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Preface

The decarbonization of the utility grid, market integration, consumer empowerment, and

technical innovations will all be key objectives in international energy policy in the coming decades.

Grid integration constraints are limiting the deployment potential of renewable energy sources.

Therefore, while renewable energy sources are essential to reaching these key objectives, energy

storage is the enabler that facilitates the integration of renewable energy sources in a cost-effective

and flexible manner. The diversification of RES generation and integration of energy storage into

modern power systems are also leading to the formation of the island microgrids and microgrid

clusters/communities required to develop more reliable and sustainable electricity networks.

This Special Issue for MDPI Energies targeted innovations and the novelty in integration of

energy storage systems. The call for papers attracted significant attention from researchers in the field

,and the Guest Editors express their gratitude to all authors who submitted manuscripts for inclusion

in this Special Issue. The 10 papers that were published in this Special Issue represent a snapshot of

the ongoing research concerned with the integration of energy storage systems into modern electricity

distribution networks. A wide range of topics were covered in this special issue, including sizing

strategies, AC/DC microgrids, renewable energy communities, and ancillary services under high

penetrations of variable renewable energy sources.

A number of the published articles consider the strategies used to integrate energy storage

systems into microgrids. In particular, the authors have proposed strategies to develop

multiagent-based controllers, exact feedback linearization strategies, state of charge balancing, and

adaptive droop coefficient algorithms. Other articles demonstrate how energy storage could be

applied to specific case studies, including utility-scale deployment in islands, renewable energy

communities, and green hydrogen production systems supplied by photovoltaics. Finally, the articles

consider the sizing, methods of operation, and optimal operation of hybrid power plants (local

generation that includes energy storage) applied to islanded microgrids, coupled power markets,

and vehicle-to-grid (V2G) systems to build microgrids.

The articles in this Special Issue contribute to the body of knowledge by addressing the research

gaps and challenges related to the integration of energy storage systems into microgrids and modern

electricity distribution networks. Researchers, practitioners, policymakers, and other stakeholders

will find that this Special Issue is a valuable resource that can enable further advancements in this

field.

Alexander Micallef and Zhaoxia Xiao

Editors
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Review on Recent Strategies for Integrating Energy Storage
Systems in Microgrids
Ritu Kandari 1, Neeraj Neeraj 1 and Alexander Micallef 2,*
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Indira Gandhi Delhi Technical University for Women, Delhi 110006, India

2 Department of Industrial Electrical Power Conversion, University of Malta, MSD 2080 Msida, Malta
* Correspondence: alexander.micallef@um.edu.mt

Abstract: Energy security and the resilience of electricity networks have recently gained critical
momentum as subjects of research. The challenges of meeting the increasing electrical energy
demands and the decarbonisation efforts necessary to mitigate the effects of climate change have
highlighted the importance of microgrids for the effective integration of renewable energy sources.
Microgrids have been the focus of research for several years; however, there are still many unresolved
challenges that need to be addressed. Energy storage systems are essential elements that provide
reliability and stability in microgrids with high penetrations of renewable energy sources. This
study provides a systematic review of the recent developments in the control and management of
energy storage systems for microgrid applications. In the early sections, a summary of the microgrid
topologies and architectures found in the recent literature is given. The main contributions and
targeted applications by the energy storage systems in the microgrid applications is defined for
each scenario. As various types of energy storage systems are currently being integrated for the
reliable operation of the microgrids, the paper analyses the properties and limitations of the solutions
proposed in the recent literature. The review that was carried out shows that a hybrid energy storage
system performs better in terms of microgrid stability and reliability when compared to applications
that use a simple battery energy storage system. Therefore, a case study for a DC microgrid with a
hybrid energy storage system was modelled in MATLAB/Simulink. The presented results show the
advantages of hybrid energy storage systems in DC microgrids.

Keywords: distributed energy sources; energy storage; microgrids; hybrid energy storage system;
photovoltaic system

1. Introduction

A microgrid is an interconnected group of loads, energy storage systems (ESSs) and
distributed generators that can exchange power with the main grid through a single point
of common coupling (PCC) [1]. Microgrids (MGs) have the capability of working together
with the main grid, and as separate entities (i.e., as islands). Therefore, MGs can be deployed
to provide electricity in remote areas, thereby facilitating the generation, distribution, and
regulation of the power flow to the local consumers. MGs are being considered as one
of the key concepts that will enable the deployment of high penetrations of renewable
energy sources (RESs) in our electricity networks [2]. Amongst present and emerging
RESs, RES integration in MGs typically consists of technologies including photovoltaic (PV)
modules, small-capacity hydro units, ocean energy, and wind turbines. MGs can improve
the energy security and reliability of the local energy network through the integration of
complimentary distributed renewable sources. MGs are the key enablers for future smart
grids, which have the potential to transition the present, centralised electricity networks
into fully distributed architectures. MG architectures are categorised as alternating current
microgrid (ACMG), direct current microgrid (DCMG) and hybrid microgrid (HMG). The

Energies 2023, 16, 317. https://doi.org/10.3390/en16010317 https://www.mdpi.com/journal/energies
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HMG combines the advantages of the ACMG and DCMG architectures since the AC and
DC buses are interlinked by a power electronic converter.

Power generation from RESs is typically intermittent and variable as the output power
depends on the environmental conditions. Examples of this type of behaviour are the
fluctuations in PV generation due to cloud coverage and the variable output character-
istics of wind turbines. These uncertainties in RES generation can disrupt conventional
planning by utilities. Any large unplanned fluctuations in non-dispatchable generators
(i.e., RESs) can potentially affect the stability of the system [3–6]. Novel dispatch strategies
are essential to maintaining the balance between generation and demand in scenarios with
high penetrations of distributed RESs. Due to their hierarchical control architecture, MGs
can maintain the voltage, phase angle, and frequency changes under permissible levels
during fluctuations in RES generation. The hierarchical architecture enables the integration
and management of distributed energy storage technologies that can provide the required
additional reliability and energy security. High penetrations of distributed energy sources
also cause power imbalances in the LV distribution network and can affect the transient
stability. Local MG control strategies can maintain the voltage and frequency as stable,
thus providing a reliable electricity supply to consumers during all possible modes of
operation (islanded operation, grid-connected, and transitions between the two modes of
operation) [7]. It is also a known phenomenon that high penetrations of distributed energy
sources can also cause power imbalances, especially in cases where there are single-phase
residential prosumers [8].

The authors in [9] examine the impact of integrating a PV system, an ESS, and electric
vehicles into the distribution network of a campus. The authors applied an EMS to the
campus microgrid while considering future integrations of RESs. A linear optimisation
approach implemented in MATLAB was used to investigate the optimal PV and ESS
scenarios. Without the local PV system, the utility provided for the entire energy needs of
the campus under a time-of-use (ToU) tariff system. The integration of the PV and ESS,
determined from the linear optimisation approach, predicted a reduction of up to 44.80%
in the daily energy consumption costs. Investigations were also conducted into the effects
of additional local issues such as power outages.

In [10], the authors mapped the interval forecast data from a PV system to the solution
space with various weight assignment schemes for day-ahead optimisation. A thorough
case study was conducted that shows a significant increase in the hybrid vessel’s operational
flexibility. The dispatching system that was used in this study uses a multi-objective
function to schedule the ship operation in scenarios with competing objectives. The
operational cost is the main objective that is addressed by the optimisation scheme while
the degradation in the lifetime of the ESS is minimised.

Economic load dispatch was also proposed in [11] to meet the load demand while
reducing the overall operational costs by distributing power across several ESSs. In [11],
the authors propose a multi-agent consensus-distributed control strategy that was designed
to achieve multiple goals simultaneously. The multi-agent consensus-distributed control
strategy considers the frequency/voltage droop controllers and the BESSs’ hierarchical
control architecture. The presented results show that with this strategy, several BESSs
tracked the time-of-use-based pricing-generated SoC reference trajectories during a 24 h
period with a variable load. The multi-agent consensus strategy also distributes the load
active and reactive power, and simultaneously achieves frequency and voltage management
(using the leader-follower consensus approach). However, each BESS requires information
from nearby BESSs, in addition to the local information. The suggested communication
strategy includes plug-and-play functionality and robustness against communication-link
failure and transmission delays of up to 15 ms.

A mixed-integer, nonlinear programming model for PV-battery systems was proposed
by the authors in [12], which considers long-term battery deterioration. The main objective
was to minimise the lifecycle cost by using a novel two-layer optimisation method that
takes into account the self-consumption ratios, optimum battery capacity, and two types
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of tariff systems. The results showed that the battery degradation could cause an increase
in operational costs. By taking the battery degradation into account in the optimisation
strategy, the resulting battery capacities and lifecycle costs show a significant increase when
compared to the scenario without the battery degradation effects.

In [13], a methodology is created which enables the efficient and effective management
of the numerous measurements and uncertainties that come with renewable energy sources.
By characterizing the measured data by representative days, clustering algorithms were
employed to address these two problems. Historical data was used to reflect the specificities
of the considered grid. The architecture that was created can successfully govern across
various time horizons. HOMER Pro® (Boulder, CO 80301, USA) was employed for planning
purposes, while other pertinent indicators were gathered through a day-ahead optimal
scheduling tool. A case study shows that the proposed methodology can be used to identify
the best battery technology and DOD strategy. The selection criteria for the battery storage
were based on parameters such as the lifetime and annual operating costs of each battery
technology. Results for the specific case study have shown that, even though NiCd batteries
have the best operational costs, their profitability is limited due to their high fixed costs.
From an economic standpoint, Li-ion batteries have shown similar behaviour. On the other
hand, lead-acid and NaS batteries appeared to be profitable alternatives for the considered
microgrid. However, further studies on various microgrid and nanogrid configurations are
necessary in order to further corroborate these results.

The authors in [14] examined current research topics that are crucial for the planning,
control, and operation of campus microgrid architectures. Several approaches for different
types of campus microgrids were studied and compared. These campus microgrids were
investigated using a variety of optimisation methodologies, modelling tools, and energy
storage technology types. It was determined that different campus microgrids throughout
the world lack effective energy management strategies. Most of the evaluated campus
microgrids have outdated energy management methods as there have been several ad-
vancements in this field that can be deployed to further improve the energy management
of their systems.

In [15], the authors identify a trade-off between minimizing energy usage and maxi-
mizing user comfort caused by the existing scheduling systems’ disregard for user activities.
The trade-off between user comfort and electricity cost was alleviated by directly involving
user actions in a proposed load-optimisation technique. This trade-off was taken into
account, and optimisation models for various home appliances were designed and imple-
mented. An analysis of the simulation’s outcomes was performed in terms of occupancy,
cost, and energy-consumption reduction.

In [16], the authors discuss energy-efficient power grid technologies. A thorough
analysis was performed that takes into account the numerous difficulties in smart-grid
demand-side management. The authors propose that line planning and low-cost scheduling
make up the first two tiers of the demand-side load management architecture. Demand
response is at the third level and is a topic which has seen considerable research activity in
the past decade. This study investigates the viability of reprogramming consumer goods
under heavy loads and system overloads to meet distribution system requirements.

Energy storage systems (ESSs) are critical elements in MGs as these can allow the
effective integration of RESs with loads while maintaining transient stability and reliability.
ESSs in microgrids are flexible resources that can provide a range of functions, such
as grid resiliency (e.g., seamless transitions to/from islanded operations) and power-
quality mitigation (e.g., voltage regulation and harmonic compensation). There are a few
review papers that have been published in recent years that mainly discuss ESS sizing
strategies, hierarchical control of MGs, and the state of the art in ESS technologies. The main
contribution of the present study is to highlight the latest contributions in the literature on
the optimal integration of ESSs with a specific focus on microgrid applications.

The remainder of the paper is organised as follows: Section 2 gives an overview of
microgrid operating modes and architectures. Energy storage methods and their applica-
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tions are discussed in detail in Section 3. Section 4 provides a description and analysis of a
case study that considers the integration of a hybrid energy storage system (HESS) in a DC
microgrid. The conclusions of the paper are presented in Section 5.

2. Microgrid Operation Mode and Architectures

Microgrids can operate in grid-connected and islanded operation. A brief overview
of these two modes of operation now follows. A detailed description of these modes of
operation is widely available in the literature and is beyond the scope of this article.

