes are scattered in undesirable and inaccessible areas. Therefore,
when their battery is discharged, they die. As a result, a hole is created in the network.
The purpose of this phase is to provide a suitable solution to predict the death time of
sensor nodes to prevent the hole establishment in the network. Therefore, it helps sensor
nodes to continue data transmission operations without any interruption.

In this phase, the sensor node SNi calculates a parameter called Priorityi, which is
updated periodically. This parameter expresses the importance degree of this sensor node.
The parameter is calculated according to Equation (33):

Priorityi =

(
1− Overlapi

πRS2
i

)
+

(
Packetsizei

Bu f f ersizei

)
(33)

where
(

1− Overlapi
πRS2

i

)
is the part of the sensing range of the node SNi, which does not

overlap with any neighboring node. Overlapi indicates the overlap between the sensing
range of SNi and sensing ranges of its neighboring nodes. In Section 6.2, we described
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how to calculate this parameter. Moreover, RSi represents the sensing radius of SNi.(
Packetsizei
Bu f f ersizei

)
is used to evaluate the coming traffic of SNi. Packetsizei indicates the number

of data packets in the buffer of SNi at a time period. Bu f f ersizei also indicates the buffer
capacity of SNi. All parameters are normalized in Equation (33). The purpose of the
normalization process is to place the parameters in [0, 1] to have the same effect on the
Priorityi.

Algorithm 4 Fuzzy system

Input: (xi, yi), (xBS, yBS), Eresiduali , DigitCi
Output: TimeON

Begin
1: SNi: Calculate Overlapi using Algorithm 3;
2: SNi: Normalize Overlapi based on Equation (27);
3: SNi: Normalize Eresiduali based on Equation (29);
4: SNi: Calculate Di−BS based on Equation (30);
5: SNi: Normalize Di−BS based on Equation (31);
6: SNi: Calculate TimeON using proposed fuzzy system;
7: return TimeON ;

End

When the energy level of SNi is less than a threshold, this node sends an Alert message
including Priorityi to the base station. After receiving this message, the BS checks Priorityi
to decide whether to replace this node. As mentioned, Priorityi indicates the importance
degree of this sensor node in the network. The base station compares this parameter with a
threshold value (PThreshold > 0). PThreshold is a constant number.

• If Priorityi > PThreshold, then this node is important in the network and its death can
jeopardize the normal operation of the network. Therefore, the base station sends a
Coverage message to the nearest mobile node to be replaced with SNi. The Coverage
message includes the spatial coordinates of SNi.

• If Priorityi ≤ PThreshold, then the death of this node does not affect the normal opera-
tion of the network and can be ignored.

Algorithm 5 describes the pseudocode related to this process. The time complexity
of this algorithm is O(1). If several sensor nodes die at the same time in one part of the
network, then a hole will be created in this part. As a result, the base station must apply
several mobile nodes to reconstruct this hole. The exact number of mobile sensor nodes
and their new location for repairing the hole are discussed in Section 6.4.

6.4. Phase 4, Reconstructing, and Covering of Holes Created in the Network

As stated in Section 6.3, the death of sensor nodes can create holes in the network.
We seek to use mobile nodes to repair such holes. In this phase, we assume that there
are a number of sensor nodes, which may die soon, in the area H of the network with
dimensions H : X′ × Y′. Upon receiving the Alert message from these nodes, the base
station should find the best replacement strategy of the mobile nodes in the area H to
maximize the coverage rate and minimize the number of mobile nodes used for repairing
the area H.

First, the base station checks the mobile sensor nodes around this area. For example,
assume that there are t mobile nodes around this area. In this case, the BS utilizes SFLA to
search for the best node replacement strategy in the H-area. Then, it advertises the new
spatial coordinates of the mobile nodes using a Coverage message. We illustrate this process
with an example to understand it easily. In the following, we present some hypotheses for
this problem:
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Algorithm 5 Replacing sensor nodes

Input: Overlapi, Packetsizei , Bu f f ersizei
Output: Covering a hole

Begin
1: SNi: Calculate Priorityi using Equation (33);
2: if (Eresiduali < Treshold) then
3: SNi: Send an alert message to the BS;
4: end if
5: BS: Receive the alert message;
6: BS: Extract Priorityi from the alert message;
7: if (Priorityi > PThreshold) then
8: BS: Send a Coverage message to the nearest mobile node;
9: end if

End

• Figure 21 shows the coordinates of the area H in the network. According to this figure,
the spatial coordinates of the mobile sensor nodes (si) must be expressed based on
Equation (34) to cover this area:

si =
{
(x, y)|RSi ≤ x ≤ RSi + X′, RSi ≤ y ≤ RSi + Y′

}
(34)

In this equation, RSi represents the sensing radius of si, and (X′, Y′) is the dimensions
of the area H.

• In this example, assume that the initial population of frogs is 12. Moreover, each frog
represents a solution to the problem, i.e., the new spatial coordinates of the mobile
nodes for covering the area H in the network.

• It is assumed that the number of mobile sensor nodes si is equal to 10 (so that,
i = 1, . . . , 10).

Figure 21. Coordinates of the area H in the network.
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To find the best solution for this problem (i.e., the best replacement strategy of mobile
nodes in the area H) using SFLA, we perform the following steps:

Step 1- Frog representation

Each frog represents a solution for this problem, that is the new spatial coordinates of
the mobile sensor nodes (si) in the network. Each frog is depicted as a two-dimensional
array so that its length is equal to the total number of mobile nodes (in this example,
the length is 10). In this array, each column corresponds to a mobile node. The first row
indicates the number of mobile nodes used to cover the area H so that its elements can be
zero or one.

If an element is equal to one, then the corresponding node (si) has been applied for
covering H. Otherwise, if its value is equal to zero, then the corresponding node (si) is not
in the solution. The second row also represents the spatial coordinates of the mobile nodes
(si) for covering the area H. Figure 22 shows an example of the frog representation. In this
example, the frog (i.e., solution of this problem) includes several nodes, including s3, s4, s6,
s7, s8, and s10, and their spatial coordinates are (5, 8), (1, 4), (6, 8), (3, 9), (1, 10), and (2, 8),
respectively.

Figure 22. Frog representation.

Step 2- Initial population establishment

In this step, the population of frogs is randomly initialized. This process is done in
such a way that the coordinates of each sensor node must be in the area H (according to
Equation (34)).

In the previous example, the initial population establishment process is shown in
Figure 23.

Figure 23. The initial population establishment process.

Step 3- Ranking the frogs

In this step, we present a fitness function to evaluate each frog. Finally, the frogs are
sorted based on its fitness value in descending order. The proposed fitness function is a
multi-objective function that is expressed in Equation (35):

F = w1 f1 + w2 f2 (35)
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where f1 is a function for evaluating the coverage of the H area that has dimensions equal
to X′ × Y′. The first goal of this optimization problem is to maximize the area coverage.
Moreover, f2 is a function that calculates the number of mobile sensor nodes (si) used in
solution. The second goal of this problem is to find the solution with the minimum number
of sensor nodes for covering the area H.

In addition, w1 and w2 are the weight coefficients, and thus w1 + w2 = 1, and w1 =
w2 = 1

2 . f1 and f2 are normalized, and their values are in the range [0, 1] to have the same
effect on the fitness function. If f1 approaches one, then it means a better area coverage,
and therefore the fitness value of solution approaches one. If f2 approaches one, it means
that this solution has used the optimal number of mobile sensor nodes to cover the area H.
As a result, F approaches one. This is expressed in Equation (36):

IF f1 → 1 AND f2 → 1 THEN F → 1 (36)

To design the function f1, we calculate the difference between the Euclidean distance of
the two nodes i and j (dij) and the sum of the sensing radii of them (RSi + RSj).

f1 = 1−

⎛⎜⎜⎜⎜⎝
√

2
n(n−1)

n−1
∑

i=1

n
∑

j=i+1

(
dij −

(
RSi + RSj

))2

2
n(n−1)

n−1
∑

i=1

n
∑

j=i+1

(
RSi + RSj

)
⎞⎟⎟⎟⎟⎠ (37)

where n > 0 indicates the total number of mobile sensor nodes used to cover the H area.
f2 is a function that evaluates the number of mobile sensor nodes in the solution. It is

remembered that our goal is to minimize the number of sensor nodes and maximize the
area coverage. f2 is obtained using Equation (38):

f2 =

⎧⎪⎪⎨⎪⎪⎩
1, min ≤ numi ≤ max

1−
(
|numi−min|

min

)
, 0 ≤ numi < min

1−
(
|numi−max|

max

)
, max < numi ≤ t

(38)

where t represents the total number of mobile sensor nodes. min > 0 indicates the
minimum number of nodes that can cover the area H. When the minimum distance
between sensor nodes with each other is equal to 2RS, they have the least overlap with
each other; where RS indicates the sensing radius of the mobile nodes. We know that
sensor nodes are heterogeneous. Therefore, we use the mean sensing radius (RS) in the
proposed method. RS is calculated using Equation (39):

RS =
1
n

n

∑
i=1

RSi (39)

where n is the number of mobile nodes used in the solution. RSi indicates the sensing
range of si. Hence, we have:

min = nx × ny (40)

where
nx =

⌊
X′

2RS

⌋
ny =

⌊
Y′

2RS

⌋ (41)

(X′, Y′) are dimensions of the area H and RS is the mean sensing radius of mobile
nodes. max > 0 represents the maximum number of nodes required for covering the area
H. According to [48], we know that the best coverage for nodes in the network is when they
overlap slightly and all parts of the area H are covered by at least one sensor node. In this
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case, the distance between sensor nodes is equal to
√

3RS. As mentioned, we have used
the mean sensing radius (RS) in Equation (43) because the sensor nodes are heterogeneous
and have different sensing radii. As a result, we have:

max = n′x × n′y (42)

where
n′x =

⌈
X′−RS√

3RS

⌉
+ 1

n′y =
⌈

Y′−RS√
3RS

⌉
+ 1

(43)

Step 4- Partitioning the frogs and creating memeplexes

After evaluating the frogs, we sort them based on their fitness value in descending
order. Then, the frogs are divided into m memeplexes. This process is shown in Figure 24.
According to this figure, the initial population of frogs is equal to 12. We divide it into three
memeplexes, and each memeplex consists of 4 frogs.

Step 5- Formation of sub-memeplexes

In this step, each memeplex is divided into n sub-complexes, which are shown in
Figure 25.

Step 6- Evolution of each sub-memeplex

In this step, each sub-complex evolves based on the local exploration phase presented
in SFLA, and thus the position of the worst frog (xw, yw) in each sub-complex is improved
according to Equation (44).

xnew = xw + Six

ynew = yw + Siy

(44)

where (xnew, ynew) is the new position of the frog. Moreover, Six and Siy indicate the step
size in the direction of the x and y axes, respectively; so that, Smin ≤ Six ≤ Smax and
Smin ≤ Siy ≤ Smax.

Six = Rand× (xB − xw)

Siy = Rand× (yB − yw)
(45)

where Rand is a random number in the range [0, 1] and (xB, yB) indicates position of the
best frog in the submemeplex. If the new position is better than the old position, then the
new position replaces the old position. Otherwise, the new position is deleted, and another
new position is calculated based on Equation (46):

Six = Rand× (xX − xw)

Siy = Rand× (yX − yw)
(46)

where (xX , yX) is the position of the best frog in the memeplex. If the new position is better
than the old position, then it replaces the old position. Otherwise, the new position is
removed and another new position is randomly calculated based on Equation (47) and
replaces the old position:

xnew = xr

ynew = yr

(47)

where (xr, yr) is the position of a new frog that is generated randomly.
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Figure 24. The formation of memeplexes.

Figure 25. Partitioning memeplexes into sub-memeplexes.

Step 7- Convergence checking

In this step, the stop condition of SFLA is checked. If the stop condition is met,
the algorithm is completed and the best solution will be returned as output. In our

90



Mathematics 2021, 9, 2251

proposed method, the stop condition of the algorithm is that the number of iterations
reaches λ > 0.

Algorithm 6 describes the pseudocode of the process of finding the best replacement
strategy for mobile nodes in the area H using SFLA.

Algorithm 6 Covering a hole

Input: S = {s1, s2, . . . , st} {A set of mobile sensor nodes. In this example, t = 10.}
H : X′ ×Y′ {Hole area}
PopulationSize = 12 {This indicates the population size of frogs.}
SetSolution = {Frog1, Frog2, . . . , Frog12}
m {This is the number of memeplexes.}
n {This indicates the number of sub-memeplexes.}
PG {This indicates the best frog in SetSolution.}
(xw, yw) {This indicates the worst frog in each sub-memeplex.}
(xB, yB) {This indicates the best frog in each sub-memeplex.}
(xX , yX) {This indicates the best frog in each memeplex.}

Output: New position of mobile sensor nodes
Begin

1: BS: Initialize SetSolution randomly;
2: while Convergence criteria is not met do
3: BS: Evaluate frogs in SetSolution using the proposed fitness function in Equation (35);
4: BS: Sort frogs in descending order based on their fitness value;
5: BS: PG = Frog1;
6: BS: Classify frogs in m memeplexes;

7: Mem =

⎧⎨⎩
Mem1, Mem2, . . . , Memm|
Frog1 ∈ Mem1, Frog2 ∈ Mem2, . . . , Frogm ∈
Memm, Frogm+1 ∈ Mem1, . . .

⎫⎬⎭
8: for i = 1 to m do
9: BS: Divide Memi into n sub-memplexes;

10: end for
11: for i = 1 to m do
12: for j = 1 to n do
13: BS: Improve (xw, yw) based on Equation (44) and Equation (45);
14: if ((xnew, ynew) is not better than (xw, yw)) then
15: BS: Remove (xnew, ynew);
16: BS: Calculate a new position (xnew, ynew) based on Equation (44) and Equa-

tion (46);
17: if ((xnew, ynew) is not better than (xw, yw)) then
18: BS: Remove (xnew, ynew);
19: BS: Calculate a random position based on Equation (47);
20: end if
21: end if
22: end for
23: end for
24: end while
25: BS: Evaluate frogs in SetSolution using the proposed fitness function in Equation (35);
26: BS: Extract the best frog in SetSolution (PG);
27: BS: Send a Coverage message based on PG to the mobile nodes;

End

7. Simulation and Evaluation of Results

In this section, we simulate the proposed area coverage scheme using the NS2 software
in a system with CPU 4GB Intel Core i4 2.40 GHz, RAM 4GB, and OS Ubuntu 15.04 LTS
to evaluate its performance. Then, we compare its simulation results with three methods,
including CCM-RL [30], CCA [31], and PCLA [32]. When simulating the proposed scheme,
it is assumed that the network size is 1000 × 1000 m2, and thus the sensor nodes are
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randomly distributed in this network. The number of nodes in the network varies between
250 ≤ N ≤ 2000. 250 nodes are added to the network at each step. In the simulation
process, it is assumed that sensor nodes have different sensing ranges, including, 25, 30,
and 35 m. Moreover, they have different communication ranges, including 50, 60, and
70 m.

In addition, it is assumed that the amount of energy consumed by nodes is equal to
57 mA and 0.40 μA in ON and OFF modes, respectively. In Table 5, simulation parameters
are presented briefly. We compare the proposed method with three methods, including
CCM-RL [30], CCA [31], and PCLA [32] in terms of the average number of active sensor
nodes, coverage rates, energy consumption, and network lifetime.

Table 5. Simulation parameters.

Parameter Value

Simulator NS2

Netwok size (m2) 1000× 1000

Number of nodes 250 ≤ N ≤ 2000

Simulation time (min) 20

Sensing ranges (m) 25, 30, 35

Communication ranges (m) 50, 60, 70

Initial energy of sensor nodes (J) 100

Energy consumed by sensor nodes in ON mode (mA) 57

Energy consumed by sensor nodes in OFF mode (μA) 0.40

7.1. The Average Number of Active Sensor Nodes

The number of active sensor nodes indicates a subset of sensor nodes, which are
selected to be in ON mode, for covering the RoI. An appropriate area coverage scheme
should achieve a proper coverage rate with the minimum number of active sensor nodes.
As shown in Figure 26, the proposed scheme has the lowest number of active sensor
nodes at a scheduling round. On average, our scheme improves this value by 3.64%, 5.9%,
and 8.81% compared to CCM-RL [30], CCA [31], and PCLA [32], respectively. This is
because we use a fuzzy logic-based scheduling mechanism in the proposed method.

This fuzzy system determines the activity time of a sensor node based on three
parameters, including the overlap between the sensing range of the sensor node and its
neighboring nodes, residual energy, and distance between the sensor node and the base
station. On the other hand, we calculate the overlap between a sensor node and its neighbor
nodes using the digital matrix. This method helps the fuzzy system to calculate the activity
time of sensor nodes based on their density in the network.

As a result, the proposed method activates the minimum sensor nodes in the dense
regions. In addition, as shown in Figure 26, in all methods, when the number of sensor
nodes increases in the network, the number of active nodes increases. When the number
of nodes in the network is low, it means that the network density is also low. In this case,
a coverage scheme cannot activate all sensor nodes (ON mode), because these sensor nodes
consume high energy in this case.

As a result, the network lifetime will decrease. Therefore, all sensor nodes cannot be in
ON mode at the same time. As a result, active nodes cannot properly cover the whole area.
In contrast, when the network density is high, each of the coverage schemes can activate
the more number of nodes. This improves the coverage quality of the RoI.
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Figure 26. Comparison of different methods in terms of the average number of active sensor nodes.

7.2. Coverage Rate

The coverage rate represents the percentage of the area covered by the number of
active nodes. As shown in Figure 27, our proposed scheme has the best performance
compared to other schemes in terms of coverage rate. On average, it increases the coverage
rate by 4.17%, 17.01%, and 21.88% compared to CCM-RL [30], CCA [31], and PCLA [32],
respectively. The reason for this is that our scheme can calculate the overlap of the sensor
nodes using the digital matrix (i.e., DigitCi).

This helps the fuzzy system to activate nodes that have the lowest overlapping with
each other. As a result, the proposed method can succeed for the best coverage rate with
the minimum active nodes compared to other methods. On the other hand, the proposed
method presents an SFLA-based detection and reconstruction mechanism for covering
network holes; whereas, other schemes do not consider such a mechanism. This mechanism
uses mobile nodes to rebuild the network holes.

As a result, the proposed method can ensure an appropriate coverage rate even if
some sensor nodes die in the network. As shown in Figure 27, when increasing the number
of active nodes in the network, the coverage rate increases in all methods. Our proposed
method can achieve a coverage rate equal to 88% using 350 active sensor nodes.

Afterward, if the number of active sensor nodes increases, this coverage rate will be
constant. CCM-RL [30] has a weaker function than our method. In this scheme, the cover-
age rate is not constant and rises with increasing the number of active sensor nodes. In the
CCA [31] method, when the number of active nodes is 300, the coverage rate is fixed and
equal to 77%. PCLA [32] has the weakest performance compared to other schemes in terms
of coverage rate. When the number of active nodes in the network is 350, PCLA [32] can
achieve a coverage rate equal to 73%.

Figure 27. Comparison of different methods in terms of the coverage rate.
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7.3. Energy Consumption

In Figure 28, different coverage schemes are compared with each other in terms
of energy consumption. As shown in this figure, our proposed scheme has the lowest
energy consumption compared with other methods. On average, it improves the energy
consumption by 33.34%, 59.01% and 45.45% compared to CCM-RL [30], CCA [31] and
PCLA [32], respectively. We consider the residual energy of sensor nodes in the proposed
fuzzy scheduling mechanism. In this process, low-energy nodes are in OFF mode for more
time to consume less energy.

This helps our scheme to balance the energy consumption in the network and reduce
the energy consumption. As shown in Figure 28, CCM-RL [30] has the second rank
compared to other methods in terms of energy consumption. This scheme uses the sensing
range customization mechanism in the network. This mechanism helps sensor nodes to
consume energy efficiently. In PCLA [32], the energy consumption is relatively high, which
is due to the communication overhead and the coverage redundancy. Due to the high
communication overhead, CCA [31] has the worst performance compared to others in
terms of the energy consumption.

Figure 28. Comparison of different methods in terms of the average energy consumption.

7.4. Network Lifetime

In Figure 29, different methods are compared with each other in terms of the network
lifetime. In this experiment, it is assumed that the number of alive sensor nodes in the
network is equal to 200. These nodes lose their energy over time. When all nodes die,
the network cannot continue its operations. As shown this figure, our proposed scheme
has the highest network lifetime in comparison with other methods.

On average, it improves the network lifetime by 21.45%, 24.43% and 20.41% compared
with CCM-RL [30], CCA [31] and PCLA [32], respectively. This shows that our method
can distribute the energy consumption evenly between sensor nodes in the network.
As the proposed method takes into account the residual energy of the sensor nodes in the
scheduling mechanism based on fuzzy logic.
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Figure 29. Comparison of different methods in terms of the network lifetime.

8. Conclusions

In this paper, an area coverage method was presented for heterogeneous wireless
sensor networks. The purpose of this method is to balance the energy consumption of
sensor nodes in the network, improve the network lifetime, and maximize the coverage
rate in the network. To achieve these purposes, in the first phase, we presented a new,
efficient and distributed method based on the digital matrix (i.e., DigitCi) to calculate the
overlap of each sensor node with its neighboring nodes accurately.

Then, in the second phase, we designed a fuzzy scheduling mechanism to determine
the activity time of each sensor node (TimeON) based on three parameters, including the
overlap of each node with neighboring nodes, the residual energy and distance between
each node and the base station. In the third phase, a strategy was presented to recognize
early the death of sensor nodes and prevent the hole creation in the network. Finally, in the
fourth phase, we proposed a SFLA-based solution to find the best placement strategy of
mobile nodes in order to maximize the coverage rate of holes created in the network.

To evaluate the performance of the proposed scheme, we simulated it and compared
our scheme with three methods, including CCM-RL [30], CCA [31], and PCLA [32]. Simu-
lation results indicate that our proposed method outperformed the others. Our scheme can
cover ROI with the lowest number of active sensor nodes. The important advantage of the
proposed method is to simultaneously achieve the highest coverage rate and the lowest
energy consumption compared to CCM-RL [30], CCA [31], and PCLA [32].

As a result, it improves the network lifetime compared to other methods. This show
that our method can uniformly distribute energy consumption in the network. In the
future, we seek to improve the efficiency of our method using machine learning techniques
(ML) and metaheuristic algorithms.
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Abstract: This paper presents a novel variational model based on fuzzy region competition and
statistical image variation modeling for image segmentation. In the energy functional of the proposed
model, each region is characterized by the pixel-level color feature and region-level spatial/frequency
information extracted from various image domains, which are modeled by the windowed bit-
plane-dependence probability models. To efficiently minimize the energy functional, we apply an
alternating minimization procedure with the use of Chambolle’s fast duality projection algorithm,
where the closed-form solutions of the energy functional are obtained. Our method gives soft
segmentation result via the fuzzy membership function, and moreover, the use of multi-domain
statistical region characterization provides additional information that can enhance the segmentation
accuracy. Experimental results indicate that the proposed method has a superior performance and
outperforms the current state-of-the-art superpixel-based and deep-learning-based approaches.

Keywords: bit-plane; fuzzy region competition; image segmentation

1. Introduction

Image segmentation, which aims to partition an image into homogeneous regions [1–3],
is one of the most challenging problems in computer vision and has various applications,
such as pattern recognition and medical imaging. Among the existing approaches, vari-
ational methods have been extensively investigated and the best-known approach is the
classical active contour model [4–6], which adopts a boundary function to evolve the curve
on the object boundary. Nevertheless, this approach is sensitive to noise, and thus, an
unsatisfactory segmentation result may be obtained for a noisy image. In order to obtain a
smooth segmentation from a noisy image, Tong et al. [7] proposed a multi-scale approach
to suppress various types of noises by minimizing a boundary threshold surface function.
Although these methods work well for some natural images, they largely consider edge
information without involving other essential image features, and hence, fail to segment
images with complex texture structures. As well as boundary-based methods, region-based
approaches are also popular methodologies that make use of both the boundary and region
information. The most influential approach is the variational model proposed by Mumford
and Shah [8], which estimates an image by the piecewise smooth functions with regular
boundaries. Chan and Vese [9] studied a particular case of the Mumford-Shah model
using the piecewise constant functions and applied their model to a two-phase image
segmentation problem. They proposed a curve evolution technique with a level set [10]
formulation to minimize the energy functional. The Chan-Vese model was then extended to
vector-valued [11] and multiphase [12] cases. However, experimental results indicate that
the piecewise constant functions can only be applied to simple images with homogeneous
structures and fail to segment images with complex texture patterns. In [13], the authors
proposed a non-convex and convex coupling variational segmentation model based on
the total generalized p-variation regularizer and Mumford-Shah model to preserve the
boundary and detect the structure in the image. Region competition [1] is another widely
used variational image segmentation method that penalizes the boundary length and the
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Bayes error in each image region is characterized by a probability distribution. Based
on the classical region competition model, a novel clustering-based region competition
approach [14] was proposed for image segmentation. A non-parametric approach using
information theory and curve evolution [15] was also studied, with remarkable success.

The aforementioned approaches adopt binary segmentation that gives hard results.
Nevertheless, hard-labeling may not be the optimal scheme because natural images usually
have a small dynamic range or limited spatial resolution, which blurs the distinction
between image regions, leading to the degradation of boundary identification. The fuzzy
segmentation method [16–21], which applies a membership function valued between zero
and one to measure the association degree of each pixel to all regions, is an alternative
approach that has been frequently used in data mining, medical images [22–24], and so on.
The major advantage of a fuzzy approach is that the optimization problem is convex with
respect to the membership function. As a result, the model is not sensitive to initialization
and the global minimum may be found explicitly. In [2], Li et al. applied a piecewise
constant fuzzy region competition model for multiphase image segmentation. The energy
functional was solved using the alternating minimization procedure in which the closed-
form solutions were obtained. Experimental results for typical gray-scale and color images
have shown satisfactory results. A variational multiphase image segmentation model
with the fuzzy membership functions and L1-norm fidelity was proposed in [25]. An
alternating direction method of multipliers was adopted to solve the energy functional.
Experiments demonstrate that this approach is robust to impulse noise and thus provides
satisfactory results. As with the Chan-Vese model, however, the segmentation accuracy
of the above methods will be lower for complex images because the piecewise constant
functions are not suffice in characterizing indispensable image region information. Recently,
a robust active contour segmentation by a fractional-order differential method and fuzzy
statistical information of boundaries was proposed for vascular image segmentation [26].
Luo et al. [27] developed an unsupervised multi-region method based on fuzzy active
contour model for segmenting SAR images. Compared with the level set-based framework,
this method is computationally much more efficient and robust to strong noise. A level set
model using an optimized fuzzy region clustering technique [28] was also presented for
biomedical MRI and CT scan image segmentation. Their proposed algorithm is capable
of identifying weak boundaries and can segment the desired components of an image.
In [29], the authors proposed an improved fuzzy region competition-based framework via
the hierarchical strategy so that the minimization problem is always convex during the
iterative calculation. Their method was applied to noisy SAR images, with satisfactory
segmentation results.

Although most variational region-based segmentation approaches perform satisfac-
torily for some natural and textural images, they consider only simple features from a
particular image domain as region characterization, and thus, may not perform well for
images with sophisticated texture patterns. In such a case, high-level features from vari-
ous image domains are critical to deal with complex images. In [30], the authors used a
geodesic active contour in conjunction with the Gabor features to segment texture images.
A vectorial piecewise constant Mumford-Shah model [31] was adopted for the Gabor
filtered images, producing a satisfactory performance. Moreover, a level set formulation
with a structure tensor and nonlinear diffusion [32] was employed for unsupervised texture
segmentation. A new large-scale image segmentation method that combines fuzzy region
competition and the Gaussian mixture model [33] was also proposed. Experimental results
indicate that this approach has a superior performance on remote sensing images. In
addition to the image features mentioned above, the distribution of image variation is one
of the most important and useful features which has been widely used in various areas with
satisfactory results. Nevertheless, the distribution should not be directly used because the
high dimensionality leads to extremely high computational cost for real-time applications.
Hence, there are compelling reasons to develop a more powerful representation to replace
the distribution while preserving its important properties. Recently, many effective and
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efficient statistical methods have been proposed to model the distributions. Essentially,
the choice of a parametric family of models depends on the applications and the model
itself should be mathematically and statistically tractable. For instance, Do and Vetterli [34]
proposed the use of a generalized Gaussian density (GGD) to model wavelet subband his-
tograms and successfully applied GGD to texture retrieval. A characteristic GGD based on
Kullback-Leibler divergence [35] and the generalized Gamma density [36] were proposed
and applied to supervised texture classification with promising results. While these mod-
els usually work well for most distributions of image variation, they always assume the
distributions have a specific structure (such as symmetry, monotone and periodicity) and
cannot model fluctuating distributions. To remedy this shortcoming, the bit-plane-based
probability models [19,37,38] were proposed to characterize image variations that do not
need to have specific structures. Thus, incorporating these models to characterize image
regions into the energy functional would help to enhance the segmentation of texture
images and deal with challenging segmentation problem.

Motivation and Contribution

Variational image segmentation methodology is well-established in the literature and
fuzzy region competition is by far one of the most popular approaches. Traditional fuzzy
region competition models consider simple boundary and region features extracted in a
specific image domain, but they are unable to capture essential image information, and
thus, hard to segment images with low color contrast and complex textured patterns. In
addition, an appropriate and sophisticated probability distribution should be adopted to
correctly characterize the image region in order to enhance the segmentation accuracy.
Nevertheless, a simple probability distribution (e.g., Gaussian distribution) is typically
employed in order to obtain a closed-form solution of the energy functional so that a
time-consuming numerical algorithm is avoided to estimate the parameters of the proba-
bility distribution. Motivated by the above issues and recent research on statistical image
variation modeling, we propose a novel variational approach that can tackle the limitations
of existing algorithms. The contributions of this paper are summarized below.

• We propose a novel variational model that integrates the pixel-level color feature
and region-level spatial/frequency information into the fuzzy region competition
for image segmentation. Specifically, we propose using the windowed bit-plane-
dependence probability models to characterize spatial/frequency region information
extracted from various image domains to improve the segmentation accuracy;

• A fuzzy bit-plane-dependence region competition algorithm is developed based on
the alternating minimization procedure with the Chambolle’s fast duality projec-
tion algorithm. In addition, the closed-form solutions for model parameters and
fuzzy membership function are obtained and no numerical algorithm is necessary for
parameter estimation, thus making the proposed algorithm much faster.

This paper is organized as follows. Section 2 introduces the bit-plane-based probability
models for image region characterization. In Section 3, we present the fuzzy bit-plane-
dependence region competition model. Section 4 presents the optimization procedure and
the overall implementation. Experimental results are shown in Sections 5 and 6 concludes
the paper.

2. Bit-Plane-Dependence Probability Model

The modeling of image variation by a parametric family of statistical distributions
plays an important role in many applications. Many studies reveal that using a robust
parametric model to represent image variation leads to satisfactory texture classification
and retrieval performance. In this section, we present the bit-plane-dependence probability
model and use it as a region characterization for our proposed segmentation model as
presented in Section 3.

Pi et al. [37] first proposed using the product of Bernoulli distributions (PBD) to model
the distributions of image variation. The idea is summarized as follows: given a collection
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of coefficients of image variation, each coefficient Y is quantized into a nonnegative integer,
which is then transformed into the following m binary bit-planes:

Y =
m−1

∑
i=0

2iYi, (1)

where Yi ∈ {0, 1} is a Bernoulli random variable representing the ith binary bit of the
quantized coefficient. Based on (1), the joint probability distribution of the quantized
coefficients is

P(Y = y) = P(Y0 = y0, Y1 = y1, . . . ., Ym−1 = ym−1), y = 0, 1, . . . , 2m − 1, (2)

where {y0, y1, . . . , ym−1} is a binary representation of y. Letpi = P(Yi = 1), i = 0, 1, . . . ,
m− 1, and assume that Yi : i = 0, 1, . . . , m− 1 are statistically independent, then (2) can be
written as PBD, as follows:

PPBD(Y = y) =
m−1

∏
i=0

P(Yi = yi) =
m−1

∏
i=0

pyi
i (1− pi)

1−yi . (3)

The major advantage of PBD is that it performs excellently in modeling wavelet
subbands and provides a satisfactory performance in fitting low-degree fluctuating his-
tograms [38]. Experimental results [37,38] also show that PBD performs better than
GGD [34] in supervised texture retrieval. Furthermore, compared with most existing
model parameter estimation methods, the bit-plane probabilities pi can be efficiently ex-
tracted via the counting of 1-bit occurrence for each bit-plane.

Note that the PBD model (3) assumes all bit-planes are independent, but such an
assumption may not be appropriate because dependencies may exist between bit-planes.
This shortcoming can be alleviated by incorporating conditional probabilities between
successive bit-planes into (2):

P(Y = y) = P(Y0 = y0)
m−1

∏
i=1

P(Yi = yi|Yi−1 = yi−1) ,y = 0, 1, . . . , 2m − 1.

Let λi = P(Yi = 1|Yi−1 = 1), i = 1, 2, . . . , m− 1, and assume successive bit-plane de-
pendence. Then, we obtain the following bit-plane-dependence probability model (BDPM):

PBDPM(Y = y) = py0
0 (1− p0)

1−y0
m−1
∏
i=1

λ
yi−1yi
i (1− λi)

yi−1(1−yi)

×
(

pi−λi pi−1
1−pi−1

)(1−yi−1)yi
(

1− pi−λi pi−1
1−pi−1

)(1−yi−1)(1−yi)
(4)

where max(0, 1− (1− pi)/pi−1) ≤ λi ≤ min(pi/pi−1, 1) such that the conditional proba-
bilities are between zero and one. Note that (4) reduces to (3) when λi = pi, i = 1, . . . , m− 1.
The major advantages of (4) are threefold [19]. Firstly, the maximum likelihood estimators
of model parameters are joint sufficient statistics, which capture all possible information
about the model parameters that is in the data. Secondly, compared with the current image
variation models which assume that the distributions have specific structures such as sym-
metry, monotone, and periodicity, BDPM provides a universal parametric representation
that can be used to model random distributions without enforcing any specific restrictions
on the distributions. Thirdly, experiments show that BDPM outperforms PBD in terms of
image variation modeling.

3. Fuzzy Bit-Plane-Dependence Region Competition Model

Having introduced the bit-plane-dependence probability model, we present, in this
section, the fuzzy bit-plane-dependence region competition model. We start by formulating
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the segmentation problem as follows: let I be an image with image domain Ω, the goal of
segmentation is to partition Ω into N regions

{
Ωj : j = 1, 2, . . . , N

}
by a suitable measure

such that Ωi ∩ Ωj = ∅, i �= j, and Ω = Ωi ∪ · · · ∪ ΩN ∪ Γ with Γ representing the
boundaries of all regions.

Various successful fuzzy region competition approaches in the literature are generally
based on the optimization of an energy functional consisting of both the boundary and
region information. The general form of energy functional for segmenting I into N phases
can be represented as:

E(δ, U) =
N

∑
j=1

∫
Ω

∣∣∇uj
∣∣dx− α

N

∑
j=1

∫
Ω

uj log Pj(I
∣∣δj)dx (5)

with constraints

(i)
N

∑
j=1

uj = 1, (ii) 0 ≤ uj ≤ 1,j = 1, 2, . . . , N, (6)

where δ =
{

δj : j = 1, 2, . . . , N
}

is a set of parameters for the regions
{

Ωj : j = 1, 2, . . . , N
}

,

U =
{

uj : uj ∈ BV[0,1](Ω), j = 1, 2, . . . , N
}

with BV[0,1](Ω) is a space of the functions of

the bounded variations taking their values between zero and one, Pj(I
∣∣δj) is a probability

distribution of region Ωj characterized by the parameter δj, and α is a positive constant
that balances the two energy terms. In (5), the first term is a total variation that measures
the lengths of boundaries for all of the image regions in a fuzzy manner whereas the
second term is the sum of the cost for coding the intensity of every pixel inside each region
according to a probability distribution Pj(I

∣∣δj) .
Most existing fuzzy region competition models consider only simple image features

extracted from a particular image domain, but these features may not capture essential
region information, especially for images with low color contrast and complex textured
structures. Hence, it is expected that the overall segmentation results would improve if
the effective texture features extracted from different image domains could be adopted in
conjunction with color for region characterization. As mentioned in Section 2, we propose
using the bit-plane-dependence probability model to characterize local region information
in various image domains and incorporating (4) into the energy functional (5).

The Proposed Model

Let I0 be a color image and I1 be the associated gray-scale image. We assume that the
spatial image components of I1 in a particular region Ωj are independent and identically

distributed (i.i.d.) samples generated by a family of probability distribution P1
j

(
I1
∣∣φ1

j

)
,

where φ1
j is the parameter of the distribution P1

j . To utilize the region information extracted
from other image domains, we let

{
Ψq : q = 2, 3, . . . , Q

}
be a collection of image transform

operators which transform I1 into a series of transformed images {Iq : q = 2, 3, . . . , Q}
in the associated image domains, i.e., Iq = Ψq(I1). In the same region Ωj, we further
assume that the region components of the respective image domain are i.i.d. samples
generated by a family of probability distribution Pq

j

(
Iq|φq

j

)
, where φ

q
j is the parameter of

the distribution Pq
j . To integrate the model (4) into the energy functional (5), we use BDPM

for all probability distributions
{

Pq
j : j = 1, 2, . . . , N; q = 1, 2, . . . , Q

}
. That is,

Pq
j (Iq|φq

j ) =
(

pq
0j

)yq
0
(1− pq

0j)
1−yq

0
m−1
∏
i=1

(
λ

q
ij

)yq
i−1yq

i
(1− λ

q
ij)

yq
i−1(1−yq

i )

×
(

pq
ij−λ

q
ij pq

i−1j

1−pq
i−1j

)(1−yq
i−1)y

q
i
(

1− pq
ij−λ

q
ij pq

i−1j

1−pq
i−1j

)(1−yq
i−1)(1−yq

i )
(7)
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where φ
q
j =

{(
pq

0j, pq
ij, λ

q
ij

)
: i = 1, 2, . . . , m− 1

}
. In addition, the CIELAB color feature

with the L2-norm as a dissimilarity measurement is incorporated into (5) to capture pixel-
level information. The CIELAB color space is adopted because it is perceptually uniform
with respect to human color vision and performs well in various applications. Then, we
obtain the following fuzzy bit-plane-dependence region competition energy functional:

E(φ, C, U) =
N

∑
j=1

∫
Ω

∣∣∇uj
∣∣dx + α0

N

∑
j=1

∫
Ω

uj

(
I0 − cj

)2
dx−

Q

∑
q=1

αq

N

∑
j=1

∫
Ω

uj log Pq
j

(
Iq|φq

j

)
dx (8)

subject to the constraints (6), where φ =
{

φ
q
j : j = 1, 2, . . . , N; q = 1, 2, . . . Q

}
is a

set of parameters for the probability distributions
{

Pq
j : j = 1, 2, . . . , N; q = 1, 2, . . . , Q

}
,

C =
{

cj : j = 1, 2, . . . , N
}

is a set of CIELAB color parameters, U =
{

uj : j = 1, 2, . . . , N
}

is a fuzzy membership function, and
{

αq : q = 0, 1, 2, . . . , Q
}

are fixed parameters.
Note that the major drawback of (8) is that the misclassification of an image pixel

would occur because of the noise or statistical fluctuation of data in various image domains,
as only a single sample is taken from each probability distribution. To overcome this short-
coming, we propose incorporating the neighboring information around each pixel into (8).
Let WM

x be an M× M window centered at pixel x. For each image domain, the probabil-

ity distribution Pq
j

(
Iq|φq

j

)
is replaced by

(
∏WM

x
Pq

j

(
Iq|φq

j

))1/M2

, which is the geometric

mean of BDPM over WM
x . In fact, log Pq

j

(
Iq|φq

j

)
is replaced by

(
1/M2)∑WM

x
log Pq

j

(
Iq|φq

j

)
,

which is the average of log-likelihood functions over WM
x . Hence, we can rewrite the energy

functional (8), as follows:

E(φ, C, U) =
N
∑

j=1

∫
Ω

∣∣∇uj
∣∣dx + α0

N
∑

j=1

∫
Ω uj

(
I0 − cj

)2dx

−
Q
∑

q=1
αq

N
∑

j=1

∫
Ω uj

(
log
(

∏WM
x

Pq
j

(
Iq|φq

j

))1/M2)
dx

(9)

We remark that the CIELAB color characterizes pixel-level information whereas the
windowed BDPM model captures region-level information. In addition, the energy func-
tional (9) not only provides local region information in the spatial domain, as in the original
and existing region competition models, but also provides local region information ex-
tracted from other image domains (i.e., when q = 2, 3, . . . , Q), which is expected to improve
the overall segmentation performance.

4. The Optimization Procedure

The minimization of (9) with the BDPM model (7) and the constraints of (6) form
a class of constrained nonlinear optimization problems whose solutions are unknown.
Various methodologies can be used to minimize the energy functional, such as curve
evolution via the level-set formulation or alternating minimization method. In this paper,
we shall use the alternating minimization procedure and make use of the fast duality
projection algorithm of Chambolle [39]. Note that the data fidelity and regularization terms
in the energy functional are coupled, thus we introduce a collection of auxiliary variables
V =

{
vj : j = 1, 2, . . . , N

}
to decouple these two terms. Specifically, we shall approximate

(9) by replacing uj with vj in the regularization term and adding convex terms that force uj
and vj to be sufficiently close:

E(φ, C, U, V) =
N
∑

j=1

∫
Ω

∣∣∇vj
∣∣dx + 1

2θ

N
∑

j=1

∫
Ω

(
vj − uj

)2dx

+α0
N
∑

j=1

∫
Ω uj

(
I0 − cj

)2dx−
Q
∑

q=1
αq

N
∑

j=1

∫
Ω uj

(
log
(

∏WM
x

Pq
j

(
Iq|φq

j

))1/M2)
dx

(10)
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where θ is a small positive constant such that uj is sufficiently close to vj with respect to the
L2-norm. In what follows, the alternating minimization procedure is adopted to perform
the optimization of (10).

4.1. CIELAB Color Parameter

Fixing φ, U and V, we compute C =
{

cj : j = 1, 2, . . . , N
}

by setting

∂Eφ,U,V(C)
∂cj

=
∫

Ω
uj

(
I0 − cj

)
dx = 0

It is straight forward to demonstrate that

ĉj =

∫
Ω uj I0dx∫

Ω ujdx
,j = 1, 2, . . . , N, (11)

which is simply the CIELAB color weighted by the fuzzy membership function.

4.2. Windowed BDPM Parameter

Fixing C, U, V, we solve φ =
{

φ
q
j : j = 1, 2, . . . , N; q = 1, 2, . . . Q

}
with

φ
q
j =

{(
pq

0j, pq
ij, λ

q
ij

)
: i = 1, 2, . . . , m− 1

}
by minimizing

EC,U,V(φ) =
Q

∑
q=1

αq

N

∑
j=1

∫
Ω

uj

⎛⎜⎝log

⎛⎝∏
WM

x

Pq
j

(
Iq|φq

j

)⎞⎠1/M2⎞⎟⎠dx. (12)

Taking the partial derivatives of (12) with respect to pq
ij and λ

q
ij followed by setting

them to zero leads to

p̂q
i,j =

∫
Ω uj

(
1

M2

∫
WM

x
yq

i dz
)

dx∫
Ω ujdx

,i = 0, 1, . . . , m− 1;j = 1, 2, . . . , N;q = 1, 2, . . . , Q, (13)

λ̂
q
i,j =

∫
Ω uj

(∫
WM

x
yq

i−1yq
i dz
)

dx∫
Ω uj

(∫
WM

x
yq

i−1dz
)

dx
,i = 1, 2, . . . , m− 1;j = 1, 2, . . . , N;q = 1, 2, . . . , Q. (14)

In (13) and (14), the estimators are the weighted local sample mean of 1-bit occurrence,
and the weighted local average of 1-bit occurrence in successive bit-planes, respectively,
within a window for each region in a particular image domain. It is important to remark
that the windowed BDPM parameter has a closed-form solution, which implies that it
can be obtained efficiently via only the bit-plane extraction. Note that when M = 1, the
neighboring information is neglected and only pixel-level bit-plane information is captured,
whereas the region-level bit-plane information is extracted through the windowed BDPM
when M > 1.

4.3. Total Variation Minimization

Fixing φ, C and U, we compute V by minimizing

Eφ,C,U(V) =
∫

Ω

∣∣∇vj
∣∣dx +

1
2θ

∫
Ω

(
vj − uj

)2dx

which can be solved efficiently using the Chambolle’s fast duality projection algorithm [39].
Then, the solution is given by

v̂j = uj − θdiv kj, (15)
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where div is the divergence operator. The vector kj can be computed using a fixed-point algorithm:

kn+1
j =

kn
j + τ∇(div kn

j − uj/θ)

1 + τ
∣∣∣∇(div kn

j − uj/θ)
∣∣∣

with initial value k0
j = 0 and 0 < τ ≤ 1/8 to ensure the convergence of the algorithm [39].

4.4. Fuzzy Membership Function

Fixing φ, C and V, we solve U by minimizing

Eφ,C,V(U) = 1
2θ

N
∑

j=1

∫
Ω

(
vj − uj

)2dx + α0
N
∑

j=1

∫
Ω uj

(
I0 − cj

)2dx

−
Q
∑

q=1
αq

N
∑

j=1

∫
Ω uj

(
log
(

∏WM
x

Pq
j

(
Iq|φq

j

))1/M2)
dx

subject to

(i)
N

∑
j=1

uj = 1, (ii) 0 ≤ uj ≤ 1,j = 1, 2, . . . , N.

Equivalently, we can minimize the energy

Ẽφ,C,V(U) =
1
2θ

∫
Ω

N

∑
j=1

(
Hj − uj

)2dx + K,

subject to the same constraints (i) and (ii), where

Hj = vj − α0θ
(

I0 − cj

)2
+ θ

Q

∑
q=1

αq

⎛⎜⎝log

⎛⎝∏
WM

x

Pq
j

(
Iq|φq

j

)⎞⎠1/M2⎞⎟⎠
and

K = − 1
2θ

N

∑
j=1

∫
Ω

Hj
2dx

Note that both constraints (i) and (ii) apply to membership function independently
for each point x ∈ Ω. Hence the minimizer Û of Ẽφ,C,V is also the pointwise minimizer of

the function f (U) = ∑N
j=1
(

Hj − uj
)2 subject to the same constraints. That is, for each point

x ∈ Ω, Û(x) is the solution to the problem

min
U

N

∑
j=1

(
Hj(x)− uj(x)

)2,

subject to

(i)
N

∑
j=1

uj(x) = 1, (ii) 0 ≤ uj(x) ≤ 1,j = 1, 2, . . . , N.

The above minimization problem is exactly the problem of computing the Euclidean
projection of the vector H(x) = [H1(x), · · · , HN(x)] on the probability simplex ΔN . Ac-
cording to [40], the projection z of a vector y ∈ RN onto ΔN can be expressed as zi =
max{yi + λ, 0}, where i = 1, 2, . . . , N, and λ is the Lagrange multiplier chosen such that
the constraint ∑N

i=1 zi = 1 holds. An algorithm to compute λ, with y = H(x), con-
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sists of the following steps. Firstly, we reorder the components
{

Hj(x) : 1 ≤ j ≤ N
}

into
H(1)(x) ≥ H(2)(x) ≥ · · · ≥ H(N)(x), and find the integer ρ(x) such that

ρ(x) = max

{
j : Hj(x) +

1
j

(
1−

j

∑
i=1

Hi(x)

)
> 0

}

Then, the Lagrange multiplier λ(x) can be computed as

λ(x) =
1

ρ(x)

(
1−

ρ(x)

∑
i=1

H(i)(x)

)

Finally, the minimizer Û of Ẽφ,C,V , which is also the projection of H(x) on ΔN for each
x ∈ Ω, is given by

ûj = max
{

Hj + λ, 0
}

, j = 1, 2, . . . , N. (16)

4.5. The Overall Implementation

The optimization of (9) is performed by the alternating minimization between φ, C
and U. The fuzzy bit-plane-dependence region competition algorithm (Algorithm 1) is
summarized below. The overall implementation of the proposed method is shown in
Figure 1.

Algorithm 1 Fuzzy Bit-plane-dependence Region Competition Algorithm

Input: Input image I, number of regions N, number of bit-planes m, number of
image domains Q, regularization parameters αq, q = 0, 1, . . . , Q, size of window M,
parameters of Chambolle’s fast duality projection algorithm θ and τ, initial fuzzy
membership function U 0 and parameter of termination criterion ε.
Output: Optimal fuzzy membership function Ûopt

Step 1:
Compute the color and windowed BDPM parameters (C and φ) using (11), (13) and
(14), respectively.

Step 2:
Compute the auxiliary variable and fuzzy membership function (V and U) using
(15) and (16), respectively.

Step 3:
Repeat Step 1 and Step 2 till termination. The termination criterion is∣∣∣Unew −Uold

∣∣∣
∞
< ε, where ε is a small positive constant.

 
Figure 1. The overall implementation of the proposed method.

In order to visualize the segmentation results and compare our method with the exist-
ing approaches, as reported in the following section, the defuzzification process is performed
as follows. Given the optimal fuzzy membership function, Ûopt =

{
ûopt

j : j = 1, 2, . . . , N
}

, ob-
tained from the algorithm above, the final segmentation result is constructed by assigning
each pixel a label j∗ where j∗ = argmax

j
ûopt

j .

5. Experiments

5.1. Experimental Setting

The proposed method is applied to real-world natural images. Unless otherwise
specified, we fix the parameters, which achieve the best results, in all the following experi-
ments: m = 8, θ = 1.0, τ = 0.125, M = 25, α0 ∈ [0.0001, 0.005], αq = 50α0, q = 1, 2, . . . , Q,
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and ε = 10−2. To characterize local region information in various image domains us-
ing the windowed BDPM model, a collection of transformed images {Iq : q = 2, 3, . . . , Q}
should be generated. In this paper, we use 3-level wavelet transform (i.e., Q = 10) fol-
lowed by the Hilbert transform to construct the transformed images. We simply report
results of 3-level wavelet transform since our segmentation results reveal that 3-level
decomposition is good enough to capture essential wavelet information and usually per-
forms better than the others. Note that when 4-level decomposition is used, the subband
information at the highest level is redundant and does not enhance the segmentation
performance. To obtain the transformed images, we first index each wavelet subband
q = {2, 3, . . . , 10} = {(l, θ) : l = 1, 2, 3; θ = (H, V, D)}, where l denotes the level of wavelet
decomposition and θ is the direction with H, V and D representing horizontal, vertical,
and diagonal directions, respectively. Evaluation of all possible wavelet transforms, and
filter banks is beyond the scope of this paper; thus, we focus on undecimated wavelet
transform (UWT) with Symlets filter bank. Dissimilar to the traditional discrete wavelet
transform in which downsampling is performed in each decomposition level, UWT is used
so that the filtered image is not subsampled, and therefore, each subband is the same size
as the original image. It is important to remark that the UWT coefficients may exhibit
a wide spectrum of sinusoidal oscillation, which affects the image variation modeling
performance, leading to the degradation of segmentation accuracy. Thus, we narrow down
the spectrum of sinusoidal oscillation by applying the Hilbert transform [41] to the UWT
coefficients and consider their magnitude to obtain the transformed image. Mathematically,
let C(l,b) be the UWT coefficients of the corresponding qth subband and H(C(l,b)) be the
Hilbert transform of C(l,b). Then the transformed image is given by Figure 2

Iq = 255×

∣∣∣H(C(l,b))
∣∣∣−min

∣∣∣H(C(l,b))
∣∣∣

max
∣∣∣H(C(l,b))

∣∣∣−min
∣∣∣H(C(l,b))

∣∣∣ .
To quantify the effectiveness of the proposed method, we use three measures, namely:

segmentation covering [42], F-measure [43] and Jaccard index [44]. The segmentation
covering (SC) measures the overlap of regions of the final segmentation and the regions
of the ground truth, F-measure (F) is defined as a harmonic mean of precision and recall,
while Jaccard index (JI) measures the intersection over the union of the labelled segments.

5.2. Comparative Segmentation Results

We compare the proposed fuzzy bit-plane-dependence region competition (FBRC)
algorithm with several state-of-the-art variational-based, superpixel-based and deep-
learning-based approaches, namely: fuzzy region competition with Gaussian mixture
model (FRCGMM) [33], L1 fuzzy segmentation (L1FS) [25], piecewise constant fuzzy re-
gion competition (PCFRC) [2], superpixel-based fast fuzzy c-means clustering (SFFCM) [45],
automatic fuzzy clustering framework (AFCF) [46], backpropagation (BP) [47] and differen-
tiable feature clustering (DFC) [48] algorithms using the well-known Microsoft research in
Cambridge dataset [49], Berkeley segmentation dataset 500 [50], Weizmann segmentation
evaluation (WSE) database [51] and PH2 database [52]. In the implementation of the
above algorithms, we have tried different combinations of parameters to obtain the best
possible performance.

Figure 2 displays the comparative segmentation results. In this experiment, we shall
simply assess their performance based on visual satisfaction. The following are some
discussions about the algorithms and main points observed from the figures.
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Figure 2. Comparative segmentation results for various algorithms. (a–j) are images from [49–52]. The 1st to the 8th
columns are the results for FRCGMM, L1FS, PCFRC, SFFCM, AFCF, BP, DFC and FBRC, respectively.
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(1) The segmentation results of the proposed method for all images are visually satisfying
whereas the rest gives unsatisfactory performance for some images. Specifically,
the variational-based FRCGMM, L1FS and PCFRC and superpixel-based SFFCM
and AFCF perform similarly while the deep-learning-based BP and DFC provide
undesirable results. The success of FBRC is mainly due to the fact that it adopts the
CIELAB color feature to capture pixel-level information and the windowed BDPM
model to characterize region-level information while the rest employs only pixel-
level information in a particular image domain. In addition, the proposed method
incorporates additional information from various image domains to further enhance
the segmentation accuracy;

(2) The proposed method usually adheres well to object boundaries for all images, but
other approaches give approximated object boundaries for some cases, see, for in-
stance, the segmented boundaries of Figure 2d by FRCGMM, Figure 2b by SFFCM,
and Figure 2h by DFC. Essentially, the unsatisfactory boundary adherence of the cases
reveals the insufficiency of feature representation adopted by these methods. Note
that the proposed method uses the windowed BDPM to characterize local region
information and the window may straddle multiple objects in the image, and thus,
the quality of the neighboring information in the window will degrade. Nevertheless,
the use of windowed BDPM to capture region information from multi-domain pro-
vides additional information so that our proposed method can still capture the object
boundaries well;

(3) The proposed method performs better than the other algorithms in terms of mis-
segmentation of object parts. For instance, L1FS mis-segments the “Sky” in Figure 2d,
AFCF mis-segments the “Rake” in Figure 2e, and BP mis-segments the “Cow” in
Figure 2c. Similar examples can also be found in other images. The results clearly
indicate that the use of windowed BDPM model to characterize texture patterns is
shown to be effective in most cases, see, for instance, the “Tree” in Figure 2b.

