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Preface

Nowadays, unmanned aerial vehicles (UAVs), as well as unmanned surface vehicles (USVs)

or unmanned underwater vehicles (UUVs), later on simply called drones, have reached a sufficient

degree of maturity to allow their use for various purposes. Drones are used in remote sensing, in

particular in geological mapping and architectural surveying. New applications continually appear;

among them, disaster management, precision agriculture, weather forecast, wildlife monitoring,

search and rescue, law enforcement, shipping and delivery, and also entertainment, with different

type of sensors.

This increasing diffusion of drones has various reasons. On the one hand, technologically

advanced low-cost drones, generally equipped with GNSS receivers and, often, also equipped with

compact inertial platforms, are available today. On the other hand, nowadays, besides professional

and prosumer cameras for structure-from-motion photogrammetry (SfM), other relatively affordable

sensors like light infrared cameras or compact LiDARs are available. Last but not least, the

drone-based survey can be performed by planning the navigation consistently with the specific

application. Furthermore, the aspect of the use of drone swarms, or in any case of operations in

environments where there are numerous drones in motion simultaneously, is always better studied.

In some applications, the use of drones is now completely standardized. However, there

is significant room for growth both to improve the accuracy and resolution of survey products,

optimizing flight plans (in general, navigation plans) according to them, and to identify new

applications. These systems are suitable both for routine surveys, even predefined at scheduled times,

and for surveys in emergency conditions. However, it must not be forgotten that the simplicity of the

survey and the possibility of greatly automating the survey and data processing activities in any case

require an adequate evaluation of the quality of the results.

Arianna Pesci, Giordano Teza, and Massimo Fabris

Editors
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1. Introduction

Nowadays, Unmanned Aerial Vehicles (UAVs), as well as Unmanned Surface Vehicles
(USVs) or also Unmanned Underwater Vehicles (UUVs), later on simply called drones,
have reached a sufficient degree of maturity to allow their use for various purposes. Drones
are used in remote sensing, as shown by [1] and references therein, where regulatory and
safety facts are also discussed, in particular in geological mapping [2] and architectural
surveying [3]. New applications continually appear; among them, disaster management,
precision agriculture, weather forecast, wildlife monitoring, search and rescue, law enforce-
ment, shipping and delivery, and also entertainment, with different type of sensors.

This increasing diffusion of drones has various reasons. On the one hand, techno-
logically advanced low-cost drones, generally equipped with GNSS receivers and, often,
also equipped with compact inertial platforms, are available today. On the other hand,
nowadays, besides professional and prosumer cameras for Structure-from-Motion pho-
togrammetry (SfM), other relatively affordable sensors like light infrared cameras [4] or
compact LiDARs [5] are available. Last but not least, the drone-based survey can be per-
formed by planning the navigation consistently with the specific application. Furthermore,
the aspect of the use of drone swarms, or in any case of operations in environments where
there are numerous drones in motion simultaneously, is always better studied [6].

In some applications the use of drones is now completely standardized. However,
there is significant room for growth both to improve the accuracy and resolution of survey
products, optimizing flight plans (in general, navigation plans) according to them, and to
identify new applications [7]. These systems are suitable both for routine surveys, even
predefined at scheduled times, and for surveys in emergency conditions. However, it must
not be forgotten that the simplicity of the survey and the possibility of greatly automating
the survey and data processing activities in any case require an adequate evaluation of the
quality of the results, as shown, e.g., by [8] in the case of evaluation of surface deformations
due to induced liquefaction.

For all these reasons, the special issue of Drones “Unconventional Drone-Based Survey-
ing”, to which this Editorial is dedicated, was born. The articles published in the framework
of the Special Issue are briefly described in Section 2, while the main lessons learned are
discussed in Section 3, with emphasis on multidisciplinarity, reliability, exportability of
the techniques used and, obviously, quality of the obtainable results. Insights about future
researches are also provided.

2. Overview of Contributions

The papers included in this Special Issue cover a wide spectrum of applications
related to the unconventional surveying using drones in different areas of the world and
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characterized by multi-source data. The accepted works are briefly presented here in order
of publishing.

Go and Choi [9] implemented a system to detect the location of acoustic sources
generated on the ground using a drone equipped with an array of microphones. In order
to reduce the noise generated by the drone, and better identify the acoustic signals of
interest, the authors successfully applied spectral subtraction method. Moreover, they
implemented a method to locate the acoustic sources by fusing flight information from the
navigation system of the drone. The validation of the proposed method was performed
using a drone mounted with a 32-channel microphone array and the verification of the
sound source location detection method was limited to the explosion sound generated
from the firecrackers: in the experiment conducted at the Chungnam National University
stadium (Korea), the authors detected the acoustic source with a ground distance of 151.5 m
between the drone and the explosion location, and errors of 8.8◦ and 10.3◦ for the horizontal
and vertical angles respectively.

Savkin et al. [10] analyzed safe navigation of an USV in proximity to a UUV. In
this context, the authors aimed to maximize the amount of data successfully transmitted
between the vehicles using underwater acoustic communications, while minimizing the
probability of collisions between them. For these reasons, they implemented a real-time
navigation algorithm belonging to the class of sliding mode control laws. The authors
verified that the developed algorithm is asymptotically optimal, because as the interval
subdivision parameters tend to infinity, the value of the cost function that describe the
amount of successfully transmitted data converges to the global maximum. In addition,
they checked the effectiveness of the proposed method with MATLAB simulations.

Liu et al. [11] evaluated accuracy of the direct georeferencing GNSS-assisted UAV
method linked to the number and distribution of ground control points (GCPs) in the study
area. After collected data in Xishan, Taiyuan, Shanxi Province (China) using a FEIMA
D2000 multi-rotor UAV, the authors developed several photogrammetric projects varying
the number and distribution of GCPs (measured by means of a GNSS real-time kinematic—
RTK receiver) used in the bundle adjustment (BA) process of the Agisoft Photoscan software.
The evaluation of the obtained results was performed using the root mean square error
(RMSE) of ground-measured checkpoints (CPs) and the Multiscale Model to Model Cloud
Comparison (M3C2) distance. In this context, in the direct georeferencing the authors
obtained 0.087 m and 0.041 m in the vertical and horizontal RMSE, respectively. Finally,
they suggested the use of at least 1 GCP in the BA, while when the resolution of the GCPs
is greater than 10/12 GCP/km2 horizontal and vertical errors decrease slowly.

Shelekhov et al. [12] investigated the effects of a turbulent atmosphere on a quadcopter
for low-altitude surveys on morphologically complex urban areas. The authors provided
the equations for fluctuations of the longitudinal and lateral wind speed; the fluctuations
are proportional to the variations of the pitch and roll angles. In the experiment conducted
in Academgorodok, Tomsk (Russian Federation) they used a DJI Phantom 4 Pro quadcopter
in the hover mode and combined with AMK-03 ultrasonic weather stations. Turbulence
spectra with high spatial resolution in the atmosphere on complex areas, under different
weather conditions and seasons were obtained. The authors concluded that, on the one
hand, the quadcopter is a promising tool for solving problems related to the drone move-
ment control under unfavorable weather conditions and that, on the other hand, such a
kind of UAV can be used to provide climatic data in urban environments.

Huang et al. [13] presented a solution related to the coverage control of a multi-UAV
system with downward facing cameras: for this issue the authors extended a coverage
control algorithm to include a new sensor model and two constrains, the view angle and
the collision avoidance. They provided the theoretical analysis to solve the issue of the view
angle in the design of the coverage problem linked to the collision avoidance. Subsequently,
the authors performed computer simulation tests using the MATLAB software; results
showed automatic coverage with cameras of the area of interest (AOI) by multi-UAV.
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However, in their proposal the i-th UAV can be outside to the AOI and cannot manage
invisible and blacked areas.

Villeneuve et al. [14] developed an experimental test rig to study the effects of icing
on the rotor of a Bell APT70 drone rotor in take-off/hover flying mode. In the Anti-Icing
Materials International Laboratory—AMIL (Canada), a 9-m-high cold chamber which allow
the study of the ground effect and rotor proximity to the icing nozzle array at different rotor
heights (h) was used by the authors for the test rig. Results of preliminary experimental
comparison of aerodynamic parameters between rotor heights at h = 2 m and h = 4 m
showed no differences. Further icing tests were performed by the authors at lower height
taking advantage by the experimental convenience and increased distance from the nozzles.
The studies related to the effects of ice on UAV performances are relevant in extreme
environments, and the development of ice protection systems for drone applications in
these situations is needed.

Gnanasekera and Katupitiya [15] studied a method to avoid collisions of aerial drones.
They proposed an algorithm based on collision cone approach to avoid a collision in a
time-efficient way (PHS—Purely Heading Solution). In this context, possible scenarios
were analyzed including three methods to avoid a potential collision with dynamic ob-
stacles: heading change, speed change and combined heading and speed change. The
method proposed by the authors was mathematically demonstrated to be the most time-
efficient, compared with other available works, and validated with simulation conducted
in a MATLAB-based testing platform. Experiments were conducted using a matrice 600 Pro
hexacopter in an open field in Menangle, New South Wales (Australia). Some differences be-
tween simulation and experimental results were observed by the authors. These differences
were due to the dynamics of the drone and external resistances, e.g., the wind.

Cutugno et al. [16] assessed the quality of sparse point cloud extracted from UAV and
using both free-and-open-source software (MicMac®) and commercial software package
(Agisoft Metashape®). To this aim, they conducted a survey test over Conte della Cerra
street, a historical overpass in the Vomero neighborhood of Naples (Italy) using a DJI
model Mavic 2 Pro UAV. The authors extracted the 3D data using the two software and
the photogrammetric results were evaluated analyzing the image residuals, the GCPs and
CPs statistic errors, the relative accuracy assessment, and the Cloud-to-Cloud distance
comparison. They obtained comparable results highlighting that the MicMac® open source
software can produce reliable results and similar with those generated by a commercial
software package.

Diaz et al. [17] developed a new drone-based system for bathymetric surveys: the
“Bathy-drone” is composed by a multi-rotor drone that, by means of a tether, drags a small
vessel on the water surface; the latter is equipped with a commercial sonar unit that has
down-scan, side-scan, and chirp capabilities and is linked to a GPS-reference onboard. The
authors conducted extensive tests over a 5 acre pond located at the University of Florida
Plant Science and Education Unit in Citra (Florida) using a DJI Matrice 600 drone. To
evaluate the performances of the system, they acquired the ground-truth data of the pond
by using a Trimble RTK GNSS system on a pole. Results of the comparison provided a
deeper average measurement of 21.6 cm of the Bathy-drone compared with the ground-
truth, justifying the integration of RTK and inertial measurement unit (IMU) corrections.

Salas López et al. [18] analyzed the accuracy in positioning of the direct georeferencing
approach together with the use of GCPs: they evaluated the repeatability and reproducibil-
ity of Digital Surface Model and ortho-mosaic photogrammetric products of a commercial
multi-rotor system equipped with a GNSS receiver in urban environments. The authors
conducted a test on an urban area of the Chachapoyas city (Peru) using a DJI Phantom
4 RTK UAS and acquiring 10 GCPs and 4 Validation Points with a Trimble R10 GNSS
receiver worked in PPK (Post-Processing Kinematic) mode. They obtained viable solution
of the direct georeferencing for applications in urban areas. In addition, PPK solution using
at least 1 GCP significantly improved the RMSE when compared with the use of 5 or also
10 GCPs without PPK.
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Fabris et al. [19] investigated expeditious survey procedures using low-cost pho-
togrammetric sensors for the structural analysis of degraded historical buildings. The
authors performed the 3D survey of Illasi Castle (northern Italy) using a Parrot Anafi
low-cost drone, a single-lens reflex (SLR) camera, and a smartphone. They generated
four different 3D models by means of the SfM technique from the acquired data using
the Agisoft Metashape software. To evaluate accuracies and performances of the fast and
low-cost photogrammetric approach, the authors compared the obtained models with a
high-resolution and high-precision terrestrial laser scanning survey performed using the
Leica ScanStation P20 instrument: they obtained standard deviation values of the point
cloud differences of about 2–3 cm for the model generated integrating the images acquired
with the drone and SLR camera, and double values when the images acquired with the
smartphone were used. Subsequently, the best 3D model was used in the finite element
(FE) analysis that provided the safety assessment of the historical building.

3. Lessons Learned and New Research Perspectives

The articles published in the framework of this Special Issue concern several topics
(they are presented here, unlike in the previous chapter, in order of affinity of the research
topics): surveys with non-optical sensors, in particular acoustic [9] and sonar [17]; use
of USV and UUV, including maximization of exchanged information via underwater
acoustic communication channel and minimization of collision risk [10]; use of a swarm of
drones or one or more drones in an environment where other drones are flying, including
maximization of obtained information and minimization of collision risk [13], whereas [15]
shows a method for avoiding collisions of independent UAVs; use of a UAV physically
connected to a vessel equipped with a sonar [17]; solving of issues related to flying in hard
environment, in particular turbulent atmosphere [12] and icing [14]; direct georeferencing
with different approaches [11,18]; comparison between open source and commercial SfM
packages [16]; low-cost cultural heritage applications including numerical modeling [19].

3.1. Non-Optical Sensors

The compact camera is the most common type of sensor carried by a UAV; the data
are subsequently processed by means of SfM, even if this poses some problems discussed
e.g., by [8]. However, today other types of compact sensors are also available and can be
successfully used. If the aim is the localization of an acoustic source, the presence on board
of engines and drive systems poses problems due to noise that can be solved by means of
an array of microphones and by subtracting the modeled drone-related acoustic noise, as
shown by [9]. The main lesson learned is that sensor architecture and noise estimation and
subtraction are both necessary to obtain relevant results affected by acceptable uncertainties.
New research lines may concern on the one hand the optimization of the sensor array
design, and on the other hand the definition of time-varying noise models (therefore time-
frequency analysis) to take into account the different motion conditions of the drone in
different phases of the flight. In perspective, this could be implemented by a manufacturer
of UAVs specifically designed to identify acoustic sources.

The bathymetric system articulated into a vessel towed by a multirotor UAV by
means of a tether, presented in [17], on the one hand it is an interesting result and on
the other it can lead to interesting developments. The system is conceived for bridge
infrastructure inspection and marine geomatics and the developments are consistent with
this. Since obstacles such as bridges, pilings, and trees are commonly near bodies of water,
the introduction of an active vessel control with a servo-actuated rudder is necessary. This
mean that vessel control and multirotor UAS control could be semi-independent, with the
need to solve the problems associated with the presence of the tether.

3.2. Multiple Drones, Swarms of Drones and Navigation in Crowded Environment

A standard survey typically involves a single drone that performs the measurements
from several viewpoints progressively reached during the navigation. However, in the case
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of multimodal observations or in case of need for simultaneous observations from different
points of view, several drones may be needed, not necessarily of the same type (e.g., some
UAVs, UAV(s) and USV(s), USV(s) and UUV(s), or other combinations). Furthermore, it
is increasingly probable that a drone may have to operate together with similar systems
but not managed by the same operator or in any case by the same control system, with the
need to dynamically adapt to the scenario in order to avoid collisions.

The experiments shown in [10] demonstrate the safe navigation of an USV in proximity
to a UUV with maximization of data transmitted between the vehicles using underwater
acoustic communications and minimization of the probability of collisions between them.
The developments will concern two main research lines: (i) solution of the issues related
to USV operating in proximity to a surfaced UUV, mainly due to loss of both Wi-Fi radio-
frequency communications and acoustic connectivity because of wave motions and surface
currents that could lead to sporadic submersion of the UUV; (ii) study of scenarios where a
USV operates together with several UUSs, or where there are teams of several USVs and
UUSs, in particular with the introduction, among other things, of decision systems that
can identify which UUS must be placed in acoustic communication with a given USV at
a given time. Both research lines require the development of controllers suitable to the
specific applications.

The use of a swarm of UAVs is advantageous when compared to a single one. In some
case, a single UAV could take an excessive long time to carry out a task or could not be
able to accomplish it effectively. The research challenge is then to develop the appropriate
cooperation logic so that the UAVs work together to complete missions effectively and
efficiently. A possible solution of the challenges related to the use of several multirotor
UAVs with downward facing cameras is proposed by [13], where the key factor is that
coverage control involves the collision avoidance. In this way, the whole interesting area
can be covered with cameras without collisions, as demonstrated by simulations. Future
researches will focus on: (i) evaluation of the deformation of reality that may arise in the
image due to the differentiation of the tilt angle or rotation; (ii) handling invisible and
obscured areas, to have a truly 3D coverage system; (iii) implementing the method as a real
multi-UAV system.

The research activity carried out by [15] also deals with prevention of collisions
between UAVs, even in this case the focus is on operation of a single UAV in an environment
potentially crowded by other independent UAVs. The main learned lesson, obtained by
both simulations and real flight tests, is that the better way to avoid a potential collision with
dynamic obstacles is changing the heading. This is because changing in speed and changing
in both speed and heading are characterized by slower response time and, therefore, are
less effective. Future developments will be mainly aimed at enhancing performance in 3D
environments and facing the impact of the wind resistance by using an additional controller.

3.3. Flight in Hard Environment

A drone is generally used in environmental conditions suitable for observation, for
example by avoiding operations in windy days or in days in any case unsuitable for
flying or, in general, for navigation. However, if a drone (or set of drones) is used in
monitoring and/or in emergency conditions, it may be necessary to operate in difficult
weather conditions. It could also be necessary to monitor atmospheric turbulence, in which
case, by definition, the conditions under which the flight is performed are potentially
difficult. The latter case is addressed in [12], whose lesson learned is that a quadcopter
can operate in hovering in a turbulent atmosphere providing the turbulence spectra at
low-altitude. Future researches will focus on use of quadcopter UAV swarms in order to
provide profiles of atmospheric turbulence in both the vertical and horizontal planes.

Another interesting case of study of UAV behavior in hard environment is shown by [14],
which propose an innovative experimental test rig to study the effects of icing on the rotor
of a drone in take-off/hover flying mode. The key results are the design of test rig and
the fact that the ground effect does not take place if the UAV rotor height is 2 m. Further
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developments will allow the study of different active and passive solutions to the icing
problematic. In this way, the impact of ice on UAV performance can be investigated and ice
protection systems for drone applications can be developed.

3.4. Direct Georeferencing

Direct georeferencing (DG) essentially consists in the use of the localization data
provided by the GNSS receiver integrated in the drone to georeferencing the final pho-
togrammetric model with the use of a low number of GCPs acquired with topographic
techniques. This is easy to say but complex to do, given that the accuracy of a receiver is
not sufficient and that at least the use of differential GNSS is necessary. Possible solutions
of some issues related to DG are provided by [11,18]. Both the research teams highlight the
importance of use of RTK positioning with a base station, which nowadays is accessible
not only to the researcher, but also to the practitioner. In particular, [11] finds that a density
of 10–12 GCPs/km2 allows an accuracy of some centimeters for the final result and that a
decisive increase in density does not lead to a significant improvement in accuracy. In [18],
the fact that the use of a single GCP with PPK mode allows better results than several GCPs
without GNSS data in PPK mode is highlighted. This last result is very interesting where
it is required the surveying of areas that are difficult to access. Future developments will
concern on the one hand the use of lenses which, while compatible with light UAVs, have
satisfactory characteristics (or which, thanks to pre-calibration, can in any case allow good
photogrammetric modeling), and on the other hand the improvement of RTK positioning.

3.5. Low Cost Surveying and Modeling

In the past, surveys were often very expensive (think, for example, of the cost of a laser
scanning instrument, or of a photogrammetric survey carried out with a helicopter). Today,
photogrammetric surveys can be carried out by means of drones of adequate performance.
However, the surveys require the use of support techniques (for example, GNSS) and the
data processing still requires the use of software packages that can provide the desired
products (3D models or further quantitative analyses).

In particular, [16] shows that the use of an Open Source package such as MicMac
allows to obtain results completely comparable to those obtainable using commercial
packages of a higher level (and therefore cost). It should also considered that a key element
of Open Source software is the possibility of having additional free tools intended for the
solution of specific problems and which can make such a king of software even richer than
the commercial one. Therefore, further developments will be aimed at defining correct
procedures for 3D model generation and quality assessment employing ultra-low-cost
equipment, as well as at disseminating the corresponding implementations.

Sometimes, for example in the case of buildings damaged by natural events (earth-
quakes, landslides, etc.), it may be necessary to carry out expeditious surveys with relatively
limited technical and financial resources. The study shown in [19] demonstrates that low-
cost sensors and expeditious surveys can be used to provide 3D photogrammetric models
with accuracy adequate for the subsequent Finite Element modeling (several centimeters),
including the comparison between the observed crack pattern and the obtained principal
stress distribution. This is interesting for assessing the conditions of historic buildings,
especially if disasters affecting large areas occur.

3.6. Conclusive Remarks

The articles published in the framework of the Special Issue “Unconventional Drone-
Based Surveying” show that the drone (not necessarily flying, but also operating on the
surface or underwater) can be used in different contexts and equipped with different
sensors. The environment in which the drone can acquire data may not be the classic
one of a survey implemented in optimal conditions, but one in which various systems
(interconnected or even independent of each other) can operate simultaneously, even in
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unfavorable weather conditions. This because the surveying could be required to be carried
out in a short time for monitoring purposes.

All the articles refer to ongoing studies, to be continued in order to provide useful
tools and data for both the researcher and the practitioner. The Editors of this Special Issue
hope that these articles will spark discussion and inspire new research lines.
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Abstract: Currently, the detection of targets using drone-mounted imaging equipment is a very useful
technique and is being utilized in many areas. In this study, we focus on acoustic signal detection
with a drone detecting targets where sounds occur, unlike image-based detection. We implement a
system in which a drone detects acoustic sources above the ground by applying a phase difference
microphone array technique. Localization methods of acoustic sources are based on beamforming
methods. The background and self-induced noise that is generated when a drone flies reduces the
signal-to-noise ratio for detecting acoustic signals of interest, making it difficult to analyze signal
characteristics. Furthermore, the strongly correlated noise, generated when a propeller rotates, acts as
a factor that degrades the noise source direction of arrival estimation performance of the beamforming
method. Spectral reduction methods have been effective in reducing noise by adjusting to specific
frequencies in acoustically very harsh situations where drones are always exposed to their own noise.
Since the direction of arrival of acoustic sources estimated from the beamforming method is based
on the drone’s body frame coordinate system, we implement a method to estimate acoustic sources
above the ground by fusing flight information output from the drone’s flight navigation system.
The proposed method for estimating acoustic sources above the ground is experimentally validated
by a drone equipped with a 32-channel time-synchronized MEMS microphone array. Additionally,
the verification of the sound source location detection method was limited to the explosion sound
generated from the fireworks. We confirm that the acoustic source location can be detected with an
error performance of approximately 10 degrees of azimuth and elevation at the ground distance of
about 150 m between the drone and the explosion location.

Keywords: acoustic source localization; phased microphone array; spectral subtraction; beamforming

1. Introduction

One way to cope with disasters and security situations is to use drones to search for
where events occur [1,2], which can provide visual information by taking images from
the sky. In general, drone imaging has been used for military purposes, and it is also the
most commercially used method for video production. The usability of drones has already
been demonstrated, and as the operating area gradually gets closer to humans, there is a
demand for new detection methods beyond existing mission equipment that only provides
images. One new method is to detect sounds.

Acoustic-based detection methods in disaster and security situations can complement
the limitations of image-based target detection methods. In addition, acoustic-based
detection methods are needed in situations where image identification is needed at night,
in bad weather, and over complex terrain with features that can be difficult to identify [3,4].
This technology extends detection methods by adding human hearing-like sensations to
drones. In particular, it is considered to be a necessary technology for detecting the location
of explosions in disaster situations such as fires or detecting distress signals for lifesaving
situations.
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The technology of detecting targets using acoustic signals has been previously studied
in a variety of fields [5–7], from implementing a robot that detects sounds by mimicking
human ears to noise source instrumentation systems for the analysis of mechanical noise.
Prior to the development of radar, this technique was used to detect the invasion of enemy
aircraft by sound to defend against anti-aircraft. In recent years, it has also been applied to
systems that track where guns are fired. Recently, it has become an essential technology
for low noise research and has been used to detect and quantify acoustic sources of noise
generated by transport vehicle systems such as automobiles and aviation. This technique
is based on the principle of detecting acoustic sources by reconstructing acoustic pressure
measured by the concept of phase difference using microphone arrays.

The most significant problem associated with detecting external noise by mounting mi-
crophones on a drone is the noise of the drone when it operates. The main noise generated
by a drone is aeroacoustics noise generated mainly by rotating rotors [8]. Depending on the
mechanism of occurrence, a significant factor that affects the tonal or broadband frequency
band is related to the blade passing frequency [9,10]. A typical drone has more than four
rotors, which creates a more complex noise field environment [11,12]. Furthermore, the
operating noise of a drone in close proximity to a microphone can cause the sound to be
masked and indistinguishable. Therefore, robust denoising techniques are essential for
identifying external sounds in highly noisy environments. It is ideal for a drone to reduce
its own noise in terms of operability, but this is difficult to implement immediately with the
current technology; therefore, signal processing that reduces noise from signals acquired
from microphones is realistic. Spectrum subtraction is a method of eliminating noise and
obtaining clean sound to improve the signal-to-noise ratio in a noisy environment. This is
one of the methods of background noise suppression and has been studied for the purpose
of clarifying voices in the field of voice recognition [13,14]. In general, background noise is
removed by using statistical characteristics of background noise, but applicable methods
are also being studied in non-stationary noise environments [15–17]. In addition, there are
cases that are effective in improving the signal-to-noise ratio in sound detection such as
impact sound [18].

Beamforming methods are well known as methods for estimating the direction of
arrival of acoustic sources [19–22]. Beamforming is the principle of calculating beam power
by using multiple microphones to correct the phase difference of signals according to the
geometric positional relationships among the microphones and estimating the direction of
arrival of the source from that intensity [23]. The direction of arrival estimation performance
of the beamforming method is determined by the number of microphones, the form of the
array, and an improved algorithm. Beamforming methods can also reduce the strength of
uncorrelated signals by phase difference correction and increase the strength of the signal
of interest to enhance the signal-to-noise ratio by reducing noise. Generally, the greater the
number of microphones and the higher the caliber, the better the performance; however,
limited number and size microphone arrays are used considering real-time processing and
hardware performance.

Recently, studies have been conducted to detect sound sources by installing micro-
phone arrays in drones. Although the use of microphone arrays to detect or distinguish
sound sources is common, there are various results depending on the hardware that makes
up the array and the array signal processing algorithms. In [24,25], the authors studied
how to attach microphone arrays to drones and embedded systems for signal acquisition.
In [26–28], the authors presented an arrival angle detection algorithm for sound sources
based on beamforming. In addition, valid results for the detection of sound sources were
shown through verification experiments on near-field sound sources in a well-refined in-
door environment. There are also sound source detection studies on the actual operation of
drones in outdoor environments. In [29,30], detection studies were conducted on whistles
and voices. These studies confirmed the performance of sound source detection in terms
of the signal-to-noise ratio of sound source and background noise, and showed that it is
possible to detect nearby sound sources located about 20 m away from drones.
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In this study, a method is proposed for detecting sound sources generated above
the ground using a drone-mounted phased microphone array. Especially, we tried to
effectively remove noise caused by rotors from the microphone signal and to confirm the
expectation of the accuracy of the sound source localization in detection mission that occurs
during flight. Each of the techniques needed to detect the sound source suggested a major
perspective that must be addressed. The goal is to confirm the expected performance of the
location detection of sound sources by actually implementing the process of connecting
techniques. Since microphones are so close to the drone, the sound of interest is distorted
by noise generated when the drone operates, and the spectral subtraction method is used
to improve the signal-to-noise ratio. The application of the general spectral subtraction
method applies the average model in the entire frequency band. However, in order to
effectively remove the drone noise that is an obstacle to us, we separated the spectral band
with clear spectral characteristics and applied the subtraction method through different
models. The separated bands are divided into bands due to the main appearance of BPF
and other noises, including turbulent flow, and are designed to be effective in reducing
drone noise.

We distinguished impact sound through spectral subtraction. Spectral reduction
has been shown to be effective in restoring acoustic signals of impact sounds. Using
this denoised signal, we detected the direction of arrival for ground impact sounds by
beamforming methods based on microphone arrays. We applied a method of representing
the direction of arrival as absolute coordinates for the ground source, measured on the
basis of the microphone array coordinates mounted on a drone, and a data fusion method
that can detect the location of sound sources by correcting the changing posture in real
time using drone flight information. The entire algorithm for detecting sound sources
experimentally identifies detection performance using a 32-channel microphone array. To
verify the proposed methods, a clear detection sound source was needed. We focused
on identifying the localization error for point sound sources with a clear signal such as
impulse. In the verification experiment, the localization performance was confirmed by
limiting the impact sound using a firecracker.

In Section 2, we describe how to detect the location of a ground acoustic source. We
describe a spectral reduction method to improve the signal-to-noise ratio for acoustic
sources of interest, a beamforming method to estimate the direction of arrival of acoustic
sources, and a method to represent the direction of arrival of acoustic sources detected
by drones with geographical information above the ground. In Section 3, we describe the
experiments to verify the location detection performance for ground acoustic sources. We
describe the microphone array system and experimental environment mounted on a drone.
In Section 4, we address the analysis of data measured through the experiments and the
estimation performance of ground acoustic sources.

2. Materials and Methods

The method for detecting ground acoustic sources can be divided into three stages:
(1) the measured signal in a microphone array uses spectral subtraction to improve the
signal-to-noise ratio, (2) the beamforming method uses time domain data to estimate the
angle of arrival for the acoustic source of interest, (3) the flight data of the drone are fused
to estimate the location of the source on the ground.

2.1. Spectral Subtraction

Spectral subtraction is a method of restoring a signal by subtracting estimates of noise
from a noisy signal [31]. In a noisy environment, the measured signals are represented by
the sum of the signals of interest, s(t), and noise, n(t). Here, the signal of interest is the
signal we want to measure, and noise is the signal we want to remove, not the signal of
interest:

y(t) = s(t) + n(t) (1)

10



Drones 2021, 5, 75

Spectral subtraction is performed by all computations in the frequency domain. Thus,
signals in the time domain are extracted sequentially from block to block through window
functions and analyzed as frequency signals through Fourier transformations.

Noise spectra are typically estimated from time intervals where only steady noise exists
without signals of interest. This assumes the amplitude of the estimated spectrum as a noise
model and computes the difference from the amplitude of the measured signal spectrum to
eliminate the averaged noise. Amplitude in the subtracted spectrum applies the phase of
the measured signal, and the noise-reduced time domain signal, s′(t), is extracted through
the inverse Fourier transform (Figure 1). An important view of the spectral subtraction
method applied in this study is that, independently, noise reduction for each microphone
signal preserves the phase of the signal of interest, so that the phase relationship between
the signals of each microphone is not distorted. Preserving the phase is directly related to
estimation error, as the method of estimating the location of acoustic sources by array signal
processing is based on the phase relationship of the signals measured on each microphone.
The noise model assumes that the signal is consistently and continuously affecting the
interval at which it is measured. As it is difficult to estimate sufficient averaged spectra
when noise properties change over time, in such cases, a sufficiently averaged spectrum
can be obtained by applying a smoothing filter.
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2.2. Beamforming

A delay-and-sum beamforming calculated in the time domain was applied. In the
time domain, beam power, b, can be expressed by the arrival vector of acoustic waves
defined in the three-dimensional space geometry, x, and time, t, as follows:

b(x, t) =
1
M

M−1

∑
i=0

wi pi(t− τi) (2)

where p is the acoustic pressure measured on the microphone and relative time delay, τ
is the relative time delay caused by the position of each microphone, w is the weight and
does not give a differentiated weight, M represents the number of stagnant microphones
used, and i represents the microphone index. Beam power is calculated for each direction
of arrival of a hypothetical acoustic source. The magnitude of the calculated beam powers
is determined for the direction of arrival of the acoustic source by making a relative
comparison in the entire virtual source space and estimating the direction of arrival with
the maximum value. The phase of the sound pressure signal measured between the
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reference point of the microphone, Pre f , and the position between each microphone, Pi,
is caused by a time delay, τi; τi is analytically related by speed of sound, c0, and delay
distance, dli, as in Equation (3) [32,33], and dli is calculated from the position vector rm
defined as Pre f and Pi and the incident direction of the plane wave, i.e., the normal vector
of the plane wave, n (Figure 2). The normal vector of the plane wave is the relation between
the azimuth angle, Φ, and elevation angle, Θ, which can be represented in the spherical
coordinate system. The speed of sound was corrected by atmospheric temperature, T [34],
as follows:

τi = dli/c0 (3)

dli = n·rm/|n| (4)

rm = Pi − Pre f (5)

n = (cos Φ sin Θ, sin Φ sin Θ, cos(Θ) f or 0 ≤ Θ ≤ 2π, 0 ≤ Φ ≤ π/2 (6)

c0 = 331.3
√
(1 + T/273.15) (7)
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Figure 2. The relationship between the incident direction of the plane wave and the location of the
microphone.

A virtual source for calculating beam power was assumed to be a ground source, and
based on the drone’s headings, the azimuth angle, Φ, was detected from 0 to 360◦ and the
elevation angle, Θ, from 0 to 90◦. The definition of detection angles defined between the
drone’s heading vector and the direction of arrival of the detected acoustic source is shown
in Figure 3. The beam power calculated from the lower hemisphere range of the drone
explored the maximum beam power and estimated its orientation as the angle of arrival at
which the acoustic source enters.
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Figure 3. DOA estimation coordinate system of the microphone array based on drone heading
direction.

2.3. Acoustic Source Localization on the Ground

The location detection of acoustic sources generated on the ground is determined by
matching the state information the drone is flying with the direction of arrival of acoustic
sources estimated from the drone-mounted microphone array. The direction of arrival of
an acoustic source is estimated to be the azimuth and elevation angles with the maximum
beam power, based on the heading direction of the drone’s body frame coordinate sys-
tem. The body frame coordinate is calculated by the roll, pitch, yaw angle, and heading
vector based on the magnetic northward and navigation frame coordinate system from
the GPS [35–37]. The drone’s posture and position changing in real time is updated to
30 Hz on the data processing board with signals from the microphone. The drone-mounted
microphone array estimates the angle of arrival based on the drone’s heading direction. The
conversion of the heading direction to the navigation frame coordinate system coordinates
converts the estimated angle of arrival to the same criterion to geometrically derive the
point of intersection with the ground with geometric information above the ground, and
estimates this intersection as an acoustic source (Figure 4).
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2.4. Phased Microphone Array Mounted on the Drone

The microphone array system consisted of 4 microphone modules with support
mounts, and a signal processing board. One microphone module had a radius of 0.025 m,
and 8 microphones were arranged in a circular equidistant array (Figure 5). Each micro-
phone module was attached to the underside of the hemispherical dome to avoid the
flow-induced pressure caused by the propeller wake. As shown in Figure 6, four micro-
phone modules were attached to each end of the X-shaped mount with a radius of 0.54 m,
and thus an array of 32 microphones was implemented. The 32-channel microphone array
is a prototype built for the purpose of studying signal acquisition and location detection for
acoustic sources of interest outside the drone, designed to verify the performance of several
signal processing algorithms. The x-shaped support allows for adjustments of angle and
height, as well as the array shape. All the acoustic pressure signals measured on each mi-
crophone are time synchronized and can be collected via a separate data acquisition board
and stored in external memory in accordance with the acoustic event or trigger switch
from the external controller. For verification experiments, signals were manually recorded
using the trigger function of an external controller in time for acoustic source generation,
and acoustic signals stored on memory cards were post-processed. The microphone array
specifications are listed in Table 1.
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Table 1. Microphone array specifications.

Parameter Specification

Number of channels 32
Sensitivity −26 dBFS

Signal-to-noise ratio 64 dB(A)
Maximum pressure level 122.5 dB

Sampling rate 25.6 kS/s
Frequency range 25 Hz~12.8 kHz

3. Experiment

Experiments to verify the acoustic source localization performance were conducted
in a stadium at Chungnam National University. The experimental environment is shown
in Figure 7, indicating the locations of the acoustic sources, i.e., firecrackers, and where
the drone was hovering in place. To quantify the locations of the sources, a line in the
soccer stadium was referred to and the absolute location was measured using GPS. The
Universal Transverse Mercator Coordinate System (UTM) using the WGS84 ellipsoid was
used to derive plane coordinates based on the central position (Location 4) of the soccer
stadium. The locations of the acoustic sources on this plane coordinate and the location of
the drone are defined as absolute coordinates, and the results of estimating the location of
the acoustic source based on the drone’s GPS information can also be expressed.
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Figure 7. Experimental site. Firecracker locations (red circles) and drone location (blue arrow) in
hovering position.

The acoustic sources used for the experiment were commercial firecrackers, which
use gunpowder to generate short impulse signals after a certain period of time when
ignited. The acoustic pressure signal from the explosion of the firecracker used in the
experiment is shown in Figure 8. This signal was collected separately without a drone
and measured at a distance of about 20 m away from the location of the firecracker near
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the center of Figure 6. That is, the signal was completely unrelated to the operation of the
drone and was intended to observe pure acoustic signal features. Strong impulse signals,
such as explosions, are easy to distinguish in domains because of their strong amplitude
and clear features. In the practical problem of finding acoustic sources, impulses are only
one example of the detection targets, but they are important underlying experiments in the
goal of assessing the detection performance that this study wants to identify. Additionally,
it is possible to identify whether spectral subtraction methods work well for a specific
frequency or frequency band that wants to denoise. The impulse signal has the constant
response characteristic across all frequencies. In order to restore the energy of pure impulse
signals as much as possible in a state of noise mixing, it is important to subtract only a
specific frequency for the noise to be removed. The impulse is one of the useful targets for
providing basic clues to determine the acoustic frequency of the drone to be removed. It was
confirmed that the explosion signal was characterized by a short and strong shock sound
in an instant. The firecrackers were fixed just above the ground. The location estimation
results analyzed in the Results section were performed for approximately 20 min during
1 sortie flight. The firecrackers were detonated three times at each point in the order of
location numbers from L1 to L6. The interval between each three repeated explosions was
about 10 s. A straight line from the hovering position to the detonating location is described
in Table 1, up to 151.5 m. During this flight, the drone maintained a hovering position at an
altitude of about 150 m. The drone’s position was near the right-hand corner north of the
soccer stadium, heading southwards, and it maintained a stable hovering position due to
the stabilizer mode.
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Figure 8. Acoustic pressure signal from the explosion of a firecracker.

4. Results and Discussion

Figure 9 shows the acoustic pressure signals measured by the drone-mounted mi-
crophone system, in a hovering position. It is a spectrum that averages acoustic pressure
signals measured over 3 s using a total of 32 microphones. The frequency decomposition
was 1 Hz, and a 5 Hz high pass filter was applied. This spectrum is meaningful for identify-
ing noise characteristics that actually operate underneath the drone. Noise can be observed
together with atmospheric flow and background noise present in the atmosphere when the
actual drone is maneuvering. In particular, it is a very poor measurement environment in
which fluctuating pressure caused by the propellers’ wakes at the bottom of the drone di-
rectly affects the microphones. Analysis of the mean spectrum is the basis for determining
the frequency bands and amplitude that are necessary to determine the noise generated by
drones when flying, and that should be deducted when applying spectral subtraction.
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The drone operates with six rotors, each with two blades. The average motor rotation
at hovering was about 3000 rpm. In order to maintain the drone’s position during hovering,
the number of motor rotations changed by about 200 rpm. Changes in motor rotation are
directly related to the blade passing frequency and affect the harmonic components that
appear as tonal component features. In the average spectrum, six motors remained hover-
ing for three seconds, outputting slightly different rotations, resulting in peak frequencies
scattered for each harmonic. Accurately predicting the blade passing frequency and its
amplitude should be able to measure each motor’s rotation speed and rotation phase, as it
is efficient to match the same number of rotations in each motor from the point of view of
drone control.

With respect to the average motor rotation speed, the shaft rate frequency characteristic
was shown at about 50 Hz, the first harmonic of blade passing frequency at 100 Hz,
and harmonic frequencies for its multiples were observed. Harmonics are observed for
rotational frequencies up to 2 kHz, and the tonal frequencies shown here were caused
by propellers and motors. Broadband noise above 800 Hz is characterized by turbulence
around the propellers. Strong broadband components were observed in bands below
200 Hz. It was observed that this frequency band was mainly caused by atmospheric
flow and propeller wake at fluctuating pressures that directly affected the microphones,
resulting in high amplitude.

Spectral reduction methods were treated differently for each of the three frequency
band intervals in the frequency domain. The first band is the low frequency band below
200 Hz, mainly affected by atmospheric flow and rotor wake. Here, the fluctuating pressure
components caused by the flow around the microphones have the greatest effect on the
acoustic pressure of the entire frequency characteristics. In the signal we were trying to
detect, this band was completely eliminated because it contributed less and was generally
associated with high noise amplitude. The second band is from 200 to 1000 Hz, which
features the blade passing frequency of the rotor. Blade passing frequency is directly
affected by rotor rotation speed, as shown in Figure 9. Since six rotors were operating at
different rotations for maneuvering during flight, peak frequencies continued to change
over time even in hover flight. Since this peak frequency is difficult to detect accurately
in real time, the excess of amplitude as compared with the spectral reduction model was
deducted in the same amount as the model. The third band is over 1000 Hz, containing
motor noise, which makes it difficult to specify the frequency characteristics of this section.
As the processing method is not clear, we simply subtracted the amount of amplitude the
subtraction model had from the measured amplitude. The subtraction of amplitude is
calculated for each frequency in the spectrum and is in Pascal units, not dB scales. The
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analysis of impulse sources requires short-time spectral analysis to process signals in real
time. Short-time spectral analysis does not show a clear spectrum curve as compared
with the averaged spectrum. Small peak amplitudes were removed through the spectrum
smoothing filter to derive amplitude envelope similar to the mean properties and applied
as a subtraction model. For the subtraction model, the negative pressure data used signals
from the negative pressure signal window of interest, which took into account real-time
processing. The signals for the subtraction model were used one second before the window
frame of the acoustic pressure signal of interest, considering real-time processing. The
frequency and acoustic pressure level models to be subtracted calculate the spectrum of
acoustic pressure data measured one second in advance from real-time measured pressure
signals and derive the mean characteristics through a smoothing filter. It was not appropri-
ate to use a model to deduct long-time averaged signals because the impact of the number
of propeller rotations and wake changed rapidly as the drone was maneuvered.

Figures 10 and 11 show the data that indicate before and after the application of
the spectral subtraction method and are measured on microphone Channel 0 for the
first of three explosions at Location 1. Explosive sounds represent strong impulse signal
characteristics, and the ideal impulse signal has a flat amplitude in the whole band in the
frequency domain. The explosive sound of a firecracker affects amplitude over the entire
band of frequencies because it produces impulse waves due to rapid pressure changes.
Therefore, in order to effectively preserve the amplitude of the impulse signal, spectral
subtraction must be performed with the correct focus on the noise frequency. Figure 11
shows the result of applying spectral subtraction to extract frequencies for explosives. By
comparing the spectra, it can be observed that the low frequency band below 200 Hz has
been eliminated and that the strong tonal component between 100 and 1000 Hz has been
reduced. The 32-channel signal, which passed the spectral reduction method for each
channel, was restored back to the time domain signal by a 0.5 s, 50% overlap window
function. This process made it possible to specify the time the impulse signal and the time
the signal occurred in the time domain data.

The results of spectral subtraction on the impulse signals of firecrackers can be ob-
served more clearly in Figure 12. We compared the subtraction model obtained through
the smoothing filter, the measured signal, and the spectrum after applying the subtraction
method. Different subtractions can be distinguished in bands below 200 Hz, between
200 Hz and 1000 Hz, and above 1000 Hz. From this setting, we were able to effectively
extract the acoustic pressure of the impulse signal of the firecracker. Defining frequency
band discrimination was empirically distinguished here by already measured drone acous-
tic data, but in the future, it is considered that automatic detection will be possible if
the blade passing frequency is detected through the peak finder of the spectrum or if a
learned real-time adaptive discrimination filter is used. In addition, the process of spectral
subtraction applied in this study can be applied to clarify other acoustic sound sources
such as voices. However, this study only confirmed the analysis of the impulse signal
and it is necessary to verify the performance of other sounds separately. The spectral sub-
traction method, implemented separately for each frequency band, was used to eliminate
frequencies affected by the drone’s own noise and found to be effective in enhancing the
signal-to-noise ratio of acoustic pressure. Especially, it is effective in situations where it
is difficult to accurately estimate the harmonic components of blade passing frequency
that constantly change during flight. However, if a tonal sound source such as a whistle
is detected in a band with a smoothing filter to remove the harmonics of blade passing
frequency, it may be considered as blade passing frequency, which may cause a decrease in
the signal-to-noise ratio. If this situation is to be detected, it is necessary to consider other
ways to only subtract blade passing frequencies.
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Figure 12. Comparison of the application results of spectral subtraction method to impulse signal
(spectra for 4.8 s frames in the spectrogram of Figures 10 and 11).

Time-domain signals with improved signal-to-noise ratio by spectral subtraction
methods become input signals that calculate beam power for detecting arrival angles.

Although the beamforming method has the effect of improving the signal-to-noise
ratio according to the correlation by phase difference calibration, it is difficult to detect
target acoustic sources due to reduced beamforming performance if there is a strong
correlation in the proximity field, such as propeller noise. Figure 13 shows the beam power
calculated using signals measured from 32 microphones mounted on the drone. The beam
power represents the magnitude relative to the lower directions of the drone based on the
center point of the drone.

Drones 2021, 5, x FOR PEER REVIEW 14 of 18 
 

at each explosion location from Locations 1 to 6. The remaining firecrackers exploded se-
quentially, seconds apart after the first explosion. 

 
Figure 13. Beam power results at Location 1 for the first explosion. 

 
Figure 14. The amount of change in position and tilt angle during flight. 

The estimated angle of arrival at the time an acoustic source was detected and the 
position and posture data of the drone could be corrected to specify the source location 
on the ground. Figure 15 shows the results of determining the estimated accuracy of the 

0 500 1000 1500
-0.5

0.0

0.5

Data

Time of explosion

0 500 1000 1500
-0.5

0.0

0.5

0 500 1000 1500
-0.5

0.0

0.5

0 500 1000 1500

-2.0

0.0

2.0

0 500 1000 1500

-2.0

0.0

2.0

0 500 1000 1500
Time [s]

-2.0

0.0

2.0

L1 L2 L3 L4 L5 L6

Figure 13. Beam power results at Location 1 for the first explosion.

In general, −3 dB is judged as the effective range as compared with the calculated
maximum beam power. Since the 32-channel microphone array used in this study was
not considered to be optimized for beamforming methods, sidelobes were also prominent,
but we found that the direction of arrival calculated with maximum beam power was
the direction of arrival for the actual acoustic source. Beamforming methods are also
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computable in frequency domains, where signals that are characterized across broadband,
such as impulse signals, are useful for finding features that are calculated in the time
domain. Improving beam power performance requires the optimization of the number of
available microphones, the maximum implementable aperture size, and the microphone
spacing that matches the frequency characteristics of the target acoustic source. Generally,
the greater the number of microphones and the larger the aperture size, the better the
performance tends to be, but additional consideration is needed to minimize the operation
and acoustic measurement interference of drones to be mounted on drones.

The direction of arrival of acoustic waves was estimated by dividing the maximum
beam power into the azimuth and elevation angles based on the heading of the flying
drone. The drone’s headings are related to the body coordinate system, and the roll, pitch,
and yaw angle are output from the drone’s flight control system in the reference direction.
The pose angle of the drone and the estimated arrival angle of the acoustic wave were
corrected relative to the ground. Figure 14 shows the record of flight posture and positional
data collected from the time of takeoff until the drone lands after the completion of the
measurement and maintains hovering during experiments measuring the sound of the
explosion. The flight data showed the amount of change based on the average value of the
hovering time interval. The time data also showed when the first explosion was detected
at each explosion location from Locations 1 to 6. The remaining firecrackers exploded
sequentially, seconds apart after the first explosion.
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The estimated angle of arrival at the time an acoustic source was detected and the
position and posture data of the drone could be corrected to specify the source location
on the ground. Figure 15 shows the results of determining the estimated accuracy of the
acoustic sources above the ground by the error of the horizontal and vertical angles. In this
graph, the angle error of 0 degrees implies the true direction for the actual position based
on GPS localization, and the measurement error represents the directional error angle
that occurred from the true direction. In this experiment, acoustic source detection was
performed up to a maximum ground distance of 151.5 m. The mean estimation error for
three repeated impact sounds confirmed the detection performance of 8.8 degrees for the
horizontal angle error and 10.3 degrees for the vertical angle error (Table 2). The estimated
direction error for the entire location tended to increase both horizontally and vertically as
the ground distance increased; the vertical angle error tended to be slightly higher than
the horizontal angle error. The estimation error was the most sensitive during the drone’s
positional information correction process. In other words, we experimentally confirm that
the location and posture of the drone at the time of detecting an acoustic source of interest
must be applied to enable accurate localization.
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Table 2. Estimated angle of arrival error.

Ground Distance
(m) Explosion Location Mean Azimuth

Angle Error (Degree)
Mean Elevation

Angle Error (Degree)

25.3 L6 2.42 3.42
48.0 L1 1.40 1.42
57.6 L4 3.55 7.61
67.3 L5 0.80 8.67
96.8 L2 6.40 5.07
151.5 L3 8.81 10.39

5. Conclusions

Using an array of microphones mounted on a drone, we described how to detect the
location of acoustic sources generated on the ground and confirmed the performance of the
system through experiments. The spectral subtraction method was applied to enhance the
signal-to-noise ratio of the acoustic source of interest and was effective in eliminating noise
generated by the drone. It was able to remove the fluctuating pressure and turbulence noise

22



Drones 2021, 5, 75

affected by the blade passing frequency of drone propellers and the wake, and to preserve
the impact sound that was intended to be detected. Furthermore, we confirmed that the
direction of arrival could be estimated when applied to beamforming methods that detected
the direction of arrival of acoustic sources using phase difference relationships, and that the
phase difference relationship could be effectively restored even with spectral subtraction
methods. It is important to highlight that the spectral subtraction method implemented in
this study was able to improve the signal-to-noise ratio, and also to effectively preserve the
phase for each microphone. A drone mounted with a 32-channel microphone array was
used to detect acoustic sources, and flight data could be used to detect the locations on the
ground. We implemented a valid acoustic source detection method by fusing flight data
at the same time as when the acoustic source was detected. The detection performance of
acoustic sources with a ground distance of 151.5 m was confirmed with a horizontal angle
error of 8.8 degrees and a vertical angle error of 10.3 degrees.

In this study, we proposed and implemented the necessary elements to implement
a method for exploring external sound sources of interest detected by drones. Although
each element of the technique is not entirely state-of-the-art, it is meaningful to specify and
implement what must be performed when detecting acoustic sources using a drone, and to
describe the process of connecting them. Language recognition is a detection target that
should immediately become of interest. It can be used to detect people or to strengthen the
voice of a person targeted from the air. Drones, especially for lifesaving activities, can be a
very useful technology. There have already been several studies on language recognition
technology using deep learning, and in the near future, applications of this technology
are expected. Deep learning can also be applied to noise cancellation technology for the
drone’s self-noise. From a hardware perspective, there should also be additional studies on
optimal arrays that can effectively fit drones with fewer microphones to improve location
detection performance.
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Abstract: This paper focuses on safe navigation of an unmanned surface vehicle in proximity to
a submerged autonomous underwater vehicle so as to maximise short-range, through-water data
transmission while minimising the probability that the two vehicles will accidentally collide. A sliding
mode navigation law is developed, and a rigorous proof of optimality of the proposed navigation
law is presented. The developed navigation algorithm is relatively computationally simple and easily
implementable in real time. Illustrative examples with extensive computer simulations demonstrate
the effectiveness of the proposed method.
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1. Introduction

Recent technological developments have made autonomous and unmanned maritime
vehicles realistic alternatives to traditional vessel-based survey and monitoring systems [1].
Potential benefits of using unmanned maritime vehicles include reduced operational costs,
improved safety and reliability, longer monitoring durations and mission repeatability.
Two important vehicle classes are unmanned surface vehicles (USVs) and autonomous
underwater vehicles (AUVs). Teams consisting of collaborating vehicles of both types can
be used in applications that include safety and rescue missions, environmental disaster
assessment, underwater geology, marine archeology, military survey, and detection and
monitoring of marine fauna [2]. The latter area includes population surveys, migration
tracking and vocal animal monitoring [3]. Some applications of AUVs and USVs for ocean
wildlife monitoring and mapping are given in [4,5].

In this paper, we address the problem of a USV and an AUV navigating collaboratively
to exchange data at close range. Under the considered scenario, the AUV collects some
information in the submerged mode, e.g., from a seabed survey in a disaster assessment
application, or intelligence information in military applications, with remote supervision
from a USV. It must periodically rendezvous with the USV to offload a summary that the
USV can transmit for operator inspection. The AUV could come to the surface for data
transmission via one or more terrestrial communication systems (e.g., Wi-Fi), but in doing
so it would lose most of its control authority while being exposed to rapidly changing sea
surface conditions and the risk of collision with vessels [6]. We leave this difficult problem for
future investigation and consider a different scenario; transmission of data while the AUV
remains submerged, noting however that underwater data exchange using acoustic modems
is notoriously slow, unreliable and range-dependent [7]. We are therefore motivated to find a
solution that minimises the separation between the AUV and the USV to maximise the data
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transmission rate, while remaining sufficiently far apart to avoid the risk of collision with the
supervising USV if the AUV is unexpectedly forced to come to the surface.