2.1. Modes of Operation
2.1.1. Grid-Connected Operation

In this mode, the MG is connected to the main grid through a single PCC. The MG
exchanges power with the main grid depending upon the mismatch in the load power and
the power generated by the RESs. Any excess power generated by the RESs (i.e., when
the load demand is low, and the generation is high) can be used to charge the ESS. In
scenarios where the ESS is fully charged, any excess power generated within the microgrid
can be exported to the main grid. On the other hand, in case of partial shading or cloudy
conditions (i.e., when the generation is lower than the load demand), the load may be
supplied by the ESS, depending on the available SoC. When the ESS reaches its lower SoC
limit, the required power may be imported directly from the main grid. Hence, the RES,
ESS, and main grid need to work together to maintain the reliability and stability of the
microgrid. Hence, the power flow through a PCC can be bidirectional.

2.1.2. Islanded Mode of Operation

Faults occurring in the main grid may cause abnormal conditions at the PCC of the
microgrid. In this scenario, the microgrid can be isolated from the main grid and continue
to operate as an islanded microgrid. In this mode of operation, the local frequency and
voltage are regulated by the distributed RESs (e.g., wind and solar PV) and ESSs [17]. In this
mode, ESSs are critical elements of the MGs that can maintain the energy balance, minimise
power fluctuations, and improve the reliability and system efficiency [18]. The ESSs absorb
excess RES generation when the generation exceeds the demand. The ESSs can be used
to supply power to the MG in periods where the demand exceeds the local generation.
This minimises any instances where RES power curtailment and/or load shedding should
be carried out. In addition, ESSs can also be used to improve the voltage and frequency
regulation of the islanded microgrid.

2.2. Microgrid Architectures

As described in an earlier section, MG architectures can be categorised into ACMGs,
DCMGs, and HMGs. This section provides a brief overview of the main characteristics of
each architecture.

2.2.1. AC Microgrids (ACMGs)

In ACMGs, the local RESs, ESSs, and loads are all connected to a common AC bus.
Any DC generating units (e.g., PV panels) and ESSs (e.g., batteries) must connect to the
common AC bus through dedicated DC-to-AC inverters [19]. The control and management
of ACMGs is difficult due to the presence of critical and non-critical loads that require
harmonic currents [20]. In ACMGs, harmonic suppression is achieved either by the in-
troduction of passive/active filters or through the addition of special functionality in the
primary control loops of the power electronic converters in the microgrid. While AC
microgrids can be easily integrated into the main grid, re-synchronisation of the ACMG
with the main grid is complex. Synchronisation of the MG involves matching the voltage
amplitude, frequency, and phase at the PCC with that of the main grid. In the literature,
there are three main AC distribution architectures for microgrids, namely, single-phase,
three-phase with neutral, and three-phase without neutral.
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2.2.2. DC Microgrids (DCMGs)

In these MGs, the local RES generation, ESSs, and loads are connected to a common DC
bus. Any AC sources and loads must be connected to the common bus through dedicated
AC-to-DC passive/active rectifiers. In the literature, one can find three main types of
DC microgrids: monopolar, bipolar, and homopolar distribution systems. A monopolar
DC grid consists of a two-wire distribution system, between which the DC bus voltage
is defined. On the other hand, the bipolar and homopolar DC grids are three-wire DC
distribution systems. In addition to the ground return conductor, the bipolar DC grid has
two low-voltage conductors with different polarities, while the homopolar DC grid has two
low-voltage conductors with the same voltage polarity. DCMGs have several advantages
over their AC counterparts. These include greater reliability, higher efficiency (fewer power
electronic converters), and improved stability. DC microgrids have been recently employed
in special applications, such as shipboard microgrids, EVs, and telecommunication systems.
However, the main limitation of DC microgrids is the complexity and high cost of the
protection system when compared to AC microgrids [21].

2.2.3. Hybrid Microgrids (HMGs)

In HMGs, the AC sources and loads are connected to the AC bus, while DC sources
and DC loads are connected to the DC bus. HMGs have the advantages of both ACMGs and
DCMGs, and they result in fewer power conversion stages since these can simultaneously
support both AC and DC sources/loads. The AC and DC sub-grids are interconnected via
a bidirectional interlinking converter. This converter is the most important part of the HMG
as it manages and coordinates the power flow between and within the sub-grids. The HMG
uses a transformer to convert voltage on the AC side and a DC–DC converter for voltage
conversion on the DC side [21,22]. Depending upon the load requirement and the condition
of main grid, HMGs can also be made to work in grid-connected or islanded mode.

3. Recent Microgrid Architectures and Applications

Table 1 summarises the applications and main contributions described in the recent
literature on microgrids that include ESSs. The remainder of this section provides a detailed
review of the work carried out in these articles.

The authors in [23] performed an extensive review on the integration of RES with the
main grid, while focusing on commercial applications. This study has shown that the role
of ESSs in microgrids becomes crucial to ensure the continuous power supply to the loads
due of the intermittent nature of the RES. In addition, the authors also provide a detailed
analysis for the design of microgrids for commercial applications, with a specific focus on
reliability criteria. Hybrid energy storage systems (HESSs) were proposed by the authors
so as to benefit from the advantages of the combined types of ESSs. In [24], a HESS was
used to overcome the inherent limitations of individual ESSs and thus achieve reliable
storage solutions. A centralised control strategy is used with the conventional method for
managing the HESS, whereby a filter-based technique is typically used. Both centralised
and distributed control strategies were evaluated by the authors in order to improve the
reliability of the ESS. Independent SoC recovery was performed to maintain the SoC of the
HESS within the permissible limits.

An intelligent-control strategy aimed at scheduling the power purchasing in a mi-
crogrid consisting of wind turbines and BESSs was described in [25]. A carbon tax was
also proposed by the authors to complement the RES generation since this would result in
additional reductions in the dependency on fossil fuels. Quantum-based particle swarm
optimisation was applied to a number of case studies to improve performance. The op-
timisation strategy was aimed at minimizing the generation cost while ensuring that the
RES generation was used to the maximum and was increased using the optimisation and
control technique. The authors in [26] proposed a self-sustainable microgrid architecture
that can work with minimal dependence on the utility grid. BESSs were used to support
the microgrid in the absence of the main grid. The sizing strategy for the BESS was based
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on minimizing the tie line flow from the utility grid. The test microgrid and control scheme
were successfully implemented in a region in Thailand, and measures regarding the ways
this strategy can be applied to other similar regions were also provided.

Table 1. Categorisation of recent microgrid publications, including ESSs, available in the literature.

MG Configuration Regulatory Control Mode of Operation Application Contribution Year Reference

DC Distributed Grid connected Commercial Reliability 2020 [23]

DC Centralised Grid connected Industrial
Enhances system reliability,
voltage regulation, and SoC

recovery
2015 [24]

DC Distributed Grid connected Commercial Reduces the generating cost and
enhances the power capacity 2015 [25]

DC Distributed Autonomous Commercial BESS sizing for system reliability 2015 [26]

AC Distributed Grid connected Industrial
Power losses and battery sizing

are strategies for economic
benefits of the microgrid

2017 [27]

DC Distributed Grid connected Residential Battery life and reduction of the
voltage fluctuations 2017 [28]

AC Distributed Grid connected Commercial Optimal sizing of the ESS,
enhances the battery life 2017 [29]

DC Distributed Autonomous Residential
Cost of BESS is highlighted for
reducing overvoltages, energy

loss, and emissions
2018 [30]

DC Distributed Autonomous Commercial
System reliability, reduction of
energy costs using intelligent

techniques
2018 [31]

DC Distributed Grid connected Commercial Energy cost is analysed for
efficient BESS operation 2017 [32]

DC, AC May be applied to al May be applied to all May be
applied to all

Cost and capacity of the ESS to
reduce the peak-load demand 2019 [33]

DC, AC Centralised Autonomous Commercial Power loss and cost minimisation
of the ESS 2017 [34]

DC Decentralised Autonomous Industrial Cost and sizing of the storage
system 2019 [35]

DC, AC Decentralised Grid connected Industrial Cost, capacity, and sizing of ESS 2017 [36]

AC Centralised Grid Connected Commercial Operation and sizing of an ESS for
a windfarm 2020 [37]

Hybrid Decentralised Both Household Cost 2020 [38]

DC, AC Decentralised Autonomous Residential
Hybrid power system; limit the
power and energy for efficient

ESS operation
2021 [39]

DC, AC Grid connected Autonomous Commercial
Two control techniques are

proposed for the charging and
discharging of ESSs

2021 [40]

DC Decentralised Both Commercial
An ESS is integrated with a

microgrid for reliability in normal
and abnormal conditions

2021 [41]

DC, AC Centralised Both Industrial Hybrid ESS for resilient microgrid
operation 2022 [42]

DC Centralised Grid connected Residential Intelligent method for estimating
the battery SoC 2021 [43]

DC Centralised Autonomous Commercial

Hybrid energy storage approach
is used to minimise the operating
cost in the microgrid system and

minimise waste energy

2021 [44]

The authors in [27] propose an optimisation strategy that serves two purposes: min-
imising the cost and minimising the power losses. Traditionally, there is a trade-off between
these two objectives. Hence, a fuzzy logic strategy was proposed by the authors in order to
reach the optimal solution. A cost-efficient model was proposed to determine the optimal
size and location of the ESS units. Demand response was used for the load management,
where the peak loads were shifted to off-peak periods. The optimal siting of the BESS for
voltage-balancing applications in grid-connected microgrids with high penetrations of RESs
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was explored in [28]. A genetic algorithm-based optimisation technique was utilised for
voltage-deviation mitigation while considering the maximisation of the battery lifetime. A
qualitative cost model was designed to minimise the overall cost of the system. In addition,
a sensitivity analysis was performed for varying costs.

Intelligent methods were applied in [29] for the optimal sizing of the ESS while
maximising the battery life by avoiding overuse. The CAPEX of BESSs is highlighted in [30]
in applications that target the reduction of overvoltages, energy losses, and emissions.
Intelligent techniques were applied in [31] to reduce the cost and improve the reliability of
the system. The authors in [32] analyses the energy costs by effectively utilising the BESS.
Cost and capacity of the ESS are highlighted, and a reduced peak-load demand is achieved
in [33]. Power loss and the cost of the ESS is discussed in [34] for hybrid microgrids using
a centralised control scheme. The cost and capacity of the ESS is analysed in [35] for a
DC microgrid.

Optimal sizing and cost of the ESS are considered in [36] for a hybrid microgrid.
Charging and discharging strategies for a storage system used in a microgrid that includes
a wind farm are discussed in [37]. The proposed system explores the most economical ESS
for a wind-based microgrid. The cost and charging and discharging patterns of the ESS
are discussed in [38] for a hybrid microgrid. The system was found to be environmentally
friendly. The hybrid power system based on different scenarios was compared in [39]. The
limits of the power and energy for efficient ESSs are also discussed and analysed. Two
control strategies were applied to regulate the unbalanced power in the microgrid and to
control the charging/ discharging of the storage system in [40]. The authors in [41] propose
an ESS integrated in a microgrid for reliable system operation by balancing demand and
supply in normal and abnormal conditions. The authors in [42] propose a hybrid ESS for
improving the resiliency of microgrids. The authors in [43] use an intelligent method for
estimating the SoC of a battery in a microgrid system. A hybrid energy storage approach
is used to minimise the operating cost in the microgrid system and minimise the waste
energy in [44].

3.1. Energy Storage Systems for Microgrid Prosumers

With the integration of renewable energy generation into the existing power system,
many users are becoming prosumers by playing the combined roles of producer and
consumer. The main grid may be negatively impacted by the huge amount of PV and WT
feed-in; the feed-in pricing is substantially lower than the retail pricing to entice prosumers
to use RES. Prosumers must also deal with inconsistency in the load demand and the
unpredictability of the RES output. All of these requirements have led to a pressing demand
for prosumer energy storage resources. The broad use of personal energy storage systems
is hampered by the high investment cost, and in many cases, it is still not economical for
the prosumers to install their own storage systems. Community ESSs for the shared use of
prosumers is a workable solution to the issue [45]. Consumers who use community-scale
ESSs have a distinct financial advantage over all other consumers who use personal energy
storage systems. Many studies have recently concentrated on the energy exchange between
prosumers and community ESSs. For instance, the authors in [46] developed a two-stage
paradigm for CESSs and prosumers to share energy storage, in which community ESSs
determine the price of virtual storage capacity in the first stage, and prosumers determine
capacity and charging/discharging power in the second stage. In [47], a revised two-stage
approach for shared energy storage is introduced. A distributed energy capacity trade and
operation game proposed in [48] allows consumers to choose capacity bidding actions and
day-ahead charging and discharging routines.