Figure 3 shows the comparative segmentation results with the provided ground
truths, which are obtained by asking human subjects to manually segment the images
into various object parts for all of the algorithms. As can be seen, the segmentation
results of Figure 3 for FBRC are visually satisfying and the proposed method outperforms
other algorithms for all images. As previously mentioned, this is mainly because most
algorithms use a single feature in a particular image domain to characterize image regions,
but our method adopts both the color and multi-domain windowed BDPM model to
capture essential pixel and region levels information. In addition, we also remark that the
proposed method adopts BDPM to capture texture information, and thus, our algorithm
can segment images with low color contrast and complex textured patterns. Table 1 reports
the average quantitative measures for all the algorithms using the WSE database. As
far as the segmentation accuracy is concerned, we observe that the variational-based
and superpixel-based algorithms perform similarly, and FBRC outperforms the recently
developed deep-learning-based algorithms. Lastly, it is important to emphasize that the
proposed method generally performs better than all other algorithms in the sense that it
achieves the best measures in SC, JI and F.

To provide an additional justification of our approach, we shall compare the proposed
method with the aforementioned approaches using the PH2 database, which consists
of 200 dermoscopic images of melanocytic lesions. Table 2 shows the corresponding
quantitative results. As with the results of the WSE database, both variational-based and
superpixel-based methods have similar performance, and FBRC performs better than the
deep-learning-based algorithms. Compared with the current state-of-the-art methodologies,
the results clearly reveal the superior performance of the proposed method.
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Figure 3. Comparative segmentation results for various algorithms. (a–j) are images from [49–52]. The 1st to the 8th
columns are the results for FRCGMM, L1FS, PCFRC, SFFCM, AFCF, BP, DFC and FBRC, respectively.
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Table 1. Quantitative comparisons of various approaches for WSE database. The best results are
highlighted in bold.

Methods SC JI F Time (s)

FRCGMM 0.799 0.666 0.765 45.282
L1FS 0.758 0.644 0.748 72.296

PCFRC 0.821 0.687 0.773 39.619
SFFCM 0.798 0.671 0.766 0.815
AFCF 0.801 0.657 0.751 0.673

BP 0.726 0.408 0.496 97.358
DFC 0.640 0.420 0.528 79.903

FBRC 0.829 0.701 0.788 31.473

Table 2. Quantitative comparisons of various approaches for PH2 database. The best results are
highlighted in bold.

Methods SC JI F Time (s)

FRCGMM 0.765 0.674 0.778 35.431
L1FS 0.814 0.712 0.800 35.912

PCFRC 0.807 0.665 0.753 26.769
SFFCM 0.723 0.659 0.773 4.561
AFCF 0.690 0.591 0.711 4.609

BP 0.805 0.471 0.543 285.990
DFC 0.626 0.285 0.373 195.900

FBRC 0.821 0.739 0.827 25.783

5.3. Parameter Sensitivity

In this subsection, we analyze the sensitivity of parameters to the segmentation perfor-
mance. In the Chambolle’s fast duality projection algorithm, we set θ = 1.0 and τ = 0.125.
Our experiments show that changing the values of θ and τ will not affect the segmentation
results unless the values of θ and τ are sufficiently large. In fact, the algorithm of Chambolle
may not converge if τ > 0.125 [39]. To update the windowed BDPM parameter during
the optimization process, the window of size M = 25 is used. Here, we study the effect of
window size to the segmentation accuracy by comparing the performance for different
values of M. Figure 4 displays some visual examples when M = 1, 25, 50 and 75, and
Table 3 reports the average quantitative measures using different window sizes for the
WSE database. While the segmentation results are generally satisfactory, we notice that the
performance is inferior when the window size is sufficiently small/large, see, for instance,
Figure 4a when M = 1 and Figure 4b when M = 75. This phenomenon can be understood
as follows: the larger the window size, the smaller the segmentation error because larger
window provides more statistical information for image variation modeling. Nevertheless,
when the window is sufficiently large, the segmentation error increases since the window
may straddle multiple image regions, and thus, the information extracted from the win-
dows centered at the pixels near the region boundaries could be inaccurate. On the other
hand, when the window size is small, the quality of image variation modeling will degrade
which would increase the segmentation error. When M = 1, the neighboring information is
neglected, and the promising segmentation results may not be achieved since only a single
sample is taken from the probability distribution. As evident in our experiments, setting
the window of size M = 25 is suffice for achieving satisfactory segmentation results. It is
important to remark that in the case when the neighboring information is neglected (then
(9) reduces to (8)), the use of the BDPM model for region characterization from various
image domains can provide additional information to discriminate regions with similar
spatial statistics, which in turn improves the segmentation performance. Lastly, we shall
investigate the effectiveness of the BDPM model in the proposed energy functional by
comparing the segmentation performance between αq = 0 and αq > 0 for q ≥ 1. When
αq = 0, the BDPM model in the energy functional is neglected while it is adopted when
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αq > 0. Figure 5 displays some visual examples. As can be seen, the results for αq > 0
performs better than that for αq = 0, see, for instance, the “neck of goat” in Figure 5a,
the “tail of the plane” in Figure 5c and the “hair of lady” in Figure 5d. Table 4 reports
the average quantitative performance for the effectiveness of BDPM to the segmentation
performance for the WSE database. We observe that the three measures, namely, SC, JI
and F, for αq > 0 performs better than the cases when αq = 0. These results qualitatively
and quantitatively justify that the use of BDPM model for region characterization from
multi-domain can improve the segmentation performance.

    
(a) 

    
(b) 

Figure 4. Effectiveness of window size to the segmentation results. (a,b) are images from [49,50]. The 1st to the 4th columns
are the results for M = 1, M = 25, M = 50 and M = 75, respectively.

Table 3. Quantitative comparisons using different window sizes for WSE database. The best results
are highlighted in bold.

M SC JI F

1 0.829 0.692 0.779
25 0.829 0.701 0.788
50 0.828 0.689 0.777
75 0.827 0.688 0.776

5.4. Computational Cost

All of the experiments have been implemented on the Intel Core i7-6700HQ laptop.
Tables 1 and 2 list the average computation times of all methods for WSE and PH2 databases,
respectively. Briefly speaking, the superpixel-based methods are the fastest since they
simply perform standard fuzzy c-means clustering on the superpixels while the deep-
learning-based algorithms have high computational cost because they require optimizing
complex convolutional neural networks. FRCGMM and LIFS are slower than PCFRC. This
may be explained by the fact that FRCGMM performs highly precise fitting of data with
Gaussian mixture model, and that L1FS introduces two sets of auxiliary variables and
requires solving a collection of sub-problems based on the alternating direction methods of
multipliers. The computation time for FBRC is slightly shorter than PCFRC. Both methods
adopt the alternating minimization procedure and apply the Chambolle’s fast duality
projection algorithm to solve the total variation minimization problem to speed up the
segmentation process.
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(a) (b) (c) (d) 

Figure 5. Effectiveness of BDPM to the segmentation results. (a–d) are images from [49,50]. First row: αq = 0, q ≥ 1. Second
row: αq > 0, q ≥ 1.

Table 4. Quantitative comparisons for the effectiveness of BDPM to the segmentation performance
for WSE database. The best results are highlighted in bold.

SC JI F

αq = 0, q ≥ 1 0.818 0.695 0.780
αq > 0, q ≥ 1. 0.829 0.701 0.788

6. Conclusions

In this paper, we have presented a novel multiphase image segmentation model based
on fuzzy region competition and statistical image variation modeling. In the proposed
energy functional, each region is characterized by the color and spatial/frequency infor-
mation modeled by the windowed bit-plane-dependence probability models in various
image domains, and is represented by the fuzzy membership function. We have em-
ployed the alternating minimization procedure in conjunction with the Chambolle’s fast
duality projection algorithm to minimize the energy functional, where its closed-form
solutions are obtained. Comparative experiments have demonstrated the effectiveness of
our proposed method.

While the proposed method provides satisfactory segmentation performance, we shall
study the following as future work. Firstly, a few parameters in the algorithm need to be
manually selected in order to achieve promising results. Nevertheless, our experiments
reveal that selecting a value for each parameter in a certain range is good enough to provide
similar performance. In fact, some parameters have significant impact to the segmentation
accuracy. Specifically, an automatic parameter selection scheme for αq, q ≥ 0 is necessary
so that these parameters can be adaptively adjusted during the optimization procedure,
which may improve the segmentation results. Secondly, we use the wavelet and Hilbert
transforms to construct the transformed images in all our experiments. However, various
image domains are available in the literature and can be adopted in our case. Thus, the
selection of image domains and their advantages for image segmentation (or in a specific
application domains) should be investigated.
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Abstract: GPS sensors are widely used to know a vehicle’s location and to track its route. Although
GPS sensor technology is advancing, they present systematic failures depending on the environmental
conditions to which they are subjected. To tackle this problem, we propose an intelligent system
based on fuzzy logic, which takes the information from the sensors and correct the vehicle’s absolute
position according to its latitude and longitude. This correction is performed by two fuzzy systems,
one to correct the latitude and the other to correct the longitude, which are trained using the MATLAB
ANFIS tool. The positioning correction system is trained and tested with two different datasets. One
of them collected with a Pmod GPS sensor and the other a public dataset, which was taken from
routes in Brazil. To compare our proposal, an unscented Kalman filter (UKF) was implemented. The
main finding is that the proposed fuzzy systems achieve a performance of 69.2% higher than the
UKF. Furthermore, fuzzy systems are suitable to implement in an embedded system such as the
Raspberry Pi 4. Another finding is that the logical operations facilitate the creation of non-linear
functions because of the ‘if else’ structure. Finally, the existence justification of each fuzzy system
section is easy to understand.

Keywords: localization; fuzzy systems; unscented Kalman filter; adaptive neuro-fuzzy inference
system (ANFIS); GPS; autonomous navigation

1. Introduction

The absolute location of a ground vehicle is the starting point for any autonomous
movement and it is of vital importance to reduce the error in the accuracy of GPS receivers
to ensure the safety of passengers. The main objective of this work is to obtain an intelligent
system capable of improving the accuracy in the estimation of the absolute position of a
land vehicle without relying on high-cost sensors or hardware with high computational
power, as a first step to develop a low-cost autonomous electric navigation car.

On the other hand, the reduction of the triangulation error to calculate the location
of the GPS receiver is the most outstanding contribution of this work, since the average
accuracy of the estimated location is increased from 3 m to 30 cm. However, it also
contributes from the electronic point of view, since simple logical operations, addition,
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and division, are used to implement the fuzzy system in a small embedded system such
as the Raspberry Pi 3 in a simple way. Compared to Kalman filters, it is not necessary to
know the nature of the noise. Moreover, because the fuzzy system has a structure that
converts numerical values to logical rules and vice versa, the knowledge base can be easily
understood, which is in contrast to neural networks [1].

The proposal of the present work consists of implementing a pair of fuzzy systems that
have the direct responsibility of correcting the latitude and longitude coordinate coming
from the GPS sensor, avoiding complex mathematical operations, and obtaining a complete
location system embedded in an electric car. Contrasting with what is found in the state
of the art where it is more common to find fuzzy logic as a tool of artificial intelligence
complementary to more classical techniques in the subject of location and tracking of land
vehicles such as the Kalman filter. For example, in [2], the unscented Kalman filter (UKF)
is combined with the unscented H-infinity (UH) filter in order to reduce the accuracy
error when tracking the position of a ground vehicle as it travels along a defined route.
This system uses fuzzy logic to automatically weight whether the UKF or the UH will act
at a given instant along that route, presenting an error reduction of approximately 5.6%
in the estimation, with respect to that of the pure UKF, improving the accuracy of the
GPS receiver.

In [3], the design of a fuzzy system that adaptively modifies the extended Kalman
filter (EKF) noisy covariances by fusing data from GPS, IMU, an odometer (at each wheel)
and the mathematical model of the vehicle is shown. In this work, an improvement (on
average) in the accuracy of the absolute position of the vehicle of about 49% is shown,
making the response of the proposed algorithm superior to that of the original Kalman
filter. Similarly, in [4] there is a four-wheeled robot where the EKF is used to fuse data from
a GPS, IMU, odometers on the wheels, and additionally a camera on the front of the robot; a
fuzzy system is designed to modify the noisy covariances of the EKF. The main objective of
this proposal is to strengthen the accuracy in the estimation of the trajectory to be followed
by the robot, achieving an average accuracy improvement of 80.6% with respect to the
EKF correction. On the other hand, [5] seeks to improve the movement of a two-wheeled
robot in environments with many obstacles. This is done by using measurements from a
GPS sensor and an adaptive neuro-fuzzy inference system (ANFIS) as control techniques;
obtaining a system capable of evading obstacles and estimating the best route for the robot
to travel.

In parallel, other artificial intelligence techniques are also currently being applied
to improve the response of the Kalman filter. As in [6] where they propose the use of
a recurrent neural network (RNN) to adaptively modify the input values of a network
real-time kinematic (NRTK) that fuses data from a GPS and an IMU and the kinematic
model of the car in real time. This is done in order to improve the tracking of the trajectory
of a car with an embedded sensor system, reducing the location accuracy error to 67.71% on
average. In [7], the authors use the variation of the Kalman filter, the cubature Kalman filter
(CKF), to adaptively modify the noisy covariances creating the strong tracking cubature
Kalman filter. The algorithm proposed in this work manages to improve the position
estimation of a vehicle with GPS and IMU sensors coupled, obtaining an average error
reduction of 56% with respect to the original version of the CFK when traveling along a
route. On the other hand, in [8] a classification algorithm is developed that combines a
convolutional neural network (CNN) mathematical model of different types of vehicles
and data coming from a GPS sensor to analyze the trajectory travelled by the sensor to
determine what type of vehicle is making the journey. The authors report a classification
accuracy of over 74%.

Again in [9], the authors present a fuzzy logic system capable of determining the
position of a moving robot in a shaded indoor environment (such as a tunnel or a covered
car park). Using GPS data and analyzing the chromaticity and frequency-component ratio
of the LED lights installed in the ceiling and compared to a navigation potential system.
The fuzzy system achieves, in the best case, an advantage of up to 89%. Similarly, in [10], a
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combination of fuzzy logic and optimal control theory is proposed to control the motors of
a racing car and achieve its displacement along a specific route without a driver. This is
done by taking advantage of the data provided by a GPS sensor, calculating the vehicle’s
yaw angle and using the mathematical model of the car. In this work, the authors achieve
a 30% improvement in the accuracy of vehicle trajectory tracking. In [11], a GPS sensor
is used as a reference and an inertial measurement unit (IMU) delivers data to an inertial
navigation system (INS) to reconstruct a trajectory. The INS by itself has a significant error
and to reduce it an ANFIS is used which has as inputs the IMU data and the error between
the INS and the GPS and as output delivers a corrected estimate of the INS. The authors
manage to reduce the INS error by up to 9.83%.

In [12], a GPS receiver delivers data to an extended Kalman filter (EKF) to track the
position of a car as it travels along a defined route. The EKF alone is not good at estimating
the position of the vehicle when the GPS receives poor signals from the satellites. The
authors propose a fuzzy system that adaptively adjusts the internal parameters of the
Kalman filter, such as the noisy covariances, to improve its estimates when the GPS has a
weak signal. The authors manage to improve vehicle tracking in adverse conditions for the
GPS sensor by up to 70%. In [13], by exploiting the fusion of data from an INS and a GNSS
sensor attached to a vehicle, the authors present a new fuzzy strong-tracking curbature
Kalman filter (FSTCKF) algorithm to improve the CKF response using a fuzzy logic system
and reduce the vehicle trajectory estimation error by 72.3%.

On the other hand, in [14], an algorithm is proposed that joins model free adaptive
control (MFAC) and particle swarm optimization (PSO) techniques to improve the position
tracking of unmanned ground vehicles. For this, they have a GPS, a sensor to measure
the angle of rotation of the wheel (which are fused by the mathematical model of the car)
and an INS. The authors propose a control algorithm that estimates the heading angle (or
direction that the vehicle should have in an instant of time) obtaining a high precision
in both the estimation of the angle and the tracking of the vehicle’s path. In contrast,
in [15], the authors use ultra-wideband (UWB) technology to improve the localization and
tracking accuracy of unmanned ground vehicles (UGV). Three UWB base stations are used
as a cluster in a 2D space for localization. Here, by collecting data from multiple tests,
they developed an algorithm composed of PSO techniques and genetic algorithms (GA)
to implement multiple groups of UWB base stations. The authors report UGV position
estimation accuracies between 20 cm and 60 cm. Finally, in [16], they have a GPS sensor and
an IMU as input to an extended Kalman filter with an adaptation mechanism to remove
noise coming from the IMU and guarantee a better INS response. The authors also develop
a deep learning framework with multiple short to long term memory modules (multi-
LSTM) to predict the vehicle position increment based on the Gaussian mixture model
(GMM) and the Kullback–Leibler (KL) distance. They then combine both algorithms to
optimize the estimation of a vehicle’s position achieving an error reduction of up to 93.9%.

In Section 2, the experiments performed are presented; in Section 3, it is shown how
the absolute position correction fuzzy system was designed; in Section 4, the design to
implement the UKF filter to compare its response with the proposed fuzzy system is
exposed; in Section 5, the results are shown with their discussion and finally in Section 6,
the conclusions are presented.

2. Materials and Methods

For the experimental development of this work we have a data acquisition system
(see Figure 1), which contains the Pmod GPS sensor [17] that receives signals from the GPS
satellite system of the United States of America. There is also a Sense HAT [18] nine-axis
inertial measurement unit to measure the vehicle’s steering angle for use by the Kalman
filter. The data from these sensors is acquired and recorded by a Raspberry Pi 3 using the
Python language. The module is coupled to an electric trolley with which several routes
were travelled (see Figure 2).
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Figure 1. Acquisition data system.

Figure 2. Test routes: (a) route 1, (b) route 2, (c) route 3, (d) route 4.

The collected data were processed by the MATLAB tool anfisedit (adaptive neuro-
fuzzy inference system) for training and testing the proposed fuzzy algorithms. In the same
way, the behavior of the fuzzy systems in the presence of unknown data was evaluated with
the help of the evalfis toolbox. The design and implementation process of the proposed
fuzzy systems is described below.

2.1. The Data Acquisition System

In Figure 1, we show the modular data acquisition system implemented in this work.
The system consists of a GPS Pmod sensor that is used to obtain latitude and longitude
coordinates of the current position and a shield Sense HAT for Raspberry to measure the
current inclination on the three Pich, Roll, and Yaw axes through its accelerometer. All the
register data is stored in CSV format files for post processing on a PC.

To test our system, we traced four routes, which are shown in Figure 2. These routes
were traveled four times in order to generate enough data for the training and validation
of the fuzzy system.

The red markers in Figure 2 correspond to initial and final points from which the lines
that circumscribe the reference are constructed and the blue lines represent the path of the
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data acquisition module along each route. Parameters such as distance traveled, duration,
and velocity are presented in Table 1.

Table 1. Relevant data of the acquisition stage.

Route Distance (m) Time (s) Velocity (m/s)

(a) 1 282.45736 1020 0.276918

(b) 2 282.9798 840 0.336880

(c) 3 151.8607 480 0.316376

(d) 4 104.3988 420 0.248568

From the latitude and longitude data provided by the GPS sensor, we can estimate the
distance traveled by means of the Haversines equation [19] as

d = 2 · r · sin−1(M) (1)

with r = 6371 km (radius or the earth) and M =

√
sin2
(
ϕ2−ϕ1

2

)
+ cosϕ1 · cosϕ2 · sin2

(
λ2−λ1

2

)
.

Here, ϕ are the latitudes and λ the longitudes obtained from the sensors.

2.2. Approximation Data

On the approximation data, the fuzzy system performs a correction from the GPS data
(latitude and longitude). To do this, there is a training stage where, the system indicates the
size, proportion, form, or nature of the mentioned correction. In this stage, reference points
were established on each route (see red markers on each route of Figure 2) and straight
lines were drawn between point and point calculating their equations (see Figure 3).

Figure 3. Sensor data and reference, (a) route 1, (b) route 2, (c) route 3, (d) route 4.

In Figure 3, a green line represents the reference of each route and the black dashed
line represents the data captured by the GPS sensor. Equation (1) is used to calculate the
distance between the coordinates given by the GPS sensor and the midpoints of the straight
lines that make up the routes (Equations (2) and (3)).

ϕm =
ϕ1 +ϕ2

2
(2)
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λm =
λ1 + λ2

2
(3)

with ϕ and λ for latitude and longitude respectively.
In Figure 4, it can be observed how the system performs a correction on route 1 from

a coordinate point (black point) given by the GPS sensor. The distance of the sensor data
to each midpoint of the lines that make up the path of the route is calculated. From the
calculated distances (blue lines in Figure 4), we select the smallest one to determine the
line of reference to which the sensor data should be corrected or approximated.

Figure 4. Distance’s estimation from a point to the line.

Once the minimum distance has been calculated, the data who belongs to the line of
reference is evaluated. From this evaluation, the approximation of the GPS sensor data is
achieved as it is shown in Figure 5.

Figure 5. Data correction, (a) route 1, (b) route 2, (c) route 3, (d) route 4.

The red dots in Figure 5, represent the approximation of the sensor data to the ref-
erence and the black dashed line represents the GPS sensor data and the green straight
lines represent the reference of each route. Once the corrected coordinate points are ob-
tained, they were stored in matrices for training and validation of the fuzzy systems,
which will automatically correct new incoming sensor data. It should be noted that this
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post-processing stage of the data was done offline using a desktop computer with the
characteristics specified Section 2.

This strategy for establishing the fuzzy sets resembles the way a human being would
intuitively calculate the distance of his current position with respect to a specific street; the
issue of establishing the linguistic variables and their intuitive nature is discussed more
extensively in [20,21].

Before using these corrected coordinates (red dots in Figure 5) in the training stage, it
is necessary to apply a data cleaning technique such as removing the outliers. The criterion
used was the distance between the reference and the corrected latitude and longitude data:
when the distance is greater than 3 m then the point is considered an outlier and is removed
from the data set to be used for training. It is important to note that the raw data coming
directly from the GPS sensor was used in the testing stage.

2.3. Fuzzy System Design

In this work, we use the ANFIS toolbox [22], which allows us to generate a MISO (mul-
tiple input, single output) fuzzy inference system based on the Takagi Sugeno method [23].
With this toolbox, the fuzzy system can simultaneously perform a correction from two
inputs, latitude and longitude. In this regard, we generated two fuzzy systems one for
latitude correction and the other one for longitude correction. Both fuzzy systems receive
the same information from the sensor. The data used for training and validation is shown
in Table 2. This is the data collected with the sensor for each route. This is illustrated
in Figure 6, where 6a and 6b correspond to the training setup of the two fuzzy systems.
Figure 6c represents the system on the testing stage.

Table 2. Datasets for the fuzzy systems.

Route Training Data Validation Data Total

1 751 250 1001

2 645 215 860

3 356 118 474

4 412 102 514

Figure 6. Fuzzy system design, (a) Fuzzy system 1 (training): Latitude; (b) Fuzzy system 2 (training):
Longitude; (c) Testing both fuzzy systems.
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From the training we found that the fuzzy systems for latitude and longitude cor-
rection were designed with 5 and 3 gaussian membership functions of type two [24],
respectively, it is 25 and 9 fuzzy rules for each. For both systems, linear type membership
functions were defined at the output. The results of the training stage for both fuzzy
systems are shown in Table 3.

Table 3. ANIFS training output.

Fuzzy System MF Input Lat MF Input Lon MF Output Fuzzy Rules RMSE (Train)

Latitude 5 gaussian type 2 5 gaussian type 2 linear 25 4.29× 10−7

Longitude 3 gaussian type 2 3 gaussian type 2 linear 9 1.1× 10−4

The selection of the membership functions was carried out by means of an optimiza-
tion process that consisted of varying both, the number of functions for each input and their
type (triangular, trapezoidal, Gaussian, and Gaussian type two). From this, we observed
the effect at the output for the different configurations and that with the best performance
on each fuzzy system is presented in Table 3.

To choose an adequate number on the membership functions that guarantees best
compromise between a low error and a minimum number of membership functions, a
tuning was performed on each fuzzy system. Multiple tests were launched varying the
number of membership functions for each entry in both fuzzy systems, results are presented
in Table 3.

After training, MATLAB’s evalfis tool [25] was used to evaluate them with the test
data. From the evaluation of both fuzzy systems, two vectors were obtained with the
corrected latitude and longitude outputs.

Figure 7 graphically shows the output of each system for the testing data. Figure 7a,b
shows the operating range of the fuzzy system correcting latitude and longitude respec-
tively; having as input the GPS sensor data. To compare our results, we implemented the
unscented Kalman filter (UKF) and results are presented below.

Figure 7. Fuzzy systems testing, (a) Fuzzy system 1 (testing): Latitude; (b) Fuzzy system 2 (test-
ing): Longitude.
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2.4. Kinematic Model of Car and Tuning of UKF

The UKF takes the data from the inertial measurement unit (IMU) that measures the
rotation angle of the front vehicle wheels and the GPS sensor, which estimates the vehicle
position located in the center of the axis of the rear wheels as shown in Figure 8.

 

Figure 8. Vector diagram of the car model.

The land vehicle model is linearized as follows:

.
ϕ = ϕ + s ∗ dt ∗ cos(φ) (4)

.
λ = λ + s ∗ dt ∗ sin(φ) (5)

.
φ = φ + dtφ (6)

.
s = s (7)

where s is the vehicle speed (measured by the GPS); φ the steering angle; ϕ and λ corre-
spond to latitude and longitude respectively (also given by the GPS). Analyzing the vehicle
model in the state space we have the equation

.
X = F ∗ X + B ∗ u (8)⎡⎢⎢⎢⎣

.
ϕ
.

λ
.
∅
.
s

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎤⎥⎥⎦ ∗
⎡⎢⎢⎣

ϕ
λ
∅

s

⎤⎥⎥⎦+

⎡⎢⎢⎣
sin(φ)dt 0
cos(φ)dt 0

0 dt
1 0

⎤⎥⎥⎦ ∗ [ s
∅

]
(9)

where X is the vector states used by the UKF and u the vector of inputs from the sensors
and those used by the UKF.

Table 4 shows a synthesis of the optimization process of the UKF to find the values of
the noisy covariances that would help to improve the filter response without distorting
its output. This process consisted of varying the values of the main diagonals of the Q
(process noisy covariance) and R (measurement noisy covariance) matrices of the UKF
filter [26] and observing its effect at the filter’s. Here, 10 tests were performed and the one
with the best results is shown in row 6 of Table 4.

Equations (10) and (11), show the values of the R and Q covariance matrices for tuning
the UKF, highlighting, those that delivered the best correction response of the sensor data.

Q =

⎡⎢⎢⎣
0.001 0 0 0

0 0.001 0 0
0 0 rad(350) 0
0 0 0 0.001

⎤⎥⎥⎦
3

(10)
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R =

[
0.025 0

0 −0.025

]3

(11)

Table 4. Tuning of the covariances Q and R of UKF.

# Q R

1 ([0.1, 0.1, rad(350), 0.1])× 102 ([0.1,−0.1])̂2
2 ([0.1, 0.1, rad(350), 0.1])× 103 ([0.1,−0.1])× 103

3 ([0.1, 0.1, rad(350), 0.1])× 103 ([0.05,−0.05])× 103

4 ([0.001, 0.001, rad(350), 0.001])× 103 ([0.025,−0.025])× 103

5 ([0.0001, 0.0001, rad(350), 0.0001])× 103 ([0.025,−0.025])× 103

6 ([0.001, 0.001, rad(350), 0.001])×103 ([0.025,−0.025])×103

7 ([0.001, 0.001, rad(350), 0.001])× 103 ([0.025,−0.025])× 103

8 ([0.001, 0.001, rad(350), 0.001]) ×104 ([0.025,−0.025]) ×104

9 ([0.001, 0.001, rad(350), 0.001]) ×105 ([0.025,−0.025]) ×105

10 ([0.001, 0.001, rad(350), 0.001])× 106 ([0.025,−0.025])× 106

The final response of the UKF is obtained and shown in Figure 9, where the correction
made by the Kalman filter is observed. The difference of this correction with respect to the
reference is also observed. For this, the same data of the fuzzy system was used (Table 2).

Figure 9. Sensor data vs. UKF response. (a) route 1, (b) route 2, (c) route 3, (d) route 4.

Figure 9 shows the reference in green, the dashed black line represents the GPS sensor
data and the purple line corresponds to the data correction produced by the Kalman filter.

Additionally, the UKF has a scaling parameter kappa (κ) whose value is 3-L (where
L is the length of the variable to be analyzed, i.e., 2); Beta (β) that incorporates a priori
knowledge of the variable to analyze, in this case it is assumed that the variables have a
gaussian distribution being then, β = 2. Finally, alpha (α) is a parameter that indicates the
propagation through the mean of the variable to be analyzed and it varies between 1 and
1× 10−4, in our case we set this value to 0.01. The selection of these parameters is based on
the recommendations made in [27] and a tuning process to find the most optimal value.
The following section shows, graphically and numerically, the results obtained in both the
fuzzy system and those of the UKF, also a comparison of the two systems is presented.
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3. Results

3.1. Analysis of Results with Our Own Dataset

To facilitate the description of results, we abbreviate fuzzy position correction as FPC.
The comparison between the UKF response (purple) and our method (blue) is graphically
depicted for each route in Figure 10. In such figure both results are also contrasted with the
reference (green). These results are further quantified numerically by means of the RMSE
and presented in Table 5. From the RMSE results observed in Table 5, it is evident that the
proposed fuzzy system improves the absolute vehicle location accuracy by 26% for route 1,
69.2% for route 2, 40% for route 3, and 7% for route 4, compared to the UKF response.

Figure 10. Reference (green) vs. FPC response (blue) vs. UKF (magenta). (a) route 1, (b) route 2,
(c) route 3, (d) route 4.

Table 5. RMSE results of the UKF and fuzzy system (FPC).

Route UKF: RMSE (m) Fuzzy (FPC): RMSE (m)

1 1.989× 10−4 1.490× 10−4

2 7.539× 10−4 2.289× 10−4

3 4.865× 10−4 2.926× 10−4

4 2.698× 10−4 2.510× 10−4

Figure 11 shows the error (in meters) between the UKF output and the reference
(purple), as well as the output of the fuzzy systems and the reference (blue graph). This
graph shows that, for some sections of each trajectory, the error of the fuzzy systems is
smaller than that observed in the UKF, in others the opposite is true or they are similar. This
shows that the designed fuzzy systems have a consistent response and offer a competitive
alternative to the UKF.

It is important to mention that even if the response is similar in most of the cases,
the UKF performs a fusion of data from four inputs (angle of rotation of the front wheels,
vehicle speed, latitude, and longitude) to be able to deliver an estimate of the position of
the vehicle; while the FPC only needs two inputs, those of the GPS (latitude, longitude), to
deliver a better estimate.
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Figure 11. Error: reference vs. fuzzy systems response vs. UKF. (a) route 1, (b) route 2, (c) route 3,
(d) route 4.

Also, the UKF filter needs parameters tuning to obtain the optimal R and Q covariance
values for a more accurate estimate, in addition to the behavior of the random variables
processed by this algorithm setting the values of κ, β, and α. In contrast, the proposed FPC
system is not dependent on any parameters since it only needs the latitude and longitude
data given by the GPS to operate. Table 6 reports the statistical tests of media and variance
that serve as a comparison of the performance of the UKF and the proposed fuzzy FPC
system. For this calculation, the equation 1 of the haversines is used to find the distance of
each point of the output of the fuzzy system FPC and the UKF respect to the reference in
each route.

Table 6. Statistical performance tests (mean and variance).

UKF

Route Mean (m) Variance
(
m2 )

1 1.366× 10−2 4.764× 10−5

2 5.744× 10−2 1.297× 10−3

3 3.755× 10−2 1.039× 10−4

4 1.736× 10−2 1.233× 10−4

FPC (Fuzzy system)

Route Mean (m) Variance
(
m2 )

1 1.300× 10−2 4.983× 10−5

2 5.829× 10−2 1.315× 10−3

3 3.766× 10−2 9.634× 10−5

4 1.852× 10−2 1.114× 10−4

The variance represents the degree of dispersion of the data of a variable with respect
to its mean (in the case of a Gaussian distribution). From Table 6, it is observed that in the
variance calculation test the error variable of the FPC fuzzy system is slightly greater for
the first two routes respect to the variance of the UKF. From this result, it can be inferred
that—as expected—the UKF has more advantage to correct certain data than the fuzzy
system and vice versa.
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3.2. Analysis of Results with Public Dataset

In order to validate the robustness of our method, the public GPS trajectories data
set [28,29] containing about 163 routes or trajectories travelled by car on the streets of
Brazil and recorded with the Android application “Go! Track” was used. This database
is perfectly adapted to the design needs of the proposed fuzzy systems and gives the
possibility to test its performance with data that were not taken by the acquisition system
shown in Section 2.1 and under poorly controlled conditions.

For the test, two random paths were chosen from the dataset and one of them was
used to retrain the designed fuzzy systems (see Figure 12). This retraining is necessary
due to the fact that the coefficients of the Gaussian functions must fit the new data and the
fuzzy systems can perform their task.

 

Figure 12. Route 1: data training, Brazil dataset.

Subsequently, the second route (see Figure 13) was used to validate the performance
of the fuzzy systems under these new conditions. This data was not used in the training.

 
Figure 13. Route 2: data testing, Brazil dataset.
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Finally, in Figure 14 the response of the proposed fuzzy systems to the new data can be
seen. The green graph represents the reference of the route, the black dashed line contains
the input data coming from the sensor (in this case, the data collected by the Go!Track app),
the red dots are the data calculated with the strategy seen in Section 2.2 and finally the blue
dots contain the output of the fuzzy systems.

Figure 14. Route 2: Fuzzy systems output.

The purpose of the fuzzy systems is to get the data represented by the dashed black
line as close as possible to the reference (green plot), in other words, the closer the blue are to
the red dots, the better their performance will be. The red boxes in Figure 14 highlight two
segments of the route where the correction made by the fuzzy systems is most noticeable.

Figure 15 shows the error (in meters), between the sensor measurements and the
reference (green graph); as well as the error between the output of the fuzzy systems and
the reference (in red). From this image, it can be seen that—for most of the data—there is a
reduction of the error when the proposed fuzzy systems are in action.

Figure 15. Error: reference vs. sensor (green) and reference vs. fuzzy systems response (red).

Table 7 shows how the RMSE of the fuzzy system outputs is lower than the error of
the sensors compared to the reference.
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Table 7. RMSE reference vs. sensor and fuzzy system (FPC).

RMSE Sensor vs. Ref (m) RMSE: Fuzzy (FPC) vs. Ref (m)

5.51× 10−4 5.250× 10−4

4. Discussion

According to the results, the Kalman filter manages to reduce errors with decent
performance but needs—as input—data to the covariance matrix that implicitly contains
information on noise parameters. On the other hand, the fuzzy system managed to reduce
the error in a better way without knowing the type of noise of the system because it was
trained in the data region, making it easier and cheaper to implement with respect to
works found in the state of the art. The main disadvantage is that, in order to better exploit
the performance of the systems, retraining needs to be deployed in order to adjust the
parameters of the membership functions when they are tested in geographical areas that are
far away from the original data. The main limitation of the proposed fuzzy systems is that:
if the error in the GPS measurements is too large, the correction of the GPS measurements
will no longer be as effective.

An own data set was collected to take advantage of the data acquisition system
(implemented and described in Section 2.1) since the characteristics of the sensors are
known, such as the sampling period and the precision of each one, facilitating the post-
processing calculations and the use of the information in different applications. Similarly,
as the central limit theorem states, the more data that can be collected on a phenomenon,
the more the distribution function that describes it will approximate the normal function
and most of the data will be clustered around the mean. As shown in Table 8, the RMSE
of both data sets is similar, being lower for the eigendata. Comparing these values with
the information in Table 6, it can be said that they are around the mean of the latitude and
longitude variables.

Table 8. RMSE: reference vs. output fuzzy system (FPC).

Dataset RMSE: Fuzzy (FPC) vs. Ref (m)

Own 2.510× 10−4

Brazil [28,29] 5.250× 10−4

In Table 9, a numerical comparison between the accuracy (concerning the Kalman
filter response) of the developed algorithm (FPC) and the reported in references [2,3,26] is
presented.

Table 9. Maximum accuracy comparison over Kalman filter.

Algorithm Maximum Accuracy over Kalman Filter (%)

FPC 69.2

AFUKHF [2] 56.14

FI-AKF [3] 58.48

Cons.T2FKF [26] 67.53

As shown in Table 9, the proposed algorithm has a maximum accuracy, concerning the
Kalman Filter, higher than that reported in the papers compared. Although, this accuracy
is reduced depending on the route being evaluated (as mentioned above).

5. Conclusions

The proposed FPC fuzzy system delivers competitive GPS data correction with the
UKF response which is less dependent on tuning parameters, making it as easy (in terms
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of processing cost) to use and implement on mobile platforms. The proposed fuzzy system
(FPC) emulates the way in which a human being describes the shape of a route through
lines, so the calculation of these lines is used to approximate the sensor data to the reference.

The response of the fuzzy systems developed in this article improves the accuracy
by up to 69.2% to determine the absolute position of a ground vehicle with respect to
the classical techniques in this subject such as the UKF. Being highly competitive with
techniques developed in the works presented in [2,3,26] (see Table 9). In addition, our
method is less dependent on parameters and sensors, since it only uses GPS data and the
reference for design.

Despite improving the response of the UKF, the proposed fuzzy system is limited
to the region of the GPS map for which it was trained; that is, if the inputs are extremely
different from the data the system was trained in, the FPC prediction will have a large
errors. To solve this, it is necessary to collect a greater amount of data covering a wider
region of the map to retrain the FPC system and expand its scope. Despite this, something
similar happens with the UKF because the covariances R and Q must be re-tuned when the
data changes dramatically.

The proposed fuzzy systems were tested on a public dataset [28,29], having a favorable
performance under poorly controlled conditions both in the way of acquiring the data and
in the geographical area where they were collected. As shown in Figure 14, Figure 15, and
Table 7.

One of the points of improvement (in future work) for the proposed fuzzy systems
is to achieve generalization of their response. This issue can be approached from two
different points of view. The first one can be the collection and processing of the largest
number of routes travelled with the GPS sensor to make a more complete training of the
systems; the second one is to implement fuzzy systems whose training is online, that is,
that the fuzzy systems are trained as the data from the GPS sensor arrives when a route
is travelled.

6. Recommendations

In order to successfully reproduce this work, the data must be compiled in a CSV
file whose first and second column must be the latitude and longitude data respectively
coming from the GPS sensor. In a third and fourth column should be the latitude and
longitude data corrected using the technique explained in Section 2.2. To achieve the data
correction seen in Section 2.2, it is necessary to plot each new route in Google maps to
extract the latitude and longitude points of each corner of the routes and obtain the line
equations between each pair of corners.

One of the limitations of the proposed systems is generalization, as re-training is
necessary when testing in geographical areas far away from the original data. This is
necessary to readjust the parameters of the membership functions to the new data. The
combination of MATLAB’s ANFIS and GENFIS tools facilitates the task of deploying
multiple training of fuzzy systems and accelerates the design process.
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Abstract: A fuzzy logical algebra has diverse applications in various domains such as engineering,
economics, environment, medicine, and so on. However, the existing techniques in algebra do not
apply to delta-algebra. Therefore, the purpose of this paper was to investigate new types of cubic soft
algebras and study their applications, the representation of cubic soft sets with δ-algebras, and new
types of cubic soft algebras, such as cubic soft δ-subalgebra based on the parameter λ (λ-CSδ-SA)
and cubic soft δ-subalgebra (CSδ-SA) over η. This study explains why the P-union is not really
a soft cubic δ-subalgebra of two soft cubic δ-subalgebras. We also reveal that any R/P-cubic soft
subsets of (CSδ-SA) is not necessarily (CSδ-SA). Furthermore, we present the required conditions
to prove that the R-union of two members is (CSδ-SA) if each one of them is (CSδ-SA). To illustrate
our assumptions, the proposed (CSδ-SA) is applied to study the effectiveness of medications for
COVID-19 using the python program.

Keywords: fuzzy soft sets; COVID-19; python program; logical algebra; cubic sets; P/R-union;
δ-algebra

1. Introduction

Artificial Intelligence (AI) and logical algebra are studied in different non-classical
sets like soft sets [1], fuzzy sets [2], and others, to solve various problems in our life. For
example, in 2021, nano-sets have been used to study COVID-19 [3]. COVID-19 has also been
studied by Arfan and others [4]. Zhong et al. [5] showed that the majority of inhabitants
with an above-average socioeconomic status, particularly females, expressed optimism
about COVID-19. A variety of AI and logic applications have been introduced in diverse
domains including the medical field [6,7]. The concept of fuzzy set (FS) was introduced by
Zadeh [8] in 1965 and has been then successfully applied in different domains [9,10]. The
connotation of fuzzy algebra determined by G. Xi [9] is called fuzzy BCK-algebra. Several
applications of fuzzy BCK-algebras were discussed by Y. B. Jun [10].

In [11], some concepts of fuzzy algebras such as fuzzy ρ-subalgebra (Fρ-SA), fuzzy
ρ-ideal (Fρ-I), and fuzzy ρ-ideal (Fρ-I) were introduced. The mathematical idea of soft
sets is a fresh notion studied by D. Molodtsov [12]. This theory has been applied in various
fields, as fuzzy sets theory [13]. The notion of fuzzy soft algebra was introduced by Jun
and others [14], who called it fuzzy soft BCK-algebra.

The connotations of interval-valued fuzzy sets (IVFS) were investigated as an extension
of FS [15]. Similar to BCK, IVFS has been applied to various domains and subgroups [2].
Moreover, the general ideas of algebraic fuzzy systems (AFS) are enriched by introducing
the notion of fuzzy subsets. Jun et al. [16] presented some operations such as P/R-union
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and P/R-intersection on cubic sets. They described several different ways to find the
solutions for intricate problems in engineering, economics, and environment.

While conventional methods have been successfully applied in diverse domains, these
methods do not handle uncertainties. Sometimes traditional methods in logical algebra
are not sufficient to solve some problems or to obtain good results because different uncer-
tainties models are necessary for those problems. The majority of system algebras are not
commutative for any non-fixed pair of their members. Therefore, some algebra structures
that are commutative for any non-fixed pair of their members, such as ρ-algebra [11] and
δ-algebra [17], have been proposed. In this work, we used δ-algebra to consider new types
of cubic soft algebras, such as (λ-CSδ-SA) and (CSδ-SA). These classes in δ-algebra are
different from any other class, since any pair ω �= υ ∈ η − { f } in algebra (η, , f ), they
satisfy the condition (υ(υω))(ωυ) = f . We also proved that P-union is not really a soft
cubic subalgebra of two soft cubic δ-subalgebras. We revealed that for any R/P-cubic soft
subset of (CSδ-SA), it is not necessarily true to be (CSδ-SA). Furthermore, we present the
required conditions to prove that the R-union of two members is (CSδ-SA) if each one of
them is (CSδ-SA). To illustrate our notations, the applied (CSδ-SA) to study the effectiveness
of medications for COVID-19.

2. Preliminary

In this section, we will present some definitions that are necessary for our work.

Definition 1. ([17]) We denote (η, , f ) as δ-algebra (briefly, (δ-A)) if f ∈, and the following
assumptions are fulfilled:

(i) υυ = f
(ii) f υ = f
(iii) υω = f and ωυ = f → υ = ω, for all ω, υ ∈ η.
(iv) For all ω �= υ ∈ η − { f } → υω = ωυ �= f .
(v) For all ω �= υ ∈ η − { f } → (υ(υω))(ωυ) = f .

Definition 2. ([8]) Let η �= ∅. A mapping ψ : η → [0, 1] is called fuzzy set (FS) of η. We denote
the family of all (FSs) in η by Bη . Let ≤ be a relation on Bη specified by:(

ψ ≤ ψ′, ∀ψ, ψ′ ∈ Bη
)
⇔
(
ψ(υ) ≤ ψ′(υ), ∀υ ∈ η

)
(1)

Let (∨) and (∧) be operations on Bη , specified by:(
ψ ∨ ψ′

)
(υ) = max{ψ(υ), ψ′(υ)},(

ψ ∧ ψ′
)
(υ) = min{ψ(υ), ψ′(υ)}, ∀υ ∈ η (2)

For each ψ ∈ Bη , we denote its complement as ψc, specified by

ψc(υ) = 1− ψ(υ), ∀υ ∈ η (3)

Let {ψλ|λ ∈ Δ} be a collection of (FSs), where Δ is an index set. Therefore, (∨) and (∧) are
specified by:

( ∨
λ∈Δ

ψ)(υ) = sup{ψλ(υ)|λ ∈ Δ}, (4)

( ∧
λ∈Δ

ψ)(υ) = inf{ψλ(υ)|λ ∈ Δ}, ∀υ ∈ η

Definition 3. ([18]) Let Z = [θ−, θ+] be a closed subinterval of B = [0, 1]; Z is said to be an
interval number (IN), where 0 ≤ θ− ≤ θ+ ≤ 1. The family of all interval numbers (INs) is
symbolized by [B].
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Some operations on [B] like r min (refined minimum), r max (refined maximum), “≥̃”,
“≤̃” and “=”, are specified by:

rmin{Z, Z′} = [min{θ−, θ′−}, min{θ+, θ′+}]

rmax{Z, Z′} = [max{θ−, θ′−}, max{θ+, θ′+}] (5)

Z≥̃Z′ ⇔ θ− ≥ θ′− and θ+ ≥ θ′+, Moreover, Z = Z′ ⇔ θ− = θ′− , θ+ = θ′+, if ψ
λ∈Δ

∈

{[B]/λ ∈ Δ}, is a collection of INs. Then,

rinfλ∈ΔZλ =
[
infλ∈Δθ−λ , infλ∈Δθ+λ

]
,

rsupλ∈ΔZλ =
[
supλ∈Δθ−λ , supλ∈Δθ+λ

]
(6)

We refer to the complement of any Z ∈ [B] by Zc, where

Zc =
[
1− θ+, 1− θ−

]
(7)

Let ∅ �= η. Then, ζ : η → [B] is called an interval-valued fuzzy set (IVFS) in η. We
refer to the family of all interval-valued fuzzy sets (IVFSs) in η by [B]η . On the other side, if
ξ ∈ [B]η and υ ∈ η, we refer to the degree of membership of υ to η by ξ(υ) = [ξ−(υ), ξ+(υ)]
or ξ = [ξ−, ξ+], where ξ− : η → B is the lower fuzzy set (LFS), and ξ+ : η → B is the upper
fuzzy set (UFS) in η. The definitions of the symbols “⊆” and “=” on any ξ , ξ ′ ∈ [B]η can be
given as follows:

ξ ⊆ ξ ′ ⇔ ξ(υ)≤̃ξ ′(υ), ∀υ ∈ η

ξ = ξ ′ ⇔ ξ(υ) = ξ ′(υ), ∀υ ∈ η (8)

We refer to the complement of any ξ ∈ [B]η by ξc, where ξc(υ) = ξ(υ)c, ∀υ ∈ η.
That means

ξc(υ) =
[
1− ξ+(υ), 1− ξ−(υ)

]
∀υ ∈ η (9)

If {ξλ ∈ [B]η
∣∣λ ∈ Δ} is a family of (IVFSs), then “∪ ” and “∩ ” are defined in [B]η

as follows:
(∪ λ∈Δξλ)(υ) = rsupλ∈Δξλ(υ), ∀υ ∈ η,

(∩ λ∈Δξλ)(υ) = rinfλ∈Δξλ(υ), ∀υ ∈ η. (10)

Definition 4. ([12]) Let η be a universal set, with parameter set Δ; (ε, σ) is said to be a soft set
(over η), where ε : σ → P(η) , and P(η) is the power set of η with σ ⊆ Δ.

Definition 5. ([16]) We define a cubic set Φ (CS) in η by

Φ = {〈υ, ξ(υ), ψ(υ)〉/υ ∈ η} (11)

We can also write it as Φ = 〈ξ, ψ〉, where ξ is IVFS, and ψ is FS.

Definition 6. ([16]) Let Φ = 〈ξ, ψ〉 and Φ′ = 〈ξ ′, ψ′〉 be a pair of cubic sets (CSs) in η. We define
“⊆P”, “⊆R”, and “=” by the following:

(i) (P-order) Φ ⊆P Φ′ ⇔ ξ ⊆ ξ ′ and ψ ≤ ψ′.
(ii) (R-order) Φ ⊆R Φ′ ⇔ ξ ⊆ ξ ′ and ψ ≥ ψ′.
(iii) (Equality) Φ = Φ′ ⇔ ξ = ξ ′ and ψ = ψ′.

Definition 7. ([16]) Let {Φλ = {〈υ, ξλ(υ), ψλ(υ)〉/υ ∈ η}}λ∈Δ be a collection of (CSs) in η.
The symbol “∪ P” (resp., “∩ P”, “∪ R” and “∩ R”) is said to be (P-union) (resp., P-intersection,
R-union, and R-intersection) and is obtained as follows:

(1) ∪ p,λ∈ΔΦα = {〈υ, ∪
λ∈Δ

ξλ(υ), ∨
λ∈Δ

ψλ(υ)〉/υ ∈ η},

139



Mathematics 2021, 9, 2838

(2) ∩ p,λ∈ΔΦλ = {〈υ, ∩
λ∈Δ

ξλ(υ), ∧
λ∈Δ

ψλ(υ)〉/υ ∈ η},

(3) ∪ R,λ∈ΔΦα = {〈υ, ∪
λ∈Δ

ξλ(υ), ∨
λ∈Δ

ψλ(υ)〉/υ ∈ η},

(4) ∩ R,λ∈ΔΦλ = {〈υ, ∩
λ∈Δ

ξλ(υ), ∧
λ∈Δ

ψλ(υ)〉/υ ∈ η},

Remark 1. ([19])
The complement of Φ = 〈ξ, ψ〉 is defined as:

Φc = {
〈
υ, ξ(υ)c, ψc(υ)

〉
/υ ∈ η} (12)

(Φc)c = Φ (13)

If {Φλ = {〈υ, ξλ(υ), ψα(υ)〉/υ ∈ η}}λ∈Δ is a collection of (CSs) in η, then we have the followng;

(∪ p,λ∈ΔΦλ)
c = ∪ p,λ∈Δ(Φλ)

c, (∩ p,λ∈ΔΦλ)c = ∩ p,λ∈Δ(Φλ)
c, (∪ R,λ∈ΔΦλ)

c = ∩ R,λ∈Δ(Φλ)
c

and (∩ R,λ∈ΔΦλ)
c = ∪ R,λ∈Δ(Φλ)

c (14)

Therefore, a (CS) Φ = {〈υ, ξΦ(υ), ψΦ(υ)〉/υ ∈ η} is denoted by Φ = 〈ξΦ, ψΦ〉. The family
of all (CSs) in η is referred to as

∫ η .

Definition 8. ([19]) Let η be a universal set with the parameter set Δ; (Ω, ) is said to be a cubic
soft set (CSS) over η, where  ⊆ Δ, and Ω :  →

∫ η is a mapping. We write (Ω, ) as:

(Ω, ) = {Ω(λ)/λ ∈  }, where Ω(λ) =
〈

ξΩ(λ), ψΩ(λ)

〉
. (15)

The set of all cubic soft sets (CSSs) is symbolized by Δ
∫ η .

Definition 9. ([19]) Let (Ω, ), (Ω′, ′) ∈Δ
∫ η . The R-union of (Ω, ) and (Ω′, ′) is a (CSS)

(D, W) symbolized by (D, W) = (Ω, ) ∪R(Ω′, ′), where W =  ∪  ′ and

(λ) =

⎧⎪⎨⎪⎩
Ω(λ), i f λ ∈  \ ′

Ω′(λ), i f λ ∈  ′\ 
Ω(λ)∪ RΩ′(λ), i f λ ∈  ∩  ′

, ∀λ ∈ W (16)

Definition 10. ([19]) Let (Ω, ), (Ω′, ′) ∈Δ
∫ η . The p-union of (Ω, ) and (Ω′, ′) is a

(CSS) (D, W) symbolized by (D, W) = (Ω, )∪P(Ω′, ′), where W =  ∪  ′ and

(λ) =

⎧⎪⎨⎪⎩
Ω(λ), i f λ ∈  \ ′

Ω′(λ), i f λ ∈  ′\ 
Ω(λ)∪ PΩ′(λ), i f λ ∈  ∩  ′

, ∀λ ∈ W (17)

Definition 11. ([19]) Let (Ω, ), (Ω′, ′) ∈Δ
∫ η . The p-intersection of (Ω, ) and (Ω′, ′) is

a (CSS) (D, W) symbolized by (D, W) = (Ω, )∩ P(Ω′, ′), where W =  ∪  ′ and

D(λ) =

⎧⎪⎨⎪⎩
Ω(λ), i f λ ∈  \ ′

Ω′(λ), i f λ ∈  ′\ 
Ω(λ)∩ PΩ′(λ), i f λ ∈  ∩  ′

, ∀λ ∈ W (18)

Definition 12. ([19]) Let (Ω, ), (Ω′, ′) ∈Δ
∫ η . We say (Ω, ) is an R-cubic soft subset of

(Ω′, ′) if
 ⊆  ′, Ω(λ) ⊆R Ω′(λ), ∀λ ∈  . (19)

140



Mathematics 2021, 9, 2838

Definition 13. ([19]) Let (Ω, ), (Ω′, ′) ∈Δ
∫ η . We say (Ω, ) is a P-cubic soft subset of

(Ω′, ′) if
 ⊆  ′, Ω(λ) ⊆P Ω′(λ), ∀λ ∈  . (20)

Example 1. Let the set of students under consideration be η = {a1, a2, a3}. Let E = {pleasing
personality (e1); conduct (e2); good result (e3); sincerity (e4)} be the set of parameters used to choose
the best student. Suppose that the soft set (F, A) describing Mr. X’s opinion about the best student
in an academic year is defined by

A = {e1, e2}, F(e1) = {a1}, F(e2) = {a1, a2, a3}

The description of Mr. X’s opinion is explained see Figure 1.

