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Sensors and Robotics for Digital Agriculture

Aristotelis C. Tagarakis * and Dionysis Bochtis
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6th km Charilaou-Thermi Rd., 57001 Thessaloniki, Greece; d.bochtis@certh.gr
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The latest advances in innovative sensing and data technologies have led to an in-
creasing implementation of autonomous systems in agricultural production processes.
Physical autonomous systems can accomplish even more complex tasks, while cyber ones
can support timely, accurate and informed decision making, leading to more efficient
farm management and improved profitability in the context of precision agriculture and
Agriculture 4.0. This combination has transformed agricultural robots to machines with
embedded awareness [1,2] also capable of interacting with other machines [3–5], as well as
with human labor [6–8]. On the other hand, sensing technologies in agriculture continu-
ously provide a vast amount of data necessary for the development and implementation of
AI technologies [9–11].

All the above constitutes a closed-loop interaction between the disciplines of sensing,
AI, and robotics technologies (Figure 1). This interaction is the basis of the present Topical
Collection under the purpose of highlighting the corresponding advancements in the
domain of precision agriculture. In this collection, a total of 10 articles are included
covering different aspects of this interaction approach, including topics such as agri-robotics
awareness, human–robot interaction, AI in crop and livestock production, and digital twins
in the context of modern agriculture.

Figure 1. The closed-loop approach for the interaction of the sensors, AI, and robotics entities.

With the recent advances in sensing methods and data acquisition technologies in
agriculture, a vast amount of data became available, paving the way to exploring the
utilization of artificial intelligence in agriculture. This is the main topic that is analyzed
in the comprehensive review provided by Benos et al. [12], as an update of the previ-
ous review presented in [9]. Machine learning refers to a subset of artificial intelligence
and has considerable potential for handling numerous challenges in the establishment of
knowledge-based farming systems. In this study, a thorough review of recent literature
on machine learning in crop, water, soil, and livestock management is analyzed. Maize,
wheat, cattle, and sheep were the most investigated crops and animals, respectively. This
study is anticipated to constitute a guide of the potential advantages of machine learning
in agriculture.

Regarding machine learning applications in crop management, two works are pre-
sented in the collection. Farkhani et al. [13] propose the use of a multi-layer attention
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procedure to present an interpretation of the Deep Neural Network’s (DNN) decisions
through a high-resolution attention map for the classification of weeds. The proposed
architecture can improve the resolution and location of weed areas for efficient weed man-
agement. The second work deals with the mapping of agricultural environments. The
study presented by Anagnostis et al. [14] proposes an approach for the segmentation of
trees in commercial orchards using aerial images obtained by unmanned aerial vehicles
(UAVs). The methodology is based on a deep learning convolutional neural network and
was proven to be efficient for the automated detection and localization of tree canopies. The
trained model was tested on never-before-seen orthomosaic images, achieving performance
levels up to 99%, demonstrating the robustness of the proposed approach.

Deep learning was also utilized in livestock management for the detection and track-
ing of pigs for the quantification of social contacts as described in Wutke et al. [15]. A
convolutional neural network (CNN) was applied on video footage to detect the location
and orientation of pigs tracking the animals’ movement trajectories over a given period
using a Kalman filter (KF) algorithm. This enabled the automatic identification of social
contacts in the form of head–head and head–tail contacts. The specific study demonstrated
the effectiveness of the methodology to enhance animal monitoring systems. The sec-
ond study in this collection concerning technological and digital advances in livestock
regards the use of neck-mounted collars equipped with accelerometers for monitoring
and classifying dairy cattle behaviors (Pavlovic et al.) [16]. Such sensor systems automat-
ically provide information about key cattle behaviors, such as level of restlessness and
ruminating and eating time, assessing the overall welfare, at animal level. Within this
work, the development of algorithms for the classification of cattle states is described. The
results showed that the classification model that was based on linear discriminant analysis
using features selected through Backward Feature Elimination provided the most balanced
tradeoff between performance and computational complexity.

The second group of works regard applications of robotics in agriculture. Crop
harvesting is one of the most demanding, time-consuming, and labor-intensive operations
in high-value crops such as fruit and nut trees, grapes, and various vegetable crops. Due to
its seasonal character, securing the work force to address this task is a great challenge [17].
Therefore, a lot of effort has been invested in the development of autonomous or semi-
autonomous crop-harvesting systems. In most cases, due to the complexity of the operation,
intelligent systems are needed [18]. A review conducted by Navas et al. [19] has been
included in the current collection that addresses the task of automatic crop harvesting,
focusing on the specifications of soft grippers. Soft robotics and soft grippers are promising
approaches in this field due to the specifications required to meet hygiene and manipulation
requirements in unstructured environments when working with delicate products. This
review provides an insight into soft end-effectors for agricultural applications, emphasizing
robotic harvesting, aiming to serve as a guide in the design of soft grippers for fruit
harvesting robots in soft robotics for Agriculture 4.0.

Apart from harvesting, there is a plethora of other field management activities that are
laborious and time-consuming and are subjected to automation. In the study presented
by Kitic et al. [20] an Autonomous Robotic System was developed for real-time, in-field
soil sampling and analysis of nitrates in the soil. The system combines a set of modules
including a commercial robotic platform, an anchoring module, a sampling module, a
sample preparation module, a sample analysis module, and a communication module. The
procedure starts with the definition of the sampling locations using a dedicated cloud-based
platform which processes satellite images using artificial intelligence. Then, automated soil
sampling takes place; each sample is analyzed on the spot and georeferenced, providing a
map which can be used for precision-based fertilizing.

The situational awareness and navigation of autonomous robotic platforms in agricul-
tural fields is a particularly challenging and demanding task due to the irregular nature and
the complexity of such environments. Therefore, mapping the environment for targeted
robotic applications in agricultural fields is challenging due to the high spatial and temporal
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variability which make these environments highly unpredictable [21]. The aim of the study
presented by Tagarakis et al. [22] was to investigate the use of consumer-grade RGB-D
(red, green, blue and depth) and unmanned aerial (UAV) and ground vehicles (UGV) for
autonomous mapping of the environment in commercial orchards and for providing struc-
tural information of the trees such as height and canopy volume. Two systems were used;
the ground-based system consisting of a UGV with an RGB-D camera and the aerial-based
system which consisted of a UAV equipped with high accuracy RTK-GPS and a precise
imaging system. The results from the ground-based mapping system were compared with
the three-dimensional (3D) orthomosaics acquired by the UAV. Both systems performed
adequately well. The fusion of the two datasets (from the ground and above) provided
the most precise representation of the trees. In the pursuit of optimizing the efficiency,
flexibility, and adaptability of agricultural operations, digitalization and automatization
of agricultural practices are considered as the means to achieving the goals of agricultural
production and addressing its modern challenges. However, unmanned systems, aerial
or ground, show autonomy at some level and interact with other dynamic elements in
the fields such as agricultural machinery and humans. Consequently, a new sector has
emerged focused on human–robot interaction (HRI) in agriculture. A systematic review of
the advances in the interaction between humans and agricultural robots was conducted
by Benos et al. [23], reviewing the scholarly literature to capture the current progress
and trends in this promising field while identifying future research directions. Based on
the findings of the review, there is a growing interest in the specific research field which
combines perspectives from several disciplines. In terms of crops, melons, grapes, and
strawberries were the ones with the highest interest for HRI applications, mainly due to
their high value perspective and the low availability of traditional machinery automations
due to the nature of these cropping systems. Collaboration and cooperation were the most
preferred interaction modes, with various levels of automation being examined in the cited
studies. Due to the complexity of the agricultural environments and the tasks taking place
in agricultural operations, there is still a long way to go towards the establishment of viable,
functional, and safe human–robot systems [24,25].

As already mentioned, the digitalization of agriculture is the way forward to the
future of farming in the framework of Agriculture 4.0, improving production systems
and addressing food security, climate protection, and resource management. Due to the
complexity and dynamic nature of agricultural production, sophisticated management
systems are required supporting farmers and farm managers in making informed and
improved decisions. In the review presented by Nasirahmadi et al. [26], the concept of
utilizing digital twins and digital technologies and techniques is presented. A digital twin
is the virtual representation of a physical system. In agriculture, this can be regarded as the
virtual representation of a farm, providing the potential for enhancing productivity and
efficiency while minimizing energy usage and losses. A general framework of digital twins
in soil, irrigation, robotics, farm machinery, and food post-harvest processing in agriculture
is provided.

To conclude, the current Topical Collection provides insights into advanced ICT sys-
tems applied in precision agriculture and digital farming steering towards Agriculture 4.0.
The collection includes works that cover multi-disciplinary applications in both crop and
livestock production systems. The outcomes from the reported articles highlight the impor-
tance of digital systems, sensing technologies, and advanced data analysis methodologies
for making informed decisions supporting the sustainability of future farming.
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D.B. and A.C.T.; supervision, D.B. All authors have read and agreed to the published version
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Abstract: The digital transformation of agriculture has evolved various aspects of management into
artificial intelligent systems for the sake of making value from the ever-increasing data originated from
numerous sources. A subset of artificial intelligence, namely machine learning, has a considerable
potential to handle numerous challenges in the establishment of knowledge-based farming systems.
The present study aims at shedding light on machine learning in agriculture by thoroughly reviewing
the recent scholarly literature based on keywords’ combinations of “machine learning” along with
“crop management”, “water management”, “soil management”, and “livestock management”, and
in accordance with PRISMA guidelines. Only journal papers were considered eligible that were
published within 2018–2020. The results indicated that this topic pertains to different disciplines
that favour convergence research at the international level. Furthermore, crop management was
observed to be at the centre of attention. A plethora of machine learning algorithms were used,
with those belonging to Artificial Neural Networks being more efficient. In addition, maize and
wheat as well as cattle and sheep were the most investigated crops and animals, respectively. Finally,
a variety of sensors, attached on satellites and unmanned ground and aerial vehicles, have been
utilized as a means of getting reliable input data for the data analyses. It is anticipated that this study
will constitute a beneficial guide to all stakeholders towards enhancing awareness of the potential
advantages of using machine learning in agriculture and contributing to a more systematic research
on this topic.

Keywords: machine learning; crop management; water management; soil management; livestock
management; artificial intelligence; precision agriculture; precision livestock farming

1. Introduction

1.1. General Context of Machine Learning in Agriculture

Modern agriculture has to cope with several challenges, including the increasing call
for food, as a consequence of the global explosion of earth’s population, climate changes [1],
natural resources depletion [2], alteration of dietary choices [3], as well as safety and health
concerns [4]. As a means of addressing the above issues, placing pressure on the agricul-
tural sector, there exists an urgent necessity for optimizing the effectiveness of agricultural
practices by, simultaneously, lessening the environmental burden. In particular, these two
essentials have driven the transformation of agriculture into precision agriculture. This
modernization of farming has a great potential to assure sustainability, maximal produc-
tivity, and a safe environment [5]. In general, smart farming is based on four key pillars
in order to deal with the increasing needs; (a) optimal natural resources’ management,
(b) conservation of the ecosystem, (c) development of adequate services, and (d) utilization

Sensors 2021, 21, 3758. https://doi.org/10.3390/s21113758 https://www.mdpi.com/journal/sensors
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of modern technologies [6]. An essential prerequisite of modern agriculture is, definitely,
the adoption of Information and Communication Technology (ICT), which is promoted
by policy-makers around the world. ICT can indicatively include farm management in-
formation systems, humidity and soil sensors, accelerometers, wireless sensor networks,
cameras, drones, low-cost satellites, online services, and automated guided vehicles [7].

The large volume of data, which is produced by digital technologies and usually
referred to as “big data”, needs large storage capabilities in addition to editing, analyzing,
and interpreting. The latter has a considerable potential to add value for society, environ-
ment, and decision-makers [8]. Nevertheless, big data encompass challenges on account
of their so-called “5-V” requirements; (a) Volume, (b) Variety, (c) Velocity, (d) Veracity,
and (e) Value [9]. The conventional data processing techniques are incapable of meeting
the constantly growing demands in the new era of smart farming, which is an important
obstacle for extracting valuable information from field data [10]. To that end, Machine
Learning (ML) has emerged, which is a subset of artificial intelligence [11], by taking
advantage of the exponential computational power capacity growth.

There is a plethora of applications of ML in agriculture. According to the recent
literature survey by Liakos et al. [12], regarding the time period of 2004 to 2018, four
generic categories were identified (Figure 1). These categories refer to crop, water, soil,
and livestock management. In particular, as far as crop management is concerned, it
represented the majority of the articles amongst all categories (61% of the total articles) and
was further sub-divided into:

• Yield prediction;
• Disease detection;
• Weed detection;
• Crop recognition;
• Crop quality.

Figure 1. The four generic categories in agriculture exploiting machine learning techniques, as presented in [12].

The generic categories dealing with the management of water and soil were found
to be less investigated, corresponding cumulatively to 20% of the total number of papers
(10% for each category).

Finally, two main sub-categories were identified for the livestock-related applications
corresponding to a total 19% of journal papers:

• Livestock production;
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• Animal welfare.

1.2. Open Problems Associated with Machine Learning in Agriculture

Due to the broad range of applications of ML in agriculture, several reviews have
been published in this research field. The majority of these review studies have been
dedicated to crop disease detection [13–16], weed detection [17,18], yield prediction [19,20],
crop recognition [21,22], water management [23,24], animal welfare [25,26], and livestock
production [27,28]. Furthermore, other studies were concerned with the implementation of
ML methods regarding the main grain crops by investigating different aspects including
quality and disease detection [29]. Finally, focus has been paid on big data analysis using
ML, aiming at finding out real-life problems that originated from smart farming [30], or
dealing with methods to analyze hyperspectral and multispectral data [31].

Although ML in agriculture has made considerable progress, several open problems
remain, which have some common points of reference, despite the fact that the topic covers
a variety of sub-fields. According to [23,24,28,32], the main problems are associated with
the implementation of sensors on farms for numerous reasons, including high costs of ICT,
traditional practices, and lack of information. In addition, the majority of the available
datasets do not reflect realistic cases, since they are normally generated by a few people
getting images or specimens in a short time period and from a limited area [15,21–23].
Consequently, more practical datasets coming from fields are required [18,20]. Moreover,
the need for more efficient ML algorithms and scalable computational architectures has
been pointed out, which can lead to rapid information processing [18,22,23,31]. The chal-
lenging background, when it comes to obtaining images, video, or audio recordings, has
also been mentioned owing to changes in lighting [16,29], blind spots of cameras, envi-
ronmental noise, and simultaneous vocalizations [25]. Another important open problem
is that the vast majority of farmers are non-experts in ML and, thus, they cannot fully
comprehend the underlying patterns obtained by ML algorithms. For this reason, more
user-friendly systems should be developed. In particular, simple systems, being easy to
understand and operate, would be valuable, as for example a visualization tool with a user-
friendly interface for the correct presentation and manipulation of data [25,30,31]. Taking
into account that farmers are getting more and more familiar with smartphones, specific
smartphone applications have been proposed as a possible solution to address the above
challenge [15,16,21]. Last but not least, the development of efficient ML techniques by in-
corporating expert knowledge from different stakeholders should be fostered, particularly
regarding computing science, agriculture, and the private sector, as a means of designing
realistic solutions [19,22,24,33]. As stated in [12], currently, all of the efforts pertain to
individual solutions, which are not always connected with the process of decision-making,
as seen for example in other domains.

1.3. Aim of the Present Study

As pointed out above, because of the multiple applications of ML in agriculture,
several review studies have been published recently. However, these studies usually
concentrate purely on one sub-field of agricultural production. Motivated by the current
tremendous progress in ML, the increasing interest worldwide, and its impact in various
do-mains of agriculture, a systematic bibliographic survey is presented on the range of the
categories proposed in [12], which were summarized in Figure 1. In particular, we focus
on reviewing the relevant literature of the last three years (2018–2020) for the intention of
providing an updated view of ML applications in agricultural systems. In fact, this work is
an updated continuation of the work presented at [12]; following, consequently, exactly
the same framework and inclusion criteria. As a consequence, the scholarly literature
was screened in order to cover a broad spectrum of important features for capturing the
current progress and trends, including the identification of: (a) the research areas which
are interested mostly in ML in agriculture along with the geographical distribution of the
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contributing organizations, (b) the most efficient ML models, (c) the most investigated
crops and animals, and (d) the most implemented features and technologies.

As will be discussed next, overall, a 745% increase in the number of journal papers
took place in the last three years as compared to [12], thus justifying the need for a new
updated review on the specific topic. Moreover, crop management remained as the most
investigated topic, with a number of ML algorithms having been exploited as a means
of tackling the heterogeneous data that originated from agricultural fields. As compared
to [12], more crop and animal species have been investigated by using an extensive range
of input parameters coming mainly from remote sensing, such as satellites and drones. In
addition, people from different research fields have dealt with ML in agriculture, hence,
contributing to the remarkable advancement in this field.

1.4. Outline of the Paper

The remainder of this paper is structured as follows. The second section briefly
describes the fundamentals of ML along with the subject of the four generic categories
for the sake of better comprehension of the scope of the present study. The implemented
methodology, along with the inclusive criteria and the search engines, is analyzed in the
third section. The main performance metrics, which were used in the selected articles,
are also presented in this section. The main results are shown in the fourth section in the
form of bar and pie charts, while in the fifth section, the main conclusions are drawn by
also discussing the results from a broader perspective. Finally, all the selected journal
papers are summarized in Tables A1–A9, in accordance with their field of application, and
presented in the Appendix A, together with Tables A10 and A11 that contain commonly
used abbreviations, with the intention of not disrupting the flow of the main text.

2. Background

2.1. Fundamentals of Machine Learning: A Brief Overview

In general, the objective of ML algorithms is to optimize the performance of a task,
via exploiting examples or past experience. In particular, ML can generate efficient rela-
tionships regarding data inputs and reconstruct a knowledge scheme. In this data-driven
methodology, the more data are used, the better ML works. This is similar to how well
a human being performs a particular task by gaining more experience [34]. The central
outcome of ML is a measure of generalizability; the degree to which the ML algorithm has
the ability to provide correct predictions, when new data are presented, on the basis of
learned rules originated from preceding exposure to similar data [35]. More specifically,
data involve a set of examples, which are described by a group of characteristics, usually
called features. Broadly speaking, ML systems operate at two processes, namely the learn-
ing (used for training) and testing. In order to facilitate the former process, these features
commonly form a feature vector that can be binary, numeric, ordinal, or nominal [36]. This
vector is utilized as an input within the learning phase. In brief, by relying on training data,
within the learning phase, the machine learns to perform the task from experience. Once
the learning performance reaches a satisfactory point (expressed through mathematical
and statistical relationships), it ends. Subsequently, the model that was developed through
the training process can be used to classify, cluster, or predict.

An overview of a typical ML system is illustrated in Figure 2. With the intention of
forming the derived complex raw data into a suitable state, a pre-processing effort is re-
quired. This usually includes: (a) data cleaning for removing inconsistent or missing items
and noise, (b) data integration, when many data sources exist and (c) data transformation,
such as normalization and discretization [37]. The extraction/selection feature aims at
creating or/and identifying the most informative subset of features in which, subsequently,
the learning model is going to be implemented throughout the training phase [38]. Regard-
ing the feedback loop, which is depicted in Figure 2, it serves for adjustments pertaining to
the feature extraction/selection unit as well as the pre-processing one that further improves
the overall learning model’s performance. During the phase of testing, previously unseen
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samples are imported to the trained model, which are usually represented as feature vec-
tors. Finally, an appropriate decision is made by the model (for example, classification or
regression) in reliance of the features existing in each sample. Deep learning, a subfield
of ML, utilizes an alternative architecture via shifting the process of converting raw data
to features (feature engineering) to the corresponding learning system. Consequently, the
feature extraction/selection unit is absent, resulting in a fully trainable system; it starts
from a raw input and ends with the desired output [39,40].

Figure 2. A graphical illustration of a typical machine learning system.

Based on the learning type, ML can be classified according to the relative litera-
ture [41,42] as:

• Supervised learning: The input and output are known and the machine tries to find
the optimal way to reach an output given an input;

• Unsupervised learning: No labels are provided, leaving the learning algorithm itself
to generate structure within its input;

• Semi-supervised learning: Input data constitute a mixture of labeled and non-labeled
data;

• Reinforcement learning: Decisions are made towards finding out actions that can lead
to the more positive outcome, while it is solely determined by trial and error method
and delayed outcome.

Nowadays, ML is used in facilitating several management aspects in agriculture [12]
and in a plethora of other applications, such as image recognition [43], speech recogni-
tion [44], autonomous driving [45], credit card fraud detection [46], stock market forecast-
ing [47], fluid mechanics [48], email, spam and malware filtering [49], medical diagno-
sis [40], contamination detection in urban water networks [50], and activity recognition [51],
to mention but a few.
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2.2. Brief Description of the Four Generic Categories
2.2.1. Crop Management

The crop management category involves versatile aspects that originated from the
combination of farming techniques in the direction of managing the biological, chemical
and physical crop environment with the aim of reaching both quantitative and qualitative
targets [52]. Using advanced approaches to manage crops, such as yield prediction, disease
detection, weed detection, crop recognition, and crop quality, contributes to the increase
of productivity and, consequently, the financial income. The above aspects constitute key
goals of precision agriculture.

Yield Prediction

In general, yield prediction is one of the most important and challenging topics in
modern agriculture. An accurate model can help, for instance, the farm owners to take
informed management decisions on what to grow towards matching the crop to the existing
market’s demands [20]. However, this is not a trivial task; it consists of various steps.
Yield prediction can be determined by several factors such as environment, management
practices, crop genotypic and phenotypic characteristics, and their interactions. Hence, it
necessitates a fundamental comprehension of the relationship between these interactive
factors and yield. In turn, identifying such kinds of relationships mandates comprehensive
datasets along with powerful algorithms such as ML techniques [53].

Disease Detection

Crop diseases constitute a major threat in agricultural production systems that deteri-
orate yield quality and quantity at production, storage, and transportation level. At farm
level, reports on yield losses, due to plant diseases, are very common [54]. Furthermore,
crop diseases pose significant risks to food security at a global scale. Timely identification
of plant diseases is a key aspect for efficient management. Plant diseases may be provoked
by various kinds of bacteria, fungi, pests, viruses, and other agents. Disease symptoms,
namely the physical evidence of the presence of pathogens and the changes in the plants’
phenotype, may consist of leaf and fruit spots, wilting and color change [55], curling
of leaves, etc. Historically, disease detection was conducted by expert agronomists, by
performing field scouting. However, this process is time-consuming and solely based on vi-
sual inspection. Recent technological advances have made commercially available sensing
systems able to identify diseased plants before the symptoms become visible. Furthermore,
in the past few years, computer vision, especially by employing deep learning, has made
remarkable progress. As highlighted by Zhang et al. [56], who focused on identifying
cucumber leaf diseases by utilizing deep learning, due to the complex environmental back-
ground, it is beneficial to eliminate background before model training. Moreover, accurate
image classifiers for disease diagnosis need a large dataset of both healthy and diseased
plant images. In reference to large-scale cultivations, such kinds of automated processes
can be combined with autonomous vehicles, to timely identify phytopathological problems
by implementing regular inspections. Furthermore, maps of the spatial distribution of the
plant disease can be created, depicting the zones in the farm where the infection has been
spread [57].

Weed Detection

As a result of their prolific seed production and longevity, weeds usually grow and
spread invasively over large parts of the field very fast, competing with crops for the
resources, including space, sunlight, nutrients, and water availability. Besides, weeds
frequently arise sooner than crops without having to face natural enemies, a fact that
adversely affects crop growth [18]. In order to prevent crop yield reduction, weed control is
an important management task by either mechanical treatment or application of herbicides.
Mechanical treatment is, in most cases, difficult to be performed and ineffective if not
properly performed, making herbicide application the most widely used operation. Using
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large quantities of herbicides, however, turns out to be both costly and detrimental for the
environment, especially in the case of uniform application without taking into account the
spatial distribution of the weeds. Remarkably, long-term herbicide use is very likely to
make weeds more resistant, thus, resulting in more demanding and expensive weed control.
In recent years, considerable achievements have been made pertaining to the differentiation
of weeds from crops on the basis of smart agriculture. This discrimination can be accom-
plished by using remote or proximal sensing with sensors attached on satellites, aerial, and
ground vehicles, as well as unmanned vehicles (both ground (UGV) and aerial (UAV)). The
transformation of data gathered by UAVs into meaningful information is, however, still a
challenging task, since both data collection and classification need painstaking effort [58].
ML algorithms coupled with imaging technologies or non-imaging spectroscopy can allow
for real-time differentiation and localization of target weeds, enabling precise application
of herbicides to specific zones, instead of spraying the entire fields [59] and planning of the
shortest weeding path [60].

Crop Recognition

Automatic recognition of crops has gained considerable attention in several scientific
fields, such as plant taxonomy, botanical gardens, and new species discovery. Plant species
can be recognized and classified via analysis of various organs, including leaves, stems,
fruits, flowers, roots, and seeds [61,62]. Using leaf-based plant recognition seems to be the
most common approach by examining specific leaf’s characteristics like color, shape, and
texture [63]. With the broader use of satellites and aerial vehicles as means of sensing crop
properties, crop classification through remote sensing has become particularly popular. As
in the above sub-categories, the advancement on computer software and image processing
devices combined with ML has led to the automatic recognition and classification of crops.

Crop Quality

Crop quality is very consequential for the market and, in general, is related to soil and
climate conditions, cultivation practices and crop characteristics, to name a few. High qual-
ity agricultural products are typically sold at better prices, hence, offering larger earnings
to farmers. For instance, as regards fruit quality, flesh firmness, soluble solids content, and
skin color are among the most ordinary maturity indices utilized for harvesting [64]. The
timing of harvesting greatly affects the quality characteristics of the harvested products
in both high value crops (tree crops, grapes, vegetables, herbs, etc.) and arable crops.
Therefore, developing decision support systems can aid farmers in taking appropriate man-
agement decisions for increased quality of production. For example, selective harvesting is
a management practice that may considerably increase quality. Furthermore, crop quality
is closely linked with food waste, an additional challenge that modern agriculture has
to cope with, since if the crop deviates from the desired shape, color, or size, it may be
thrown away. Similarly to the above sub-section, ML algorithms combined with imaging
technologies can provide encouraging results.

2.2.2. Water Management

The agricultural sector constitutes the main consumer of available fresh water on
a global scale, as plant growth largely relies on water availability. Taking into account
the rapid depletion rate of a lot of aquifers with negligible recharge, more effective water
management is needed for the purpose of better conserving water in terms of accomplishing
a sustainable crop production [65]. Effective water management can also lead to the
improvement of water quality as well as reduction of pollution and health risks [66].
Recent research on precision agriculture offers the potential of variable rate irrigation
so as to attain water savings. This can be realized by implementing irrigation at rates,
which vary according to field variability on the basis of specific water requirements of
separate management zones, instead of using a uniform rate in the entire field. The
effectiveness and feasibility of the variable rate irrigation approach depend on agronomic
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factors, including topography, soil properties, and their effect on soil water in order
to accomplish both water savings and yield optimization [67]. Carefully monitoring
the status of soil water, crop growth conditions, and temporal and spatial patterns in
combination with weather conditions monitoring and forecasting, can help in irrigation
programming and efficient management of water. Among the utilized ICTs, remote sensing
can provide images with spatial and temporal variability associated with the soil moisture
status and crop growth parameters for precision water management. Interestingly, water
management is challenging enough in arid areas, where groundwater sources are used for
irrigation, with the precipitation providing only part of the total crop evapotranspiration
(ET) demands [68].

2.2.3. Soil Management

Soil, a heterogeneous natural resource, involves mechanisms and processes that are
very complex. Precise information regarding soil on a regional scale is vital, as it contributes
towards better soil management consistent with land potential and, in general, sustainable
agriculture [5]. Better management of soil is also of great interest owing to issues like land
degradation (loss of the biological productivity), soil-nutrient imbalance (due to fertilizers
overuse), and soil erosion (as a result of vegetation overcutting, improper crop rotations
rather than balanced ones, livestock overgrazing, and unsustainable fallow periods) [69].
Useful soil properties can entail texture, organic matter, and nutrients content, to mention
but a few. Traditional soil assessment methods include soil sampling and laboratory
analysis, which are normally expensive and take considerable time and effort. However,
remote sensing and soil mapping sensors can provide low-cost and effortless solution for
the study of soil spatial variability. Data fusion and handling of such heterogeneous “big
data” may be important drawbacks, when traditional data analysis methods are used. ML
techniques can serve as a trustworthy, low-cost solution for such a task.

2.2.4. Livestock Management

It is widely accepted that livestock production systems have been intensified in the
context of productivity per animal. This intensification involves social concerns that can
influence consumer perception of food safety, security, and sustainability, based on animal
welfare and human health. In particular, monitoring both the welfare of animals and overall
production is a key aspect so as to improve production systems [70]. The above fields take
place in the framework of precision livestock farming, aiming at applying engineering
techniques to monitor animal health in real time and recognizing warning messages, as
well as improving the production at the initial stages. The role of precision livestock
farming is getting more and more significant by supporting the decision-making processes
of livestock owners and changing their role. It can also facilitate the products’ traceability,
in addition to monitoring their quality and the living conditions of animals, as required
by policy-makers [71]. Precision livestock farming relies on non-invasive sensors, such as
cameras, accelerometers, gyroscopes, radio-frequency identification systems, pedometers,
and optical and temperature sensors [25]. IoT sensors leverage variable physical quantities
(VPQs) as a means of sensing temperature, sound, humidity, etc. For instance, IoT sensors
can warn if a VPQ falls out of regular limits in real-time, giving valuable information
regarding individual animals. As a result, the cost of repetitively and arduously checking
each animal can be reduced [72]. In order to take advantage of the large amounts of data,
ML methodologies have become an integral part of modern livestock farming. Models can
be developed that have the capability of defining the manner a biological system operates,
relying on causal relationships and exploiting this biological awareness towards generating
predictions and suggestions.

Animal Welfare

There is an ongoing concern for animal welfare, since the health of animals is strongly
associated with product quality and, as a consequence, predominantly with the health
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of consumers and, secondarily, with the improvement of economic efficiency [73]. There
exist several indexes for animal welfare evaluation, including physiological stress and
behavioral indicators. The most commonly used indicator is animal behavior, which
can be affected by diseases, emotions, and living conditions, which have the potential to
demonstrate physiological conditions [25]. Sensors, commonly used to detect behavioral
changes (for example, changes in water or food consumption, reduced animal activity),
include microphone systems, cameras, accelerometers, etc.

Livestock Production

The use of sensor technology, along with advanced ML techniques, can increase
livestock production efficiency. Given the impact of practices of animal management on
productive elements, livestock owners are getting cautious of their asset. However, as
the livestock holdings get larger, the proper consideration of every single animal is very
difficult. From this perspective, the support to farmers via precision livestock farming,
mentioned above, is an auspicious step for aspects associated with economic efficiency
and establishment of sustainable workplaces with reduced environmental footprint [74].
Generally, several models have been used in animal production, with their intentions
normally revolving around growing and feeding animals in the best way. However, the
large volumes of data being involved, again, call for ML approaches.

3. Methods

3.1. Screening of the Relative Literature

In order to identify the relevant studies concerning ML in respect to different aspects
of management in agriculture, the search engines of Scopus, Google Scholar, ScienceDirect,
PubMed, Web of Science, and MDPI were utilized. In addition, keywords’ combinations of
“machine learning” in conjunction with each of the following: “crop management”, “water
management”, “soil management”, and “livestock management” were used. Our intention
was to filter the literature on the same framework as [12]; however, focusing solely within
the period 2018–2020. Once a relevant study was being identified, the references of the
paper at hand were being scanned to find studies that had not been found throughout
the initial searching procedure. This process was being iterated until no relevant studies
occurred. In this stage, only journal papers were considered eligible. Thus, non-English
studies, conferences papers, chapters, reviews, as well as Master and Doctoral Theses
were excluded. The latest search was conducted on 15 December 2020. Subsequently,
the abstract of each paper was being reviewed, while, at a next stage, the full text was
being read to decide its appropriateness. After a discussion between all co-authors with
reference to the appropriateness of the selected papers, some of them were excluded, in
the case they did not meet the two main inclusion criteria, namely: (a) the paper was
published within 2018–2020 and (b) the paper referred to one of the categories and sub-
categories, which were summarized in Figure 1. Finally, the papers were classified in these
sub-categories. Overall, 338 journal papers were identified. The flowchart of the present
review methodology is depicted in Figure 3, based on the PRISMA guidelines [75], along
with information about at which stage each exclusive criterion was imposed similarly to
recent systematic review studies such as [72,76–78].

3.2. Definition of the Performance Metrics Commonly Used in the Reviewed Studies

In this subsection, the most commonly used performance metrics of the reviewed
papers are briefly described. In general, these metrics are utilized in an effort to provide
a common measure to evaluate the ML algorithms. The selection of the appropriate
metrics is very important, since: (a) how the algorithm’s performance is measured relies
on these metrics and (b) the metric itself can influence the way the significance of several
characteristics is weighted.
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Figure 3. The flowchart of the methodology of the present systematic review along with the flow of information regarding
the exclusive criteria, based on PRISMA guidelines [75].

Confusion matrix constitutes one of the most intuitive metrics towards finding the
correctness of a model. It is used for classification problems, where the result can be of
at least two types of classes. Let us consider a simple example, by giving a label to a
target variable: for example, “1” when a plant has been infected with a disease and “0”
otherwise. In this simplified case, the confusion matrix (Figure 4) is a 2 × 2 table having
two dimensions, namely “Actual” and “Predicted”, while its dimensions have the outcome
of the comparison between the predictions with the actual class label. Concerning the
above simplified example, this outcome can acquire the following values:

• True Positive (TP): The plant has a disease (1) and the model classifies this case as
diseased (1);

• True Negative (TN): The plant does not have a disease (0) and the model classifies this
case as a healthy plant (0);

• False Positive (FP): The plant does not have a disease (0), but the model classifies this
case as diseased (1);
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• False Negative (FN): The plant has a disease (1), but the model classifies this case as a
healthy plant (0).

Figure 4. Representative illustration of a simplified confusion matrix.

As can be shown in Table 1, the aforementioned values can be implemented in order
to estimate the performance metrics, typically observed in classification problems [79].

Table 1. Summary of the most commonly used evaluation metrics of the reviewed studies.

Name Formula

Accuracy (TP + TN)/(TP + FP + FN + TN)
Recall TP/(TP + FN)

Precision TP/(TP + FP)
Specificity TN/(TN + FP)
F1 score (2 × Recall × Precision)/(Recall + Precision)

Other common evaluation metrics were the coefficient of correlation (R), coefficient of
determination (R2; basically, the square of the correlation coefficient), Mean Absolute Error
(MAE), Mean Absolute Percentage Error (MAPE), and Mean Squared Error (MSE), which
can be given via the following relationships [80,81]:
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MSE =
1
T
·∑T

t=1(Z(t)− X(t))2, (4)

where X(t) and Z(t) correspond to the predicted and real value, respectively, t stands for
the iteration at each point, while T for the testing records number. Accordingly, low values
of MAE, MAPE, and MSE values denote a small error and, hence, better performance. In
contrast, R2 near 1 is desired, which demonstrates better model performance and also that
the regression curve efficiently fits the data.

4. Results

4.1. Preliminary Data Visualization Analysis

Graphical representation of data related to the reviewed studies, by using maps, bar
or pie charts, for example, can provide an efficient approach to demonstrate and interpret
the patterns of data. The data visualization analysis, as it usually refers to, can be vital in
the context of analyzing large amounts of data and has gained remarkable attention in the
past few years, including review studies. Indicatively, significant results can be deduced
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in an effort to identify: (a) the most contributing authors and organizations, (b) the most
contributing international journals (or equivalently which research fields are interested in
this topic), and (c) the current trends in this field [82].

4.1.1. Classification of the Studies in Terms of Application Domain

As can be seen in the flowchart of the present methodology (Figure 3), the literature
survey on ML in agriculture resulted in 338 journal papers. Subsequently, these studies
were classified into the four generic categories as well as into their sub-categories, as
already mentioned above. Figure 5 depicts the aforementioned papers’ distribution. In
particular, the majority of the studies were intended for crop management (68%), while soil
management (10%), water management (10%), and livestock management (12% in total;
animal welfare: 7% and livestock production: 5%) had almost equal contribution in the
present bibliographic survey. Focusing on crop management, the most contributing sub-
categories were yield prediction (20%) and disease detection (19%). The former research
field arises as a consequence of the increasing interest of farmers in taking decisions based
on efficient management that can lead to the desired yield. Disease detection, on the other
hand, is also very important, as diseases constitute a primary menace for food security and
quality assurance. Equal percentages (13%) were observed for weed detection and crop
recognition, both of which are essential in crop management at farm and agricultural policy
making level. Finally, examination of crop quality was relatively scarce corresponding to
3% of all studies. This can be attributed to the complexity of monitoring and modeling the
quality-related parameters.

Figure 5. The classification of the reviewed studies according to the field of application.

In this fashion, it should be mentioned again that all the selected journal papers are
summarized in Tables A1–A9, depending on their field of application, and presented in the
Appendix A. The columns of the tables correspond (from left to right) to the “Reference
number” (Ref), “Input Data”, “Functionality”, “Models/Algorithms”, and “Best Output”.
One additional column exists for the sub-categories belonging in crop management, namely
“Crop”, whereas the corresponding column in the sub-categories pertaining to livestock
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management refers to “Animal”. The present systematic review deals with a plethora of
different ML models and algorithms. For the sake of brevity, the commonly used abbrevia-
tions are used instead of the entire names, which are summarized in Tables A10 and A11
(presented also in the Appendix A). The list of the aforementioned Tables, along with their
content, is listed in Table 2.

Table 2. List of the tables appearing in the Appendix A related to: (a) the categories and sub-categories
of the machine learning applications in agriculture (Tables A1–A9) and (b) the abbreviations of
machine learning models and algorithms (Tables A10 and A11, respectively).

Table Content

A1 Crop Management: Yield Prediction
A2 Crop Management: Disease Detection
A3 Crop Management: Weed Detection
A4 Crop Management: Crop Recognition
A5 Crop Management: Crop Quality
A6 Water Management
A7 Soil Management
A8 Livestock Management: Animal Welfare
A9 Livestock Management: Livestock Production

A10 Abbreviations of machine learning models
A11 Abbreviations of machine learning algorithms

4.1.2. Geographical Distribution of the Contributing Organizations

The subject of this sub-section is to find out the geographical distribution of all the
contributing organizations in ML applications in agriculture. To that end, the author’s
affiliation was taken into account. In case a paper included more than one author, which
was the most frequent scenario, each country could contribute only once in the final map
chart (Figure 6), similarly to [83,84]. As can be gleaned from Figure 6, investigating ML in
agriculture is distributed worldwide, including both developed and developing economies.
Remarkably, out of the 55 contributing countries, the least contribution originated from
African countries (3%), whereas the major contribution came from Asian countries (55%).
The latter result is attributed mainly to the considerable contribution of Chinese (24.9%) as
well as Indian organizations (10.1%). USA appeared to be the second most contributing
country with 20.7% percentage, while Australia (9.5%), Spain (6.8%), Germany (5.9%),
Brazil, UK, and Iran (5.62%) seem to be particularly interested in ML in agriculture. It
should be stressed that livestock management, which is a relatively different sub-field
comparing to crop, water, and soil management, was primary examined from studies
coming from Australia, USA, China, and UK, while all the papers regarding Ireland were
focused on animals. Finally, another noteworthy observation is that a large number of
articles were a result of international collaboration, with the synergy of China and USA
standing out.

4.1.3. Distribution of the Most Contributing Journal Papers

For the purpose of identifying the research areas that are mostly interested in ML
in agriculture, the most frequently appeared international journal papers are depicted in
Figure 7. In total, there were 129 relevant journals. However, in this bar chart, only the
journals contributing with at least 4 papers are presented for brevity. As a general remark,
remote sensing was of particular importance, since reliable data from satellites and UAV, for
instance, constitute valuable input data for the ML algorithms. In addition, smart farming,
environment, and agricultural sustainability were of central interest. Journals associated
with computational techniques were also presented with considerable frequency. A typical
example of such type of journals, which was presented in the majority of the studies with a
percentage of 19.8%, was “Computers and Electronics in Agriculture”. This journal aims at
providing the advances in relation to the application of computers and electronic systems
for solving problems in plant and animal production.
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Figure 6. Geographical distribution of the contribution of each country to the research field focusing on machine learning
in agriculture.

Figure 7. Distribution of the most contributing international journals (published at least four articles) concerning applications
of machine learning in agriculture.
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The “Remote Sensing” and “Sensors” journals followed with approximately 11.8% and
6.5% of the total number of publications, respectively. These are cross-sectoral journals
that are concentrated on applications of science and sensing technologies in various fields,
including agriculture. Other journals, covering this research field, were also “IEEE Access”
and “International Journal of Remote Sensing” with approximately 2.1% and 1.2% contribu-
tion, respectively. Moreover, agriculture-oriented journals were also presented in Figure 7,
including “Precision Agriculture”, “Frontiers in Plant Science”, “Agricultural and Forest Me-
teorology”, and “Agricultural Water Management” with 1–3% percentage. These journals
deal with several aspects of agriculture ranging from management strategies (so as to
incorporate spatial and temporal data as a means of optimizing productivity, resource use
efficiency, sustainability and profitability of agricultural production) up to crop molecular
genetics and plant pathogens. An interdisciplinary journal concentrating on soil functions
and processes also appeared with 2.1%, namely “Geoderma”, plausibly covering the soil
management generic category. Finally, several journals focusing on physics and applied
natural sciences, such as “Applied Sciences” (2.7%), “Scientific Reports” (1.8%), “Biosystems
Engineering” (1.5%), and “PLOS ONE” (1.5%), had a notable contribution to ML studies.
As a consequence, ML in agriculture concerns several disciplines and constitutes a fun-
damental area for developing various techniques, which can be beneficial to other fields
as well.

4.2. Synopsis of the Main Features Associated with the Relative Literature
4.2.1. Machine Learning Models Providing the Best Results

A wide range of ML algorithms was implemented in the selected studies; their ab-
breviations are given in Table A11. The ML algorithms that were used by each study
as well as those that provided the best output have been listed in the last two columns
of Tables A1–A9. These algorithms can be classified into the eight broad families of ML
models, which are summarized in Table A10. Figure 8 focuses on the best performed ML
models as a means of capturing a broad picture of the current situation and demonstrating
advancement similarly to [12].

As can be demonstrated in Figure 8, the most frequent ML model providing the best
output was, by far, Artificial Neural Networks (ANNs), which appeared in almost half of
the reviewed studies (namely, 51.8%). More specifically, ANN models provided the best re-
sults in the majority of the studies concerning all sub-categories. ANNs have been inspired
by the biological neural networks that comprise human brains [85], while they allow for
learning via examples from representative data describing a physical phenomenon. A dis-
tinct characteristic of ANNs is that they can develop relationships between dependent and
independent variables, and thus extract useful information from representative datasets.
ANN models can offer several benefits, such as their ability to handle noisy data [86], a sit-
uation that is very common in agricultural measurements. Among the most popular ANNs
are the Deep Neural Networks (DNNs), which utilize multiple hidden layers between
input and output layers. DNNs can be unsupervised, semi-supervised, or supervised. A
usual kind of DNNs are the Convolutional Neural Networks (CNNs), whose layers, unlike
common neural networks, can set up neurons in three dimensions [87]. In fact, CNNs
were presented as the algorithms that provide the best output in all sub-categories, with
an almost 50% of the individual percentage of ANNs. As stressed in recent studies, such
as that of Yang et al. [88], CNNs are receiving more and more attention because of their
efficient results when it comes to detection through images’ processing.
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Figure 8. Machine Learning models giving the best output.

Recurrent Neural Networks (RNNs) followed, representing approximately 10% of
ANNs, with Long Short-Term Memory (LSTM) standing out. They are called “recurrent”
as they carry out the same process for every element, with the previous computations
determining the current output, while they have a “memory” that stores information
pertaining to what has been calculated so far. RNNs can face problems concerning van-
ishing gradients and inability to “memorize” many sequential data. Towards addressing
these issues, the cell structures of LSTM can control which part of information will be
either stored in long memory or discarded, resulting in optimization of the memorizing
process [51]. Moreover, Multi-Layer Perceptron (MLP), Fully Convolutional Networks
(FCNs), and Radial Basis Function Networks (RBFNs) appeared to have the best perfor-
mance in almost 3–5% of ANNs. Finally, ML algorithms, belonging to ANNs with low
frequency, were Back-Propagation Neural Networks (BPNNs), Modular Artificial Neural
Networks (MANNs), Deep Belief Networks (DBNs), Adaptive-Neuro Fuzzy Inference
System (ANFIS), Subtractive Clustering Fuzzy Inference System (SCFIS), Takagi-Sugeno
Fuzzy Neural Networks (TS-FNN), and Feed Forward Neural Networks (FFNNs).

The second most accurate ML model was Ensemble Learning (EL), contributing to
the ML models used in agricultural systems with approximately 22.2%. EL is a concise
term for methods that integrate multiple inducers for the purpose of making a decision,
normally in supervised ML tasks. An inducer is an algorithm, which gets as an input
a number of labeled examples and creates a model that can generalize these examples.
Thus, predictions can be made for a set of new unlabeled examples. The key feature
of EL is that via combining various models, the errors coming from a single inducer is
likely to be compensated from other inducers. Accordingly, the prediction of the overall
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performance would be superior comparing to a single inducer [89]. This type of ML
model was presented in all sub-categories, apart from crop quality, perhaps owing to the
small number of papers belonging in this subcategory. Support Vector Machine (SVM)
followed, contributing in approximately 11.5% of the studies. The strength of the SVM
stems from its capability to accurately learn data patterns while showing reproducibility.
Despite the fact that it can also be applied for regression applications, SVM is a commonly
used methodology for classification extending across numerous data science settings [90],
including agricultural research.

Decision Trees (DT) and Regression models came next with equal percentage, namely
4.7%. Both these ML models were presented in all generic categories. As far as DT are
concerned, they are either regression or classification models structured in a tree-like
architecture. Interestingly, handling missing data in DT is a well-established problem. By
implementing DT, the dataset can be gradually organized into smaller subsets, whereas,
in parallel, a tree graph is created. In particular, each tree’s node denotes a dissimilar
pairwise comparison regarding a certain feature, while each branch corresponds to the
result of this comparison. As regards leaf nodes, they stand for the final decision/prediction
provided after following a certain rule [91,92]. As for Regression, it is used for supervised
learning models intending to model a target value on the basis of independent predictors.
In particular, the output can be any number based on what it predicts. Regression is
typically applied for time series modeling, prediction, and defining the relationships
between the variables.

Finally, the ML models, leading to optimal performance (although with lower contri-
bution to literature), were those of Instance Based Models (IBM) (2.7%), Dimensionality
Reduction (DR) (1.5%), Bayesian Models (BM) (0.9%), and Clustering (0.3%). IBM ap-
peared only in crop, water, and livestock management, whereas BM only in crop and
soil management. On the other hand, DR and Clustering appeared as the best solution
only in crop management. In brief, IBM are memory-based ML models that can learn
through comparison of the new instances with examples within the training database. DR
can be executed both in unsupervised and supervised learning types, while it is typically
carried out in advance of classification/regression so as to prevent dimensionality effects.
Concerning the case of BM, they are a family of probabilistic models whose analysis is
performed within the Bayesian inference framework. BM can be implemented in both
classification and regression problems and belong to the broad category of supervised
learning. Finally, Clustering belongs to unsupervised ML models. It contains automatically
discovering of natural grouping of data [12].

4.2.2. Most Studied Crops and Animals

In this sub-section, the most examined crops and animals that were used in the
ML models are discussed as a result of our searching within the four sub-categories
of crop management similarly to [12]. These sub-categories refer to yield prediction,
disease detection, crop recognition, and crop quality. Overall, approximately 80 different
crop species were investigated. The 10 most utilized crops are summarized in Figure 9.
Specifically, the remarkable interest on maize (also known as corn) can be attributed to
the fact that it is cultivated in many parts across the globe as well as its versatile usage
(for example, direct consumption by humans, animal feed, producing ethanol, and other
biofuels). Wheat and rice follow, which are two of the most widely consumed cereal
grains. According to the Food and Agriculture Organization (FAO) [93], the trade in
wheat worldwide is more than the summation of all other crops. Concerning rice, it is the
cereal grain with the third-highest production and constitutes the most consumed staple
food in Asia [94]. The large contribution of Asian countries presented in Figure 6, like
China and India, justifies the interest in this crop. In the same vein, soybeans, which are
broadly distributed in East Asia, USA, Africa, and Australia [95], were presented in many
studies. Finally, tomato, grape, canola/rapeseed (cultivated primarily for its oil-rich seed),
potato, cotton, and barley complete the top 10 examined crops. All these species are widely
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cultivated all over the world. Some other indicative species, which were investigated at
least five times in the present reviewed studies, were also alfalfa, citrus, sunflower, pepper,
pea, apple, squash, sugarcane, and rye.

Figure 9. The 10 most investigated crops using machine learning models; the results refer to crop management.

As far as livestock management is concerned, the examined animal species can be
classified, in descending order of frequency, into the categories of cattle (58.5%), sheep and
goats (26.8%), swine (14.6%), poultry (4.9%), and sheepdog (2.4%). As can be depicted in
Figure 10, the last animal, which is historically utilized with regard to the raising of sheep,
was investigated only in one study belonging to animal welfare, whereas all the other
animals were examined in both categories of livestock management. In particular, the most
investigated animal in both animal welfare and livestock production was cattle. Sheep and
goats came next, which included nine studies for sheep and two studies for goats. Cattles
are usually raised as livestock aimed at meat, milk, and hide used for leather. Similarly,
sheep are raised for meat and milk as well as fleece. Finally, swine (often called domestic
pigs) and poultry (for example, chicken, turkey, and duck), which are used mainly for their
meat or eggs (poultry), had equal contribution from the two livestock sub-categories.
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Figure 10. Frequency of animal species in studies concerning livestock management by using machine learning models.

4.2.3. Most Studied Features and Technologies

As mentioned in the beginning of this study, modern agriculture has to incorporate
large amounts of heterogeneous data, which have originated from a variety of sensors over
large areas at various spatial scale and resolution. Subsequently, such data are used as
input into ML algorithms for their iterative learning up until modeling of the process in the
most effective way possible. Figure 11 shows the features and technologies that were used
in the reviewed studies, separately for each category, for the sake of better comprehending
the results of the analysis.

Data coming from remote sensing were the most common in the yield prediction
sub-category. Remote sensing, in turn, was primarily based on data derived from satellites
(40.6% of the total studies published in this sub-category) and, secondarily, from UAVs
(23.2% of the total studies published in this sub-category). A remarkable observation is
the rapid increase of the usage of UAVs versus satellites from the year 2018 towards 2020,
as UAVs seem to be a reliable alternative that can give faster and cheaper results, usually
in higher resolution and independent of the weather conditions. Therefore, UAVs allow
for discriminating details of localized circumscribed regions that the satellites’ lowest
resolution may miss, especially under cloudy conditions. This explosion in the use of UAV
systems in agriculture is a result of the developing market of drones and sensing solutions
attached to them, rendering them economically affordable. In addition, the establishment
of formal regulations for UAV operations and the simplification and automatization of the
operational and analysis processes had a significant contribution on the increasing popu-
larity of these systems. Data pertaining to the weather conditions of the investigated area
were also of great importance as well as soil parameters of the farm at hand. An additional
way of getting the data was via in situ manual measurements, involving measurements
such as crop height, plant growth, and crop maturity. Finally, data concerning topographic,
irrigation, and fertilization aspects were presented with approximately equal frequency.
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Figure 11. Distribution of the most usual features implemented as input data in the machine learning algorithms for each
category/sub-category.

As far as disease detection is concerned, Red-Green-Blue (RGB) images appear to be
the most usual input data for the ML algorithms (in 62% of the publications). Normally,
deep learning methods like CNNs are implemented with the intention of training a classifier
to discriminate images depicting healthy leaves, for example, from infected ones. CNNs
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use some particular operations to transform the RGB images so that the desired features are
enhanced. Subsequently, higher weights are given to the images having the most suitable
features. This characteristic constitutes a significant advantage of CNNs as compared to
other ML algorithms, when it comes to image classification [79]. The second most common
input data came from either multispectral or hyperspectral measurements originated from
spectroradiometers, UAVs, and satellites. Concerning the investigated diseases, fungal
diseases were the most common ones with diseases from bacteria following, as is illustrated
in Figure 12a. This kind of disease can cause major problems in agriculture with detrimental
economic consequences [96]. Other examined origins of crop diseases were, in descending
order of frequency, pests, viruses, toxicity, and deficiencies.

Figure 12. Distribution of the most usual output features of the machine learning algorithms regarding: (a) Disease detection
and (b) Crop quality.

Images were also the most used input data for weed detection purposes. These
images were RGB images that originated mainly from in situ measurements as well as from
UGVs and UAVs and, secondarily, multispectral images from the aforementioned sources.
Finally, other parameters that were observed, although with lower frequency, were satellite
multispectral images, mainly due to the considerably low resolution they provide, video
recordings, and hyperspectral and greyscale images. Concerning crop recognition, the
majority of the studies used data coming mostly from satellites and, secondarily, from in
situ manual measurements. This is attributed to the fact that most of the studies in this
category concern crop classification, a sector where satellite imaging is the most widely
used data source owing to its potential for analysis of time series of extremely large surfaces
of cultivated land. Laboratory measurements followed, while RGB and greyscale images
as well as hyperspectral and multispectral measurements from UAVs were observed with
lower incidence.

The input data pertaining to crop quality consisted mainly of RGB images, while
X-ray images were also utilized (for seed germination monitoring). Additionally, quality
parameters, such as color, mass, and flesh firmness, were used. There were also two studies
using spectral data either from satellites or spectroradiometers. In general, the studies
belonging in this sub-category dealt with either crop quality (80%) or seed germination
potential (20%) (Figure 12b). The latter refers to the seed quality assessment that is essential
for the seed production industry. Two studies were found about germination that both
combined X-ray images analysis and ML.

Concerning soil management, various soil properties were taken into account in
65.7% of the studies. These properties included salinity, organic matter content, and
electrical conductivity of soil and soil organic carbon. Usage of weather data was also
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very common (in 48.6% of the studies), while topographic and data pertaining to the soil
moisture content (namely the ratio of the water mass over the dry soil) and crop properties
were presented with lower frequency. Additionally, remote sensing, including satellite
and UAV multispectral and hyperspectral data, as well as proximal sensing, to a lesser
extent, were very frequent choices (in 40% of the studies). Finally, properties associated
with soil temperature, land type, land cover, root microbial dynamics, and groundwater
salinity make up the rest of data, which are labeled as “other” in the corresponding graph
of Figure 11.

In water management, weather data stood for the most common input data (appeared
in the 75% of the studies), with ET being used in the vast majority of them. In many cases,
accurate estimation of ET (the summation of the transpiration via the plant canopy and the
evaporation from plant, soil, and open water surface) is among the most central elements
of hydrologic cycle for optimal management of water resources [97]. Data from remote
sensors and measurements of soil water content were also broadly used in this category.
Soil water availability has a central impact on crops’ root growth by affecting soil aeration
and nutrient availability [98]. Stem water potential, appearing in three studies, is actually
a measure of water tension within the xylem of the plant, therefore functioning as an
indicator of the crop’s water status. Furthermore, in situ measurements, soil, and other
parameters related to cumulative water infiltration, soil and water quality, field topography,
and crop yield were also used, as can be seen in Figure 11.

Finally, in what concerns livestock management, motion capture sensors, including
accelerometers, gyroscopes, and pedometers, were the most common devices giving in-
formation about the daily activities of animals. This kind of sensors was used solely in
the studies investigating animal welfare. Images, audio, and video recordings came next,
however, appearing in both animal welfare and livestock production sub-categories. Physi-
cal and growth characteristics followed, with slightly less incidence, by appearing mainly
in livestock production sub-category. These characteristics included the animal’s weight,
gender, age, metabolites, biometric traits, backfat and muscle thickness, and heat stress.
The final characteristic may have detrimental consequences in livestock health and product
quality [99], while through the measurement of backfat and muscle thickness, estimations
of the carcass lean yield can be made [100].

5. Discussion and Main Conclusions

The present systematic review study deals with ML in agriculture, an ever-increasing
topic worldwide. To that end, a comprehensive analysis of the present status was conducted
concerning the four generic categories that had been identified in the previous review by
Liakos et al. [12]. These categories pertain to crop, water, soil, and livestock management.
Thus, by reviewing the relative literature of the last three years (2018–2020), several aspects
were analyzed on the basis of an integrated approach. In summary, the following main
conclusions can be drawn:

• The majority of the journal papers focused on crop management, whereas the other
three generic categories contributed almost with equal percentage. Considering the
review paper of [12] as a reference study, it can be deduced that the above picture
remains, more or less, the same, with the only difference being the decrease of the
percentage of the articles regarding livestock from 19% to 12% in favor of those refer-
ring to crop management. Nonetheless, this reveals just one side of the coin. Taking
into account the tremendous increase in the number of relative papers published
within the last three years (in particular, 40 articles were identified in [12] comparing
to the 338 of the present literature survey), approximately 400% more publications
were found on livestock management. Another important finding was the increasing
research interest on crop recognition.

• Several ML algorithms have been developed for the purpose of handling the hetero-
geneous data coming from agricultural fields. These algorithms can be classified in
families of ML models. Similar to [12], the most efficient ML models proved to be
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ANNs. Nevertheless, in contrast to [12], the interest also been shifted towards EL,
which can combine the predictions that originated from more than one model. SVM
completes the group with the three most accurate ML models in agriculture, due to
some advantages, such as its high performance when it works with image data [101].

• As far as the most investigated crops are concerned, mainly maize and, secondarily,
wheat, rice, and soybean were widely studied by using ML. In livestock management,
cattle along with sheep and goats stood out constituting almost 85% of the studies.
Comparing to [12], more species have been included, while wheat and rice as well as
cattle, remain important specimens for ML applications.