We state a constrained optimal control problem in which the AUV and USV navigate
collaboratively to maximise the amount of data transmitted while keeping the probability
of collision between them sufficiently small. We prove that the optimal solution to this
problem is delivered by a navigation algorithm belonging to the class of sliding mode
control laws [8,9].

Various problems of controlling multi-vehicle systems to achieve a certain objective
are referred to as cooperative control; see, e.g., [10,11]. Thus, the problem studied in this
paper falls into the domain of collaborative control.

The remainder of the paper is organised as follows. In Section 2, we give a brief survey
of relevant publications in the field. In Section 3, we present the system model and state
the problem under investigation. In Section 4, we present the proposed navigation law
together with its theoretical analysis. Computer simulations illustrating the developed
navigation method are conducted in Section 5 to show the performance of the proposed
algorithm. Finally, a brief conclusion and possible directions for future research are given
in Section 6.

2. Related Work

In recent years, research publications on using collaborating autonomous unmanned
vehicles in monitoring applications have concentrated on unmanned aerial vehicles (UAVs);
in particular, a review of recent results on deployment and navigation of teams of collabo-
rating UAVs for surveillance can be found in the survey paper [12].

Research concerning autonomous marine vehicles working in collaboration has been
more limited, possibly due to the relatively high cost associated with acquiring and operat-
ing such systems. However, the literature associated with this field is increasing.

Recent reviews of path planning for AUVs can be found in [13–15]. Teams of collabo-
rating AUVs are studied in [16], where issues of navigation, localisation and underwater
communication are analysed and various types of missions for AUV teams are discussed.
Another approach for cooperative navigation of teams of AUVs was developed in [17].

Navigation of USVs is studied in [18]. The paper [19] addresses navigation of collabo-
rating USVs for intruder interception on a marine region boundary. The publication [11]
addresses a problem of path planning for a team of collaborating vehicles in marine safety
and rescue missions.

Collision avoidance problems for various types of unmanned vehicles have attracted a
lot of attention in recent decades; see, e.g., the survey papers [20,21]. Most of this research has
concentrated on two-dimensional problems, usually for ground mobile robots [22]; however,
many proposed collision avoidance algorithms may be extended to obstacle avoidance for
USVs; see, e.g., [23,24]. Three-dimensional collision avoidance problems are also attracting
attention; see, e.g., [25–28]. Most of the research on 3D collision avoidance concentrates
on UAV navigation; however, many developed methods can be extended to collision-free
navigation of AUVs [29,30]. Furthermore, some machine-learning-based approaches to AUV
path planning with obstacle avoidance were recently proposed in [31,32].

At present, there are relatively few examples of systems involving collaborating AUVs
and USVs [33,34], although Ocean Infinity used USV-AUV teams extensively for search
operations connected with the disappearance of Malaysian Airlines flight MH370 [35].
This is a quite novel research area. The paper [6] addresses a navigation problem for an
AUV-USV system for ocean sampling, environmental monitoring and providing real-time
pollution measurement data. The paper [36] develops a method for a team of collaborating
robots to sample primary production in the ocean. Furthermore, [37] addresses a control
problem for a USV that deploys a remotely operated vehicle (ROV); however, unlike the
current paper, [37] does not study a scenario with acoustic underwater communication,
because the USV and the ROV are connected by an underwater cable. Finally, a problem
involving collaboration between a UAV and an AUV was studied in [38].
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3. Problem Statement

We consider an autonomous underwater vehicle (AUV), submerged in a 3D halfspace.
Let p(t) = [x(t), y(t), z(t)] be the AUV’s coordinates at time t, where x(t) and y(t) are
the coordinates in the horizontal plane parallel to the ground and z(t) is the depth. We
consider the following well-known model for the motion of the AUV:





ẋ(t) = v(t) cos(θ(t)),
ẏ(t) = v(t) sin(θ(t)),
θ̇(t) = ω(t),
ż(t) = u(t),
−Vmax ≤ v(t) ≤ Vmax,
−Wmax ≤ ω(t) ≤Wmax,
−Umax ≤ u(t) ≤ Umax.

(1)

Here θ(t) is the heading of the AUV; v(t), ω(t) and u(t) are its linear horizontal,
angular and vertical speeds, respectively; and Vmax, Wmax and Umax are given positive
constants indicating the maximum linear, angular and vertical speeds, respectively. The
linear horizontal speed v(t), angular speed ω(t) and the vertical speed u(t) are the control
inputs of the system (1). Furthermore, the AUV depth z(t) should satisfy the constraints:

Zmin ≤ z(t) ≤ Zmax (2)

where 0 < Zmin < Zmax are given constants. Furthermore, there is a moving unmanned
surface vehicle (USV), with motion described by the following equations:





ẋs(t) = vs(t) cos(θs(t)),
ẏs(t) = vs(t) sin(θs(t)),
θ̇s(t) = ωs(t),
−Vmax

s ≤ vs(t) ≤ Vmax
s ,

−Wmax
s ≤ ω(t) ≤Wmax

s .

(3)

Here θs(t) is the heading of the USV; vs(t) and ωs(t) are its linear horizontal and
angular speeds, respectively; Vmax

s and Wmax
s are given positive constants indicating the

maximum linear and angular speeds of the USV.
Typically, AUVs are battery-powered devices that move slowly—most cruise at be-

tween 1.5 and 2 ms−1 and have limited acceleration. In contrast, USVs that are used for
supervision typically move and accelerate more quickly and have much better situational
awareness. Therefore, we assume that it is appropriate to minimise the requirement for the
AUV to manoeuvre; the USV is responsible for controlling its position relative to the AUV
at all times.

The AUV collects some information while submerged, which it must periodically trans-
mit to the USV. The USV (or surface vessel under autopilot control) informs the AUV that it is
ready to exchange acoustic messages. The submerged AUV comes sufficiently close to the
USV for acoustic communication and maintains a steady course, speed and depth.

In this scenario, we assume that at least one and potentially two sets of acoustic
modems are transmitting data between the USV and the AUV: medium-range acoustic
modems that transmit control instructions and telemetry and optionally short-range acous-
tic modems operating in a higher frequency band that transmit data at a higher rate. We
assume that telemetry and control messages can be short and infrequent, but data trans-
mission is an extended operation that is sensitive to the separation and relative position
of the two vehicles; thus, it is advantageous that they maintain a constant separation and
mutual orientation while data transmission is underway.
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Because the telemetry channel has very low bandwidth, we assume that the AUV
periodically transmits its state information to the USV, but it relies on the USV to manoeuvre
safely during data transmission and does not monitor state transmissions from the USV.
Thus, the USV can maintain an estimate of the coordinates, speed and heading of the AUV,
but the AUV does not know, or does not react to, the state of the USV.

In this paper, we seek to develop an optimal strategy for reliably transmitting the data
from the submerged AUV to the USV while avoiding collisions between the vehicles.

We consider a time interval [t0, t0 + T]. Let N > 0 be a given integer. We divide
[t0, t0 + T] into N equal intervals of length δ, δ := T

N . At any time instant
t0, t0 + δ = δ, t0 + 2δ, . . . , t0 + T, the AUV with probability p transmits some messages to
the USV using an acoustic communication system. Here p is a given constant such that
0 < p ≤ 1. The probability of successful reception of the message by the USV is described
by a given decreasing function P(d(t0 + kδ)) such that 0 < P(d(t0 + kδ)) < 1, where d(t)
is the distance between the AUV and the USV at time t. Here we consider the problem
of missed reception as the probability of successful reception is P(d(t)), where d(t) is the
distance between the autonomous vehicles. Since P(d(t)) < 1 for all d(t) > 0, with some
non-zero probability the signal will be missed. Moreover, the USV needs to avoid collision
with the AUV. Let D2 > D1 > 0 be given constants. We assume that to avoid collisions, the
distance d(t) between the AUV and the USV at time t should always satisfy the constraint:

d(t) ≥ D1. (4)

Furthermore, we assume that any distance d(t) ≥ D2 is totally safe; however, it is
desired that the USV would be at distances between D1 and D2 from the AUV in as short
time as possible to minimise the risk of errors in mutual position estimates causing a
collision between the USV and the AUV. More precisely, we introduce some function C(d)
defined for d ≥ D1 and decreasing such that C(d) = 0 for all d ≥ D2. We need to satisfy
the following requirement: ∫ t0+T

t0

C(d(t))dt ≤ ε, (5)

where ε > 0 is a given small probability, and the integral in (5) describes the probability
of collision between the vehicles at a distance between D1 and D2 over the time interval
[t0, t0 + T].

Furthermore, the motion of the AUV and the USV should satisfy the following safety
requirement that guarantees smooth enough changes of the distance between the vehicles:

− h ≤ ḋ(t) ≤ h, (6)

where h > 0 is a given constant.
Now, let N(t0, t0 + T) be the number of messages from the AUV successfully re-

ceived by the USV over the time interval [t0, t0 + T], and let E(·) denote the mathematical
expectation of a random variable.

Problem Statement: To construct control inputs v(·), ω(·), u(·), vs(·), ωs(·) for the
AUV (1) and the USV (3) so that the optimal control problem

E(N(t0, t0 + T))→ max (7)

subject to the constraints (2), (4)–(6).

4. Navigation Law

We propose the following navigation law: at time t = 0, the USV selects some heading
θ0 and follows in this direction using the following sliding mode controller:

ωs(t) = −Wmax
s sgn[θs(t)− θ0] (8)
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where sgn[·] is the sign function defined as follows:

sgn[x] :=





1 i f x > 0,
0 i f x = 0,
−1 i f x < 0.

(9)

Furthermore, the USV transmits this direction θ0 to the AUV, which uses an
analogous controller:

ω(t) = −Wmaxsgn[θ(t)− θ0]. (10)

It is obvious that after some time t0 ≥ 0, both vehicles will have headings θs(t) = θ(t) = θ0
for all t ≥ t0 with any control inputs v(t), u(t), vs(t). Notice that the controllers (8) and (10)
belong to the class of sliding mode controllers [8] or switched controllers [39].

Let ne and Ne be given positive integers. We consider the following class of piecewise
constant functions e(t) that can change values at discrete time instants t0, t0 + δe, t0 + 2δe, . . .
where

δe :=
T
Ne

. (11)

Moreover, e(t) takes values only in the discrete set of 2ne + 1 numbers:
{

jeh
ne
∀je = −ne,−ne + 1, . . . , ne

}
. (12)

Now, we propose the following optimisation scheme. We take all possible piecewise
constant functions e(t) with values from the set (12) changing values at discrete time
instants t0, t0 + δe, t0 + 2δe, . . . and introduce the functions

D(t) := d(t0) +
∫ t

t0

e(τ)dτ (13)

for all t ∈ [t0, t0 + T].
Furthermore, we consider only pairs (e(t), D(t)) such that d(t) := D(t) satisfies the

constraints (4) and (5). Let S denote the set of all such pairs. Now, we select (e0(t), D0(t))
such that D0(t) delivers the maximum of the cost function

F (d(·)) :=
N

∑
k=0

P(D(t0 + kδ)) (14)

over all (e(t), D(t)) ∈ S .
In other words, we select the function e(t) using the brute force method, i.e., complete

search in the set of all possible piecewise constant functions e(t) taking values from the
set (12). Note that at any discrete time instant, there are (2ne + 1) options of values of e(t).
Then, for Ne instants, there are (2ne + 1)Ne possible functions e(t). However, in practice, as
we only employ functions e(t) that meet the constraints (4) and (5), we get a much smaller
number of elements in the set S , which greatly reduces the computational complexity of
this optimisation scheme.

Now we consider the following navigation law over [t0, t0 + T]:
NL1: The AUV chooses an arbitrary control input 0 < v(t) ≤ V̂, where 0 < V̂ ≤ Vmax

some given constant, and the control input ω(t) is defined by (10). Furthermore, the AUV
chooses the control input u(t) defined by u(t) = 0.

NL2: The USV applies the control inputs vs(t) defined by

vs(t) = v(t)− e0(t)
cos(α(t))

, (15)
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where α(t) is the angle between the heading θ0 and the line connecting the current positions
of the AUV and the USV. Furthermore, the control input ωs(t) is defined by (8).

Our main theoretical result requires some assumptions.

Assumption 1. The following inequalities hold:

Zmin ≤ z(t0) ≤ Zmax, (16)

d(t0) ≥ D1. (17)

(2) and (4) hold at time t = t0.

Assumption 2. The following inequality holds:

V̂ +
D1h√

D2
1 − z(t0)2

≤ Vmax
s . (18)

Theorem 1. Consider the optimisation problem (7) for the AUV (1) and the USV (3) subject to the
constraints (2), (4)–(6). As ne → ∞ and Ne → ∞, the value of the cost function (7) delivered by
the navigation law NL1, NL2 converges to the global supremum in (7).

Proof. Under the navigation law NL1, NL2, the AUV is moving in a plane that is parallel
to the surface, so z(t) is constant; therefore, Assumption 1 implies that the constraint (2)
always holds. Furthermore, under the navigation law NL1, NL2, the AUV and the USV are
moving along two parallel straight lines with the direction θ0. Since the AUV and the USV
are moving in the direction θ0, it follows from (8) and (10) that ωs(t) = ω(t) = 0 for all
t ∈ [t0, t0 + T]. This implies that the derivative ḋ(t) of the distance d(t) between the AUV
and the USV satisfies

ḋ(t) = −v(t)cos(α(t)) + vs(t)cos(α(t)); (19)

see, e.g., [22]. Moreover, (19) implies that if the USV’s control input vs(t) is defined by (15)
with some function e0(t), then

ḋ(t) = e0(t), D(t) = d(t) (20)

where D(t) is defined by (13) with e(t) = e0(t). Furthermore, in this case, the cost
function (7) is equal to the function (14). It is also obvious that the cost function (7) and the
constraints (4)–(6) depend only on d(t). Therefore, the navigation law NL1, NL2 delivers
the maximum in the optimisation problem (7) subject to the constraints (2), (4)–(6) in the
class of control inputs such that ḋ(t) is piecewise constant with constant values on each
of Ne intervals from the class (12). Any ḋ(t) can be approximated with an arbitrary small
precision by piecewise constant functions. Therefore, we can build a sequence of e0(t) from
the above class for which the cost function (14) converges to the global supremum in (7) as
ne → ∞ and Ne → ∞. Finally, Assumption 2 obviously guarantees that the control input
v(t) of the AUV defined by (15) satisfies the constraint −Vmax ≤ v(t) ≤ Vmax.

Remark 1. It should be pointed out that the proposed algorithm produces an asymptotically
accurate approximation of the global optimum in the sense that as the parameters ne and Ne are
large enough, the obtained trajectories converge to the optimum.

Remark 2. A physical interpretation on the inequalities (16) from Assumption 1 is quite clear.
They guarantee at the initial time that the AUV satisfies the depth constraint (2) and the safety
constraint (4). Furthermore, a physical interpretation of the inequality (18) from Assumption 2 is
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that the maximum linear speed of the USV is larger than the current linear speed of the AUV with
some margin that allows the USV to perform its manoeuvre as the USV is responsible for controlling
its position relative to the AUV. Notice also that Assumption 2 is an assumption of a technical
nature guaranteeing that the control input vs(t) of the USV defined by the navigation law NL1,
NL2 satisfies the constraint −Vmax

s ≤ vs(t) ≤ Vmax
s . The requirement (18) is quite conservative,

and in practice, the constraint −Vmax
s ≤ vs(t) ≤ Vmax

s often holds even when Assumption 2 is
not satisfied.

Remark 3. Notice that in practice, due to lack of communication and/or loss of data transmitted
from the AUV to the USV, the USV would model the position of the AUV with a robust Kalman
filter [40], algorithms of state estimation over communication channels [41] or similar techniques as
uncertainty would increase whenever there was a significant period when the USV did not receive a
state transmission from the AUV. However, we do not study this issue in this paper.

5. Illustrative Examples and Computer Simulations

In this section, we present results of computer simulation that illustrate the perfor-
mance of the navigation NL1, NL2. Simulations are performed in MATLAB software.
We take times t0 = 20 s and T = 50 s. Then we apply the navigation law NL1, NL2
ten times over the time intervals [20 s, 70 s], [70 s, 120 s], . . . , [470 s, 520 s]. The val-
ues of the parameters used in simulations are Ne = 5, ne = 5, N = 50, D1 = 10 m,
D2 = 110 m, vs(t) = 1.7 ms−1, h = 0.3 ms−1, θ0 = 60◦, t0 = 20 s, Vmax = 2.24 ms−1,
Wmax = 0.12 rads−1, Zmin = 2 m, Zmax = 150 m, Umax = 2 ms−1, Vmax

s = 2.74 ms−1,
Wmax

s = 0.12 rads−1, T = 50 s, δ = 1 and δe = 10. Initially, the AUV and USV are at
different coordinates and have different headings. The position of the AUV is [0, 0,−5]
with initial heading 25◦, while the USV is at [27, 46.75, 0] with initial heading 0◦. The de-
creasing function used for the Equation (5) is defined as C(d) = 1/d and the cost function
for the Equation (14) is described as P(d) = 1/(1.2 + d). The simulation runs for 520 s.
Initially, in the first 20 s, both vehicles steer the same course θ0. Thereafter, in the next 500 s,
the AUV sends data to the USV. This interval is split into 10 equal intervals of 50 s each.
The navigation algorithm is tested in three different scenarios as follows. Except where
indicated, the parameters and initial conditions remain the same.

Note that the probability function P(d) that we have assumed does not accurately
reflect the performance of any particular acoustic or other underwater communications
device, but the control law is not critically dependent on its particular form, so long as it is
monotonically decreasing. Better models of particular modems could be included through
the use of an underwater communication simulation system such as AquaSim NG (see, for
example, [42]). The same is true for the function C(d), as the proposed control law is not
critically dependent on its particular form, so long as it is monotonically decreasing.

5.1. Scenario I

The AUV is travelling at a constant speed vs = 1.7 ms−1, and the USV transmits a new
direction angle θ0 = 60◦ to the AUV at time t = 0. Once the AUV obtains information, both
vehicles travel in the same direction. Within 20 s, both of them achieve the same heading
angle; see Figures 1 and 2. The chattering visible in the figures is due to the presence of a
sign function in the controller. At the end of 20 s, Assumption III.1 is verified; subsequently,
the value of the e(t) function is generated for the next 50 s; see Figure 3. Once calculated,
the navigation law NL2 applies to the USV, controlling the speed of the USV; see Figure 4.
It also causes the value of d(t) to fluctuate as shown in Figure 5. In a nutshell, at the end of
each interval, d(t) is calculated to compute e(t) for the next interval. The whole process
is repeated until the end of the simulation. In each interval, the piecewise constant ε has
to be selected carefully before calculating e(t); see Figure 6. In general, the distance is
increased to avoid collision and decreased to improve data transmission. As observed from
Figure 5, over ten intervals, the separation between the AUV and the USV decreases, and
the probability of collision increases slightly. The total amount of data sent from AUV to
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USV until time t, where t ∈ [t0, t0 + 10T], is illustrated in Figure 7. As seen from the figure,
when NL1 and NL2 are active, the cumulative number of data packets received by USV at
time t is greater than when only NL1 is active. The trajectory of both vehicles looks straight
after the first 20 s. The AUV follows the USV as shown in Figure 8.

Figure 1. Scenario I: Variation of AUV’s heading angle with time.

Figure 2. Scenario I: Variation of heading angle of USV with time.
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Figure 3. Scenario I: Variation of function e(t) with time.

Figure 4. Scenario I: Variation of speed of AUV and USV with time.
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Figure 5. Scenario I: Variation of d(t) with time.

Figure 6. Scenario I: Variation of ε with time.
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Figure 7. Scenario I: Cumulative data packets received by USV.

Figure 8. Scenario I: Trajectory of AUV and USV in 3D space.

5.2. Scenario II

White noise is added to the motion models of the USV and the AUV. A normally distributed
random signal W(t) = [w1(t) w2(t) w3(t) w4(t)]T and N(t) = [n1(t) n2(t) n3(t) n4(t)]T with
zero mean is added to the motion model of the AUV and the USV. The variance of W(t) is
[1.5 1.5 0.001 0.009]T and N(t) is [2.5 2.5 0.001 0.1]T, respectively. As a result, d(t),
the relative speed and bearing angles of the AUV and the USV, has noise components; see
Figures 9–12. Overall, the system is stable in the presence of uncertainty in the model. In
comparison with the previous scenario, trajectories of variables, such as d(t), constant ε, speed
of USV and e(t) are different. The values of d(t) are distinct at each time interval. The e(t)
function depends on d(t) while the other parameters are constant. Therefore, the noisy model
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leads to different d(t) from Scenario I after the initial 20 s. Dissimilar e(t) functions are computed
for subsequent intervals. Hence, by the end, completely different trajectories of d(t), e(t), ε and
the speed of the USV are observed in Figures 9, 10, 13 and 14. The paths of the AUV and USV
during the simulation time are shown in Figure 15. The uneven motion is due to the noise. The
amount of data transmitted from AUV to USV at time t is similar to Scenario I as seen from
Figure 16.

Figure 9. Scenario II: Variation of d(t) with time.

Figure 10. Scenario II: Variation of speed of AUV and USV with time.
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Figure 11. Scenario II: Variation of AUV’s heading angle with time.

Figure 12. Scenario II: Variation of USV’s heading angle with time.
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Figure 13. Scenario II: Variation of function e(t) with time.

Figure 14. Scenario II: Variation of ε with time.

39



Drones 2022, 6, 27

Figure 15. Scenario II: Trajectory of AUV and USV in 3D space.

Figure 16. Scenario II: Cumulative data packets received by USV.

5.3. Scenario III

This scenario tries to mimic real-life conditions and test the performance of the algo-
rithm. White noise is added to the speed of the USV and the motion models of both vehicles.
Like the previous case, noise signals W(t) and N(t) are added to the motion models. More-
over, M(t) is added to the speed of the USV. The variance of W(t) is [1 1 0.001 0.01]T ,
N(t) is [1.5 1.5 0.002 0.005]T and M(t) is 0.0001, respectively. A sinusoidal periodic
function is also added to vs(t) to replicate the effect of sea surface waves on the USV. The
amplitude of the wave is 0.2 ms−1 and its frequency is 0.07 rads−1. Graphs of v(t) and
vs(t) are shown in Figure 17. As observed, the speed of the USV varies sinusoidally. And
as expected, the distance d(t) in Figure 18, constant ε in Figure 19 and the function e(t) in
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Figure 20 have different trajectories compared to the previous two scenarios. However,
notice that in all the above scenarios, overall separation has decreased over the ten intervals.
Therefore, the amount of data transfer is overall similar to previous scenarios; see Figure 21.
The variation of the bearing angles of the AUV and the USV is similar to the previous case.
See Figures 22 and 23. The path followed by both vehicles during the complete simulation
shown in Figure 24 is similar to Figure 15.

Figure 17. Scenario III: Variation of speed of AUV and USV with time.

Figure 18. Scenario III: Variation of d(t) with time.
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Figure 19. Scenario III: Variation of ε with time.

Figure 20. Scenario III: Variation of function e(t) with time.
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Figure 21. Scenario III: Cumulative data packets received by USV.

Figure 22. Scenario III: Variation of AUV’s heading angle with time.
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Figure 23. Scenario III: Variation of USV’s heading angle with time.

Figure 24. Scenario III: Trajectory of AUV and USV in 3D space.

6. Conclusions and Future Work

A novel navigation problem for two collaborating marine unmanned vehicles was
introduced. In this problem, a submerged autonomous underwater vehicle acoustically
transmits collected data to an unmanned surface vehicle. The aim is to navigate two
autonomous vehicles so that the amount of data successfully transmitted between them
using underwater acoustic communications is maximised while collisions between the
vehicles are avoided. We proposed an easily implementable, real-time navigation algorithm
belonging to the class of sliding mode control laws. Moreover, the developed autonomous
navigation algorithm is asymptotically optimal in the sense that as the interval subdivision
parameters of the algorithm tend to infinity, the value of the cost function describing the
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amount of successfully transmitted data converges to the global maximum. Illustrative
examples and computer simulations showed the efficiency of the proposed approach.

There is considerable scope to improve the results from this preliminary investigation,
particularly in regards to improved models for the system dynamics and the underwater
communication systems. The models (1) and (3) studied in this paper are well-known
kinematic models. An important direction for future research is to study more advanced
models, taking into account the vehicles’ dynamics, hydrodynamic effects and underwater
acoustic communications characteristics. Then the navigation laws developed in this paper
will be supplemented with robust controllers such as H∞ controllers (see, e.g., [43] and
references therein) that will stabilise vehicle motion and reduce fluctuations in vehicle
headings. Moreover, the next stage of research will involve implementation and testing the
developed control algorithms with real marine vehicles in a real environment. We hope to
pursue these directions in future work.

In this paper, we have considered the case of a USV operating in proximity to a
submerged AUV. A more challenging scenario is the case of a USV operating in proximity
to a surfaced AUV. Under this scenario, the AUV has restricted or zero capability to
manouevre. It is also subject to wave motions and surface currents that may cause it to
sporadically submerge, at which times radio-frequency communications such as Wi-Fi will
be lost, while acoustic connectivity will be particularly unreliable. This is an important and
interesting direction for future research.

Finally, a challenging direction of future research is to extend the studied problem to
scenarios with a USV collaborating with a few AUVs and even further to teams consisting
of several USVs and AUVs. In such scenarios, we will need to develop some sophisticated
decentralised scheduling algorithms that decide how each AUV selects a suitable USV
and a time period for acoustic communication. Some existing algorithms for large teams
of cooperating UAVs (see [12] and references therein) might be modified for this class
of problems.
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Abstract: Unmanned aerial vehicles (UAVs) can obtain high-resolution topography data flexibly and
efficiently at low cost. However, the georeferencing process involves the use of ground control points
(GCPs), which limits time and cost effectiveness. Direct georeferencing, using onboard positioning
sensors, can significantly improve work efficiency. The purpose of this study was to evaluate the
accuracy of the Global Navigation Satellite System (GNSS)-assisted UAV direct georeferencing
method and the influence of the number and distribution of GCPs. A FEIMA D2000 UAV was used
to collect data, and several photogrammetric projects were established. Among them, the number
and distribution of GCPs used in the bundle adjustment (BA) process were varied. Two parameters
were considered when evaluating the different projects: the ground-measured checkpoints (CPs) root
mean square error (RMSE) and the Multiscale Model to Model Cloud Comparison (M3C2) distance.
The results show that the vertical and horizontal RMSE of the direct georeferencing were 0.087 and
0.041 m, respectively. As the number of GCPs increased, the RMSE gradually decreased until a
specific GCP density was reached. GCPs should be uniformly distributed in the study area and
contain at least one GCP near the center of the domain. Additionally, as the distance to the nearest
GCP increased, the local accuracy of the DSM decreased. In general, UAV direct georeferencing has
an acceptable positional accuracy level.

Keywords: unmanned aerial vehicle (UAV); structure from motion (SfM); direct georeferencing;
ground control point (GCP); accuracy assessment; point cloud

1. Introduction

As a new aerial survey platform, unmanned aerial vehicles (UAVs) have attracted
increasing attention worldwide. Compared with methods based on satellite or airborne
sensors, UAVs provide user-defined spatial and temporal resolution data at a relatively low
cost, as well as flexible options for sensor use and data collection [1]. Images captured by
UAVs and processed by structure-from-motion (SfM) photogrammetry are a combination of
mature photogrammetry principles and modern computer vision technology [2] (hereafter
UAV SfM). UAV SfM is widely used in Earth and Environmental Sciences to generate high-
resolution topography (HRT) data [3,4], including precision agriculture [5,6], landslide
monitoring [7,8], coastal change [9,10], and glacier dynamics [11,12].

Georeferencing is the process of referencing the results of bundle adjustment (BA) and
photogrammetric processes to a specific coordinate system [13]. During bundle adjustment
(BA), ground control point (GCP) coordinates on the ground are provided and measured
in the images (indirect georeferencing) or known external elements of the images are di-
rectly used (direct georeferencing) [14]. Direct georeferencing requires cm-level positioning
accuracy of the UAV, obtained by difference data. GCP field deployment, surveying, and
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recognition in images may require a significant amount of time and cost, while direct
georeferencing based on IMU and GNSS can quickly collect data and significantly improve
work efficiency. However, these benefits are only valuable if the accuracy of the directly
georeferenced topographic product meets the requirements of the application. First, the
GNSS mobile receiver on the UAV achieves centimeter-level positioning accuracy by re-
ceiving difference data provided by a virtual reference station (VRS), and then adds the
position data solved by the fusion of real-time kinematic (RTK) and post-processed kine-
matic (PPK) into the BA process. Direct georeferencing requires obtaining the coordinates
of a GNSS receiver at the exact moment the image is acquired, although RTK can provide
high-accuracy single-point positioning. However, there might be distortions in signals from
satellite constellations and interruptions in RTK connections for a fast-flying UAV. Fusion
PPK technology can solve epoch data in the lockout period through a reverse Kalman filter
to improve the fixed rate and positioning accuracy [15,16].

Considering the rapid development of UAV technology, it is necessary to evaluate the
accuracy of UAV direct georeferencing methods with GNSS RTK/PPK technology. Many
studies have evaluated the technology based on measured checkpoints on the ground.
Padró et al. evaluated the data of a farm and showed that the horizontal and vertical RMSE
of direct georeferencing were no more than 0.256 and 0.238 m, respectively [17]. Nolan et al.
obtained data with a GSD of 10–20 cm in an area over tens of square kilometers and verified
that the accuracy and precision (repeatability) of direct georeferencing were better than±30
and ±8 cm, respectively, at 95% RMSE [18]. In the other two studies, the vertical RMSE
did not exceed 10 and 20 cm, respectively [19,20]. The accuracy of the vertical direction
is not always able to meet the requirements, and the accuracy can only reach the meter
level in some studies [21,22]. Mian obtained a vertical RMSE of 40 cm using an image of
0.7 cm GSD [23]. Hugenholtz compared direct and indirect georeferencing methods, and
recommended using GCPs where high accuracy is required [24].

The final product quality mainly depends on camera specifications, GCP configuration
(accuracy, density and distribution), flight parameters (image overlap, GSD, etc.), land cover
and terrain complexity, processing software, and flight platform (fixed wing or rotor wing).
Measuring GCP is a time-consuming task, so a balance between appropriate accuracy and
efficiency is needed. The literature to date shows consistently that accuracy increased
with an increase in the number of GCPs and rapidly reached an asymptotic trend [25–27].
Conclusions differ among studies regarding the amount of GCPs required to produce a
favorable outcome. In [28], 0.5~1 GCP per ha was the optimal GCP density, and GCPs were
placed inside the area with stratified distribution to obtain the minimum total error. In [29],
the optimal density was 1.8 GCPs per ha, uniformly distributed across the whole surface.
Scott et al. reported setting control points in the center and edge of the study area, which is
of great significance to reduce the height vertical error in spatial concentration [30].

The purpose of this study was to evaluate the accuracy of UAV RTK/PPK direct
georeferencing and to determine whether the method could be used as a solution for rapid
mapping applications with data generated from images of natural environments, including
buildings, low vegetation and so on. The aim was to understand the difference in survey
effectiveness between using direct georeferencing and GCPs. In addition, the effect of GCP
quantity and distribution on the quality of the results was also studied. The evaluation
was performed by calculating the vertical and horizontal RMSE of checkpoints on a digital
surface model (DSM) and digital orthomosaic (DOM), respectively, and the Multiscale
Model to Model Cloud Comparison (M3C2) distance based on point clouds [31]. The M3C2
method is the unique way to compute signed (and robust) distances directly between two
point clouds.

2. Materials and Methods

The workflow of this study is shown in Figure 1. The study comprises four main steps:
route planning (field survey, pre-flight, and setting flight parameters); data acquisition
(ground GCP and CP layout and survey, UAV image acquisition); data processing consider-
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ing different quantities of GCPs (BA and image-intensive matching); and horizontal and
vertical quality assessment (data and error analysis).
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Figure 1. Workflow of methods, starting with the route planning of a UAV campaign until the
determination of DSM and orthomosaic accuracy (RMSE and M3C2 distance).

2.1. The Study Area

The study area is located near Xishan, Taiyuan, Shanxi Province, People’s Republic of
China (Figure 2). The approximate coordinates in the geodetic reference system WGS84
are 112◦27′5.64′′ E and 37◦52′0.98′′ N. The region covers an area of approximately 0.5 km2,
with the highest point at 896 m and the lowest point at 840 m. The area features railways,
factories, and low vegetation.
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Accurate GCP coordinates are required for georeferencing UAV images. Sixteen
ground survey markers were deployed, according to different photogrammetric projects—
some of them were used as the input of the BA process, and the rest were used as horizontal
checkpoints for cross verification of the horizontal accuracy. All control points were as
evenly distributed as possible in the study area. In addition, coordinates of 120 points
were obtained for vertical accuracy analysis of the generated DSM. Compared to CPs for
horizontal accuracy assessment, vertical CPs do not require accurate identification in the
image. Aerial markers consisted of 70 × 70 cm highly reflective red and yellow material
fixed with nails to the ground, far away from high vegetation, buildings, and slopes.
These markers were large enough to be identified in images and placed and measured
prior to flight. A GNSS RTK receiver was used for field measurements. The receiver
was connected to a virtual reference station and received differential signals through the
network. Ten fixed solutions were recorded at each point, and the average was taken as the
final result. Taking the average of the results of multiple measurements as the final result
can exclude the influence of accidental factors and make the measurement results closer to
the true value. At a control point marker, it takes about 3–5 min from deployment to the
end of measurement. All coordinates were recorded in the WGS84 reference system. In the
experiment, the means of the RTK coordinate residuals in the X, Y, and Z directions were
0.007, 0.006, and 0.012 m, respectively. The expected coordinate accuracy was higher than
the spatial resolution of the UAV image (GSD about 1.7 cm). Figure 2 shows the position of
GCPs and CPs relative to the study area.

2.2. Data Collection

In this study, a FEIMA D2000 multi-rotor UAV (Figure 3a) was used to collect data.
This UAV included a fuselage, power motor, quick removal wing, differential antenna,
magnetometer, and data transmission antenna. The 24.3-megapixel camera installed on
the D2000 UAV provided a ground sampling distance (GSD) of 1.7 cm/pixel at an altitude
of 110 m relative to the ground. The camera captured images at fixed intervals and stored
them in JPG format. Detailed information about the UAV and camera are shown in Table 1.
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Figure 3. Experimental settings. (a) FEIMA D2000 UAV. (b) Distribution of GCPs and CPs in the
bundle adjustment. (c) Measurement of field control points. (d) Display of control points in the image.
(e) The number of overlapping images used in each pixel calculation. Red and yellow areas indicate
low overlap, while green areas indicate more than 5 images per pixel.

Table 1. Technical specifications of the UAV platform.

UAV Body D-CAM2000 Aerial Module

System standard takeoff weight 2.8 kg Camera SONY a6000
Standard load 200 g Effective pixels 24.3 million

Endurance 74 min Sensor 23.5 × 15.6 mm (aps-c)
Remote control distance 20 km (max) Focal length 25 mm
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By pre-setting flight parameters in the UAV Manager software, the UAV flew au-
tonomously from takeoff to landing. The ground control station consisted of computers, a
ground-based data transmission radio, and antennas that communicated with the UAV to
continuously monitor its flight status and allowed users to interrupt the flight if the UAV
was in danger. The aerial survey was conducted on 10 August 2021 with clear weather and
light wind.

2.3. Data Processing

In this study, Agisoft Photoscan Professional Version 1.7.0 [32] software was used
to generate dense point clouds, a DSM, and a DOM based on the SfM algorithm. Before
processing, position data were solved by the network RTK/PPK fusion differential job
mode, which gave priority to the results of the PPK fixed solution, while for the non-fixed
solution part of PPK, RTK fixed solution data were used for fusion, so as to ensure the
quality of high-precision position data through complementary operation mode, and the
RTK trajectory file was input during fusion difference resolution. Then, image EXIF was
sequentially written—that is, the GPS positioning data were stored in the header file of the
image, so that the GPS data could be directly read through the image in the software. The
workflow in Photoscan is described as follows:

1. Image feature extraction and matching. The software automatically identifies many
conspicuous points in each image, regardless of image scale or perspective, and similar
feature points are recognized in multiple images. After locating the feature points in
each image, similar feature points are recognized in multiple images. The quality of
feature matching depends on the texture and overlap success of the image [33,34];

2. Iterative bundle adjustment. The purpose of BA is to determine internal and external
orientation elements of the images by minimizing the reprojection errors between
predicted and observed points, which can be converted into a nonlinear least-squares
problem [35]. By applying the BA, the three-dimensional structure of the scene,
the internal and external orientation elements of the camera are estimated at the
same time;

3. Model optimization based on control points. GCPs provide additional external infor-
mation about reconstructed scene geometry. The optimization process in Photoscan
refines the camera position and reduces non-linear project deformations by incorpo-
rating GCPs [36];

4. Point cloud density matching. The MVS image matching algorithm operates on a
single-pixel scale of the image to build dense clouds and increases the point density
by several orders of magnitude;

5. Generate DSM and DOM. Using the dense point cloud as input, other results, such as
DSM and DOM, can be produced. The outliers in the dense point cloud are removed
before the dense point cloud is interpolated to generate DSM, and then the DOM is
generated by digital differential correction based on DSM.

The images in all projects underwent the same photogrammetric processing, with
differences in the number and distribution of GCPs used in the BA process. The number of
GCPs in the experiment for evaluating the vertical RMSE ranged from 0 to 16, while the
number for the horizontal RMSE ranged from 0 to 10. Seven other experiments evaluated
the impact of the GCP distribution; the distribution schemes are shown in Figure 4.

2.4. Quality Assessment

Two methods were used to evaluate the quality of the UAV SfM results. The first
method evaluates the accuracy of the DSM and DOM generated by different projects. The
root mean square error (RMSE) was further calculated by comparing the CP coordinates
estimated in the calculation results with the reference CP coordinates measured with the
GNSS RTK receiver. Specifically, horizontal accuracy was verified on DOM, while vertical
accuracy was verified by extracting the elevation of the corresponding DSM on a larger
range of 120 vertical checkpoints.
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where ∆x, ∆y, and ∆z are the differences between RTK checkpoint coordinates and model-
extracted coordinates, and n is the number of checkpoints. Calculation of the horizontal
RMSE (RMSEXY) is as follows:

RMSEXY =
√

RMSEX2 + RMSEY
2, (4)

The second method uses the Multiscale Model to Model Cloud Comparison (M3C2)
tool of the CloudCompare software version 2.10. [37], which calculates the distance of the
reference cloud and comparison point cloud relative to the local surface normal direction
through two parameters (user-defined normal proportion and projection proportion). The
process runs directly on the point cloud and does not require grid partitioning, avoiding
the uncertainties involved in the interpolation process.

To compare point clouds, the M3C2 distance between the reference point cloud gen-
erated by the 16 GCPs participating in BA and other project point clouds was calculated.
Then, the mean and standard deviation of the M3C2 distance calculation were used to
evaluate the accuracy and precision, respectively, of each point cloud. By plotting the error
and its distribution curve, we determined the influence of the GCP distribution on the
spatial distribution of the M3C2 distance difference and determined the possible pattern of
the spatial distribution of error.

Drones 2022, 6, x FOR PEER REVIEW 7 of 17 
 

internal and external orientation elements of the camera are estimated at the same 
time; 

3. Model optimization based on control points. GCPs provide additional external infor-
mation about reconstructed scene geometry. The optimization process in Photoscan 
refines the camera position and reduces non-linear project deformations by incorpo-
rating GCPs [36]; 

4. Point cloud density matching. The MVS image matching algorithm operates on a sin-
gle-pixel scale of the image to build dense clouds and increases the point density by 
several orders of magnitude; 

5. Generate DSM and DOM. Using the dense point cloud as input, other results, such 
as DSM and DOM, can be produced. The outliers in the dense point cloud are re-
moved before the dense point cloud is interpolated to generate DSM, and then the 
DOM is generated by digital differential correction based on DSM. 
The images in all projects underwent the same photogrammetric processing, with 

differences in the number and distribution of GCPs used in the BA process. The number 
of GCPs in the experiment for evaluating the vertical RMSE ranged from 0 to 16, while the 
number for the horizontal RMSE ranged from 0 to 10. Seven other experiments evaluated 
the impact of the GCP distribution; the distribution schemes are shown in Figure 4. 

 
Figure 4. Schemes with different distributions of GCPs. (a) Five distributions of one GCP; (b) two 
distributions of four GCPs. The distributions are shown by different colours. 

2.4. Quality Assessment 
Two methods were used to evaluate the quality of the UAV SfM results. The first 

method evaluates the accuracy of the DSM and DOM generated by different projects. The 
root mean square error (RMSE) was further calculated by comparing the CP coordinates 
estimated in the calculation results with the reference CP coordinates measured with the 
GNSS RTK receiver. Specifically, horizontal accuracy was verified on DOM, while vertical 
accuracy was verified by extracting the elevation of the corresponding DSM on a larger 
range of 120 vertical checkpoints. 

2
1

n

ii
X

x
RMSE

n
=

Δ
= 

, (1)

Figure 4. Schemes with different distributions of GCPs. (a) Five distributions of one GCP; (b) two dis-
tributions of four GCPs. The distributions are shown by different colours.

53



Drones 2022, 6, 30

3. Results
3.1. Model Evaluation Based on RMSE

Based on the model extraction coordinates and measured checkpoint coordinates,
the vertical and horizontal RMSE for each project were calculated using Equations (1)–(4).
The GCP density was calculated from the number of GCPs used divided by the area
investigated; the relationship between GCP density and RMSE was obtained, as shown
in Figure 5. The results show that when the GCP density was highest, the vertical and
horizontal RMSE were 0.032 and 0.015 m, respectively, representing approximately 1.88 and
0.88 GSD. When GCPs were not used, the vertical and horizontal RMSE increased to 0.087
and 0.041 m, respectively, representing a GSD of approximately 5.12 and 2.41. RMSEXY was
less than RMSEZ in all projects. The mean ratio of RMSEZ:RMSEXY is approximately 2.3.
As the density of the GCP increased, the vertical and horizontal RMSE gradually decreased;
this trend is fitted by the nonlinear curve in Figure 5. As shown in Figure 5a, when
d > 12 GCP/km2, the vertical RMSE did not significantly decrease (the change from the
maximum was less than 20%). In Figure 5b, the same is true for d > 10 GCP/km2 when
considering the horizontal RMSE (the error does not show significant change).
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Figure 5. Effect of GCP density on the RMSE of (a) DSM vertical and (b) DOM horizontal. GCP
density was calculated by dividing the quantity of GCPs used by the measurement area of 0.5 km2.
d represents the density of point clouds on the horizontal axis. Add error bars at ±1 standard error at
GCP density of 2, 4 and 8, respectively.

There are some cases when the GCP density increased and the RMSE increased, which
may be due to the error introduced by the ground measurement of the newly added GCPs.
Our results for the horizontal error evaluation are influenced by manually setting the
coordinates in the center of the GCPs. A similar uncertainty is expected when determining
the coordinates of the GCP centers on the DOM.

Statistical analysis of the vertical differences of the three projects is shown in Figure 6.
In Figure 6a–c, the histograms of the differences between RTK checkpoint elevations
and DSM extraction elevations correspond to 0, 1, and 2 GCPs, respectively; all of the
curves exhibit a Gaussian distribution. The mean value depicted in Figure 6a is −0.08 m,
indicating a systematically biased distribution. The mean value in Figure 6b is −0.025 m,
indicating that the addition of a single GCP is conducive to reducing the vertical error.
When two GCPs are considered (Figure 6c), the mean value is 0.003 m, and the distribution
is significantly improved. A single sample t-test was conducted, as shown in Table 2. The
null hypothesis is that there is no significant difference between the mean and the test
value 0. The significance of one GCP is less than 0.05, rejecting the original hypothesis,
that is, there is a significant difference between the mean of one GCP and zero at a 95%
confidence interval. The significance of two GCPs was 0.449, greater than 0.05, and the
original hypothesis was accepted—that is, there was no significant difference between
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the mean of two GCPs and zero at a 95% confidence interval. Therefore, the DSM has
systematic dome error in the vertical direction when zero or one GCP was used, and it
is important to use at least two GCPs to improve DSM elevation accuracy. The standard
deviation did not show a significant difference, with one GCP having the lowest standard
deviation, at 0.033. Figure 6d shows the linear fit of the height difference between the DSM
obtained by checkpoints and zero GCPs used; the coefficient of determination (R2) is 0.99.
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Figure 6. Statistical analysis of the UAV survey based on 120 checkpoints. (a–c) Histograms of
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Gaussian fit. (d) Linear fitting function between RTK checkpoint elevations and DSM elevations
obtained with 0 GCPs.

Table 2. Single sample t-test results.

Number of GCPs t Degree of Freedom Significance Mean Difference Value
95% Confidence Interval

Lower Limit Upper Limit

1 −8.175 119 3.64 × 10−13 −0.025 −0.031 −0.019
2 0.760 119 0.449 0.003 −0.004 0.009

3.2. Point Cloud Evaluation Based on M3C2 Distance

The M3C2 distance between the reference point cloud (16 GCPs of the BA process) and
point cloud obtained from different projects was calculated. Mean and standard deviation
were used as indicators to evaluate the accuracy and precision, respectively, of the point
clouds of different projects (Table 3 and Figure 7). The mean distance between point clouds
obtained by zero GCPs and the reference point cloud was 0.062 m. Adding a GCP at any
position can reduce the mean distance, and the improvement is most obvious after adding
K8 GCP in the lower right corner. Regardless of the distribution, when using two GCPs, the
mean error can be reduced by about 50% compared with 0 GCPs. With an increase in the
number of GCPs, the mean distance decreased, and the point cloud became more accurate.
The mean distance decreased to a minimum of 0.01 m at eight and nine GCPs. The standard
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deviations of different projects were distributed between 0.02 and 0.03, showing no obvious
difference. Several projects achieved a minimum standard deviation of 0.021 m.

Table 3. M3C2 distance values between reference point clouds and point clouds obtained by GCPs
with different numbers and distributions. Refer to Figure 4 to identify these points.

Project Mean (m) std (m) Project Mean (m) std (m)

16-0 0.062 0.025 16-3 0.027 0.022
16-1/k1 0.046 0.023 16-4/k2,k5,k9,k12 −0.015 0.028
16-1/k8 0.023 0.022 16-4/k1,k6,k8,k15 0.023 0.021

16-1/k15 0.053 0.025 16-5 0.021 0.021
16-1/k10 0.041 0.023 16-6 0.013 0.021
16-1/k6 0.031 0.022 16-7 0.016 0.021

16-2/k1, k10 0.032 0.023 16-8 0.01 0.023
16-2/k6, k15 0.024 0.028 16-9 0.01 0.021
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Figure 7. M3C2 distance between reference point clouds (16 GCPs) and point clouds obtained
from different photogrammetric projects. (a) Average difference (accuracy). (b) Standard deviation
(precision). Add error bars at +/−1 standard error at GCP number of 1, 2 and 4, respectively.

The error space distributions of the M3C2 distance between the reference point cloud
and the point clouds of the 0-, 3-, 6-, and 9-GCP projects were calculated, and the results
are displayed with the same legend and histogram distribution of the distance (Figure 8).
A significant dome effect (red area) can be observed at zero GCPs in Figure 8a; the upper
left corner of Figure 8b shows a clear error compared with the reference point cloud due to
a lack of control; the error from Figure 8c to Figure 8d is not significantly reduced, which is
only reflected in the mean distance (from 0.013 to 0.01 m).

Overall, the accuracy near the boundary of the study area is not as high as that in
the center, which is related to the low overlap of images near the boundary (Figure 3e).
There are obvious errors along the north–south road and the boundaries of buildings. The
reasons for the large M3C2 distance error along the road are as follows: (1) tall plants on
both sides of the road block the ground; (2) sample data from the road area are extracted,
and the calculated point cloud density is approximately 12 per m2, which is less than the
average density of approximately 35 per m2 in the overall study area. The uniform surface
of the road (asphalt pavement) lacks adequate feature points, resulting in a sparse area
within the point cloud. The M3C2 distance increased at the boundaries of buildings due to
the sudden change in topographic characteristics.
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3.3. Influence of GCPs Distribution

The experimental results of evaluating the influence of the GCP distribution are
shown in Figure 9. The box diagram represents the difference between the elevation of
checkpoints and the elevation of the DSM extraction point. In the layout of one GCP, four
tests (excluding K15) showed low variability, in which K10 was near the center of the region
and the error was the smallest. In the experiments with different distributions of four GCPs,
compared with the results of using K1, 6, 8, and 15, the error of using K2, 5, 9, and 12 was
significantly reduced. The difference is that the distance between K2, 5, 9, and 12 decreased.
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In addition, ArcGIS was used for differential calculations. The difference was as-
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Figure 9. Boxplots represent vertical errors obtained by seven layout schemes divided by the number
of GCPs (the horizontal line represents the median, the lower part of the hinge represents the 25th
percentile, and the upper part represents the 75th percentile). The whiskers represent 1.5× IQR
(interquartile range) in both directions. The black squares and circles represent the mean and outliers,
respectively. Refer to the schematic diagram of different GCP distribution in Figure 4. 1 and k1 in
1-k1 represent the number and code of control points respectively, and others are similar.
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In addition, ArcGIS was used for differential calculations. The difference was assessed
by subtracting the DSM produced using a uniform distribution of five GCPs and the DSM
produced using the optimal distribution of 16 GCPs; the differential DSM resolution was
0.2 m (Figure 10a). The results show that when the distance from the nearest GCP increases,
the DSM local vertical difference tends to increase. There are many scattered points in
Figure 10b, indicating that the local DSM accuracy is not solely determined by the distance
to the nearest GCP; therefore, a nonlinear curve is used for fitting.
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4. Discussion

Using direct georeferencing can significantly improve the efficiency of UAV measure-
ment. This study evaluated the geospatial accuracy of photogrammetric products obtained
by direct georeferencing, and the impact of the configuration of GCPs on the quality of re-
sults. The RMSE, the M3C2 distance of the point cloud, the GCP distribution, and measures
to improve the accuracy of the results when direct georeferencing are discussed below.

1. Error analysis based on the RMSE shows that adding one GCP can help to reduce
the deviation, but there may still be dome error, as shown in the study of Rosnell
and Javernick [27,38]. When two GCPs were used, the mean vertical difference
was reduced to 0.003 m, and the horizontal RMSE was 0.0198 m, approximately
1.1 GSD, when 3 GCPs were used. From the work in some natural environments
to the investigation of infrastructure, such as modelling water runoff during rain,
different projects have different requirements for the fineness of ground features, so
the required accuracy depends on the purpose of generating DSM. Therefore, using
only one GCP may not meet the high accuracy standards; two to three GCPs are
recommended for a trade-off between accuracy and work efficiency. The influence
of each error on RMSE is directly proportional to the size of the square error, and
therefore RMSE is sensitive to large differences and does not reflect terrain changes.
Because of scale differences, errors that do not occur in flat areas may also occur
in sloped areas [15]. The natural environment presents a series of complexities,
including changing vegetation cover, strong topographic relief, and changes in texture.
Future studies will need to assess the impact of these complexities on the accuracy
of the results. Calculating RMSE is a common error assessment method when the
actual dataset of the ground surface is a set of distribution points rather than a
continuous, real surface. Error evaluation benefits from a larger number and more
evenly distributed checkpoints. Gomes et al. arranged 270 vertical checkpoints in an
area of about 0.22 km2, with a density of 1227 checkpoints per km2 [39]. In the study
of Tomaštík, the density of checkpoints at the three sites was approximately 11363,
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3674 and 2749 per km2 [8]. Thus, even if the number of GCP measurements on the
ground is minimized, the role of checkpoints in the error assessment is critical. In the
future, the plan is to deploy as many checkpoints as possible in the study area, build
an accurate error surface, analyze the spatial distribution characteristics of errors, and
better verify the results; these tasks will help to understand and reduce the potential
error sources in the UAV SfM workflow [36];

2. The M3C2 algorithm eliminates the error introduced by the interpolation process.
Lower error measurements with M3C2 are comparable to point-to-point or point-to-
mesh; the method has been widely used in research based on point cloud change
detection [40–43]. Due to the high point density of UAV matching point clouds,
an intercomparison can actually be regarded as continuous [44]. At zero GCP, the
M3C2 distance error shows randomness in the study area. The standard deviation
range of the comparison between the reference point cloud and the point cloud of
different projects is 0.021–0.028 m. The change is relatively small, and the point
cloud only deviates in the vertical direction, which is similar to the study of Tomaštík
and Štroner et al. [6,44]. Standard deviation is an indicator of precision. In some
applications of UAV SfM, the accuracy of geolocation is not as important as the re-
peatability (precision) of data. For example, comparing multi temporal measurement
data to study the change in terrain with time, more attention is paid to the relative
change between data, and the quality of multi temporal data can be improved through
cooperative registration;

3. GCP distribution experiments show that the uniform distribution of GCPs is crucial
when using more than one GCP. Figure 10b uses nonlinear curve fitting. In Gindraux’s
study, linear fitting was used to determine that, on average, the vertical accuracy
decreased by 0.09 m when the distance from the nearest GCP increased by 100 m [45].
In the experiment with four GCPs, the accuracy was improved after moving the GCP
slightly towards the center of the study area compared with placing the GCP at the
edge of the study area, which is similar to the study of Martínez. Martínez’s study
concluded that the best horizontal accuracies are achieved by placing GCPs around
the edges of the study area, but it is also essential to place GCPs inside the area with a
stratified distribution to optimize vertical accuracy [28];

4. The DSM vertical RMSE and DOM horizontal RMSE obtained by direct georeferencing
with the GSD set to 1.7 cm/pixel were 0.087 and 0.041 m, respectively. Without
GCPs, the accuracy of the results was highly dependent on the accuracy of the image
position data. The following measures can be taken to improve the accuracy of
results obtained without GCPs. UAV cross flights and imagery with large overlap
can provide redundant data and improve the reliability of image matching, which
requires high computing power [1,39]. The addition of oblique images helps to
accurately estimate the internal and external orientation elements in the process of
bundle adjustment, extract vertical features such as building sidewalls, and obtain
the best vertical accuracy [13]. A more accurate GCP measurement method can be
used, rather than simply increasing the number of GCPs. Another recommendation
is to use a tripod-mounted prism instead of a pole-mounted prism, as well as the
RTK static measurement method when time permits. If inaccurate coordinates are
introduced when measuring GCPs, a more complex error surface will be introduced,
as opposed to reducing the initial deformation [14].