Figure 1. The description of Mr. X’s opinion by (F, A).

However, if we define (Ω, A) = {{〈[0.5, 0.7], 0.8〉, 〈[0.3, 0.5], 0.3〉, 〈[0.4, 0.6], 0.7〉},
{〈[0.4, 0.5], 0.8〉, 〈[0.3, 0.4], 0.8〉, 〈[0.2, 0.5], 0.6〉}}, then (Ω, A) is a cubic soft set over
η = {a1, a2, a3}, dependent on (FS) to describe the best student by the rates of some
activities A = {e1, e2} of E; each rate ranges between 0 and 1 and approaches 0 when an
activity is low, while it approaches 1 when an activity is high).

3. Cubic Soft δ-Subalgebras in δ-Algebras and Its Application for COVID-19

In this section, we will consider several new forms of cubic soft algebras and see how
they can be used to study the effectiveness of medications for COVID-19.

Definition 14. Let (Ω, ) be (CSS) over η; (η, , f ) is (δ-A), if there exists a parameter λ ∈ !
that satisfies the following:

ξΩ(λ)(υ ◦ω)≥̃rmin{ξΩ(λ)(υ), ξΩ(λ)(ω)}∀υ, ω ∈ η (21)

ψΩ(λ)(υ ◦ω)≤̃rmax{ψΩ(λ)(υ), ψΩ(λ)(ω)}∀υ, ω ∈ η (22)

(Ω, ) is said to be a cubic soft δ-subalgebra over η based on a parameter λ (briefly, (λ-CSδ-
SA) over η) and is called a cubic soft δ-subalgebra (CSδ-SA) over η, if it is an (λ-CSδ-SA) over
η, ∀λ ∈  .

Theorem 1. If (Ω, ), (Ω′, ′) ∈Δ
∫ η with  and  ′ are disjoint, then their P-union is a

(CSδ-SA) over η.

Proof. From Definition (10), we have (D, W) = (Ω, )∪P(Ω′, ′), where W =  ∪  ′ and

D(λ) =

⎧⎪⎨⎪⎩
Ω(λ), i f λ ∈  \ ′

Ω′(λ), i f λ ∈  ′\ 
Ω(λ)∪ PΩ′(λ), i f λ ∈  ∩  ′

, ∀λ ∈ W (23)
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Therefore, either λ ∈  \ ′ or λ ∈  ′\ , ∀λ ∈ W (since  ∩  ′ = ϕ). If λ ∈  \ ′,
then D(λ) = Ω(λ) is a CSδ-subalgebra over η. In addition, if λ ∈  ′\ , then D(λ) =
Ω′(λ) is a (CSδ-SA) over η. So, (D, W) = (Ω, ) ∪P(Ω′, ′) is a (CSδ-SA) over η. �

Remark 2. The above theorem is not true in general when  and  ′ are not disjoint.

Example 2. Let η = { f , υ, ω, σ, τ} be a universal set of some medications for (COVID-19),
as follows f = Chloroquine, υ = Arbidol, ω = Tamiflu, σ = Kaletra, τ = Remdesivir. These
medications were chosen because they have been tried and discussed by researchers, for example,
Chloroquine in [20], Arbidol in [21], Tamiflu in [22], Kaletra in [23], and Remdesivir in [24]. We
used virtual reality to introduce a mathematical method where the composition of the members forms
an algebraic system; we determined how to find the cubic soft set over η, when it is dependent on
(FS) to describe the best medication in the basis of its activity evaluated by rates, with each rate
confined between 0 and 1. If a rate appr2oaches 0, then activity is low, whereas if the rate is closer to
1, the activity is high. Suppose that for any two members in η, their composition under operation is
defined by the python program as follows:

from numpy import array
X = ['f','v','w','σ','τ']
i = 0
lst = array (range (25), dtype = str). reshape (5,5)
for a in X:

j = 0
for b in X:

# print (a, ' ', b)
if ((a == 'f') or (a == b) :

m = 'f'
elif ((b = 'f')):

m = a
elif ((a! = 'f') and (b! = 'f') ):

m = 'v'
lst [i,j] = m
j = j + 1

I = I + 1
print(lst)

Using this program, let us consider Figure 2, where rows are placed in a table.

Figure 2. Composition xy, for any x, y of a universal set of medications.

This algorithm makes the members distributive for any set η = {r1, r2, . . . , rn} that

has n members inside a matrix M =

⎛⎜⎝ m11 · · · m1n
...

. . .
...

mn1 · · · mnn

⎞⎟⎠ of degree (n × n), where

mij = rirj = rk ∈ η for some (1 ≤ k ≤ n) and all (1 ≤ i, j ≤ n). By this matrix, our
table can have the structure of δ-algebra.

Therefore, the binary operation is described in a Table 1.

142



Mathematics 2021, 9, 2838

Table 1. (η,o,f ) is a δ-algebra.

τ σ ω υ f

f f f f f f

υ υ υ f υ υ

υ υ f υ ω ω

υ f υ υ σ σ

f υ υ υ τ τ

Then, (η, , f ) is a δ-algebra. Figure 3 explains that the member f does not change and
retains more than 50% of its properties if f is entered from pipe 1, and any member h in η
is entered from pipe 2.

Figure 3. The composition f υ explains when f is entered from pipe 1.

Moreover, the same engineering device in Figure 4 explains that f will lose more than
50% of its properties if it is entered from pipe 2 and any member h in η is entered from pipe
1; the member f will chang and get the same properties of the member h. In δ-algebra, the
member f is called the fixed member.

Figure 4. The composition υ f explains when f is entered from pipe 2.
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Now, let Δ = {“body temperature” (λ1), “cough with chest congestion” (λ2), “body
ache” (λ3), “cough with no chest congestion” (λ4), “breathing trouble”, (λ5)} be a parameter
set. Here, Δ give us the effectiveness for these medications that help somebody want to
select one of them based on his opinion of what he prefers of these attributives. Take
 = {λ1, λ3, λ5} and  ′ = {λ1, λ2, λ3, λ4}, then from Tables 2 and 3, we consider that
(Ω, ) and (Ω′, ′) are CSδ-subalgebras over η.

Table 2. (Ω, ) is (CSδ-SA).

λ1 λ3 λ5

f 〈[0.6, 0.8], 0.2〉 〈[0.5, 0.6], 0.1〉 〈[0.5, 0.8], 0.5〉
υ 〈[0.6, 0.7], 0.5〉 〈[0.4, 0.6], 0.4〉 〈[0.5, 0.8], 0.7〉
ω 〈[0.5, 0.7], 0.8〉 〈[0.4, 0.5], 0.8〉 〈[0.5, 0.7], 0.9〉
σ 〈[0.4, 0.6], 0.7〉 〈[0.2, 0.5], 0.6〉 〈[0.2, 0.4], 0.6〉
τ 〈[0.3, 0.5], 0.3〉 〈[0.3, 0.4], 0.8〉 〈[0.5, 0.7], 0.5〉

Table 3. (Ω′, ′) is (CSδ-SA).

λ1 λ2 λ3 λ4

f 〈[0.4, 0.7], 0.4〉 〈[0.6, 0.9], 0.6〉 〈[0.5, 0.6], 0.1〉 〈[0.4, 0.5], 0.3〉
υ 〈[0.4, 0.6], 0.6〉 〈[0.4, 0.8], 0.8〉 〈[0.4, 0.5], 0.3〉 〈[0.4, 0.5], 0.5〉
ω 〈[0.4, 0.6], 0.8〉 〈[0.6, 0.8], 0.7〉 〈[0.4, 0.5], 0.6〉 〈[0.3, 0.4], 0.4〉
σ 〈[0.1, 0.3], 0.5〉 〈[0.3, 0.5], 0.7〉 〈[0.3, 0.5], 0.8〉 〈[0.1, 0.4], 0.8〉
τ 〈[0.4, 0.7], 0.4〉 〈[0.5, 0.8], 0.6〉 〈[0.2, 0.3], 0.8〉 〈[0.2, 0.3], 0.3〉

Here,  and  ′ are not disjoint. The R-union (D, W) = (Ω, )∪p(Ω′, ′) is given in
Table 4.

Table 4. (D, W) is (CSS).

λ1 λ2 λ3 λ4 λ5

f 〈[0.6, 0.7], 0.4〉 〈[0.6, 0.9], 0.6〉 〈[0.5, 0.6], 0.1〉 〈[0.4, 0.5], 0.3〉 〈[0.5, 0.8], 0.5〉
υ 〈[0.6, 0.7], 0.6〉 〈[0.4, 0.8], 0.8〉 〈[0.4, 0.6], 0.4〉 〈[0.1, 0.3], 0.5〉 〈[0.3, 0.8], 0.7〉
ω 〈[0.5, 0.7], 0.8〉 〈[0.6, 0.8], 0.7〉 〈[0.4, 0.5], 0.8〉 〈[0.3, 0.4], 0.4〉 〈[0.5, 0.7], 0.9〉
σ 〈[0.4, 0.6], 0.7〉 〈[0.3, 0.5], 0.7〉 〈[0.3, 0.5], 0.8〉 〈[0.1, 0.4], 0.8〉 〈[0.2, 0.4], 0.6〉
τ 〈[0.4, 0.7], 0.4〉 〈[0.5, 0.8], 0.6〉 〈[0.3, 0.4], 0.8〉 〈[0.2, 0.3], 0.3〉 〈[0.5, 0.7], 0.5〉

We have

ξD(λ4)
(ωτ)= ξD(λ4)

(υ) = [0.1, 0.3], [0.2, 0.3] = r min {[0.3, 0.4], [0.2, 0.3]} = r min {ξD(λ4)
(ω), ξD(λ4)

(τ)} (24)

and/or

ψD(λ4)
(ωτ)= ψD(λ4)

(υ)= 0.5 > 0.3 = max{0.4, 0.3} = max{ψD(λ4)
(ω), ψD(λ4)

(τ)} (25)

Remark 3.

(1) For any R-cubic soft subset of (CSδ-SA), it is not necessary that each one is (CSδ-SA).
(2) For any P-cubic soft subset of (CSδ-SA), it is not necessary that each one is (CSδ-SA) too.

Example 3. In Example 2, let η = { f , υ, ω, σ, τ} and (Ω′, ′) be an R-cubic soft subset of (Ω, )
as shown in Table 5.
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Table 5. (Ω′, ′) R-cubic soft subset of (Ω, ).

λ1 λ5

f 〈[0.3, 0.5], 0.8〉 〈[0.5, 0.8], 0.5〉
υ 〈[0.3, 0.6], 0.6〉 〈[0.3, 0.8], 0.7〉
ω 〈[0.4, 0.5], 0.8〉 〈[0.5, 0.7], 0.9〉
σ 〈[0.3, 0.4], 0.8〉 〈[0.2, 0.4], 0.6〉
τ 〈[0.2, 0.4], 0.5〉 〈[0.5, 0.7], 0.5〉

Then, we have
ξD(λ1)

(σω) = ξD(λ1)
(υ) = [0.2, 0.3] ≤ [0.3, 0.4] = r min {[0.3, 0.4], [0.4, 0.5]} = r min

{ξD(λ1)
(σ), ξD(λ1)

(ω)}. (Ω′, ′) is not a (CSδ-SA) over η.
Here, we consider that it is not necessary that any P-cubic soft subset of (CSδ-SA) is (CSδ-SA) too.

Example 4. In Example 2, let η = { f , υ, ω, σ, τ} and (Ω′, ′) be a P-cubic soft subset of (Ω, ),
as defined in Table 6:

Table 6. (Ω′, ′) P-cubic soft subset of (Ω, ).

λ1 λ5

f 〈[0.3, 0.5], 0.1〉 〈[0.5, 0.8], 0.5〉
υ 〈[0.2, 0.3], 0.4〉 〈[0.3, 0.8], 0.7〉
ω 〈[0.4, 0.5], 0.7〉 〈[0.5, 0.7], 0.9〉
σ 〈[0.3, 0.4], 0.6〉 〈[0.2, 0.4], 0.6〉
τ 〈[0.2, 0.4], 0.2〉 〈[0.5, 0.7], 0.5〉

ξD(λ1)
(σω) = ξD(λ1)

(υ) = [0.2, 0.3] <̃ [0.3, 0.4] = r min {[0.3, 0.4], [0.4, 0.5]} = r min
{ξD(λ1)

(σ), ξD(λ1)
(ω)}. (Ω′, ′) is not a (CSδ-SA) over η. Here, we consider that for any R-cubic

soft subset of (CSδ-SA), it is not necessary to be (CSδ-SA) too.

Proposition 1. Let (Ω, ) ∈Δ
∫ η with (η, , f ) is (δ-A) and λ ∈ Δ. Then, ξΩ(λ)( f )≥̃ ξΩ(λ)(υ)

and ψΩ(λ)( f )≤̃ ψΩ(λ)(υ), ∀υ ∈ η, if (Ω, ) is (λ-CSδ-SA) over η.

Proof. ∀υ ∈ η, we consider that:
ξΩ(λ)( f ) = ξΩ(λ)(υυ)≥̃ r min {ξΩ(λ)(υ), ξΩ(λ)(υ)} = r min{[ξΩ(λ)(υ)

−, ξΩ(λ)(υ)
+],

[ξΩ(λ)(υ)
−, ξΩ(λ)(υ)

+]} = [ξΩ(λ)(υ)
−, ξΩ(λ)(υ)

+] = ξΩ(λ)(υ) and ψΩ(λ)( f ) = ψΩ(λ)(υυ)≤̃
max {ψΩ(λ)(υ), ψΩ(λ)(υ)} = ψΩ(λ)(υ). �

Theorem 2. Assume (Ω, ) ∈Δ
∫ η is (λ-CSδ-SA) over η with (η, , f ) is (δ-A). Then, ξΩ(λ)(υn)

= [1, 1] and ψΩ(λ)(υn) = 0, if 〈υn〉 is a sequence in η with lim
n→∞

ξΩ(λ)(υn) = [1, 1] and

lim
n→∞

ψΩ(λ)(υn) = 0.

Proof. Since ξΩ(λ)( f )≥̃ ξΩ(λ)(υ), ψΩ(λ)( f )≤̃ ψΩ(λ)(υ), ∀υ ∈ η, we have

ξΩ(λ)( f )≥̃ξΩ(λ)(υn), ∀n ∈ N,

ψΩ(λ)( f )≤̃ψΩ(λ)(υ),∀n ∈ N. (26)

However, [1, 1] ≥̃ξΩ(λ)( f )≥̃ lim
n→∞

ξΩ(λ)(υn) = [1, 1]. Also, 0 ≤̃ lim
n→∞

ψΩ(λ)(υn)≤̃
lim

n→∞
ψΩ(λ)(υn) = 0. Therefore ξΩ(λ)(υn) = [1, 1] and ψΩ(λ)(υn) = 0. �

Theorem 3. If each of (Ω, ), (Ω′, ′) ∈Δ
∫ η is a (CSδ-SA), then their R-intersection is also

(CSδ-SA).
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Proof. Let (Ω, ) and (Ω′, ′) are (CSδ-SA) and (D, W) = (Ω, )∩ P(Ω′, ′), where
W =  ∪  ′ and

D(λ) =

⎧⎪⎨⎪⎩
Ω(λ), i f λ ∈  \ ′

Ω′(λ), i f λ ∈  ′\ 
Ω(λ)∩ RΩ′(λ), i f λ ∈  ∩  ′

, ∀λ ∈ W (27)

Now, ∀λ ∈ W, we consider three states: (i) λ ∈  / ′, (ii) λ ∈  ′/ , (iii) λ ∈  ∩  ′.
In state (i), we obtain;

ξD(λ)(υ ◦ω) = ξΩ(λ)(υ ◦ω)≥̃rmin{ξΩ(λ)(υ), ξΩ(λ)(ω)} = rmin{ξD(λ)(υ), ξD(λ)(ω)}, (28)

ψD(λ)(υ ◦ω) = ψΩ(λ)(υ ◦ω)≤̃max{ψΩ(λ)(υ), ψΩ(λ)(ω)} = max{ψD(λ)(υ), ψD(λ)(ω)},

In state (ii), we obtain;

ξD(λ)(υ ◦ω) = ξΩ′(λ)(υ ◦ω)≥̃rmin{ξΩ′(λ)(υ), ξΩ(λ)(ω)} = rmin{ξD(λ)(υ), ξD(λ)(ω)}, (29)

ψD(λ)(υ ◦ω) = ψΩ′(λ)(υ ◦ω)≤̃max{ψΩ′(λ)(υ), ψΩ′(λ)(ω)} = max{ψD(λ)(υ), ψD(λ)(ω)},

In state (iii), we obtain;

ξD(λ)(υ ◦ω) = (ξΩ(j)∩ RξΩ′(λ))(υ ◦ω) = rmin{ξΩ(λ)(υ ◦ω), ξΩ′(λ)(υ ◦ω)}

≥̃rmin{rmin{ξΩ(λ)(υ), ξΩ(λ)(ω)}, rmin{ξΩ′(λ)(υ), ξΩ′(λ)(ω)}}
= rmin{rmin{ξΩ(λ)(υ), ξΩ′(λ)(υ)}, rmin{ξΩ(λ)(υ), ξΩ′(λ)(ω)}}
= rmin{(ξΩ(λ)∩ RξΩ′(λ))(υ), (ξΩ(λ)∩ RξΩ′(λ))(ω)} = rmin{ξD(λ)(υ), ξD(λ)(ω)}.

(30)

Also,

ψD(λ)(υ ◦ω) =
(

ψΩ(j)∩ RψΩ′(λ)

)
(υ ◦ω) = rmin{ψΩ(λ)(υ ◦ω), ψΩ′(λ)(υ ◦ω)}

≤̃max{max{ψΩ(λ)(υ), ψΩ(λ)(ω)}, max{ψΩ′(λ)(υ), ψΩ′(λ)(ω)}}
= maxn{max{ψΩ(λ)(υ), ψΩ′(λ)(υ)}, max{ψΩ(λ)(υ), ψΩ′(λ)(ω)}}

= max{
(

ψΩ(λ)∩ RψΩ′(λ)

)
(υ),

(
ψΩ(λ)∩ RψΩ′(λ)

)
(ω)} = max{ψD(λ)(υ), ψD(λ)(ω)}.

(31)

Hence (D, W) = (Ω, )∩ R(Ω′, ′) is a (CSδ-SA) over η. �

Corollary 1. If  = {(Ω′, ′)λ ∈Δ
∫ η |λ ∈ Δ} is a family of cubic soft δ-subalgebras over η,

then the R-intersection ∩ R{(Ω′, ′)λ}λ∈ ′ is a (CSδ-SA) over η.

Proof. From Definition (7) and Theorem (3), the proof is straightforward. �

4. Comparative Study

In 2021 [8], a technique used nano-sets to study medications suitable for COVID-19
depending on the lower approximation, upper approximation, and boundary region for
nano-topological space (NTS). However, a parameter set was not used, which means this
work discussed the rate of health recovery for patients in general, without any other detail.
Therefore, in our work, we used cubic soft δ-algebras and parameters such as Δ = {“body
temperature” (λ1), “cough with chest congestion” (λ2), “body ache” (λ3), “cough with no
chest congestion” (λ4), “breathing trouble” (λ5)} and hence we introduced more factors
related to patients to study the activity of medications.

5. Conclusions

We showed that is not necessarily any R/P-cubic soft subset of (CSδ-SA) is (CSδ-
SA). That means the P-union is not really a soft cubic δ-subalgebra of two soft cubic
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δ-subalgebras. We further provide the necessary criteria to demonstrate that the R-union of
two members is (CSδ-SA) if each of them is (CSδ-SA). To demonstrate our notations, we use
the used (CSδ-SA) to investigate the efficacy of medicines for COVID-19. In the future, more
engineering device applications may express the composition of two or more members in
engineering devices as a P/R-union, specifying the member that will be considered from
the composition of known members. Moreover, there is a recent development in soft set
theory, i.e., the idea of T-Bipolar soft set, as explained by Tahir [25]. Therefore, we can
increase the application of T-Bipolar soft sets using new classes of operations.
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Abstract: The number of failures plays an important factor in the study of maintenance strategy of a
manufacturing system. In the real situation, this number is often affected by some uncertainties. Many
of the uncertainties fall into the possibilistic uncertainty, which are different from the probabilistic
uncertainty. This uncertainty is commonly modeled by applying the fuzzy theoretical framework.
This paper aims to compute the number of failures for a system which has Weibull failure distribution
with a fuzzy shape parameter. In this case two different approaches are used to calculate the number.
In the first approach, the fuzziness membership of the shape parameter propagates to the number of
failures so that they have exactly the same values of the membership. While in the second approach,
the membership is computed through the α-cut or α-level of the shape parameter approach in
the computation of the formula for the number of failures. Without loss of generality, we use the
Triangular Fuzzy Number (TFN) for the Weibull shape parameter. We show that both methods have
succeeded in computing the number of failures for the system under investigation. Both methods
show that when we consider the function of the number of failures as a function of time then the
uncertainty (the fuzziness) of the resulting number of failures becomes larger and larger as the time
increases. By using the first method, the resulting number of failures has a TFN form. Meanwhile,
the resulting number of failures from the second method does not necessarily have a TFN form, but a
TFN-like form. Some comparisons between these two methods are presented using the Generalized
Mean Value Defuzzification (GMVD) method. The results show that for certain weighting factor of
the GMVD, the cores of these fuzzy numbers of failures are identical.

Keywords: Weibull hazard function; number of failures; TFN; α-cut; defuzzification

1. Introduction

Uncertainty is present in almost all decision problems, including in the field of relia-
bility and maintenance. This is due to unknown future events and imprecision as well as
human subjectivity in a decision process [1]. There are some important factors that signifi-
cantly affect the decision-making in any field. In the field of reliability and maintenance,
the number of failures plays important roles in the study of maintenance strategy of a man-
ufacturing system. In the real situation, this number is often affected by some uncertainties.
Many of the uncertainties fall into the possibilistic uncertainty, which is different from the
probabilistic uncertainty. In many cases, at least one of the parameters or variables of the
decision function has fuzzy value, instead of crisp value. This uncertainty is commonly
modeled by applying fuzzy theoretical framework, e.g., the variable and parameter have
fuzzy values and the calculation is done using extension principle approach [2].

As an important factor, the number of failures is essential to obtain, and subsequently
is used as a base for further decision processes in reliability and maintenance analysis.
As an example, this “number” is used in the calculation to design optimal maintenance
strategies which are directed to minimize the number of failures while also minimizing
the costs of operation [3–5]. For this reason, the knowledge on how to compute or predict
the number of failures becomes vital. Considering the occurrence of uncertainty and
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imprecision—together with complexity of the system under investigation, failure data are
often difficult to obtain. In this case, the theory of fuzzy sets has been widely used to provide
a framework to deal with these uncertainty and imprecision [6]. Among the important
questions needed to be addressed related to the number of failures of a system having
a possibilistic uncertainty is, first, how to compute this number for a given possibility
distribution with fuzzy parameters. Nowadays, some calculator for fuzzy numbers are
readily available [2]. Second, it is also important to know how the degree of uncertainty of
the parameters propagates to the resulting failure numbers. This is commonly known as the
propagation of fuzziness, which is defined as “the way in which the amount of imprecision
in the model’s inputs affects the changes in the model’s output” [7], (p. 163). Technically
the propagation of uncertainty happens through mathematical operations involved in
the model and in the computation. Knowing the method to calculate the number and its
degree of uncertainty, will significantly improve the quality of the decision being sought
(see also [8,9] for similar cases in other area). In general, fuzziness propagation in complex
engineering systems may constitute a significant challenge [10].

The aims of the paper are two-fold, namely, to calculate the number of failures for
a system which has Weibull failure distribution with a fuzzy shape parameter and to
understand how the fuzziness of this shape parameter propagates to the resulting number
of failures. These two objectives constitute the importance and contributions of the work
presented in this paper. In addition, in this paper we look for the number of failures and
two different approaches are used to calculate this number. In the first approach, the
fuzziness membership of the shape parameter propagates to the number of failures so that
they have exactly the same values of the membership. While in the second approach, the
membership is computed through the α-cut or α-level of the shape parameter.

Literature Review

As it is explained earlier, the motivation of the paper is due the importance of finding
the number of failures in the field of maintenance strategy. Some examples of such impor-
tance can be seen in [11–16] from various perspectives. It is often found that most of the
problems in maintenance engineering are finding optimal strategies that minimize the cost
of operation to manipulate the system as well as minimize the number of failures of the
system (e.g., [17]). In many cases, the number of failures is represented in its distribution
function. Several type of distribution functions are commonly used to model the failures of
an industrial equipment, among others is the Weibull distribution function together with its
hazard function [18,19]. This distribution function could appear either in two-parameters
model or in three-parameters model [20,21]. Hence, the Weibull distribution function plays
vital roles in areas of research related to maintenance strategy in which understanding a
system, predicting the outcome of a system, and prescribing an optimal intervention to
obtain the best performance of a system are being sought. In fact, the spectrum of the area
applications of the Weibull distribution is quite broad from engineering, social sciences, to
biological and health problems.

Apart from the abundant usage of the Weibull distribution in many areas of research,
especially in maintenance strategy, most of the analysis only consider the crisp form of data,
i.e., ignoring the presence of possibilistic uncertainty which might be often found in many
real phenomena. For example, in maintenance engineering, most maintenance models in
literature mainly consider certain or crisp condition, e.g., [22,23]. However, as mentioned
earlier, these kinds of models do not seem to fit in the real condition. Readers may find
a brief review of the importance of the possibilistic uncertainty in [24]. In reliability and
maintenance problems, uncertainty may affect the models, the nonhomogeneous Poisson
process (NHPP), and the Weibull generalized renewal process parameters [25,26], and the
probability distribution parameters [8], and it is important to know how this uncertainty
propagates through the models which likely affect the insight and prediction from the
models [27].
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There are several approaches to model the possibilistic uncertainty, one of them is by
applying the fuzzy number theory, as suggested by Zadeh [28,29] and his followers. The
popularity of fuzzy number theory in reliability and maintenance literatures is now getting
higher [30] resulting in new modeling approach in many aspects, like maintenance risk-
based inspection interval optimization with fuzzy failure interaction for two-component
repairable system [31] and many others. The authors in [32] are among the few authors who
consider fuzzy Weibull distribution in their works. They consider the Weibull distribution
function as a fuzzy function and use it for analyzing the behavior of an industrial system
stochastically by utilizing vague, imprecise, and uncertain data, which in turn result in the
reliability indices (such as hazard function, maintainability, etc.) of time of time varying
failure rate instead of the constant failure rate for the system.

In general, the author in [33] (pp. 152–157) shows several methods on how to imple-
ment a fuzzy function in addressing problems with possibilistic uncertainty. The methods
can be classified into three different ways depending to which aspect of the crisp function
the fuzzy concept was applied, namely (i) crisp function with fuzzy constraint, (ii) crisp
function which propagates the fuzziness of independent variable to dependent variable,
and (iii) function that is itself fuzzy. However, in this paper we will only look for the
number of failures by using the first and the second approaches above. The fuzziness of
the shape parameter is assumed to propagate to the number of failures with the same form
of fuzzy number membership in the first approach, as found in [34,35]. While in the second
approach, the concept of α-cut or α-level of the fuzziness of the shape parameter is used in
the computation to calculate the number of failures, as found in [36]. An example of the
methodology on how to compare fuzzy numbers, such as those resulting from different
approaches of fuzzy function concepts above can be seen in [37].

In this paper we re-visit the model in [34,35] by giving some more detail analysis
and results discussed in those papers. The authors in [34] discussed the Weibull hazard
function by assuming a fuzzy shape parameter, which conceptually can be used to compute
the number of failures without actually showing the resulting number of failures (either in
crisp number form or fuzzy number form). They show how to compute the fuzzy number
of failures of Weibull hazard function in [35] by assuming a fuzzy shape parameter in
the Weibull hazard function via the second approach in [33], (p. 154), i.e., by considering
the Weibull function as a crisp function which propagates the fuzziness of independent
variable to dependent variable. In this paper we use different approaches by considering
the fuzziness of the shape parameter in the computation of the number of failures directly,
through the concept of α-cut or α-level [33] (p. 130) and [38], (pp. 7–16). Further we
discuss the generalized mean value defuzzification (GMVD) and use it to compare the
resulting fuzzy number of failures from different approaches of computation. The proposed
defuzzification method (GMVD) is able to find a crisp number which is close to the core of
the triangular fuzzy number (TFN).

We organize the presentation of the paper as follows. Section 2 presents briefly some
basic methods that are utilized in the preceding sections, namely, the Weibull distribution
function, fuzzy number and its membership function, α-cut of a fuzzy number, defuzzifica-
tion process with Generalized Mean Value Defuzzification (GMVD), and the number of
failures for Weibull hazard function with fuzzy parameter. Section 3 gives the main results
together with numerical examples to show the visual illustration of the main results. This
includes the comparisons from two different methods, i.e., the results from the method
considering propagation of the fuzziness of independent variable to dependent variable
and the results from the α-cut method. Section 4 presents the discussions of the results and
it is finally followed by concluding remarks and further direction of research in Section 5.

2. Materials and Methods

The object being investigated in this paper is the Weibull distribution function as a
mathematical model describing the deterioration of life cycle of an industrial system or
an equipment. This deterioration or failure data are commonly modeled by the Weibull
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distribution function such as found in [39]. The reason of popularity of the Weibull function
is its flexibility, so that it can be regarded as the generalization of exponential and Rayleigh
distribution functions, which are also commonly used in reliability and maintenance
studies [40]. The Weibull distribution is a continuous probability distribution function
having the form:

f (t) =

⎧⎨⎩
β
θ

( t
θ

)(β−1) exp
[
−
( t

θ

)β
]
, x > 0, θ > 0, β > 0,

0, otherwise.
(1)

where θ is the scale parameter and β is the shape parameter. The first mathematician who
described it in detail is Waloddi Weibull in 1951. The Weibull distribution has a flexibility
to model various lifetime data by changing the value of the shape parameter, e.g., if
β = 1 the Weibull distribution is reduced to an exponential distribution and if β = 2 the
Weibull distribution is identical to Rayleigh distribution [40]. Throughout the paper we will
assume the scale parameter θ = 1 for some reasons. For example, this choice is sufficient in
our context of maintenance modeling if we assume that the average of first failure of the
equipment/system under investigation happens within one unit of time—say one month
or one year, because of its warranty and good quality control. The authors in [41] give an
example with θ = 1 in their simulation.

Using this Weibull distribution function we can calculate some reliability indices, such
as hazard function, number of failures, mean time between failures, preventive maintenance
time, and replacement time. The standard methods on the calculation of these indices, both
for standard and complex systems, can be found among others in [42,43]. Details theory and
applications of the Weibull distribution function can be found in [44,45]. In the Section 2.1
we present some concepts of fuzzy theoretical framework which are used in the subsequent
method and analysis, namely, fuzzy number and its membership function, α-cut of a fuzzy
number, defuzzification process with Generalized Mean Value Defuzzification.

2.1. Fuzzy Number and Its Membership Function

As an introduction to the section that follows we define several concepts of fuzzy
number theory that will be used later on. A fuzzy number can be regarded as an extension
of a real number in the sense that it has a membership function other than binary to repre-
sent uncertainty. Binary membership gives a crips value for the membership, i.e., either
a member or not a member. Fuzzy number gives a wide spectrum of membership from
zero (definitely not a member of a set S) to one (definitely a member of a set S). Technically,
a fuzzy number Ã refers to a connected set of possible values, where each possible value
of Ã, say a, has its own membership value in the interval [0,1]. This value that measures
the degree of possibility for a to be a member of Ã is called the membership function,
usually written as μ : a ∈ A → x ∈ [0, 1] . This fuzzy number is commonly written with
the symbol Ã = (A, μ(A)) or alternatively Ã =

{
(x, μÃ(x))|x ∈ X

}
representing the un-

derlying connected set A with the membership function μ(A). In this regards, the fuzzy
number is viewed as a pair of mathematical objects comprising of a set together with its
grade or membership function. The fuzzy number is purportedly designed to represent
the possibilistic uncertainty and to quantify the unclear and inaccuracies of the abundance
of information.

The membership of a fuzzy number can be determined by several functional ap-
proaches, which can be classified into the linear and the non-linear functional forms.
Among the most popular functional form of fuzzy number are the Triangular Fuzzy Num-
ber (TFN) which is often written as (a;b;c) and the Trapezoidal Fuzzy Number (TrFN) which
is often written as (a;b;c;d). The functional forms or the membership functions of these fuzzy
numbers are given in Equations (2) and (3), which are graphically shown in Figures 1 and 2.
Note that for the TrFN in Equation (3), the membership function within the intervals [a,b]
and [c,d] are given by increasing and decreasing linear curves respectively. This concept is
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generalized by the LR-Flat Fuzzy Number which is then used as a new method for solving
fuzzy transportation problems [2,46,47].
• The membership function of a triangular fuzzy number (TFN):

μÃ(x) =

⎧⎪⎪⎨⎪⎪⎩
0 , x ≤ a
x−a
b−a , a ≤ x ≤ b
x−c
b−c , b ≤ x ≤ c
0 , x ≥ c.

(2)

• The membership function of a trapezoidal fuzzy number (TrFN):

μÃ(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 , x ≤ a
x−a
b−a , a ≤ x ≤ b
1 , b ≤ x ≤ c
x−d
c−d , c ≤ x ≤ d
0 , x ≥ d.

(3)

Figure 1. Graphical representation of a triangular fuzzy number (a;b;c)—left figure, and a trapezoidal
fuzzy number (a;b;c;d)—right figure.

In Equation (2), a, b, and c are real numbers satisfying a < b < c which constitute the
TFN core and support components. In this case b is called the core of the fuzzy number
and the sets [a,b) and (b,c] are called the support of the fuzzy number. Similarly, for TrFN,
in Equation (3) the core of the fuzzy number is given by [b,c] and the support is given
by the set [a,b) and (c,d]. Other forms of fuzzy numbers are piecewise quadratic fuzzy
number [48], pentagonal fuzzy number [49], Bell shaped fuzzy number [50], parabolic
trapezoidal fuzzy number [51], new bell shaped fuzzy number [52], and many others. A
good reference on how some new methods and techniques are developed to advance fuzzy
numbers concepts for modern analytics can be found in [46]. However, for simplicity, to
emphasize the methodological aspect all examples in this paper assume the triangular
fuzzy numbers (TFN). In the next section we briefly describe the α-cut of a triangular fuzzy
numbers (α-cut, α-level cut, α-level set or sometimes simply is called a cut).

2.2. The α-Cut of a Fuzzy Number

Each fuzzy number is associated with its α-cut. This α-cut sometimes is also called the
α-level set. It is technically defined as the set of objects in the associated fuzzy set which
have the membership with the values which are at least α. This actually can be seen as a
crisp set representation of a fuzzy number. Following this definition, it can be shown that
the α-cut of the triangular fuzzy number (1) is given by:

Ãα = [aα
1, aα

2 ] = [(b− a)α + a, (b− c)α + c] (4)

for all α ∈ [0, 1].
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2.3. Generalized Mean Value Defuzzification

For some reasons, the information regarding the best representation of a crisp number
for a fuzzy number is needed. In this case, defuzzification of the fuzzy number is done. It
is a mathematical calculation which converts the fuzzy number into a single crisp value
with respect to a fuzzy set. Some defuzzification formulas are available in literature, such
as basic defuzzification distributions, center of area, center of gravity, fuzzy mean, last
of maxima, weighted fuzzy mean, etc., [53–55]. In this paper we will use the generalized
mean value defuzzification method (GMVD) which is defined as

N(Ã) =
a + nb + c

n + 2
, (5)

where Ã = (a; b; c) is a TFN and n can be regarded as the weight of the core of the fuzzy
number. The larger the weight of the core, the closer the resulting crisp number from the
GMVD to the core of the fuzzy number. The properties of this GMVD will be discussed
later on and used in the comparation of the resulting number of failures.

3. Results

3.1. Number of Failures for Weibull Hazard Function with Fuzzy Parameter

As explained in the previous section we consider the one-parameter Weibull distri-
bution function, since this choice is sufficient in our context of maintenance modeling if
we assume that the average of first failure of the equipment/system under investigation
happens within one unit of time—say one month or one year—because of its warranty
and good quality control. By considering this assumption (θ = 1) and fuzzy parameter
β̃ the number of failure is computed using the first method, in which the calculation of
the fuzzy number is done point-wise (will be defined later), and we only need the crisp
function for the computation. From Equation (1) we have the following one-parameter
Weibull cumulative distribution, g, and its hazard function, h:

g(t) = 1− e−tβ
, (6)

and
h(t) = βtβ−1, (7)

so that the number of failures is given by

N(t) = tβ. (8)

The parameter β̃ is the fuzzy number of the shape parameter of the Weibull function.
We will treat the fuzziness of the shape parameter in two different approaches: (i) Crisp
function which propagates the fuzziness of independent variable to dependent variable
and, in which the computation is done point-wise; (ii) crisp function with fuzzy constraint
through the level-set computation.

The First Method (Point-wise Method): Let β̃ be a TFN which is identified by three
crisp numbers a, b, and c, i.e., β̃ = (a; b; c) satisfying Equation (2). We compute the number
of failures point-wise, i.e., by substituting these crisp numbers one at a time to obtain the
crisp output, say a’, b’, and c’. By assuming the same fuzzy measure propagates to the
output, we will have μ(a’) = μ(a), μ(b’) = μ(b), and μ(c’) = μ(c), which give a TFN fuzzy
output (a’; b’; c’) for the function g(t), h(t), and N(t) [34].

The Second Method (α-Cut Method): In the second approach, the fuzzy number β̃ is
identified as an α-cut satisfying Equation (4). As it is explained in [34], the fuzzy number of
the shape parameter is approximated by a sequence of interval associated with the number
α in [0,1]. This sequence consists of crisp numbers in the interval indicating the support of
the fuzzy number for every α in [0, 1). If α is one then the supports converge to/become
the core of the fuzzy number. The calculation to determine the number of failures is done
at the end points of the interval. In this case, the stack of the end points of the intervals
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need not to be a TFN, which in many cases forms a TFN-like form (see numerical examples
for the details).

To facilitate comparison between the results from the two methods, we use the GMVD
defined in Equation (5). This GMVD has the properties as described in Theorem 1.

Theorem 1. Let a TFN is given by (a;b;c), then the generalized mean value defuzzification (GMVD)
defined by Equation (5) has the following properties:

1. For a symmetrical case, i.e., b− a = c− b = Δ then N(Ã) = b
2. For an asymmetrical case, i.e., b− a = Δa �= c− b = Δc then

a. N(Ã) > b if Δa < Δc

b. N(Ã) < b if Δa > Δc

3. If n → ∞ then N(Ã) = b regardless the value of p and q.

Proof of Theorem 1:

1. Case 1: symmetrical TFN, i.e., b− a = c− b = Δ then

N(Ã) = a+nb+c
n+2 = a+nb+(a+2Δ)

n+2 = 2a+nb+2Δ
n+2

= 2(a+Δ)+nb
n+2 = 2b+nb

n+2 = (2+n)b
n+2 = b.

Hence, N(Ã) = b.
2. Case 2: non-symmetrical TFN, i.e., b− a = Δa �= c− b = Δc then

a. if Δa < Δc then

N(Ã) = a+nb+c
n+2 = a+nb+(a+Δa+Δc)

n+2 > a+nb+(a+2Δa)
n+2 = 2a+nb+2Δa

n+2

Hence, N(Ã) > b.
b. if Δa > Δc then

N(Ã) = a+nb+c
n+2 = a+nb+(a+Δa+Δc)

n+2 < a+nb+(a+2Δa)
n+2 = 2a+nb+2Δa

n+2

Hence, N(Ã) < b.

3. If n → ∞ then lim
n→∞

N(Ã) = lim
n→∞

a+nb+c
n+2 = b. �

As shown by the theorem, the GMVD above has a special characteristic, i.e., it is able
to find a crisp number which is close to the core of the triangular fuzzy number (TFN).
As examples, first consider the symmetrical TFN in Figure 2(left), i.e.,β̃ = (p = 1.25;
q = 1.55; s = 1.85). It has GMVD = 1.55 for n = 1 and GMVD = 1.55 for n = 1000. Since it is
symmetrical, the values of GMVD are the same as the core of the TFN for all n. However,
for the non-symmetrical TFN, such as skewed left TFNβ̃ = (p = 2.50; q = 2.75; s = 2.80)
in Figure 2(right), it has GMVD = 2.6833 for n = 1 and GMVD = 2.74980 for n = 1000. In
this case, the larger is n the closer it is to the core of the TFN, i.e., 2.75. We will use this
method of defuzzification for comparing the fuzzy output from two different methods in
this paper.
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Figure 2. On the left figure is shown the relatively small shape parameter β̃ = (p = 1.25; q = 1.55;
s = 1.85) and on the right figure is shown the relatively large shape parameter β̃ = (p = 2.50;
q = 2.75; s := 2.80). The vertical axis is the fuzzy membership μ of the shape parameter’s TFN. The
first shape parameter is a symmetrical TFN and the second shape parameter is a nonsymmetrical
TFN. These TFNs are used to calculate their respective number of failures in the subsequent figures.

Next we look at the fuzzy number of failures generated by the Weibull distribution
via the α-cut method. Let us recall the α-cut of the triangular fuzzy number Ã = (a; b; c)
is given by Ãα = [aα

1, aα
2 ] = [(b− a)α + a, (b− c)α + c] then the shape parameter, the

Weibull cumulative distribution, the Weibul hazard function, and the number of failures
are, respectively, given in the form of α-cut as follows. The shape parameter will have
the form

βα = [x1 + xα
3 , x2 − xα

3 ], (9)

for some x1, x2, x3 ∈ R.By considering the α-cut in Equation (9) and substituting it into
Equations (6) and (7) using the fuzzy arithmetic give rise to the cumulative distribution

g(t)α = [1− exp(−ty1+y3α), 1− exp(−ty2−y3α)], (10)

for some y1, y2, y3 ∈ R and the hazard function

h(t)α = [(z1 + z3α)tz4+z6α, (z2 − z3α)tz5−z6α], (11)

for some z1, z2, z3, z4, z5, z6 ∈ R. So that by integrating both sides of Equation (11) we
end up with the number of failures, which is given by

N(t)α = [tu1+u3α, tu2−u3α] (12)

for some u1, u2, u3 ∈ R.
The following theorem shows that as time goes, the GMVD of the number of failures

increases and the support of the number of failures becomes wider. This means that the
degree of uncertainty becomes larger.

Theorem 2. For Δt > 0 let N(t)α and N(t + Δt)α be the fuzzy number of failures at time t and
t + Δt, respectively, then:

1. N(t)α = (tpα , tsα) and N(t + Δt)α =
(
(t + Δt)pα , (t + Δt)sα

)
,

2. GMVD(N(t + Δt)α) ≥ GMVD(N(t)α) for all t ∈ R+,
3.

(
(t + Δt)pα − (t + Δt)sα

)
− (tpα − tsα) ≥ 0 for all t ∈ Z+.

Proof of Theorem 2:

1. It is clear.
2. It can be proved by using Theorem 1.
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3. Note that for every α ∈ [0, 1], the interval in Equation (12) has the form (tpα , tsα) for
some pα, sα ∈ R. Without loss of generality, we will drop the index α, so that to
prove the theorem we need

(
(t + Δt)p − (t + Δt)s)− (tp − ts) ≥ 0.

Consider the following binomial rule,

(x + Δx)n =
n
∑

k=0

n!
(n−k)!k! Δxn−kxk. Then we have

(x + Δx)n =
n−1
∑

k=0

(n−1)!
((n−1)−k)!k! Δx(n−1)−kxk + n!

(n−k)!k! Δxn−kxk

=
n−1
∑

k=0

(n−1)!
((n−1)−k)!k! Δx(n−1)−kxk + xn.

Using this rule then for p, s ∈ Z+ we have

(t + Δt)p =
p−1

∑
k=0

(p− 1)!
((p− 1)− k)!k!

Δt(p−1)−kyk + tp

(t + Δt)s =
s−1

∑
k=0

(s− 1)!
((s− 1)− k)!k!

Δt(s−1)−kyk + ts

A little algebraic manipulation gives(
(t + Δt)p − (t + Δt)s)− (tp − ts) =

p−1
∑

k=0

(p−1)!
((p−1)−k)!k! Δt(p−1)−ktk −

s−1
∑

k=0

(s−1)!
((s−1)−k)!k! Δt(s−1)−ktk,

=
p−1
∑

k=s

(p−1)!
((p−1)−k)!k! Δt(p−1)−ktk ≥ 0,

Which shows that
(
(t + Δt)p − (t + Δt)s)− (tp − ts) ≥ 0 for all t ∈ Z+. Note that the

theorem can be extended to any case of p, s ∈ R+. One can prove this using the Newton’s
generalized Binomial theorem [56,57] in the form of infinite series rather than an infinite
sum such as in the above case of t ∈ Z+. �

3.2. Numerical Examples

To obtain better insight regarding the results presented in the previous section we
illustrate the concept above by using two different values for the shape parameters, the
relatively small value β̃ = (p = 1.25; q = 1.55; s = 1.85) and the relatively large value
β̃ = (p = 2.50; q = 2.75; s := 2.80). Here p, q, and s are the TFN components which
constitute the TFN defined just the same as a, b, and c in Equation (2). The graphs of
these TFNs are shown in Figure 2. For the first method, the number of failures for the
shape parameters in Figure 2 at t = 10 is presented in Figure 3 while Figure 4 (top figures)
shows the number of failures for t in [0,100] with 10 steps size. Figure 4 (bottom figures)
shows the nonlinearity of the failure numbers as a function of t. Similarly, for the second
method, the number of failures for the shape parameters in Figure 2 at t = 10 is presented
in Figure 5 while Figure 6 shows the number of failures for t in [0,100] with all steps of
time. For the finer step size, i.e., 100 steps size, the graph of the number of failures from the
second method is presented in Figure 7. Clearly the number of failures in Figure 3 are in
triangular forms since the first method assumes that the fuzziness of the shape parameter
propagates to the number of failures with the same form of fuzzy number membership,
while the number of failures in Figure 5 does not have a triangular form since the fuzziness
uncertainty is considered and affects the functional calculation of the number of failures
through the α-cut arithmetic. Figure 8 gives the comparisons between these two relatively
different shapes. Further, if we plot the numbers of failures over time (see bottom figures
in Figure 4), then the curves are non-linear and seem to be “exponentially” increase as
expected in the theory. The bottom graphs in Figure 4 actually show the numbers of failures
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over time for the end points and core of the shape parameter TFNs. To be exact these
figures show the graphs of Weibull’s numbers of failures bands, which analytically is given
by Equation (8) and comparable to Equations (10) and (14) for the α-cat, hence it has a
power curve. This is consistent with the curve for Weibull’s number of failures with crisp
parameters [58]. This is also true for the second method (the α-cut approach), but we do
not show the graphs here.

Figure 3. The left figure is the number of failures for the shape parameter β̃ = (p = 1.25; q = 1.55; s = 1.85) at t = 10—see
left figure in Figure 1. The right figure is the number of failures for the shape parameter β̃ = (p = 2.50; q = 2.75; s = 2.80)
at t = 10—see right figure in Figure 2. Note that the vertical axis indicates the fuzzy membership μ.

Figure 4. The description is as in Figure 3 above but with t = 0 to t = 100 and step size of t is 10. The left axis is time, the
right axis is the number of failures, and the vertical axis is the fuzzy membership degree of the number of failures (above).
The figures in the bottom show the core (black), the lower bound (blue), and the upper bound (red) for the resulting number
of failures with small shape parameter (left) and large shape parameter (right).
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Figure 5. The left figure is the number of failures for the shape parameter β = (p = 1.25; q = 1.55; s = 1.85) at t = 10. The
right figure is the number of failures for the shape parameter β = (p = 2.50; q = 2.75; s = 2.80) at t = 10. Both figures are
generated by the second method with 20 levels of α, i.e., α0 = 0 as the base to α21 = 1 as the peak.

Figure 6. The description is as in Figure 5 above but with complete steps form t = 0 to t = 10. The left

axis is time, the right axis is the number of failures, and the vertical axis is the fuzzy membership
degree of the number of failures.

Figure 7. The plots of the number of failures for the shape parameter β = (p = 1.25; q = 1.55; s = 1.85)
and β = (p = 0.9; q = 1.0; s = 1.5) from the second method against time from t = 0 to t = 100 as in
Figure 6 but with a finer step size of t (other parameters are the same as in Figures 5 and 6).
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Figure 8. The top and bottom figures are plots of the number of failures for β = (p = 1.25; q = 1.55; s = 1.85)
and β = (p = 2.50; q = 2.75; s = 2.80), respectively, with the left hand side is for t = 10 and the right
hand side is for t = 100.

The figures show that for both values of fuzzy shape parameters β̃, the relatively small
value β̃ = (p = 1.25; q = 1.55; s = 1.85) and the relatively large value β̃ = (p = 2.50;
q = 2.75; s = 2.80), the length of the fuzziness of the resulting number of failures get
bigger as the time t increases. This means the increase of the possibilistic uncertainty of the
number of failures. This phenomenon also appears in the α-cut method as is shown in the
next section.

3.3. Results from the α-Cut Method

The following results are plotted from the calculation of the number of failures us-
ing the α-cut method. Recall the α-cut of the triangular fuzzy number Ã = (a; b; c) is
given by Ãα = [aα

1, aα
2 ] = [(b− a)α + a, (b− c)α + c] hence for the fuzzy shape parameter

β̃ = (p = 1.25; q = 1.55; s = 1.85) we obtain its α-cut is

βα = [1.25 + 0.30α, 1.85− 0.30α], (13)

as the fuzzy number of the shape parameter. By considering the α-cut in Equation (7)
and substituting it into Equations (5) and (6) using the fuzzy arithmetic give rise to the
cumulative distribution

g(t)α = [1− exp(−t1.25+0.30α), 1− exp(−t1.85−0.30α)], (14)

and the hazard function

h(t)α = [(1.25 + 0.30α)t0.25+0.30α, (1.85− 0.30α)t0.85−0.30α], (15)
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So that by integrating both sides of Equation (9) we end up with the number of failures,
which is given by

N(t)α = [t1.25+0.30α, t1.85−0.30α]. (16)

When we use the α-cut method, we will have a triangular-like fuzzy number which is
comparable (not necessarily the same) to the triangular fuzzy number (p;q;r) defined by:

p = minN(t)α=0 = t5/4, (17)

q = N(t)α=1 = t31/20, (18)

r = minN(t)α=0 = t37/20, (19)

We enumerate the fuzzy number of failures in Table 1 based on the calculation of these
formulas for t = 0 to t = 10.

Table 1. Number of failures comparisons for β = (p = 1.25; q = 1.55; s = 1.85). Note that for the α -cut method we use
α = 0 to obtain the support (a,c) and α = 1 to find the core b of the resulting fuzzy number so that we have an analogous TFN
(a;b;c).

Time t
Crisp

Method
Fuzzy Propagation

Method
Fuzzy α-Cut Method

TFN
(p;q;s)

Defuzzification
(p + 4q + s)/6

TFN-like
(p;q;s)

Defuzzification
(p + 4q + s)/6

0 0 0 0
p = 0
q = 0
s = 0

0

1 1 1 1
p = 1
q = 1
s = 1

1

2 2.949350275
p = 2.378414230
q = 2.928171392
s = 3.605001850

2.949350275
p = 2.378414230
q = 2.928171392
s = 3.605001850

2.949350275

3 5.589852442
p = 3.948222039
q = 5.489565165
s = 7.632631956

5.589852442
p = 3.948222039
q = 5.489565165
s = 7.632631956

5.589852442

4 8.824940564
p = 5.656854248
q = 8.574187700
s = 12.99603834

8.824940564
p = 5.656854248
q = 8.574187700
s = 12.99603834

8.824940564

5 12.59725950
p = 7.476743905
q = 12.11723434
s = 19.63787576

12.59725950
p = 7.476743905
q = 12.11723434
s = 19.63787576

12.59725950

6 16.86728508
p = 9.390507480
q = 16.07438767
s = 27.51565232

16.86728508
p = 9.390507480
q = 16.07438767
s = 27.51565232

16.86728508

7 21.60548840
p = 11.38603593
q = 20.41277093
s = 36.59581083

21.60548840
p = 11.38603593
q = 20.41277093
s = 36.59581083

21.60548840

8 26.78864158
p = 13.45434265
q = 25.10669114
s = 46.85074227

26.78864158
p = 13.45434265
q = 25.10669114
s = 46.85074227

26.78864158

9 32.39780510
p = 15.58845727
q = 30.13532570
s = 58.25707056

32.39780510
p = 15.58845727
q = 30.13532570
s = 58.25707056

32.39780510

10 38.41712138
p = 17.78279410
q = 35.48133892
s = 70.79457844

38.41712138
p = 17.78279410
q = 35.48133892
s = 70.79457844

38.41712138
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Table 1 also gives the counterpart of the fuzzy number of failure calculated by the first
method. Note that in Table 1, TFN is a triangle fuzzy number, while FN is not necessarily a
triangle fuzzy number. However, they both have the same core and the same support but
the shapes are different (see Figure 8).

Further, to compare the resulting fuzzy number of failures among the methods, we
defuzzified them using the generalized mean value defuzzification (GMVD) which is
defined by (4) with n = 4. The comparison shows that the defuzzified numbers both from
the first method and the second method are exactly the same to the results from the crisp
method. Table 2 shows that if n is getting larger, then, the defuzzified number gets closer
to the core of the fuzzy number, e.g., for t = 10, with n = 1,000,000 the defuzzified number
is 35.4813565346595 which approaches the core of its fuzzy number, i.e., q = 35.48133892.
This agrees with Theorem 1. We plot the resulting number of failures for t = 10 in Figure 5
and for t = 0 to t = 10 in Figure 6. The same procedure is done for the relatively large value
of the shape parameter β̃ = (p = 2.50; q = 2.75; s = 2.80) but the details are not presented
here. The plots are presented in the righthand side of Figures 5–7.