• A very important result of the present review study was the demonstration of the
input data used in the ML algorithms and the corresponding sensors. RGB images
constituted the most common choice, thus, justifying the broad usage of CNNs due
to their ability to handle this type of data more efficiently. Moreover, a wide range
of parameters pertaining to weather as well as soil, water, and crop quality was
used. The most common means of acquiring measurements for ML applications was
remote sensing, including imaging from satellites, UAVs and UGVs, while in situ and
laboratory measurements were also used. As highlighted above, UAVs are constantly
gaining ground against satellites mainly because of their flexibility and ability to
provide images with high resolution under any weather conditions. Satellites, on
the other hand, can supply time-series over large areas [102]. Finally, animal welfare-
related studies used mainly devices such as accelerometers for activity recognition,
whereas those ones referring to livestock production utilized primary physical and
growth characteristics of the animal.

As can be inferred from the geographical distribution (illustrated in Figure 6) in
tandem with the broad spectrum of research fields, ML applications for facilitating various
aspects of management in the agricultural sector is an important issue on an international
scale. As a matter of fact, its versatile nature favors convergence research. Convergence
research is a relatively recently introduced approach that is based on shared knowledge
between different research fields and can have a positive impact on the society. This
can refer to several aspects, including improvement of the environmental footprint and
assuring human’s health. Towards this direction, ML in agriculture has a considerable
potential to create value.

Another noteworthy finding of the present analysis is the capturing of the increasing
interest on topics concerning ML analyses in agricultural applications. More specifically,
as can be shown in Figure 13, an approximately 26% increase was presented in the total
number of the relevant studies, if a comparison is made between 2018 and 2019. The
next year (i.e., 2020), the corresponding increase jumped to 109% against 2019 findings;
thus, resulting in an overall 164% rise comparing with 2018. The accelerating rate of the
research interest on ML in agriculture is a consequence of various factors, following the
considerable advancements of ICT systems in agriculture. Moreover, there exists a vital
need for increasing the efficiency of agricultural practices while reducing the environmental
burden. This calls for both reliable measurements and handling of large volumes of data as
a means of providing a wide overview of the processes taking place in agriculture. The
currently observed technological outbreak has a great potential to strengthen agriculture in
the direction of enhancing food security and responding to the rising consumers’ demands.
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Figure 13. Temporal distribution of the reviewed studies focusing on machine learning in agriculture, which were published
within 2018–2020.

In a nutshell, ICT in combination with ML, seem to constitute one of our best hopes to
meet the emerging challenges. Taking into account the rate of today’s data accumulation
along with the advancement of various technologies, farms will certainly need to advance
their management practices by adopting Decision Support Systems (DSSs) tailored to the
needs of each cultivation system. These DSSs use algorithms, which have the ability to
work on a wider set of cases by considering a vast amount of data and parameters that the
farmers would be impossible to handle. However, the majority of ICT necessitates upfront
costs to be paid, namely the high infrastructure investment costs that frequently prevent
farmers from adopting these technologies. This is going to be a pressing issue, mainly in
developing economies, where agriculture is an essential economic factor. Nevertheless,
having a tangible impact is a long-haul game. A different mentality is required by all
stakeholders so as to learn new skills, be aware of the potential profits of handling big data,
and assert sufficient funding. Overall, considering the constantly increasing recognition of
the value of artificial intelligence in agriculture, ML will definitely become a behind-the-
scenes enabler for the establishment of a sustainable and more productive agriculture. It
is anticipated that the present systematic effort is going to constitute a beneficial guide to
researchers, manufacturers, engineers, ICT system developers, policymakers, and farmers
and, consequently, contribute towards a more systematic research on ML in agriculture.
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Appendix A

In this section, the reviewed articles are summarized within the corresponding Tables
as described in Table 2.
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Table A1. Crop Management: Yield Prediction.

Ref Crop Input Data Functionality Models/Algorithms Best Output

[103] Coffee Weather data, soil
fertility

Prediction of Robusta coffee
yield by using various soil

fertility properties
ELM, RF, MLR

ELM: Model with SOM, K, S:
RMSE = 496.35 kgha−1, MAE =

326.40 kgha−1

[104] Maize Weather and satellite
spectral data

Silage maize yield
estimation via Landsat 8 OLI

data
BRT, RFR, SVR, GPR BRT: R = 0.89, RMSE = 4.66

[105] Maize

Soil properties,
topographic,

multispectral aerial
images

Prediction of corn yield and
soil properties (SOM, CEC,

Mg, K, pH)

RF, ANN, SVM, GBM,
Cubist

(1) Corn yield: RF (R2 = 0.53); (2)
SOM: NN (R2 = 0.64); (3) CEC: NN
(R2 = 0.67); (4) K: SVM (R2 = 0.21);
(5) Mg: SVM (R2 = 0.22); (6) pH:

GBM (R2 = 0.15)

[106] Cotton Satellite spectral data Cotton yield estimation ANN

(1) 2013: Yield vs. CI (R =
−0.2–0.60), best ANN (R = 0.68); (2)
2014: Yield vs. CI (R = −0.79–0.84),

best ANN (R = 0.86)

[107] Apple RGB images
Detection and estimation of

the number of apples in
canopy images

MLR
Yield relative error = −10–13%,

Yield relative error STD = 28% of
average tree yield

[108] Maize
Crop data—CERES

model, satellite spectral
data

Forecasting spring maize
yield from Landsat-8 images

SVM, RF, DT, LDA,
KNN

RS: SVM: Acc = 97%, RMSE = 397
kgha−1

[109] Maize, soybean Satellite spectral data
Estimation of corn and

soybean yield via Landsat
and SPOT images

MLR, ANN R2 values: (1) Maize: ANN: 0.92, (2)
Soybean: ANN: 0.90

[110] Turmeric Soil fertility, weather
data

Forecasting oil yield
produced from turmeric

rhizomes
ANN Multilayer-feed-forward NN with

12 nodes: R2 = 0.88

[111] Sunflower Plant height, SPAD Prediction of sunflower seed
yield PLSR, ANN

(1) ANN: RMSE = 0.66 tha−1, R2 =
0.86; (2) PLSR: RMSE = 0.93 tha−1,

R2 = 0.69

[112] Pistachio Irrigation, soil
characteristics

Estimation of pistachio yield
in orchards MLR, ANN Acc values: ANN: 90%, MLR: 28%

[113] Rice
Weather data, irrigation,

planting area,
fertilization

Evaluation of feature subsets
for prediction of paddy crop

yield
ANN, SVR, KNN, RF

Forward Feature Selection:
RF: RMSE = 0.085, MAE = 0.055, R

= 0.93

[114] Potato Satellite spectral data Prediction of potato yield via
Sentinel 2 satellite data

MLR, RQL, LB, SVM,
RF, MARS, KNN, ANN

(1) Reduced dataset: LB: MAE =
8.95%, R2 = 0.89; (2) No feature

selection: SVM: MAE = 8.64%, R2 =
0.93; (3) 1–2 months prior to harvest:

RF: MAE = 8.71%, R2 = 0.89

[115] Wheat Satellite spectral data Prediction of wheat yield SVM, RF, ANN R2 values: (1) SVM: 0.74; (2) RF:
0.68; (3) ANN: 0.68

[116] Soybean, Maize
Hydrological, weather
and satellite spectral

data

Prediction of soybean and
corn yields

DNN, RF, SVM, MARS,
ERT, ANN

DNN (1) Corn: 21–33% more
accurate (2) Soybean: 17–22% more

accurate

[117] Wheat, barley Multispectral images
from UAV

Prediction of barley and
wheat yields CNN

(1) Early growth phase(<25%):
MAE = 484.3 kgha−1, MAPE = 8.8%;

(2) Later growth phase(>25%):
MAE = 484.3 kgha−1, MAPE = 8.8%

[118] Strawberry Multispectral images
from UAV

Detection and counting of
strawberry species for yield

prediction
CNN

Faster RCNN: (1) Detection: MaP =
0.83 (at 2 m), MaP = 0.72 (at 3 m); (2)

Count: Acc = 84.1%, Average
occlusion = 13.5%

[119] Rice
Weather data, irrigation,

planting area,
fertilization

Prediction of paddy fields
yield

ANN, MLR, SVR, KNN,
RF

ANN-MLR: R = 0.99, RMSE = 0.051,
MAE = 0.041

[120] Soybean Weather and satellite
spectral data

Prediction of soybean yield
in 15 states of USA CNN, LSTM 2011–2015: End-of-season

RMSE = 329.53 kgha−1, R2 = 0.78

[121] Maize Satellite spectral data Prediction of maize yield MLR, RF, SVM

RF: (1) yield: R2 = 0.6; (2) GNDVI:
R2 = 0.48;

Best monitoring period:
Crop age = 105–135 days

[122] Mango Multispectral data from
UGV

Estimation of mango
maturity level by simulating

imaging devices of optical
filters

SVM
Estimation of dry matter by using a
4-sensor device with 4 filters: R2 =

0.69

[123] Rapeseed, barley,
wheat

EC, STI, gamma
radiometrics and

weather data
Forecasting crop yield RF RMSE = 0.36–0.42 t/ha, Lin’s CCC

= 0.89–0.92

[53] Maize
Genetic information of

hybrids, soil and
weather data

Prediction of maize yield DNN

(1) With predicted weather data:
RMSE = 12% of average yield, 50%

of STD; (2) Using ideal weather
data: RMSE = 11% of average yield,

46% of STD

[124] Rice RGB leaf images

Prediction of nutrient
deficiencies (P, N, K) in

image leaves from paddy
fields

ANN Acc = 77%
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[125] Rice RGB and multispectral
images from UAV Estimation of rice grain yield CNN

R2 values: (1) Only RGB images:
0.424–0.499; (2) RGB and

multispectral images: 0.464–0.511

[126] Maize Satellite spectral data,
crop modeling data

Estimation of end-of-season
and early maize yield RF

(1) Early maize yield: R2 = 0.53,
RMSE = 271 kgha−1, MAE = 202
kgha−1; (2) End-of-season maize
yield: R2 = 0.59, RMSE = 258 kg

ha−1, MAE = 201 kgha−1

[127] Potato Soil parameters and
tillage treatments

Forecasting of organic potato
yield ANN, MLR

(1) MLR: R2 = 0.894, RMSE = 0.431,
MAE = 0.327; (2) ANN: R2 = 0.95,

RMSE = 0.431, MAE = 0.327

[128] Maize Simulations data,
weather and soil data

Prediction of crop yield
based on gridded crop

meta-models
RF, XGBoost

(1) XGBoost: (a) growing season
climate: R2 = 0.91, MAE = 0.74, (b)
annual climate: R2 = 0.92, MAE =
0.66: (2) RF: (a) growing season

climate: R2 = 0.94, MAE = 0.71, (b)
annual climate: R2 = 0.95, MAE =

0.58

[129] Soybean
Satellite spectral data,

precipitation and
daytime

Forecasting soybean yield RF, multivariate OLS,
LSTM

(1) DOY 16: OLS: MAE = 0.42
Mgha−1; (2) DOY 32: LSTM: MAE =

0.42 Mgha−1; (3) DOY 48: LSTM:
MAE = 0.25 Mgha−1; (4) DOY 64:

LSTM: MAE = 0.24 Mgha−1

[130] Potato

Topography, soil EC,
soil chemistry and

multispectral data from
ground based sensors

Potato tuber yield prediction
via ground based proximal

sensing
LR, KNN, EN, SVR

Best models: (1) SVR: 2017: (a) New
Brunswick: RMSE = 5.97 tha−1, (b)

Prince Edward Island: RMSE = 6.60
tha−1; (2) 2018: (a) New Brunswick

RMSE = 4.62 tha−1, (b) Prince
Edward Island: RMSE = 6.17 tha−1

[131] Rice, maize,
millet, ragi Weather data Prediction of various kharif

crops yield MANN, SVR Overall RMSE = 79.85%

[132] Wheat Soil, weather, and
satellite spectral data

Winter wheat prediction
from four mid-season

timings

RF, GPR, SVM, ANN,
KNN, DT, BT

(1) RF: R2 = 0.81, RMSE = 910–920
kgha−1, MAE = 740 kgha−1; (2)

GPR: R2 = 0.78, RMSE = 920–960
kgha−1, MAE = 735–767 kgha−1

[133] Maize
Data derived from
various cropping

systems

Maize grain yield prediction
from CA and conventional

cropping systems

LDA, MLR, GNB, KNN,
CART, SVM

Best results: LDA: Acc = 0.61,
Precision = 0.59, Recall = 0.59,

F1-score = 0.59

[134] Soybean
Multispectral, RGB and

thermal images from
UAV

Estimation of soybean grain
yield DNN, PLSR, RFR, SVR

DNN: (1) Intermediate-level feature
fusion: R2 = 0.720, Relative RMSE =
15.9%; (2) input-level feature fusion:

R2 = 0.691,
Relative RMSE = 16.8%

[135] Soybean, Maize Weather data and soil
data

Soybean and corn yield
forecasting

CNN-RNN, RF, LASSO,
DNN

CNN-RNN: RMSE values
(bushels/acre): (1) Soybean: 2016:

4.15, 2017: 4.32, 2018: 4.91; (2)
Maize: 2016: 16.48, 2017: 15.74,

2018: 17.64

[136] Grape Multispectral images
from UAV

Estimation of vineyard final
yield MLP

(1) Only NDVI: RMSE = 1.2
kg/vine, Relative error = 28.7%; (2)
Both NDVI ANF VFC: RMSE = 0.9

kg/vine,
Relative error = 21.8%

[137] Rice Satellite spectral data Prediction of rice crop yield RF, SVM

(1) HD NDVI: RF: RMSE = 11.2%,
MAE = 9.1%, SVM: RMSE = 8.7%,
MAE = 5.6%; (2) HDM NDVI: RF:

RMSE = 11.3%, MAE = 9.2%, SVM:
RMSE = 8.7%, MAE = 5.6%

[138] Maize
Fertilization, planting

density, soil EC, satellite
spectral data

Prediction of corn yield
response to nitrogen and

seed rate management
CNN Average value for 9 fields in the

USA: RMSE = 0.7

[139] Sugarcane Monthly precipitation
data

Forecasting of sugarcane
yield RNN RMSE = 0.31 tha−1, MAE = 0.39

tha−1, MAPE = 5.18%

[140] Wheat Satellite spectral and
weather data Estimation of wheat yield

SVR, RF, Cubist,
XGBoost, MLP, GPR,

KNN, MARS
SVR: RMSE = 0.55 tha−1, R2 = 0.77

[141] Maize, Soybean Satellite spectral data Forecasting of maize and
soybean yield MLR, ANN

ANN: (1) Corn: RMSE = 4.83–8.41,
R = 0.91–0.99; (2) Soybean: RMSE =

5.18–7.77, R = 0.79–0.99

[142] Maize Satellite spectral and
weather data

Prediction of maize yield
under severe weather

conditions
DNN (1) Drought cases: R = 0.954; (2)

Heatwave cases: R = 0.887–0.914

[143] Rice Weather data Paddy yield prediction ANN R = 0.78–1.00,
MSE = 0.040–0.204

[144] Maize Plant population, soil
and weather data

Maize yield forecasting in 3
US states of Corn Belt

XGBoost, RF, LASSO,
GBM, WEL WEL: RMSE = 1.138 kgha−1

[145] Maize Satellite spectral and
weather data Estimation of maize yield DLS R2 = 0.76, RMSE = 0.038 tha−1
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[146] Various crops Satellite spectral and
weather data

Prediction of autumn crops
yield SVR, RF, DNN

RMSE values (×104 tons)
SVR = 501.98; RF = 477.45; DNN =

253.74

[147] Wheat Multispectral images
from UAV

Growth monitoring and
yield prediction of wheat in

key growth stages

LR, SMLR, PLSR, ANN,
RF

Best results: RF:
R2 = 0.78, RMSE = 0.103

[148] Cotton
Topographic, weather,

soil and satellite
spectral data

Within-field yield prediction RF, GB Best results: RF: RMSE = 0.20 tha−1,
CCC = 0.50–0.66

[149] Cotton Satellite spectral data Yield prediction RF, CART RF: RMSE = 62.77 Kg ha−1, MAPE =
0.32

[150] Rice Multispectral images
from UAV Prediction of rice grain yield RF RMSE = 62.77 Kg ha−1, MAPE =

0.32

[151] Soybean Multispectral images
from UAV Yield estimation in soybean MLP R = 0.92

[152] Potato Weather, irrigation, and
satellite spectral data

Forecasting of yield in potato
fields at municipal level RF, SVM, GLM

(1) winter cycle: R2 = 0.757, %RMSE
= 18.9; (2) summer cycle; R2 = 0.858,

%RMSE = 14.9
[153] Sugarcane Satellite spectral data Prediction of sugarcane yield MLR R2 = 0.92–0.99

[154] Cotton Multispectral images
from UAV Estimation of cotton yield ANN, SVR, RFR ANN: R2 = 0.9

[155] Rice Weather and soil data Prediction of rice yields from
Blockchain nodes RF, MLR, GBR, DTR RF: R2 = 0.941, %RMSE = 0.62, MAE

= 0.72

[156] Maize Multispectral images
from UAV

Prediction of maize yield at
specific phenological stages GB Stage V10: R2 = 0.90; Stage VT: R2 =

0.93

[157] Wheat
Satellite spectral and

weather data, soil
hydraulic properties

Forecasting of wheat yield RF, MLR RF: 1 month before harvest: R =
0.85, RMSE = 0.70 tha−1, ROC = 0.90

[158] Maize Soil and weather data Estimation of maize yield
with publicly available data

LSTM, LASSO, RF, SVR,
AdaBoost

LSTM: MAE = 0.83 (buac−1), MAPE
= 0.48%

[159] Rice Soil and weather data
Finding optimal features
gathering for forecasting

paddy yield
RF, DT, GBM RF: MSE = 0.07, R2 = 0.67;

[160] Alfalfa Hyperspectral data
from UAV

In-season alfalfa yield
forecast

Combination of RF,
SVR, KNN R2 = 0.874

[161] Maize Multispectral images
from UAV Yield prediction of maize BPNN, SVM, RF, ELM SVM: RMSE = 1.099, MAE = 0.886

[162] Mentha

Satellite spectral data,
field inventory data
(soil, plant height,

biomass)

Mentha crop biomass
forecasting MLP R2 = 0.762, RMSE = 2.74 th−1

[163] Wheat Multispectral images
from UAV

Prediction of wheat grain
yield LR, RF, SVM, ANN LR: RMSE = 972 kgha−1, R2 = 0.62

[164] Maize Multispectral images
from UAV Prediction of maize yield RF, RF+R, RF+BAG,

SVM, LR, KNN, ANN RF: R = 0.78, MAE = 853.11 kgha−1

[165] Potato Hyperspectral data
from UAV

Yield prediction at two
growth stages RF, PLSR RF: R2 = 0.63, MAE = 853.11 kgha−1

[166] Carrot Satellite spectral data Carrot yield Mapping RF R2 = 0.82, RMSE = 2.64 Mgha−1;
MAE = 1.74 Mgha−1

[167] Soybean multispectral images
from UAV Predicting yield DT RMSE = 196 kgha−1

[168] Wheat Satellite spectral, soil
and weather data

Winter wheat yield
prediction at a regional level

Combination of LSTM
and CNN R2 = 0.75, RMSE = 732 kgha−1;

[169] Potato Hyperspectral data
from UAV

Yield prediction at two
growth stages RF, PLSR R2 values: RF: 0.63; PLSR: 0.81

[170] Wheat Satellite spectral and
weather data

Winter yield prediction in
the Conterminous United

States

OLS, LASSO, SVM, RF,
AdaBoost, DNN

AdaBoost: R2 = 0.86, RMSE = 0.51
tha−1, MAE = 0.39 tha−1

Acc: Accuracy: CA: Conservation Agriculture; CI: Crop Indices; CEC: Cation Exchange Capacity; CCC: Concordance Correlation Coefficient;
DOY: Day Of Year; EC: Electrical Conductivity; HD: Heading Date; HDM: Heading Date to Maturity; K: Potassium; Mg: Magnesium; N:
Nitrogen; OLI: Operational Land Imager; P: Phosphorus; RGB: Red-Green-Blue; S: Sulphur; SOM: Soil Organic Matter; SPAD: Soil and
Plant Analyzer Development; STI: Soil Texture Information; STD: Standard Deviation; UAV: Unmanned Aerial Vehicle; UGV: Unmanned
Ground Vehicle.

Table A2. Crop Management: Disease Detection.

Ref Crop Input Data Functionality Models/Algorithms Best Output

[171] Various crops RGB images Detection and diagnosis of
plant diseases CNN Acc = 99.53%

[172] Melon Fluorescence, thermal
images

Detection of Dickeya
dadantii in melon plants LR, SVM, ANN ANN: Whole leaves: Acc = 96%; F1

score = 0.99

[173] Tomato RGB images
Recognition of 10 plant

diseases and pests in tomato
plants

CNN Recognition rate = 96%
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[174] Avocando Hyperspectral images
Detection of nitrogen and

iron deficiencies and laurel
wilt disease in avocando

DT, MLP MLP: Detection at early stage: Acc
= 100%

[175] Maize RGB images
Examination of nine factors

affecting disease detection in
maize fields

CNN

Acc values: (1) Original dataset:
76%; Background removed: 79%; (2)

Subdivided (full): 87%; (3)
Subdivided (reduced): 81%

[176] Milk thistle Spectral measurements
form spectroradiometer

Identification of
Microbotryum silybum in

milk thistle plants
MLP-ARD Acc = 90.32%

[177] Tomato Spectral measurements
form spectroradiometer

Detection of leaf diseases
(target, bacterial spots and

late blight) in tomato
KNN

Acc values: (1) Healthy leaves:
100%, (2) Asymptomatic: 100%, (3)
Early stage: 97.8%, (4) Late stage:

100%

[178] Maize RGB images Identification of eight types
of leaf diseases in maize CNN

(1) GoogLeNet:
Acc = 98.9%; (2) Cifar10: Acc =

98.8%

[179] Various crops RGB images Identification of six plant
leaf diseases RBFN (1) Early blight: Acc = 0.8914; (2)

Common rusts: Acc = 0.8871

[180] Citrus RGB images Detection and classification
of citrus diseases SVM

Acc values: 1st dataset: 97%; 1st
and 2nd dataset: 89%; 3rd dataset:

90.4%

[181] Grape Multispectral images
from UAV

Identification of infected
areas CNN

(1) Color space YUV: Acc = 95.84%;
(2) Color space YUV and ExGR: Acc

= 95.92%

[182] Soybeean RGB images
Detection and classification

of three leaf diseases in
soybeans

SVM

(1) Healthy: Acc = 82%; (2) Downy
mildew: Acc = 79%; (3) Frog eye:

Acc = 95.9%; (4) Septoria leaf blight:
Acc = 90%

[183] Millet RGB images
Identification of fungal

disease (mildew) in pearl
millet

CNN Acc = 95.00%, Precision = 90.50%,
Recall = 94.50%, F1 score = 91.75%

[184] Maize RGB images from UAV Detection of northern leaf
blight in maize CNN Acc = 95.1%

[185] Wheat RGB images from UAV
Classification of

helminthosporium leaf
blotch in wheat

CNN Acc = 91.43%,

[186] Avocado RGB images,
multispectral images

Detection of laurel wilt
disease in healthy and

stressed avocado plants in
early stage

MLP, KNN
Healthy vs. Nitrogen deficiency

using 6 bands images: (1) MLP: Acc
= 98%; (2) KNN: Acc = 86%

[187] Basil RGB images

Identification and
classification of five types of
leave diseases in four kinds

of basil leaves

DT, RF, SVM, AdaBoost,
GLM, ANN, NB, KNN,

LDA
RF: Acc = 98.4%

[188] Various crops RGB images Identification of several
diseases on leaves CNN

Acc values: (1) Healthy: 89%; (2)
Mildly diseased: 31%; (3)

Moderately diseased: 87%; (4)
Severely diseased: 94%

[189] Tea RGB images from UAV

Identification of tea red Scab,
tea leaf blight and tea red
leaf spot diseases in tea

leaves

SVM, DT, RF, CNN
CNN: Acc values: (1) tea red Scab:

0.7; (2) tea leaf blight: 1.0; (3)tea red
leaf spot: 1.0

[190] Wheat Hyperspectral images
from UAV

Detection of yellow rust in
wheat plots CNN Acc = 0.85

[191] Grape RGB images Detection of grapevine
yellows in red grapes CNN Sensitivity = 98.96%

Specificity = 99.40%

[192] Maize RGB images from UAV Detection of northern leaf
blight in maize CNN Acc = 0.9979,

F1 score = 0.7153

[193] Sugar beet RGB images
Detection and classification

of diseased leaf spots in
sugar beet

CNN Acc = 95.48%

[194] Various crops RGB images Identification of various
plant leaf diseases CNN Acc = 96.46%

[195] Strawberry RGB images Detection of powdery
mildew in strawberry leaves LDA

(1) Artificial lighting conditions:
recall = 95.26%, precision = 95.45%,

F1 score = 95.37%; (2) Natural
lighting conditions: recall = 81.54%,
precision = 72%, F1 score = 75.95%

[196] Various different
crops RGB images Detection of diseased plants DL Acc = 93.67%

[197] Citrus Hyperspectral images
from UAV

Detection of canker disease
on leaves and immature

fruits

RBFN,
KNN

RBFN: Acc values: (a)
asymptomatic: 94%, (b) early stage:

96%, (c) late stage: 100%

[198] Grape RGB images Detection of diseased vine
on leaves SVM Acc = 95%

[199] Wheat RGB images Identification of three leaf
diseases in wheat CNN Acc values: (1) Septoria: 100%; (2)

Tan Spot: 99.32%; (3) Rust: 99.29%
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[200] Grape Spectral measurements
form spectroradiometer

Classification of Flavescence
dorée disease in grapevines SVM, LDA SVM: Acc = 96%

[201] Papaya RGB images Recognition of five papaya
diseases SVM Acc = 90%, Precision = 85.6%

[202] Rice RGB images
Recognition and

classification of rice infected
leaves

KNN, ANN ANN: Acc = 90%, Recall = 88%

[203] Tomato Hyperspectral images
from UAV

Detection of bacterial spot
and target spot on tomato

leaves
MLP, STDA MLP: Acc values: (a) bacterial spot:

98%, (b) target spot: 97%

[204] Squash

Hyperspectral images
from UAV and

laboratory
measurements

Classification of powdery
mildew in squash RBFN

Acc values: (1) Laboratory:
Asymptomatic: 82%, Late stage:
99%; (2) Field conditions: Early

stage: 89%, Late disease stage: 96%

[205] Tomato

Hyperspectral images
from UAV and

laboratory
measurements

Detection of bacterial spot
and target spot on tomato

leaves
RBFN, STDA

Field conditions: Acc values: (a)
Healthy vs. BS: 98%, (b) Healthy vs.

TS: 96%, (c) Healthy vs. TYLC:
100%

[206] Tomato RGB images Identification of various
diseases in tomato CNN

Acc values: (1) PV dataset: 98.4%;
(2) 2nd dataset: 98.7%; (3) Field

data: 86.27%

[79] Walnut RGB images Identification of anthracnose
infected leaves CNN

Acc values: (1) RGB: 95.97%; (2)
Grayscale: 92.47%; (3) Fast Fourier:

92.94%

[207] Various crops RGB images Classification of infected
leaves DBN Acc = 0.877, Sensitivity = 0.862,

Specificity = 0.877

[208] Grape Multispectral images
from UAV

Detection of Mildew disease
in vineyards CNN Acc values: (1) Grapevine-level:

92%; (2) Leaf level: 87%

[209] Rice RGB images, videos
Video detection of brown

spot, stem borer and sheath
blight in rice

CNN

(1) Brown spot: Recall = 75.0%,
Precision = 90.0%; (2) Stem borer:
Recall = 45.5%, Precision = 71.4%;
(3) Sheath blight: Recall = 74.1%,

Precision = 90.9%

[210] Cassava RGB images
Detection and classification

of diseased leaves of
fine-grain cassava

CNN Acc = 93%

[211] Banana

Satellite spectral data,
Multispectral images

from UAV, RGB images
from UAV

Detection of banana diseases
in different African

landscapes
RF, SVM

RF: Acc = 97%, omissions error =
10%; commission error = 10%;

Kappa coefficient = 0.96

[212] Tomato RGB images
Detection of early blight, leaf

mold and late blight on
tomato leaves

CNN Acc = 98%

[213] Pepper Spectral reflectance at
350–2500 nm

Detection of fusarium
disease in pepper leaves ANN, NB, KNN KNN: Average success rate = 100%

[214] Tomato Spectral measurements
form spectroradiometer

Detection of fusarium
disease on pepper leaves CNN Acc = 98.6%

[215] Citrus Multispectral images
from UAV

Detection of citrus greening
in citrus orchards

SVM, KNN, MLR, NB,
AdaBoost, ANN AdaBoost: Acc = 100%

[216] Soybean RGB images Prediction of charcoal rot
disease in soybean GBT Sensitivity = 96.25%, specificity =

97.33%
[217] Wheat RGB images from UAV Detection of wheat lodging RF, CNN, SVM CNN: Acc = 93%

[218] Tomato Weather data
Prediction of powdery

mildew disease in tomato
plants

ELM Acc = 89.19%, AUC = 88.57%

[219] Soybean RGB images Diagnosis of soybean leaf
diseases CNN Acc = 98.14%

[220] Potato RGB images Identification of early and
late blight disease NB, KNN, SVM SVM: Average Acc = 99.67%

[221] Various crops RGB images Quantification of uncertainty
in detection of plant diseases BDL

Mean softmax probability values:
(1) Healthy: 0.68; (2) Non-Healthy:

0.72;

[222] Coffee Satellite spectral data Identification of coffee berry
necrosis via satellite imagery MLP, RF, NB NB: Acc = 0.534

[223] Tomato RGB images

Recognition of blight,
powdery mildew, leaf mold
fungus and tobacco mosaic

virus diseases

CNN Faster RCNN:
mAP = 97.01%

[224] Maize RGB images
Diagnosis of northern leaf
blight, gray leaf spot, and

common rust diseases
CNN Acc = 98.2%; macro average

precision = 0.98

[225] Grape RGB images
Detection of black measles,

black rot, leaf blight and
mites on leaves

CNN mAP = 81.1%

[226] Grape
Weather data, expert

input (disease incidence
form visual inspection)

Forecasting downy mildew
in vineyards GLM, LASSO, RF, GB GB: AUC = 0.85
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[227] Maize RGB images Detection of northern leaf
blight in maize CNN mAP = 91.83%

[228] Onion RGB images
Detection of downy mildew

symptoms in onions field
images

WSL mAP@0.5 = 74.1–87.2%

[229] Coffee RGB images
Detection of coffee leaf rust

via remote sensing and
wireless sensor networks

CNN F1 score = 0.775, p-value = 0.231

[230] Tomato
Weather data,

multispectral images
captured from UAV

Detection of late blight
disease CNN

Acc values: AlexNet: (1) Transfer
learning: 89.69%; (2) Feature

extraction: 93.4%,

[231] Rice RGB images Detection of brown rice
planthopper CNN Average recall rate = 81.92%,

average Acc = 94.64%

[232] Grape
UAV multispectral
images, depth map

information
Detection of vine diseases CNN VddNet: Accuracy = 93.72%

[233] Apple RGB images Identification of apple leaf
diseases (S, FS, CR) CNN Improved VGG16: Acc = 99.40%(H),

98.04% (S), 98.33%(FS), 100%(CR)

[234] Cotton UAV multispectral
images

Disease classification of
cotton root rot KM, SVM KM: Acc = 88.39%, Kappa = 0.7198

Acc: Accuracy; AUC: Area Under Curve; CR: Cedar Rust; ExGR: Excess Green Minus Excess Red; FS: Frogeye Spot; H: Healthy; mAP:
mean Average Precision; RGB: Red-Green-Blue; S: Scab; TYLC: Tomato Yellow Leaf Curl; UAV: Unmanned Aerial Vehicle; VddNet: Vine
Disease Detection Network.

Table A3. Crop Management: Weed Detection.

Ref Input Data Functionality Models/Algorithms Best Output

[235] RGB images
Classification of thinleaf

(monocots), broa leaf (dicots)
weeds

AdaBoost with NB Acc values: (1) Original dataset: 98.40%;
(2) expanded dataset: 94.72%

[236] RGB images from UAV Detection of weeds in bean,
spinach fields CNN Acc values: (1) Bean field: 88.73%;

(2) Spinach field: 94.34%

[237] RGB images Detection of four weed
species in sugar beet fields SVN, ANN

Overall Acc: SVM: 95.00%; Weed
classification: SVM: 93.33%; Sugar beet

plants: SVM: 96.67%

[238] RGB images from UAV,
multispectral images

Detection of Gramineae weed
in rice fields ANN Best system:

80% < M/MGT < 108%, 70% < MP < 85%

[239] RGB images
Classification of crops (three

species) and weeds (nine
species)

CNN Average Acc: 98.21±0.55%

[240] Multispectral and RGB
images from UAV

Weed mapping between and
within crop rows, (1) cotton;

(2) sunflower
RF

Weed detection Acc:
(1) Cotton: 84%

(2) Sunflower: 87.9%

[241] Hyperspectral images Recognition of three weed
species in maize crops RF

Mean correct classification rate: (1) Zea
mays: 1.0; (2) Convolvulus arvensis:

0.789; Rumex: 0.691; Cirsium arvense
0.752

[242] RGB images from UAV Detection of weeds in early
season maize fields RF Overall Acc = 0.945, Kappa = 0.912

[243] RGB images from UAV
Weed mapping and

prescription map generation
in rice field

FCN
Overall Acc = 0.9196,

mean intersection over union (mean IU)
= 0.8473

[244] Handheld multispectral data

Weed detection in maize and
sugar beet row-crops with:

(1) spectral method; (2)
spatial; (3) both methods

SVM
Mean detection rate: (1) spectral method:
75%; (2) spatial: 79%; (3) both methods:

89%

[245] Multispectral images from
UAV

Development of Weed/crop
segmentation, mapping
framework in sugar beet

fields

DNN AUC: (1) background: 0.839; (2) crop:
0.681; (3) weed: 0.576

[246] RGB images Classification of potato plant
and three weed species ANN Acc = 98.1%

[247] RGB images Estimation of weed growth
stage (18 species) CNN

Maximum Acc = 78% (Polygonum spp.),
minimum Acc = 46% (blackgrass),

average Acc = 70% (the number of leaves)
and 96% for deviation of two leaves

[248] Multispectral images Classification of corn (crop)
and silver beet (weed) SVM Precision = 98%, Acc = 98%

[249] RGB images
Classification of Carolina

Geranium within strawberry
plants

CNN

F1 score values: (1) DetectNet: (0.94,
highest);

(2) VGGNet: 0.77;
(3) GoogLeNet: 0.62

[250] RGB images Classification of weeds in
organic carrot production CNN

Plant-based evaluation:
Acc = 94.6%,

Precision = 93.20%,
Recall = 97.5%,

F1 Score = 95.32%
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Table A3. Cont.

Ref Input Data Functionality Models/Algorithms Best Output

[251] Grayscale images from UGV Recognition of Broad-leaved
dock in grasslands CNN, SVM VGG-F: Acc = 96.8%

[252] Multispectral images from
UAV

Mapping of Black-grass weed
in winter wheat fields CNN

Baseline model:
AUC = 0.78; Weighted kappa = 0.59;

Average misclasssification rate = 17.8%

[253] RGB images
Segmentation of rice and

weed images at seedling stage
in paddy fields

FCN Semantic segmentation:
Average Acc rate = 92.7%

[254] RGB images from UGV

Creation of multiclass dataset
for classification of eight

Australian rangelands weed
species

CNN RS-50: Average Acc = 95.7%, average
inference time = 53.4 ms per image

[255] RGB images

Evaluation of weed detection,
spraying and mapping

system. Two Scenarios: (1)
artificial weeds, plants; (2)

real weeds, plants

CNN
Scenario: (1) Acc = 91%, Recall = 91%; (2)

Acc = 71%, Precision = 78% (for plant
detection and spraying Acc)

[256] RGB images Detection of goldenrod weed
in wild blueberry crops LC, QC QC: Acc = 93.80%

[257] RGB images Detection of five weed species
in turfgrass CNN

Precision values: Dollar weed: VGGNet
(0.97); old world diamond-flower:

VGGNet (0.99); Florida pusley: VGGNet
(0.98); annual bluegrass: DetectNet (1.00)

[258] RGB images Detection of three weed
species in perennial ryegrass CNN

Precision values: Dandelion: DetectNet
(0.99); ground ivy: VGGNet (0.99),

spotted spurge:
AlexNet (0.87)

[259] RGB images, multispectral
images from UGV

Crop-weed classification
along with stem detection FCN Overall: Mean precision = 91.3%, Mean

recall = 96.3%

[260] RGB images
Identification of crops (cotton,

tomato) and weeds
(velvetleaf and nightsade)

CNN, SVM, XGBoost, LR Densenet and SVM:
micro F1 score = 99.29%

[261] Videos recordings Classification of two weeds
species in rice field ANN, KNN Acc values: Right channel (76.62%), Left

channel (85.59%)

[262] RGB images Weed and crop discrimination
in paddy fields MCS, SRF, SVM Acc values: Right channel (76.62%), Left

channel (85.59%)

[263] Gray-scale and RGB images Weed and crop
discrimination in carrot fields RF Acc = 94%

[264] Multispectral and RGB
images

Discrimination of weed and
crops with similar

morphologies
CNN Acc = 98.6%

[265] RGB images Detection of C. sepium weed
and sugar beet plants CNN mAP = 0.751–0.829

APs@IoU0.5 = 0.761–0.897

[266] RGB images Recognition of eight types of
weeds in rangelands CNN, RNN DeepWeeds dataset:

Acc = 98.1%

[267] Multispectral images from
UAV

Weed estimation on lettuce
crops SVM, CNN

F1 score values: (1) SVM: 88%; (2)
CNN-YOLOv3: 94%; (3) Mask R-CNN:

94%

[268] RGB images
Examination of pre-trained
DNN for improvements in

weed identification
CNN (1) Xception: improvement = 0.51%; (2)

Inception-Resnet: improvement = 1.89%

[269] RGB images from UAV Detection of five weeds in
soybean fields CNN Faster RCNN: precision = 065, recall =

0.68, F1 score = 0.66, IoU = 0.85

[270] RGB images
Detection of goose grass

weed in tomato, strawberry
fields

CNN

(1) Strawberry: (a) entire plant: F1 score =
0.75, (b) leaf blade: F1 score = 0.85;

(2) Tomato: (a) entire plant: F1 score =
0.56, (b) leaf blade: F1 score = 0.65

[271] Video recordings Detection of five weed species
in Marfona potato fields ANN Correct classification rate = 98.33%

[272] In situ measurements,
satellite spectral data

Identification of gamba grass
in pasture fields XGBoost Balanced Acc = 86.9%

[273] RGB images from UAV,
satellite spectral data

Weed maps creation in oat
fields RF Acc values: (1) Subset A: 89.0%; (2)

Subset B: 87.1%

[274] In situ measurements, RGB
images from UAV

Identification of Italian
ryegrass in early growth

wheat
DNN Presicion = 95.44%, recall = 95.48%, F

score = 95.56%

[275] RGB images from UGV

Weed detection evaluation of
a spraying robot in potato

fields on: (1) Image-level; (2)
application-level; (3)

field-level

CNN

YOLOv3: (1) Image-level: recall = 57%,
precision = 84%; (2) application-level:
plants detected = 83%; (3) field-level:

correct spraying = 96%

[276] RGB images from UGV
Detection of four weed

species in maize and bean
crops

CNN Average precision = 0.15–0.73

[277] RGB images from UAV Detection of Colchicum
autumnale in grassland sites CNN U-Net: Precision = 0.692, Recall = 0.886,

F2 score = 0.839

[278] RGB images from UAV
Weed mapping of Rumex

obtusifolius in native
grasslands

CNN VGG16: Acc = 92.1%, F1 score = 78.7%

Acc: Accuracy; AUC: Area under Curve; IoU: Intersection over Union; mAP: mean Average Precision; RGB: Red-Green-Blue; UAV:
Unmanned Aerial Vehicle; UGV: Unmanned Ground Vehicle.
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Table A4. Crop Management: Crop Recognition.

Ref Crop Input Data Functionality Models/Algorithms Best Output

[279] Various crops Satellite spectral data Classification of
early-season crops RF Beginning of growth stage: acc =

97.1%, kappa = 93.5%

[280] Various crops Satellite spectral and
phenological data

Identification of various
crops from remote
sensing imagery

SVM, RF, DF DF: (1) 2015: overall acc = 88%; (2)
2016: overall acc = 85%

[281] Maize, Rice, Soybean Satellite spectral data
Three-dimensional

classification of various
crops

CNN, SVM, KNN
CNN: (1) 2015: overall acc = 0.939,
kappa = 0.902; (2) 2016: overall acc

= 0.959, kappa = 0.924

[282] Various crops Satellite spectral data, in
situ data

Identification of crops
growing under plastic
covered greenhouses

DT Overall acc = 75.87%, Kappa = 0.63

[283] Various crops
Satellite data,

phenological, in situ
data

Classification of various
crops NB, DT, KM KM: overall acc = 92.04%, Kappa =

0.7998

[284] Cabbage, Potato RGB images from UAV,
in situ data

Classification of potato
and cabbage crops SVM, RF SVM: overall acc = 90.85%

[285] Various crops Satellite spectral data Classification of various
crops SVM Overall acc = 94.32%

[286] Various crops Satellite spectral data, in
situ data

Classification of various
crops in large areas EBT, DT, WNN EBT: overall acc = 87%

[287] Various crops Satellite spectral data, in
situ data

Classification of various
crops SVM overall acc = 92.64%

[288] Various crops
Field location, in situ
and satellite spectral

data

Classification of six
crops with small sample

sizes

FFNN, ELM, MKL,
SVM MKL: accuracy = 92.1%

[289] Wolfberry, Maize,
Vegetables Satellite spectral data Crop classification in

cloudy and rainy areas RNN Landsat-8: overall acc = 88.3%,
Kappa = 0.86

[290] Maize, Canola, Wheat Satellite spectral data, in
situ data Crop classification RF, ANN, SVM RF: overall acc = 0.93, Kappa = 0.91

[291] Various crops Satellite spectral data Classification of various
crop types

Combination of
FCN-LSTM Acc = 86%, IoU = 0.64

[292] Various crops Satellite spectral data Crop classification of
various crops LightGBM Highest acc: 92.07%

[293] Maize, Peanut,
Soybeans, Rice

Satellite spectral and in
situ data

Prediction of different
crop types FCN, SVM, RF Best crop mapping: FCN: acc = 85%,

Kappa = 0.82

[294] Various crops Satellite spectral and in
situ data

Classification of early
growth crops CNN, RNN, RF Highest Kappa: 1D CNN: 0.942

[295] Various crops Satellite spectral and in
situ data

Classification of various
crops

CNN, LSTM, RF,
XGBoost, SVM CNN: acc = 85.54%, F1 score = 0.73

[296] Various crops Satellite spectral data Classification of
parcel-based crops LSTM, DCN DCN: overall acc = 89.41%

[297] Various crops Satellite spectral data Classification of crops
in farmland parcel maps LSTM, RF, SVM LSTM: overall acc = 83.67%, kappa

= 80.91%

[298] Various crops Satellite spectral data, in
situ data Crop classification SVM, RF, CNN-RNN,

GBM Pixel R-CNN: acc = 96.5%

[299] Zea mays,
Canola, radish Grayscale testbed data Classification of the

crops SVM Quadratic SVM: Precision = 91.87%,
Recall = 91.85%, F1 score = 91.83%

[300] Rice Morphological data

Classification of two
rice species

(Osmancik-97 and
Cammeo)

LR, MLP, SVM, DT, RF,
NB, KNN LR: acc = 93.02%

[301] Soybean Hyperspectral data,
seed properties

Discrimination of 10
soybean seed varieties

TS-FFNN, SIMCA,
PLS-DA, BPNN

TS-FFNN in terms of identification
Acc, stability and computational

cost

[302] Cotton Hyperspectral data,
seed properties

Identification of seven
cotton seed varieties: (1)

Full spectra, (2)
Effective wavelengths

PLS-DA, LGR, SVM,
CNN

(1) Full spectra:
CNN-SoftMax: 88.838%;

(2) Effective wavelengths:
CNN-SVM: 84.260%

[303] Various plants RGB images of leaves
Recognition of 15 plant
species of Swedish leaf

dataset
CNN Macro average: (1) Precision = 0.97,

(2) Recall = 0.97, (3) F1 score = 0.97

[304] Various shrubs and
trees RGB images of leaves Identification of 30

shrub and trees species
RF, SVM, AdaBoost,

ANN SVM: acc = 96.5–98.4%

[305] Various plants RGB images of leaves Identification of seven
plant species

BPNN, SOM, KNN,
SVM BPNN: Recognition rate = 92.47%

[306] Various crops Satellite spectral data Crop classification SVM
SVM (RBF): overall acc values: (1)

2016: 88.3%; (2) 2017: 91%; (3) 2018:
85.00%

[307] Various crops Satellite spectral data Crop classification FCN 3D FCN: overall acc = 97.56%,
Kappa = 95.85%

[308] Cotton, Rice, Wheat,
Gram Satellite spectral data Crop classification RF, KM RF: acc = 95.06%

[309] Various crops Satellite spectral data Crop classification SVM, RF, CART RF: overall acc = 97.85%, Kappa =
0.95

[310] Various crops Satellite spectral data, in
situ data Crop classification RF overall acc = 75%, Kappa = 72%

[311] Maize, Soybean Satellite spectral data Crop classification RF, MLP, LSTM LSTM: confidence interval = 95%

[312] Various crops Satellite spectral and in
situ data Crop classification XGBoost, SVM, RF,

MLP, CNN, RNN CNN: overall acc = 96.65%
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Ref Crop Input Data Functionality Models/Algorithms Best Output

[313] Rice Satellite spectral data Crop classification CNN, SVM, RF,
XGboost, MLP

CNN: overall acc = 93.14%, F1 score
= 0.8552

[314] Various crops Satellite spectral and in
situ data Crop classification RF Overall acc = 0.94, Kappa = 0.93

[315] Various crops Satellite spectral data Crop classification CNN, LSTM, SVM CNN: overall acc = 95.44%, Kappa
= 94.51%

[316] Various crops Satellite spectral data Crop classification prior
to harvesting DT, KNN, RF, SVM RF: overall acc = 81.5%, Kappa =

0.75
[317] Various crops Satellite spectral data Crop classification CNN Overall acc = 98.19%
[318] Various crops Satellite spectral data Crop classification SVM, DA, DT, NNL NNL: F1 score = 0.88

[319] Banana, Rice,
Sugarcane, Cotton

Satellite spectral and in
situ data Crop classification SVM Overall acc = 89%

[320] Various crops Satellite spectral and in
situ data Crop classification RF Overall acc = 93.1%

Acc: Accuracy; IoU: Intersection over Union; RGB: Red-Green-Blue; UAV: Unmanned Aerial Vehicle.

Table A5. Crop Management: Crop Quality.

Ref Crop Input Data Functionality Models/Algorithms Best Output

[64] Apples

Quality features, (flesh
firmness, soluble solids,

fruit mass and skin
color)

Classification of apple
total quality: very poor,

poor, medium, good
and excellent

FIS, ANFIS FIS: acc values: (1) 2005: 83.54%;
2006: 92.73%; 2007: 96.36%

[321] Pepper
RGB images, quality
features (color, mass

and density of peppers)

Recognition of pepper
seed quality BLR, MLP

MLP: 15 traits, stability = 99.4%,
predicted germination = 79.1%,
predicted selection rate = 90.0%

[322] Soybeans Satellite spectral and
soil data

Estimation of crop gross
primary productivity RF, ANN ANN: R2 = 0.92, RMSE = 1.38

gCdm−2

[323] Wheat RGB images captured
by UAV

Estimation of
aboveground nitrogen

content combining
various VI and WFs

PLSR, PSO-SVR PSO-SVR: R2 = 0.9025, RMSE =
0.3287

[324] Millet, rye, maize RGB images captured in
laboratory

Assessment of grain
crops seed quality CNN

Faster R-CNN: (1) Pearl millet:
mAP = 94.3%; (2) rye: mAP = 94.2%,

(3) Maize: mAP = 97.9%

[325] Jatropha curcas X-ray imaging Prediction of vigor and
germination LDA

Acc values:
Fast germination: 82.08%;
Slow germination: 76.00%;
Non-germinated: 88.24%

[326] Various legumes Spectral data form
spectroradiomener

Estimation of five
warm-season legumes

forage quality
PLS, SVM, GP

SVM: All five crops: Acc =
R2

cv
R2

v
=

0.92–0.99, IVTD: Acc =
R2

cv
R2

v
=

0.42–0.98

[327] Forage grass X-ray imaging Prediction of vigor and
seed germination

LDA, PLS-DA, RF, NB,
SVM

PLS-DA: Acc values:
(1) Vigor: FT-NIR: 0.61, X-ray: 0.68,

Combination: 0.58;
(2) Germination: FT-NIR: 0.82,
X-ray: 0.86, Combination: 0.82

[328] Tomato RGB images
Dimensions and mass
estimation for quality

inspection

(1) DSM, (2)
Dimensions (CNN), (3)
Mass estimation on: (a)
MMD (BET, GPR, SVR,
ANN, GPR), (b) EDG

(BET, GPR, SVR, ANN)

(1) DSM: precision = 99.7%; MAE
values: (2) Width (2.38), Length
(2.58); (3) Mass estimation: (a)
MMD (4.71), (b) EDG (13.04)

[329] Peach Hyperspectral images Estimation of soluble
solids content SAE-RF R2 = 0.9184, RMSE = 0.6693

Acc: Accuracy; DSM: Detection and Segmentation Module; EDG: Estimated Dimensions Geometry; IVTD: In Vitro True Digestibility;
RGB; Red-Green-Blue; MMD: Manually Measured Dimensions; mAP: mean Average Precision; PSO: Particle Swarm Optimization; RGB;
Red-Green-Blue; SAE: Stacked AutoEncoder; VI: Vegetation Indices; WF: Wavelet Features.

Table A6. Water management.

Ref Property Input Data Functionality Models/Algorithms Best Output

[330] Crop water status
Weather data, crop

water status, thermal
images

Prediction of vineyard’s
water status. Scenario A:

with RT; Scenario B:
without RT

REPTree

(1) Scenario A: prediction: R2 = 0.58,
RMSE = 0.204 MPa; (2) Scenario B:

prediction: R2 = 0.65, RMSE = 0.184
MPa.

[331] Crop water status Crop water status,
hyperspectral data

Discrimination of stressed
and non-stressed vines RF, XGBoost RF: Acc = 83.3%, Kappa = 0.67

[332] Groundwater level Water table depth,
weather data

Prediction of water
table depth LSTM, FFNN, LSTM: R2 = 0.789–0.952

[333] Irrigation scheduling Weather, irrigation, soil
moisture, yield data

Prediction of weekly
irrigation plan in jojoba

orchards

DTR, RFR, GBRT, MLR,
BTC

(1) Regression: GBRT: Acc = 93%;
(2) Classification: GBRT: Acc = 95%
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Ref Property Input Data Functionality Models/Algorithms Best Output

[334] Crop water status Water status,
multispectral UAV data

Estimation of vineyard water
status MLR, ANN ANN: R2 = 0.83

[335] ET Weather data Estimation of daily ETo ELM, WANN
ELM: RMSE values: Region case A:

0.1785 mm/day; Region case B:
0.359 mm/day

[336] ET Weather data Estimation of daily ETo
RF, M5Tree, GBDT,
XGBoost, SVM, RF

XGBoost: RMSE = 0.185–0.817
mmday−1

[337] Soil water content
Weather data,

volumetric soil moisture
content

Prediction of one-day-ahead
volumetric soil moisture

content
FFNN, LSTM LSTM: R2 > 0.94

[338] Infiltration
Field data, moisture
content, cumulative

infiltration of soil

Estimation of cumulative
infiltration of soil SVM, ANN, ANFIS ANFIS: RMSE = 0.8165 cm, CC =

0.9943

[339] Soil water content
Weather data, soil

moisture difference,
ultraviolet radiation

Prediction of soil moisture SVR R = 0.98, R2 = 0.96, MSE = 0.10

[340] Soil water content Simulated soil moisture
data, weather data

Forecasting of monthly soil
moisture for: Scenario A:
upper; Scenario B: lower

layers

ELM (1) Scenario A: RRMSE = 19.16%;
(2) Scenario B: RRMSE = 18.99%

[341] ET Weather and in situ crop
data

Estimation of actual ET
Scenario A: rainfed maize
field under non-mulching;
Scenario B: partial plastic

film mulching

ANN, SVM

ANN: Scenario A: ET = 399.3 mm,
RMSE = 0.469, MAE = 0.376;

Scenario B: ET = 361.2 mm, RMSE =
0.421, MAE = 0.322

[342] Infiltration and
infiltration rate Soil and hydraulic data

Prediction of cumulative
infiltration and infiltration

rate in arid areas
ANFIS, SVM, RF

SVM: RMSE values: cumulative
infiltration: 0.2791 cm, infiltration

rate: 0.0633 cmh−1

[343] Water quality NIR spectroscopy. Estimation of water
pollution level CNN RMSE = 25.47 mgL−1

[344] ET Weather data, simulated
ET data

Estimation of ETo: (1)
2011–2015; (2) 2016–2017 LSTM

(1) Predictions in 3 sites: R2 > 0.90;
(2) All sites: RMSE = 0.38–0.58

mmday−1

[345] Soil water content
Weather data, potential

ET, simulated soil
moisture data

Estimation of soil moisture FFNN, Ross-IES FFNN: RMSE = 0.15–0.25, NSE =
0.71–0.91

[346] ET Weather data, simulated
ET data, soil data

Estimation of daily kikuyu
grass crop ET

RT, SVR, MLP, KNN,
LGR, MLR, BN, RFC

RFC: R = 0.9936, RMSE = 0.183
mmday−1, MRE = 6.52%

[347] Drought Weather data Evaluation of farmers’
draught perception RF, DT

Most influential parameters:
farmer’s age, education level, years

of experience and number of
cultivated land plots

[348] ET Weather and soil data;
simulated ET Prediction of daily potato ET ANN,

AdaBoost, KNN
KNN: R2 = 0.8965, RMSE = 0.355

mm day−1, MSE = 0.126 mm day−1

[349] Soil water erosion In situ data, geological,
and weather data

Susceptibility mapping of
soil erosion from water RF, GP, NB RF: Acc = 0.91, kappa = 0.94, POD =

0.94

[350] ET, drought Weather data, simulated
ET index Prediction of drought SVR Fuzzy-SVR: R2 = 0.903, RMSE =

0.137, MAE = 0.105

[351] ET Weather data, simulated
ETo

Estimation of daily ETo
CNN, ANN, XGBoost,

RF

CNN: (1) Regional: R2 = 0.91, RMSE
= 0.47; (2) Local: R2 = 0.92, RMSE =

0.37

[352] ET Weather data Estimation of daily ETo ELM, ANN, RF ELM: R2 = 0.920, MAE = 0.394
mmday−1

[353] ET Weather data Prediction of ET in semi-arid
and arid regions CART, CCNN, SVM SVM: (1) Station I: R2 = 0.92; (1)

Station II: R2 = 0.97

[354] Pan evaporation Weather data Prediction of monthly pan
evaporation ELM, ANN, M5Tree ELM: R2 = 0.864–0.924, RMSE =

0.3069–0.4212

[355] ET Weather data, simulated
ETo

Evaluation of ML algorithms
in daily reference ET

prediction

Cubist, SVM, ANN,
MLR

Cubist: R2 = 0.99, RMSE = 0.10
mmday−1, MAE = 0.07 mmday−1

[356] ET Weather data, simulated
ET Estimation of ETo

SVM, MLP, CNN,
GRNN, GMDH SVM: R = 0.96–1.00, ME = 95–99%

[357] Drought Weather data, simulated
Palmer Z-index values

Estimation of Palmer
drought severity index ANN, DT, LR, SVM ANN: R = 0.98, MSE = 0.40, RMSE =

0.56

[358] Water quality
In-situ water quality
data, hyperspectral,

satellite data.

Estimation of inland water
quality.

LSTM, PLSR, SVR,
DNN

DNN: R2 = 0.81, MSE = 0.29, RMSE
= 0.54

[359] Groundwater
In-situ water quality
data, hyperspectral,

satellite spectral data
Estimation of water quality DT Acc = 81.49%, ROC = 87.75%

[360] Groundwater
Weather data, ET,

satellite spectral data,
land use

Estimation of groundwater
withdrawals RF R2 = 0.93, MAE = 4.31 mm, RMSE =

13.50 mm

[361] Groundwater nitrate
concentration

Various
geo-environmental data

Comparison of different ML
models for estimating nitrate

concentration

SVM, Cubist, RF,
Bayesian-ANN

RF: R2 = 0.89, RMSE = 4.24, NSE =
0.87

Acc: Accuracy; CC: Coefficient of Correlation; ET: Evapotranspiration; ETo: reference EvapoTranspiration; ROC: Receiver Operating
Characteristic; ME: Model Efficiency; NSE: Nash-Sutcliffe model efficiency Coefficient; POD: Probability Of Detection.

40



Sensors 2021, 21, 3758

Table A7. Soil management.