The direct georeferencing technology integrated by UAV and GNSS RTK has ad-
vantages in monitoring locations with large ranges or difficult access. However, further
development is needed. High-quality optical lenses and multi-frequency GPS can obtain
higher quality images and positioning accuracy.

5. Conclusions

In this study, the geospatial accuracy of photogrammetric products obtained by the
FEIMA D2000 direct georeferencing method was evaluated using ground-measured data.
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In addition, we evaluated the effect of the quantity and spatial distribution of GCPs on the
quality of the results. The research results are summarized as follows:

1. UAV SfM is a flexible and efficient method to obtain high-resolution topographic
data. The direct georeferencing method based on the RTK/PPK fusion difference to
obtain high-accuracy image positions has potential for improving the accuracy of the
products, especially when GPS measurements are difficult, as well as reducing the
dependence on the GCPs in the bundle adjustment, and decreasing the field work
time and cost.

2. The research results show that the vertical RMSE of the DSM obtained by direct
georeferencing was 0.087 m, approximately equal to 5.12 GSD. The horizontal RMSE
of the DOM was 0.041 m, approximately equal to 2.41 GSD. Both values reached the
centimeter positioning accuracy and achieve the application research of decimeter-
error scale. The accuracy of UAV direct georeferencing could be guaranteed through
careful flight planning, an appropriate survey, and accurate data post-processing.
In the study of terrain change detection, we suggest evenly deploying two to three
GCPs to achieve a good compromise between appropriate accuracy, repeatability
and efficiency.

3. GCPs should be uniformly distributed in the study area and contain at least one GCP
near the center of the domain to reduce the dome effect. With an increase in the
number of GCPs in the bundle adjustment, both the horizontal error and vertical error
decreased, and the horizontal error was always lower than the vertical error. When the
density of the GCPs was greater than 12 GCP/km2 and 10 GCP/km2, respectively, the
decrease in the vertical and horizontal errors was not obvious. The minimum vertical
and horizontal RMSE were 0.032 (~1.88 GSD) and 0.015 m (~0.88 GSD), respectively.
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Abstract: The capabilities of a quadcopter in the hover mode for low-altitude sensing of atmospheric
turbulence with high spatial resolution in urban areas characterized by complex orography are
investigated. The studies were carried out in different seasons (winter, spring, summer, and fall), and
the quadcopter hovered in the immediate vicinity of ultrasonic weather stations. The DJI Phantom
4 Pro quadcopter and AMK-03 ultrasonic weather stations installed in different places of the studied
territory were used in the experiment. The smoothing procedure was used to study the behavior
of the longitudinal and lateral spectra of turbulence in the inertial and energy production ranges.
The longitudinal and lateral turbulence scales were estimated by the least-square fit method with
the von Karman model as a regression curve. It is shown that the turbulence spectra obtained with
DJI Phantom 4 Pro and AMK-03 generally coincide, with minor differences observed in the high-
frequency region of the spectrum. In the inertial range, the behavior of the turbulence spectra shows
that they obey the Kolmogorov–Obukhov “5/3” law. In the energy production range, the longitudinal
and lateral turbulence scales and their ratio measured by DJI Phantom 4 Pro and AMK-03 agree to a
good accuracy. Discrepancies in the data obtained with the quadcopter and the ultrasonic weather
stations at the territory with complex orography are explained by the partial correlation of the wind
velocity series at different measurement points and the influence of the inhomogeneous surface.

Keywords: quadcopter; ultrasonic weather station; turbulence; longitudinal and lateral spectra;
scales; urban environment

1. Introduction

Recently, unmanned aerial vehicles (UAVs) have become widespread in our life, and
they are now an important component of the airspace. Analysis and forecast of modern
trends in their use show that, in the next decade, there will be an explosive growth in the
number of commercial and military UAVs. This growth will require efficient systems
capable of controlling UAV traffic, in particular, under bad weather conditions [1–6].
Atmospheric turbulence is the main factor that most strongly affects the efficiency of
future UAV traffic management systems. Many UAVs are small in size and light in weight.
As a result, their trajectory can deviate significantly in a turbulent atmosphere, and loss of
control is highly probable in this case.

Most UAVs fly at altitudes of up to 500 m. The atmospheric boundary layer at these
altitudes is considerably affected by local orography. For example, for flights in an urban
environment, i.e., an environment with complex orography, atmospheric turbulence is
characterized by strong spatial inhomogeneity due to the presence of buildings, park zones,
highways, etc.
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The main technologies to obtain information about turbulence profiles of the urban
atmosphere are lidar, sodar, and radar sensing methods. For these sensing technologies,
the spatial resolution is determined by the size of the sensing volume. It ranges from a few
tens to hundreds of meters [7–15]. Spatial variations of turbulent air flows can reach several
meters, which is much smaller than the spatial resolution of lidars, sodars, and radars. This
discrepancy between the spatial resolution of the applied technologies and the scale of
turbulent flows in the atmosphere can lead to their significant averaging and, consequently,
to significant errors in atmospheric turbulence measurements. Thus, the future UAV traffic
management systems must use data on the turbulent atmosphere obtained with high
spatial resolution.

Acoustic anemometry methods can be used to obtain atmospheric data with high
spatial resolution [11,16,17]. Complete information about the state of the atmosphere
at different heights can be obtained with acoustic anemometry methods if acoustic de-
vices are set on weather towers or a tethered balloon, which is not always possible in an
urban environment.

One of the main trends in low-altitude sensing, i.e., to heights of about 500 m, is the
development of methods for diagnostics of the turbulent atmosphere with UAVs. The
results of diagnostics of the speed of air mass flows with UAVs are reported in [18–35].
In [36–47], the fundamental possibility of measuring the turbulence spectra with fixed-wing
UAVs of various sizes and weights was shown. In the process of sensing, UAVs of this
type move in space for a long time. The typical flight pattern in a turbulence measurement
experiment consists of straight sections about one kilometer long [47]. As a result, the spatial
resolution in measurement of the turbulence spectrum is approximately comparable with
the length of a straight section. Thus, for the non-even and non-homogeneous underlying
surface and in the non-stationary atmosphere, the use of a fixed-wing UAV can lead, as
in the case of lidars, sodars, and radars, to significant averaging and, as a consequence, to
significant errors in measurements of atmospheric turbulence.

In contrast to a fixed-wing UAV, a quadcopter can hover at a needed point in space
for a long time and obtain atmospheric data with the high spatial resolution in an area
characterized by complex orography. The results of studying the turbulence spectrum
in the inertial and energy production ranges with the DJI Mavic Mini quadcopter in the
altitude hold mode are reported in [48]. The measurements were carried out over territory
characterized by a flat and uniform surface with a slight slope; it bordered a cottage village
on one side and a forest on the other side. The results obtained are in a good agreement
with the theory of homogeneous and isotropic turbulence and the data measured by the
methods of acoustic anemometry.

Knowledge of the state of atmospheric turbulence allows us to study its effect on
the efficiency of UAV management systems. It is well-known that turbulence reduces
the possibility of efficient use of wind energy and causes accelerated wear. Techniques of
low-altitude sensing of the atmospheric state, including turbulence, allow us to estimate
the climate change caused by urban growth and are needed to address current and future
urbanization challenges.

In addition to turbulent fluctuations of the wind velocity field in the atmosphere, there
are random temperature oscillations. These oscillations lead to random fluctuations of
the refractive index, which should be taken into account when studying the propagation
of optical radiation in the atmosphere. Turbulent fluctuations of the wind velocity field
and temperature in the atmosphere are correlated. For example, the relation between the
turbulence scales that characterize fluctuations of wind velocity and temperature is given
in [49]. The results of investigation of the structure characteristic of turbulent fluctuations
of the refractive index with UAV and acoustic anemometry methods are reported in [50,51].

When atmospheric turbulence is studied over a territory with complex orography,
diagnostic methods providing data with high spatial resolution are preferable. As already
mentioned, a quadcopter—in contrast to fixed-wing UAV [36–47] and to lidars, sodars, and
radars—allows us to obtain atmospheric data with high spatial resolution. Quadcopter
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capabilities under ideal conditions were examined in [48], in particular, to compare theory
with experiment. In this paper, we study the capabilities of a quadcopter for monitoring the
state of atmospheric turbulence in an urban area over a territory with complex orography.
One of the main fundamental parameters that describe the state of atmospheric turbulence
quite completely and accurately and that is investigated in this paper is the turbulence
spectrum [52–56]. The theoretical part of the paper describes the coordinate systems,
introduces the concept of a spectral tensor of turbulence, and presents the Taylor hypothesis,
which allows us to obtain a relationship between the spatial and temporal spectra of
turbulence and the basic equations of the von Karman model. In this part, we derive the
equations for the wind velocity components measured with the quadcopter in the hover
mode, as well as the equations for longitudinal and lateral velocity fluctuations.

The second part of the paper provides general information about the experiment,
presents the results of measurements of the quadcopter speed and the longitudinal and
lateral components of the wind velocity measured with the DJI Phantom 4 Pro quadcopter
and AMK-03 ultrasonic weather stations [16,17]. In addition, longitudinal and lateral
turbulence spectra measured with the DJI Phantom 4 Pro and AMK-03 are presented, and
their behavior in the inertial and energy production ranges is studied. In conclusion, the
main results are summarized.

2. Theory of a Quadcopter in a Turbulent Atmosphere

In the sensing of the mean wind velocity, its projections onto the axes of the coordinate
system used in meteorology are of particular interest. In contrast to diagnostics of the
mean wind, the fluctuation wind velocity is studied in the coordinate system, one of whose
axes is directed along the mean wind. In this section, we examine theoretically the ideal
hovering of a quadcopter in a turbulent atmosphere as applied to the problem of sensing
of wind velocity fluctuations in the case of horizontal air mass transfer in the coordinate
system related to the mean horizontal wind.

2.1. Coordinate Systems

Figure 1 shows schematically the arrangement of the equipment and the direction of
the average wind speed during the experiments. It can be seen that the AMK-03 weather
station and the quadcopter are oriented differently relative to each other and relative to the
direction of the average wind. The ultrasonic weather station is oriented in space along
the cardinal points, and the quadcopter can be oriented arbitrarily. Thus, in the case of
AMK-03, the measured wind speed data correspond to the {E, N} coordinate system used
in meteorology in which one axis is directed to the east (E) and the other axis is directed to
the north (N) [53,54].
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The quadcopter dynamics may be described in a coordinate system other than the
{E, N} meteorological system. The coordinate system in which the quadcopter dynamics is
described is denoted as {x, y}. The axes of this coordinate system are shown as x and y in
Figure 1 [21,31,57,58].

In the theory of turbulence [52–54], fluctuations of the wind velocity are described
in the coordinate system related to the mean wind. In the coordinates system related to
the mean horizontal wind, one axis is directed along the mean wind, and the two other
coordinate axes are directed normally to the mean wind. As a result of this choice of the
coordinate system, one longitudinal and two lateral fluctuations of the wind velocity are
clearly distinguished.

2.2. Taylor Hypothesis

It is well known that, in the atmosphere, the horizontal air mass transfer often prevails
over the vertical motion. The average vertical component of the wind speed is small and
can be neglected. Thus, we can take into account only the horizontal component. In this
case, one of the axes of the coordinate system can be directed along the mean horizontal
wind. Two other axes are directed normally to the mean horizontal wind, and one of them
lies in a horizontal plane, while another is directed vertically upward. As a result, in this
coordinate system related to the mean horizontal wind, the velocity field of the turbulent
air flow at the point r = {ξ, 0, 0} has the form [52–54]:

u(r, t) = 〈u〉+ u′(r, t), (1)

v(r, t) = v′(r, t), (2)

w(r, t) = w′(r, t), (3)

where 〈u〉 is the mean wind speed, u′(r, t), v′(r, t), and w′(r, t) are fluctuations of the wind
speed, 〈. . .〉 is the operator of statistical averaging. It can be seen from Equations (1)–(3)
that longitudinal fluctuations of the wind speed u′(r, t) are directed along the direction
of the mean wind speed and that two lateral fluctuations of the wind speed v′(r, t) and
w′(r, t) are directed normally to the mean wind speed. The component v′(r, t) lies in the
horizontal plane, and the component w′(r, t) is directed vertically upward and describes
vertical fluctuations.

In the mathematical description of fluctuations of the velocity field, the concepts of the
second-rank correlation tensor and the turbulence spectrum tensor are introduced [52–54].
For isotropic turbulence, the diagonal elements of the correlation tensor can be written in
the form

Bu(ξ; t) = 〈u′(ξ, 0, 0; t)u′(0, 0, 0; 0)〉, (4)

Bv(ξ; t) = 〈v′(ξ, 0, 0; t)v′(0, 0, 0; 0)〉, (5)

Bw(ξ; t) = 〈w′(ξ, 0, 0; t)w′(0, 0, 0; 0)〉. (6)

The diagonal components of the one-dimensional spatial spectral tensor of turbulence
take the form

φu(κ) =

∞∫

−∞

Bu(ξ; t)e2πiκξ dξ, (7)

φv(κ) =

∞∫

−∞

Bv(ξ; t)e2πiκξdξ, (8)

φw(κ) =

∞∫

−∞

Bw(ξ; t)e2πiκξdξ, (9)
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and the diagonal components of the temporal spectral tensor of turbulence are determined
by the following equations:

Φu( f ) =
∞∫

−∞

Bu(ξ; t)e2πi f tdt, (10)

Φv( f ) =
∞∫

−∞

Bv(ξ; t)e2πi f tdt, (11)

Φw( f ) =
∞∫

−∞

Bw(ξ; t)e2πi f tdt, (12)

The diagonal components of the temporal spectral tensor of turbulence Φu( f ) and
Φv( f ) are the longitudinal and lateral spectra of turbulence, and those of Φw( f ) form the
vertical spectrum of turbulence.

In the coordinate system related to the mean wind, we have the opportunity to use
Taylor’s hypothesis of "frozen" turbulent fluctuations [52–54]. The essence of this hypothesis
is that the entire spatial turbulent pattern moves in time with the mean wind speed 〈u〉.
The application of Taylor’s hypothesis leads to the relation between the spatiotemporal
and purely spatial characteristics of fluctuations of the wind velocity field in the form

u′(ξ, 0, 0; t) = u′(ξ − 〈u〉t, 0, 0), (13)

v′(ξ, 0, 0; t) = v′(ξ − 〈u〉t, 0, 0), (14)

w′(ξ, 0, 0; t) = w′(ξ − 〈u〉t, 0, 0). (15)

The application of Taylor’s hypothesis (13)–(15) to Equations (7)–(9) with allowance for
Equations (10)–(12) leads to the well-known relation between the spatial and temporal spectra

φu(κ) = 〈u〉Φu( f ), (16)

φv(κ) = 〈u〉Φv( f ), (17)

φw(κ) = 〈u〉Φw( f ). (18)

The relation between the spatial and temporal frequencies is given as κ = f /〈u〉. In
experiments, we measure temporal spectra, while the theory deals with spatial spectra.
Thus, Equations (16)–(18) allow us to compare the behavior of experimentally measured
temporal spectra with theoretical results.

2.3. Model of Atmospheric Turbulence

One of the most commonly used turbulence spectra models is the von Karman
model [52–56,58], which allows us to study the behavior of the spectrum in the energy
production and inertial ranges. In addition to the von Karman model, a suitable approxi-
mation in problems of UAV dynamics in a turbulent atmosphere is the Dryden turbulence
model [52,56,58]. Other models, such as the unified turbulence model, can also be used to
describe atmospheric turbulence [56].

In this study, we use the von Karman model to analyze turbulence spectra. With
allowance for Equations (16)–(18), the equations for the longitudinal, lateral, and vertical
temporal spectra of turbulence for the von Karman model have the form

Φu( f )
σ2

u
=

2Lu

π

1
[
1 + (1.339Lu·2π f /〈u〉)2

]5/6 , (19)
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Φv( f )
σ2

v
=

2Lv

π

1 + 8/3(2.678Lv·2π f /〈w〉)2

[
1 + (2.678Lv·2π f /〈u〉)2

]11/6 , (20)

Φw( f )
σ2

w
=

2Lw

π

1 + 8/3(2.678Lw·2π f /〈w〉)2

[
1 + (2.678Lw·2π f /〈u〉)2

]11/6 , (21)

where Lu is the longitudinal turbulence scale, Lv is the lateral turbulence scale, and Lw is
the vertical turbulence scale and σ2

u, σ2
v, and σ2

v are turbulence intensities.

2.4. Wind Velocity Components

The dynamic equations for the quadcopter’s center of gravity can be written in the
inertial coordinates associated with the Earth as [21,31,57]

..
x =

(
sφsψ + cφsθcψ

) T
m

+
Fx

m
(22)

..
y =

(
−sφcψ + cφsθsψ

) T
m

+
Fy

m
(23)

..
z = cφcθ

T
m
− g +

Fz

m
(24)

where s(•) = sin(•); c(•) = cos(•); φ is the roll angle; θ is the pitch angle; ψ is the yaw
angle; T is the aerodynamic force generated by propellers; Fx, Fy, and Fz are the drag force
components along the x, y, and z axes; m is the quadcopter mass; and g is the acceleration
due to gravity.

The components of the drag force along the x, y, and z axes, which arise during the
quadcopter flight, have the form [18,21,31,57]

Fj = −cj
(
vj − wj

)
(25)

in the linear case, and

Fj = −
1
2

ρCj Ajsgn
(
vj − wj

)
×
(
vj − wj

)2 (26)

in the square-law case. In Equations (25) and (26), cj and Cj are the drag coefficient along
the x, y, and z axes; j is the subscript for enumeration of the orthogonal components of
vectors, i.e., j ∈ {x, y, z}; vj are the quadcopter speed components; and wj are components
of the turbulent flow velocity in the atmosphere in the coordinate system {x, y}; ρ is the
air density; Aj are the projections of the quadcopter area on the corresponding axes; and
sgn(•) is the sign function.

Let us consider the case of ideal hover, which can be achieved by compensating all
the forces acting on the quadcopter and at vj = 0. Equations (22)–(24) can be transformed
to the case of ideal hover through their linearization. The roll, pitch, and yaw angles in a
turbulent atmosphere are sums of the average and fluctuation components: φ = 〈φ〉+ φ′,
θ = 〈θ〉+ θ′ and ψ = 〈ψ〉+ ψ′. In the small-angle approximation, φ, θ � π and at ψ′ � π,
as well as if the conditions

..
x =

..
y =

..
z = 0 and vj = 0 are fulfilled, the equations for

estimation of the horizontal velocity components of the wind velocity field wx and wy take
the form

wx = −mg
cx

(
〈ϕ〉s〈ψ〉 + 〈θ〉c〈ψ〉

)
− mg

cx

(
ϕ′s〈ψ〉 + θ′c〈ψ〉

)
, (27)

wy = −mg
cy

(
−〈ϕ〉c〈ψ〉 + 〈θ〉s〈ψ〉

)
− mg

cy

(
−ϕ′c〈ψ〉 + θ′s〈ψ〉

)
(28)

in the linear case, and
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wx = −sgn
(
〈ϕ〉s〈ψ〉 + 〈θ〉c〈ψ〉

)√ 2mg
ρCx Ax

∣∣∣
(
〈ϕ〉s〈ψ〉 + 〈θ〉c〈ψ〉

)∣∣∣



1 +

ϕ′s〈ψ〉 + θ′c〈ψ〉

2
(

ϕs〈ψ〉 + θc〈ψ〉
)



, (29)

wy = −sgn
(
−〈ϕ〉c〈ψ〉 + 〈θ〉s〈ψ〉

)√ 2mg
ρCx Ax

∣∣∣
(
−〈ϕ〉c〈ψ〉 + 〈θ〉s〈ψ〉

)∣∣∣



1 +

−ϕ′c〈ψ〉 + θ′s〈ψ〉

2
(
−ϕc〈ψ〉 + θs〈ψ〉

)



 (30)

in the square-law case.
It follows from Equations (27)–(30) that, regardless of the model of the drag force, the

estimates of the horizontal components of the turbulent flow velocity are the sum of the
regular and fluctuation parts. The regular part of the estimates is determined by the average
values of the roll, pitch, and yaw angles, whereas the fluctuation part is proportional to the
fluctuations of the roll ϕ′ and pitch θ′ angles.

2.5. Longitudinal and Lateral Velocity Fluctuations

In the case of predominance of the horizontal air mass transfer over the vertical motion,
the longitudinal and lateral turbulent fluctuations of the wind velocity take the form

u′ = nEw′E + nNw′N , (31)

v′ = −nNw′E + nEw′N (32)

n = {nE, nN , 0} =
{ 〈wE〉
〈u〉 ,

〈wN〉
〈u〉 , 0

}
(33)

for the ultrasonic weather station, and

u′ = nxw′x + nyw′y (34)

v′ = −nxw′y + nyw′x (35)

n =
{

nx, ny, 0
}
=

{ 〈wx〉
〈u〉 ,

〈wy〉
〈u〉 , 0

}
(36)

for the quadcopter. Here, w′E and w′N are fluctuations of wind velocity components along
the E and N axes, i.e., data of the ultrasonic weather station; w′x and w′y are fluctuations
of the wind velocity components obtained from the results of quadcopter telemetry; 〈wE〉
and 〈wN〉 are the average components of the horizontal velocity along the E and N axes;
〈wx〉 and 〈wy〉 are estimates of the velocity components along the x and y axes. Thus,
Equations (31)–(36) allow us to compare the longitudinal and lateral turbulence spectra
measured by the quadcopter and the ultrasonic weather station.

3. Experiment

Usually, turbulence spectra are studied experimentally over territories having a flat
and uniform underlying surface and under weather conditions corresponding to the sta-
tionary state of the atmosphere. At such a territory and under such weather conditions,
obtained experimental data agree well with theoretical results. The capabilities of a hov-
ering quadcopter as applied to the study of homogeneous and isotropic turbulence were
examined in [48]. It was shown that the obtained results are in a good agreement with
the theory of homogeneous and isotropic turbulence and the data measured by acoustic
anemometry methods. However, from the practical point of view, it is interesting to analyze
the capabilities of a hovering quadcopter when studying atmospheric turbulence over an
urban territory with complex orography in different seasons: winter, spring, summer,
and fall. From the viewpoint of the theory of turbulence, the behavior of the turbulence
spectrum for this territory and under bad weather conditions is poorly studied. Therefore,
the quadcopter data were compared with the data of ultrasonic weather stations.
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3.1. General Information about the Experiment

Experimental studies were carried out at the territory of the Institute for Monitoring of
Climatic and Ecological Systems of the Siberian Branch of the Russian Academy of Sciences
(IMCES SB RAS), which is located in Academgorodok, one of the districts of the city of
Tomsk (Russian Federation). This area is a territory with complex orography: it is a forested
area with the buildings of the Academgorodok institutes and highways. Figure 2 shows a
Google map of the experimental area. The arrows show the location of the used AMK-03
ultrasonic weather stations, and the measurement dates are indicated.
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Figure 2. Arrangement of ultrasonic weather stations.

The studies were carried out in different seasons: winter (4 February 2020), spring
(17 March 2020), summer (13 August 2020), and fall (15 November 2020). The quadcopter
hovered at different places of the territory with complex orography: over the building of the
Geophysical Observatory and the IMCES SB RAS main building, as well as in the immediate
vicinity of a small grove where a 30 m weather tower is installed (see Figures 2 and 3).
In the experiment on February 20, the launch point of the DJI Phantom 4 Pro quadcopter
was chosen in close proximity to the foundation of the Geophysical Observatory building,
and on August 13 the quadcopter started from the foundation of the 30 m weather tower.
During the measurements on March 17 and November 15, the quadcopter took off in the
immediate vicinity of the foundation of the IMCES SB RAS main building.
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Figure 3. Quadcopter hovering over the building of the Geophysical Observatory (a), and photos of
the ultrasonic weather stations installed on the 30 m weather tower (b) and on the IMCES SB RAS
main building (c).
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The AMK-03 ultrasonic weather station serves to measure and record the wind speed
and direction using acoustic anemometry methods, as well as recording temperature,
relative air humidity, and atmospheric pressure [16,17]. We used AMK-03 data of two
types, which recorded the wind speed and direction with a frequency of 10 and 80 Hz. The
locations of the weather stations of different types are shown by the arrows in Figure 2.
The data on the state of the quadcopter in the flight logs were recorded at a frequency of
10 Hz in CSV format.

Figure 4 shows the quadcopter’s flight paths during the experiments. Table 1 presents
the dates and times of the start and end of the experiments, as well as the DJI Phantom
4 Pro quadcopter’s flight heights. After takeoff, the quadcopters flew up to the AMK-03
ultrasonic weather stations located on the roofs of the buildings and on the weather tower.
After the end of the experiments, the quadcopters returned to the starting point.
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Figure 4. Quadcopter flight trajectory during the experiments on (a) 4 February, (b) 17 March, (c) 13 

August, and (d) 15 November 2020. 

Table 1. Date and time of the start and end of the study and the hover height. 
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15 November 2020 05:38 06:01 28 
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positioning is disrupted. After regaining control, the quadcopter begins to move to its 

original position and, upon reaching this position, it stops.  

Figure 4. Quadcopter flight trajectory during the experiments on (a) 4 February, (b) 17 March, (c) 13
August, and (d) 15 November 2020.

Table 1. Date and time of the start and end of the study and the hover height.

Date Start, UTC End, UTC Hover Height, m

4 February 2020 10:21 10:42 27
17 March 2020 05:10 05:28 22
13 August 2020 07:01 07:23 27

15 November 2020 05:38 06:01 28

According to the data of the Tomsk International Airport spaced by ~10 km from
IMCES SB RAS, the following weather conditions were observed during the experiments.
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On February 4, weather conditions were satisfactory in terms of the quadcopter flight:
south–south-west wind, speed of 3 m/s, air temperature of −4 ◦C, air humidity of 86%,
light snow, horizontal visibility range of 8 km. On March 17, good weather conditions were
recorded: variable wind, speed of 1 m/s, air temperature of −1 ◦C, air humidity of 55%,
no precipitation, horizontal visibility range of 10 km or more. On August 13, the weather
in the airport was excellent: southeast wind, speed of 4 m/s, air temperature of 27 ◦C,
air humidity of 42%, no precipitation, horizontal visibility range of 10 km or more. On
November 15, the weather in the airport was satisfactory in terms of the quadcopter flight:
south–south-west wind, speed of 2 m/s, air temperature of −9 ◦C, air humidity of 90%, no
precipitation, horizontal visibility range of 10 km or more.

Thus, the experiments were carried out in different seasons, under different weather
conditions, and the hover took place at different places of the IMCES SB RAS territory,
which is characterized by complex orography.

3.2. Quadcopter Velocity

Figure 5 shows the dynamics of the vx, vy, and vz components of the quadcopter
velocity during hovering. It can be seen that, generally, the quadcopter velocity components
are equal to zero during the measurements. In short periods of time, the forces acting on
the quadcopter exceed the capabilities of the control system and high-precision positioning
is disrupted. After regaining control, the quadcopter begins to move to its original position
and, upon reaching this position, it stops.
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(b) 17 March, (c) 13 August, and (d) 15 November 2020. 
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Figure 5. Quadcopter velocity components along the x, y, and z axes during hovering. (a) 4 February,
(b) 17 March, (c) 13 August, and (d) 15 November 2020.

Thus, the periods in which the precision positioning of the quadcopter in space is
disrupted can be neglected due to their insignificance, and we can believe that ideal
hovering was observed during the experiment.
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3.3. Longitudinal and Lateral Wind Velocity Components

Let us consider the behavior of the estimates of the longitudinal and lateral components
of the wind velocity from the quadcopter data in the altitude hold mode in the turbulent
atmosphere and compare it with the results obtained from the data of the AMK-03 ultrasonic
weather station.

Figure 6 shows the temporal dynamics of the longitudinal and lateral wind velocity
components measured with AMK-03 (red curves) and DJI Phantom 4 Pro (black curves)
on (a) 4 February, (b) 17 March, (c) 13 August, and (d) 15 November 2020. It follows from
Figure 6 that the time series of u and v measured in different ways generally coincide, and
discrepancies are observed only in the high-frequency range of fluctuations.
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Figure 6. Temporal dynamics of the longitudinal and lateral components of wind velocity: quad-

copter data (black curve) and AMK-03 data (red curve) on (a) 4 February, (b) 17 March, (c) 13 Au-

gust, and (d) 15 November 2020. 
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Figure 6. Temporal dynamics of the longitudinal and lateral components of wind velocity: quadcopter
data (black curve) and AMK-03 data (red curve) on (a) 4 February, (b) 17 March, (c) 13 August, and
(d) 15 November 2020.

The difference between the two different ways of wind velocity measurement can be

characterized by the variance defined as σu =
√
〈(uDron − uAMK−03)

2〉
and σv =

√
〈(vDron − vAMK−03)

2〉. Here, uDron, uAMK−03, and vDron, vAMK−03 are the
longitudinal and lateral wind velocity components measured by the quadcopter and the
weather station. Table 2 presents the variances σu and σv calculated for original and
smoothed time series. It can be seen from Table 2 that, for the original time series, the
variances range within 0.60–0.93 for the longitudinal component and 0.59–1.00 for the
lateral component. When the time series are smoothed by moving average for the period
of 60 s, which corresponds to suppression of the high-frequency part of the spectrum, σu
and σv decrease down to 0.21–0.36 and 0.18–0.31 for, respectively, the longitudinal and
lateral components.
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Table 2. Variances σu and σv.

Date Longitudinal Component Lateral Component

No Smoothing Smoothing No Smoothing Smoothing

4 February 2020 0.63 0.24 0.66 0.18
17 March 2020 0.64 0.36 0.59 0.22
13 August 2020 0.93 0.32 1.00 0.25
15 November

2020 0.60 0.21 0.72 0.31

Average 0.7 0.28 0.74 0.24

Other parameters characterizing the difference between the two measurement methods
are the correlation coefficients. Table 3 presents the calculated coefficients of correlation
between the wind velocities measured by the quadcopter and the weather station for the
original and smoothed time series. It can be seen from Table 3 that, for the original time
series, the correlation coefficients range within 0.54–0.63 for the longitudinal component
and 0.37–0.73 for the lateral component. When the time series are smoothed by moving
average for the period of 60 s, which corresponds to suppression of the high-frequency
part of the spectrum, the correlation coefficients increase up to 0.72–0.90 and 0.61–0.95 for,
respectively, the longitudinal and lateral components.

Table 3. Correlation coefficients.

Date Longitudinal Component Lateral Component

No Smoothing Smoothing No Smoothing Smoothing

4 February 2020 0.55 0.87 0.48 0.83
17 March 2020 0.54 0.72 0.73 0.95
13 August 2020 0.59 0.90 0.52 0.86
15 November

2020 0.63 0.88 0.37 0.61

Average 0.58 0.84 0.53 0.81

It follows from Tables 2 and 3 that, upon smoothing, the variance decreases 2.5–3.1 times,
while the correlation increases 1.5 times. This leads to a decrease of the average variances
from σu = 0.70 and σv = 0.74 down to σu = 0.28 and σv = 0.24, whereas the average
correlation coefficients increase from 0.58 and 0.53 up to 0.84 and 0.81 for the longitudinal
and lateral components of the wind velocity, respectively. Thus, the smoothing suppresses
the high-frequency component of the signal, which is accompanied by a significant decrease
in the variances and an increase in the correlation. Taking this into account, we can conclude
that the quadcopter data well describe the behavior of the large-scale turbulent vortices.
Small-scale vortices, due to their low energy and quadcopter inertia, do not always give
the correct response to the resulting signal.

Table 4 presents the average values of the longitudinal, lateral, and vertical compo-
nents of the wind velocity measured with AMK-03 in the experiments. It can be seen that
the average wind speed 〈u〉 differs from the corresponding values observed at the airport.
This difference is explained by two circumstances. First, the airport is located approxi-
mately 10 km from the IMCES SB RAS buildings. Second, the airport territory, where the
measurements were carried out, has a flat underlying surface, whereas the IMCES SB RAS
territory has complex orography.

It can also be seen from Table 4 that, in the experiment, the horizontal transfer of
air masses predominated over the vertical motion, i.e., 〈w〉 ≈ 0. The fulfillment of the
condition 〈w〉 ≈ 0 in the experiment means that the assumption of the predominance of
the horizontal air mass transfer over the vertical motion when calculating longitudinal
and lateral turbulent fluctuations of the wind velocity using Equations (31)–(36) is justified.
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It should be noted that the maximal values of the longitudinal and lateral components
of the wind velocity exceed the average wind, which is indicative of strong turbulence
during measurements.

Table 4. Average values of the longitudinal, lateral, and vertical wind velocity components and their
maximal values.

Date 〈u〉, m/s 〈v〉, m/s max (u), m/s max (v), m/s 〈w〉, m/s

4 February 2020 1.78 0 4.9 2.6 0.3
17 March 2020 0.89 0 3.03 2.76 0.04
13 August 2020 1.36 0 5.20 3.91 −0.1

15 November 2020 1.35 0 4.13 2.58 0.15

3.4. Spectra of Turbulence

Turbulence spectra were calculated by the well-known methods with standard FFT
software. Figures 7 and 8 show the results of measurements of the longitudinal and lateral
relative turbulence spectra Φu( f ) and Φv( f ). The turbulence spectra obtained from the
data of the AMK-03 ultrasonic weather station and the DJI Phantom 4 Pro quadcopter are
shown by the black curves, σ2 is the normalization coefficient.

It can be seen from Figures 7 and 8 that the values of spectra Φu( f ) and Φv( f ) vary
significantly at minor variations of the frequency f . These variations are random oscillations
about the main regularities of the turbulence spectra. To reveal these regularities in the
turbulence spectra, a smoothing procedure was used.

The result of applying the smoothing procedure is shown in Figures 7 and 8 by
continuous colored curves: red and blue curves for the turbulence spectra of the longitu-
dinal velocity component Φu( f ) and pink and purple curves for the turbulence spectra
of the lateral velocity component Φv( f ). Figure 7a,c,e,g and Figure 8a,c,e,g depict the
results of the application of the smoothing procedure of the relative turbulence spectra
obtained from the data of the AMK-03 ultrasonic weather station, while Figure 7b,d,f,h
and Figure 8b,d,f,h show those for the DJI Phantom 4 Pro quadcopter data. The figures
correspond to the following dates: (a, b) 4 February, (c, d) 17 March, (e, f) 13 August, and
(g, h) 15 November 2020.

Figure 9 compares the smoothed turbulence spectra obtained from the AMK-03 and
DJI Phantom 4 Pro data. Similarly to the case in Figures 7 and 8, red and blue curves
represent the turbulence spectra of the longitudinal velocity component Φu( f ) and pink
and purple curves represent the turbulence spectra of the lateral velocity component Φv( f ).
It can be seen from Figure 9 that the turbulence spectra obtained from the AMK-03 and
DJI Phantom 4 Pro data generally coincide, and slight differences are observed in the
high-frequency range of the spectrum.

It is well known [52,54] that the turbulence spectrum has three main spectral ranges:
the energy production range, the inertial range, and the dissipation range. In the energy
production range, which contains the main part of the turbulent energy, the energy is
generated by buoyancy and shear. In the inertial range, the energy is neither generated nor
dissipated but transferred from large scales to smaller ones. In the dissipation range, the
kinetic energy is converted into the internal energy. Next, we consider the behavior of the
turbulence spectra in the inertial and energy production ranges.
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Figure 7. Longitudinal spectra of turbulence Φu(𝑓): measured turbulence spectra (black curves), 

smoothed turbulence spectra obtained from AMK-03 (red curves), and DJI Phantom 4 Pro data (blue 

curves); 𝜎2 is the normalization coefficient; (a,b) 4 February, (c,d) 17 March, (e,f) 13 August, and 

(g,h) 15 November 2020. 

Figure 7. Longitudinal spectra of turbulence Φu( f ): measured turbulence spectra (black curves),
smoothed turbulence spectra obtained from AMK-03 (red curves), and DJI Phantom 4 Pro data (blue
curves); σ2 is the normalization coefficient; (a,b) 4 February, (c,d) 17 March, (e,f) 13 August, and
(g,h) 15 November 2020.
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Figure 8. Lateral spectra of turbulence Φv(𝑓) : measured turbulence spectra (black curves), 

smoothed turbulence spectra obtained from AMK-03 (pink curves), and DJI Phantom 4 Pro data 

(purple curves); 𝜎2 is the normalization coefficient; (a,b) 4 February, (c,d) 17 March, (e,f) 13 August, 

and (g,h) 15 November 2020. 

Figure 8. Lateral spectra of turbulence Φv( f ): measured turbulence spectra (black curves), smoothed
turbulence spectra obtained from AMK-03 (pink curves), and DJI Phantom 4 Pro data (purple
curves); σ2 is the normalization coefficient; (a,b) 4 February, (c,d) 17 March, (e,f) 13 August, and
(g,h) 15 November 2020.
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Figure 9. Longitudinal Φu(𝑓)  and lateral Φv(𝑓)  turbulence spectra upon application of the 

smoothing procedure: (red and blue curves) smoothed longitudinal turbulence spectra obtained 
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turbulence spectra obtained from the AMK-03 and DJI Phantom 4 Pro data; 𝜎2 is the normalization 

coefficient; (a,b) 4 February, (c,d) 17 March, (e,f) 13 August, and (g,h) 15 November 2020. 
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Figure 9. Longitudinal Φu( f ) and lateral Φv( f ) turbulence spectra upon application of the smoothing
procedure: (red and blue curves) smoothed longitudinal turbulence spectra obtained from the
AMK-03 and DJI Phantom 4 Pro data, respectively, (pink and purple curves) smoothed turbulence
spectra obtained from the AMK-03 and DJI Phantom 4 Pro data; σ2 is the normalization coefficient;
(a,b) 4 February, (c,d) 17 March, (e,f) 13 August, and (g,h) 15 November 2020.
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3.5. Inertial and Energy Production Ranges

In the inertial range, the turbulence spectrum obeys the Kolmogorov–Obukhov “5/3”
law [52–56], which was found from dimensional considerations. The von Karman model is
a generalization of the "5/3" law to the frequencies of the energy production range. There-
fore, the Kolmogorov–Obukhov law can be found from model (19)–(21) at Lu f /〈u〉 � 1,
Lv f /〈u〉 � 1 and Lw f /〈u〉 � 1. In the inertial range, the spectral curve has the form

Φu( f )
σ2

u
∼ f−5/3, (37)

Φv( f )
σ2

v
∼ f−5/3, (38)

Φw( f )
σ2

w
∼ f−5/3. (39)

In Figure 9, the dashed curves show the turbulence spectra corresponding to the
Kolmogorov–Obukhov “5/3” law, which, as already noted, holds true for a homogeneous
surface. It was already mentioned that the IMCES SB RAS territory is not homogeneous
and has complex orography. Despite the complex orography, the turbulence spectrum in
the inertial range obeys the f−5/3 law, as is clearly seen from Figure 9.

Studying the behavior of turbulence spectra in the inertial range by the least-squares fit
method with the frequency dependence of the turbulence spectrum in the form f−γ taken
as a regression curve, it follows from Equations (37) to (39) that γ = 5/3 ≈ 1.7. Table 5
presents the exponents γu and γv calculated for the longitudinal and lateral turbulence
spectra, respectively, and the frequency ranges ∆ fu and ∆ fv used in the least-squares fit.
It can be seen from Table 5 that the exponents γu and γv for the longitudinal and lateral
turbulence spectra agree with the theoretical results within the statistical error. In some
cases, the frequency ranges corresponding to the inertial range differ for the different
measurement methods. Insignificant discrepancies are explained by additional vortices
arising as a result of the turbulent flow around the IMCES SB RAS buildings or near the
small grove where the 30 m weather tower is installed.

Table 5. Exponents γu and γv and frequency ranges ∆ fu and ∆ fv.

Longitudinal Spectra Lateral Spectra
γu ∆fu γv ∆fv

4 February 2020

AMK-03 1.7 [0.0281, 0.639] 1.6 [0.0281, 0.639]
DJI Phantom 4 Pro 1.6 [0.0281, 0.639] 1.7 [0.0281, 0.639]

17 March 2020

AMK-03 1.7 [0.0281, 0.639] 1.8 [0.0281, 0.944]
DJI Phantom 4 Pro 1.8 [0.0281, 0.639] 1.7 [0.0281, 0.639]

13 August 2020

AMK-03 1.7 [0.0281, 0.639] 1.7 [0.0281, 0.639]
DJI Phantom 4 Pro 1.7 [0.0372, 0.251] 1.6

15 November 2020

AMK-03 1.7 [0.0281, 0.639] 1.8 [0.0617, 0.672]

DJI Phantom 4 Pro 1.8 [0.0281, 0.639] 1.7 [0.0220, 0.639]

The main characteristics of the energy production range include the longitudinal and
lateral scales of turbulence Lu and Lv, respectively. The information about these scales
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is contained in relative turbulence spectra. In the case of an isotropic atmosphere, the
equation for the scale ratio has the form

Lv

Lu
= 0.5 (40)

To estimate the scales Lu and Lv, the von Karman model is used in the approximation
of experimental data. The values of the turbulence scales are determined by the equations
relating the turbulence scales and the values of the maxima of the functions f Φu( f ) and
f Φv( f ) [51]. In this study, we used the least-square fit method for approximation of the
experimental data with the von Karman model as the regression curve. In contrast to [55],
the maximum was not sought, and the scales Lu and Lv were determined directly as the
parameters of the best fit when applying the least-square fit method. The calculation
procedure used in this study is equivalent to the approach outlined in [55].

The values of the turbulence scales are given in Table 6. Keeping in mind that the
IMCES SB RAS territory is not homogeneous and has complex orography, we can conclude
that the scale ratio is also true to a good accuracy. In Figure 9, the colored dashed curves are
for the best fit curves, red and blue curves are for the turbulence spectra of the longitudinal
component Φu( f ), and pink and purple curves are for the turbulence spectra of the lateral
component Φv( f ). Figure 9 demonstrates the good agreement for the best fit curves for the
turbulence spectra obtained from the ANK-03 and DJI Phantom 4 Pro data.

Table 6. Integral scales of turbulence.

Lu Lv Lv/Lu

4 February 2020

AMK-03 9.2 7.2 0.78
DJI Phantom 4 Pro 12.9 9.5 0.74

17 March 2020

AMK-03 9.6 7.1 0.74
DJI Phantom 4 Pro 9.4 7.2 0.77

13 August 2020

AMK-03 8.0 6.3 0.79
DJI Phantom 4 Pro 6.9 4.9 0.71

15 November 2020

AMK-03 14.7 10.3 0.70

DJI Phantom 4 Pro 16.0 11.5 0.72

4. Discussion

The problem of ideal hovering of a quadcopter in a turbulent atmosphere in the
case of horizontal air mass transfer as applied to sensing of wind velocity fluctuations is
considered in this paper based on dynamic equations. From the viewpoint of the theory of
turbulence and correct calculation of the turbulence spectrum, the coordinate system, one
of whose axes is directed along the mean wind, is of interest. In this paper, the equations for
fluctuations of the longitudinal and lateral wind speed, which characterize random air mass
motions in the coordinate system with the axis directed along the mean horizontal wind,
are obtained. It is shown that fluctuations of the longitudinal and lateral wind velocity are
proportional to fluctuations of the pitch and roll angles.

The studies of the use of DJI Phantom 4 Pro in the hover mode in combination with
the AMK-03 ultrasonic weather stations show that the quadcopter allows us to obtain
turbulence spectra with high spatial resolution in the atmosphere in areas with complex
orography in hard-to-reach places, under various weather conditions, as well as in different
seasons: winter, spring, summer, and fall.
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The measured values of the longitudinal and lateral spectra vary significantly with
insignificant variations of the frequency. Therefore, we used the smoothing procedure
to study the main regularities in the behavior of turbulence in the inertial and energy
production ranges. To estimate the longitudinal and lateral scales of turbulence, the least
square fit method was used with the von Karman model as a regression curve.

The longitudinal and lateral turbulence spectra obtained with the DJI Phantom 4 Pro
and AMK-03 are generally the same, with minor differences observed in the high-frequency
range of the spectrum. Discrepancies in the high-frequency spectral range are also observed
in the behavior of the time series of the longitudinal and lateral components of wind
velocity measured by different methods. The behavior of the turbulence spectra in the
inertial range shows that they obey the Kolmogorov–Obukhov “5/3” law. In the energy
production range, the longitudinal and lateral turbulence scales and their ratio measured
by both the DJI Phantom 4 Pro and AMK-03 coincide to a good accuracy.

Discrepancies in the behavior of the turbulence spectra obtained experimentally by
different methods can be explained as follows. First, for safety reasons, the quadcopter
was at a distance of ~10 m from AMK-03 during the experiment. Measurements of the
integral turbulence scales show that they are of the same order of magnitude as the distance
from AMK-03 to DJI Phantom 4 Pro. This relation between the scales and the distances
means that the wind velocity fields at the AMK-03 and quadcopter locations are partially
correlated. Therefore, it makes no sense to talk about complete equality of the measured
data and, consequently, the turbulence spectra should differ.

Second, experimental studies were carried out at a territory with complex orography.
The presence of the park zone, institute buildings, and highways means that the territory is
inhomogeneous, which leads to significant deviations from homogeneity and isotropy. As
a result, the behavior of the wind velocity field and its characteristics is different for the
AMK-03 and quadcopter locations. This difference is most pronounced in the behavior of
the ratio of turbulence scales. For the homogeneous and isotropic atmosphere, this ratio is
Lv/Lu = 0.5, but in our experiment, as can be seen from Table 6, Lv/Lu ∼ 0.8 for AMK-03
and Lv/Lu ∼ 0.7 for DJI Phantom 4 Pro on August 13.

It was shown in [48] that the results of investigation of the turbulence spectra in the
inertial and energy production ranges with the quadcopter in the altitude holding mode
over a homogeneous territory are in a good agreement with the theory of homogeneous and
isotropic turbulence and with the measurement data obtained using acoustic anemometry.
This study allows us to conclude that, in these ranges, at the territory with complex
orography, the behavior of the turbulence spectrum measured by the quadcopter agrees
with objective data on the state of atmospheric turbulence. Thus, the results obtained allow
us to assert that a rotary-wing UAV can serve as a tool having great potential for diagnostics
of the atmospheric boundary layer. Due to the capability of providing data on the state of
atmospheric turbulence with high spatial resolution, the quadcopter is a promising tool for
solving problems of controlling the UAV movement under bad weather conditions, as well
as problems of wind energy, climatic measurements in an urban environment, etc.

From the scientific and practical points of view, it is of great interest to monitor the
state of atmospheric turbulence at various spatial points of the studied area. From this
point of view, further work on the use of a quadcopter for low-altitude sensing is associated
with the use of a quadcopter swarm to determine profiles of atmospheric turbulence in
both the vertical and horizontal planes.
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Abstract: Multiple unmanned multirotor (MUM) systems are becoming a reality. They have a
wide range of applications such as for surveillance, search and rescue, monitoring operations in
hazardous environments and providing communication coverage services. Currently, an important
issue in MUM is coverage control. In this paper, an existing coverage control algorithm has been
extended to incorporate a new sensor model, which is downward facing and allows pan-tilt-zoom
(PTZ). Two new constraints, namely view angle and collision avoidance, have also been included.
Mobile network coverage among the MUMs is studied. Finally, the proposed scheme is tested in
computer simulations.

Keywords: coverage control; distributed control; unmanned aerial vehicles

1. Introduction

Unmanned aerial vehicle (UAV) technology is currently a growing area. It offers
many potential civil applications, inspiring scientists to undertake the development of
new algorithms to automate UAV systems. Employing multiple unmanned multirotors
(MUMs) [1–8] is rapidly becoming possible due to the development of computer hardware
and communication technology. The use of UAVs is advantageous when compared to a
single one. For example, when a task is very difficult, a single UAV may take a long time
or may not be able to accomplish it effectively. The research challenge is then to develop
the appropriate cooperation logic so that the UAVs work together to complete missions
effectively and efficiently.

Coverage control is attracting research interest in MUMs [9]. The basic principle is to
drive MUMs to optimal coverage for a given environment. The early works in coverage
control address the visibility problem [10] or the Watchmen Tour Problem (WTP) [11], which
determines the optimal number of guards and their routes, respectively, to observe a given
area. These approaches form the primary research in this area, but they are not suitable for
real applications. It is necessary to real world constraints in the development of coverage
algorithms for MUMs. Cortés et al. [12,13] have proposed some approaches for coverage
control, which are based on the Voronoi algorithm for MUMs. Here, the Voronoi algorithm
is a decentralized iterative scheme to partition a 2D plane into several cells. Thereafter,
the coverage problem received greater attention and many methods [4,14–16] have been
proposed. Here, we give several examples. Schwager et al. [14,17] presented a distributed
algorithm for dealing with the coverage, which controls MUMs to implement their coverage
by configuring position and pan and tilt parameters. Piciarelli et al. [15] considered a fixed
camera network and proposed a camera PTZ reconfiguration for coverage control with
considering a relevance parameter, where an ellipse sensing field of view (FOV) is assumed.
Parapari et al. [4] presented a distributed collision avoidance control for MUMs, but no PTZ
configuration. Wang and Guo [16] handled the coverage problem by deriving a distributed
control from a potential function, but no PTZ configuration. It should be noted that the
result of Schwager et al. [17] is significant since the sensor used is the downward facing
camera which is a practical configuration. The difficulty in this approach is that the sensing
field of view is an arbitrary convex polygon of four sides. Most results do not consider
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the case of MUMs with downward facing cameras and arbitrary trapezoidal FOV flying
in the sky. However, the camera focal parameter was not considered for configuration
in that paper. In order to minimize mobility and hovering MUMs over the monitoring
area, a simultaneous configuration of PTZ parameters is an important topic in coverage
control. In addition, sometime a sensor would face an obstacle (e.g., a tree). Without the
consideration of this situation in the coverage control, the sensor view may be occluded
by dynamic or static obstacles. Thus, the view angle parameter is also important and
should be considered. In a later work, Arslan et al. [18] presented a circular image sensor
and developed an algorithm of configuring PTZ parameters. Unfortunately, the result of
Arslan et al. [18] is based on a circular FOV, but the actual FOV is a trapezoidal one. In
addition, Arslan et al. [18] use a fixed camera network to configure PTZ parameters without
tuning the cameras’ positions.

In this paper, we develop a distributed coverage control approach for MUMs with
downward facing cameras. The proposed approach is based on the result of Schwa-
ger et al. [17]. A modified camera model is adopted in this paper. Based on this model, we
extend Schwager et al.’s method to include more control variables in coverage control. The
following features are improved compared with Schwager et al.’s method: (1) camera sen-
sor model close to actual one; (2) configured rotation and PTZ parameters simultaneously;
(3) imposed view angle constraints; (4) controller that can avoid collision among UAVs; (5)
network convergence with more control variables and guaranteed collision avoidance.

Originally, a primary version of this paper was published in ICUAS 2018 [19]. We
extend [19] to more contents: (1) the stability analysis is given for the view angle control;
(2) we extend the coverage algorithm by incorporating with collision avoidance and the
stability analysis is given; (3) more examples are tested in the simulation.

The paper is structured as follows: in Section 2, problem formulation and our research
objectives are briefly described. In Section 3, the solution of a distributed coverage control
with consideration of the unmanned aerial vehicle (UAV) position, rotation and PTZ
parameters, and view angle constraint, is given. The simulation study is given in Section 4.
Finally, the conclusion is given in Section 5.

2. Problem Statements

In this section, we describe the problem of coverage control of MUMs with downward
facing cameras. We first define the environment and the camera model and then give the
coverage control objective.

2.1. Environment

Let Q be a bounded environment Q ⊂ R2. The degree of interest of the area in its
interior is represented by a density function ϕ(q) where q ∈ Q.

2.2. Camera Sensor Model

We consider n UAVs in an environment Q. Each UAV with a downward facing camera
is located in position:

pi = [xi, yi, zi]
T .