Table 2. The illustration of Theorem 1 of the GMVD for non-symmetrical fuzzy number in Figure 5
(left). The fuzzy number is (17.782794100; 35.481338920; 70.794578440).

n GMVD n GMVD

0 44,28868627 6 37,68317576
1 41,35290382 7 37,43852722
2 39,88501260 8 37,24280839
3 39,00427786 9 37,08267480
4 38,41712137 10 36,94923015
5 37,99772388 10,000,000 35,48135653

The time-series plots of the Cumulative Distribution Function, the Hazard Function,
and the Number of Failures are presented in Figure 9. The shape parameter on the upper-
left of Figure 9 is β = (p = 1.25; q = 1.55; s = 1.85) and on the upper-right of Figure 9 is
β = (p = 2.50; q = 2.75; s = 2.80). The figure shows the plots for a short period of time,
up to t = 1.5.

Figure 9. Cont.
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Figure 9. The time-series plots of the Cumulative Distribution Function, the Hazard Function, and the Number of Failures. The
shape parameter on left figure is β = (p = 1.25; q = 1.55; s = 1.85) and on the right figure is β = (p = 2.50; q = 2.75; s = 2.80).

4. Discussions

The analytical results in Theorems 1 to 3 are illustrated by numerical examples to
gain visual understanding regarding the analytical finding above by using β̃ = (p = 1.25;
q = 1.55; s = 1.85) and β̃ = (p = 2.50; q = 2.75; s := 2.80) reflecting a relatively small
and a relatively large shape parameter, respectively. Here p, q, and s are the TFN components
which constitute the TFN defined just the same as a, b, and c in Equation (1). See Figure 2
for the graphs of these TFNs and Figure 3 for the resulting number of failures at t = 10
from the first method and Figure 5 (for the second method). While Figure 4 (top figures)
shows the number of failures for t in [0,100] for the first method and Figure 6 for the second
method with 10 steps size, (for the finer step size, i.e., 100 steps size see Figure 7). Clearly
the number of failures in Figure 3 are in triangular forms due to the assumption in the
first method in which the fuzziness of the shape parameter propagates with the same form
of fuzzy number membership to the number of failures, while the number of failures in
Figure 5 does not have a triangular form since the fuzziness uncertainty is considered and
affecting the functional calculation of the number of failures through the α-cut arithmetic.
Figure 8 gives the comparisons between these two relatively different shapes. The time-
series plots of the cumulative distribution function, the hazard function, and the number
of failures are presented in Figure 9. All curves are familiar in shape as it conform to
their crisp parameter of Weibull distribution, but here they form twisted-cumulative band,
-hazard band, and -number of failures band instead of single curve, respectively.

Furthermore, if we plot the numbers of failures over time (see bottom figures in
Figure 4), then the curves are non-linear and seem to “exponentially” increase as expected
in the theory. The bottom graphs in Figure 4 actually show the numbers of failures over
time for the end points and core of the shape parameter TFNs. To be exact these figures
show the graphs of Weibull’s numbers of failures bands, which analytically is given by
Equations (12) and (16), hence it has a power curve shape which conforms to the known
curve for Weibull’s number of failures with crisp parameters [58]. This is also true for the
second method (the α-cut approach), but we do not show the graphs here.
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When considering a Weibull distribution with fuzzy shape parameter to calculate
the fuzzy number of failures, usually in such imprecise situations, extension principle
approach is often used as one choice of calculation though it could lead to a complex form.
Here we have proposed a simple method (the first method) to calculate the number of
failures, by assuming that the fuzziness of the shape parameter propagates to the number of
failures with the same form of fuzzy number membership, and also proposed an alternative
method (the second method) which is the calculation done using the α-cut method. This
method could be extended to the Weibull distribution with more parameters to enlarge the
applicability to other area [59].

5. Conclusions

In this paper we have discussed the Weibull hazard function by assuming a fuzzy
shape parameter to calculate the fuzzy number of failures. Here we have proposed a
simple method (the first method) to calculate the number of failures, by assuming that
the fuzziness of the shape parameter propagates to the number of failures with the same
form of fuzzy number membership, and also proposed an alternative method (the second
method) which is the calculation done using the α-cut method.

We have shown that both methods have succeeded in computing the number of
failures for the system under investigation. Both methods show that when we consider the
function of the number of failures as a function of time then the uncertainty (the fuzziness)
of the resulting number of failures becomes larger and larger as the time increases. This
indicates the propagation of uncertainty in the shape parameter into the resulting number
of failures, in which for large values of t, a small value of uncertainty in the shape parameter
will produce a large support to the fuzzy number of failures. In practical implication, one
should be aware of these properties when using the resulting number of failures as a base
for the further process of decision-making.

In this paper we have used a TFN for the shape parameter and by using the first
method, the resulting number of failures has a TFN form. Meanwhile, the resulting number
of failures from the second method does not necessarily have a TFN form, but a TFN-like
form. Some comparisons between these two methods are presented using the Generalized
Mean Value Defuzzification (GMVD) method. The results show that for certain weighting
factor of the GMVD, the cores of these fuzzy numbers of failures are identical. We did
the comparation between the two methods after we use the GMVD which produces crisp
number of failures. This can be regarded as a shortcoming of the study since once we
defuzzify the resulting number of failures we lose the information of the uncertainty.
Further study can be done by considering the comparation with a method that preserves
the uncertainty.

The TFN form and value of the shape parameter used in the Weibull distribution
function was taken for granted. For the practical applications this would be not easy. The
true form of the fuzzy number should be correctly decided from the available real data and
the value should be estimated from the same data. These issues are among the limitations
of the methods presented here and could also lead to future direction of research. Other
concern is that here we only consider one parameter which has fuzzy value. In realty
all of the Weibull parameters could also have imprecise measure or uncertainty. This
also will lead to important future venue of research (currently four-parameter Weibull
distribution has already around in crisp value application ref). Here we only consider
one-parameter Weibull distribution by assuming the scale parameter is assumed to be one.
This is sufficient in our context of maintenance modeling if we assume that the average
of first failure of the equipment/system under investigation happens within one unit of
time. However, in general case this may not be true, so we need to extend the analysis
into Weibull distribution having arbitrary values of the scale parameters. Further studies
can also be done for different approaches with different forms of fuzzy numbers, different
uses of defuzzification methods, and explore the applications of the theory in different
related field, such as the number of failures in biological processes (e.g., failure in protecting
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healthy status (susceptibility) for people who are infected by COVID-19 disease), which
currently we are working on.
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Abstract: Multiple definitions have been put forward in the literature to measure the differences
between two interval-valued fuzzy sets. However, in most cases, the outcome is just a real value,
although an interval could be more appropriate in this environment. This is the starting point of
this contribution. Thus, we revisit the axioms that a measure of the difference between two interval-
valued fuzzy sets should satisfy, paying special attention to the condition of monotonicity in the
sense that the closer the intervals are, the smaller the measure of difference between them is. Its
formalisation leads to very different concepts: distances, divergences and dissimilarities. We have
proven that distances and divergences lead to contradictory properties for this kind of sets. Therefore,
we conclude that dissimilarities are the only appropriate measures to measure the difference between
two interval-valued fuzzy sets when the outcome is an interval.

Keywords: interval-valued fuzzy set; interval order; difference; distance; divergence; dissimilarity

1. Introduction

It us usually understood that knowledge of comparisons of objects, opinions, etc. are
incomplete. A widely accepted theory (and methodology) to cope with imprecision is fuzzy
sets theory, where elements are not necessarily in a set or out of it, but rather intermediate
degrees of membership are allowed. In this context, the classical ways to contrast sets
do not apply, and several measures for comparing fuzzy sets have been introduced and
can be found in the literature. An in-depth study was carried out by Bouchon-Meunier
et al. in 1996 [1]. After this, many other measures have been proposed. Some of them are
constructive definitions, i.e., specific formulae (see, among many others, Refs. [2–5]) and
others are based on axiomatic definitions (see, for example, Refs. [6–8]).

The presence of imprecision in real-life situations has been a challenge even from
a theoretical point of view. In order to cope with this handicap, different extensions of
fuzzy sets have been proposed. Interval-valued fuzzy sets (IVFSs) are one of the most
successful and challenging extensions. This generalization was introduced independently
and almost simultaneously by Zadeh [9], Grattan-Guiness [10], Jahn [11], and Sambuc [12].
Interval-valued fuzzy sets are a useful tool. They are used to model situations where
the “classical” fuzzy sets are not appropriate. This occurs in the case when an objective
procedure to determine crisp membership degrees is not available. IVFSs show high
potential in practical applications. They were used in medical diagnosis in thyrodian
pathology (see Sambuc [12]), in approximate reasoning (see, for instance, the contributions
of Bustince [13] and Gozalczany [14]) and Cornelis et al. [15] and Turksen [16] applied this
theory in logic.

Due to its potential utility, different notions and tools connected to this extension must
be studied. In particular, our interest is focused on the measures of comparison of two
interval-valued fuzzy sets, which have been studied in the last years. Some of them are
based on comparing the degree of similarity between them (see, e.g., [17–20]). However,
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it is also possible to consider a dual approach, based on measuring the difference (see,
e.g., [21]). Another previous study related to this topic can be obtained from the related
concept of intuitionistic fuzzy sets. It was introduced by Atanassov [22].

Closely connected to IVFSs is the theory of intuitionistic fuzzy sets, introduced by
Atanassov [22] about a decade after IVFSs were defined. Despite they are semantically
different, it is widely known that intuitionistic and interval-valued fuzzy sets are equipol-
lent (see, for instance, [23,24]); that is, there is a bijective function that maps one onto the
other. Measures to compare intuitionistic fuzzy sets have already been introduced (see,
for example, [25,26]). These proposals could provide us with an initial idea on the way to
compare two interval-valued fuzzy sets. However, they cannot be directly used, as was
shown in [27–29].

The previously introduced measures provide a unique real value as the result of the
comparison. However, this is not a desirable result. If we are dealing with interval-valued
fuzzy sets from an epistemic point of view, even the absolute similarity between incomplete
descriptions does not guarantee the absolute similarity of the described elements. In order
to cope with this situation, it could be more appropriate to formalize the idea of similarity
using a range of values. However, this perspective is not the usual one. To the best of
our knowledge, the literature where we can find this approach is rather limited [30–33].
These papers can be considered as the starting point of our research [34]. Thus, our main
purpose is to study the different approaches considered in the literature that measure the
degree of difference between two interval-valued fuzzy sets by means of an interval, in
order to preserve the uncertainty that we have about the description of the involved sets.
In this paper, we will consider the different approaches, compare them and conclude which
ones are the best axioms in order to characterise a measure of the difference between two
interval-valued fuzzy sets.

More precisely, we will focus on distances, divergences, and dissimilarities and study
how sound these definitions are. We provide examples that show that distances lead to
counterintuitive situations and that the axioms involved in the definition of an interval-
valued divergence are conflicting. Therefore, we consider dissimilarities as the only rea-
sonable way to compare IVFSs among the three considered. As a consequence, we finally
compare the different proposals given in the literature for this concept.

The contribution is organised as follows. In Section 2, basic concepts and results are
introduced, and the notation used in the subsequent sections is fixed. Section 3 is devoted
to studying the possible definitions of a measure of how different two interval-valued
fuzzy sets can be. Section 4 closes the contribution with some conclusions. We also put
forward some questions that remain open in this section.

2. Basic Concepts

In this section, we recall some basic notions and properties that are important to
understand the following section of this contribution. We begin with the classical theory of
fuzzy sets.

Let X denote the universe of discourse. A fuzzy set in X is a mapping A : X → [0, 1]
where A(x) stands for the degree to which element x belongs to the subset A of X. We will
denote FS(X) the family of all the fuzzy sets defined on the universe X.

An interval-valued fuzzy subset (IVFS for short) of X is a mapping A : X → L([0, 1])
such that A(x) = [A(x), A(x)], where L([0, 1]) denotes the family of closed intervals
included in the unit interval [0, 1]. It is therefore easy to check that an interval-valued
fuzzy set A is characterized by two mappings, A and A, from X into [0, 1] such that
A(x) ≤ A(x), ∀x ∈ X. These functions provide the lower and upper bounds, respectively,
of the associated intervals. Observe that if A(x) = A(x), ∀x ∈ X, then A is a classical fuzzy
set. The abbreviation IVFS(X) stands for set of all the interval-valued fuzzy sets in X.

For IVFSs, we can consider the epistemic or the ontic interpretation. In our study, the
former is chosen. Thus, we assume that there is one actual, real-valued membership degree
of an element inside the membership interval of possible membership degrees.
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Example 1. Consider the IVFS drawn in Figure 1. The IVFS assigns to element x the interval
[0.45, 0.75].

X

Membership

0

0.2

0.4

0.6

0.8

1

x

Figure 1. Idea of IVFS.

This means that the real membership degree for x may be 0.65, but we are not sure about it
and we can only say that it is between 0.45 and 0.75.

As we explained in detail at the Introduction, we define a measure to compare two
IVFSs such that the value of this comparison is again an interval. In order to do this, some
operations and previous concepts have to be fixed.

2.1. Inclusion

The inclusion for IVFSs is directly connected to an order relation between intervals.
In [35], we can find a summary of the main interval orders.

Definition 1. ([35]) Let a = [a, a] and b = [b, b] be two intervals in L([0, 1]). Then a is smaller
than or equal to b for the following orders between intervals if:

• Interval dominance [36]: a "ID b if a ≤ b.
• Lattice order [37]: a "Lo b if a ≤ b and a ≤ b, which is induced by the usual partial order in R2.
• Lexicographical order of type 1 [38]: a "Lex1 b if a < b or (a = b and a ≤ b).
• Lexicographical order of type 2 [38]: a "Lex2 b if a < b or (a = b and a ≤ b).
• The Xu and Yager order [39]: a "XY b if a+ a < b+ b or (a+ a = b+ b and a− a ≤ b− b).
• Maximin order [40,41]: a "Mm b if a ≤ b.
• Maximax order [42]: a "MM b if a ≤ b.
• Hurwicz order [43]: a "H(α) b if α · a + (1− α) · a ≤ α · b + (1− α) · b with α ∈ [0, 1].
• Weak order [44]: a "wo b if a ≤ b.

Given an order "o, the equality between intervals can be defined as follows: a =o b if
and only if a "o b and b "o a.

Most of the previously recalled orders are connected. First of all, it is well known that
if one interval a is lower than or equal to another interval b w.r.t. interval dominance, a is
also lower than or equal to b w.r.t. the lattice order. Interval dominance is also a stronger
relation than the lexicographical order of type 1, which implies the maximax order which,
in turn, implies the weak order. Figure 2 summarizes these and other similar connections.
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a "ID b
⇓

a "Lo b
⇓︷ ︸︸ ︷

a "Lex1 b a "Lex2 b a "XY b a "H(α) b for any α ∈ [0, 1]

⇓ ⇓ ⇓
a "Mm b a "MM b a "H(1/2) b︸ ︷︷ ︸

⇓
a "wo b

Figure 2. Relationships among the different relations.

Observe that ID is the strongest relation in the sense that if two intervals are connected
by it, then they are connected by any of the other relations previously recalled.

Apart from that, it is important to notice that, although all of them are called orders,
they are not really orders, in the mathematical sense, in all the cases, as we can see in
Table 1. Thus, only the lattice order, the lexicographical orders and the Xu-Yager order are
really orders and the first one is not a total order.

Table 1. Some properties of the considered relations on L([0, 1]).

Reflexive Antisymmetric Transitive Total Preorder Order

ID � � � � � �

Lo � � � � � �

Lex1 � � � � � �

Lex2 � � � � � �

XY � � � � � �

Mm � � � � � �

MM � � � � � �

H(α) � � � � � �

wo � � � � � �

Regarding total orders in L([0, 1]), we consider the so-called admissible orders, whose
definition we now recall.

Definition 2. ([38]) An admissible order on L([0, 1]) is a total order "to that refines the lattice
order; that is, for every a, b ∈ L([0, 1]), if a "Lo b then a "to b.

An interesting feature of admissible orders is that they can be built using aggrega-
tion functions, as stated in the following result. Recall that an aggregation function is a
increasing function A : [0, 1]n → [0, 1] with A(0, . . . , 0) = 0 and A(1, . . . , 1) = 1 (see [45]).

Observe that there is an easy bijection between the sets L([0, 1]) and K([0, 1]) =
{(u, v) ∈ [0, 1]2 | u ≤ v}. It assigns to each interval [a, a] the point in R2 whose coordinates
are the extreme values of the interval, i.e., (a, a) (see [38]). Therefore, aggregation functions
can be used to summarize the information provided by an interval. This idea is beneath
the following method provided by Bustince et al. to build admissible orders.

Proposition 1. ([38]) Let A and B : [0, 1]2 → [0, 1] be continuous aggregation functions,
verifying that for all (u, v), (w, z) ∈ K([0, 1]), the equalities A(u, v) = A(w, z) and B(u, v) =
B(w, z) can only hold if (u, v) = (w, z). Define the relation "A,B on L([0, 1]) by:

a "A,B b if A(a, a) < A(b, b) or (A(a, a) = A(b, b) and B(a, a) ≤ B(b, b)).

Then "A,B is an admissible order on L([0, 1]).
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The weighted mean provides a particular way to obtain admissible orders on L([0, 1]).
The definition is as follows (see [46]):

Kα(u, v) = (1− α) · u + α · vs. with α ∈ [0, 1].

This operator can be interpreted as the α-quantile of a probability distribution uniformly
distributed on the interval [u, v]. Applying Proposition 1 to the aggregation operators Kα

and Kβ with α �= β, the admissible order "Kα ,Kβ
is obtained. For the sake of simplicity, it is

denoted "α,β.
Particular cases of admissible orders obtained by the weighted mean are the lexico-

graphical orders of type one and two and the Xu and Yager order. Note that "Lex1≡"0,1,
"Lex2≡"1,0 and "XY≡"1/2,β for β any value in (1/2, 1] (see [38]).

Any order"o defined over L([0, 1]) induces an order over IVFS(X) that is the content
relation derived from this order (⊆o). The following result formalized what said above and
is straightforward to prove it.

Proposition 2. Let "o be an interval order in L([0, 1]) and A and B in IVFS(X). Then ⊆o
defined as

A ⊆o B iff A(x) "o B(x), ∀x ∈ X.

is a partial order in IVFS(X).

Example 2. If we consider the IVFSs A, B, and C represented in Figure 3, it is clear that A, B ⊆ID
C and therefore they are included in C with respect to any of the orders recalled in Definition 1. We
also have that A ⊆Lo B but A �⊆ID B. Thus, A is included in B for any considered order except for
the interval dominance. Finally, we can say that neither B nor C are included in A for any order.

X

Membership

0

0.2

0.4

0.6

0.8

1
C

B

A

x0

Figure 3. Membership degrees for A, B and C.

On the other hand, ⊆o is not a total order in general. Consider for instance the lattice order
⊆Lo and the IVFSs given in Figure 3, A and B are incomparable. In fact, we can obtain incomparable
IVFSs even in the case we are considering a total order.

2.2. Embedding

Another important partial order on IVFS(X) could be defined as follows.

Definition 3. Let ⊆ be the usual inclusion between intervals and A and B in IVFS(X). It is said
that A is embedded in B, and it is denoted as A � B if and only if A(x) ⊆ B(x), ∀x ∈ X.

The following example shows the idea behind this definition.

Example 3. If we consider the IVFSs A and B represented in Figure 4, we have that A is embedded
in B, since A(x) ⊆ B(x), ∀x ∈ X.
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X

Membership

0

0.2

0.4

0.6

0.8

1
B

A

Figure 4. A is embedded in B.

Nor is it a total order, as the following example shows.

Example 4. Consider the two IVFSs drawn in Figure 5.

X

Membership

0

0.2

0.4

0.6

0.8

1

A
B

Figure 5. Not embedded IVFSs.

It is clear that A is not embedded in B and B is not embedded in A.

2.3. Intersection

There are different proposals to formalize the notion of intersection in the literature.
We will base our definition on the idea that the intersection of two sets is the greatest set
contained in both departing sets. Since this definition is based on contents, we will obtain
a different definition of intersection for each order we consider in IVFS(X) as explained
in [35,47].

Definition 4. Let A, B be two interval-valued fuzzy sets in X and let "o be an order relation
between intervals in L([0, 1]). We define the o-intersection of A and B, and we denote it by A ∩o B
as the greatest interval-valued fuzzy set such that A ∩o B ⊆o A and A ∩o B ⊆o B.

For any two interval orders "o1 and "o2 in L([0, 1]) such that a "o1 b implies that
a "o2 b, ∀a, b ∈ L([0, 1]), we have that A ∩o1 B ⊆o2 A ∩o2 B for any A, B ∈ IVFS(X).

Considering the connection among the orders in Definition 1, we next discuss the
definition of intersection obtained for each of them. If possible, we describe general behaviours.

Proposition 3. ([35]) Let A, B be two sets in IVFS(X). Then, for any x ∈ X, we have that:

• Interval dominance: A ∩ID B(x) = [min{A(x), B(x)} , min{A(x), B(x)}].
• Lattice order: A ∩Lo B(x) = [min{A(x), B(x)}, min{A(x), B(x)}].

• Lexicographical order of type 1: A ∩Lex1 B(x) =
{

A(x) if A(x) "Lex1 B(x)
B(x) if B(x) "Lex1 A(x)

• Lexicographical order of type 2: A ∩Lex2 B(x) =
{

A(x) if A(x) "Lex2 B(x)
B(x) if B(x) "Lex2 A(x)

• Xu and Yager order: A ∩XY B(x) =
{

A(x) if A(x) "XY B(x)
B(x) if B(x) "XY A(x)
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• Maximim order: A ∩Mm B(x) = [min{A(x), B(x)}, v] for v any number in the interval
[min{A(x), B(x)}, 1].

• Maximax order: A ∩MM B(x) = [u, min{A(x), B(x)}] for u any number in the interval
[0, min{A(x), B(x)}].

• Hurwicz order: A ∩H(α) B(x) =
[
u, k−α·u

1−α

]
for k = min{α · A(x) + (1− α) · A(x), α ·

B(x) + (1− α) · B(x)} and u any value in the interval
[
max{0, k−(1−α)

α }, k
]
.

• Weak order: A ∩wo B(x) = [u, v] for u any value in the interval [0, min{A(x), B(x)}] and
v any value in the interval [min{A(x), B(x) 1].

Lexicographical orders and the Xu and Yager order are particular cases of admissible
orders, and the associated intersections are obtained as a consequence of the following
result.

Corollary 1. Let A and B ∈ FS(X) and denote A′ and B′ as the previous fuzzy sets written in
terms of IVFSs: A′(x) = [A(x), A(x)] and B′(x) = [B(x), B(x)] for every x ∈ X. Let "0 be the
interval dominance, the lattice order, the lexicographical order of types 1 and 2, or the Xu and Yager
order. Then A′ ∩0 B′ = (A ∩ B)′, where ∩ denotes the classical intersection of fuzzy sets based on
the minimum.

Proof. Fix x ∈ X. Denote A(x) = a and B(x) = b, then A′(x) = [a, a] and B′(x) = [b, b].
On the one hand it holds that (A ∩ B)(x) = min(A(x), B(x)). Therefore, (A ∩

B)′(x) = [min(a, b), min(a, b)].
On the other hand, A′(x) = A′(x) = a and B′(x) = B′(x) = b and it follows from

Proposition 3 that A′ ∩0 B′(x) = [min(a, b), min(a, b)].

Proposition 4. ([35]) Let A and B : [0, 1]2 → [0, 1] be two continuous aggregation functions
such that ∀(u, v), (u′, v′) ∈ K([0, 1]), A(u, v) = A(u′, v′) and B(u, v) = B(u′, v′) hold simul-
taneously if and only if (u, v) = (u′, v′). Let "A,B be the admissible order on L([0, 1]) induced
by these aggregation functions. For all A, B ∈ IVFS(X), the A,B-intersection of A and B is the
interval-valued fuzzy set defined by:

A ∩A,B B(x) =
{

A(x) if A(x) "A,B B(x)
B(x) if B(x) "A,B A(x)

Taking into account Proposition 3, we can see that in some cases the intersection is not
uniquely defined for the four last relations. Moreover, for the first one, we have that the
intersection of two IVFSs is just a fuzzy set. This is summarized in Table 2.

Table 2. Uniqueness of the intersection of IVFSs.

Interval Order Is the Intersection Unique? Is the Intersection an IVFS?

Interval dominance � �

Lattice order � �

Lex. order type 1 � �

Lex. order type 2 � �

Xu and Yager order � �

Maximim order �

Maximax order �

Hurwicz order �

Weak order �

The following examples can help to clarify the previous remarks.
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Example 5. Let us consider the case X = {x} and the interval-valued fuzzy sets A and B defined
by A(x) = [0.4, 0.8] and B(x) = [0.2, 0.9]. Then, the intersection for the four last orders is given
in Table 3 and shown in Figure 6.

Table 3. No uniqueness of the intersection of IVFSs for some orders.

A ∩MM B(x) A ∩Mm B(x) A ∩H(1/2) B(x) A ∩wo B(x)

[u, 0.8] [0.2, v] [u, 1.1− u] [u, v]

u ∈ [0, 0.8] v ∈ [0.2, 1] u ∈ [0.1, 0.55] u ∈ [0, 0.8]
v ∈ [0.8, 1]

0.2

0.4

0.6

0.8

0.9

1

A B

A ∩MM B

A ∩Mm B

A ∩H(1/2) B

A ∩wo B

Figure 6. Intersection for different orders.

If we consider the orders that lead to a unique set as intersection, we obtain an interval uniquely
defined, as we can see in Table 4. A graphical representation is shown in Figure 7.

Table 4. Uniqueness of the intersection of IVFSs for some orders.

A ∩ID B A ∩Lo B A ∩Lex1 B A ∩Lex2 B A ∩XY B

0.2 [0.2, 0.8] [0.2, 0.9] [0.4, 0.8] [0.2, 0.9]

0.2

0.4

0.6

0.8

0.9

1

A B A ∩ID B

A ∩Lo B

A ∩Lex1 B

A ∩Lex2 B

A ∩XY B

Figure 7. Intersection w.r.t. ID, Lo, Lex1, Lex2 and XY.

It is clear that the intersection is just a fuzzy set for the case of the interval dominance.
In this case the lexicographical order of type 1 and the Xu and Yager order provide the

same intersection, but, of course, this does not hold in general. For example, if we consider C
an IVFS such that C(x) = [0.4, 0.5], we have that B "Lex1 C and C "XY B and therefore
B ∩Lex1 C = B �= B ∩XY C = C.

This example also emphasises that the intersection depends on the considered order, which is
logical from the considered definition.
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2.4. Union

In this subsection, we reproduce for the union the discussion included in the previous
one concerning intersection.

We assume that the union of two sets is the smallest set that contains both sets. Then
we have a different definition of union for every order we consider in L([0, 1]).

Definition 5. Let A, B ∈ IVFS(X) and let "o be an order in L([0, 1]). The o-union of A and B,
denoted A∪o B, is the smallest interval-valued fuzzy set such that A ⊆o A∪o B and B ⊆o A∪o B.

Thus, for the orders where the intersection is unique, we have that:

Proposition 5. ([35]) Let A, B be two sets in IVFS(X). Then, for any x ∈ X, we have that:

• Interval dominance: A ∪ID B(x) = [max{A(x), B(x)} , max{A(x), B(x)}].
• Lattice order: A ∪Lo B(x) = [max{A(x), B(x)}, max{A(x), B(x)}].

• Lexicographical order of type 1: A ∪Lex1 B(x) =
{

B(x) if A(x) "Lex1 B(x)
A(x) if B(x) "Lex1 A(x)

• Lexicographical order of type 2: A ∪Lex2 B(x) =
{

B(x) if A(x) "Lex2 B(x)
A(x) if B(x) "Lex2 A(x)

• Xu and Yager order: A ∪XY B(x) =
{

B(x) if A(x) "XY B(x)
A(x) if B(x) "XY A(x)

We can prove again that the considered definition preserves the classical definition of
union for the particular case of fuzzy sets.

Corollary 2. Let A, B ∈ FS(X) and denote A′ and B′ the previous fuzzy sets written in terms
of IVFSs: A′(x) = [A(x), A(x)] and B′(x) = [B(x), B(x)] for every x ∈ X. Let "0 be the
interval dominance, the lattice order, the lexicographical order of types 1 and 2 or the Xu and Yager
order. Then A′ ∪0 B′ = (A ∪ B)′, where ∪ denotes the classical union of fuzzy sets based on
the maximum.

Proof. Fix x ∈ X. Denote A(x) = a and B(x) = b, then A′(x) = [a, a] and B′(x) = [b, b].
On the one hand, it holds that (A ∪ B)(x) = max(A(x), B(x)). Therefore, (A ∪

B)′(x) = [max(a, b), max(a, b)].
On the other hand, A′(x) = A′(x) = a and B′(x) = B′(x) = b, and it follows from

Proposition 5 that A′ ∪0 B′(x) = [max(a, b), max(a, b)].

The lexicographical orders and the Xu and Yager order are particular cases of ad-
missible order, and the union can also be obtained as a consequence of the following
general result.

Proposition 6. ([35]) Let A,B : [0, 1]2 → [0, 1] be two continuous aggregation functions, such
that ∀(u, v), (u′, v′) ∈ K([0, 1]), A(u, v) = A(u′, v′) and B(u, v) = B(u′, v′) hold simultane-
ously if and only if (u, v) = (u′, v′). Let "A,B be the admissible order on L([0, 1]) induced by
them. For any A, B ∈ IVFS(X), the A,B-union of A and B is the IVFS defined by:

A ∪A,B B(x) =
{

B(x) if A(x) "A,B B(x)
A(x) if B(x) "A,B A(x)

Example 6. Let the universe X = {x} and let A, B, C ∈ IVFS(X) such that A(x) = [0.4, 0.8],
B(x) = [0.2, 0.6] and C(x) = [0.3, 0.9].

• The ID-union of A and B is the IVFS A ∪ID B(x) = [0.8, 0.8] and the ID-union of A and C
is the IVFS A ∪ID C(x) = [0.9, 0.9]. Figure 8 provides a graphical representation.

177



Mathematics 2021, 9, 3157
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A(x) C(x) A ∪ID C(x)

Figure 8. ID-union.

It is clear that A ∩ID B �= A and A ∩ID B �= B.
• The Lo-union of A and B is the IVFS A ∪Lo B(x) = [0.2, 0.6] and the Lo-union of A and C

is the IVFS A ∪Lo C(x) = [0.3, 0.8].
As we can see in Figure 9, A ∪Lo B = B, but A ∪Lo C �= A and A ∪ID C �= C.
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0.8
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A(x) B(x) A ∪Lo B(x)
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A(x) C(x) A ∪Lo C(x)

Figure 9. Lo-union.

• The Lex1-union of A and B is the IVFS A ∪Lex1 B(x) = [0.4, 0.8] and the Lex1-union of A
and C is the IVFS A∪Lex1 C(x) = [0.4, 0.8]. Thus, in this case, A∪Lex1 B = A∪Lex1 C = A.

• The Lex2-union of A and B is the IVFS A ∪Lex2 B(x) = [0.4, 0.8]. and the Lex2-union of
A and C is the IVFS A ∪Lex2 C(x) = [0.3, 0.9]. Thus, in this case, A ∪Lex2 B = A and
A ∪Lex2 C = C.

• The XY-union of A and B is the IVFS A ∪XY B(x) = [0.4, 0.8], and the XY-union of A and
C is the IVFS A ∪XY C(x) = [0.3, 0.9]. Thus, again A ∪XY B = A and A ∪XY C = C and
the union obtained for Lex2 and for XY are the same.
However, this is not true in general, since Lex2 compares the right endpoint of intervals
and XY the sum of both endpoints. For instance, if we consider D(x) = [0.2, 0.9], the
XY-union of A and D is the IVFS A ∪XY D(x) = [0.4, 0.8], but their Lex2-union is
A ∪Lex2 D(x) = [0.2, 0.9], as we can see in Figure 10.

0.2

0.4

0.6

0.8

1

A(x) D(x) A ∪XY D(x) A ∪Lex2 D(x)

Figure 10. Lex2-union is different from XY-union.
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Once we have introduced the basic concepts about different operations between IVFSs,
we can start to think about the necessary requirements of a measure to be an appropriate
way to quantify the difference between two IVFSs.

3. How to Compare Two Interval-Valued Fuzzy Sets?

As we described in detail at the Introduction, most of the measures of comparison
between IVFSs found in the literature provide a unique number as final outcome. Such a
simplification necessarily means a loss of information. In order to keep the idea underlying
IVFSs, the result of the comparison should not be an isolated value. This section contains a
discussion on the definition of measure of comparison between IVFSs. We consider the
axioms that should be included in the definition.

There are some natural requirements that underlie the idea of difference between two
interval-valued fuzzy sets:

REQ1 Non-negativity;
REQ2 Symmetry;
REQ3 It becomes zero when the two sets are “equal”;
REQ4 It takes into account the uncertainty associated to the width of the intervals;
REQ5 It decreases when the sets are closer.

Requirements REQ1, REQ2, and REQ3 are the usual ones for comparing any set, in
particular fuzzy sets. Requirement REQ4 gives expression to the idea that the width of the
interval is important. Requirement REQ5 describes the idea of proximity, and, as will later
be shown, it will be the characteristic axiom.

Let us study them in detail one by one.

3.1. Non-Negativity

Initially, the degree of difference between two IVFSs A and B is a closed interval in R,
that is, D(A, B) ∈ L(R).

It seems natural to require that D(A, B) is “non-negative”. This is required as follows:

D(A, B) ≥ 0

and therefore the codomain of D is not L(R) in general, but L([0, ∞)).
We can relate this requirement to the different orders among intervals as follows:

Proposition 7. Let D be a map from IVFS(X)× IVFS(X) into L(R) and consider the orders
recalled in subsection. For the statements

i) D(A, B) ≥ 0
ii) [0, 0] "ID D(A, B)
iii) [0, 0] "Lo D(A, B)
iv) [0, 0] "Lex1 D(A, B)
v) [0, 0] "Lex2 D(A, B)
vi) [0, 0] "XY D(A, B)
vii) [0, 0] "Mm D(A, B)
viii) [0, 0] "MM D(A, B)
ix) [0, 0] "H(α) D(A, B)
x) [0, 0] "wo D(A, B)
xi) [0, 0] "AB D(A, B)
xii) [0, 0] "to D(A, B)

we have that
i)⇔ ii)⇔ iii)⇔ iv)⇔ vii)

and i) implies v), vi), viii), ix), x), xi), and xii), but the converse is not true in general.
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Proof. Since 0 ≤ D(A, B) implies that [0, 0] "ID D(A, B), by the relationship among the
orders, we have the implication from i) to any other statement. For the last two cases we
have used that [0, 0] "Lo D(A, B) implies [0, 0] "to D(A, B) and therefore, in particular,
[0, 0] "AB D(A, B).

On the other hand, if [0, 0] "Mm D(A, B), then 0 ≤ D(A, B). Again taking into account
the relationship among the orders, we have vii) ⇒ i) and therefore also ii), iii) and iv)
implies i).

However, we have that [0, 0] "Lex2 [−0.1, 0.2], [0, 0] "XY [−0.1, 0.2], [0, 0] "MM
[−0.1, 0.2], [0, 0] "H(α) [−0.1, b] for any b ≥ 0.1α

1−α and [0, 0] "wo [−0.1, 0.2], but 0 �≤ −0.1, so
the converse implication is not fulfilled for these orders.

Since the lexicographical order of type 2 is an example of an AB-admissible order,
the converse implication is not fulfilled for this particular case of admissible order and, in
general, for admissible orders.

This proposition is represented in Figure 11.

D(A, B) ≥ 0 [0, 0] "ID D(A, B)

[0, 0] "Lo D(A, B)

[0, 0] "Lex1 D(A, B) [0, 0] "Mm D(A, B)

[0, 0] "to D(A, B)

[0, 0] "AB D(A, B)

[0, 0] "Lex2 D(A, B) [0, 0] "XY D(A, B)

[0, 0] "MM D(A, B) [0, 0] "wo D(A, B)

[0, 0] "H(α) D(A, B)

Figure 11. Non-negativity for different orders.

Thus, the first axiom for a measure of difference could be described as follows, de-
pending on the order considered:

A1 [0, 0] "o D(A, B)

On the other hand, if we suppose that the measure is upper bounded, then we can
normalize it and work in the same spaces where the IVFSs are defined, that is,

D(A, B) ∈ L(R) Axiom 1⇒ D(A, B) ∈ L([0, ∞))
Upper bound⇒ D(A, B) ∈ L([0, 1]))

We will therefore assume that every measure of the difference, D, will have L([0, 1])
as codomain:

D : IVFS(X)× IVFS(X) −→ L([0, 1])
(A, B) � [D(A, B), D(A, B)]

3.2. Symmetry

Taking into account the previous comments, the logical way to formalize symmetry is:

A2 D(A, B) =o D(B, A)
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Thus, this axiom depends on the considered order and so the measure of difference.
If the relation is antisymmetric, it is clear that this requirement means that both intervals
are exactly the same. Thus, this happens for any real order (reflexive, antisymmetri,c and
transitive), but this is not true for any relation considered in Definition 1.

Proposition 8. Let D be a map from IVFS(X)× IVFS(X) into L([0, 1]). For the statements

i) D(A, B) = D(B, A) and D(A, B) = D(B, A)

ii) D(A, B) =ID D(B, A)
iii) D(A, B) =Lo D(B, A)
iv) D(A, B) =Lex1 D(B, A)
v) D(A, B) =Lex2 D(B, A)
vi) D(A, B) =XY D(B, A)
vii) D(A, B) =Mm D(B, A)
viii) D(A, B) =MM D(B, A)
ix) D(A, B) =H(α) D(B, A)

x) D(A, B) =wo D(B, A)
xi) D(A, B) =AB D(B, A)

we have that
i)⇔ iii)⇔ iv)⇔ v)⇔ vi)⇔ xi)

and they imply vii), viii), ix), and x), but the converse is not true in general. Moreover, ii) implies
i), but the converse is not true.

Proof. The equivalences are clear by antisymmetry and reflexivity of the involved orders
(see Table 1).

For the maximax order, we have that [0.2, 0.6] =MM [0.3, 0.6]. Thus, viii) �⇒ i). Since
viii)⇒ x), we also have proven that x) �⇒ i).

We also have that [0.2, 0.5] =Mm [0.2, 0.6] and so vii) �⇒ i).
Furthermore, [0.2, 0.6] =H(1/2) [0.3, 0.5] and then ix) �⇒ i).
Finally, ii)⇒ i) follows from the antisymmetry of interval dominance. Furthermore,

i) �⇒ ii) follows from the fact that interval dominance is not reflexive.

This proposition is represented in Figure 12.

D(A, B) =ID D(B, A)

D(A, B) =Lo D(B, A)

D(A, B) =Lex1 D(B, A) D(A, B) =Lex2 D(B, A)
D(A, B) = D(B, A)
D(A, B) = D(B, A)

D(A, B) =XY D(B, A) D(A, B) =AB D(B, A)

D(A, B) =MM D(B, A) D(A, B) =Mm D(B, A)D(A, B) =H(α) D(B, A)

D(A, B) =wo D(B, A)

Figure 12. Symmetry for different orders.
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The fact that the equality given by the interval dominance is stronger that Condition i)
in the previous proposition should not be undervalued. If we study in depth Condition ii),
we find the following lemma.

Lemma 1. Let D be a map from IVFS(X)× IVFS(X) into L([0, 1]). Then D is symmetric with
respect to the interval dominance if and only if its image is a number in [0, 1]; that is, if and only if
D(A, B) is a unique value (not an interval) for any A, B ∈ IVFS(X).

Proof. Take A, B any two IVFS(X) and call D(A, B) = [d, d] and D(B, A) = [d′, d′]. In or-
der for D(A, B) =ID D(B, A), it should hold both D(A, B) ≤ID D(B, A) and D(B, A) ≤ID
D(A, B).

Now D(A, B) ≤ID D(B, A) holds if and only if d ≤ d′ and D(B, A) ≤ID D(A, B)
holds if and only if d′ ≤ d.

So d ≤ d′ ≤ d′ ≤ d. Then, necessarily, d = d′ = d′ = d and D(A, B) becomes a
number for any pair of IVFSs, A and B, considered.

Thus, if interval dominance is the interval order chosen the measure of difference
between any two IVFSs has to be a unique value. However, this is counterintuitive as we
have explained above: the measure that quantifies how different two IVFSs are should be
an interval. This is again an argument to consider orders in L([0, 1]) and not any relation in
Definition 1.

3.3. Zero Difference

Another condition that is assumed to be logical when measuring differences is that
the difference should be zero only when the two sets compared are the same. The original
idea would be that

D(A, B) =0 [0, 0] if and only if A = B , for A, B ∈ IVFS(X) ,

where the equality between IVFSs is the classical equality between sets: A(x) = B(x) for
all x ∈ X. However, according to the epistemic interpretation, two elements with the same
interval membership need not necessarily have the same (unknown) actual real-valued
membership degree, as we can see with the following example.

Example 7. If we consider the IVFSs A and B represented in Figure 13, where the known member-
ship degree is represented as well as the (unknown) real membership function, we have that

A(x) = B(x), ∀x ∈ X but A �= B

X

Membership

0

0.2

0.4

0.6

0.8

1 A

X

Membership

0

0.2

0.4

0.6

0.8

1 B

Figure 13. Comparing the real value of the sets.

Thus, under the epistemic viewpoint, two IVFSs are only considered to be truly equal
if they necessarily take the same value, i.e., if they are the same fuzzy set. So the difference
between two IVFSs has to be zero if and only if both are fuzzy sets and they are equal. The
axiom can be written as follows:

A3 D(A, B) =o [0, 0] iff A, B ∈ FS(X) and A = B.
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The equality above depends on the order considered between IVFSs. Next, we study
for which of the orders considered in Definition 1 the previous equality actually means
D(A, B) = [0, 0].

Proposition 9. Let D be a map from IVFS(X)× IVFS(X) into L([0, 1]), and consider the orders
recalled in Section 2.1. For the statements

i) D(A, B) = D(A, B) = 0
ii) D(A, B) =ID [0, 0]
iii) D(A, B) =Lo [0, 0]
iv) D(A, B) =Lex1 [0, 0]
v) D(A, B) =Lex2 [0, 0]
vi) D(A, B) =XY [0, 0]
vii) D(A, B) =Mm [0, 0]
viii) D(A, B) =MM [0, 0]
ix) D(A, B) =H(α) [0, 0]
x) D(A, B) =wo [0, 0]
xi) D(A, B) =AB [0, 0]

we have that
i)⇔ ii)⇔ iii)⇔ iv)⇔ v)⇔ vi)⇔ viii)⇔ ix)⇔ xi)

and they imply vii) , and x) but the converse is not true in general.

Proof. By simplicity, we denote D(A, B) by a = [a, a].
By antisymmetry, it is clear that

i)⇔ ii)⇔ iii)⇔ iv)⇔ v)⇔ vi)⇔ xi)

From Proposition 8 we know that a = a = 0 implies that [a, a] =Mm [0, 0], [a, a] =MM
[0, 0], [a, a] =H(α) [0, 0], and [a, a] =wo [0, 0]. Conversely, it is trivial to prove that [a, a] =MM
[0, 0] is only fulfilled if both numbers are zero. Moreover, if [a, a] =H(α) [0, 0], we obtain
that αa + (1− α)a = 0, and this is equivalent to saying that a = a = 0. So the equivalence
is also obtained for the maximax and the Hurwicz orders.

However, [0, 0] =Mm [0, 0.2] and [0, 0] =wo [0, 0.2], and therefore the reciprocal is not
fulfilled for these orders.

The above proposition is summarized in Figure 14.

D(A, B) =ID [0, 0]D(A, B) =Lo [0, 0]

D(A, B) =Lex1 [0, 0] D(A, B) =Lex2 [0, 0]D(A, B) = 0
D(A, B) = 0

D(A, B) =XY [0, 0] D(A, B) =AB [0, 0]

D(A, B) =MM [0, 0]

D(A, B) =Mm [0, 0]

D(A, B) =H(α) [0, 0]

D(A, B) =wo [0, 0]

Figure 14. Zero difference for different orders.

183



Mathematics 2021, 9, 3157

3.4. The Importance of the Widths of the Intervals

The previous axioms are just direct translations from the ones considered in the context
of fuzzy sets, and they will be the same even in the case the measure of difference is just a
number. However, now we have to take into account the widths of the intervals. The next
requirement is considered in order to deal properly with this uncertainty.

First of all, we will consider the following example for understanding the idea we are
trying to formalise.

Example 8. Let A, B, and C be the IVFSs represented in Figure 15.

X

Membership

0

0.2

0.4

0.6

0.8

1
C

B
A

Figure 15. Related IVFSs with different widths.

It is clear that B is embedded in C, which is denoted by B � C, since

B(x) ⊆ C(x), ∀x ∈ X

As a consequence, for any third IVFS, A, the uncertainty when comparing A and C must be greater
than the uncertainty when comparing A and B. Thus, for instance, in Figure 15 we are almost sure
that A and B are very similar and the difference should be something similar to D(A, B) ≈ [0, 0.1],
but when we compare A to C, we find that they could be equal but they could also be very different.
A reasonable value could be D(A, C) ≈ [0, 0.7].

Thus, bigger uncertainty of the IVFS C with respect to B should mean bigger uncer-
tainty in the measure of difference between C and a third IVFS A than between B and A.
This implies that D(A, C) is a more imprecise interval than D(A, B), which is equivalent to
saying that

D(A, B) ⊆ D(A, C)

In general, this requirement can be formalized as follows:

A4 If B � C, then D(A, B) ⊆ D(A, C)

Here no order between intervals is involved, just the classical content between in-
tervals, and therefore, no study about the behaviour of the different interval orders is
required.

Corollary 3. Let D : IVFS(X)× IVFS(X) → L([0, 1]) satisfying Axioms A2, A3, and A4. If
A and B are two IVFSs satisfying that A(x) ∩ B(x) �= ∅ for every x ∈ X, then it holds that
D(A, B) = 0.

Proof. Assume that αx ∈ A(x) ∩ B(x). Now take C the IVFS C(x) = [αx, αx] for every
x ∈ X; that is, C is a fuzzy set. According to Axiom A3, D(C, C) = [0, 0]. On the other hand,
C � A and C � B; therefore, applying Axiom A4 twice and the symmetry (Axiom A2), we
have that 0 = D(C, C) ≥ D(A, C) ≥ D(A, B).
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Moreover, this axiom ensures that the imprecision about the difference between any
two interval-valued fuzzy sets is greater than or equal to the one between the two furthest
apart (fuzzy) sets in A and B, as we can see from the following corollary.

Corollary 4. Let D : IVFS(X)× IVFS(X) → L([0, 1]) satisfying Axioms A2 and A4. Let A
and B be any two IVFSs defined as A(x) = [A(x), A(x)] and B(x) = [B(x), B(x)] for any x ∈ X.
If we consider the fuzzy set A and B defined as A(x) = A(x) and B(x) = B(x) for any x ∈ X,
we have that D(A, B) ⊆ D(A, B).

Proof. It is clear that A � A and B � B. Then, D(A, B) ⊆ D(A, B) = D(B, A) ⊆
D(B, A) = D(A, B), by applying twice Axioms A2 and A4.

3.5. Proximity

It is clear that every definition of the measure of the comparison between two IVFSs
should satisfy the four properties REQ1–REQ4 and, from the previous subsection, they
could be immediately rewritten as:

A1. [0, 0] "o D(A, B).
A2. D(A, B) =o D(B, A).
A3. D(A, B) =o [0, 0] iff A, B ∈ FS(X) and A = B.
A4. If B � C, then D(A, B) ⊆ D(A, C).

However, they should also fulfil the fifth natural requirement:

REQ5 For closer IVFs, the difference measure has to be smaller.

The four previous conditions are commonly accepted in the literature in the sense that
most authors formalise them in the same way. However, for this fifth condition, multiple
(quite different) alternatives have been proposed, leading to different definitions such us
the notion of distance, divergence, or dissimilarity. We next revisit the three definitions and
discuss about their convenience to model differences among IVFSs quantified by means of
intervals.

3.5.1. Distances

In the definition of distance, Requirement REQ5 is formalized by means of the well-
known triangular inequality:

DIST.A5 Triangular inequality: D(A, B) "o D(A, C) + D(C, B).

which is here adapted to the case of IVFSs and orders in L([0, 1]).
However, this could be a little difficult to justify if we consider that the interval which

represents the membership function is just an imprecise information, as we can see with
the following example.

Example 9. Let us consider a referential X and A(x) = [0, 0.2], B(x) = [0.8, 1] and C = [0.1, 0.9]
for any x ∈ X.

These sets are graphically represented in Figure 16.
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A B
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Figure 16. Distance between different IVFSs.

Then D(A, B) seems to be greater than 0, since they have never the same membership func-
tion. However, A(x) and C(x) could have the same value, and, from Corollary 3, we have that
D(A, C) = [0, α]. The same happens for B and C, since B(x) ∩ C(x) �= ∅, ∀x ∈ X. Thus,
D(C, B) = [0, β] and D(A, C) + D(C, B) = [0, γ], and it is not greater than or equal to D(A, B)
for the lattice order or the lexicographical order type 1.

Remark 1. About distances we have yet another problem apart from the previous counterintuitive
example we considered for the triangular inequality. This is that if we deal with fuzzy sets, the
distance is a number. If we deal with IVFSs, the distance should be an interval. In both cases, we
can define the sum. However, what happens if we consider lattice-valued fuzzy sets, for instance, if
the membership function assumes values that are colours? In that case, the definition of the sum is
not so immediate. However, if we just consider an order, as we do for dissimilarities and divergences,
we can deal with this concept in a more general environment.

3.5.2. Divergences

Trying to avoid the previous problems, the fifth axiom should not be based on a
triangular inequality, since we are not trying to measure a distance, but the difference
between two sets, which is not exactly the same in general. Now we are not studying if
they are “close” or “far”, but if they are similar in the sense of the description of the set.

In this sense, the fifth requirement expresses the idea that the more similar the sets
are, the lower the measure of difference between them. For fuzzy sets this condition can be
formalised as follows:

D(A ∩ C, B ∩ C) ≤ D(A, B) and D(A ∪ C, B ∪ C) ≤ D(A, B)

and the result is the notion of divergence between fuzzy sets. Montes et al. [8] showed
that this is a good option to compare fuzzy sets. Then, it is natural to think of translating
this property into the context of IVFSs and that it could perform well in this context too.
Consider that the value of the divergence is now an interval and taking into account any
order in L([0, 1]), Axiom 5 could be as follows:

DIV.A5 D(A ∩o C, B ∩o C) "o D(A, B) and D(A ∪o C, B ∪o C) "o D(A, B) .

It is again based on the interval order chosen, but if we consider a total order, we are
requiring these conditions for any A, B, C ∈ IVFS(X). For the particular case of the lattice
order, we can obtain some nice properties that follow from this condition.

Proposition 10. Let D : IVFS(X) × IVFS(X) → L([0, 1]) satisfy Axiom DIV.A5. Then,
∀A, B ∈ IVFS(X)

1. D(A ∩Lo B, B) "Lo D(A, A ∪Lo B).
2. D(A ∩Lo B, B) "Lo D(A, B).
3. D(A ∩Lo B, B) "Lo D(A ∩Lo B, A ∪Lo B).
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4. D(B, A ∪Lo B) "Lo D(A ∩Lo B, A ∪Lo B).

Proof. 1. Call E = A, F = A ∪Lo B and G = B and apply the first part of Axiom DIV.A5:

D(E ∩Lo G, F ∩Lo G) "Lo D(E, F) ,

since F ∩Lo G = (A ∪Lo B) ∩Lo B = B, the inequality follows.
2. It Follows from the first part of Axiom DIV.A5 taking C = B.
3. Call E = A ∩Lo B, F = A ∪Lo B and G = B. Applying the first condition in Axiom

DIV.A5:
D(E ∩Lo G, F ∩Lo G) "Lo D(E, F) ,

since F ∩Lo G = (A ∪Lo B) ∩Lo B = B, the inequality follows.
4. It follows from applying the second condition in Axiom DIV.A5 to the sets E = A∩Lo B

and F = A ∪Lo B and G = B.

In general, for any order "o, we obtain the following definition of divergence in
IVFS(X).

Definition 6. A mapping D : IVFS(X)× IVFS(X)→ L([0, 1]) satisfying

A1. [0, 0] "o D(A, B)
A2. D(A, B) =o D(B, A)
A3. D(A, B) =o [0, 0] iff A, B ∈ FS(X) and A = B
A4. If B � C, then D(A, B) ⊆ D(A, C)
DIV.A5 D(A ∩o C, B ∩o C) "o D(A, B) and D(A ∪o C, B ∪o C) "o D(A, B) .

is a divergence between IVFSs.

For the particular case of the lattice order or the interval dominance, we can obtain
divergences between fuzzy sets from divergences between IVFSs as follows.

Proposition 11. Let "0 be the lattice order or the interval dominance and let A be an aggregation
function.
Let D be a divergence measure in IVFS(X). Then the map D|FS(X) : FS(X)× FS(X)→ FS(X),
defined as

D|FS(X)(A, B) = A(D(A′, B′), D(A′, B′))

with A′(x) = [A(x), A(x)] and B′(x) = [B(x), B(x)] for any x ∈ X is a divergence measure
in FS(X).

Proof. We have to check that D|FS(X) satisfies the three conditions of the definition of
divergence between fuzzy sets.

1. Symmetry of D|FS(X) follows from symmetry of D.
2. Since D(A′, A′) = [0, 0] for every A ∈ FS(X), also A(D(A′, A′), D(A′, A′)) =

A(0, 0) = 0.
3. Let us first prove that D|FS(X)(A ∩ C, B ∩ C) ≤ D|FS(X)(A, B) for any C ∈ FS(X).

By definition, D|FS(X)(A, B) = A(D(A′, B′), D(A′, B′)) and

D|FS(X)(A ∩ C, B ∩ C) = A(D((A ∩ C)′, (B ∩ C)′), D((A ∩ C)′, (B ∩ C)′)) .

According to Corollary 1, A′ ∩0 C′ = (A ∩ C)′ = [min(a, c), min(a, c)] and B′ ∩0 C′ =
(B ∩ C)′ = [min(b, c), min(b, c)]. Then D((A ∩ C)′, (B ∩ C)′) = D(A′ ∩0 C′, B′ ∩0
C′) "0 D(A′, B′), where the inequality follows from Axiom DIV.A5. For the in-
terval dominance order this implies that D(A′ ∩0 C′, B′ ∩0 C′) ≤ D(A′, B′) and

D(A′ ∩0 C′, B′ ∩0 C′) ≤ D(A′, B′) and the proof follows from the monotonicity of A.
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The proof for the union is totally analogous.