Ref Property Input Data Functionality Models/Algorithms Best Output

[362] Soil organic matter Soil properties,
spectrometer NIR data

Estimation of soil
organic matter ELM, SVM TRI-ELM: R2 = 0.83, RPIQ = 3.49

[363] Soil microbial dynamics
Microbial dynamics
measurements from

root samples

Prediction of microbial
dynamics: (1) BP; (2) PS

and (3) ACCA
ANN, SVR, FIS

SCFIS: (1) BP: RMSE = 1350000, R2 =
1.00; (2) PS: RMSE = 45.28, R2 = 1.00;

(3) ACCA: RMSE = 271, R2 = 0.52

[364] Soil salinity
Soil salinity,

hyperspectral data,
satellite data

Prediction of soil
salinity

Bootstrap
BPNN

BPNN with hyperspectral data: R2

= 0.95, RMSE = 4.38 g/kg

[365] Soil properties Simulated topographic
attributes, satellite data

Prediction of SOC, CCE,
clay content Cu, RF, RT, MLR

(1) CCE: Cu: R2 = 0.30, RMSE = 9.52;
(2) SOC: Cu, RF: R2 = 0.55; (3) Clay

contents: RF: R2 = 0.15, RMSE = 7.86

[366] Soil organic matter
Soil properties, weather

data, terrain, satellite
spectral data

Prediction of soil
organic matter DT, BDT, RF, GBRT GBRT: ME = 1.26 g/kg, RMSE =

5.41 g/kg, CCC = 0.72

[367] Soil organic matter
soil properties, satellite,
land cover, topographic,

weather data

Prediction of soil
organic matter CNN, RF, XGBoost XGBoost: ME = 0.3663 g/kg, MSE =

1.0996 g/kg

[368] Electrical conductivity
soil properties,

simulated electrical
conductivity

Prediction of soil
electrical conductivity MLP MLP: WI = 0.780, ENS = 0.725,

ELM = 0.552

[369] Soil moisture content
Hyperspectral images

data, UAV, soil moisture
content data samples

Estimation of soil
moisture content RF, ELM RF: R2 = 0.907,RMSEP = 1.477, RPD

= 3.396

[370] Soil temperature Weather data
Estimation of soil

temperature at various
depths

ELM, GRNN, BPNN,
RF

ELM: RMSE = 2.26–2.95 ◦C, MAE =
1.76–2.26 ◦C, NSE = 0.856–0.930, CC

= 0.925–0.965

[371] SOC Soil properties, vis-NIR
spectral data Estimation of SOC RF

R2 = 0.74–0.84,
RMSEP = 0.14–0.18%, RPD =

1.98–2.5

[372] Soil properties
Soil properties,

visible-NIR, MIR
spectral data

Prediction of total
carbon, cation exchange

capacity and SOC
PLSR, Cu, CNN CNN: R2 = 0.95–0.98

[373] Soil properties

Soil properties,
simulated organic,

mineral samples, soil
spectral data

Estimation of various
soil properties CNN

RMSE values: OC: 28.83 g/kg, CEC:
8.68 cmol+/kg, Clay: 7.47%, Sand:

18.03%,
pH: 0.5 g/kg, N: 1.52 g/kg

[374] Soil moisture content,
soil ET

Soil properties, water,
weather and crop data

Estimation of soil
moisture content and

soil ET
NN-RBF Soil MC: RMSE = 0.428, RSE = 0.985,

MSE = 0.183, RPD = 8.251

[375] Soil salinity Soil salinity, crop field
temperature

Estimation of leaching
water requirements for

saline soils
Naive Bayes classifier Acc = 85%

[376] Soil erosion Weather data, satellite,
soil chemical data

Estimation of soil
erosion susceptibility

Combination of
GWR-ANN GWR-ANN: AUC = 91.64%

[377] Soil fertility Spectral, weather data,
EC, soil properties

Prediction of soil
fertility and
productivity

PLS

(1) Productivity: RMSEC = 0.20
T/ha, RMSECV = 0.54 T/ha, R2 =

0.9189;
(2) Organic matter: R2 = 0.9345,

RMSECV = 0.54%; (3) Clay: R2 =
0.9239, RMSECV = 5.28%

[378] Soil moisture
Multispectral images
from UAV, in situ soil

moisture, weather data.

Retrieval of surface soil
moisture BRT, RF, SVR, RVR BRT: MAE = 3.8%

[379] Soil moisture Soil samples, simulated
PWP, field capacity data

Estimation of PWP and
field capacity ANN, KNN, DL R2 = 0.829, R = 0.911, MAE = 0.027

[380] Soil temperature Weather data Estimation of soil
temperature

GMDH, ELM, ANN,
CART, MLR ELM: R = 0.99

[381] Soil moisture
Soil samples, on-field

thermal, simulated soil
moisture data

Estimation of soil
moisture content ANN, SVM, ANFIS SVM: R = 0.849, RMSE = 0.0131

[382] Gully erosion
Geological,

environmental,
geographical data

Evaluation of gully
erosion susceptibility

mapping

RF, CDTree, BFTree,
KLR RF: AUC = 0.893

[383] Groundwater salinity
Topographic,

groundwater salinity
data

Evaluation of
groundwater salinity
susceptibility maps

StoGB, RotFor, BGLM BGLM: Kappa = 0.85

[384] Heavy metals transfer Soil and crop properties
Identification of factors
related to heavy metals

transfer
RF, GBM, GLM RF: R2 = 0.17–0.84

[385] Land suitability Soil properties, weather,
topography data

Prediction of land
suitability maps SVM, RF RF: Kappa = 0.77, overall acc = 0.79

[386] SOC
Soil properties, satellite,

simulated
environmental data

Prediction of SOC MLR, SVM, Cu, RF,
ANN RF: R2 = 0.68

[387] Electrical conductivity,
SOC

Soil properties, weather
data

Electrical conductivity
and SOC prediction GLM

(1) EC: MSPE = 0.686, MAPE =
0.635; (2) OC: MSPE = 0.413, MAPE

= 0.474

[388] SOC, soil moisture
Proximal spectral data,
electrical conductivity,

soil samples data

Prediction of SOC and
soil moisture 3D maps Cu, RF Cu: R2 = 0.76, CCC = 0.84, RMSE =

0.38%
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[389] Soil aggregate stability Soil samples data Prediction of soil
aggregate stability GLM, ANN ANN: R2 = 0.82

[390] SOC
Soil samples, weather,
topographic, satellite

data
Prediction of SOC Cu, RF, SVM, XGBoost,

KNN
Best SOC prediction: RF: RMSE =

0.35%, R2 = 0.6

[391] Soil moisture In situ soil moisture,
satellite data

Estimation of surface
soil moisture SVM, RF, ANN, EN RF: NSE = 0.73

[392] SOC Composite surface soil,
satellite, weather data Prediction of SOC SVM, ANN, RT, RF,

XGBoost, DNN
DNN: MAE = 0.59%, RMSE =
0.75%, R2 = 0.65, CCC = 0.83

[393] Gully erosion Topographic, weather,
soil data

Mapping of gully
erosion susceptibility LMT, NBTree, ADTree LMT: AUC = 0.944

[394] Gully erosion Satellite spectral data Identification of gully
erosion LDA, SVM, RF Best overall acc: RF: 98.7%

[395] Gully erosion Satellite, weather, land
type maps data Gully erosion mapping LGR Acc = 68%, Kappa = 0.42

ACCA: Aminoyclopropane-1-carboxylate; AUC: Area Under Curve; BP: Bacterial Population; CC: Coefficient of Correlation; CCC:
Concordance Correlation Coefficient; CCE: Calcium Carbonate Equivalent; ET: EvaporoTransporation; MIR: Mid InfraRed; NSE: Nash-
Sutcliffe model efficiency Coefficient; NIR: Near-InfraRed; PS: Phosphate Solubilization; PWP: Permanent Wilting Point; RPIQ: Ratio of
Performance to Interquartile Range; RPD: Relative Percent Deviation; SOC: Soil Organic Carbon; WI: Willmott’s Index.

Table A8. Livestock Management: Animal Welfare.

Ref Animal Input Data Functionality Models/Algorithms Best Output

[396] Swine 3D, 2D video images
Detection of pigs tail

posture as a sign of tail
biting

LMM
Low vs. not low tails: Acc = 73.9%,

Sensitivity = 88.4%, Specificity =
66.8%

[397] Sheep

Accelerometer and
gyroscope attached to
the ear and collar of

sheep

Classification of
Grazing and

Rumination Behavior in
Sheep

RF, SVM, KNN,
Adaboost

RF: Highest overall acc: collar: 92%;
ear: 91%

[398] Sheep Accelerometer,
gyroscope data

Classification of sheep
behavior (lying,

standing and walking)
RF Acc = 95%, F1-score = 91–97% for:

ear: 32 Hz, 7 s, collar: 32 Hz, 5 s

[399] Swine RGB images Recognition of pigs
feeding behavior CNN Faster R-CNN: Precision = 99.6%,

recall = 86.93%

[400] Swine RGB images, depth
images

Recognition of lactating
sow postures CNN

Faster R-CNN: Sow posture:
(1) Recumbency: night: 92.9%,

daytime: 84.1%;
(2) Standing: at night: 0.4%,

daytime: 10.5%
(3) Sitting: night: 0.55%, daytime:

3.4%

[401] Cattle, Sheep, sheepdog Audio field recordings
data

Classification of
animals’ vocalization SVM Acc: cattle: 95.78%, sheep: 99.29%,

dogs: 99.67%

[402] Cattle Accelerometer data Detection of sheep
rumination. SVM Acc = 86.1%

[403] Sheep
Ear-borne accelerometer

data, observation
recordings

Classification of grazed
sheep behavior Scenario

A: walking, standing,
lying, grazing

Scenario B:
active/inactive

Scenario C: body
posture

CART, SVM, LDA, QDA

(1) Scenario A: SVMAcc: 76.9%;
(2) Scenario B: CART

Acc: 98.1%;
(3) Scenario C:

Acc: LDA 90.6%

[404] Goat On-farm videos,
weather data

Classification of goats
behavior

(1) Anomaly detection
(2)

Feeding/non-feeding

KNN, SVR, CNN

(1) Most accurate: KNN: Acc =
95.02–96.5%; (2) Faster R-CNN:

Eating: 55.91–61.33 %, Non-feeding
(Resting): 79.91–81.53 %

[405] Cattle, sheep UAV Video data
Counting and

classification of cattle,
sheep

CNN Mask R-CNN: Cattle: Acc = 96%;
Sheep: Acc = 92%

[406] Cattle Accelerometer data Prediction of dairy cows
behavior at pasture

XGBoost, SVM,
AdaBoost, RF

Best predictions for most
behaviours: XGBoost: sensitivity =

0.78

[407] Cattle Pedometers Detection of early
lameness in dairy cattle RF, KNN RF: acc = 91%

[408] Cattle Environmental heat
stressors data

Evaluation of heat
stressors influence in

dairy cows
physiological responses

RF, GBM, ANN, PLR RF: (1) RR: RMSE = 9.695
respmin−1; (2) ST: RMSE = 0.334 ◦C

[409] Cattle Diets nutrient levels
data

Prediction of dairy cows
diet energy digestion ELM, LR, ANN, SVM

Best performance: kernel-ELM: (1)
DE: R2 = 08879, MAE = 4.0606; (2)

ED: R2 = 0899, MAE = 2.3272

[410] Cattle Routine herd data Detection of lameness in
dairy herds

GLM, RF, GBM,
XGBoost, CART

GBM: AUC = 0.75, Sensitivity =
0.58, Specificity = 0.83
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[411] Poultry Air quality data
Early prediction of

Coccidiosis in poultry
farms

KNN AUC = 0.897–0.967

[412] Cattle
On-farm questionnaires,

clinical and milk
records

Prediction of mastitis
infection in dairy herds RF CONT vs. ENV: Acc = 95%, PPV =

100%, NPV = 95%

[413] Cattle Location (transceiver)
and accelerometer data

Detection of dairy cows
in estrus

KNN, LDA, CART,
BPNN, KNN BPNN: specificity = 85.71%

[414] Cattle Mid-NIR spectral data
using spectrometer

Prediction of bovine
tuberculosis in dairy

cows
CNN Accuracy = 71%, sensitivity = 0.79,

specificity = 0.65

[415] Cattle Metabolomics data from
serum samples

Evaluation of
metabotypes existence

in overconditioned
dairy cows

RF, NB, SMO, ADT ADT: acc = 84.2%

[416] Cattle Accelerometer data Classification of cows’
behavior GBDT, SVM, RF, KNN GBDT: acc = 86.3%, sensitivity =

80.6%

[417] Sheep
Gyroscope and

accelerometer ear
sensors

Detection of lame and
non-lame sheep in three

activities

RF, SVM, MLP,
AdaBoost RF: overall acc = 80%

[418] Cattle Activity and rumination
data

Prediction of calving
day in cattle

RNN, RF, LDA, KNN,
SVM

RNN/LSTM: Sensitivity = 0.72,
Specificity = 0.98

AUC: Area Under Curve; Cont: Contagious; DE: Digestible Energy; ED: Energy Digestibility; ENV: Environmental; DWT: Discrete Wavelet
Transform; MFCCs: Mel-Frequency Cepstral Coefficients; NIR: Near InfraRed; NPV: Negative Predictive Value; PTZ: Pan-Tilt-Zoom; PPV:
Positive Predictive Value; RGB: Red-Green-Blue; RR: Respiration Rate; ST: Skin Temperature.

Table A9. Livestock Management: Livestock Production.

Ref Animal Input Data Functionality Models/Algorithms Best Output

[419] Cattle Depth images in situ
BCS evaluation data

Estimation of BCS, Scenario A:
HER = 0.25; Scenario B: HER =

0.5
CNN Scenario A: Acc = 78%; Scenario B: Acc = 94%

[420] Swine Weather, physiological
data

Prediction of piglets
temperature

Scenario A: skin-surface;
Scenario B: hair-coat; Scenario

C: core

DNN, GBR, RF, GLR Best prediction: Scenario C: DNN: error =
0.36%

[421] Poultry Depth, RGB images
data

Classification of flock of
chickens’ behavior CNN Acc = 99.17%

[422] Cattle
Accelerometer,

observations recordings
data

Classification of cattle
behaviour

Scenario A: grazing; Scenario B:
standing; Scenario C:

ruminating

RF Highest F-scores: RF: Scenario A: 0.914;
Scenario B: 0.89; Scenario C: 0.932

[423] Sheep Phenotypic, weather
data

Prediction of on-farm water
and electricity consumption on
pasture based Irish dairy farms

BAG, ANN, MT Scenario 3: MT: R = 0.95, MAE = 0.88 μm,
RMSE = 1.19

[424] Cattle Milk production,
environmental data

Prediction of on-farm water
and electricity consumption on
pasture based Irish dairy farms

CART, RF, ANN, SVM Electricity consumption prediction: SVM:
relative prediction error = 12%

[425] Goat RGB data Detection of dairy goats from
surveillance video CNN Faster R-CNN: Acc = 92.49 %

[426] Cattle Animal feed, machinery,
milk yield data

Estimation of energy use
targets for buffalo farms ANN 30.5 % of total energy input can be saved if

targeted inputs are followed

[427] Cattle 3D images data Prediction of liveweight and
carcass characteristics ANN, SLR

ANN: Liveweight: R2 = 0.7, RMSE = 42;
CCW:

R2 = 0.88, RMSE = 14; SMY: R2 = 0.72, RMSE
= 14

[428] Swine RGB images Detection and pig counting on
farms CNN MAE = 1.67, RMSE = 2.13, detection speed =

42 ms per image

[429] Sheep Biometric traits, body
condition score data

Prediction of commercial meat
cuts and carcass traits MLR, ANN, SVR, BN SVM: Neck weight: R2 = 0.63, RMSE = 0.09

kg; HCW: R2 = 0.84, RMSE = 0.64

[430] Cattle Data produced by
REIMS

Prediction of beef attributes
(muscle tenderness, production

background, breed type and
quality grade)

SVM, RF, KNN, LDA,
PDA, XGBoost,

LogitBoost, PLS-DA
Best Acc: SVM: 99%

[431] Sheep Carcass, live weight and
environmental records

Estimation of sheep carcass
traits (IMF, HCW, CTLEAN,

GRFAT, LW)
DL, GBT, KNN, MT, RF

Highest prediction of all traits: RF: (1) IMF: R
= 0.56, MAE = 0.74; (2) HCW: R = 0.88, MAE

= 1.19; (3) CTLEAN: R = 0.88, MAE = 0.76

[432] Swine ADG, breed, MT,
gender and BBFT

Identification of pigs’ limb
condition

RF, KNN, ANN, SVM,
NB, GLM, Boost, LDA RF: Acc = 0.8846, Kappa = 0.7693

[433] Cattle Activity, weather data

Prediction of cows protein and
fat content, milk yield and

actual concentrate feed intake,
Scenario (1) only cows with

similar heat tolerance; Scenario
(2) all cows

ANN

(1) Scenario A: n = 116, 456; R = 0.87; slope =
0.76;

(2) Scenario B: n = 665, 836; R = 0.86; slope =
0.74
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[434] Cattle
Animal behavior, feed
intake, estrus events

data

Detection of estrus in dairy
heifers GLM, ANN, RF RF: Acc = 76.3–96.5%

[435] Cattle Infrared thermal images Estimation of deep body
temperature LRM, QRM Higher correlation: QRM: R2 = 0.922

[436] Cattle Liveweight, biophysical
measurements data

Prediction of Carcass traits and
marbling score in beef cattle LR, MLP, MT, RF, SVM

SVM: carcass weight: R = 0.945, MAE = 0.139;
EMA: R = 0.676, MAE = 4.793; MS: R = 0.631,

MAE = 1.11

ACFW: Adult Clean Fleece Weight; ADG: Average Daily Gain; AFD: Adult Fibre Diameter; AGFW: Adult Greasy Fleece Weight; ASL:
Adult Staple Length; ASS: Adult Staple Strength; BBFT: Bacon/BackFat Thickness; BCS: Body Condition Score; CCW: Cold Carcass
Weights; CTLEAN: Computed Tomography Lean Meat Yield; DBT: Deep Body Temperature; EMA: Eye Muscle Area; GWAS: Genome-Wide
Association Studies; GRFAT: Greville Rule Fat Depth; HER: Human Error Range; IMF: IntraMuscular Fat; HCW: Hot Carcass Weight; LW:
Loin Weight; MS: Marbling Score; MT: Muscle Thickness; REIMS: Rapid Evaporative Ionization Mass Spectrometry; RGB: Red-Green-Blue;
SMY: Saleable Meat Yield.

Table A10. Abbreviations for machine learning models.

Abbreviation Model

ANN Artificial Neural Network
BM Bayesian Models
DL Deep Learning
DR Dimensionality Reduction
DT Decision Trees
EL Ensemble Learning

IBM Instance Based Models
SVM Support Vector Machine

Table A11. Abbreviations for machine learning algorithms.

Abbreviation Model Model

AdaBoost EL Adaptive Boosting
ADT DT Alternating Decision Trees

ANFIS ANN Adaptive-Neuro Fuzzy Inference Systems
ARD BM Automatic Relevance Determination

Bayesian-ANN ANN Bayesian Artificial Neural Network
BAG EL Bagging Algorithm
BDT DT Bagging Decision Trees
BDL BM,ANN Bayesian Deep Learning
BET EL Bagged Ensemble Tree

BGLM BM, Regression Bayesian Generalized Linear Model
BLR Regression Binary Logistic Regression
BN BM Bayesian Network

BPNN ANN Back-Propagation Neural Networks
BRT DT,EL Boosted Regression Trees
BTC EL Boosted Trees Classifiers

CART DT Classification And Regression Trees
CCNN ANN Cascade Correlation Neural Networks
CDTree DT Credal Decision Trees
CNN ANN Convolutional Neural Networks

Cu Regression Cubist
DBN ANN Deep Belief Networks
DF EL,SVM Decision Fusion

DLS Regression Damped Least Squares
DNN ANN Deep Neural Networks
DTR DT, Regression Decision Tree Regression
EBT DT,EL Ensemble Bagged Trees
ERT DT Extremely Randomized Trees
ELM ANN Extreme Learning Machines
EN Regression Elastic Net

FCN ANN Fully Convolutional Networks
FIS ANN Fuzzy Inference System

FFNN ANN Feed Forward Neural Networks
GBM EL Gradient Boosting Model
GBT DT Gradient Tree Boosting
GBR Regression Gradient Boosted Regression

GBRT DT, Regression Gradient Boosted Regression Trees
GBDT DT,EL Gradient Boosted Decision Trees
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GLM Regression General Linear Model
GMDH DR Group Method of Data Handling

GNB BM Gaussian Naive Bayes
GP BM Gaussian Processes

GPR BM Gaussian Process Regression
GRNN ANN Generalized Regression Neural Networks
GWR Regression Geographically Weighted Regression
KM IBM K-Means

KNN IBM K-Nearest Neighbors
LASSO Regression Least Absolute Shrinkage and Selection Operator

LDA DR Linear Discriminant Analysis
LightGBM EL Light Gradient Boosting Machine

LMT Regression, DT Logistic Model Trees
LGR Regression LoGistic Regression
LMM Regression Linear Mixed Model

LR Regression Linear Regression
LSTM ANN Long-Short Term Memory

LogitBoost EL Logistic Boosting
M5Tree DT M5 model Trees
MANN ANN Modular Artificial Neural Networks
MARS Regression Multivariate Adaptive Regression Splines
MCS EL Multiple Classifier System
MKL DR Multiple Kernel Learning
MLP ANN Multi-Layer Perceptron
MLR Regression Multiple Linear Regression
MT DT Model Trees
NB BM Naïve Bayes

NBTree BM, DT Naïve Bayes Trees
NNL IBM Nearest Neighbor Learner
OLS Regression Ordinary Least Squares
PLSR Regression Partial Least Squares Regression

PLS-DA Regression, DR Partial Least Squares Discriminant Analysis
QC Regression Quadratic Classifier

QDA DR Quadratic Discriminant Analysis
QRM Regression Quadratic Regression Model
RBFN ANN Radial Basis Function Networks

REPTree DT Reduced Error Pruning Tree
RFC EL Randomizable Filtered Classifier
RFR EL, Regression Random Forest Regression
RNN ANN Recurrent Neural Network
RQL Regression Regression Quantile LASSO
RF EL Random Forest

Ross-IES EL Ross Iterative Ensemble Smoother
RotFor EL Rotation Forest
RVMR Regression Relevance Vector Machine Regression
SCFIS ANN Subtractive Clustering Fuzzy Inference System
STDA DR Stepwise Discriminant Analysis
SMO SVM Sequential Minimal Optimization
SMLR Regression Stepwise Multiple Linear Regression
SOM DR Self-Organising Maps

StoGB EL Stochastic Gradient Boosting
SVR SVM Support Vector Regression

TS-FNN ANN Takagi-Sugeno Fuzzy Neural Networks
XGBoost EL Extreme Gradient Boosting
WANN ANN Wavelet Artificial Neural Networks

WEL EL Weighted Ensemble Learning
WNN IBM Weighted Nearest Neighbors
WSL EL Weakly Supervised Learning
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Abstract: In agriculture, explainable deep neural networks (DNNs) can be used to pinpoint the
discriminative part of weeds for an imagery classification task, albeit at a low resolution, to control
the weed population. This paper proposes the use of a multi-layer attention procedure based on a
transformer combined with a fusion rule to present an interpretation of the DNN decision through a
high-resolution attention map. The fusion rule is a weighted average method that is used to combine
attention maps from different layers based on saliency. Attention maps with an explanation for
why a weed is or is not classified as a certain class help agronomists to shape the high-resolution
weed identification keys (WIK) that the model perceives. The model is trained and evaluated on two
agricultural datasets that contain plants grown under different conditions: the Plant Seedlings Dataset
(PSD) and the Open Plant Phenotyping Dataset (OPPD). The model represents attention maps with
highlighted requirements and information about misclassification to enable cross-dataset evaluations.
State-of-the-art comparisons represent classification developments after applying attention maps.
Average accuracies of 95.42% and 96% are gained for the negative and positive explanations of the
PSD test sets, respectively. In OPPD evaluations, accuracies of 97.78% and 97.83% are obtained for
negative and positive explanations, respectively. The visual comparison between attention maps also
shows high-resolution information.

Keywords: transformer; slot attention; explainable neural network; fusion rule; weed classification;
weed identification key; precision agriculture

1. Introduction

Weeds compete with crops to capture sunlight and take up nutrients and water; this
competition leads to significant yield losses around the world every year [1]. Furthermore,
there are considerable indirect negative externalities that should be taken into consideration
when combating weeds [2]. Currently, the use of conventional weed control methods
usually results in soil erosion, global warming, and human health problems [3–6]. Weeds
are usually not distributed evenly across farmlands. Therefore, weed management could
be greatly improved by collecting information about the location, type, and amount of
weeds in an area [7].

In general, there are three primary weed management strategies: biological, chemical,
and physical [8]. Biological weed management refers to weed control through the use
of other organisms, such as insects or bacteria, to maintain weed populations at a lower
level [9]. Biological weed control is, however, a prolonged procedure that reduces the
growth of a specific species. Selective chemical weed management using an autonomous
and unmanned vehicle is one solution for controlling the weed population and requires the
use of considerably lower contamination doses [10]. In the physical approach, weeds are
controlled without herbicide; this is typically accomplished through the use of mechanical
tools. Physical weed control requires extra precision in the detection of weeds, as non-
selective and incorrect weed detection can harm the crop.
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In physical and chemical methods, weed management is conducted in two steps:
capturing images in the field and weed detection/classification [11]. The earlier step can
feasibly be carried out through the use of new imaging technologies. In the second step,
however, collecting and labeling data is a time-consuming and error-prone procedure,
especially in agricultural areas where many different kinds of plants are mixed in [12–14].
In artificial neural network (ANN) modeling, it is possible to determine imprecise temporal
and spatial parameters [15,16]. Thus, autonomous weed management methods combined
with computer vision approaches could help farmers to detect and classify weeds and con-
sequently improve weed management and decision-making [17,18]. Thus, the application
of an accurate weed classification method plays a critical role in precise farming, helping
to determine the weed-combating approach used, maximize crop yields, and improve
economical returns [19–22].

CNNs have shown promising performance for image classification, including agri-
cultural applications. However, one of the main challenges with deep neural networks
(DNNs) is the lack of explanation, known as the black-box problem, concerning the human
perception of the model’s logic within the classification [23]. Therefore, an interpretable
map is an efficient means of explaining the model’s prediction as well as understanding
the data better.

To mitigate the aforementioned challenges, explainable artificial intelligence (XAI) is
proposed to present a better explanation of black-box DNN models [24]. In classification
methods based on XAI, the model identifies the class prediction and highlights the critical
data content to draw attention to a given decision. Therefore, the models are also called
attention models.

In agriculture, the model’s explanation map supports a research area called the weed
identification key (WIK), which is mainly adopted to discriminate species with a higher
accuracy [25]. WIKs assist agronomists in classifying both common and uncommon features
between species with an acceptable level of accuracy. Therefore, the model’s transparency
helps us to create and understand the WIKs perceived by the model.

Positive and negative explanation maps, which explain why a model does or does not
classify an image into a corresponding category, introduce both mutual and distinctive per-
ceptible features from different classes. The negative explanation is especially informative
in classification problems with high similarities between classes, such as in agricultural
datasets [26].

Conventional WIKs include both positive and negative explanations simultaneously.
In computer vision problems, self-attention transformers are utilized to discriminate the
locations of objects. According to [27], the slot attention module includes multi-head
attention blocks with dynamic weights [28,29]. Slot attention describes the latent features
of DNNs by training a set of abstract representations, called slots, for different classes. In a
slot attention module, discriminative object regions will be extracted without the need to
use humans for supervision. The slot attention, however, will have a low resolution due to
the poor resolution of the DNN’s latent features [26].

In this paper, two agricultural datasets are employed in the analysis: the Plant
Seedlings Dataset (PSD) [30] and the Open Plant Phenotyping Database (OPPD) [31].
Both datasets have a weed species-annotated bounding-box for each plant. To improve the
resolution of the slot attention with high-level semantics and fine details, a multi-resolution
mechanism is adopted here that is based on the slot attention module. Afterwards, to ma-
nipulate different feature layers’ impacts on the resulting attention map, a weighted mean
approach is used to combine multi-resolution maps regarding their saliency. Three main
aspects are used for creating the slot attention in agricultural applications, and the proposed
model is evaluated based on them: (1) the resolution of the attention map, (2) the size of
the area covering the object, and (3) the features of the weed species that cause the model
to not classify the weed as another class (hereafter called negative explanation).
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The proposed framework for multi-resolution slot attention and the proposed weighted
average method in this paper are described in Section 2. Then, in Section 3, the results are
elaborated within two different setups. Lastly, the discussion and conclusion are provided
in Sections 4 and 5, respectively.

2. Materials and Methods

2.1. Utilized Datasets

The model was trained and tested with two different datasets to evaluate how well
it could support attention on mutual features. Hence, two plant seedling datasets, PSD
and OPPD, were employed in this paper. Differences in the growing medium were used to
evaluate the proposed model on agricultural datasets with changing settings.

In Table 1, the European and Mediterranean Plant Protection Organization (EPPO)
labels for the species utilized in this paper are shown. Monocot and dicot species are
represented by M and D, respectively, in Table 1.

Table 1. EPPO code and English name of the species utilized in this paper.

EPPO Code English Name Mono/Dicot

ALOMY Black grass M
APESV Loose silky-bent M
BEAVP Sugar beet D
CAPBP Shepherd’s purse D
CHEAL Fat hen D
GALAP Cleavers D
GERMO Small-flowered crane’s bill D
MATIN Scentless mayweed D
SINAR Charlock D
STEME Common chickweed D
TRZAW Common wheat D
ZEAMA Maize M

The PSD contains images of 960 unique plants across 12 plant species in several growth
stages with a ground sampling distance of 10 pixels per mm [30]. The camera (Canon 600D)
was placed at a 110–115 cm distance above the soil surface. Plants in the PSD are grown
indoors with even illumination conditions. The surface of the soil in the PSD is covered
with stones to avoid green indoor moss artifacts and to ease the distinction between plants
and the background. There is no specific plant color variation in the PSD. In the PSD, weed
species are detected and cropped out.

The original OPPD is comprised of 64,292 unique crop plants. These plants include
47 different species in multiple growth stages with a ground sampling distance of 6.6 pixels
per mm [31]. In our work, we only considered growth stages and species that are common
in the PSD. Therefore, 21,653 and 5393 plant images are utilized as training and test
sets here, respectively. Images were illuminated using a ring flash to ensure consistent
light conditions during the image acquisition. The OPPD was able to better capture
the naturally occurring variability in the plant morphology of the species in abnormal
conditions. To meet this goal, plants were grown with different amounts of water and
levels of nutrition stress. As with the PSD, there is only one plant per image for training
and testing the model.

Figure 1 shows different samples from species that are common to both the PSD
and OPPD, respectively. Images are sorted from the left to right according to the growth
stage. Three samples are shown for the OPPD and two for the PSD, since growth stage
diversity is higher in the OPPD. There are multiple images for each plant in the growing
procedure. The images depicted in Figure 1 were resized to a common resolution. Moreover,
the samples in the training and test sets were randomly divided into proportions of 80% and
20%, respectively. The training and test samples were randomly separated for each image.
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There are nine mutual species in the PSD and OPPD. Twelve species from the PSD
were utilized in experiments when the PSD was employed for both training and testing.
Otherwise, only the nine common species of the PSD and OPPD were fed into the network.
The two datasets have different illumination conditions. For instance, there is a bright area
around the terminal bud in the later growth stages of CHEAL, which is a deterministic
feature. However, this feature is more apparent in the OPPD than in the PSD due to
the illumination. Therefore, the combination of these two datasets could assist us in
finding which features were brought out by the model and whether the absent features
were essential.

It is necessary to mention that the scale of the images is varied due to the data
augmentation technique (explained in Section 2.3) applied to the training set. Therefore,
the differences in resolution between the two datasets cause no serious problem. On the
other hand, the model’s generalizability was examined under changing light, acquisition,
and growth conditions. We recommend that the reader review [30,31] if more details about
the data acquisition process used in the PSD and OPPD are required.

2.2. Neural Network Architecture

The overall framework of the proposed pyramid representation—hereafter called high-
resolution attention—was inspired by feature pyramid networks [32,33]. By extracting
features from different levels, a high-resolution representation of the attention map was
achieved (Figure 2).

The RGB input image is passed through a DNN to extract features at multiple depths
and spatial resolutions (Figure 2a). The extracted features are then passed through the slot
attention module (Figure 2b). The slot attention module mainly consists of a transformer.
Ultimately, the extracted attention maps gained for other classes from different resolution
levels are merged to obtain the high-resolution attention map as the output.

2.2.1. Slot Attention

The slot attention is generated based on the feature regions with a great explainability
of the class. The impact of different regions is formulated using positional encoding in
Figure 2b. In this section, we illustrate not only the attention mechanism utilized [27],
but also the method proposed to be used for extracting multi-resolution attention maps.

In Figure 2, the features were first extracted from different levels Fn of the backbone.
n depends on the number of spatial downsampling processes used in the DNN, which
was four in the ResNet50 [34] adopted in this study. Then, Fns were individually passed
through the slot attention module to extract highlighted regions. Slot attention based on
a transformer is an iterative module with K slots, where each slot describes a class in a
K-classification problem. Through extracted features and positional encoding, the slots are
trained to present maps with a high ability to explain the object. Slots are shown by St

i and
randomly initialized using a Gaussian distribution.
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Figure 1. Examples of nine common species from the OPPD and PSD samples during different maturity stages, from left to
right. OPPD samples were also selected from non-stressed and stressed samples.
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Figure 2. The proposed architecture for plant classification using the slot attention module. (a) The overall architecture for
extracting features using convolutional blocks (in blue), including obtaining the highlighted attention areas from different
convolutional blocks and combining multi-resolution slot attention to generate the final attention map (orange blocks).
(b) The slot attention module applied to K-class weed classification using the transformer concept. Slots are depicted as St

i
for class i in iteration t.

In the multi-head attention block shown in Figure 2, there are three main learnable
vectors: keys (k), queries (q), and values (v) [35]. The q are the slots Sk updated within
T iterations. According to [27], the slots are trained to be sufficiently precise after three
iterations. While q is formed based on the labels used, k and v are based on the inputs.
The higher the similarity gained between q and k is, the better the model has been trained
with respect to precision of explanation:

Ut+1 =< So f tmax(
1√
D

< k(inputs), q(slots)T >)T , v(inputs) >, (1)

where Equation (1) is the multi-head attention block shown in Figure 2; D is the common
dimension space between three vectors q, k, and v utilized as a normalization term; and
Ut+1 is the updated slots obtained in iteration t. The inner product < ., . > of the vectors
is computed to find the vectors’ similarities. Softmax is then applied to normalize the
attention maps and suppress the attention gained for the other classes. Then, a gated
recurrent unit (GRU) is utilized to update the slots [36]. GRU is a learnable recurrent
function that is used for updating slots with the aggregated updates and previous slots.
In [27], the investigations show improvements in the model’s performance when a multi-
layer perceptron (MLP) is adopted after the GRU,

St+1 = MLP(GRU(St, e ·Ut+1)), St = [St
1, St

2, . . . , St
k], (2)

where St and St+1 are the previous and updated slots, respectively. Therefore, all the slots
are updated in each iteration. To easily switch between positive and negative explana-
tions, the sign parameter e is determined. A comprehensive description of the negative
explanation and Equation (2) is provided in the study of [26].

Instead of interpolating the last layer features to gain an attention map with the same
input dimension, we applied the slot attention after four convolutional blocks in ResNet50.
Afterwards, slots from different layers with different resolutions were combined using a
fusion rule described in the next section.

2.2.2. Fusion Rule

In slot attention, deeper layers have a sparse but high accuracy regarding the object
explanation, albeit with a lower spatial resolution. On the other hand, shallower layers
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have a high spatial resolution with a lower accuracy regarding object localization. When
combining different layers of slot attention, the degree of certainty should impact the
dedicated weight of the fused attention maps. The higher the average values of the slots
are, the higher the model’s certainty will be with regard to localization. Therefore, a slot
attention map with higher average values should have a higher impact on the fused
attention map. The following equation was used for this purpose to combine different
layer attention maps:

SF =
n

∑
l=1

Wl

∑n
j=1 Wj

· Sl , (3)

where Wl is the summation of elements in the updated slots for the lth layer of the backbone.
In other words, the attention map with the highest Wl had the greatest effect on the fused
slots SF. In Figure 2, the fusion rule is represented by an orange block. Therefore, the final
attention map was formed based on the combination of shallow layers with a high precision
and deep layers with a high resolution. The proposed weighted mean approach preserves
the highlighted areas through the use of upsampling.

2.2.3. Loss

Two loss functions were required for this problem: one for the classification and the
other for the attention. For the classification, the cross-entropy (LCE) of the deepest layer
of the backbone was computed, ref. [26] presents SCOUTER loss, defining how large the
attention area should be through the formula:

LSCOUTER = LCE + λW, (4)

where W is the sum of elements in the slots gained from different backbone layers controlled
by the hyperparameter λ. λ is adjusted based on how broad the attention areas are in the
specific dataset.

2.3. Parameter Setting

Input images in both PSD and OPPD have square dimensions. Input images were
first resized to 360× 360 pixels with bilinear interpolation to balance images with different
dimensions at different growth stages. Then, ResNet50 [34] was used as the backbone
in order to extract the latent features. There are four convolutional blocks in ResNet50.
Thus, four slot attention modules were implemented on intermediate features to merge the
attention maps created based on their saliency. The model is implemented by PyTorch v1.7.
The model was pretrained using ImageNet [37]. The batch size was 32, the initial learning
rate was 10−4, and AdamW [38] was utilized as the optimizer. The attention was shown in
positive and negative explanations. In Equation (4), λ was set to 2 in all evaluations based
on trial and error. The number of iterations used for the slot attention was set to three.
Additionally, the model was trained in 80 epochs. In the training procedure, the model was
trained using multiple training processes on four GPUs (48 GB).

Translation, rotation, scaling, shear, cut-out, image corruption, Gaussian noise, and
color space-changing methods were utilized as data augmentation techniques (color aug-
mentation was only employed for generating results in Section 3.3). The translation (along
the x and y axes), rotation, scaling, and shear were randomly selected within [−0.1, 0.1]
of the input’s dimension, [−10◦, 10◦], [0.8, 1], and [−20◦, 20◦], respectively. Only a few
data augmentation methods were randomly applied to the data each time in order to avoid
significant variations in the images.

3. Results

This section is ordered into an exploration of attention maps from different backbone
layers, an evaluation of the PSD, and a cross-evaluation of the OPPD and PSD.
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3.1. Multi-Resolution Attention

Figure 3 shows the attention maps gained using three examples from different classes
(narrow and broad leaves). The attention map was utilized as the alpha channel, with ar-
eas with values close to zero neglected by applying a threshold. The original images
are shown to give a better view of where weeds are located. Low-resolution attention
was obtained by using only the backbone’s last layer of slot attention. High-resolution
attention was obtained by applying the weighted average to the attention maps gained
from different levels.

Original Image Low-Resolution Attention High-Resolution Attention

Figure 3. Comparison between the low- and high-resolution predicted attention map for three
samples from different classes.

The attention map gained from only the last layer of the backbone is highly precise in
terms of discriminating the salient features of weeds, as shown in the middle column of
Figure 3. In the low-resolution attention map, highlighted areas were roughly distributed
along the horizontal and vertical axes due to the interpolation (the middle column in
Figure 3). Moreover, attention spots in the low-resolution map were not placed precisely
on the weed. Contrarily, the high-resolution attention map was distributed smoothly along
the plant (the right column in Figure 3).

It is worth mentioning that the predicted attention was partly placed on the back-
ground in some cases of high-resolution attention (such as the last row in Figure 3). This
phenomenon was likely due to the impact of shallower layers on the combined attention
map. This result could also be related to noisy backgrounds, blurred features, etc. For ex-
ample, in the last row of Figure 3, the high-resolution attention map also points to stones
and the box in the background.

Additionally, attention maps from different layers on a weed-specific sample are
shown in Figure 4. All slots from different layers are scaled up in Figure 4. The two
last layers (Figure 4e,f) had an excellent resolution compared with the slot attention from
the other layers (Figure 4c,d). Normalized heatmaps from various slots are presented
here in order to give a better demonstration of each layer’s attention. The scale bar for
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each slot is presented alongside it. It is necessary to mention that the legends are not
directly comparable between figures. The 4th and 3th layers’ weights, referred to as Wl
in Equation (3), were considerably more important than the 2nd and 1st layers. In other
words, while the attention maps extracted from the deeper layers (Figure 4c,d) had a higher
accuracy in identifying plants, the attention maps from shallower layers (Figure 4e,f) had
lower attention weights for the whole image.

(a) (b) (c) (d) (e) (f)

Figure 4. The impact of multi-resolution attention maps. (a) The original image and (b) the weighted averaged attention
map. (c) 4th layer, (d) 3rd layer, (e) 2nd layer, and (f) 1st layer slot attention gained from the backbone layers. The bluish
areas in (b) were filtered to improve the clarity of the visualization.

The weighted average fusion rule provides a balance between accurate, low-resolution
attention from the last layer and inaccurate, high-resolution attention from the first layer.
In Figure 4b, the attention map has a multi-directional explanation from shallower layers
with a high accuracy in detecting weeds from deeper layers simultaneously. Therefore,
the distribution of the attention maps was enhanced and developed to provide precise,
omnidirectional attention maps. The omnidirectional attention map was creating using
high-resolution attention maps from shallower layers.

3.2. Evaluations on the PSD

In this section, all 12 species in the PSD are employed for training and inference.
In Figure 5, the average confusion matrix for the test set is shown for the negative explana-
tion across ten repeats. The negative attention helps us to explicitly understand the data
better. The average is then computed, since the model performance slightly changes for the
random data augmentation and weight initialization. All samples visualized in attention
matrices were selected from correctly classified instances.

Figure 5. The average confusion matrix for the negative explanation of the PSD test set with 12 classes. The overall accuracy
gained was 95.42%.
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In Figure 5, the average accuracy is 95.42%. The diagonal of the matrix has a more
than 90% accuracy for all samples, except ALOMY. ALOMY and APESV are both monocots
(narrow leaves), and it is hard to discriminate them using an agronomist. Since APESV
comprises more samples than ALOMY, the model presented a clear bias towards misclassi-
fying monocot samples as APESV when the uncertainty is high. Additionally, the model
showed a clear tendency to classify ZEAMA (also monocot) as APESV. However, ZEAMA
has a particular feature in earlier growth stages, making it easier for the model to identify
it than ALOMY. Therefore, the model has a higher certainty for ZEAMA, particularly in the
earlier growth stages.

In Figure 6, the attention confusion for the negative explanation is shown. It is
expected that the highlighted areas will be absent in the diagonal, while the non-diagonal
images will have meaningful distinctive attention areas.

Figure 6. Negative attention matrix for PSD dataset with 12 classes. Columns are classes and rows are model predictions.
The attention matrix’s diagonal has remarkably less attention, since the model classifies using the negative loss value in
Equation (2).
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The feature is well represented by the highlighted area, which is used for predicting
APESV for ZEAMA. In Figure 6, the highlighted spots on the background were supposed to
be generated for two reasons: (i) the scale of the stones varied regarding the growth stage
(input images were re-scaled to 360× 360) and the background had remarkable impacts
in classes with small changes across different growth stages, and (ii) the positive layer’s
weights were on the background while the negative layer’s weights were on the foreground.

The positive confusion matrix is shown in Figure 7, which led to a similar trend as that
for the negative explanation. The non-diagonal predictions for the same class are helpful
for understanding which features were missed in the dataset or which species had higher
similarities that made the model uncertain. Therefore, a high number of doubtful species
were recognized and could be utilized as an alarm in the other field classification.
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Figure 7. Confusion matrix for the positive explanation of the PSD test set with 12 classes. The average gained accuracy
was 96%. The diagonal with a dark heatmap is desirable.

The same samples in the negative explanation are selected for the positive explanation
in Figure 8. The diagonal attention areas show which part of the plant has a significant
weight in classification during training. In other words, the positive explanation empha-
sizes species patterns that are necessary for the model. In class ZEAMA, for instance,
the highlighted area shows the particular part that is unique in the class and not the whole
leaf. Comparing Figure 7 with Figure 5, it can be seen that the accuracy of the class ZEAMA
improved by approximately 9% from the negative to the positive explanation. The reason
for this was that ZEAMA has similarities to both monocots and dicots (broadleaves). As a
result, it was simpler for the network to reveal the unique feature for ZEAMA (in Figure 8)
in the negative explanation (in Figure 6). This also reveals the accuracy improvement from
the negative to positive explanation.

In Figure 8, the model came with different parts of plants in different classes or growth
stages, depending on the similarities between species. For instance, while the model’s
attention was on the whole leaves for GALAP, as an example of a case that is difficult to
classify during early growth stages, the main attention was on the center of the plant for
CAPBP, as an example of a case that is easier to classify in the later growth stages.
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Figure 8. The positive attention matrix for the PSD test set with 12 classes. The diagonal images bold out the particular
features that the model uses for the classification.

3.3. Evaluations on PSD and OPPD

In this section, the model was trained on the PSD and inferenced on the OPPD as
a cross-dataset evaluation. In Figure 9, eight misclassified samples are shown through
cross-dataset evaluation. For each sample, correct and predicted positive attention maps
are depicted on the original image. The label for each slot attention is presented on the
left side of the image. Four class species are shown for two cross-dataset evaluations:
(i) in Figure 9a, the model was trained on the OPPD and evaluated on the PSD, while (ii) in
Figure 9b the model was trained on the PSD and tested on the OPPD.

Classes CAPBP and MATIN look similar in their earlier growth stages, which made
prediction harder. Furthermore, samples of stressed species from the OPPD were misclassi-
fied in most cases. For instance, a stressed sample from class MATIN is shown in Figure 9b
from the OPPD which was predicted as class APESV.
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In Table 2, a comparison between the use of the proposed method and state-of-the-
art methods on the PSD and OPPD is shown. The proposed method in this study was
evaluated with both a positive explanation, Ours+, and a negative explanation, Ours−.
For the PSD, two other state-of-the-art methods are compared in Table 2.

(a) PSD (b) OPPD
Figure 9. Misclassified samples in cross-dataset evaluation. In (a), the model was trained on the OPPD with positive
attention, while the inference was trained on the PSD. Conversely, in (b), the model was trained on the PSD with positive
attention, while the inference was trained on the OPPD.

Table 2. The comparison between the use of multi-resolution attention on the PSD and OPPD test
sets with the state-of-the-art methods.

Dataset Accuracy (%) Parameters (M)

EffNet [39] OPPD 95.44 7.8
ResNet50 [40] OPPD 95.23 25
Ours− OPPD 95.42 23.98
Ours+ OPPD 96.00 23.98

SE-Module [41] PSD 96.32 1.79
Ours− PSD 97.78 23.54
Ours+ PSD 97.83 23.54

In Table 2, the proposed method was found to outperform the previous methods in
both OPPD and PSD evaluations, ref. [39] conducted the training with a five-fold cross-
validation of the PSD using EfficientNet. The number of parameters used was lower in our
methods (the negative and positive attention models) in spite of the use of the multiple
slot attention module, since the fully connected layer is omitted. However, the number
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of parameters utilized in [41] is considerably lower than that in the attention method
proposed in this paper.

The OPPD was published quite recently and only one applied method is given as
a comparison in Table 2. In the OPPD study conducted by [41], the SE-module is imple-
mented for classification. The SE-module is a multi-scale fusion approach that does not
utilize attention. The proposed method outperformed the method described in the study
by [41] in terms of accuracy.

Instances from different growth stages of the class CHEAL are presented in Table 3 to
emphasize the importance of contrast and color space in classification. The result in Table 3
was gained by a model that had been both trained and tested on the OPPD. In the first
growth stage, attention was also paid to leaves (the last row). However, the attention was
attracted to the center in later growth stages (the first and middle rows).

Table 3. Positive and negative explanation of the class CHEAL by the model trained and tested on the OPPD dataset. Images
are sorted in order of increasing growth stage. The model had different highlighted areas and understandings of CHEAL in
different growth stages.

Original Image Positive Attention Negative Attention

ALOMY SINAR GALAP STEME GERMO APESV CAPBP MATIN

The impact of growth stage on CHEAL is shown in Table 3. In the OPPD, the class
CHEAL was a prominent feature in the later growth stages; there are white hairs on the
leaves that are more obvious in the center of plants. In the PSD, however, the whitish
domain is less visible due to the different brightness and contrast. Therefore, the atten-
tion gained from the training and inference with the PSD and the OPPD, respectively,
highlighted areas over leaves, not over stems.

The model shows the leaves for monocot species in Table 3—i.e., ALOMY and
MATIN—since the broad leaves are distinctive areas in the later growth stages. For dicot
species, the white center area gained the model’s attention.

4. Discussion

The proposed model presented a high-resolution attention map of weed species; the
map enabled us to better perceive the model’s decision [42]. In the previous transformer-
based methods, the resolution of the attention map was low due to the interpolation
applied for resizing the attention map from 12× 12 to 360× 360 [43]. This challenge was
mitigated in the approach proposed in this paper by providing a multi-layer attention
mechanism. In general, the model has a lower certainty regarding attention in the first
few layers [44,45], but its precision is higher. Therefore, the proposed algorithm merged
multi-layer attention maps from different layers to generate a precise high-resolution
representation that included principle features for weed discrimination.
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The positive explanation maps help us to differentiate weed species during the early
growth stages and are frequently utilized in transformers [42,46]. Moreover, the negative
explanation maps support the model’s classification, particularly during the mature growth
stages, where the dissimilarities between species are substantial [26]. Moreover, the model’s
uncertainty should help farmers to decide which species should be reconsidered during
weed management [47].

In terms of statistical comparison, the proposed model outperformed the state-of-the-
art methods using positive attention, as illustrated in Table 2. The performances of the
proposed model showed slight improvements compared with those shown in the study
by [40]. This is likely due to the attention explanation, better data augmentation, tuning
of the hyper-parameters, etc. The attention loss also showed improvements in terms of
classification for the positive and negative explanations of the PSD.

The model’s challenges in cross-dataset evaluation (Section 3.3) showed that a model
applied to one agricultural dataset might not be robust on the other datasets [48]. The pro-
posed model presented interpretable information about the differences between the two
datasets, which made the model unable to classify properly. Moreover, only diversity
was not sufficient to improve the performance, since the model that was trained with the
OPPD and had a wider variety still struggled when applied to the PSD. Nevertheless,
the proposed method should help us determine what areas showed significant differences
between the two datasets. Therefore, there should be a better explanation as to why the
model achieved a lower accuracy during the classification. The cross-dataset evaluation
also highlighted the necessity of understanding the data better during the training and test
phases in DNNs.

In the cross-dataset evaluation, three characteristics that will be considered in future
research were not taken into account:

1. Growth stage;
2. Partial or heavy occlusion;
3. Partial plant appearance.

The model’s performance is expected to be improved when a growth stage label is
also given to the model due to species variation in different growth stages [13,49]. Fur-
thermore, two critical factors observed from Figure 9 were the impact of occlusion and
partial appearance due to the classification. For instance, class GALAP showed a partial
appearance in Figure 9b (where only half of the plant is visualized), while class CAPBP
showed partial occlusion due to the neighboring plant in Figure 9a. A great quantity of
real in-field annotated images would support our knowledge about the model’s perfor-
mance regarding the existence of occlusion, stress, neighboring plants, etc. In conclusion,
the characteristics mentioned above should be investigated in future research.

5. Conclusions

In this paper, a high-resolution attention architecture was proposed in order to improve
the resolution and location of highlighted weed areas in weed management. The resulting
explanation is a foolproof approach for interpreting the similarities and dissimilarities
between different weed species through automated weed control. By understanding the
black-box model better, we were able to gain more transparency regarding the model’s
classification of different weed species through maturation. Therefore, self-attention maps
from different layers of a ResNet model were extracted to improve the attention precision.
The proposed method was able to simultaneously preserve the accuracy from deeper layers
and develop the resolution using shallower layers. In addition, this explanation is useful
when studying the generalizability of a model for cross-dataset evaluations. The proposed
precise and high-resolution attention map was able to explain the datasets better in terms
of their visual aspect. Furthermore, the high-resolution attention map highlighted different
patterns in a species through various growth stages. The influence of growth stage on
attention maps through weed classification is a matter that should be investigated in
future studies.
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Abbreviations

The following abbreviations are used in this paper:
CNN Convolutional neural network
D Dicot
DNN Deep neural network
EPPO European and Mediterranean Plant Protection Organization
GRU Gated recurrent unit
M Monocot
MLP Multi-layer perceptron
OPPD Open Plant Phenotyping Dataset
PSD Plant Seedlings Dataset
ReLU Rectified linear unit
WIK Weed identification key
XAI Explainable artificial intelligence
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Abstract: This study aimed to propose an approach for orchard trees segmentation using aerial
images based on a deep learning convolutional neural network variant, namely the U-net network.
The purpose was the automated detection and localization of the canopy of orchard trees under
various conditions (i.e., different seasons, different tree ages, different levels of weed coverage). The
implemented dataset was composed of images from three different walnut orchards. The achieved
variability of the dataset resulted in obtaining images that fell under seven different use cases.
The best-trained model achieved 91%, 90%, and 87% accuracy for training, validation, and testing,
respectively. The trained model was also tested on never-before-seen orthomosaic images or orchards
based on two methods (oversampling and undersampling) in order to tackle issues with out-of-
the-field boundary transparent pixels from the image. Even though the training dataset did not
contain orthomosaic images, it achieved performance levels that reached up to 99%, demonstrating
the robustness of the proposed approach.

Keywords: precision agriculture; orchard mapping; deep learning; computer vision; semantic
segmentation; orthomosaic

1. Introduction

The latest advances in sensing technologies dedicated to agricultural systems have led
to the emergence and development of a modern management concept, namely precision
agriculture, which focuses on efficient management of the temporal and spatial variability
of field and crop properties using information and communication technology (ICT) [1]. A
plethora of different sensors and technologies are utilized in relation to this concept to form
a detailed view of fields’ properties, capturing the spatial and temporal variability and
searching for the specific factors responsible for their occurrence, which are to be treated
accordingly. Therefore, mapping the field and crop properties is a fundamental aspect in
the application of such management systems.

Remote sensing is defined as the non-contact measurement of crop properties based
on the radiation reflected from the plants, using ground based or aerial platforms, and
it is widely used for mapping tasks in agricultural systems [2]. Recent technological
advances have made unmanned aerial systems (UASs), i.e., sensing systems mounted on
unmanned aerial vehicles (UAVs), commercially available. These systems provide high
spatial resolution images and, in combination with their ease of use, quick acquisition
times, and low operational cost, they have become particularly popular for monitoring
agricultural fields [3]. Several studies have utilized UASs for crop management purposes,

Sensors 2021, 21, 3813. https://doi.org/10.3390/s21113813 https://www.mdpi.com/journal/sensors
81



Sensors 2021, 21, 3813

such as yield prediction and site-specific fertilization [4] by capturing multispectral images,
irrigation using thermal imaging [5], or for field scouting using RGB (Red-Green-Blue)
orthomosaics [6].

In tandem with the development of remote sensing and image capturing techniques,
machine learning (ML) has leaped forward both in terms of performance as well as in terms
of its applicability in almost all scientific domains. Agriculture in general, and specifically
precision agriculture, has benefited from the rise of machine learning in multiple ways
since complex tasks, hard to deal with using traditional programming, can be tackled
with the help of a plethora of different ML algorithms [7–9]. Particularly with regard to
computer vision, there has been extensive implementation of machine and deep learning
in tasks of classification [10], object detection [11], and semantic segmentation [12].

Classification tasks employ self-learning algorithms for the assignment of a class to
an image according to its content. Examples of classification in agricultural applications
include the identification of diseases on leaves in real-life environment images with the help
of convolutional neural networks (CNNs) [13], the identification of trees from UAV images
with a combination of k-nearest neighbors (kNNs) and GoogLeNet [14], and tree species
assignment from UAV images and multispectral data with random forest algorithms [15].
Object detection algorithms differ because they predict the location of objects and assign
the appropriate class to them [16]. Examples of object detection applications include the
detection of disease-infected leaves at tree level from UGV images [17], the detection of
trees with the use of Faster RCNN (Regions with CNN features) and YOLO (You Only
Look Once) [6], and the mapping of operational environments in orchards with classical
computer vision techniques or Fast RCNN [18]. Image segmentation, on the other hand, is
a pixel-wise operation where a class is appointed to each individual pixel, thus creating
detailed outlines of objects and maintaining their exact shape. U-net [19] is one the most
famous algorithms for image segmentation and has been used for tree segmentation from
satellite images [20], mapping of forests [21], and pomegranate canopy segmentation in
comparison to Mask RCNN [22]. Segmentation algorithms for tree canopy mapping have
also been used in tandem with object detection approaches, like Segnet and YOLO [23],
or classification approaches, like the multi-resolution segmentation algorithm used with
state-of-the-art CNNs and support vector machines (SVMs) [24].

Applications of image segmentation with images acquired by UAS have used sev-
eral machine learning algorithms: point-cloud data with the use of deep neural net-
works (DNNs) for tree canopy segmentation [25], support vector machines and image
pre-processing filters for citrus trees segmentation [26], random forest (RF) super pixel clas-
sification for tree canopy extraction [27], and for the automatic segmentation of canopies
with Deeplab v3+, a type of encoder-decoder network, for automatic segmentation of
canopies [28].

Several approaches, listed in the bibliography, have attempted to find solutions to the
problem of automatic segmentation of trees from aerial images. However, all approaches
had as a prerequisite a full, healthy canopy. All aforementioned studies also tackled
the problem with methods of unsupervised learning or object detection. These methods
present shortcomings, either regarding the identification performance per se or the precise
shape of the canopy excluding surroundings. Subsequent tasks, such as canopy size
estimation and orchard mapping, rely on the results of these methods; therefore, the
respective shortcomings propagate to them as well. According to our knowledge, semantic
segmentation has not been implemented in the task of canopy detection of orchards with
the use of UAS-derived images. Furthermore, a gap has been identified in the proper
identification of tree canopies within orchards, throughout all seasons and in every step of
their growth.