Figure 1 shows the camera model, where the center of the camera is at the center of
the lens; f is the focal length of the lens; Ll is the length of the camera image; Lw is the
width of the camera image; each camera has a rectangular field of view (FOV), which is
the intersection of the cone of the camera lens with the environment Q. There are two
coordinate systems in the coverage problem: one is the camera coordinates (CC) of UAV
i, and the other one is the global coordinates (GC). The CC is at the center of the camera
lens, with the z-axis pointing downward facing to the ground through the lens, while the
GC is fixed on the ground, with the z-axis points upward normal to the ground. In CC, the
camera view is like a pyramid object whose base is a rectangle shape and whose sides are
triangles uniting at a common apex, the center of the camera lens. The sides of the pyramid
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have the outward normal vectors e1, e2, e3, e4. Here, we derive the first outward normal
vector e1. The side view of the camera with pyramid FOV is shown in Figure 2. From the
figure, it is known that two triangles ∆v1ov2 and ∆v3ov4 are similar since the vector e1 and
the line ov3 are perpendicular. Thus, the projection of the normal vector e1 on the y-axis is
ov2 and its value is f , while the rejection of the normal vector e1 from the y-axis is v1v2 and
its value is − Ll

2 . Therefore, the normal vector e1 in the CC system is [0 f − Ll
2 ]. We are

interested in the unit normal vector and thus it follows that:

e1 = [0 2 f√
L2

l +4 f 2
− Ll√

L2
l +4 f 2

]T (1)

In a similar way, we can obtain the other remained three outward normal vectors:

e2 = [
2 f√

L2
w + 4 f 2

0 − Lw√
L2

w + 4 f 2
]T (2)

e3 = [0 − 2 f√
L2

l + 4 f 2
− Ll√

L2
l + 4 f 2

]T (3)

e4 = [
2 f√

L2
w + 4 f 2

0 − Lw√
L2

w + 4 f 2
]T (4)

Figure 1. Camera model.
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Figure 2. Side view of camera with pyramid FOV.

For the GC system, we want to transform it to get a CC system, which can be repre-
sented in 3D rotation matrix form as R. This matrix can be implemented by using two
elementary transforms, each matrix realizes a rotation. This is achieved by rotating the
z-axis by π/2 whose transformation is given by:

Ri(
π

2
) =




cos(π/2) sin(π/2) 0
−sin(π/2) cos(π/2) 0

0 0 1


, (5)

and then turning the x-axis over by π whose transformation is given by:

Ri(π) =




1 0 0
0 cos(π) sin(π)
0 −sin(π) cos(π)


, (6)

We can express this transformation by:

R
π
2→π

i = Ri(π)Ri(
π

2
) =




0 1 0
1 0 0
0 0 −1


, (7)
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Finally, for a 3D point v in GC, we can transform the vector (v− pi) into the CC system

by the transformation R
π
2→π

i , that is R
π
2→π

i (v− pi). For a q ∈ Q, the vector I32q− p (where

I32 =




1 0
0 1
0 0


) expressed in CC is given by R

π
2→π

i (I32q− p).

Now, we are concerned about the pyramid FOV, as shown in Figure 1. This pyramid
has four sides and they intersect with the ground to get four edges of the camera FOV. Each
edge is defined as lk, k = 1, 2, 3, 4. If the point q is on the edge lk of the camera FOV, then:

eT
k R

π
2→π

i (I32q− pi) = 0, k = 1, 2, 3, 4

since the outward normal vector ei and the vector R
π
2→π

i (I32q− pi) are perpendicular. Thus,
for a given q ∈ Q, the camera FOV is represented by:

Bi = {q :




eT
1iR

π
2→π

i (I32q− pi) ≤ 0

eT
2iR

π
2→π

i (I32q− pi) ≤ 0

eT
3iR

π
2→π

i (I32q− pi) ≤ 0

eT
4iR

π
2→π

i (I32q− pi) ≤ 0



}. (8)

The observed area A from the camera, which is a rectangle form is given by:

A = z2 Ll Lw

f 2

which is obtained directly from Figure 1. The number of pixels are given by Nl and Nw.
The area/pixel is given by:

areaA
pixel

=
Ll Lwz2

Nl Nw f 2 . (9)

Thus, we have a function:

g(pi, q) =

{
Lli Lwiz2

i
Nli Nwi f 2

i
, for q ∈ Bi

∞, otherwise.
(10)

Remark 1. It should be noted that the area/pixel is different from the result of Schwager et al. [17],
where Schwager et al. used a magnification factor to represent the area observed from the camera,
while our expression is more practical by using area and pixel resolution. The proposed sensor
model also differs from that of Schwager et al.’s work. The center of the UAV (or camera) is defined
at the center of the camera lens in our model, while the center of the camera in Schwager et al.’s
work was defined at the center of the camera focal. If the zoom parameter f is configured based on
Schwager et al.’s work, this will result in the changes of the UAV altitude (it is redundant to adjust
the zoom parameter in this situation). Whereas, the configuration based on our sensor model will
not affect the UAV altitude. In addition, Schwager et al.’s work does not consider the size of the
camera image, which affects the FOV.

2.3. Wireless Camera Networks

In this paper, the coverage algorithm is applicable to the wireless camera networks
formed of cameras with PTZ. This implies that each UAV is communicated with other
UAVs. The main assumptions of this network are described below.

• Each camera can obtain its position and velocity by its GPS built in UAV.
• Each camera can obtain its FOV information by its camera image.
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• The camera network is connected; therefore, each camera has a sensing and communi-
cation capability or multi-hop transmission capacity to transmit related information to
neighbor cameras.
It should be noted that in the present wireless camera network, (a) we need to transmit
relevant FOV information to adjacent cameras to find FOV overlap, it is not necessary
to transmit all FOVs of cameras in the environment. Therefore, the information
broadcast can be set like two or three hops before it stops rebroadcasting (UDP
protocol can be used). (b) It needs to communicate with all of the cameras to obtain
only the position information of other UAVs.

2.4. Optimization Coverage Problem

For the multi-UAV coverage control, we have to design a cost function that can be
used for evaluating the coverage performance. It is a natural way to use the information,
as discussed in the previous section. Defining the cost function (see [17]) as our control
objective is given by:

J =
∫

Q
(

n

∑
i=1

g(pi, q)−1 + Υ−1)−1dq (11)

where Υ > 0 is a positive constant. This constant is used to avoid the integration part as zero
due to g(pi, q)−1. It may be interpreted as baseline information of the environment. The
optimization coverage problem of multi-UAVs is to minimize the objective function (11).

3. Distributed Coverage with Configuration of Position, Yaw and PTZ

Our goal is to develop a distributed control for the coverage problem, where each UAV
exchanges information with its neighboring UAVs. Thus, the area can be represented by:

JNq = ( ∑
i∈Nq

g(pi, q)−1 + Υ−1)−1 (12)

where Nq is the camera set described by:

Nq = {i : q ∈ Bi, i = 1, 2, ...n}.

The objective function becomes:

J =
∫

Q
JNq ϕ(q)dq (13)

When the UAV heading yaw and pan-tilt-zoom (PTZ) cameras are considered in UAV
camera networks, many problems arise. One of the problems is how to achieve the coverage
by adjusting position, yaw (rotation) and PTZ parameters in a MUM system. Since the
camera FOV affects coverage, any strategy for coverage control must be associated with
cameras PTZ parameters. In this section, we develop the control law to consider such a
general case, the configuration of position, yaw (rotation) and PTZ cameras. Consider the
state of the UAV i with gimbal camera to be given by:

χi = [xi, yi, zi, ψr
i , ψ

p
i , ψt

i , fi]
T ,

where ψr
i , ψ

p
i , and ψt

i are the rotation (or yaw) , pan and tilt angles, respectively, and fi is
the focal length of the camera i. Usually, the rotation (yaw) is controlled by UAV, while the
PTZ parameters are controlled by a gimbal camera system. We assume that both the UAV
and camera are considered as one particle (camera lens representing this point) and their
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positions are the same one represented by this point. As explained in Section 2, the center
of the UAV position is the camera lens. Consider the state equation of the camera i, that is:

χ̇i i = ui (14)

where:

ui = [uxi, uyi, uzi, uψr
i
, uψ

p
i
, uψt

i
, u fi

]T .

Let pi = [xi, yi, zi]
T be the position of the camera i at the center of the lens (it is also

the position of UAV). It should be noticed that for each UAV their dynamic is independent.
For neighboring UAVs, the wireless communication network is assumed to be connected
during the mission.

As shown in Section 2, a rectangular FOV on the GC coordinates is converted into

one which is based on the CC system, by rotating a matrix R
π
2→π

i . Sometimes we have to
configure the yaw angle such that the coverage is achieved optimally. In this situation, a
rotation matrix for rotating the yaw (rotation) angle is introduced as described below:

Rotation about z− axis (yaw angle)

Ryaw(ψ
r
i ) =




cosψr
i sinψr

i 0
−sinψr

i cosψr
i 0

0 0 1


. (15)

Similarly, we can tune pan and tilt angles to control the camera to get a better FOV
on the ground. The rotation matrices corresponding to the pan and tilt transformation are
given by:

Rotation about x− axis (pan angle)

Rpan(ψ
p
i ) =




1 0 0
0 cosψ

p
i sinψ

p
i

0 −sinψr
i cosψr

i


, (16)

and:

Rotation about y− axis (tilt angle)

Rtilt(ψ
t
i ) =




cosψt
i 0 −sinψt

i
0 1 0

sinψt
i 0 cosψt

i


, (17)

respectively. Finally, for a 3D point v in a GC system, we can transform the vector (v− pi)
into the CC system by rotating Ri, which is given by:

Ri = Rtilt(ψ
t
i )Rpan(ψ

p
i )Ryaw(ψ

r
i )R

π
2→π

i (18)

For a point q inside FOV, we can express the vector (I32q− gi) in the CC system by
Ri(I32q− pi). Next, we are concerned about the FOV cone, as shown in Figure 1. By the
transformation, the camera FOV shown in (8) in the CC system is changed to:

Bi = {q :




eT
1iRi(I32q− pi)

eT
2iRi(I32q− pi)

eT
3iRi(I32q− pi)

eT
4iRi(I32q− pi)


 ≤ 0} (19)

It should be noted that when tuning yaw or PTZ parameters, FOV is not a rectangular
shape, as shown in Section 2, but it is a trapezium or trapezoid in this transformation
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Ri. Thus, the area of such FOV shape can be viewed as a mapping defined by C f ov from
the image area Ll Lw to an area of a trapezium FOV on the ground, that is expressed as
C f ov : Ll Lw → FOV. Therefore, the area

pixel in (9) should be changed to:

area
pixel

=
C f ov

Nl Nw f 2 ‖ I32q− pi ‖2, (20)

where ‖ I32q− pi ‖ is the the distance between the camera and the point q inside FOV. Now,
due to the use of yaw and PTZ cameras, the function g(pi, q) is changed to:

g(pi, q) =

{ C f ov(Lli Lwi)

Nli Nwi f 2
i
‖ I32q− pi ‖2, for q ∈ Bi

∞, otherwise.
(21)

Consider the state equation of UAV i with the PTZ camera, that is:

χ̇i i = ui (22)

ui = −ρ
∂J
∂χi

, χi = [pi, ψr
i , ψ

p
i , ψt

i , fi] (23)

where ρ > 0 is a factor, and the gradient ∂J
∂χi

(see Appendix) is given by:

∂J
∂pi

=
4

∑
k=1

∫

Q∩lki

(JNq − JNq\{i})ϕ(q)
RT

i eki

‖ I23RT
i eki ‖

dq

−
∫

Q∩Bi

2Nli Nwi f 2
i J2

Nq(I32q− pi)

LliLwi ‖ I32q− pi ‖4 ϕ(q)dq, (24)

∂J
∂ψw

i
=

4

∑
k=1

∫

Q∩lki

(JNq − JNq\{i})
ϕ(q)eT

ki
∂Ri
∂ψw

i
(pi − I32q)

‖ I23RT
i eki ‖

dq

w ∈ {r, p, t} (25)

where ∂Ri
∂ψw

i
can be obtained by differentiating Ri with respect to ψw

i directly, and:

∂J
∂ fi

=
4
∑

k=1

∫
Q∩lki

(JNq − JNq\{i})
ϕ(q)

∂eT
ki

∂ fi
Ri(pi−I32q)

‖I23RT
i eki‖

dq

−
∫

Q∩Bi

2J2
Nq fi Nl Nw

Ll Lw ||I32q−pi ||2 ϕ(q)dq. (26)

It is observed from (26) that if we fix the parameters x, y, z, the updating parameter
f will not affect the position of UAV. This implies that we can hover the UAV at a certain
position and tune PTZ parameters to get the optimal coverage. The factor ρ is used to affect
the convergence to the coverage. Large values of ρ can speed up the convergence. However,
it cannot be increased to a very large value due to the control limits.

The following theorem is given for configuring the parameters xi, yi, zi, ψr
i , ψ

p
i , ψt

i , fi
simultaneously.
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Theorem 1. In a network of n UAVs governed by dynamics (22) with downward facing cameras,
the gradient of the cost function J with respect to the state variables χi = [xi, yi, zi, ψr

i , ψ
p
i , ψt

i , fi]
T

is given by (24)–(26).

The proposed coverage control is a decentralized form. Based on the gradient descent,
the configuration of the control variables is an iterative process, as shown in Figure 3. The
iteration is terminated when the desired coverage rate is reached, where the coverage rate
is multiple UAVs coverage o f the area o f interest

area o f interest .

Figure 3. Chart block of decentralized coverage control scheme.

Remark 2. In [17], the configuration of the focal parameter f is not considered. In the proposed
algorithm, we can configure the position (x, y, z), yaw and PTZ parameters. This improves the
results of [17].

3.1. Incorporating View Angle

In a practical situation, sometimes a sensor (e.g., solid-state LiDAR) faces an obstacle
(e.g., a tree), which may be between the sensor and the target and it can not capture the
object image even if the target is within the view angle coverage of the sensor; this is
known as an occlusion. If we consider the view angle as a target feature, this implies that
the coverage must include this feature. Without the consideration of this feature in the
coverage control, the target may be occluded by dynamic or static objects. For example, we
hope the camera i to rotate its angle to 30 degrees so that we can see the observed region
clearly. This is a reference following control problems.

Let us consider this situation in coverage control. Assume that we require the UAV to
follow a desired view angle ψwD

i , w ∈ {r, p, t}. The controller design should be to achieve
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this objective, i.e., ψw
i approaches the desired ψwD

i as soon as possible. Let ψ̃w
i = ψwD

i − ψw
i .

We propose the following controller:

uψw
i
= ψ̇i

wD
+ kw

piψ̃
w
i (27)

where kw
pi > 0 is the constant control gain, which can be determined by users.

Assumption 1. The desired angle ψwD
i , w ∈ {r, p, t} is smooth and bounded, and its derivative

ψ̇i
wD is also bounded.

Rearranging the state equations of the camera i, we get:

η̇i = uηi (28)

ψ̇w
i = uψw

i
, w ∈ {r, p, t}. (29)

where ηi = [xi, yi, zi, fi]
T , uηi = [uxi, uyi, uzi, u f i]

T , ψw
i = [ψr

i , ψ
p
i , ψt

i ]
T and

uψw
i
= [uψr

i
, uψ

p
i
, uψt

i
]T .

We have the following theorem to ensure the stability.

Theorem 2. In a network of n UAVs governed by dynamics (22) with downward facing cameras,
the control laws uxi, uyi, uzi, u f i are designed by (23), while the control laws uψw

i
, w ∈ {r, p, t} are

designed by (27). If Assumption 1 holds, then:
(1) the proposed control laws lead to a bounded coverage of J ;
(2) limt→∞ ψ̃w

i = 0.

Proof. See Appendix A.

Remark 3. For a camera network, it is possible that some UAVs use the position and PTZ control
with/without considering view angle. In this situation, those UAVs without considering view angle
are referred to as zero view angle control, i.e., the desired view angle is set to ψwD

i = 0. Thus, we
have a similar result as in Theorem 2.

Remark 4. The stability in Theorem 2 ensures that (1) the coverage is bounded when applying the
proposed coverage control with view angle; (2) it is converged to the desired view angle.

3.2. Incorporating Collision Avoidance

Collision avoidance is a practical problem in multi-UAV networks. So far, the control
design does not consider collisions with other UAVs when implementing the coverage
objective. In what follows, we incorporate a potential function to design a coverage control
with autonomously avoiding collisions.

Define a distance as dij = ||pi − pj||, i, j = 1, 2, ...n, i 6= j. Let Γi be the set of indices
of cameras of the ith UAV for which dij is within certain regions; that is, Γi = {j : r <
dij ≤ R, j = 1, 2, ...n, j 6= i}. The view of r < dij ≤ R is shown in Figure 4, where r and R
(R > r > 0) are the radii of the avoidance and detection regions. The potential function [20]
based on n UAVs is given by:

VPi =
n

∑
j=1,j 6=i

vPij (30)

where:

vPij = (min

{
0,

d2
ij − R2

d2
ij − r2

}
)2 (31)
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This is a repulsive potential function. The partial derivative of vPij with respect to
pi = [xi, yi, zi]

T is given by:

∂vT
Pij

∂pi
=





0, i f dij ≥ R

4
(R2−r2)(d2

ij−R2)

(d2
ij−r2)3 (pi − pj)

T , i f r < dij < R

0, i f dij < r

(32)

Figure 4. 3D view of avoidance function. Avoidance region with radius r and detection region with
radius R.

Rearrange the state equations of the UAV i as:

ṗi = upi (33)

β̇i = uβi , (34)

where βi = [ψr
i , ψ

p
i , ψt

i , fi]
T .

Consider the following performance criterion:

V = J +
1
2

n

∑
i=1

VPi (35)

The following theorem is given to establish a stability result.

Theorem 3. In a network of n UAVs governed by dynamics (22) with downward facing cameras,
the control laws are given by:

upi = −ρ(
∂J
∂pi

+
n

∑
j=1,j 6=i

∂vPij

∂pj
) (36)

uβi = −ρ
∂J
∂βi

, (37)

with (32), (A9), (A17) and (A18). If the initial configuration such that dij(0) > r, then:
(1) The proposed control laws lead to a bounded coverage of J ;
(2) The collision among UAVs is avoided.

Proof. See Appendix A.
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Remark 5. If we incorporate the view angle control, in this situation, we have a similar conclusion
as in Theorem 3.

4. Simulation Studies

Simulation tests of the proposed coverage controls are given in this section. The
HP computer with intel (R) Core(TM) i7-4770 CPU was used. The operation system
was window 10. MATLAB software was used for simulations. In all case studies, the
environment Q was the same as in the rectangle form [−200, 200]× [−200, 200] ⊂ R2. All
UAVs were identical with the camera model, as shown in Figure 1. The parameters of the
camera image sensor were Ll = 3 mm, Lw = 5 mm, Nl = 640 pixels, Nv = 480 pixels and Υ
was chosen as 1000.

4.1. Case 1

We considered 2 UAVs for coverage control. The sensor model in Section 2.2 was used
in a rectangle form. The configuration of the camera network included UAV positions
without rotation and PTZ tuning. The proposed algorithm (23) was used to control UAVs
such that the coverage cost function was minimized. We have considered a density function

φ(q) = e−(
x−20

20 )2−( y−40
40 )2

which is an area of interest (convex type). Two UAVs try to cover
the area of interest by tuning the UAV position (x,y,z) parameters. Simulation results
are illustrated in three parts: initial stage, after the initial stage and final stage. Initially,
two UAVs started as seen in Figure 5. Figure 6 shows a representation of the coverage
improvement after the initial stage. The final stage is shown in Figure 7. It was observed
that the camera network coverage increased significantly through multiple rounds and the
area was almost covered in the final stage.

Figure 5. Test 1. Camera movement and sensing FOV (Initial configuration): (a) 2D coverage,
(b) cameras’ locations and their corresponding sensing regions.
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Figure 6. Test 1. Camera movement and sensing FOV (Middle configuration): (a) 2D coverage,
(b) cameras’ locations and their corresponding sensing regions.

Figure 7. Test 1. Camera movement and sensing FOV (Final configuration): (a) 2D coverage,
(b) cameras’ locations and their corresponding sensing regions.

We consider configuring more parameters such as the UAV position (x,y,z), rotation,
pan and tilt angles, where the proposed controls (23) were used. However, one UAV is
required to configure the view angle (rotation), where the proposed control (27) was used. A

density function φ(q) = e−(
x

20 )
2−( y−20

40 )2
+ e−(

x−50
50 )2−( y−50

20 )2
is a region of interest, which is a

non-convex type, as shown in Figure 8a. Three UAVs try to cover the area of interest as soon
as possible. Simulation results are illustrated in three parts: initial stage, after the initial
stage and final stage. The first UAV, which is marked in blue color, configures the (x,y,z),
rotation, pan and tilt parameters, but the rotation angle is required to follow the desired
rotation angle 90 degree, starting at the x-axis of the CC system, which is right-handed.
The other two UAVs use the coverage control with the configuration of the camera position
(x, y, z), rotation, pan and tilt parameters. Initially, three UAVs start grouped, as seen in
Figure 8 and the coverage is poor. Later, Figure 9 shows a representation of the coverage
improvement after the initial stage and the 1/2 coverage of the area of interest is achieved.
It is observed from Figures 8 and 9 that the view angle of the first UAV (marked in blue
color) is controlled in 90 degree. The final stage is shown in Figure 10, where the rotation
angle of the first UAV is still controlled in 90 degrees. It is observed from Figures 8–10 that
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the camera network coverage is increased significantly through multiple rounds and 93%
of the area of interest is almost covered in the final stage.

Figure 8. Test 2. Camera movement and sensing FOV (Initial configuration): (a) 2D coverage,
(b) cameras’ locations and their corresponding sensing regions.

Figure 9. Test 2. Camera movement and sensing FOV (Middle configuration): (a) 2D coverage,
(b) cameras’ locations and their corresponding sensing regions.

Figure 10. Test 2. Camera movement and sensing FOV (Final configuration): (a) 2D coverage,
(b) cameras’ locations and their corresponding sensing regions.
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4.2. Case 3

We configured the camera focal length (zoom parameter), which was not controlled
in Cases 1-2. The altitude (z) was fixed at 35 meters high so that the camera’s FOV was
observed as updating the camera’s zoom parameter. Thus, the configuration parameters
include the camera’s position (x,y), rotation and PTZ. We used the coverage control laws,
as proposed in (23). The density function φ(q) was the same as in Case 2. Four UAVs were
intended to be used in the coverage control laws to cover the area of interest automatically.
Simulation results are illustrated in three parts: initial stage, after the initial stage and final
stage. Initially, four UAVs grouped, as seen in Figure 11, where the initial focal length
was 8 for all cameras. It is observed that at the initial stage, the multi-UAVs were poor
in coverage. After that, the coverage control was used to drive all UAVs to improve the
coverage by configuring the (x,y), rotation and PTZ. Figure 12 shows a representation of
the coverage improvement after the initial stage and almost 1/2 the coverage of the area of
interest was achieved. It is observed that the the FOV of each UAV is changing such that
the coverage performance is improved, especially in the size of the FOV of each UAV. This
is because the zoom parameter was configured. The final stage is shown in Figure 13. It is
observed that even though the altitude of all UAVs was fixed, the camera network coverage
was achieved as about 97 percent by controlling four UAVs by configuring the zoom and
other parameters.

Figure 11. Test 3. Camera movement and sensing FOV (Initial configuration): (a) 2D coverage,
(b) cameras’ locations and their corresponding sensing regions.

Figure 12. Test 3. Camera movement and sensing FOV (Middle configuration): (a) 2D coverage,
(b) cameras’ locations and their corresponding sensing regions.
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Figure 13. Test 3. Camera movement and sensing FOV (Final configuration): (a) 2D coverage,
(b) cameras’ locations and their corresponding sensing regions.

The previous results did not consider collision avoidance when configuring the camera
parameters. In a practical situation, it is quite dangerous without collision avoidance
mechanisms in controlling UAVs. In this case, we show the configuration of the parameters
(x,y,z), rotation, pan and tilt with the collision avoidance proposed in Section 3.2. The
density function φ(q) was the same as in Case 2. Four UAVs try to cover the area of interest
area as soon as possible. It is required to have a coverage rate of 85 percent. Assume that
the radii of the avoidance and detection were r = 30 and R = 35, respectively. Figure 14
shows a representation of the coverage without considering the collision avoidance, while
Figure 15 shows a representation of the coverage with the collision avoidance function. The
horizontal distance profile between the ith UAV and jth UAV (i ≥ j) is shown in Figure 16.
It is observed from Figure 16 that the minimum separation distance was about 25 m (<the
radius of the avoidance) when, without considering the collision avoidance, it was greater
than 30 m (>the radius of the avoidance) when considering the collision avoidance. This
verifies that the proposed collision avoidance can work well. Nearly 85 percent of the
camera network coverage rate was achieved. In this case, the coverage rate was less than in
Cases 1–3, since we intend to demonstrate the collision avoidance and use a large radius of
avoidance, i.e., 30.

The proposed decentralized control requires knowing the position and FOV infor-
mation of the neighboring UAVs. As discussed in Section 2.3, a communication network
should be built for exchanging information from each other. The proposed coverage control
is an iterative process based on the gradient descent. Simulation results have shown that
the desired coverage rate can be reached by multi-UAV configurations. Even if during the
initial stage, UAVs are poor in coverage (see Cases 2 and 3), the desired coverage rate can
still be achieved by configuration of the variables. Moreover, as a collision avoidance term is
added into the control, it is not necessary to worry about avoiding issues when conducting
a coverage control, which was observed in Case 4. The drawback of the proposed algorithm
is that the FOV of the ith UAV may be outside of the area of interest, which is observed
from Figure 13.
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Figure 14. Test 4. Camera movement and sensing FOV without considering collision avoidance:
(a) 2D coverage, (b) cameras’ locations and their corresponding sensing regions.

Figure 15. Test 4. Camera movement and sensing FOV with considering collision avoidance: (a) 2D
coverage, (b) cameras’ locations and their corresponding sensing regions.

Figure 16. Test 4. Separation distance along horizontal direction: (a) configuration without consider-
ing collision avoidance, (b) configuration with considering collision avoidance.

5. Discussion and Conclusions

The development of coverage strategies is the main topic in multi-UAV systems. Tech-
nical considerations in camera networks consisting of multi-UAVs are still a challenge. Little
work has been done in the design of the coverage control that involves the configuration of
multiple parameters and view angle and collision avoidance.
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This paper has presented a solution for coverage control of the multi-UAV system
with downward facing cameras. We have extended the result of [19] to more contents. For
example, we consider more parameters for tuning and enhancing control freedom. The view
angle is discussed when designing the coverage issue. In addition, the proposed coverage
control involves the collision avoidance issue. This is quite important when multiple UAVs
are configuring the variables to achieve the coverage objective. The theoretical analysis
is also given. The simulation tests have shown that the multi-UAVs with cameras can
cover the whole interesting area automatically and verified that the proposed coverage
control scheme is successful. The drawback of the proposed algorithm is that the FOV of
the ith UAV may be outside of the area of interest. The current version also cannot handle
invisible and obscured areas. This is a 3D coverage issue.

In future research we will consider the deformation of reality that may arise in the
image due to the differentiation of the tilt angle or rotation. Another objective is to
implement the proposed method on a real multi-UAV system.
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Abbreviations
The following abbreviations are used in this manuscript:

Symbols
q point belongs to a known environment
Q environment
ϕ(q) the density function of the area of interest
pi the ith UAV’s position
ei the ith outward normal vectors
f the focal length of the lens
Ll the length of the camera image
Lw the width of the camera image
Ri the rotation matrix of the ith UAV
A the observed area by camera
Bi the field of view of the ith camera
g(pi, q) the area/pixel information
n the total number of UAVs
JNq the cost index
ψw

i the angle of the ith camera,w={r,p,t}
ui the controlled variable of the ith UAV
Nl the pixel number of the length of image
Nw the pixel number of the width of image
List of abbreviations
MUM Multiple unmanned multirotor
PTZ Pan-tilt-zoom
UAV Unmanned aerial vehicle
WTP Watchmen Tour Problem
FOV Field of view
CC Camera coordinates
GC Global coordinates
GPS Global positioning system
LiDAR Light detection and ranging
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Appendix A

Proof of Theorem 1.
Taking a similar procedure as in [17] (see Equation (37) of [17]), we have:

∂H
∂pi

=
∫

Q∩∂Bi

(JNq − JNq\{i})φ(q)
∂qT

Q∩∂Bi

∂pi
nQ∩∂Bi

dq

+
∫

Q∩Bi

∂JNq

∂pi
φ(q)dq (A1)

where qQ∩∂Bi
and nQ∩∂Bi

are denoted as the point q and the outward normal vector n are
along the boundary Q ∩ ∂Bi of UAV i, respectively. We have to calculate:

∂qT
Q∩∂Bi

∂pi
nQ∩∂Bi

(A2)

and:

∂JNq

∂pi
. (A3)

Since nQ∩∂Bi
is composed of four edges of the camera FOV on the ground, it is decom-

posed into n1i, n2i, n3i and n4i along the edges l1i, l2i, l3i and l4i, respectively. It should be
noted that each nki is in the GC system and thus nki can be obtained through an inverse
transformation Ri to eki, that is I23R−1

i eki = I23RT
i eki. Considering a unit vector, we have:

nki =
I23RT

i eki

‖ I23RT
i eki ‖

. (A4)

When q lies on the boundary Q ∩ ∂Bi, the condition eT
kiRi(I32q− pi) = 0 is satisfied.

Thus, by differentiating this condition, we can obtain:

∂qT
Q∩∂Bi

∂pi
nki =

RT
i eki

‖ I23RT
i eki ‖

(A5)

The term of
∂JNq
∂pi

can be calculated as:

∂JNq

∂pi
=

∂

∂gi
(

n

∑
j=1

g−1
j + Υ−1)−1 ∂gi

∂pi
(A6)

= J2
Nq

1
g2

i

∂gi
∂pi

(A7)

= −
2Nli Nwi f 2

i J2
Nq(I32q− pi)

LliLwi ‖ I32q− pi ‖4 (A8)

Thus, we have:

∂J
∂pi

=
4

∑
k=1

∫

Q∩lki

(JNq − JNq\{i})ϕ(q)
RT

i eki

‖ I23RT
i eki ‖

dq

−
∫

Q∩Bi

2Nli Nwi f 2
i J2

Nq(I32q− pi)

LliLwi ‖ I32q− pi ‖4 ϕ(q)dq (A9)
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For calculating the gradient of ∂J with respect to fi, we have:

∂J
∂ fi

=
∫

Q∩∂Bi

(JNq − JNq\{i})ϕ(q)
∂qT

Q∩∂Bi

∂ fi
nQ∩∂Bi

dq

+
∫

Q∩Bi

∂JNq

∂ fi
ϕ(q)dq (A10)

Differentiating the boundary eT
kiRi(I32q− pi) = 0, we have:

∂eT
ki

∂ fi
Ri(I32q− pi) + eT

kiRi I32
∂q
∂ fi

= 0 (A11)

and:

∂qT

∂ fi
nki = −

∂eT
ki

∂ fi
Ri(I32q− pi)

‖ I23RT
i eki ‖

(A12)

For the gradient ∂eT
ki

∂ fi
, from Equations (1)–(4), we have:

∂eT
1i

∂ fi
= [0 2L2

li 4 fiLli]/(4 f 2
i + L2

li)
3/2 (A13)

∂eT
2i

∂ fi
= [2L2

wi 0 4 fiLwi]/(4 f 2
i + L2

wi)
3/2 (A14)

∂eT
3i

∂ fi
= [0 − 2L2

wi 4 fiLwi]/(4 f 2
i + L2

wi)
3/2 (A15)

∂eT
4i

∂ fi
= [−2L2

wi 0 4 fiLli]/(4 f 2
i + L2

li)
3/2 (A16)

Thus, it follows that:

∂J
∂ fi

=
4
∑

k=1

∫
Q∩lki

(JNq − JNq\{i})
ϕ(q)

∂eT
ki

∂ fi
Ri(pi−I32q)

‖I23RT
i eki‖

dq

−
∫

Q∩Bi

2J2
Nq fi Nl Nw

Ll Lw ||I32q−pi ||2 ϕ(q)dq (A17)

Similarly, we have:

∂J
∂ψw

i
=

4
∑

k=1

∫
Q∩lki

(JNq − JNq\{i})
ϕ(q)eT

ki
∂Ri
∂ψw

i
(pi−I32q)

‖I23RT
i eki‖

dq

w ∈ {r, p, t} (A18)

where ∂Ri
∂ψw

i
can be obtained by differentiating Ri with respect to ψw

i directly.

Proof of Theorem 2.
Consider the Lyapunov-like function:

V = J + ∑
w∈{r,p,t}

1
2

ψ̃w
i

2 (A19)
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Its time derivative is given by:

V̇ =
n
∑

i=1
[ ∂J T

∂ηi
η̇i + ∑

w∈{r,p,t}
ψ̃w

i
˙̃ψw
i ]

=
n
∑

i=1
[ ∂J T

∂ηi
η̇i + ∑

w∈{r,p,t}
ψ̃w

i (ψ̇i
wD − ψ̇i

w
)] (A20)

Substituting the state Equations (28) and (29) with the control laws (23) and (27) yields:

V̇ = −
n

∑
i=1

[ρ
∂J T

∂ηi

∂J
∂ηi

+ ∑
w∈{r,p,t}

kw
pi(ψ̃

w
i )

2]

≤ 0 (A21)

Since V̇ ≤ 0, the camera network is bounded, i.e.,

J + ∑
w∈{r,p,t}

1
2

ψ̃w
i

2 ≤ H(0) + ∑
w∈{r,p,t}

1
2

ψ̃w
i (0)

2. (A22)

This implies that J , ψ̃w
i are bounded. The conclusion (1) is proved.

Next, we prove that conclusion (2) holds. The view angle controls result in ˙̃ψw
i =

−kw
piψ̃

w
i . Since ψ̃w

i is bounded, this implies that ˙̃ψw
i is also bounded. Equation (A21) and the

positive definiteness of V imply that:

V(t)−V(0) = −
t∫

0

n

∑
i=1

[ρ
∂J T

∂ηi

∂J
∂ηi

+ ∑
w∈{r,p,t}

kw
pi(ψ̃

w
i )

2]

This implies that:

∫ t

0
kw

pi(ψ̃
w
i )

2 ≤ V(0)−V(t)−
t∫

0

n
∑

i=1
ρ ∂J T

∂ηi
∂J
∂ηi

≤ V(0) (A23)

Thus,
∫ t

0 kw
pi(ψ̃

w
i )

2 is bounded. By virtue of Barbalat’s lemma, we have:

lim
t→∞

ψ̃w
i = 0 (A24)

where we have used the fact that V(t) > 0. This completes the proof.
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Proof of Theorem 3.
We consider the Lyapunov-like function (35) and its time derivative is given by:

V̇ =
n

∑
i=1

[
∂J T

∂pi
ṗi +

∂J T

∂βi
β̇i +

1
2
(

∂VT
Pi

∂pi
ṗi +

∂VT
Pi

∂pj
ṗj)]

=
n

∑
i=1

(
∂J T

∂pi
ṗi +

∂J T

∂βi
β̇i)

+
1
2

n

∑
i=1

n

∑
j=1,j 6=i

(
∂vT

Pij

∂pi
ṗi +

∂vT
Pij

∂pj
ṗj)]

=
n

∑
i=1

(
∂J T

∂pi
ṗi +

∂J T

∂βi
β̇i)

+
1
2

n

∑
i=1

n

∑
j=1,j 6=i

∂vT
Pij

∂pi
ṗi +

1
2

n

∑
i=1

n

∑
j=1,j 6=i

∂vT
Pij

∂pj
ṗj (A25)

Exchanging i, j in the last term yields:

V̇ =
n

∑
i=1

(
∂J T

∂pi
ṗi +

∂J T

∂βi
β̇i)

+
1
2

n

∑
i=1

n

∑
j=1,j 6=i

∂vT
Pij

∂pi
ṗi +

1
2

n

∑
i=1

n

∑
j=1,j 6=i

∂vT
Pji

∂pi
ṗi (A26)

Notice that
∂vT

Pji
∂pi

=
∂vT

Pij
∂pi

. Thus, we have:

V̇ =
n

∑
i=1

(
∂J T

∂pi
ṗi +

∂J T

∂βi
β̇i) +

n

∑
i=1

n

∑
j=1,j 6=i

∂vT
Pij

∂pi
ṗi

=
n

∑
i=1

[(
∂J T

∂pi
+

n

∑
j=1,j 6=i

∂vT
Pij

∂pi
) ṗi +

∂J T

∂βi
β̇i] (A27)

Substituting the control laws (36) and (37) into the above equation yields:

V̇ = −
n

∑
i=1

[ρ(
∂J T

∂pi
+

n

∑
j=1,j 6=i

∂vT
Pij

∂pi
)(

∂J
∂pi

+
n

∑
j=1,j 6=i

∂vPij

∂pi
)

+ρ(
∂J T

∂βi
)(

∂J
∂βi

)]

≤ 0 (A28)

Since V > 0, V̇ ≤ 0 and this proves that H is bounded.
Next, we prove the collision avoidance of the proposed control. With the initial

condition dij(0) > r, we show that if the safe distance,i.e., dij(t) > r, is violated, then:

lim
dij→r+

vPij = +∞ (A29)

according to (31). However, this results in the Lyapunov-like function V → ∞. From V > 0
and V̇ ≤ 0, it is known that V is bounded. Thus, V → ∞ contradicts the bounded V.
Therefore, the safe distance dij > r holds over the whole coverage control and the collision
among UAVs is avoided.
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Abstract: The icing facilities of the Anti-Icing Materials International Laboratory AMIL have been
adapted to reproduce icing conditions on a Bell APT70 drone rotor, typical of small-to-medium UAV
models. As part of an extensive icing test campaign, this paper presents the design and preliminary
testing of the experimental setup and representative icing conditions calibration in the laboratory’s
cold chamber. The drone rotor used has four blades with a diameter of 0.66 m and a maximum tip
speed of 208 m/s. For the icing conditions, freezing rain and freezing drizzle were selected. A Liquid
Water Content (LWC) calculation methodology for a rotor in hover was developed, and procedures to
determine experimental LWC in the facility are presented in this paper. For the test setup, the cold
chamber test section was adapted to fit the rotor and to control its ground clearance. Testing was
aimed at studying the effect of rotor height h on aerodynamic performance, both with and without
icing conditions. Results show no significant effect on the ground effect between h = 2 m and h = 4 m
in dry runs, while the icing behavior can be largely influenced for certain conditions by the proximity
of the precipitation source, which depend on the height of the rotor in these experiments.

Keywords: aerospace; icing; drones; UAV; experimental setup; cold room; hover flight

1. Introduction

The last decade saw a huge influx towards the use of Unmanned Aerial Vehicles (UAVs)
and drones for a wide variety of military, commercial and recreational applications [1]. Up
until 2019, close to a million drones had already been registered by the FAA for personal
and commercial use, and the number keeps growing [1]; more than one-third of registered
drones are designated for commercial applications.

The APT70 is the newest addition to the fully autonomous and fully electric family of
drones developed by Bell [2]. Designed with Vertical TakeOff Landing (VTOL) and wing-
borne flight capabilities, the APT70 is capable of reaching speeds of 86 knots, handling
loads up to 31 kg, and has a range of up to 56 km per flight (or 30 min flight time). The
drone offers commercial, medical, and military solutions; however, when operated in some
areas of North America or other cold countries, it will be vulnerable to the dangers of
both ground and in-flight icing. Icing has been long shown to be a notorious and critical
phenomenon for the operations of all sorts of aircraft, and historical records indicate many
accidents that are directly linked to ice accumulation on both airplanes and rotorcraft [3].

For rotorcraft, in particular, icing increases drag and rotor torque, reduces lift and rotor
thrust and induces severe vibrations to the rotor system [4]. A study by Liu et al. [5] found
that ice accumulation could cause up to 70% thrust loss and increase power consumption
up to 250%, compared to operation prior to icing. If exposed to icing effects during flight,
most UAVs risk a potential loss of control and dangerous accidents. The literature shows
that icing studies have been vigorously conducted in the past for fixed-wing aircraft [6–12]
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and helicopter rotors [6,13–20]. For example, Narducci and Kreeger developed a high-
fidelity method to evaluate the ice accumulation for a helicopter flying through an icing
cloud in hover [19] as well as in forward flight [20]. Chen et al. performed CFD numerical
simulations and optimization analyses for rotor anti-icing based on big data analytics [21].
Xi and Qi-Jun proposed a new three-dimensional icing model capable of simulating ice
accretion on rotors [22]. On the other hand, solutions for protection from ice accumulation
during flight have also been studied and proposed, from electro-thermal heaters to coatings
and piezoelectric devices [4,15,23,24]. Yet, icing and de-icing studies for smaller-sized UAVs
and drones are still rare and government agencies are pushing towards more research in
this field [5,25,26].

For take-off/landing and hovering rotor experiments, cold chambers are more advan-
tageous compared to icing wind tunnels due to the absence of upstream flow. However, a
proper assessment and calibration of the icing parameters, particularly the Liquid Water
Content (LWC), for a rotor in hover is made difficult by the absence of an airstream velocity
that is needed for the LWC measuring equipment to function [27]. Experiments were
done at the AERTS cold chamber and a process to calculate the LWC experimentally based
upon icing wind tunnel calibration procedures was developed using a numerical iterative
procedure described in [14]. Comparisons were made for the ice thickness, impingement
limits and ice shape, especially at inboard stations. Recently, Brouwers et al. [27] developed
a new icing model to predict the ice accretions and shedding for a rotor in hover. The
model was correlated with previously published ice shapes for both small- and full-scale
ice accretion results. Wang et al. [17] experimented on a hovering rotor subjected to icing
conditions in a cold chamber. The Median Volumetric Diameter (MVD) was obtained by
applying silicone oil on the surface of a glass sample, which was then subjected to the spray.
The glass sample was then put under a microscope and a statistical approach allowed the
calculation of the droplet diameter. The LWC was calculated based on the method of [14].
They studied the effects of temperature, rotation speed, LWC, icing time, number of blades
and blade material on the resulting ice shape.

The Anti-Icing Materials International Laboratory (AMIL) has a track record for
conducting icing experiments with helicopter rotors [18,23,28–32]. With the objective of
studying the icing effects on the take-off/hover mode of the Bell APT70 rotor, a new and
innovative test setup was developed. This paper presents the preparation and development
of the experimental apparatus, including the calibration of the icing parameters, used to
conduct the icing tests on the rotor. Analysis and procedures to quantify MVD, precipitation
rate λ and LWC in the chamber are also presented. A new method for the determination
of an LWC equivalency for ground and low altitude icing where no significant airflow
is present is also proposed in this paper. Furthermore, an evaluation of the rotor height
and the influence on the ground effect, as well as the influence of distance of the nozzles
to the rotor, is performed to determine the requirements for proper rotor positioning for
icing tests. The laboratory’s nine-meter-high (9 m) cold chamber was selected for this
investigation because of its high ceiling as well as its large test section.

2. Materials and Methods: Icing Precipitation
2.1. Cold Chamber Characteristics

The rotor icing test setup was installed in the AMIL cold chamber, identified as the
9M-Chamber (Figure 1), in which the test rotor was positioned at the center of the icing test
section. The 9M chamber is 9.10 m high, 5.50 m long, and 3.50 m wide. Air temperature
can be controlled between −32 ◦C and 5 ◦C ± 0.5 ◦C. Measurement of the air temperature
in the test section was done using calibrated Omega RTDs. Two heat exchangers connected
to a compressor were installed in the upper section of the chamber. Four ventilators were
located in front of the exchangers and provided the airflow toward the test section. The air
was distributed uniformly in the climatic chamber through a perforated ceiling and can
circulate either in ascending or descending directions. Test conditions can be indefinitely
maintained for continuous operation of the rotor. Inside the chamber and surrounding the
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rotor, the icing test section has an area of 2 by 2 m, where the icing precipitation is obtained
and is delimited by both the chambers walls and Plexiglas movable walls.
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Figure 1. Photo of the experimented rotor system placed inside the cold chamber.

One of the purposes of the study is to determine the effects of the rotor height on
the results during a dry run (without water or ice) as well as under icing conditions.
The distance from the ground must be evaluated to limit the ground effect influence on
the results. The distance from the nozzles to the rotor must also be evaluated to make
sure that the icing cloud reaches equilibrium before impacting the rotor in order to be
representative of atmospheric conditions. The rotor was installed on top of a pneumatic
cylinder, as shown in Figure 1, which can be extended vertically using compressed air, with
a maximum height of 5 m.

2.2. Icing Nozzle Array

Two icing nozzles were located on the chamber ceiling to generate the icing cloud.
A photograph of the spray rig in the ceiling with the two installed nozzles is shown in
Figure 2. The nozzles were located at the edges of the array and directly above the center of
the rotor shaft to distribute the spray evenly in the chamber. Hydraulic sprinklers produced
gravity-fed icing with pressurized nozzle sprayers. Different nozzle heads can be installed
to generate different droplet sizes, and heating elements were installed in the system to
prevent nozzles from freezing between testing. The droplet speed corresponds to their
freefall values in the vertical airflow (see Section 2.6). Distilled water maintained in a
refrigerator was used to produce the precipitation. Equal air pressure and water pressure
were delivered to each nozzle. Measuring the water and air pressures at the input of
the water and airlines to the nozzles ensures precise readings of the pressure differential
controlling the droplet size.
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Figure 2. The cold chamber’s icing nozzle array.

2.3. MVD Measurement

To measure the Median Volumetric Diameter (MVD), a thin layer of silicone oil was
applied on the surface of a glass slide, as shown in Figure 3. This method, described and
recommended in AIR4906 [33], used a glass slide coated with silicone oil, which is passed
through the spray range of the nozzles, to collect a certain number of droplets. Due to the
incompatibility between oil and water, the droplets were wrapped in silicone oil and kept
their original shapes for a short time. The droplets on the glass slide were observed and
photographed under a camera; the observation results are shown in Figure 3.
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The MVD can be obtained by statistical calculation of droplet diameters. This tech-
nique is a commonly used and accepted method in the industry [33]. To obtain different
MVD in the cold chamber, different nozzle heads are installed on the nozzle array. In this
study, two models are used, a first one to obtain a smaller droplet size representing freezing
drizzle precipitation and a second one to obtain significantly larger droplets representative
of freezing rain precipitation. This method has been validated using a cloud imaging probe
from Droplet Measurement Technologies.

2.4. Precipitation Rate

The Precipitation Rate λ, or Icing Intensity, is a commonly used measure of in-ground
and low-altitude icing. This measure represents the mass of water, or frozen precipitation,
that falls over an area per unit of time. To measure the precipitation rate in the chamber, a
catch pan technique was used, as required in aircraft ground icing standards [34,35] and
used in other studies [36]. After choosing and installing the desired spray head, 24 catch
pans were placed in the center of the chamber at 2 m, as seen in Figure 4. As shown in the
figure, the catch pans (blue interior) were placed on a table at the center of the test section
and directly under the icing nozzle array. Each catch pan was individually weighed empty,
and its weight was recorded. The spray was activated for a period of up to 30 min and
the pans were again weighed together with the collected amount of water. The difference
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between the two sets of recorded weights is the weight of the collected water, which is
then used to calculate λ with the Equation (1). MW is the mass of collected water in g
and tprec is the precipitation collection time in min. This measurement setup respects the
requirements of the industry standards [34,35]. In addition, multiple measurements were
repeated throughout the test campaign to ensure the stability of the precipitation rate.

λ =
MW
tprec

× 60 (1)
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2.5. LWC Estimation and Droplet Velocities

The Liquid Water Content (LWC) is a measure of the mass of water contained in a
volume of air. This value is commonly used for in-flight icing but also for ground and low
altitude icing. LWC sensors, like the King probe or rotating cylinder methods [37], can be
readily used to measure the LWC in an icing cloud. However, those sensors either require a
certain flow velocity (usually 10–15 m/s and higher) to function properly or must use the
flow velocity in the calculation to determine the LWC value from their measurements. In-
ground icing and low altitude hover mode, unlike in wind tunnel, no airflow is generated
during the calibration of the icing conditions, making those sensors unreliable since the
airflow value is close to 0. This makes the use of the LWC as a parameter impractical
for this kind of testing and very difficult to perform a direct comparison between λ and
LWC. Another method [27] required measurement of ice accretion on the rotor in order to
calculate the LWC, but it is dependent on blade shape, which is not suitable for an easy
universal LWC measurement, as well as the particular blade profile used in this study.
LWC measurement is a common and recurrent problem in the domain, especially since
most standards use LWC for their requirements for in-flight and low altitude icing like the
FAA/AR-09/45 [38] and AC29-2C [39], while most standards use λ [34,40] for ground icing.

A new methodology is developed to settle this problem and calculate LWC in the cold
chamber for hovering rotor tests and perform a direct comparison to λ to match all the
different industry standards. The new methodology calculates the terminal velocity of the
water droplets based on the freefall equations and mass balance of the droplet. The velocity
is then used together with λ to determine the LWC in the chamber.

In this work, the water droplets are assumed to have the shape of a sphere while
dropping from the nozzles downwards. The data for the drag coefficient CD of a sphere
are obtained as a function of Re from the literature. The Re for a sphere is calculated by
Equation (2). For simplicity, the CD is calculated using a linear interpolation presented at
Equation (3), of the well-established drag coefficient and Reynold’s number relationship
between 0 ≤ Re ≤ 1000 [41]. It is acceptable to use that approximation in that first section
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of the relationship, as demonstrated by the correlation coefficient of R2 = 0.9851. Past this
region, for 1000 ≤ Re ≤ 100,000, the CD is constant at 0.3. During this test campaign, it is
not expected to test with water droplets with an MVD higher than 800 µm. At this size,
the sphere Re is approximately 200, which is well below the higher boundary of the Re
correlation. VT is the terminal velocity of the water droplet, and ϑair = 0.00001328 m2/s is
the kinematic viscosity of air.

Re =
VT D
ϑair

, (2)

CD = 28.651 ∗ Re−0.722, (3)

A force balance on the freefalling water droplet results in the gravitational and drag
force (D) to be present on the droplet, as expressed in Equation (4). MDroplet is the mass of
the droplet in kg, and a is the acceleration in m2/s. The force from the droplet mass can
be expressed by Equation (5), relating the water density (ρw = 997 kg/m3) to the sphere
volume (VDroplet) and the gravitational acceleration (g = 9.81 m/s2). r is the radius of the
water droplet in meters.

F = (M− D)Droplet = MDroplet ∗ a, (4)

MDroplet = ρw ∗VDroplet ∗ g = ρw ∗
3
4

πr3 ∗ g, (5)

The drag force, which is linked to the sphere drag coefficient CD, is obtained from
Equation (6). CD can be obtained from Equation (3) once the Re for the droplet is obtained.
The density of air used is ρair = 1.2922 kg/m3, while the density of air will be different
slightly different at lower temperatures, up to 1.367 at −15 ◦C; calculations indicate that
the final terminal velocity calculations would only be impacted by less than 2.2%.

DDroplet =
1
2

ρair ∗V2
T ∗ A ∗ CD =

1
2

ρair ∗V2
T ∗ πr2 ∗ CD, (6)

Once all the terms are rearranged and considering zero acceleration of the droplet,
the terminal velocity of the droplet is expressed with Equation (7). VT can then be used
together with the precipitation λ (g dm−2 h−1) to calculate the liquid water content LWC
(g/m3), as described in Equation (8). The conversions of λ are outlined in Equation (9).

VT =

√
8
3

r ∗
(

ρw

ρair

)
∗
(

g
CD

)
, (7)

LWC
( g

m3

)
=

λ
(
g ∗m−2∗s−1)

VT(m ∗ s−1)
, (8)

λ
(

g ∗m−2∗s−1
)
∗ 60 ∗ 60 ∗ 10−1 ∗ 10−1 = λ

(
g ∗ dm−2 ∗ h−1

)
, (9)

To calculate the distance required for a droplet to reach its VT, a time-dependent
approach is taken. For every time step ∆t, the droplet velocity Vi+1 is calculated by using
Equation (10) where Vi is the droplet velocity at the previous timestep and ai is the droplet
acceleration. ai is calculated using Equation (11) by applying the force balance shown in
Equation (4). The distance traveled between the two timesteps ∆h is then calculated using
Equation (12). The procedure is looped until the droplet acceleration is zero, where the
terminal velocity is reached.

Vi+1 = Vi + ai ∗ ∆t, (10)

ai =
MW ∗ g− DDroplet

MW
, (11)

∆h = (Vi+1 + Vi) ∗ 0.5 ∗ ∆t, (12)
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The distance traveled by a droplet before reaching its VT, calculated as a function of
droplet size, is presented in Figure 5. The figure shows droplet sizes between 100 µm and
1500 µm. For small droplets, VT is reached for heights as low as 0.05 m, whereas bigger
droplets require a higher distance to reach their VT. For a droplet size of 1500 µm, a height
of almost 8 m is required.
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Figure 5. Height (m) Required to Achieve Terminal Velocity in (m/s) for a Range of Droplet Sizes
between 100 µm and 1500 µm.

In this research, the droplets used have an MVD of either 120 µm or 800 µm. According
to Figure 5, the droplets at 120 µm need 0.04 m to reach their VT whereas those at 800 µm
need at least 4 m. Provided that the nozzles are at a height of 9 m, and that the rotor is
tested between 2 m and 4 m off the ground, then the distance between the rotor and nozzles
during tests will be between 5 m and 7 m. This range then satisfies the height requirement
for the used droplets and therefore agrees with the methodology of LWC calculation.

Based on the above, and with the proper height requirement to reach the VT for each
droplet size, the λ needed to produce an LWC = 0.5 g/m3 can now be calculated. A LWC
of 0.5 g/m3 is typical for freezing rain and freezing drizzle outside clouds, according to
FAA/AR-09/45 [38]. Figure 6 shows the variation of λ needed to produce a LWC = 0.5 g/m3

for the variety of droplet sizes. As the figure shows, a higher λ is needed when the droplet
size increases. A maximum of 100 g dm−2 h−1 was estimated for a droplet size of 1500 µm.
For the MVD selected for testing, the λ for a LWC = 0.5 g/m3 is around 5 g dm−2 h−1 for
120 µm and around 73 g dm−2 h−1 for 800 µm.
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Versus Droplet Size in (µm).