Therefore, D|FS(X) is a divergence between fuzzy sets.

The previous results seems to strengthen the idea of divergence. However, for most
of the interval orders recalled in Section 2.1, Axiom DIV.A5 is incompatible with the
other axioms.

For Axiom A3, we obtain the following lemma, which could be considered as a
stronger version of this axiom.

Lemma 2. For every mapping D : IVFS(X)× IVFS(X)→ L([0, 1]) satisfying Axioms A3 and
DIV.A5 for one of the following interval orders: lattice order, lexicographic order of type 1 or type 2
or Xu and Yager, it holds that

D(A, A) = [0, 0]

for every A ∈ IVFS(X).

Proof. Let A be any element in IVFS(X) and let B be the element in IVFS(X) defined as:

B(x) =

[
sup
x∈X

A(x), sup
x∈X

A(x)

]

for any x ∈ X.
According to Proposition 3, using the lattice order, any of the lexicographic orders or

Xu and Yager order, we get that A ∩o B = A.
Then, for a measure of difference that satisfies Axiom DIV.A5, it holds that

D(A, A) = D(A ∩o B, A ∩o B) "0 D(B, B) .

According to Axiom A3, D(B, B) = [0, 0] for any B being a fuzzy set. So we get D(A, A) "o
[0, 0]. However, for the interval orders considered above (lattice order, lexicographic orders
and Xu and Yager order), the only possibility then is D(A, A) = [0, 0].

Even if we consider IVFSs from an ontic point of view and we relax Axiom A3, that is,
even if we admit D(A, A) =o [0, 0] for any A as a reasonable property, Axiom A4 forces
the difference between any set and its subsets to be zero:

Corollary 5. For any D : IVFS(X) × IVFS(X) → L([0, 1]) satisfying Axioms A2, A3, A4,
and DIV.A5 for one of the following interval orders: lattice order, lexicographic order of type 1 or
type 2 or Xu and Yager, it holds that:

D(A, B) = [0, 0] for any IVFSs such that A � B .

Proof. To prove this, it suffices to apply Axioms A2 and A4: D(A, B) ⊆ D(B, B). However,
as proven in Lemma 2, D(B, B) = [0, 0] and therefore D(A, B) = [0, 0].

Furthermore, this implies that the difference between any two IVFSs is zero, as we
will see now.

Corollary 6. For any D : IVFS(X) × IVFS(X) → L([0, 1]) satisfying Axioms A2, A3, A4,
and DIV.A5 for one of the interval orders lattice order, lexicographic order of type 1 or type 2, or Xu
and Yager, it holds that:

D(A, B) = [0, 0] for any A, B ∈ IVFS(X).

Proof. Take A, B, and any IVFSs. Since A � O1, where O1(x) = [0, 1], ∀x ∈ X, by
Axioms A2 and A4, it holds that D(A, B) ⊆ D(O1, B). However, also B � O1, then
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D(O1, B) = [0, 0] as proven above. Therefore, D(A, B) ⊆ [0, 0]. Equivalently, D(A, B) =
[0, 0].

Thus, if Axiom DIV.A5 is kept and we consider the most common interval orders,
including lattice order, a contradiction between Axiom DIV.A5 and the other axioms in
the definition of divergence arrives. Even if we admit a weaker version of Axiom 3, the
combination of this relaxed version of Axiom 3, Axiom 2, Axiom 4, and Axiom DIV.A5
makes the constant function that assigns to every pair of IVFSs the value [0, 0], the only
possible measure of difference between IVFSs.

Therefore, the combination of Axioms 2, 3, 4, and DIV.A5 forces the use of interval
dominance to compare the intervals. However, interval dominance is not an order, and
due to the lack of reflexivity, it also leads to the constant function if we combine it with
Axiom 2, as proven in Lemma 1.

By all theses studies, we can conclude that the use of divergences is not appropriate
for the case of IVFSs.

3.5.3. Dissimilarities

We have seen that the notion of distance, in particular the triangular inequality, is
not appropriate to capture the idea of difference between two IVFSs. However, we find
intuitive a property of the type “the closer the sets, the smaller the difference”. We have
seen that the attempt to formalize “closer” by intersections and unions of IVFSs, that is,
by generalizing divergencies to IVFSs leads to incompatibilities among axioms. Then, an
alternative way to express the closeness of IVFSs must be considered. Dissimilarities use
interval orders to capture the proximity notion: given an interval order and three IVFSs
A, B, and C, A is supposed to be closer to B than to C if A ⊆o B ⊆o C, and since A is
closer to B than to C and, on the contrary, C is closer to B than to A, the corresponding
dissimilarities should be ordered in accordance with this idea of proximity.

A5 If A ⊆o B ⊆o C, then D(A, B) "o D(A, C) and D(B, C) "o D(A, C).

With this condition, the definition of dissimilarity between IVFSs would look as follows:

Definition 7. Let "o be any of the orders recalled in Section 2.1. A mapping D : IVFS(X)×
IVFS(X)→ L([0, 1]) satisfying

A1. [0, 0] "o D(A, B)
A2. D(A, B) =o D(B, A)
A3. D(A, B) =o [0, 0] iff A, B ∈ FS(X) and A = B
A4. If B � C, then D(A, B) ⊆ D(A, C)
A5. If A ⊆o B ⊆o C, then D(A, B) "o D(A, C) and D(B, C) "o D(A, C)

is a dissimilarity between IVFSs.

Example 10. • The map

D0(A, B) =
{

[0, 0] if A, B ∈ FS(X), A = B,
[0, 1] otherwise.

is a dissimilarity w.r.t. the lattice order since for any A, B, C ∈ IVFS(X) we have that:

A1. [0, 0] "Lo D0(A, B).
By definition 0 ≤ D0(A, B) and 0 ≤ D0(A, B) for every A, B ∈ IVFS(x).

A2. D0(A, B) =Lo D0(B, A).
Symmetry also follows immediately from the definition.

A3. D0(A, B) =Lo [0, 0] iff A, B ∈ FS(X) and A = B.
As proven in Proposition 8, D0(A, B) =Lo [0, 0] if and only if D0(A, B) = [0, 0].
(Remember that this is not always the case. For instance, if we set the Mm-order, the
equality D0(A, B) =Mm [0, 0] holds for any A, B ∈ IVFS(X)).
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A4. If B � C, then D0(A, B) ⊆ D0(A, C).
If D0(A, B) takes the value [0, 0], it is trivial.
If D0(A, B) takes the value [0, 1], this means that either A is not a fuzzy set, or B is not a
fuzzy set or both of them are fuzzy sets but they are not equal. In the first case, D0(A, C)
is also [0, 1]. In the second case, since B � C, C is not a fuzzy set and therefore D0(A, C)
also coincides with [0, 1]. In the third case, since B is a fuzzy set different from A and
B � C, we have that either

– C is the same fuzzy set as B and then A and C are two different fuzzy sets and
D0(A, C) is [0, 1].

– Or C is a proper IVFS containing B. Since C is not a fuzzy set, then D0(A, C) is
[0, 1].

A5. If A ⊆Lo B ⊆Lo C, then D0(A, B) "Lo D0(A, C) and D0(B, C) "Lo D0(A, C).
If D0(A, C) is [0, 1] the proof is trivial.
If D0(A, C) is [0, 0], then A and C are the same fuzzy set. From A ⊆Lo B ⊆Lo C we
have that then B is the same fuzzy set and the proof is concluded.

As a direct consequence of Propositions 7, 8 and 9 D0 also fulfils Axioms A1, A2, A3 and A4
for any AB-order (recall that Axiom A4 does not depend on the order considered). Moreover,
Axiom A5 is also fulfilled for any AB-order, by taking into account that [0, 0] "AB [0, 1] by
the monotonicity of the aggregation functions, and then we could provide a proof similar to the
previous one.
Thus, D0 is an Lo-dissimilarity and an AB-dissimilarity, and it is called the trivial dissimilar-
ity.

• For X a finite set, the dissimilarity induced by a numerical distance:

D1(A, B) =
1
|X| ∑

x∈X

[
inf

a∈A(x),b∈B(x)
|a− b|, sup

a∈A(x),b∈B(x)
|a− b|

]
is a dissimilarity with respect to the lattice order.
Axiom A1: Follows from the fact that |a− b| ≥ 0 for any two values a and b ∈ R.
Axiom A2: Follows from the symmetry of the absolute value of the difference: |a− b| = |b− a|
for any two values a and b ∈ R.
Axiom A3: D1(A, B) = [0, 0] if and only if[

inf
a∈A(x),b∈B(x)

|a− b|, sup
a∈A(x),b∈B(x)

|a− b|
]
= [0, 0]

for all x ∈ X. For each x ∈ X, this happens if and only if |a− b| = 0 for all a ∈ A(x), b ∈
B(x); therefore, if and only if A(x) = B(x) and equal to just one value. If this happens for all
x ∈ X, then it is equivalent to A and B being the same fuzzy set.
Axiom A4: Assume B � C. We have to prove that D1(A, B) ⊆ D1(A, C). It is sufficient to
prove that for every x ∈ X it holds that[

inf
a∈A(x),b∈B(x)

|a− b|, sup
a∈A(x),b∈B(x)

|a− b|
]
≤
[

inf
a∈A(x),c∈C(x)

|a− c|, sup
a∈A(x),c∈C(x)

|a− c|
]

.

Equivalently, we will prove that

(I) inf
a∈A(x),c∈C(x)

|a− c| ≤ inf
a∈A(x),b∈B(x)

|a− b| .

(II) sup
a∈A(x),b∈B(x)

|a− b| ≤ sup
a∈A(x),c∈C(x)

|a− c| .

Call A(x) = [a, a], B(x) = [b, b] and C(x) = [c, c]. Since B � C, it holds that [b, b] ⊆ [c, c].
Equivalently, c ≤ b ≤ b ≤ c.

(I) To prove that inf
a∈A(x),c∈C(x)

|a− c| ≤ inf
a∈A(x),b∈B(x)

|a− b|, we distinguish three cases:
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* a < c (then [a, a] ∩ [c, c] = ∅).
In this case

inf
a∈A(x),c∈C(x)

|a− c| = |a− c| ≤ |a− b| = inf
a∈A(x),b∈B(x)

|a− b| .

* [a, a] ∩ [c, c] �= ∅
In this case

inf
a∈A(x),c∈C(x)

|a− c| = 0 ≤ inf
a∈A(x),b∈B(x)

|a− b| .

* c < a (then [a, a] ∩ [c, c] = ∅).
In this case,

inf
a∈A(x),c∈C(x)

|a− c| = |c− a| ≤ |b− a| = inf
a∈A(x),b∈B(x)

|a− b| .

In any case, (I) follows.

In order to prove (II), let us note the following: for any closed intervals D = [d, d] and
E = [e, e] in R it holds that

sup
d∈D,e∈E

|d− e| = max{|d− e| , |d− e|} .

The equality |d− e| = |d− e| can only hold if D = E. If this is not the case, max{|d−
e| , |e− d|} = |d− e| > |d− e| implies d < e (otherwise d ≥ d ≥ e ≥ e and |d− e| ≤
|d− e|. A contradiction).

(II) The proof of sup
a∈A(x),b∈B(x)

|a − b| ≤ sup
a∈A(x),c∈C(x)

|a − c| follows from the previous

remark.

* If [a, a] = [b, b], then [a, a] ⊆ [c, c] and

sup
a∈A(x),b∈B(x)

|a− b| = |b− b| ≤ max{|b− c| , |c− b|} ≤ max{|a− c| , |c− a|} = sup
a∈A(x),c∈C(x)

|a− c| .

Otherwise,

* If sup
a∈A(x),b∈B(x)

|a− b| = |a− b| then a < b ≤ c so that

sup
a∈A(x),b∈B(x)

|a− b| = |a− b| ≤ |a− c| ≤ sup
a∈A(x),c∈C(x)

|a− c| .

* Analogously, if sup
a∈A(x),b∈B(x)

|a− b| = |a− b| then c ≤ b < a so that

sup
a∈A(x),b∈B(x)

|a− b| = |a− b| ≤ |a− underlinec| ≤ sup
a∈A(x),c∈C(x)

|a− c| .

Axiom A5: Assume A ⊆Lo B ⊆Lo C. Observe that

D1(A, B) =

[
1
|X| ∑

x∈X
inf

a∈A(x),b∈B(x)
|a− b|, 1

|X| ∑
x∈X

sup
a∈A(x),b∈B(x)

|a− b|
]

.

Then, in order to prove that D1(A, B) "Lo D1(A, C), it suffices to prove that for every x ∈ X,

inf
a∈A(x),b∈B(x)

|a− b| ≤ inf
a∈A(x),c∈C(x)

|a− c| and sup
a∈A(x),b∈B(x)

|a− b| ≤ sup
a∈A(x),c∈C(x)

|a− c| .
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Fix an element x ∈ X and call A(x) = [a, a], B(x) = [b, b] and C(x) = [c, c]. Since
A ⊆Lo B ⊆Lo C, a ≤ b ≤ c, so that

sup
a∈A(x),b∈B(x)

|a− b| = b− a ≤ c− a = sup
a∈A(x),c∈C(x)

|a− c|.

We now prove inf
a∈A(x),b∈B(x)

|a− b| ≤ inf
a∈A(x),c∈C(x)

|a− c|.

– if a ≤ b, then inf
a∈A(x),b∈B(x)

|a− b| = b− a ≤ c− a = inf
a∈A(x),c∈C(x)

|a− c|.

– If a > b, then inf
a∈A(x),b∈B(x)

|a− b| = 0 ≤ inf
a∈A(x),c∈C(x)

|a− c|.

Therefore, in any case,

D1(A, B) =
1
|X| ∑

x∈X

[
inf

a∈A(x),b∈B(x)
|a− b|, sup

a∈A(x),b∈B(x)
|a− b|

]
"Lo

1
|X| ∑

x∈X

[
inf

a∈A(x),c∈C(x)
|a− c|, sup

a∈A(x),c∈C(x)
|a− c|

]
= D1(A, C) .

• For X, a non-finite set, the previous function may not be a dissimilarity.
Take X = [0, 1] and

D1(A, B) = 1
|X|

∫
x∈X

[
inf

a∈A(x),b∈B(x)
|a− b|, sup

a∈A(x),b∈B(x)
|a− b|

]

=
∫ 1

0

[
inf

a∈A(x),b∈B(x)
|a− b|, sup

a∈A(x),b∈B(x)
|a− b|

]

Take A(x) = [0, 0] for x ∈ X and B(x) = [0, 1] for x = 1
n and B(x) = 0 elsewhere. Then,

sup
a∈A(x),b∈B(x)

|a − b| = 1 for x ∈ { 1
n |n ∈ N} and sup

a∈A(x),b∈B(x)
|a − b| = 0, elsewhere.

Since sup
a∈A(x),b∈B(x)

|a − b| = 0 almost everywhere,
∫

x∈X
sup

a∈A(x),b∈B(x)
|a − b| = 0 and

D1(A, B) = [0, 0] despite they are not the same fuzzy set. We have then proven that D1 does
not satisfy Axiom A3.

• Let A and B be two continuous aggregation functions. The dissimilarity induced by a
numerical distance:

D1(A, B) =
1
|X| ∑

x∈X

[
inf

a∈A(x),b∈B(x)
|a− b|, sup

a∈A(x),b∈B(x)
|a− b|

]
is NOT necessarily a dissimilarity with respect to the admissible order "A,B .
Take as an example the aggregation functions A = min and B = max. Consider the universe
X = {x} and the IVFSs A(x) = [0.2, 0.8], B(x) = [0.3, 0.6] and C(x) = [0.45, 0.55]. Then
clearly A ⊆A,B B ⊆A,B C but

D1(A, B) =

[
inf

a∈A(x),b∈B(x)
|a− b|, sup

a∈A(x),b∈B(x)
|a− b|

]
= [0, 0.5] �"A,B

[0, 0.35] =

[
inf

a∈A(x),c∈C(x)
|a− c|, sup

a∈A(x),c∈C(x)
|a− c|

]
= D1(A, C) .

Axiom A5 is a generalization of the condition found in Torres-Manzanera et al. [32]:

TOR.A5 If A ⊆Lo B ⊆Lo C, then D(A, B) "Lo D(A, C) and D(B, C) "Lo D(A, C).
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This is Axiom A5 for the particular case of the lattice order.
Takáč et al. [31] provided a similar condition but only for intervals with the same width.

TAK.A4 If A ⊆Lo B ⊆Lo C and w(A(x)) = w(B(x)) = w(C(x)) for all x ∈ X, then
D(A, B) "Lo D(A, C) and D(B, C) "Lo D(A, C) ,

where for any [a, b] ⊆ [0, 1], w([a, b]) is the width of the interval, that is, w([a, b]) = b− a.
Despite its similarity to our Axiom A5, we have called it here TAK.A4, since it is

the forth axiom in the definition of dissimilarity considered in [31]. These authors do not
include any condition similar to Axiom A4 in their definition. For the sake of completeness,
we next recall the definition given by Takáč et al.:

Definition 8. [31] Let "Lo be the lattice order. A mapping D : IVFS(X) × IVFS(X) →
L([0, 1]) is a dissimilarity measure in IVFS(X) if it satisfies:

TAK.A1 D(A, B) = D(B, A);
TAK.A2 D(A, B) =Lo [0, 0] if and only if A = B and A, B ∈ FS(X);
TAK.A3 D(A, B) =Lo [1, 1] if and only if A(x), B(x) = 0, 0], [1, 1] for all x ∈ X;
TAK.A4 If A ⊆Lo A′ ⊆Lo B′ ⊆Lo B and w(A(x)) = w(A′(x)) = w(B′(x)) = w(B(x)) for

all x ∈ X, then D(A, B) "Lo D(A′, B′).

This definition is clearly less restrictive than Definition 7. Condition TAK.A4 is less
restrictive than A5. It neither implies Axiom A4 as we prove next.

Proposition 12. Consider the lattice order.

• Axiom A5 implies Condition TAK.A4.
• Condition TAK.A4 does not imply Axiom A4, even in the case Conditions TAK.A1, TAK.A2,

and TAK.A3 are fulfilled.
• Condition TAK.A4 does not imply Axiom A5, even in the case Conditions TAK.A1, TAK.A2,

and TAK.A3 are fulfilled.

Proof. • Condition TAK.A4 is a particular case of Axiom A5, so the implication is
immediate.

• Let us now see that Axiom TAK.A4 does not imply Axiom A4. Take X = {x}. Then
the function

D(A, B) =

⎧⎨⎩
[1, 1] if {A(x), B(x)} = {[1, 1], [0, 0]}

[0, w(A)] if A(x) = B(x)
[0.2, 1] otherwise.

is a dissimilarity measure in the sense of Takáč et al. In fact, conditions TAK.A1,
TAK.A2 and TAK.A3 are satisfied by the definition of D. Condition TAK.A4 also holds
for the lattice order: we will prove that if A ⊆Lo B ⊆Lo C and w(A(x)) = w(B(x)) =
w(C(x)), then D(A, B) "Lo D(A, C) (the case D(B, C) "Lo D(A, C) being analogous).
If D(A, C) = [1, 1], then the condition holds trivially. Now assume D(A, C) �= [1, 1];
then A �= [0, 0] or C �= [1, 1]. If A = C, then also A = B = C, and the inequality also
holds trivially.
If A �= C, then D(A, C) = [0.2, 1]. If A = B, then D(A, B) = [0, w(A)] "Lo [0.2, 1]
whatever w(A) is. Furthermore, if A �= B, then D(A, B) = [0.2, 1] = D(A, C) and the
inequality also holds.
However, this function does not satisfy A4. Consider B(x) = [0.3, 0.4] and C(x) =
[0.2, 0.5]; we have that B � C and

D(B, B) = [0, 0.1] �⊆ D(B, C) = [0.2, 1] .
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• Take X = {x} and the function D : IVFS(X)× IVFS(X)→ L([0, 1]) defined as:

D(A, B) =

⎧⎪⎪⎨⎪⎪⎩
[0, 0] if A = B ∈ FS(X)
[1, 1] if {A(x), B(x)} = {[0, 0], [1, 1]}

[0.2, 0.2] if w(A(x)) = w(B(x)), A �= B
[0.4, 0.4] if w(A(x)) �= w(B(x))

It is straightforward to check that D satisfies Definition 8 for a dissimilarity. However,
it does not satisfy Axiom A5: consider A = [0.2, 0.3], B = [0.4, 0.6] and C = [0.7, 0.8].
Then D(A, B) = [0.4, 0.4] �"Lo [0.2, 0.2] = D(A, C).

Condition TAK.A4 is weaker than Condition TOR.A5, even if we also impose the
other four axioms we have discussed above, i.e.,

A1 + A2 + A3 + A4 + TAK.A4 �⇒ A5

If we take the lattice order as the interval order, even if we combine the previous axioms
with Condition TAK.A3, Axiom TOR.A5 is not guaranteed:

A1
A2
A3
A4
TAK.A3
TAK.A4

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
�⇒ A5

as the following example shows.

Example 11. Take X = {x} and D : IVFS(X)× IVFS(X)→ L([0, 1]) defined as

D(A, B) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[0, 0] if A = B ∈ FS(X) ,
[1, 1] if {A, B} = {[0, 0], [1, 1]} ,
[0, 1] if A = [0, α] and B = [β, 1] or B = [0, α] and A = [β, 1]

but {A, B} �= {[0, 0], [1, 1]} ,
[0, 0.3] if 0 /∈ A or 1 /∈ B (and the opposite: 0 /∈ B or 1 /∈ A)

and max(w(A(x)), w(B(x))) ≤ 0.1 and if
{A, B} ∈ FS(x), then A �= B

[0, 0.4] if 0 /∈ A or 1 /∈ B (and the opposite: 0 /∈ B or 1 /∈ A)
and max(w(A(x)), w(B(x))) > 0.1

It is easy to check that D satisfies conditions A1, A2, A3, A4, and TAK.A3 and TAK.A4. However,
it does not satisfy Axiom A5 for the lattice order. It suffices to take A = [0.1, 0.2], B = [0.3, 0.6]
and C = [0.7, 0.8]. It holds that A ⊆Lo B ⊆Lo C but D(A, B) = [0, 0.4] �"Lo [0, 0.3] = D(A, C).

Dissimilarities are a frequent tool to compare two sets. However, they are based on
a partial order. Thus, in our case, one of the main properties only applies for some of the
elements in IVFS(X). This is an important drawback. This also happens for fuzzy sets,
where the same problem arises. For IVFSs, we have considered that

A ⊆o B ⇔ A(x) "o B(x), ∀x ∈ X

It is clearly not unique since it depends on the interval order "o considered to compare
IVFSs. However, in all the cases, even for total orders between intervals, we cannot obtain
a total order for the family of IVFSs even if the order does not hold just for one point as the
following example shows:
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Example 12. Let us take A(x) "o B(x), ∀x ∈ X − {x0} and B(x0) ≺o A(x0); that is, A
contained in B for all the elements of the universe except for one. An example of A and B in this
situation is represented in Figure 17.

X

Membership

0

0.2

0.4

0.6

0.8

1

B

A

x0

Figure 17. A and B are not comparable due to a single element x0.

Even if the cardinality of X is infinite, one point is enough to state that A and B are incompa-
rable and then Axiom A5 is not applicable.

We have that A(x) "Lo B(x), ∀x ∈ X− {x0} but A(xo) and B(xo) are incomparable w.r.t.
"Lo for instance.

The previous example shows that although Axiom A5 is without any doubt a desirable
property, it is may be too weak in the sense that it only applies to a few number of IVFSs.
The departing condition, A ⊆o B ⊆o C (partial order) is maybe too restrictive and should
be relaxed in order to apply conditions D(A, B) "o D(A, C) and D(B, C) "o D(A, C) to
more triplets A, B, C.

Yet, although Axiom A5 has its own drawbacks, it does not lead to counterintuitive
situations. We have provided examples that show that this is the case for the fifth axioms
associated with distances and divergences, but we have not found any example that leads to
a contradiction with the notion of dissimilarity given in Definition 7. Since the characteristic
axiom, Axiom A5, is based on a partial order, it is probably not a “definitive Axiom 5”,
but to the best of our knowledge, it is the best way to formalize the idea of “the closer, the
less different” and therefore, the best way to compare two IVFSs would be a measure that
satisfies Axioms A1 to A5; that is, the measure provided in Definition 7.

4. Concluding Remarks

In this contribution, we have recalled the basic conditions that a function should satisfy
in order to formalise the differences between IVFSs. We have seen that interval orders
appear naturally in the formalisation of these axioms. Furthermore, since the definitions
depend on the interval order, they do not have an associated definitive expression but a
different one for each interval order considered.

We have also seen that the fifth logical requirement is the most problematic one to be
formalised, and we have discussed the suitability of the most popular proposals: distances,
divergences, and dissimilarities. We have shown that distances and divergences lead to
unnatural situations, and therefore, they are not appropriate to formalise the differences
between IVFSs. However, Axiom A5, the one considered in the definition of dissimilarity,
does not lead to counterintuitive situations and therefore is the most appropriate among
the three definitions studied in detail. Thus, our main conclusion is that dissimilarities are
the only appropriate way to compare two IVFSs by means of an interval. Graphically, this
is represented in Figure 18.
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Comparing the difference between two IVFSs

Distances Dissimilarities Divergences

Figure 18. Suitable way to compare IVFSs.

Thus, our final recommendation after this study on different possible approaches to
compare IVFSs is to consider dissimilarity measures assuming values in L([0, 1]) where a
partial order (lattice order) or a total order (lexicographical orders, Xu-Yager order or, in
general, admissible orders) should be considered.

Apart from that, we have compared our proposal for the definition of dissimilarity for
IVFS(X) assuming values in L([0, 1]) with the two other approaches that we have found
in the literature.

The drawback of Axiom A5 is the departing point for a future work: it is necessary to
find an axiom by collecting the ideas discussed in Example 12, that is, not only for the very
restricted content relation in IVFS(X). In a more applied future work, we would like to
study the behaviour of this definition in the comparison of two colour images.
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Abstract: In this paper, we focus on several ideas associated with linear Diophantine fuzzy soft sets
(LDFSSs) along with its algebraic structure. We provide operations on LDFSSs and their specific
features, elaborating them with real-world examples and statistical depictions to construct an inflow
of linguistic variables based on linear Diophantine fuzzy soft (LDFSS) information. We offer a
study of LDFSSs to the multi-criteria decision-making (MCDM) process of university determination,
together with new algorithms and flowcharts. We construct LDFSS-TOPSIS, LDFSS-VIKOR and the
LDFSS-AO techniques as robust extensions of TOPSIS (a technique for order preferences through the
ideal solution), VIKOR (Vlse Kriterijumska Optimizacija Kompromisno Resenje) and AO (aggregation
operator). We use the LDFSS-TOPSIS, LDFSS-VIKOR and LDFSS-AO techniques to solve a real-
world agricultural problem. Moreover, we present a small-sized robotic agri-farming to support the
proposed technique. A comparison analysis is also performed to examine the symmetry of optimal
decision and to analyze the efficiency of the suggested algorithms.

Keywords: linear Diophantine fuzzy soft sets; MCDM; linear Diophantine fuzzy soft topological
spaces; symmetry; LDFSS-TOPSIS; LDFSS-VIKOR; LDFSS-AO

MSC: 03E72; 94D05; 90B50

1. Introduction

Many real-world problems have uncertainties, inconsistent information and data
are not crisp. Zadeh [1] established the theory known as fuzzy set (FS) to deal with
imprecise data. Many generalizations of fuzzy sets can be found which are developed
to handle real world problems. Soft sets (SS) are one such extension which are intro-
duced by Molodtsov [2]. This theory can handle uncertain information in a parametric
way. Sabir and Naz [3] initiated the concept of soft topological space which presents the
parametrized (precomputed) set values of topologies in the primary universe. In addition,
Aygunoglu et al. [4] extended soft topological space to fuzzy set theory as fuzzy soft set
topology in 2014.

The intuitionistic fuzzy set (IFS) concept was developed by Atanassov [5] in 1986.
Like FS theory, IFS can also handle imprecise information with each element in the set
having both satisfaction and dis-satisfaction grade values, provided that the addition of
these two values should not exceed one. Maji et al. [6] initiated the notion of intuitionistic
fuzzy soft sets (IFSSs) by incorporating IFS and SS. Bayramov and Gunduz [7] developed
intuitionistic fuzzy soft topological spaces. In their work, they have investigated the
properties of continuous mapping. Picture fuzzy set (PFS), [8] introduced by Coung et al. in
2014, is an amplification of Atanassov’s IFS theory and Zadeh’s FS theory. Picture fuzzy set
and its application in decision making [9] is developed to explain when we have the three
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different answers (yes, avoid, no). Yager [10,11] initiated the concept of Pythagorean fuzzy
set (PyFS) and it is introduced to overcome a circumstance when the sum of satisfaction
and dis-satisfaction grades exceeds unity. q-rung orthopair fuzzy [12,13] set (q-ROFS) is
an extension of PyFS, IFS whose sum of q-power of satisfaction and dis-satisfaction grade
values are less than unity. q-rung orthopair picture fuzzy (q-ROPFS) [14] set is an extension
of IFS whose sum of q-power of truth, abstinence and false grade values are less than
unity. Riaz and Hashmi [15] unravelled the notion of linear Diophantine fuzzy set (LDFS)
which is an amplification of fuzzy, intuitionistic fuzzy and picture fuzzy sets provided the
addition of α(x)T(x) and β(x)F(x) should not exceed unity, where α, β are the reference
parameters and T(x), F(x) are the true and false membership grades.

Forging decisions is an essential element of our day to day lives. A highly renowned
graphic designer, James Victor, was asked by an interviewer what prompted him to be
so versatile. He just stated, “I make decisions.” Every day, we make millions of micro-
choices, from how to communicate with someone, what to focus our energy on, how to
respond to an email, what to consume to meet our health needs. One may easily state
that becoming a better and faster decision-maker is the quickest way to increase one’s
productivity levels. Every individual, whether a layperson or a politician, an employer
or an employee, a teacher or a student, a mature man or a child, takes hundreds and
thousands, if not millions, of decisions in his or her everyday existence. When a newborn
is hungry and unable to communicate, she/he determines to uproar in order to attract
the concentration of her/his caregiver and to demonstrate that her/his belly is unfilled
through body motions.

We are frequently duped by our tumults into making significant judgments in life,
only to have regret afterwards. Assume we are faced with a difficult decision that will
have a huge influence on our lives. Every time we believe we’ve made a decision, the other
choice pulls us back. We return to where we began: it’s a tie. Should we construct ever-
more-detailed lists of advantages and disadvantages and seek advice from increasingly
more reliable sources? Should we trust our instincts? Another critical difficulty is deciding
how to decide. Mathematics, in addition to its numerous applications, assists us in making
scientific judgments. Many researchers in [16–20] presented diverse decision making (DM)
techniques utilizing the LDFSs with their applications.

MCDM is designed to make a optimum decision by a single person or group with
the help of ranking. The application of MCDM can be seen when shortlisting people for
interview, selecting new gadgets, machines, etc. The idea of TOPSIS is that the selected
alternant should have a minimum distance positive ideal solution (PIS) and far from
negative ideal solution (NIS). The TOPSIS method is used in MCDM because it can choose
the optimum alternative among a group of alternants based on MCDM. The VIKOR method
is proposed to deal with MCDM. This technique is used to choose an optimum alternative
among a group of alternatives by ranking them in the presence of conflicting criteria. Like
TOPSIS and VIKOR, aggregation operator is used in MCDM and the main aim of the
aggregation operator in MCDM is to aggregate the set of inputs to a single number.

Many authors such as Biswas and Sarkar [21], Boran et al. [22], Kumar and Garg [23], Xu
and Zhang [24], Xu [25], Hashmi et al. [26], Eraslan and Karaaslan [27], Peng and Yuan [28],
Liu et al. [29], and Garg and Arora [30] applied the concept of VIKOR, TOPSIS and aggrega-
tion operator methods for DM problems with the extension of FSs and systems in different
disciplines such as graph theory, operations research, etc. Khalid Naeem et al. [31] devel-
oped the notion of Pythagorean m-polar fuzzy topological space with the TOPSIS approach.
Recently, Gul & Aydogdu [32] introduced and studied TOPSIS in an LDF environment.

Mathematics, in addition to its numerous applications, assists us in making scientific
judgments. In this paper, we present an LDFSS decision-making application. Assume we
have an aggregate LDFSS; therefore, we must select the optimal alternate form of this set.
Using the following approach, we may use an MCDM based on LDFSSs.

The objective of the paper is given below:
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(i) In IFS, each element has satisfaction and dis-satisfaction grades. Each element in
LDFS has three grades namely, satisfaction, dissatisfaction and refusal with reference
parameters provided the sum of product of grades with reference parameters does not
exceed unity. Few theories such as IFS, PFS, q-ROFS fail to meet their own conditions
in few cases.

(ii) Our goal is to initiate the concept of LDFSS to fill the research gap. In addition, we
introduce a notion of linear Diophantine fuzzy soft topological space (LDFSTS) whose
members in this LDFSTS are LDFSS.

(iii) LDFSSs, which are the inference of LDFSs and FSSs, are a more valuable medium in
DM situations since they are dealing with two parametrized families of LDFS. TOPSIS,
VIKOR, and AO techniques are also useful for decision-making challenges. In this
work, we created three approaches in the Linear Diophantine fuzzy soft environment
by integrating the modelling benefits of LDF flexible sets with the advantages of
TOPSIS, VIKOR, and AO methods.

(iv) LDFSS-TOPSIS, LDFSS-VIKOR and the LDFSS-aggregation operators method are
designed to apply the proposed notion in MCDM. A real life problem is considered
and applied these proposed algorithm.

The structure of the manuscript is as follows: fundamental definitions are bestowed
in Section 2. The definition of LDFSTS, neighbourhood, interior, closure, frontier and
base are introduced and the properties of LDFSTS are studied in Section 3. We explained
the importance of the targeted method for MCDM based on LDFSSs via LDFSS-TOPSIS,
LDFSS-VIKOR, LDFSS-AO methods with numerical real life examples in Sections 4–6
respectively. The suggested MCDM approaches are exemplified by numerical examples
in the previous sections and are supported by comparative analysis with various current
techniques in Section 7. Section 8 detailed this lucubration work with a definite conclusion.

2. Preliminaries

We review and give some fundamental definitions of the LDFSs in this section.

Definition 1 ([15]). An LDFS Ld is an element on the non-void reference or connecting set Q
that composes:

Ld = {(ξ, 〈td(ξ), fd(ξ)〉, 〈αd(ξ), βd(ξ)〉) : ξ ∈ Q}
where, td(ξ), fd(ξ), are the satisfaction grade and dis-satisfaction grade, and α(ξ), β(ξ) ∈ [0, 1]
are the connecting parameters, respectively. These grades gratify the condition 0 ≤ αd(ξ)td(ξ) +
βd(ξ)fd(ξ) ≤ 1 for all ξ ∈ Q and with 0 ≤ α(ξ) + β(ξ) ≤ 1. Comparison parameters aid
classifying a specific system. By traversing the tangible meaning of these parameters, we might
classify the system. They increase the amount of space available in LDFS for grades and remove
restrictions. The rejection (refusal) grade is defined as follows: γd(ξ)rd = (ξ) = 1− (αd(ξ)td(ξ)+
βd(ξ)fd(ξ)), where γd(ξ) is the rejection connecting parameter. Linear Diophantine fuzzy number
(LDFN) is outlined as Ld = (〈td, fd〉, 〈αd, βd〉) and with 0 ≤ α + β ≤ 1, 0 ≤ αdtd + βdfd ≤ 1.

Definition 2 ([15]). An LDFS on Q is called a

(i) void LDFS, if L0
d = {ξ, (〈0, 1〉, 〈0, 1〉) : ξ ∈ Q}.

(ii) absolute LDFS, if L1
d = {ξ, (〈1, 0〉, 〈1, 0〉) : ξ ∈ Q}.

Definition 3 ([15]). Let Ld = (〈td, fd〉, 〈αd, βd〉) be an LDFN, then

1. the score function (SF) is displayed by S(Ld) and is depicted as

S(Ld) =
1
2
[(td − fd) + (αd − βd)]

where S : Ld(Q) −→ [−1, 1]
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2. the accuracy function (AF) is displayed by A(Ld) and is depicted as

A(Ld) =
1
2
[
(td + fd)

2
+ (αd + βd)]

where A : Ld(Q) −→ [0, 1]
where Ld(Q) is the foregathering of every LDFNs on Q

Definition 4 ([15]). Two LDFNs Ld1 and Ld2 can be comparable using SF and AF. It is defined
as follows:

(i) Ld1 > Ld2 if S(Ld1) > S(Ld2)
(ii) Ld1 < Ld2 if S(Ld1) < S(Ld2)
(iii) If S(Ld1) = S(Ld2), then

(a) Ld1 > Ld2 if A(Ld1) > A(Ld2)
(b) Ld1 < Ld2 if A(Ld1) < A(Ld2)
(c) Ld1 = Ld2 if A(Ld1) = A(Ld2)

Definition 5 ([15]). Let Ldi = (〈tdi , fdi〉, 〈αLi
, βLi

〉) for i ∈ Δ be a convene of LDFNs on Q and
X > 0 then

(i) Lc
d1

= (〈fd1 , tD1〉, 〈βL1 , αL1〉)
(ii) Ld1 = Ld2 ⇔ td1 = td2 , fd1 = fd2 , αL1 = αL2 , βL1 = βL2

(iii) Ld1 ⊆ Ld2 ⇔ td1 ≤ td2 , fd1 ≥ fd2 , αL1 ≤ αL2 , βL1 ≥ βL2

(iv) Ld1 ⊕ Ld2 = (〈td1 + td2 − td1 td2 , fd1 fd2〉, 〈αL1 + αL2 − αL1αL2 , βL1βL2〉)
(v) Ld1 ⊗ Ld2 = (〈td1 td2 , fd1 + fd2 − fd1 fd2〉, 〈αL1αL2 , βL1 + βL2 − βL1βL2〉)
(vi) Ld1 ∪ Ld2 = (〈td1 ∨ td2 , fd1 ∧ fd2〉, 〈αL1 ∨ αL2 , βL1 ∧ βL2〉)
(vii) Ld1 ∩ Ld2 = (〈td1 ∧ td2 , fd1 ∨ fd2〉, 〈αL1 ∧ αL2 , βL1 ∨ βL2〉)
(viii) XLd1 = (〈(1− (1− td1)

X), fXd1〉, 〈(1− (1− L1)
X), XL1

〉)
(ix) LX

d1
= (〈tXd1 , (1− (1− fd1)

X)〉, 〈XL1
, (1− (1− L1)

X〉)

Example 1. Let Ld1 = (〈0.87, 0.63〉, 〈0.56, 0.21〉) and Ld2 = (〈0.76, 0.69〉,
〈0.41, 0.33〉) be two LDFNs, then

(i) Lc
d1

= (〈0.63, 0.87〉, 〈0.21, 0.56〉)
(ii) Ld2 ⊆ Ld1 by the Definition 9 (iii)
(iii) Ld1 ⊕ Ld2 = (〈0.9688, 0.4347〉, 〈0.7404, 0.0693〉)
(iv) Ld1 ⊗ Ld2 = (〈0.6612, 0.8853〉, 〈0.2296, 0.4707〉)
(v) Ld1 ∪ Ld2 = (〈0.87, 0.63〉, 〈0.56, 0.21〉) = Ld1

(vi) Ld1 ∩ Ld2 = (〈0.76, 0.69〉, 〈0.41, 0.33〉) = Ld2

If X = 0.1, then we have the following
(vii) XLd1 = (〈0.1846, 0.9548〉, 〈0.0788, 0.8555〉)
(viii) LX

d1
= (〈0.9862, 0.0946〉, 〈0.9437, 0.02330〉)

Definition 6 ([15]). The euclidean distance within the two LDFSs Ld1 and Ld2 is determined as
d(Ld1 ,Ld2) =

1
2

√
{(td1 − td2)

2 + (fd1 − fd2)
2 + (d1 − d2)

2 + (d1 − d2)
2}.

Definition 7 ([2]). Let E be the set of attributes and X be a crisp set. The soft set will be outlined as
(ψ,A) = {(e, ψ(e)) : e ∈ A, ψ(e) ∈ P(X)}, where A ⊆ E and ψ : A→ P(X) is the set-valued
function. ψA is the shortest method of writing the couplet (ψ,A).

Definition 8 ([33]). Let E be the set of parameters and X be the universal set. If we suppose
that A ⊆ E and LDFX signifies the assembly of all linear Diophantine fuzzy subsets over X and
κ : A → LDFX is a mapping. An LDFSS on X is denoted by (κ,A) or κA and outlined by
(κ,A) = {e, (ζ, 〈tκA(ζ), fκA(ζ)〉, 〈ακA(ζ), βκA(ζ)〉) : e ∈ A, ζ ∈ X}.
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where tκA , fκA , ακA , βκA : X→ [0, 1] delineates functions called satisfaction function, dis-satisfaction
function, satisfaction parameter function, dis-satisfaction parameter function, respectively. Specif-
ically, tκA(ζ) denotes the satisfaction grade, fκA(ζ) represents the dis-satisfaction grade, ακA(ζ)
denotes the parameter of the satisfaction grade, βκA(ζ) represents the parameter of the dis-satisfaction
grade of the alternative ζ ∈ X to the set (κ,A) having the following constraints:

• 0 ≤ ακA(ζ)tκA(ζ) + βκA(ζ)fκA(ζ) ≤ 1 for all ζ ∈ X

• 0 ≤ ακA(ζ) + βκA(ζ) ≤ 1

For each attribute e, the value κ(e) evinces κ(e)-approximate point.
The multitude of all LDFSS over X taken from E is defined as LDFS class and is

represented as LDFS(X,E).
Let us consider tij = tκA(ej)(ζi), fij = fκA(ej)(ζi), αij = ακA(ej)(ζi) and βij =

βκA(ej)(ζi) where i run from from one to m and j run from one to n. Thus the LDFSS
κA may be written in tabular form as cited in Table 1.

Table 1. Tabular array of LDFSS κA.

κA e1 e2 . . . en

ρ1 (〈t11, f11〉, 〈α11, β11〉) (〈t12, f12〉, 〈α12, β12〉) . . . (〈t1n, f1n〉, 〈α1n, β1n〉)
ρ2 (〈t21, f21〉, 〈α21, β21〉) (〈t22, f22〉, 〈α22, β22〉) . . . (〈t2n, f2n〉, 〈α2n, β2n〉)
...

...
...

. . .
...

ρm (〈tm1, fm1〉, 〈αm1, βm1〉) (〈tm2, fm2〉, 〈αm2, βm2〉) . . . (〈tmn, fmn〉, 〈αmn, βmn〉)

The corresponding matrix form is

(κ,A) = [〈tij, fij〉, 〈αij, βij〉]m×n =⎛⎜⎜⎜⎝
(〈t11, f11〉, 〈α11, β11〉) (〈t12, f12〉, 〈α12, β12〉) . . . (〈t1n, f1n〉, 〈α1n, β1n〉)
(〈t21, f21〉, 〈α21, β21〉) (〈t22, f22〉, 〈α22, β22〉) . . . (〈t2n, f2n〉, 〈α2n, β2n〉)

...
...

. . .
...

(〈tm1, fm1〉, 〈αm1, βm1〉) (〈tm2, fm2〉, 〈αm2, βm2〉) . . . (〈tmn, fmn〉, 〈αmn, βmn〉)

⎞⎟⎟⎟⎠
The matrix displayed above is said to be linear Diophantine fuzzy soft matrix (LDFSM).

Definition 9 ([33]). Let (κ1,A1) and (κ2,A2) be a convene of LDFSSs on X, then

(i) κc
A1

=(〈fκ1 , tκ1〉, 〈βκ1 , ακ1〉)
(ii) κA1⊆̃κA1 , if A1 ⊆ A2 and κ1(e) ⊆ κ2(e), for all e ∈ A1.
(iii) κA = κA1 ∪̃κA1 , if A1 ∪A2 and κ1(e) ∪ κ2(e), for all e ∈ A.
(iv) κA = κA1 ∩̃κA1 �= φ, if A1 ∩A2 and κ1(e) ∩ κ2(e), for all e ∈ A.

Definition 10 ([33]). If τ is a collection of linear Diophantine fuzzy subsets of a non-void set X
and if

(i) 1X, 0X ∈ τ
(ii) A1 ∩A2 ∈ τ, for any A1,A2 ∈ τ
(iii) ∪iAi ∈ τ where i ∈ Δ, for any Ai ∈ τ

then the couplet (X, τ) is known as an LDFTS, where τ is known as an LDFTS on X.

3. Linear Diophantine Fuzzy Soft Topological Spaces

The concept of LDFSTS is constituted and to a greater extent we explored its peculiari-
ties.

Let X̃ be the inception of the universal set and LDF(X̃, Ẽ) represents the kindred of
LDFSs on X̃.

Definition 11. An LDFSS (F̃, Ẽ) aloft X̃ is known as
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• an absolute LDFSS (1̃), if and only if for every ξ ∈ Ẽ, (F̃, Ẽ)(ξ) = (〈1̃, 0̃〉, 〈1̃, 0̃〉)
• an empty LDFSS (0̃), if and only if for every ξ ∈ Ẽ, (F̃, Ẽ)(ξ) = (〈0̃, 1̃〉, 〈0̃, 1̃〉)
where 0̃, 1̃, 0̃, 1̃ are the value of the grade of satisfaction, grade of dis-satisfaction, the parameter of
the satisfaction grade and the parameter of the dis-satisfaction grade, respectively of the absolute and
empty LDFSSs over X̃.

Definition 12. Let T̃ ⊂ LDF(X̃, Ẽ), then T̃ on X̃ is said to be an LDFSTS, if the following
constraints hold good

• 0̃ , 1̃ ∈ T̃
• ∩n

i=1L̃i ∈ T̃ ∀ L̃i ∈ T̃
• ∪∞

i=1L̃i ∈ T̃ ∀ L̃i ∈ T̃
The triple (X̃, T̃ , Ẽ) over X̃ is called an LDFSTS. The objects of T̃ are known as linear

Diophantine fuzzy soft open sets (LDFSOS) and their complements are said to be linear Diophantine
fuzzy soft closed sets (LDFSCS).

Definition 13. Let T̃1 and T̃2 be any two LDFSTS. If for every L̃1 ∈ T̃1 is in T̃2, then T̃1 is linear
Diophantine fuzzy soft coarser (weaker) than T̃2 or T̃2 is linear Diophantine fuzzy soft finer than T̃1.

Example 2. Let X̃ = {ξ1, ξ2, ξ3} be the reference set (distinct models of bikes) and Ẽ = {ζ1, ζ2, ζ3, ζ4}
be the attributes or parameters set, where ζ1=affordable, ζ2=caliber, ζ3=comfort, ζ4=recovery service.
Let Ã = {ζ1, ζ2} ⊂ Ẽ and B̃ = {ζ2} ⊂ Ẽ. Then we contemplate two LDFSS (F̃, Ã) and (G̃, B̃)
are given by:
(F̃, Ã) = {(ζ1, F̃(ζ1)), (ζ2, F̃(ζ2))}, and (G̃, B̃) = {(ζ2, G̃(ζ2))}, where
F̃(ζ1) = {ξ1 = (〈0.7, 0.4〉, 〈0.4, 0.2〉), ξ2 = (〈0.7, 0.5〉, 〈0.4, 0.2〉), ξ3 = (〈0.8, 0.3〉, 〈0.5, 0.2〉)}
F̃(ζ2) = {ξ1 = (〈0.4, 0.6〉, 〈0.2, 0.5〉), ξ2 = (〈0.6, 0.7〉, 〈0.4, 0.3〉), ξ3 = (〈0.6, 0.4〉, 〈0.6, 0.3〉)}
G̃(ζ2) = {ξ1 = (〈0.7, 0.5〉, 〈0.3, 0.5〉), ξ2 = (〈0.4, 0.5〉, 〈0.2, 0.5〉), ξ3 = (〈0.7, 0.3〉, 〈0.2, 0.5〉)}

Here,

1. T̃ = {(F̃, Ã), (G̃, B̃), 0̃, 1̃} is a LDFSTS.
2. T̃1 = {(F̃, Ã), 0̃, 1̃} and T̃2 = {(F̃, Ã), (G̃, B̃), 0̃, 1̃} are two LDFSTSs. It is obvious that

T̃1 ⊆ T̃2. Thus, T̃2 is said to be LDFSS-finer than T̃1 and T̃1 is said to be LDFS-coarser T̃2.

Theorem 1. If T̃1 ∩ T̃2 = {L̃ ∈ LDFSSs(X̃, Ẽ) : L̃ ∈ T̃1 ∩ T̃2}, where (X̃, T̃1, Ẽ) and (X̃, T̃2, Ẽ)
are two LDFSTSs over (X̃, Ẽ), then T̃1 ∩ T̃2 is also an LDFSTS on (X̃, Ẽ).

Proof. (i) It is obvious that 1̃, 0̃ ∈ T̃1, T̃2
(ii) Let L̃1, L̃2 ∈ T̃1 ∩ T̃2. This implies that L̃1, L̃2 ∈ T̃1 and L̃1, L̃2 ∈ T̃2, this implies that
L̃1 ∩ L̃2 ∈ T̃1 and L̃1 ∩ L̃2 ∈ T̃2, this implies that L̃1 ∩ L̃2 ∈ T̃1 ∩ T̃2.
(iii) Let {L̃i : i ∈ Γ} ∈ T̃1 ∩ T̃2. This implies that {L̃i} ∈ T̃1 and {L̃i} ∈ T̃2, this implies that
∪iL̃i ∈ T̃1 and ∪iL̃i ∈ T̃2, this implies that ∪iL̃i ∈ T̃1 ∩ T̃2.
Therefore, T̃1 ∩ T̃2 is an LDFSTS on (X̃, Ẽ).

Remark 1. The union of two LDFSTSs might not be such.
Let the reference set be X̃ = {ξ1, ξ2, ξ3} and the attribute set be Ẽ = {ζ1, ζ2, ζ3, ζ4, ζ5}. Let

Ã = {ζ1, ζ2, ζ3} ⊂ Ẽ and B̃ = {ζ3, ζ4, ζ5} ⊂ Ẽ. Now let us take two LDFSSs (F̃, Ã) and (G̃, B̃)
such that:

(F̃, Ã) = {(ζ1, F̃(ζ1)), (ζ2, F̃(ζ2)), (ζ3, F̃(ζ3))}, and (G̃, B̃) = {(ζ3, G̃(ζ3)), (ζ4, F̃(ζ4)),
(ζ5, F̃(ζ5))}, where
F̃(ζ1) = {ξ1 = (〈0.6, 0.6〉, 〈0.3, 0.4〉), ξ2 = (〈0.6, 0.7〉, 〈0.4, 0.3〉), ξ3 = (〈0.4, 0.4〉, 〈0.2, 0.3〉}
F̃(ζ2) = {ξ1 = (〈0.7, 0.5〉, 〈0.4, 0.2〉), ξ2 = (〈0.5, 0.4〉, 〈0.3, 0.5〉), ξ3 = (〈0.2, 0.3〉, 〈0.3, 0.2〉)}
F̃(ζ3) = {ξ1 = (〈0.5, 0.3〉, 〈0.3, 0.3〉), ξ2 = (〈0.7, 0.5〉, 〈0.4, 0.1〉), ξ3 = (〈0.4, 0.3〉, 〈0.3, 0.1〉)},
G̃(ζ3) = {ξ1 = (〈0.3, 0.4〉, 〈0.6, 0.5〉), ξ2 = (〈0.7, 0.4〉, 〈0.4, 0.7〉), ξ3 = (〈0.7, 0.5〉, 〈0.4, 0.3〉)}
G̃(ζ4) = {ξ1 = (〈0.7, 0.6〉, 〈0.3, 0.1〉), ξ2 = (〈0.8, 0.3〉, 〈0.5, 0.4〉), ξ3 = (〈0.5, 0.4〉, 〈0.2, 0.4〉)}
G̃(ζ5) = {ξ1 = (〈0.8, 0.4〉, 〈0.6, 0.3〉), ξ2 = (〈0.6, 0.5〉, 〈0.3, 0.7〉), ξ3 = (〈0.9, 0.4〉, 〈0.3, 0.1〉)}.
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Then, the two LDFSTSs over X̃ are T̃1 = {1̃, 0̃, (F̃, Ã)} and T̃2 = {1̃, 0̃, (G̃, B̃)}. The opposite
hand, since (F̃, Ã), (G̃, B̃) ∈ T̃1 ∪ T̃2. However, (F̃, Ã) ∪ (G̃, B̃) /∈ T̃1 ∪ T̃2, (F̃, Ã) ∩ (G̃, B̃) /∈
T̃1 ∪ T̃2. Thus, T̃1 ∪ T̃2 is not an LDFSTS on X̃. But T̃1 ∩ T̃2 is an LDFSS on X̃.

Definition 14. Let L̃1, L̃2 ∈ LDFSS(X̃, Ẽ) and T̃ be an LDFSTS on (X̃, Ẽ). Then L̃2 is called a
neighbourhood (nbd) of L̃1, if ∃ an LDFSOS γ̃ (i.e., γ̃ ∈ T̃ ) ) L̃1 ⊂ γ̃ ⊂ L̃1.

Theorem 2. A LDFSS γ̃ ∈ LDFSSs(X̃, Ẽ) is an LDFSOS if and only if γ̃ is a nbd of each LDFSS
L̃1 ⊂ γ̃.

Proof. Let L̃1 be an LDFSSs in γ̃, where γ̃ is an LDFSOS. As we have L̃1 ⊂ γ̃ ⊂ γ̃ =⇒ γ̃
is a nbd of L̃1. Thereupon, if we suppose γ̃ is an nbd for all LDFSS ⊆ γ̃. Since γ̃ ⊂ γ̃, ∃ an
LDFSOS L̃2 ) γ̃ ⊂ L̃2 ⊂ γ̃. Thus, γ̃ is open and γ̃ = L̃2.

Theorem 3. Let γ̃ ∈ (X̃, Ẽ) and (X̃, T̃1, Ẽ) be an LDFSTS. γ̃ is said to be the nbd system or nbd
filter of γ̃, the set of all nbds, upto topology T̃1 (in short, LDFSSnbd(γ̃)).