This study aimed to propose, develop, and validate an approach for orchard trees seg-
mentation using aerial images based on a custom variant of a deep learning convolutional
neural network, namely the U-net network. The purpose was the automated detection
and localization of the canopy of orchard trees under various conditions (i.e., different
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seasons, different tree ages, different levels of weed coverage). The results of this study
contribute to the farming community by providing a robust tool for instant scouting of
orchard environments by automatically segmenting the tree canopies from aerial images.
This work is a preliminary step in the development of an integrated tool to support farmers
in decision making.

2. Methodology

The proposed approach is structured around data-driven algorithms and computer
vision techniques. An annotated dataset was generated from a large number of UAV
captured images by masking the canopies of the trees in order to create a large dataset for
supervised learning. This annotated dataset was used to train the model with the selected
deep-learning algorithm so that it could properly identify tree canopies and segment them
from the background. A mask image is produced as an output, containing the shapes of
all predicted tree canopies. Following the segmentation, the weighted average of each
mask, i.e., its moment, is used for the calculation of its centroid, so that it can be used as a
reasonable approximation of the location of the tree’s trunk. Provided that the geodetic
coordinates of the photographed location are retained in the orthomosaic images, the tree
trunk locations can be computed with high accuracy.

In order to deal with the complexity of orchard environments, in terms of the presence
of weeds in the image background, and the high variability in the phenomenology of
canopies due to seasonality, a deep learning algorithm, namely U-net, was considered and
tweaked to fit the problem’s requirements.

2.1. U-Net Variant

U-net is an advanced type of convolutional neural network which consists of two
modules, an encoder and a decoder. Such networks aim to encode the input into a latent
space in order to create the desired output based on the said input. U-net’s characteristic
feature, which distinguishes it from the case of simple encoder-decoder networks, is that
it contains direct “skip” connections between the shallow encoder and decoder layers
alongside the sequential structure of the architecture [29]. In this way, certain features from
the encoding/input layers are fed directly to the decoding/output layers. For the approach
presented here, two modifications were made to the standard U-net architecture; the input
layer was tweaked to both 3- and 6-channel images and a dropout layer was added between
the convolutional layers per block, to avoid the tendency towards overfitting that would
occur in such a small dataset with similar representations. A schematic of the U-net used
in this work is shown in Figure 1.

Figure 1. Architecture of the modified U-net network implemented in the approach.
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2.2. Process Flow

The methodology developed for creating segmentation predictions follows a sequen-
tial process which consists of several preprocessing, training, and evaluation steps. The
complete process flow can be summarized as follows:

• Data are imported and split into train and test sets. For the implementation of the
approach, the test set is required to contain at least one image from each use case;

• Each image is reshaped (into a predefined aspect ratio) and, additionally, color en-
hancements such as contrast equalization are applied;

• The training data are fed into the U-net and the model learns to create proper seg-
mentations for each image. An evaluation metric is used across a randomly selected
validation set comprising 10% of the training set, so that the trained model can learn
to create better segmentation masks;

• The trained model produces segmentation masks for the test images and the evaluation
metric is applied;

• The segmentation masks are compared with the real masks created during annotation and
the presence of false positive or false negative segmentations is manually investigated;

• The overall performance of the model is defined by the accuracy of the trained model
on the test dataset, as well as the ratio of false positives and false negatives over the
total amount of trees in the image.

A visual representation is shown in Figure 2.

Figure 2. Process flow of the proposed methodology for creating segmentation predictions. FN: false negative; FP:
false positive.

3. Implementation

Three sites of commercial walnut orchards, located in Thessaly, Central Greece, were
used in the present study. The orchards covered a range of tree ages and soil surface fea-
tures. Correspondingly, the images represented different seasons, with the aim of capturing
the different tree conditions and stages throughout the growing season, namely: defoliated,
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canopy developing, canopy fully developed, and brown canopy before defoliation. Addi-
tionally, the orchards varied in terms of background soil conditions, including: soil surface
free from weeds, soil surface partly covered by weeds, and untreated soil with complete
weeds coverage. A total number of 106 images from the three orchards led to the definition
of seven different use cases which were used for the training and testing of the proposed
methodology. A detailed list of the characteristics’ use cases is presented in Table 1.

Table 1. Orchards’ characteristics and categorization into separate use cases.

Use Case
No.

Yearly
Season

Weeds
Coverage

Canopy Size
Foliage
Color

Ground
Color

1 Autumn Low - Brown Brown
2 Autumn Low - Mixed Brown
3 Summer Low Small Green Brown
4 Summer Low Medium Green Brown
5 Summer Low Medium Green Mixed
6 Summer Low Large Green Brown
7 Summer High Large Green Green

All use cases were adequately represented by several images in the training set and,
more importantly, the test set was constructed so that it would always contain at least
one image of each use case. This way, the trained models would be tested for all different
combinations of characteristics, ensuring the maximum generalization. Sample images for
each use case are presented in Appendix A.

3.1. Data Acquisition

From 2018 to 2020, a number of test flights were conducted over the aforementioned or-
chards with two different types of UAV, a quadcopter (Phantom 4, DJI Technology Co., Ltd.,
Shenzhen, China) and a fixed-wing UAV (eBee, senseFly, Cheseaux-sur-Lausanne, Switzer-
land), both equipped with high-accuracy GNSS (real-time kinematic (RTK) positioning)
and high-resolution cameras, i.e., 5472 × 3648, at a 3:2 aspect ratio.

The use of RTK GNSS was a requisite to accurately geotag the acquired images. To
achieve further exploration, the automated flights were maintained with the necessary crite-
ria to produce high-accuracy orthomosaics. The parameters of each automated flight were
fine-tuned (UAV flight height, speed, number of captured images, side overlap and forward
overlap ratio) to produce high-resolution, below-centimeter pixel size, orthomosaics, which
are presented in detail in Table 2.

Table 2. Information concerning the flights performed in each use case for the acquisition of images and the creation of the
orthomosaics used in the study.

Use Case
No.

Acquisition Date
Number of

Trees
Number of

Images
Overlap GSD

Air Speed
(m/s)

Cloud
Coverage

(%)

1 1 November 2018 1399 283 75% 1.3 <3 49
2 30 August 2020 569 522 75% 1.3 3 32
3 19 June 2020 358 330 75% 1.3 <3 5
4 3 June 2020 506 244 75% 1.5 <3 35
5 12 August 2020 2118 510 75% 1.5 <3 40
6 7 May 2019 296 193 75% 1.3 <3 12
7 15 May 2020 632 465 75% 1.3 <3 5
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3.2. Data Pre-Processing

Image pre-processing is a fundamental aspect of computer vision tasks, especially
when employing self-learning algorithms. The reason for this is the need to transform the
images into proper sizes/shapes, in order for the numerical computations to take place.
In the present study, each of the raw images captured from the study sites utilized over
30 MB of storage each and had a 5472 × 3648 pixel rectangular shape. Size reduction
was the first step that took place along with the reshaping of all images to dimensions of
512 × 512 pixels.

The effect of image preprocessing in terms of color and colorspaces was another
aspect investigated in this study. Histogram equalization (EQ) [30] and contrast-limited
adaptive histogram equalization (CLAHE) [31] are two methods usually used for contrast
enhancement in RGB images, both of which expand the contrast by adapting the range
of the image’s pixel values either globally or locally. Besides the RGB spectrum, the
HSV colorspace—which represents color with hue, saturation, and value, all assigned to
cylindrical coordinates—was also investigated since it amplifies different features of an
image, which could lead to increased performance.

A novel approach to increasing contrast and extracting features by combining an RGB
contrast-enhanced instance of an image and an HSV instance of an image into a single
6-channel image was attempted. Such images contain “double” information from a regular
3-channel image; however, the addition of more color channels does not necessarily imply
that the added value increases as well [32]. A visual representation of how the 3- and
6-channel images are constructed is shown in Figure 3.

Figure 3. Channel deconstructing of (a) RGB, (b) HSV, and (c) fused images.

Two variants of the fused images were tested, namely the RGB image without any
contrast enhancement and the CLAHE method for adaptive contrast enhancement, along-
side the HSV colorspace image. The visual differences between all methods are presented
in Figure 4.

3.3. Performance Metric

The Sørensen–Dice coefficient [33] was selected as the performance metric for the
segmentation of trees against their background. It was preferred over the intersection
over union (IoU, also known as the Jaccard index [34]) because the IoU penalizes bad
classifications harder [35] and, in the case of tree foliage, the exact details of the foliage
shape is not of high importance. As a loss function, the negative value of the dice coefficient
was used, as is common in image segmentation tasks [36].
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Figure 4. Image color transformations used in the study: (a) RGB image, (b) EQ image, (c) CLAHE
image, (d) HSV colorspace image, (e) 6-channel RGB and HSV fused image, and (f) 6-channel CLAHE
and HSV fused image.

4. Results

4.1. Validation on Dataset

All models were trained on an NVIDIA Titan 1080 Ti GPU with between 40 and
100 epochs, a visualization of which is seen in Figure 5. Early stopping was used for
preventing overfitting of the models. The models were trained and tested on 96 and 10
images respectively, which were randomly selected from the 106 images of the dataset,
including all seven use cases (use cases presented in Table 1). In this way, the generalization
of the model was ensured. The accuracy achieved by the models under the differently
pre-processed datasets is shown in Table 3.

Figure 5. Learning plot with training and validation accuracy.
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Table 3. Accuracy (dice coefficient) for investigated methods of segmentation.

Image Colorspace RGB EQ CLAHE HSV RGB + HSV CLAHE + HSV

Channels 3 6

Training accuracy 0.91 0.90 0.90 0.92 0.91 0.91
Validation
accuracy 0.90 0.88 0.89 0.90 0.89 0.90

Testing accuracy 0.87 0.77 0.86 0.86 0.85 0.86

As mentioned previously, the dice coefficient is used for benchmarking the perfor-
mance of trained models. However, the ability of a trained model to properly segment
trees is measured by visual inspection. The system was validated by applying the trained
models to never-before-seen images of entirely different use cases and comparing the
results to the identification of a human expert. The false positives (FPs), i.e., incorrectly
identifying trees at locations where there were none, and false negatives (FNs), i.e., failing
to identify trees, could thus be registered. On top of the tree canopy segmentation, the
exact location of a tree’s trunk was computed based on the predicted masks. The method
for computing this location was based on the centroids of the image moments, i.e., the
weighted average of the predicted masks. Therefore, for each mask representing a tree
canopy, and with the condition that it was isolated and in no way connected to an adjacent
mask, a single point was calculated to signify the position of the tree trunk, considering a
fairly symmetrical canopy shape. A visual example of the predicted segmentation (left)
and the real annotation (right), both overlaid on the original images, is given in Figure 6.

Figure 6. Examples of false positive and false negative segmentation predicted by the developed
system (left) as compared to the real segmentation (right).

Since this study aimed to primarily solve the issue of mapping the locations of trees
within orchards, the absolute intersection between all pixels was mostly considered for the
training phase. The rough shape and size of a properly identified tree canopy was what
would lead to a correct computation of the trunk location and the estimation of the tree’s
age. Therefore, in order to choose the best-trained model for the application, the test set
was manually investigated across the predicted segmentations from each approach. In this
way, FPs and FNs were identified and, finally, each model received a score based on the
ratio of FPs, FNs, and their sum over the total amount of trees in each image, as seen in
Table 4.
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Table 4. Overall performance evaluation, expressed as percentages (%), of the models examined in
the test set of the study, in terms of false positives (FPs), false negatives (FNs), and their sum ratios
over the total number of trees in the test set.

Image Colorspace RGB EQ CLAHE HSV RGB + HSV CLAHE + HSV

FPs (%) 7.49 9.41 16.17 7.57 7.49 4.99
FNs (%) 5.81 8.73 15.17 6.48 10.66 16.22

Total misidentifications
(%) 13.30 18.14 31.34 14.05 18.16 21.21

From the overall evaluation of the models’ performance, the RGB model was identified
as the simplest and provided the best results. Therefore, it was selected as the primary
model to be investigated further. In the next step, the performance of the RGB model was
investigated for each use case separately. In this way, the strengths and weaknesses of the
selected approach could be identified and therefore tackled in future work. The results of
the RGB method were further broken down per test image, covering all use cases that were
included in the present study, as shown in Table 5.

Table 5. Performance evaluation of the RGB model (best performing) applied to the separate test images for each use case,
expressed as percentages (%) of false positives, false negatives, and their sum total.

Test
Image

1 2 3 4 5 6 7 8 9 10 Mean

Use Case 2 1 5 4 4 6 6 5 7 3

FPs (%) 7.69 8.33 16.67 9.09 2.08 1.82 2.33 12.64 14.29 0.00 7.49
FNs (%) 0.00 4.17 4.17 18.18 0.00 1.82 0.00 3.45 2.38 23.94 5.81
Total (%) 7.69 12.50 20.83 27.27 2.08 3.64 2.33 16.09 16.67 23.94 13.30

The accuracy achieved for all use cases using the RGB model ranged between 72.7%
and 97.9%, which can be considered as a satisfactory result. Comparing images 6 and 7 with
9, the effect of the presence of weeds’ on the accuracy of the model is evident, since the first
two images, which belong to use case 6 (large trees; few weeds), performed considerably
better compared to image 9, which belongs to use case 7 (large trees; many weeds). In the
latter, the FPs were the primary reason for limiting the system’s performance. This signifies
that the developed weeds within the image frame led to increased FP misclassifications
(weeds classified as trees). Interestingly, when running test images from use cases 1 and 2
(i.e., images captured during autumn when the canopy was turning brown), accuracy was
notably high, albeit with a low level of weeds coverage.

With regard to common characteristics between use cases, three indicative results
from the RGB model are presented in Figure 7. These three categories cover the most
contrasting situations; (a) ideal conditions with medium/large tree canopies and ground
with only a small amount of weeds, (b) intermediate conditions with large tree canopies
but weed-infested ground, and (c) unfavorable conditions with small tree canopies and
some weeds present. The first image belongs to use case 4, containing clear green canopies
and ground covered by only a few weeds. The second image, which represents use case 7,
shows large green canopies; however, the ground is almost entirely covered with weeds
of a similar shade of green. The third image is from an orchard free of weeds (use case 3);
however, the canopies are particularly small in size due to the young age of the trees. Use
cases 4 and 6 are the most ideal, considering canopy and background color contrast due to
the season and the lack of weeds. A noteworthy outcome is that even though use cases
4 and 5 both had medium-sized canopies, the trained model’s accuracy was completely
different due to the presence of weeds. Additionally, use cases 1 and 2 demonstrated
similar behavior as use cases 3 and 4, since all of them were almost free of weeds, with
the only difference being the more brownish color, making it slightly harder to identify
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all canopies. In all images, a mask overlay of 50% transparency was applied in order to
visualize the segmentations; therefore, the real shades of the images were altered.

Figure 7. Results of indicative RGB images covering a range of different conditions.

4.2. Validation on Orthomosaics

The system as presented above showed its ability to recognize tree canopies with
high accuracy when applied to high resolution images of certain dimensions. However,
investigating the performance of the system with orthomosaics covering the entirety or a
large part of the orchard area was also considered to be of great interest. Therefore, in a
further analysis, the trained models were applied to orthomosaics captured from orchards
with pixel resolution considerably lower than the original training dataset. The aim of
this test was to examine the extent of the trained models’ capabilities considering the
pixel resolution range of all canopies. Applying the models directly to the orthomosaics
produced errors due to the presence of “transparent” pixels that denote areas outside the
bounds of the appointed orchard. Two methods were used to overcome this inconvenience:
“oversampling”, i.e., filling the transparent pixels with the dominant ground color; or
“undersampling”, i.e., cropping the largest area possible that did not contain “out-of-
borders” areas.

The test included (a) analysis of orthomosaics treated as a whole (i.e., as one image)
and (b) analysis of sub-images clipped from the orthomosaic. It is important to note
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that these were never-before-seen images that had not been a part of the original dataset.
Similarly to the training phase, orthomosaics of three different use cases were selected.

Case A. The first case displayed an orchard with large- to medium-sized canopies. As
mentioned above, the pixel resolution was smaller than that of the training dataset. The
accuracy reached 99%, with only a small FP segmentation on the right section of the middle
of the image detected (Figure 8).

Figure 8. Undersampled orthomosaic of an orchard with large- to medium-sized canopies (left) and the segmentation
predicted by the model (right).

Case B. The second use case was an undersampled orthomosaic of an orchard with
young trees (Figure 9). It was observed that even though the canopies were significantly
small, the trained model was able to achieve a high accuracy of 90.5% with only 5.3% FNs
and 4.3% FPs.

Figure 9. Undersampled orthomosaic of an orchard with young trees featuring small-sized canopies (left) and the
segmentation predicted by the model (right).
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Case C. Finally, an orthomosaic with a higher resolution compared to the previous
case of an orchard with small-sized canopies was undersampled and tested. However, the
presence of developed weeds dispersed throughout the orchard produced many FPs in the
segmentation, as seen in Figure 10.

Figure 10. Undersampled orthomosaic of an orchard with small canopies, not treated for weeds (left), and the segmentation
predicted by the model (right).

Even though a rule-based condition could eliminate such small segmentations, this
could be counterproductive for cases with young-aged trees with small canopies. However,
the original orthomosaic, as seen in Figure 11, produced significantly fewer FPs compared
to the undersampled one above.

Figure 11. Complete orthomosaic of a study orchard with trees with small-sized canopies, not treated for weeds (left), and
the segmentation predicted by the model (right).

The accuracy achieved for the orthomosaic was notably high, reaching 82%, and the
segmentation prediction showed 16.4% FPs and only 1.6% FNs. It is worth mentioning that
all the FPs were recognized as trees due to the presence of large surfaces covered by weeds,
simulating the size and the shape of the top view of the tree canopy. This indicates that
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the model can be expected to demonstrate excellent performance with weed-free orchards.
Furthermore, the FNs were located at the edges of the orthomosaic where part of the
canopy of the respective trees was missing.

4.3. Ablation Study

The aim of this section is to demonstrate the effectiveness of the additional compo-
nents (layers) and modifications that were added to the U-net architecture. The scope
of evaluation in this paragraph is the effectiveness of the dropout layer that was placed
between the two convolutional layers in each step. Even though a dropout layer makes
intuitive sense since it improves generalization by mitigating overfitting, its actual effect
should be investigated. A baseline (vanilla) U-net with no dropout layer included and
a variant with the dropout layer placed before the max-pooling and the up-convolution
layers were tested in comparison to the proposed variant. All models were trained with
the RGB images dataset, since it was selected as the best method, and the results of the
three trained models, including the proposed one, are presented in Table 6.

Table 6. Results of the ablation study for the baseline (vanilla) U-net, a variant with a dropout layer
placed after the convolutional layers, and the proposed variant.

Vanilla Variant No. 1 Proposed Variant

Training accuracy 0.89 0.86 0.91
Validation accuracy 0.78 0.85 0.90

Testing accuracy 0.74 0.81 0.87
FPs (%) 13.56 9.93 7.49
FNs (%) 12.48 8.74 5.81

Total misidentifications (%) 26.04 18.67 13.30

An approach without dropout overfitted the model and this was evident because the
training accuracy was high while the validation and testing accuracies were low. This
poor performance was also reflected in the number of epochs required for the model to
achieve proper training, which was significantly lower (approximately 10–20 epochs) than
the other approaches. Adding a dropout layer allows the model to train for a longer
time (<40 epochs); however, the position of the dropout layer affects the performance
of the model [37]. The variant where the dropout layer preceded the max-pooling layer
performed measurably worse since, in a general sense, both dropout and pooling layers
reduce learned information. The ideal combination arises when the dropout layer is placed
between the two convolutional layers, since the network maintains a balance between
learning and forgetting information from the input images.

4.4. Comparison with Baselines and Other Methods

A comparison of the proposed approach with other traditional computer vision
techniques, unsupervised machine learning methods, object detection approaches, and
other image segmentation deep learning techniques is presented in this section. For all
methods, baseline versions were used with minor tuning of parameters. For the traditional
computer vision techniques, blob, feature, and color detection were implemented with the
assistance of OpenCV Python library [38]. Specifically, for the feature detection, oriented
FAST and rotated BRIEF (ORB) was used as a baseline. With regard to the unsupervised
machine learning approach, a K-means algorithm [39] was implemented from Python’s
SciKit-Learn library [40]. For the object detection approach, the single shot detection (SSD)
algorithm [41] with a ResNet50 [42] backbone was used, and for the segmentation approach,
the Mask R-CNN algorithm with a ResNet101 [42] backbone, both implemented with the
Keras library [43] with the Tensorflow backend [44]. Since all methods have different ways
to extract information from images, the characterization of FPs and FNs was conducted by
a domain expert agronomist. The total percentage of both FP and FN instances was used
as a metric of comparison, and all methods were tested on the same test images from the
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study. The supervised learning algorithms were trained with the default parameters and
with early stopping on the same training dataset. The results for all methods are presented
in Table 7.

Table 7. Comparison of the proposed approach (in bold) with other computer vision baselines and machine learning
methods using total percentage of misidentifications as a metric (sum of false positives and false negatives).

Test Image 1 2 3 4 5 6 7 8 9 10 Mean

Use Case 2 1 5 4 4 6 6 5 7 3

Blob detection 63.65 56.81 34.35 34.57 31.73 28.00 25.75 28.54 65.39 39.57 40.84
Feature detection (ORB) 65.68 59.56 49.72 46.85 48.38 50.24 47.90 48.81 63.40 43.74 52.43

Color detection 53.88 52.96 35.32 32.27 31.12 29.62 29.03 27.51 55.88 27.45 37.50
Clustering (K-means) 52.25 54.17 40.19 39.12 38.69 36.47 36.16 36.20 53.55 42.97 42.98
Object detection (SSD) 12.34 15.28 21.68 29.16 5.92 7.03 7.05 19.39 21.01 27.10 16.60

Mask R-CNN 8.31 13.01 19.80 27.21 3.45 3.98 2.80 16.59 17.98 23.00 13.61
Proposed U-net 7.69 12.50 20.83 27.27 2.08 3.64 2.33 16.09 16.67 23.94 13.30

Blob detection performed poorly on use cases 1 and 2 due to the canopies being
brown or leafless, on 4 and 5 due to the canopies’ shadows, and on 7 due to the matching
green color on the weed-rich ground. On use case 3, no significant drawbacks were noted.
Feature detection resulted in too many FP identifications in all cases because of the leaf-like
appearances of most objects present in the aerial orchard photos. Color detection achieved
better performance on use cases 3–6 compared to the previous two methods, but with
manual tweaking of the color values for each image separately; however, when foliage and
ground color bore a resemblance, there were almost no identifications. When K-means was
tuned to create two clusters, for trees and backgrounds, it took into account all pixels that
belonged to weeds or similar fauna. The algorithm trained with SSD was able to find most
trees; however, the locations of the tree trunks, which were computed as the center of the
bounding box, had noticeable deviations from the ground truth. Finally, Mask R-CNN
is a two-stage approach but, even though it performed similarly to the proposed U-net
approach, the generated model was five to ten times larger (the size of the proposed U-net-
based model was ~22 Mb), thus rendering the lightweight implementation prerequisite
as null. All methods offer benefits and drawbacks; however, it is evident that, to meet all
requirements needed to tackle the problem at hand, the proposed U-net approach appears
to be the optimal one.

5. Discussion

The present study is an initial attempt to address the problem of accurately mapping
orchards via UAS. The primary focus was to construct a methodology of tree segmentation
and mapping of orchards. During the testing phase of the models, useful insights were
produced, along with some outcomes that showed both FP and FN misidentifications. In
general, the FPs in the presented system referred to:

• Identification of shrubs and weeds as tree canopies; and
• Segmentation splits of a single instance into multiple high-density instances.

On the other hand, the FNs referred to:

• Circumstantial inadequacy in identifying small canopies; and
• Limitations in identifying trees with leafless canopies.

Considering the preprocessing method that was used, more outcomes can be dis-
cussed. For example, the simple EQ, according to the original image brightness and the
size of the trees, either produced FPs next to canopies, most of them being weeds, or failed
to find the trees entirely, especially if their canopy was small in size. The CLAHE method-
ology, a valuable tool performing well under different brightness conditions, slimmed
down the canopies to a higher degree than desirable, leading to different shapes and sizes
compared to the actual canopy. In many cases, this slimming splits canopies in two, which
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meant that the size of the tree and the location of its trunk could be incorrectly calculated.
When the images were transformed into the HSV colorspace, the trained model performed
well in identifying rough shapes, yet missed some obvious canopies which were not missed
by other methods, leading to a high number of FNs. The fused approach demonstrated that
the shortcomings of each method affected the predicted segmentations, therefore leading
to models with worse performance than their best-performing counterparts. Nevertheless,
the RGB model achieved the highest training and validation accuracy, the best testing
accuracy, and the best performance considering FPs and FNs. This approach demonstrated
robustness with all types of orchards and all seasons and for all different sizes, proving
that it was the best approach for the problem at hand. Another factor that mostly affected
the presence of FNs was the reshaping that images underwent in order to be fed into the
training algorithm and consequently to the trained model. Resizing can compress infor-
mation and in some cases this compression made small canopies “disappear”. However,
even though some vital information could have been lost due to resizing, the FN errors
remained at a low ratio.

The present study also demonstrated that the majority of FP segmentations were
either (a) trees or bushes that were outside of the orchard, (b) developed weeds dispersed
throughout the field area, or (c) split canopies resulting in two separate masks. The first
category is easy to handle since the coordinates of the orchard are known and therefore any
masks outside of it can be disregarded. Since the tree trunks can be calculated based on
the shape of the canopy, their distances can be measured and a set of rules applied to the
orchard’s structure could identify such misidentifications. The latter could serve as a good
solution to address the misidentification problems caused by weeds. The third category
can also be addressed by applying methods that identify the lines on which each tree is
planted, therefore deducting whether the calculated coordinates of a trunk fall within an
acceptable limit. All the above indicate future research directions for the continuation of
this work.

The second misidentification factor can also be addressed by changing the resolution
of the processed images. According to the results of the model performance evaluation
on orthomosaics, in orchards with young trees featuring small canopies and filled with
developed weeds, the performance was rather poor. This was attributed to the fact that
the top view of the weeds was similarly colored, shaped, and sized as the very small trees
within the image. This led to the identification of a large number of FPs. The resolution
of the images used in the procedure played an important role in the accuracy. Running
the same model on the complete orthomosaic, the results were remarkably improved,
reaching 82% accuracy. This was attributed to the fact that the lower pixel resolution
resulted in smoothing of the image, merging the pixels that included small weeds with the
surroundings, thus making the trees stand out in the image.

Higher accuracy with regard to the overlapping area of pixels may be desired as
this is a confident performance metric for model training. However, since the annotation
was conducted with high detail on the canopy while the prediction was not required to
outline fine details, the metric based on FP and FN predictions was additionally used
to identify which method achieved the best results. Regarding the accuracy metric, the
best model achieved 91% for training, 90% for validation, and 87% for testing accuracy.
Considering the false predictions ratio, 13.3% was achieved for both positive and negative
misidentifications of segmented canopies.

In general, image segmentation has been used in many areas; however, this is the first
time, based on the authors’ knowledge, that it has been applied to UAV images of orchards.
Image segmentation was selected over object detection due to a number of benefits, some
of which can be summarized in the following bullet points:

• The trees’ canopy size can be distinguished;
• The trees’ canopy shape can be identified;
• Gaps in the planting scheme due to missing or defoliated and diseased trees can

be identified;
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• The 2D surface of the imaged canopies can be computed;
• The 3D surface and volume of the trees’ canopy can be computed;
• The trees’ ages can be approximated;
• The amount of pesticide/water needed for individual trees can be reduced by assign-

ing proportionate amounts;
• The orchard’s yield potential can be calculated based on UAV imagery.

There are diverse possibilities for applying image segmentation to orchards and it can
cover multiple aspects of operational activities in agriculture. This can be achieved with
the use of deep learning, as it has proven its use in multiple occasions [45]. Additionally,
semantic segmentation is an active domain with novel approaches being proposed sys-
tematically [46], some of which have direct associations with the specific shortcomings of
remote sensing [47].

For the present study, U-net was utilized and tweaked to match the addressed problem
and the available dataset. U-net might be considered as a relatively basic neural network
considering the existence of autoencoders; however, several benefits of its use are apparent
from this study:

• It achieved consistent performance >85% with all image datasets even if they had not
been enhanced;

• High performance could be obtained even with a small number (~100) of images and
even without image augmentation;

• The trained model could produce masks instantaneously.

These outcomes render the selection of U-net as optimal for free field deployment
on UAV images. The lightness of the architecture leads to trained models which can run
with on-board devices using low-power processors. This ease of application, combined
with the high performance for the selected RGB model and the fact that this performance
was achieved with a small dataset, leads to the conclusion that the proposed methodology
is a promising start in the development of a highly sophisticated system that can iden-
tify trees in orchards and extrapolate a multitude of information useful for a variety of
related operations.

The current study could be further advanced by investigating the use of other sensing
tools with different capabilities and functions. These sensors might include hyperspectral
or multispectral cameras, stereo/depth cameras, or thermal cameras. Each of these sensing
tools has different pros and cons:

• Hyper/multispectral and thermal cameras. These cameras have multiple applications
in agriculture, especially for crop monitoring. The main advantage is the high-value
data related to crop and soil status. The disadvantages of this type of camera are the
high computational cost that is required to transform the raw data, the high purchase
cost, and the operational constraints due to various calibrations that have to take place
before each flight and their dependence on weather conditions since cloud coverage
greatly affects their measurements.

• Stereo/depth cameras. These are a type of camera commonly used in UGV applica-
tions due to their accurate depth perception in tandem with RGB depiction. There
are two major disadvantages that constrain the use of these sensors; their low range
of operational distance (most cameras have a 20 m range) and increased onboard
computational requirements.

• Thermal cameras. These cameras provide high-value data, similar to the hyper- and
multispectral cameras. However, they have high computational and operational costs.

However, using one of these sensors, or a combination of them, would increase the
complexity of the system, adding computational costs. Since our goal was to develop a
widely acceptable rapid system for on-the-go applications, we based the methodology on
using RGB camera, thus making it accessible to the majority of UAS users. In this study, an
initial approach for developing a simple tree segmentation system that provides instant
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and accurate results was proposed. Evaluating the use of the abovementioned sensors is
part of our future plans for further development.

The proposed system can serve as a tool for identifying the locations of trees and
obstacles within orchards and can be used as part of situation awareness and path planning
for agricultural robots and autonomous vehicles. In future work, this model could serve
as a UAV-based scouting tool in a UAV–UGV synergetic scheme for autonomous UGV
operations within orchards. Additionally, this system can identify gaps within tree rows,
thus serving as a subsystem of a farm management information system (FMIS).

6. Conclusions

This study addressed the problem of accurately identifying and segmenting tree
canopies in a variety of orchards from UAS-captured images. The potential uses of tree
segmentation cover a variety of applications, such as, for example, mapping orchard
environments in order to identify the coordinates of tree trunks for autonomous ground
vehicle navigation. Additionally, the system can serve as a tool to properly calculate the
volume of tree canopies within orchards and consequently estimate the trees’ ages and
yield potential. These operations are crucial for the next age of precision agriculture, in
which on-field visual inspection by experts will be less frequent, or extensive and less
time-consuming. Agricultural environments are highly complex; therefore, the ability to
accurately segment tree canopies, regardless of the growth stage and the season, provides
added value to any subsequent operations that take place within orchards.

The proposed approach employed a deep learning architecture, namely U-net, to
create a model able to segment tree canopies from UAS-captured images. The implemented
dataset was composed of images from three different orchards at different seasons through-
out the year, growing trees of different ages and with different canopy sizes. The achieved
variability of the dataset resulted in obtaining images that fell under seven different use
cases. The best-trained model achieved 91%, 90%, and 87% accuracy for training, valida-
tion, and testing, respectively. The results of the test dataset were also hand-examined by
experts in order to identify false positive and false negative instances of the produced seg-
mentation. The mean of all false positive instances throughout the whole test dataset was
7.49% and for all false negative instances it was 5.81%. The trained model was also tested
on never-before-seen orthomosaic images or orchards based on two methods in order to
tackle issues with out-of-the-field boundary transparent pixels in the image. Even though
the trained model did not contain orthomosaic images, it achieved performance levels that
reached up to 99%, demonstrating the robustness of the proposed approach. Additionally,
this study revealed issues that are present in computer vision tasks in highly complex
environments, such as in agricultural production. These issues have been documented and
will be the focus of upcoming studies. Other future plans include the verification of the
present study’s results by testing and evaluating the performance of the trained models on
different types of trees and orchard structures. Additionally, auxiliary methodologies will
be developed to address the problem of densely located or merged false positives.
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Appendix A

Table A1. Sample images of the seven use cases included in the study.

Use Case No. Conditions Sample Image

1

Yearly season: Autumn
Weeds coverage: Low

Canopy size: -
Foliage color: Brown
Ground color: Brown

2

Yearly season: Autumn
Weeds coverage: Low

Canopy size: -
Foliage color: Mixed
Ground color: Brown

3

Yearly season: Summer
Weeds coverage: Low

Canopy size: Small
Foliage color: Green

Ground color: Brown

4

Yearly season: Summer
Weeds coverage: Low
Canopy size: Medium
Foliage color: Green

Ground color: Brown

5

Yearly season: Summer
Weeds coverage: Low
Canopy size: Medium
Foliage color: Green
Ground color: Mixed

6

Yearly season: Summer
Weeds coverage: Low

Canopy size: Large
Foliage color: Green

Ground color: Brown

7

Yearly season: Summer
Weeds coverage: High

Canopy size: Large
Foliage color: Green
Ground color: Green
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Abstract: The identification of social interactions is of fundamental importance for animal behavioral
studies, addressing numerous problems like investigating the influence of social hierarchical struc-
tures or the drivers of agonistic behavioral disorders. However, the majority of previous studies often
rely on manual determination of the number and types of social encounters by direct observation
which requires a large amount of personnel and economical efforts. To overcome this limitation and
increase research efficiency and, thus, contribute to animal welfare in the long term, we propose in
this study a framework for the automated identification of social contacts. In this framework, we
apply a convolutional neural network (CNN) to detect the location and orientation of pigs within a
video and track their movement trajectories over a period of time using a Kalman filter (KF) algorithm.
Based on the tracking information, we automatically identify social contacts in the form of head–head
and head–tail contacts. Moreover, by using the individual animal IDs, we construct a network of
social contacts as the final output. We evaluated the performance of our framework based on two
distinct test sets for pig detection and tracking. Consequently, we achieved a Sensitivity, Precision,
and F1-score of 94.2%, 95.4%, and 95.1%, respectively, and a MOTA score of 94.4%. The findings of
this study demonstrate the effectiveness of our keypoint-based tracking-by-detection strategy and
can be applied to enhance animal monitoring systems.

Keywords: pig detection; pig tracking; convolutional neural network; Kalman filter; precision
livestock farming

1. Introduction

Today, it is well known that domestic pigs are highly social animals, maintaining
hierarchical structures and socially organized groups. In commercial farming systems,
the established social orders are frequently disrupted due to mixing groups as they are
transferred between different housing and production stages [1,2]. Mixing of unaquainted
animals leads to the establishment of a new social hierarchy going along with agonistic
interactions which may result in reduced animal welfare and health [3–5].
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In order to enhance animal welfare and health in future husbandry systems, the analy-
sis of animal interactions as well as their monitoring and prediction is of high importance
in research and commercial farming. Reasons for agonistic or aggressive behavior are
manifold [2,6–10], contribute to a certain extent to the animal specific behavior, and also
include a high variation between animals [2].

Nowadays, video recordings are a standard tool in research for observing pig pens
due to their non-invasive nature. Recent technological advances including deep learning
techniques, led to the rise of precision livestock farming applications to partially automate
the time consuming video evaluation process [11]. Within the area of precision livestock
farming, the tasks of multiple object detection and motion tracking have been studied
intensively in recent years, in order to remotely monitor several animals and to capture
the animals activity [11–15]. While multiple object detection refers to the task of locating
several objects belonging to a category of interest within an image [16], multiple object
tracking can be described as tracing the movement of objects throughout a consecutive
number of video frames and consistently assigning individual object IDs [17].

With the recent advances in the area of deep learning, convolutional neural network
(CNN)-based applications achieved state-of-the-art results in various image and video
object detection scenarios [18]. Here, the most frequently used detection approaches aim
to localize an object of interest by computing a bounding box around the object [19–21].
Although these approaches work successfully for various problem settings, due to the
overlapping of the predicted bounding boxes, their applicability is limited for the analysis
of videos with high utilization rates and several pigs in a close environment [22,23]. Fur-
thermore, the standard bounding box approach only provides the positional information
without taking the orientation of the animal into account which is a key information in
order to reliably differentiate distinctive contact types like head–head interactions.

To overcome this limitation, an alternative detection approach was developed by
Psota et al. [23]. The authors proposed a keypoint-based CNN for the detection of indi-
vidual body parts of pigs. After processing the CNN output with a cross-check matching
algorithm for assigning the individual body parts, they were able to successfully differ-
entiate multiple animals even in a close proximity environment. Achieving a sensitivity,
precision rate and an F1-score of 96%, 100%, and 98%, respectively, their approach proved
to be highly successful in identifying the location and orientation of individual animals.
As an extension, Psota et al. [11] applied this method to deal with the problem of tracking
individual animals by using a second object detection CNN to detect ear tags which serve
as a pig-individual identifier. Although this approach shows a lot of practical potential,
using individual ear tags requires additional effort for the attachment of the ear-tags. Fur-
thermore, the detectability of the corresponding ear-tags must be ensured, as the visibility
of the tags is often prevented by heavy interactions between the animals, bad lighting
conditions or a high degree of pollution in the pig compartment. As a possible solution, it
seems beneficial to use the detected body parts directly for animal tracking which could
increase the applicability of the keypoint-based detection approach, while simultaneously
reducing the complexity without the need to train a second CNN for object detection.

Therefore, by following the idea in [23] we implement a CNN based framework for
detecting individual body parts of pigs and use the predicted shoulder-tail information
directly as the input for a Kalman filter (KF)-based tracking algorithm. The KF is currently
one of the most frequently used approaches for tracking the motion activity of multiple
objects within a video [24,25] which allows the assignment of individual animal IDs in this
study. Subsequently, by collecting the shoulder-tail information as well as the animal ID in
our framework we differentiate between specific head–head and head–tail contacts. As a
result of this, our framework is able to determine a table of social contacts and to compute
a graphical network of the social relationships. Such type of contacts could provide crucial
information about social interactions including tail and ear biting. Consequently, using the
proposed framework we aim to automate the process of video data analysis by quantifying
the number of social encounters for several pigs within a video sequence. This information
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can then be used by researchers to specifically analyze scenes of interest within their
respective fields or to directly perform a SNA.

The remainder of this article is structured as follows. Section 2 describes the data used
for this analysis and explains the methodical foundation as well as the evaluation rationale
applied in this article. Next, the results for the animal detection, animal tracking, and
social contact identification are presented and discussed in Section 3. Section 4 concludes
this article.

2. Materials and Methods

In this section, the data used for the analysis as well as the different stages of the
proposed method and the evaluation rationale are described in detail. The underlying
multi-stage framework of the proposed method is illustrated in Figure 1.

Figure 1. Flowchart of the analysis applied in this study.

The proposed method follows a tracking-by-detection (TBD) approach with the goal
of tracking a known number of pigs within the pig compartment. As the input signal, a
video sequence represented by a series of consecutive frames S = (s1, s2, . . . , sN) is used,
where N is the number of frames. In this context, TBD refers to first detecting objects of
interest in each video frame using a pre-trained detector and then linking the independent
detections at the temporal dimension over a longer period of frames [26,27].

In this study, the location and orientation of each pig within the video is determined
frame-wise using a keypoint-based CNN to output the coordinates of important body parts
(shoulder, tail, left ear, and right ear). After associating the body parts and assigning a
unique ID to each pig, the shoulder coordinates in time T are used as the input signal
for a Kalman filter to predict and track the location of future shoulder positions in T + i
with i = (1, 2, . . . , N − T). By tracking the shoulder points, two distinct types of body part
contacts are identified as being either a head-head or head-tail contact. If two shoulder
points are close to each other, the encounter is marked as a head-head contact. If a shoulder
point is close to a tail point, the encounter is marked as a head–tail contact. Finally, by
incorporating the frame number information, animal IDs and types of contact, a table
of social contacts as well as a graphical representation in form of a social network is
constructed as an output.
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2.1. Data Acquisition and Processing

The video data used for this study was collected by [28,29] between October and De-
cember 2018 at the research farm Futterkamp of the Chamber of Agriculture of Schleswig-
Holstein in Germany during a research project to investigate the effects of different farrow-
ing and rearing systems on the stress level of piglets. For this purpose, a single static camera
of the type AXIS M3024-LVE (Axis Communications AB, Lund, Sweden) was assembled
3 m above the ground which recorded all videos with a frame-per-second (fps) rate of
10 frames and a display resolution of 1280 × 800 pixels. For this study, sequences with a
varying number of animals and a fixed camera angle have been selected. Figure 2 shows
three example frames of structurally identical pens.

Figure 2. Example frames of the pig compartment under investigation with a known number of pigs.

In our analysis, we extracted all video frames and converted them to a grayscale format
with a pixel dimension of 640 × 400 pixels, in order to avoid a potential bias of the CNN by
differentiating between day and night recordings [30]. The dimensionality reduction was
carried out to reduce CNN training time and, thereby, increase the computational efficiency.

2.2. Pig Detection

An essential step in the tracking of individual pigs is their successful detection. For
this purpose, Psota et al. [23] established a keypoint-based CNN to detect distinct body
parts of pigs and highlighted the advantage of this approach over existing bounding box
detections. Using this keypoint approach, we implemented a CNN to receive a video frame
and to output the coordinates of four individual body parts for each animal. Similar to the
work in [23], we stored the coordinate information of the left ear, right ear, shoulder and tail
point directly as a binary image in a separate image channel (Figure 3B–E). Additionally,
the information for the connection lines shoulder–tail, shoulder–left ear, and the shoulder–
right ear are included (Figure 3F–H). In comparison to conventional top-down detection
methods, which output bounding box or ellipsoid coordinates, the detected keypoints
directly provide a pose representation which facilitates the contact identification of the
animals [23].

During the training process, a CNN is trained to map the input image to the ground
truth annotations by highlighting the important pixels of the corresponding body parts.
The architecture of our CNN follows an autoencoder structure which is illustrated in
Figure 4.

The CNN consists of 25 convolutional layers combined with 2× 2 max pooling and
upsampling layers. The first ten layers are used to reduce the input dimension from
640 × 400 pixels to a latent representation of 40 × 25 pixels and extract the main features
for the body part detection. At the lowest dimension, six stacked convolutional layers
forward the latent image representation to a set of upsampling and convolutional layers,
which step-wise increase the image dimension back to 640 × 400 pixels and output the ap-
proximate body part coordinates. After each upsampling layer, a residual connection with a
concatenation layer is used to copy a representation from the encoder layers to the decoder
layers to decrease the reconstruction loss and improve the training efficiency [23,31]. All
convolutional layers are implemented with a ReLU activation function, zero padding and
a stride parameter of 1. Using the Adam optimizer [32] and binary cross-entropy loss, the
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network applies a sigmoid activation for the last layer to output pixel intensities between
0 and 1.

Figure 3. (A) The original image which serves as the input for the CNN. (B–H) The corresponding
ground truth annotations containing the positional body part information which are used for the training
process. (I) The original image combined with the ground truth annotations.

Figure 4. The implemented CNN follows an autoencoder structure to create the seven-channel output
object given a gray-scaled video frame. For each convolutional layer the dimensional information is
given in the format height × width × number of convolutional filters.

The CNN was implemented in Python (version 3.7.6) [33] using the deep learning
framework Keras (version 2.2.4) [34] with TensorFlow (version 2.0) [35] as a backend. The
model training was carried out on a workstation equipped with two Intel Xeon Gold
6138 CPUs, 512 GB RAM, and a NVIDIA Quadro P5000 GPU.

Subsequently, to train the CNN, we annotated a training data set consisting of
2457 images. To increase the overall sample size and to enable the model to see more
heterogenous animal postures, we augmented the training images as well as the corre-
sponding ground truth annotations using vertical and horizontal shifting, shrinking and
image rotation. After augmentation, the total training data set had a size of 12,285 images
of which 90% were used for training and 10% for the model validation after each epoch.

After the CNN has learned to predict the positions of the individual body parts in
the two-dimensional image space, the location and orientation of each pig are determined
based on the CNN output. For this step, we mainly focus on the analysis of Channel 5
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(Figure 3F), as it mainly carried the most accurate and robust information. By extracting
the start and end coordinates of each shoulder-tail line, a depth-first-search algorithm
(DFS) [36] is applied to determine the pigs location. However, Channel 5 does not contain
the information of the animal’s orientation. Therefore, we incorporate the information of
Channels 1–4 to identify shoulder and tail points of each pig. An example frame after the
detection process is given in Figure 5.

Figure 5. Example of the CNN pig detection showing the original frame (A) and the detected
shoulder and tail points (B). The frame shows a feeding situation in which several pigs are in close
proximity to each other. Each pig is marked by highlighting the corresponding shoulder and tail
points as well as the connection line.

2.3. Pig Tracking

After determining the location and orientation of each pig, this step aims to track the
pigs’ movement and to link their trajectories over the total sequence of frames. While previ-
ous approaches mainly focused on pig tracking using bounding box detections [19,37–39],
the suitability of these approaches is limited to identify social contacts in close proximi-
ties because they do not incorporate the animals’ orientation and show a high risk of ID
switches in situations of overlapping boxes. To reduce this limitation, we apply for the first
time a combination of a KF tracking approach [40] with the body part detections as the
input signal to track individual animals and to determine distinct contact types. While the
CNN output can still contain false detections, we use the KF as an unsupervised, dynamic
model to estimate and track the shoulder positions, even in frames in which the true point
could not be detected by the CNN.

The KF process is divided into two phases: a prediction and an update phase. In
the prediction phase, a prediction of the shoulder position for the current time step k
is computed based on the KF estimate of the shoulder point of the previous time step
k− 1. During the update phase, new CNN detections at k are used to adjust the current
prediction and to compute the KF estimate at time k, which is used as new input for the
prediction phase of the next time step k + 1. In the case of false positive or false negative
CNN detections, the input signal variance is increased, which leads the KF to weight
down the importance of the CNN input and to increase the weight of the previous KF
prediction [41]. Consequently, the KF yields a more robust estimate of the shoulder point
coordinates which overcomes the problem of shoulder–tail swaps and misdetections.

After the KF is initialized, it is applied to the ordered shoulder points produced
by the CNN. While all videos have been recorded with a fps rate of 10 frames, even
intense motion changes of the animals caused just slight pixel variations in the consecutive
frames. Therefore, a KF shoulder point in frame k is mapped to the corresponding KF
shoulder point in frame k + 1 by minimizing the Euclidean distance. Consequently, each
KF shoulder estimate is assigned an individual animal ID. An example of the pig tracking
and ID assignment is shown in Figure 6.
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Figure 6. The multi-target pig tracking, shown for an example sequence of four frames, on a one
second interval. The frame number is printed on the top, and the fps-rate was set to ten frames. The
KF estimate of the shoulder point is highlighted by the blue dot, near the shoulder region of each pig.
The corresponding ID is placed right of it.

2.4. Identifying Contact Information

The last stage of our proposed framework aims to identify animal contacts in the form
of either head–head or head–tail contacts, which may be related to tail biting or nosing
behavior. We use the KF shoulder and tail estimates, as well as the pig orientation to
define a region of interest at the head and tail area of each pig. If at least two pigs are
nearby to each other so that either both head regions or one head and one tail region are
sufficiently close, the head and tail regions are intersecting, which indicates a potential
contact. To account for different age and size levels of the animals, the average length of
each shoulder–tail line per frame is calculated and used to scale the head and tail regions
to a radius r, defined as:

r =
1

αN ∑N
i=1

√
(si − ti)2 (1)

where si and ti are the shoulder and tail coordinates of the i-th pig, N the total number of
pigs in the given frame, and α a scaling factor. In this study, an α value of 3 was empirically
deemed to be optimal for computing an area of interest large enough to cover the essential
part of the head and tail region, but being small enough to avoid potential false detections
in the form of animals walking by. Figure 7 shows an example of the region computation
and contact identification.
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Figure 7. Based on the KF estimates, a region of interest for each head and tail area is computed. By
detecting the intersection of at least two regions, the type of contact and the associated animals can be
identified. Exemplarily, a head–tail contact can be detected between pigs 5 and 11 and a head–head
contact for pigs 1 and 10.

2.5. Pig Detection and Tracking Evaluation Rationale

In order to assess the overall performance of our framework, we evaluated both the
CNN detection stage as well as the multi-target pig tracking stage separately. For the
CNN detection, we additionally annotated 100 randomly selected images and used these
frames as a test set to evaluate the CNN’s ability to predict the location of individual pigs
by detecting their shoulder points. To avoid confusion we used the subscript “D” and
“T” to differentiate between the detection evaluation and the tracking evaluation. For the
detection stage, we computed the number of True Positives (TPD), False Positives (FPD), and
False Negatives (FND) over all test images and calculated the Sensitivity, Precision rate, and
F1-score defined as

Sensitivity =
TPD
PD

(2)

Precision =
TPD

TPD + FPD
(3)

F1 =
2TPD

2TPD + FPD + FND
(4)

In order to determine TPD, FPD, and FND, a circular detection region around the true
shoulder point was defined by computing the average distance from the true shoulder
point to the true left and right ear points over all pigs of the given frame as the radius. If
exactly one shoulder point was predicted by the CNN within the detection region, this
point has been classified as TPD. If more than one point was predicted within the region
or outside the detection region, these points have been classified as FPD. If no point was
detected within the region, the point was classified as FND.

Despite the recent advances of multiple object tracking applications, there is still
a lack of large-scale benchmarks and comparable evaluation metrics [42,43]. While the
majority of existing object tracking publications applies a bounding box approach using
the intersection over union (IoU) as an evaluation criterion between the annotated and
predicted box, our proposed framework applies a keypoint-based approach, for which the
IoU is not suitable. Therefore, we followed previous studies [21,38,44] and calculated the
Multiple Object Tracking Accuracy (MOTA) defined as

MOTA = 1− FPT + FNT + IDSW
NCNN

(5)

by manually determining the number of falsely tracked pigs (FPT), pigs which have not
been tracked (FNT), the number of ID switches (IDSW), and the number of pigs detected
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by the CNN (NCNN). While the total tracking error can be further divided into detection
errors, association errors, and localization errors [42,45], FPT and FNT account for the
detection errors and IDSW accounts for the association errors. If a detected pig is not
tracked by the KF tracker, it is classified as FNT . If the tracker tracks something different
than a pig, it is classified as an FPT . We further increased the number of FPT to account
for the localization errors if a pig is tracked, but the corresponding tracking point is too
far away from the target point. To determine the MOTA value we randomly selected
70 videos as test sequences with an average length of 20 seconds. These sequences have
been analyzed by the CNN in advance, in order to obtain the coordinates of the detected
body parts.

3. Results and Discussion

By applying our pig detection and tracking framework, we first analyzed in this
study several video frames including different scenarios, in order to assess the detection
and tracking performance. After that, three distinct animal contact network visualiza-
tions are presented and discussed to demonstrate the applicability and functionality of
our framework.

3.1. Pig Detection and Tracking

As the performance of a tracking-by-detection (TBD) algorithm depends strongly
on the accuracy of the corresponding detector [46], we evaluated the CNN performance
for locating the pig position and determining its orientation using the Sensitivity, Pre-
cision, and F1-Score metric, respectively. For this purpose, we analyzed the manually
annotated detection test set containing 100 randomly selected frames. Consequently, in
total 1054 shoulder points have been annotated and considered for the evaluation anal-
ysis (see Table 1). In a following step, we focused on the tracking ability of the imple-
mented KF and used 70 randomly selected video sequences as the tracking evaluation
data. The results for the detection as well as for the tracking are provided in Table 1. The
data sets used for the detection and tracking evaluation are made publicly available at
https://github.com/MartinWut/Supp_DetAnIn (accessed on 9 November 2021).

Table 1. Evaluation results for the pig detection set and tracking set.

Test Set TP FP FN IDSW Sensitivity (%) Precision (%) F1 (%) MOTA (%)

Detection 1019 51 35 - 94.2 95.4 95.1 -
Tracking 640 20 8 10 - - - 94.4

Table 1 shows that the majority of shoulder points was successfully detected by the
CNN resulting in high performance values, in terms of Sensitivity, Precision, and F1-Score.
While in total 1054 shoulder points have been manually annotated, only a relatively small
fraction of these points have not been detected. On the other hand, the number of falsely
detected pigs (FP = 51) indicates that the detection CNN still has limitations in challenging
situations like object occlusion. Figure 8 illustrates several example frames from the test set
showing cases of successful and failed detections.

In Figure 8, it can be observed that the CNN successfully detected most of the pigs.
Focusing on the failed detections, the large majority of failures was produced in situations
in which one pig has been occluded by another pig, which led to a false negative detection.
However, the problem of object occlusion and the resulting degradation in performance
is not linked to the design of this study. In fact, the issue of object detection under the
influence of occlusion is a challenging task which negatively affects the robustness of most
detection algorithms [47]. While current approaches aim to tackle this problem by applying
a compositional neural network structure in combination with an occluder model [47–50],
the majority of approaches focus on the problem of partial occlusion and would, therefore,
be of limited suitability for this study. Moreover, during the tracking process, the negative
effect of object occlusion can be reduced to some extent, by applying a predictive model like
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the KF algorithm, which internally interprets the CNN detections as noisy measurement
information. In cases of extreme volatility, like the loss of an object due to occlusion,
the KF reduces the influence of the measurement input by increasing the importance of
the Kalman prediction [51,52]. To reduce the effect of a missing shoulder or tail point to
some extent, we computed the number of detected objects frame-wise and marked the
corresponding frames as corrupted in cases of missing detections. Corrupted frames have
then been excluded for the KF tracking where we used the previous KF estimates as the
new measurement input instead.

Figure 8. Example frames from the detection test set for day and night frames showing cases of
a completely successful pig detection (left column) and cases in which at least one pig was not
detected correctly (right column). A true shoulder point is highlighted by a red dot in the middle of
the detection region (red circle). A green dot represents the predicted shoulder point from the CNN.

To assess the tracking performance, we further analyzed 70 test sequences containing
various scenarios like feeding, resting, or interactions. As it can be seen in Table 1, the
implemented KF was able to track 640 out of 678 shoulder points correctly resulting in a
MOTA score of 94.4%. However, in 38 cases the tracking of the detected shoulder points
failed: (i) 20 animals have not been tracked, (ii) eight animals have been tracked at the
wrong position, and (iii) ten cases occurred in which the assigned ID of two pigs switched.
Examples of a FP-track, a FN-track, and an ID switch are given in Figure 9.
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Figure 9. Examples of a failed tracking performance. (A) While the shoulder point of the lower pig
was not tracked (FN), the corresponding ID was computed at an empty spot in the compartment
(FP). (B1–B3) A case of an ID switch due to a close proximity interaction and the occlusion of an
animal. Before the interaction takes place, ID 5 and ID 7 have been assigned correctly (B1). After the
interaction the IDs switched so that the ID 5 was assigned ID 7 and vice versa (B3).

In line with previous studies [26], we observed that if the detector is able to detect
all pigs correctly, the corresponding pig tracking is working without producing corrupted
tracks. In contrast, if the detection of the body parts fails, the tracker predicts the shoulder
point based on the movement pattern of the previous frames. While the consequences
are minor for short periods of detection failures, longer phases of missing detections lead
to the effect of misplaced tracking IDs. However, this limitation is not specific to this
study. Although the most successful tracking approaches are based on a TBD-strategy, the
consequence of missing detections can be a significant reduction in their performance [53].
An example of a misplaced tracking ID is given in Figure 9A.

Another fundamental issue in the field of multiple object tracking, is the problem
of ID switches, which is shown in Figure 9(B1–B3) [21,39,44,54]. In Figure 9(B1), the pigs
with IDs 5, 7, and 10 are successfully detected and tracked. During the sequence, pigs 5
and 7 are occluding the shoulder point of pig 10, which leads to a missed detection of this
animal by the detector (Figure 9(B2)). However, after all shoulder points reappear in the
video, the KF tracker estimates the position of the shoulder points, but swaps IDs 5 and 7
(Figure 9(B3)).

Unlike previous bounding box-based studies, the problem of ID switches in our study
only occurs in cases when the shoulder points of the animals disappear due to different ob-
stacles, thus preventing the detection of these points. While several existing bounding box
tracking applications suffer from ID switches arising from highly overlapping boxes [39],
the keypoint-based approach applied in this study considers a much smaller tracking area.
Therefore, a strong overlap of two or more tracked shoulder points is less likely to occur,
which explains the relatively low number of ID switches given in Table 1. Of particular
interest, we further studied all cases of ID switches in the test set in order to establish the
main reason for the ID switch issue. We found that nine out of ten ID switches have been
caused by a missed detection rather than by two detected IDs in a short distance. Only in
one case a false detection caused the ID switch.

3.2. Animal-to-Animal Contact Identification

The knowledge about social interactions is fundamental to enhance farming conditions
and animal welfare. Thus, the final stage of the framework proposed in this study aims
to identify such behavior patterns based on pig interactions. In particular, by focusing on
close proximity contacts between at least two animals, our framework automatically takes
into account head–head as well as head–tail contacts. After that, based on these contact
information, we construct a trajectory map to highlight individual movement patterns,
which finally provides an information table about the social contacts. An example of the
identification process for one test sequence is given in Figure 10.
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Figure 10. The social contact identification starts with a raw video frame (A). After detecting
the shoulder and tail position (B), the trajectories are computed and analyzed over time (C). By
identifying cases of close distances, a table of social contacts is constructed automatically (D).