In a similar analogy to the preceding section, the LWC produced based on a λ of
25 g dm−2 h−1 is investigated which is typical for ground icing. Figure 7 shows the varia-
tion of the LWC versus the droplet size that is obtained for a λ of 25 g dm−2 h−1. For the
fixed λ, the LWC produced decreases with increasing droplet size, varying between 3 g/m3

at 100 µm down to almost 0.1 g/m3 for a droplet size of 1500 µm. For the MVD selected,
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this corresponds to a LWC of 2.53 g/m3 for droplets of 120 µm and a LWC of 0.19 g/m3 for
droplets of 800 µm.

Drones 2022, 6, x FOR PEER REVIEW 8 of 19 
 

100 μm down to almost 0.1 g/m3 for a droplet size of 1500 μm. For the MVD selected, this 
corresponds to a LWC of 2.53 g/m3 for droplets of 120 μm and a LWC of 0.19 g/m3 for 
droplets of 800 μm. 

 
Figure 7. Variation of the LWC in (g/m3) Required to Achieve λ = 25 g dm−2 h−1Versus Droplet Size in 
(μm). 

2.6. Tracking the Droplets’ Terminal Velocity 
An experiment was conducted to validate the water droplets terminal velocity after 

falling from the chamber’s ceiling, making sure the calculations from the previous section 
were correct and to confirm that the droplets had reached terminal velocity at rotor height. 
For the experiment, the chamber was darkened, and a light source was placed behind the 
falling stream of water. A camera was used to take photos of the falling water droplets at 
a rate of 200 photos per second (a picture every 5 ms). Using a ruler as an established scale, 
the distance traveled by a single droplet between two photos was then measured using 
digitizing software. A cover with a single slit is installed on top of the camera to obtain a 
single slice of droplets falling at a single and known distance from the camera. Knowing 
the time difference between the photos from the rate of the camera, the velocity of the 
droplet could be calculated. This was done for many droplets, of both similar and different 
sizes, to confirm the consistency between the velocities of the different droplets and vali-
date the calculation for the whole range of droplet size generated. This simple setup was 
developed to strengthen confidence in the theoretical calculations done at the previous 
section, using simple and widely accepted theory, and for this reason the precision of the 
method was deemed sufficient. 

2.7. Ice Shape Documentation & Measurements 
An apparatus and a methodology were developed to document the ice shapes and 

its measurements in this experimental campaign. A database of photographic images, 
thickness measurements and 3D scans was created. For the 2D photographs, a custom-
built rig was fabricated to hold a high-resolution camera in place, at a focal distance from 
the blade. The rig has three positions for the camera that enabled taking photos of the 
blade and ice from the front, side and top of the blade in a consistent manner between 
tests, similar as those presented in [5,36].  

As for the ice thickness measurements, one blade was selected as a control blade 
where straight lines were drawn using a water-resistant ink at 9 different radial locations 
between the root and tip of the blade, as shown in Figure 8. A digital caliper was used to 
measure the chord at those locations without ice and then used again after each test to 
measure the new chord with the accumulated ice. A subtraction of the former from the 
latter will result in the chordwise ice thickness at the leading edge found at the marked 
radial locations. Those thicknesses will serve as a simple indication of the severity of the 
ice accumulation along and in addition to the pictures and scan gathered. 

Figure 7. Variation of the LWC in (g/m3) Required to Achieve λ = 25 g dm−2 h−1 Versus Droplet Size
in (µm).

2.6. Tracking the Droplets’ Terminal Velocity

An experiment was conducted to validate the water droplets terminal velocity after
falling from the chamber’s ceiling, making sure the calculations from the previous section
were correct and to confirm that the droplets had reached terminal velocity at rotor height.
For the experiment, the chamber was darkened, and a light source was placed behind the
falling stream of water. A camera was used to take photos of the falling water droplets
at a rate of 200 photos per second (a picture every 5 ms). Using a ruler as an established
scale, the distance traveled by a single droplet between two photos was then measured
using digitizing software. A cover with a single slit is installed on top of the camera to
obtain a single slice of droplets falling at a single and known distance from the camera.
Knowing the time difference between the photos from the rate of the camera, the velocity
of the droplet could be calculated. This was done for many droplets, of both similar and
different sizes, to confirm the consistency between the velocities of the different droplets
and validate the calculation for the whole range of droplet size generated. This simple
setup was developed to strengthen confidence in the theoretical calculations done at the
previous section, using simple and widely accepted theory, and for this reason the precision
of the method was deemed sufficient.

2.7. Ice Shape Documentation & Measurements

An apparatus and a methodology were developed to document the ice shapes and
its measurements in this experimental campaign. A database of photographic images,
thickness measurements and 3D scans was created. For the 2D photographs, a custom-built
rig was fabricated to hold a high-resolution camera in place, at a focal distance from the
blade. The rig has three positions for the camera that enabled taking photos of the blade
and ice from the front, side and top of the blade in a consistent manner between tests,
similar as those presented in [5,36].

As for the ice thickness measurements, one blade was selected as a control blade where
straight lines were drawn using a water-resistant ink at 9 different radial locations between
the root and tip of the blade, as shown in Figure 8. A digital caliper was used to measure
the chord at those locations without ice and then used again after each test to measure the
new chord with the accumulated ice. A subtraction of the former from the latter will result
in the chordwise ice thickness at the leading edge found at the marked radial locations.
Those thicknesses will serve as a simple indication of the severity of the ice accumulation
along and in addition to the pictures and scan gathered.
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Figure 8. A Photograph Showing the Markings of the Control Blade Used for Ice Thickness Measurements.

Finally, multiple 3D scans of the ice accumulation were also gathered. Figure 9a
shows a sample scan of the clean rotor blade, prior to any icing exposure. The result of a
scan with accumulated ice is shown in Figure 9b. Three different models of 3D scanners
from the company Creaform were used to scan the blade with its accumulated ice: the
GoSCAN 50, using white light technology, the HandySCAN 307/700, using a red laser, and
the HandySCAN Black, using a blue laser. The white and opaque rime ice was easier to scan
due to its better reflection of the light than the clear glaze ice. To help with clear glaze ice,
very fine clay powder was brushed on the ice layer. Not all types of 3D scanners were able
to provide a satisfactory scan of glaze ice, and the red-light model was deemed the most
suitable one for this testing. The VXelements software was used to obtain the 3d images.
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Figure 9. Results of Scan with Creaform HandySCAN 307/700 (red laser) 3D Scanner for a: (a) Clean
Blade and (b) Blade with Accumulated Ice.

2.8. Icing Conditions

To select the icing conditions for testing, two main standards are used: the FAA/AR-
09/45 [38] and the SAE standards ARP 5485 [34] and AS5901 [40]. Those documents
determine conditions for ground and low altitude icing. The two types of precipitation
selected are freezing drizzle and freezing rain. In [34,40], the droplet size for freezing
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drizzle is 300 µm and for the freezing rain is 1000 µm, while in FAA/AR-09/45, it is
120 µm and 800 µm respectively. The two droplet sizes selected are 120 µm and 800 µm,
corresponding to nozzle heads readily available at the laboratory. The SAE documents
specify the precipitation rate for the icing precipitation with the more severe condition set
at 25 g dm−2 h−1. In the FAA document, however, the icing precipitation requirements are
expressed in terms of LWC, with values of 0.4 to 0.5 g/m3 for both freezing drizzle and
freezing rain. For simplicity, a single value of 0.5 g/m3 is considered in this test campaign.
The technique and calculations developed and detailed in the previous section are used
to compare and convert LWC to λ. In addition to those two requirements, an additional
requirement of 0.25 in of water per hour is also defined by the industrial partner itself.
The comprehensive grid of icing conditions selected for the whole test campaign and the
rationale for each of those conditions is presented in Table 1. For the preliminary testing
performed in this paper, only the conditions in bold were used.

Table 1. Details of icing parameters used for tests along with their rationale.

λ (g dm−2 h−1) MVD (µm) LWC (g/m3) Rational

5 120 0.47 0.5 g/m3 (FAA/AR-09/45)

25 120 2.35 Typical Ground Icing +
Light Rain (2 L/h/m2)

25 800 0.19 Typical Ground Icing +
Light Rain (2 L/h/m2)

67 120 6.31 0.25 in. Water/hr for APT70 Requirement +
Moderate Rain (6 L/h/m2)

67 800 0.50
0.25 in. Water/hr for APT70 Requirement +

0.5 g/m3 (FAA/AR-09/45) +
Moderate Rain (6 L/h/m2)

80 120 7.53 Typical Ground Icing +
Moderate Rain (8 L/h/m2)

80 800 0.59 Typical Ground Icing +
Moderate Rain (8 L/h/m2)

Aside from the water spray parameters, the air temperature in the cold chamber plays
a crucial role in the type of accumulated ice. To make sure rotor icing is studied for the glaze,
rime, and mixed ice conditions during the experimental campaign, three air temperatures
are used. These are T∝ = −5 ◦C, −12 ◦C, and −15 ◦C. The highest T∝ used was −5◦C
since ice accumulation was poor or not possible when temperatures of −2 ◦C or 0 ◦C were
used. For the preliminary testing of this study, only results at T∝ = −5 ◦C and −15 ◦C
are presented.

3. Materials and Methods: Drone Rotor Setup
3.1. Drone Rotor Assembly

In the center of the chamber, a 12-kW Hacker Q150-45-4 motor is used to power the
drone’s rotor. The motor and hub system is installed in the center of the chamber’s test
section on a pneumatic cylinder, as shown in Figure 10, to test different rotor heights.
Compressed air is supplied to the motor via an external feeder to increase operation
time before overheating the motor. To measure thrust, torque and mechanical power
consumption of the rotor, a two-axis Futek MBA-FSH04262 load cell was added between
the motor and the holding post. Data acquisition, as well as control of the rotor system, is
performed using a custom Labview interface. This measurement and control system has
been extensively tested and used by the industrial partner for other aerodynamical studies.
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Figure 10. A Photograph of the Installed Rotor Showing the Blades and Load Cell.

The rotor studied in this experiment is the slightly modified 81% scaled version of
the Bell APT70 drone rotor. The modifications are related to the root attachment, which is
circular on the subscale rather than rectangular. For both rotors, the blade roots are mostly
covered by a spinner cone which should not make a significant difference. It has four
blades (presented in Figure 11) with a diameter of 0.66 m and a NACA 4412 aerodynamic
profile. Each blade is formed of two carbon fiber parts that are glued together to form one
hollow blade 25.4 cm long. The blades are twisted and have a variable chord from root
to tip. Equations (13) and (14) are used to describe the curve fitting result based on the
non-dimensional radial location r for the twist ϕ (◦) and chord c (m), respectively. The
configuration can reach 6000 RPM, reproducing the full-scale drone maximum tip speeds.

ϕ = −65.187r3 + 169.58r2 − 161.36r + 68.5, (13)

c =
(
−10.632r4 + 30.997r3 − 33.185r2 + 13.566r + 0.0397

)
∗ 2.54

100
, (14)
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3.2. Rotor Test Parameters

In order to better understand the impact of ice accretion on rotor performance in hover
conditions for a drone like the Bell APT70, icing tests are to be conducted at different speeds,
air temperatures, droplet sizes, and precipitation rates are required. Three levels of RPM are
targeted for a comprehensive investigation: low, medium and high. Since the rotor studied
in this experiment is a scaled-down version, it is important to set similarity parameters with
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the full-scale APT70 rotor. Similar tip speeds are expected to produce similar aerodynamic
performances and flow behavior. Similar centrifugal forces are expected to produce similar
ice accretion and ice shedding. It is not possible to match both parameters at the same time,
so for each level of RPM investigated for the full-scale rotor, two RPM values are obtained
for the scaled-down model, one to match the tip-speed and one to match the centrifugal
force of each level, resulting in a total of six RPM values for experimental testing (Table 2).

Table 2. Calculated RPM Values for the Scaled-Down Rotor.

Thrust Level Scaling Rule RPM

Low
Same centrifugal force 3880

Same tip-speed 4300

Medium
Same centrifugal force 4440

Same tip-speed 4950

High Same centrifugal force 4950
Same tip-speed 5540

4300 RPM is close to 4440 RPM and is then rejected to minimize the number of tests.
Only 3880, 4440, 4950 and 5540 are kept. However, during preliminary testing with icing
spray, it was remarked that the electrical power consumption for tests at Ω = 4950 RPM
reached around 11 kW. Therefore, to avoid exceeding the rated motor power of 12 kW,
rotor speeds for icing tests were limited to 4950 RPM. Table 3 lists the different Ω and rotor
heights h used for the icing tests at the different icing conditions selected (II.H).

Table 3. List of Tested Rotor Speeds and Rotor Heights.

Height (m) Ω; Icing Tests (RPM)

2
3880
4400

4
4950
4950

3.3. Testing Procedure

Icing tests were conducted in the cold chamber following a specific protocol that
ensures the safety of the personnel, maintains the healthy operation of equipment and
provides reliable and consistent results. The procedure is outlined step-by-step as follows.

• The motor cooling air is first turned on, followed by the power supply for the motor.
The rotor spin safety switch is then deactivated, and the test begins. The test is initiated
in the software and data acquisition starts recording.

• The rotor speed is incrementally increased from 0 to the desired steady-state speed.
After a short stabilization period at the target rotation speed, the water spray is acti-
vated, and ice accumulation begins where the torque and electrical power consumed
continuously increase and thrust decreases. The vibration levels, motor temperature
and electrical power consumed are closely monitored throughout the spray time.

• The test is stopped whenever one of those conditions happens; (listed in the order of
actual occurrence during tests): 1- ice sheds from the blade, causing severe vibrations
(>2 Inches Per Second (ips)) OR when the vibration levels reach 2 ips even without
ice shedding; 2- the electrical power consumed approaches the rated power of the
motor (12 kw); 3- the test duration exceeds 20 min and; 4- the motor temperature
reaches 100 ◦C.

• After the test is concluded, the motor alimentation is switched off and the safety switch
of the rotor is activated. A visual inspection of the equipment is first done to check for
any damage.

• The photography platform is then installed on the rotor pole, and photos of the ice
shape are taken from the front, side and upper directions. A scan is performed of the
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ice accumulation with the 3D scanner and a digital caliper is then used to measure the
ice thickness at 9 different and pre-marked blade locations.

• Finally, the ice is then melted off the rotor using a heat gun and cleaned using industrial
grade paper towel to prepare it for the next test.

3.4. Post-Processing and Non-Dimensional Coefficients

To analyze the data and determine the severity of each test, non-dimensional coeffi-
cients are used for test comparison. The non-dimensional thrust coefficient CT as well as
the torque coefficient CQ for each test are calculated as shown in Equation (15), where ρ is
the density of air (kg/m3), Ω is the rotor speed (rev/s) and d is the rotor diameter (m).

CT =
T

ρΩ 2d4
, CQ =

Q
ρΩ 2d5

, (15)

For each test, average values for each of the recorded parameters during the stabiliza-
tion period, prior to water initiation, must be established. Figure 12 shows an example of an
icing test where the stabilization period is highlighted in orange for all the curves of rotor
speed and electrical power (Figure 12a), as well as for the torque and thrust (Figure 12b).
The period begins once the rotor reaches the target speed and ends at the beginning of the
water spray, which is directly followed by an increase of torque and decrease of thrust.
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Figure 12. Example of variation of rotor performance data with time for (a) rotation speed and
electrical power; and (b) thrust and torque.

To observe the effect of ice accretion on rotor performance, the measurements taken
during icing are compared to their calculated average values prior to water spray initiation.
This is how Figure 13 is obtained, which shows the percentage decline of the measured CT
with time (Figure 13a) as well as the parallel percentage increase of CQ (Figure 13b), based
on their respective average values without ice.
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Figure 13. Variation of non-dimensional parameters with time during icing for (a) thrust coefficient
CT; and (b) torque coefficient CQ.

Testing showed that for the absolute majority of cases, the variations shown in
Figure 13 are linear or could be curve fitted by a linear variation as shown by the red
dashed lines of the figure. Therefore, the severity of a test is then directly related to the CT
slope (referred to as C∗T (%/s)) as well as the CQ slope (C∗Q (%/s)). In other words, a test
is considered more severe if C∗T is lower and C∗Q is higher. It should be noted that the CT
slope during icing is always negative, while the CQ slope is always positive.

It is also interesting to determine the required increase of mechanical power (P+) to
maintain the same initial thrust without ice in order to use only one output parameter to
sort tests by severity. This logic requires the calculation of the required increase of rotor
speed (Ω+ (%/s)) using Equation (16). The increase of torque required to maintain initial
thrust (C+

Q (%/s)) is then calculated using Equation (17), and P+ is finally obtained using
Equation (18).

Ω+ =
1√

1 + C∗T
, (16)

C+
Q =

1
1 + C∗T

∗ C∗Q, (17)

P+ =
1√

1 + C∗T
∗ C+

Q , (18)

4. Results
4.1. Validation of LWC Estimation—Droplet Terminal Velocity

Figure 14 shows the theoretical results of VT calculation obtained for different water
droplet sizes, compared to the experimental data measured using the procedure described
in Section 2.6. Numerical data indicate that VT increases with the droplet size. This ranges
from as low as 0.25 m/s at 100 µm to as high as almost 5.5 m/s when the droplet size is
1500 µm. Experimental data show good agreement with numerical predictions, especially
when the error bars are considered, principally caused by the determination of the droplet
diameters. This basic measurement technique allows for the validation of the theoretical
calculations, but the improvement to the technique could be made to increase the accuracy
of the measure, and thus a better resolution to measure the droplet diameters.
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4.2. Assessment of Rotor Height on Ground Effect and Rotor Performance

To determine the minimum distance from the ground to the rotor, preliminary tests at
different heights are performed. The test setup, as detailed in Section 2.1, allows testing
at heights between h = 2 m and h = 5 m from the ground. For this work, testing is done
at h = 2 m and at h = 4 m without blade pitch adjustment. Experimental data for CT and
CQ were gathered during both dry runs as well as during the initial dry period of icing
tests prior to water spray.

Figure 15 shows the variation of CT versus rotation speed at h = 2 m and h = 4 m. Curve
fitting was also applied to each set of data, and the variation obtained is also linear for both.
The difference between the curve fitting results of CT at 2 m, compared to those with the
same rotation speed at 4 m, varies between 2.77% at the lowest tested RPM (3000 RPM)
and up to 6.53% at the highest (4950 RPM).
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Similarly, Figure 16 shows the CQ variation with Ω for both rotor heights along with
their corresponding curve fitting results. The difference between the curve fitting results of
CQ at h = 2 m, compared to those with the same rotation speed at h = 4 m, varies between
4.1% at the lowest tested RPM (3000 RPM) to 3.65% at the highest (4950 RPM).
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Finally, the CT vs. CQ curve is compared for both sets of measured data at 2 m and 4 m,
as shown in Figure 17. A curve fitting scheme is applied to measurement points, and results
for both sets at 2 m and 4 m show good agreement. On average, the error between the two
curve fittings was around 1.28%. The error is consistent with findings of previous works,
where the ground effect is usually absent when h/d > 1 [42], such as in this case. Based on
these results, it is possible to assess that there is no significant ground effect at h = 2 m and
no significant differences between the rotor performances at h = 2 m and h = 4 m.
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Figure 17. CT vs. CQ comparison during dry runs for rotor at h = 2 m and h = 4 m.

4.3. Aerodynamic Parameters at Different Heights—Icing Tests

Table 4 presents the results of the calculations for the preliminary icing tests done at
h = 2 m and h = 4 m. The table compares tests performed with the exact same cold room
and spray nozzles configuration, with the only difference being the rotor height. The main
reason for this comparison is to study the effect of rotor proximity to the nozzles. The tests
in the table were all done at Ω = 4950 RPM, θ = 11.7◦ and λ = 80 g dm−2 h−1, with the MVD
and T∞ also specified in the table.

Table 4. Comparison between calculated aerodynamic parameters for rotor at h = 2 m and h = 4 m;
(Tests at Ω = 4950 RPM, θ = 11.7◦ and λ = 80 g dm−2 h−1.

MVD
(µm)

T∞
(◦C)

Height
(m)

C∗T
(%/s)

C∗Q
(%/s)

C+
Q

(%/s)
P+

(%/s)
Icing Time

(s)

120

−5
2 −0.124 0.430 0.491 0.524 169
4 −0.195 0.565 0.703 0.785 114

Ratio 1.57 1.31 1.43 1.50 0.67

−15
2 −0.136 0.317 0.367 0.394 162
4 −0.226 0.400 0.548 0.642 106

Ratio 1.66 1.27 1.50 1.62 0.65

800

−5
2 −0.036 0.061 0.063 0.065 321
4 −0.012 0.047 0.048 0.048 761

Ratio 0.33 0.78 0.76 0.75 2.37

−15
2 −0.049 0.081 0.085 0.087 326
4 −0.081 0.121 0.132 0.138 220

Ratio 1.65 1.49 1.55 1.58 0.67

For all the cases tested, except for MVD = 800 µm at T∞ = −5 ◦C, the performances of
the rotor at h = 4 m degrades between 1.27 to 1.66 faster than at h = 2 m. This is also reflected
in the shorter icing time at h = 4 m before testing has to be stopped. The measurements
of the icing precipitation intensity (λ) was done at a h = 2 m. To explain this difference,
new measurements of the precipitation intensity are repeated at h = 4 m, with the nozzle
settings defined during calibration at h = 2 m. Due to the fact that the icing cloud is not fully
dispersed in the test section area and is more concentrated, the precipitation intensities
obtained at h = 4 m are 1.3 to 1.4 times higher compared to those obtained for the same
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nozzle settings at h = 2 m for both droplet sizes. The water spray angle and area of coverage
are smaller at h = 4 m than at h = 2 m, so a higher λ is obtained, explaining the difference in
the results.

Results differ when the larger droplets (MVD = 800 µm) are used at T∞ = −5 ◦C. The
aerodynamic performances decreased more slowly at h = 4 m than at h = 2 m in opposition
to what is obtained at the other test conditions. This can be explained by the fact that
some of the larger water droplets of the distribution spectrum are not reaching freezing
temperature while falling from the nozzles. The larger droplets are expected to take a longer
time during the free fall to reach freezing temperature, and the shorter distance between
the rotor and nozzles at h = 4 m seems to lower ice accretion at a warmer temperature like
T∞ = −5 ◦C. At h = 2 m the hub and blades are 7 m away from the nozzles, while at h = 4 m
they are only 5 m away. The droplets are released around 0 to 1◦C and cool down during
their freefall. With the aerodynamic heating, those very large droplets after a freefall of
only 5 m take much longer to freeze on the blade due to their higher temperature when
they reach the rotor, and most of them are expulsed from the rotating blades. The expulsion
of droplets from the blades could be observed visually during testing. This could also be
observed by the lower vibration rates during the test, as well as with the lower amount of
ice that was accreted when the test was finalized and longer test durations.

Keeping in mind that the performances of the rotor without ice were similar between
h = 4 m and h = 2 m, and since the icing parameters are calibrated at h = 2 m, it is decided
that the test campaign will be performed at h = 2 m. On the other hand, the differences
brought by the rotor height during icing pose an interesting topic to be elaborated in future
studies, especially on the large droplets’ temperature equilibrium.

5. Conclusions

This paper presented the design process and methodology used to develop an innova-
tive experimental test rig to study the effects of icing on the rotor of a Bell APT70 drone in
take-off/hover flying mode. The test rig was installed in the 9-m-high AMIL cold chamber
whose unique capabilities allowed to study the ground effect and rotor proximity to the
icing nozzle array at different rotor heights. Techniques for the measurement of MVD and
λ in the chamber are presented, followed by a new methodology to calculate the LWC for a
rotor in hover flight, based on the MVD and λ.

A preliminary experimental comparison of aerodynamic parameters between rotor
heights at h = 2 m and h = 4 m showed no difference in the results, demonstrating that
no ground effect is obtained at h = 2 m, and further icing tests were therefore decided to
be carried out at that lower height, with the advantage of experimental convenience and
extra distance from the nozzles. When icing tests were carried out at a distance of 7 m
from the nozzles to the rotor (h = 2 m) and at 5 m (h = 4 m), the icing accumulation was
changed at warm temperatures for the larger droplets. The larger droplets at that warmer
temperature did not cool enough, and very few droplets froze on the blades after a freefall
of only 5 m (h = 4 m). The larger droplets of the spectrum did not totally reach terminal
velocity either. For those reasons, the decision to position the setup at h = 2 m (7 m from
the nozzles) was taken.

Following this important study on the development of a unique test right, a com-
prehensive investigation on the impact of drone rotor icing can now be undertaken. The
effects of Pitch Angles θ, Liquid Water Content (LWC), Median Volume Diameter (MVD),
air temperatures T∞, rotor speeds Ω and precipitation rates λ on rotor performance and re-
sulting ice accumulation will be investigated. Then additional testing will be done to study
different active and passive solutions to the icing problematic. These studies pave the way
for further investigation of the impact of ice on UAV performances and the development of
ice protection systems for drone applications.
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Abstract: This paper presents a methodology that can be used to avoid collisions of aerial drones.
Even though there are many collision avoidance methods available in literature, collision cone is
a proven method that can be used to predict a collision beforehand. In this research, we propose
an algorithm to avoid a collision in a time-efficient manner for collision cone based aerial collision
avoidance approaches. Furthermore, the paper has considered all possible scenarios including
heading change, speed change and combined heading and speed change, to avoid a collision. The
heading-based method was mathematically proven to be the most time-efficient method out of the
three. The proposed heading-based method was compared with other work presented in the literature
and validated with both simulations and experiments. A Matrice 600 Pro hexacopter is used for the
collision avoidance experiments.

Keywords: UAV; collision cones; collision avoidance; drones; time-efficiency

1. Introduction

From high-tech surveillance vehicles used in the military to toys used by children,
Unmanned Aerial Vehicles (UAV) have come a long way. A flying drone (UAV) above us
has been almost a daily experience for a person living in this era of technology. The rapid
commercialization pace will make the future skies congested with busy drones assisting us,
humans, in many ways. However, there is a darker side to this technological advancement.
A congested air space could lead to aerial collisions. The emerging risk of aerial vehicle
collisions is substantial and the potential to cause injury to persons and damage to property
is ever-increasing. More importantly, UAVs carry flammable materials which may cause
fire due to a collision. Therefore, avoiding aerial collisions is important.

A vast array of solutions could be found on avoiding obstacles in past literature.
Generally, collision avoidance methods are categorized as global planning based obstacle
circumvention (global planners) and local planning based obstacle circumvention (local
planners). Global planners use accumulated sensor data and a priori information when
determining collision-free paths. Algorithms such as PRM [1] (Probabilistic Road Maps),
A∗ [2] and D∗ [3] are global planners. Local planners, on the other hand, work in a given
local search space. In general, local planners operate in highly dynamic environments. Local
planners are also known as reactive methods. RRT methods [4], vector field histograms [5],
dynamic window approach [6], artificial potential fields [7] and collision cones [8]/velocity
obstacles [9] are typical examples for local planners. A sky full of UAVs is a dynamic
environment, therefore the authors of this research have been biased towards local planners-
based reactive collision avoidance.

Sampling-based methods such as RRT methods will possess a high computational
cost when the environment becomes congested. The dynamic window approach takes the
motion dynamics of the robot into account. Vector field histograms is a method that is
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used to find the displacement vectors, given the local range sensor data. Artificial potential
field method is a vastly used algorithm which is based on two fields, a repulsive field and
an attractive field. However, out of all the reactive methods up to date, the collision cone
method possesses the ability to foretell the occurrence of a potential collision. On the other
hand, the collision cone concept is based on a paradigm that is based on relative velocities
of obstacles and the moving agents in the dynamic environment [8].

Many variants of the collision cone method could be found in the literature. In [9],
the concept of collision cone is enhanced to avoid multiple obstacles with the aid of the
Minkowski vector sum operator. The Method in [10] proposes a non-linear velocity obstacle
algorithm which is composed of local obstacle avoidance and global motion planning.
The dynamics of the obstacles and the perception limitations have been addressed by the
approach proposed in [11] by applying the probabilistic velocity obstacle method [12] to a
dynamic occupancy grid. Authors in [13] present a reciprocal velocity obstacle approach,
which guarantees the safe and oscillation free navigation among a flock of agents. The
method proposed in [14] incorporates the kinematics and the sensor uncertainty of the
robots and avoids collisions by considering the reciprocity. Discrete optimization methods
are used in [15] for agent motion planning. This method extends the velocity obstacle
concept to a quadratic optimization problem to find collision-free paths.

In spite of the substantial profusion of literature available on collision cone, time-
efficient collision avoidance has been scarcely examined. Time efficiency is a vital factor in
many aerial applications. A concept in the name of “Time Scaled Collision Cone” proposed
in [16,17] remains the sole contribution towards time optimality (time efficiency) in collision
cone literature. In a nutshell, this approach avoids a collision through acceleration/de-
acceleration based on a non-linear time scaling function by maintaining the original path.
The authors of this script have compared the merits of the proposed method over the “Time
Scaled Collision Cone” method in Section 6 and discussed them in detail.

It is important to note that the authors of this manuscript have published a previous
paper [18] on heading-based collision avoidance by designing the collision cone with respect
to the UAV. By understanding the disadvantages of this design, the authors have completely
changed the idea and designed the collision cone with respect to the obstacle in the proposed
work. The stages of the proposed method are discussed in the forthcoming sections.

2. System Description and Problem Definition

We consider the UAV to be a circle of radius Ru, traveling in a two dimensional plane
by maintaining a constant height from the ground. Let xu(t), yu(t) be the position of the
UAV in form of Cartesian co-ordinates. It travels in a speed of vu(t) and a heading angle of
θu(t) from the abscissa (X-axis). The two dimensional plane consists of multiple circular
dynamic obstacles. All the obstacles travel in a much lesser speed compared to the speed
of the UAV (vu(t)). These obstacles travel at a constant speed and a constant heading.
As described before the task of the UAV is to navigate to a goal location by being in a
time-efficient collision-free path. Initially, the authors of the manuscript have presented a
comprehensive examination on collision avoidance in the presence of a single obstacle by
determining the best algorithm that guarantees time efficiency. Subsequently, the preferred
algorithm has been enhanced for multiple obstacle avoidance.

Figure 1 presents a typical single obstacle scenario. The obstacle consists of a radius of
Ro, a speed of vo and a heading of θo. The standard first step of a collision cone procedure [8]
is to re-arrange one of the objects (either the obstacle or the UAV) as a point. If the collision
cone is drawn with respect to the obstacle as in Figure 1, the UAV will be drawn as a point
by adding the UAV’s radius to the obstacle’s radius. As a result, the UAV will become a
point with 0 radius and the obstacle will be enlarged to a bigger circle with a larger radius
of Ru + Ro (its own radius plus the UAV’s radius). The UAV is labeled as U and the center
of the obstacle circle is labeled as O in Figure 1. Thereafter, two tangents from U will be
drawn to the circle O. The point of tangencies are marked as P1 and P2. At this point,
the diagram will appear as a cone. Thereafter, a relative vector triangle with respect to ~vo
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will be drawn at U as shown in Figure 1. Let, θuo be the angle of the ~vuo with the abscissa.
A potential collision between the UAV and the obstacle could be confirmed if the condition
in Definition 1 is satisfied (∠P1UX and ∠P2UX are given with the abscissa).

Figure 1. The collision cone is drawn with respect to the obstacle’s velocity. The UAV is traveling in
~vu and the obstacle is traveling in ~vo. The UAV has a radius of Ru and the obstacle has a radius of Ro.
The UAV is drawn as a point and the obstacle is drawn with a radius of Ru + Ro.

Definition 1. A potential collision could be guaranteed if, ∠P1UX > θuo > ∠P2UX (Figure 1).

In an instance where the condition in Definition 1 is satisfied, the potential collision
could be avoided in three different approaches. The UAV’s speed and heading has been
differed in the following ways to avoid a collision:

1. Varying the speed and maintaining a constant heading (Purely Speed Solution).
2. Varying the heading and maintaining a constant speed (Purely Heading Solution).
3. Varying both speed and heading (Hybrid Solution).
The forthcoming sections, Sections 3 and 4, provide an exhaustive discussion on purely

speed solution, purely heading solution and hybrid solution, respectively. At the end of
Section 4, the most time-efficient method is determined. Section 5 enhances the algorithm
to handle multiple obstacles. Section 6 presents the results and Section 7 concludes with a
few final remarks.

3. Purely Speed Solution(PSS)

As stated in Section 2 a potential collision between a UAV and an obstacle could be
avoided by varying the speed of the UAV (vu(t)) and maintaining the heading fixed at
θu. To assure the time-efficiency criteria the UAV should maneuver at vu(t) = vmax in an
obstacle-free environment. The translational model of the UAV is introduced in (1). Term
Bsvu(t) in Equation (1) refers to the translational coulomb resistance, where Bs ∈ R. Due to
the fixed heading, the UAV will be translated forward by applying force F.

v̇u(t) = F− Bsvu(t),
ẏu(t) = vu(t) sin(θu),
ẋu(t) = vu(t) cos(θu).

(1)

We use a sliding mode controller based control strategy when calculating F of (1). Let e(t) be
the error between the calculated va(t) and the current velocity vu(t) of the UAV. Calculation
of va(t) will be discussed in detail in the forthcoming Section 3.1.

e(t) = va(t)− vu(t). (2)

With the aid of (2), we introduce the sliding surface of the sliding mode controller in (3).
Where, λ ∈ R.
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σs(t) = ė(t) + λe(t). (3)

The navigation law based on the sliding mode control strategy is introduced in (4).

F = sgn(σs(t)). (4)

3.1. Speed Calculation Methodology (Calculation of VA(t))

Our main objective is to calculate va(t) in a given collision scenario. A typical collision
scenario is shown in Figure 2a. Both vu(t) and vo are presented in vector forms as ~vu, ~vo at
a certain time instance. The UAV labeled as U is traveling towards the goal location G in ~vu
velocity in a fixed θu direction. The UAV has detected an obstacle O traveling in ~vo velocity
and in a θo direction. The collision cone (Figure 2a) is with respect to the obstacle and let
the radius of the base of the cone be R, where R = Ru + Ro. If the value of ∠OUT2 and
∠OUT1 is Υ and the angle between UO and ~vuo vector is χ (∠OUB). Based on the collision
cone, if χ < Υ, the UAV will have a certain collision with the obstacle in time to come.
The collision will occur at a point near C, if the UAV and the obstacle continue to move
headings and velocities unchanged.

Given that, vo, θo, θu are fixed and vmax is a maximum, reducing the speed of the UAV
becomes the solitary option to avoid the collision.

(a)

(b)

Figure 2. The figure shows a typical potential collision situation between a UAV and an obstacle.
The two sub-figures show the real scenario (the actual situation) and the relative (with respect to the
obstacle) scenario. (a) The actual travel path of the UAV is UG and the obstacle’s trajectory intersects
the path at C. (b) Shows the relative travel path. Point W is the replica of D in the relative scenario.
When the UAV actually moves from U to G, relatively it travels in the ~UB direction.

Let D(t) be the point of tangency to the line parallel to UG (Figure 2a). D(t) is a point
located on the safety boundary (periphery) of the moving obstacle. All the surface points
including D(t) of the obstacle will intersect the UG line at some point of time in future.
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Remark 1. Let t = td be the time of intersection of the dynamic point D(t) with the line UG. D(td)
becomes the farthest obstacle’s surface point that the UAV could reach uncollided. An UAV that
travels in a time-efficient speed should always arrive at D(td) when D(td)∩UG at t = td.

We have the independence of deciding a speed profile that satisfies Remark 1. UG is
the actual traveling path irrespective of the speed changes made by the UAV during the
time of travel. We examine the displacement of the UAV with respect to the obstacle as
in Figure 2b. We have addressed the speed-based avoidance problem in a three-staged
approach. Namely, hazard stage, intermediate stage and post-hazard stage. The UAV’s
travel path from the moment of sensing the obstacle till nearing the surface of the obstacle is
discussed under the hazard stage. The intermediate stage highlights the UAV’s navigation
at close range to the obstacle’s safety boundary until the line of sight to the goal becomes
unimpeded. Thereafter, the UAV travels straight to the goal during the post-hazard stage.
At each stage we calculate the time efficient va(t).

Through out the manuscript we will be considering the Galilean relativity. Therefore,
we can propose the following Remark 2.

Remark 2. Let the completion time of a certain event be T in the real scenario. The same event will
take the same T completion time in the relative scenario.

When the UAV travels to D(td) by satisfying Remark 1, the UAV’s relative movement
with respect to the obstacle should reach the point W of Figure 2b according to Remark 2.
It is evident that there are multiple relative paths, which satisfies Remark 1. However,
to suit any collision cone scenario, we select UT̄2W as the relative path, which satisfies
Remark 1. Relative motion on UT2 becomes the hazard stage and on T̄2W becomes the
intermediate stage.

Calculation of the UAV’s velocities in the different stages will de discussed in
Sections 3.1.1–3.1.3.

3.1.1. Hazard Stage

Figure 3a shows the UA
′
B
′4 vector triangle after the speed adjustment of the UAV’s

speed vector. When measured in the counter clockwise direction from the abscissa, ∠B
′
UX

and ∠B
′
A
′
X angles are known. Therefore, the value of ∠UB

′
A
′

could be calculated and let
the value be θa. Since, the heading direction of the UAV is fixed, ∠A

′
UX will be a constant.

Similarly, ∠A
′
UB

′
could be calculated as θb. By applying the Law of Sines to UA

′
B
′4,

the speed of the UAV could be calculated.

vu = vo

Å
sin(θa)
sin(θb)

ã
. (5)

The calculated vu value in (5) can be applied to va(t) of (2).

(a)

Figure 3. Cont.
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(b)

Figure 3. The subfigures show the corrections required during the hazard stage and the intermediate
stage. The speed correction during the hazard stage and the intermediate stages. (a) The relative
velocity vector triangles after the speed correction is shown. ~v′uo is the is the relative velocity vector
after the speed is corrected. ~v′uo coincides with UT2 line segment. (b) The intermediate stage when
considering the UAV’s relative motion. X

′
O is parallel to the X-axis/abscissa. T2 is the entrance point

of the intermediate stage. W is the final point of the intermediate stage.

3.1.2. Intermediate Stage

Since the relative displacement of the UAV is through the T̄2W arc, the UAV has to ma-
neuver in a variable speed. Let, X

′
O be parallel to the X-axis (abscissa). Therefore, ∠X

′
OW

and ∠X
′
OT2 become known angles (Figure 3b. Let, ∠X

′
OW = θ2 and ∠X

′
OT2 = θ1.

Let, the UAV’s speed at T2 be vu1, which is calculated from (5). At W the UAV should
travel in the maximum relative speed. We introduce (6) and (7) by considering the relative
displacement of the UAV from T2 to W in the X-direction (direction of abscissa).

vx1 = vu1(cos(θu))− vo(cos(θo)). (6)

vx2 = vmax(cos(θu))− vo(cos(θo)). (7)

Assumption 1. The UAV’s relative displacement from T2 to W in the X-direction happens with a
constant jerk.

We introduce (8), by applying the motion equation v = v0 + a0t +
1
2

jt2 to the relative
motion from T2 to W. It is important to note that a0 = 0 at T2. This is in the X direction,
and we will be using the (6) and (7) for the calculations.

j =
2(vx2 − vx1)

t2 . (8)

Similarly, we apply the motion equation s = s0 + v0t +
1
2

a0t2 +
1
6

jt3 to the relative
displacement from T2 to W and obtain (9).

j =
6(Rcos(θ1)− Rcos(θ2)− vx1t)

t3 . (9)

From (8) and (9) we can obtain a value for the jerk, j = Jx (Assumption 1) and the total
travel time T of the intermediate stage. If the sample time of the system is ∆t, the total time
could be introduced as in (10). Where, N ∈ R.

T = N∆t. (10)
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With the aid of the motion equation v = v0 + a0t +
1
2

jt2 we introduce (11) to calculate
the velocity of the UAV at any tu time during the intermediate stage. Where, tu = M∆t and
M 6 N. M ∈ R.

vu =
vx1 + vo(cos(θo)) +

1
2

Jxt2
u

cos(θu)
. (11)

Similar to the hazard stage, the calculated vu value in (11) is applied to va(t) in (2).

3.1.3. Post-Hazard Stage

The UAV completely eliminates the risk of collision with the particular obstacle when
entering the post-hazard stage from the intermediate stage (from W in the relative scenario).
Therefore, it maintains the vmax speed throughout the post-hazard stage until the goal’s
position. In other words, va(t) = vmax during the post-hazard stage.

4. Purely Heading Solution (PHS)

In this section, we consider a heading only navigation strategy by keeping the speed
at a constant. Figure 4a manifests a typical collision cone scenario constructed with respect
to the obstacle. UG line depicts the original path which the UAV should travel and UG

′
is

the relative path corresponding to the UG original path. The UAV travels in vmax speed
at all times. Put comprehensively, less deviation from the UG line would result a lesser
completion time. Thereby, we introduce the cost function stated in (12). Let, i(t) be the line
connecting the moving UAV and the goal location. Let ϑ(t) be the angle between the UAV’s
travel direction and i(t).

J(t) =
∫

vmaxsin(ϑ(t))dt. (12)

(a)

(b)

Figure 4. The collision scenario and the possible heading corrections. (a) A potential collision with
UAV U and obstacle O. In the relative scenario, the UAV will meet the goal at G

′
in the presence of

no collision. (b) Different directions that the vuo vector could be directed at. Vectors ~UC and ~UB will
navigate the UAV inside the collision cone until the safety boundary of the obstacle. On the other
hand, vectors ~UD, ~UA, ~UE, ~UF will immediately move the UAV out of the collision cone.
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Figure 4b illustrates a number of directions ~vuo can be directed at by varying the
UAV’s heading. Initially, the focus of this section will be laid upon a method on directing
the UAV out of the collision cone immediately during the initial sensing of the obstacle
(e.g., ~UD, ~UA, ~UE, ~UF). We name this method PHSO (Purely Heading Solution Outside
Collision Cone). At the latter part of this section, approaches which make the UAV navigate
inside the collision cone (e.g., ~UC, ~UB) will be examined (for ease of reference, we name
the methods as PHSI (Purely Heading Solution Inside Collision Cone)) and compared
with the former (PHSO with PHSI). The most time-efficient method out of the two will be
determined with rigorous mathematical proofs at the latter part of the section.

4.1. System Description for the Heading Based Avoidance Task

As the UAV is traveling in vu = vmax constant speed, a force will not be required for
the translational motion. The required heading changes are made by varying the torque
of the system. The rotational and the translational motion is introduced in (13). I is the
inertia of the UAV and βh is a resistance constant (βh ∈ R). The term (−βh/I)ωu(t) is the
Rotational Coulomb resistance component of the UAV.

ẋu(t) = vu cos(θu(t)),
ẏu(t) = vu sin(θu(t)),
θ̇u(t) = ωu(t),
ω̇u(t) = (−β/I)ωu(t) + τ/I.

(13)

We introduce the error ζ(t) in (14). Where, θu(t) is the current heading of the UAV and
θc(t) is the proposed algorithm’s heading, which is discussed in Section 4.2.

ζ(t) = θc(t)− θu(t). (14)

With the aid of (14), we introduce the sliding surface of the sliding mode controller
in (15). Where, Λ ∈ R.

σh(t) = ζ̇(t) + Λζ(t). (15)

In (16), we introduce the navigation law.

τ = sgn(σh(t)). (16)

The calculation of θc(t) is comprehensively discussed in Section 4.2.

4.2. Introduction to Phso Method and the Calculation of θc(t)

Similar to Section 3 we have addressed the heading based avoidance problem in the
same three staged approach. Namely, hazard stage, intermediate stage and post-hazard
stage. When considering the relative scenario, the UAV should navigate through UT1 edge
(Figure 4a) in order to have a low cost value for J(t) and to still be out of the collision cone.
The UAV’s travel path from the moment of sensing the obstacle till nearing to the surface of
the obstacle is discussed under the hazard stage. After nearing to the surface of the obstacle,
it is evident that the UAV has to travel at a close range to the moving obstacle boundary
to have the lowest cost value for J(t). The UAV will travel in the intermediate stage until
the line of sight between itself and the goal becomes unhindered by the obstacle’s surface.
When the line of sight becomes clear, the UAV will enter the post-hazard stage and navigate
directly to the goal.

4.2.1. Hazard Stage

In accordance with the introduction, the collision cone concept [8] has been the basis
of the avoidance notion particularity in this stage. Figure 4a presents a situation where
an UAV has initially perceived an obstacle from a certain distance. The collision cone in
Figure 4a is drawn with respect to the obstacle’s velocity vo. T1 and T2 are two points of
tangencies. Let Υ be the value of angles ∠T2UO and ∠T1UO. Let χ be the angle between
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the vector ~vuo and UO. With the introduction of χ and Υ, Definition 1 can be re arranged as
Definition 2.

Definition 2. If the condition χ < Υ satisfies for a given collision cone, the particular UAV and
the obstacle will collide patently.

Therefore, a suitable heading adjustment should be made by the UAV to dissatisfy
the condition given in Definition 2 to circumvent the obstacle. However, as stated previ-
ously, the UAV should reach the safety boundary of the obstacle at a point of tangency.
Thereby, the relative vector ~vou should point at T1 (Figure 4a) throughout the course of the
hazard stage.

Figure 5 shows two relative vector diagrams. UH1N1 M, which is drawn prior to
the heading correction and UH2N2 M subsequent to the UAV’s heading correction. Let
the angle of −~vo with the X axis be θ

′
o and let the angle ∠XUN2 with the X axis be β. It

should be noted that, both θ
′
o and β angles are known angles. Thereby, ∠UN2H2 could be

found as λ. Let α be the ∠H2UN2 angle. With the Law of Sines applied to UN2H2 M, we
introduce (17).

α = arcsin
Å

vo

vu
sin(λ)

ã
. (17)

Now, θc(t) could be calculated with (18).

θc(t) = β− α. (18)

θc(t) will be applied to (14).

Figure 5. The relative velocity vector triangles needed for the angle calculations are shown in this
figure. Heading correction during the hazard stage. UH1N1 M is the relative vector triangle prior to
the heading correction. UH2N2 M is the relative vector triangle after the heading correction.

4.2.2. Intermediate Stage

Due to the switching behavior of the sliding mode controller we have introduced an
additional safety boundary. The additional boundary with a radius of Ro + 2ξ is known as
the Exterior safety boundary. The safety boundary the is closest to the obstacle is called
the Interior safety boundary (which has a radius of Ro + ξ). Where, ξ ∈ R. During the
intermediate stage, we will be considering the real scenario (the actual UAV movement).

Control law (16) should maneuver the UAV between exterior safety boundary and the
obstacle surface throughout the intermediate stage. We propose Algorithm 1 to effectuate
this requirement. Initially, let the position of the UAV be xu(t), yu(t) with a heading direction
of θu(t). If the sample time of the UAV is δT, we introduce (19), (20) and (21) to predict the
location of the UAV at t = t + δT, when, θu(t + δT) = θu(t) , θu(t + δT) = θu(t) + δθ and
θu(t + δT) = θu(t)− δθ. Where δθ ∈ R.

x̂u1(t + δT) = xu(t) + vu cos(θu − δθ)δT,

ŷu1(t + δT) = yu(t) + vu sin(θu − δθ)δT.
(19)

x̂u2(t + δT) = xu(t) + vu cos(θu)δT,

ŷu2(t + δT) = yu(t) + vu sin(θu)δT.
(20)
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x̂u3(t + δT) = xu(t) + vu cos(θu + δθ)δT,

ŷu3(t + δT) = yu(t) + vu sin(θu + δθ)δT.
(21)

By assuming the obstacle’s heading to be unchanged at θo, we introduce (22) to
calculate the location of the obstacle when t = t + δT. Let the initial position of the obstacle
be xo(t), yo(t).

x̂o(t + δT) = xo(t) + vo cos(θo)δT,

ŷo(t + δT) = yo(t) + vo sin(θo)δT.
(22)

We introduce R1 in (23), R2 in (24) and R3 in (25).

R1 =
»

(x̂u1(t + δT)− x̂o(t + δT))2 + (ŷu1(t + δT)− ŷo(t + δT))2. (23)

R2 =
»

(x̂u2(t + δT)− x̂o(t + δT))2 + (ŷu2(t + δT)− ŷo(t + δT))2. (24)

R3 =
»

(x̂u3(t + δT)− x̂o(t + δT))2 + (ŷu3(t + δT)− ŷo(t + δT))2. (25)

With the aid of (23),(24) and (25) we introduce ∆R1 as in (26), ∆R2 as in (27) and ∆R3 as
in (28).

∆R1 = |(R1 − (Ro + ξ))|. (26)

∆R2 = |(R2 − (Ro + ξ))|. (27)

∆R3 = |(R3 − (Ro + ξ))|. (28)

We propose Algorithm 1, which will keep the UAV in between the exterior safety
boundary and the actual obstacle surface throughout the intermediate stage.

Algorithm 1 Heading at t = t + δT
Input: ∆R1, ∆R2 , ∆R3
Output: θu(t + δT)

1: if (∆R1 < ∆R2) and (∆R1 < ∆R3) then
2: θu(t + δT)← θu(t)− δθ;
3: else if (∆R2 < ∆R1) and (∆R2 < ∆R3) then
4: θu(t + δT)← θu(t);
5: else
6: θu(t + δT)← θu(t) + δθ;
7: end if

4.2.3. Post-Hazard Stage

The line of sight from the UAV towards the goal will be de-linked by the obstacle
during the hazard and the intermediate stages. The UAV will enter the post-hazard stage
immediately after the line of sight gets unhindered. Then, move straight to the goal.
We introduce (29), (30) and (31) to find the transition point from the hazard stage to the
post-hazard stage.

m1(t) =
yu(t)− yo(t)
xu(t)− xo(t)

. (29)

m2(t) =
yg − yu(t)
xg − xu(t)

. (30)

The UAV will enter the post-hazard stage when the condition in (31) is satisfied at
t = ttr.

m1(ttr)m2(ttr) = −1. (31)
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We introduce (32) to find θc(t) during the post-hazard stage.

θc(t) = arctan(m2(ttr)). (32)

4.3. Introduction to Phsi Method and the Time-Efficiency Comparison between Phso and Phsi

Even though Section 4.2 finds the time-efficient heading possibilities out of the collision
cone, the possibilities shown in Figure 6a still remain unexamined. To begin with, we will
extend the study conducted in Section 4.2 by investigating the possibilities inside the
collision cone. The obstacle in Figure 6a has A, Bi, C, D, E, F, H, I labels on its periphery.
Similar to navigating from U to A (over the edge of the cone), the UAV has the ability
to travel directly towards the periphery of the obstacle and then to maneuver over the
periphery of the obstacle. As an example the UAV could travel through UC and C̃Bi. Where,
i ∈ N. However, the time-efficiency when traveling inside the cone should be compared
with the solution provided in Section 4.2.

(a)

(b)

Figure 6. The figures explains the PHSI method. Especially the hazard stage and the intermediate
stage. (a) The points on the obstacle’s periphery (safety boundary) which are inside the collision cone
are labeled as A, C, D, E, F, H, I. (b) Post-hazard stages of the two cases. Bw1 is the final point of the
intermediate stage of the case coming through A. Bw2 is the final point of the case coming through C.

Theorem 1. The point C in Figure 6a is at the periphery of the obstacle inside the collision cone.
Let t1 be the time taken for the UAV to travel through the path UAB1G(t1), where i = 1 and t2 be
the time taken for the UAV to travel through the path UCB2G(t2), where i = 2. B1 and B2 are the
last points of the intermediate stage or the first points of the post hazard stage (i ∈ N). At any given
collision cone scenario t1 < t2.

Proof of Theorem 1. Firstly, we introduce the following terms for the UAV’s travel through
the relative path UCB2G(t2),
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• va—Relative velocity of the UAV during the hazard stage.
• vb(t)—Relative velocity of the UAV during the intermediate stage.
• dr—The relative distance between the UAV and the obstacle when the obstacle was

initially sensed (UO distance).
• rr—The relative distance traveled by the UAV during the intermediate stage from C to

A (Figure 6a).

With the availability of range sensors which could measure up to 300 m (e.g.,: LDM301,
Sick DME5000-321) we make a reasonable assumption as in Assumption 2.

Assumption 2. If the radius of the base of the collision cone is R. Then, 10R ≤ dr.

By considering the UAV’s radius along with the secure safety boundary, we introduce
a sensible assumption in Assumption 3.

Assumption 3. For any given collision cone γ + ψ ≥ C. Where, ∠AUO = γ, ∠JUO = ψ and
C ∈ R.

Assumption 4. Let vb be the maximum relative velocity during the intermediate stage (vb is the
maximum velocity, vb(t) could reach). For ease of analysis, we assume that the UAV travels at vb
during the intermediate stage.

Let, ∠OCJ = φ, ∠AUO = γ, ∠JUO = ψ, ∠AOC = θ.
We introduce δr in Equation (33).

δr = dr cos(γ)− (dr cos(ψ)− R cos(φ)). (33)

Similar to δr and rr in the relative scenario, we can also consider δw and rw in the real
scenario. With the aid of Remark 2 and Assumption 3, we can introduce (34) and (35).
Where k1, k2 ∈ R.

δr = k1δw (34)

rr = k2rw (35)

(36) could be obtained by (35)/(34).

rw

δw
=

k1

k2

rr

δr
. (36)

(36) could be rearranged as
rw

δw
∝

rr

δr
. We introduce (37) by applying φ =

π

2
− (γ + θ − ψ)

to (33),
δr = dr cos(γ)− (dr cos(ψ)− R cos(

π

2
− (γ + θ − ψ))). (37)

(37) could be simplified as (38).