3.2. Machine Learning in the Energy Management System of Microgrids

The electric power system is undergoing a drastic modernisation process, which is
being driven by the most recent developments and implementations of smart-grid tech-
nologies. Microgrids are a crucial component of the modernisation of electricity networks
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because they offer a flexible means of integrating distributed RESs into the electrical grid.
Distributed RESs, like solar and wind, can, nevertheless, be quite unpredictable and in-
termittent. It is challenging to properly operate an MG because of these erratic resources,
load demand, and the random variations on the supply and demand sides. Many studies
have been performed to address this issue and provide energy management strategies for
the real-time scheduling of an MG, taking into account the adequacy of renewable energy,
electricity prices, and load demand uncertainty [49]. In [50], a learning-based solution
is provided which does not require an explicit model of the uncertainty, in contrast to
traditional model-based approaches that call for a predictor to estimate the uncertainty. The
goal of energy management is to reduce the daily running costs using a Markov decision
process [51]. A deep reinforcement learning strategy was devised to resolve the Markov
decision process. The deep Q-network algorithm was used to train the neural network
in the deep reinforcement learning approach, which uses a deep feedforward neural net-
work to approximate the ideal action-value function [52,53]. The necessity of an explicit
system model and a predictor to manage the uncertainty can be relaxed by learning-based
approaches. The MG is treated as a mysterious black box, and by interacting with it, they
develop an almost ideal strategy. Deep reinforcement learning techniques were suggested
as potential solutions to the issues a few years ago by the machine learning community.
DRL methods use deep neural networks’ end-to-end learning capabilities to circumvent
the difficulty of learning from high-dimensional state inputs. A deep learning architecture
based on a convolutional neural network (CNN) was developed to extract knowledge from
historical time series of energy consumption and PV generation.

4. Energy Storage Methods

ESSs play a crucial role in microgrids, and various types of ESS technologies have been
considered in the literature. Figure 1 shows abroad classification of ESSs that encompasses
many technologies into six main categories. Table 2 lists the different energy storage
methods and outlines their main benefits and their disadvantages.
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Table 2. Advantages and Disadvantages of available energy storage technologies.

Type of ESS Advantages Disadvantages Reference

Flywheel-based
Environmentally friendly, efficient
system, power density is high, low
maintenance cost, longer lifespan

Large capital investment, high
self-discharge rate, low energy density [54–56]

Compressed-air-based
Peak shaving performance, provides

better control, better quality of air, more
stable, smoothened power

Implementation is difficult as
appropriate geographical regions needs
to be chosen, large capital investment,

water loss

[57,58]

Gravity-based
Difference in elevation is not an issue,

can be coupled with high-voltage
transmission system easily

Capacity of storage system needs to be
high, bigger in size, shorter lifetimes [59,60]

Electrochemical Low losses, different sizes are available Uneconomical, Low energy density,
shorter lifespan, requires maintenance [61,62]

Battery
Enables better utilisation of DGs,

reliable in grid-connected as well as
islanded mode, Provides better control

Shorter lifespan, high maintenance
required, SoC limits needs to be

maintained
[63–65]

Thermal Economical, environmentally friendly,
rate of self-discharge is low

Temperature needs to be varied for the
energy to be stored, unpredictable

lifespan, capacity of storage system
needs to be high

[66–68]

Chemical High duration of energy storage, high
storage capability

High energy losses, high cost high, low
energy density, maintenance is required [69,70]

Electrical Better power quality, better response
during peak hours, high power density Uneconomical, high self-discharge rate [63,71]

Hybrid

HESS has high energy density and
power density because of the presence
of both BESS and SC both, their energy
storage capability is also high, making

the system more reliable and stable

HESS has high energy density and
power density because of the presence

of both BESS and SC, their energy
storage capability is also high, making

the system more reliable and stable

[72–74]

Hydrogen-based High energy density, independent
charge/discharge rate relatively low round-trip efficiency [75,76]

4.1. Mechanical Energy Storage Systems

Mechanical ESSs encompass technologies such as pumped hydro, compressed air
and gravity storage devices. The flywheel-based ESS is a robust and efficient method
to store electrical energy as kinetic energy in a rotating mass with low frictional losses.
Flywheel-based ESSs have low maintenance costs that result in long lifecycles but have very
high capital costs. These storage systems are mainly suitable for enhancing the transient
stability of microgrids due to their fast repost times. These storage systems typically have
high power densities and low energy densities, which limits their flexibility. Thus, this ESS
is not ideal for microgrid energy storage applications [54–56].

4.2. Compressed-Air Energy Storage Systems

The compressed-air ESS (CAESS) is a technically mature storage technology in which
electricity is stored as compressed air that can be used when required. CAESSs can be
built for small-scale and large-scale applications as backup power systems. CAESSs can
be used for black start applications and peak shaving; however, their moderate-to-long
time constants and spatial constraints (due to the storage tank) limits their widespread
application in microgrid systems. Large-scale deployments also require significant capital
investments, and the siting of a CAESS is not a trivial task [57,58].

4.3. Gravity-Based Energy Storage Systems

A gravity-based ESS (GESS) is a new solution for large-scale energy storage in which
energy is stored as potential energy by the hydraulic lifting of a large mass. It can be coupled
with a high-voltage transmission system easily but has a shorter lifespan. The authors
in [59,60] examine and survey current gravity-based energy storage technologies. This
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storage method provides the means for high-capacity energy storage as well as a pollution-
free, cost-effective, and extended lifespan. GESSs have quite a significant potential and
could be employed in the future to reserve sustainable power to complement existing large-
scale energy storage solutions. However, a significant number of studies and innovations
must be performed to put these systems into practise and make them interoperable with
other ESSs.

4.4. Electrochemical Energy Storage Systems

Secondary batteries, supercapacitors (SC), and fuel cells (FC) fall into the category
of electrochemical energy storage. Batteries use an electrochemical reduction reaction to
transform the chemical energy found in their active components into electric energy. SCs
are high power density devices with time ranges from seconds to minutes as only the
electrode surface of material is used, unlike in BESSs and FCs. Electrochemical ESSs have
low losses and are available in different sizes [61,62].

4.5. Battery Energy Storage Systems

The battery-based energy storage system (BESS) is a reliable type of electrochemical
energy storage which enables better utilisation of distributed generation. If necessary,
the battery discharges to supply local loads. The most common technologies that are
available on the market for BESSs include lithium-ion, lead-acid, nickel–cadmium, and
nickel–metal hydride. Each battery type has unique performance details that define BESS
implementations and impact the efficiency of the BESS. The SoC of a battery-based ESS
needs to be maintained, otherwise it directly affects the battery’s lifetime. It provides better
control but requires more maintenance [63–65]. Peak shaving, flexibility, and load shifting
are the main advantages of BESSs.

4.6. Thermal Energy Storage Systems

Each year, renewable energy makes up more of the total energy produced throughout
the world. Apart from hydroelectric energy, renewable energy sources, such as solar energy
and wind energy are among the most used. Due to being intermittent energy sources,
they cannot be utilised to their full potential yet. The sun does not always shine, and the
wind is not always blowing. If this intermittent energy can be stored, it can be employed
even during times when the sources are not actively providing energy. Thermal energy
storage is a viable solution. It can be described as storing energy as heat or cold in a storage
medium to be used later. Thermal energy storage’s main use is to overcome the imbalance
between energy generation and energy use. A few essential requirements for an effective
thermal energy storage system are a storage material with a high energy density, very good
insulation to ensure minimal heat loss, a storage material that is chemically stable, and a
completely reversible process that can be repeated numerous times. There are three main
types of thermal energy storage systems: sensible heat storage, dealing with a mild increase
or decrease in the temperature of a storage material; latent heat storage, which involves the
phase change of a storage material; and thermochemical energy storage, where a reversible
chemical reaction with high energy involved is used to store energy. The main limitation
of these systems is that the change in temperature required for the energy to be stored. A
thermal ESS is an economical and environmentally friendly way to store energy that has a
low self-discharge rate and a high storage capacity [66–68].

4.7. Chemical Energy Storage Systems

A chemical ESS has high storage capability but low energy density. Their cost is usually
high, and the losses are even greater. More maintenance is required for such systems [69,70].
Electrical ESSs provides high power density and better power quality. They show a better
response during peak hours, but their self-discharge rate is very high [63,71]. Hybrid ESSs
area reliable and stable solution to these problems as they have high energy density as
well as high power density due to the presence of both BESSs and supercapacitors. Their
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energy storage capability is also high. The drawback is that their control is comparatively
complex [72–74]. Figure 2 summarises the main applications of ESSs from small-scale
systems to large-scale systems.
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4.8. ESS Integration in Microgrids: Research Gaps

Table 3 summarises the main contributions to the field of ESS integration in microgrids
by recent studies, together with the identified research gaps. A thorough review of energy
storage methods and their respective analyses are discussed in [77]. However, the short-
comings of battery ESSs and their optimisation approaches were not considered in that
work. In [78], a comprehensive review of energy-storage-based applications was performed.
The drawbacks with respect to the degradation in the battery lifetime were discussed, but
no solutions were provided to maximise the expected lifetime of the ESS. In [79], PID-
and ANN-based control methods for frequency control in an ESS are discussed. Their
results showed that the ANN-based methods show better performance, and PID controllers
have certain limitations. The stability of a microgrid with high penetrations of renewable
energy sources was improved in [40] by the introduction of complex controllers designed to
regulate the SoC of the ESSs. Different sizing methods for battery ESSs are discussed in [80].
However, only a few of the considered optimisation methods are considered in sufficient
detail to benefit academic and industrial applications. A battery’s lifetime depends on its
operational conditions [81], with the developed model identifying and including the main
variables in the degradation process of lithium-ion batteries in V2G applications.

Table 3. Energy Storage Methods and research gaps.

Proposed Research Research Gaps Year Reference

Control techniques are used to
reduce the instability of a microgrid

during the huge integration of
renewable energy sources in load

consumption

The numbers of controllers are
designed to regulate the SoC

conditions.
2021 [40]

Microgrid network, which predicts
the uncertainties using deep

learning techniques for efficient
energy management

The sample batch size is reduced,
which impacts the performance of

the system.
2019 [49]
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Table 3. Cont.

Proposed Research Research Gaps Year Reference

Detailed techniques for battery life and SoC
condition

The bus voltage is not considered, and
battery SoC shows minor fluctuations. 2017 [74]

A thorough explanation of ES methods and
their applications

For BESS techniques, the difficulties and
problems are not discussed. The optimisation

approaches are also not provided.
2016 [77]

Energy-storage-based applications are
discussed in detail

The issues related to batteries’ life cycles are
identified, but solutions are not suggested. 2017 [78]

PID- and ANN-based control methods are
discussed for frequency control

The ANN-based methods show excellent
results, but the PID methods have some

limitations
2020 [79]

Different sizing methods of BESSs for
renewable energy systems

Details of the optimisation approach for
sizing BESSs is limited to a few approaches. 2017 [80]

BESSs are delivered based on a confined
forecast horizon of uncertainties and bound

by the SoC constraints

The present BESS dispatch decisions can be
appropriate for the current period but not for

day-ahead planning.
2016 [81]

A two-stage coordinated technique is
introduced to reduce operational costs

Energy losses, uncertainties, and real-time
electricity prices are not considered. 2020 [82]

Charging and discharging among different
microgrid networks

The real-time connections failed in some
microgrid networks. 2015 [83]

A rule-based controller is used to reduce the
annual cost and save the operational cost of

ESSs
This method is limited to one ESS. 2020 [84]

Performance optimisation of residents in
multi-microgrid networks

All four MPC techniques have their
drawbacks in terms of size and

communication channels.
2015 [85]

Deep learning techniques for energy
management, cost reduction, and energy

savings

This work lacks accuracy. So, more feasibility
is required. 2021 [86]

PV-battery system for residential loads.
Battery scheduling and electricity cost

reduction are considered
This research is restricted to one consumer. 2021 [87]

Various decision-making approaches in
microgrids are discussed

The related works do not involve the sizing
of batteries and optimisation methods. 2019 [88]

Deep learning techniques are implemented
for microgrid network hybrids

Time-based(day/hour) consumption does
not distinguish between day and night. 2021 [89]

Application and principles of lead-acid
batteries are discussed for different countries

The battery sizing and optimisation
approaches are not included. It is only

focused on lead-acid batteries.
2018 [90]