The table of social contacts (Figure 10D) contains highly essential information about
the contact pattern of animals over all video frames. As Smith et al. [55] pointed out, these
data are crucial in the field of behavioral ecology and the automatic contact identification
can reduce observer bias as a limiting factor. To address different research questions like
the investigation of hierarchical structures, agonistic behavior patterns or pen utilization,
the necessary information can be derived from this table as required. Further, this table can
be used for extracting a distinct contact period by restricting the frame and ID information.
However, the aim of this study is to differentiate between individual contacts. Therefore,
the extraction process primarily focuses on the contact type information which is used to
visualize the social relationships of the observed animals. Figure 11 shows an example
for the visualization depicting both type of contacts (Figure 11A) as well as the specific
head–head and head–tail contact types (Figures 11B,C).

Each of the three social networks in Figure 11 is constructed by using the individual
animal ID as the node information and the contact frequency as an intensity score for the
edge weight. In particular, for a holistic analysis, the consideration of all contact types
is crucial to establish the general contact patterns between all animals in a compartment
(Figure 11A). On the other hand, with regard to specific research questions [56–58], a more
differentiated network design focusing on a distinct type of contact can be advantageous
(Figures 11B,C). As a result, the structure of the specific network types differs from the
holistic network which arises from the alterations in the edge weights.
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Figure 11. Examples of three social networks from one test sequence.

In comparison to previous studies which aim to tackle the issue of identifying social
interactions by following a bounding box approach [59], our strategy is not restricted to
specific behavioral patterns like escaping and chasing motion activities. Even in challenging
situations like resting behavior where most of the pigs are lying down in a very small area,
our proposed framework is able to identify social contacts to a certain extent.

To further extend the performance of the proposed framework, future work could
focus on the implementation of more sophisticated network topologies. In this regard, re-
cent studies [60,61] successfully showed the potential of attention mechanisms, introduced
by Bahdanau et al. [62], to leverage the power of deep learning for highlighting impor-
tant features. Ghaffarian et al. [60] performed a literature review analyzing 176 articles
focusing on image classification, object detection, and change detection. As a result, the
authors concluded that the majority of deep learning-based research studies reported a
performance increase when applying an attention mechanism. This improvement could
have the potential to further reduce the number of false positive predicted body parts and
could enable additional filtering steps to detect corrupted video frames.

4. Conclusions

Today, the usage of video technology for animal monitoring is well established. How-
ever, extracting useful information is often challenging and thus limiting the potential of
animal video analysis. In this study, we propose a framework for the automatic detection
of social contacts to address the limitations of animal behavioral studies. By applying a
keypoint-based body part detection and a subsequent pig tracking algorithm, we are able
to determine the time, the animals involved, and the type of a social contact. We further
process the information to construct a social network based on the contact type. To the best
of our knowledge, this is the first study incorporating both a body part detection CNN as
well as a Kalman filter tracking algorithm to identify social contacts. Our findings show
the applicability of our approach to monitor a known number of pigs which can be used as
part of early warning systems for the detection of behavioral changes. Overall, we suggest
that our framework is applicable for different livestock animal monitoring systems.
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Abstract: Monitoring and classification of dairy cattle behaviours is essential for optimising milk
yields. Early detection of illness, days before the critical conditions occur, together with automatic
detection of the onset of oestrus cycles is crucial for obviating prolonged cattle treatments and
improving the pregnancy rates. Accelerometer-based sensor systems are becoming increasingly
popular, as they are automatically providing information about key cattle behaviours such as the
level of restlessness and the time spent ruminating and eating, proxy measurements that indicate
the onset of heat events and overall welfare, at an individual animal level. This paper reports on
an approach to the development of algorithms that classify key cattle states based on a systematic
dimensionality reduction process through two feature selection techniques. These are based on
Mutual Information and Backward Feature Elimination and applied on knowledge-specific and
generic time-series extracted from raw accelerometer data. The extracted features are then used
to train classification models based on a Hidden Markov Model, Linear Discriminant Analysis
and Partial Least Squares Discriminant Analysis. The proposed feature engineering methodology
permits model deployment within the computing and memory restrictions imposed by operational
settings. The models were based on measurement data from 18 steers, each animal equipped with
an accelerometer-based neck-mounted collar and muzzle-mounted halter, the latter providing the
truthing data. A total of 42 time-series features were initially extracted and the trade-off between
model performance, computational complexity and memory footprint was explored. Results show
that the classification model that best balances performance and computation complexity is based on
Linear Discriminant Analysis using features selected through Backward Feature Elimination. The
final model requires 1.83 ± 1.00 ms to perform feature extraction with 0.05 ± 0.01 ms for inference
with an overall balanced accuracy of 0.83.

Keywords: precision agriculture; cattle behaviour monitoring; feature selection

1. Introduction

Autonomous cattle behaviour monitoring systems have grown in importance over the
recent past. Sensor-based technologies are now starting to be accepted as an enhancement
to traditional visual inspection, the latter being both time-consuming and labour-intensive.
In the UK, there has been a steady decline in the number of milk producers, whilst at the
same time the average size per herd has risen as small-scale farm holdings have departed
the industry sector due to the economic pressure. The average number of cows per herd
has also grown from ~75 in 1996 to ~155 in 2020 [1]; and during the same period, milk
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production has increased marginally, from ~13 M litres in 2008 to ~15 M litres in 2020 [1].
As a direct consequence, the time available to observe herds has reduced significantly,
with farmers now more amenable to relying on technology-based systems for extensive
monitoring [2,3].

Systems such as neck-mounted collars, leg and ear tags that monitor dairy and beef
cattle are now enjoying increased adoption. Such systems provide early information on
health and welfare issues, and identify the onset of oestrus, both of which form the basis
for a decision support system that advises farmers on the most appropriate interventions
that enhance the efficiency of current practices [4–6].

In this paper, the use of a neck-mounted accelerometer-based collar to identify eating
and rumination signatures is reported. A muzzle-mounted halter pressure sensor was used
in order to collect the ground truth data. The halter has proved to yield high correlation
between identified and visually observed behaviours and has become a widely accepted
means of gathering ground truth data throughout the precision livestock community. A
study by [7] compared halter-based labels and video annotations and reported an F1 Score
of 0.932 for rumination. Additionally, a high Spearman correlation of 0.96 and 0.75 for
rumination, and 0.96 and 0.81 for eating, respectively, was reported in [8,9]. Three classi-
fication algorithms are considered here and a comparison of their ability to discriminate
different cattle states has been performed. Data from 18 steers were acquired during three
farm trials in the United Kingdom (Easter Howgate Farm, Edinburgh, UK). A total of
42 features were initially extracted from the data, followed by a systematic reduction in
dimensionality to decrease model complexity, easing the transformation of the raw sensor
data into actionable information and optimising the trade-off between model performance,
computation complexity and memory footprint.

The paper is organised as follows. Section 1 represents a brief introduction and
Section 2 provides a summary of related work. Section 3 presents a short description of the
data acquisition methodology. Section 4 describes the adopted methodology and details the
dimensionality reduction methods, while Section 5 describes the classification algorithms
considered. Section 6 evaluates the accuracy of the classifications and the efficiency of
implementation of the proposed approaches. Section 7 draws conclusions and summarises
key findings. The full range of feature definitions are given in the Appendix A.

2. Related Work

A range of solutions for cattle behaviour identification have been reported, many
based on classical Machine Learning (ML) algorithms [10–17], but the recent adaption of
Deep Learning (DL) techniques has significantly increased the potential to optimise the
efficiency of artificial intelligence enabled classification solutions [18–21].

Convolutional Neural Networks (CNNs) have been used for classification of grazing
and non-grazing periods [18]; given the output is binary, the development is less demanding
compared to multi-state behavioural classification. A highly accurate performance classifier
based on a 3-axis accelerometer/gyroscope/magnetometer data and a Recurrent Neural
Network with Long Short-Term Memory (RNN-LSTM) able to identify 8 cattle behaviours
has been reported in [19]. Although the RNN-LSTM algorithm achieved accurate cattle
behaviour classification, its operational deployment on low-cost, low-power processors
is prohibitively challenging due to significant model complexity. The approach which
overcomes the operational implementation challenges of complex Deep Learning (DL)
models was implemented through an iterative structured pruning process in [21]. The
results confirm that the CNN architecture can be supported on low-power micro-controllers
with an operational lifetime of 5.7 years. The methodology achieved a model compression
of 14.30 with minimal loss of performance; however, additional effort to create the approach
that overcomes the implementation challenges is required.

In most instances, although classical ML algorithms do not require model reduction,
a further decrease in computational complexity and memory footprint requirement will
enhance device efficiency and prolong battery lifetime. An approach [12] based on Decision
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Tree (DT) and Support Vector Machine (SVM) algorithms, using data from neck-mounted
collars sampled at 10 Hz, demonstrated high performance classification for three cattle
states viz. ‘eating’, ‘rumination’ and ‘other’. The overall accuracy, validated by human
observation, was 0.90 and 0.93 using DT and SVM algorithms, the latter classifying ‘eating’
and ‘rumination’ with a precision of 0.92 and 0.88 and sensitivity of 0.85 and 0.92, respec-
tively. Data were acquired from 10 animals over a period of 5 days giving a total monitoring
time of 60 h. A similar study also demonstrated the use of a SVM to identify a larger num-
ber of cattle states including ‘eating’, ‘rumination’, ‘standing’, ‘lying’ and ‘walking’ [11]
using accelerometer measurement data sampled at 10 Hz from 30 animals. The approach
produced results with a precision of 0.78 ± 0.01, with ‘eating’ and ‘rumination’ classified
with a precision of 0.81± 0.03 and 0.86± 0.02 and sensitivity of 0.75± 0.04 and 0.75 ± 0.02,
respectively. The classification accuracy of both states was reported to be 0.96 ± 0.01 and
0.92 ± 0.01. Ground truth data, obtained through both direct animal observation and video
annotation, provided a highly appropriate validation dataset; nevertheless, owing to the
significant effort required, a relatively small dataset of 95.5 h in total was acquired.

The present paper advances the state-of-the-art in several areas: It proposes a method-
ology to systematically reduce the dimensionality using a number of feature selection
techniques and, coupled with appropriate ML algorithms, to deliver accurate identification
of ‘eating’, ‘rumination’ and ‘other’ cattle behaviours using data from 3-axis accelerometer
neck-mounted collars. The development harnesses a comparable dataset size to other
reported studies in terms of the number of animals, but the total number of observation
hours is significantly higher. The studies conducted in [11,12] proposed the use of 28 and
16 features, respectively, derived from the raw accelerometer data; however, the motivation
for selecting the corresponding number of features and the features themselves was not
directly specified. The methodology reported here begins with 42 knowledge-specific and
generic time-series features and follows a systematic feature reduction process, resulting in
7 features that yield near optimum classification performance while maintaining low model
complexity. As most datasets are not publicly available, a comparison of the classification
performance of the proposed model with the data used to develop other algorithms was
not possible. The data underpinning the current study have been made publicly acces-
sible to stimulate the creation of new algorithms and permit the community to perform
direct comparisons.

3. Data

The cattle were housed indoors in a straw setting and fed a Total Mixed Ration (TMR)
ad libitum. Data, collected during three farm trials in the United Kingdom (Easter How-
gate Farm, Edinburgh, UK) were acquired from a total of 18 Limousin Cross-Breed steers
equipped with Afimilk Silent Herdsman [5] neck-mounted collars and Rumiwatch hal-
ters [22] mounted on the muzzle (Figure 1). The collar comprised a 3-axis accelerometer
sampled at 10 Hz with range of ±2 g and 12-bit resolution, an SD card for storage, and
a Real Time Clock (RTC). The halter consisted of a pressure sensor, an SD card and RTC
producing behaviour classification at frequency of 10 Hz. The SD cards from both systems
were collected and the recordings with total duration of 3460 h were verified for time align-
ment (the dataset is publicly available at https://www.doi.org/10.5281/zenodo.4064802,
accessed on 16 February 2022).

The collars provided acceleration values orientated in x-, y- and z-directions, i.e.,
parallel, vertical and perpendicular to the body of the animal, capturing both head and
neck muscle motions. The halter, through pressure changes induced by movements of the
jaw, provided the ground truth of the following animal states:

• Eating—the animal is ingesting food.
• Rumination—the animal is regurgitating to further breakdown ingested food and

improve nutrient absorption.
• Other—the animal is engaged in an activity which is neither ruminating or eating.
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(a) (b)
Figure 1. Placement of a RumiWatch muzzle-mounted halter and Afimilk Silent Herdsman neck-
mounted collar. (a) Axis orientation diagram. (b) Photograph illustrating sensor placement.

Data Preparation

At the outset, both the accelerometer and halter time sequences were segmented
into 90 s blocks [10,12,19], with each block of the accelerometer signal assigned to only
one behaviour state for truthing. The acceleration in y-direction—oriented vertical to the
animal body i.e., perpendicular to the ground is the one that captures both head and neck
muscle motions, central to the identification of the target cattle states; for that reason, only
y-axis data was used for analysis [15]. Considering that the halter provides measurements
at a frequency of 10 Hz and that there are instances of more than one cattle behaviour
during the 90 s period, a majority vote was applied within each block to indicate the
primary behaviour.

4. Model Design

A total of 42 features, defined in the Appendix A (Table A1), were extracted from
raw accelerometer signals for each of the 90 s blocks as the basis for the discrimination
between cattle behaviours. All features used within the analysis are derived using the
tsfresh Python package [23] with the exception of two knowledge-specific features; FFT
amplitude in the band 2–4 Hz and Spectral flatness. Specific features were selected, informed
by the knowledge that the dominant frequency of the rumination motion is centered
around ~3 Hz and manifests as a significant spectral peak, while the eating frequency
content is spread over a wider band, characterised by a relatively flat spectrum. Given
the relatively high number of extracted features, the performance of the classification
model is compromised due to the curse of dimensionality. A highly dimensional feature
space also has ramifications in respect of increased computation complexity and memory
footprint hindering the ability to deploy low-cost, low-power on-farm implementations.
Therefore, a systematic reduction of features was performed in order to decrease model
complexity but not at the expense of a reduction in discrimination performance between
three cattle states of ‘eating’, ‘rumination’ and ‘other’. The reduction phase is followed
by evaluation of three classification algorithms, namely, Hidden Markov Model (HMM),
Linear Discriminant Analysis (LDA) and Partial Least Squares Discriminant Analysis (PLS-
DA). A schematic of the end-to-end development pipeline is illustrated in Figure 2, the
red arrows representing the applied process flow, while the black arrows illustrate an
alternative, relevant methodology not considered here. All components of the adopted
methodology presented within the block diagram are further analysed in more detail.
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Feature extraction 
(42)

Filter Wrapper Embedded

Raw accelerometer signal 
(X, Y, Z)

Classification

Feature selection

Figure 2. A block diagram showing the methodology starting from the raw data to training and
evaluation of the classification algorithms. The red arrows indicate the adopted methodology followed
in this work.

4.1. Training and Validation

Three steers from the total of 18, each drawn from a distinct farm trial, were randomly
selected to form a dataset prior to any pre-processing. The data from the three steers are
used at the final stage only in order to evaluate the methodology and are not considered in
the dimensionality reduction process nor in the training of the classification model. The
remaining 15 steers are used to optimise the combination of features and classification
model parameters through a 5-fold cross-validation process; twelve steers are used as the
training set, with the remaining three forming the validation set. The cross-validation
process is repeated 5 times so that each steer is present in the validation set precisely
once. Further, the complete 5-fold cross-validation is repeated 5 times resulting in a
total of 25 training/validation iterations. In order to eliminate the bias from individual
steers, i.e., so that each steer has an equal contribution during model training, the training
set was balanced. More precisely, each steer was represented with the same number of
observations as the steer with the shortest observational period across all 12 individual
animals. The remaining segments derived from steers with longer observational periods are
under-sampled randomly, with the time-order of given observations remaining unchanged.
Further, each feature is standardised, so that each feature time-series had zero-mean and
unit-variance, to ensure that feature scales are comparable i.e.,:

x′i =
xi − μi

σi
, ∀i ∈ {1, · · · , 42}, (1)

where xi and x′i represent the original and standardised feature vectors, respectively, while
μi and σi refer to the mean and standard deviation of the corresponding feature prior to
standardisation. Both μi and σi are estimated on the training set and consequently each
fold results in different normalisation parameters but those parameters are used for both
training and validation sets.
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Naturally, each steer spends varying amounts of time in each of the states and as a
consequence resulting in an unequal number of observations per class; for that reason, a
balanced accuracy is used to evaluate model performance;

Balanced accuracy =
TP
P

+
TN
N

(2)

Equation (2) relates to binary classification problems. In cases where more than
2 classes are present (as is the case in the study reported here), individual class estimations
are required and the average balanced accuracy can be used to evaluate overall perfor-
mance. True Positives (TP) represent the number of accurately detected observations of a
certain class, while True Negatives (TN), the number of observations accurately detected
as not belonging to that particular class. Variables P and N refer to the actual number of
observations belonging to the class of interest and the actual number of observations of all
other classes, respectively.

4.2. Feature Reduction

The process of dimensionality reduction i.e., the representation of high-dimensional
data in a lower-dimensional feature space, not only mitigates the curse of dimensionality
but also reduces the computing resource requirements, model training and inference
times [24].

A reduction of data dimensionality can be performed through feature transformation,
feature selection, or a combination of both, providing the intrinsic dimensionality (mini-
mum number of parameters needed to account for the observed properties of the data [25])
of the original feature set. Feature transformation methods are a reconstruction process
of the original features into a new feature set. However, it should be noted that these
techniques do not reduce the number of features that need to be selected from the raw data
but rather, re-project the original features onto a new domain. The goal of feature selection
is to establish a subset of features, retaining those with a higher discriminatory power. The
selection can be executed in a number of ways depending on the goal, available resources,
and the target level of optimisation [26]. Feature selection methods are most commonly
classified into three categories: filters, wrappers, and embedded methods (Figure 2). Filter
methods estimate feature relevance based on a ranking function which observes input or
input/output data and drops low-scoring features. Filter methods are computationally
inexpensive and independent of classification model, and as such, need only to be executed
once to obtain the most appropriate features, which can be subsequently used to create and
evaluate classification models [27]; both the wrapper and embedded approaches require
the training of the model. In particular, the wrapper method requires multiple training
iterations for multiple feature combinations, increasing significantly the computational cost.
Embedded methods are based on intrinsic properties of the classifier and performed during
model training. Although the two approaches are based on an interaction between the
extracted features and classification model, common drawbacks of the wrapper approach
are a higher risk of over-fitting as well as consuming greater levels of computing resources
compared to filter methods.

Here, two feature selection methods are evaluated, namely, the filter method based
on the Mutual Information (MI) score and the wrapper method based on the Backward
Feature Elimination (BFE) technique. Embedded approaches are not considered since
feature ranking is not implicitly supported by other reported classification algorithms. MI
is a statistical measure which estimates the dependence between different sets of data, the
value of zero referring to completely independent sets, while higher values represent a
higher dependency. In this particular case, the dependence between individual features and
labels is analysed. The most applied approach for MI estimation assumes the partitioning
of the datasets into bins of finite size. However, here, MI was estimated using the k-nearest
neighbour method [28]. A comparison between binning and the nearest neighbour method,
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along with the following definition of the MI estimate between discrete and continuous
datasets is given in [29];

I(X, Y) = ψ(N)− 〈ψ(Nx)〉+ ψ(k)− 〈ψ(m)〉 (3)

where ψ is the digamma function, while 〈·〉 denotes the average over all samples. Nx
represents the number of points per activity state and m refers to the number of neighbours
from all states that lie within the defined distance determined by parameter k. Although
larger values of k lead to lower statistical errors, excessively large values of k should be
avoided since the resultant increase in systematic errors could potentially outweigh the
decrease in statistical errors. The analysis conducted in [29] indicates that the nearest-
neighbor estimator achieves good performance when the parameter k is set to low integer
values (1 ≤ k ≤ 10), whereas the authors in [28] suggested a range between 2 and 4. For
that reason, here, the number of nearest neighbours is set as k = 3.

The second feature selection approach investigated is the wrapper method using BFE,
reliant on the use of the classification model to execute feature selection. The approach
typically starts by iteratively removing one or more features from the entire feature set
F = f1, · · · , fN , governed by the performance of the classification model on the selected
subset of features. More precisely, the methodology follows the steps of the algorithm
reported in Algorithm 1;

Algorithm 1 Backward Feature Elimination procedure used to reduce features in blocks.

F = f1, · · · , fN � Total features set
R = F � Remaining features set
P � Declare empty performance array
while |R| > 1 do

for i ← 1 to R do
S f = R− fi � Select subset of features S f ⊂ F
model.fit(S f ) � Train the model with S f
P[i] = model.eval(S f ) � Compute model performance with S f features

end for
R = R \ ∪k

j=1[R \ fargmin
j

(P)] where k ≥ 1 � Update remaining features by ex-
cluding low performing features

end while

5. Classification Algorithms

The effectiveness of each feature reduction technique is assessed through three classifi-
cation algorithms, namely, Hidden Markov Model (HMM), Linear Discriminant Analysis
(LDA), and Partial Least Squares Discriminant Analysis (PLS-DA). Note that both the
LDA and PLS-DA perform feature transformation in accordance with the classifier opera-
tion inherently but do not reduce the number of inputs that must be computed from the
raw data.

5.1. Hidden Markov Models

A probabilistic time-series model requires the definition of a joint distribution p(X1, . . . , XT)
where Xt represents the features of a 90 s block in a sequence t ∈ 1 → T. The sequence has
many entries with long-range correlations amongst subsequent observations. However, an
independent specification of that many entries is impractical; therefore, simplifications are
required. The main assumption underpinning Markov chains is that the current Xt contains
sufficient amount of information to predict future states i.e., that the influence of the recent past
is more relevant than the influence of a more distant past [30]. A first order Markov chain is
defined as follows:

p(X1:T) = p(X1)
T

∏
t=2

p(Xt|Xt−1) (4)
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where the conditional distribution p(Xt|Xt−1) for K states, can be written as a KxK transi-
tion matrix when Xt ∈ {1, . . . , K} and the elements of the matrix represent the transition
probabilities between states [31].

HMMs are an extension of Markov chains. Initially, for each observation Xt, a corre-
sponding hidden variable ht is introduced, with Xt dependent on ht through an emission
probability p(Xt|ht). A HMM is defined as;

p(h1:T , X1:T) = p(X1|h1)p(h1)
T

∏
t=2

p(Xt|ht)p(ht|ht−1) (5)

where p(h1) is the initial probability. Here, emissions have been constructed through the
Gaussian Mixture Model, a linear superposition of K Gaussian distributions defined as [32]:

p(X) =
K

∑
k=1

πkN (x|μk, Σk) (6)

whereN (x|μk, Σk) denotes the Gaussian component with mean μk and co-variance Σk, and
parameter πk—known as mixing probability—such that πk ∈ [0, 1] and ∑K

k=1 πk = 1.
The HMM parameters such as the transition matrix, emission matrix, and initial

probability are optimised through an iterative procedure—the Expectation Maximisation
(EM), also known as the Baum-Welch algorithm [33]. HMM optimisation requires the
implementation of stopping criteria either in terms of the number of iterations or error
tolerance. A thorough procedure is followed to estimate the optimal stopping criterion; a
tolerance of 0.04 yielded the maximum average performance within an average execution
time of 12 s per fold, utilising all 42 features.

HMMs can also consider the temporal behaviour of the signal, taking into account a
transition probability between states e.g., from ‘eating’ to ‘rumination’, the main motivation
for the evaluation of their potential performance for cattle behavior classification.

5.2. Linear Discriminant Analysis

Fitting joint probability density function models to determine a decision boundary
can be problematic in data with high dimensions; hence the need to reduce the input data
dimensionality [31]. Unlike HMM, LDA is a supervised technique, making use of labels
alongside the features in the dataset. LDA searches the dimensions in the underlying space
that maximise the distance between the means of different states (inter-class variance) and
minimises the variation within each category (intra-class variance) [34]. More formally,
LDA creates a linear combination of input features with the goal to maximise the ratio
det |Sb |
det |Sw | , where Sb and Sw are the intra-class and inter-class scatter matrices respectively as
defined in [35]. The disadvantage is that the approach fits a Gaussian density to each class,
assuming that all classes share the same co-variance matrix. Furthermore, LDA projects the
original space to a lower dimensional space which is limited to ≤ K− 1 dimensions (where
K is the number of classes), regardless of the dimensionality of the input.

5.3. Partial Least Squares Discriminant Analysis

A Partial Least Squares algorithm is developed initially as a regression technique and
extended subsequently for classification tasks and its discriminant form (PLS-DA) [36].
Similar to LDA, a PLS-DA is a supervised technique that combines dimensionality reduction
and discriminant analysis. However, unlike LDA, PLS-DA does not assume that the input
data fits a single Gaussian distribution. PLS aims to maximise the variance of the response
variables (labels) explained by the explanatory ones (features) [37]. The optimisation of
the Nonlinear Iterative Partial Least Squares (NIPALS) algorithm involves computing the
singular vectors of the cross co-variance matrix. A tolerance of 10−6 and 500 iterations are
used as stopping criteria for the optimisation, consuming an average execution time of
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0.73 s per fold, for all 42 features re-projected into 42 dimensions. The formal definition of
PLS-DA used is described in [38].

Given that PLS regression analyses generate a continuum of predicted values, the
definition and application of a decision rule is required to translate the predicted values in
one of the corresponding classes. The most commonly used reported decision rule is a class
assignment based on the maximum positive value [36] of the predicted output variables,
henceforth used within this analysis.

6. Performance Evaluation

A systematic evaluation of the performance of the classification of cattle states as a
function of different combinations of dimensionality reduction and classification techniques
is carried out. Dimensionality reduction is implemented using the two feature selection
techniques detailed thus far, namely, the filter method based on the MI score and the
wrapper method based on the BFE, with three classification algorithms viz. HMM, LDA,
and PLS-DA. A grid search to optimise the number of features that optimally discriminate
between states is performed for each combination. The number of features decreases grad-
ually starting from the full dataset containing 42 features. The reduction in dimensionality
is executed in nine steps as reducing one feature at a time is computationally prohibitive;
as a consequence, the number of features is decreased in steps of five until a single feature
is reached. Feature transformation methods are not considered as they do not reduce the
number of features from the raw data.

The HMM is implemented using hmmlearn Python framework (https://github.com/
hmmlearn/hmmlearn, accessed on 16 February 2022), while LDA and PLS-DA are imple-
mented utilising the scikit-learn Python library [39]. The BFE algorithm was implemented
in Python as described in Algorithm 1.

Due to the stochastic nature of the training process, many folds and repetitions may
result in elimination of different subsets of features. Thus, a ranking methodology is
required to reach consensus on feature importance. For MI, a simple feature ranking
process computes the MI feature score for all folds and repetitions in the training set and
subsequently utilises the average MI score of each feature as a proxy of importance. The
dimensionality of the data is then reduced by eliminating a pre-defined number of the
least important features (five in this case). On the other hand, BFE utilises a classification
algorithm and thus feature importance can be inferred based on classification performance
on the validation set. Here, multiple training/validation stages are performed by excluding
one feature at a time for all folds and repetitions; the process yields 25 balanced accuracy
results for each feature (five folds with five repetitions). The average balance accuracy is
then used to determine the feature importance rank with the lowest average rank features
from the pre-defined number eliminated.

The average balanced accuracy and the 95% confidence interval (the Confidence Inter-
val is computed with boot-strapping [40]) on the validation dataset for all combinations, is
shown in Figure 3 for varying degrees of reduction. Note that the models with the maxi-
mum validation performance are highlighted by a star (�) and the diamond (�) represents
models that exhibit almost identical performance with the minimum number of features
(hence decreasing computational complexity). The ‘�’ locations are selected manually,
taking into consideration the knee point for the line graphs.

The top row plots relate to MI feature selection. Since MI only utilises input and
output data for the scoring and not a model, all resultant features at each reduction step
are identical for all classification algorithms. As the number of selected features decreases,
the balanced accuracy drops as well, indicating that MI is not effective in identifying
redundant features for all classification algorithms. Although MI is an efficient statistical
measure to estimate the dependence between individual features and output, correlations
between features are not considered. As a result, the subset of features that survive the
dimensionality reduction have high Mutual Information between input and output but
are highly correlated with each other without providing additional discriminatory power.
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The performance of the reduction for MI-LDA and MI-PLS-DA is not as steep as MI-HMM,
since an inherent re-projection of the input feature space onto a lower dimensional one is
performed by eliminating redundant information providing a higher level of robustness
against the over-fitting. For PLS-DA the desired size of the lower dimensional space after re-
projection is a model hyper-parameter and in order to evaluate the performance, a number
of models were trained for a multiple number of re-projected dimensions. In particular, each
line in the MI-PLS-DA (and BFE-PLS-DA) corresponds to the dimensionality of the final
projected space. For instance, the red line corresponds to balanced accuracy as a function
of the number of raw features selected, all re-projected to 12 dimensions; consequently, the
line does not extend to below 12 on the horizontal axis.

Figure 3. Balanced Accuracy for HMM, LDA and PLS-DA classification algorithms for two feature
selection methodologies; MI and BFE for varying number of selected features. For PLS-DA the number
of re-projected feature dimensions were varied to explore sensitivity of the hyper-parameter. The �

denotes models with maximum balanced accuracy performance, while the � denotes models that
were manually selected and balance the trade-off between balanced accuracy and time complexity.

Similarly, the bottom row of the figure, presents the results using BFE. In general, the
performance of all models is higher than the corresponding performance with MI, even for
a significantly lower number of selected features, attributable to a more structured feature
selection methodology. Note that for 42 selected features, the average balanced accuracy
obtained through the five folds and five repetitions is lower for BFE-HMM compared to
MI-HMM. This is caused by the EM algorithm which is gradient-based and gets stuck
in local minima [31] at convergence. In turn creates outlier results with a low balanced
accuracy (~0.3), also evident by a wider range of the confidence interval. For the band
22–32 of the selected features, the balanced accuracy of BFE-HMM drops owing to the
greedy nature of the feature elimination, i.e., decreasing the features in steps of five without
reevaluating prior reductions. BFE-LDA and BFE-PLS-DA are more robust to feature
reduction, maintaining performance due to their inherent feature transformation. The
performance with 7 features is nearly equal to the maximum performance obtained for
27 features for BFE-LDA. For BFE-PLS-DA, the maximum performance is achieved for
22 features which are re-projected to 12; however, the performance is almost identical to
17 features re-projected to 7. The re-projection reduces the computational complexity of the
inference, hence, in the manual selection of the ‘�’ locations we favoured the re-projections
onto lower dimensions.

Table 1 presents the balanced accuracy on the validation set and computation com-
plexity in terms of feature extraction and inference times for all combinations of models
and feature selection approaches. In this study, all analyses are conducted on commodity
hardware; 64-bit Intel i9 7960x 2.8 GHz 16 cores 128 GB RAM for the purposes of evaluation;
however, it is expected that the relative performance differences will translate to low-power
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resource constraint processors. Furthermore, Table 1 presents the number of raw features
that need to be computed for each methodology. For instance, the LDA classification model
with maximum performance (‘�’) obtained through BFE technique, requires the extraction
of 27 features consuming a computation time of 38.05 ± 3.89 ms and 0.05 ± 0.01 ms for
inference, and achieving an average balanced accuracy of 0.81 on the validation dataset.
The corresponding BFE-LDA ‘�’ model requires the computation of 7 raw features which
on average, consumes 1.83 ± 1.00 ms for extraction and 0.05 ± 0.01 ms for inference, re-
ducing the total time required ~20 times without loss in balanced accuracy, in contrast to
BFE-LDA ‘�’.

Table 1. Comparison of model performance and time complexity for MI and BFE feature selection
approaches for HMM, LDA and PLS-DA classification algorithms. The � models achieve maximum
balanced accuracy performance, while the � models are those that are manually selected and balance
the trade-off between balanced accuracy and time complexity.

Feature Selection Classification # of Input Balanced Time Complexity [ms]

Technique Method Features Accuracy Extraction Inference Total

MI

HMM � 42 0.77 94.68± 9.84 0.64± 0.17 95.42± 9.91
HMM � 22 0.74 6.99± 0.89 0.51± 0.03 7.57± 0.91

LDA � 42 0.81 91.60± 6.65 0.05± 0.01 91.74± 6.66
LDA � 27 0.80 53.08± 1.21 0.05± 0.01 53.25± 1.22

PLS-DA � 42 0.79 93.50± 5.94 0.06± 0.01 93.64± 5.95Projected to 22 features
PLS-DA � 27 0.77 49.78± 3.06 0.04± 0.01 49.90± 3.06Projected to 7 features

BFE

HMM �� 12 0.80 6.12± 0.53 0.53± 0.03 6.71± 0.55

LDA � 27 0.81 38.05± 3.89 0.05± 0.01 38.18± 3.89
LDA � 7 0.81 1.83 ± 1.00 0.05 ± 0.01 1.96 ± 1.01

PLS-DA � 22 0.80 37.86± 4.58 0.06± 0.01 37.99± 4.58Projected to 12 features
PLS-DA � 17 0.79 36.40± 4.24 0.05± 0.01 36.54± 4.25Projected to 7 features

The computational performance difference between a desktop machine and a low-
power MCU can be estimated by using the floating point performance as a proxy for the
mathematical operations required for feature extraction and inference. An ARM Cortex-
M4 [41] requires 9 CPU cycles to complete an FP32 Multiply-and-accumulate (MACC)
operation, whereas an Intel i9 can complete 2 MACC per cycle [42]. When the clock speed
of each chip is considered, the difference in computational capability between this CPU
and an ARM Cortex-M4 such as STM32L476RG [43], is a factor in the region of 1000, with
timings scaling appropriately. This factor reduction in computation performance would
result in total time complexity increasing; ranging from 1.96s (BFE-LDA ‘�’) to 95s (MI-
HMM ‘�’). Hence, the model with the lowest time complexity is still comfortably within a
time complexity for deployment to a MCU.

In addition to the information provided within Table 1, Figure 4 presents a graphical
comparison between models and illustrates the trade-off between model performance and
complexity, through the average validation balanced accuracy and average total processing
time, respectively. Although BFE-LDA ‘�’ is highest performing, it is evident that BFE-LDA
‘�’ achieves almost identical validation performance at significantly lower computational
complexity, requiring only 1.83 ± 1.00 ms for feature extraction and 0.05 ± 0.01 ms for
inference. Therefore, the BFE-LDA ‘�’ would be selected for implementation in resource
constrained hardware and is the model considered in the remainder of the analysis.
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Figure 4. Graphical comparison of dimensionality reduction and classification algorithms, in terms
of time complexity and performance.

The mean validation performance of BFE-LDA ‘�’, in terms of the weighted perfor-
mance metrics of balanced accuracy, precision, and recall are 0.81, 0.85 and 0.82, respectively.
The average validation confusion matrix, along with the standard deviations, is shown
in Figure 5a. The confusion matrix indicates the normalised individual performance for
all states, e.g., the normalised True Positive performance for ‘eating’ is 0.79 ± 0.03, while
‘rumination’ is mis-classified as ‘eating’ 0.16 ± 0.02; in all cases, the standard deviation is
below 0.03. The BFE-LDA ‘�’ model with the highest performance on the validation set is
selected for evaluation of performance on the test set.

(a) (b)
Figure 5. Confusion matrices for the selected classification model based on a LDA utilising features
selected through BFE that yielded the best trade-off between model performance and complexity—
BFE-LDA ‘�’. (a) Validation dataset. (b) Test dataset.

Further insight arising from the feature selection comparisons can be obtained through
the visualisation of the feature importance results for each of the selected combinations
of feature reduction method and classification algorithm. Figure 6 shows the feature
importance based on the number of reduction steps. Unlike the BFE, MI based feature
selection does not depend on the classification algorithm and hence only one graph is shown
for all models. Since BFE-LDA ‘�’ yields the optimum trade-off between performance and
time complexity, it is used as a base line for comparison. The seven features selected
by BFE-LDA ‘�’ are annotated in all graphs with a ‘�’ and the seven most significant
features of each approach are annotated in ‘red’. To get consensus between feature selection
algorithms, all red bars will be accompanied by a ‘�’ annotation. It is clear that BFE-
PLS-DA and BFE-LDA have the highest agreement in terms of feature significance and
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swaps the FFT amplitude and Spectral Welch density with Count above global mean and Fourier
entropy. Nevertheless, the excluded features have considerable importance. On the other
hand, MI and BFE-HMM only agree on ranking feature importance for one and three
features respectively. Finally, visualisation of the joint distribution pairs of the seven most
important feature combinations selected by BFE-LDA and annotated based on truthing
data is presented in Figure 7. Evident is the strength of the knowledge-specific feature FFT
amplitude which represent the amplitude in the spectral range between 2–4 Hz, aligned with
a priori knowledge valuable in guiding the discrimination of the ‘rumination’ class. The
Range count feature provides a high separation for the ‘other’ class, while for the ‘eating’
class a combination of features are likely to be required. It should be noted that the second
knowledge-specific feature Spectral flatness only survived 5 reduction steps for BFE-LDA
(see Figure 6) inferring that other generic features of higher importance exist.

The average weighted metrics for the BFE-LDA ‘�’ in the test set are 0.83, 0.88 and 0.83
for balanced accuracy, precision, and recall, respectively. The metrics were also recorded for
individual results per steer on the test set shown in Table 2. Furthermore, the performance
of individual classes, ‘eating’ and ‘rumination’, are 0.90 and 0.90 in terms of a precision and
0.86 and 0.90 in terms of recall, respectively.

Figure 6. Number of reduction steps the features survived for MI and BFE selection methods. The �
annotations represent the seven features selected by BFE-LDA ‘�’ and red bars the seven features that
survived most reductions for each feature selection algorithm.

Table 2. Individual classification performance per steer in terms of weighted performance metrics on
the test set.

Test Steer Balanced Accuracy Precision Recall

#1 0.82 0.86 0.85
#2 0.86 0.90 0.87
#3 0.80 0.89 0.79

Average 0.83 ± 0.03 0.88 ± 0.02 0.83 ± 0.04
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Figure 7. Joint distribution of feature pairs selected by BFE-LDA ‘�’ with class annotations provided
by the truthing data. Note that the diagonal plots are the univariate distributions of each feature.

The normalised confusion matrix on the test set is shown in Figure 5b. Although every
attempt is made to mount collars in identical positions around the necks of individual
animals, differences in the anatomy and dynamic motion of the animal result in the collars
shifting and rotating which results in variations of the accelerometer output, in turn
establishing another source of noise that is likely to compromise the accuracy of the
classification. It is also clear that the confusion between ‘eating’ and ‘rumination’ is
the greatest, as those two states are characterised by similar jaw motions. Given the
similarity in these jaw motion patterns, some confusion is to be expected, especially during
transition periods. The degree of confusion between other states is lower. In order to place
these results in context, assuming the average time spent ruminating is around 400 min
per day, an increase in sensitivity of 1% would represent an increase of ~4 min of time
spent ruminating.

7. Conclusions

Autonomous sensor-based cattle behaviour monitoring systems have grown in impor-
tance over the recent past, as an enhancement to traditional visual methods which are both
time-consuming and labour-intensive. Systems such as neck-mounted collars monitor dairy
and beef cattle continuously, providing a mapping of key behaviours at an individual animal
level automatically, the basis for a decision support capability that informs on interventions
that enhance the efficiency of current on-farm practices. Here, a novel approach to the devel-
opment of behaviour classification algorithms, founded on a systematic approach to reducing
the dimensionality of the data is reported. Two feature selection techniques based on a MI
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score and BFE techniques are applied to both knowledge-specific and generic time-series
features extracted from raw accelerometer data. A total of 42 features are extracted from
raw accelerometer signals as the starting point, subsequently reduced to 7 with the goal of
optimising the degree of discrimination between three key cattle behaviours—‘eating’, ‘rumi-
nation’ and ‘other’. The rationale underpinning the selection of the combination of reduction
technique and classification algorithm framework is presented and a systematic evaluation of
performance provided. The trade-off between model performance, computational complexity
and memory footprint is explored. Results show that proposed Backward Feature Elimination
to execute on feature selection provides features with higher discriminatory power at the
expense of higher computational complexity. Post feature selection, Linear Discriminant
Analysis yields a classification model with an overall balanced accuracy of 0.83 and is the
most efficient from all of feature reduction/algorithm combinations considered in the paper in
terms of implementation in operational settings. In particular, the best combination requires
1.83± 1.00 ms to perform feature extraction with 0.05± 0.01 ms for inference, thus permitting
model deployment within the computation and memory restrictions imposed by operational
settings. Evidence is provided that the proposed methodology represents a viable option
in the evolution of low-cost neck-mounted accelerometer-equipped collars within precision
livestock farming applications.

The dataset generated in this study, including raw data and ground truth annotations from
18 steers, has been made publicly available to stimulate the community to develop new models
and facilitate direct comparisons between them (doi:10.5281/zenodo.4064802). Further research
should aim to expand in larger trials with more animals and longer observation periods to
increase the confidence of behavioural classification and identify novel value-added services.

Author Contributions: Conceptualization, C.M., I.A., G.K. and C.T.; Data curation, M.C., C.D., O.M.
and C.M.; Formal analysis, D.P.; Investigation, C.D., C.M., I.A. and C.T.; Methodology, D.P. and C.T.;
Software, D.P. and C.T.; Supervision, C.T.; Validation, R.A. and V.R.; Visualization, D.P.; Writing—
original draft, D.P.; Writing—review and editing, D.P., M.C., C.D., O.M., C.M., R.A., V.C., I.A., V.R.,
G.K. and C.T. All authors have read and agreed to the published version of the manuscript.

Funding: The data were collected under the auspices of BBSRC Project “Precision Beef” [BB/M027333/1].
The analysis was partially supported by the European Union’s Horizon 2020 research and innovation
programme “DRAGON—Data Driven Precision Agriculture Services and Skill Acquisition” [810775]
and the Ministry of Education, Science and Technological Development of the Republic of Serbia (Grant
No. 451-03-68/2022-14/200358).

Institutional Review Board Statement: This study was conducted at SRUC’s Beef and Sheep Re-
search Centre situated 6 miles south of Edinburgh UK. The experiment was approved by the Animal
Experiment Committee of SRUC and was conducted in accordance with the requirements of the UK
Animals (Scientific Procedures) Act 1986.

Data Availability Statement: The dataset is publicly available at https://www.doi.org/10.5281/
zenodo.4064802 (accessed on February 2022).

Acknowledgments: The authors express their appreciation for providing support to Development
and Modeling of Energy-Efficient, Adaptable, Multiprocessor and Multisensor Low-Power Electronic
Systems (TR-32043).

Conflicts of Interest: The authors declare no conflict of interest.

131



Sensors 2022, 22, 2323

Appendix A

Table A1. Brief description of generic and knowledge-specific time-series features. All the features
used within the analysis are derived using the tsfresh Python package [23] with the exception of FFT
amplitude and Spectral flatness.

Features Definition

Aggregated autocorrelation Standard deviation of autocorrelation function over a range of different lag values
Autoregressive coefficient Coefficient of the unconditional maximum likelihood of an autoregressive process
Autocorrelation 1

(n−lag)σ2 ∑
n−lag
i=1 (xi − μ)(xi+lag − μ)

Benford correlation Correlation of the time-series first digit distribution with N-B Law distribution
Binned entropy † −∑

min(nbins ,n)
i=0 pi log pi ∗ 1(pi>0)

Change quantiles Standard deviation of changes of the time-series within the first and third quartile range

Complexity-invariant distance
√

∑n−1
i=1 (xi − xi+1)2

Count above global mean Number of observations higher than the mean value estimated on the training set
Count above local mean Number of observations higher than the time-series mean
Count below global mean Number of observations lower than the mean value estimated on the training set
Count below local mean Number of observations lower than the time-series mean
c3 1

n−2lag ∑
n−2lag
i=1 (xi+2lag ∗ xi+lag ∗ xi)

Energy ∑n
i=1 x2

i
FFT aggregated Kurtosis of the absolute Fourier transform spectrum
FFT amplitude Maximum of FFT magnitudes between 2 and 4 Hz
FFT coefficient Sum of the FFT magnitudes between 2 and 4 Hz
First quartile The value surpassed by exactly 25% of the time-series data points
Fourier entropy Binned entropy of the time-series power spectral density
Kurtosis Difference between the tails of analysed distribution and tails of a normal distribution
Lempel-Ziv complexity Complexity estimate based on the Lempel-Ziv compression algorithm
Linear trend Standard error of the estimated linear regression gradient
Longest strike above mean Length of the longest sequence in time-series higher than its mean value
Longest strike below mean Length of the longest sequence in time-series lower than its mean value
Maximum The highest value in time-series
Median The value surpassed by exactly 50% of the time-series data points
Minimum The lowest value in time-series.
Number of CWT peaks Number of peaks within ricker wavelet smoothed time-series
Number of peaks Number of observations with a value higher than n neighbouring observations

Partial autocorrelation
cov(xt ,xt−lag|xt−1,...,xt−lag+1)√

var(xt |xt−1,...,xt−lag+1)var(xt−lag|xt−1,...,xt−lag+1)

Permutation entropy Entropy of ordering permutations occurring in fixed-length time-series window chunks
Range count Number of observations between the first and the third time-series quartile
Ratio beyond r sigma Percentage of observations diverging from the mean by more than r standard deviations
Sample entropy Negative logarithm of the conditional probability that two sequences remain similar
Skewness Distortion or asymmetry that deviates from the normal distribution
Spectral flatness Ratio between geometric and arithmetic mean of the power spectrum
Spectral Welch density Power spectral density estimation using the Welch method at a certain frequency

Standard deviation
√

1
n ∑n

i=1(xi − μ)2

Sum of changes ∑n−1
i=1 |xi+1 − xi|

Third quartile The value surpassed by exactly 75% of the time-series data points
Time-series sum ∑n

i=1 xi
Variation coefficient Relative standard deviation, i.e., ratio of the standard deviation to the mean
Zero crossing Number of points where time-series signal crosses a zero value

† where pi indicates percentage of samples falling into the given bin.

References

1. AHDB Dairy. AHDB Dairy Statistics. 2021. Available online: https://ahdb.org.uk/dairy (accessed on 17 February 2022).
2. Fricke, P.M.; Carvalho, P.D.; Giordano, J.O.; Valenza, A.; Lopes, G.; Amundson, M.C. Expression and detection of estrus in dairy

cows: The role of new technologies. Animal 2014, 8, 134–143. [CrossRef]

132



Sensors 2022, 22, 2323

3. Michie, C.; Andonovic, I.; Gilroy, M.; Ross, D.; Duthie, C.A.; Nicol, L. Oestrus Detection in Free Roaming Beef Cattle. In
Proceedings of the European Conference on Precision Livestock Farming—EC-PLF 2013, Leuven, Belgium, 10–12 September 2013.

4. Roelofs, J.B.; Van Erp-Van Der Kooij, E. Estrus detection tools and their applicability in cattle: Recent and perspectival situation.
Anim. Reprod. 2015, 12, 498–504. [CrossRef]

5. Afimilk/NMR. Silent Herdsman/Better Performing Cows; NMR: Chippenham, UK, 2012.
6. Stangaferro, M.; Wijma, R.; Caixeta, L.; Al-Abri, M.; Giordano, J. Use of rumination and activity monitoring for the identification

of dairy cows with health disorders: Part III. Metritis. J. Dairy Sci. 2016, 99, 7422–7433. [CrossRef]
7. Rahman, A.; Smith, D.V.; Little, B.; Ingham, A.B.; Greenwood, P.L.; Bishop-Hurley, G.J. Cattle behaviour classification from collar,

halter, and ear tag sensors. Inf. Process. Agric. 2018, 5, 124–133. [CrossRef]
8. Zehner, N.; Niederhauser, J.J.; Nydegger, F.; Grothmann, A.; Keller, M.; Hoch, M.; Haeussermann, A.; Schick, M. Validation of a

new health monitoring system (RumiWatch) for combined automatic measurement of rumination, feed intake, water intake and
locomotion in dairy cows. In Proceedings of the Information Technology, Automation and Precision Farming. International
Conference of Agricultural Engineering—CIGR-AgEng 2012: Agriculture and Engineering for a Healthier Life, Valencia, Spain,
8–12 July 2012.

9. Poulopoulou, I.; Lambertz, C.; Gauly, M. Are automated sensors a reliable tool to estimate behavioural activities in grazing beef
cattle? Appl. Anim. Behav. Sci. 2019, 216, 1–5. [CrossRef]

10. Hamilton, A.W.; Davison, C.; Tachtatzis, C.; Andonovic, I.; Michie, C.; Ferguson, H.J.; Somerville, L.; Jonsson, N.N. Identification
of the rumination in cattle using support vector machines with motion-sensitive bolus sensors. Sensors 2019, 19, 1165. [CrossRef]

11. Martiskainen, P.; Järvinen, M.; Skön, J.P.; Tiirikainen, J.; Kolehmainen, M.; Mononen, J. Cow behaviour pattern recognition using
a three-dimensional accelerometer and support vector machines. Appl. Anim. Behav. Sci. 2009, 119, 32–38. [CrossRef]

12. Benaissa, S.; Tuyttens, F.A.; Plets, D.; Cattrysse, H.; Martens, L.; Vandaele, L.; Joseph, W.; Sonck, B. Classification of ingestive-
related cow behaviours using RumiWatch halter and neck-mounted accelerometers. Appl. Anim. Behav. Sci. 2019, 211, 9–16.
[CrossRef]

13. Robert, B.; White, B.J.; Renter, D.G.; Larson, R.L. Evaluation of three-dimensional accelerometers to monitor and classify behavior
patterns in cattle. Comput. Electron. Agric. 2009, 67, 80–84. [CrossRef]

14. Abell, K.M.; Theurer, M.E.; Larson, R.L.; White, B.J.; Hardin, D.K.; Randle, R.F. Predicting bull behavior events in a multiple-sire
pasture with video analysis, accelerometers, and classification algorithms. Comput. Electron. Agric. 2017, 136, 221–227. [CrossRef]

15. González, L.A.; Bishop-Hurley, G.J.; Handcock, R.N.; Crossman, C. Behavioral classification of data from collars containing
motion sensors in grazing cattle. Comput. Electron. Agric. 2015, 110, 91–102. [CrossRef]

16. Riaboff, L.; Aubin, S.; Bedere, N.; Couvreur, S.; Madouasse, A.; Goumand, E.; Chauvin, A.; Plantier, G. Evaluation of pre-
processing methods for the prediction of cattle behaviour from accelerometer data. Comput. Electron. Agric. 2019, 165, 104961.
[CrossRef]

17. Riaboff, L.; Poggi, S.; Madouasse, A.; Couvreur, S.; Aubin, S.; Bédère, N.; Goumand, E.; Chauvin, A.; Plantier, G. Development
of a methodological framework for a robust prediction of the main behaviours of dairy cows using a combination of machine
learning algorithms on accelerometer data. Comput. Electron. Agric. 2020, 169, 105179. [CrossRef]

18. Kasfi, K.T.; Hellicar, A.; Rahman, A. Convolutional Neural Network for Time Series Cattle Behaviour Classification. In
Proceedings of the Workshop on Time Series Analytics and Applications—TSAA’16, Hobart, TAS, Australia, 6 December 2016;
ACM Press: New York, NY, USA, 2016; pp. 8–12. [CrossRef]

19. Peng, Y.; Kondo, N.; Fujiura, T.; Suzuki, T.; Wulandari; Yoshioka, H.; Itoyama, E. Classification of multiple cattle behavior patterns
using a recurrent neural network with long short-term memory and inertial measurement units. Comput. Electron. Agric. 2019,
157, 247–253. [CrossRef]

20. Rahman, A.; Smith, D.; Hills, J.; Bishop-Hurley, G.; Henry, D.; Rawnsley, R. A comparison of autoencoder and statistical features
for cattle behaviour classification. In Proceedings of the 2016 International Joint Conference on Neural Networks (IJCNN),
Vancouver, BC, Canada, 24–29 July 2016; pp. 2954–2960. [CrossRef]

21. Pavlovic, D.; Davison, C.; Hamilton, A.; Marko, O.; Atkinson, R.; Michie, C.; Crnojević, V.; Andonovic, I.; Bellekens, X.; Tachtatzis,
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Abstract: Agriculture 4.0 is transforming farming livelihoods thanks to the development and adop-
tion of technologies such as artificial intelligence, the Internet of Things and robotics, traditionally
used in other productive sectors. Soft robotics and soft grippers in particular are promising ap-
proaches to lead to new solutions in this field due to the need to meet hygiene and manipulation
requirements in unstructured environments and in operation with delicate products. This review
aims to provide an in-depth look at soft end-effectors for agricultural applications, with a special
emphasis on robotic harvesting. To that end, the current state of automatic picking tasks for several
crops is analysed, identifying which of them lack automatic solutions, and which methods are
commonly used based on the botanical characteristics of the fruits. The latest advances in the design
and implementation of soft grippers are also presented and discussed, studying the properties of
their materials, their manufacturing processes, the gripping technologies and the proposed control
methods. Finally, the challenges that have to be overcome to boost its definitive implementation in
the real world are highlighted. Therefore, this review intends to serve as a guide for those researchers
working in the field of soft robotics for Agriculture 4.0, and more specifically, in the design of soft
grippers for fruit harvesting robots.

Keywords: soft robotics; agriculture 4.0; soft grippers; end-effectors; review; harvesting process

1. Introduction

In the last decade, the agricultural sector has undergone a deep transformation to cope
with the growing demand for food [1–3]. Among the main tasks in agricultural processes,
those that involve the manipulation of fruits and vegetables continue to be one of the most
time consuming and labour intensive, resulting in low efficiency and limited competitive-
ness. This situation is exacerbated by the labour shortages of seasonal workers unable to
travel between regions, leading to the accumulation of fresh products and impressive food
losses. For these reasons, a great research effort is underway to automate these manual
operations, as in the case of selective harvesting, combining multidisciplinary fields such
as biological science, control engineering, robotics and artificial intelligence. Special em-
phasis is being placed on topics such as the modification of plant peduncles [4], which
could simplify the harvesting process [5]; machine vision and detection systems [6–10];
decision-making architectures [11–13]; autonomous navigation [14–16]; and dexterous
manipulation [17,18]. Another critical topic, often underestimated, is that related to the
design of the systems attached to the tip of robotic manipulators and that are in direct
contact with the fruit, known as grippers or end-effectors.

In manual harvesting, humans use their hands to move different elements of plants,
grasp the fruits and detach them, either directly or with the help of a tool. The kinematics
of human hands, the deformability of the skin and muscle, and their sense of touch give
us efficient grasping abilities. Attempts to emulate human skills during harvesting have
resulted in numerous mechanical end-effectors that can be classified according to their
numbers of fingers into two major groups: multi-fingered and parallel grippers [19].
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Multi-fingered grippers, such as those proposed in [20–23], include multiple degrees of
freedom (DoFs), giving them grasping characteristics similar to the human hand, although
they are expensive and difficult to control due to the large number of actuators. On the
other hand, parallel grippers exhibit a simpler mechanical structure, making them easier
to control, as they have fewer actuators. However, this simplification translates into less
adaptability during grasping.

With the emergence of soft robotics, grippers based on soft and deformable materials
have recently begun to be proposed for industrial and medical applications [24–31]. These
soft grippers, which are able to continuously vary their shape without requiring complex
multi-joint mechanisms, have the potential to provide greater adaptability while presenting
lower costs and simpler structures and control algorithms than hard end-effectors [32,33].

With all this in mind, this review aims to present and discuss the latest developments
in the design and implementation of novel soft grippers and end-effectors. To that end,
the suitability of each of the proposed grippers to the movements required during the
harvesting processes is studied, as well as their manufacturing processes and low-level
control methods.In addition, the picking patterns (i.e., movements required to harvest the
fruit) reported in the literature are analysed, and classification is presented in which the
correct picking patterns for a considerable number of fruits are identified. Moreover, a
list of the remaining challenges for the implementation of soft grippers in robotic crop
harvesting is presented.

Therefore, the beneficiaries of this review can be all companies, designers or re-
searchers who want to see a complete picture of the current progress of soft robotics and its
suitability for implementation in the agricultural sector. The rest of the review is organized
as follows. In Section 2, an overview of the current state of robotic harvesting automation
is introduced, delving into the most critical aspects for gripper design, such as the charac-
teristics of the picking patterns and the nature of the different fruits. Section 3 describes
the soft technologies applied to existing grippers that could be used for Agriculture 4.0
applications, as well as the main control solutions implemented for soft grippers. Section 4
lists the main challenges of soft grippers for robotic crop harvesting. Finally, Section 5
summarizes the major conclusions.

2. Harvesting Process

2.1. Harvesting Process Classification

Since gripper designs for robotic harvesting are highly dependent on the picking
process, the main techniques currently in use are summarized below with the aim of
finding the gaps where soft robotics can make the greatest contributions. The general
classification presented in [34] divides the detachment of fruits into two methods: (i) me-
chanical detachment, which involves the removal of pieces of fruit from the tree branch
by means of a machine or a mechanical mechanism, and (ii) manual detachment, which
consists of the extraction of pieces of fruit from the tree branch by the human hand. In [35],
mechanical fruit harvesting processes are classified as follows: (i) those that remove the
fruits by shaking the entire plant through air blasting, canopy shaking, limb shaking or
trunk shaking; sometimes these methods are assisted with a chemical agent, which makes
ripe fruits easier to harvest; and (ii) those that use automatic robotic picking machines that
require minimal or no human intervention in their operation.

With the introduction of a wide variety of robotic solutions for fruit harvesting and
the design of new grippers and end-effectors in recent years, it is convenient to update the
classification of automatic harvesting methods to include these latest technologies. The
classification proposed in this review is an extension of that carried out in [36], which
classified the removal of the fruits into two groups: (i) those in which the application of
direct force to the harvested portion is necessary and (ii) those that deliver the removal
energy indirectly as an inertial force response that causes detachment by accelerating the
attachment support away from the harvest object. Consequently, harvesting methods are
divided into three main groups, which are shown schematically in Figure 1:
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1. Indirect harvesting: a technique that involves indirect mechanical movement towards
the fruit through a force applied to the plant itself, such as that carried out when
harvesting olives [37], almonds [38] or pistachio nuts [39]. To make the fruits fall
without any contact points, methods such as air blasting, limb shaking, trunk shaking
and canopy shaking are often used [34,35].