δr = dr cos(γ)− dr cos(ψ) + Rsin(γ + θ − ψ). (38)

The terms in (38) could be rearranged in the form of (39).

δr = −2dr sin(
γ− ψ

2
) sin(

γ + ψ

2
) + R sin(θ) cos(γ− ψ) + R cos(θ) sin(γ− ψ). (39)

The term R cos(θ) sin(γ− ψ) of (39) could be expanded as in (40).

δr = −2dr sin(
γ− ψ

2
) sin(

γ + ψ

2
) + R sin(θ)cos(γ− ψ) + 2Rcos(θ) sin(

γ− ψ

2
) cos(

γ− ψ

2
). (40)

With the aid of Assumption 2 we apply dr = 10R to (40).
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δr = −20R sin(
γ− ψ

2
) sin(

γ + ψ

2
) + R sin(θ) cos(γ− ψ) + 2Rcos(θ) sin(

γ− ψ

2
) cos(

γ− ψ

2
). (41)

A simplified version of (41) is presented in (42).

δr = −2R sin(
γ− ψ

2
)
ß

10 sin(
γ + ψ

2
)− cos(θ) cos(

γ− ψ

2
)
™
+ R sin(θ) cos(γ− ψ). (42)

With the aid of Assumptions 2 and 3 we can state that 10 sin(
γ + ψ

2
) > 1 and 0 <

cos(θ) cos(
γ− ψ

2
) < 1. Therefore, we can confirm that

−2R sin(
γ− ψ

2
)
ß

10 sin(
γ + ψ

2
)− cos(θ) cos(

γ− ψ

2
)
™
< 0. Furthermore, we also can

affirm that R sin(θ) cos(γ− ψ) < R sin(θ) as 0 < cos(γ− ψ) < 1. Thereby, δr < R sin(θ).
We introduce the definition of rr as in (43).

rr = Rθ (43)

Generally radians of θ values are larger or equal to their corresponding sin(θ) values.
Therefore, rr > δr. If we consider the real scenario, from (36) we are able to confirm that
rw > δw. The UAV travels in constant vu in the real scenario. As a result, the UAV will
travel the δw distance in a much shorter time compared to the rw distance. As per Remark 2,
the time taken to travel δr will be much lesser than the time taken to travel rr. In essence,
the proof made till this point certifies that the UAV’s relative movement through UA edge
reaches point A much faster than the other method reaching via point C.

Let Bw1 be the final point of the intermediate stage in the real scenario corresponding
to B1. According to the Remark 2, the UAV enters B1 in the relative scenario and Bw1 in the
real scenario at the same time. Similarly, let Bw2 be the final point of the intermediate stage
in the real scenario which corresponds to B2 in the relative scenario. The UAV will arrive at
Bw1 at first due to the early entrance to the intermediate stage. Thereafter, the UAV will
move directly to the goal in a straight line. Point Bw1 always will have a lesser distance
to the goal compared to Bw2 (Figure 6b). Therefore, the UAV will be reaching the goal
in a much shorter time through Bw1G. In correspondence, the UAV will relatively move
towards the goal through B1 in a shorter time and reach the goal at G(t1) if the goal reaching
time is t1. In conclusion, UAB1G(t1) will be the time-efficient path.

This completes the proof of Theorem 1. We also lay our investigation towards time
efficiency comparison between a straight line trajectory (described prior) and non-linear/
piecewise linear paths during the hazard stage in this section. Let a UAV travel to a point
on the periphery of the obstacle in a non-straight trajectory in t1 time by being at a constant
speed. The UAV can reach the same point in a straight trajectory in the same constant
speed in t2 time, where t2 < t1. Therefore, if the UAV travels in a constant speed, there will
always be a time-efficient linear path to reach a point in the periphery compared to any
other non-linear path traveled in the same speed.

It can be confirmed that the PHSO method gives the most time-efficient solution in
comparison to PHSI method. Therefore, the PHSO method will be referred as PHS (Purely
Heading Solution) through out the rest of the script.

4.4. Comparison of Phs with Pss Method

Theorem 2. Let T1 be the completion time of PHS and T2 be the completion time of PSS. T1 < T2
at any given collision cone scenario.

Proof of Theorem 2. A collision cone scenario is presented in Figure 7a and the PHS and
PSS corrections are shown in Figure 7b. The vector triangle UAsBs represents the correction
of PSS and UAhBh represents the correction of PHS. Let, ∠ UAsBs be θs and ∠ UAhBh be
θh. By applying the law cosines, the magnitude of the relative velocity vector of PSS could
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be shown as in (44) and the magnitude of the relative velocity vector of PHS could be
given by (45). Let, vu1 be the speed correction of PSS. The UAV travels in vmax prior to the
collision detection .

(a)

(b)

Figure 7. The figures represent a collision scenario and the corresponding PHS and PSS corrections
in form of relative velocity vector triangles: (a) Presents the scenario prior to the correction. (b) Shows
PHS and PSS corrections.

|vs| =
»
|vu1|2 + |vo|2 − 2|vu1||vo| cos(θs), (44)

|vh| =
»
|vmax|2 + |vo|2 − 2|vmax||vo| cos(θh). (45)

Due to |vh|2, |vs|2 ∈ R>0, |vu1|2 + |vo|2 > 2|vu1||vo| cos(θs) and |vmax|2 + |vo|2 >
2|vmax||vo| cos(θh). Furthermore, vmax > vu1 condition will satisfy vh > vs at all times. It is
clear that with vh > vs condition being satisfied, PHS algorithm will make the UAV reach
the obstacle’s safety boundary in the minimum time. Similar to the other theorems, we will
consider the real scenario to investigate the intermediate and the post-hazard stages. Due
to the lead of PHS at the hazard stage and as the speed of PSS during the intermediate stage
is lesser than vmax, the UAV will be made to arrive at the final point of the intermediate
stage in a shorter time by the PHS algorithm. As a result, PHS makes the UAV enter the
post-hazard stage before PSS. During the post-hazard stage, both PSS and PHS will make
the UAV navigate in vmax. However, due to the early entrance, PHS navigates the UAV
towards the goal in much lesser time when compared with PSS.

It is important to note that in some instances UAV’s heading correction of PHS will
make the relative vector coincide with UP1 edge. In these situations, moving towards P1
becomes more time-efficient than moving towards P2. Therefore, the theorem still becomes
valid. This completes the proof of Theorem 2.

4.5. Comparison of Phs with Speed and Heading Hybrid Method

Hitherto, we have discussed PHS and PSS approaches in detail. Similar to PHS and
PSS, a speed variation along with a heading variation becomes feasible when avoiding
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collisions. Two example hybrid approaches are presented in Figure 8. Let vmax and θu be
the speed and the heading of the UAV prior to the collision. We confirm that v

′
u < vmax.

The angle θ3 is the angle opposite ~vuo3 and θ4 is opposite to ~vuo4. It is important to compare
the time-efficiency merits of the hybrid method with that of PHS at the outset.

vuo4
−vo

−vo

v
′

u

vuo3
v

′

u

U

O

Figure 8. The two relative vectors represent the hazard stages of two hybrid methods. Where,
v
′
u < vu.

Proposition 1. There are n (where n ∈ R) hybrid methods to avoid a collision, given a collision
cone scenario. Let Ti be the completion time of a hybrid method, where i ∈ {1 . . . n}. Let Th be the
completion time of the PHS of the same collision scenario. Then, Ti > Th.

Proof of Proposition 1. The resultant velocities are introduced as in (46) and (47).

|vou3| =
»

(|v′u|)2 + |vo|2 − 2|v′u||vo| cos(θ3), (46)

|vou4| =
»

(|v′u|)2 + |vo|2 − 2|v′u||vo| cos(θ4). (47)

From Theorem 1 we can establish that vuo4 will make the UAV reach the obstacle’s safety
boundary at the earliest. If v

′
u is increased to vmax by maintaining the heading, we can

assure that the resultant relative velocity will be greater than vuo4. This will eventually
be the PHS solution. Any hybrid correction that happens inside the collision cone could
be stated in the form of (46). The resultant relative velocity could be given by (47) if the
relative velocity vector of any hybrid correction coincides with the edge of the collision cone.
Therefore, the PHS method will be more time-efficient than any of the hybrid solutions.
According to Theorems 1 and 2, the method that makes the UAV reach the safety margin of
the obstacle at first will surely reach the goal ahead of the other methods .

This completes the proof of Proposition 1. It is clear that PHS becomes the most
time-efficient method to avoid a collision in a single obstacle collision cone scenario.

5. Multiple Collision Handling

A multiple collision situation is where a UAV senses multiple obstacles in a given time
instance, which would lead to future collisions. In this section, we introduce an algorithm
for a general multiple collision situation initially. Thereafter, an enhanced version of the
introduced algorithm will be presented to handle complex multiple obstacle scenarios.

5.1. Typical Multiple Collision Handling

A typical multiple collision example is shown in Figure 9a. As per the conclusions
made in the previous section, the time-efficiency of the PHS approach out performs all the
remaining avoidance methods that could be used in collision cone scenarios. Navigating on
full speed on a straight line during the hazard stage stands the crux of the PHS approach.
A multiple collision scenario is a combination of several single collision cones. As per
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the merits discussed, we consider the application of PHS in multiple collision situations.
The aim will be to navigate the UAV in full speed on a straight line.

(a) (b)

Figure 9. Multiple collision avoidance: (a) A typical collision situation with two obstacles. Since,
vuo1 and vuo2 are inside the collision cones the UAV will be colliding with both O1 and O2 obstacles.
(b) presents a complex multiple obstacle scenario. Where, the UAV has a risk colliding with O2 and O3

initially. With a clockwise correction, the UAV has a risk of colliding with O1. With an anti-clockwise
correction, the UAV has a risk of colliding with O4.

Figure 9a depicts a multiple collision scenario with two obstacles. Let RO1 be the
radius of obstacle O1 and RO2 be the radius of obstacle O2. As the initial step, collision
cones will be constructed with all the available obstacles. Due to the multiple obstacle
nature, unlike in the single obstacle problem, both clockwise and anti-clockwise heading
corrections should be considered in each collision cone. As an example, vuo1 could be made
to coincide with UP1 or UP2. As some of the relative vectors are much closer to the bottom
edge of the collision cone and some others are closer to the top edge of the collision cone,
calculating the heading (θc(t)) in both directions becomes crucial.

Let the number of sensed obstacles be n. Where, n ∈ N. With the aid of the PHS
algorithm we calculate the clockwise heading correction angle Ωi for each collision cone
{i = 1, . . . , n}. Similarly, we calculate the anti-clockwise heading correction angle ηi for
each collision cone. From all the Ωi values, we select the maximum as in (48).

Ωmax = max{Ω1, . . . , Ωn}. (48)

Similarly, we repeat the selection for ηi as in (49).

ηmax = max{η1, . . . , ηn}. (49)

Finally, the minimum value from Ωmax and ηmax is selected as in (50).

θc(t) = min{ηmax, Ωmax}. (50)

Equations (48)–(50) should be calculated at every sample time. The calculated θc(t)
values from (50) are used throughout the hazard stage. At the last part of the hazard
stage the UAV arrives at the safety boundary of one obstacle from the lot. Therefore,
the intermediate stage and the post-hazard stage will be similar to the single obstacle
scenario. If the UAV encounters another obstacle during the intermediate stage, the collision
is handled with a new collision cone.
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5.2. Complex Multiple Collision Handling

Figure 9b illustrates a different collision scenario not described before. The UAV in the
image has encountered four unattached obstacles. As per the collision cones, UAV has a risk
of colliding with O2 and O3 initially. If the UAV makes an anticlockwise heading correction,
the risk of colliding with O1 increases. On the other hand, a clockwise correction escalates
the risk of impact with O4. Therefore, we enhance the PHS method made for multiple
collisions introduced in Section 5.1. Algorithm 4 introduces the enhancement. Let there
be n number of obstacles sensed. Out of the obstacles, the UAV has a risk of immediately
colliding with m number of obstacles. Where, m < n. χi and Υi (where, {i = 1, . . . , n})
refers to χ and Υ angles of the ith obstacle (Definition 2).

With the introduction of Algorithm 2, we can confirm that there is always a feasible
way of avoiding a collision in a time-efficient manner irrespective of the complexity of
the collision.

Algorithm 2 Calculation of θc(t) in a complex situation.
Input: η1 . . . ηn, Ω1 . . . Ωn
Output: θc(t)
while 1 do

k← m
ηmax ← max{η1, . . . , ηm};
Ωmax ← max{Ω1, . . . , Ωm};
θc(t)← min{ηmax, Ωmax};
if χk+1 > Υk+1 then

break;
end if
m← m + 1;

end while

6. Results
6.1. Simulation Results

The section assesses the performance of the PSS and PHS algorithms in different
collision scenarios. The simulations were conducted in a Matlab based testing platform.

6.1.1. Simulations Related to Pss Algorithm

The UAV in Figure 10 has traveled to a goal located at (300, 300) from the initial
starting location. However, it has been obstructed by a dynamic obstacle as shown in
Figure 10a. The UAV has maneuvered at a close proximity to the obstacle’s surface dur-
ing the intermediate stage with the aid of (11). As per the velocity profile shown in
Figure 10d, the velocity has been around 1.4 ms−1 throughout the hazard stage as a result
of (5). The UAV has passed the intermediate stage swiftly with the aid of (11) which was
introduced in Section 3.1.2.
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Figure 10. Simulation conducted on the purely speed scenario: (a) Shows the hazard stage. Figures
(b) illustrates the intermediate stage. (c) Shows the post hazard stage. (d) Shows the speed profile
of UAV.

6.1.2. Simulations Related to Phs Algorithm

A typical PHS scenario is presented in Figure 11. The UAV has navigated in a speed of
5 ms−1. As mentioned in Section 4.2.2, an additional safety boundary has been introduced
for the intermediate stage. Figure 11a shows the full trajectories of the UAV and obstacle.
The operation of the sliding mode controller is quite observable in the hazard stage depicted
in Figure 11b. The last point of the hazard stage (which is zoomed in and presented) is
clearly positioned in between the obstacle’s surface and the exterior safety boundary.
Algorithm 1 hasn’t allowed the UAV to collide with the obstacle or to reach out of the
exterior safety boundary. Figure 11c delineates the post-hazard stage with a straight
trajectory directly towards the goal.

6.1.3. Multiple Collision Avoidance Handing

Figure 12 shows a collision avoidance situation with three obstacles with different
radii. The UAV has been navigated to the safety margin of obstacle 1 by Equation (50) as
presented in Figure 12b. It is important to note that Equation (50) hasn’t maneuvered the
UAV to the safety boundaries of obstacle 2 and obstacle 3 as a result of potential collisions.
The last point of the hazard stage has been zoomed in and presented. In Figure 12, the
UAV has avoided the obstacles satisfying the equations introduced in Section 5.1 and have
successfully maneuvered to the goal location.

6.1.4. Complex Collision Avoidance

A complex multiple collision avoidance situation is illustrated in Figure 13. The tra-
jectory profiles are presented in Figure 13a. The UAV, which traveled in a 5 ms−1 speed,
has initially encountered obstacle 2 and obstacle 3 around (70,70) as potential threats while
traveling towards the goal location. The UAV will not be able to make an anti-clockwise
heading correction to move towards the safety margin of obstacle 2, as it would enter the
collision cone of obstacle 1. Similarly, it does not have the ability to reach the safety margin
of obstacle 3, as it would enter the collision cone of obstacle 4. Therefore, with the aid
of Algorithm 3 introduced in Section 5.2, the UAV has navigated to the safety margin of
obstacle 4 as shown in Figure 13b. After avoiding the collision, the UAV has successfully
reached the goal according to Figure 13c.
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Figure 11. Simulation conducted on the purely heading scenario. The obstacle has traveled at a speed
of 4.9 ms−1 and moved at a direction of 3π/2 rad from the X-axis. The UAV has traveled towards a
goal located at (250,250): (a) Shows the full trajectory of the UAV and the obstacle. (b) Presents the
hazard stage. The point at which the UAV enters the safety margin of the obstacle has been zoomed
in and presented. (c) Depicts the goal reaching moment (post-hazard stage).
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Figure 12. Multiple collision avoidance with three obstacles. Obstacle 1 moves in a speed of 4.8 ms−1

in a direction of 1.5708 rad, obstacle 2 moves in a direction of 2.0944 rad at a speed of 3.2 ms−1

and obstacle 3 moves at an angle −3.1416 rad in a speed 4.3 ms−1: (a) Shows the full trajectory
profiles. (b) Presents the hazard stage. (c) Shows the successful completion of the task during the
post-hazard stage.
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Figure 13. Complex multiple collision scenario. Obstacle 1 has traveled at a speed of 4.4 ms−1 in a
heading of 1.15 rad, obstacle 2 has moved with a heading of 1.57 rad with a speed of 4.4 ms−1, obstacle
3 has traveled in a heading direction of 2.25 rad with a speed of 4.2 ms−1 and obstacle 4 has traveled
at a speed of 3.5 ms−1 in a direction of −3.14 rad.: (a) Shows the full trajectory profiles. (b) Shows the
hazard stage and the last point of the hazard stage is zoomed. (c) Presents post-hazard stage.

6.1.5. A Simulation to Justify Theorems 1 and 2

The purpose of this simulation is to justify Theorems 1 and 2. In order to test the valid-
ity of Theorem 1, we make the UAV travel through the points labeled in Figure 6a. In other
words, UẼA, UD̃A, UC̃A, UF̂A, UH̃A, UÎA segments separately and to reach the goal
according to PHSI algorithm. Thereafter, the UAV is sent through the UA edge to reach the
goal as stated in the PHS algorithm. In order to examine Theorem 2, the collision situation
is once more handled using the PSS method. More importantly, the completion time of
each and every method is recorded for comparison. Figure 14 presents the completion time
results of each method, which justifies Theorems 1 and 2.
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Figure 14. Shows the completion times taken by different methods. Labels I, H, F, C, D, E represents
the path through each point.

6.1.6. Comparison with Tscc (Time Scaled Collision Cone) Method

Authors in [17] use nonlinear time scaling [18] to avoid collisions by acceleration or
retardation. It is the sole approach or benchmark method that proposes a time-efficient
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collision avoidance paradigm for collision cones as mentioned in the literature review. We
have compared our PHS approach with the TSCC method proposed in [17] in Figure 15.
Both the algorithms were applied in the same environment, and the task completion time
has been recorded. Figure 15a,b illustrates the behavior of the algorithms in a five obstacle
environment. To normalize both scenarios and to present in real-time, we have set the
max speed of the UAV as 5 ms−1. A completion time of 196.63 ms was recorded by the
PHS algorithm and the TSCC has recorded 276 ms to complete the five obstacle avoidance
task. By having the same goal position as in Figure 15a,b, we have increased the number
of obstacles and recorded the completion time in Figure 15c in order to draw a proper
conclusion. In Figure 15c, the number of obstacles has been increased to 10, 15 and 20 (due
to the high clutteredness, these situations will not be illustrated). It is more than clear that
the PHS method’s time-efficiency outperforms that of TSCC method.
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Figure 15. Comparison between PHS and TSCC: (a) Shows the trajectory profiles of the PHS method
and five different obstacles. (b) Shows the trajectory profiles of the same five obstacles and the TSCC
method. (c) Shows the time taken by PHS and TSCC to complete a task when the number of obstacles
are increased.

It is fair to say, that the simulation results presented in this section solidly ratify the
theories discussed in Sections 3–5.

6.2. Experimental Results

A set of physical experiments were conducted to ensure the practicality of the PHS
method. The practical set-up and equipment used are shown in Figure 16. A Matrice
600 PRO hexacopter is used as the UAV. An Intel NUC mini PC is used to automate the
hexacopter. The mini PC is connected to the hexacopter via a USB cable and powered
by the battery power of the hexacopter. Since obstacles are UAVs in reality, the available
other hexacopters in the laboratory can be used as obstacles for the experiments with a
similar automation set-up. However, as the wind condition is not addressed in this research
fictitious obstacles are used as a safety measure. In addition, we have built up a wireless
local area network (WLAN) with the aid of an Ubiquiti Edge router, an Ubiquiti access point
and a laptop computer. All computers are connected to the network so that data such as the
location of a hexacopter could be shared among the computers. Ubuntu operating systems
are installed in all the computers. In addition, we have installed DJI SDK 3.6 to access the
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flight controller (A3 pro) of the hexacopter. The algorithm is coded in C++. The experiments
were conducted in an open field in Menangle, New South Wales, Australia.

With the aid of the above set-up, we have conducted single obstacle and multiple
obstacle related experiments of the PHS algorithm. The τ value of (16) is replaced by a
heading angle of 1 rad. As a result, the UAV’s controller will be switching between −1 rad,
0 rad and +1 rad. The starting location of the UAV will be considered the origin, and all the
graph co-ordinates in this section are with respect to the origin. With a reasonable safety
boundary, the radius of a hexacopter could be stated as 1.5 m.

Figure 16. Equipment used for the experiments: (a) Shows the NUC mini PC connected to the flight
controller via a USB cable. (b) Shows the NUC mini PC and the power connection which is provided
from the hexacopter batteries. (c) Hexacopters available in the laboratory. The radius of a hexacopter
with a reasonable safety boundary is around 1.5 m. (d) Shows the Edge router and the access point.

Figure 17 presents the single obstacle experiment based on speed. The hexacopter has
traveled in a 0.26 ms−1 speed in a heading direction of π/3 rad. The obstacle has traveled
in a direction of −π/2 rad and in a speed of 0.15 ms−1. Figure 17a shows the hazard stage.
A sample of the intermediate stage is presented in Figure 17b and it is more than clear that
the hexacopter hasn’t been collided with the obstacle. Figure 17c presents the goal reaching
moment. The complete speed profile is shown in Figure 17d. Some spikes in the speed
profile can be observed. This is primarily due to external resistances. Figure 17e has shown
the complete trajectory of the obstacle and the hexacopter.
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Figure 17. Speed experiment: (a) shows the hazard stage. (b) illustrates a samples of the intermediate
stage. (c) shows the post hazard stage. (d) shows the speed profile of UAV. (e) Complete trajectories
of the UAV and the obstacle.

The full trajectory profiles of the UAV and the obstacle is shown in Figure 18a. As the
controller is switching between −1 rad and 1 rad, a trajectory oscillation (switching due
to the sliding mode controller) is not visible as in the simulations during the hazard
stage (Figure 18b). The UAV has successfully reached the safety boundary of the obstacle.
Figure 18c shows a sample of the intermediate stage. Even though Algorithm 1 has
navigated the UAV successfully, the travel trajectory during the intermediate stage hasn’t
been smooth when compared to the simulations. The main reason behind this difference is
the dynamics of the UAV (hexacopter) and the external influences such as wind. Figure 18d
presents the goal reaching moment of the UAV. It is clear that the dynamics haven’t allowed
the UAV to make a swift heading change to reach the goal. Hence, it has made a 3.14 rad
sluggish heading change to reach the goal.

Figure 19 shows a potential multiple collision situation with two obstacles. Figure 19b
depicts the successful completion of hazard stage by the use of (50). In Figure 19c, the UAV
has reached the goal successfully. However, due to the dynamics and external resistances, it
has reached the goal with moderate heading changes. Hence, it hasn’t been able to navigate
directly towards the goal.
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Figure 18. First experiment conducted on the purely heading scenario with a single obstacle. The hex-
acopter has navigated in a speed of 0.3 ms−1 towards a goal located at (10.69,−10.69) and has
encountered as potential threat by an obstacle traveling at a speed of 0.1 ms−1 in a direction of
3.14 rad.: (a) shows the full trajectory of the hexacopter and the obstacle. (b) presents the haz-
ard stage. (c) shows a sample from the intermediate stage. (d) depicts the goal reaching moment
(post-hazard stage).
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Figure 19. Experiment on avoiding two obstacles. The hexacaopter has traveled at a speed of
0.31 ms−1 towards a goal located around (13, 14). Obstacle 1 has moved in a speed of 0.165 ms−1

in direction of a −3.14 rad, and obstacle 2 has moved in a speed of 0.22 ms−1 in a heading angle of
−1.4960 rad: (a) shows the full trajectories of the hexacopter and the obstacles. (b) shows the hazard
stage. (c) presents the goal reaching moment during the post-hazard stage.
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In summary, the main differences between the experimental results and the simulation
results are the dynamics of the UAV and external resistances such as the wind. However,
the experimental results firmly validate the PHS algorithm.

7. Conclusions

A UAV could avoid a potential collision with dynamic obstacles either by changing the
speed or changing its heading or by changing both speed and heading concurrently. This
paper has thoroughly investigated all three possibilities and has shown that the heading
based method is time-efficient than the other two. The paper has proposed PHS (Purely
Heading Solution) method and has confirmed the time-efficiency with rigorous mathe-
matical proofs. Initially, the PHS method was first implemented for a single obstacle and
thereafter enhanced and implemented to avoid multiple and complex collision scenarios.
Furthermore, the time-efficiency of PHS was shown to be better when the results were com-
pared with other work in literature. The validity of the proposed method was demonstrated
both in simulation and real flight experiments.

As future work, the proposed PHS method will be enhanced to perform in 3D envi-
ronments. Furthermore, the impact of the wind resistance will be addressed with the aid of
an additional controller.
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Abstract: In recent years, the performance of free-and-open-source software (FOSS) for image process-
ing has significantly increased. This trend, as well as technological advancements in the unmanned
aerial vehicle (UAV) industry, have opened blue skies for both researchers and surveyors. In this
study, we aimed to assess the quality of the sparse point cloud obtained with a consumer UAV and
a FOSS. To achieve this goal, we also process the same image dataset with a commercial software
package using its results as a term of comparison. Various analyses were conducted, such as the
image residuals analysis, the statistical analysis of GCPs and CPs errors, the relative accuracy assess-
ment, and the Cloud-to-Cloud distance comparison. A support survey was conducted to measure
16 markers identified on the object. In particular, 12 of these were used as ground control points
to scale the 3D model, while the remaining 4 were used as check points to assess the quality of
the scaling procedure by examining the residuals. Results indicate that the sparse clouds obtained
are comparable. MicMac® has mean image residuals equal to 0.770 pixels while for Metashape® is
0.735 pixels. In addition, the 3D errors on control points are similar: the mean 3D error for MicMac®

is equal to 0.037 m with a standard deviation of 0.017 m, whereas for Metashape®, it is 0.031 m with a
standard deviation equal to 0.015 m. The present work represents a preliminary study: a comparison
between software packages is something hard to achieve, given the secrecy of the commercial soft-
ware and the theoretical differences between the approaches. This case study analyzes an object with
extremely complex geometry; it is placed in an urban canyon where the GNSS support can not be
exploited. In addition, the scenario changes continuously due to the vehicular traffic.

Keywords: photogrammetry; unmanned aerial vehicle (UAV); free-and-open-source software (FOSS);
MicMac; Metashape; 3D model; accuracy; sparse point cloud

1. Introduction

In recent years, technological advancements in the unmanned aerial vehicle (UAV)
industry have drastically transformed survey techniques for 3D model reconstruction.
These improvements exploit the evolution of algorithms from computer vision, which once
was considered the bottleneck of such techniques. Now, they require less time and are
mostly automated.

Moreover, the performance of free-and-open-source software (FOSS) for image pro-
cessing is increasing, allowing users to conduct the entire photogrammetric process without
being obliged to purchase an expensive software license. These two crucial trends present
opportunities for both researchers and surveyors. Indeed, with consumer UAVs and FOSS,
one can potentially survey an object at a considerably lower cost compared with the past,
when UAVs were available to only a few, and for professional results, one had to purchase
expensive software licenses. The current tendency in the photogrammetric community is
to employ an increased number of images to ensure high overlap values. Today, several
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photogrammetric software solutions are available, both commercial and FOSS. Table 1
presents an overview of the available photogrammetric software packages. It was demon-
strated that Structure-from-Motion (SfM) algorithms perform well in many applications. At
this time, SfM 3D surveys became a viable cost-effective alternative surveying method to
aerial LiDAR [1]. In addition, 3D photogrammetry has improved in terms of point density
and geometric accuracy through increased overlap between images, improved radiometry,
and significant progress in multi-view matching; moreover, the graphics processing unit
(GPU) computation power has increased [2] continuously; regardless, the advantages and
disadvantages of photogrammetry and LiDAR compensate for each other. Horizontal
errors in photogrammetry are usually smaller than those in LiDAR, whereas LiDAR can
obtain higher vertical than horizontal accuracy [3].

Table 1. Overview of available photogrammetric software packages.

Name OS Pricing

3DFlow Zephyr [4] Windows 360 EUR/month
Autodesk Recap [5] Windows 55 EUR/month
Agisoft Metashape [6] Windows, macOS, Linux 4075 EUR
BAE Systems SOCET GXP [7] Windows On request
Bentley ContextCapture [8] Windows from 211 EUR/month
ColMap [9] Windows, macOS, Linux Free
Drone Deploy [10] Windows, macOS, Android, iOS 299 EUR/month
Planetek IMAGINE [11] Windows On request
Meshroom [12] Windows, Linux Free
MicMac [13] Windows, macOS, Linux Free
Multi-view environment [14] Windows, macOS Free
Photometrix IWitness Pro [15] Windows 986 EUR
PhotoModeler [16] Windows from 50 EUR/month
Pix4D Mapper [17] Windows, macOS, Android, iOS from 185 EUR/month
PMS AG Elcovision 10 [18] Windows On request
OpenDroneMap WebODM [19] Windows, macOS from 50 EUR
OpenMVG [20] Windows, macOS, Linux Free
RealityCapture [21] Windows 3220 EUR
SimActive Correlator 3D [22] Windows from 250 EUR/month
Regard3D [23] Windows, macOS, Linux Free
Trimble InPho [24] Windows On request
VisualSFM [25] Windows, macOS, Linux Free

In the past decade, several photogrammetric applications employing UAVs have
been documented. UAVs have been efficiently employed used in various fields, including
geomorphological analyses [26–28], hydraulics modelling [29], agriculture and forest analy-
ses [30–33], emergency management support [34–36], infrastructure monitoring [37–39], and
cultural heritage monitoring and 3D reconstruction [40–43]. The literature also provides
numerous examples of combined photogrammetric and LiDAR surveys [44–46].

This research aims to determine if MicMac® can be employed for 3D complex ob-
ject reconstruction in non-optimal survey conditions, obtaining results comparable with
a commercial software solution. MicMac® has been employed by various researchers
both for aerial and terrestrial photogrammetry. Griffiths and Burningham [47] compared
PhotoScan® and MicMac® concluding that the latter can generate significantly more ac-
curate Digital Surface Models (DSMs) because a more complex lens distortion model is
included. Altman et al. [48] tested MicMac® for terrestrial photogrammetry highlighting
that feature extraction results from MicMac® are comparable with those from Photoscan®.
It is possible to produce complete models in MicMac® as well, but it likely requires a more
refined image set. Jaud et al. [49] compared the DSM obtained by MicMac® and Photoscan®

concluding that both software can provide satisfying results; nonetheless Photoscan® is
more straightforward to use but its source code is not open, whereas MicMac® is recom-
mended for experimented users as it is more flexible. In the present work, we focused
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our attention on the capabilities of MicMac® to reconstruct a complex object with aerial
imagery obtained with consumer UAV. For comparison, the same dataset was processed by
either the FOSS and the commercial software package. The qualities of the generated tie
point (TP) clouds were analyzed by evaluating the results of the bundle block adjustment
(BBA) examining the image residuals and the 3D errors on ground control points (GCPs).
Subsequently, the 3D errors on check points (CPs), which are not included in the BBA, are
investigated. Additionally, the quality of the results was assessed based on the statistical
analysis of the Cloud-to-Cloud distances and the relative accuracy.

The remainder of this paper is organized as follows: Section 2 reports a brief introduc-
tion to photogrammetry highlighting the differences and similarities of approach by the
two software packages investigated. Section 3 presents the case study of the Ponte della
Cerra overpass, and Section 4 provides the comparison of the results of the reconstructed
models obtained with and a Agisoft Metashape®. Section 5 draws conclusions, including
a discussion of the results as well as future developments. Lastly, Appendixes A and B
define the workflow of the FOSS and the commercial software package, respectively.

2. Material and Methods

Nowadays, SfM photogrammetry has mainly replaced traditional photogrammetry.
The principles of Sfm photogrammetry can be found in [50]. Figure 1 depicts the main
stages of this process along with the identification of the roles in the investigated software
packages, namely Agisoft Metashape® Pro and MicMac®. Regarding the acquisition
scheme, it is known that image acquisition depends primarily on the type of object. For
approximately planar objects the parallel method is useful. In this acquisition scheme, none
of the images will cover the entire scene; instead, every image is a tile of the scene. The
present work is about the 3D reconstruction of a historical overpass; given the complexity
of the object, it was split into three separate parts, namely the north facade, the south facade,
and the extrados. When surveying each facade also images capturing the corresponding
side of the intrados were collected for a total number of collected images equal to 222.
The facades, as well as the extrados, were treated as planar objects taking horizontal and
vertical images, respectively. Then, to improve object reconstruction, to reduce shadow
areas, and to include some common elements for projects merging, 52 oblique images were
collected. Lastly, one of the most important parameters to consider when planning a survey
using the parallel method is the overlap between images. Two different overlaps must be
considered: the along-track overlap, and the cross-track overlap. In the present survey, the
mean along-overlap was equal to 80%, while the cross-track was equal to 55%.

Figure 1. Comparison between the commands in the two software packages investigated. The top
row indicates commands for the FOSS, the middle row refers to commercial software, and the bottom
row reports the relative photogrammetric processing stages.

2.1. MicMac® Photogrammetric Processing

The photogrammetric process (TP search, estimation of camera poses, densification) is
conducted using MicMac® [13,51,52]. MicMac® is a FOSS (Cecill-B license) photogrammet-
ric suite developed by IGN® (French National Geographic Institute) and ENSG® (French
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National School for Geographic Sciences). It can be used in a variety of 3D reconstruction
scenarios [13]. MicMac® allows the creation of both 3D models and ortho-imagery. The
software, which aims to be a cross-platform project, can run on all main operating systems
(Windows, Mac OS, and Linux), although, in our experience, has revealed more stable and
complete under Linux environment. MicMac® processing chain is completely under user
control and most of the parameters can be fine-tuned. MicMac® comprises several tools,
each of which is described in the dedicated wiki page [53]. For TP extraction MicMac®

uses the Pastis algorithm that is no more than an interface to the well-known SIFT++,
a lightweight distribution of the Scale-invariant feature transform (SIFT) [54]. Based on
advances in image feature recognition, characteristic image objects can be automatically
detected, described, and matched between images. After that, Apero® starts from tie points
generated by Pastis and computes external and internal orientations compatible with these
measurements [55]. The knowledge of the interior orientation of a camera used for image
acquisition is a fundamental requisite for precise photogrammetric object reconstruction.
Parameters such as principal distance, principal point coordinates regarding the image
coordinate system, and some correction terms for lens distortion, etc., are determined by
camera calibration [56]. Nowadays, photogrammetric camera calibration is usually carried
out along with the calculation of object coordinates within a self-calibrating bundle adjust-
ment. In MicMac® several distortion models are implemented, including Radial, Fraser,
and Fisheye. All theoretical and practical aspects concerning bundle block adjustment with
MicMac® are described in MicMac® official documentation [13,55]. The main processing
steps of MicMac® can be summarized as follows:

• Tie point computation: the Pastis tool uses the SIFT++ algorithm [57] for the tie point
pair generation. This algorithm creates an invariant descriptor that can be used to
identify the points of interest matching them even under a variety of perturbing
conditions (scale changes, rotation, changes in illumination, viewpoints, or image
noise). In this work, this was achieved with Tapioca, a tool interface of SIFT++,

• External orientation: in this step external orientations of the cameras are computed.
The relative orientations were computed with the Tapas tool following the free-
network approach; this approach involves a calculation of the exterior parameters in
an arbitrary coordinate system [58],

• Bundle Block Adjustment: this step includes also the internal parameters, and, for this
reason is know as “Self-Calibration”; this is conducted by introducing at least three
control points and integrate them within the computation matrix. MicMac® solves
the BBA with the Levenberg–Marquardt (L-M) method [59]. The L-M method is in
essence the Gauss–Newton method enriched with a damping factor to handle rank-
deficient Jacobian matrices [60]. This stage was achieved by exploiting GCPBascule
and Campari tools.

2.2. Agisoft Metashape Photogrammetric Processing

To compare the quality of the generated point cloud, the same dataset was also
processed in commercial software, namely Metashape® software package by Agisoft (ver.
1.7.2 build 12070, 2021) [6]. Metashape® is a stand-alone software product that performs the
photogrammetric processing of digital images and generates 3D spatial data to be used in
GIS applications, cultural heritage documentation, and visual effects production as well as
for indirect measurements of objects of various scales [6]. The standard photogrammetric
pipeline of Metashape is reported below:

• The first step of the photogrammetric processing starts with feature matching across
the images: Metashape detects points in the source images which are stable under
viewpoint and lighting conditions and generates a descriptor for each point based on
its local neighborhood; then, these descriptors are used later to detect correspondences
across the photos. This is similar to the well-known SIFT approach but uses different
algorithms for a slightly higher alignment quality [61],
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• The second stage comprehends the computation of camera intrinsic and extrinsic
orientation parameters: Metashape uses a proprietary algorithm to find approximate
camera locations and refines them later using a bundle-adjustment algorithm. This
should be similar to Bundler algorithm by Snavely et al. (see [62,63]).

The specific algorithms implemented in the software package are not detailed in the
manual for business reasons; nevertheless, a description of the Structure-from-Motion
(SfM) procedure in Metashape and commonly used parameters are described in [64,65].
It can be noted that during the alignment step, the accuracy was set to high and not to
highest; this was to provide the same conditions with respect to MicMac® processing
(TP search on full resolution images); in fact, according to Metashape manual [6], at high
accuracy setting the software works with the images at the original size, while highest
accuracy setting provides an upscaling of the images by a factor of 4. The software is
user-friendly, but the adjustment of parameters is limited to pre-defined values. It can
be noted that the user manual describes mainly the general workflow and gives only
very limited details regarding the theoretical basis of the underlying calculations and the
associated parameters as confirmed in [49,58]. On the contrary, at each step of MicMac®

processing, the user can choose any numerical value, whereas Metashape® only offers
preset values; for example, during the alignment step one can choose among ultra-low, low,
medium, high, and ultra-high, whereas MicMac® allows a multitude of choices. According
to [66], the alignment time depends mainly on the number of images while densification
step depends also on their resolution and overlap. Those characteristics of the dataset
determine the RAM capacity needed, which often is the hardware bottleneck when dealing
with photogrammetric commercial software packages. In contrast to commercial solutions,
MicMac® is generally less demanding in RAM given that it writes all temporary files on
the physical memory instead of storing them in the cache memory. In the present study,
both photogrammetric processes were computed on the same workstation, namely an Asus
computer with 16 Gb Ram, 1 Tb SSD storage, Intel Core i5-3330 CPU at 3.00GHz processor,
and Nvidia Quadro 600 GPU. Metashape® does not support the graphic processing unit of
the workstation employed in this work [66]; on the other hand, according to [53], MicMac®

provides support for GPU processing starting from dense matching. Hence, to assure the
same processing conditions, we do not use GPU support at all.

3. Case Study
3.1. Ponte della Cerra Overpass (Italy)

The object surveyed is an overpass in the Vomero neighborhood of Naples, Italy, as
shown in Figure 2; it was built in the seventeenth century and is functional to realize the
overpass of Suarez street over Conte della Cerra street. The overpass structure comprises
Neapolitan yellow tuff blocks; the geometric model can be assimilated to a barrel vault
whose generating curve is a lowered arch with a span light of 16.50 m with a belt deflection
of 3.20 m. The whole width, comprising the left and right abutments, is equal to 21.40 m.
The overpassing roadway comprises a single carriageway, with one lane in each direction
and a total width of 13.45 m, including parking areas, bus stops, and two sidewalks each of
which 3.27 m wide. The structure is subject to degradation phenomena and, for this reason,
was secured by applying a tessellated mesh to prevent the detachment of the damaged
parts. It also has some prestigious coats of arms on both facades. The survey presented
here is finalized to the geometric measurements and 3D modeling useful for the structural
studies conducted in [67].
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Figure 2. Test area: (a) location map; (b) localization in Southern Italy; (c) Conte della Cerra overpass.

3.2. Unmanned Aerial Vehicle Photogrammetric Flight

For the field test, as shown in Figure 3, a consumer UAV from DJI model Mavic 2
Pro was used to survey the test area. It weighs about 1 kg and is equipped with a 1′ ′

CMOS Hasselblad optic sensor. The characteristics of the sensor are reported in Table 2. For
exhaustive technical documentation, one can refer to [68]. The UAV is equipped with a dual-
frequency multi-constellation (GPS and GLONASS) receiver which in normal scenarios
delivers geotagged images with an accuracy of about 10 m; in this particular application,
since the location of the survey is a highly degraded urban canyon where the UAV was
surrounded by tall buildings, the geotagging procedure failed for several images; moreover,
part of the survey was conducted under the overpass removing all chance to fix the GNSS
position at all; therefore, after some failures in the alignment step, the coordinates stored
in the EXIF file attached to each image was erased. This procedure allows the success of
the photogrammetric process but drastically increases computing times, since the software,
ignoring the position of each picture taken must search homologous points for every pair
of images. In normal conditions, the availability of the position of the takes speeds up the
processing since the software searches for homologous points only in overlapped pairs of
images.

Figure 3. DJI Mavic 2 pro.
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Table 2. Camera features and image settings.

Camera Model Hasselblad L1D-20c

Focal length 10.3 mm
Image format jpeg
Image width 5472 pixel
Image height 3648 pixel
Exposure time 1/80 s
ISO sensitivity 400
Pixel size 2.41 µm × 2.41 µm

3.3. Dataset Description

The acquired dataset comprises both horizontal, nadiral, and oblique images. Ac-
cording to [69], to improve detail reconstruction and minimize holes in the 3D model, it is
convenient to collect also oblique images. Indeed, oblique images are useful to reduce the
shadow areas in which data can not be acquired, especially when dealing with complex ob-
jects, as in this case. In particular, the following types of images were acquired, depending
on the part of the overpass being reconstructed:

• For the south facade, 111 images (12 oblique and 99 horizontal) of which there are:

– 21 images at 10 m from the object;
– 90 images at 4 m from the object.

• For the north facade, 70 images (29 oblique and 41 horizontal) of which there are:

– 32 images at 10 m from the object;
– 38 images at 4 m from the object.

• For the extrados, 41 images at a flying altitude of 40 m of which there are:

– 29 nadiral;
– 12 oblique.

The photogrammetric survey was conducted according to Comité International de
Photogrammétrie (CIPA) 3 × 3 Rules (see [70]). These simple rules, written, tested, and
published at the CIPA Symposium in Sofia in 1988, should be observed for photography
with non-metric cameras. The rules are divided into geometric rules (control, wide-area
stereo photo cover, and detail stereo photo cover), camera rules (camera properties, camera
calibration, and image exposure), and procedural rules (record photo layout, log the
metadata, and archive). To reach a proper level of detail on the facades presenting some
details such as coats-of-arms, images were taken at two different distances, as suggested
in [70]; at 10 m of distance the wide-area stereo photo cover while at 4 m close-up images
for detail stereo photo cover.

A critical aspect when dealing with the 3D reconstruction of such complex objects
where images of facades were taken at very low height as if they were captured like a
terrestrial acquisition scheme is to ensure that the algorithm can identify the same key
points as tie points between images. To achieve this, the survey strategy focused on having
a noteworthy image overlap, both cross- and along-track. Therefore the mean along-overlap
was equal to 80% while the cross-track to 55%.

3.4. Ground Control Points

The scaling procedure of the 3D model was created based on a support survey con-
ducted with a professional TOPCON total station. This choice was influenced by two main
factors: the impracticability of employing a GNSS receiver due to the highly degraded
urban canyon, as well as the type of object we were attempting to model. Thus, an open
polygonal was created, consisting of five points on the ground, as shown in Figure 4;
then, making station on those points, a detailed survey was carried out to measure sev-
eral support points, from which 12 of them were selected to model scaling: 4 points on
the south facade, 4 points on the north facade, and 4 points on the extrados. The GCPs
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taken were chosen with a preference for well-identifiable features such as tuff edges and
net-holding anchors as shown in Figures 5–7. All the points surveyed were taken using a
local coordinate system. Attention was paid to be sure that points that were gathered were
also visible in the model. Given the historicity of the overpass, we were not allowed to
place dedicated targets during the survey; thus, the accuracy related to the natural points
chosen was set to 0.005 m, to take into account the uncertainty associated with the type of
feature.

Figure 4. Open polygonal created for the topographic support survey projected on cartography.

Figure 5. View of the south facade with markers locations. GCPs are represented in red while CP is
represented in green.
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Figure 6. View of the north facade with markers locations. GCPs are represented in red while CP is
represented in green.

Figure 7. View of the north side part of the extrados with markers locations. The left image refers to
the left part of the extrados while the right image to the right part. GCPs are represented in red while
CPs are represented in green.

4. Results
4.1. Internal and External Orientation Results

In Figure 8a, visual representation of the orientation results of BBA by Metashape®

and MicMac® is shown. Panel (a) reports the image poses represented with blue rectangles
oriented based on Metashape® external orientation; panel (b) depicts the camera poses,
represented with pyramid-shaped 3D objects, computed by MicMac®. The images reported
here have a different visualization given that the two software use different strategies to
display camera poses information.

To choose the best camera calibration model for the specific case study, various relative
orientation processes were carried out: Radial, Fraser, Four15x4, Brown, and Ebner. Some
of them did not converge at all while others exhibit high image residuals. For this specific
dataset, it was found that the best trade-off between convergence achievement and residual
minimization was the Fraser model [71]. It is a radial model for camera self-calibration,
with decentric and affine parameters. In particular, 12 degrees of freedom are taken into
account: 1 for focal length (F), 2 for principal point (PP1 and PP2), 2 for distortion center
(Cdist1 and Cdist2), 3 for coefficients of radial distortion (r3, r5, and r7), 2 for decentric
parameters (P1 and P2), and 2 for affine (in-plane distortion) parameters (b1 and b2). The
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parameters computed by the self-calibration algorithm implemented in MicMac® and then
imposed in Metashape® are reported in Table 3.

Figure 8. Results of the external orientation process showing the positions and attitudes of each
camera station, together with the TP clouds generated from the respective feature matching process:
(a) Metashape®; (b) Apero®.

Table 3. Fraser camera model self-calibration parameters.

Parameter Symbol Value (pix)

Focal length F 4276.067

Principal Point coordinates PP1 2702.974
PP2 1836.010

Distortion center coordinates Cdist1 2686.749
Cdist2 1809.302

Radial distortion coefficients
r3 −8.259 × 10−10

r5 7.756 × 10−17

r7 4.838 × 10−24

Decentric parameters P1 2.469 × 10−7

P2 2.251 × 10−7

Affine parameters b1 1.017 × 10−4

b2 1.802 × 10−4

Parameters computed with the self-calibration method were then imposed in
Metashape® camera calibration to set the same conditions for results comparison. The
Apero® tool of MicMac® generates external and internal orientations of the camera. The
relative orientations were computed with the Tapas tool in two steps: first on a small set
of images and then by using the calibration obtained as an initial value for the global
orientation of all images. Then, the Campari command is used to compensate for het-
erogeneous measurements [13]. In Metashape®, camera alignment by bundle adjustment
is achieved by detecting common tie points and match them on images to compute the
external camera orientation parameters for each picture. Then, it proceeds to solve for
camera internal and external orientation parameters using an algorithm to find approxi-
mate camera locations refining them later using the BBA. Figure 9 depicts the probability
density estimation of image residuals expressed in pixels. It was obtained by calculating
the normalized histogram of image residuals. The height of each bar is the number of
samples of images residual falling in that bin divided by the width of the bin and the
total number of elements in the sample. In this way, the area of each bar is the relative
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number of observations. This type of normalization is commonly used to estimate the PDF.
Both histograms were calculated considering a bin width of 0.03 pixels. By observing the
figure it can be noticed that MicMac® image residual distribution is long-tailed, whereas
Metashape® is short-tailed. Indeed, the image residuals standard deviation obtained with
MicMac® is higher. In particular, the image residual standard deviation for MicMac® is
equal to 0.277 pixels, whereas for Metashape®, it is equal to 0.173 pixels. Regarding the
mean image residuals, the two software show similar values: MicMac® reaches the value
of 0.770 pixels and Metashape® attests to 0.735 pixels.

Figure 9. Image residuals probability density function estimates. On x-axis are reported images
residuals expressed in pixels while on y-axis is the probability density estimation. Blu and red bins
represent MicMac® and Metashape® respectively.

4.2. TP Clouds Results

The point cloud obtained with the commercial software was used as a reference for
the quality assessment of the TP cloud generated by MicMac®. The analysis presented was
conducted with the FOSS CloudCompare ver. 2.11.3 (Anoia 64-bits) and Matlab R2021b
Statistic toolbox. Various properties of the clouds were compared: number of points, point
densities, GCP errors, and CP errors. Table 4 depicts the main properties of the resulting
TP clouds.

Table 4. Summary of the main properties of the TP clouds.

Number of Points
(Points)

Mean
Surface Density

(Points/m2)

Std
Surface Density

(Points/m2)

extrados 648,197 7503 8276
MicMac® north facade 660,720 8863 7537

south facade 2,265,025 32,192 25,250

extrados 243,213 1410 1004
Metashape® north facade 263,958 1947 984

south facade 430,178 2428 1489

Table 4 demonstrates that the MicMac® TP cloud has significantly more points than
the Metashape® cloud; this is addressed to the way the points are managed in the two
software packages. Indeed, Metashape® merges TPs to obtain a single point via the gradual
selection algorithm, whereas MicMac® does not realize this merging; in fact, if one zooms

163



Drones 2022, 6, 242

in a MicMac® TP and/or dense cloud, a cluster of points will be found. A post-processing
decimation can be conducted in MicMac® via the tool Schnaps to clean and reduce tie
points. This reflects in the other metrics reported here (computed taking into account a
sphere with a radius of 0.1 m): the surface density of the TP cloud generated by MicMac®

has a mean of 7503 points/m2, 8863 points/m2, and 32,192 points/m2 for the extrados, the
north, and the south facades, respectively. The corresponding values for the Metashape®

TP cloud are 1410 points/m2, 1947 points/m2, and 2428 points/m2. Concerning the
standard deviations of the surface’s densities, the MicMac® TP cloud shows values equal
to 8276 points/m2, 7537 points/m2, and 25,250 points/m2, for extrados, north, and south
facades, respectively. Those values for the Metashape® TP cloud are 1004 points/m2,
984 points/m2, and 1489 points/m2, respectively. Lastly, another key aspect to take into
account is the computation time. According to the Metashape® manual [66], it does not
support the graphic processing unit of the workstation employed in this work; on the
other hand, according to [53], MicMac® provides support for GPU processing starting from
dense matching. Hence, to assure the same conditions, we do not use GPU support at all.
MicMac® took 23.48 h to complete the photogrammetric pipeline, while Metashape® took
45% less time, namely 12.34 h.

In Figure 10 are shown the TP clouds obtained with both software. As confirmed by
graphical visualization, the MicMac® cloud is denser, especially on the facades. Moreover,
Metashape® reveals a more homogeneous reconstruction of the whole model, whereas
MicMac® reveals some holes in intrados reconstruction.

Figure 10. The 3D view of the RGB TP clouds obtained with MicMac® and Metashape®.
Panel (a) refers to MicMac® TP cloud. Panel (b) refers to Metashape® TP cloud.
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Tables 5 and 6 depict the 3D errors in GCPs and CPs for both software packages.
Regarding MicMac® GCPs errors, except for marker P60, all 3D errors are less than 0.018 m;
on the other hand, regarding Metashape®, markers P07, P09, P18, and P60 exhibit a 3D
error of about 0.025 m. Three of these belong to the south facade suggesting that this
was the most difficult part to reconstruct. This is confirmed by analyzing the MicMac®

errors on the same markers: except for these and for marker P68, they are the only errors
greater than 0.010 m. Table 6 shows that, except for marker P50, 3D errors on CPs are
comparable between software packages. Table 7 contains the corresponding error statistics.
The errors are of the same order of magnitude. Regarding the GCPs, MicMac® shows
smaller error statistics; in fact, the mean 3D error and the standard deviation are 0.010 m
and 0.007 m, respectively; the same metrics for Metashape® are 0.015 m and 0.008 m.
Conversely, regarding the CPs, the mean 3D error for MicMac® is 0.037 m with a standard
deviation of 0.017 m while the mean 3D error on CPs obtained with Metashape® is 0.031 m
with a standard deviation equal to 0.015 m.

Table 5. Summary of MicMac® and Metashape® residuals on GCPs.

Marker Label MicMac® 3D Err. (m) Metashape® 3D Err. (m)

P07 0.017 0.026
P09 0.014 0.023
P18 0.018 0.026
P33 0.005 0.013
P35 0.004 0.004
P54 0.005 0.006
P55 0.005 0.009
P60 0.023 0.025
P63 0.006 0.009
P66 0.007 0.012
P67 0.003 0.013
P68 0.013 0.009

Table 6. Summary of MicMac® and Metashape® residuals on CPs.

Marker Label MicMac® 3D Err. (m) Metashape® 3D Err. (m)

P20 0.020 0.023
P50 0.048 0.017
P64 0.024 0.034
P69 0.055 0.052

Table 7. Statistics on ground control points and check points errors.