Smart homes have reduced energy costs and
temperature fluctuations for energy

management

Energy cost and temperature variations are
effectively discussed but show the variations

in grid parameters’ performance.
2019 [91]

Energy sizing techniques for decarbonisation The attributes are not discussed clearly. 2020 [92]

Categorised into four parts: electrical,
mechanical, thermal, and chemical

Sizing and optimisation methods are not
included. 2021 [93]

A two-stage coordinated technique was introduced in [82] to reduce the operational
costs in microgrids. However, energy losses, uncertainties, and real-time electricity prices
were not considered in the two-stage coordination technique, thereby limiting its practical-
ity. Control techniques were proposed in [74] to control the SoC and improve the battery
lifetime. However, minor fluctuations can still be observed in SoC conditions using the
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proposed technique. In [83], model predictive charging and discharging of energy storage
was used to schedule the power exchanges between microgrid clusters. The proposed
cooperation among grids shares similar limitations with centralised architectures when it
comes to the failure of real-time communication. A rule-based controller was used in [84]
to reduce the annual costs and reduce the operational cost of the ESS. The main draw-
back of this controller is that it is limited to only one ESS. The performance of residential
ESSs in multi-microgrid networks was also considered by the authors in [85]. All four
MPC techniques have their drawbacks in terms of size and communication channel. Deep
learning techniques were proposed in [86] to deal with network complexity for the better
energy management, cost reduction, and energy saving of a TESS. However, there are still
numerous challenges that need to be addressed before deep learning techniques can find
their way into the consumer market. The authors in [87] deal with battery scheduling and
electricity cost-reduction for a hybrid PV-battery system in a residential setting. However,
this research was restricted to one consumer, thereby limiting its applicability. The predic-
tion of uncertainties using deep learning techniques for the efficient energy management
of microgrids is considered in [49]. The sample batch size is small, which impacts the per-
formance of the system. Various decision-making approaches are discussed in [88] for the
integration of BESSs within microgrids. The related works do not involve the sizing of bat-
teries or optimisation methods. Deep learning techniques are also implemented in [89] for
hybrid microgrid networks. The time-based (day/hour) consumption, however, does not
distinguish between day and night. May et al. [90] discuss the properties and applications
of lead-acid batteries for utility-scale applications based on the operational experiences
of different countries. However, the study does not describe battery sizing and optimisa-
tion approaches. Smart homes have reduced energy costs and temperature fluctuations
for energy management [91]. The energy cost and temperature variations are effectively
discussed but show the variations in grid parameters’ performance. The grid-connected
and standalone modes of operation are discussed in [92] for energy sizing techniques for
decarbonisation. It is categorised into four parts, such as electrical, mechanical, thermal,
and chemical [93]. The sizing and optimisation methods are not included.

Table 4 shows the comparative study of different approaches for the integration of
ESSs into microgrids. The authors in [23] discuss a microgrid consisting of a PV and a BESS
for smart grid applications. The exergy principle was applied in [94] for multiple energy
sources with different energy levels and qualities. Using a multi-objective optimisation
technique, the overall efficiency of the system was found to be improved, while the energy
cost was reduced. Branch-and-cut was utilised to combat the trade-off between the cost
and exergy objective functions. The proposed technique ensures minimum economic
cost and improved efficiency. A comprehensive review of optimal energy management
techniques was performed in [95]. Power flow stability was discussed for a complex power
system consisting of utility grid, DER, ESS, DC loads, etc. Intelligent energy management
technologies utilising optimisation approaches were discussed for coordination in the
power flow of the smart grid. The smart grid ensures resilient and reliable demand and
supply management. The energy internet was found to be a novel approach for a multi-
energy system in a microgrid. A multi-level HESS topology and novel energy management
scheme was proposed in [96] to improve battery life. A comparison of various HESS
approaches was also performed by the authors. The system was found to be technically and
financially viable when compared to existing ESSs. The life of an ESS is improved while
the operational cost is minimised using the proposed technique. A novel coordination
control algorithm is introduced in [97] for the control of voltage and frequency within the
permissible limits. A BESS is connected to the microgrid to improve the efficiency and
power quality of the system. The BESS is controlled by the main control centre, which
controls the charging and discharging of the BESS. BESSs are divided into master BESSs
and slave BESSs, depending upon their capacities. The BESS with a larger capacity, i.e., the
master BESS, contributes to the charging/discharging process first. When the SoC limits of
the master BESS are reached, the control centre sends a signal to the slave BESS to serve
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the purpose. Lesser deviations in voltage and frequency are obtained as compared to the
on-load tap-changer technique.

Table 4. Comparative study of different approaches for energy storage system integration with
the microgrid.

Storage Type Renewable Energy Type Highlights Year Reference

BESS PV Smart grid storage application, 2020 [23]

BESS Hybrid Energy cost is reduced, overall energy
efficiency is improved 2015 [94]

ESS Hybrid Optimal energy management, reducing
energy cost 2019 [95]

HESS PV
Energy management, minimising the

energy cost, comparison of HESS
approaches

2017 [96]

BESS RES is not included
Voltage and frequency control, central

control of BESS, novel coordination control
algorithm is introduced

2015 [97]

BESS PV Voltage and SoC control, local ESS
controller is used. 2014 [98]

HESS PV
ESS is centralised control, active

distribution network is considered,
IEEE-34 test feeder

2014 [99]

BESS PV
Coordination control to manage the

charging and discharging conditions,
implemented on are al dataset

2018 [100]

BESS PV Predictive control methods used for
managing the energy storage condition 2018 [101]

HESS PV
Droop control and LPF is used to control
the battery conditions, communication

traffic is minimised
2021 [102]

HESS PV

Designed an energy management system
to increase the performance of the

optimisation approaches used in the
control scheme

2021 [103]

HESS PV
Augmented filters used to increase the life

of the battery; PI controller is used to
control the reference current of the battery

2021 [104]

HESS PV
Hybrid optimisation approach is used for
energy management and battery sizing,

predictive control method is implemented
2021 [105]

HESS Hybrid
Reviews the energy storage approaches
and applications for hybrid renewable

power system
2022 [106]

The PV feed-in tariffs are lower than the utility grid electricity consumption rates in
countries such as Germany. Hence, PV plants with ESSs are emerging in such locations. With
high penetrations of PVs into the power system, the voltage tends to increase since the peak of
the PV generation and the peak electricity demand do not coincide. Self-consumption does
not necessarily imply an advantage for distribution networks with significant PV penetration.
Voltage control techniques also need to be applied in such microgrids in addition to self-
consumption strategies. The local PV storage control achieved in [98] ensures reactive power
compensation and PV power curtailment, while managing the BESS charging, depending on
the voltage. Grid simulations and an economic evaluation are used to determine their capacity
to facilitate PV–grid integration while boosting self-consumption.

A coordinated control scheme was designed in [99] to regulate the charging/discharging
of BESSs. By combining the local droop-based control method with a distributed control
scheme, the voltage can be maintained within the permissible levels. Two distinct consensus
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algorithms were used. The first algorithm is employed to assess the BESSs’ ability to participate
in terms of their installed capacity, while the second algorithm basically performs voltage
control. The latter adjusts the SoC of the BESSs to avoid over-charging/discharging of the
BESS, thereby ensuring that the BESS is utilised effectively for various scenarios. The predictive
control method was used to manage the energy storage units in [100] for a microgrid with a PV
and a BESS. Droop control is used to control the battery SoC in [101] in a microgrid with PV
and HESS. The advantage of this proposed algorithm is that the communication traffic is also
minimised. In [102], an augmented filter was used to increase the lifetime of the battery, while
a PI controller was used to control the reference current of the battery. A hybrid optimisation
approach was used for the energy management and the battery sizing in [103]. The predictive
control method was implemented for proper energy management. An extensive review of
the energy storage approaches and applications for hybrid renewable power systems was
performed in [104].

5. Case Study

A standalone microgrid with an energy storage system is an attractive alternative for
remote electrification. Since BESSs have a short lifespan, they are unreliable and expensive
to operate as the predominant solution for sustainable microgrids. In an effort to extend the
lifetime of a BESS, the hybridisation of the ESS by combining elements with complimentary
characteristics and their associated energy management strategies was investigated.

A MATLAB/Simulink model of a test microgrid was developed to evaluate the effec-
tiveness of a HESS for accurate power sharing and voltage-deviation mitigation in dynamic
power-exchange scenarios. The schematic diagram of the small-scale test standalone DC
microgrid simulated in MATLAB/Simulink is presented in Figure 3. The test microgrid
is composed of a PV source, a battery, a supercapacitor, and a load. A 120 W PV source is
interfaced with the DC bus using a DC/DC boost converter, which implements a perturb-
and observe-based MPPT technique. A 24 V, 14 Ah lithium-ion battery pack having an ini-
tial SoC of 50% and a 32 V, 29 F supercapacitor were connected to the DC bus through their
respective bidirectional DC/DC converters. Tables 5–7 show the parameters of the PV, SC,
and BESS, respectively. It can be observed that, for the varying power scenarios, the HESS
supports the system such that the load is served all the time. It can further be observed that
the DC-link voltage is maintained at a constant value, except for the negligible fluctuations
during a change in PV power. These fluctuations during transients are minimised by the
action of the SC, while the BESS maintains this DC-link voltage during a steady state.

Energy management in the microgrid is achieved by ensuring adequate coordination
between the BESS and the SC. The PV was implemented with maximum power point
tracking (MPPT) mode, using the well-known perturb and observe technique. The duty
cycle is maintained depending on the SoC of the BESS and the deviation of the voltage
from the reference value (50 V). Switching signals are sent to the boost converter interfacing
the PV with the DC bus.

The DC-link voltage and reference voltage are compared, and the error signal is fed
to the PI controller. This PI controller generates the reference current for the BESS. Now,
the battery current reference is compared with the measured battery current, and their
difference is fed to the PI controller. The output of the PI controller is sent to the PWM
generator, which sends switching signals to switches S1 andS2 of the DC/DC bidirectional
buck–boost controller, which in turn controls the charging and discharging process of the
BESS. If the generation is more than the demand, a rise in voltage is observed, and the
BESS works in buck mode. On the other hand, when a dip in voltage is observed, the BESS
works on boost mode and supports the load. Hence, energy management is achieved while
maintaining the DC-link voltage at its reference value [107].
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Table 5. PV parameters used.

S. No. Parameter Value

1 Maximum power (W) 120.7
2 Cells per module (Ncell) 72
3 Open circuit voltage (V) 21
4 Short-circuit current (A) 8
5 Voltage at maximum power point (V) 17
6 Parallel strings 4
7 Series-connected modules per string 2
8 Operating temperature (Celsius) 25

Table 6. Supercapacitor parameters used.

S. No. Parameter Value

1 Rated capacitance (F) 29
2 Equivalent DC series resistance (ohms) 0.003
3 Rated voltage (V) 32
4 Number of series capacitors 1
5 Number of parallel capacitors 1
6 Initial voltage (V) 32
7 Operating temperature (Celsius) 25

The battery reference current and error signal of the voltage generates the SC current
reference signal. The SC current reference signal is compared with the SC current, and
the error signal is sent to the PI controller. The output of the PI controller is converted
to switching signals by the PWM generator. The switching signals are sent to switches
S3 andS4 of the DC/DC bidirectional converter connecting the SC and the DC bus. The
BESS controls the DC-link voltage during the steady state, while the SC participates in the
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process during transients. A moving average and low-pass filter are utilised for the power
allocation so as to remove the low frequency element and reduce BESS stresses.

Table 7. Battery parameters used.

S. No. Parameter Value

1 Type Lithium-ion
2 Nominal voltage (V) 24
3 Rated capacity (Ah) 14
4 Initial SoC (%) 50
5 Battery response time (s) 0.1
6 Maximum capacity (Ah) 14
7 Cut-off voltage (V) 18
8 Fully charged voltage (V) 27.93
9 Nominal discharge current(A) 6.087
10 Internal resistance (ohms) 0.0171
11 Capacity at nominal voltage (V) 12.66

Figure 4 shows the output PV power for the considered case scenario. Initially, the
PV power is increased to 900 W as per the irradiance. At 1.2 s, the PV power is dropped to
400 W. The microgrid serves a constant load of 500 W. Since the PV generation is reduced
to less than the load at 1.2 s, PV power is not sufficient to serve the load. Then, the transient
supercapacitor comes into action and makes it stable. The supercapacitor power can be
observed in Figure 5. The SoC of the SC is shown in Figure 6. It can be observed that,
since the supercapacitor works only during the transient, the supercapacitor SoC drops
considerably at 1.2 s, which further remains constant.
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Figure 4. Variations in PV output power with time. The PV power is initially set to 900 W while at
1.2 s the PV power reduces to 400 W.