2. Direct harvesting: a method used in those crops that, due to the structural characteris-
tics of the plant, cannot be shaken but require the direct application of a mechanical
force on the fruit or its peduncle; these picking techniques, which are discussed in
more detail in Section 2.2, are also known as picking patterns (e.g., twisting, pulling
or bending) and cause fruits to detach from the stem [40]. Examples from this group
are the methods used in the harvesting of strawberries [40,41], apples [42–45] and
several varieties of tomatoes [46–49].

3. Direct harvesting with an actuation force on the peduncle: a technique that is applied
to those fruits that require a direct mechanical movement, or another type of cutting
method, applied directly to the stalk since due to their morphology they are connected
to the plant by a hard peduncle that must be cut, as in the harvest of aubergines [50,51],
melons [52], oranges [53], cucumbers [54] and peppers [55–57].

Figure 1. Classification of automatic harvesting methods.

In the classification of the harvesting processes presented above, it is important to
highlight that the fruits included in the first group can also be harvested using the methods
described in the second group due to the physical characteristics of the peduncle. The most
suitable harvesting method to use must be studied on an individual basis depending on
the crop. Several factors may influence the choice of the most suitable harvesting method,
such as (i) the size and shape of the tree [36], (ii) the structural fragility of the plant [35,36],
(iii) the maturity stage of the fruits [34,58], (iv) the lack of preharvesting chemical fruit
looseners, which affect the ease of harvesting [34], (v) the requirements of avoiding damage
to the fruit or the plant [36,58] and (vi) the financial profitability [34]. Some authors [34,59]
discourage the use of products such as chemical fruit looseners before harvest due to their
effect on the defoliation of the trees and the subsequent lack of bloom in the following year.
This complicates harvesting through indirect contact of the various fruits within the first
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group, which in some cases are collected by air blasting, limb shaking, trunk shaking or
canopy shaking [34].

There are also several differences between the requirements of the group 2 and group
3 techniques. For instance, the harvesting methods included in group 3 need a more
sophisticated perception system than those in group 2, since in addition to the fruits, they
have to detect peduncles; they also require a robotic system with greater precision to locate
the peduncle between the blades of the tool and proceed to cut it without damaging the
crop [47], while with the group 2 techniques, fruits can be harvested with part of the
peduncle with just one picking action.

In the literature, authors of [60] resume the main capabilities of an ideal picking robot
as the following: (i) the 3D location of the fruits in the plant, (ii) trajectory planning, (iii) the
application of detachment method and adequate storage, and (iv) the application of reliable
driving system. These operations must be carried out under the constraints of (i) increasing
the harvest ratio between robotic picking and manual picking, (ii) increasing the quality of
the harvested fruit, and (iii) being economically justified. Furthermore, ref. [61] highlights
two main challenges in fruit harvesting: (i) an adequate manipulation of fruits to avoid
the loss of quality and consequently, the loss of value in the market, which implies the
development of grippers and end-effectors that meet this requirement, and (ii) the study of
the detachment method for removing the fruit from the tree, which varies according to the
type of fruit.

2.2. Picking Patterns

As stated above, the fruits harvested by means of the methods classified in group 2
pose a challenge in the field of robotic manipulation. One of the research paths in this field is
based on the idea of studying and decomposing the human movements performed during
the harvesting of fruits and replicating them using robotic grippers. These movements
are grouped under the concept of picking patterns, which include, among others, the
movements of bending, lifting, twisting, and pulling or a combination of them. In Figure 2,
the basic picking patterns are shown conceptually.

Basic Picking Patterns

Twisting Pulling Lifting Bending

Figure 2. Simplified scheme of basic picking techniques.

An important factor that has been studied within the field of biological science for
group 2 methods, and particularly for the application of the picking patterns, is the abscis-
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sion layer, which is a barrier of thin-walled parenchyma cells that develops between the
fruit and the fruit stalk or the fruit stalk and the branch. This development process occurs
when the moment of the fall of a fruit from a plant approaches to facilitate detachment [62].
In most cases, fruit harvested before development of the abscission zone will not have
well-developed sugar, volatile, or flavour attributes [63]. Some investigations are trying to
modify or eliminate this layer by modifying the plant so that the next point of separation of
the plant from the fruit is located right in the calyx and the fruit is easier to harvest [5,62].
Therefore, the identification of the abscission layer is important to determine where the
fruit separates from the plant at the time of harvest, as well as the picking patterns to apply.

In the literature, there are studies available on picking patterns for (i) tomatoes [46,47,64],
(ii) kiwis [65], (iii) apples [61] and (iv) strawberries [66,67]. It is also worth mentioning the
study presented in [68], in which the movements of the hand and the human body in the
harvesting process are analysed to provide a guide for the design of new grippers and
end-effectors of anthropomorphic inspiration. The scheme shown in Figure 3 summarizes
the proposed steps to follow for the design or selection of grippers and end-effectors
required to harvest fruits by means of direct contact methods.

Figure 3. Steps to design or select a gripper or end-effector based on the study of a picking pattern.

Since the picking patterns described in this section involve direct contact with the fruit,
the introduction of soft grippers may represent a significant advance in the automation
of the harvesting methods classified in group 2, allowing a delicate manipulation that
guarantees the integrity of fruits.

2.3. Direct Harvesting with an Actuation Force on the Peduncle

Regarding group 3, a comprehensive classification of the types of mechanisms used
in grippers coupled to manipulators for the harvesting techniques of group 3 can be
found in [2,24]. Research studies on this third group [69–75] have focused on the shear
characteristics of the plants, such as the shear ultimate stress, the maximum force and the
shear energy. These characteristics could be helpful in the study of the peduncles of fruits,
with the aim of developing more energy-efficient cutting tools. For cutting peduncles,
there are several techniques that can be classified into two groups: (i) techniques based
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on the bending characteristics of the stalk, such as the bending force, bending stress and
Young’s modulus, and (ii) techniques based on the shear characteristics, such as the shear
force, shear strength and shear energy. Table 1 presents the classification of several cutting
techniques. According to this table, the tools that do not use the bending force have in
common the need to consider the cutting characteristics, in particular, the cutting force and
the cutting energy required to separate the fruit from the plant. Since laser cutting is not
based on the peduncle characteristics, it has not been included in this table [76].

Table 1. Classification of existing grippers.

Type Bending Characteristics Shearing Characteristics

Peduncle rotation [61] X -
Pushing some object into peduncle [53] X -
Knife, one sided blade [53,77] - X
Scissors [78] - X
Saw [49,53] - X
Hot wire [54,79] - X

Therefore, harvesting techniques of group 3 are also candidates for the introduction of
soft gripper technology, provided they are complemented by a suitable cutting tool.

2.4. Literature Overview of Crop Harvesting Automation

Tables 2 and 3 present a collection of articles that propose technological solutions for
automatic harvesting, botanically classified according to the target fruit [80]. This botanical-
based classification divides fruits into simple fleshy, aggregate and multiple. Simple fleshy
fruits (such as a berries, drupes, or pomes) are those derived from a single ovary of and
individual flower [81]. Aggregate fruits (such as raspberries) consist of many individual
small fruits derived from separate ovaries within a single flower, borne together on a
common receptacle [82]. Lastly, multiple fruits (such as figs, mulberries, or pineapples) are
those derived from the ovaries of several flowers that coalesce into a single structure [82].

In addition, in each table, the harvesting method used is identified, following the
classification of harvesting techniques proposed above and taking as a reference both
the information presented in [36,83] and the visualization of the harvesting processes.
Although the proposed solutions may be valid for several crops, they have been assigned
only to those crops where an experimental study has been reported. Additionally, it is
taken into account that the crops classified in groups 2 and 3 are the most suitable for the
adoption of soft gripper technology.

Table 2. Simple fleshy fruit classification.

Type of Fruit Name Actual Harvesting Method Automatic Harvesting Method

Drupes

Apricot 2 1 [84,85]
Blackberry 2 1 [86]

Cafe 2 1 [87,88]
Cherry 2 1 [89–95], 2 [96], * [97]

Coconut 3 3 [98,99]
Loquats 2 -
Lychee 3 * [100–103]
Mango 2,3 1 [104], 2 [105], 3 [106–108], * [109]

Nectarine 2 * [110]
Olive 1 1 [111–115]
Peach 2 1 [116], * [117,118]
Plum 2 2 [119]

Raspberry 2 1 [120,121]
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Table 2. Cont.

Type of Fruit Name Actual Harvesting Method Automatic Harvesting Method

Berries

Avocado 3 * [122]
Blueberry 2 1 [123]
Eggplant 3 3 [50,51], * [124]

Grape 1,3 1 [125–128], 2 [129], * [130]
Guava 3 * [131]
Kiwi 2 2 [132–134]

Papaya 2 3 [105], * [135]
Passion fruit 2 * [136]

Pepper 3 3 [55–57,137–139], * [140,141]
Persimmon 2 2 [142], * [143]

Pitaya 3 * [144]
Pomegranate 3 * [145]

Tomatoes 2,3 2 [46–49], 3 [146,147], * [148–150]
Wolfberry 2 1 [151], 2 [152], * [153]

Pomes
Apple 1,2 1 [154], 2 [42–45,155,156], 3 [157], * [158,159]
Pear 2 3 [157], * [160]

Quince 2 -

Hesperidium and Pepo

Banana 3 * [161]
Cucumber 3,2 3 [54], * [162,163]
Grapefruit 3 1 [164]

Lemon 3 * [165]
Lime 3 -

Melon 3 3 [52]
Orange 3 1 [34,164,166,167], 3[53], * [168,169]

Pumpkin 3 2 [170], * [171]
Watermelon 3 3 [172]

(*) Artificial vision research.

Table 3. Aggregate and multiple fruit classification.

Type of Fruit Name Actual Harvesting Method Automatic Harvesting Method

Aggregate fruit Custard Apple 2 -
Strawberry 2 2 [40,41,66,67,173,174], * [175,176]

Multiple fruit Fig 2 -
Pineapple 2 2 [177], 3 [178], * [179–181]

(*) Artificial vision research.

3. Soft Grippers

Soft grippers are those end-effectors that use materials and actuation methods that are
soft, flexible and compliant and that enable the holding of an object to be manipulated. The
softness characteristic provides the adaptability and robustness seen in natural organisms,
allowing grasping and manipulation to be achieved with ease. These systems have the
potential to interact more safely within an unstructured human environment and deal with
dynamic and uncertain tasks [182].

Since fruits must be handled properly to avoid the loss of quality and reach their
maximum value in the market, soft grippers are presented as one of the best solutions for
harvesting crops, given their adaptability and the delicacy with which they can grasp and
manipulate the target products.

In this context, soft technologies can be defined as the set of theories, techniques and
procedures that enable key functions of soft robotic grippers, such as actuation, gripping
and shape control methods. Although different authors have proposed a great variety
of soft technologies [183–187], the main objective of all of them is to guarantee the safe
interaction of the device with humans and the environment by using materials with a
module similar, in terms of rigidity, to that of soft biological materials [187]. Several
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reviews of soft grippers can be found in the literature [19,33,182–184,187–189], present-
ing various approaches to classify existing technologies. One of the most widely used
approaches is the one that classifies the soft gripping technologies according to three dif-
ferent categories [190,191]: (i) actuation, (ii) control stiffness and (iii) controlled adhesion.
However, it is currently possible to find devices whose designs simultaneously combine
characteristics from several of these categories. Figure 4 shows the complete classification
of the current soft gripping technologies based on the mentioned categories.

Figure 4. Classification of soft gripping technologies proposed by [190].

From an agricultural point of view, some of these technologies may be more relevant
than others. Based on the reviews carried out in [189,190], evaluation criteria adapted to
Agriculture 4.0 can be established to perform a quantitative and qualitative analysis of the
existing soft grippers. These criteria are listed below.

• Object size: This is one of the most critical aspects to evaluate soft technology since
its use in certain crops depends on it. Passive structures with external motors, fluidic
elastomer actuators (FEAs) and controlled adhesion are the technologies with the best
capacity to grasp large objects.

• Gripper size: Another criterion is the size of the device, which can be critical to access
certain crops.

• Lifting ratio or operation range: This variable can be interpreted as the ratio between
the mass of the object and the mass of the gripper or as the force that the soft actuator
can exert. If interpreted as a ratio, it should always be related to the maximum size
of the object that can be grasped. For example, shape memory alloy (SMA) actuators
have a higher lift ratio than FEAs but a less manipulable object size, which reduces
their suitability for fruit picking.

• Power consumption: Each soft technology requires a different type of support device.
The technologies that require electric motors or pumps to operate demand the highest
energy consumption.

• Scalability: This feature takes into account not only the ease of manufacture but also
the modularity of the technology used. This is especially important for the adaptation
of soft grippers to various types of crops, and it is desirable that they be as universal
as possible to increase their viability.

• Controllability: Depending on the soft technology used, several proposals for low-
level control systems can be found. Normally, the most widely used control method is
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open-loop. With respect to fluidic actuators, liquid-based devices can exhibit more
linearity than pneumatic devices.

• Response time: This variable can affect the efficiency of the agricultural task. It may
be difficult for soft actuators that rely on a fluid to achieve high actuation frequencies
due to the fluidic impedance of the channel and the flow actuation level.

• Surface conditions: Soft gripper technologies that require a clean surface, such as
controlled adhesion, are less suitable than those that do not have any surface-related
requirements.

• Degree of skill to working in unstructured environments: Although soft technology
is one of the most suitable for working in unstructured environments, not all soft
grippers that can be found in the literature are suitable for agriculture scenarios. This
is the case for devices that require complex support devices that are sensitive to large
holes or that can suffer tears from sharp objects [192].

• Mechanical compliance: Each soft technology has an advantage in terms of compli-
ance. For instance, FEAs, shape memory polymer (SMP) actuators and dielectric
electroactive polymer (DEAP) actuators are inherently compliant due to the materials
used. With other technologies, such as SMA actuators, this parameter depends on the
shape of their structures.

• Lifetime: The parameter is the number of cycles that a soft actuator can remain in
operation before failing or exhibiting altered motion patterns. Lifetime is an important
characteristic in FEA technology, which is subjected to constant fill and empty cycles
that tend to wear away the material.

• Technology readiness level (TRL) [189]: Another criterion to compare the feasibility
of each technology could be the TRL. Those that have experimentally demonstrated
their efficiency in real operating environments, as well as those that are also easier to
put into production due to the type of support devices they use and the materials and
manufacturing process they require, have a higher TRL.

According to this classification, controlled adhesion technology may be difficult to
adapt to agricultural tasks, as it requires a special surface to be able to grip an object,
although the weight lifted/weight gripper ratio (39 [193]–286.7 [194]) and the size of the
object could be suitable (0.16× 10−2 m [195] to 100× 10−2 m [196]). Regarding the grippers
grouped around control stiffness, granular jamming ones stand out, since they have a good
weight lifted/weight gripper ratio, as well as a good response time and the ability to lift
small to medium-size fruits. The other components in this group are discarded for harvest
purposes since their performance is not ideal for these tasks. Finally, in the actuation
technology group, passive structures with external motors and FEA actuators could be
ideal ones for fruit harvesting grippers because (i) they have a large lifted size/gripper
weight ratio; (ii) the size of the object can be between 0.01 and 100× 10−2 m, which includes
the sizes of most fruits; (iii) they have a good response time; and (iv) they have the ability
to grasp any object. A disadvantage may be their energy consumption since they are
hampered by the need for an electric motor or pump. Nevertheless, these technologies
present the highest TRL level, which would facilitate their production.

3.1. Materials and Manufacturing Methods
3.1.1. Materials

As mentioned above, a wide variety of soft grippers have been proposed. Soft com-
ponents typically used in the actuators of these grippers include urethanes, hydrogels,
braided fabrics, hydraulic fluidics and polymers, such as silicone elastomers [197]. How-
ever, actuators based on silicone elastomers have attracted strong interest due to their low
cost and ease of manufacture; they do not require the use of complex machinery or skilled
labour. In addition, these compliant materials are also advantageous when considering
the safety of interaction with biological products, making them appropriate candidates for
agricultural applications. Figure 5 presents a bar graph showing the commercially available
materials (silicone elastomers and other polymers) that are most frequently reported in the
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soft robotics literature and that consequently can be used for soft grippers implementation.

Figure 5. Silicone elastomers and other polymers used in soft robotics literature, as well as the corresponding number
of citations. For this graph, 45 articles were examined: Ecoflex [198–205], Dragon Skin 10/20/30/FX-Pro [206–225], Elas-
tosil M4601 [199,202,218,226–229], PDMS [198,208,230–232,232–234], Smooth-Sil [200,207,209,218,222,223,227] and Other
Polymers [235–241].

Several of these soft materials, particularly silicone elastomers, can be modelled as
rubber elastomeric membranes that are hyperelastic and nearly incompressible. Various
approaches based on developing free energy density functions can be found to describe the
phenomenological constitutive models of rubber-like materials, such as the Neo-Hookean,
Mooney–Rivlin (Mooney, 1940; Rivlin, 1948), Ogden (Ogden et al., 2004) and Gent models
(Gent, 1996).

As shown in Figure 5, the five most commonly used materials are Dragon Skin,
Ecoflex, polydimethylsiloxane (PDMS), Elastosil M4601 and Smooth-Sil, which are all
silicone elastomers. Other polymers are Agilus30/VeroClear, ultra-high molecular weight
polyethylene, electrostatic discharge (ESD) plastic sheet, thermoplastic elastomers (TPEs)
and thermoplastic polyurethane (TPU).

Although there are no specific studies that categorically confirm the suitability of the
above materials for the agricultural sector, all materials are declared in their safety data
sheet as non-hazardous substances. However, it would be convenient to carry out studies
that analyse the life cycle of soft actuators made with these materials, to determine if their
degradation may leave particles on the products manipulated.

Dragon Skin, Ecoflex and Smooth-Sil are commonly used for manufacturing objects
outside the scientific field, so determining their exact chemical composition is difficult.
However, they are versatile, easy to use and handle, and low cost compared to other sili-
cones, and their hardness is between 10 and 50 Shore A. Elastosil M4601 is highly resistant
to bending and elongation; it has low viscosity in its uncured form, which makes it easy to
mould; and its hardness is approximately 28 Shore A. PDMS has high elasticity [242], it
is a thermoset [230], and its behaviour can be mathematically modelled with great preci-
sion by means of finite element method (FEM) analysis due to its well-known chemical
composition. Furthermore, the variation in its hardness through several mixing ratios
has been extensively studied in the literature [243,244]. The main advantage of other soft
materials, such as TPU and TPE, is that they can be 3D printed. Additionally, another ad-
vantage of TPU-95 is its durability (85A Shore hardness), making it suitable for agricultural
environments, where harmful collisions with objects are frequent [236].

144



Sensors 2021, 21, 2689

A common advantage of all of these silicones is their ability to cure at room tem-
perature, without the need for an oven, although an oven can be used to shorten the
cure time.

3.1.2. Manufacturing Methods

The main soft actuator manufacturing methods, comprehensively reviewed in [182],
are (i) the moulding process, where fused deposition modelling (FDM) printers are com-
monly used for mould making; (ii) shape deposition manufacturing (SDM), which facili-
tates the construction of 3D soft actuators composed of multiple materials with different
properties; (iii) soft lithography, which facilitates the development of multichannel soft
actuators; (iv) lost-wax cast fabrication [245]; and (v) soft 3-D printing. The latter can be con-
sidered a promising technology due to the elimination of several moulding stages, which
facilitates the manufacturing process and the design of more complex inner chambers or
pneumatic networks.

3.2. Soft Grippers for Food

In the field of soft robotics, particularly in soft grippers, there is a lack of soft actuators
designed for picking fruits and vegetables. This absence is most noticeable for harvesting
tasks. Although this is discussed in more detail in the following sections, note that the
handling of this type of product requires precise control of the gripper to successfully carry
out the movements of the picking patterns that are listed above without damaging the fruit.
Furthermore, the current state-of-the-art soft actuators tend to be researched in the field of
manipulation, which in many cases is very generalist and is not particular to the diverse
characteristics of individual objects.

However, in the field of industrial food handling, there are more research studies
that could be considered the basis for soft grippers in Agriculture 4.0 applications. These
studies are listed below, classified according to the type of soft actuator they use, indicating
the advantages of each technology. Only studies that specifically refer to food handling
have been taken into account.

• FEA [206,220,224,225,230,236,246–251]: This type of actuator technology is emerging
as a potential winner for fruit handling. This is due to the use of affordable materials,
the simplicity of their manufacture and control, and the grip strength obtained. Special
mention should be made of the solution proposed in [223], which can be defined as
a hybrid gripper, combining vacuum pressure and an origami-inspired compliant
structure. This design has a high gripping force of approximately 50 N, and the
authors provide a detailed study of its grasping.

• Tendon-driven [252,253]: This type of technology offers other advantages over the
previously mentioned technology, such as greater precision in position control. Specifi-
cally, this type of technology can be associated with a structure made up of rigid or soft
materials that are passively acted upon by tendons that offer soft-type manipulation.

• FEA-tendon-driven [254]: This approach combines both of the above technologies.
Tendon drive technology is used for grasping motions, and actuation is achieved
by linear soft vacuum actuators. This type of synergy improves the diversity of
objects that can be manipulated, as well as the combination of the advantages of each
technology. In one particular case [254], the gripper was able to lift a total of 2.7 kg,
which represents a maximum payload-to-weight ratio of 7.06.

• Topology-optimized soft grippers [255]: This type of soft gripper, which operates
via elastic deformation, can be adapted to the sizes and shapes of objects without
mechanical joints or sensors. In one particular case, the gripper could lift maximum
loads of 1.4 kg.

Table 4 gathers the main soft grippers that have been proposed for delicate food
handling and robotic harvesting applications. All of them are results of ongoing researches
in the field of soft robotics.
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As can be seen in Table 4, the cited studies do not list the characteristics of the proposed
soft grippers in a homogeneous way, which makes their comparative evaluation difficult.
Thus, for example, with regard to the size of the object to be manipulated, each study
proposes a different target, which in many cases is carefully selected to ensure an adequate
grip. Hence the importance of having standard methods to quantitatively determine
and compare the characteristics of soft actuators. It should also be noted that most of
the proposed solutions are focused exclusively on the mechanical design, leaving the
implementation of the control system for future work. Other crucial aspects such as the
adaptation of the grippers to conventional robotic systems, the energy consumption and the
power sources required for their operation are not addressed either. More detailed research
on the life cycle of actuators is also lacking, which can affect their optimal performance
due to the loss of properties that soft materials experience over time.

Figure 6 displays several soft grippers from the literature that could be adapted for
precision harvesting of crops.

Figure 6. Hypothetical harvest scenarios with several soft grippers. (a) Soft continuum gripper based on [256], (b) end-
effector based on [257], (c) bellow-type soft gripper based on [224], (d) multi-choice gripper based on [258], (e) circular soft
gripper based on [220,230], and (f) tendon-driven soft gripper based on [254].

3.3. Control

Deformability and compliance are some of the main characteristics of soft actuators [259],
which translate into a large intrinsic number of DoFs. This obviously affects the control
system in terms of complexity. Low-level control for soft actuators, which is highly depen-
dent on the soft materials used, can be decentralized to simplify the complexity [260]. For
this reason, it is essential, as a design step, to study the passive mechanical dynamics of
soft actuators to achieve the desired deformation behaviour [261].

As seen above, there are several soft technologies that have their own implications due
to the type of actuator they use. Thus, for example, controlling a servo, actuating a cable in
tendon-driven technology, controlling compressors and pressure regulators in FEAs, and
controlling the amount of electric charge, electro-adhesion, or a thermal stimulus in SMA
actuators are different challenges. The geometry of the actuator also has implications for
the control system, as it affects the number of axes and movements that soft actuators can
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execute. The widest variety of control philosophies can be found for FEA soft actuators, as
summarized in Figure 7.

Figure 7. Several control philosophies proposed for FEA-type soft actuators. The control philoso-
phies that have been proposed for a particular type of soft gripper (anthropomorphic or non-
anthropomorphic) are presented in blue, while those proposed for both types are shown in green.

Although diverse control strategies have been proposed for FEA-type actuator tech-
nology, open-loop control is one of the most frequently used. Several authors [32] report
difficulties in controlling certain types of FEA soft actuators due to their deflection around
the object. This is especially intricate in anthropomorphic grippers in terms of achieving
speed, flexibility and dexterity [191]; not only in FEA actuators but also in passive struc-
tures actuated by external motors or tendon motors. This disadvantage can be partially
solved by sensing the actuator or by real-time control using FEM [187,262]. On the other
hand, tendon-driven soft technology has more mature actuators than pneumatic actuators,
and therefore, the control is more straightforward than that of FEAs [237].

4. Challenges of Soft Grippers for Robotic Crop Harvesting

Although a number of different soft actuator technologies have been proposed for
various applications, soft grippers for robotic crop harvesting are not yet being sufficiently
addressed. This is mainly due to the complexity of the unstructured agricultural envi-
ronment, the intrinsic challenge posed by soft materials and the need to demonstrate the
economic viability of robotic harvesting in the sector. Some of the main barriers that soft
robotics, and more particularly soft grippers, face against their possible application in
agricultural scenarios are listed below.

• Design process: One of the main challenges of soft technology is the design process.
A wide diversity of generalist soft grippers can be found in the current state of
the art. However, these designs are more focused on achieving new improvements
in the field of soft robotics than on developing a specific gripper that solves the
issues of the particular field of applications. In terms of robotic crop harvesting,
characteristics such as modularity, ease of repair, and the ability to handle food and
multiple crops are desired. Apart from this, another gap that needs to be studied is the
mathematical model that represents the behaviour of the material in FEM software.
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This is directly related to the nature of the various materials used, described in the
Materials Subsection.

• Repeatability: Another of the main challenges of soft robotics, particular soft grip-
pers, is the need to standardize manufacturing processes. This is the first point to
be addressed because it would ensure that the designed soft actuators are suitable
for production, facilitating their incorporation into the robotic market. Repeatability
studies should research how to mitigate the common effects that appear in soft ac-
tuators, such as delamination or interstitial bubbles, that can be the result of faulty
manufacturing. To solve these problems, several solutions have been proposed, such
as the use of vacuum chambers [227,263–265]. Although positive results from this
process have been reported, it is impossible to find a method where, for example,
variables such as pressure or time are controlled as a function of volume to ensure the
repeatability of the process. Obviously, the method would depend on the material
used. On the other hand, in most cases, the manufacturing processes are very hand-
made, and therefore, repeatability can be compromised. However, processes based
on 3D printing of soft materials, as well as lost wax manufacturing, may become
interesting options in the future, given their greater options for achieving repeatability
during the manufacturing process.

• Standard method for determination of soft actuator characteristics: One of the main
gaps that has not yet been addressed in soft actuators is the definition of a method to
determine their characteristics. However, it is clear that there is a need for a reliable
method that can quantify the soft actuator features to facilitate its evaluation and
comparison. Properties such as the contact pressure, contact force, contact area and
slip force are crucial for benchmarking and determining room for improvement in
this field. Thus, this would not only be useful for selecting the optimal option for each
process but also for providing a true picture of the progress of this technology.
In the current state of the art, several approaches can be found for the characterization
of soft actuators, in which the experimental measurement is always performed with
non-standardized objects. However, the proposed methodologies of the studies differ,
presenting various approaches, among which the following stand out.

– The measurement process proposed in [210] consists of grabbing a spherical object
connected by an inextensible cable to a force sensor mounted on a motorized
platform to measure the slip properties. A similar approach can be seen in [211]
but with a six-axis force transducer.

– Others, such as [218], use a pressure-mapping sensor to obtain the contact force
and the pressure. This method offers a reliable measurement for grasping a
static object. Grip strength is measured in a similar way to that in the studies
mentioned above.

– In [230], a payload test is presented to obtain the grip strength. Furthermore, the
contact pressure is determined by means of FEM software. This last method can
give inaccurate solutions due to its dependence on the mathematical model of
the material used.

– Finally, in [266], a deep and detailed analysis is proposed for the measurement
of parameters such as grabbing height, pressure and motion acceleration for a
soft actuator. In this case, the tests are carried out not only in static but also in
dynamic conditions, differentiating between vertical and horizontal positions.
Variables such as size, weight and constituent material are also taken into account,
as well as the actuation pressure and the grabbing height. Finally, one of the main
contributions of this study is the introduction of the handling ratio, which offers
a measurable performance comparison.

• Design of control systems: Most of the soft grippers that have been proposed use
open loop control. All of these grippers also have a low-cost goal associated with
them. However, this results in impractical soft grippers that are difficult to implement
in the agricultural environment. Their lack of real control of the deformation and
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compliance can affect the handling of fruits in different stages of maturity without
damaging them. Thus, the study of new control algorithms that take into account the
stiffness of the object to be manipulated is essential for the implementation of soft
technology in robotic crop harvesting.

• Improvement of energy source systems: Depending on the type of soft actuator used,
the energy support required for the gripper can be an electrical source, a pump or
air compressor, or a chemical source. In any of these cases, more efficient equipment
must be developed to support these technologies. In the literature, descriptions of
energy solutions that drive soft-design systems are scarce. Typically, the proposed
solutions are suitable for a laboratory or industrial environment, which is far from
the unstructured environments of the agricultural sector. Therefore, the development
of new energy solutions must be a compromise between functionality and energy
consumption. In addition, the optimisation of the system is necessary not only to
increase the autonomy of the overall robotic harvester, but also to simplify it, with the
aim of enabling its implementation in current agricultural robotics.

• Economic analysis: Economic studies are often the necessary driving force to incen-
tivize research and development in a given area. In the field of Agriculture 4.0, these
economic studies can provide information on the most viable way to harvest different
crops. However, at present, there is a need for economic research in this field. A study
published in 2019 [267] highlights that only 18 investigations in the literature are
dedicated to estimating the profitability of crop automation. This affects not only soft
robotics but also other automation technologies, hindering its growth in this sector.
However, although the lack of research in this direction is noteworthy, it is clear that in
certain crops, such as tomatoes and peppers, the labour cost at harvest time represents
30% of the total cost [268,269]. Thus, mechanical harvesting by using soft grippers
may be an economically beneficial alternative to manual harvesting [270].

Another challenge, such as the relatively slower actuation speed, is currently ad-
dressed in part with the use of pneumatic channels, also known as pneumatic networks [199]
or low-pressure actuators [271]. Furthermore, hybrid gripper technology [272], which
combines some advantages of soft and hard robotics, may be another potential solution,
providing a soft grip and a structural strength capable of withstanding external agents or
objects existing in unstructured environments.

5. Conclusions

Agriculture mechanization is still in a growth phase. Tasks such as sowing, weeding
and harvesting are the spearhead of the development of Agriculture 4.0. Soft robotics is
presented as a suitable technology for the manipulation of fruits and vegetables, which are
often delicate and easy to mark or bruise and sometimes slippery. This field of robotics can
pave the way for the automation of maintenance, harvesting and post-processing tasks in
the agro-food industry.

In this article, a detailed review of the latest advancements in the design of novel
soft grippers and end-effectors that could be used for robotic harvesting applications is
presented. To that end, the current state of automatic picking tasks for several crops is
analysed, identifying the main techniques that are commonly used based on the botanical
characteristics of the fruits. Since direct harvesting methods based on twisting, bending,
pulling, lifting or a combination of them involve the direct contact with the fruits, the
introduction of soft grippers for automation of these techniques may represent a significant
advantage, allowing a delicate manipulation that guarantees the integrity of fruits. Direct
harvesting techniques with an actuation force on the peduncle are also candidates for the
introduction of soft gripper technology, provided they are complemented by a suitable
cutting tool.

Regarding the material used for the manufacturing of soft grippers, silicone elastomers
are attracting strong interest due to their low cost and because they do not require the use
of complex machinery or skilled labour. In addition, these compliant materials are also
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advantageous when considering the safety of interaction with biological products, making
them appropriate candidates for agricultural applications.

It should also be noted that most of the proposed solutions are focused exclusively
on the mechanical design, leaving the implementation of the control system for future
work. Although diverse control strategies have been proposed for soft actuators, open-loop
control is one of the most frequently used. The results of this study also underline that FEA
grippers are one of the most promising technologies for robotic harvesting due to their ease
of manufacture, compliance and output force. Nevertheless, it is important to note that
the implementation of the different soft grippers in agriculture must be associated with
the development and improvement in other components of the robotic system, such as
artificial vision and navigation.

Furthermore, some of the main challenges that soft grippers still have to overcome
to boost is definitive implementation are the design of control systems that consider the
stiffness of the fruit to be harvested, the implementation of standardised manufactur-
ing process that guarantee repeatability, the implementation of standard methodologies
for the determination of the soft actuators characteristics, and the improvement of the
energy sources.

On the other hand, it is important to take into account that the final quality required
for fresh market fruits and fruits for the processing industry differs significantly. Soft
grippers are presented as the most suitable solution for the harvesting of high value crops,
so that mechanical damage is minimised and the products can reach their maximum value
in the market. For fruits and vegetables intended for other industrial processing, such as
the production of juices, jams and sauces, the economic feasibility of solutions based on
soft grippers should be further evaluated. Therefore, future research should be directed to
conducting economic studies that provide information on the most viable way to harvest
different crops [267], and on the measures that should be taken to minimize losses [273].
Moreover, the study of methods to accurately assess the extent of surface and internal
fruit damage caused by excessive external forces should also be addressed [274]. Finally,
it would be convenient to carry out studies that analyse the life cycle of soft actuators
made with silicone elastomers, to determine if their degradation may leave particles on the
products manipulated.
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M.; Petes, C.; Birgermajer, S.;
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Abstract: This paper presents an autonomous robotic system, an unmanned ground vehicle (UGV),
for in-field soil sampling and analysis of nitrates. Compared to standard methods of soil analysis it
has several advantages: each sample is individually analyzed compared to average sample analysis
in standard methods; each sample is georeferenced, providing a map for precision base fertilizing;
the process is fully autonomous; samples are analyzed in real-time, approximately 30 min per sample;
and lightweight for less soil compaction. The robotic system has several modules: commercial robotic
platform, anchoring module, sampling module, sample preparation module, sample analysis module,
and communication module. The system is augmented with an in-house developed cloud-based
platform. This platform uses satellite images, and an artificial intelligence (AI) proprietary algorithm
to divide the target field into representative zones for sampling, thus, reducing and optimizing the
number and locations of the samples. Based on this, a task is created for the robot to automatically
sample at those locations. The user is provided with an in-house developed smartphone app enabling
overview and monitoring of the task, changing the positions, removing and adding of the sampling
points. The results of the measurements are uploaded to the cloud for further analysis and the
creation of prescription maps for variable rate base fertilization.

Keywords: UGV; precision agriculture; artificial intelligence; soil nutrient analysis; soil sampling

1. Introduction

With the continuous growth of the world population, the demand for food and culti-
vated land increases continuously. The prediction of the Food and Agriculture Organization
of United Nations (FAO) indicates the presence of constant growth of the population with
the rate of 79 million people per year, increasing food demand [1]. Since the cultivated land
resources are limited, and acquiring new ones is correlated with degradation of ecosystems,
reduction of forests, climate changes, and risks of new pandemic breakouts, as well as
degradation of soil properties due to inappropriate cultivation and treatment, there is an
urgent need to improve soil treatment, to increase yield in a sustainable manner. The
best approach that will enable farming to become more efficient in a sustainable way
and reduce the production costs at the same time, is to provide an efficient supply of
nutrients and water [2]. Standard and classical methods of soil analysis usually involve
taking 1–20 samples per 5 hectares from around 30 cm depth. They are usually mixed and
analyzed for an average value of nutrients [3]. A laboratory analysis then takes 10–15 days
to obtain the results. The most common soil sampling methods used are hand sampling,
hydraulic probes, electric probes, and auger probes [4]. Hand sampling is easy to use and
economic, but it is time-consuming, labor-intensive, and could be inconsistent with the
sampling depths. Hydraulic probes are fast and have a consistent depth, but are composed
of numerous components (engine, hydraulics tank, pump, and lines), vendor locked, and
pricy in the range from USD 4000 to 8000 on average. Electric probes demand low mainte-
nance, with no fuel costs, and are more suited for dusty conditions. They do have a slower
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cycle time and they are not as powerful as hydraulic ones. Auger probes are the most
durable and easy to set up and use. Their main drawback is the cross-contamination due
to poor probe cleanout capabilities and they have difficulties with verifying core depth
as well with their usage in sandy soils. All the stated sampling methods end up with
time-consuming laboratory analysis, which does not provide on-time information to the
farmers. Furthermore, due to sample averaging, precise information about nutrients at the
exact location is lost. Considering nitrogen, with its large spatial and temporal variations,
under and over-fertilization is inevitable. This can lead to a decrease in yield on one hand,
and significant pollution of the ecosystems on the other [5].

Sowing and fertilization as phases in the agricultural production process should be
completed after soil analysis based on appropriate methods providing information on
nutrient availability for the growth and development of the particular plant. Until recently,
farmers applied uniform fertilization per plot, which is not optimal from an economic
perspective, and unsustainable from an ecologic, environmental, and ecosystem point
of view. Plants acquire nutrients in amounts that are needed for normal growth, while
any additional artificially applied nutrients by fertilization largely evaporate, creating
greenhouse gases, or end up in surface and underground waters, which boosts algae
growth in rivers and lakes [6]. Subsequently, lack of oxygen leads to large-scale fish death
and other water animals and organisms in their natural habitats, which finally affects
humans. All the stated facts impose a need for new systems and methods for real-time
georeferenced sampling of soil for nutrients, providing input for precise fertilization.

Precision agriculture, smart farming, and automated agricultural technology have
emerged as promising methodologies for increasing crop productivity without sacrificing
produced quality. The emergence of various robotics technologies has facilitated the
application of these techniques in agricultural processes [7]. In the stated article, the authors
provide an overview of the current state of the art in agricultural robots. Classification of
the five major operations in open arable farming is presented in the study by [8], where
one of them is soil analysis. An implication of soil agrochemical analysis and its accuracy
in precision agriculture is given in [9]. The authors suggest that rapid, less labor-intensive,
economical, and at least equally accurate methods have to be developed for precision
agriculture. They emphasize high soil analysis costs with traditional methods. A suggestion
for scales of 10 m or less in precise agriculture is suggested in [8], due to the high spatial
variability of the nutrients in the soil. Early work in the automation of soil sampling is
presented in [10]. The system collects, packs, and marks samples with georeferencing. Rogo
Robotic Soil Sampling [11] represents the state-of-the-art automatic soil sampler, however,
it is not on-the-go, as it just collects and packs samples. The paper by Oledo et al. presented
a UGV with a custom-built robotic manipulator with a surface scoop-type soil sampler [12].
Cao et al. presented a soil sampling system on a mobile robot with practical implementation
in a soil survey in an assault zone [13]. The sampling system is an automatic penetrometer.

Vaeljaots et al. presented soil sampling UGV which can measure some of the soil
properties online such as temperature, moisture, and penetration force [14]. It can collect,
pack, and label the samples for later laboratory analysis. However, this paper does not
present more technical insight, e.g., what are the exact parameters that are measured online,
what is the depth of a sample, etc.

The robotic solutions mentioned above are only limited to the soil sampling part of the
process and do not offer an insight into the nutrient analysis. In this paper, we propose a
novel system for soil sampling and in-field analysis for nitrate-nitrogen that is based on the
autonomous robotic platform agrobot Lala. The proposed solution is supported by an AI
algorithm for defining optimal sampling locations as well as for fertilization prescription.
In this way, a complete solution is offered to the farmers based on what they know on time,
what is the spatial need for nitrogen in their fields, and how exactly to apply fertilizer. We
believe that the proposed solution will help farmers be more efficient in a sustainable way.
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2. Materials and Methods

The purpose of an autonomous robotic system, agrobot Lala (Figure 1) is an automation
of the in-field, real-time, soil sampling and analysis of nutrient content of the soil. Currently,
it supports the measurement of the content of nitrate nitrogen; however, with different
probes it could measure other nutrients and soil properties as well (electric conductivity
(EC), pH, NPK, and similar). Agrobot Lala is fully autonomous, and it is based on the
commercially available UGV platform Husky (Clearpath robotics Inc., Kitchener, ON,
Canada) [15]. This platform is equipped with a custom-made system for soil sampling
and analysis.

Figure 1. An autonomous robotic system—agrobot Lala.

The system can be divided into three major parts:

• Cloud-based application for task management and generation of sample points on the
plot based on a proprietary AI algorithm.

• Smartphone application for monitoring and customization of the task.
• Robotic system for acquiring and analysis of soil samples.

2.1. Cloud-Based Application

The cloud-based application is a custom-made proprietary solution based on the
existing AgroSense digital platform [16]. Through this platform, users can register and
associate any of its plots. Various services are then available to support more efficient
agricultural production. The platform offers the possibility for the user to perceive, per
management zones, specific locations for soil sampling and analysis proposed by the AI
algorithm based on satellite or high-resolution drone images. The specified locations are
generated according to the assessed variability within the plot and, as such, their number
can be lower compared to the number of sampling points obtained from the cell sampling
scheme with checkerboard representation [17,18].

In precision agriculture, a management zone defines a sub-region within the same
piece of land (plot), which has spatially invariant factors influencing the yield according
to which crop management practice is carried out [19,20]. Different types of data have
been used for the assessment of spatial variability within the plot such as data about the
yield through the years, various soil properties, remotely sensed data, topographic factors,
and soil apparent electrical conductivity (ECa) [20–23]. Among the methods proposed
to measure within-plot spatial variability for delineating management zones, a statistical
cluster analysis, which integrates various data sources, is the most frequently used as a
baseline [24]. The developed AI algorithm focus only on remote sensing data, particularly
on multispectral Sentinel-2 satellite images [25–28].

Management zone estimation within the defined user plot by the AI algorithm is
undertaken in two steps: first, by performing the K-means cluster analysis [29–31] and then
by conducting the spatial filtration with the mode filter on the image created from obtained
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cluster labels. The K-means takes as input a user-specified parameter K and feature vectors
created per minimum area covered by pixels of multispectral images, which is defined by
the maximum spatial resolution (10 m × 10 m) achieved by the Sentinel 2 Multispectral
Imager (MSI) sensor. The feature vectors can contain various statistics extracted from
provided data, such as the vegetation indices [31] calculated from the remote sensing
images acquired by satellites or UAVs. For the results presented in this paper, the feature
vector contains values of Normalized Difference Vegetation Index (NDVI) calculated using
one or more Sentinel-2 images.

After generating an image with cluster labels obtained from K-means as pixel values,
the second step of the AI algorithm consisting of spatial filtration by taking into account
spatial statistics of labels is conducted. This step is necessary to obtain a smooth and more
regular shape of boundaries of the management zone and to create connected components
within the zones, by correcting the pixel labeling with the inclusion of the spatial context,
Figure 2. The final step of the AI algorithm generates sampling points one for each of
the connected components within the management zone (e.g., two sampling points for
the red management zone since it has two connected components (see Figure 2)). Since
the selection of sampling point locations is constrained by the maximal spatial resolution
provided by input data, then only the GPS location of the pixel center can be selected as
a coordinate for the sampling point. A GPS location of the pixel representing the center
of the mass of the associated connected component is selected as the coordinate of the
sampling point. The spatial filtration step of the AI algorithm can be repeated several times
if the shape of the connected component is such that the center of the mass does not fall
within the area of the connected component, Figure 2. The algorithm is implemented in
the AgroSense platform as a real-time solution for defining the optimal sampling points of
the selected field. The algorithm specifies one sampling point per connected component,
but it can generate multiple points per management zone. At this moment, it was decided
to optimize the system to cover a larger field area and save the battery for this purpose,
and not spend it on additional sampling. The user has the option to manually move, add,
and remove suggested sampling points. Once the user finishes the rearrangement of the
sampling locations, the soil sampling and analysis task can be saved and downloaded
using a smartphone application.

 

Figure 2. The results of the executed algorithm for proposing optimal sampling points within the
AgroSense platform. Each color represents different management zones, while pin markers represent
the optimal sampling points per zone.
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2.2. Smartphone Application

The smartphone application was made for the robot Operator, the well-trained person
that monitors the complete soil sampling and analysis procedure performed by a robotic
system in the field. The application called RoboSense is designed to be simple to use and to
allow the Operator effortless preparation of a new soil sampling task, have an insight into
the current state of the active soil sampling task, edit the currently active soil sampling task,
if necessary, as well as the possibility of insight into the state of the robotic system, which
will be implemented in future work. Figure 3 shows the main menu of the RoboSense
smartphone application.

Figure 3. The main menu of the RoboSense smartphone application.

The main menu presents the key functionalities of the application, which are the following:

• A field for entering the email address of the user that defined the soil sampling and
analysis task is needed for downloading the task.

• A button “DEFINING ROBOT PATH” is used to define a new robot path.
• A button “ACTIVE TASK STATUS” is used to display the status of the active robot task.
• A button “MEASUREMENT RESULTS” is used to quickly display currently measured

nitrate values.
• A button “ROBOT STATUS” is used to display robot status (battery level, water level,

and system errors).

2.3. Robotic System

The robotic system is a combination of the commercially available UGV platform
Husky and a custom-made solution for the task of soil sampling and analysis—minilab.
The minilab is mounted on the robotic platform and consists of several main modules:

• Anchoring module.
• Sampling module.
• Sample preparation module.
• Module for soil analysis.
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Electronic- and software-wise, a robotic platform is divided into two parts:

• UGV Husky platform, with software based on ROS (Robot Operating System) running
on Linux.

• Custom electronics based on ATMega MEGA 2560, with firmware based on C++.

The complete model of the robot Lala, with an exploded view of the modules, is shown
in Figure 4.

Figure 4. The 3D model of the exploded view of the agrobot Lala model.

The UGV platform’s external dimensions are 990 × 670 × 390 mm. It weighs 50 kg
and has a maximum payload of 75 kg. The maximum speed is 1.0 m/s and can achieve
typically 3 h of autonomy.

The custom-made solution for soil sampling and analysis fits the UGVs width, and
expands 40 cm in front of the UGV, with a total height from the ground of 200 cm. It can
take samples from a 30 cm depth and can anchor to 15 cm. It can provide penetration force
of up to 720 N. The speed of penetration and extraction, where the most reaction forces
are exhibited, is 1 mm/s, while the sampler maximum speed is 3 mm/s. The anchoring
speed is 2 mm/s for individual anchors, while the total speed is 1 mm/s concerning their
reciprocating motion. While not anchoring, the speed is up to 10 mm/s.

2.3.1. Anchoring Module

During platform development, it was observed that the penetration forces, especially
at higher depths, can be large. They can cause an uplift of the whole platform, which
leads to an inadequate sample. This means that the volume of the sample is smaller, but
the more severe effect is that the sample does not include a part from the required depth.
Furthermore, this uplift can cause damage to the equipment, especially the probe, which
can be bent or even broken. To prevent this from happening, the platform is equipped with
a custom-made anchoring module, which is shown in Figure 5.
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Figure 5. Model of the anchoring module.

The anchoring module consists of two linear stages, driven by the stepper motors
(NEMA 34, 6.0 A, 8.7 Nm) over the 6:1 reducer. A threaded spindle with a 20 mm step is
connected to the output of the reducer. This large step enables firm anchoring while saving
instantaneous power needed for drilling. The threaded spindle moves together with motors
on slides. The actuating end of the threaded spindle is extended with the bore, which has a
single turn of the thread of approximately 80 mm in diameter, and a step equal to the step
of the threaded spindle. This constellation enables smooth and efficient anchoring, without
the milling effect on the soil. Again, the bore diameter is optimized between firm anchoring
and the instantaneous power needed for the drilling. The estimation of the power needed
for anchoring and optimization of the parameters was completed in a manual manner,
where a manual thread typically used for round hole excavation is used along with a gauge
to measure required forces. Due to the battery power, care is taken to minimize peak and
overall power consumption.

The module is equipped with three inductive sensors per drive at dedicated posi-
tions. These positions indicate the top position, where the anchors are initialized and
transported, a position where drilling starts at ground level, and a position at 15 cm an-
choring depth. Besides inductive sensors, the anchoring module is also equipped with
two mechanical hardwired end switches per drive for safety reasons at the topmost and
bottommost positions.
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2.3.2. Sampling Module

The sampling module serves to take a soil sample (Figure 6). It is based on the electric
probe soil sampling method. Similar to the anchoring module, the sampling module is
also a linear stage; however, a threaded spindle and a driving motor are at a fixed location,
while the moving part is the soil sampling probe and the probe attachment.

 

Figure 6. Model of the sampling module.

Besides linear movement, the probe also exhibits a rotational move actuated by the
motor placed at the top part of the soil probe. This rotational motion is executed before
the probe is pulled from the soil at its lowest point. Namely, this move greatly reduces
the initial force needed for a sample removal. Moreover, this rotation is implemented
during the sample extraction process, where an extractor end is bore designed, therefore,
the rotation creates boring, and the soil starts to fall out from the probe openings before
it is extracted at the tip of the probe. This significantly reduces the peak force and power
needed for the extraction and minimizes the stress on the material of the probe and the
extractor. The threaded spindle has a 3 mm step and is driven by a stepper motor NEMA
23, 3 A, 1.8 Nm over a reducer of gear ratio 6:1. The gearbox and the threaded spindle are
colinear and connected using two equal gears at the bottom of the module. The module is
equipped with four inductive sensors at dedicated positions. These positions indicate the
top position, where the extraction is accomplished, a position where the extraction starts,
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a position where the probe tip is at ground level, and a position at 30 cm sample depth.
For safety reasons, the sampling module is equipped with two mechanical hardwired end
switches for safety reasons at the topmost and bottommost positions.

2.3.3. Sample Preparation Module

The main purpose of the sample preparation module is to prepare the solution of the
soil sample suitable for measurement. It consists of 3-axes linear stages, a measurement pot
with one rotational degree of freedom for cleaning purposes, and a mixer. The module is
shown in Figure 7.

 

Figure 7. The 3D model of the sample preparation module.

The ion-selective probe used for soil sample measurement can be maneuvered along-
side horizontal and vertical linear stages. Namely, horizontal movement enables the probe
to position over the referent solutions or the prepared sample, while during vertical move-
ment the probe can be immersed into referent solutions or the prepared sample. The third
linear stage is slightly inclined and is used for platform movement. The moving platform
is designed to carry the sample preparation pot and supporting parts. Alongside this
stage, the measurement pot can be moved under the probe to collect the extracted soil
sample or moved to an initial position where measurements with an ion-selective probe
are conducted. During the cleaning process, the pot is moved to the dedicated position,
where it can be rotated to pour out the sample solution and be cleaned.

The measurement pot consists of the pot, a funnel, support, a weight measurement
unit, a motor for rotation, a mixer motor, and a magnetic locker (Figure 8).
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Figure 8. The 3D model of the measurement pot with parts.

The funnel is used to collect falling parts of the soil sample. It also has integrated water
channels and nozzles for two purposes. The first one is for the addition of an exact amount
of deionized water (DI water), and the other is for cleaning purposes. Those systems are
separated and are driven by different pumps. The pump for the precise addition of DI
water is less powerful, therefore more easily controllable, while the pump for cleaning is a
more powerful pump that can create a shower effect with many nozzles integrated into the
funnel. The weight measurement is used to determine the collected soil sample mass and
the mass of added DI water, hence their ratio. The amount of added water is predefined to
4:1; however, it can be less if the sample is heavier, and more if the sample is lighter. The
magnetic locker secures the platform in the topmost position, enabling the stepper motors
to be de-energized to save power.

Electrically wise, the sample preparation module incorporates:

• Three NEMA 17 stepper motors and associated end switches for linear movement.
• One geared DC motor for the rotation of the pot.
• One brushless motor to mix the sample.
• Two aluminum load cells to measure the soil sample weight, and the weight of

added water.
• A magnetic locker.
• Two water pumps with a DI water reservoir.

2.3.4. Module for Soil Analysis

The module for soil analysis is based on an ion-selective electrode (ISE) Vernier NO3-
BTA. Besides the electrochemical ISE technique for soil nitrate determination, techniques
such as spectrophotometric/spectrometric and biological are available as well. Due to the
variable optical signatures of soil, these techniques require considerable site-specific calibra-
tion. The biological approach, although promising, should be improved concerning sensor
robustness and lifetime. We decided to base our soil analysis module on the ISE probe since
it offers the greatest potential for near-term accurate field analysis of nitrates [32].
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The operating principle of ISE is based on potentiometry, or more precisely, the
measurement of the electric potential difference between referent and indicator electrodes
which are immersed in a liquid solution with ions that are measured. The most important
part of ion-selective electrodes is an ion-selective membrane that enables the passing of
particular ions, in this case, NO3− ions, while preventing the passage of other ones.

The main advantage of ISE nitrates detection is that it does not demand filtration of
the sample which significantly simplifies its use in the field.

The module for soil analysis overlaps, to some extent, with the sample preparation
module, in the sense that it also uses two linear stages of the sample preparation module
to maneuver the probe and the mixer. However, the main part of this module is the
ion-selective probe for soil nitrates measurement Vernier NO3-BTA [33]. Before field
operation and any reliable and accurate measurement, the probe must be calibrated. For
this purpose, a dedicated plane positioning system was developed consisting of the above-
mentioned two linear stages, as well as two pots for standard solutions installed in the
module. The calibration procedure is completed automatically on the robotic platform by
using 50 and 200 mg/L calibration standards before each soil sampling and analysis task.
Based on measurements of standard solutions, a calibration curve of exponential nature is
derived. Subsequent measurements of the nitrates are then derived by inserting measured
ADC values in this equation. The exact concentration of nitrates is also determined by
the proportion of the soil sample mass and the mass of the added water, used to make
an appropriate solution of the sample. This ratio is 4:1 in favor of water. Currently, a
measurement of soil moisture is not implemented, and this can cause a small error in
the measurement.

During the measurement, the sample solution is constantly mixed with a lower mixing
speed to achieve a homogeneous solution. The measurement process takes 3.5 min, which
is the time needed for the probe to stabilize the response.

Before integrating the module for soil analysis with the robotic platform, a series
of benchtop laboratory tests were performed to optimize measurements and to test the
accuracy of the proposed method against the referent one. To optimize the measurement
time, the ISE probe was immersed in a 200 mg/L nitrate solution to determine dynamic
output. As can be seen in Figure 9, the output voltage stabilized after 210 s; therefore, this
measurement time was used in the continuation of the measurement.
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Figure 9. Dynamic response of the ISE probe for the nitrate standard concentration of 200 mg/L.

Afterward, a series of nitrate standards were prepared to calibrate the ISE probe. The
nitrate concentrations were chosen to cover expected nitrate values in the field and were the
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following: 0, 6.25, 12.5, 25, 50, 100, 150, and 200 mg/L. The measurements were performed
with each standard and the calibration curve was constructed (Figure 10).
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Figure 10. Calibration curve that relates ISE probe voltage output with nitrate-nitrogen concentration.

The relation between nitrate concentration and ISE probe voltage output is exponential:

CN = a × ebV
S, (1)

where CN is nitrate concentration [mg/L], VS is the voltage output of ISE probe [V], while a
and b are coefficients determined by calibration. From the nature of this relation, it is clear
that only two nitrate standards are sufficient to determine the calibration curve. This is also
beneficial for the in-field system since there is no need to have all the calibration standards
on the platform for the on-site calibration. By analyzing the errors between the calibration
curve constructed with all the stated standards and the ones constructed with the help of
all the possible standard pairs, it was concluded that the combination of 50 and 200 mg/L
gives the lowest relative error with the respect to the full range which was 2.95%.

To test the calibration curve, 15 agricultural soil samples were used, and the results
of nitrates measurements were cross compared to the results obtained according to the
Bremner method for determination of inorganic nitrogen [34]. The comparison of results is
presented in Table 1.

Table 1. Comparison between ISE probe nitrate-nitrogen measurement results and results obtained
according to the Bremner method.

Sample Bremner NO3-N [mg/L] ISE NO3-N [mg/L]

1 20.3 21.4
2 23.1 13.3
3 31.9 50
4 34.7 50
5 41.7 47.9
6 50.4 59.8
7 53.9 46.3
8 57.4 47.9
9 72.1 77.6
10 73.2 77.6
11 78.4 71.9
12 95.2 89.5
13 100.1 85.1
14 122.2 99.9
15 126.7 140.1
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The results are compared in graphical form, where the regression line that describes
the actual relationship between the two methods is presented (Figure 11). It can be seen
that the regression slope is 0.97, while the R2 factor is 0.97 based on which we can confirm
that this method of calibration is validated.
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Figure 11. Comparison between the referent Bremner method and ISE method for nitrate-nitrogen detection.

2.3.5. ROS Implementation

The main control of the platform is implemented through Robotic Operating System
(ROS) running under the Linux platform. It comes with preinstalled drivers for all sensors
provided by the vendor: LIDAR, Inertial Measurement Unit (IMU), motor drivers with
sensors, and RTK GPS module. A ROS navigation package from the manufacturer is
preinstalled and used for platform navigation in the field. A module that controls the
whole system is developed in-house. This module receives and executes the task from the
cloud server. It constantly updates the status of the task and each individual sample point
within the task. This status can be monitored by a user (robot Operator) over a dedicated
application on a smartphone.

Four ROS nodes are created to communicate with the custom-made electronics for the
minilab. The first one publishes control messages for the minilab. The second one receives
the responses to the issued commands published by the minilab. The third one receives the
measurement results of the nitrate concentration. The last one is used to publish debugging
information for the user to monitor the task execution.

There is a substantial list of ROS packages that are installed and used in the robotic
platform; therefore, we just want to mention the most important ones in the following list
sorted in alphabetical order:

• actionlib—provides a standardized interface for interfacing with preemptable tasks.
• amcl—a probabilistic localization system for a robot moving in 2D.
• costmap 2D—provides an implementation of a 2D costmap that takes in sensor data

from the world, builds a 2D or 3D occupancy grid of the data.
• imu_tools—contains IMU-related filters and visualizers.
• navigation—a 2D navigation stack that takes in information from odometry, sensor

streams, and a goal pose and outputs safe velocity commands that are sent to a
mobile base.