GCP 3D Error CP 3D Error
Mean (m) Std (m) Mean (m) Std (m)

MicMac® 0.010 0.007 0.037 0.017
Metashape® 0.015 0.008 0.031 0.015

4.3. Relative Accuracy

To assess the relative accuracy of both reconstructed models, four measurements were
computed between various GCPs and CPs. The true distances were calculated on the basis
of the total station support survey; afterward, the same measurements were realized on
the 3D models exploiting CloudCompare software. In Figure 11 is reported an example for
the measurement P7-P9 while Table 8 summarizes all the measurements carried out. The
errors obtained are comparable; however, it can be noted that Metashape® shows always
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positive values, whereas for MicMac®, three out of four values are negative. Moreover, the
errors for Metashape® ranges from 0.007 m to 0.018 m while for MicMac® from 0.004 m to
0.018 m.

Figure 11. Relative model accuracy measurement between markers P7 and P9 displayed with model
screenshots: (a) MicMac®; (b) Metashape®.

Table 8. Relative accuracy measurements summary.

Control Line MicMac® Metashape®

True Dist. (m) Meas. (m) 3D Err. (m) Meas. (m) 3D Err. (m)

P7–P9 2.389 2.394 0.005 2.396 0.007
P11–P18 15.396 15.390 −0.006 15.405 0.009
P9–P35 5.442 5.438 −0.004 5.460 0.018

P56–P68 6.959 6.941 −0.018 6.968 0.009

4.4. Cloud-to-Cloud Distance

In this section, the Cloud-to-Cloud distance, computed exploiting the M3C2 plugin
of CloudCompare software package [72], is shown. The principle of nearest neighbour
distance is used to compute distances between two points: for each point in the compared
cloud, the nearest point in the reference cloud is searched and their Euclidean distance
is computed [73]. Figure 12 shows the results of Cloud-to-Cloud distance computation.
In the present case, the radius of the sphere where the algorithms search for the nearest
neighbors was set to 0.100 m, the reference cloud chosen is the Metashape® one, and the
graphic results are visualized in color scale. The figure provides a visual representation of
the Cloud-to-Cloud distance; by analyzing the figure, it emerges that the Cloud-to-Cloud
distances are homogeneous mainly on the facades while some misalignment between TP
clouds is present under the intrados; nonetheless, this misalignment is under 0.002 m.
Figure 13 shows the Cloud-to-Cloud distance probability density function (PDF) estimate
between MicMac® and Metashape® TP clouds; the mean distance value between the two
clouds is equal to 0 mm while the standard deviation is equal to 0.254 mm. Observing the
figure, it can be noted that more than 95% of distance values are included in the interval
[−1, 1] mm. These results confirm the high-level performance reachable by MicMac®, given
that the two TP clouds are averagely superimposable.
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Figure 12. Cloud-to-Cloud distance of MicMac® and Metashape® TP clouds computed with M3C2
plugin in CloudCompare.

Figure 13. MicMac® and Metashape® Cloud-to-Cloud distance probability density estimate. On the
x-axis are reported Cloud-to-Cloud distances expressed in pixels while on the y-axis the probability
density estimation.

4.5. Other Products

Both software can produce several other products derived from the TP cloud. First, the
densification algorithms can generate the dense cloud. After that, textured and tiled models
can be obtained. In addition, raster products are obtainable, such as Digital Elevation
Model (DEM) and Orthophotos. In this section, for example, the dense clouds generated
by both software are shown and their main features are compared. In Figures 14 and 15
are reported the 3D views of the dense clouds obtained with MicMac® and Metashape®,
respectively.

Table 9 shows the number of points and the surface densities after densification.
According to the Metashape® manual [66] and the MicMac wiki [53], to ensure proper
comparability, the same parameters were employed: in Metashape®, the accuracy was
set to high, whereas in MicMac®, when launching the Malt tool, the parameter ZoomF
was set to 2. As can be seen in Table 9, for the extrados, the dense cloud obtained with
MicMac® has about 20% more points than the Metashape® dense cloud. Regarding the
north facade the FOSS-derived dense cloud has two times the points than the commercial
one. Lastly, the MicMac® dense cloud of the south facade has about 35% more points than
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the corresponding from Metashape®. However, a comparison between dense clouds from
different software packages is something hard to achieve for the different algorithms and
strategies employed; hence, for this product, we limit to show the resulting values. To
deepen this specific aspect a dedicated study should be conducted.

Figure 14. 3D view of the RGB dense cloud obtained with MicMac®.

Figure 15. 3D view of the RGB dense cloud obtained with Metashape®.

Table 9. Summary of the main properties of the dense clouds.

Number of Points
(Points)

Mean
Surface Density

(Points/m2)

Std
Surface Density

(Points/m2)

MicMac®
extrados 12,445,984 170,382 30,687

north facade 19,490,308 268,875 175,817
south facade 51,604,250 1,000,355 480,666

Metashape®
extrados 10,543,654 133,463 101,654

north facade 9,341,169 118,795 65,411
south facade 38,479,447 534,579 224,562

5. Conclusions and Future Works

Unmanned aerial vehicles are playing a major role in the acquisition of geospatial
information. With the significantly lower costs associated with UAV surveys and the high
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quality of the derived products, this is a technique that proves to be useful for several
applications and most certainly a valid alternative to traditional techniques. Due to the
payload limitation of prosumer UAVs, the reliability of results may not be as high as
other techniques, e.g., classical aerial photogrammetry and LiDAR. For this reason, an
accuracy assessment of different software packages can reveal truly interesting. The present
work represents a case study of the reconstruction of a historical overpass in Italy carried
out with MicMac® open source software and then compared to Metashape® commercial
photogrammetry solution. Particular attention was paid to the image acquisition procedure
since, as well-known in literature, it has a relevant impact on the precision of the results.

The quality of the photogrammetric results were assessed by analyzing image resid-
uals, the statistics of GCPs and CPs errors, the relative accuracy assessment, and the
Cloud-to-Cloud distance. Regarding the mean image residuals, the two software show
similar values: MicMac® reaches the value of 0.770 pixels and Metashape® attests to
0.735 pixels. The standard deviations are 0.277 pixels and 0.173 pixels for MicMac® and
Metashape®, respectively. Analyzing the 3D errors on CPs, MicMac® revealed slightly
worse statistics; in fact, the mean 3D error is equal to 0.037 m with a standard deviation
of 0.017 m while the mean 3D error on CPs obtained with Metashape® is 0.031 m with a
standard deviation equal to 0.015 m. For what it concerns the relative accuracy assessment,
four linear distances were measured on the 3D models revealing mean errors of 0.008 m and
0.011 m for MicMac® and Metashape®, respectively. Lastly, the Cloud-to-Cloud distance
analysis was carried out between the TP clouds: it can be noted that more than 95% of
distance values are included in the interval [−1, 1] mm. The probability density estimate
has a zero mean. Besides this numerical analysis that demonstrates similar results, a visual
investigation reveals that the Metashape® TP cloud presents fewer holes than MicMac®

TP cloud, especially under the overpass. A relevant advantage of MicMac® resides in the
accessibility to intermediate results and in the capability of finely tuning practically all
parameters. The trade-off of this extreme manageability lies in the difficulty of usage. Con-
versely, the nontrivial license cost of the commercial software is justified by its ease of use
and its user-friendly interface, which allows anyone with minimal experience to perform
the photogrammetric 3D model reconstruction but has few intermediate output capabilities
and limited parameters control. It should be highlighted that a comparison between soft-
ware is something hard to achieve given the secrecy of the commercial software, the long
computation times, and the theoretical difference underlying the approaches. Moreover,
the object reconstructed is particularly complex being a historical overpass with several
details. Lastly, the overpass is placed in an urban canyon where the GNSS support can not
be exploited and the scenario changes continuously due to vehicular traffic. The analyses
conducted show that the two software packages have comparable products qualities even
if the software approaches are different: an open-source project fully customizable versus a
commercial black-box software; hence the experiment confirms the potentiality of FOSS
for photogrammetric applications. We can state that MicMac® can produce professional
results comparable with products generated by a market-leading commercial solution.
The future work will consider other types of objects to reconstruct via photogrammetry.
This will define more completely the behaviour of the FOSS investigated when dealing
with different geometries. Moreover, in-depth analyses of other products, e.g., DEM and
Orthomosaic, will be carried out. Another interesting future goal will be to further improve
the cost-effectiveness of the equipment; this can be achieved by employing a compact
ultra low-cost UAV. Indeed, in the literature, there are few relevant studies concerning the
utilization of a cost-effective platform for surveying and 3D reconstruction, so far. This
can represent a promising avenue of research to define a correct procedure for 3D model
generation and quality assessment employing ultra-low-cost equipment.
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Abbreviations
The following abbreviations are used in this manuscript:

CIPA Comité International de Photogrammétrie Architecturale
CMOS Complimentary Metal-Oxide-Semiconductor
CP Check Point
DEM Digital Elevation Model
ENSG French National School for Geographic Sciences
EXIF Exchangeable Image File
FOSS Free and Open-Source Software
GCP Ground Control Point
GIS Geographical Information System
GLONASS Global’naja Navigacionnaja Sputnikovaja Sistema
GPS Global Positioning System
GPU Graphics Processing Unit
GNSS Global Navigation Satellite System
IGN French National Geographic Institute
LiDAR Laser Detection and Ranging
SIFT Scale-Invariant Feature Transform
TP Tie Point
UAV Unmanned Aerial Vehicle

Appendix A. MicMac® Processing Pipeline

Once the image dataset is ready for processing (one must manually remove inappro-
priate images), the first command to run is Tapioca where the software computes the TPs:

mm3d Tapioca MulScale "DJI.*.JPG” 500 -1

The argument MulScale means that MicMac® computes TPs for images in low resolu-
tion (500) and then for the highest resolution (-1). This implementation should speed up
the process. The next command is Tapas for internal and external orientation parameter
computation:

mm3d Tapas Fraser "DJI.*.JPG" Out=All-Rel

When dealing with large datasets a convenient procedure is to run the Tapas command
over a sub-dataset or another dataset with the same camera setting; in this manner, when
running the command for the whole dataset, the process will be less time-consuming. Tapas
creates a named directory that contains the camera calibration file, with camera parameters
(focal length, PPP, distortion parameters), and the orientation file for each image, with
camera orientation, TPs used for orientation, and rotation parameters. Further important
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information is stored in the file named “Residuals.xml” (image residual, number of TPs
used per image, etc.). Then, the command Apericloud is needed to generate a visualization
of the 3D TP cloud previously generated by Tapas along with cameras position:

mm3d Apericloud "DJI.*.JPG" All-Rel

At this point, the measurement process must be conducted and it can be conducted
with the graphic tool SaisieAppuisInitQT as follows:

mm3d SaisieAppuisInitQT "DJI_[8‖9].JPG" All-Rel 0001 GCP.xml

where “All-Rel” is the previously generated oriented model folder, “0001” is the name of the
marker and “GCP.xml” is a properly-formatted XML file containing the information about
the markers (name, coordinate X, coordinate Y, coordinate Z, uncertainties). A minimum
number of three support points must be defined, each of which on at least two images. The
computation of the absolute orientation follows:

mm3d GCPBascule ".*JPG" Ori-All Ori-All-Basc GCP.xml GCP-S2D.xml

where “Ori-All-Basc” is the output name of the GCPs orientation folder. The previously
defined GCPs must be validated on the other image that composes the dataset; this is
conducted with the command SaisieAppuisPredictQT, as follows:

mm3d SaisieAppuisPredicQT "DJI*.*JPG" Ori-All-Basc GCP.xml GCP-Final.xml

The computation of the absolute orientation is updated on the basis of the GCPs
validated on the whole dataset with the following command:

mm3d GCPBascule ".*JPG" Ori-All Ori-All-Basc2 GCP.xml GCP-Final-S2D.xml

The last step of the measurement process is computing the final adjustment with
Campari:

mm3d Campari ".*JPG" Ori-All-Basc2 Ori-Terrain GCP=[GCP.xml,0.02,GCP-Final-
S2D.xml,0.5]

where 0.02 is the support point accuracy, and 0.5 is the pixel accuracy of the linking points.
Once the measurement process is accomplished, the AperiCloud tool is launched to create
the 3D TP cloud on which the user can define the 3D mask to limit the densification area,
as follows:

mm3d AperiCloud ".*JPG" Ori-Terrain

mm3d SaisieMasqQT AperiCloud_Ori-Terrain.ply

Once the mask is created, the 3D reconstruction (densification) can be conducted via
the following:

mm3d C3DC MicMac "DJI_*.*JPG" Ori-Terrain Masq3D=AperiCloud_Ori-Terrain.ply
Out=C3DC_MicMac_ponte.ply

Once the photogrammetric process is finished, products other than TP and dense
clouds can be built, primarily the following:
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• Tawny, which creates the orthorectified depth maps image;
• GrShade, which creates a faded relief image; and,
• to8Bits, which creates a hypsometric color image.

In Figure A1 is depicted the pipeline of MicMac® processing limited to the TP cloud
generation and scaling. Since the generation of further products are not of interest of the
present work, the flowchart does not take into account the subsequent steps, e.g., dense
cloud and orthomosaic generation.

Figure A1. Flowchart of MicMac® processing pipeline. Please note that the pipeline is limited to the
TP cloud generation and scaling.

Appendix B. Agisoft Metashape® Processing Pipeline

The described standard workflow can be summarized as follows:

• Add photos to the project;
• Align photos to create the TP cloud (accuracy = high, key point limit = none, TP

limit = none);
• Build dense cloud to densify the TP cloud;
• Build mesh to create a triangular mesh on the point cloud and to obtain a surface

model;
• Build texture to create a texture and wrap it on the model; and,
• Insert markers and define which are GCPs and which CPs.
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Abstract: A unique drone-based system for underwater mapping (bathymetry) was developed at the
University of Florida. The system, called the “Bathy-drone”, comprises a drone that drags, via a tether,
a small vessel on the water surface in a raster pattern. The vessel is equipped with a recreational
commercial off-the-shelf (COTS) sonar unit that has down-scan, side-scan, and chirp capabilities and
logs GPS-referenced sonar data onboard or transmitted in real time with a telemetry link. Data can
then be retrieved post mission and plotted in various ways. The system provides both isobaths and
contours of bottom hardness. Extensive testing of the system was conducted on a 5 acre pond located
at the University of Florida Plant Science and Education Unit in Citra, FL. Prior to performing scans
of the pond, ground-truth data were acquired with an RTK GNSS unit on a pole to precisely measure
the location of the bottom at over 300 locations. An assessment of the accuracy and resolution of
the system was performed by comparison to the ground-truth data. The pond ground truth had an
average depth of 2.30 m while the Bathy-drone measured an average 21.6 cm deeper than the ground
truth, repeatable to within 2.6 cm. The results justify integration of RTK and IMU corrections. During
testing, it was found that there are numerous advantages of the Bathy-drone system compared to
conventional methods including ease of implementation and the ability to initiate surveys from
the land by flying the system to the water or placing the platform in the water. The system is also
inexpensive, lightweight, and low-volume, thus making transport convenient. The Bathy-drone can
collect data at speeds of 0–24 km/h (0–15 mph) and, thus, can be used in waters with swift currents.
Additionally, there are no propellers or control surfaces underwater; hence, the vessel does not tend
to snag on floating vegetation and can be dragged over sandbars. An area of more than 10 acres was
surveyed using the Bathy-drone in one battery charge and in less than 25 min.

Keywords: bathymetry; uncrewed aircraft; sonar; tethered; retention pond; hydrology; survey;
recreational sonar; drone

1. Introduction

This paper introduces a unique drone-based method to perform bathymetry on rela-
tively small waterways with high spatial and temporal resolution. There is a wide variety
of methods employed to perform bathymetry for an innumerable variety of scales and
applications. Satellites can provide large-scale surveys of large bodies of water [1–3], such
as lakes, bays, gulfs, and oceans, while drones and small uncrewed watercraft are increas-
ingly used for smaller waterbodies such as rivers, inlets, retention ponds, boat basins,
shipping channels, and nearshore applications [4–6]. The benefit of increased field operator
safety, reduced fatigue and environmental exposure, and more accurate raster patterns
are primary motivations behind uncrewed systems. The literature on drone-based and
uncrewed watercraft-based bathymetry shows that a variety of sensors have been utilized,
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each having their advantages and limitations. They can be grouped into airborne methods,
such as photogrammetry, lidar, radar, and fluid lensing, and immersed methods such as
sonar and underwater photogrammetry. Uncrewed surface vehicles (USVs) and uncrewed
underwater vehicles (UUVs) allow for sensors, such as acoustic sensors, since these vehicles
are in contact with the water, while aerial drones can only utilize sensors that operate with
a standoff from the water surface. Typically, USVs and UUVs are slower-moving with a
smaller sensor swath than aerial drones and, thus, limit the area covered during operation.
In the following paragraphs, we review typical sensors, platforms, and applications associ-
ated with small UAS and uncrewed watercraft, providing the motivation and background
for the development of the Bathy-drone.

Remote sensing instruments used for uncrewed bathymetry are grouped into optical or
acoustic sensing which can each be accomplished with passive or active methods. Optical
sensors can actively measure reflected energy, such as with immersed range-gated camera
systems [7] or water-penetrating green lidar, which can reach depths of 40–50 m in clear
waters [8,9]. Passively sensing reflected or scattered light is accomplished with hyper- or
multispectral imaging [2,10,11] or strictly in the visible light spectrum [12], and the imagery
may be georeferenced with structure from motion (SfM) [13–18] and photogrammetry [19].

Acoustic sensors typically rely on active sensing by emitting acoustic waves and mea-
suring the reflected, scattered, and absorbed energy. Acoustic methods used in uncrewed
bathymetry include sonar technologies such as multibeam and single-beam echo sounders
(MBES or SBES respectively), side-scan sonars (SSS), and phase-measuring side-scan sonar
(PMSS) [20]. Water-penetrating radar (WPR) [21–24] and Doppler velocity logger (DVL)
or acoustic Doppler current profilers (ADCP) [25] are also active acoustic sensors that
have been used in uncrewed bathymetry. In the oil and gas industry, seismographic or
sub-bottom profiler (SBP) [26] sensing, either active or passive, is also a popular method of
mapping.

Ancillary sensors are crucial to both optical and acoustic techniques and typically
correct for positioning, heading, attitude, tide, and sound velocity. Respectively, these
corrections can be accomplished with Global Navigation Satellite Systems (GNSS) an-
tenna, gyrocompass, Inertial Measurement Unit (IMU) or Inertial Navigation System (INS),
marigraph, and sound velocity profiler.

The desired data characteristics depend on the application, and uncrewed solutions
are still developing. For example, deep-sea exploration can involve crewed expeditions
focused on extensive coverage to capture geological features within a resolution of 50 m.
Navigable coastal and inland waterways, which typically are shallow waters, have been
surveyed by multiple uncrewed bathymetric platforms to meet the required rigorous navi-
gational mapping safety standards set by agencies such as the International Hydrographic
Organization (IHO) or the US Army Corps of Engineers, which can require a resolution
to detect features of 0.5 m and accuracy of below 1 m uncertainty depending on under-
keel clearance [27,28]. Categorizing habitats and infrastructure is another application of
uncrewed bathymetric platforms and demands understanding the bottom composition
of the observed area. Under any of a vast variety of scenarios, the specific application
requirements guide the selection of appropriate platforms and sensors.

Bathymetry systems can be categorized as sensing-immersed such as USV and UUV or
above-the-water such as satellites and UAS. Satellite altimetry provides entire models of the
Earth based on radar readings of water height and slope, induced by local gravity of subsea
geological features, and it is independent of water clarity with spatial resolution varying
between 1 and 12 km [2,3]. Satellites such as the Hyperion hyperspectral sensor onboard
NASA’s EO-1 platform have collected bathymetry above coastal waters in large swaths of ~7
km to a spatial resolution of 30 m and 1–20 m of water depth depending on clarity [2]. The
large swath coverage of satellites is excellent for capturing expansive geological features,
but the resolution is not useful for safe maritime navigation. Satellites have also used
camera sensors for depth estimation methods through wave celerity inversion, leading to
sub-meter resolution, in less than 35 m clear water [29]. Fluid lensing photogrammetry
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from UAS also uses camera sensors and can result in up to centimeter-scale resolution, as
the technique filters for advantageous images with magnifying wave conditions [30]. The
trend seen in photogrammetry is also observed with UAS radar altimetry [18] compared
to satellite altimetry: a shorter sensor to area of interest distance typically leads to refined
accuracy, precision, and resolution while sacrificing swath coverage. Lidar bathymetry
must strike a balance, and, when paired with UAS such as Reigl’s bathycopter [31], an
observation height of 500–600 m can lead to accuracy of 3–5 cm at depths of 0–4 m in
small to medium rivers of width 5–25 m. This tradeoff provides each optical sensor and
platform pairing with unique utility, but they are all challenged by obstructions such as
grassy bottom composition or flotsam, suspended particles impacting water clarity, water
refraction (when not immersed) [32], and overhanging structures such as foliage or cliffs.

Acoustic sensors have been paired with USV, UUV, and UAS to great success in
research and from commercial suppliers. USV with SBES, MBES, SSS, PMBS, and ADCP
have all led to successful bathymetric surveys. Most acoustic sensors are deployed on UUV
or USV and do not need to account for water surface reflection or refraction. Depending on
the sensor and frequencies used, acoustic sensors on USV can typically record depths of
0.2 m to thousands of meters regardless of turbidity. Centimeter resolution can be achieved
with sonar on USV but varies due to factors such as sensor frequency and depth. There are a
variety of USV hull shapes [5] to accommodate different sensors and marine environments,
such as small-waterplane-area twin hull (SWATH) [33,34], catamaran [35–37], and V hull.
Commercial and research USV such as the Seafloor Systems Hydrone [38], Jetyak [39], and
Searobotics Hycat [40] have successfully conducted bathymetric surveys for navigational
purposes and characterization of the bottom environment in coastal and inland bodies of
water. Observations from USV platforms are slower than airborne platforms due to the
closer proximity, reducing the swath coverage area of the sensor, and the increased drag
on the platform in water compared to air. USV and ROV deployment is also challenging
as it typically requires a crewed vessel to arrive at the study site or a boat ramp for field
operators to lift the vehicle into the water. USV and ROV are also typically electrically
self-propelled and can struggle to steer in an autonomous mission safely and accurately
against strong currents and winds [41].

Hybridization of platforms and sensor packages has led to new combinations of sensor
fusion and enabled novel deployment opportunities and results. For example, combining
aquatic and aerial sensors such as camera photogrammetry and sonar can improve the
results of the independent sensors, especially in transitionary areas where one sensor has
advantages over the other [42,43]. A unique and emerging platform hybrid is that of the
tethered acoustic sensor to a UAS. Historically, this configuration can be seen on crewed
helicopters with dipping sonar for submarine detection [44], and several towable sonar
packages exist for crewed marine vessels such as for analyzing coral reefs [45]. Most UAS
with tethered sonar uses small lightweight SBES with limited ancillary sensors [17,43,46–
48]. Bobber-shaped casting sonar from Lowrance is typically used, which lacks ancillary
sensors such as IMU but is excellent for extending the UAS range to take sparse point
measurements by minimizing payload weight. The Bathy-drone proposed in this paper
(Figure 1) is a novel approach to uncrewed bathymetry, configured as a tethered, hull-
enclosed sonar with IMU and Real Time Kinematics Global Navigation Satellite System
(RTK-GNSS) that can autonomously gather bathymetric data.

As evidenced by the literature, there is a trend of developing efficient uncrewed
systems that are practical, inexpensive, and easy to deploy, while providing high spatial
and temporal resolution for bathymetry on small bodies of water, such as ponds, rivers, boat
basins, shipping lanes, and pre-construction and nearshore applications. The University of
Florida has developed a system that incorporates a drone that drags a vessel/platform via a
tether that can be equipped with a variety of sensors such as sonar or underwater cameras.
It has advantages over USVs since the system can be flown to the survey location; thus,
many surveys can be initiated from a land-based ground station, and no boats or boat ramps
are needed if the location is within the FAA-required visual line of sight. Since the vessel has
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no propulsion system (propellers), floating vegetation does not hamper operation. In the
remainder of this manuscript, we describe the system design, the experimental procedure
to assess the design, the results from our assessment, and a description of future work.
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Figure 1. Bathymetry system during autonomous flight for ground-truthing at University of Florida
Plant Science Research Citra, Florida. Photo credit: author’s UF UASRP lab.

2. System Design

The design of the vessel for the Bathy-drone system is an important consideration
for the system to perform over a wide range of speeds without capsizing in turns while
maintaining a level attitude and housing the sonar components. The vessel must track in a
straight line behind/below the drone to ensure that the passive vessel path is similar to the
commanded drone path. Unlike most powered vessels, the driving force produced by the
drone through the tether does not act in a direction parallel to the water surface. Instead,
it acts upward at an angle that is determined by the length of the tether and the height
of the drone above the water. Thus, the upward component of the force vector must be
considered in the vessel design.

During the process of designing the hull, three basic shapes were tested, a soft-edge
V-hull shape, a trimaran shape, and a skiff-like planing (which planes or skims on the
water surface versus a hull that parts the water) hull. Each of these was satisfactory for
straight-line portions of the mission patterns, but the lateral resistance, especially in the
bow of the V-hull and trimaran, led to capsizing issues in the turns. This was documented
by repeated experiments that were conducted over a wide velocity and corner radius range.
The soft-edge skiff-like planing hull shape proved robust in both straight/level tracking
and corner turns once a trim plate and fins were added.

The location of the tether attachment point on the vessel proved to be important to
balance the forces on the hull through the entire speed range. The first attempt placed the
tether attachment point on the nose of the vessel, but this led to longitudinal pitch-up as a
function of speed. After analysis of the free body diagram (Figure 2) at a constant velocity,
it was determined that, when attaching the tether so that the force passes through the center
of gravity (CG), trim and level conditions were achieved through the entire speed range.
Figure 2 shows the forces acting on the hull at a constant velocity. The tether provides
a constant pulling force that is dependent on the drag force, which is horizontal, while
the pulling force is angled upward. Both are dependent on the speed of the vessel/drone.
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Other forces on the hull include an upward buoyancy force and a hydrodynamic force on
the forward portion of the rocker line. The latter is speed-dependent and tends to produce
a longitudinal pitching moment about the CG that results in the bow pitching upward
as the speed increases. To compensate for this pitching moment, a trim plate was added
behind the CG, angled downward, to produce a speed-dependent pitching moment in the
opposite direction of the speed-dependent bow pitching moment. The trim plate is like a
horizontal stabilizer on an aircraft. By placing the tether attachment location so that the
force acts through the CG, and with the angle of the trim-tab empirically optimized, the
vessel tracked the level through the speed range of 0 through 24 km/h. By incorporating
two fins on the trim-tab, tracking of the vessel improved, in addition to allowing turns
without capsizing. The fins act as a pivot point where horizontal forces through the tether
swing the hull’s bow around, as shown in Figure 3. The soft edges of the planing hull bow
rocker provide little lateral resistance; thus, the bow swings around smoothly in the turns.
This was not the case for the V-hull and trimaran shapes.
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Figure 3. In a turn, the tether force acts laterally with respect to the hull. The center of gravity is
labeled CG. Figure credit: author’s UF UASRP lab.

Additional considerations in the design included providing adequate volume in the
hull to house the sonar console and ports to provide easy access to the microSD cards,
batteries, and console keypad. The CG was also factored into the design so that, at 0 km/h,
the hull floated level. This was achieved by balancing the buoyancy force with the center
of gravity of the vessel. Small adjustments were made to achieve this by slight shifts to the
CG and small weight plates mounted on the top of the trim plate. The aluminum trim-plate
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also acts as an electrical ground for the sonar transducer, mounted on the bottom in the aft
portion of the hull.

The sonar unit is a low-cost commercial off-the-shelf (COTS) recreational fish-finder
by Lowrance®, a company from Tulsa, OK, USA, model Elite ti7, with an active scan
transducer. The Lowrance sonar unit features a NMEA serial data port which allows for
communication between other marine electronics. By using this port, the Lowrance can
output serial data packets to the ground station using an onboard telemetry link. The
telemetry link is an RFD900+ long-range 900 MHz transmitter RFDesign® a company
from Brisbane, Australia, that can send data up to 30 km in optimal conditions. The
NMEA protocol uses a variety of ‘sentences’ to transmit individual data streams. The
Lowrance menu allows for the selection of NMEA sentences and at what frequency they
are output. The Bathy-drone currently outputs the GPS position and the sonar depth
values using the following packet types: DBT—depth below transducer, DPT—depth of
water, RMC—recommended minimum navigation information, GGA—global positioning
system fix data, HDG—magnetic heading, deviation, variation, GLL—geographic position,
latitude/longitude, and VTG—track made good and ground speed. These sentences are
broadcast using the RFD900 telemetry link and are received by the ground station computer
to interpret the data using the Reefmaster software package. Details of Reefmaster use
are found in the ground station and data processing discussion. The sonar imagery down-
and side-scan data are saved directly to the onboard microSD card to conserve telemetry
bandwidth. A Pixhawk Cube orange with a Here+ RTK system was included in this design
(Figure 4) for future work with RTK + IMU integration.
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Figure 4. Isometric view of the Bathy-drone from the top showing sonar screen through the open
hatches (left) and from the bottom with fins and transducer (right). Where RTK GPS is Real Time
Kinematics corrected Global Positioning System and IMU is Inertial Measurement Unit. Photo credit:
author’s UF UASRP lab.

The Bathy-drone vessel is designed to be multirotor UAS agnostic if the drone can
carry the weight of the vessel portion. The interface between the UAS and the vessel
can be as simple as a knot. Any drone can, therefore, tow the vessel without any prior
modification. The DJI® (a company from Nanshan, Shenzhen, China) Matrice 600 drone
was utilized to test the Bathy-drone vessel, featuring 30 min of battery life and 6 kg payload
capacity [49]. An alternate platform, the Alta X drone from Freefly Systems®, a company
from Woodinville, WA, USA [50], has similar performance metrics. The current iteration
of the Bathy-drone weighs just under 14 lbs and is easily airlifted by the Matrice 600 to be
shuttled to the water surface.
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3. Experimental Procedures

Traditional methods of pond survey included a field crew operating a small watercraft
to measure the pond bottom in a systematic grid pattern. Measurements were taken via
a level pole, range pole, or sounding wire and were interpolated to create an estimated
surface of the pond bottom (Figures 5 and 6) [42,51].
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and compare the obtained sonar data to traditional survey methodology (center image). 
To take direct measurements, a Trimble RTK GNSS survey system was attached to the top 
of the level rod. RTK GNSS uses a stationary base station to transmit corrections to a mov-
ing rover with a radio or internet data link (right image). These computed corrections 
allow the rover to obtain centimeter-level accuracy point measurements. Data from the 
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into the national spatial reference system (Figure 6). The ground-truthing experiments 
used the Trimble SPS855 as the base station receiver and the SPS986 as the rover platform. 

Figure 5. The moving rover and the data collector taking topographic points throughout the pond
from a barge (left image). Custom 3D printed silt foot for level rod (center). The base station set up
on a nail driven into the asphalt (left tripod) and the radio (right tripod) (right image) transmitting
the RTK GPS corrections. The base nail was measured for 8 h as static observations and submitted to
NOAA OPUS. Topographic points collected across different days were translated so that the base
station points aligned with the NOAA OPUS solution. Photo credit: UF UASRP; student researchers
pictured on the left image.
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The University of Florida Plant Science Research and Education Unit (UF PSREU) is
a 1086 acre facility which conducts specialty crop research. The UF Unmanned Aircraft
Systems Research Program (UASRP) uses this expansive facility to test uncrewed aircraft
systems in an unpopulated area. On this property, there is a 5 acre retention pond in which
we tested the bathy-drone system. Measurements from a graduated level rod were used to
measure the bottom surface of the pond and compare the obtained sonar data to traditional
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survey methodology (Figure 5, center image). To take direct measurements, a Trimble® (a
company from Sunnyvale, CA, USA) RTK GNSS survey system was attached to the top of
the level rod. RTK GNSS uses a stationary base station to transmit corrections to a moving
rover with a radio or internet data link (right image). These computed corrections allow the
rover to obtain centimeter-level accuracy point measurements. Data from the base station
were entered into NOAA OPUS [52] to translate the observations gathered into the national
spatial reference system (Figure 6). The ground-truthing experiments used the Trimble
SPS855 as the base station receiver and the SPS986 as the rover platform. Corrections were
transmitted using a high-power 35 W TDL450 radio. The level rod and observation barge
were tethered to a rope that was strung across the length of the pond (Figure 5, left image).
The rope was graduated with markings every 7.6 m (25 feet). Each of the points surveyed
for the ground-truthing had a report of associated observation notes and statistics such as
dilution of precision, number of satellites, horizontal precision (DRMS), vertical precision
(1 sigma), and tilt distance. As a summary of the measurement uncertainty associated
with the ground-truthing points gathered, the reported tilt distance average was 6 cm
with a standard deviation of 5 cm, horizontal precision average was 1 cm with a standard
deviation of 1 cm, and the vertical precision average was 2 cm with a standard deviation of
1 cm.

The file containing the waypoints of an autonomous flight mission was created in an
external software package such as ArcGIS® Pro a company from Redlands, CA, USA or
Google Earth® a company from Mountain View, CA, USA. The ground-truthing mission
used ArcGIS® Pro point creation tools to create equally spaced waypoints and the line
creation tool for the flight lines. The “export to KMZ” geoprocessing tool was then used
to create a file compatible with DJI®, China, ground station pro software and with the
DJI® Matrice 600 multirotor drone. Ground Station Pro allows operators to set mission
parameters such as speed and elevation and transmits the preplanned mission to the
drone. The pilot can see the mission status, as well as battery and GPS signal levels, live
throughout the flight mission. The autonomous turn settings are changed from stop and
turn to continuous radius turns. Radius turns prevent capsizing from abrupt slackening
and tugging of the towline. The radius is programmed to be as large as possible between
transects which can vary in spacing depending on the resulting resolution desired from
the sonar data. Alternatively, autonomous missions can be planned on the open-source
software Mission Planner.

The current flight field procedures were developed for ground-truthing of the system
and gathering data for isobaths that tie to geodetic datums. The vessel electronics were
turned on and set to record before takeoff of the UAS. Standard flight operating procedures
and safety were followed. The pilot navigated the drone to the first waypoint lifting the
vessel above any obstructions. The drone was lowered to the flight altitude of 6 m (20 feet),
placing the vessel on the water. With the drone and vessel at the starting waypoint, the
autonomous mission was enabled. The autopilot flew the drone and vessel to the recovery
point while the pilot maintained the ability to interfere if necessary. A top-of-water surface
reading was taken with RTK GNSS to offset the sonar measurements and translate the
measurements to the coordinate system of the geodetic datums. Figure 7 shows a typical
path for both the multirotor drone (solid red line) and the vessel (white points).

ReefMaster is a commercial software package from Australia used for the interpreta-
tion and analysis of data from recreational fish finders and sonar units. ReefMaster supports
data import from Lowrance and Hummingbird brand sonar units and can export generic
point data such as shapefiles and CSV files. The combination of USV with fish finder
sonar data processed through Reefmaster has proven results in bathymetry, ecological
classification, and bottom characterization in multiple projects [15,53].

The software acts as part of the ground station during the flight in the field by receiving
data over a telemetry link. Live data visualization on the ground station is achieved by
processing depth and position updates using the NMEA protocol. Live telemetry only
supports the transmission of depth value data; raw sonar data must be saved to and read
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from the microSD card. The Bathy-drone sonar package from Lowrance produces an sl2 file
format to store the raw data from the three-in-one sonar transducer onboard. Reefmaster
software can import the sl2 file from the Lowrance microSD between missions for sonar
data visualization on the ground station. Rapid on-site isobaths and bottom hardness
plots can be created on the ground station running Reefmaster to inform the next mission.
Additionally, Reefmaster can export CSV and shapefiles for further processing on Excel,
MATLAB, Python, and ArcGIS Pro.

The live link prevents loss of data during malfunctions such as power loss and adds
redundancy to the onboard storage. The on-field review helps ensure that the operators
met the mission requirements before returning to the office.
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payload vessel. Photo credit: UF UASRP using satellite imagery.

4. Results

The on-field results generated by preliminary processing of the raw sonar data on
Reefmaster with further processing on ArcGIS Pro included isobaths (Figure 8), bottom
hardness (Figure 9), and sonar side-scan imagery (Figure 10). According to the experi-
mental procedures in Section 3, the primary desired outputs from the surveys included
isobaths and bottom hardness contours. These data are presented here as contour plots in
Figures 8 and 9.

To compare the ground-truth survey points to the sonar depth data, both datasets were
imported into ArcGIS pro. The sonar data were converted to the same coordinate system as
the ground-truth points, such that horizontal coordinates were in State Plane Florida West
FIPS 0902 (meters) using the 2011 realization of NAD 1983 and vertical coordinates were
in height above ellipsoid (meters). In addition, the sonar data must have the water level
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subtracted, which is currently measured at the start of the flight using the RTK GNSS level
rod. Subtracting the water surface elevation is like accounting for the length of a range pole
or, in this case, the level rod, when taking rover measurements with RTK GNSS.

The ArcGIS Pro geostatistical wizard is a toolset that guides users through the process
of making interpolation-based surfaces in a step-by-step manner. The geostatistical wizard
uses point data to create an interpretive raster surface. To use this tool, the sonar data are
imported into ArcGIS from Reefmaster as a point shapefile, with each point representing
an individual sonar depth observation. The geostatistical wizard uses the point sonar
data with a selected area interpolation method. Local polynomial interpolation was used
to create the surface, and the extents were clipped in the processing environments tab
(Figure 8). The surface interpolation was restricted to the limits of the sonar data capture to
minimize extrapolation. The GA layer to points tool was then used to compare the acquired
ground truth survey points to the interpolated sonar data. The GA layer to points tool
is used to measure the accuracy of a predicted surface by comparing it to known point
observations. In this case, accuracy was assessed by comparing the predicted surface output
from the sonar to the points measured using the RTK GNSS level rod (Figures 11 and 12).

The detailed measure of accuracy indirectly captures the horizontal accuracy of the
sonar data within the depth measurements. To isolate horizontal accuracy from vertical
accuracy, the quoted accuracy of the GNSS devices used can be considered. The Trimble
RTK GNSS equipment is positionally accurate with a horizontal accuracy of 1–2 cm, while
Pixhawk Cube Orange GNSS RTK internal to the vessel can be as accurate as 3 cm, and
the Lowrance Elite Ti2 claims 20 m RMS positioning accuracy [54]. A simple preliminary
experiment comparing the three devices observed that the Lowrance GPS can waiver from
the RTK GNSS devices by 1.5–3 m. However, the uncorrected GPS is, in principle, mostly
translated horizontally and still captures the relative path taken by the vessel [55].
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Figure 10. Sonar of Canal C-11, bridge pile at Fort Lauderdale Florida, showing accumulated
vegetation and scour undermining the pile (A). This shows the potential for the drone bathymetry
system to be used for inspection of civil infrastructure. Side-scan sonar of submersed vehicle in a
quarry in northern Florida (B). ((C), Left) Sidescan sonar image of tilapia nesting beds captured at
the Citra retention pond compared with photogrammetry ((C), Right). Photo credit: UF UASRP.
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To compare one unique flight to another, raster surfaces were created. The GA layer
to raster tool was used to create raster surfaces from each of the obtained datasets. The
individual raster was compared using the raster calculator, which was used to subtract
the two from each other. By subtracting the two rasters, the distribution of the difference
between the two surfaces became apparent (Figure 13).

A second approach to analyze the precision of the system depth measurements is to
compare the values at each intersection of the north–south (NS) and east–west (EW) raster
paths, as illustrated in Figure 13 where two example intersections are highlighted with
a star. The difference in the two depth values from NS and EW lawnmower paths was
computed using the black intersection line shown in Figure 14. The intersecting points
were found by dividing the raster pattern into straight-line segments, excluding the curved
part of the trajectories, and then running an algorithm that iterated for all the NS and the
EW paths to find the samples with the minimum distance between each other (ideally
zero for exact intersections). The 10 closest points from the intersection points were used
to fit a 10th-order polynomial of the depth values, and the precision was calculated as
the difference in the polynomial depth values at the intersection points. A total of 144
intersecting points were used for this precision analysis. The result is summarized as a
histogram in Figure 15, where the mean and median values of all the precision calculations
were −1.37 cm and 0.89 cm respectively, and the standard deviation was 19.9 cm.

System analysis of depth reflects horizontal and vertical errors. These errors were
characterized statistically from the ground-truth data and measured in multiple approaches
for accuracy and precision. The accuracy measures point toward potential improvement if
IMU and RTK data are used to correct the depth values. This conclusion is drawn from the
sonar consistently reading deeper than the ground-truth data on average by 21.6 cm, with
most of the error focused on the deeper area, as highlighted by the scatterplot (Figure 12).
The deeper this system is deployed without correction, the more pronounced small-angle
changes in attitude will impact accuracy. The major limiting factor of improving accuracy,
to be addressed by incorporating IMU and RTK corrections, is also supported by the relative
precision between independent surveys.

Ensuring the vessel is properly placed in the water at the first waypoint requires pilot
skill and familiarity with the system. Improvements to this issue will be discussed as future
work. The Bathy-drone at its current stage has successfully demonstrated rapid deployment
in difficult-to-access waters to gather bathymetry, backscatter, and sonar imagery affordably.
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experiment comparing the three devices observed that the Lowrance GPS can waiver from 
the RTK GNSS devices by 1.5–3 m. However, the uncorrected GPS is, in principle, mostly 
translated horizontally and still captures the relative path taken by the vessel [55]. 

Figure 11. Residuals (m) between local polynomial interpolation of combined sonar transects and
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5. Future Work

The multirotor towable bathymetric system presented in this paper results from
the multiple cycles of the iterative design process. Through the design, manufacture,
assembly, field testing, and data processing cycle, there were lessons learned and insights
into the project’s potential future direction. A literature review and collaboration with field
operators in bridge infrastructure inspection and marine geomatics guided the current
design and will continue to guide future additions. Currently, the bathymetric system is
limited to open areas to avoid obstacles that can interfere with the safe operation of the
multirotor UAS. Obstacles such as bridges, pilings, and trees are commonly near bodies of
water. To avoid these hazards, active vessel control with a servo-actuated rudder would
allow for autonomous control semi-independent of the multirotor UAS. Active control of
the vessel necessitates that the multirotor flight altitude changes actively, an active winch
mechanism, or both to maintain consistent tether tension. In either case, an emergency
break-away tether connection can help reduce the chance of losing the UAS into the water
if the vessel is snagged.

A new hull design inspired by field testing finished the composite layup manufac-
turing process. The new design intends to reduce capsizing during aggressive turns and
the initial placement on the water, thereby reducing pilot fatigue and extending mission
efficiency. Reduced capsizing is achieved with a rounded hull deck and low center of
gravity akin to self-righting crewed vessels. A larger hatch allowing for easier access to
internal payload will potentially also be tested for structural integrity and environmental
intrusion. The stabilizing fins and rudder are reduced in depth to increase operational
capability in shallow areas further and avoid groundings, flotsam, and floating vegetation.

The additional step of measuring the area’s water level to be scanned so that the data
can be tied to a coordinate reference system, which can be simplified with an onboard RTK
GNSS receiver. The current bathymetric system had both the RTK GNSS receiver and the
IMU installed for experimentation, but the position and attitude data would ultimately be
processed onboard to correct the sonar and broadcast the result live to the ground station.
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Upgrading the SBES sonar sensor could improve the swath coverage and reduce
interpolation between transects. Additionally, underwater geometric features can be
submerged in the pond to assess the resolution of locating and identifying structures
of interest.

Currently, the sonar imagery generated from side-scan and down-scan is only used for
qualitative assessment and cursory characterization of the marine ecology and environment,
obstacles, and infrastructure (Figure 10). Ground-truthing the bottom hardness measures
will provide more confidence in quantifying the backscatter data. Generating point clouds
for three-dimensional reconstruction of the sonar data will assist in bottom visualization.
The sonar imagery can also be used for object identification and avoidance or to inform
further exploration of areas of interest (AOIs). Integrating communication between the
drone and the vessel can allow the vessel to command the drone to explore a new AOI.

6. Conclusions

The uncrewed Bathy-drone is a novel configuration for rapid bathymetry and bottom
characterization. The tethered vessel is towed autonomously on a preprogrammed mission
by a multirotor drone. The surface vessel has a fixed recreational COTS sonar with down-
scan, side-scan, and chirp capabilities gathering sonar imagery, bathymetry, and bottom
hardness data. The raw field data are stored on board using a microSD card and transmitted
live via telemetry link. This paper discussed state-of-the-art approaches in small, uncrewed
bathymetry, the Bathy-drone design, and ground-truthing of the system against traditional
RTK GNSS. An assessment of the accuracy and precision of the system based on the ground-
truthing results provides insight toward future ancillary sensors. Field operation of the
Bathy-drone system highlighted novel advantages unique to the tethered configuration.
Surveys are based on land as the multirotor airlifts the vessel to the first waypoint on water
allowing for rapid deployment and reduced crew fatigue. Boat docks are unnecessary as
the Bathy-drone can fly over obstacles such as mud flats, sandbars, tree lines, and fences.
Transport of the system and ground station to the area of interest via crewed boat or vehicle
is convenient due to the low weight and volume. The propulsion is provided by the
multirotor drone allowing the vessel to glide over swift current, debris, floating vegetation,
and the ground. Speeds of 0–24 km/h (0–15 mph) were tested, and an area of more than
40,000 m2 (10 acres) was surveyed with one battery charge in less than 25 min. Field testing
will continue to inform new applications and iterations. Implementation of the future work
discussed will continue to expand the capabilities and applications of the system.
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Abstract: Unmanned Aircraft Systems (UAS) are used in a variety of applications with the aim of
mapping detailed surfaces from the air. Despite the high level of map automation achieved today,
there are still challenges in the accuracy of georeferencing that can limit both the speed and the
efficiency in mapping urban areas. However, the integration of topographic grade Global Navigation
Satellite System (GNSS) receivers on UAS has improved this phase, leading to a reach of up to a
centimeter-level accuracy. It is therefore necessary to adopt direct georeferencing (DG), real-time
kinematic positioning (RTK)/post-processed kinematic (PPK) approaches in order to largely automate
the photogrammetric flow. This work analyses the positional accuracy using Ground Control Points
(GCP) and the repeatability and reproducibility of photogrammetric products (Digital Surface Model
and ortho-mosaic) of a commercial multi-rotor system equipped with a GNSS receiver in an urban
environment with a DG approach. It was demonstrated that DG is a viable solution for mapping
urban areas. Indeed, PPK with at least 1 GCP considerably improves the RMSE (x: 0.039 m, y: 0.012 m,
and z: 0.034 m), allowing for a reliable 1:500 scale urban mapping in less time when compared to
conventional topographic surveys.

Keywords: UAS; SfM; RTK; PPK; direct georeferencing

1. Introduction

Originally, Unmanned Aircraft Systems (UAS) were developed mainly for military
purposes and applications such as unmanned inspection, surveillance, reconnaissance,
and mapping of hostile areas [1]. The first civil UAS experience in geomatics took place
in the 1990s. Nowadays, UAS represent a common platform for photogrammetric data
acquisition [2]. Accordingly, UAS is an alternative for mapping and to perform a spatial
analysis of the territory [3,4]. This data collection technology offers similar quality and
reliability results when compared to conventional topography, which requires higher costs
for its application instead [5]. Therefore, the use of UAS is more economically profitable
than other technologies such as the use of Global Navigation Satellite System (GNSS)
receivers [6], Terrestrial Laser Scanning (TLS) [7], Light Detection and Ranging (LiDAR) [8]
and conventional aerial photogrammetry [9].

Images acquired by UAS offer useful information for archaeological documenta-
tion [10], geological and geomorphological surveys and monitoring [11–13], urban mod-
eling [14–17], emergency assessment [18], and engineering applications [19,20]. Based on
the use of the structure-from-motion (SfM) algorithm [21], which could replace conven-
tional surveying methods, centimeter accuracies can be obtained according to the scale
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of study [22,23]. In order to achieve such a level of accuracy in the mapping of urban
areas using UAS, a high overlap between captured images is required [24,25]. Afterwards,
detailed photogrammetric models (Point Cloud, Digital Elevation Model, Orthophoto) are
obtained by indirect or direct georeferencing [26].

Indirect georeferencing (IG) of these models is based on extensive field deployment, sur-
vey deployment, and ground control point (GCP) reconnaissance. The latter are subsequently
recognized on the images within the photogrammetric software in the lab/office [27–29]. On
the other hand, direct georeferencing (DG) replaces GCPs with aerial control by GNSS-assisted
Bundle Block Adjustment (BBA) using Automatic Aerial Triangulation (AAT), which is one of
the most widely used techniques in aerial photogrammetry [30,31]. In AAT, the coordinates of
the camera stations are measured by an integrated GNSS receiver at each exposure time and
are introduced as constraints in the BBA adjustment [32,33], or they are used to calculate the
transformation of the arbitrary SfM reference to the mapping system accurately [28].

However, the accuracy obtained is influenced by the type of data processing, and
there are three common configurations for geotagging photographs in an SfM workflow.
(i) On-board position calculation: photo positions are based on the location of the UAS and
recorded as an Exchangeable Image File (Exif) data; (ii) Post Processed Kinematic (PPK):
photo positions are calculated after flight based on records from the mobile (UAS) and a
GNSS base station; and (iii) Real Time Kinematic (RTK): photo positions are calculated
in real-time, with corrections sent to the mobile directly from the base station [34]. The
base station can be local or in special cases, a correction can be sent from a co-commercial
base station via Networked Transport of RTCM via Internet Protocol (NTRIP protocol) to
the remote controller [22,35]. In this context, guaranteeing the recording and storing of
coordinates in a known place for the PPK [36] and RTK [26] configuration depends largely
on the location of the base station and mobile, which must share an appropriate geometrical
configuration of satellites and carrier phase [37].

In DG, no GCPs collected with external GNSS are required to process aerial pho-
tographs, thus the workflow becomes less time-consuming and costly. Nevertheless, there
is a need to mitigate UAS camera positioning errors for complex geometry scenarios, such
as urban environments or linear mapping (urbanized corridors, runways, etc.) [38]. This can
be done using a GNSS navigation/quality inertial navigation system (INS), thus obtaining
a high accuracy, but at an increased cost for UAS [23,39]. In recent years, variations of such
techniques have been developed to address the specific peculiarities of UAS-based aerial
photogrammetry, including relative position/orientation control [2,40], raw observation,
and multi-sensor adjustment [41]. However, the use of GCPs is important to establish
adequate topographic control [41–43].

In that context, the Phantom 4 RTK UAS (DJI-P4RTK), having an integrated multi-
frequency GNSS receiver, allows for the performance of either a PPK, RTK, or NTRIP
DG approach [44,45]. In addition, P4RTK contains a non-metric camera, with limitations
on identifying appropriate Interior Orientation Parameters (IOP) along with the package
setting. However, this could be overcome by using at least one GCP or one chamber pre-
calibration [37,42,46]. Furthermore, having a GNSS receiver allows for storing raw data that
can be used for further evaluations. Accordingly, the UAS allows one to perform an indirect
orientation using GCP, as well as the direct orientation of the measured image positions
(external orientation—EO). Due to this, in this study, the combination of both (GCP and
EO), known as integrated orientation was used, which has shown better accuracies [45].

Integrated guidance for UAS has been used both in coastal mapping [47] and in rural
and urban mapping [48]. There is no current knowledge about the variants of the data
capture mentioned in PPK and RTK [49], particularly for urban environments with complex
physiography such as the city of Chachapoyas (narrow access roads, typical of colonial-era
cities in Peru). Therefore, this research aims to analyze the accuracy of the photogrammetric
models (DSM and ortho-mosaic) based on the accuracy standards set by the American
Society for Photogrammetry and Remote Sensing (ASPRS) [50–52]. For this purpose, three
types of flights are analyzed using the RTK and PPK approach acquired by the UAS, which
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are combined with a set of GCPs (1, 5, and 10) to create 27 photogrammetric projects.
This study identifies the most suitable UAS data acquisition and processing method for
mapping an urban area. It also has the potential for replicability in similar areas with
rugged physiography and multiple colonial buildings, or other similar scenarios.

2. Materials and Methods
2.1. Study Area

The city of Chachapoyas (6◦13′45.84′′ S; 77◦52′20.47′′ W), which is the capital of the
department of Amazonas, is located in the north-eastern Peruvian Andes at 2483 m above
mean sea level (m.a.s.l.). The city is 1200 km far away from Lima, the capital of Peru
(Figure 1). The climate varies from temperate to moderately rainy, with a cumulative
annual rainfall of 777.8 mm and maximum and minimum temperatures (period 1960–1991)
of 19.8 ◦C and 9.2 ◦C, respectively. It has a marked climatic seasonality with an alternating
rainy season from November to April, and a dry season from May to October [53,54]. The
urban area of the city of Chachapoyas covers 2239.35 ha, of which 15 ha belonging to the
La Laguna neighborhood was mapped with six cadastral blocks, consisting of multiple
colonial buildings and narrow, steeply sloping streets [54].
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Figure 1. Location Map of the Surveyed Urban Area. Figure 1. Location Map of the Surveyed Urban Area.