Figure 7 shows the battery charging and discharging power characteristics for the
considered case study. It can be observed that the battery is charging initially until the
time that the PV power is more than the load power. However, at 1.2s, the battery starts
discharging itself to support the load by providing the deficit amount of power to the load.
Variations in battery SoC can be observed in Figure 8. Since the battery is initially charged
by the excess amount of power generated by the PV, the battery SoC can be seen to increase,
while, after 1.2s, the battery starts being discharged, so the battery SoC also decreases.
The DC-link voltage variation is shown in Figure 9. It can be observed from the figure
that the DC-link voltage is maintained as constant throughout due to the action of the
HESS. Fluctuations in the DC-link voltage can be observed at 1.2s. Due to the action of the
HESS, the deviation is mitigated, and the voltage is maintained at the same constant value.
Figure 10 shows the variation in battery power and the supercapacitor power with the
variation in PV power. It can be observed that a constant load power of 500W is required
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throughout. Initially, the generated power is sufficient to serve the load; hence, the SC and
BESS do not need to discharge. The BESS takes the excess amount of power by charging
itself while the supercapacitor acts only during transients. A drop in the generated power
can be observed at 1.2s. Now, during this transient condition, the supercapacitor consumes
the power to maintain the DC-link voltage. After 1.2s, the generated power is less than
that required by the load. The battery comes into action to compensate for the rest of the
required power by discharging itself. The DC-link voltage is maintained by the prompt
action of the HESS.
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Figure 5. Variation in supercapacitor power with time for a step reduction in the PV output power
from 900 W to 400 W at t = 1.2 s.
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Figure 6. Variation in supercapacitor SoC with time for a step reduction in the PV output power from
900 W to 400 W at t = 1.2 s.

In order to provide a fairly stable DC bus, the battery bank is positioned between the
PV and the load. This basic design balances the mismatch between PV generation and load
by charging and discharging the BESS. This conventional approach operates effectively
when generation and load requirements are steady, but PV microgrids frequently experience
fluctuations in generation and load requirements. Hence, the battery is constantly under
stress from dynamic supply and absorption, which could possibly shorten its lifecycle.

In the proposed scheme, the SC and BESS are connected in parallel to the DC-link
through their respective bidirectional DC/DC converters. It can be observed that, by
combining the SC and the BESS, the stress on the battery can be reduced as transient
power sharing is assigned to the SC. To minimise DC-link voltage imbalance, the HESS
arrangements are meticulously planned because the SC and BESS are on the same DC
bus. The SC responds to the high-frequency power exchange or to mitigate the DC-
link voltage fluctuations during transients, whereas the BESS, which has a high energy
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density, is designed to accommodate the low-frequency power variation during steady
state conditions.
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Figure 7. Variation in battery power with time for a step reduction in the PV output power from 900
W to 400 W at t = 1.2 s.
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Figure 8. Variation in battery SoC with time for a step reduction in the PV output power from 900 W
to 400 W at t = 1.2 s.
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6. Conclusions

This study provides a systematic review of the recent developments in the control
and management of energy storage systems for microgrid applications. One can observe
that there is an apparent trend towards shifting from research on AC microgrid topologies
to DC microgrid architectures. This can be attributed to the advantages with respect to
reducing the number of power electronic converters when integrating storage systems and
renewable energy sources in DC microgrids. While battery storage is the predominant
system for microgrid applications in the evaluated literature, there was an increase in the
studies involving alternative storage systems. The present trends have shifted towards
hybrid energy storage systems, combining multiple complementary storage technologies to
exploit their advantages. Hybrid energy storage systems perform better in terms of energy
security and reliability when compared to applications that use a simple battery energy
storage system. Finally, intelligent control strategies have also become prominent in the
literature, with a specific focus on machine learning and artificial intelligence starting to
become integrated into the management strategies of the storage devices in microgrids.
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Abstract: The increasing limitations in the use of fossil fuels due to their limited availability and
pollution have increased the use of renewable energies and storage systems for electricity generation.
To achieve the goals of the integration of renewable energy, sizing and management methods for
hybrid plants are needed to make investments profitable and attractive in these resources. This work
presents an optimization method for the sizing and operation of hybrid plants with storage, choosing
the best combination of technologies based on resource availability, installation costs and market
prices, maximizing an economic index such as the net present value. One of the main contributions of
this work is to reduce the oversizing that occurs in traditional methods through a penalty term for lost
energy, encouraging investment in batteries to store excess energy above the point of interconnection
(POI). In addition, it is intended to cover gaps such as the operation in coupled markets with different
execution periods to maximize the benefits of the investment made and to contemplate different
generation alternatives together with storage. The presented method is tested through sizing and
operation simulations to demonstrate its potential. The presented method is tested through sizing
and operation simulations to demonstrate its potential. In scenario A, the best combination of solar
energy, photovoltaic energy and storage, is chosen. In scenario B, it is shown how the curtailment
of the oversizing is reduced in some months by more than 5%. In scenario C, for daily operation in
coupled markets, it is possible to improve the benefits from 0.7% to 37.04% in the days of the year.

Keywords: batteries; energy storage; optimal sizing; power system management; electricity markets

1. Introduction

Renewable energy resources are clean and increasingly competitive energy sources, so
their growth seems to have no limit. According to the latest projections of the International
Energy Agency (IEA), the contribution of renewable energies to the global electricity
supply will increase from 26% in 2018 to 44% in 2040. These sources will provide enough
energy to power two thirds of the increase in electricity demand, mainly through wind and
photovoltaic energy technologies [1]. This, together with various directives such as [2,3]
at the European level, which set targets for clean energy, makes it essential to consider
investing in renewable energies.

The International Renewable Energy Agency (IRENA), in [4], has pointed out how
investments in renewable energy have grown from USD 50 to USD 300 billion in the last
two decades. Together with renewable energy generation, energy storage systems (ESS)
should be considered [5], especially batteries, as cost-effective and beneficial investment
options, since it is a critical element in the transition to a sustainable electricity system,
able to provide a wide range of services. In addition, ref. [6] noted that clean hydrogen
currently has unprecedented political and business momentum, encouraging hydrogen to
be widely used.

There are works that analyze investments in renewable energies, such as [7], where
the financing, risk and environmental and financial connection of these investments in
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renewable technologies were analyzed. Similarly, in [8], investments in renewable energy
projects were analyzed, pointing out the importance of technological innovation and R&D
investments, which also includes sizing and management methods. The development of
projects with renewable technologies and the improvement of the efficiency of their use is
key [9].

This highlights the need for research in the study and analysis of investments in renew-
able energies, trying to obtain the maximum economic return from the renewable energy
and storage mix, considering all possible markets, in order to make these investments at-
tractive and their development even faster. The use of storage is crucial, obtaining benefits
by arbitraging or reducing the possible curtailment of the plants [10], for the subsequent
sale of energy in markets.

For this, it is essential to consider the correct sizing and operation of the assets [11].
It is important to base the sizing methods on obtaining benefits for the investor, since,
as indicated in [12], only taking into account the technology and installation cost criteria
does not provide an optimal result from a cost-effectiveness perspective.

In [13], mixed integer non-linear programming (MINLP) optimization models are used
to compare the economic performance of hybrid systems with PV generation as the only
alternative of energy source together with batteries. In [14], a multi-objective optimization
method is used to size a storage system to maximize revenue and minimize the daily cost,
in order to adjust to realistic sizes, but without taking into account investment costs or
measuring profit with an economic index. In [15], an MILP problem is proposed for the
sizing of storage systems participating in the frequency reserve market, without consid-
ering the installation costs to be incurred by the investor. In the work developed in [16],
an optimization method for the sizing and operation of photovoltaic energy generation
and storage system based on price control is proposed, with the disadvantage of oversizing
the hybrid plant in some cases to make it profitable. In [17], particle swarm optimization
(PSO) is used to size hybrid energy sources with the objective of minimizing the levelized
cost of energy (LCOE). Minimizing the LCOE is interesting from an investor’s point of
view, but it is also essential to consider market prices to determine the benefit. In [18],
different methods are presented for sizing batteries only in photovoltaic energy plants
to maximize the total annual revenue and try to find cost-effective storage sizes. In [19],
the maximization of economic indexes are evaluated to obtain a hybrid plant, but with PV
generation and storage, which is the only asset to be sized. In [20], the problem of optimal
storage operation together with wind generation to maximize profit is investigated. It can
be observed that it is usual to consider a unique generation source together with storage.
This is an important gap, since there are not several generation sources from which to
choose the best option together with storage.

In [21], a sizing is proposed through a multi-objective optimization, reducing the
cost of the system but also seeking to minimize the emissions of the generation, nor
considering different generation sources. The stochastic formulations [22] are also applied
to the problem of sizing and profit maximization for the owner participating in the daily
and real-time markets, but without specifying different periods as in this paper and not
contemplating investment costs.

The problem of sizing is also approached from a technical point of view. In [23], it
is presented how to determine the optimal size of wind-solar photovoltaic hybrid energy
plant (without storage and its management) using heuristic optimization, with an iterative
algorithm to minimize fluctuating production. Studies such as [24] evaluate the sizing of
storage systems to compensate for fluctuating wind and solar power generation through
optimal economic dispatch. Another approach for sizing can be to determine the optimal
generation mix, as in [25], where a flexible fuzzy programming approach is proposed for it.

In [26], a storage system sizing technique is proposed, taking into account the possible
errors made in the temporal prediction. The impact of hybrid power plants, with pho-
tovoltaic energy and solar thermal energy, from a technical point of view, is analyzed
in [27]. Following this point of view, in [28], a sizing of distributed generation and storage
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is proposed for the improvement of the system and maximizing benefits from a company’s
point of view, but not measuring with any economic index the investment over the years.
The work developed in [29] focuses on solving the problem of grid inertia, without consid-
ering investment costs, through frequency control as well as a focus on the use of storage
systems. A method for optimal sizing of a BESS, not a full hybrid plant, to provide different
services to the power system is included in the work developed in [30]. In [31], the focus
is on reducing system losses and voltage unbalance, leaving the economic criterion as an
added benefit, not as the focus of the solution. In addition, only one type of generation is
considered, without considering if there are more beneficial options.

The sizing problem has also been studied for island systems. In [32], the optimization
of the size of an existing plant is studied. There are also studies for isolated networks,
as can be seen in [33]. With regards to other, less common technologies, we refer to
a review covering all types of CHP optimization problems using meta-heuristic algorithms,
including operation and sizing [34].

Most methods in the literature focus on sizing with a single source of generation and
storage. For a correct evaluation and maximization of the investment, it is necessary to
evaluate all options with predictions of generation and installation costs. Issues of interest
to investors, such as economic performance and installation costs must be evaluated in the
method, to obtain real and feasible sizing in its application. Another gap in the existing
methods is to perform the operation of the plant considering only one market, or several in
some works, but which are executed in the same time intervals.

Thus, this article presents an optimal sizing and operation method that attempts to
integrate the various renewable resources together with storage. Thanks to the model
presented, it is possible to participate in different markets at the same time, including the
hydrogen market, in order to make investments attractive.

As the main contributions of this work, the following are highlighted:

• Optimization model to size resources, maximizing the net present value and adjusting
to the maximum investment as a constraint (even not spending the entire budget in
some cases), to find highly attractive and realistic investments;

• Reduction of curtailment that occurs due to oversizing with a penalty term for lost
energy, encouraging investment in storage;

• Evaluate all resources at the same level to maximize the benefit, considering avail-
ability, market prices and installation costs, choosing the best option based on the
input parameters;

• Modeling and integration of participation in different time-coupled markets (hourly
and fifteen minutes), with the possibility of incorporating ancillary services market;

• Consideration of the number of daily charge and discharge cycles of storage in the
optimization model, taking care of the valuable life for real results.

2. Method

This section presents the proposed method for sizing and optimal operation of hybrid
plants in coupled markets. It is an MINLP optimization model, with three technologies
(extendable to more) as alternatives: wind energy, photovoltaic energy and storage systems.
The plant can operate in two coupled markets, M1, with hourly execution, and M2, every
15 min.