• move_base—provides an implementation of an action that, given a goal in the world,
will attempt to reach it with a mobile base.

• nmea_comms and nmea_msgs—for interfacing GPS.
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• rosserial—for wrapping standard ROS serialized messages and multiplexing multiple
topics and services over a character device such as a serial port or network socket.

• tf2—lets the user keep track of multiple coordinate frames over time.

2.3.6. Electronics

Hardware-wise, the electronics is based on Arduino ATMega MEGA 2560, and a
firmware based on C++. The firmware controls all modules of the minilab, including their
actuators and sensors. It has two serial interfaces to the external world. The first one is with
the ROS platform. This is the main interface during the operation. The second interface
serves for debugging and manual control purposes. It can be directly wire-interfaced, or
more suitably over a Bluetooth (BT) wireless module, where the status and debug messages
can be monitored during the whole process on a smartphone application. This interface,
besides high-level commands for the whole processes, also allows low-level commands.
The low-level commands are used for testing the individual features, but also for the
manual control of the minilab in case of errors during normal operation.

2.3.7. An Overview of the System

An overview of the system is presented in Figure 12, based on which the basic proce-
dure can be summarized in the following steps:

1. A farmer defines soil sampling and analysis tasks with the help of the AgroSense platform.
2. The Operator downloads the specific task from the AgroSense platform with the help

of the RoboSense smartphone application and defines the optimal route.
3. The task prepared by the Operator is uploaded to the robotic system via the Ro-

boSense server.
4. The robotic system performs the soil sampling and analysis task and during the

process, the status of robotic system operations is being refreshed.
5. Once the task is finished, the Operator uploads the measurement results to the

AgroSense platform.
6. A farmer selects the task to visualize the results for nitrogen content measurements.
7. A farmer creates a fertilization prescription map for the desired type of fertilizer.

Figure 12. An overview of the system for soil sampling and analysis.
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The cost of the entire robotic system is around EUR 50,000. The major expense is a
commercial UGV platform, which costs about EUR 40,000. The rest goes to custom-made
equipment. With this high cost, a targeted business model for this platform is to be provided
as a service, especially having in mind the integration with the AgroSense platform which
also provides agricultural services.

3. Results

The complete system was tested on the plot within the field of the commercial farm in
the locality Krivaja, Serbia. The size of the plot was 1 ha. Plowing and tilling the plot were
completed before performing the test of the robotic system.

The process started by defining the soil sampling and analysis task with the help of
the cloud-based platform AgroSense. After defining the experimental plot and choosing
the relevant satellite image, the algorithm for proposing the locations for soil sampling was
initiated. As a result, in total, five points determining sampling locations were estimated
within three different management zones (Figure 2). In this way, the soil sampling and
analysis task was created, as can be seen in the upper right corner of Figure 2.

The task created in this way was downloaded using the smartphone application to
initiate the soil sampling and analysis process. When the soil sampling task was opened, a
Google map was displayed showing the defined sampling points in the form of markers.
Next, the optimal route for the robotic system was created as shown by blue connecting
lines in Figure 13.

Figure 13. Google map with sampling points and optimal route.

It is important to note that if there is a need, the route and sampling points can
be edited by the Operator, which was not done in this example case. In this case, the
route was confirmed and uploaded to the cloud-based platform by pressing the “WRITE
PATH” button. Next, the robotic system was initiated by the Operator, meaning that the
system entered the procedure for soil sampling and analysis. First, the robotic system
completed the initialization of each module, afterward, the soil sampling and analysis
task was downloaded from the AgroSense server. Next, the robotic system visited the
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first point in the downloaded list. Before the sampling was completed the robotic system
performed the calibration of the ion-selective electrode for measuring nitrate content. After
the calibration process, the robotic system undertook routines of anchoring, soil sampling,
sample preparation, analysis of the sample, cleaning, un-anchoring, and moving to the
next location. The movement of the robotic system was stable, and it successfully overcame
all the bumps in the field. If the plot was only plowed, furrow would cause stability issues.
The robotic system regularly updated the status of each step of the soil sampling and
analysis procedure by sending messages to the AgroSense server, which could be seen by
choosing the “ACTIVE TASK STATUS” option from the main menu. Depending on the
status, the sampling points were displayed with markers of different colors (Figure 14).
The sampling points that have the initial status are shown in gray, meaning the robot has
not yet visited the point. The yellow color represents the sampling point at which the robot
was currently engaged. The sampling points at which all sampling tasks were performed
successfully were shown in green. By clicking on the sampling point marker for a given
point additional information such as the current status of the sampling point (status code
and brief status description), robot positioning error in meters (distance between specified
and achieved robot coordinates), and measured nitrate value if available was displayed.

Figure 14. Active task status.

When the robot successfully visited all sampling points by clicking on the “CONFIRM
TASK” button the Operator confirms that the active task on the parcel has been completed
and the measurement results become available on the AgroSense platform.

The measurement results of this example case are presented in Table 2.
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Table 2. The measurement results from the test performed on the plot within the field of the
commercial farm in the locality Krivaja, Serbia.

Sample Mass [g] NO3 [mg/L] NO3-N [kg N ha−1]

1 37.06 196.38 177.00
2 23.27 175.01 157.74
3 36.05 85.07 76.68
4 45.52 91.70 82.65
5 33.35 98.64 88.91

Based on the measurement results, a fertilization prescription map was generated
(Figure 15). Fertilization prescription was completed based on the optimal value of nitrogen
in the field which was taken to be 30 ppm. This was just above the critical value of nitrate-
nitrogen needed for the maize [35]. Based on the in-field measurement results and nitrogen
target value, the amount of missing nitrogen was determined and prescribed to be applied.
Green pins represent the locations of the actual sampling points which are different from
the proposed ones due to the positioning error.

 

Figure 15. Fertilization prescription map generated based on the measurement results. Red pins
represent proposed sampling locations by AI algorithm, while green pins represent actual sam-
pling locations.

4. Discussion

We presented a complete system for soil sampling and analysis intended to help
farmers to optimize fertilization in their fields and, in this way, be more efficient in a
sustainable way. An overview of the system is presented in Figure 12. The presentation
of the system and its functionalities can be seen in a promotional video [36]. The system
consists of a user-oriented platform called AgroSense which the farmer uses to define the
soil sampling and analysis task with the help of high-resolution satellite images and an AI
algorithm. The same platform is used for the visualization of the measurement results and
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obtaining the fertilization prescription. The next component of the system is the RoboSense
application which is used by the Operator in the field to monitor the soil sampling and
analysis task that is performed by the robotic system.

The system was tested in an operational environment in the 1 ha experimental field,
during which all the stated functionalities of the system were successfully demonstrated.
The complete task took 165 min to be completed, during which five samples were taken.
The measurement results showed slightly higher values of nitrate-nitrogen than usual [37]
which can be explained by the fact that two days before the tests, the base fertilization
was performed.

It should be noted that the fertilization prescription algorithm was tested previously,
on another 5 ha experimental field. In this case, soil samples were taken from the field and
tested for nitrate concentration with the same ISE probe. Based on the results, a fertilization
prescription was completed. The average yield of the experimental field was 1.76% higher
in comparison to the entire plot, which is a promising result but should be repeated in
future seasons. It should be noted that at the same time more than 7.5% of KAN fertilizer
was saved.

At this level, all the functionalities of the system were successfully demonstrated in an
operational environment, but it still needs to be further tested to include different real-life
scenarios and environmental conditions before it could become commercially available.
Furthermore, it should be noted that soil sampling analysis was not corrected for the
soil moisture content but mixing the soil sample with water by a ratio of 1:4 reduces the
soil moisture influence. In the future, a soil moisture sensor could be integrated into the
platform to have more accurate measurements. In addition, since the main challenge of
taking the sample from the soil is resolved, a different sensor such as multi-ion probes could
be used on the same sample to measure the rest of the important soil nutrients by detecting
ions such as Ca2+, K+, Mg2+, NH4+, NO3−, P[HPO4

2−], Cl−, and Na+ [38], together with
parameters such as pH and electrical conductivity.

Since the robotic system is equipped with RTK GPS, it could be used for ground-based
topographic mapping to generate high-resolution elevation data at the landscape level.
The generated maps are highly useful in the understanding of soil water and nutrient
movement and would represent an additional valuable level of information for farmers.

In the future, the autonomy of the robotic system could be improved by optimizing
soil sampling and analysis procedures as well as by using an advanced battery solution
that is based on LiFePo4 technology which can offer up to 10 times more capacity.

5. Conclusions

This paper represents Agrobot Lala—an autonomous robotic system for real-time, in-
field soil sampling and analysis of nitrates. The presented solution helps with fertilization
optimization which leads to more efficient production in a sustainable way. The system
comprises a cloud-based application for task management and generation of sample points
on the plot based on proprietary algorithms of artificial intelligence (AI), a smartphone ap-
plication for monitoring and customization of the tasks, and a robotic system for fieldwork
of acquiring and analysis of soil samples.

With the help of the system, a farmer defines soil sampling and analysis tasks with
the help of a cloud-based platform and AI algorithm. The task is performed by the robotic
system providing the measurement results in real-time. As the result of the analysis, a
fertilization prescription is generated which reached more than 7.5% of KAN fertilizer
savings and showed a 1.76% yield improvement during the initial test. All the stated
functionalities of the system were verified on the 1 ha experimental field by taking and
analyzing 5 soil samples.

The presented system can be significantly improved by introducing a multi-ion probe
for detecting additional important nutrients in the soil besides nitrates, as well as additional
sensors for pH and electrical conductivity measurements.
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Abstract: During the last decades, consumer-grade RGB-D (red green blue-depth) cameras have
gained popularity for several applications in agricultural environments. Interestingly, these cameras
are used for spatial mapping that can serve for robot localization and navigation. Mapping the
environment for targeted robotic applications in agricultural fields is a particularly challenging task,
owing to the high spatial and temporal variability, the possible unfavorable light conditions, and the
unpredictable nature of these environments. The aim of the present study was to investigate the use of
RGB-D cameras and unmanned ground vehicle (UGV) for autonomously mapping the environment
of commercial orchards as well as providing information about the tree height and canopy volume.
The results from the ground-based mapping system were compared with the three-dimensional (3D)
orthomosaics acquired by an unmanned aerial vehicle (UAV). Overall, both sensing methods led
to similar height measurements, while the tree volume was more accurately calculated by RGB-D
cameras, as the 3D point cloud captured by the ground system was far more detailed. Finally, fusion
of the two datasets provided the most precise representation of the trees.

Keywords: smart agriculture; depth cameras; 3D mapping; 3D point clouds; situation awareness

1. Introduction

1.1. General Context of RGB-Depth Cameras

Many tasks such as mapping, localization, navigation, 3D reconstruction of object,
or scenery, among others, involve computer vision. Computer vision could be described
as the technology that combines image processing through computational algorithms to
obtain certain information from images [1–3] or vision systems utilizing laser scanners [4].
Focusing on the former case, a lot of studies have used RGB cameras so as to locate and
distinguish the targets (e.g., fruits) from other objects by exploiting, for example, the shape,
the color and the texture, usually combining their images with machine learning [3,5,6].
However, RGB cameras can only get two-dimensional (2D) information of the scene, while
they are susceptible to variable light conditions and occlusions [7]. These challenges have
been overcome through acquiring depth measurements of higher resolution, which have
the potential to provide more detailed information about the scene. In particular, in the last
decade, consumer-grade depth cameras have gained advantage over other sensors, given
their low cost, portability, ease of use and measurement accuracy [8]. In brief, an RGB-D
camera comprises two parts coupled together to give a dense matrix of pixel values; (a) an
RGB camera for providing color information and (b) a depth camera for providing depth
information [9]. Consequently, every pixel constructing the image is composed of color and
distance values between a view-point and a certain point in the image (RGB-D values).
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1.2. Use of RGB-D Cameras and Related Research in Agriculture

This type of camera has been applied in a number of areas of interest, such as in-
door [10–12] and outdoor mapping [13], 3D reconstruction [14,15], motion and gesture
recognition [16–18], and object detection [19]. Moreover, there has been an extensive use in
robotics field and more specifically in navigation [19] and localization [2].

In recent years, stereoscopic vision depth cameras have been widely used in 3D recon-
struction of objects and 3D mapping related to indoor environments [12,20]. Indicatively,
the ZED stereo camera (Stereolabs Inc., San Francisco, CA, USA) has been employed in var-
ious indoor scenarios, namely volume designation of simple cubic and cylindrical objects
through image segmentation process [21], crack detection and analysis on concrete surfaces
using 3D data [22], terrestrial photogrammetry through an aerial mapping system [23],
as well as the creation of indoor 3D mapping targeting to be used in studies for “smart”
cities [24].

A plethora of researchers have studied the use of depth cameras in agricultural ap-
plications and identified their advantages and disadvantages in outdoor sceneries. An
evaluation of five different depth cameras of three dissimilar technologies in agricultural ap-
plications was made by Condotta et al. [25]. According to their results, all cameras provided
effective depth data indoors. Nonetheless, in outdoor environments the cameras using
structured light and time-of-flight technology proved to be problematic, due to distortions
by the intense lighting conditions. In particular, the aforementioned lighting may cause low
contrast in the infrared image and lead to gaps in the corresponding depth image [25]. In
outdoors applications, the most reliable data were provided by cameras using stereoscopy.
Moreover, depth cameras were applied in agricultural applications for weed detection and
above ground biomass volume estimation through 3D point clouds reconstruction [26]. In
addition, efficient results in extraction of geometric structural parameters of vegetation
with depth measurements were determined [27,28]. An effective approach of measuring
the canopy structure on small plant populations in field conditions was presented in [29].
Furthermore, Jiang et al. [30] developed an approach to automatically quantify cotton
canopy size in field conditions and showed the potential of using multidimensional traits
as yield predictors. Additionally, an experiment using four different depth sensors in
agricultural tasks was conducted by Vit and Shani [31], who estimated the quality of depth
measurements for geometrical size estimation of agricultural objects with deep learning
techniques. In tree crops, size estimation of mango fruits on trees in outdoor environment
was made by Wang et al. [32].

Some of the RGB-D cameras are joined or can be combined with other sensors that
allow for position and orientation of the camera to be recorded. Such sensors are, for
example, inertial measurement units (IMUs) or global positioning system (GPS) sensors
that provide positioning, velocity, and time information. As a result, depth cameras can
be used to collect geometrical information about the environment and provide them as
an input for robot localization and navigation. These added features in depth cameras
are very useful for autonomous applications in agriculture or for capturing information
about plants’ phenotype and growth. Studies have also been performed on the use of
RGB-D cameras along with robotic systems to capture not only color information, but also
spatial information about the environment. In addition, in [33] a solution was presented
for autonomous obstacle avoidance performance of a UAV by using a deep learning-
based object detection method and image processing with a depth camera. Another
research, using depth camera mounted on an operational vehicle in an agricultural field,
was presented in [34] for the reconstruction of the grapevines’ canopy to measure its
volume as well as detect and count the grapevine bunches. Finally, Sa et al. [35] presented
an accurate 3D detection method for sweet peppers peduncles in a farm field by using a
depth camera on a robotic arm and a supervised machine learning approach.
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1.3. 3D Mapping Procedures

With 3D mapping, the integration of appearance and shape information from depth
sensors can be accomplished [36]. Some of the most commonly used tools for 3D mapping
are the Octomap (University of Freiburg, Freiburg im Breisgau, Germany) [37] and real-time
appearance-based mapping (RTABMap; Sherbrooke, QC, Canada). In particular, these tools
are libraries related to the robot operating system (ROS).

The ROS software [38] for 3D mapping is widely used in robotic applications. More
specifically, these tools can simultaneously capture and extract in a 3D map the environ-
ment area that a sensor is scanning, with the ability of representing it on a visualization
tool. Octomap could be described as a probabilistic tool for 3D mapping, which is based
on Octrees. An Octree is an information storing technique in a tree structure, in which
there are nodes that each of them has eight “children”. The connection of all these nodes
merges all the scanned data and generates continuous 3D maps. Apart from that, Octomap
3D mapping tool is a process which can efficiently recognize changes in the environment
dynamically [39]. More specifically, the produced virtual environment with Octomap is
composed of less noise from objects and robot position failures. Octomap meets four basic
requirements. Firstly, free and occupied space, as it creates full 3D modeling and, secondly,
it is updatable. Consequently, it is flexible, as the map can be expanded dynamically,
while it is compact, as the produced map can be stored in memory and disk. It is worth
mentioning that as compared with other 3D mapping tools, Octomap presents low compu-
tational load and memory usage. However, Octomap produces maps with only the depth
data, which means that the points have only position information (x, y, z) and not color
information (RGB).

Opposing Octomap, RTABMap creates 3D maps of the scanned environment with
both color and depth data (RGB-D). A notable advantage of this 3D mapping tool is the
fact that it provides a complete representation of the environment using the simultaneous
localization and mapping (SLAM) algorithm. However, a main disadvantage of RTABMap
is that it may lead to noisy maps, as it is unable to recognize dynamic objects [39]. In
conclusion, these 3D maps can be stored for further processing and visualized in the ROS
visualization tool (Rviz).

1.4. 3D Mapping Using Aerial-Based Systems

With the recent technological developments in the agricultural sector and the rise of
digital agriculture and artificial intelligence, the use of unmanned aerial systems (UAS) is
gaining popularity. This is mainly due to the fact that dedicated systems for commercial
use have been made available to public [40]. Moreover, in contrast with satellite imagery,
images acquired by UAS tend to demonstrate higher resolutions in both temporal (e.g., daily
collections) and spatial (e.g., centimeters) level, while being insusceptible to cloud cover,
thus, rendering them suitable for precision agriculture applications [41]. Furthermore, there
is a high level of automatization in the analysis of the acquired images providing a range
of products, such as orthomosaics with high spatial accuracy and 3D point clouds from the
surveyed areas. An indicative recent study of using UAVs for agricultural applications is
that of Christiansen et al. [42], where data collected from a LiDAR sensor mounted on a UAV
were fused with global navigation satellite system (GNSS) and IMU data to carry out winter
wheat field mapping for point clouds. Additionally, Anagnostis et al. [40] used UAS-derived
images and deep learning to identify and segment tree canopies of orchards under diverse
conditions. In addition, Gašparović et al. [43] combined classification algorithms with UAV
images to map weeds in oat fields. Remarkably, RGB images from UAVs in conjunction
with convolutional neural networks (CNNs) are constantly gaining ground [44–46], as
highlighted in the recent literature review of Benos et al. [3].

1.5. Aim of the Present Study

All the above methods presented have certain drawbacks or do not consider RGB-D
cameras. The aim of the present study was to investigate the use of RGB-D camera and UGV
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platform to autonomously map the environment of commercial orchards, map the location
of trees and provide assessments of the tree size in terms of height and canopy volume by
exporting and analyzing 3D point clouds. The results from the ground-based mapping
system were compared with 3D orthomosaics acquired via an UAS. Finally, the fusion of
the two datasets was performed as a means of reaching to a more accurate representation.

2. Materials and Methods

A ZED 2 depth camera, consisting of a stereo 2K camera with two color sensors
(RGB) was used for the 3D reconstruction of orchard trees. The specific sensor has a
horizontal field of view of 110◦ and can stream at a rate from 15 to 100 FPS, depending on
the resolution. The camera’s connectivity is compatible to Universal Serial Bus (USB) 2.0.
The baseline of 12 cm (distance between the left and right RGB sensor) manages a range
of depth perception between 0.2 and 20 m. The most important characteristics of the ZED
camera are summarized in Table 1.

Table 1. Main characteristics of ZED camera used in the study.

Sensor RGB

Lens f/1.8 aperture

Depth range 0.2–20 m

Field of view (horizontal,
vertical, diagonal)

110◦ (H), 70◦ (V), 120◦ (D)

Single image and depth
resolution (pixels)

Resolution (pixels) Frame rate (Frames per second)

HD2K 2208 × 1242 15 FPS
HD1080 1920 × 1080 30/15 FPS
HD720 1280 × 720 60/30/15 FPS
VGA 672 × 376 100/60/30/15 FPS

Complementary sensors
Accelerometer, Gyroscope, Barometer, Magnetometer,

Temperature sensor

The ZED 2 camera was connected to a NVIDIA Jetson TX2 development kit (NVIDIA
Corporation, CA, U.S.A.), with Ubuntu GNU/Linux 18.04 (Canonical Ltd., London, UK)
operating system. In this system, the ROS melodic distro was installed to access ROS tools,
supporting the ZED 2 camera features. The Jetson TX2 processor was consisted of 8 GB
of RAM, 32 GB Flash Storage, 2 Denver 64-bit CPUs, and Quad-Core A57 Complex. For
the maximum speed and robustness of the system ensuring the best possible results, all
GPU cores were set in full performance. The 3D reconstruction of trees was performed
using the spatial mapping module of Stereolabs Software Development Kit (SDK) tool and
RTABMap package of ROS. The SDK tool provides drivers for the camera, and several
sample functions in Python programming language that were used for the measurements.

Due to the camera’s technology basic advantage of providing efficient results also in
sunlight environments, this sensor is considered as an ideal solution for a robotic system
operating outdoors. Moreover, the small size and compact structure of the camera makes it
quite helpful to be used along with a robotic platform for applications such as mapping,
object detection, etc. The sensing system was mounted on a Thorvald (SAGA Robotics SA,
Oslo, Norway), which is an autonomous all terrain UGV (Figure 1) [47].

The Thorvald robotic vehicle was also equipped with a high accuracy GPS (RTK) as a
means of providing the position of the robot and sequentially the position of the camera
providing the ability to georeference the point cloud produced by scanning the orchard.
Moreover, the scanning system was powered by the Thorvald’s battery. The setup was
navigated in the field, capturing RGB-D images, collecting the necessary data to construct
the 3D point cloud of the orchard.
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Figure 1. Setup of the ground-based scanning system mounted on Thorvald unmanned ground
vehicle.

The camera was located on a tripod attached on the Thorvald vehicle at about 1.5 m
above the ground level facing sideways towards the trees canopy in horizontal position. In
addition, the ZED camera was oriented towards the direction of the tree of interest, and
it was manually adjusted as for the viewing angle and the height according to each tree.
This adjustment was necessary due to variations in geometry characteristics of the canopy,
volume and height of every individual tree.

The RGB-D-based scanning system setup was used in real field conditions to scan
and construct the 3D representation of a commercial walnut orchard, located in Thessaly
region, in Greece. The field measurements were conducted on sample trees of different
height, volume and shape, on a sunny day during September 2020. The robot-camera
system was used for in-field navigation, capturing RGB and depth data by steering a circle
around each tree, at a distance of 2 m from the canopy, for about one minute. According
to the acquisition rate, this procedure produced 3500 frames per sample tree. The camera
readings were acquired at a high frame rate, namely 50–60 frames per second, providing
sufficient overlapping among the frames for better 3D reconstruction of the model, as the
SDK tool (Stereolabs) used for the 3D point cloud generation, merges the additional points
of the scene and creates a more complete point cloud. The overlapped areas allow for
3D model construction by estimating the relative position of the camera for each frame.
Several parameters of the sensor were adjusted through the SDK tool, such as brightness,
saturation and contrast. Furthermore, according to the camera’s application programming
interface (API) documentation, several parameters were set to fit in the field conditions.
Specifically, the resolution of the camera was set to 1280 × 720 pixels (720p), and the
point cloud mapping resolution was set to 2 cm. Additionally, the depth data range was
set between 0.4- and 5-m distance from the camera position to create point cloud with
high dense geometry and high resolution. Every point cloud of each tree was stored for
further processing and saved in an object (OBJ) or polygon (PLY) file format, which is
compatible with various point cloud and image processing software, such as Meshlab [48]
and CloudCompare [49].

The ROS framework was utilized by the robotic platform to navigate in the field,
while supporting data acquisition through the integrated “rosbag” tool. The system was
recording simultaneously the RGB-D data from the ZED camera and the accurate position
of the robotic vehicle utilizing the RTK-GNSS. The ZED camera uses its internal IMU to set
the location and direction of the camera in relative coordinates. Therefore, it provides the
RGB-D information in relative geodetic system. Combining the two datasets, the relative
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coordinates are referenced to the global coordinate system (GPS) “translated” into UTM
coordinates (Figure 2). The “ros tf” library was utilized for this task.

Figure 2. Location and orientation of the RGB-D camera in the relative coordinate system using the
IMU (a) and georeferencing of the vehicle and the RGB-D to UTM coordinate system (b).

The fusion of the two coordinate systems provided the ability to accurately georef-
erence the spatial data captured by the camera which, after processing, produced the
georeferenced 3D point cloud of the orchard corresponding to reality.

After the point cloud extraction, the height and volume of each tree was computed
using CloudCompare and its internal tools. During this process, the point cloud is general-
ized to a surface elevation model and consequently the volume is calculated on the basis of
the difference between a fixed ground elevation and the surface model. For the given case,
the ground level was set as the lowest point for each tree point cloud. In other words, this
technique is similar to draping fabric over the tree and computing the volume under the
fabric. The resolution for the volume measurement was set equal to 2 cm. Furthermore, the
density of points was calculated. The workflow of the data analysis followed in the study
is briefly presented in Figure 3.

In addition to the ground-based scanning system, the orchard’s structure was also
mapped from above using a UAV. The flight occurred during the same period with the
ground-based measurements to ensure the comparability between the two-point cloud
producing methods. The UAV was a quadcopter (Phantom 4, DJI Technology Co., Ltd.,
Shenzhen, China) equipped with high accuracy GNSS (real-time kinematic—RTK) and
high-resolution RGB camera (5472 × 3648 resolution, at a 3:2 aspect ratio). The use of
RTK GNSS was necessary in order to accurately geotag the acquired aerial images, while
the flight plans were parametrized accordingly (UAV flight height, speed, number of
captured images, side overlap, and forward overlap ratio) to produce high accuracy, below
centimeter pixel size, orthomosaics. The produced orthomosaic can accurately provide the
top view of the tree canopies in 2 dimensions and, thus, it was utilized as the ground truth
for measuring the canopies’ surface. The 2D point cloud acquired by the ZED camera was
compared with the orthomosaic.

For the purpose of comparing the measurements derived from the ground-based
systems against those of aerial-based systems, simple linear regression analysis was utilized
taking also into account the 95% confidence interval.
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Figure 3. Flow chart of the procedure for the 3D point cloud construction using data from ZED 2
camera and its comparison with the UAV derived point cloud.

3. Results and Discussion

In order to estimate the true position of an object (a tree within the orchard in this
case), the first step was to create a 3D model of the object in relative coordinates with
the position of the camera as the axis origin and then set it in real-world coordinates by
aligning this model to a known point (based on the camera position). This georeferenced
point cloud aimed to be compared with a 3D point cloud produced from a UAV. Moreover,
the georeferenced point cloud was imported in quantum geographic information system
(Q GIS) to check the converted point cloud with a 2D georeferenced raster image of the
same area. Reprojecting the point cloud in a real-world coordinate system provided the
possibility to be used in various future simulation agricultural applications and robot tasks,
such as object detection, spraying, or harvesting [50].

The representation of the orchard in two dimensions provided a general idea of the
top view of the trees within the orchard, hence, providing the ability to estimate the
canopy surface. This information can be valuable for estimating the age and the yield
potential of each tree. In our study, the 2D representation also served as the first stage
for the comparison of the two data acquisition methods. In Figure 4, the top view of the
georeferenced point cloud acquired by the ground-based measuring system is projected
overlayed on the detailed georeferenced orthomosaic constructed from the UAV-derived
aerial images. The orchard, at the time of measuring, consisted of trees of different canopy
size, color, and stage (fully developed, partly defoliated, or defoliated). Despite of the
heterogeneity of the trees within the orchard, the results from the two methods were similar.
This was also confirmed by the results of the regression between the two (Figure 5).
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Figure 4. The projection of the point cloud (top view) of the orchard in 2D, mapped with the two
methods used in the study; the ground-based system using depth camera mounted on Thorvald UGV
and the orthomosaic exported from aerial images acquired using UAV.

Figure 5. Comparison between the canopy size estimated by the ground-based and the aerial-based
systems used in the study; the colored area shows the lower and upper confidence (95%) limits.

For the representation of the collected data in the three-dimensional world, the 3D
point clouds were produced and converted to digital asset exchange (DAE) format, as to
estimate the tree dimensional parameters, namely the height and canopy volume. Given
that the datasets were georeferenced using high accuracy GNSS, the height of the captured
trees could be accurately calculated (Figure 6). Furthermore, the robot-camera setup
presented accurate results of the volume measurements of the trees confirming that the
RGB-D cameras can serve as useful tools for agricultural applications, such as fertilizing
and spraying, being part of decision support tools for variable rate applications according
to the characteristics of each tree.
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Figure 6. The side view of the georeferenced 3D point cloud of a sample tree captured by the ground-
based system using the ZED camera (a) and by the UAV aerial-based system (b), used to estimate the
tree height.

It is worth mentioning that the ZED camera, with the setup and adjustments used in
the study, could not accurately detect the end details of the trees, such as thin branches,
individual leaves, or nuts, as it could not provide extremely dense point clouds that are
required for such tasks. Increasing the acquisition rate and the camera resolution and
scanning more than one circles around each tree would enrich the point clouds producing
very detailed point clouds. However, this would not be practical in agricultural applications,
since it would be time consuming and hardware requirements for proper data acquisition
and processing would significantly increase. In our system setup, despite the limitations,
the constructed point cloud provided a model of the trees within the orchard very close to
reality. This result is in agreement with the conclusions presented in [51], where the use of
low-cost 3D sensors provided reliable results for plant phenotyping and can be applied in
automated procedures for agricultural applications.

Comparing the two capturing systems, the ZED camera provided a good representa-
tion of the trees, capturing details of the trunk, the lower, and mid canopy. Moreover, the
center of the top canopy had some gaps due to the position and the viewing angle of the
camera (Figure 6a). Conversely, the point cloud derived from the orthomosaic produced by
the UAV aerial images provided a good representation of the top of the canopy, but had
poor performance in the representation of the middle and lower canopy and the tree’s trunk
(Figure 6b). This was expected, since by definition the UAVs can capture the top view of
the objects, being unable to penetrate inside and under the canopy. However, some points
of the lower canopy, the trunk, and the ground were captured making feasible the accurate
estimation of the tree height, calculated by subtracting the ground surface elevation from
the top of the canopy elevation. This fact led to similar height measurements from both
measuring methods (Figure 7a).

From a practical point of view, a significant drawback of using the ZED camera ground-
based system was the time needed to navigate within the orchard and capture the given
number of trees. On the other hand, the aerial images derived from the UAV platform
could be acquired within a short flight.
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Figure 7. Comparison between the trees dimension measurements; trees height (a) and trees volume
(b), derived by using the two sensing methods; the UAV aerial-based system and the UGV-ZED depth
camera ground-based system; the colored areas show the lower and upper confidence (95%) limits.

In terms of tree volume measurements, the results from both methods showed similar
trend; however, the UAV-derived tree volume was constantly lower by about 7.4 m3 while
the slope of the relationship was 1.26 (Figure 7b). This is attributed to the fact that the UAVs
can capture the upper part of the canopy, thus missing a significant part of the tree volume
in the mid and lower canopy as seen in Figure 8b. However, these parts were captured in
detail by the ZED camera. The latter managed to capture in detail almost the whole canopy,
missing only a part of the middle top. As a consequence, the fusion of the two point clouds
into a unified one constructed a more complete 3D model (Figures 8c and 9).

Figure 8. Point clouds of a sample tree derived by the UGV-ZED depth camera ground-based
system (a), the UAV based aerial system (b), and the fusion of the two point clouds (c).

The constructed point clouds can provide a useful input, by consequently converting
them to meshes and importing in Gazebo simulation environment. The resulted virtual
orchard environment may be used for testing of the robot navigation and localization.
This testing will be carried out for estimation of the robot performance, in tasks such
as autonomous navigation and obstacle avoidance before being evaluated in real field
conditions. The visualization model in the Gazebo simulation environment can provide an
adequate representation of the real orchard field and the possibility to make quality tests
in a virtual world. In robotic applications, basic stage of the whole implementation is the
algorithm testing part, which is performed in a virtual world before established in the real
world. The use of simulation environments in various tasks and different environments, as

192



Sensors 2022, 22, 1571

to evaluate the robots’ performance, could be a quite costly and time effective procedure
during the stage of testing and development of an application. As a result, using simulation
environments in robotic applications, could optimize the robot behavior before the actual
tests in the field [52].

Figure 9. The 3D projection of the point clouds exported with the two methods used in the study;
the ground-based system using depth camera mounted on Thorvald UGV ((a), white dots) and the
orthomosaic exported from aerial images acquired using UAV ((b), colored dots).

4. Conclusions

In this study, the use of RGB-D camera to map the environment of commercial orchards
was assessed and compared with 3D orthomosaics acquired using an UAS. The study
verified that depth cameras, using stereoscopic vision to calculate the depth values, can
provide accurate results in outdoor environments. The system, indeed, showed promising
results, as it was capable to work under direct sunlight conditions capturing a high number
of points with efficient resolution.

The produced point clouds provided efficient results for the structural parameters of
the trees, as their shape and volume were adequately described. In some sample trees, lack
of information of the inside and top of the tree canopy was observed. This limitation of
the system was due to the initial settings of the camera’s parameters and/or due to the
finite number of frames captured from each tree, set to the maximum of the hardware’s
capabilities. Changes in these parameters or increasing of the image frames could possibly
improve the 3D model reconstruction, though increasing significantly the processing time,
hardware requirements, and, consequently, storage. Furthermore, scanning each tree more
than once would significantly increase the point clouds’ density and accuracy, but this
would affect the time required for the in-field scanning.

Overall, the UAV point cloud provided an accurate representation of the top view of
the tree canopies. The orthomosaic, acquired by the RTK GNSS enabled UAS, was utilized
as the ground truth for the 2D representation of the surface of the top view of the tree
canopies. The 2D point cloud acquired by the ZED camera was successfully compared with
the orthomosaic proving that the latter sensor can be an alternative providing accurate
results. On the other hand, the point cloud from the ZED camera captured in much detail
the structural characteristics of the trees all around, but had lack of information of the
top canopy structure. Fusion of the two datasets led to construction of a more complete
3D model with increased accuracy providing a better representation of the tree structure.
Focusing on the cost, aerial imaging is affordable, easier to operate and can cover larger
areas as compared to on-ground systems. The RGB-D system on the other hand, may
be facilitated with conventional agricultural machinery, capturing data while performing
in-field operations, thus, minimizing the operational costs. Nevertheless, this study seeks to
pave the ground to future applications following the trends of smart-autonomous farming
leading towards Agriculture 4.0.
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Finally, the 3D point clouds can be imported in Gazebo simulation environment
to provide the virtual environment of the orchard to be used for efficient programming
evaluation and demonstration of the robotic platform’s behavior and interaction in the
orchard. Future developments include the automatization of the analysis procedure to
provide the results in real time as the system navigates in the orchard. This will enhance
situation awareness for safe and undisturbed navigation of the robotic platform in complex
environments for the sake of avoiding possible injuries or damages [53]. In a broader
perspective, further research is required towards improving the speed and accuracy of
the existing cameras and image processing systems as well as decreasing the overall
complexity [7,54–56]. Furthermore, fusion of data acquired by a group of unmanned
vehicles could allow for better accuracy in a timely manner.
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Abstract: In the pursuit of optimizing the efficiency, flexibility, and adaptability of agricultural
practices, human–robot interaction (HRI) has emerged in agriculture. Enabled by the ongoing ad-
vancement in information and communication technologies, this approach aspires to overcome the
challenges originating from the inherent complex agricultural environments. This paper systemat-
ically reviews the scholarly literature to capture the current progress and trends in this promising
field as well as identify future research directions. It can be inferred that there is a growing interest
in this field, which relies on combining perspectives from several disciplines to obtain a holistic
understanding. The subject of the selected papers is mainly synergistic target detection, while simu-
lation was the main methodology. Furthermore, melons, grapes, and strawberries were the crops
with the highest interest for HRI applications. Finally, collaboration and cooperation were the most
preferred interaction modes, with various levels of automation being examined. On all occasions,
the synergy of humans and robots demonstrated the best results in terms of system performance,
physical workload of workers, and time needed to execute the performed tasks. However, despite
the associated progress, there is still a long way to go towards establishing viable, functional, and
safe human–robot interactive systems.

Keywords: human–robot synergy; collaborative robotics; communication frameworks;
human-centered automation; agriculture 4.0

1. Introduction

1.1. Background

Robots and autonomous systems exploit their capability to sense, scrutinize, analyze,
and interact with the physical environment without or with minimal human intervention [1].
Focusing on the agricultural sector, the advent of robotic systems is envisioned to contribute
to ending hunger and malnutrition in a sustainable manner by conserving and restoring
ecosystems and natural resources [2–4]. Robots are considered as an integral element of
Agriculture 4.0, which comes as an evolution of precision agriculture, enabling farmers to
utilize the minimum required quantities for specific areas. Agri-robots belong to a broad
family of Information and Communications Technologies (ICT), also including, indicatively,
wireless sensor networks, farm management information systems, cloud computing, big data,
and artificial intelligence, that are prerequisites for the fourth agricultural revolution [5,6].

Taking advantage of the advancement of ICT, along with the reduction in the corre-
sponding costs, because of mass production, robots are being more and more implemented
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in agriculture [7]. Robotic systems can increase agricultural productivity, as they opti-
mize the efficiency of the implemented agricultural practices. In addition, robots have
the potential to take humans out of hazardous locations and address labor shortages of
seasonal workers [8]. Remarkably, the recent coronavirus pandemic has resulted in a
spike in investment in agri-robotics as a means of filling labor shortages [9,10]. Indicative
examples of agri-robot tasks are also sowing and planting, spraying, weeding, land prepa-
ration, insect and disease detection, plant monitoring, and phenotyping [11–13]. Moreover,
multi-purposed robots have been developed, thus adding intricacy to both software and
hardware and leading to increased costs [14].

In general, robots are able to carry out repetitive and predetermined assignments in
stable environments and are closely related to tasks belonging in the so-called “three D’s”,
namely dull, dirty, and dangerous tasks [15]. Unlike industrial settings, which contain a
stable environment with well-structured objects, agriculture is characterized by uncertainty,
heterogeneity, and unpredictable situations. Therefore, advanced technologies must cope
with highly complicated environments, variable physical conditions, and live produce,
which necessitates gentle and precise manipulations. More specifically, illumination, terrain,
and other atmospheric conditions are ill defined, while there is a high variability in crop
color, shape, and position that cannot be determined a priori [16]. These features render
the replacement of humans by autonomous robots in agriculture very challenging [17].

1.2. The General Context of Human–Robot Interaction in Agriculture
1.2.1. Human–Robot Interaction Definition

With the intention of addressing the challenges provoked by complex agricultural
environments, the synergy of humans and robots has been proposed. Human–robot
interaction (HRI) constitutes a multidisciplinary research field dealing with investigating,
designing, and evaluating these collaborative systems. It combines artificial intelligence,
robotics, ergonomics, engineering, computer science, and social science to endow robots
and humans with all the required competencies for proper interaction. In particular, HRI
refers to the process whereby humans act as a team with robots to achieve a goal and comes
from the confluence of information exchange, autonomy, and optimal task shaping [18].
HRI integrates the distinctive cognitive human skills of dexterity, perception, judging, and
decision making with those assets of robots concerning repeatable accuracy and strength.
The developed robot cognitive capabilities are a result of the integration of several sensors
such as laser scanners, radio-frequency identification (RFID), cameras, and actuators.
This innovative combination enables versatile use, robustness, flexibility, and adaptability
under a constantly evolving workflow [19]. HRI can be accomplished via proximal or
remote interaction. The ultimate objective of HRI is to free humans from dangerous and
routine tasks. For instance, in the case of pesticide spraying, there can be an operator
directing or supervising the task from a safe distance and away from harmful chemicals
with the use of a properly designed user interface. These semi-autonomous systems have
demonstrated remarkable results, outperforming fully autonomous robots [20]. In short,
human–robot synergy can provide many advantages, including flexibility when it comes to
system reconfiguration, reduction in the required working area, increasing productivity,
improvement of the quality of services, rabid capital depreciation, and the creation of
highly skilled jobs [21].

1.2.2. Main Design Concepts

One of the most challenging issues in HRI is the design of these synergistic systems,
owing to the wide range of different working conditions and levels of interaction that may
be faced. Human operators can be easily accused of being responsible for “human error”
when they fail to notice an off-nominal instance. Nevertheless, insufficient design of the
system and the associated interactions can lead to less-than-optimal compensatory reaction
of the humans [22]. Every betterment of HRI is based predominantly on two principles: the
autonomy level of the robot and the closeness of human and robot during their interaction.
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The level of autonomy that these interactive systems can achieve relies on strategies that
enable HRI in such an adaptable way that humans can intercede when it is required. In
broad terms, the design should not limit the visual perspectives and mobility of humans or
include inconvenient software. Also, robots should be programmed with cognitive skills
to interact in an accurate and fluid manner, thus guaranteeing the dynamic autonomy of
the system. In addition, different situations should be investigated in relation to proximity,
such as following, passing, avoiding, and touching. The design of human–robot interactive
systems should also consider the human-to-robot ratio along with the specific roles of the
former (programmer, bystander, operator, supervisor, and information consumer). Design
concepts also pay attention to adaption, task shaping, and the working time during which
humans and robots coexist in the same workspace, while every objective has to match with
the next one [23].

1.2.3. Communication Frameworks

Interaction, by definition, calls for the development of communication frameworks,
which aspire to simplify the knowledge sharing between robots, or machines in general,
and humans. In essence, more natural ways of communicating need to be investigated,
such as body language and vocal communication. The former term encompasses facial
expressions, body postures, and hand gestures, whereas the latter is limited by the noisi-
ness of agricultural environments and the dissimilar ways that someone may pronounce a
command. Out of these communication channels, hand gesture recognition, either through
acquisition of data from vision sensors or specially designed gloves, has attracted the inter-
est of the scientific literature [24,25]. Furthermore, surface electromyography sensors have
been used for recording the electric potential of muscles [26], while hybrid methodologies
have also been examined [27]. In brief, the main shortcomings of the above approaches
are as follows: (a) vision sensors run into problems whenever changes take place with
many people, complex backgrounds, and illumination changes [28]; (b) gloves usually limit
natural movements [29]; and (c) electromyography sensors generate massive and noisy
datasets [30]. Although the literature on the development of non-verbal communication
tools in agriculture is still scarce, some efforts have been presented with encouraging
results [24,31]. Finally, face recognition has not yet been widely used in agricultural envi-
ronments due to the above-mentioned problems associated with vision sensors as well as
restrictions imposed by privacy policies [32].

1.2.4. Safety and Human Factors

The primary concern concerning these fenceless synergistic systems is to ensure safety
and health of humans and disclose all the risk factors that may harm them [33]. Oc-
cupational health in centered upon improving the shared workspace to help workers
avoiding risky postures that can potentially cause injuries (physical ergonomics). In addi-
tion aspects, like mental workload and work stress are taken into consideration (cognitive
ergonomics) [34]. On the other hand, occupational safety includes accident control mea-
sures. Overall, occupational health and safety can impact the efficiency of the system,
response time, quality of work, and collaborative performance. Accordingly, an optimal
synergistic human–robot system should be designed from the perspective of mental wel-
fare, psychological comfort, and occupational health and safety. These aspects are related
to perceived safety. The key elements that determine perceived safety are considered
to be predictability, sense of control, experience, familiarity, transparency, comfort, and
trust [35,36]. As a final note, only authorized and qualified workers must work together
with a robot, while attention is paid to the establishment and evaluation of safety protocols
and risks. The latter must be thoroughly investigated in the design phase, as unweighted
factors, including uncertainty in interpreting and possible failures of human or robots, may
take place during HRI.
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1.2.5. Human–Robot Interaction Evaluation and Metrics

The design of synergistic systems necessitates the consideration of the implications
of automation on the performance of both robot and human as a means of optimizing the
overall benefits for the system. As a result, a significant feature of the design of collaborative
tasks is the appraisal of their performance, fluency, effectiveness, and adaptability through
adequate metrics allowing for reproducible evaluations. Several studies are concerned
with metrics for HRI [37–40]. Indicatively, Vásconez et al. [23] summarized the main
metrics that have been studied for evaluating the synergistic systems [41,42] and grouped
them into six categories in relation to their usage, namely (a) mission effectiveness (e.g.,
performance of the mission); (b) human behavior efficiency (e.g., decision making and
problem recognition); (c) human cognitive indicators (e.g., situation awareness, trust in
robotic systems, and situation awareness); (d) human physiological indicators (comfort
and fatigue); (e) robot behavior efficiency (e.g., autonomy level, human awareness, and
learnability); and (f) collaborative metrics (e.g., collaborative problem recognition and
action implementation efficiency, team situation awareness, and social patterns and roles).
As stated in [40], the metrics do not entirely measure the impact of the autonomy level on
interaction, since they normally focus on the observation of either humans or robots and not
on their capabilities, therefore introducing error in analysis. As a general remark, it is very
difficult to evaluate such kinds of systems in a broad and objective assessment. Moreover,
the lack of efficient human-in-the-loop assessment has made it problematic to conclude
whether such adaptation could bring about satisfying HRI [43]. Finally, the majority of
relevant studies are limited to how the robotic system affects the human factors without,
however, focusing on the opposite; how human factors impact the system [22].

1.2.6. Aim and Structure of the Paper

This paper provides a systematic review investigating the state of the art in HRI and
the main challenges that must be addressed, focusing solely on the field of agriculture.
The research is conducted through the lenses of different aspects by screening the relevant
scholarly literature based on the PRISMA guidelines [44]. The remainder of the present
paper is structured as follows. Section 2 describes the implemented methodology for the
bibliographic survey, how the methodological quality of the selected studies and level of
automation were evaluated, and the classification framework that was used. The results
are analyzed in Section 3, also including the list of the selected papers and related statistics.
Finally, Section 4 contains the main conclusions of the present review study, along with a
discussion from a broader perspective to identify future research directions.

2. Materials and Methods

2.1. Critical Steps in Performing the Systematic Review

A systematic review is considered a rigorous approach to literature review that in-
volves identifying, synthesizing, and evaluating all the available scientific evidence, both
qualitative and quantitative. They are used to produce a robust, empirically derived
response to a research question related to a specific topic. By adhering to systematic re-
view principles, they offer distinct advantages over traditional literature reviews. These
advantages include enhanced review quality through increased transparency, improved
objectivity, and mitigation of researcher bias. Additionally, systematic reviews encourage
researchers to critically assess the quality of evidence, thus strengthening the overall review
process. While systematic reviews provide comprehensive and unbiased insights, their
validity can be influenced by factors such as variations in evidence availability and quality,
potential study selection biases, resource limitations, and challenges in addressing complex
research inquiries. Nevertheless, systematic reviews remain invaluable tools for evidence
synthesis, enabling informed decision making, statistical robustness, and identification
of significant patterns and trends. It is important, however, to interpret their findings
cautiously within the appropriate contextual framework.
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In the present systematic review, seven steps were used in a manner similar to the
relevant literature [45,46]:

(1) Formulation of a primary research question: “What is the state of the art and what are
future perspectives in HRI in agriculture?”

(2) Development of a research protocol: The methodology followed for screening the rel-
evant literature and data extraction and analysis was included in a written document.
This was accepted by all the authors of this study, prior to the start of the literature
search, to minimize bias.

(3) Literature search: The methodology for selecting the relevant studies is described in
Section 2.2 along with the implemented electronic databases, inclusive criteria, and
review stages based on the PRISMA guidelines [44].

(4) Data extraction: Specific items, regarding references (including journal, title, and
authors), objective, method, crop type, interaction modes, automation levels, and key
outcomes, were gathered in an online shared spreadsheet.

(5) Quality appraisal of the selected studies: Although quality remains a challenging
concept to define, the present study used the tool developed by Hoy et al. [47]
(described in Section 2.3), which comprises specific internal and external validity
criteria.

(6) Data analysis and results: The first step in this procedure included a simple descriptive
assessment of each study, presented in tabular form, followed by a statistical analysis.

(7) Interpretation of results: Conclusions were drawn based on the available scientific
evidence, while areas were identified to focus on for future research.

2.2. Literature Search

The search engines of Google Scholar, ScienceDirect, Scopus, IEEE Xplorer, and MDPI
were used for the purpose of seeking publications associated with HRI in agriculture. To that
end, Boolean keyword combinations of “human-robot interaction/collaboration/synergy”
and “agriculture” were used. Subsequently, the references of each article were scanned with
the intention of finding studies that had not been noticed during the initial search. This
process was reproduced until there were no more relevant publications. The ultimate search
was performed on 15 December 2022. The titles and the abstracts of the resulting papers
were then reviewed. As a next step, the full text of the relevant studies was carefully read
to ascertain their appropriateness. For the selection of the final scientific literature to be
considered, the following criteria should be met: (a) both humans and robots are involved;
(b) HRI is considered in the decision and/or action stage; (c) I application domain is agriculture;
(d) conference papers are also included, provided that the conference is indexed by SCOPUS.
Non-English studies, Master theses, and doctoral dissertations were not included in the
research. A final consensus meeting of the co-authors was held to discuss the content and
adequacy of the selected papers based on the above criteria and resolve any difference of
opinion. A flowchart summarizing the implemented methodology of the present systematic
review is depicted in Figure 1, based on the PRISMA guidelines [44] for transparently reporting
how the relevant literature was selected. The bibliographic survey on HRI in agriculture
resulted in 32 relevant studies that fulfill the imposed inclusion criteria, of which 21 are journal
papers and 11 are conference papers.
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Figure 1. Flow diagram regarding the present systematic review process for selecting the
relevant studies.

2.3. Methodological Quality Assessment

Assessing the risk of bias of the methodology applied in the selected investigations is
very crucial for interpreting literature reviews so as not to underestimate or overestimate
their results. In this review study, the risk of bias tool developed by Hoy et al. [47] was
considered. This tool is made of 4 and 6 items with reference to external and internal
validity criteria, respectively, accompanied by a summary item corresponding to the overall
assessment of the quality of the methodology. The first ten items are yes/no questions
oriented toward detecting potential bias in measurement methods. If no insufficient
information exists, the corresponding answer is “No” [47]. For studies that do not involve
participants, such as those developing mathematical models, using simulations, or dealing
with design principles, some items may be filled in with “C”. This letter stands for “Can’t
say”, similar to [48,49]. These items were not taken into consideration in the final summary
item. All the authors of this paper independently took part in the reviewing process by
answering all the questions to assess the risk of bias of the methodology for each study.
A consensus meeting was held to compare the results and find a commonly accepted
final answer. Additional criteria were applied pertaining to “C” cases, such as reliable
measurement method and appropriate methodology validation.

As far as the eleventh summary item is concerned, which represents the overall
methodological quality, it was rated as follows:
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• High (++), indicating low risk of bias;
• Acceptable (+), indicating moderate risk of bias;
• Low (−), indicating high risk of bias.

In practice, depending on the number of “Yes” answers in the first 10 items of the
tool of Hoy et al. [47], each paper was scored in the range 0–100% (each “Yes” answer
has a 10% contribution to the final score). Similar to [49], 75% was considered as the
lower limit, beyond which high (++) overall quality of the methodology was established.
Moreover, scores between 50% and the above limit were rated as acceptable, while those
below 50% represent studies with relatively low methodological quality.

2.4. Classification of Modes of Human and Robot Working Together

In the present analysis, the classification followed by [12,21,50] is incorporated, where
five different modes of robots and humans working together may come about:

• Isolation mode, where HRI is never permitted, while normally, barriers are used;
• Coexistence mode, which is similar to the above mode, yet without barriers;
• Synchronization mode, where robot and human focus on different tasks in a synchro-

nized manner and work in different working areas;
• Cooperation mode, where robot and human focus, again, on different tasks, however,

working in the same working area;
• Collaboration mode, where robot and human focus on the same task and work in the

same working area.

Obviously, the isolation mode refers to conventional robots, commonly used in in-
dustry, and together with coexistence mode does not consider any interaction between
the human and the robot. In contrast, the other three modes correspond to the gradual
increase in the level of human–robot synergy. As stressed in [21], it can be problematic to
discriminate the existing mode, as this categorization comes from industry. Furthermore,
contemporary user interfaces allow for synergy via virtual shared workspaces. In these
cases, the criterion was whether robot and human are working on the same task.

2.5. Assessment of the Level of Automation during Decision and Action Stage

In general, automation can take place in four stages [51], namely (a) information ac-
quisition (acquisition stage); (b) information analysis (analysis stage); (c) decision selection
(decision stage); and (d) action implementation (action stage). Within each of these stages,
automation can be realized at a wide range of levels. Following the analysis of Parasuraman
et al. [51] for the decision and action stages, a 10-point scale is used in the present study.
In this scale, the higher levels characterize increased autonomy of computer (or robot in
the present analysis) over human action. Therefore, if a function can be fully carried out
exclusively by a human, the lowest level (i.e., “1”) is given, while the higher level (i.e., “10”)
denotes that robot decides and acts autonomously. The intermediate levels of automation
represent partial automation and different modes of HRI. Indicatively, at level 4, robot
proposes an alternative decision, but the human continuously has the authority to either
choose another decision/action or prefer the suggested alternative. In contrast, at level 6,
the robot gives a limited time for a veto to the human before automatically executing its
own decision. The utilized 10-point scale regarding the levels of autonomy, along with the
four classes of functions, are shown in Figure 2. In this regard, it should be emphasized
that, usually, a range of automation levels are used instead of a unique level, since there
may be different alternative situations during HRI [52,53].
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The robot (or computer):

10. Decides everything, acts autonomously, ignoring the human
9. Informs the human only if it decides to
8. Informs the human only if asked
7. Executes automatically, then necessarily informs the human
6. Allows the human a restricted time to veto before automatic
execution
5. Executes its suggestion, if the human approves
4. Suggests one alternative
3. Narrows the selection down to a few options
2. O ers a complete set of decision/action alternatives
1. O ers no assistance; human must take on all decisions and actions

(a) (b)

Figure 2. (a) A simplified 4-stage model of agricultural applications consisting of information
acquisition (acquisition), information analysis (analysis), decision selection (decision), and action
implementation (action), and (b) The levels of automation for the decision and action stage according
to [51].

3. Results

3.1. Preliminary Data Visualization Analysis

Data visualization analysis is regarded as an advantageous practical tool to analyze
and illustrate massive data amounts, conduct data-driven judgments, interpret the current
trends in the research field of interest, and identify research gaps.

3.1.1. Time Distribution

A preliminary data visualization analysis is presented in this subsection starting from
the time distribution of the reviewed studies in Figure 3. As can be deduced from this
bar chart, investigation of HRI in agriculture is a recent research field that has concerned
scholarly literature for almost the last twenty years, due to the sector-specific extension
of “Industry 4.0”. As elaborated in the Introduction, robotics has found fertile ground in
agriculture, enlarging their preceding role of performing only non-cognitive and routine
missions. However, in contrast with other HRI applications, like those found in industrial
settings, rehabilitation and medicine, and education, the peculiar agricultural environment
introduces further challenges to the design of synergetic systems. Therefore, only 32 studies
were found, most of which were published in recent years. This increase justifies, to some
extent, the growing interest in complementary combination of robot and human capabilities
in agricultural applications, while also taking advantage of the tremendous progress of
ICT.

3.1.2. Distribution of the Contributing International Journals, Conferences, and Disciplines

Subsequently, the sources where the articles were published were reviewed to de-
termine the research approaches, which drew on knowledge from different disciplines.
As can be seen in Figure 4a, “Computers and Electronics in Agriculture” was the main
international journal of the current survey. This journal is associated with the application
of computer hardware and software to meet the challenges emerging in the framework of
smart agriculture, in which robotics is of central importance. Other journals with the same
objective, but with less contribution, were “Industrial Robot”, “Journal of Field Robotics”,
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and “Robotica”, which are not purely interested in the agricultural domain. An interdis-
ciplinary journal with significant contribution was also “Applied Sciences”, which deals
with different aspects of applied natural sciences as well as “Biosystems Engineering”.
The latter publishes research in engineering for biological systems, including agriculture.
“Engineering Proceedings” and “Computers & Industrial Engineering” focus mainly on
industrial engineering and the use of computers and electronic communication, which
constitute an integral part of it.

Figure 3. Time distribution of the papers reviewed in the present study.

(a)

Figure 4. Cont.
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(b)

Figure 4. (a) Distribution of all contributing international journals and (b) different core disciplines
engaged in human–robot interaction in agriculture.

In addition, “IEEE Transactions on Systems, Man, and Cybernetics: Systems” and
“Systems Research and Behavioral Science” cover the field of systems engineering with
a range of engineering methods, including modeling, simulation, and optimization, and
examination of issues from an economic and social perspective. Moreover, a journal aimed
at investigating the human factors in the design and management of technical systems at
work, namely “Applied Ergonomics”, contributed one article. Finally, “Transactions On
Human Machine Systems” and “Human Behavior and Emerging Technologies” include
human systems and organizational interactions, system testing and assessment, and cog-
nitive ergonomics in systems and organizations. As far as the selected conference papers
are concerned, the biggest contribution was from “IFAC-PapersOnLine” (formerly “IFAC
Proceedings Volumes”) and IEEE International Conferences emphasizing robotic systems,
including human–robot synergetic systems. In conclusion, several disciplines are engaged
in finding innovative HRI solutions in agriculture by redefining problems outside the
usual boundaries. Based on the scope and scholarly audience of the above journals and
conferences, ten disciplines were identified, which are summarized in Figure 4b, whose
theories and methodologies are combined so that unique insights are gained to face the
challenges of agricultural environments.