Theorem 4. Let the nbd filter of the LDFSS γ̃ be LDFSSnbd(γ̃). Then,

1. finite intersections of the members of LDFSSnbd(γ̃) ∈ LDFSSnbd(γ̃).
2. each LDFSS containing a member of LDFSSnbd(γ̃) ∈ LDFSSnbd(γ̃).

Proof.

1. Let L̃1, L̃2 ∈ LDFSSnbd(γ̃). Then ∃L̃1
′, L̃2

′ ∈ T̃ ) γ̃ ⊂ L̃1
′ ⊂ L̃1 and γ̃ ⊂ L̃2

′ ⊂
L̃2. Since, L̃1

′ ∩ L̃2
′ ∈ T̃ , we have, γ̃ ⊂ L̃1

′ ∩ L̃2
′ ⊂ L̃1 ∩ L̃2. Thus, L̃1 ∩ L̃2 ∈

LDFSSnbd(γ̃).
2. If L̃1 ∈ LDFSSnbd(γ̃) and L̃2 be an LDFSS containing L̃1, then ∃L̃1

′ ∈ T̃ ) γ̃ ⊂
L̃1

′ ⊂ L̃1 ⊂ L̃2. This proves that L̃2 ∈ LDFSSnbd(γ̃)

Definition 15. Let L̃ ∈ LDFSS(X̃, Ẽ) be an arbitrary LDFSS and let (X̃, T̃ , Ẽ) be an LDFSTS
over (X̃, Ẽ). Then the interior and closure of L̃ are defined as follows:

1. L̃LDFSo= ∪{G̃ : G̃ is LDFSO and G̃ ⊆ L̃},
2. L̃LDFS−= ∩{G̃ : G̃ is LDFSC and G̃ ⊇ L̃}.

Remark 2. For any LDFSS L̃ in (X̃, T̃ , Ẽ), we have

1. [L̃c]LDFS− = [L̃LDFSo]c.
2. [L̃c]LDFSo = [L̃LDFS−]c.
3. L̃ is an LDFSCS if and only if L̃LDFS− = L̃.
4. L̃ is an LDFSOS if and only if L̃LDFSo = L̃.
5. L̃LDFS− is an LDFSCS in (X̃, Ẽ).
6. L̃LDFSo is an LDFSOS in (X̃, Ẽ).

Theorem 5. Let (X̃, T̃ , Ẽ) be an LDFSTS with respect to (X̃, Ẽ). Let L̃1 and L̃2 be linear Dio-
phantine fuzzy soft subsets of (X̃, Ẽ). Then the following holds:

1. L̃ ⊆ L̃LDFS−.
2. L̃ is an LDFSCS if and only if L̃LDFS− = L̃.
3. 0̃LDFS− = 0̃ and 1̃LDFS− = 1̃.
4. L̃1 ⊆ L̃2 ⇒ L̃LDFS−

1 ⊆ L̃LDFS−
2 .

5. (L̃1 ∪ L̃2)LDFS− = L̃LDFS−
1 ∪ L̃LDFS−

2 .
6. (L̃1 ∩ L̃2)LDFS− = L̃LDFS−

1 ∩ L̃LDFS−
2 .

7. (L̃LDFS−)LDFS− =L̃LDFS−.
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Proof.

1. From Definition 3.5 (ii), L̃ ⊆ L̃LDFS−

2. If L̃ is a linear Diophantine fuzzy soft closed set (LDFSCS), then L̃ is the tiniest LDFSCS
carrying oneself and therefore L̃LDFS− = L̃. In the reverse way, if L̃LDFS− = L̃, then
L̃ is the tiniest LDFSCS containing itself and therefore L̃ is an LDFSCS.

3. Since 0̃ and 1̃ are LDFSCSs in (X̃, T̃ , Ẽ), 0̃LDFS− = 0̃ and 1̃LDFS− = 1̃.
4. If LDFSS L̃1 is a subset of LDFSS L̃2, since LDFSS L̃2 is a subset of L̃LDFS−

2 , then
LDFSS L̃1 is a subset of L̃LDFS−

2 . That is, L̃LDFS−
2 is an LDFSCS containing L̃1.

However, L̃LDFS−
1 is the littlest LDFSCS containing L̃1. Therefore, L̃LDFS−

1 ⊆
L̃LDFS−
2

5. Since the union of two LDFSSs L̃1 and L̃2 contains the LDFSS L̃1 and the union of two
LDFSSs L̃1 and L̃2 contains the LDFSS L̃2, (L̃1 ∪ L̃2)LDFS− ⊇ L̃LDFS−

1 . Then the
closure of the union of two LDFSSs L̃1 and L̃2 contains the closure of LDFSS L̃1 and the
closure of the union of two LDFSSs L̃1 and L̃2 contains the closure of LDFSS L̃2. Hence,
the union of closure of LDFSSs L̃LDFS−

1 , L̃LDFS−
2 is a subset of closure of the union

of (L̃LDFS−
1 , L̃2)LDFS−. By the fact that L̃1 ∪ L̃2 ⊆ L̃LDFS−

1 ∪ L̃LDFS−
2 , and since

(L̃1 ∪ L̃2)LDFS− is the littlest LDFSCS containing L̃1 ∪ L̃2, so (L̃1 ∪ L̃2)LDFS− ⊆
L̃LDFS−
1 ∪ L̃LDFS−

2 . Thus, (L̃1 ∪ L̃2)LDFS− = L̃LDFS−
1 ∪ L̃LDFS−

2 .
6. Since L̃1 ∩ L̃2 ⊆ L̃1 and L̃1 ∩ L̃2 ⊆ L̃2, (L̃1 ∩ L̃2)LDFS− ⊆ L̃LDFS−

1 ∩ L̃LDFS−
2 .

7. Since L̃LDFS− is a LDFSCS, then (L̃LDFS−)LDFS− = L̃LDFS−.

Theorem 6. (X̃, T̃ , Ẽ) be a LDFSTS over (X̃, Ẽ). Let L̃ be a linear Diophantine fuzzy soft subset
of (X̃, Ẽ). Then

1. 1̃− L̃LDFSo = (1̃− L̃)LDFS−.
2. 1̃− L̃LDFS− = (1̃− L̃)LDFSo.

Theorem 7. Let (X̃, T̃ , Ẽ) be an LDFSTS in relation to (X̃, Ẽ). Let L̃1 and L̃2 be linear Diophan-
tine fuzzy soft subsets of (X̃, Ẽ). Then the following claims are true:

1. ˜̃L is an LDFSOS open if and only if L̃LDFSo = L̃.
2. 0̃LDFSo = 0̃ and 1̃LDFSo = 1̃.
3. L̃1 ⊆ L̃2 ⇒ L̃LDFSo

1 ⊆ L̃LDFSo
2 .

4. (L̃1 ∪ L̃2)LDFSo = L̃LDFSo
1 ∪ L̃LDFSo

2 .
5. (L̃1 ∩ L̃2)LDFSo = L̃LDFSo

1 ∩ L̃LDFSo
2 .

6. (L̃LDFSo)LDFSo = L̃LDFSo.

Proof.

1. L̃ is an LDFSOS if and only if 1̃− L̃ is an LDFSCS, if and only if (1̃− L̃)LDFS− = 1̃− L̃,
if and only if 1̃− (1̃− L̃)LDFS− = L̃ if and only if L̃LDFSo = L̃.

2. As 0̃ and 1̃ are LDFSOSs in (X̃, T̃ , Ẽ), 0̃LDFSo = 0̃ and 1̃LDFSo = 1̃.
3. If L̃1 ⊆ L̃2, since L̃2 ⊇ L̃LDFSo

2 , then L̃1 ⊇ L̃LDFSo
2 . That is, L̃LDFSo

2 is an LDFSOS
containing L̃1. However, L̃LDFSo

1 is the largest LDFSOS contained in L̃1. Therefore,
L̃LDFSo
1 ⊆ L̃LDFSo

2

4. Since L̃1 ⊆ L̃1 ∪ L̃2 and L̃2 ⊆ L̃1 ∪ L̃2, L̃LDFSo
1 ⊆ (L̃1 ∪ L̃2)LDFSo and L̃LDFSo

2 ⊆
(L̃1 ∪ L̃2)LDFSo. Therefore, L̃LDFSo

1 ∪ L̃LDFSo
2 ⊆ (L̃1 ∪ L̃2)LDFSo. By the fact that

L̃1 ∪ L̃2 ⊆ L̃LDFSo
1 ∪ L̃LDFSo

2 , and since (L̃1 ∪ L̃2)LDFSo is the largest LDFSOS con-
taining L̃1 ∪ L̃2, so (L̃1 ∪ L̃2)LDFSo ⊆ L̃LDFSo

1 ∪ L̃LDFSo
2 . Thus, (L̃1 ∪ L̃2)LDFSo =

L̃LDFSo
1 ∪ L̃LDFSo

2 .
5. Since L̃1 ∩ L̃2 ⊆ L̃1 and L̃1 ∩ L̃2 ⊆ L̃2, (L̃1 ∩ L̃2)LDFSo ⊆ L̃LDFSo

1 ∩ L̃LDFSo
2 .

6. Since L̃LDFSo is an LDFSOS, then (L̃LDFSo)LDFSo = L̃LDFSo.
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Definition 16. Let L̃ ∈ LDFSSs(X̃, Ẽ) and (X̃, T̃ , Ẽ) be a LDFSTS over (X̃, Ẽ). Then LDFS fron-
tier of L̃ is represented by LDFSB(L̃) and is outlined as LDFSB(L̃) = L̃LDFS− ∩ (L̃c)LDFS−.

Theorem 8. Let (X̃, T̃ , Ẽ) be an LDFSTS over (X̃, Ẽ) and L̃ ∈ LDFSSs(X̃, Ẽ). Then,

1. L̃LDFSo ∩ LDFSB(L̃) = 0̃

2. L̃LDFS− = L̃LDFSo ∪ LDFSB(L̃)
3. LDFSB(L̃) = 0̃ if and only if L̃ is both open and closed.
4. LDFSB(L̃) = L̃LDFS− ∩ (L̃LDFSo)c = 0̃

Proof.

1. L̃LDFSo∩ LDFSB(L̃) = L̃LDFSo∩ (L̃LDFS− ∩ (L̃c)LDFS−) = L̃LDFSo∩ (L̃LDFS−

∩(L̃LDFSo)c) = L̃LDFSo ∩ (L̃LDFSo)c ∩ L̃LDFS− = 0̃∩ L̃LDFS− = 0̃.
2. L̃LDFSo∪ LDFSB(L̃) = L̃LDFSo∪ (L̃LDFS− ∩ (L̃c)LDFS−) = L̃LDFSo∪ (L̃LDFS−

∩(L̃LDFSo)c) = (L̃LDFSo ∪ L̃LDFS−) ∩ (L̃LDFSo ∪ (L̃LDFSo)c) = (L̃LDFSo ∪
L̃LDFS−) ∩ 1̃ = (L̃LDFSo ∪ L̃LDFS−) = L̃LDFS−. Since L̃LDFSo ⊂ L̃ ⊂ L̃LDFS−.

3. LDFSB(L̃) = L̃LDFS− ∩ (L̃c)LDFS− = 0̃⇒ L̃LDFS− ∩ (L̃LDFSo)c = 0̃⇒ L̃LDFS−

∩((L̃LDFSo)c)c = 0̃⇒ L̃LDFS− ∩ L̃LDFSo = 0̃ ⇒ L̃LDFS− ⊂ L̃LDFSo i.e., L̃ ⊂
L̃LDFS− ⊂ L̃LDFSo ⇒ L̃ ⊂ L̃LDFSo.
In addition, we know that L̃LDFSo ⊂ L̃. Thus L̃LDFSo = L̃. This shows that L̃ is
open.
Furthermore, L̃LDFS− ⊂ L̃LDFSo ⊂ L̃ ⇒ L̃LDFS− ⊂ L̃. Moreover, we know that
L̃ ⊂ L̃LDFS−. Thus L̃LDFS− = L̃. This shows that L̃ is closed.
Conversely, if L̃ is open and closed, then L̃LDFSo = L̃ and L̃LDFS− = L̃. Now,
LDFSB(L̃) = L̃LDFS− ∩ (L̃c)LDFS− = L̃LDFS− ∩ (L̃LDFSo)c = L̃LDFS− ∩ L̃c =
0̃.

4. LDFSB(L̃) = L̃LDFS− ∩ (L̃c)LDFS− = L̃LDFS− ∩ (L̃LDFSo)c

Definition 17. Let (X̃, T̃ , Ẽ) be an LDFSTS over (X̃, Ẽ). The accumulation B̃ ⊂ T̃ is known as
a base for T̃ . If ∀𝒜 ∈ T̃ can be written as the supercilious union of some objects of LDFSS B̃, then
B̃ is called as a linear Diophantine fuzzy soft basis (LDFSB) for the LDFST T̃ . Linear Diophantine
fuzzy basic open sets are the elements of B̃.

Theorem 9. Let (X̃, T̃ , Ẽ) be an LDFSTS over (X̃, Ẽ) and B̃ an LDFSB for T̃ . Then, T̃ is the set
of linear Diophantine fuzzy soft unions of B̃ components.

Proof. The evidence is unambiguous.

Theorem 10. Let the two LDFSTS over (X̃, Ẽ) be (X̃, T̃1, Ẽ) and (X̃, T̃2, Ẽ). Moreover, let B̃1 be
an LDFSB for T̃1 and B̃2 be an LDFSB for T̃2. If B̃1 ⊂ B̃2, then T̃1 ⊂ T̃2.

Proof. The proof is straightforward.

4. MCDM via LDFSS-TOPSIS Approach

TOPSIS is used to select the best choice from a set of venture options. The reasonable
compromise is the option that is nearest to the PIS but farthest from the NIS. In this part, we
will look at how LDFSSs may be used in MCDM with TOPSIS. Primarily, we will expand
TOPSIS to LDFSSs, and then we will look at a stock exchange investing problem. TOPSIS is
one of the most powerful strategies available in the literature for dealing with such issues.
Every approach has advantages and limitations depending on the nature of the problem
at hand.

We start by discussing the targeted approach procedure by procedure. The suggested
LDFSS TOPSIS is a generalization of Eraslan and Karaaslan’s [27] fuzzy soft TOPSIS.
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Step 7: The normalized euclidean distance (NED) of each attribute and its LDFSSV-PIS
can be defined as:

dN+
E =

1
4n

q

∑
j=1

[(itij −i tj
+)2 + (ifij −i fj

+)2 + (iαij −i αj
+)2 + (iβij −i βj

+)2]

The normalized euclidean distance (NED) of each alternative and its LDFSSV-NIS
can be defined as:

dN−E =
1

4n

q

∑
j=1

[(itij −i tj
−)2 + (ifij −i fj

−)2 + (iαij −i αj
−)2 + (iβij −i βj

−)2]

Step 8: Compute the LDFSS relative closeness with the formula:

C+
j =

dN−E

dN+
E + dN−E

Step 9: Finally, the alternate ranking order is found. The best attribute is the one with the
greatest revised coefficient value.

The proposed LDFSS-TOPSIS is portrayed as a flow chart in Figure 1.

Figure 1. Procedural steps of Algorithm 1.

208



Mathematics 2022, 10, 3080

Algorithm 1: LDFSS-TOPSIS.

Step 1: Identify the issue: E = {ei} is the set of decision makers/experts, the assemblage
of alternatives/attributes is A = {aj} and C = {ck} is the family of parameters/
criteria, where i, j, k ∈ N and i = {1, 2, 3, . . . ,p}, j = {1, 2, 3, . . . ,q},k = {1, 2, 3, . . . , r}.

Step 2: If wij denotes the weight allocated by Ek to Cj keeping in view the linguistic variables
(LVs) Table 2, build a weighted criteria matrix

P = [wij]p×q =

⎛⎜⎜⎜⎝
w11 w12 . . . w1q

w21 w22 . . . w2q
...

...
. . .

...
wp1 wp2 . . . wpq

⎞⎟⎟⎟⎠.

Step 3: Normalize the weighted parameter matrix P that was created in Step 2 above. There
is no need to split the criteria as cost and benefits. As a result, we apply the
normalized approach described below to convert the cost criteria to the benefit
parameter. The normalized values are represented as a matrix indicated by

N̂ = [n̂ij]p×q =

⎛⎜⎜⎜⎝
n̂11 n̂12 . . . n̂1q
n̂21 n̂22 . . . n̂2q

...
...

. . .
...

n̂p1 n̂p2 . . . n̂pq

⎞⎟⎟⎟⎠, where n̂ij =
wij√

∑p
i=1 w2

ij

and acquire the

weight vector W = (ηj : j = 1, 2, ..., q), where ηj =
∑q
i=1 n̂ij

n∑m
k=1 n̂ik

ωk =
1−
√

[(1−(kt(ξ)2+kf(ξ))2)+(1−(kα(ξ)2+(kβ(ξ))2)]/2

∑r
k=1[1−

√
[(1−(kt(ξ)2+kf(ξ)2))+(1−(kα(ξ)2+kβ(ξ)2)]/2]

where k = 1, 2, 3, . . . , r and

∑r
k=1 ωk = 1,

Step 4: Construct the LSFS-decision matrix, where aij is a LDFSS element, for the ith
decision maker makes LDFSS topology for each i. The decision matrix is

represented as Di = [aij]p×q =

⎛⎜⎜⎜⎝
a11 a12 . . . a1q
a21 a22 . . . a2q

...
...

. . .
...

ap1 ap2 . . . apq

⎞⎟⎟⎟⎠
where arq is a LDFSS-element, for k expert/decision maker so that D makes
LDFSS-topology for each i. Then bring out the aggregated matrix
A = L1+L2+...+Ln

n = [żkj]r×q.

Step 5: Acquire the weighted LDFSS decision matrix J = [z̆jk]l×q =

⎛⎜⎜⎜⎝
z̆11 z̆12 . . . z̆1q
z̆21 z̆22 . . . z̆2q

...
...

...
...

z̆p1 z̆p2 . . . z̆pq

⎞⎟⎟⎟⎠,

where z̆k = wk × żjk

z̆k = LDFWG(zij
1, zij2, . . . , zkij)

= ξ1zij
1 ⊗ ξ2zij

2 ⊗ · · · ⊗ ξkz
k
ij

= (〈Πr
k=1(tij

k)ξk , 1−Πr
k=1(1− fij

k)ξk〉,
〈Πr

k=1(αij
k)ξk , 1−Πr

k=1(1− βij
k)ξk〉).

Step 6: Locate LDFSS-valued PIS (LDFSSV-PIS) and LDFSS-valued NIS (LDFSSV-NIS),
employing in order

s+j = {ρ̈+1 , ρ̈+2 , ..., ρ̈+q } = {〈∨itij,∧ifij〉, 〈∨iαij,∧iβij〉}

s−j = {ρ̈−1 , ρ̈−2 , ..., ρ̈−q } = {〈∧itij,∨ifij〉, 〈∧iαij,∨iβij〉}

where, ∧ represents LDFSS intersection and ∨ represents LDFSS union and.
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Table 2. Lingual phrases for importance weights of criteria.

Linguistic Variables Fuzzy Weights

Less crop production (LCP) 0.10
Ordinary crop production (OCP) 0.30

Good crop production (GCP) 0.50
More crop production (MCP) 0.70

Exceptional crop production (ECP) 0.90

4.1. Numerical Example: MCDM for Robotic Agri-Farming

This section outlines MCDM, which is used to rank alternatives from high to low
relevance. In MCDM, DMs must choose the best option from a set of appropriate attributes
in a specific scenario. Although there are several aggregation approaches, we suggest
extensions of TOPSIS, VIKOR, and aggregation operators to LDFSSs and topologies for
MCDM in this context. As an example, the application we are describing here is connected
to farming. Alternatives are compared against the chosen criteria to get the best response.
As a result, we may conclude that MCDM is a collection of options, various criteria, and
subsequent comparability. With the aid of MCDM, we must select those choices that are
ideal in every manner.

4.1.1. An Empirical Case Study

Farming is the practice of cultivating food and rearing livestock. Farming includes
raising animals and cultivating crops, both of which provide humans with food and raw
resources. Farming originated nearly millions of years ago, but we do not know when
or where it started. Farming is a way of life, not simply a profession. This also lends
credence to modern civilisation, and without it, our survival on Earth would be impossible.
Agriculture was once described as “the most beneficial, most valuable, and most honorable
occupation of men” by former American President George Washington. Actually, we are
all farmers since we all like gardening, whether at home or at fields. We cultivate plants
in little mud pots at home, but we are free to grow crops, plants, or trees in the field.
This passion of horticulture must be a lifelong habit, whether you are young or elderly.
We now are dismantling our homelands and reducing cultivable areas in the name of
industrialization, reinforcement, and habitation communities. Food costs will skyrocket
as a result of the land destruction process, and we will have to pay considerably more for
our daily food requirements. Agriculture is the science and practice of raising plants and
livestock. Overall, there are about ten types of farming practiced across the world such
as arable farming, commercial farming, extensive farming, fish farming, intense farming,
mixed farming, nomadic farming, pastoral farming, poultry farming, sedentary farming,
and subsistence farming.

People require more food to survive as the world’s population grows rapidly. Because
of the strong demand for food, farmers are under pressure to increase crop production. To
address this dilemma, farmers must focus on increasing crop output through the use of
agricultural robots. The employment of robots in agriculture is an example of creativity
that goes beyond innovation. Agriculture is run like an industry, and it is on its way to
becoming a high-tech enterprise in the future. Farmers’ agricultural capacities are rising
at a rapid pace as technology advances. Robotics and automation technologies are now
increasing manufacturing yields. Agriculture robotic uses include harvesting, weeding,
trimming, sowing, spraying, sorting, and packing etc. Agriculture robots are also referred
to as “agri-bots” or “agri-robots.” Agribots will play an important part in agriculture in
the future. We are just examining one application here, the usage of robots in horticulture.
Horticulture is the cultivation of comfort plants, material plants, food plants, and beautiful
plants. A next generation robot called “Terra Sentia” (the smallest robot with a width of
12.5 inches and a height of 12.5 inches and a weight of 30 pounds) appears like a lawn
mower and navigates a field by producing laser pulses to scan it. It is used to find the plant
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health and size, plant counting, portrait of the field, stem diameter, and fruit producing
plants. This robot has been demonstrated to be useful in a variety of areas, including
almond farms, apple orchards, citrus crops, wheat, maize, soybean, tomatoes, cotton,
strawberries, sorghum, and vineyards.

We are investigating the effectiveness of farming robots. The characteristics of robotic
agri-farming are listed below.

(i) Accuracy and perfection in placement: Plant placement is critical in the field. The
precision will result in excellence. Automation of nursing operations completes
grafting, propagation, and spacing.

(ii) Automating manual chores: Farmers enhance their productivity by spending little
time on duties and more time on amelioration by adopting automation.

(iii) Completion of a difficult work: Scientists, technicians, researchers, and farmers are all
in agreement that the utilization of automation will accomplish the difficult duty in a
easy and simple manner.

(iv) High quality production: Quality goods are influenced by certain farming aspects such
as (soil, time of ripeness, climate, fertilizer etc). Cereal yield is affected by maturity
level and degree of dryness (barley, oats, wheat, rice etc.)

(v) Lowering production costs: There is an innovative method for reducing production
costs in agriculture by employing robots. We must handle some uncontrolled aspects
that reduce profit margins, such as weather stipulations, acquiring various brands of
seeds, and employing an adequate amount of pesticides.

(vi) Minimizing necessity physical labour: Because labour costs are substantially higher in
agriculture, i.e., (paying to manual labor and skilled workers).

(vii) Persistent function to complete a task: To perform an agreeable role, the farm must be
operated using artificial intelligence (automate the entire agricultural process from
sowing to harvesting).

4.1.2. Problem Description

Exemplification: A farmer running a large agriculture farm; it may be an expensive
endeavor, but he wants to gain a lot of money from it. He comes from a farming family
and inherited the skills and enthusiasm for comprehensive sustainable agri-farming. He
aspires to live a happy life and provide outstanding education for his children. He wants
to update his vision using robots in order to fulfill his thoughts, ambitions, and worries by
decreasing available resources and making this career a high-tech vocation. To turn it into
a profitable business, the farmer delegated this responsibility to his sons in order to reach a
consensus conclusion based upon that technically controlled method.

We apply Algorithm 1 (LDF-TOPSIS) in this example as follows:

Step 1: Let E = {ei : i = 1, 2, 3, 4} be the family of experts, A = {aj : j = 1, 2, 3, . . . , 5}
the set of alternatives for robotic agri-farming under study and we determine
the possible set of qualities or criterion for robotic agri-farming C = {ck : k =
1, 2, . . . , 7}, where, c1 = Accuracy and perfection in placement, c2 = Automating
manual chores, c3 = Completion of a difficult work, c4 = High quality production,
c5 = Lowering production costs, c6 = Minimizing necessary physical labour, and
c7 = Persistent function to complete a task.

Step 2: The board of family specialists generates linear Diophantine fuzzy soft information
as a weighted parameter matrix, shown in Table 2, by reviewing the track record of
the list of agri-farming robots and their performance.

P = [wij]4×7 =

⎛⎜⎜⎝
ECP GCP MCP LCP LCP OCP GCP
MCP GCP ECP OCP GCP ECP LCP
GCP MCP OCP ECP LCP MCP ECP
ECP MCP ECP MCP OCP GCP LCP

⎞⎟⎟⎠
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=

⎛⎜⎜⎝
0.9 0.5 0.7 0.1 0.1 0.3 0.5
0.7 0.5 0.9 0.3 0.5 0.9 0.1
0.5 0.7 0.3 0.9 0.1 0.7 0.9
0.9 0.7 0.9 0.7 0.3 0.5 0.1

⎞⎟⎟⎠.

where wij is the weight provided by the experts ei (row-wise) to each quality or
criterion cj (column-wise).

Step 3: The normalized weighted matrix is

N̂ = [n̂ij]4×7 =

⎛⎜⎜⎝
0.5859 0.4110 0.4719 0.0845 0.1667 0.2343 0.4811
0.4557 0.4110 0.6068 0.2535 0.8333 0.7028 0.0962
0.3255 0.5754 0.2023 0.7606 0.1667 0.5466 0.8660
0.5859 0.5754 0.6068 0.5916 0.5000 0.3904 0.0962

⎞⎟⎟⎠
Hence the weight vectors are ω = (0.16 0.21 0.17 0.11 0.12 0.10 0.13)

Step 4: Taking into account the historical track record of the agri-bots, the LDFSS decision
matrix D of each specialist is provided, with choices indicated row-wise and
parameters expressed column-wise. D =

L1+L2+L3+L4

4 = [żkj]5×7

The aggregated decision matrix is now stated as

⎛⎜⎜⎜⎜⎝
(〈0.91, 0.18〉, 〈0.62, 0.12〉) (〈0.90, 0.17〉, 〈0.36, 0.64〉) (〈0.49, 0.56〉, 〈0.55, 0.26〉) (〈0.73, 0.28〉, 〈0.62, 0.19〉) (〈0.94, 0.28〉, 〈0.76, 0.23〉) (〈0.55, 0.44〉, 〈0.27, 0.32〉) (〈0.65, 0.62〉, 〈0.29, 0.34〉)
(〈0.57, 0.52〉, 〈0.22, 0.31〉) (〈0.95, 0.31〉, 〈0.88, 0.11〉) (〈0.52, 0.38〉, 〈0.40, 0.36〉) (〈0.61, 0.37〉, 〈0.52, 0.22〉) (〈0.56, 0.76〉, 〈0.67, 0.28〉) (〈0.67, 0.55〉, 〈0.25, 0.36〉) (〈0.92, 0.12〉, 〈0.74, 0.26〉)
(〈0.69, 0.41〉, 〈0.28, 0.41〉) (〈0.56, 0.66〉, 〈0.10, 0.70〉) (〈0.63, 0.27〉, 〈0.49, 0.16〉) (〈0.35, 0.70〉, 〈0.30, 0.50〉) (〈0.87, 0.41〉, 〈0.81, 0.17〉) (〈0.89, 0.15〉, 〈0.56, 0.36〉) (〈0.74, 0.27〉, 〈0.55, 0.31〉)
(〈0.71, 0.46〉, 〈0.26, 0.38〉) (〈0.58, 0.49〉, 〈0.47, 0.32〉) (〈0.56, 0.76〉, 〈0.58, 0.39〉) (〈0.50, 0.45〉, 〈0.45, 0.35〉) (〈0.97, 0.32〉, 〈0.67, 0.25〉) (〈0.83, 0.29〉, 〈0.33, 0.61〉) (〈0.83, 0.29〉, 〈0.23, 0.67〉)
(〈0.87, 0.37〉, 〈0.24, 0.45〉) (〈0.63, 0.49〉, 〈0.27, 0.46〉) (〈0.66, 0.69〉, 〈0.36, 0.35〉) (〈0.50, 0.55〉, 〈0.50, 0.40〉) (〈0.83, 0.29〉, 〈0.23, 0.67〉) (〈0.87, 0.41〉, 〈0.91, 0.02〉) (〈0.36, 0.16〉, 〈0.37, 0.22〉)

⎞⎟⎟⎟⎟⎠
Step 5: The weighted LDFSS decision matrix is B = [z̆kj]r×q = wj × żkj

⎛⎜⎜⎜⎜⎝
(〈0.320, 0.967〉, 〈0.143, 0.712〉) (〈0.383, 0.689〉, 〈0.089, 0.911〉) (〈0.108, 0.906〉, 〈0.127, 0.795〉) (〈0.134, 0.869〉, 〈0.101, 0.833〉) (〈0.287, 0.858〉, 〈0.157, 0.838〉) (〈0.077, 0.921〉, 〈0.031, 0.038〉) (〈0.128, 0.940〉, 〈0.044, 0.869〉)
(〈0.126, 0.901〉, 〈0.039, 0.829〉) (〈0.467, 0.782〉, 〈0.359, 0.629〉) (〈0.117, 0.848〉, 〈0.083, 0.841〉) (〈0.098, 0.896〉, 〈0.078, 0.847〉) (〈0.094, 0.968〉, 〈0.125, 0.858〉) (〈0.105, 0.942〉, 〈0.028, 0.044〉) (〈0.280, 0.759〉, 〈0.161, 0.839〉)
(〈0.171, 0.867〉, 〈0.051, 0.867〉) (〈0.158, 0.916〉, 〈0.022, 0.928〉) (〈0.156, 0.800〉, 〈0.108, 0.732〉) (〈0.046, 0.962〉, 〈0.038, 0.927〉) (〈0.217, 0.899〉, 〈0.181, 0.808〉) (〈0.198, 0.827〉, 〈0.079, 0.044〉) (〈0.161, 0.843〉, 〈0.099, 0.859〉)
(〈0.180, 0.883〉, 〈0.047, 0.857〉) (〈0.167, 0.861〉, 〈0.125, 0.787〉) (〈0.130, 0.954〉, 〈0.137, 0.852〉) (〈0.073, 0.916〉, 〈0.064, 0.891〉) (〈0.343, 0.872〉, 〈0.125, 0.847〉) (〈0.162, 0.884〉, 〈0.039, 0.090〉) (〈0.206, 0.851〉, 〈0.033, 0.949〉)
(〈0.279, 0.853〉, 〈0.043, 0.880〉) (〈0.188, 0.861〉, 〈0.064, 0.850〉) (〈0.168, 0.939〉, 〈0.073, 0.837〉) (〈0.073, 0.936〉, 〈0.073, 0.904〉) (〈0.192, 0.862〉, 〈0.031, 0.953〉) (〈0.185, 0.915〉, 〈0.214, 0.002〉) (〈0.056, 0.788〉, 〈0.058, 0.821〉)

⎞⎟⎟⎟⎟⎠
Step 6: Find a positive ideal solution (LDFSSV-PIS) with an LDFSS value, as well as the

LDFSS-valued negative ideal solution (LDFSSV-NIS) using in order and are listed,
respectively, as

LDFSSV-PIS= s+j = {ρ̈+1 , ρ̈+2 , ..., ρ̈+q } =
{(〈0.320, 0.853〉, 〈0.143, 0.712〉), (〈0.467, 0.689〉, 〈0.359, 0.629〉), (〈0.168, 0.800〉, 〈0.137, 0.732〉),
(〈0.134, 0.869〉, 〈0.101, 0.833〉), (〈0.343, 0.858〉, 〈0.181, 0.808〉), (〈0.198, 0.827〉, 〈0.214, 0.002〉),
(〈0.280, 0.759〉, 〈0.161, 0.821〉)}
LDFSSV-NIS= s−j = {ρ̈−1 , ρ̈−2 , ..., ρ̈−q } =
{(〈0.126, 0.967〉, 〈0.039, 0.880〉), (〈0.158, 0.916〉, 〈0.022, 0.928〉), (〈0.108, 0.954〉, 〈0.073, 0.852〉),
(〈0.046, 0.962〉, 〈0.038, 0.927〉), (〈0.094, 0.968〉, 〈0.031, 0.953〉), (〈0.077, 0.942〉, 〈0.028, 0.090〉),
(〈0.056, 0.940〉, 〈0.033, 0.949〉)}

Step 7: We determine the Table 3 LDFSS relative PIS and NIS for the calculated aggregated
weighted.

Table 3. Distance Measure of Each Alternative.

Alternatives aj dN+
E dN−

E

a1 0.0116 0.0112
a2 0.0083 0.0172
a3 0.0178 0.0065
a4 0.0141 0.0066
a5 0.0167 0.0061

Step 8: Table 4 shows the proximity coefficients calculated via LDFSS-Euclidean distances
of each alternative from LDFSSV-PIS and LDFSSV-NIS:
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Table 4. LDF Closseness Coefficient of Each Alternative.

Alternatives aj C+
j Rank

a1 0.49083 2
a2 0.67360 1
a3 0.26764 4
a4 0.32023 3
a5 0.26758 5

Step 9: The priority order of the robots as seen in Table 4 is a2 > a1 > a4 > a3 > a5: thus,
a2 is the best robot for the concerned problem of agriculture.

5. MCDM Using LDFSS VIKOR Method

VIKOR (Vlse Kriterijumska Optimizacija Kompromisno Resenje) is a Serbian direct
reference to various efficiency and compromise parameters. Serafim Opricovic developed
it to alleviate decision-making problems with contrasting and non-commensurable (differ-
ent units) demands, assuming that compromise is suitable for conflict management, the
decision-maker appears to have a workable alternative that is the closest to the ideal, and
the alternatives are analysed using all indicators. VIKOR rates the options and determines
the workable compromise that is closest to the ideal.

We will start by demonstrating the proposed approach step by step:
We begin by breaking down the proposed approach piece by piece. We omit the very

first six stages since they are the same as in Algorithm 1 for the LDFSS TOPSIS technique.
The remaining stages are as follows:

Figure 2 depicts a flow chart of the planned LDFSS-VIKOR (Algorithm 2).

Figure 2. Procedural steps of Algorithm 2.
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Algorithm 2: LDFSS-VIKOR.

Step 1 to 6: See Algorithm 1
Step 7: Generate the VIKOR method’s core characteristics for each alternative, namely the

group utility value Sj, individual regret value Rj, and compromise value Qj,
using

Sj =
r

∑
k=1

Wk

(
d(ρ̈+k , ρ̈jk)

d(ρ̈+k , ρ̈−k )

)

Rj =
r

max
k=1

Wk

(
d(ρ̈+k , ρ̈jk)

d(ρ̈+k , ρ̈−k )

)

Qj = κ

(
Sj −S−

S+ −S−

)
+ (1− κ)

(
Rj −R−

R+ −R−

)
where S+ = maxjSj, S− = minjSj, R+ = maxjRj, R− = minjRj. The real value
κ is referred to as the decision mechanism coefficient. The purpose of the coefficient
κ is that if the compromise option is to be chosen by majority vote, we use κ > 0.5;
for concurrence, we use κ = 0.5; and κ < 0.5 symbolises veto. The weight of the k

criteria is represented by Wk, which reflects its relative relevance.
Step 8: Sort the options and come up with a reasonable solution. Organize Si, Ri, and Qi

in ascending order to create three rating lists, S[.], R[.], and Q[.]. The alternative ρ̈η

will be designated the compromise solution if it ranks first in Q[.] (with the least
value) and concurrently meets the accompanying main specifications:

C1 Acceptable advantage:
If ρ̈η and ρ̈ζ represent top two alternatives in Qj, then

Q(ρ̈η)−Q(ρ̈ζ) ≥
1

n− 1

where n is the number of parameters.
C2 Acceptable stability:

The alternative ρ̈η should be best ranked by Sj and/or Rj.

If the aforementioned two requirements are not satisfied simultaneously, there are
several compromise solutions:

(i) If only criterion [C1] is met, then both possibilities ρ̈η and ρ̈ζ are the compromise
solutions.

(ii) If condition [C1] is not met, the options ρ̈η , ρ̈ζ , . . . , ρ̈γ would be the acceptable
compromise solutions, where ρ̈γ may be calculated via

Q(ρ̈ζ)−Q(ρ̈γ) ≥
1

n− 1

for the maximum.

Example

We re-solve Example Section 4.1.2 using the VIKOR approach and the strategy de-
scribed in Algorithm 2. The first six stages are identical to those in Example Section 4.1.2.
So we will start with step 7.

Step 1 to 6: Refer Algorithm 1
Step 7: By taking κ = 0.5, we determine the important components of the VIKOR approach

for each choice, namely the group utility value Si, the individual regret value
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Ri, and the conciliation value Qi, using the following formulas the values are
calculated and displayed in Table 5 and Figure 3:

Sj =
r

∑
k=1

Wk

(
d(ρ̈+k , ρ̈jk)

d(ρ̈+k , ρ̈−k )

)

Rj =
r

max
k=1

Wk

(
d(ρ̈+k , ρ̈jk)

d(ρ̈+k , ρ̈−k )

)

Qj = κ

(
Sj −S−

S+ −S−

)
+ (1− κ)

(
Rj −R−

R+ −R−

)

Table 5. The values of Sj, Rj and Qj of Each Alternative.

Alternatives aj Sj Rj Qj

a1 0.6708 0.1416 0.1898
a2 0.6456 0.1356 0.0000
a3 0.8424 0.2100 0.8888
a4 0.8471 0.1586 0.5529
a5 0.8986 0.1749 0.7644

Step 8: The following are the options in order of preference:
By Si : a2 ≺ a1 ≺ a3 ≺ a4 ≺ a5
By Ri : a2 ≺ a1 ≺ a4 ≺ a5 ≺ a3
By Qi : a2 ≺ a1 ≺ a4 ≺ a5 ≺ a3
We have Q{(a1)− (a2)} = 0.1898− 0.0000 = 0.189 ≥ 1

6 , condition C1 is met. As a
result, we conclude that a2 is an acceptable advantage solution. Therefore, a2 is the
best robot for the concerned problem of agriculture.

Figure 3. Bar chart of rankings.

6. Multiple Criteria Decision Making Using LDFSS-AO Method

To begin, we generalize the LDFSS aggregation operators to meet our case. The very
first five phases are identical to those in Algorithm 1. As a consequence, we bypass them
and proceed to step 6.

The proposed LDFSS-VIKOR is represented as a flow chart in the Figure 4.
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Figure 4. Procedural steps of Algorithm 3.

Example

We repeat Example Section 4.1.2 using the extended LDFSS aggregation operators as
described in Algorithm 3.

Algorithm 3: LDFSS-aggregation operator(LDFSS-AO).

Step 1 to 5: Refer Algorithm 1
Step 6: Compute the cardinal matrix

MC(B) =

[
1
p

p

∑
i=1

apq : j = 1, 2, . . . , q

]
p×q

Step 7: Calculate the aggregated LDFSS matrix M∗ using M∗ =
B×MT

C(B)

|E| .

Step 8: The score function values are calculated with the formula
S(Ld) =

1
2 [(td − fd) + (αd − βd)]. The best option is the one with the largest S(Ld)

value.

Step 6: The cardinal matrix

MC(B) =

[
1
5

5

∑
i=1

aij : j = 1, 2, . . . , 7

]
5×7

MC(J) = [(〈0.215, 0.894〉, 〈0.065, 0.829〉), (〈0.273, 0.822〉, 〈0.132, 0.821〉),
(〈0.136, 0.890〉, 〈0.106, 0.811〉), (〈0.085, 0.916〉, 〈0.071, 0.880〉),
(〈0.227, 0.892〉, 〈0.124, 0.861〉), (〈0.145, 0.898〉, 〈0.078, 0.043〉),
(〈0.166, 0.836〉, 〈0.079, 0.868〉)]
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Step 7: Gauge the aggregated LDFSS matrix M∗ with the formula M∗ =
B×MT

C(B)

|E| .

=

⎛⎜⎜⎜⎜⎝
(〈0.0424, 0.9838〉, 〈0.0096, 0.8451〉)
(〈0.0374, 0.9823〉, 〈0.0135, 0.8429〉)
(〈0.0299, 0.9845〉, 〈0.0081, 0.8493〉)
(〈0.0348, 0.9858〉, 〈0.0085, 0.8568〉)
(〈0.0314, 0.9842〉, 〈0.0070, 0.8465〉)

⎞⎟⎟⎟⎟⎠
Step 8: The score function for the alternatives found in step 7 is calculated using the

formula S(Ld) =
1
2 [(td − fd) + (αd − βd)].

S(a1) = −0.8401, S(a2) = −0.8369, S(a3) = −0.8448, S(a4) = −0.8523, S(a5) =
−0.8420 . Thus, the archetypal of the robots is a2 + a1 + a5 + a3 + a4. The
optimal choice is the one with the greatest score function value. i.e., S(a2).

7. Comparison and Advantages

7.1. Three Techniques Are Compared: Commentary

Figure 5 depicts the agri-robot ranks obtained using the TOPSIS, VIKOR, and gener-
alised LDFSS aggregation operator techniques. To make the comparison possible, we used
the values 1−Q instead of Q in VIKOR. In addition, to render the columns representing
score values legible, we normalized the scores by multiplying them by 1000. TOPSIS is the
first series on the left, VIKOR is the second, and scaled score values are the third.

Figure 5. LDFSSS-TOPSIS, VIKOR, and generalized AO approaches were used to compare rankings.

We can see that the best option for all three tactics is the same, which is a2. TOPSIS
simply has one check: the optimal solution must be closest to the positive ideal solution and
the furthest away from the negative ideal solution. VIKOR has a number of checkpoints.
For example, we choose Qj, Rj, and Sj values to ensure appropriate advantage and stability.
As a result, if a poor solution passes one check, it will be rejected at the next. VIKOR offers
a variety of compromise choices.

TOPSIS uses the grade metric, which takes into account distances between PIS and
NIS. Without consideration for their virtual importance, the predicted distances are simply
added. The distance may naturally represent some equilibrium between overall and
individual happiness, but in VIKOR, it does so in a different way. In VIKOR, the weight κ
is quite well. Both methods establish a ranking grade. The top-ranked answer obtained
by VIKOR is nearly perfect. Nonetheless, TOPSIS’s top-ranked choice takes priority in the
ranking table. This does not imply that it is always close to the ultimate solution. Apart from
ranking, VIKOR offers a compromise alternative with an improvement (advantage) level.

In comparison to the other two ways, the method of generalized LDFSS aggregation
operators is easier to handle and gives greater computational ease. Based on this debate,
we may infer that the VIKOR model outperforms TOPSIS and produces more dependable
results. However, in terms of computing convenience, the approach of generalized PFS
aggregation operators is preferred. How much precision we want depends on the problem
under consideration. We select the procedure based on the amount of precision necessary.
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7.2. Analysis of Comparisons and the Superiority of Suggested Work

We see that using any of the three algorithms in this article yields the same best answer.
Furthermore, the techniques provided in this article are simple to use and produce clear
results. Table 6 shows a comparison of final ranks with several known techniques.

Table 6. The proposed approaches are compared to certain existing procedures.

Methodology The Best Option

Prioritized weighted AOs (Liu et al. [29]) a2
IF AOs (Xu [25]) a2

Generalized IF soft power AOs (Garg and Arora [30]) a2
Pythagorean fuzzy AOs (Peng and Yuan [28]) a2

Algorithms 1–3 (Proposed) a2

Furthermore, in this section, we compared and analyzed the existing soft topological
space under different environments with the defined notion. Each FST, IFST, PyFST, SFST,
LDFT and LDFST is superior to the other but also has its own in-build limitation given in
Table 7.

Table 7. Comparison of different fuzzy soft extensions.

Set Advantages Limitations

FST [4] It can handle imprecise parametrized element It cannot handle dis-satisfaction grade values of parametrized element

IFST [7] It can handle both satisfaction and dis-satisfaction grade of
parametrized element

This theory could not support for some cases when sum of satisfaction and dis-
satisfaction grade of parametrized element exceeds unity. This concepts failed
to address grades such as abstinence

PyFST [34] This notion can support when satisfaction and dis-
satisfaction grade of parametrized element exceeds 1

It has inherent limitations like sum of square of satisfaction and dis-satisfaction
grade of parametrized element exceeds 1. This concepts failed to address grades
like abstinence

SFST [35] This concept can handle each parametrized elements positive,
neural and negative membership grade

It is not developed with reference parameters. It cannot handle when the sum
of squares of parametrized elements positive, neural and negative membership
grade exceeds 1.

LDFST (Proposed) This concept is initiated to deal the parametrized elements
with reference parameter We cannot use for some case which do not have reference parameters.

8. Conclusions

We proposed the concept of linear Diophantine fuzzy soft set topological spaces and
analyzed their features. We also suggested three strategies for modeling uncertainties in the
MCDM problem from agri robot selection using LDFSSs: LDFSS-TOPSIS, LDFSS-VIKOR,
and the extended LDFSS-AO approach. The suggested algorithms have been successfully
used to rate various robots. A brief but detailed description of the various types of robots, as
well as their job efficiency, was provided. We used statistical graphics to help us understand
the final ranks. A comparison of three ranks, as well as a good argument for the more viable
technique, was also discussed. With the help of a statistical chart, we compared the final
gradings provided by the three models. The suggested model has enormous theoretical and
application potential, and it may be conveniently utilized in different hybrid architectures
of fuzzy sets with little modifications. The notion may be utilized to deal with uncertainty
successfully in a variety of real-world situations, including artificial intelligence, business,
chemical engineering, coding theory, electoral system, energy management, environment
management, forecasting, game theory, image processing, logistics, machine learning,
manufacturing, marketing, medical diagnosis, pattern recognition, recruitment, robotics,
and trade analysis problems.
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Abstract: The first person to introduce possibility theory was Lotfi A. Zadeh, in 1977. It was, of
course, of no coincidence that he directly combined it with the theory of fuzzy sets. Later, several
researchers dealt with the mathematical foundations of the theory of possibilities. They introduced
possibility distribution as a concept, and they directly combined it with fuzzy numbers. A fuzzy
number corresponds to a possibility distribution and vice versa. This correspondence gave a key
advantage to possibility theory over probability theory. This advantage is the facility of operations.
However, there is also a basic: problem how is a possibility distribution generated? In this paper, we
introduce a method of constructing a possibility distribution via a cumulative probability function.
The advantage of this method is the simplicity of construction, which is nothing more than the
construction of a fuzzy triangular or trapezoidal number via a cumulative probability function. This
construction introduces a way to determine a fuzzy number without relying on the experience or
intuition of the researcher. We should, of course, emphasize that this specific construction is within
the framework of a theoretical model. We do not apply it to specific data. We also considered that the
theoretical construction model should be presented through the theory of possibilities, thus avoiding
the theory of probabilities.

Keywords: fuzzy numbers; possibility measure; necessity measure; cumulative distribution function;
possibility distributions

MSC: 28E10; 03E72; 94D05

1. Introduction

The possibility theory initiated by Zadeh in [1] is a generalization of probability theory.
Many authors had a hand in the development of possibility theory, especially Dubois and
Prade [2]. It has been successfully applied in decision-making problems in conditions
of uncertainty [3], in fuzzy cooperative games [4], fuzzy neural networks [5], etc. An
important role in the development of possibility theory was played by the concept of fuzzy
numbers. In general, fuzzy numbers represent an important class of possibility measure.
The main reasons why fuzzy numbers make a very good instrument both for theoretical
approaches and applications are as follows: Fuzzy numbers generalize real numbers, and
by Zadeh’s extension principle [6], the operations of fuzzy numbers are extensions of the
operations of real numbers [6]. Moreover, the operations with fuzzy numbers have good
arithmetical properties [2]. The link that connects the two concepts of fuzzy numbers and
possibility is the possibility distribution of an event. This possibility distribution is most
often expressed by a fuzzy number. This fuzzy number plays a role in corresponding
to the probability distribution. In other words, it works in a similar way, but instead of
probabilities, it uses the concept of possibility. The above procedure has been used quite
effectively in risk theory [7]. The main disadvantage of this procedure is the choice of

Mathematics 2022, 10, 3350. https://doi.org/10.3390/math10183350 https://www.mdpi.com/journal/mathematics
221



Mathematics 2022, 10, 3350

the fuzzy number. This disadvantage is usually covered by the researcher’s experience.
In this work, we construct the fuzzy number with the help of a cumulative distribution
function. That is, from basic data, we produce the cumulative distribution function and
then transform it into a fuzzy number, which we can use as a possibility distribution. The
process of transformation is simple and produces triangular or trapezoidal fuzzy numbers
retaining all the properties of these numbers.

This paper is organized as follows: In Section 2, we present fundamental concepts
regarding the formulation of fuzzy numbers and possibility distribution. In Section 3, we
show the construction of fuzzy numbers through the cumulative distribution function, and
we also give several examples of its operation. General comments and concluding remarks
are set out in Sections 4 and 5.

2. Definitions and Basic Properties

In this section, we present the most basic concepts concepts used in this paper and
their definitions and properties drawn from the relevant literature, starting with fuzzy
numbers. It should also be noted that the definitions and properties of fuzzy numbers have
been drawn from the book by G. Klir and B. Yuan, titled Fuzzy sets and fuzzy logic [6].

2.1. Fuzzy Numbers

Definition 1 (See [6,7]). A fuzzy subset of X is a function A : X → [0, 1] . For x ∈ X, the real
number A(x) from the interval [0, 1] is called the degree of membership of x in A and represents the
degree of truth of the statement “x belongs to A”.

We demote by F (X) = [0, 1]X the family of fuzzy subsets of X. Let us give an example.

Example 1. Let us consider the statement “the real numbers close to 5”. This statement is
represented by a fuzzy set. For this purpose, we define the function A : R→ [0, 1] with the form:

A(x) =
1

1 + (x− 5)2 , x ∈ R.

where A is a fuzzy subset of R and A(x) represents the degree to which the real number x is “close
to 5”. For the graph of the membership function A(x), see Figure 1.

Figure 1. Membership function graph A(x).

As we have seen, a fuzzy set is essentially a function A : X → [0, 1] . If, in addition,
X ⊆ R, then it is possible to have the graph of the fuzzy set as we saw in Example 1. The
fuzzy sets for which X ⊆ R applies are, in essence, the fuzzy numbers we will define below.

Definition 2 (See [6]). A subset A of R is called a fuzzy number if the following conditions
are fulfilled:

a. The function A : R→ [0, 1] is continuous;
b. A is normal, i.e., there exists x ∈ R such that A(x) = 1;
c. A is fuzzy convex;
d. sup(A) is a bounded subset of R.
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We will denote by F the set of fuzzy numbers.

Remark 1. We recall that support of A is the crisp subset of R defined by
sup(A) = {x ∈ R|A(x) > 0}.

Usually, the triangular and trapezoidal shapes of membership functions shown in Figure 2
most often represent fuzzy numbers. Other shapes may be preferable in some applications.

Figure 2. Basic types of fuzzy numbers.

The following theorem shows that membership functions of fuzzy numbers may be,
in general, piece-defined functions.

Theorem 1 (For proof, see Theorem 4.1 in [8]). Let A ∈ F (R). Then, A is a fuzzy number if and
only if there exists a closed interval [a, b] �= ∅ such that

A(x) =

⎧⎨⎩
1 f or x ∈ [a, b]

l(x) f or x ∈ (−∞, a)
r(x) f or x ∈ (b,+∞),

(1)

where l is a function from (−∞, a) to [0, 1] that is monotonic increasing, continuous from the right,
and such that l(x) = 0 for x ∈ (−∞, Ω1), r is a function (b,+∞) to [0, 1] that is monotonic
degreasing, continuous from the left that r(x) = 0 for x ∈ (Ω2,+∞).

So, the construction of a fuzzy number should satisfy the conditions of Theorem 1.

2.2. Cumulative Distribution Function and Possibility Distribution

In this paragraph, we will give the definitions of the cumulative distribution function
or simple distribution function and the main properties of possibility measure. It should
also be noted that the definitions and properties have been drawn from [9–11].

Definition 3. Let X be a random variable with respect to the probability space (Ω, K, P). The
cumulative distribution function or simple distribution function of X is the function FX : R −→ R

defined by FX(x) = P(X < x) for any x ∈ R.

Remark 2. A distribution function is a function F with domain [−∞,+∞] such that:

a. F is monotonic increasing;
b. F(−∞) = 0 and F(+∞) = 1;
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c. If the random variable is discrete, the cumulative distribution function will be discontinuous,
and the discontinuity points will correspond to the values of the random variable that have a
positive probability.

Definition 4. Let Ω be a nonempty set and P(Ω) its powerset. Then,

a. the elements of P(Ω) will be called events;
b. a possibility measure on Ω is a function Π : P(Ω) −→ [0, 1] such that the following condi-

tions are verified:

(Pos1) Π(∅) = 0 and Π( Ω) = 1

(Pos2) Π

(⋃
i∈I

Ai

)
= sup

i∈I
Π(Ai), for any family {Ai}i∈I of subsets of Ω.

Proposition 1 (For proof, see [7]). Let Π be a possibility measure on Ω. For any A1, A2 ∈ P(Ω),
if A1 ⊆ A2, then Π(A1) ⊆ Π(A2).

Definition 5. A possibility distribution on Ω is a function μ : Ω −→ [0, 1] such that sup μ(x) =
1; μ is said to be normalized if μ(x) = 1 for some x ∈ Ω.

Next, we will see how close these two concepts are. Additionally, we should empha-
size that the distribution function of probability has nothing to do with the probability
distribution. They are completely different concepts. Their differences have been high-
lighted in [1,2,11]. In the paper, we will not emphasize these differences, and neither will
we develop a philosophical view of these concepts. However, the conceptual framework
of the possibility distribution function should be made clear. The possibility distribution
does not refer to the random variable of the population and, therefore, has nothing to do
with the probability. The possibility distribution refers to a fuzzy variable and measures
the degree of possibility of a value of the variable belonging to a set.