An overview of the proposed method is shown in Figure 1, indicating the inputs and
outputs to the system. The aim is to evaluate which is the best investment to size a hybrid
plant and manage it, participating in several markets coupled at the same time, with the
objective of maximizing profits.

The inputs of the algorithm are the annual (or years of analysis) unit profile of wind
and PV generation, installation costs of all technologies, characteristics of the assets and
annual price profiles (or years of analysis) of the M1 and M2 markets. As outputs, we
obtain the size of the generation and storage, the scheduling of charge and discharge and
the participation in each moment on the markets.
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OPTIMAL
SIZING AND
OPERATION

- Tecnology costs
- Generation profiles
- Markets data
- Market prices
- Investment budget

- Sizing plant
- Market participation
- Management ESS

Investor criteria

NPV, IRR, payback

inputs outputs

Figure 1. Flowchart of the proposed sizing and operation method.

As a result of the conceptualization and model presented, it is possible to extend it to
more markets and generation sources. Table 1 shows the parameters and variables used to
model the optimization problem for daily operation and the optimal sizing problem.

To simplify the nomenclature, the model is presented for a single year, which can be
extrapolated to as many years as desired for the analysis of optimal sizing.

Table 1. Nomenclature.

Sets πM1
d,h

Selling price on the market hourly market M1
(EUR/MWh).

D Set of D days of a year, d ∈ D. πM2
d,h,t Selling price on the 15-min market M2 (EUR/MWh).

H Set of H hours of a day, h ∈ H. α
Weight factor related to the to penalization
of curtailment.

T Set of T intervals of an hour, t ∈ T. EPOI Limit of the point of connection (MWh).
Parameters Variables

CPV Installation cost for photovoltaic energy generation
(EUR/MW). PVsize Maximum installed capacity for photovoltaic energy

resource (MW).
CWind Installation cost for wind generation (EUR/MW). Windsize Maximum installed capacity for wind resource (MW).
CESS Installation cost for ESS generation (EUR/MWh). ESSsize Maximum installed capacity for ESS (MWh).

Eload
d,h,t Internal load in day d, hour h and period t (MW). EPV

d,h,t
Power injection by photovoltaic energy generation in
interval t of hour h and day d (MWh).

MPV
d,h,t

Generation profile for photovoltaic energy in day d,
hour h and period t (pu). EWind

d,h,t
Power injection by wind generation in interval t of
hour h and day d (MWh).

MWind
d,h,t

Generation profile for wind in day d, hour h and
period t (pu). EM1

d,h,t
Energy sold on market M1 in the interval t of hour h
and day d (MWh).

N Number of charge and discharge cycles. EM2
d,h,t

Energy sold on market M2 in the interval t of hour h
and day d (MWh).

Emax,ch
d,h,t

Maximum energy charged by battery in interval t of
hour h and day d (MWh). Ech

d,h,t
Energy charged by battery in interval t of hour h and
day d (MWh).

Emax,ch
d,h,t

Maximum energy discharged by battery in interval t
of hour h and day d (MWh). Edis

d,h,t
Energy discharged by battery in interval t of hour h
and day d (MWh).

SOCmin, SOCmax Minimum and maximum state of charge of storage. EBat
d,h,t

Energy stored in the battery in interval t of hour h and
day d (MWh).

ηch Battery charge efficiency. Binary

ηdis Battery discharge efficiency. BMs
d,h,t

Binary variable to indicate the sale of energy on
markets M1 and M2.

Inv Total investment in assets in millions of euros
(MEUR). BGridBuy

d,h,t
Binary variable to indicate the purchase of energy.

Bch
d,h,t Binary variable to indicate the charge of battery.

Bdis
d,h,t Binary variable to indicate the discharge of battery.

2.1. Objective Functions

The two objective functions proposed in this work are presented below. The first
function is utilized for the daily operation of the hybrid plant, with the goal of maximizing
profits through participation in different markets. In this case, the operation is performed
for a specific size of the hybrid plant. The second objective function is used for sizing
the resources of the hybrid plant, seeking the maximum benefit for the investor based on
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an economic index. In this case, the sizes of the generation and storage components are
variables to be calculated in the optimization.

2.1.1. Operation

In the daily operation of the power plant, the maximum economic benefit is sought
from the sale of energy to the market. To achieve this, it is necessary to consider the largest
possible number of market types, whether they have a short execution interval (minutes)
or an hourly one, in order to have more alternatives.

Thus, the objective function of the optimal operation, which takes into account all
types of assets, as well as two markets with different execution times, is defined as follows:

max z1 =
h=H

∑
h=1

EM1
d,h,1 · πM1

d,h

︸ ︷︷ ︸
Market M1

+
h=H

∑
h=1

t=T

∑
t=1

EM2
d,h,t · πM2

d,h,t

︸ ︷︷ ︸
Market M2

+
h=H

∑
h=1

[
t=T

∑
t=1

(
Ech

d,h,t + Eload
d,h,t

)]
· πM1

d,h

︸ ︷︷ ︸
Operation cost

(1)

where the profit is determined by participating simultaneously in the M1 and M2 markets,
with different execution intervals. As the operation of the power plant is limited to a short
horizon of hours or days, the value of D is set to 1 and the set of hours in the desired
horizon, such as H = 24, is defined. Additionally, the cost of providing power to internal
loads and charging the battery from the grid is taken into consideration.

The MINLP optimization model for the operation is composed of the objective function (1)
and the associated constraints (6)–(13), (15)–(20) defined in Section 2.2.

2.1.2. Sizing

To achieve optimal sizing of the hybrid plant, it is necessary to consider the objective
of daily operation, which is to maximize daily profit through participation in various
markets and to calculate cash flows accordingly. Since the sizing is done based on a given
investment budget, it is important to use an economic index to evaluate the investment.

Typically, sizing algorithms based solely on investment costs and operating benefits
tend to oversize the plants. This is because, numerically, it is often more profitable to install
excess generation capacity and curtail the excess energy produced. To avoid this, a penalty
term is proposed to be included in the objective function. This term penalizes the oversizing
of the plant and seeks to produce realistic and practical results in a real-world environment.

This work proposes maximizing the net present value (NPV) to determine if asset se-
lection and management, participation in various markets and discounting the investment
result in benefits. The objective function for sizing is defined as follows:

max NPV → max −I0 +
y=Y

∑
y=1

CFy

(1 + k)y

︸ ︷︷ ︸
Profit markets

−
y=Y

∑
y=1

NCFGy

(1 + k)y

︸ ︷︷ ︸
Penalty curtailments

(2)

where I0 represents the total investment made in the generation and energy storage system
(ESS), k is the discount rate, Y denotes the number of years of analysis or project and, finally,
CF refers to the annual cash flow generated by participating in all markets. This annual
cash flow is defined as:

CFd =
d=D

∑
d=1

h=H

∑
h=1

(
EM1

d,h,1 · πM1
d,h

)
+

d=D

∑
d=1

h=H

∑
h=1

t=T

∑
t=1

(
EM2

d,h,t · πM2
d,h,t

)
+

d=D

∑
d=1

h=H

∑
h=1

[
t=T

∑
t=1

(
Ech

d,h,t + Eload
d,h,t

)]
· πM1

d,h

(3)

The penalty term, referred to as non-cash flow generated (NCFG), is introduced to
penalize excessive oversizing of the generation resources of the hybrid plant. Depending
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on the generation costs, resource availability and price forecasts, it is possible for the plant
to be oversized beyond the point of connection (POI). The NCFG is defined as:

NCFGd = α ·
d=D

∑
d=1

h=H

∑
h=1

t=T

∑
t=1

[
(EPV,max

d,h,t − EPV
d,h,t) · πM1

d,h + (EWind,max
d,h,t − Ewind

d,h,t ) · πM1
d,h

]
(4)

The NCFG penalizes the excessive oversizing of the generation resources of the hybrid
plant. It is calculated as the energy not served due to curtailment in each type of generation.
This is determined as the difference between the maximum possible injection according
to the sizing, EPV,max

d,h,t and EWind,max
d,h,t , and the actual energy injected, EPV

d,h,t and Ewind
d,h,t , dur-

ing each interval t. The unserved energy is then economically valued by multiplying it
with the market price. It is further weighted by the coefficient α to determine the amount
of penalty.

This penalty term is intended to promote the investment and use of storage together
with the generation source. The α value can be tuned from 0 to a saturation value specific
to each case (from which it does not penalize more). Depending on the value it takes,
it will penalize to a different degree and affect the sizing. A small α will allow a lot of
curtailment, while a big value will decrease curtailment and will further adjust the sizing
of the resources.

Although initially a higher NPV or other index may be obtained, oversizing the plant
excessively over the connection point, a large curtailment makes that energy unusable, not
allowing it to be stored and used in other markets or ancillary services. This can even be
very detrimental to the investment if the prices for which the plant was sized change a lot,
not having the flexibility of storage to minimize the negative effects of this change.

The MINLP optimization model for the sizing of the investment in resources is com-
posed of the objective function (2) and constraints (5)–(13), (15)–(20), presented below.

2.2. Problem Constraints

All constraints associated with the operation and size problems are defined in this
section. First, the maximum investment that can be made in assets is limited in Equation (5),
where the investment is divided between the installed power of the generation sources
as well as the storage systems. This constraint allows optimal sizing according to the
maximum investment that can be realized.

Inv ≥ CPV · PVsize + CWind ·Windsize + CESS · ESSsize (5)

In Equation (6), the balance to be met at the POI of the hybrid plant to the grid
is represented.

EPV
d,h,t + Ewind

d,h,t + Edis
d,h,t + EGridBuy

d,h,t = Eload
d,h,t + Ech

d,h,t + EM1
d,h,t + EM2

d,h,t,

∀d ∈ D, ∀h ∈ H, ∀t ∈ T,
(6)

where this balance is applied for each period t for the entire horizon of days (in operation
case) or years (in sizing) analyzed. It must be fulfilled that the available photovoltaic energy
(EPV

d,h,t), wind (Ewind
d,h,t ) or discharge of the storage systems (Edis

d,h,t) is equal to the load of the
plant, sold energy in the different markets (EM1

d,h,t, EM2
d,h,t) or the charge of the storage (Ech

d,h,t).
Equation (7) represents the maximum energy that can be injected into the grid at the

connection point. This is determined by the net available energy of the hybrid plant.

EPOI ≥ EM1
d,h,t + EM2

d,h,t, ∀d ∈ D, ∀h ∈ H, ∀t ∈ T. (7)
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In order to avoid simultaneous participation in the energy purchase and sale market, it
is necessary to define the restrictions (8)–(10), also limiting the maximum amount of energy
to be injected or consumed:

BMs
d,h,t + BGridBuy

d,h,t ≤ 1, ∀d ∈ D, ∀h ∈ H, ∀t ∈ T. (8)

EM1
d,h,t + EM2

d,h,t ≤ BMs
d,h,t · EPOI , ∀d ∈ D, ∀h ∈ H, ∀t ∈ T. (9)

Eload
d,h,t + Ech

d,h,t ≤ BGridBuy
d,h,t · EPOI , ∀d ∈ D, ∀h ∈ H, ∀t ∈ T. (10)

Equations (11) and (12) limit the maximum PV and wind generation injections as a
function of the total available energy:

EPV
d,h,t ≤ MPV

d,h,t · PVsize, ∀d ∈ D, ∀h ∈ H, ∀t ∈ T. (11)

Ewind
d,h,t ≤ Mwind

d,h,t ·Windsize, ∀d ∈ D, ∀h ∈ H, ∀t ∈ T. (12)

Another contribution of this work is the possibility of participating in two coupled
markets simultaneously, M1 and M2, with different execution times. This could be extrapo-
lated to more than two markets due to the modeling of the problem. The market with the
shorter execution time (M2) will be the one that determines into how many intervals, t, an
hour, h, should be split.

Instead of dividing the whole year directly into the total number of intervals, we work
on the hours of the day, and these are divided into intervals determined by the market with
the shortest execution time. This allows to establish a better relationship between markets
and execution times. This is shown in Figure 2.

Hourly market

En
er

gy

time

15-min market

Figure 2. Diagram of coupled markets.