3.2. Methodological Quality of the Reviewed Studies

The 32 reviewed papers are summarized in the first column of Table 1 in chronological
order: from the first study of Bechar and Edan [52], published in 2003, up to the most
recent one of Vásconez and Cheein [54], which was published in November 2022. As
mentioned in Section 2.2, the tool developed by Hoy et al. [47] is used in the present study
for assessing the methodological quality of the reviewed papers. According to the imposed
criteria, all studies proved to be of a high methodological quality (with “++” assigned in
the eleventh column), which corresponds to low risk of bias. The items that appeared as
more questionable were those related to the quality of the sampling. In some studies, the
sampling frame was not a close representation of the target population, since, usually, the
authors themselves or a few university students may take part in experimental sessions,
sometimes selected in a non-random way. Nevertheless, the implemented methodology
was of relatively high quality, counterbalancing this disadvantage.
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Table 1. Assessment of the methodological quality of the reviewed papers. Note that items
1–4 correspond to external while 5–10 correspond to internal validity [47].

Reference
External Validity Internal Validity Overall Quality

1 2 3 4 5 6 7 8 9 10 11

[52] Y N Y Y Y Y Y Y Y Y ++
[55] C C C C C Y Y Y Y Y ++
[56] C C C C C Y Y Y Y Y ++
[57] C C C C C Y Y Y Y Y ++
[58] C C C C C Y Y Y Y Y ++
[53] C C C C C Y Y Y Y Y ++
[59] C C C C C Y Y Y Y Y ++
[60] C C C C C Y Y C Y Y ++
[61] C C C C C Y Y Y Y Y ++
[20] Υ Υ Υ Υ Υ Υ Υ Υ Υ Υ ++
[62] Υ Υ Υ Υ Υ Υ Υ Υ Υ Υ ++
[63] Υ N Υ Υ Υ Υ Υ Υ Υ Υ ++
[64] C C C C C Y Y Y Y Y ++
[65] C C C C C Y Y Y Y Y ++
[66] Υ Υ Υ Υ Υ Υ Υ Υ Υ Υ ++
[67] C C C C C Y Y Y Y Y ++
[68] C Y C Y Y Y Y Y Y Y ++
[69] C C C C C Y Y Y Y Y ++
[70] C C C C C Y Y Y Y Y ++
[71] C C C C C Y Y Y Y Y ++
[72] C Y Y Y Y Y Y Y Y Y ++
[21] C C C C C Y Y C C Y ++
[73] C N C Y Y Y Y Y Y Y ++
[74] N N Y Y Y Y Y Y Y Y ++
[75] Y N Y Y Y Y Y Y Y Y ++
[76] C C C C C Y Y Y Y Y ++
[77] Y Y Y Y Y Y Y Y Y Y ++
[78] Y N C Y Y Y Y Y Y Y ++
[24] C N C Y Y Y Y Y Y Y ++
[79] C C C C C Y Y Y Y Y ++
[80] C Y N C Y Y Y Y Y Y ++
[54] C C C C C Y Y Y Y Y ++

“C”: cannot say; “N”: no; “Y”: yes; “++”: high quality (low risk of bias); “+”: acceptable (moderate risk of bias);
“−“: low quality (high risk of bias). “1”: Was the study’s target population a close representation of the national
population in relation to relevant variables, e.g., age, sex, occupation? “2”: Was the sampling frame a true or
close representation of the target population? “3”: Was some form of random selection used to select the sample,
or, was a census undertaken? “4”: Was the likelihood of non-response bias minimal? “5”: Were data collected
directly from the subjects (as opposed to a proxy)? “6”: Was an acceptable case definition used in the study?
“7”: Was the study instrument that measured the parameter of interest shown to have reliability and validity (if
necessary)? “8”: Was the same mode of data collection used for all subjects? “9”: Was the length of the shortest
prevalence period for the parameter of interest appropriate? “10”: Were the numerator(s) and denominator(s) for
the parameter of interest appropriate? “11”: Summary item on the overall risk of bias [47].

3.3. Brief Review of the Relevant Literature

The selected studies are also included in Table 2, whose columns epitomize some
important aspects of them, namely the citation of the paper at hand, its subject, the imple-
mented methodology, the examined crop, the interaction mode (based on the taxonomy
described in Section 2.4), the automation level (as described in Section 2.5), and the main
results. A summary of the aforementioned aspects, which were investigated by the relevant
studies, is provided in Figure 5a–d, while a discussion follows immediately after.
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Table 2. List of the selected papers along with their citation, subject, implemented methodology,
examined crop, interaction mode, automation level, and main results.

Ref 1 Subject Method Crop Interaction Mode Automation Level 2 Main Results

[52] Target
detection Lab exp 3 Melon Isolation;

Collaboration 1; 3–4; 5–7; 10

Synergy increased the
performance by 4%

and by 14% compared
with the solely manual

or autonomous
detection, respectively

[55] Target
detection Simulation Melon Isolation;

Collaboration 1; 3–4; 5–7; 10

An objective function
was developed for
evaluating system

performance, while the
optimal collaboration

level may change
depending on human
and robot sensitivities

[56] Target
detection Simulation Melon Isolation;

Collaboration 1; 3–4; 5–7; 10

The best system
performance and

collaboration level
depend on the

environment, the task,
and the system
characteristics

[57] Target
detection Simulation Melon Isolation;

Collaboration 1; 3–4; 5–7; 10

Real-time switching of
the synergistic levels
was accomplished by
developed algorithms
for increasing system

performance

[58] Target
detection Simulation Melon Isolation;

Collaboration 1; 3–4; 5–7; 10

Real-time switching of
the synergistic levels

was achieved, resulting
in improved system

performance by more
than 90%

[53] Target
detection Simulation Melon Isolation;

Collaboration 1; 3–4; 5–7; 10

Operational costs were
studied, showing that
human decision time
strongly affects the

performance

[59]

Target
detection/
Precision
spraying

Lab
exp/Simulation Grape Isolation;

Collaboration 1; 3–4; 5–7; 10

Four levels of HRI 7

were developed and
tested, as well as a
spraying coverage

optimization function

[60] Robot
navigation

Design
Principles N/A N/A N/A

A taxonomy was
presented and

evaluated in terms of
an existing user

interface for robot
teleoperation

[61] Movements
identification

Design
Principles Olive N/A N/A

Guidelines are
described for

addressing problems in
sharing human–robot

environments

[20]

Robot naviga-
tion/Target
detection/
Precision
spraying

Field and
lab exp Grape Synchronization 1–2

Multiple views, head
-mounted display, PC 4

keyboard contributed
to higher perceived

usability
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Table 2. Cont.

Ref 1 Subject Method Crop Interaction Mode Automation Level 2 Main Results

[62]

Robot naviga-
tion/Target
detection/
Precision
spraying

Field and
lab exp Grape Synchronization 1–2

Similar results to [20],
while camera

placement on the
top-back of the robot

and on the
end-effector

improved the
surroundings and
activity awareness

[63]

Target
detection/
Precision
spraying

Field exp Grape Isolation;
Collaboration 1; 3–4; 5–7; 10

The collaborative
spraying system

reduces the sprayed
material by half

[64] Social
navigation Simulation N/A Coexistence N/A

A controller modifies
the length of

personal space and
velocity in order to

keep a social distance

[65] Stress
management Simulation N/A Isolation;

Cooperation 1–3; 10 Collaboration allows
for saving time

[66] Load lift and
carrying Field exp Strawberry Cooperation N/A

The pilot study
showed that the

experienced workers
positively viewed the

cooperation and
considered it safe

[67] Stress
management Simulation N/A Cooperation;

Collaboration 3–5

The developed
protocol provides the
highest efficiency as

compared to a system
without synergy

[68]
Fleet of robots

(tele-
)operation

Field exp N/A Collaboration 3–7

The AR 5 system
improves the

situational awareness
of a human for

managing a fleet of
robots

[69] Harvesting Simulation Orange N/A N/A

The developed
risk-averse solution
minimizes economic

costs

[70] Stress
management Simulation N/A Cooperation;

Collaboration 3–5

H-R 6 synergy can
respond to

emergency stresses
situations fast and

effectively

[71] Harvesting Simulation
Strawberries

and
grapes

Cooperation N/A

Development of
model and simulator
to predict efficiencies

of coupled
operations pertaining
to manual harvesting
and robot transport

[72] Harvesting Field exp/
Simulation Strawberry Cooperation N/A

Simulations
robustness of [71]
was evaluated; 5
robots serving as

tray-transport from
25 pickers improved
efficiency by 10.2%
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Table 2. Cont.

Ref 1 Subject Method Crop Interaction Mode Automation Level 2 Main Results

[21] Ergonomics
and safety

Design
Principles N/A N/A N/A

A combined
approach is proposed

that redefines
practical limits,

reprioritizes safety
measures, and
determines the

riskiest postures

[73] Target
detection Lab exp Strawberry Collaboration 2–5

Both experienced and
non-experienced

groups opt for robots
producing more false

positive results

[74] Harvesting Field exp Tea Cooperation N/A
The robot kept on a
side-by-side route
with two workers

[75]
Human
activity

recognition
Field exp N/A Cooperation N/A

The prediction of the
defined sub-activities

demonstrated an
85.6% average
accuracy, while

fusion of all sensors’
data can yield the

maximum accuracy

[76] Harvesting Simulation Citrus
varieties N/A N/A

H-R collaboration
can optimize

economic viability of
robotic harvesters,
especially when it
occurs in the early

stages of harvesting

[77] Ergonomics Lab exp N/A Cooperation N/A

A deposit height of
robot equal to 90 cm

was suggested by
avoiding large
lumbar flexion

[78]
Human
activity

recognition
Field exp N/A Cooperation N/A

Six continuous
activities with

wearable sensors
were performed for a
HRI scenario under
several variants for
obtaining a dataset

for ergonomics
research

[24]
Human
activity

recognition
Field exp Pistacia Cooperation 5

A real-time
skeleton-based

recognition
framework was

developed using 5
hand gestures and

successfully tested in
field experiments
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Table 2. Cont.

Ref 1 Subject Method Crop Interaction Mode Automation Level 2 Main Results

[79]
Transitioning
toward H-R

synergy

Design
Principles N/A N/A N/A

The interplay among
the socio-economic

factors and
underlying mental
models driving the

shift from pure
automation to HRI
are presented via a
systems thinking

approach

[80]
Robot naviga-
tion/Precision

spraying

Field
exp/Simulation Grape Collaboration 1–3

Both groups
(computer experts
and farmers) made
effective use of user
interfaces with the

tangible one
receiving more

positive evaluations

[54] Load lift and
carrying Simulation Avocado Cooperation 5

H-R synergy
increases the

production but
necessitates slightly
more energy during

harvesting
1 Ref: Reference; 2 automation levels according to Sheridan scale [81]; 3 Exp: Experiments; 4 PC: Personal
Computer; 5 AR: Augmented Reality; 6 H-R: Human–Robot; 7 HRI: Human–Robot Interaction.

Starting from the subject of the reviewed papers (Figure 5a), most of them dealt with a
very demanding agricultural task, namely target detection. The key problems come from
the peculiar agricultural environment. In essence, occlusion and changing illuminations
properties, as well as variability in fruit color, size, shape, texture, orientation, and position,
are limiting factors. Apart from the problems related to the location of targets, the uneven
and continuously changed terrain and atmospheric conditions make target detection more
complicated. Several performance measures have been used for target recognition, includ-
ing detection time, probability of target detection, and non-target detection (false alarm).
Automatic target detection in such environments is characterized by poor performance.
Consequently, interaction with humans can be advantageous, considering their superior
perception and action capabilities allowing them to adapt to unforeseen agricultural events.

The majority of the studies associated with implementing HRI for optimizing target
detection [52,53,55–59,63] followed a certain methodology for comparing the performance
of four different human–robot types of synergy:

• Humans alone detect and mark the targets, while HRI is never permitted. This is
compatible with both level 1 in Sheridan’s scale and isolation mode;

• Robots recommend the targets and humans approve and mark them. In particular,
the targets are automatically identified with the use of a detection algorithm. Then,
humans recognize the algorithm’s true detections by ignoring the false ones and mark
the possible missing targets. This interaction corresponds to levels 3–4 in Sheridan’s
scale, as mentioned in these studies. In addition, following the analysis described in
Section 2.4, this interaction is classified as collaboration, since both robots and humans
focus on the same task;

• The targets are automatically detected by the corresponding machine learning algo-
rithm, with the human role being to cancel the false findings, while, like at the above
level, the humans marks the missing items. This type of synergy is equivalent to levels
5–7 in the Sheridan scale and, again, is classified as collaboration;
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• Purely autonomous marking of targets takes place, in which human intervention is
never permitted. Obviously, similar to the first type of synergy that was mentioned
above, no HRI exists, demonstrating the highest level of automation in the Sheridan
scale, namely 10.

(a) (b)

(c) (d)

Figure 5. Distribution of the most common aspects investigated in the reviewed studies; (a) subject,
(b) examined crop, (c) implemented methodology, and (d) interaction mode.

Most of these studies used melons as a target, while grapes were also investigated
corresponding in aggregate to approximately 35.5% of all studies (Figure 5b). On all occa-
sions, the collaboration of humans and robots was found to increase detection performance
and the corresponding time needed for detection. Both of these outcomes were observed
to strongly depend on human decision time. Interestingly, when a field experiment was
conducted to evaluate in practice the impact of the synergy on a site-specific spraying
application, the proposed collaborative spraying system demonstrated a 50% reduction in
the utilized sprayed pesticide [63]. Preliminary laboratory experiments in [82] investigated
the opinion of experienced and non- experienced groups on errors produced by machine
learning algorithms in a synergistic task.

Moreover, five studies [20,60,62,64,68] investigated robot navigation, which is also
a demanding task, because of the particular nature of the rural environment. Adamides
et al. [20,62] examined the usability of two types of output devices, two types of input
devices, and single or multiple views toward optimizing a teleoperated robotic sprayer,
while in [60], a taxonomy was proposed pertaining to usability guidelines. Similarly,
Mallas et al. [80] investigated the efficiency of two user interfaces by using two groups in
field and simulation experiments, namely computer experts and farmers. Additionally,
in [68], the importance of augmented reality was investigated as a means of supervising
two autonomous tractors in a test field. Finally, three computational studies [65,67,70]
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concentrated on greenhouse stress management and how human–robot synergy can both
provide higher efficiency and save time.

Focusing on HRI for harvesting applications, Rysz et al. [69,76] developed a risk-
averse optimization solution and validated it by using a simulated grove setting, including
information for different citrus varieties. A vehicle was successfully implemented in [74]
for following the worker during tea plucking, as proved by the experimental field results.
Furthermore, Seyyedhasani et al. [71,72] investigated the use of harvest-aid robots for
carrying trays to decrease the non-productive walking times of pickers by utilizing data
collected from two strawberry fields. In the same vein, to increase situation awareness,
in [75,78], wearable sensors were used for gathering data during a human–robot syner-
gistic task involving six sub-activities, which were carried out under different variants.
Furthermore, in order to provide more natural means of communication between robot
and human, Moysiadis et al. [24] developed a skeleton-based recognition system for hand
gestures, which enabled a real-time HRI framework tested in field experiments. In [66],
the same robotic system (Thorvald, SAGA Robotics SA, Oslo, Norway) with [24] was used
for transporting the picked strawberries, and the opinion of workers on their interaction
with it was assessed. For that purpose, a brief questionnaire with a five-point scale was
employed.

Aiming at occupational health, which has been recognized as an integral element of
collaborative robotic systems, kinetic and kinematic data as well as muscle activation levels
were collected in [77] from experienced workers in laboratory experiments to investigate the
optimal deposit height of an unmanned ground vehicle. For a similar purpose, Vasconez
and Cheein [54] evaluated, in simulated scenarios, the expected production and also the
physical workload of workers. Benos et al. [21] examined both ergonomics and safety
during HRI operations from an agriculture-oriented perspective, while guidelines for
addressing problems in shared environments were described in [61]. Finally, the socio-
economic factors driving the shift from pure automation to HRI were analyzed through the
prism of a systems thinking approach by Aivazidou and Tsolakis [79].

In general, simulated environments were used in the majority of the reviewed studies,
while experiments, either in the field or in the laboratory, were also utilized, as well as
studies dealing with design principles (Figure 5c). Simulations can be a valuable tool for
investigating HRI in agriculture compared to real-world experiments. Benefits associated
with simulations are (a) cost-effectiveness, as physical experiments include expensive
equipment and land; (b) flexibility to study various scenarios; (c) scalability, enabling
researchers to examine large-scale agricultural systems; and (d) risk-free experimentation
without the fear of damaging crops or putting human operators at risk. It is worth stressing
that simulations cannot fully replicate the intricacies of real-world environments. Therefore,
it is essential to validate simulation outcomes by conducting physical experiments. This
validation process ensures the dependability and precision of the findings before applying
them in real agricultural settings.

Finally, as can be gleaned from Table 2, several automation levels, according to the
Sheridan scale, were tested either in field/laboratory experiments or in simulated environ-
ments to test the potential of using different interaction levels in agricultural applications.
In total, collaboration and cooperation modes, according to the analysis presented in
2.4, were the most usual modes (Figure 5d).

4. Discussion and Conclusions

The present systematic review aimed to shed light on an ever-increasing topic that
concerns several sectors worldwide, namely HRI. This emerging research field was method-
ically analyzed from the perspective of agriculture, which includes complex and dynamic
ecosystems as well as live produce highly sensitive to physical and environmental condi-
tions. A comprehensive examination of the present status was carried out by systematically
reviewing the relevant literature. In total, 32 scientific papers were found. These studies
are a result of the synergistic efforts of multiple disciplines including agricultural sciences,
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human factors, sociology, and ICT. After an assessment of their methodological approach,
the content of the reviewed articles was discussed in terms of their subject, implemented
methodology, examined crop, interaction mode, automation level, and main results.

In summary, most studies dealt with target detection, while studies focusing on detec-
tion in combination with precision spraying and/or robot navigation were also observed.
Furthermore, simulation was the most preferred methodology, as multiple parameters can
be examined. However, field experiments have also been conducted showing encouraging
results regarding the benefits of HRI in agriculture. The most studied crops, in descending
order of frequency, were melons, grapes, and strawberries, with collaboration and coopera-
tion being the most common interaction modes. These crops have high demands for careful
handling, accurate harvesting methods, and precise evaluation of ripeness. Due to the
time-consuming and labor-intensive nature of these tasks, the implementation of robotics
and automation in these crops can greatly enhance productivity and efficiency. Overall, a
range of factors such as the unique attributes of these crops, economic considerations, labor
factors, technological feasibility, and research focus collectively contribute to the increased
interest in HRI applications, specifically for these high-value crops. These applications
can serve as valuable sources of technical knowledge and practices to be disseminated
and encouraged among other crop producers. This will aid in the effective adoption of
these technologies by considering the requirements, benefits, and potential challenges
associated with them. Creating platforms for collaboration and the exchange of knowledge
among agricultural growers can bring significant advantages for establishing a supportive
ecosystem.

As can be deduced from the existing literature on HRI in agriculture, the brittleness
of autonomous robotic systems in uncontrolled and dynamic conditions in tandem with
variability in environments and live produce can result in ineffective operations and
production losses. To that end, human workers can complement autonomous systems by
overcoming their shortcomings. Nevertheless, the path to fully reap the associated benefits
of the capabilities of human–robot synergistic systems is still long. A broad range of research
areas is open for further development to meet the needs of reliability and feasibility, thus
reaching the stage of being commercially available. As human–robot interactive systems
consist of several sub-systems, which should be integrated and coordinated to successfully
transfer information and execute tasks as a single unit, several factors should be considered,
while various issues must be addressed.

First, considering the tremendous progress in ICT and AI, future research should
enable the efficient real-time fusion of a variety of complementary sensors to allow suf-
ficient localization, safe robot navigation, and sensing capabilities. The improvement of
coordination issues between humans and robots, through providing robots with a better
understanding of human intentions and actions, constitutes a promising research area.
Moreover, usability issues pertaining to user interfaces should be tackled. The user interface
is the point of interaction between humans and robots, allowing the former to control the
robotic system to receive feedback from it and achieve effective operation. Consequently,
intensive research efforts are required in the direction of developing user-friendly graphical
interfaces (GUI). These interfaces should be able to decrease the mental workload, through
methods such as avoiding both the inclusion of software that is not convenient to use
and restrictions on the mobility of the operator. Advancement in user interfaces will also
enable synergy between humans and teams of light-weight unmanned ground or/and
aerial vehicles. This constitutes the next demanding step in HRI for addressing the current
challenges and optimizing agricultural practices. Toward that direction, human–robot nat-
ural communication frameworks should be improved. With the advancement of big data
and the enhanced capabilities of computer hardware, deep learning technology exhibits
superior reasoning capabilities compared to traditional machine learning algorithms [83].
Hence, it has gained extensive adoption in industrial domains in recent years, where it
has been implemented to solve problems related to communication frameworks, such as
hand gesture [84,85] and facial expression recognition under various conditions [32,86].
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Likewise, advancement in accuracy of machine learning recognition algorithms can further
improve the credibility of wearable-sensor-based multi-posture recognition [87].

Future research in the field of HRI in agriculture should give due consideration to the
social aspects involved. This entails examining the effects of automation on rural communi-
ties, including the exploration of possible changes in skill requirements and socio-economic
disparities that may arise [88]. It is imperative to employ user-centered design principles
and participatory approaches, actively involving farmers and rural communities during
the development process. This approach will ensure that designs are both socially and cul-
turally appropriate, leading to enhanced user acceptance. A deep understanding of social
acceptance and trust will be gained by exploring stakeholders’ perceptions and attitudes.
Factors contributing to trust building, such as transparency, liability, and accountability,
should be taken into account [12,89]. Moreover, ethical considerations, encompassing
aspects such as privacy and data security, need to be thoroughly examined. By prioritizing
these social aspects in future research, a responsible adoption of robotic systems can be
accomplished that aligns with the values and needs of society.

Future research should also put effort into safety aspects in terms of safeguarding
workers, crops, and surrounding settings. Also, attention should be paid to the optimal
design of HRI systems, including the structure of the team, their specific role, human factors,
and complex mechanisms of robotic systems [90,91]. In addition, economic aspects should
be investigated in depth regarding the practical use of collaborative robots in agriculture,
as farmers will only invest in them on the condition that their investment is going to be
profitable after a reasonable time. Future research should also involve the assessment of the
environmental implications of using robots, such as their potential to minimize chemical
usage and soil erosion and contribute to the advancement of sustainable farming practices.

The introduction of collaborative robotics is, however, not a trivial issue. It requires
open dialogue between stakeholders, clear objectives, proper incentives, and information
from policy makers. An effective approach would be the organization of frequent sympo-
siums and workshops that involve farmers in the co-design process. These initiatives can
provide a space where farmers, robotics experts, policymakers, and researchers can actively
participate in meaningful discussions. By facilitating the exchange of knowledge and expe-
riences, these forums can enable the identification of specific limitations, opportunities, and
collaborative solutions. Flexible education and training programs need to be developed
to equip agricultural workers with the necessary skills to interact with robotic systems
effectively. This can involve tailored training modules on robot usage, maintenance, safety
protocols, and troubleshooting. Agricultural extension services, technology providers, and
vocational training centers can collaborate to provide tailored hands-on training programs
that meet farmers’ specific needs. To study skill competencies compared to emerging robot
demands, interdisciplinary research initiatives should also be undertaken focusing on
recognizing areas where skills are lacking, assessing how robotics affect job responsibilities,
and investigating the social and economic consequences of their implementation. These
endeavors may involve cooperation among agricultural scientists, robotics engineers, and
behavioral researchers, with the aim to comprehend the human aspects of productive
interaction between humans and robots in agricultural environments.

The above considerations for future research directions, which were discussed in this
section, are summarized in Figure 6.

In conclusion, this review paper presents an extensive evaluation of the present
state of HRI in agriculture, emphasizing the progress made, capabilities, technological
limitations, and potential applications of this technology within the agricultural domain.
Through a comprehensive analysis of the existing literature, this review is expected to
serve as a valuable reference for researchers, practitioners, and policymakers who aim to
gain insights into the dynamic landscape of agricultural robotics. Finally, by identifying
areas necessitating further research and development, this paper seeks to stimulate future
innovations and collaborations, thereby fostering the seamless integration of robotics to
enhance productivity, sustainability, efficiency, and safety in the agricultural sector.

215



Sensors 2023, 23, 6776

Figure 6. Indicative future research areas that are considered to improve human–robot interaction
in agriculture.
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Abstract: Digitalization has impacted agricultural and food production systems, and makes applica-
tion of technologies and advanced data processing techniques in agricultural field possible. Digital
farming aims to use available information from agricultural assets to solve several existing challenges
for addressing food security, climate protection, and resource management. However, the agricultural
sector is complex, dynamic, and requires sophisticated management systems. The digital approaches
are expected to provide more optimization and further decision-making supports. Digital twin in
agriculture is a virtual representation of a farm with great potential for enhancing productivity and
efficiency while declining energy usage and losses. This review describes the state-of-the-art of
digital twin concepts along with different digital technologies and techniques in agricultural con-
texts. It presents a general framework of digital twins in soil, irrigation, robotics, farm machineries,
and food post-harvest processing in agricultural field. Data recording, modeling including artificial
intelligence, big data, simulation, analysis, prediction, and communication aspects (e.g., Internet
of Things, wireless technologies) of digital twin in agriculture are discussed. Digital twin systems
can support farmers as a next generation of digitalization paradigm by continuous and real-time
monitoring of physical world (farm) and updating the state of virtual world.

Keywords: digital twin; digitalization; digital farming; farm management; smart farming

1. Introduction

One of the main global challenges is how to ensure food security for the world’s
growing population whilst ensuring long-term sustainable development. According to the
Food and Agriculture Organization, agricultural and food productions will need to grow
to feed the world population, which will reach around 10 billion by 2050 [1]. Due to the
increase in world population and market demand for higher product quantity and quality
standards, the issue of food security, sustainability, productivity, and profitability becomes
more important. Furthermore, the economic pressure on the agricultural sector, labor,
environmental, and climate change issues are increasing [2,3]. Therefore, the enhancement
of efficiency through effective integrated smart technologies and techniques has been
widely considered in recent years.

In this context, digital agriculture (also known as smart farming or smart agriculture)
tools can support the deeper understanding of interrelations within the agricultural pro-
duction system and the consequent effects on the performance of farm production while
balancing human health and well-being, social and environmental aspects, and sustain-
ability associated with agricultural system [4–6]. Due to advances in data generation, data
processing and human-computer interactions, digital farming has progressed in recent
years [7]. One of the main features of digitalization in agriculture is the introduction of inno-
vative Information and Communication Technology (ICT), Internet of Things (IoT), big data
analytics and interpretation techniques, machine learning and Artificial Intelligence (AI).

Data acquisition and analysis in digital farming by means of smart technologies are
supporting complex decision-making approaches [8,9]. They enhance final productivity,
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reduce costs, and optimize the decision-making process. Furthermore, ICT tools present
advantages for on-farm management, efficiency, quality control, and the food supply chain
as well as decision support tools [10]. The AI and big data support better and precise
farm monitoring, data acquisition and analytics, improve information extraction from
sensors as well as farm management [11]. For instance, crop health and productivity can
be monitored and controlled using advanced AI and deep learning techniques [12]. Data-
driven approaches augment on-farm decision-making capabilities, improve crop yield,
reduce losses, and therefore, benefit farmers. The IoT and wireless technologies enable
real-time data transferring and monitoring in digital farming [13,14]. The IoT, along with
cloud computing systems, can facilitate communication between software platforms and
sensors, pieces of machinery, crops, and animals in digital farming. However, by increasing
the number of sensors and generating large amounts of data in digital farming could cause
high load on the cloud server and reduce the response speed [15]. In this context, in may
be impractical to always store and process data in the cloud systems [16]. An alternative
technology which has been recently introduced to the smart farming is edge-computing
that enables computation at the edge of the network [17]. It helps to reduce network load
and supports real-time data processing in agricultural fields. Furthermore, cyber-physical
systems have been introduced through smart farming systems to develop hardware and
software, improve adaptability, and safety and security of computer-based algorithms
and systems [18]. It enables adaptability, practicality, security, and safety of collected
information in agricultural field e.g., climate, irrigation, soil, nutrition, and yield for
better management.

According to ref. [19], digital farming approaches can provide farmers with useful
information about (I) the use of fertilizers, chemicals, seeds, and irrigation management
strategies, (II) the environment protection, (III) pest, climate, and crop monitoring man-
agement solutions, (IV) market demands and business conditions. However, agricultural
production systems are complex, dynamic, and require sophisticated management [20].
Digitalization approaches are expected to provide more monitoring, data analysis and
optimization capabilities, and further decision-making supports.

To enhance the efficiency of these systems, an emerging paradigm has been proposed
and implemented in digital agriculture, that is, digital twin. The digital twin was firstly
presented by NASA for monitoring of spacecraft behavior and can be defined as a virtual
or digital representation of physical systems to simulate the behavior of the physical
system [21,22]. There are different definitions for digital twin available in the literature
which have been reviewed by [23–25]. Based on the reported definitions, the component
of digital twin can be characterized by physical and virtual objects, as well as a set of
connections between physical and digital assets [26].

The physical system or physical world in agriculture is a complex and dynamic
environment and includes basic information and features of the object or device such
as shape, position, cooler, material, and live objects [27]. The physical system is one
of the key components, and a digital twin without a physical world is a model [28],
and system boundaries of a digital twin are identified based on the real physical world [29].
The physical system can be a single component of an object or the whole object with sub-
components located in a physical environment [28]. The physical world in agriculture can
be an animal itself or located in a farm including building, feeding strategies, number of
animals [30], or a crop with different soil, climate, and irrigation conditions [22], robots
and agricultural pieces of machinery, e.g., tractors, harvesters and fertilizers, as well as
operators. The physical world can include a whole object (e.g., whole machine) or sub-part
of the object, or a single asset of the object connected with other objects. In an agricultural
context, the physical system may be some aspects of the crop, soil, and irrigation systems,
or animal body. The physical world requires measurement technologies and sensors to
collect and receive data from the physical object. Examples of digital twins in smart
agriculture include optical sensors for plant canopy and disease [31,32], soil and weather
sensors for crop [33], barn sensors such as temperature, humidity, ammonia for animals [34],
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Global Positioning System (GPS) and Real-Time Kinematic-Global Navigation Satellite for
tracking of agricultural robots [35], and food supply chain.

The connection between physical and virtual worlds depends on the developed digital
twin. This component enables data transmission between virtual and physical systems.
It interprets the collected data from the physical system and updates the state of the
virtual system, and transfers feedbacks from the virtual system to the physical world [25].
The connection components can be varied depending on the source, type and volume of
data, data transfer rate and speed, as well as the minimum delay between data acquisition
and feedbacks. Wireless and IoT techniques have been used in digital twins of agricultural
concepts to connect between physical and virtual worlds (such as [34,36,37]).

The models and data of the physical world are represented in a virtual system.
The virtual world may also include different processing and simulation concepts, software,
machine learning, data mining, and AI models. In this context, data processing and analyt-
ics by means of AI techniques to support decision-making and feedback to the physical
system were suggested by some researchers [38,39]. The virtual twin may simulate and
control the physical system, optimize a process, and predict unseen issues in the physical
system. For example, an application layer of a digital twin reported by [22] provides
real-time monitoring of weeds, crop growth, and expected yield via cloud dashboards for
farmers. A schematic of the digital twin concept in agriculture is shown in Figure 1.

 

Figure 1. Schematic of digital twin concept for agriculture.

Although digital twin concepts in smart farming are in their infancy and early demon-
stration stages [22,30], there are ongoing interests in implementing this technique in the
agricultural context. There are some reviews available in the literature describing digital
twin concepts in the agriculture context (listed in Table 1), however, to the best of our
knowledge, these works have focused on a specific part of the digital twin, and no com-
prehensive studies have yet been done to address the application of digital twins in soil,
irrigation, agricultural farm pieces of machinery, robots, and post-harvest food processing.
Therefore, this review summarizes digital twin concepts as a next-generation paradigm
for digitalization in agriculture. This paper is structured in 6 sections. Section 2 illustrates
the digital twin of soil and irrigation systems in smart agriculture. Section 3 covers the use
of digital twin concepts for crop technologies. Section 4 illustrates digital twin concepts
during post-harvest processing. Challenges and future research needs for digital twin are
presented in Section 5. Finally, conclusions are discussed in Section 6.
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Table 1. Previous review studies on digital twin in agriculture.

Concept Sources

Agriculture-farm management [40]
Smart farming—Hydroponics [41]
Food processing [42]
Food losses—supply chain of fresh products [43]
Agri-food—societal and ethical aspects [44]
Food processing—fresh horticulture supply chain [45]
Agri-food supply chain [46]
Smart farming—definition and concept [22]
Agriculture—general application and adoption [47]

2. Digital Twin in Soil and Irrigation

Monitoring and evaluation of soil quality to sustain plant productivity is the basis of
land-use strategies in agricultural farms [48]. Crop health and productivity depends on
the quality and properties of the soil. More detailed information about the agricultural
soil may reduce the potential use of chemical fertilizer and pesticide dosages, therefore
improving the underground water, protecting the environment and human health. It also
supports defining plant density in a more efficient way. Digital technologies are supporting
scientists to better understand and study soil in agriculture. Soil monitoring sensors such
as moisture, temperature, organic matter, and soil pollutant sensors are playing critical
roles in digital agriculture [49]. For instance, soil moisture information can be used to
assess irrigation efficiency in agricultural fields [50]. Furthermore, to support the decision-
making process of smart farming, digital soil mapping is an essential paradigm that can be
defined as spatial soil information based on field and laboratory investigations coupled
with soil inference systems [51]. Digital soil assessment approaches have a direct impact on
crop yield and performance by identifying zones that may cause low crop yield. Digital
alternative methodologies for soil survey and identifying key soil characteristics could
have the possibility to quantify the trend of agricultural soil conditions [52].

The advancement of knowledge and technology (e.g., wireless sensors, IoT, AI) in
digital agriculture could lead to digital twin paradigms of soil in agriculture. The recent
development of digital soil mapping techniques may support digital twins by digital
representation of knowledge obtained from the soil in virtual entrainment [53]. For in-
stance, digital soil mapping could be used to describe soil variation in digital twins using
information from complex soil variation at a specific depth, time, and special locations [52].

Additionally, the decision about crop management depends directly on the crop water
requirements, soil properties, and availability of water. In order to manage soil and crop
requirements in smart farming, digital technologies have been used to meet the requirement
of smart or precise water management strategies. Wireless system networks, IoT, edge-
computing, local weather-based controllers, and soil sensors are some of the digital tools
based on smart irrigation systems. The mentioned tools can be used in the digital twin of
soil and irrigation systems. For example, ref. [37] developed a digital twin concept for smart
water management in the agricultural domain. Information of air and ground temperature,
and humidity sensors, soil moisture, and ambient light as well as geospatial position
sensors were collected. An IoT system was used to connect the cloud and the physical
system. A virtual environment including decision-making tools and models was designed
to inform the data collected by connection device (the IoT system) and to send feedback
to the physical system. They also presented a digital twin system architecture including
monitoring devices (i.e., soil probe, weather information, irrigation system, machines,
and other equipment) in a physical system (farm) with could serve as a connection between
the physical and virtual systems to visualize satellite and drone images.

In another study, to evaluate and forecast plants’ irrigation requirements, and support
irrigation and water distribution planning, a digital twin for a smart water management
system was developed by [54]. Data of the physical world (agriculture field) such as
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weather, fertilizer, and soil type as well as information from developed models that simulate
the behavior of soil and crops were considered as input data for the digital twin. The digital
twin concept also consisted of a Soil Agent (includes hydrological models and soil data),
Crop Agent (includes crop models and evaporation data), and a Field Avatar, which is a
digital representation of the field such as geological models and weather data [54]. In their
developed digital twin concept, the information from Soil Avatar and Crop Avatar feed
into the Field Avatar, and an IoT system was used for data transformation and connection
between the physical and virtual worlds.

Due to increase in world population, water and energy management, storage, and proper
distribution of water become more essential for water users in agricultural sectors, which can
be managed through a collective irrigation system [55]. A digital twin of water systems
coupled with big data can reduce risk and uncertainty of water management, explore
consumption patterns, and optimize operation planning [56]. Furthermore, in a collective
irrigation system, improvement of water efficiency could help to reduce water losses. In this
context, a digital twin concept was created using field and laboratory tests of a collective
irrigation system network to evaluate energy, pumping facilities, water losses and water use
efficiencies [57]. The developed digital twin methodology was based on information from
the physical system, i.e., infrastructure data, acquired information through telemetry, data
analytics from laboratory tests and field measurements, IoT data transferring as connection,
energy balance, water balance, and hydraulic model in the virtual system. It was found
that the digital twin of the irrigation management system made it possible to understand
system processes, maintenance, and management strategies [57].

A digital twin of soil and irrigation systems in smart farming enables digital repre-
sentation of information from agricultural soil, and provides prediction and fundamental
understanding of water requirement and soil components for crop farming. Exchanging
information from the soil as a physical system to a virtual system using IoT, cloud, fog,
and edge-computing technologies in digital twin may allow evaluating the state of soil and
irrigation systems. In particular, the edge-computing technique that saves and performs
the data processing near the soil monitoring and irrigation devices can improve the perfor-
mance and overcome issues of cloud-based system in digital twin concepts. Furthermore,
it could offer different irrigation recommendations based on crop requirements which are
not solved yet by the researchers.

3. Digital Twin in Crop Production

The use of digital and ICT tools in crop production technologies, in particular agri-
cultural machineries, e.g., tractors, combine harvesters, fertilizers, and sprayers, plays an
important role in the improvement of overall efficiency by reducing the cost of fuel, fertiliz-
ers, human labor, and parameters which affect production efficiency and sustainability [58].
Digitalization has modernized agricultural machinery application and management policies
using collected information and advanced data analytics approaches. It allows to optimize
the performance and enhance the use of advanced tools in manufacturing. For instance,
based on the European Agricultural Machinery Association, a digital farm machine should
be able to assist and support drivers by sending and receiving data via sensors and ICT
tools, enable the best and optimal use of machinery, and the technology should facilitate
the automated operation of the devices [59]. The application of AI, big data analytics,
and wireless and IoT technologies have led to significant changes in farm technology roles
towards the development of autonomous systems. The role of agricultural machinery in
the implementation of digital agriculture was stated by [58] as data collected from sensors
mounted on typical and autonomous agricultural machinery and transferred via an IoT
platform. Then, the information was analyzed by data analytics such as AI, fuzzy logic,
and big data analysis to support farmers, consumers, and markets [58]. In this context,
combining digital tools with autonomous machines and robots could help farmers to do
more effective practices and improve the quality of products [60]. Nowadays, with ad-
vancements in digital technology, the real-time visualization of smart farm equipment
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conditions is possible through digital twin approaches [40]. It allows contact to the system
(e.g., machinery and robots), simulates the condition of the system, and monitors the
behavior and operation as well as the maintenance situation of the machines (Figure 2).

Figure 2. An architecture of the digital twin concept for crop production technology.

Digital twin in design and manufacturing of products (e.g., farm machinery) re-
quires (I) geometric (e.g., size, shape) and physical properties of an object, (II) in the
detailed information of the product which can illustrate dynamic processing of the object,
(III) integration of geometric, physical, and process information [61]. Digital twin ap-
proaches make it possible to model, design, simulate, and develop agricultural machinery
that would yield more productive machines in terms of energy and power efficiencies.
For instance, it was shown that overall energy consumption of machinery could be mod-
eled in digital twin concepts, and the effect of different factors on energy consumption can
also be explored there [62]. In the agricultural context, ref. [40] reported that a commercially
available digital twin platform for agricultural machinery is able to track the machines
in real-time, monitor the energy consumption, economic efficiency of crop management,
and trajectories of tractors by considering the specific conditions of the farm. It has also
been reported that using digital twins could potentially impact the training of unskilled
harvester operators and lead to high macro-economic benefits [63].

Within the digital farming technologies, robotics, as an important technology in crop
production, has played an essential role in digitalization and has been drawing more
attention in recent years. To optimize the robotic application process, reduce costs, and in-
crease the quality and efficiency of the product, the digital twin concepts can be used for
virtualization of the robot environment by introducing a remote operating system [64].
By providing simulation and remote operation possibilities and modeling various inter-
actions between robot and environment in digital twin concepts, accuracy, performance,
and flexibility may enhance, and the final product cost may decline. Ref. [65] analyzed
the human-robot interactive behaviors using a digital twin platform. Their developed
digital twin helps to improve operational productivity and comfort. In another study,
a digital twin approach was proposed to assist the remote programming of a robot [66].
The developed digital twin system consists of a robot (as a physical object), and a gaming
platform (as a virtual system) which was able to observe the motion of the robot, ease
programming for complex environments as well as introduce a remote operating system
for communication across different platforms [66]. In the agricultural context, an approach
was recommended by [35] that the development of a digital twin paradigm for agricultural
robots may improve predictive emulation of the vehicles, operational scheduling, digital-
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ization, economic, environmental, and social sustainability in agriculture. Furthermore,
the digital twin paradigm makes it possible to overcome common challenges in the control
of robot components in the agriculture field. In this context, a research group demonstrated
the possibility of a digital twin concept for a desktop version of an agricultural robot [67] to
control the motor and indoor localization capabilities of the robot. Besides, the digital twin
concept was used to predict movement and monitor the safety mechanism of the robot [67].
However, their developed digital twin concept needs different kinds of calibrations to be
applicable in different environmental conditions.

In another study, to simulate complexity of the crop production process, variability of
plant, soil, environment, and technologies in the agricultural field, digital twin concepts
were developed [68]. Three field robots for different agricultural applications were used to
develop different digital twin concepts and optimize sensor-based autonomous navigation.
It is reported that the developed concepts could provide considerable information in prepar-
ing field experiments, and better evaluation for the use and positioning of sensor systems
towards demonstrating and implementation of the developed robotic technologies [68].

Integration of the digital twin systems with technologies and management strategies
in crop production can provide a new phenomenon for digitalization in agricultural field.
Management strategies can be improved and optimized by providing reliable forecasts of
the key parameters in digital twins [69]. The digital twin systems can not only act as a man-
agement system, but it may also be used to revolutionize agricultural farm management
strategies [40]. For instance, a digital twin concept was applied in a greenhouse to discover,
analyze, and extract behavior of farmers [70]. Sensor data were analyzed using deep learn-
ing techniques to establish decision-making models to replicate expert famers’ experience
for transferring to young farmers. It was found that the developed digital twin module
could improve control and management strategies in crop farming [70]. In this context,
the use of distributed architecture in digital twin may increase efficiency and reliability
of the module by proper resource handling [71]. A distributed digital twin concept was
developed to handle resources over different stakeholders and platforms in agricultural
landscape [72]. It consists of different components, i.e., stakeholders, applications in agri-
culture and farm management, sensor data, analytics and simulation tools, virtual model,
IoT, and resource registry which makes interoperable and cross-scale management possible
in agricultural landscape [71].

In addition, the use of digital twin system as a decision support system can benefit and
be adopted for crop farming applications, and optimization of products and farm system
performance. A digital twin model was implemented by [36] in sustainable agriculture
for monitoring and control of product qualities, adjustment of environmental conditions,
identification of forecasting, and decision support scenarios. In addition, a novel approach
based on digital twin paradigms was developed to forecast yield, vegetation quality,
and duration of plant development [33]. Consequently, the quality of crop production
could be improved due to detailed analysis and control of plant growth, and the efficiency
of farms could be improved due to automation of decision support processes through
the developed digital twin concept. Digital twin along with forecasting models were able
to provide feedback to farmers for a better decision-making scenario in a reported study
by [73]. Their proposed digital twin system consists of a monitoring system to collect
environmental condition data from an underground farm, as well as data analysis and
modeling techniques to identify key parameters, critical trends, and forecast operational
scenarios. Furthermore, digital twin was able to optimize productivity of crops in a
greenhouse environment through climate control strategies and treatments related to
crop management [74].

Information from crop production machineries (e.g., tractors, harvesters, robots) have
been used in smart farming to optimize the performance and efficiency, and reduce the fuel
and energy consumption. However, the digital twin concepts collect real-time data from
the devices and characterize the states of the physical object continuously. This capability
makes it possible to predict and prescribe solutions using the collected information from
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the farm machineries. Hence, big data analytics coupled with AI models are able to detect
failures in the machines before or in the early stage of when breakdowns happen. In this
context, the use of state-of-the-art edge-computing systems may reduce latency by the
limited amount of transmitted data and provide information from the crop production
machineries such as autonomous robot, harvesters, and tractors to the digital twin concepts.
The digital twin paradigm in crop farming can change production productivity, farm man-
agement, and sustainability at farm level. Advanced statistical models, machine learning
and data analytic approaches can provide farmers with more precise information to make
better decisions that were not possible previously. Based on the past (historical) and current
continuous knowledge from crop (sensors deployed at farm) and environment data, the dig-
ital twin systems provide information about future states of the farm, and offer solutions
for turning the collected information into useful and actionable on-farm knowledge.

4. Digital Twin in Post-Harvest Process

Post-harvest process is a stage of agricultural products after harvesting until consum-
ing the products, which may include transportation, drying, cooling, storage, and market-
ing. Through digital farming approaches, the post-harvest processes could benefit from loss
reduction, improvement of monitoring and optimization of food processing, storage condi-
tions, marketing, and transportation. Digital solutions allow monitoring real-time agri-food
supply chain to increase robustness and resilience of the chain [75], and lower food waste
and losses. The IoT platform supports the reduction of food losses in post-harvest pro-
cessing [76], and tracking of the product through the food supply chain. To achieve food
security AI and big data analytics enable data processing, optimization, and management
in food and crop post-harvest stages [77], also reducing waste and improving overall prof-
itability [78]. The ICT offers solutions to monitor and control quality criteria of food and
agricultural products during post-harvest processing [43]. However, different environmen-
tal conditions, processing factors, and dynamic features of agricultural product (e.g., shape,
size), environmental parameters (e.g., temperature, humidity), handling, transportation,
and storage of the products influence the quality of post-harvest process [79].

To overcome these issues and increase the efficiency of the system, digital twin ap-
proaches have been used in post-harvest processing to continuously monitor the products
and update the processing stages [80]. Digital twins, as an expanding family of digital
farming could strengthen agri-food systems, affect knowledge and skills of farm manage-
ment [44]. Digital twin in post-harvest processes can be defined as a digital representation
of harvested agricultural products based on the information collected from the products.
In this context, ref. [42] reported the digital twin concept of food processing may include:
(I) data collected from a physical system (food process operation) by means of sensors that
measure properties and variables of products and environmental parameters, (II) an IoT
platform to provide sensor communication, data storage and big data analytics, high-
performance computing, and link to the digital twin assets, (III) a simulation platform that
uses input data from physical system for optimization, testing and validation of models,
and provides decision supports in the virtual world. In order to benefit food process-
ing by developing digital twin models, it is important to include accurate information
representing production processes of the product, e.g., equipment, labor, and to create
realistic models with all existing boundaries and barriers [81]. In a study reported by [82],
a digital twin of mango fruit was developed to simulate and qualify thermal and associ-
ated bio-chemical behavior of the fruit through a post-harvest supply chain. In order to
develop the digital twin concept, environmental air temperature as input was considered,
and the actual supply chain conditions were mimicked within mechanistic finite element
models [82]. Moreover, the impact of higher air speed on storage life, cold chain length,
and delivery air temperature on the fruit quality were considered in the digital twin. It was
reported that the digital twin allows to monitor and predict temperature-dependent fruit
quality losses, improve refrigeration and logistic processes, consequently, it can reduce
food losses [82]. Furthermore, it is reported that the digital twin can help horticultural
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products along with the post-harvest life, and can be used to forecast the shelf-life of
agricultural products through the cold chain [45]. It can support food consumers as well
as food business owners for tracking of the products, logistics, and marketing decisions;
however, the existing digital twin concept needs to be enhanced by considering more bio-
chemical and physical features [45]. Ref. [83] proposed a digital twin concept food supply
chain analysis. Their developed digital twin includes: (I) a network based on knowledge
from, e.g., customers, suppliers, and factories, (II) some parameters, e.g., in production,
transportation, warehouses, sourcing, shipment costs, and policies, (III) various operational
parameters, e.g., demand, quality, target inventory, and vehicle capacity. It was found
that the developed digital twin can be used for optimization, simulation, and analysis of
operation and performance changes in the food supply chain [83].

According to [43], digital twin in post-harvest can be considered as mechanistic,
statistical, and intelligent models; however, it was found that the physics-based mechanistic
digital twin concepts can evaluate the quality of fresh agricultural products better than
the others. Physics-based digital twins were developed on 331 cold chain shipments of
four fruits (i.e., cucumber, eggplant, strawberry, raspberry) by [84]. Based on digital twin
concepts, it was found that the quality of fruits may be affected (around 43–85%) before
being delivered to stores.

The post-harvest processing has improved through the application of digital solutions
over the last several years. However, the use of the digital twin paradigm is receiving more
attention in post-harvest food processing due to the future product quality prediction and
cost reduction. The digital twin of post-harvest processes may be developed to model,
optimize, represent, and characterize the design and operational parameters such as quality,
safety, ingredients, shelf-life, and product status, which need to be considered by researchers
in future studies.

5. Challenges and Future Needs

Summary of the digital twin concepts developed in the literature for different purposes
in agricultural fields, including soil, irrigation, crop monitoring, robotics, farm machinery,
and post-harvest processing, is presented in Tables 2–4. These tables show that the digital
twin paradigm is in the early stage of research and development in the agricultural context,
and future studies in terms of knowledge, technological, system development, and application
aspects of digital twin concepts in different fields of agriculture should be considered.

Table 2. Summary of soil and irrigation digital twin concepts.

Concept Key Components and Benefits Source

Soil–water Supporting precision irrigation in agriculture, better irrigation planning
and water distribution, reduce crop yield losses [54]

Soil–water IoT-based water management platform, monitoring water pattern in soil [37]

Water Analyze and optimization of aquaponic systems, minimize water waste [85]

Irrigation Urban-integrated hydroponic system, integration of forecasting models for
better decision-making assistance [73]

Irrigation
System management and irrigation decision-making integration, water use,
global energy and pumping facilities efficiency evaluation, understanding
of irrigation system process

[57]

Water Development of decision support system, enhancement of cyber-physical
implementation in aquaponics [86]

229



Sensors 2022, 22, 498

Table 3. Summary of the digital twin in crop production.

Concept Key Components and Benefits Source

Vertical farming Environmental conditions assessment, identification of forecasting and decision
support models, monitoring and optimization of agri-food lifecycle [36]

Plant/tree Plant condition monitoring including structure, health, stress, and quality of fruit [31]

Robot Analysis and performance evaluation, robot selection, and navigation [35]

Robot Simulation of field environment, autonomous robot navigation [68]

Agricultural machinery Development and advantages of business models for potato harvesting [59]

Agricultural landscape Resource distribution management over different stakeholders in agriculture [72]

Crop Forecasting yield and duration of plant development [33]

Agricultural machinery Development of three-dimensional geometric models, drawings of devices,
mechanisms, and the attributive data [87]

Plant Detection of plant diseases and nutrient efficiency [32]

Crop/hydroponic farm Identification of crop growth parameters such as lighting, external temperature, and
ventilation systems [73]

Crop Optimize productivity, climate control strategies, and crop treatment management in
controlled environment agriculture [74]

Robot Co-simulation of robot environment, prediction of robot movement, and safety monitoring [67]

Table 4. Summary of digital twin for post-harvest process.

Concept Key Components and Benefits Source

Food supply chain Thermophysical behavior of fruit during supply chain, storage at different airflow rate,
understanding, recording, and predicting losses of temperature-based fruit quality [82]

Beverage Predicting possible anomalies and preventing safety issues for employees [88]

Food Machine learning-based models for real-time response and quality predictions,
maintenance, and data collection [80]

Food supply chain Development of practical implementation strategies, enhancing resilience food retail,
and capacity management [83]

Food Challenges, methodologies, and opportunities for implementation of digital twin in
food processing, importance of realistic and accurate models in food processing [81]

Food Modeling of equipment, humans, and space for fast-food producing, management of
production chain, and performance evaluation [89]

Post-harvest Monitoring of retail stores and detection of fruit quality lost [84]

With rapid technological and sensor development, digital twin of the agricultural
soil by considering the soil quality and properties may accommodate plant productivity,
health, and yield, save water, and reduce chemical usage. Many elements of the soil,
irrigation, and environmental parameters in agricultural land can be continuously mon-
itored, analyzed, and their management strategies optimized using big data analytics,
machine learning models, and decision support systems embedded in the digital twin
concepts. The combination of soil and irrigation digital twin approaches to record, monitor,
and analyze agricultural land changes may lead to improved performance of crop farming.
For instance, simulation of soil structure along with data-driven updating models could
connect farmers to the farm using the IoT technology and present, in detail, pictures of
parameters that impact the soil, irrigation, and crop yield. However, few studies focus on
the development of digital twin concepts of agriculture soil with higher degree of flexibility
as well as considering a wider range of operation than existing simulation models. Soil
sensors could constantly measure and record the dynamic condition of arable soil, e.g.,
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water holding capacity, moisture, temperature [53]. These data, along with information
from soil structure and simulation techniques, can be transferred to digital twin concepts,
and constant feedback from the digital world may advise real-time responses for soil and
water management as well as control systems. In recent years, there has been rapid growth
in the digital farming scenarios, use of remote sensing, digital soil mapping, and develop-
ment of software platforms. However, researches needed to fuse the developed techniques
along with the IoT, edge-computing, AI, data analytics, and simulation techniques that
could lead to development of a digital twin paradigm is in an early stage and needs to
be addressed in future studies. Furthermore, researchers need to consider the practical
challenges of digital twin-based systems in soil and irrigation as digital twins are multi-
and interdisciplinary techniques and require systems engineering perspectives [90].

Digital twin offers real-time simulation of farm machinery and robots that can benefit
optimal design of the products, interaction with the environment, energy usage, and main-
tenance strategies. Digital twin concepts have the possibility to predict failures in farm
machinery and support decision-making scenarios in plant production. Farm owners can
be able to connect to the machines through virtual world for monitoring and tracking of the
devices in agricultural farms. Digital twin systems are accompanied by recording a large
amount of data and exchanging information between different assets; hence compiling
and analyzing these data is a challenge facing farms, particularly in some rural areas with
poor internet and technological infrastructures [91]. Other alternatives, e.g., Long Range
technology based on wireless sensor networks communication and edge-computing could
be used to mitigate internet access problems in rural areas for the connection part of the
digital twin concepts [32,92]. Future opportunities for the implementation of digital twin
systems in crop farm technologies could lie in the development of standards as well as data
transferring and communication strategies in this context.

The digital twin of crop production using big data collected from crop and farm ma-
chinery as well as robots, analytical and AI models, IoT, and satellite and drone information
could allow simulating crop, environmental, and farm conditions in the digital world to
determine unknown and unseen issues before happening in the physical world. Agricul-
tural objects (crops in particular) need frequent updates in data to support information
analysis and decision-making processes [93] which in turn can promote sustainable farming
practices and save energy usage in crop productions. In this context, greater effort should
be focused in the future on characterization and development of frameworks for more effec-
tive practical digital twin paradigms. In crop farming, all information may not be recorded
and tracked using digital sensors; however, combining data from different sources could
improve the virtual representation of the farm operation and environment [73]. Continuous
monitoring of crops in digital twin systems by simulating the dynamic farm conditions
and considering the effect of management, climate, and environmental conditions on the
plant growth and use of data-driven models along with sensor fusion techniques could
help to identify deviations from the normal conditions of the plant, and forecast growth
stages to reduce risk of environmental and management effects. In future, different digital
twin concepts might be applied to copy the complex physical system of crop farming in
the digital world and incorporate variable sensors, data collecting strategies, modeling,
forecasting, and simulation approaches in crop farming.

In addition, digital twin concepts can support monitoring, tracking, and analysis of
food through the entire supply chain. Development of a digital copy of an agricultural
product to monitor post-harvest processing could be used to optimize the process, reduce
energy use, labor, and food losses based on information from different sensors and simula-
tion models. Future studies need to be carried out to consider more environmental and
post-harvest product features for the development of robust digital twins [45]. Another
major challenge in the development of digital twin for post-harvest processing to minimize
quality losses and improve the shelf-life of the product is considering the value chain of
agricultural products from farm to fork [43], which has not been addressed yet. In post-
harvest processing to reduce uncertainty in digital twins and enable the consumer to trust
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the output of digital twin concepts, detailed experimental and data collection approaches
along with numerical modeling and validation techniques need be considered.

6. Conclusions

Employing digital technology has helped agricultural farm managers to improve
efficiency, yield, and reduce losses. There are different types of digital farming paradigms
in the literature that could be used in digital twin concepts as the next generation of
digitalization in the agricultural field. The results of this review show that the digital twin
concepts in agriculture and food processing have, so far, been little exploited in research.
There are several research challenges and opportunities in different stages of digital farming.
Digital twin paradigms can be meaningfully utilized for soil and irrigation, crop, robots and
farm machinery, and post-harvest food processing in the agricultural field. In this context,
most of the studies have focused on the development of digital twins by considering some
limited parameters in agricultural sectors. Deploying of state-of-the-art technologies, e.g.,
AI, advanced statistical and optimization models, big data analytics, and three-dimensional
simulation, offer further possibilities for improvement in farm management. With real-
time and continuous information about agricultural assets, virtual models can predict
and address unseen issues in the fields. It may support farmers to decline the economic
pressure on the agricultural sector and labor issues, and help policy makers responsible for
food security and environmental protection, towards strengthening the agriculture sector.
In addition, it facilitates the work of researchers exploring methods to track and monitor
crop farm machinery, agricultural and post-harvest products or reduce water, chemicals,
and energy usage in digital farming. Although many digital twin systems in engineering,
manufacturing, and health contexts have been developed, further attempts need to be
considered in the agricultural context towards the development of digital twin systems
that can monitor, record, and analyze data, to predict and prescribe the best decision for
digital farming management.
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