Definition 6. Let Π be a possibility measure on Ω and μ : Ω −→ [0, 1] a possibility distribution.
Then, we define the functions:

a. μΠ : Ω −→ [0, 1] such that μΠ(x) = Π({x}) for any x ∈ Ω;
b. Posμ : Ω −→ [0, 1] such that

Posμ(A) = sup
x∈A

μ(x), (2)

for any A ∈ P(Ω).

According to the functions we defined in Definition 5, we have the results of the
following proposition:

Proposition 2 (For proof, see Proposition 3.2.7 in [9]).

a. μΠ is a possibility distribution on Ω;
b. Posμ is a possibility measure on Ω;
c. μPosμ = μ, and PosμΠ

= Π.

Next, we will define the fuzzy variable. For this, we should assume that Ω = R.

Definition 7. A fuzzy variable is an arbitrary function ζ : R −→ R . If is a fuzzy variable,
x0 ∈ R and C ⊆ R, then we will define the following concepts: ζ ∈ C = {x ∈ R|ζ(x) ∈ C},
{ζ = x0} = {x ∈ R|ζ(x) = x0}, {ζ ≤ x0} = {x ∈ R|ζ(x) ≤ x0}, etc. Furthermore, we will
say that a possibility distribution μ : R −→ [0, 1] is associated with the fuzzy variable ζ if

μ(x) = Posμ(ζ = x), (3)
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for any x ∈ R.

Proposition 3 (For Proof, see Proposition 3.2.9 [7]). Let ζ be a fuzzy variable with possibility
distribution μ. For any A ⊆ R we have:

Posμ(ζ ∈ A) = sup
x∈A

μ(x) (4)

So, according to Equation (4), we have the following corresponding equations. Let ζ be a fuzzy
variable with possibility distribution μ. For any x0, x1 ∈ R the following applies:

Posμ(ζ ≤ x0) = sup
x≤x0

μ(x), (5)

Posμ(ζ < x0) = sup
x<x0

μ(x), (6)

Posμ(ζ ≥ x0) = sup
x≥x0

μ(x), (7)

Posμ(ζ > x0) = sup
x>x0

μ(x), (8)

Posμ(x0 < ζ < x1) = sup
x0<x<x1

μ(x), (9)

With the above equations, we are now able to connect the two basic concepts that we
presented above—fuzzy numbers and the possibility distribution [2,7,12]. This connection
will be best seen with two examples. The first example is with a triangular number, and the
second example is with a trapezoidal number.

Example 2. Let A ∈ F (R) be a triangular number with form:

A(x) =

⎧⎨⎩
l(x), f or x ∈ [a, b]
r(x), f or x ∈ [b, c]

0 otherwise,
(10)

where l is a function from [a, b] to [0, 1] that is monotonic increasing, r is a function from [b, c] to
[0, 1] that is monotonic decreasing, and l(a) = r(c) = 0 and l(b) = r(b) = 1. Furthermore, let
ζ be a fuzzy variable such that the triangular fuzzy number A of Equation (10) is the possibility
distribution associated with ζ. We denote by PosA the possibility measure associated with A. For
any x0 ∈ R we have

PosA(ζ ≤ x0) = sup
x≤x0

A(x) =

⎧⎨⎩
0 i f x0 ≤ a

A(x0) i f a ≤ x0 ≤ b
1 i f x0 ≥ b,

(11)

PosA(ζ ≥ x0) = sup
x≥x0

A(x) =

⎧⎨⎩
1 i f x0 ≤ a

A( x0) i f b ≤ x0 ≤ c
0 i f x0 ≥ c,

(12)

Example 3. Let B ∈ F (R) be a trapezoidal number with the form:

B(x) =

⎧⎪⎪⎨⎪⎪⎩
l(x), f or x ∈ [a, b]

1 f or x ∈ [b, c]
r(x), f or x ∈ [c, d]

0 otherwise,

(13)
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where l is a function from [a, b] to [0, 1] that is monotonic increasing, r is a function from [c, d] to
[0, 1] that is monotonic decreasing, and l(a) = r(d) = 0 and l(b) = r(c) = 1. Furthermore, let
ζ be a fuzzy variable such that the triangular fuzzy number B of Equation (13) is the possibility
distribution associated with ζ. We denote by PosB the possibility measure associated with B. For
any x0 ∈ R we have

PosB(ζ ≤ x0) = sup
x≤x0

B(x) =

⎧⎨⎩
0 i f x0 ≤ a

B( x0) i f a ≤ x0 ≤ b
1 i f x0 ≥ b,

(14)

PosB(ζ ≥ x0) = sup
x≥x0

B(x) =

⎧⎨⎩
1 i f x0 ≤ c

B( x0) i f c ≤ x0 ≤ d
0 i f x0 ≥ c,

(15)

3. Results

As we know, probability theory and possibility theory try to express randomness and
fuzziness, respectively. Both randomness and fuzziness, despite their diversity, in essence,
attempt to “capture” uncertainty, so a collaboration between random variables (probability
theory) and fuzzy numbers (possibility theory) in practice is very useful [12–14]. However,
for this cooperation, the best representative of fuzziness is the fuzzy number. For the
most part, real-world uncertainty problems contain fuzziness and randomness together.
A characteristic example of the coexistence of randomness and fuzziness was given by
Zadeh in [14]. Nevertheless, the question of how a fuzzy number is determined remains.
By what mechanism will we assign a degree of possibility (degree of truth) to our data? Is
the experience of researchers enough? The answers are not easily found. However, some
efforts gave results [11,13,15,16]. Following these efforts, we propose a way to convert the
cumulative distribution function to a fuzzy number. Specifically, from research data, we
construct the cumulative distribution function and then convert it into a fuzzy number.
This fuzzy number also serves as the distribution of the possibility of this research. Below,
we give the conversion form of a given cumulative distribution function to a fuzzy number
as well as some examples of this conversion using possibility theory.

3.1. Construction of a Fuzzy Number via Cumulative Distribution Function

According to Definition 3, suppose we have a cumulative distribution function
FX : R −→ R defined by FX(x) = P(X < x) for any x ∈ R. In addition, FX is continu-
ous and nondecreasing, so the following proposition applies:

Proposition 4. If FX : R −→ R is a cumulative distribution function, then the function given by
the form

A(x) =

⎧⎨⎩
FX(x)
FX(a) i f x ≤ a

1−FX(x)
1−FX(a) i f x ≥ a

, x, a ∈ R, (16)

is a triangular fuzzy number.

Proof of Proposition 4.

1. For x < a, the function A(x) is increasing since FX is increasing (from Definition 3 and
FX(a) > 0), and for x > a, the function A(x) is decreasing since 1− FX is decreasing;

2. A(x) is a continuous function since FX is continuous for x ∈ (−∞, a) ∪ (a,+∞) and
lim

x→a−
A(x) = lim

x→a+
A(x) = A(a) = 1;

3. A(a) = FX(a)
FX(a) =

1−FX(a)
1−FX(a) = 1.
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Therefore, the conditions of Theorem 1 are satisfied. Hence, the function A(x) is a
fuzzy number and triangular as in Equation (10). �

Remark 3. The choice of the real number a ∈ R can be a measure of location. In other words, it can
be the average median mode, etc. A typical example of converting a cumulative distribution function
into a fuzzy triangular number is a uniform distribution. The cumulative distribution function of
the continuous uniform distribution is

F(x) =

⎧⎨⎩
0 f or x < a

x−a
b−a f or a ≤ x ≤ b
1 f or x > b.

(17)

The above function has average μ = (a + b)/2 and variance s2 = (b− a)2/12. With the
help of Equation (16), we want to create a triangular fuzzy number “close to μ”, meaning we will
obtain the fuzzy number with the membership function A(x)

A(x) =
{

2F(x) i f x ≤ μ
2(1− F(x)) i f x ≥ μ

, x ∈ R, (18)

This conversion is shown in Figure 3.

Figure 3. Conversion from F(x) to A(x).

In a similar way, we can construct a trapezoidal fuzzy number with a variant of
Proposition 4. In this case, we determine two points at which we will break the cumulative
distribution function. So, we have the following proposition:

Proposition 5. If FX : R −→ R is a cumulative distribution function, then the functions given by
the form

B(x) =

⎧⎪⎪⎨⎪⎪⎩
FX(x)
FX(c)

i f x ≤ c
1 i f c ≤ x ≤ r

1−FX(x)
1−FX(r)

i f x ≥ r
, (19)

is a trapezoidal fuzzy number.

Proof of Proposition 5. The proof is like the proof in Proposition 4. �

Remark 4. If, in the example of Remark 3, instead of triangular, we wanted to construct trapezoidal
fuzzy number c, r ∈ [a, b], then according to Equation (19) we would have the following graph of
the trapezoidal fuzzy number, Figure 4.
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Figure 4. The trapezoidal fuzzy number created via the cumulative uniform distribution func-
tion F(x).

3.2. A Simple Paradigm in the Theory of Possibility of Fuzzy Numbers Created by Cumulative
Distribution Function

Let us look at the paradigm below linking the construction of Proposition 4 to the
theory of possibilities and suppose the following:

Paradigm 1. The duration in minutes of telephone conversations follows a distribution with a
cumulative function

F(x) =
{

1− e−
x
5 , x > 0

0 , x ≤ 0
, (20)

When a subscriber was asked how long a call is, the answer was about 1 min. The questions
that arise are:

a. How possible is it for the subscriber's call to be longer than 5 min?
b. How possible is it to be between 3 min and 5 min?

Proof of Paradigm 1. It is difficult for probability theory alone to give an answer since we
have a fuzzy “about 1 min” variable, but we can use the cumulative distribution function,
see Equation (16). According to Proposition 4, we have the fuzzy triangular number we
need to measure the possibilities. So, we create the fuzzy number “about 1 min” from the
Equation (16) with a = 1, and we have

A(x) =

⎧⎨⎩
F(x)
F(1) , x ≤ 1

1−F(x)
1−F(1) , x ≥ 1

or A(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 , x ≤ 0

1−e−
x
5

1−e−
1
5

, 0 ≤ x ≤ 1

e−
x
5

e−
1
5

, x > 1

(21)

where A(x) is the membership function of the fuzzy number “about 1 min” and graph, Figure 5.

Figure 5. The fuzzy number “about 1 min” according to F(x).
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This fuzzy number A(x) will play the role of possibility distribution according to
Proposition 3 and Example 2. For question (a.), from Equation (15), we have

PosA(X ≥ 5) = sup
x≥5

A(x) = A(5)
e−

5
5

e−
1
5
= e−

4
5

while for question (b.), according to Equation (9) we have

PosA(3 < ζ < 5) = sup
3<x<5

A(x) = A(3) =
e−

3
5

e−
1
5
= e−

2
5

�

4. Discussion

It becomes obvious that the construction of the fuzzy triangular number via a cumula-
tive distribution function is a simple process; it does not have difficult calculations, and it
is applied in a very simple way. It is understood through the last paradigm that fuzziness,
as Zadeh defined it, has much to offer to the theory of possibilities. The main advantage
of this construction is that it minimizes the arbitrary choice of the fuzzy number, which
will then play the role of possibility distribution. In future research, we will extend the
theoretical results to the expected average and variance by minimizing our reference to
probability theory. It should also be understood that our goal is to use the primary concept
of statistics free from the concept of probability. How is this achieved? We use the tool of
descriptive statistics. This is free from probability as a measure of uncertainty. Hereafter
we define the possibility distribution and, consequently, the concept of the fuzzy number.
In many works that use fuzzy numbers [17–19], their construction is based on intuitive or
empirical data [20,21]. Therefore, in addition to the simplicity, the construction we propose
would also have the following advantage: from the collection of project data (for example,
a questionnaire), we could obtain the cumulative distribution function, and then, through
the construction, propose to extract the fuzzy number, essentially turning the experience
into a countable quantity and then a fuzzy number.

5. Conclusions

Throughout history, one of the main goals of science was to measure and consequently
compare quantities. Since the middle of the last century, it became evident that some sizes
are unquantifiable. Spoken languages have adapted to this fact, and we have been able to
discuss and understand concepts such as medium, good, very good, etc. These concepts
have become conceptual constants innate in our logic. Similarly, the future fuzzy numbers
will be an important tool in scientific endeavors. We believe this paper gives a sound basis
for constructing fuzzy numbers by linking them to research data. The construction we
propose is a step towards determining the fuzzy numbers not based only on the intuition
or experience of the researchers but through a construction method based on research data.
Because the method we presented in this work has a clear theoretical background, we will
be able to orient our future studies to research data and make our results comparable with
other research studies.
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Abstract: The present paper comes across the main steps that were laid from Zadeh’s fuzziness and
Atanassov’s intuitionistic fuzzy sets to Smarandache’s indeterminacy and to Molodstov’s soft sets.
Two hybrid methods for assessment and decision making, respectively, under fuzzy conditions are
also presented using suitable examples that use soft sets and real intervals as tools. The decision
making method improves on an earlier method of Maji et al. Further, it is described how the
concept of topological space, the most general category of mathematical spaces, can be extended to
fuzzy structures and how to generalize the fundamental mathematical concepts of limit, continuity
compactness and Hausdorff space within such kinds of structures. In particular, fuzzy and soft
topological spaces are defined and examples are given to illustrate these generalizations.
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1. Introduction

1.1. Multi-Valued LOGICS

The development of human science and civilization owes a lot to Aristotle’s (384–322 BC)
bivalent logic (BL), which was at the center of human reasoning for more than two thousand
years. BL is based on the “Principle of the Excluded Middle”, according to which each
proposition is either true or false.

Opposite views also appeared early in human history, however, supporting the exis-
tence of a third area between true and false, where these two notions can exist together; e.g.,
by Buddha Siddhartha Gautama (India, around 500 BC), by Plato (427–377 BC), and more
recently by the philosophers Hegel, Marx, Engels, etc. Integrated propositions of multi-
valued logics appeared, however, only during the early 1900s by Lukasiewicz, Tarski, and
others. According to the “Principle of Valence”, formulated by Lukasiewicz, propositions
are not only either true or false, but they can have an intermediate truth-value.

1.2. Literature Review

Zadeh introduced, in 1965, the concept of fuzzy set (FS) [1] and with the help of this
developed the infinite in the unit interval [0, 1] fuzzy logic [2] with the purpose of dealing
with partial truths. FL, where truth values are modelled by numbers in the unit interval,
satisfies the Lukasiewicz’s “Principle of Valence”. It was only in a second moment that
FS theory and FL were used to embrace uncertainty modelling [3,4]. This happened when
membership functions were reinterpreted as possibility distributions. Possibility theory is an
uncertainty theory devoted to the handling of incomplete information [5]. Zadeh articulated
the relationship between possibility and probability, noticing that what is probable must
preliminarily be possible [3].

The uncertainty that exists in everyday life and science is connected to inadequate in-
formation about the corresponding case. A reduction, therefore, of the existing uncertainty
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(via new evidence) means the addition of an equal piece of information. This is why the
methods of measuring information (Hartley’s formula, Shannon’s entropy, etc.) are also
used for measuring uncertainty and vice versa; e.g., see ([6], Chapter 5).

Probability theory used to be, for a long period, the unique way to deal with problems
connected to uncertainty. Probability, however, is suitable only for tackling cases of un-
certainty that are due to randomness [7]. However, randomness characterizes events with
known outcomes that cannot be predicted in advance, e.g., games of chance. Starting from
Zadeh’s FS, however, various generalizations of FSs and other related theories have been
proposed enabling, among others, a more effective management of all types of existing
uncertainty. These generalizations and theories include type-n FS, n ≥ 2 [8], interval-valued
FS [9], intuitionistic FS (IFS) [10], hesitant FS [11], Pythagorean FS [12], neutrosophic set [13],
complex FS [14], grey system [15], rough set [16], soft set (SS) [17], picture FS [18], etc. A brief
description of all the previous generalizations and theories, the catalogue of which does
not end here, can be found in [19].

Fuzzy mathematics have found many and important practical applications (e.g.,
see [6,20–24], etc.), but also have interesting connections with branches of pure mathe-
matics, such as Algebra, Geometry, Topology, etc. (e.g., see [25,26], etc.).

1.3. Organization of the Paper

The paper at hand reviews the process that was laid from Zadeh’s fuzziness and
Atanassov’s IFS to Smarandache’s indeterminacy and to Molodstov’s soft set. It also
presents, using suitable examples, two hybrid methods for assessment and decision making
(DM) under fuzzy conditions using SS and real intervals as tools, and describes how
one can extend in a natural way the fundamental notion of topological space (TS) to fuzzy
structures and can generalize the fundamental mathematical concepts of limit, continuity
compactness, etc. within such kinds of structures. More explicitly, Section 2 contains the
basics about FSs and FL needed for this work. In Section 3, the concepts of IFS and NS
are defined. The concept of SS is presented in Section 4, where basic operations on SSs
are also defined. The hybrid assessment and DM methods are developed in Section 5 and
the notion of TS is extended to fuzzy structures in Section 6. The last section, Section 7,
contains the article’s final conclusion and some suggestions for future research.

2. Fuzzy Sets and Fuzzy Logic

This section contains the basic information about FSs and FL needed for the under-
standing of the rest of the paper.

2.1. Fuzzy Sets and Systems

Zadeh defined the concept of FS as follows [1]:

Definition 1. Let U be the universe, then a FS F in U is of the form

F = {(x, m(x)) : x ∈ U} (1)

In (1) m: U → [0, 1] is the membership function of F and m(x) is called the membership degree
of x in F. The closer m(x) to 1, the better x satisfies the property of F.

A crisp subset F of U is a FS in U with membership function such that m(x) = 1 if x
belongs to F and 0 otherwise.

FSs successfully tackle the uncertainty due to vagueness, which is created when one is
unable to distinguish between two properties, such as “a good player” and “a mediocre
player”. A serious disadvantage of FSs, however, is that there is not any exact rule for
properly defining their membership function. The methods used for this are usually
statistical, intuitive or empirical. Moreover, the definition of the membership function is
not unique depending on the “signals” that each person receives from the environment.
For example, defining the FS of “old people”, one could consider as old all those aged
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more than 50 years and for another one, all those aged more than 60 years. As a result, the
first person will assign membership degree 1 to all people aged between 50 and 60 years,
whereas the second will assign membership degrees less than 1. Analogous differences will
appear, therefore, to the membership degrees of all the other people. Consequently, the
only restriction for the definition of the membership function is that it must be compatible
with common sense; otherwise, the resulting FS does not give a creditable description of
the corresponding real case. This could happen, for instance, if in the previous example,
people aged less than 20 years possessed membership degrees ≥ 0.5.

Definition 2. The universal FS FU and the empty FS F∅ in the universe U are defined as the FSs
on U with membership functions m(x) = 1 and m(x) = 0 respectively, for all x in U.

Definition 3. If K and L are FSs in U with membership functions mK and mL respectively, then
K is called a fuzzy subset of L if mK(x) ≤ mL(x), for all x in U. We write then K ⊆ L. If mK(x) <
mL(x), for all x in U, then K is said to be a proper fuzzy subset of L and we write K ⊂ L.

Definition 4. If K and L are FSs in U with membership functions mK and mL respectively, then:

• The union K∪L is said to be the FS in U with membership function mK∪L(x) = max {mK(x),
mL (x)}, for each x in U.

• The intersection K∩L is said to be the FS in U with membership function m K∩L (x) = min
{mK(x), mL (x)}, for each x in U.

• The complement of K is the FS K* in U with membership function m*(x) = 1 − m(x), for all x
in U.

If K and L are crisp subsets of U, then all of the previous definitions reduce to the
ordinary definitions for crisp sets.

Zadeh realized that FSs correspond to words (adjectives or adverbs) of the natural
language [27]; e.g., the word “clever” corresponds to the FS of clever people, since how
clever everyone is, is a matter of degree. A synthesis of FSs related to each other is said to
be a fuzzy system, which mimics the way of human reasoning. For example, a fuzzy system
can control the function of an air-conditioner, or can send signals for purchasing shares,
etc. [21].

2.2. Probabilistic vs. Fuzzy Logic—Bayesian Reasoning

Many of the traditional supporters of the classical BL claimed that, since BL works
effectively in science and computing and explains the phenomena of the real world, except
perhaps those that happen in the boundaries, there is no reason to introduce the unstable
principles of a multi-valued logic. FL, however, aims exactly at clearing the happenings in
the boundaries! Look, for example, at Figure 1 [28] representing the FS T of “tall people”.
People with a height less than 1.50 m possess a membership degree 0 in T. The membership
degrees increase for heights greater than 1.50 m, taking the value 1 for heights as being equal
to or greater than 1.80 m. Therefore, the “fuzzy part” of the graph—which is represented,
for simplicity, in Figure 1 by the straight line segment AC—but its exact form depends
upon the definition of the membership function—lies in the area of the rectangle ABCD
formed by the OX axis, its parallel passing through point E and the two perpendicular to
the OX lines at points A and B.

BL, on the contrary, considers a boundary (e.g., 1.8 m) above which people are tall and
below which they are short. Thus, an individual with a height of 1.805 m is considered to
be tall, whereas another with a height of 1.795 m is considered to be short!

In conclusion, FL generalizes and completes the traditional BL fitting better, not only
to our everyday life situations, but also to the scientific way of thinking. More details about
FL can be found in Section 2 of [28].
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Figure 1. Graph of the FS of “tall people”.

E. Jaynes argued that probability theory is a generalization of BL, reducing it in cases
where something is either absolutely true or absolutely false [29]. A considerable number
of scientists, such as D. Mumford, famous for his contributions to Algebraic Geometry [30],
supported his ideas. Nevertheless, as we have already seen in our Introduction, probability,
due to its bivalent texture, effectively tackles the uncertainty due to randomness. Therefore,
Jaynes’ probabilistic logic is subordinate to FL.

Bayesian Reasoning, however, connects BL and FL [31]. In fact, the Bayes’ rule expressed
by Equation (2) below, calculates the conditional probability P(A/B) with the help of P(B/A),
of the prior probability P(A) and the posterior probability P(B)

P(A/B) =
P(B/A)P(A)

P(B)
(2)

The value of P(A) is fixed before the experiment, whereas the value of P(B) is obtained
from the experiment’s data. Frequently, however, the value of P(A) is not standard. In such
cases, different values of the conditional probability P(A/B) are obtained for all the possible
values of P(A). Consequently, Bayes’ rule tackles the existing, due to the imprecision of the
value of the prior probability, uncertainty in a way analogous to FL ([32], Section 5).

Bayesian reasoning is very important in everyday life situations and for the whole
science too. Recent researches have shown that most of the mechanisms under which the
human brain works are Bayesian [33]. Thus, Bayesian reasoning is a very useful tool for
Artificial Intelligence (AI), which mimics human behavior. The physicist and Nobel prize
winner John Mather has already expressed his uneasiness about the possibility that the
Bayesian machines could become too smart in future, making humans look useless [34]!
Consequently, Sir Harold Jeffreys (1891–1989) has successfully characterized the Bayesian
rule as the “Pythagorean Theorem of Probability Theory” [35].

3. Intuitionistic Fuzzy Sets and Neutrosophic Sets

K. Atanassov, Professor of Mathematics at the Bulgarian Academy of Sciences added,
in 1986, to Zadeh’s membership degree the degree of non-membership and introduced the
concept of IFS as follows [10]:

Definition 5. An IFS A in the universe U is defined as the set of the ordered triples

A = {(x, m(x), n(x)) : x ∈ U, 0 ≤ m(x) + n(x) ≤ 1} (3)
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In Equation (3) m: U →[0, 1] is the membership function and n: U →[0, 1] is the non-
membership function.

We can write m(x) + n(x) + h(x) = 1, where h(x) is the hesitation or uncertainty degree of
x. If h(x) = 0, then the IFS becomes a FS. The name intuitionistic was given because an IFS
has an inherent intuitionistic idea by incorporating the degree of hesitation.

For example, if A is the IFS of the good students of a class and (x, 0.7, 0.2) ∈ A, then x is
characterized as a good student by 70% of the teachers of the class, and as not good by 20%
of them; whereas, there is hesitation by 10% of the teachers to characterize him or her as
either a good or not good student. Most concepts and operations about FSs can be extended
to IFSs, which successfully simulate the existing imprecision in human thinking [36].

F. Smarandache, Professor of the New Mexico University, defined, in 1995, the concept
of NS as follows [13]:

Definition 6. A single valued NS (SVNS) A in the universe U has the form

A = {(x, T(x), I(x), F(x)) : x ∈ U, T(x), I(x), F(x) ∈ [0, 1], 0 ≤ T(x) + I(x) + F(x) ≤ 3} (4)

In Equation (4) T(x), I(x), F(x) are the degrees of truth (or membership), indeterminacy (or neutral-
ity) and falsity (or non-membership) of x in A respectively, called the neutrosophic components of x.
For simplicity, we write A < T, I, F>.

The word “neutrosophy” is a synthesis of the word “neutral” and the Greek word
“sophia” (wisdom) and means “the knowledge of neutral thought”.

For example, let U be the set of employees of a company and let A be the SVNS of
the working hardly employees. Then, each employee x is characterized by a neutrosophic
triplet (t, i, f) with respect to A, with t, i, f in [0, 1]. For example, x(0.7, 0.1, 0.4) ∈ A
means that the manager of the company is 70% sure that x works hard, but at the same
time he or she has 10% doubt about it and a 40% belief that x is not working hard. In
particular, x(0, 1, 0) ∈ A means that the manager does not know absolutely nothing about
x’s affiliation with A.

Indeterminacy is defined, in general, as being everything that exists between the
opposites of truth and falsity [37]. In an IFS, it is I(x) = 1− T(x)− F(x), i.e., the indeterminacy
is equal with the hesitancy. In an FS, it is I(x) = 0 and F(x) = 1 − T(x) and in a crisp set it is
T(x) = 1 (or 0) and F(x) = 0 (or 1). Consequently, crisp sets, FSs and IFSs are special cases of
SVNSs.

If T(x) + I(x) + F(x) < 1, then it leaves room for incomplete information about x, when
it is equal to 1, it leaves room for complete information, and when it is > 1 it leaves room
for paraconsistent (i.e., contradiction tolerant) information about x. A SVNS may contain
simultaneous elements, leaving room for all of the previous types of information.

If T(x) + I(x) + F(x) < 1, ∀ x ∈ U, then the corresponding SVNS is called a picture FS
(PiFS) [18]. In this case, 1 − T(x) − I(x) − F(x) is the degree of refusal membership of x in A.
The PiFSs are successfully tackling cases related to human opinions involving answers of
types yes, abstain, no and a refusal to participate, such as in the voting process.

The difference between the general definition of an NS and the already given definition of
an SVNS is that, in the former case, T(x), I(x) and F(x) may take values in the non-standard
unit interval ]−0, 1+[, which includes values <0 or >1. For example, a banker with full-time
work, 35 h per week, one upon his or her work could belong by 35

35 = 1 to the bank (full-time)
or by 20

35 < 1 (part-time) or by 40
35 > 1 (over-time). Assume further that an employee caused

damage that is balanced with his salary. Then, if the cost is equal to 40
35 of his weekly salary,

the employee belongs, this week, to the bank by − 5
35 < 0.

Most concepts and operations of FSs and IFSs are extended to NSs [38], which, apart
from vagueness, tackle adequately the uncertainty due to ambiguity and inconsistency.
Ambiguity takes place when the available information can be interpreted in several ways.
This could happen, for example, among the jurymen of a trial. Inconsistency appears
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when two or more pieces of information cannot be true at the same time. As a result,
the obtainable in this case information is conflicted or undetermined. For example, “The
probability for being windy tomorrow is 90%, but this does not mean that the probability of
not having strong winds is 10%, because they might be hidden meteorological conditions”.

For the same reason as for the membership function of an FS there is a difficulty to
properly define the neutrosophic components of the elements of the universe in an NS. The
same happens in the case of all generalizations of FSs involving membership degrees (e.g.,
IFSs, etc.). This caused, in 1975, the introduction of the interval-valued FS (IVFS) defined
by mapping the universe U to the set of closed intervals in [0, 1] [9]. Other related to FSs
theories were also developed, in which the definition of a membership function is either
not necessary (grey systems and numbers [15]), or it is passed over, either by using a pair of
sets that give the lower and upper approximations of the original crisp set (rough sets [16]),
or by introducing a suitable set of parameters (SSs [17]).

4. Soft Sets

4.1. The Concept of Soft Set

In 1999, D. Molodstov, Professor of the Russian Academy of Sciences, introduced the
notion of the soft set (SS) as a means for tackling uncertainty, in terms of a suitable set of
parameters, in the following way [17]:

Definition 7. Let E be a set of parameters, let A be a subset of E, and let f be a map from A into the
power set P(U) of the universe U. Then the SS (f, A) in U has the form

(f, A) = {(e, f(e)): e ∈ A} (5)

In other words, an SS can be considered as a parametrized family of subsets of U. The
name “soft” is due to the fact that the form of (f, A) depends on the parameters of A. For
each e ∈ A, its image f(e) in P(U) is called the value set of e in (f, A), while f is called the
approximation function of (f, A).

For example, let U = {C1, C2, C3} be a set of cars and let E = {e1, e2, e3} be the set of the
parameters e1 = cheap, e2 = hybrid (petrol and electric power), and e3 = expensive. Let us
further assume that C1, C2 are cheap, C3 is expensive, and C2, C3 are the hybrid cars. Then,
a map f: E → P(U) is defined by f(e1) = {C1, C2}, f(e2) = {C2, C3} and f(e3) = {C3}. Therefore,
the SS (f, E) in U is the set of the ordered pairs (f, E) = {(e1, {C1, C2}), (e2, {C2, C3}, (e3, {C3}}.
The SS (f, E) can be represented by the graph of Figure 2.

Figure 2. Graphical representation of the SS (f, E).

On comparing the graphs of Figures 1 and 2, one can see that an FS is represented by
a simple graph, whereas a bipartite graph [39] is needed for the representation of an SS.

Maji et al. [40] introduced a tabular representation of SSs in the form of a binary matrix in
order to be stored easily in a computer’s memory. For example, the tabular representation
of the soft set (f, E) is given in Table 1.
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Table 1. Tabular representation of the SS (f, E).

e1 e2 e3

C1 1 0 0

C2 1 1 0

C3 0 1 1

An FS in U with the membership function y = m(x) is an SS in U of the form
(f, [0, 1]), where

f(α) = {x ∈ U: m(x) ≥ α} is the corresponding a-cut of the FS, for each α in [0, 1].
Consequently, the concept of SS is a generalization of the concept of FS.

An important advantage of SSs is that, by using the parameters, they pass through the
already mentioned difficulty of properly defining membership functions.

4.2. Operations on Soft Sets

Definition 8. The absolute SS AU is the SS (f, A) in which f(e) = U,∀ e∈ A, and the null soft set
A∅ is the SS (f, A) in which f(e) =∅,∀ e∈A.

Definition 9. If (f, A) and (g, B) are SSs in U, (f, A) is a soft subset of (g, B), if A ⊆ B and f(e) ⊆
g(e), ∀ e ∈ A. We write then (f, A) ⊆ (g, B). If A ⊂ B, then (f, A) is called a proper soft subset of B
and we write (f, A) ⊂ (g, B).

Definition 10. Let (f, A) and (g, B) be SSs in U. Then:

• The union (f, A) ∪ (g, B) is the SS (h, A∪B) in U, with h(e) = f(e) if e∈ A-B, h(e) = g(e) if e∈
B-A and h(e) = f(e)∪g(e) if e∈ A∩B.

• The intersection (f, A) ∩ (g, B) is the soft set (h, A∩B) in U, with h(e) = f(e)∩g(e),∀ e∈ A∩B.
• The complement (f, A)C of the soft SS (f, A) in U, is defined to be the SS (f*, A) in U, in which

the function f* is defined by f*(e) = U−f(e),∀ e∈ A.

For general facts on soft sets, we refer to [41].

Example 1. Let U = {H1, H2, H3}, E = {e1, e2, e3} and A = {e1, e2}. Consider the SS
S = (f, A) = {(e1, {H1, H2}), (e2, {H2, H3})} of U. Then the soft subsets of S are the following:
S1 = {(e1, {H1})}, S2 = {(e1, {H2})}, S3 = {(e1, {H1, H2})},
S4 = {(e2, {H2})}, S5 = {(e2, {H3})}, S6 = {(e2, {H2, H3})},
S7 = {(e1, {H1}, (e2, {H2})}, S8 = {(e1, {H1}, (e2, {H3})},
S9 = {(e1, {H2}, (e2, {H2})}, S10 = {(e1, {H2}, (e2, {H3})},
S11 = {(e1, {H1, H2}, (e2, {H2})}, S12 = {(e1, {H1, H2}, (e2, {H3})},
S13 = {(e1, {H1}, (e2, {H2, H3})}, S14 = {(e1, {H2}, (e2, {H2, H3})},
S, A∅ = {(e1,∅), (e2,∅)}. It is also easy to check that (f, A)C = {(e1, {H3}), (e2, {H1})}.

5. Hybrid Assessment and Decision Making Methods under Fuzzy Conditions

Each of the various theories that have been proposed for tackling existing real world
uncertainty [19] is more suitable for certain types of uncertainty. Frequently, however, a
combination of two or more of these theories gives better results. To support this argu-
ment, we present here two hybrid methods for assessment [42] and decision making [43]
respectively under fuzzy conditions using SSs and closed real intervals as tools

5.1. Using Closed Real Intervals for Handling Approximate Data

An important perspective of the closed intervals of real numbers is their use for
handling approximate data. In fact, a numerical interval I = [x, y], with x, y real numbers,
x < y, is actually representing a real number with a known range, whose exact value is

237



Mathematics 2022, 10, 3909

unknown. When no other information is given about this number, it looks logical to
consider, as its representative approximation, the real value

V(I) =
x + y

2
(6)

The closer x to y, the better V(I) approximates the corresponding real number.
Moore et al. introduced in 1995 [44] the basic arithmetic operations on closed real

intervals.
In particular, and according to the interests of the present article, if I1 = [x1, y1] and

I2 = [x2, y2] are closed intervals, then their sum I1 + I2 is the closed interval

I1 + I2 = [x1+ x2, y1+ y2] (7)

Also, if k is a positive number then the scalar product kI1 is the closed interval

kI1 = [kx1, ky1] (8)

When the closed real intervals are used for handling approximate data, are also
referred to as grey numbers (GNs). A GN [x, y], however, may also be connected with a
whitenization function

f: [x, y] → [0, 1], such that, ∀ a ∈ [x, y], the closer f(a) to 1, the better the approximates
of the unknown number represented by [x, y] ([22], Section 6.1).

We close this subsection about closed real intervals with the following definition,
which will be used in the assessment method that follows.

Definition 11. Let I1, I2, . . . ., Ik be a finite number of closed real intervals and assume that Ii
appears ni times in an application, i = 1, 2, . . . ., k. Set n = n1 + n2 + . . . . + nk. Then the mean
value of all these intervals is defined to be the closed real interval

I =
1
n
(n1I1 + n2I2 + . . . .nkIk) (9)

5.2. The Assessment Method

Assessment is one of the most important components of all human and machine
activities, helping to determine possible mistakes and to improve performance with respect
to a certain activity.

The assessment processes are realized by using either numerical or linguistic (qualita-
tive) grades, such as excellent, good, moderate, etc. Traditional assessment methods are
applied in the former case, which give accurate results, the most standard among them
being the calculation of the mean value of the numerical scores.

Frequently, however, the use of numerical scores is either not possible (e.g., in the
case of approximate data) or not desirable (e.g., when more elasticity is required for the
assessment). In such cases, assessment methods based on principles of FL are usually
applied. A great part of the present author’s earlier researches were focused on developing
such kinds of methods, most of which are reviewed in detail in [22]. It seems, however, that
proper combinations of the previous methodologies could give better results (e.g., see [42]).
The assessment method developed by the present author in [42] will be illustrated here
with the help of the following example.

Example 2. Let U = {p1, p2, . . . , p19, p20} be the set of the players in a football team. Assume that
the first 3 of them are excellent players, the next 7 very good players, the following 5 good players,
the next 3 mediocre players, and the last 2 new players have no satisfactory performance yet. It
is asked: (1) to make a parametric assessment of the team’s quality, and (2) to estimate the mean
potential of the team.
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Solution: (1) Consider the linguistic grades A = excellent, B = very good, C = good, D
= mediocre, and F = not satisfactory, set E = {A, B, C, D, F} and define a map f: E → P(U)
by f(A) = {p1, p2, p3}, f(B) = {p4, p5, . . . ,p10}, f(C) = {p11, p12, . . . , p15}, f(D) = {p16, p17, p18},
and f(F) = {p19, p20}. Then the required parametric assessment of the team’s quality can be
represented by the soft set

(f, E) = {(A, f(A)), (B, f(B)), (C, f(C)), (D, f(D)), (F, f(F))}

(2) Assign to each parameter (linguistic grade) of E a closed real interval, denoted for
simplicity by the same letter, as follows: A = [85, 100], B = [75, 84], C = [60, 74], D = [50, 59],
F = [0, 49]. Then by (9), the mean potential of the football team can be approximated by the
real interval

M =
1

20
(3A + 7B + 5C + 3D + 2F)

Applying Equations (7) and (8) and making the corresponding calculations one finds
that

M = 1
20 [1230, 1533] = [61.5, 76.65]. Thus, Equation (5) gives that V(M) = 69.075, which

shows that the mean potential of the football team is good (C).

Remark 1. The choice of the intervals in case 2 of the previous example corresponds to generally
accepted standards for translating the linguistic grades A, B, C, D, F in the numerical scale 0 –100.
By no means, however, should this choice be considered as being unique, since it depends on the
special beliefs of the user. For example, one could as well choose A = [80, 100], B = [70, 79], C = [60,
69], D = [50, 59], F = [0, 49], etc.

Remark 2. One could equivalently use triangular fuzzy numbers (TFNs) instead of closed real
intervals in the previous example [22].

5.3. The Decision Making Method

Maji et al. [40] developed a parametric DM method using SSs as tools. In an earlier
work [42], we have improved their method by adding closed real intervals (GNs) to the
tools. Here, we illustrate our improved method with the following example.

Example 3. A candidate buyer, who believes that the ideal house to buy should be cheap, beautiful,
wooden and in the country, has to choose among six houses H1, H2, H3, H4, H5 and H6, which
are for sale. Assume further that H1, H2, H6 are the beautiful houses, H2, H3, H5, H6 are in the
country, H3, H5 are wooden and H4 is the unique cheap house. Which is the best choice for the
candidate buyer?

Solution: First we solve this DM problem following the method of Maji et al. [40]. For
this, consider U = {H1, H2, H3, H4, H5, H6} as the set of the discourse and let E = {e1, e2, e3,
e4} be the set of the parameters e1 = beautiful, e2 = in the country, e3 = wooden and e4 =
cheap. Then a map f: E → P(U) is defined by f(e1) = { H1, H2, H6}, f(e2) = { H2, H3, H5, H6},
f(e3) = { H3, H5}, f(e4) = { H4}, which gives rise to the SS (f, E) = {(e1, f(e1)), (e2, f(e2)), (e3,
f(e3)), (e4, f(e4)}.

One can write the previous SS in its tabular form as it is shown in Table 2.
Then, the choice value of each house is calculated by adding the binary elements of the

row of Table 1 in which it belongs. The houses H1 and H4 have, therefore, choice value 1
and all the others have choice value 2. Consequently, the candidate buyer must choose one
of the houses H2, H3, H5 or H6.

The previous decision, however, is obviously not so helpful. This gives us a hint to
revise the previous DM method of Maji et al. In fact, observe that, in contrast to e2 and e3,
the parameters e1 and e4 in the present problem do not have a bivalent texture. This means
that it is closer to reality to characterize them using the qualitative grades A, B, C, D and F
of Example 1, than by the binary elements 0, 1.

239



Mathematics 2022, 10, 3909

Table 2. Tabular representation of the SS (f, E).

e1 e2 e3 e4

H1 1 0 0 0

H2 1 1 0 0

H3 0 1 1 0

H4 0 0 0 1

H5 0 1 1 0

H6 1 1 0 0

Assume, therefore, that the candidate buyer, after carefully studying all of the existing
information about the six houses for sale, decided to use the following Table 3 instead of
Table 2 to make the right decision.

Table 3. Revised tabular representation of the SS (f, E).

e1 e2 e3 e4

H1 A 0 0 C

H2 A 1 0 F

H3 C 1 1 C

H4 D 0 0 A

H5 D 1 1 C

H6 A 1 0 D

From Table 3, one calculates the choice value Ci of the house Hi, i = 1, 2, 3, 4, 5, 6
as follows:

C1 = V(A + C), or by (6) C1 = V([0.85 + 0.6, 1 + 0.74]) and finally by (5) C1 = 1.45+1.74
2 = 1.595.

Similarly, C2 = 1 + V(A + F) = 1 + 0.85+1.49
2 = 2.17, C3 = 2 + V(C + C) = 3.34, C4 = V(D +

A) = 1.47, C5 = 2 + V(D + C) = 3.215, and C6 = 1 + V(A + D) = 2.47. The right decision is,
therefore, to buy house H3.

Remark 3. One could, as in Example 2, use TFNs instead of closed real intervals [45] in this DM
problem.

Remark 4. The novelty of our hybrid DM method, with respect to the DM method of Maji et al. [40],
is that, by using closed real intervals instead of the binary elements 0, 1 in the tabular matrix of
the corresponding SS in cases where some (or all) of the parameters are not of bivalent texture, we
succeed in making a better decision.

5.4. Weighted Decision Making

When the goals put by the decision-maker are not of the same importance, weight
coefficients must be assigned to each parameter to make the proper decision. Assume, for
instance, that in the previous example the candidate buyer assigned the weight coefficients
0.9 to e1, 0.7 to e2, 0.6 to e3 and 0.5 to e4. Then, the weighted choice values of the houses in
Example 3 are calculated as follows:

C1 = V(0.9A + 0.5C), or by (5), (6) and (7) C1 = V([1.65, 1.27]) = 1.46. Similarly, C2 =
0.7 + V(0.9A + 0.5F) = 0.7 + V([0.765,1.145]) = 1.655, C3 = 0.7 + 0.6 + V(0.9C + 0.5C) = 1.3
+ V([0.84,1.036]) = 2.238, C4 = V(0.9D + 0.5A) = V([0.875,1.031]) = 0.953, C5 = 0.7 + 0.6 +
V(0.9D + 0.5C) = 1.3 + V([0.75, 0.901]) = 2.1255, C6 = 0.7 + V(0.9A + 0.5D) = 0.7 + V([1.015,
1.195]) = 1.805. Consequently, the right decision is, again, to buy house H3.
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6. Topological Spaces in Fuzzy Structures

TSs is the most general category of mathematical spaces, in which fundamental
mathematical notions are defined [46]. In this section, we describe how the concept of TS is
extended to fuzzy structures.

6.1. Fuzzy Topological Spaces

Definition 12 ([25]). A fuzzy topology (FT) T on a non-empty set U is a family of FSs in U
such that:

• The universal and the empty FSs belong to T;
• The intersection of any two elements of T and the union of an arbitrary number (finite or

infinite) of elements of T also belong to T.

Trivial examples of FTs are the discrete FT {F∅, FU} and the non-discrete FT of all FSs in
U. Another example is the set of all constant FSs in U, i.e., all FSs in U with a membership
function defined by m(x) = c, for some c in [0, 1], and all x in U.

The elements of an FT T on U are referred to as fuzzy open sets in U and their comple-
ments are referred to as fuzzy closed sets in U. The pair (U, T) is called a fuzzy topological space
(FTS) on U.

Next, it is described how the fundamental notions of limit, continuity, compactness, and
Hausdorff TS can be extended to FTSs [25].

Definition 13. Given two FSs A and B of the FTS (U, T), B is called a neighborhood of A, if there
exists an open FS O such that A ⊆ O ⊂ B.

Definition 14. A sequence {An} of FSs of (U, T) converges to the FS A of (U, T), if there exists a
positive integer m, such that for each integer n ≥ m and each neighborhood B of A we have that An
⊂ B. Then A is said to be the limit of {An}.

Lemma 1. (Zadeh’s extension principle.) Let X and Y be two non-empty crisp sets and let f: X →
Y be a function. Then f is extended to a function F mapping FSs in X to FSs in Y.

Proof. Let A be an FS in X with a membership function mA. Then, its image F(A) is an FS B
in Y with a membership function mB, which is defined as follows: Given y in Y, consider
the set f −1(y) = {x ∈ X: f(x) = y}. If f −1(y) = ∅, then mB(y) = 0, and if f −1(y) �= ∅, then
mB(y) = max {mA(x): x ∈ f −1(y)}. Conversely, the inverse image F−1(B) is the FS A in X
with a membership function mA(x) = mB(f(x)), for each x ∈ X. �

Definition 15. Let (X, T) and (Y, S) be two FTSs and let f: X→ Y be a function. Then f is extended
to a function F mapping FSs in X to FSs in Y. Then f is said to be a fuzzily continuous function, if,
and only if, the inverse image of each open FS in Y through F is an open FS in X.

Definition 16. A family A = {Ai, i∈I} of FSs of an FTS (U, T) is said to be a cover of U, if U =
∪
i∈I

Ai. If the elements of A are open FSs, then A is said to be an open cover of U. A subset of A, which

is also a cover of U, is called a sub-cover of A. The FTS (U, T) is said to be compact, if every open
cover of U contains a sub-cover with many finite elements.

Definition 17. An FTS (U, T) is said to be:

1. A T1-FTS, if, and only if, for each pair of elements u1, u2 of U, u1 �= u2, there exist at least
two open FSs O1 and O2 such that u1∈O1, u2 /∈ O1 and u2∈O2, u1 /∈ O2.

2. A T2-FTS (or a separable or Hausdorff FTS), if, and only if, for each pair of elements u1, u2
of U, u1 �= u2, there exist at least two open FSs O1 and O2 such that u1 ∈ O1, u2 ∈ O2 and
O1∩O2 = ∅F.

Obviously a T2-FTS is always a T1-FTS.
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6.2. Soft Topological Spaces

Observe that the concept of FTS (Definition 12) is obtained from the classical definition
of TS [45] by replacing the statement “a family of subsets of U” by the statement “a family of
FSs in U”. In an analogous way, one can obtain the concepts of intuitionistic FTS (IFTS) [26],
of neutrosophic TS (NTS) [47], of soft TS (STS) [48], etc. In particular, an STS is defined as
follows:

Definition 18. A soft topology T on a non-empty set U is a family of SSs in U with respect to a set
of parameters E such that:

• The absolute and S null soft sets EU and E∅ belong to T;
• The intersection of any two elements of T and the union of an arbitrary number (finite or

infinite) of elements of T also belong to T.

The elements of an ST T on U are said to be open SS and their complements are said to
be closed SS. The triple (U, T, E) is said to be an STS on U.

Trivial examples of STs are the discrete ST {E∅, EU} and the non-discrete ST of all SSs in
U. Reconsider also Example 1. It is straightforward to check then that T = {EU, E∅, S, S2, S9,
S11} is ST on U.

The concepts of limit, continuity, compactness, and Hausdorff TS are extended to STs
in a way analogous to FTSs [49,50]. In fact, Definitions 13, 14, 16 and 17 are easily turned
to corresponding definitions of STSs by replacing the expression “fuzzy sets” with the
expression “soft sets”. For the concept of continuity, we need the following Lemma ([49],
definition 3.12):

Lemma 2. Let (U, T, A), (V, S, B) be STSs and let u: U → V, p: A → B be given maps. Then a
map fpu is defined with respect to u and p mapping the soft sets of T to soft sets of S.

Proof. If (F, A) is a soft set of T, then its image fpu((F, A)) is a soft set of S defined by
fpu((F, A)) = (fpu(F), p(A)), where, ∀ y∈ B is fpu(F)(y) = ∪

x∈p−1(y)∩A
u(F(x)) if p−1(y)∩A �=∅

and fpu(F)(y) = ∅ otherwise. �

Conversely, if (G, B) is a soft set of S, then its inverse image fpu
−1((G, B)) is a soft set of

T defined by fpu
−1((G, B)) = (fpu

−1(G), p−1(B)), where ∀ x ∈ A is

fpu
−1(G)(x) = u−1(G(p(x)).

Definition 19. Let (U, T, A), (V, S, B) be STSs and let u: U → V, p: A → B be given maps. Then
the map fpu, defined by Lemma 2, is said to be soft pu-continuous, if, and only if, the inverse image
of each open soft set in Y through fpu is an open soft set in X.

7. Discussion and Conclusions

Three were the goals of the present review paper:

1. We came across the main steps that were laid from Zadeh’s FS and Atanassov’s IFS to
Smarandache’s NS and to Molodstov’s SS.

2. We presented, using suitable examples, two recently developed by us hybrid methods
for assessment and DM, respectively, using SSs and closed real intervals (GNs) as
tools.

3. We described how one can extend the concept of TS to fuzzy structures and how we
can define limits, continuity, compactness and Hausdorff spaces on those structures.
In particular, FTSs and STSs were defined, and characteristic examples were presented.

For reasons of completeness, however, we ought to note that, despite the fact that IFSs
and SSs have already found many and important applications, there exist reports in the
literature disputing the significance of these concepts, and in extension, of the notions of
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IFSTS and STs, considering them as redundant, representing an unnecessarily complicated
way, a standard fixed-basis set theory and topology [51–54]. In the Abstract of [52], for
example, one reads: “In particular, a soft set on X with a set E of parameters actually can
be regarded as a 2E-fuzzy set or a crisp subset of E × X [the correct is E × P(X)]. This
shows that the concept of (fuzzy) soft set is redundant”. I completely disagree with this
way of thinking. Adopting it, one could claim that, since an FS A in X is a subset of the
Cartesian product X × m(X), where m is the membership function of A, the concept of FS
is redundant!

Among probability, FSs and the other related generalizations and theories [19], there
is not an ideal model for effectively tackling all the existing types of real world uncertainty.
Each one of these theories is more suitable for dealing with special types of uncertainty, e.g.,
probability for randomness, FSs for vagueness, IFSs for imprecision in human thinking,
NSs for ambiguity and inconsistency, etc. All these theories together, however, provide an
adequate framework for managing the uncertainty.

Even more, it seems that proper combinations of the previous theories give frequently
better results, not only for tackling the existing uncertainty, but also for assessment pur-
poses [42], for DM under fuzzy conditions [43], and possibly for various other human and
machine activities. This is, therefore, a promising area for future research.

As we have mentioned in our Introduction, the concept of the ordinary FS, otherwise
termed as type-1 FS, was generalized to the type-2 FS and further to type-n FS, n ≥ 2, so
that more uncertainty can be handled and connected to the membership function [8]. The
membership function of a type-2 FS is three-dimensional, its third dimension being the
value of the membership function at each point of its two-dimensional domain, which is
called the footprint of uncertainty (FOU). The FOU is completely determined by its two
bounding functions, a lower membership function and an upper membership function,
both of which are type-1 FSs. When no uncertainty exists about the membership function,
then a type-2 FS reduces to a type-1 FS, in a way analogous to probability reducing to
determinism when unpredictability vanishes. However, when Zadeh proposed the type-2
FS in 1975 [8], the time was not right for researchers to drop what they were doing with type-
1 FS and focus on type-2 FS. This changed in the late 1990s as a result of Prof. Jerry Mendel’s
works on type-2 FS and logic [55]. Since then, more and more researchers around the world
are writing articles about type-2 FS and systems, while some important applications of
type-3 FS and logic were also reported recently, e.g., [56,57]. This is, therefore, another
promising area for future research.
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Abstract: The topic of convex and nonconvex mapping has many applications in engineering and
applied mathematics. The Aumann and fuzzy Aumann integrals are the most significant interval and
fuzzy operators that allow the classical theory of integrals to be generalized. This paper considers the
well-known fuzzy Hermite–Hadamard (HH) type and associated inequalities. With the help of fuzzy
Aumann integrals and the newly introduced fuzzy number valued up and down convexity (UD-
convexity), we increase this mileage even further. Additionally, with the help of definitions of lower
UD-concave (lower UD-concave) and upper UD-convex (concave) fuzzy number valued mappings
(FNVMs), we have gathered a sizable collection of both well-known and new extraordinary cases
that act as applications of the main conclusions. We also offer a few examples of fuzzy number
valued UD-convexity to further demonstrate the validity of the fuzzy inclusion relations presented
in this study.

Keywords: fuzzy number valued mapping; fuzzy Aumann integral; up and down convex fuzzy
number valued mapping; Hermite–Hadamard inequality; Hermite–Hadamard–Fejér inequality

MSC: 26A33; 26A51; 26D10

1. Introduction

Many fields make use of the convexity of functions such as game theory, variational
science, mathematical programming theory, economics, and optimal control theory. Convex
analysis, a brand-new mathematics branch, started taking shape in the 1960s. Many writers
have employed related concepts of convexity during the past 20 years and generalized other
inequalities, including h-convex functions (see References [1–10]), log convex functions (see
References [11–19], and coordinated convex functions (see References [20,21]). Convexity
is a fundamental term in optimization theory applied in operations research, economics,
control theory, decision-making, and management. Several writers have expanded and
generalized integral inequalities using various convex functions; see Refs. [22,23]. For more
information, see [24–33] and references therein.

Calculating mistakes in a numerical analysis has always been difficult. The interval
analysis has received a lot of attention as a novel method for resolving uncertainty issues
because of its capacity to reduce calculation errors and make calculations meaningless.
Set-valued analysis, a set-centric approach to mathematics and topology, includes interval
analysis. It deals with interval variables rather than point variables, and the computation
results are expressed as intervals; therefore, it removes mistakes that lead to incorrect
conclusions. Moore [34] first adapted an interval analysis to automatic error analysis to
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deal with data uncertainty in 1966. The work garnered a lot of attention from academics
and led to an improvement in calculation performance. They are helpful in many applica-
tions because of their capacity to be expressed as uncertain variables, including computer
graphics [35], automatic error analysis [36], decision analysis [37], etc. There are numerous
great applications and results for readers interested in interval analysis in other branches
of mathematics; see References [38–53].

On the other hand, a generalized convexity mapping has the potential to solve a wide
range of issues in both a nonlinear and pure analysis. Recently, well-known inequalities
such as Jensen, Simpson, Opial, Ostrowski, Bullen, and the famous Hermite–Hadamard
that are extended in the setting of interval-valued functions (IVM) have been constructed
using a variety of related classes of convexity. Chalco-Cano [54] established interval-based
inequalities for the Ostrowski type using a derivative of the Hukuhara type. Opial-type
inequalities for IVMs were developed by Costa in [55]. The Minkowski inequalities
for IVMs were one of the inequalities suggested by Beckenbach and Roman-Flores [56].
According to the literature assessment, the majority of authors used an inclusion connection,
similarly to in 2018, to evaluate inequality. These inequalities were created by Zhao et al. [57]
for the harmonic h-convex IVMs and the h-convex IVMs. The authors who came after
used both harmonical (h1, h2)-convex functions and (h1, h2)-convex functions to create these
inequalities; for more information, see Refs. [58–75].