To relate the two markets, a set must be defined that relates the execution intervals
of the smaller market to the other market. Thus, for example, if market M2 is executed
every 15 min and market M1 is executed every hour, the values to be taken by t must be
in the set {1, 2, 3, 4}. The value in hourly market M1 must be maintained during the four
intervals that define an hour. That is, for each period t, the value in the first period must be
maintained to complete the hour with the same energy value. The equation which models
the coupled simultaneity of participation is defined as:

EM1
d,h,1 = EM1

d,h,t ∀d ∈ D, ∀h ∈ H, ∀t ∈ T. (13)
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This modeling of the problem allows adding additional markets at different times.
For example, to add another market M3 that closes every half hour, it is sufficient to define
a set m ∈ {1, 3}, and include the following constraint equation:

EM3
d,h,1 = EM3

d,h,m+1, , ∀y ∈ Y, ∀d ∈ D, ∀h ∈ H, ∀m ∈ M, (14)

where with this set, it is possible to relate t1, the first fifteen minutes, with t2, which is
the second fifteen minutes, making the half-hour constant. This would be the same in the
second half hour.

These markets can represent the case of a main market and other markets for ancillary
services or other markets. Considering participation in deviation or short-time markets
is interesting, due to the variability of generation, with storage offering flexibility to the
system. This can result in economic benefits, the greater possibility of renewable energy
integration and greater system reliability.

Storage system is modeled by the following set of equations. Equation (15) represents
the update of the stored energy in each period. In (16)–(18), simultaneous charging and
discharging of the battery is constrained. Finally, the maximum and minimum energy
stored in each interval is defined in (19):

EBat
d,h,t = EBat

d,h,t−1 + Ech
d,h,t · ηch − Edis

d,h,t ·
1

ηdis , ∀d ∈ D, ∀h ∈ H, ∀t ∈ T. (15)

Bch
d,h,t + Bdis

d,h,t ≤ 1, ∀d ∈ D, ∀h ∈ H, ∀t ∈ T. (16)

Ech
d,h,t ≤ Emax,ch

d,h,t · Bch
d,h,t, ∀d ∈ D, ∀h ∈ H, ∀t ∈ T. (17)

Edis
d,h,t ≤ Emax,dis

d,h,t · Bdis
d,h,t, ∀d ∈ D, ∀h ∈ H, ∀t ∈ T. (18)

Batsize · SOCmin ≤ Ebat
d,h,t ≤ Batsize · SOCmax, ∀d ∈ D, ∀h ∈ H, ∀t ∈ T. (19)

Finally, the daily energy that can be charged or discharged by the battery is defined
in (20). This is essential to protect the battery and maintain its lifetime throughout the
project, and to provide realism to the solution of the problem.

h=H

∑
h=1

t=T

∑
t=1

[
Edis

d,h,t + Ech
d,h,t

]
≤ N · Batsize, ∀d ∈ D. (20)

3. Test Case

To test the presented method, two different generation scenarios will be used for the
analysis. For simplicity and to observe the differences, the same energy prices will be
used for both cases. In Figure 3, the prices used for the analysis are shown, with the main
market data, M1, with a resolution of one hour, and the secondary market data, M2, with a
resolution of 15 min.

Table 2 shows the investment data, with generation and storage costs used in the
scenarios. The cost of land or areas to place the generation is not taken into account.

Table 2. Resource costs.

Cost Value

PV energy generation costs 550,000 EUR/MW
Wind energy generation costs 1,200,000 EUR/MW

Battery cost 300,000 EUR/MWh
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Figure 3. Day-ahead market price (a) and 15-min market price (b).

3.1. Scenario A

This scenario will use data collected in [35], specifically from Great Britain. Unit
profiles of wind energy and PV energy generation, shown in Figure 4, will be used.

For this scenario, the plant has installation limitations of 60 MW of wind energy
generation and 170 MW of photovoltaic energy, with no restrictions on the use of batteries,
while the limit of the connection point is 100 MW. The limit for purchase at the connection
point is 30 MW.

A 15-year period is analyzed, with a discount rate of 2% and a maximum invest-
ment of EUR 100 million. A 1-year simulation is performed, and its result is considered
approximately constant for the entire 15-year period.
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Figure 4. Photovoltaic energy (a) and wind energy (b) generation in Great Britain.
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3.2. Scenario B

In this scenario, only PV energy generation is considered. An estimate of the energy
generation in Seville, Spain, has been chosen using the PVGIS tool [36]. This profile is
shown in Figure 5.
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Figure 5. Photovoltaic energy generation in Seville, Spain.

The plant has installation limitations of 170 MW of photovoltaic energy generation,
with no restrictions on the use of batteries, while the connection point limit is 100 MW.
A period of 30 years is analyzed, with a discount rate of 2% and a maximum investment of
100 million euros.

3.3. Scenario C

Scenario C is used to test participation in two coupled markets with different closing
times. For this purpose, the prices from Figure 3 are shown together with the evolution
of PV energy generation from Scenario B, for a specific size of hybrid plant. To be more
restrictive and observe the influence of participation in the two markets, the limit for
purchase at the connection point is lowered to 10 MW.

4. Simulations and Results

This section presents the results of the application of the proposed method for sizing
and operation in different cases. In scenario A, the plant is sized, taking into account
storage, PV energy generation and wind energy generation for the profiles shown above.
In scenario B, the sizing is performed only with PV energy generation and battery to
observe the influence of the NCFG and α term. For sizing, only the hourly market will be
considered, due to the complexity of predicting markets at shorter execution times. Finally,
in scenario C, one of the combinations of energy generation and battery size is chosen to
operate the hybrid plant in one day, participating in two coupled markets simultaneously.

4.1. Scenario A

In this scenario, the most optimal investment option according to maximizing the NPV
is the installation of 60 MW of wind generation. This translates into a total investment of
72 MEUR, which is 28 MEUR less than the maximum investment limit. Despite having more
budget for investment, the best option is to invest only in wind generation, not investing in
other resources, because it will not increase the net present value of the investment.

It is demonstrated how the method seeks the best option for the investor without the
need to spend the entire budget, saving money for the investor, which is a key advantage.
In addition, this result coincides with the values collected in LCOE analysis, where onshore
wind energy presents a smaller value than photovoltaic energy or batteries, making it a
better investment when there is an appropriate wind profile.

Table 3 shows a sizing comparison and economic performance data if the annual profile
were the same for each month of the year, to see how the method performs according to the
availability of the generation resource, which changes for each month of the year.
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Table 3. Sizing comparison for each month of the year participating in the day ahead market.

Month PV (MW) Wind
(MW)

ESS
(MWh) NPV (EUR) IRR

(%) Investment

January 0 60 0 87,888,550 15.2 72 MEUR
February 0 60 0 61,097,001 11.6 72 MEUR
March 50.91 60 0 128,773,250 15.8 100 MEUR
April 50.91 60 0 61,048,578 9.2 100 MEUR
May 141.41 0 74.04 118,245,445 14.6 100 MEUR
June 167.50 0 26.24 121,558,100 15.2 100 MEUR
July 151.59 0 55.43 160,512,939 18.7 100 MEUR
August 166.43 6.08 3.91 109,994,630 14.1 100 MEUR
September 50.91 60 0 138,465,872 16.7 100 MEUR
October 50.91 60 0 103,139,340 13.4 100 MEUR
November 0 60 0 125,544,887 19.9 72 MEUR
December 0 60 0 129,307,840 20.4 72 MEUR

It is observed how in only four months of spring and summer, photovoltaic energy
generation would be installed as the main source, but in the remaining eight months,
the main source is wind energy generation alone or accompanied by photovoltaic energy
generation. The month-by-month analysis is consistent with the results obtained for the
sizing of the entire year.

Furthermore, in the month of August, it can be seen that due to the photovoltaic
energy and wind energy generation profiles and prices, the sizing model presented chooses
all technologies and storage, not excluding any of the alternatives, as all of them are
considered profitable.

4.2. Scenario B

The objective in this scenario is to size a hybrid plant using photovoltaic energy
generation and storage in a location where there is a large amount of solar radiation,
reducing curtailment and promoting the installation of storage.

For this purpose, a comparison is also made between the model without penalty,
very similar to other sizing methods present in the literature, and the method proposed
contemplating the penalty, with a non-zero α. This will allow showing the influence of the
proposed method.

Applying the proposed sizing method, the most optimal sizing solution is formed by
131.15 MW of photovoltaic energy generation and 92.88 MWh of storage. These values are
those that obtain the maximum NPV: 291,430,088 EUR, investing the maximum possible
budget of 100 MEUR.

Table 4 shows a detailed analysis of the sizing according to the profiles of the different
seasons of the year. In this case, the optimal sizing is very similar in all cases, due to the
uniformity of the generation profile. In months with lower radiation, it can be seen that
less battery size would be installed, since there would not be as much surplus photovoltaic
energy for storage and subsequent sale. All this has repercussions in lower economic
indexes for the months with less generation.

Table 4. Sizing comparison for each season of the year participating in the day ahead market with
α = 1.

Season PV Size (MW) ESS Size (MWh) NPV (EUR) IRR (%)

Winter 133.60 88.39 233,110,096 14.6
Spring 130.17 94.70 315,173,776 18.4
Summer 131.15 92.88 335,398,839 19.3
Autumn 133.04 89.34 166,560,782 11.4
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To evaluate the influence that the term of non cash flow generated (NCFG), the sizing
is carried out by defining α = 0, obtaining results of 140.09 MW of photovoltaic energy
generation and 76.49 MWh of storage with an NPV of 374,590,511 EUR. This implies that if α
is not considered, allowing a great curtailment, about 8.94 MW more generation is installed,
but more importantly, 16.39 MWh less of storage are installed. In Figure 6, the energy lost
due to curtailment is shown, penalizing it with α = 1, and not penalizing it (α = 0). This is
the total energy that cannot be injected, discounting that which is stored.

This oversizing results in a loss of energy over several months of 1000 MWh (an
average of more than 32 MWh per day) that cannot be stored. To use this energy, a new
investment in storage would have to be made, which is more expensive for the investor.
By defining α = 1, the curtailment is considerably reduced, and the storage sizing is
adequate to store a large part of the energy produced.

Although with α = 0, a slightly higher NPV is obtained in this sizing, it is interesting
to size prioritizing that not too much energy is left over and stored. This makes the owner’s
investment more flexible in terms of profitability and changes in new scenarios, electricity
prices or new markets, making the investment more interesting and less rigid throughout
the years of the project.

Finally, Figure 7 shows the influence of Equation (20), which limits the maximum
number of daily charge and discharge cycles for the same case as the previous figure. It is
observed that, if no limit is defined, the maximum limit is exceeded on some of the days
shown for January and August. If this number is not limited, the battery could be used
in an uncontrolled way, maximizing the benefits, but not being a real result because the
battery would degrade more, not reaching the useful life of the project.
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Figure 6. Energy not injected due to curtailment (a) and percentage of energy over total energy
produced not injected (b).
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Figure 7. Number of daily charge and discharge cycles for the first 20 days of January (a) and July (b).

4.3. Scenario C

In this scenario, the participation in two coupled markets of the hybrid plant with
battery is tested. The optimal plant size from the previous scenario of 131.15 MW of
photovoltaic energy generation and 92.88 MWh of storage are chosen to demonstrate
the operation defined in Section 2.1.1. For the analysis, an hourly execution market, M1,
and another fifteen-minute market, M2, are considered. For greater clarity in the results,
the day will be divided into 96 intervals of 15 min.

Figure 8 shows the evolution of prices and the results obtained in the operation of
the hybrid plant for day 2 of the year with the sizing obtained. It is observed how the
constraint (13) for the participation in the markets is satisfied, maintaining during four
periods of 15 min the same value for the market that is executed hour by hour, while the
one that is executed every 15 min remains free.

For this day, contemplating the two markets and with the price evolution shown,
a daily profit of 18,853.13 EUR is achieved, while if only participating in the hourly market,
M1, the profit is 18,359.97 EUR. This represents an increase of 2.61% profit for only one day
in January, one of the worst photovoltaic energy generation seasons.

Table 5 shows some days on which the method of operation is applied to compare benefits.

Table 5. Comparison of profits due to market participation on various days of the year.

Day Without M2 (EUR) With M2 (EUR) Improve (%)

1 18,359.97 18,853.13 2.61
181 47,283.94 47,622.34 0.71
295 21,544.82 34,219.59 37.04

It can be seen that since the price of the M2 market is more variable over time, the ben-
efits oscillate, with reasonable increases on day 1, small increases on other days, such as
day 181, or a significant increase on day 295, where it is more convenient to participate on
the M2 market instead of the M1 market.
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Therefore, it is shown that a method that considers two markets coupled in time is
necessary and can improve the profitability of the hybrid plant, always choosing the best
option at each instant of time.
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Figure 8. Electricity prices of markets (a) and participation (energy sale) in markets (b).