2.2. Data Acquisition
2.2.1. GNSS Survey

In this work, 10 GCPs and 4 Validation Points (VPs) were established. The GCPs
and VPs were represented as square-shaped marks of 0.533 m in size (Figure 2a). The
three-dimensional coordinates of these targets were collected with a Trimble R10 GNSS
receiver operated in PPK mode (Figure 2b). The base station was established at a geodetic
point of order C [55] with a record of 7 min and was calculated by a static survey, pre-
viously corrected with a geodetic pillar (AMA01) of the Peruvian National Geographic
Institute (IGN) [55]. The metric coordinates of BM-01 (Bench Mark) were 18,2601.173 m E,
9,310,378.217 m N, and 2357.706 m.a.s.l. (Figure 2c). These horizontal coordinates refer
to the Universal Transverse Mercator (UTM) Zone 18 South coordinate system, and the
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elevation refers to the MSL using the EGM08 geoid model. For PPK mode GCP measure-
ments, these multi-frequency GNSS geodetic instruments have an accuracy specification
set by the manufacturer of ±3 mm + 0.5 ppm horizontal RMS and ±5 mm + 1 ppm vertical
RMS [56]. In particular, since the distance between the base station and the study area was
approximately 260 m, the horizontal and vertical errors were 1 and 2 cm, respectively.
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Figure 2. Photogrammetric Data Acquisition Process. (a) GCP distribution. (b) Target measurement.
(c) Base station BM-01.

2.2.2. UAS Planning

Three types of flights were performed: grid (2D), double grid (3D), and terrain tracking,
planned to use the GSRTK mobile application [45]. In addition, the altitude optimization
option was used. This enabled the collection of oblique images (−45◦) from the lower
left corner to the center of the study area, except for the terrain-following flight type [45].
This “hybrid” data collection is useful for simulating the results of image acquisition in
general [44]. These flights covered an approximate area of 15 ha with a Ground Sampling
Distance (GSD) of 3.84 cm. A nadir position of the camera was established, except for the
3D flight (−60◦) taking into account north-south flight lines, as well as an overlap of 80%
longitudinally and 75% laterally, and an average flight height of 140 m. Each type of flight
was executed using three positioning solutions (Table 1). This resulted in the execution
of six photogrammetric flights over the study area. For RTK, three configurations were
considered, in which CP (1, 3, and 5) were used for the type of 2D flight, 3D flight and
ground tracking. Similarly, the same was applied to PPK1 and PPK2, resulting in a total of
27 photogrammetric projects.
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Table 1. DJI Phantom 4 RTK UAS Flight and Positioning Configurations.

Flight Configuration ID 1 Positioning Solution
Photogrammetric Projects According to N◦ CP

1 3 5

A
RTK (Refined position due to corrections sent
by a GNSS base station in the field, the D-RTK 2
receiver placed at a point of known coordinates)

RTK_1,
RTK_4,
RTK_7.

RTK_2,
RTK_5,
RTK_8

RTK_3,
RTK_6,
RTK_9,

B

PPK1 (Refined position due to post-process
corrections by a GNSS base station in cabinet,
Trimble R10 receiver placed at a point of
known coordinates)

PPK1_1,
PPK1_4,
PPK1_7.

PPK1_2,
PPK1_5,
PPK1_8.

PPK1_3,
PPK1_6,
PPK1_9.

PPK2 (Refined position due to post-process
corrections by a GNSS base station in a cabinet,
the commercial receiver AMA01 established
by IGN)

PPK2_1,
PPK2_4,
PPK2_7.

PPK2_2,
PPK2_5,
PPK2_8.

PPK2_3,
PPK2_3,
PPK2_9.

1 Each configuration was run for the three types of flights: grid, double grid, and terrain tracking.

2.3. Positioning Configurations Adopted during Flight Tests
2.3.1. UAS-RTK Surveying

An RTK approach was performed (Figure 3a), with the specifications given by
Teppati et al. [49]. The DJI GNSS base station DRTK2 [57] was used as a positioning
solution, which transmits real-time corrections to improve the positioning accuracy of the
UAS located at any point with known or unknown coordinates [34]. For this work, we
adopted the solution that requires the use of a point of known coordinates (BM-01): the
GNSS base station was placed in the central part of the study area (Figure 2c), enabling
reconstruction of the orientation and the displacement of the camera concerning the APC
(Antenna Phase Center) for the PPK approach.
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2.3.2. UAS-PPK Surveying

For the PPK approach (Figure 3b), which is the correction of the UAS positions
recorded by the GNSS receiver during flight and the estimation of the camera positions
after the data acquisition phase, a post-process is required. Here, the Trimble R10 GNSS
receiver with a known coordinate (BM-01) storing data in static mode at one second in
the PPK1 configuration (Table 1) was used as a base. Similarly, the data from the AMA01
geodetic pillar (recorded every 5 s) was used in the PPK2 configuration. Consequently,
in order to process the data, it is necessary to use either a self-built solution [47] or free
third-party software [58], or alternatively commercial software [59]. For this work, PPK
processing was performed using RED toolbox, which performed geotagging with fixed
solutions for all images. RED toolbox, for P4RTK and other DJI products, automatically
calculates the lever arm from the information stored in the UAS files, compared to the free
RTKLIB software used by Teppati et al. [49].

2.4. Photogrammetric Processing of the Acquired Data

The photogrammetric processing flow (Figure 4) consists of matching waypoints from
the UAS images. These images were automatically calibrated based on EXIF information
for tie point generation. The calibrated images were georeferenced using an integrated
orientation to generate a dense 3D point cloud, and to subsequently obtain the DSM and
ortho-mosaic. Image georeferencing is the first step in obtaining photogrammetric products
(ortho-mosaics, DSM, DTM, and contour lines) and represents the prerequisite for their
metric exploitation [60].

2.5. Comparative Analysis
2.5.1. Accuracy Assessment

In order to perform the assessment of both horizontal (ortho-mosaic) and vertical
(DSM) accuracy, the ASPRS guide [49] was used as a reference. For the altitude coordinate
(Z), the location of the vertical control points should be surveyed on flat open terrain or
with uniform slopes and slopes ≤10%. According to the guide, the vertical non-vegetation
accuracy (NVA) at the 95% confidence level in unvegetated terrain is approximated by
multiplying the vertical accuracy class accuracy values (or RMSEz) by 1.96.

The first method to assess accuracy is the root mean square of the quadratic differ-
ences between the reconstructed model and the surveyed GCP coordinates, known as the
root mean square error (RMSE) [61]. The horizontal (x and y) and vertical (z) positional
accuracies were determined for the photogrammetric projects from the GCP coordinates,
specifically with the validation points (VPs) within Agisoft Metashape [60].

The RMSE values for the X, Y, Z, and r components are estimated as shown in
Equations (1)–(5). Where the sub-indices oi and GNSSi of X, Y, and Z represent the coordi-
nates estimated by the ortho-mosaic and measured by the GNSS receiver, respectively.

RMSEX = ±

√
∑n

i=1 (Xoi − XGNSSi)
2

n
(1)

RMSEY = ±

√
∑n

i=1 (Yoi − YGNSSi)
2

n
(2)

RMSEZ = ±

√
∑n

i=1 (Zoi − ZGNSSi)
2

n
(3)

RMSEXY = ±
√

RMSEX
2 + RMSEY

2 (4)

RMSEr = ±
√

RMSEX
2 + RMSEY

2 + RMSEz2 (5)
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2.5.2. Cross-Section Analysis

In urban mapping, assessing height differences through cross-sectional profiles is an
important issue [62,63]. For this reason, a profile was extracted from the DSMs, to be compared
with the cross-sectional profile surveyed in the field by a total station (Trimble M5 1’).

The DSM resolution of the 27 photogrammetric projects ranged from 0.06 to 0.105 m.
Thereafter, all DSMs were re-sampled using the nearest neighbor technique to a resolution of
0.105 m, to make them compatible and consistent for the comparative analysis of transverse
profiles. To generate the cross-sectional profile, a 40 m line was drawn on the ortho-mosaic
in the central part of the study area; the altimetric data was hence collected in the field
using the total station with a step of 0.10 m, monitoring the changes in altitude.

Notably, the cross-section has been selected in the region where the 2D, 3D, and Terrain
flight plans overlap to compare the 27 DSMs generated in this work, with the data collected
from the cross-section obtained by the total station during the survey operations.
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3. Results
3.1. Geometric Accuracy of Aerial Photographic Mosaics
3.1.1. RTK Accuracy

RMSE was calculated based on the VP (04) for the RTK photogrammetric projects
(Figure 5). Using the real-time correction of the GNSS receiver base DRTK2 linked to a
known point BM-01 (Figure 2), different solutions were tested according to the type of
images acquired in the field (2D, 3D, and terrain) and the number of GCPs used for the
block orientation (1, 5 and 10), obtaining 9 UAS photogrammetric projects.
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Figure 5. RMSE of the VPs for Different RTK Configurations.

All of the 9 configurations present an RMSEr between 0.066 m and 0.111 m computed
through the VPs. The RTK4 configuration has the highest RMSEr value, whereas the RTK2
configuration shows the lowest value (0.06 m). Indeed, using 5 GCPs reduces the precession
by 0.05 m compared to RTK_1 with 10 GCPs, reducing the fieldwork by surveying GCPs.
According to ASPRS, the RTK_2 configuration with a GSD of 3.84 cm/px belongs to Class II,
which allows one to perform mapping at a scale of 1/500.

The VPs distributed within the urban area have an RMSEz value ranging from 0.030 m
to 0.074 m, with the RTK_7 Terrain mode configuration with 1 GCP having the best
accuracy, meaning that the non-vegetated vertical accuracy (NVA) values are equal to
RMSEz (58.8 mm). This dataset was tested to meet ASPRS positional accuracy standards
for a vertical accuracy class of 10 cm. The actual accuracy of the NVA was found to be 7 cm,
which is equivalent to +/− 15 cm at a 95% confidence level. This is considered acceptable
for urban mapping applications.

3.1.2. PPK1 and PPK2 Accuracy

Both the results of the PPK1 and PPK2 approaches consist of 9 photogrammetric
projects, from PPK1_1 to PPK1_9 (Figure 6a) and from PPK2_1 to PPK2_9 (Figure 6b),
respectively. Figure 6 shows the RMSEr of the VPs for the different configurations, the error
for the x, y, z, xy components, and the total error.
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Figure 6. PPK1 and PPK2 Accuracy (a) RMSE of VP for the PPK1 Approach (b) RMSE of VP for the
PPK2 Approach.

The best RMSEr of the PPK1 approach was found for the PPK1_1 configuration (2D
flight with 01 GCPs), with an overall accuracy of 0.053 m. For the PPK2 approach, the
best RMSEr was obtained using the PPK2_9 configuration (0.490 m), which consisted of a
ground flight mode with 10 GCPs. The latter is a high value when compared to the RTK
and PPK1 approaches.

Similarly, the VP within the urban area have an RMSEz value of 0.034 (PPK1_1) m
and 0.281 (PPK2_9) m. Here, the PPK1_1 GCP configuration obtained the best accuracy
results, which means that the NVA = RMSEz × 1.96 = 63 mm. This dataset was tested to
meet ASPRS positional accuracy standards for a vertical accuracy class of 10 cm. The actual

203



Drones 2022, 6, 388

accuracy of the NVA was found to be 5 cm, which is equivalent to +/− 10 cm at a 95%
confidence level, and is therefore considered acceptable for urban cadastral applications.

3.2. Cross-Section

Regarding the cross-section of the DSM (Figure 7), it can be noted that, in the RTK
approach (Figure 7a), on average, all the configurations present small variations of 0.05 m
between the profiles extracted from the model and the ones surveyed by the total station
(TS). On the contrary, the PPK approach (Figure 7b) presents similarities in altitude in all of
the profiles except for PPK_8 and PPK_9, which have a difference of 0.10 m in the central
part of the graph.
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Figure 7. Comparative Analysis of the TS Cross-section. (a) Cross-section of the RTK Approach.
(b) Cross-section of the PPK1 Approach. (c) Cross-section of the PPK2. PPK1 Approach and (d) The
Most Accurate Cross-section of the Approaches to the ST.

In the case of the PPK approach (Figure 7c), this presents a very high-altitude bias
versus the TS plot of approximately 2–15 m along the cross-section. On the other hand,
the configurations that integrated some oblique images in the nadiral dataset (PPK_1,
PPK_5, PPK_6, RTK5, RTK6) produced profiles that generally presented less altitude bias,
considering also a vertical level of uncertainty of a few centimeters.

Figure 7d shows the most accurate terrain profile concerning the data collected by the
total station. Overall, the PPK_1 2D flight mode configuration with 1 GCP seems to have
the highest accuracy.
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4. Discussion

For the 27 photogrammetric projects analyzed in this study, using RTK, PPK1, and
PPK2 approaches, a 3D accuracy of 0.066 m, 0.053 m, and 0.49 m was obtained, respectively.
Such values conform to the APRSS [50] mapping standard of a nominal map scale of 1:500.
For all solutions, an integrated orientation approach (EO + GCPs) was adopted, since this
approach presents better results, as discussed by Przybilla [46]. However, to adopt the best
solution for a direct georeferencing (GI) approach, specific guidelines must be followed,
such as collecting GCPs in situ for block adjustment (at least 01) and flying with a minimum
overlap of 80% in urban areas and within a range of 80 to 120 m in altitude above ground
level [36].

In regards to the flight planning, when covering the area to be mapped with two flights
or more, these should be connected to a base station by RTK or NTRIP, as it reinforces the
acquisition geometry improving the estimation of internal parameters of the IOP. This was
not the case for the PPK2 approach, which had an offset between flight plans, decreasing
the overlap of the photo capture and resulting in a considerable increase of the RMSEr
0.437 m to PPK1 (0.53 m). This is due to the desynchronization of the collected data [23].
In Peru, the IGN’s commercial GNSS bases are in the process of being modernized so that
they can collect static data at 1Hz [64], which would significantly reduce the RMSRr of
photogrammetric projects.

In addition, for the PPK1 and PPK2 approach in the ground-based mode, it has a high
RMSE (33 times more) because a global DEM (90 m) was used to map the area, which re-
sulted in a risky flight and low overlap of photos. Therefore, to perform a flight with proper
terrain tracking, a high-resolution DEM with a topographic precision is necessary [65].

The RTK approach presents difficulties because there is a need to have at least one
known coordinate point in the area of interest, as well as a real-time signal connection at all
times from the DRTK2–P4RTK to obtain optimal results. The signal in urban areas tends
to be lost, causing a poor photograph geotagging accuracy due to signal structures and
interferences by communication antennas [46]. Therefore, DJI implemented the RTK FIX
option, which allows keeping the connection fixed for up to 10 min [45]. That is, the longer
P4RTK and D-RKT2 remain unconnected (10 min max.), the more the RTK signal drops.

This caused the RTK approach using the GNSS D-RTK2 GNSS base, specifically the
RTK_2 configuration, to have a slightly higher RMSEr (0.066 m) than the PPK1_1 approach
(0.053 m). Besides, the accuracy of the reference point coordinates can directly influence the
accuracy of the coordinates stored in the geotag of the acquired images [61].

Practical experience also showed that the PPK approach [34,36,46,47,49], specifically
PPK1, is preferable to RTK technology [22,46,62,66] in an environment where frequent
occlusion of satellite signals occurs due to the movement of the drone or its surrounding
communication signals (e.g., radio signals, telephone lines, television, etc.). Although
there is the option of using the PPK approach with the D-RTK2 GNSS receiver, it is not
yet available as an official DJI solution to perform such post-processing of data derived
from static mode acquisitions [45]. This makes it necessary to use a third-party GNSS base,
increasing the costs of the photogrammetric survey. Furthermore, it is worth mentioning
that there is the RTK approach via NTRIP using a local or commercial GNSS base receiver.
The latter approach has been used in previous studies [34,59], but Peru currently lacks the
NTRIP service, hence we have not used it for this study.

It was also demonstrated that the cross-sectional profiles of the PPK1 approach best
match the profile obtained using the total station. This is of the utmost importance for
the remodeling, construction, and design of roads in urban environments, leading to the
convenience of this comparison [47,66].

Overall, the PPK1 approach led to the best 3D accuracy of the block orientation phase
of the block using at least one GCP. It was demonstrated that using data derived from a
GNSS receiver allows for a faster acquisition in the field, as well as lowering requirements
in terms of deployment of instrumentation. For large-scale mapping purposes, it is strongly
recommended to use a GNSS receiver within the surveyed area.
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For future research and in similar study area conditions, it is recommended to perform
camera calibration a priori, in order to evaluate whether the accuracy of the photogrammet-
ric model is improved or not. This is because the DJI UAS cameras cannot be considered
metric and stable cameras [46]. It is also recommended to use PPK approaches in NTRIP
mode on a commercial basis. In addition, geo-tagging processing should be done with the
use of free and paid software on a comparative basis.

5. Conclusions

Direct georeferencing was shown to be a viable solution for mapping urban areas with
multiple colonial buildings and narrow streets. It was noted that the PPK1 approach is
better than PPK2 and RTK. PPK1 errors are between 0.053 to 0.305 m, unlike PPK2 ranging
from 0.49 to 16.053 m, the latter being about 33 times greater than PPK1. This was due to
the temporary desynchronization of data stored in AMA01 (5Hz) and P4RTK (1Hz). In
the case of the PPK1 (PPK1_1 to PPK1_6) approach, this method is slightly better than the
RTK approach, presenting RMSEr 0.053 to 0.105 m and 0.066 to 0.111, respectively. This is
because inside a city there is often an interference caused by telecommunications networks,
which generate positioning errors in some cameras due to a signal loss.

In addition, if we consider the PPK1_1 approach in a 2D flight with at least 1 GCP, this
kind of configuration significantly improves the RMSEz when compared to the use of 5 or
10 GCPs. The precision also improves horizontally, obtaining an RMSEr of 0.053 m, which
allows for the development of urban cartography on a scale of 1:500.

Photogrammetry application is possible using UAS and applying the DG technique,
in particular the PPK1 approach. Therefore, in the case of Peru, it is not recommended to
use the PPK2 approach due to the desynchronization of the collected data, despite the use
of different GCPs. Additionally, signage such as GCP recognition requires considerable
effort in cartography with UAS, especially in complex terrain such as cities with multiple
colonial buildings in which it is not possible to conduct an RTK study of GNSS. In this
sense, we recommend a more in-depth analysis of the new UAS configurations with the
GD approach to use GCPs to a lesser extent.
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Abstract: The structural analysis of degraded historical buildings requires an adequate 3D model of
the object. Structure from motion (SfM) photogrammetry and laser scanning geomatics techniques
can satisfy this request by providing geometrically affordable data. The accuracy and resolution
depend on the instruments and procedures used to extract the 3D models. This work focused on a
3D survey of Illasi Castle, a strongly degraded historical building located in northern Italy, aimed
at structural analysis in the prevision of a static recovery. A low-cost drone, a single-lens reflex
(SLR) camera, and a smartphone were used in the survey. From each acquired dataset, using the
integration between the images acquired by the drone and the SLR camera, a 3D model of the building
was extracted by means of the SfM technique. The data were compared with high-precision and
high-resolution terrestrial laser scanning (TLS) acquisitions to evaluate the accuracy and performance
of the fast and low-cost SfM approach. The results showed a standard deviation value for the point
cloud comparisons in the order of 2–3 cm for the best solution (integrating drone and SLR images)
and 4–7 cm using smartphone images. Finally, the integration of the best SfM model of the external
walls and the TLS model of the internal portion of the building was used in finite element (FE)
analysis to provide a safety assessment of the structure.

Keywords: SfM photogrammetry; TLS measurements; smartphone acquisitions; 3D models; Illasi
Castle; 3D comparisons

1. Introduction

Three-dimensional survey techniques, such as structure from motion (SfM) photogram-
metry and laser scanning, with both terrestrial- and drone-based approaches are widely
used in different fields (architectural, archaeological, cultural heritage, and structural) to
reconstruct the geometric characteristics of objects, with the aims of documentation, analy-
sis, preservation, maintenance, structural analysis, and restoration [1–9]. These techniques
provide sparse and/or dense point clouds that can be used to enhance details [10]. Their
use together allows for the improvement of coverage completeness, enabling the modeling
of objects and complex cultural heritage buildings [11]; moreover, their integration with
classical topography and the GNSS (Global Navigation Satellite System) system allows for
the measurement of control networks and reference targets and the georeferencing of data
in local, national, and/or international systems [12–15].

The structural analysis of historical buildings requires a detailed knowledge of their
construction, where in situ investigations are carried out together with numerical analy-
sis [16,17]. In particular, in the conservation and restoration of historical buildings, their
unique characteristics must be examined, including structure type, the materials employed
and their source, construction methods and enlargement, reconstruction and restoration
interventions over time, types of use, etc. [18]. In order to prevent the possible dam-
age/collapse of cultural heritage, the availability of complete and updated 3D models
simplifies the planning and intervention phases. For these reasons, low-cost, expeditious,
and non-destructive methods can be of great help in performing 3D surveys [19]. In many
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cases, a simplified model of the building is acceptable for use in seismic analysis by means
of the pushover approach [20]. In this context, the use of low-cost sensors, including
consumer-level smartphones, which are increasingly used in 3D model reconstruction,
proved to be very useful [21,22]. Data obtained from 3D surveys (usually dense point
clouds) are not directly suitable for the generation of a numerical model; generally, several
operations are necessary [15]. In fact, the process of converting the acquired 3D geometric
data, which provides a realistic model of the building, into a convenient format for finite
element (FE) analysis software is crucial [23]. For this reason, several studies on different
cases and situations are available in the literature. At present, FE analysis is used in most
studies and simulation applications [24]. This procedure requires the generation of a solid
model of the structure, built using basic 3D shapes, such as parallelepipeds, cones, cylin-
ders, spheres, wedges, and toroids. The combination of these forms allows the generation
of complex solids (Boolean operations) where the surfaces, volumes, and other geometric
properties are known.

Many authors used terrestrial laser scanning (TLS) and SfM photogrammetric tech-
niques, separately or integrated, to extract 3D models for the structural analysis of buildings
and infrastructure. Hinks et al. [25] proposed an automatic and fast method to transform
the point cloud acquired using the laser scanning technique in a solid model for FE analysis.
The method requires better shape detection and the separation of the real openings and the
occlusions in the laser scanning data; in many cases, integration with the SfM technique
can better improve this separation. Barazzetti et al. [26] used a semiautomatic procedure to
obtain a building information model (BIM) that preserved the TLS point cloud complexity
of the building through the parametrization of NURBS (non-uniform rational B-splines)
surfaces for a structural simulation based on FE analysis; this approach allowed the authors
to take advantage of TLS surveys, which are characterized by a higher level of detail and
precision than the SfM technique. Castellazzi et al. [27] created an FE model from a laser
scanner survey using a semiautomatic method based on slide extraction for the creation
of the discretized geometry of the studied building. The proposed method was applied
to a structure with irregular geometry that could be easily acquired with dense TLS data,
while using the SfM approach may not have been effective. Sánchez-Aparicio et al. [28]
investigated the combined use of photogrammetric techniques (DIC and SfM) and geo-
metrical (NURBS and Hausdorff distance) and FE strategies to assess the origin of the
damage and give an evaluation of the current stability of the San Lorenzo Church (Zamora,
Spain), a historical building. However, the results obtained even for a simple structure (the
dome) suggested the need to restrict this strategy to constructions with large deformations,
due to the SfM model’s accuracy of several millimeters. Tucci et al. [23] combined TLS
surveys, deviation analysis (DA), and FE numerical modeling for a brick minaret located
in Aksaray (Turkey). They extracted the different geometric parameters of the structure
based on a detailed point cloud 3D mesh model and introduced a method for the direct
transfer of the high accuracy of TLS based on a 3D model to FE structural analysis. From
the FE analysis of this structure, variation in the maximum base shear ranging between
0.07 and 0.18 of the total weight of the minaret was observed, denoting the importance of
the precise characterization of minaret geometry that can be obtained only from dense TLS
data. Bassier et al. [29] presented a semi-automated approach to create accurate models of
complex heritage buildings for the purpose of structural analysis. A complex mesh of the
structure was created using TLS and photogrammetry; the authors used photogrammetry
only for the extraction of crack information from images, which is troublesome in TLS
point clouds due to the sparsity of laser scan data. For this reason, they integrated TLS
and photogrammetry only partially. Rissolo et al. [30] conducted a comprehensive digital
documentation of the exterior and interior surfaces and spaces of Satunsat (Mexico) by
means of TLS and SfM photogrammetry in order to perform a structural health assessment
and an evaluation of the varying masonry techniques employed in its construction. The
authors fused the point clouds derived from the two techniques to provide the highest pos-
sible radiometric fidelity of the structures (from the SfM); however, they did not carry out a
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critical analysis of the quality of the extracted datasets. Bruno et al. [31] integrated TLS and
drone- and terrestrial-based photogrammetry for the geometric analysis of a 19th-century
bridge in Italy to better understand the historical evolution of its structural disorders and its
present conservation status, and as a reliable base to define future interventions. The point
clouds obtained from the two approaches were compared using only GCPs (ground control
points) and merged; the authors did not provide indications on the degree of accuracy for
each dataset. Selvaggi et al. [7] explored the potential contribution of TLS and classical
topography to structural engineering by investigating the vertical structure of the San Luzi
Church bell tower (Switzerland). Due to the position of the TLS stations, some parts of the
building (in particular the roof of the tower, characterized by very sparse data) were not
modeled because of missing data. Moreover, many holes were identified in the building,
especially inside, due to narrow spaces; in these cases, the more flexible SfM acquisitions
could help to reduce the occlusions. Fang et al. [32] integrated TLS and FE to assess the
structural deformation of a historic brick masonry building, the Beamless Hall at Linggu
Temple in Nanjing, China. They deduced that its asymmetrical layout under self-weight
was likely the main reason for its structural deformation. This analysis was possible due to
the high-resolution and high-precision data provided by TLS, which is particularly useful in
the investigation of complex structures. Yang and Xu [33] used TLS and photogrammetric
data to monitor composite tunnel structures and discussed segmentation deformation,
cracks, and water seepage. The authors reported that deformation analysis based on TLS
can effectively verify the location of water seepage and cracks, and photogrammetry tech-
nology can clearly identify and quantify the dimension of the damage. In this context, they
highlighted the advantages derived from the integration of the two techniques. Many other
studies integrating TLS and SfM photogrammetry for structural analysis are available in
the literature.

In general, the above-mentioned works are characterized by (i) 3D data acquired by
means of high-resolution and high-precision sensors; (ii) the use of expensive instruments;
and (iii) little information on the time required for the survey. For these reasons, this
work aimed to analyze 3D photogrammetric models extracted using expeditious survey
procedures and low-cost sensors in the field of archaeology/cultural heritage, focusing on
structural analysis for restoration activities. In surveys, SfM photogrammetry allows for the
collection of a large amount of data in a short time, providing better coverage of the object
by integrating ground- and drone-based acquisitions when compared to the expensive
TLS technique. Despite the high-accuracy and high-resolution data provided by the latter
approach, it requires more time for the complete survey and 3D coverage of an object.

By comparing the fast SfM models with the high-precision, high-resolution, high-cost,
and time-consuming TLS data, an estimation of accuracies can be performed. In the case
of poor geometric quality from the 3D photogrammetric reconstruction (low accuracy),
integration with TLS data is necessary to ensure the reliability of the structural analysis;
however, this integration should be limited only to critical areas where the SfM approach
provides inaccurate surfaces.

In this context, low-cost drones and consumer-level cameras (including a smartphone
sensor) were applied in the survey of Illasi Castle, a medieval building located in north-
ern Italy (Figure 1) for which future restoration activities are planned. To highlight the
advantages and limitations of the 3D SfM models extracted using fast procedures, the
data were (i) georeferenced using control points (CPs); (ii) validated using checkpoints
(ChPs); and (iii) compared with a 3D reference model extracted from a TLS survey using
the Leica ScanStation P20, a high-resolution and high-precision instrument, to evaluate the
final accuracies.

Figure 2 shows a flowchart of the methodology applied in this work. By means of
different techniques and sensors, 3D models were extracted, georeferenced (using CPs),
validated (using ChPs), and compared with TLS models as a reference.
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tower along with the surrounding area. (c) Map of the surveyed area showing the RTK GNSS and 
topographic points (stations 1-7) and the topographic network with the location of the ground and 
wall targets (both control points (CPs) and checkpoints (ChPs)). Targets used for TLS (d) and SfM 
(e). 
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Based on the results of the comparisons, the final 3D models used in the structural
analysis were by obtained integrating the SfM data with TLS data only where strictly
necessary, due to the high cost and time-consuming nature of the latter approach.
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2. Illasi Castle

The structure under investigation is composed of two main buildings, the palace and
the tower, which were built simultaneously at the beginning of the 13th century.

The castle is enclosed by an almost circular wall with a radius of about 50 m; the
elevated walls constitute what remains of the structures, while the floors and the roof are
no longer present.

The palace walls are approximately 27 m high. The four perimeter walls form a
rectangular area of about 19.6 × 24 m, where the walls are between 2.7 and 2.8 m thick.
The internal space of the building is divided into two unequal rooms by a 1.2 m thick
wall, running parallel to the perimeter walls in the north–south direction, with an arch in
the center.

From historical documents [34] and the most recent studies based on archaeological
excavations performed in 2003–2008 [35,36], there appears to be a basement in the building,
which is now covered by the ground. The floor, made up of detrital material, exhibits an
irregular level, on average just under the level of the entrance door.

The tower walls are about 32 m high in the highest area. The plan of the tower has a
square shape of about 10.3 × 10.3 m with a wall thickness of approximately 3.2 m. On the
walls of both the palace and the tower, there are various openings at different heights (i.e.,
doors and windows), likely added in different periods.

Beginning in the mid-17th century, the castle was gradually abandoned, starting
the process of deterioration. At present, due to the general state of decay and frequent
localized collapses of material, access to the interior of the two main buildings is limited.
Furthermore, the castle is protected by the Archaeological Superintendence of the Veneto
Region, part of the Italian Ministry of Culture.

Currently, the structures are overgrown with vegetation, which was not removed
before the survey both to lower costs and avoid possible collapses of the walls (Figure 3).
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3. Materials and Methods
3.1. Surveys
3.1.1. RTK GNSS and Topographic Measurements of the Reference Network

A reference network is required to co-register data acquired with different techniques
to the same reference system.

Here, seven intervisible wooden pickets in the ground, located inside and outside the
castle, were measured with a Leica Viva GS 15 GNSS receiver using the RTK approach.
In particular, 2 points inside the palace were used to acquire the visible portions of the 2
rooms separated by an arch structure; they were connected with the external points of the
network by the entrance door.

Subsequently, 20 photogrammetric targets (both CPs and ChPs, Figure 1e) were posi-
tioned, 7 on the ground and 13 on the palace and tower walls (uniformly distributed and
located only on accessible surfaces).

The locations of the reference points were designed for visibility and acquisition from
the ground, using the SLR and smartphone cameras, and from the air, using the drone
(Figure 1). All the targets and points in the network were measured in a local reference
system using a Leica TCR1201 total station.

In the second phase, the coordinates of the network points and targets were trans-
formed in the UTM 32 zone cartographic reference system using GNSS data.

3.1.2. 3D Photogrammetric Survey by Drone

The study area and the castle walls were surveyed using a low-cost drone (Parrot
Anafi) equipped with a camera, which had a 1/2,4” CMOS image sensor, a diagonal of
7.83 mm, a resolution of 21 MP, and a focal length of 4 mm (an equivalent focal length of
23 mm). The survey was performed by combining images from different flights. The flights
were conducted in manual mode to better cover all the surfaces of the buildings, which are
characterized by different depth plans and geometries. A total of 5 flights were executed,
each taking 10–12 min, with an estimated overlap of at least 60% between subsequent
images and a mean GSD (ground sample distance) of 16 mm/pixel.

The inclination of the camera was almost nadiral for the general flight from above. For
the flights dedicated to the walls, two directions were used: perpendicular to the surfaces
and slightly inclined.

A general flight of the study area was executed at a relative altitude between 45 and
60 m, acquiring 152 images for the survey of the top of the hill and the walls together with
the internal vertical walls of the palace, which had a very complex acquisition geometry.
This was due to the limited spaces inside the building that, even in the absence of the roof,
did not allow for the easy movement of the drone inside the structure. Subsequently, a flight
for each vertical external wall of the palace and tower was carried out at a distance of about
10 m, acquiring 258 images in total. In all cases, to achieve the best accuracy, the relations
between the geometry of acquisition, coverage, overlap, and the number and distribution
of targets were set according to works published previously by other authors [37,38].

3.1.3. Ground-Based Photogrammetric Acquisitions

A total of 254 images of the structures with high overlap were also acquired from the
ground using a single-lens reflex (SLR) Canon EOS 5Ds camera (50.6 MP) with a full-frame
36× 24 mm CMOS sensor, a diagonal of 43.27 mm, and a focal length of 35 mm. The survey
was performed using a camera–object distance of about 5–10 m, which provided a wall
pixel size of about 1.5 mm. The images were acquired from different positions around the
buildings, with different inclinations of the camera, and from different perspectives.

Using the same approach and acquisition points as for the SLR camera, a survey
of the tower was performed using a low-cost and commonly available device: a Redmi
Note 7 smartphone equipped with a 48 MP camera and with a 1/2” sensor that provides
8000 × 6000-pixel images. A total of 83 images were obtained (only for the tower).
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3.1.4. TLS Acquisitions

A TLS survey was performed to acquire the high-resolution and high-precision data
necessary to evaluate the accuracies of the 3D models generated with the SfM technique
using images acquired by low-cost sensors.

A time-of-flight (TOF) Leica ScanStation P20 laser scanner was used. This instrument
can acquire the coordinates of the visible surfaces in a local reference system, covering 360◦

in the horizontal plane and 305◦ in the vertical plane; it is characterized by an accuracy
of 2 mm for distance and 8” for angular measurements. The instrument was stationed
at points in the reference network to acquire 6 point clouds using a resolution of 3 mm
at 10 m for the 4 external scans, which were taken further away from the structure, and
6 mm at 10 m for the internal scans of the palace. It should be noted that a point cloud
was not acquired from station 5 because it did not add significant information with respect
to the time required for execution (Figure 1). Each scan was performed by adequately
overlapping it with the previous, and at least 2 TLS targets were acquired (Figure 1d).

This relatively quick procedure was possible because of the use of “known backsight”
measurements. The profile of acquisition employed here allowed us to optimize the time
taken for scans, target measurements, and alignments by using the topographic network,
whose points correspond to the station points and target positions. This allowed us to
accurately locate, measure, and verify the positions of the scanning stations and improve
and control the accuracy of the alignment and co-registration processes in the UTM 32
zone system.

Overall, using the different techniques described above, the complete survey of the
study area and the castle required one working day.

3.2. 3D Data Processing

Photogrammetric 3D point clouds of the palace and the tower were generated via
the SfM technique using the Agisoft Metashape software version 1.8.4 and the available
reference targets. In detail, the total available points—7 ground targets and 13 wall targets
(Figure 1)—were subdivided into 14 CPs (5 ground and 9 wall targets), used in model
computation, and 6 ChPs (2 ground and 4 wall targets), which were not included in the
processing (Figure 4).

For the photo alignment procedure, an automatic camera calibration tool was used.
Subsequently, 4 different 3D models were generated using (i) the aerial-based images
acquired with the drone, (ii) the ground-based images acquired with the SLR camera,
(iii) the ground-based images of the tower acquired with the consumer-level smartphone
camera, and (iv) the integration between the images obtained from the SLR and drone
cameras. The last approach was representative of the best photogrammetric solution,
integrating ground-based SLR acquisitions with images from a low-cost drone for surveying
the higher portions of the buildings.

The processing parameters in the Agisoft Metashape software were set by selecting
“high accuracy” for the extraction of the tie points (sparse cloud), “high quality” and
“mild filtering” for the extraction of the dense cloud, and “dense cloud” and “high face
count” for the extraction of the 3D mesh. The processing times on a workstation with
good performance are listed in Table 1 for the different operations and datasets. It should
be noted that the areas under investigation around the buildings covered by aerial and
terrestrial acquisitions were very different in terms of extension, and the smartphone survey
was limited to the tower. For these reasons, the models have different dimensions and the
processing times had to be evaluated separately.
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Table 1. Processing times related to each step of the Agisoft Metashape workflow separated for each
dataset (d, h, and m indicate days, hours, and minutes, respectively). A workstation with good
performance was used for the processing.

Processing
Time Operation Drone

(h, m)
SLR

(h, m)
Smartphone

(m)
Drone + SLR

(d, h, m)

Tie points
(sparse cloud)

Matching: 0, 31 0, 51 3 0, 1, 16
Alignment: 0, 4 0, 14 2 0, 0, 23

Dense cloud
Depth map
generation: 4, 57 1, 38 14 0, 5, 34

Dense cloud
generation: 19, 16 2, 48 15 2, 17, 10

3D model
(mesh)

Reconstruction: 0, 19 0, 44 22 0, 1, 2
Texturing: 0, 4 0, 36 6 0, 1, 7

The processing of the dense point clouds was performed by computing the confi-
dence values for each dataset. The results highlighted the lower reliability of point clouds
corresponding to vegetated areas, some edges (especially those acquired from a complex
perspective), partially shaded portions, and areas with low visibility. On the other hand,
the main parts of the buildings and the ground had high confidence values, as expected.

In order to understand the potentialities and limits of a commonly available low-cost
sensor in the geometric reconstruction of a historic building, the 3D model of the tower
obtained from the smartphone images was extracted for a direct comparison with the point
cloud provided by the SLR camera.

Moreover, the images acquired by the drone were used to extract the point cloud of
the whole study area (i.e., the top of the hill that hosts the castle and surroundings).
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The processing of the TLS point clouds was performed using the Cyclone software
version 9.3.1, and the final 3D model was generated starting from the coordinates of
the reference topographic network (the stationing of the TLS measurements) and the
TLS targets.

After the generation of the different 3D global models, validation was performed for
each extracted product by comparing the coordinates of the measured ChPs with those
obtained by the processing.

In this context, the availability of CPs allows for the georeferencing of the data, which
provides advantages for future restoration projects (here, the FE analysis was devoted to
restoration), such as for the castle under investigation, while also helping to preserve the
architectural and historical value of the site by providing the only complete and up-to-date
survey of the buildings. Similarly, the availability of ChPs allows for an estimation of
the absolute accuracy that otherwise would not be possible. Moreover, the comparison
between point clouds, used to evaluate the mean distance of the two models, is possible
only if the data are co-registered. In the absence of CPs, co-registration can be performed
by aligning the SfM point cloud with the TLS model; however, this operation inevitably
influences the results of the comparisons.

Finally, the 3D point cloud models of the castle were compared using the CloudCom-
pare software version 2.12 alpha [39] by applying the “M3C2 distance” plugin (multiscale
model to model cloud comparison (M3C2)), which is useful for determining robust signed
distances directly between two aligned point clouds.

In detail, this tool allows for the calculation of the distance between two point clouds,
setting one as the reference with a set of core points (using the full or resampled resolution
data). In most cases, the core points are a sub-sampled version, although the computations
are performed on the original full dataset. This option speeds up processing and takes
into account the fact that computation results are generally required at a lower and more
uniform spatial resolution [40].

To evaluate the performances of the low-cost sensors in the photogrammetric surveys,
the point cloud obtained from the TLS measurements was used as a reference due to the
relatively high resolution, reliability, and precision of the scanning data. Five comparisons
were performed between the different datasets: (i) TLS and drone, (ii) TLS and SLR, (iii) TLS
and integrated drone/SLR, (iv) TLS and smartphone, and (v) smartphone and SLR. Some
specific areas of interest on the tower and castle walls were considered for more detailed
distance calculations to better understand the performances of the surveys in relation to
the type of surface and limitations in the geometry of the acquisitions.

4. Results and Discussion
4.1. Processing of the Point Clouds

Applying the SfM technique by means of the Agisoft Metashape software, the centers
of the images acquired by the drone (Figure 5a,b) and SLR (Figure 5c,d) cameras were
calculated (blue flags represent the image plane).
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Figure 5. Center of image acquisitions (blue flags represent the image plane); (a,b) center of images
acquired by the drone camera; and (c,d) center of images acquired by the SLR camera.

Four 3D models (both point cloud and triangular mesh models) of the castle were
generated (i) using four hundred and ten images acquired with the drone and fourteen CPs
(Figure 6a); (ii) using two hundred and ninety-four images acquired with the SLR camera
and nine CPs (Figure 6c); (iii) using eighty-three images acquired with the smartphone
camera and five CPs only for the tower (Figure 6e); and (iv) using seven hundred and
four images from the drone and SLR camera together with fourteen CPs (Figure 6g). The
same detail of the tower extracted using these four models is shown in Figure 6b,d,f,h,
respectively.

These results highlight the differences in the four final 3D models, both in terms of
the capability of detail representation (data resolution) and photographic quality. In this
context, the best result with respect to completeness and cleanliness was provided by
the combination of images from the SLR and drone cameras, while both the drone and
smartphone models were of lower quality.
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The geometric accuracy of the models was validated automatically using the Agisoft
Metashape software by means of the CPs and ChPs. Table 2 provides the root-mean-square
error (RMSE) of the 3D comparison for each model. Taking into account the ChPs, the best
result was obtained by the model extracted using images from the SLR camera: however,
data derived from the low-cost drone provided a similar RMSE value. Similar accuracies
were reported by Capolupo [41], who compared the results of SfM photogrammetry with
GCPs and ChPs for the All Saints’ Monastery of Cuti (Italy), and Sanseverino et al. [9], who
analyzed a structure similar to that under investigation here (Calabrian fortress “Castle
of Charles V”). However, in these cases, the surveys were not performed using low-cost
sensors and expeditious approaches, highlighting the good results obtained in this work.

Table 2. The number of CPs used in processing, available ChPs (see Figure 4), and comparisons
between the 3D coordinates and the four extracted 3D photogrammetric SfM models in terms
of RMSE.

3D Model N. CPs N. ChPs
RMSE (cm)

CPs ChPs

Drone 14 6 1.4 1.1
SLR 9 4 0.5 1.0

Drone + SLR 14 6 1.1 1.2
Smartphone 5 - 1.9 -

The TLS point clouds were aligned with the Cyclone software using the known
coordinates of the six stations and thirteen targets. The co-registration of the scans had an
average error of 3 mm, according to the results obtained in similar studies [19,26,42].

Figure 7 shows the obtained final 3D point cloud for the external walls of the tower and
the palace, the internal rooms and architectural elements of the palace, and the surrounding
area, representing the top of the hill where the structure is located up to the boundary walls.
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six TLS point clouds. Colors represent point reflectivity in the range of 0–1. On the right, the two
internal rooms of the palace are visible.

4.2. Comparisons between Point Clouds

To evaluate the accuracies of the extracted low-cost photogrammetric point clouds,
each of the four SfM 3D models was compared with the TLS reference model. The final
TLS model was used as a reference due to the high accuracy and high resolution of the data
acquired with the TLS instrument.

No filter was applied to the SfM point clouds in order to directly use all the data
obtained from the processing; this choice was made because the noise produced in the data
and in the low confidence points, which were different between the four datasets, influenced
the comparisons and highlighted specific problems for each type of sensor. The comparisons
were performed using the M3C2 distance computation plugin in CloudCompare software.
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Figure 8 shows the results of the comparisons between the 3D models—TLS and
drone (a), TLS and SLR (b), and TLS and drone + SLR (c)—in terms of distances between
the compared point clouds. The colors, which indicate 3D distances, show maximum
differences in the order of 20 cm.
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The values that could be considered as outliers were mainly located in the lower part
of the palace walls and the internal portions, where the vegetation (see Figures 1, 3 and 6)
limited the reconstruction of the model, created shadow areas and, above all, represented a
surface that was subject to changes during the survey.

The comparisons involving the smartphone model (Figure 9, TLS and smartphone (a)
and SLR and smartphone (b)), while presenting the same maximum differences included
in the 20 cm range, showed more surfaces that were characterized by high distance values.
This was likely due to the lower quality of the smartphone camera. In fact, (i) in the areas
of the tower with more differences between the point clouds, the vegetation coverage was
irrelevant (see Figures 1, 3 and 6), and (ii) in the same areas, the comparisons between the
TLS, SLR, and drone 3D models provided good results (Figure 8). A detailed investigation
highlighted that the high values were located in the upper part of the tower, over the
walls connecting the tower and the palace and the tower and the boundary walls, and in
the inclined walls of the lower portion, where the axis of the camera was far from being
perpendicular to the surfaces. These considerations suggest a greater difficulty of the low-
cost sensor in the 3D reconstruction of the structures acquired in non-optimal geometric
conditions (foreshortened walls, elements in strong perspective, a complex field of view of
the surfaces, etc.).
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smartphone (b). Colors represent the 3D distances between models.

To better analyze the differences between point clouds, three areas were investigated
in detail: (i) portion A of the palace (Figure 8); (ii) portion B of the tower (Figure 9); and
(iii) the internal surfaces of the palace. The first two cases were considered as two elements
of the walls, a corner and an opening, to generalize the study (the analyzed portion of the
tower also had good conditions of acquisition for the smartphone).

Table 3 shows the results of the comparisons in terms of mean distance and standard
deviation for the analysis of all available data. High standard deviation values, from 9.6 cm
to 11.9 cm, were obtained using all the generated 3D data (including the portions with
vegetation); these values were drastically reduced after taking into account only areas A
and B (i.e., walls without vegetation). In the last case, the best results were obtained when
comparing the TLS and SLR models in area A and the TLS and Drone + SLR models in area
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B; in addition, the values of the comparison between TLS and SfM were in agreement with
those obtained by Monego et al. [43], who compared TLS and SfM 3D models of a rocky
spire. Moreover, similar values were obtained by Moyano et al. [44], who validated SfM
photogrammetry for heritage applications by analyzing and comparing the point density
and the 3D mesh geometry obtained using the TLS technique for a 15th-century façade of
Casa de Pilatos in Seville (Spain), a building comparable to the one under investigation.
The comparison between smartphone and SLR, although not necessary given the results
of the TLS and SLR, and TLS and smartphone comparisons, better clarified the limits, in
terms of accuracies, of the SfM technique with the sensors used here.

Table 3. Mean distances and standard deviation values of the comparisons between the TLS model (as
a reference) and the obtained SfM point clouds considering all the available data, area A of Figure 8
(palace), area B of Figure 9 (tower), and the internal portion of the palace.

Mean Distance (cm) Standard Deviation (cm)

Available Data
TLS and Drone 0.9 10.1
TLS and SLR –0.5 9.6

TLS and Drone + SLR 0.6 9.6
TLS and Smartphone –1.5 10.9
Smartphone and SLR 1.5 11.9

Area A
TLS and Drone 0.2 2.4
TLS and SLR –0.3 1.8

TLS and Drone + SLR 0.1 2.2

Area B
TLS and Drone 0.3 2.4
TLS and SLR 0.2 2.7

TLS and Drone + SLR 0.4 2.3
TLS and Smartphone –0.1 4.7
Smartphone and SLR –0.1 7.1

Internal Palace
TLS and Drone + SLR 1.1 7.7

It should be noted that, with respect to the smartphone 3D model (area B), the standard
deviation of the comparison with the TLS final point cloud was decreased by 51% compared
with the best SfM solution (Drone + SLR). Moreover, a standard deviation of 7.1 cm
was obtained when comparing the smartphone and Drone + SLR 3D models. Although
these results are noteworthy, only one specific smartphone was used in this work; in
future studies, other smartphone sensors will be tested in order to better analyze their
performances.

In the internal part of the palace, the comparison with TLS data was performed
considering only the SfM 3D model obtained by integrating the images acquired with
the drone and SLR cameras. This was because data from the drone were characterized
as distorted images due to the impossibility of flying inside the rooms. Similarly, the
images acquired from the ground of the upper part of the internal walls with the SLR
camera had complex geometry. The integration between the two datasets was carried out
to improve the final 3D SfM model. The obtained data were compared with the TLS model,
and the differences between the point clouds generated a high standard deviation value
(7.7 cm). The reasons for this could be (i) the explained complex photogrammetric geometric
acquisitions and/or (ii) the presence of vegetation on the walls that the photogrammetric
technique had more difficulty penetrating (see above) compared to the TLS method. For
these reasons, the final 3D model of the palace was created via the integration of two
contributions: (i) the SfM data derived from the integration of the images acquired with
the drone and SLR cameras for the external surfaces due to better coverage of the shadow
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areas when compared to the TLS acquisitions (there were few TLS stations, Figure 1),
and (ii) the TLS point cloud for the internal portion due to the low accuracy of the SfM
results (Figure 10). In this case, to provide a reliable 3D model for the FE analysis, the
integration of the low-cost and expeditious SfM technique with the high-cost TLS data was
necessary. On one side, in general, if the FE model of a substantial structure, such as the
one investigated in this work, is not very sensitive to uncertainties of a few centimeters,
which are typical of the SfM technique, the results will still be acceptable; on the other
hand, the complex conditions of image acquisition and the presence of significant localized
vegetation in the internal portion of the palace generated artifacts in the geometry of the
3D photogrammetric model that, in many cases, could influence the structural analysis by
changing the results of the FE model. In this context, the ability of the TLS technique to
better penetrate the vegetation made it easier to eliminate these artifacts in the subsequent
editing operations. For these reasons, the use of the TLS technique—only for critical areas
and where it was strictly necessary—slightly extended the time of the survey.
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Figure 10. Final 3D model of the palace integrating the SfM results for the external surfaces (drone +
SLR, in photorealistic representation) with TLS data for the internal portions (in reflectivity represen-
tation, where colors highlight the points’ reflectivity in the range of 0–1).

4.3. Structural Analysis

The geometric 3D survey of the surfaces combined with investigations that allowed
for the analysis of the characteristics of the materials and construction of the structural
elements made it possible to define the resistant system of the palace. From this, once the
actions on the building were defined, local and global seismic analyses were carried out
on the basis of Italian legislation. For local mechanisms, rigid body kinematics analyses
were performed. For global mechanisms, with the aid of an FE model, modal and pushover
analyses (static non-linear) were carried out in the four main directions.

The FE model was created starting from the 3D survey. For this type of degraded
historical building, the simplified 3D model was acceptable [45]. The geometric volume
was created using the Leica Cyclone 3DR and Autodesk AutoCAD 2020 software version
23.1.47.0. Plans and sections were automatically extracted from the 3D model by imposing
an interdistance of 1 m using the former software: a reference plane and the offset value
were fixed in order to progressively intersect the point cloud along a specific direction.
This creates a set of planar sections in the form of polylines, computed by interpolation
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between the points of the cloud and the reference plane. Subsequently, using the latter
software, polylines were imported and edited to remove noise and vegetation. Points in the
range of significant cut planes were used as a reference to generate, through solid modeling
procedures, basic 3D shapes; from 3D shapes, the complex geometry of the building was
then generated with Boolean operations. This was possible because the FE analysis of
massive structures, such as the one investigated in this study, generally does not require
detailed models; a few centimeters of 3D model uncertainty do not lead to significant
variations in the FE model. The solid model obtained, which contains information on all
geometric properties (vertices, edges, faces, and volumes) was imported into Midas FEA
NX software version 1.2.0.

Starting from the geometry, the 3D FE discretization was carried out; the properties of
the materials were attributed to the finite elements (separately for each of the wall types
identified in the survey phase for the different portions of the walls [24,46]). Moreover, the
gravitational loads for the pushover analysis were applied (Figure 11). The obtained results
for one of the analyzed directions (in particular, along the X-axis) in terms of main strain
and main stresses are shown in Figure 12.
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These results were confirmed by applying the same structural analysis procedure to
the 3D model extracted using only the high-cost and high-precision TLS data; no significant
differences were obtained in the FE analysis with respect to the expeditious and low-cost
3D model.

On the basis of the analyses of the local and global collapse mechanisms, a safety as-
sessment of the structure was carried out. The controls on the mechanisms were performed
in terms of the relationship between seismic capacity and seismic acceleration demand. For
the unsatisfied controls, an increase in safety level must be obtained with global or local
interventions.
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of finite elements that assumed values of solid strains and solid stress within the range of values
in black.

5. Conclusions

In this work, low-cost sensors and expeditious surveys were applied to generate
reliable 3D models. Illasi Castle, a degraded historical building in Italy, was surveyed for
structural analysis. Since very high accuracies were not required for this type of object, a
low-cost drone, an SLR camera, and a smartphone were used to acquire images, and 3D
models were extracted by applying SfM photogrammetry. Together with the images, a
TLS survey was performed to validate the SfM models and integrate the 3D data where
unsatisfactory results were obtained. All data were acquired in a single working day.

SfM photogrammetry using low-cost sensors can generate geometrically reliable point
clouds. In the application considered here, an RMSE of up to 2–3 cm could be achieved. In
this context, the use of a consumer-level smartphone (sensors that are increasingly used in
SfM) demonstrated adequate performance considering the purposes of the survey, with
a standard deviation of up to 4–7 cm when compared to the TLS and standard SfM data.
In particular, taking into account the smartphone sensor used in this work, performances
were strongly influenced by the geometric acquisitions, with standard deviation values
that degraded rapidly when moving away from optimal conditions. It should be noted
that further investigations are still required. Future studies should consider the use of
different smartphones, conditions of acquisition, objects (surfaces), inclinations, fields of
view, perspectives, camera–object distances, etc.

In the case study presented here, ground-based TLS acquisitions generated a shadow
area in the upper portion of the walls. In this case, the use of a drone equipped with a laser
scanner sensor increases the costs of the survey, while the high accuracies obtained using
this technique in many cases are not required.

From the results of the structural analysis, comparable values for the relationship
between the capacity and demand of the local and global mechanisms affecting the same
portion of the structure were observed. Finally, a correlation between the crack pattern
of the structures and the concentrations of main strains and stresses in the FE model was
observed from the global analyses.
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