Using the radius and interval midpoint, Bhunia and his co-author defined the center-
radius order in 2014; see Ref. [76]. The following findings for the cr-h-convex, harmonically
cr-h-convex, and cr-h-GL functions were developed in 2022 by Wei Liu and his co-authors;
see References [77–88]. Our examination of the literature showed that inclusion and
fuzzy inclusion relations are the main sources of the majority of these discrepancies. The
fundamental benefit of the up and down fuzzy relation for up and down functions is
that the inequality term generated by employing these conceptions is more exact, and the
argument’s validity can be supported by intriguing examples of illustrated theorems. For
further study related to interval-valued functions and fuzzy mappings, see [89–111].

This study provides an introduced class of convexity based on the fuzzy inclusion
order and is known as UD-convex FNVMs, and is inspired by Refs. [56,57]. We create
new H.H. inequalities with the aid of these innovative ideas, and eventually, the Jensen
inequality is developed. The study includes a variety of examples to help bolster the results
reached.

The article is formatted as follows, in order: Section 2 gives some background informa-
tion. Section 3 each provide an overview of the primary conclusions. A succinct conclusion
is explored in Section 4.

2. Preliminaries

We recall a few definitions, which can be found in the literature and that will be
relevant in the follow-up.

Let us consider that Xo is the space of all closed and bounded intervals of R, and that
S ∈ Xo is given by

S = [S∗, S∗] = {w ∈ R| S∗ ≤ w ≤ S∗, S∗, S∗ ∈ R}, (1)

If S∗ = S∗, then S is degenerate. In the follow-up, all intervals are considered non-
degenerate. If S∗ ≥ 0, then S is positive. We denote by X+

o = {[S∗, S∗] : [S∗, S∗] ∈ Xo
and S∗ ≥ 0} the set of all positive intervals.

Let ∈ R and · S be given by

· S =

⎧⎨⎩
[ S∗, S∗] if > 0,
{0} if f = 0,

[ S∗, S∗] if < 0.
(2)
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We consider the Minkowski sum, S +O, product, S ×O, and difference, O − S , for
S ,O ∈ Xo, as

[O∗, O∗] + [S∗, S∗] = [O∗ + S∗, O∗ + S∗], (3)

[O∗, O∗]× [S∗, S∗] = [min{O∗S∗, O∗S∗, O∗S∗, O∗S∗}, max{O∗S∗, O∗S∗, O∗S∗, O∗S∗}] (4)

[O∗, O∗]− [S∗, S∗] = [O∗ − S∗, O∗ − S∗]. (5)

Remark 1.

(i) For given [O∗, O∗], [S∗, S∗] ∈ RI , the relation “ ⊇I ”, defined on RI by

[S∗, S∗] ⊇I [O∗, O∗] if and only if S∗ ≤ O∗, O∗ ≤ S∗, (6)

for all [O∗, O∗], [S∗, S∗] ∈ RI , is a partial interval inclusion relation. Moreover, [S∗, S∗] ⊇I
[O∗, O∗] coincides with [S∗, S∗] ⊇ [O∗, O∗] on RI . The relation “ ⊇I ” is of UD order [105].

(ii) For given [O∗, O∗], [S∗, S∗] ∈ RI , the relation “ ≤I ”, defined on RI by [O∗, O∗] ≤I
[S∗, S∗] if and only if O∗ ≤ S∗, O∗ ≤ S∗ or O∗ ≤ S∗, O∗ < S∗, is a partial interval order
relation. Plus, we have [O∗, O∗] ≤I [S∗, S∗] that coincides with [O∗, O∗] ≤ [S∗, S∗] on RI .
The relation “ ≤I ” is of the left and right (LR) type [104,105].

Given the intervals [O∗, O∗], [S∗, S∗] ∈ Xo, their Hausdorff–Pompeiu distance is

dH([O∗, O∗], [S∗, S∗]) = max{|O∗ − S∗|, |O∗ − S∗|}. (7)

We have (Xo, dH) that is a complete metric space [94,102,103].

Definition 1 ([93,94]). A fuzzy subset L of R is a mapping S̃ : R→ [0, 1] , a denoted membership
mapping of L. We adopt the symbol to represent the set of all fuzzy subsets of R.

Let us consider S̃ ∈ . If the following properties hold, then S̃ is a fuzzy number:

(1) S̃ is normal if there exists w ∈ R and S̃(w) = 1;
(2) S̃ is upper semi-continuous on R if for a w ∈ R there exists ε > 0 and δ > 0 yielding

S̃(w)− S̃(y) < ε for all y ∈ R with |w− y| < δ;
(3) S̃ is a fuzzy convex, meaning that S̃((1− )w+ y) ≥ min

(
S̃(w), S̃(y)

)
, for all

w, y ∈ R, and ∈ [0, 1];
(4) S̃ is compactly supported, which means that cl

{
w ∈ R

∣∣∣ S̃(w)
〉

0
}

is compact.

The symbol o will be adopted to designate the set of all fuzzy numbers of R.

Definition 2. ([93,94]). For S̃ ∈ o, the -level, or -cut, sets of S̃ are
[
S̃
]

=
{
w ∈ R

∣∣∣ S̃(w)
〉 }

for all ∈ [0, 1], and
[
S̃
]0

=
{
w ∈ R

∣∣∣ S̃(w)
〉

0
}

.

Proposition 1. ([96]). Let S̃ , Õ ∈ o. The relation “ ≤F ”, defined on o by

S̃ ≤F Õ when and only when
[
S̃
]
≤I

[
Õ
]

, for every ∈ [0, 1], (8)

is a LR order relation.

Proposition 2. ([79]). Let S̃ , Õ ∈ o. The relation “ ⊇F ”, defined on o by

S̃ ⊇F Õ when and only when
[
S̃
]
⊇I

[
Õ
]

, for every ∈ [0, 1], (9)

is an UD order relation.
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If S̃ , Õ ∈ o and ∈ R, then, for every ∈ [0, 1],[
S̃ ⊕ Õ

]
=
[
S̃
]

+
[
Õ
]

, (10)

[
S̃ ⊗ Õ

]
=
[
S̃
]
×
[
Õ
]

, (11)[
, S̃

]
= .

[
S̃
]

(12)

result from Equations (4)–(6), respectively.

Theorem 1 ([94]). For S̃ , Õ ∈ o, the supremum metric

d∞

(
S̃ , Õ

)
= sup

0≤ ≤1
dH

([
S̃
]

,
[
Õ
] )

(13)

is a complete metric space, where H stands for the Hausdorff metric on a space of intervals.

Theorem 2 ([94,95]). If H : [b, z] ⊂ R→ Xo is an IVM satisfyingH(w) = [H∗(w), H∗(w)],
then H is Aumann integrable (IA-integrable) over [b, z] when and only when H∗(w) and H∗(w)
are integrable over [b, z], meaning

(IA)
∫ z

b
H(w)dw =

⎡⎢⎢⎣∫ z
b
H∗(w)dw,

∫ z

b
H∗(w)dw

⎤⎥⎥⎦ (14)

Definition 3 ([104]). Let H̃ : I ⊂ R→ o be a FNVM. The family of IVMs, for every ∈
[0, 1], is H : I ⊂ R→ Xo satisfying H (w) = [H∗(w, ), H∗(w, )] for every w ∈ I. For
every ∈ [0, 1], the lower and upper mappings of H are the endpoint real-valued mappings
H∗(·, ), H∗(·, ) : I→ R .

Definition 4 ([104]). Let H̃ : I ⊂ R→ o be a FNVM. Then, H̃(w) is continuous at w ∈ I,
if for every ∈ [0, 1], H (w) is continuous when and only when H∗(w, ) and H∗(w, ) are
continuous at w ∈ I.

Definition 5 ([95]). Let H̃ : [b, z] ⊂ R→ o be a FNVM. The fuzzy Aumann integral (FA-
integral) of H̃ over [b, z] is[

(FA)
∫ z
b H̃(w)dw

]
= (IA)

∫ z
b H (w)dw =

{∫ z
b H(w, )dw : H(w, ) ∈ S(H )

}
, (15)

where S(H ) = {H(., )→ R : H(., ) is integrable, and H(w, ) ∈ H (w)}, for every ∈
[0, 1]. Moreover, H̃ is (FA)-integrable over [b, z] if (FA)

∫ z
b H̃(w)dw ∈ o.

Theorem 3 [96]. Let H̃ : [b, z] ⊂ R→ o be a FNVM, whose -levels define the family of
IVMs H : [b, z] ⊂ R→ Xo satisfying H (w) = [H∗(w, ), H∗(w, )] for every w ∈ [b, z]
and ∈ [0, 1]. H̃ is (FA)-integrable over [b, z] when and only when H∗(w, ) and H∗(w, ) are
integrable over [b, z]. Moreover, if H̃ is (FA)-integrable over [b, z], then we have[

(FA)
∫ z

b
H̃(w)dw

]
=

[∫ z

b
H∗(w, )dw,

∫ z

b
H∗(w, )dw

]
= (IA)

∫ z

b
H (w)dw (16)

for every ∈ [0, 1].
Breckner discussed the coming emerging idea of interval-valued convexity in [97].
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An I·V·M H : I = [b, z]→ Xo is called convex I·V·M if

H( w+ (1− )s) ⊇ H(w) + (1− )H(s), (17)

for all w, y ∈ [b, z], ∈ [0, 1], where Xo is the collection of real-valued intervals. If (17) is
reversed, then H is called concave.

Definition 6 ([89]). The FNVM H̃ : [b, z]→ o is called convex FNVM on [b, z] if

H̃( w+ (1− )s ) ≤F , H̃(w)⊕ (1− ), H̃(s), (18)

for all w, s ∈ [b, z], ∈ [0, 1], where H̃(w) ≥F 0̃ for all w ∈ [b, z]. If (18) is reversed, then
H̃ is called concave FNVM on [b, z]. H̃ is affine if and only if it is both convex and concave
FNVM.

Definition 7 ([105]). The FNVM H̃ : [b, z]→ o is called UD-convex FNVM on [b, z] if

H̃( w+ (1− )s) ⊇F , H̃(w)⊕ (1− ), H̃(s), (19)

for all w, s ∈ [b, z], ∈ [0, 1], where H̃(w) ≥F 0̃ for all w ∈ [b, z]. If (19) is reversed then,
H̃ is called UD-concave FNVM on [b, z]. H̃ is UD-affine FNVM if and only if it is both
UD-convex and UD-concave FNVM.

Theorem 4 ([105]). Let H̃ : [b, z]→ o be a FNVM, whose -cuts define the family of inteval-
valued mappings H : [b, z]→ X+

o ⊂ Xo are given by

H (w) = [H∗(w, ), H∗(w, )], (20)

for all w ∈ [b, z] and for all ∈ [0, 1]. Then, H̃ is UD-convex FNVM on [b, z], if and only if,
for all ∈ [0, 1], H∗(w, ) is a convex mapping and H∗(w, ) is a concave mapping.

Remark 2. If H∗(w, ) �= H∗(w, ) and = 1, then we obtain the inequality (17).

If H∗(w, ) = H∗(w, ) and = 1, then we obtain the classical definition of convex
mappings.

Now we have obtained some new definitions from the literature which will be helpful
to investigate some classical and new results as special cases of main results.

Definition 8. ([79]). Let H̃ : [b, z]→ o be a FNVM, whose -cuts define the family of IVMs
H : [b, z]→ X+

o ⊂ Xo are given by

H (w) = [H∗(w, ), H∗(w, )], (21)

for all w ∈ [b, z] and for all ∈ [0, 1]. Then, H̃ is lower UD-convex (concave) FNVM on [b, z],
if and only if, for all ∈ [0, 1], H∗(w, ) is a convex (concave) mapping and H∗(w, ) is an
affine mapping.

Definition 9. ([79]). Let H̃ : [b, z]→ o be a FNVM, whose -cuts define the family of IVMs
H : [b, z]→ X+

o ⊂ Xo are given by

H (w) = [H∗(w, ), H∗(w, )], (22)

for all w ∈ [b, z] and for all ∈ [0, 1]. Then, H is upper UD-convex (concave) FNVM on
[b, z], if and only if, for all ∈ [0, 1], H∗(w, ) is an affine mapping and H∗(w, ) is a convex
(concave) mapping.
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Remark 3. Both concepts “UD-convex FNVM” and classical “convex FNVM, see [41]”
behave alike when H̃ is lower UD-convex FNVM.

3. Fuzzy Number Hermite–Hadamard Inequalities

In this section, we propose Hermite–Hadamard and Hermite–Hadamard–Fejér in-
equalities for UD-convex FNVMs, and verify with the help of nontrivial examples.

Theorem 5. Let H̃ : [b, z]→ o be a UD-convex FNVM on [b, z], whose -cuts define the
family of IVMs H : [b, z] ⊂ R→ X+

o are given by H (w) = [H∗(w, ), H∗(w, )] for all
w ∈ [b, z] and for all ∈ [0, 1]. If H̃ ∈ FA([b, z], ), then

H̃
(
b+ z

2

)
⊇F

1
z− b

, (FA)
∫ z

b
H̃(w)dw ⊇F

H̃(b) ⊕ H̃(z)
2

. (23)

If H̃(w) concave FNVM, then (23) is reversed.

Proof. Let H̃ : [b, z]→ o be a UD-convex FNVM. Then, by hypothesis, we have

2H̃
(
b+ z

2

)
⊇F H̃( b+ (1− )z)⊕ H̃((1− )b+ z).

Therefore, for every ∈ [0, 1], we have

2H∗
(
b+ z

2
,
)
≤ H∗( b+ (1− )z, ) +H∗((1− )b+ z, ),

2H∗
(
b+ z

2
,
)
≥ H∗( b+ (1− )z, ) +H∗((1− )b+ z, ).

Then

2
∫ 1

0 H∗
(
b+ z

2
,
)

d ≤
∫ 1

0 H∗( b+ (1− )z, )d +
∫ 1

0 H∗((1− )b+ z, )d ,

2
∫ 1

0 H∗
(
b+ z

2
,
)

d ≥
∫ 1

0 H∗( b+ (1− )z, )d +
∫ 1

0 H∗((1− )b+ z, )d .

It follows that

H∗
(
b+ z

2
,
)
≤ 1

z− b

∫ z
b H∗(w, )dw,

H∗
(
b+ z

2
,
)
≥ 1

z− b

∫ z
b H∗(w, )dw.

That is[
H∗
(
b+ z

2
,
)

, H∗
(
b+ z

2
,
)]

⊇I
1

z− b

[∫ z

b
H∗(w, )dw,

∫ z

b
H∗(w, )dw

]
.

Thus,

H̃
(
b+ z

2

)
⊇F

1
z− b

, (FA)
∫ z

b
H̃(w)dw. (24)

In a similar way as above, we have

1
z− b

, (FA)
∫ z

b
H̃(w)dw ⊇F

H̃(b) ⊕ H̃(z)
2

. (25)

Combining (24) and (25), we have

H̃
(
b+ z

2

)
⊇F

1
z− b

, (FA)
∫ z

b
H̃(w)dw ⊇F

H̃(b) ⊕ H̃(z)
2

.
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Hence, the required result. �

Remark 4. The following are some exceptional cases which can be obtained from inequality (23):

If one lays H is lower UD-convex FNVM on [b, z], then one acquires the following
coming inequality, see [90]:

H
(
b+ z

2

)
≤F

1
z− b

, (FA)
∫ z

b
H(w)dw ≤F

H(b)⊕H(z)
2

(26)

If one takes H is lower UD-convex FNVM on [b, z] and = , then one achieves the
following coming inequality, see [98]:

H
(
b+ z

2

)
≤I

1
z− b

(IA)
∫ z

b
H(w)dw ≤I

H(b) +H(z)
2

(27)

Let = 1. Then, from Theorem 5, we acquire the following inequality, see [99]:

H
(
b+ z

2

)
⊇ 1

z− b
(IA)

∫ z

b
H(w)dw ⊇ H(b) +H(z)

2
. (28)

Let = and H∗(w, ) = H∗(w, ). Then, from Theorem 5, we achieve the classical
Hermite–Hadamard inequality.

Example 1. Let w ∈ [2, 3], and the FNVM H̃ : [b, z] = [2, 3]→ o, defined by

H̃(w)(θ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ − 2 +w

1
2

1−w

1
2

θ ∈

⎡⎣2−w

1
2 , 3

⎤⎦,

2 +w

1
2 − θ

w

1
2 − 1

θ ∈

⎛⎝3, 2 +w

1
2

⎤⎦,

0 otherwise,

(29)

Then,foreach ∈ [0, 1], wehaveH (w) =
[
(1− )

(
2−w

1
2

)
+ 3 , (1− )

(
2 +w

1
2

)
+ 3

]
.

Since left and right end point mappings H∗(w, ) = (1− )
(

2−w
1
2

)
+ 3 , and H∗(w, ) =

(1− )
(

2 +w
1
2

)
+ 3 , are convex and concave mappings, respectively, for each ∈ [0, 1], then

H̃(w) is UD-convex FNVM. We clearly see that H̃ ∈ L([b, z], o) and

H∗
(
b+ z

2
,
)
= H∗

(
5
2

,
)
= (1− )

4−
√

10
2

+ 3 ,

H∗
(
b+ z

2
,
)
= H∗

(
5
2

,
)
= (1− )

4 +
√

10
2

+ 3 .

Note that

1
z− b

∫ z

b
H∗(w, )dw =

∫ 3

2

(
(1− )

(
2−w

1
2

)
+ 3

)
dw ≈ 0.4215(1− ) + 3 ,

1
z− b

∫ z

b
H∗(w, )dw =

∫ 3

2

(
(1 + )

(
2 +w

1
2

)
+ 3

)
dw ≈ 3.58(1− ) + 3 ,
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and
H∗(b, ) +H∗(z, )

2
= (1− )

(
4−

√
2−

√
3

2

)
+ 3 ,

H∗(b, ) +H∗(z, )

2
= (1− )

(
4 +

√
2 +

√
3

2

)
+ 3 .

Therefore,[
(1− )

4−
√

10
2

+ 3 , (1− )
4 +

√
10

2
+ 3

]
⊇I

[
843

2000
(1− ) + 3 ,

179
50

(1− ) + 3
]

⊇I

[
(1− )

(
4−

√
2−

√
3

2

)
+ 3 , (1− )

(
4 +

√
2 +

√
3

2

)
+ 3

]
,

Hence,

H̃
(
b+ z

2

)
⊇F

1
z− b

, (FA)
∫ z

b
H̃(w)dw ⊇F

H̃(b)⊕ H̃(z)
2

,

and Theorem 5 is verified.

Theorem 6. Let H̃ : [b, z]→ o be a UD-convex FNVM on [b, z], whose -cuts define the
family of IVMs H : [b, z] ⊂ R→ X+

o are given by H (w) = [H∗(w, ), H∗(w, )] for all
w ∈ [b, z] and for all ∈ [0, 1]. If H̃ ∈ FA([b, z], ), then

H̃
(
b+ z

2

)
⊇F T2 ⊇F

1
z− b

, (FA)
∫ z

b
H̃(w)dw ⊇F T1 ⊇F

H̃(b) ⊕ H̃(z)
2

, (30)

where

T1 =

H̃(b) ⊕ H̃(z)
2 ⊕ H̃

(
b+z

2

)
2

, T2 =
H̃
(

3b+z
4

)
⊕ H̃

(
b+3z

4

)
2

and T1 = [T1∗, T1
∗], T2 = [T2∗, T2

∗].

Proof. Take
[
b, b+z

2

]
, we have

2H̃
(

b+ (1− )b+z
2

2
+

(1− )b+ b+z
2

2

)
⊇F H̃

(
b+ (1− )

b+ z
2

)
⊕ H̃

(
(1− )b+

b+ z
2

)
.

Therefore, for every ∈ [0, 1], we have

2H∗

⎛⎜⎝ b+ (1− )
b+ z

2
2

+
(1− )b+

b+ z
2

2
,

⎞⎟⎠ ≤ H∗
(

b+ (1− )
b+ z

2
,
)
+H∗

(
(1− )b+

b+ z
2

,
)

,

2H∗

⎛⎜⎝ b+ (1− )
b+ z

2
2

+
(1− )b+

b+ z
2

2
,

⎞⎟⎠ ≥ H∗
(

b+ (1− )
b+ z

2
,
)
+H∗

(
(1− )b+

b+ z
2

,
)

.

In consequence, we obtain
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H∗
(

3b+ z
4

,
)

2
≤ 1

z− b

∫ b+ z
2

b H∗(w, )dw,

H∗
(

3b+ z
4

,
)

2
≥ 1

z− b

∫ b+ z
2

b H∗(w, )dw.

That is[
H∗
(

3b+z
4 ,

)
, H∗

(
3b+z

4 ,
)]

2
≤ 1

z− b

[∫ b+z
2

b
H∗(w, )dw,

∫ b+z
2

b
H∗(w, )dw

]
.

It follows that

H̃
(

3b+z
4

)
2

⊇F
1

z− b
, (FA)

∫ b+z
2

b
H̃(w)dw. (31)

In a similar way as above, we have

H̃
(
b+3z

4

)
2

⊇F
1

z− b
, (FA)

∫ z

b+z
2

H̃(w)dw. (32)

Combining (31) and (32), we have[
H̃
(

3b+z
4

)
⊕ H̃

(
b+3z

4

)]
2

⊇F
1

z− b
, (FA)

∫ z

b
H̃(w)dw.

By using Theorem 5, we have

H̃
(
b+ z

2

)
= H̃

(
1
2

.
3b+ z

4
+

1
2

.
b+ 3z

4

)
.

Therefore, for every ∈ [0, 1], we have

H∗
(
b+ z

2
,
)
= H∗

(
1
2

.
3b+ z

4
+

1
2

.
b+ 3z

4
,
)

H∗
(
b+ z

2
,
)
= H∗

(
1
2

.
3b+ z

4
+

1
2

.
b+ 3z

4
,
)

,

≤
[

1
2
H∗
(

3b+ z
4

,
)
+

1
2
H∗
(
b+ 3z

4
,
)]

≥
[

1
2
H∗
(

3b+ z
4

,
)
+

1
2
H∗
(
b+ 3z

4
,
)]

,

≤ 1
z− b

∫ z
b H∗(w, )dw

≥ 1
z− b

∫ z
b H∗(w, )dw,

= T2∗
= T2

∗,

≤ 1
2

[H∗(b, ) +H∗(z, )

2
+H∗

(
b+ z

2
,
)]

≥ 1
2

[H∗(b, ) +H∗(z, )

2
+H∗

(
b+ z

2
,
)]

,

= T1∗
= T1

∗,
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≤ 1
2

[H∗(b, ) +H∗(z, )

2
+
H∗(b, ) +H∗(z, )

2

]
≥ 1

2

[H∗(b, ) +H∗(z, )

2
+
H∗(b, ) +H∗(z, )

2

]
,

=
H∗(b, ) +H∗(z, )

2
=
H∗(b, ) +H∗(z, )

2
,

that is

H̃
(
b+ z

2

)
⊇F T2 ⊇F

1
z− b

, (FA)
∫ z

b
H̃(w)dw ⊇F T1 ⊇F

H̃(b) ⊕ H̃(z)
2

,

hence, the result follows. �

E x a m p l e 2 . W e c o n s i d e r t h e F N VM H̃ : [ b , z ] = [ 2 , 3 ] → o d e f i n e d b y ,
H (w) =

[
(1− )

(
2−w

1
2

)
+ 3 , (1 + )

(
2 +w

1
2

)
+ 3

]
, as in Example 1, then H̃(w) is

UD-convex FNVM and satisfying (10). We have H∗(w, ) = (1− )
(

2−w
1
2

)
+ 3 and

H∗(w, ) = (1 + )
(

2 +w
1
2

)
+ 3 . We now compute the following

H∗(b, ) +H∗(z, )

2
=

4 + 2 − (1− )
(√

2 +
√

3
)

2
H∗(b, ) +̃ H∗(z, )

2
=

4 + 10 + (1 + )
(√

2 +
√

3
)

2
,

T1∗ =

H∗(b, ) +H∗(z, )

2
+H∗

(
b+ z

2
,
)

2
=

8 + 4 − (1− )
(√

2 +
√

3 +
√

2×
√

5
)

4

T1
∗ =

H∗(b, ) +H∗(z, )

2
+H∗

(
b+ z

2
,
)

2
=

8 + 20 + (1 + )
(√

2 +
√

3 +
√

2×
√

5
)

4
,

T2∗ =
H∗
(

3b+ z
4

,
)
+H∗

(
b+ 3z

4
,
)

2
=

5 + 7 −
√

11(1− )

4

T2
∗ =

H∗
(

3b+ z
4

,
)
+H∗

(
b+ 3z

4
,
)

2
=

11 + 23 +
√

11(1 + )

4
,

Then we obtain that

(1− )
4−

√
10

2
+ 3 ≤ 5 + 7 −

√
11(1− )

4
≤ 843

2000
(1− ) + 3

≤
8 + 4 − (1− )

(√
2 +

√
3 +

√
2×

√
5
)

4
≤ (1− )

(
4−

√
2−

√
3

2

)
+ 3

(1 + )
4 +

√
10

2
+ 3 ≥ 11 + 23 +

√
11(1 + )

4
≥ 179

50
(1 + ) + 3

≥
8 + 20 + (1 + )

(√
2 +

√
3 +

√
2×

√
5
)

4
≥ (1 + )

(
4 +

√
2 +

√
3

2

)
+ 3 .

Hence, Theorem 6 is verified.

We now obtain some HH-inequalities for the product of UD-convex FNVMs. These
inequalities are refinements of some known inequalities, see [57].
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Theorem 7. Let H̃, T̃ : [b, z]→ o be two UD-convex FNVMs on [b, z], whose -cuts H ,
T : [b, z] ⊂ R → X+

o are defined by H (w) = [H∗(w, ), H∗(w, )] and T (w) =
[T∗(w, ), T∗(w, )] for all w ∈ [b, z] and for all ∈ [0, 1]. If H̃ ⊗ T̃ ∈ FA([b, z], ), then

1
z− b

, (FA)
∫ z

b
H̃(w)⊗ T̃(w)dw ⊇F

M̃(b, z)
3

⊕ Ñ (b, z)
6

. (33)

where M̃(b, z) = H̃(b)⊗ T̃(b)⊕ H̃(z)⊗ T̃(z), Ñ (b, z) = H̃(b)⊗ T̃(z)⊕ H̃(z)⊗ T̃(b), and
M (b, z) = [M∗((b, z), ), M∗((b, z), )] and N (b, z) = [N∗((b, z), ), N∗((b, z), )].

Proof. Since H̃, T̃ ∈ FA([b, z]), then we have

H∗(ςb+ (1− ς)z, ) ≤ ςH∗(b, ) + (1− ς)H∗(z, ),
H∗(ςb+ (1− ς)z, ) ≥ ςH∗(b, ) + (1− ς)H∗(z, ).

And
T∗(ςb+ (1− ς)z, ) ≤ ςT∗(b, ) + (1− ς)T∗(z, ),
T∗(ςb+ (1− ς)z, ) ≥ ςT∗(b, ) + (1− ς)T∗(z, ).

From the definition of UD-convex FNVMs, it follows that 0̃ ≤F H̃(w) and 0̃ ≤F

T̃(w), so

H∗(ςb+ (1− ς)z, )× T∗(ςb+ (1− ς)z, )
≤ (ςH∗(b, ) + (1− ς)H∗(z, ))× (ςT∗(b, ) + (1− ς)T∗(z, ))

= H∗(b, ×)T∗(b, )ς2 +H∗(z, )× T∗(z, )ς2

+H∗(b, )× T∗(z, )ς(1− ς) +H∗(z, )× T∗(b, )ς(1− ς)
H∗(ςb+ (1− ς)z, )× T∗(ςb+ (1− ς)z, )

≥ (ςH∗(b, ) + (1− ς)H∗(z, ))× (ςT∗(b, ) + (1− ς)T∗(z, ))
= H∗(b, )× T∗(b, )ς2 +H∗(z, )× T∗(z, )ς2

+H∗(b, )T∗ × (z, )ς(1− ς) +H∗(z, )× T∗(b, )ς(1− ς),

Integrating both sides of the above inequality over [0, 1], we get∫ 1
0 H∗(ςb+ (1− ς)z, )× T∗(ςb+ (1− ς)z, )dς

=
1

z− b

∫ z
b H∗(w, )× T∗(w, )dw

≤ (H∗(b, )× T∗(b, ) +H∗(z, )× T∗(z, ))
∫ 1

0 ς2dς

+(H∗(b, )× T∗(z, ) +H∗(z, )× T∗(b, ))
∫ 1

0 ς(1− ς)dς,∫ 1
0 H∗(ςb+ (1− ς)z, )× T∗(ςb+ (1− ς)z, )dς

=
1

z− b

∫ z
b H∗(w, )× T∗(w, )dw

≥ (H∗(b, )× T∗(b, ) +H∗(z, )× T∗(z, ))
∫ 1

0 ς2dς

+(H∗(b, )× T∗(z, ) +H∗(z, )× T∗(b, ))
∫ 1

0 ς(1− ς)dς.

It follows that,

1
z−b

∫ z
b H∗(w, )× T∗(w, )dw ≤ B∗((b, z), )

∫ 1
0 ς2dς + C∗((b, z), )

∫ 1
0 ς(1− ς)dς,

1
z−b

∫ z
b H∗(w, )× T∗(w, )dw ≥ B∗((b, z), )

∫ 1
0 ς2dς + C∗((b, z), )

∫ 1
0 ς(1− ς)dς,

that is
1

z− b

[∫ z

b
H∗(w, )× T∗(w, )dw,

∫ z

b
H∗(w, )× T∗(w, )dw

]
⊇I

[
B∗((b, z), )

3
,
B∗((b, z), )

3

]
+

[
C∗((b, z), )

6
,
C∗((b, z), )

6

]
.
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Thus,
1

z− b
, (FA)

∫ z

b
H̃(w)⊗ T̃(w)dw ⊇F

M̃(b, z)
3

⊕ Ñ (b, z)
6

.

And the theorem has been established. �

Example 3. Let [b, z] = [0, 2], and the FNVMs H, T : [b, z] = [0, 2]→ o, defined by

H(w)(θ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
θ

w
θ ∈ [0, w],

2w− θ

w
θ ∈ (w, 2w],

0 otherwise,

T(w)(θ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
θ −w

2−w
θ ∈ [w, 2],

8− ew − θ

8− ew − 2
θ ∈ (2, 8− ew],

0 otherwise.

Then, for each ∈ [0, 1], we haveH (w) = [ w, (2− )w] and T (w) = [(1− )w+ 2 ,
(1− )(8− ew)+ 2 ] Since left and right end point mappingsH∗(w, ) = w, andH∗(w, ) =
(2− )w, are convex and concave mappings, respectively, and T∗(w, ) = (1− )w+ 2 and
T∗(w, ) = (1− )(8− ew) + 2 are convex and concave mappings, respectively, for each
∈ [0, 1], then H̃(w) and T̃(w) both are UD-convex FNVMs. We clearly see that H̃ ⊗ T̃ ∈

L([b, z], o) and

1
z− b

∫ z

b
H∗(w, )× T∗(w, )dw =

1
2

2∫
0

(
(1− )w2 + 2 2w

)
dw =

2
3

(2 + ),

1
z− b

∫ z

b
H∗(w, )× T∗(w, )dw =

1
2

2∫
0

((1− )(2− )w(8− ew) + 2 (2− )w)dw

≈ (2− )

2

(
1903
250

− 903
250

)
.

Note that
Δ∗(b, z) = [H∗(b)× T∗(b) +H∗(z)× T∗(z)] = 4 ,

Δ∗(b, z) = [H∗(b)× T∗(b) +H∗(z)× T∗(z)] = 2(2− )
[
(1− )

(
8− e2

)
+ 2

]
,

∇∗(b, z) = [H∗(b)× T∗(z) +H∗(z)× T∗(b)] = 4 2,

∇∗(b, z) = [H∗(b)× T∗(z) +H∗(z)× T∗(b)] = 2(2− )(7− 5 ).

Therefore, we have
1
3

Δ (b, z) +
1
6
∇ (b, z)

=
1
3

[
4 , 2(2− )

[
(1− )

(
8− e2

)
+ 2

]]
+

1
3

[
2 2, (2− )(7− 5 )

]
=

1
3

[
2 (2 + ), (2− )

[
2(1− )

(
8− e2

)
− + 7

]]
.

It follows that

[
2
3

(1 + 2 ),
(2− )

2

(
1903
250

− 903
250

)
] ⊇I

1
3
[
2 (2 + ), (2− )

[
2(1− )

(
8− e2)− + 7

]]
,

and Theorem 7 has been demonstrated.
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Theorem 8. Let H̃, T̃ : [b, z]→ o be two UD-convex FNVMs, whose -cuts define the
family of IVMs H , T : [b, z] ⊂ R→ X+

o are given by H (w) = [H∗(w, ), H∗(w, )]
and T (w) = [T∗(w, ), T∗(w, )] for all w ∈ [b, z] and for all ∈ [0, 1], respectively. If
H̃ ⊗ T̃ ∈ FA([b, z], ), then

2 H̃
(
b+ z

2

)
⊗ T̃
(
b+ z

2

)
⊇F

1
z− b

, (FA)
∫ z
b H̃(w)⊗ T̃(w)dw⊕ M̃(b, z)

6
⊕ Ñ (b, z)

3
. (34)

where M̃(b, z) = H̃(b)⊗ T̃(b)⊕ H̃(z)⊗ T̃(z), Ñ (b, z) = H̃(b)⊗ T̃(z)⊕ H̃(z)⊗ T̃(b), and
M (b, z) = [M∗((b, z), ), M∗((b, z), )] and N (b, z) = [N∗((b, z), ), N∗((b, z), )].

Proof. By hypothesis, for each ∈ [0, 1], we have

H∗
(
b+ z

2
,
)
× T∗

(
b+ z

2
,
)

H∗
(
b+ z

2
,
)
× T∗

(
b+ z

2
,
)

≤ 1
4

[ H∗( b+ (1− )z, )× T∗( b+ (1− )z, )
+H∗( b+ (1− )z, )× T∗((1− )b+ z, )

]
+

1
4

[ H∗((1− )b+ z, )× T∗( b+ (1− )z, )
+H∗((1− )b+ z, )× T∗((1− )b+ z, )

]
,

≥ 1
4

[ H∗( b+ (1− )z, )× T∗( b+ (1− )z, )
+H∗( b+ (1− )z, )× T∗((1− )b+ z, )

]
+

1
4

[ H∗((1− )b+ z, )× T∗( b+ (1− )z, )
+H∗((1− )b+ z, )× T∗((1− )b+ z, )

]
,

≤ 1
4

[ H∗( b+ (1− )z, )× T∗( b+ (1− )z, )
+H∗((1− )b+ z, )× T∗((1− )b+ z, )

]

+
1
4

⎡⎢⎢⎣
( H∗(b, ) + (1− )H∗(z, ))
×((1− )T∗(b, ) + T∗(z, ))
+((1− )H∗(b, ) + H∗(z, ))
×( T∗(b, ) + (1− )T∗(z, ))

⎤⎥⎥⎦,

≥ 1
4

[ H∗( b+ (1− )z, )× T∗( b+ (1− )z, )
+H∗((1− )b+ z, )× T∗((1− )b+ z, )

]

+
1
4

⎡⎢⎢⎣
( H∗(b, ) + (1− )H∗(z, ))
×((1− )T∗(b, ) + T∗(z, ))
+((1− )H∗(b, ) + H∗(z, ))
×( T∗(b, ) + (1− )T∗(z, ))

⎤⎥⎥⎦,

=
1
4

[ H∗( b+ (1− )z, )× T∗( b+ (1− )z, )
+H∗((1− )b+ z, )× T∗((1− )b+ z, )

]
+

1
2

[ {
2 + (1− )2

}
N∗((b, z), )

+{ (1− ) + (1− ) }M∗((b, z), )

]
,

=
1
4

[ H∗( b+ (1− )z, )× T∗( b+ (1− )z, )
+H∗((1− )b+ z, )× T∗((1− )b+ z, )

]
+

1
2

[ {
2 + (1− )2

}
N∗((b, z), )

+{ (1− ) + (1− ) }M∗((b, z), )

]
.

Taking integration over [0, 1], we have

2 H∗
(
b+ z

2
,
)
× T∗

(
b+ z

2
,
)
≤ 1

z− b

∫ z
b H∗(w, )× T∗(w, )dw+

M∗((b, z), )

6
+
N∗((b, z), )

3
,

2 H∗
(
b+ z

2
,
)
× T∗

(
b+ z

2
,
)
≥ 1

z− b

∫ z
b H∗(w, )× T∗(w, )dw+

M∗((b, z), )

6
+
N∗((b, z), )

3
,
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that is

2 H̃
(
b+ z

2

)
⊗ T̃
(
b+ z

2

)
⊇F

1
z− b

, (FA)
∫ z

b
H̃(w)⊗ T̃(w)dw ⊕ M̃(b, z)

6
⊕ Ñ (b, z)

3
.

Hence, the required result. �

Example 4. We consider the FNVMs H̃, T̃ : [b, z] = [0, 2]→ o . Then, for each ∈ [0, 1],
we have H (w) = [ w, (2− )w] and T (w) = [(1− )w+ 2 , (1− )(8− ew) + 2 ], as in
Example 3, then H̃ and T̃ both are UD-convex mappings. We have H∗(w, ) = w, H∗(w, ) =
(2− )w and T∗(w, ) = (1− )w+ 2 , T∗(w, ) = (1− )(8− ew) + 2 , then

2H∗
(
b+ z

2
,
)
× T∗

(
b+ z

2
,
)
= 2 (1 + ),

2H∗
(
b+ z

2
,
)
× T∗

(
b+ z

2
,
)
= 2
[
16− 20 + 6 2 +

(
2− 3 + 2)e],

1
z− b

∫ z

b
H∗(w, )× T∗(w, )dw =

1
2

2∫
0

(
(1− )w2 + 2 2w

)
dw =

4
3

(3− ),

1
z− b

∫ z

b
H∗(w, )× T∗(w, )dw =

1
2

2∫
0

((1− )(2− )w(8− ew) + 2 (2− )w)dw

≈ (2− )

2

(
1903
250

− 903
250

)
.

Δ∗(b, z) = [H∗(b)× T∗(b) +H∗(z)× T∗(z)] = 4 ,

Δ∗(b, z) = [H∗(b)× T∗(b) +H∗(z)× T∗(z)] = 2(2− )
[
(1− )

(
8− e2

)
+ 2

]
,

∇∗(b, z) = [H∗(b)× T∗(z) +H∗(z)× T∗(b)] = 4 2,

∇∗(b, z) = [H∗(b)× T∗(z) +H∗(z)× T∗(b)] = 2(2− )(7− 5 ).

Therefore, we have
1
6

Δ ((b, z), ) +
1
3
∇ ((b, z), )

=
1
3

[
2 , (2− )

[
(1− )

(
8− e2

)
+ 2

]]
+

2
3

[
2 2, (2− )(7− 5 )

]
=

1
3

[
2 (1 + 2 ), (2− )

[
(1− )

(
8− e2

)
− 8 + 14

]]
.

It follows that

2
[
(1 + ),

[
16− 20 + 6 2 +

(
2− 3 + 2)e]] ⊇I

[
2
3

(2 + ),
(2− )

2

(
1903
250

− 903
250

)]

+
1
3

[
2 (1 + 2 ), (2− )

[
(1− )

(
8− e2

)
− 8 + 14

]]
,

and Theorem 8 has been demonstrated.

We now give HH-Fejér inequalities for UD-convex FNVMs. Firstly, we obtain the
second HH-Fejér inequality for UD-convex FNVM.

Theorem 9. Let H̃ : [b, z]→ o be a UD-convex FNVM with b < z, whose -cuts define
the family of IVMs H : [b, z] ⊂ R→ X+

o are given by H (w) = [H∗(w, ), H∗(w, )] for
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all w ∈ [b, z] and for all ∈ [0, 1]. If H̃ ∈ FA([b, z], ) and B : [b, z]→ R, B(w) ≥ 0,
symmetric with respect to b+z

2 , then

1
z− b

, (FA)
∫ z

b
H(w),B(w)dw ⊇F [H(b)⊕H(z)],

∫ 1

0
B((1− )b+ z)d . (35)

Proof. Let H̃ be a UD-convex FNVM. Then, for each ∈ [0, 1], we have

H∗( b+ (1− )z, )B( b+ (1− )z)
≤ ( H∗(b, ) + (1− )H∗(z, ))B( b+ (1− )z),
H∗( b+ (1− )z, )B( b+ (1− )z)
≥ ( H∗(b, ) + (1− )H∗(z, ))B( b+ (1− )z).

(36)

And
H∗((1− )b+ z, )B((1− )b+ z)
≤ ((1− )H∗(b, ) + H∗(z, ))B((1− )b+ z),
H∗((1− )b+ z, )B((1− )b+ z)
≥ ((1− )H∗(b, ) + H∗(z, ))B((1− )b+ z).

(37)

After adding (36) and (37), and integrating over [0, 1], we get∫ 1
0 H∗( b+ (1− )z, )B( b+ (1− )z)d
+
∫ 1

0 H∗((1− )b+ z, )B((1− )b+ z)d

≤
∫ 1

0

[ H∗(b, ){ B( b+ (1− )z) + (1− )B((1− )b+ z)}
+H∗(z, ){(1− )B( b+ (1− )z) + B((1− )b+ z)}

]
d ,∫ 1

0 H∗((1− )b+ z, )B((1− )b+ z)d
+
∫ 1

0 H∗( b+ (1− )z, )B( b+ (1− )z)d

≥
∫ 1

0

[ H∗(b, ){ B( b+ (1− )z) + (1− )B((1− )b+ z)}
+H∗(z, ){(1− )B( b+ (1− )z) + B((1− )b+ z)}

]
d ,

= 2H∗(b, )
∫ 1

0 B( b+ (1− )z)d + 2H∗(z, )
∫ 1

0 B((1− )b+ z)d ,
= 2H∗(b, )

∫ 1
0 B( b+ (1− )z)d + 2H∗(z, )

∫ 1
0 B((1− )b+ z)d .

Since B is symmetric, then∫ 1
0 H∗( b+ (1− )z, )B( b+ (1− )z)d

+
∫ 1

0 H∗( b+ (1− )z, )B( b+ (1− )z)d
≤ 2[H∗(b, ) +H∗(z, )]

∫ 1
0 B((1− )b+ z)d ,∫ 1

0 H∗((1− )b+ z, )B((1− )b+ z)d
+
∫ 1

0 H∗( b+ (1− )z, )B( b+ (1− )z)d
≥ 2[H∗(b, ) +H∗(z, )]

∫ 1
0 B((1− )b+ z)d .

(38)

Since ∫ 1
0 H∗( b+ (1− )z, )B( b+ (1− )z)d

=
∫ 1

0 H∗((1− )b+ z, )B((1− )b+ z)d = 1
z−b

∫ z
b H∗(w, )B(w)dw∫ 1

0 H∗((1− )b+ z, )B((1− )b+ z)d
=
∫ 1

0 H∗( b+ (1− )z, )B( b+ (1− )z)d = 1
z−b

∫ z
b H∗(w, )B(w)dw

(39)

Then from (38), we have

1
z−b

∫ z
b H∗(w, )B(w)dw ≤ [H∗(b, ) +H∗(z, )]

∫ 1
0 B((1− )b+ z)d ,

1
z−b

∫ z
b H∗(w, )B(w)dw ≥ [H∗(b, ) +H∗(z, )]

∫ 1
0 B((1− )b+ z)d ,
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that is [
1

z− b

∫ z

b
H∗(w, )B(w)dw,

1
z− b

∫ z

b
H∗(w, )B(w)dw

]
⊇I [H∗(b, ) +H∗(z, ), H∗(b, )+

H∗(z, )]
∫ 1

0 B((1− )b+ z)d ,

hence

1
z− b

, (FA)
∫ z

b
H̃(w),B(w)dw ⊇F

[
H̃(b)⊕ H̃(z)

]
,
∫ 1

0
B((1− )b+ z)d .

Next, we construct first HH-Fejér inequality for UD-convex FNVM, which general-
izes first HH-Fejér inequalities for classical convex mapping. �

Theorem 10. Let H̃ : [b, z]→ o be a UD-convex FNVM with b < z, whose -cuts define
the family of IVMs H : [b, z] ⊂ R→ X+

o are given by H (w) = [H∗(w, ), H∗(w, )] for
all w ∈ [b, z] and for all ∈ [0, 1]. If H̃ ∈ FA([b, z], ) and B : [b, z]→ R, B(w) ≥ 0,
symmetric with respect to b+z

2 , and
∫ z
b B(w)dw > 0, then

H̃
(
b+ z

2

)
⊇F

1∫ z
b B(w)dw

, (FA)
∫ z

b
H̃(w),B(w)dw. (40)

Proof. Since H̃ is a UD-convex, then for ∈ [0, 1], we have

H∗
(
b+ z

2
,
)
≤ 1

2
(H∗( b+ (1− )z, ) +H∗((1− )b+ z, )),

H∗
(
b+ z

2
,
)
≥ 1

2
(H∗( b+ (1− )z, ) +H∗((1− )b+ z, )),

(41)

S i n c e B( b+ (1− )z) = B((1− )b+ z) , t h e n b y m u l t i p l y i n g ( 4 1 ) b y
B((1− )b+ z) and integrating it with respect to over [0, 1], we obtain

H∗
(
b+ z

2
,
) ∫ 1

0 B((1− )b+ z)d

≤ 1
2

( ∫ 1
0 H∗( b+ (1− )z, )B( b+ (1− )z)d

+
∫ 1

0 H∗((1− )b+ z, )B((1− )b+ z)d

)
,

H∗
(
b+ z

2
,
) ∫ 1

0 B((1− )b+ z)d

≥ 1
2

( ∫ 1
0 H∗( b+ (1− )z, )B( b+ (1− )z)d

+
∫ 1

0 H∗((1− )b+ z, )B((1− )b+ z)d

)
.

(42)

Since∫ 1
0 H∗( b+ (1− )z, )B( b+ (1− ;)z)d

=
∫ 1

0 H∗((1− )b+ z, )B((1− )b+ z)d = 1
z−b

∫ z
b H∗(w, )B(w)dw∫ 1

0 H∗((1− )b+ z, )B((1− )b+ z)d
=
∫ 1

0 H∗( b+ (1− )z, )B( b+ (1− )z)d = 1
z−b

∫ z
b H∗(w, )B(w)dw.

(43)

Then from (43), we have

H∗
(
b+ z

2
,
)
≤ 1∫ z

b B(w)dw

∫ z
b H∗(w, )B(w)dw,

H∗
(
b+ z

2
,
)
≥ 1∫ z

b B(w)dw

∫ z
b H∗(w, )B(w)dw,
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from which, we have[
H∗
(
b+ z

2
,
)

, H∗
(
b+ z

2
,
)]

⊇I
1∫ z

b B(w)dw

[∫ z
b H∗(w, )B(w)dw,

∫ z
b H∗(w, )B(w)dw

]
,

that is

H̃
(
b+ z

2

)
⊇F

1∫ z
b B(w)dw

, (FA)
∫ z

b
H̃(w),B(w)dw.

This completes the proof. �

Remark 5. From Theorem 9 and Theorem 10, we clearly see that:
If W(w) = 1, then we acquire the inequality (23).
If H is lower UD-convex FNVM on [b, z], then we acquire the following coming inequality,

see [90]:

H
(
b+ z

2

)
≤F

1∫ z
b W(w)dw

, (FA)
∫ z

b
H(w),W(w)dw ≤F

H(b)⊕H(z)
2

. (44)

If H is lower UD-convex FNVM on [b, z] with = , then from (35) and (40) we acquire
the following coming inequality, see [99]:

H
(
b+ z

2

)
≤I

1
z− b

(IA)
∫ z

b
H(w)dw ≤I

H(b) +H(z)
2

. (45)

If H is lower UD-convex FNVM on [b, z] with = , then from (35) and (40) we acquire
the following coming inequality, see [99]:

H
(
b+ z

2

)
≤I

1∫ z
b W(w)dw

(IA)
∫ z

b
H(w)W(w)dw ≤I

H(b) +H(z)
2

. (46)

Let = . Then from (35) and (40), we acquire the following inequality, see [56]:

H
(
b+ z

2

)
⊇ 1∫ z

b W(w)dw
(IA)

∫ z

b
H(w)W(w)dw ⊇ H(b) +H(z)

2
. (47)

Let = 1 and H∗(w, ) = H∗(w, ). Then, from(35) and (40), we obtain the following
classical Fejér inequality:

H
(
b+ z

2

)
≤ 1∫ z

b W(w)dw

∫ z

b
H(w)W(w)dw ≤ H(b) +H(z)

2
. (48)

Example 5. We consider the FNVM H : [0, 2]→ I defined by

H(w)(θ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ − 2 +w

1
2

3
2
− 2−w

1
2

θ ∈

⎡⎣2−w

1
2 ,

3
2

⎤⎦,

2 +w

1
2 − θ

2 +w

1
2 − 3

2

θ ∈

⎛⎝3
2

, 2 +w

1
2

⎤⎦,

0 otherwise,
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Then,foreach ∈ [0, 1],wehaveH (w) =
[
(1− )

(
2−w

1
2

)
+ 3

2 , (1 + )
(

2 +w
1
2

)
+ 3

2

]
.

Since end point mappings H∗(w, ), and H∗(w, ) are convex and concave mappings, respectively,
for each ∈ [0, 1], then H(w) is UD-convex FNVM. If

B(w) =

{ √
w, σ ∈ [0, 1],√

2−w, σ ∈ (1, 2],

then B(2−w) = B(w) ≥ 0, for all w ∈ [0, 2].
SinceH∗(w, ) = (1− )

(
2−w

1
2

)
+ 3

2 and H∗(w, ) = (1 + )
(

2 +w
1
2

)
+ 3

2 . Now
we compute the following:

1
z− b

∫ z
b [H∗(w, )]B(w)dw =

1
2
∫ 2

0 [H∗(w, )]B(w)dw

=
1
2
∫ 1

0 [H∗(w, )]B(w)dw+
1
2
∫ 2

1 H∗(w, )B(w)dw,
1

z− b

∫ z
b [H∗(w, )]B(w)dw =

1
2
∫ 2

0 [H∗(w, )]B(w)dw

=
1
2
∫ 1

0 [H∗(w, )]B(w)dw+
1
2
∫ 2

1 H∗(w, )B(w)dw,

= 1
2

∫ 1
0

[
(1− )

(
2−w

1
2

)
+ 3

2

](√
w
)
dw+ 1

2

∫ 2
1

[
(1− )

(
2−w

1
2

)
+ 3

2

](√
2−w

)
dw

= 1
4

[
13
3 − π

2

]
+
[

π
8 − 1

12

]
,

= 1
2

∫ 1
0

[
(1 + )

(
2 +w

1
2

)
+ 3

2

](√
w
)
dw+ 1

2

∫ 2
1

[
(1 + )

(
2 +w

1
2

)
+ 3

2

](√
2−w

)
dw

= 1
4

[
19
3 + π

2

]
+
[

π
8 + 31

12

]
.

(49)

And

[H∗(b, ) +H∗(z, )]
∫ 1

0 B((1− )b+ z)d

=
[
4(1− )−

√
2(1− ) + 3

][∫ 1
2

0

√
2 d +

∫ 1
1
2

√
2(1− )d

]
= 1

3

(
4(1− )−

√
2(1− ) + 3

)
,

[H∗(b, ) +H∗(z, )]
∫ 1

0 B((1− )b+ z)d

=
[
4(1 + ) +

√
2(1 + ) + 3

][∫ 1
2

0

√
2 d +

∫ 1
1
2

√
2(1− )d

]
= 1

3

(
4(1 + ) +

√
2(1 + ) + 3

)
.

(50)

From (49) and (50), we have[
1
4

[
13
3
− π

2

]
+

[
π

4
− 7

6

]
,

1
4

[
19
3

+
π

2

]
+

[
π

4
+

25
6

]]

⊇I

[
1
3

(
4(1− )−

√
2(1− ) + 3

)
,

1
3

(
4(1 + ) +

√
2(1 + ) + 3

)]
, for all ∈ [0, 1].

Hence, Theorem 9 is verified.

For Theorem 10, we have

H∗
(
b+ z

2
,
)
= H∗(1, ) =

2 +
2

,

H∗
(
b+ z

2
,
)
= H∗(1, ) =

3(2 + 3 )

2
,

∫ z

b
B(w)dw =

∫
1

0

√
wdw+

∫ 2

1

√
2−wdw =

4
3

, (51)
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1∫ z
b B(w)dw

∫ z
b H∗(w, )B(w)dw =

3
8

[
13
3
− π

2

]
+

3
2

[
π

8
− 1

12

]
,

1∫ z
b B(w)dw

∫ z
b H∗(w, )B(w)dw =

3
8

[
19
3

+
π

2

]
+

3
2

[
π

8
+

31
12

]
.

(52)

From (51) and (52), we have[
2 +

2
,

3(2 + 3 )

2

]
⊇I

[
3
8

[
13
3
− π

2

]
+

3
2

[
π

8
− 1

12

]
,

3
8

[
19
3

+
π

2

]
+

3
2

[
π

8
+

31
12

]]
.

Hence, Theorem 10 has been verified.

4. Conclusions

This paper provides the introduced class UD-convex concept for FNVMs. The H.H.
and Jensen-type inequalities were developed utilizing this idea and a fuzzy-inclusion
relation. This study expands on several recent findings made by Zhao et al. [56,57] and
the writers who came after them, Refs. [61,62]. Furthermore, some nontrivial cases are
provided to verify our primary conclusions’ accuracy. In the future, it will be fascinating
to look into how analogous inequalities are established for other convexity types and by
employing various integral operators. Our study of interval integral operator-type integral
inequalities will broaden their practical applications because integral operators are widely
used in engineering technology, such as various forms of mathematical modeling, and
because different integral operators are suitable for different forms of practical problems.
Convex optimization theory may take a new turn as a result of this idea. Other researchers
working on a range of scientific subjects may probably find the idea useful.
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