5. Conclusions

In this work, a method of sizing and managing hybrid plants has been proposed to
make them attractive to investors, with participation in several coupled markets. All types
of generation technology are put on the same level to choose which is the best decision to
invest in based on a budget, while maximizing the NPV, to see which is the most profitable
sizing combination based on resource availability and storage.

It is proposed to reduce the curtailment that occurs when the plant is oversized, penal-
izing the energy that cannot be injected or stored, in order to better adjust the generation
and storage sizes. In addition, the participation in coupled markets with different execu-
tion time is defined, in order to participate in different markets seeking to increase the
profitability of the investment.

The results show that an optimal sizing is produced depending on the location and
budget, choosing the most optimal combination. Thanks to the proposed definition, the cur-
tailment of the plant is reduced, reducing the oversizing that occurs in many cases. The op-
eration also shows how profitability is improved as a result of the participation in two
coupled markets with different execution intervals.

Future work will focus on improving the storage management system to improve
investor profitability, as well as integrating the method into multi-objective optimizations
that meet investor criteria.
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Abstract: A microgrid can be defined as a grid of interconnected distributed energy resources,
loads and energy storage systems. In microgrid systems containing renewable energy resources,
the coordinated operation of distributed generation units is important to ensure the stability of the
microgrid. A microgrid needs a successful control scheme to achieve its design goals. Undesirable
situations such as distorted voltage profile and frequency fluctuations are significantly reduced by
installing the appropriate hardware such as energy storage systems, and control strategies. The
multi-agent system is one of the approaches used to control microgrids. The application of multi-
agent systems in electric power systems is becoming popular because of their inherent benefits
such as autonomy, responsiveness, and social ability. This study provides an overview of the agent
concept and multi-agent systems, as well as reviews of recent research studies on multi-agent systems’
application in microgrid control systems. In addition, a multi-agent-based controller and energy
management system design is proposed for the DC microgrid in the study. The designed microgrid
is composed of a photovoltaic system consisting of 30 series-connected PV modules, a wind turbine,
a synchronous generator, a battery-based energy storage system, critical and non-critical DC loads,
the grid and the control system. The microgrid is controlled by the designed multi-agent-based
controller. The proposed multi-agent-based controller has a distributed generation agent, battery
agent, load agent and grid agent. The roles of each agent and communication among the agents are
designed properly and coordinated to achieve control goals, which basically are the DC bus voltage
quality and system stability. The designed microgrid and proposed multi-agent-based controller
are tested for two different scenarios, and the performance of the controller has been verified with
MATLAB/Simulink simulations. The simulation results show that the proposed controller provides
constant DC voltage for any operation condition. Additionally, the system stability is ensured with
the proposed controller for variable renewable generation and variable load conditions.

Keywords: control; distributed control; microgrid; multi-agent systems; renewable energy systems

1. Introduction

In the electricity sector, distributed generation is becoming more common day by
day, with the increasing energy demand and technological developments [1]. Distributed
generation units, which have become widespread, have also demonstrated the microgrid
concept. Microgrids are small-scale energy networks that can be operated independently
or connected to the grid. They have their own energy resources and loads with certain
limits [2]. Microgrids offer various advantages, such as providing energy supply in remote
areas with on-site generation, reducing transmission losses between regions, increasing
service quality by detecting faults instantly, using resources efficiently by supporting
demand management, commissioning more domestic resources, and having a more reliable
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network. Microgrids can consist of renewable energy resources such as photovoltaic (PV)
modules and wind turbines, energy storage systems, and controllable loads, which are
among the distributed power generation tools. They can be installed at points close to
the user. Additionally, they can operate in grid-connected or off-grid mode and can be
independently controlled. These superior features are making them popular in small-scale
grid systems [3]. This also shows a pathway for the future grid structure. The inclusion
of different types of technological integrations such as distributed generation, electrical
energy storage units, power system management applications, microgrid structures, and
information and automation technologies in the system allows conventional power systems
to operate more efficiently and flexibly [4]. A microgrid consisting of renewable energy
resources, conventional generation resources, electric vehicles, energy storage systems,
conventional grid connection, and loads is depicted in Figure 1.
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Although AC microgrids are more common, DC microgrids have become popular in
recent years with the significant increase in DC loads in applications such as LED lighting,
computers and electric vehicles. The following are a few advantages of DC microgrids over
AC microgrids:

• The DC microgrid is simpler due to the absence of reactive power flow control;
• Integrated distributed generations can be coordinated more easily because their control

is based on DC voltage without the need for synchronization;
• Due to the prevalence of DC electronic domestic loads, the majority of DGs today pro-

duce DC outputs; this prevents the need for unnecessary AC/DC power conversions.
This has a direct impact on the system’s cost and losses, further reducing the size and
cost of the system due to the fact that the majority of the converters used for the DC
micro-source interface do not use transformers.

• In DC systems, issues such as reactive power and frequency-synchronized power
management become unimportant. Additionally, skin effect, harmonics, proximity
effect, and inrush current problems are absent from the DC system because it has no
frequency. DC systems are thought to be safer than AC systems because they have a
lower electromagnetic field.

• Compared to an AC microgrid, voltage regulation is superior.

As a result of energy generation using distributed generation units in microgrids,
many economic, political, and environmental benefits are obtained. In order to obtain these
benefits and to obtain the most effective use of microgrids, it is important to provide optimal
design with the proper control of all components within the microgrid [3]. In microgrids,
control strategies are used to control voltage and frequency, balance supply and demand,
and improve the power quality by using communication between microgrid components.
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Different control approaches termed centralized, decentralized, and distributed control
are used in microgrids. The decentralized and distributed control strategies provide more
flexible and effective control features [3]. Multi-agent systems, with their inherent features,
are suitable for implementing these control strategies to achieve a more effective and
flexible power system and higher power quality.

Computer systems placed in a particular environment that can take autonomous
action to meet design objectives are called agents. Artificial intelligence and agent concepts
emerge by transferring human characteristics, such as learning by experience and making
logical decisions, into the computer environment [5]. The concept of intelligence, which
is the ability to perceive and interpret an environment and situation, make decisions, and
control behaviors, forms the basis of intelligent agents, which are defined as “anything that
can notice and affect its environment through sensors”. Agents produce output actions with
the inputs they receive from their environment, as shown in Figure 2. The main purpose
of using agents is to create autonomous systems that give automatic and appropriate
responses to events detected from the environment. To achieve this goal, agents use their
autonomous, social, reactive, and proactive features. Thanks to their autonomy, agents
exercise partial control of their actions and internal states and try to influence outcomes
without interference. Agents use their social features to communicate with other agents or
units, coordinate actions, and achieve their goals. While their timely response to changes
in their environment results from their reactive nature, their target-oriented behavior and
taking the initiative to achieve goals emerge as a result of their proactive nature. The system
in which many agents come together is called a multi-agent system, and offers control
strategy approaches for microgrids [6].
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With the aforementioned features, the multi-agent-based system seems a good solution
for the microgrid control problems. Therefore, it has attracted the attention of researchers
in recent years. This study provides an overview of agents and multi-agent systems
concepts. In addition, application of multi-agent systems for microgrid operation and
control are introduced, and recent studies in the literature are reviewed. The advantages of
microgrid control systems designed based on multi-agent systems, their superiority over
other methods, their limitations, and trends in this direction are discussed. In addition, to
highlight multi-agent-based control system performance in DC microgrids, a case study
is provided. For this purpose, a DC microgrid is designed in the study. In the designed
microgrid, there is the PV system, the wind turbine, the synchronous generator, the battery-
based energy storage system, the critical DC load, and the non-critical DC load. Moreover,
a multi-agent-based controller is designed to control this DC microgrid. The proposed
multi-agent-based controller has a distributed generation agent, a battery agent, a load
agent and a grid agent. The DC microgrid and proposed multi-agent-based controller are
modelled and simulated with MATLAB/Simulink. The simulation results carried out for
different operation conditions validate the performance of the multi-agent-based controller
in terms of system stability and power quality at the common DC bus.

The rest of the paper is organized as follows. A general overview of multi-agent
systems is given in Section 2. The applications of multi-agent systems for microgrid control
are discussed in Section 3. In Section 4, a case study is performed, including the modeling of
the DC microgrid and the design of the multi-agent-based controller for the microgrid. The
simulation results are provided for different scenarios in Section 5. Finally, the conclusion
is drawn in Section 6.
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2. Multi-Agent Systems

A multi-agent system is a complex system of autonomous agents with local knowl-
edge and limited capabilities that are able to interact to achieve a global goal. This system,
created with artificial intelligence-based techniques as well as traditional control method-
ologies, offers an additional advantage in creating hybrid controllers in microgrids. Fast
communication possibilities such as fiber optic, microwave, and 4G are now becoming
integral parts of power systems. This integration makes it easier and more convenient to
integrate the multi-agent system into power system applications [7]. The main features that
distinguish multi-agent systems from other distributed systems are as follows:

• Any one agent in the system does not have all the information about the solution to
the problem.

• None of the agents in the system have all the required capabilities to solve the problem.
• The system control is distributed.
• The data are not kept at a central location; they are distributed.
• The operation is asynchronous.

Software or hardware-based agents and multi-agent systems are designed with differ-
ent features, such as working with a certain degree of autonomy in a certain environment
in order to fulfill their duties, perceiving the dynamic changes in the environment with
their sensors and re-evaluating their knowledge and goals according to the perceptions
they have obtained, planning in line with their goals and taking actions regarding these
plans, and having the ability to communicate with other agents through the language of
communication [8–10]. The conceptual design process for building a multi-agent system
includes the following four-stage development process:

• Analysis: modeling agent roles and behaviors, identifying the application domain and
the problem.

• Design: defining the solution architectures for the problems defined in the analy-
sis step.

• Development: programming agent targets, ontologies, and functionalities.
• Deployment: initialization of the created multi-agent system, runtime agent manage-

ment, message, and data processing.

Multi-agent systems have emerged as a powerful technology that can overcome the
difficulties encountered during the application of information and communication technol-
ogy in a wide variety of fields. They are considered autonomous software environments
and defined as a system that detects the environment with the help of its sensors, and
affects the environment they perceive. They are also considered software components that
have the ability to act on behalf of the user to perform certain tasks [11]. Agents must
be able to deal with changes in the environment appropriately and in a timely manner,
address multiple targets, change active targets according to the situation, and perform
tasks from a broad perspective. In addition, agents should interact with other agents
because goals are achieved by collaborating and competing with other agents. Agents have
a planning mechanism that shapes their behavior, and their behavior is formed by the way
the planners use the plans in the plan library, alone or in combination with other plans, at
the appropriate time and condition.

Systems formed by agents that come together to solve problems that a single agent can-
not solve effectively using their own knowledge and individual abilities, in a coordinated
manner, by cooperating with each other are called multi-agent systems. In multi-agent
systems, each agent has partial knowledge of its environment. The agent in the system
can obtain various information about other agents, monitor the actions of other agents or
share information with other agents. In this context, one of the most important elements in
multi-agent systems is the trust between agents. There are many studies in the literature on
how to model the trust and relationship between agents in a multi-agent system [12–14].

The skills of agents are often limited, as is their knowledge. Each agent may need other
agents to perform an action related to its own task. Therefore, the characteristic feature of
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multi-agent systems is their ability to interoperate. An important problem in the cooper-
ation of agents in the system is the need to ensure that the agents work in coordination
within a plan. There are various approaches in the field of multi-agent systems to achieve
this coordination [15,16]. For example, in a centralized approach, one agent undertakes
the task of coordinating other agents [17]. In multi-agent systems, approaches within
the framework of virtual organizations are very important to determine this responsible
agent to ensure coordination among agents. Multi-agent systems in which multiple agents
interact with each other are included in many studies in different disciplines [18,19]. An
e-commerce multi-agent system includes buyer and seller agents representing buyers and
sellers. Buyer and seller agents try to achieve their own goals by interacting with other
agents in various ways in the same environment. Suppliers, shippers, etc. and many other
agendas are included in this system [20]. An environment intelligence-based multi-agent
system has been proposed to improve assistance and healthcare services for patients who
suffer from Alzheimer’s. It utilizes various context-aware agent technologies that allow
it to automatically and evenly receive information from users and the environment, each
focusing on defined concepts such as ubiquity, awareness, intelligence, and mobility [21]. A
multi-agent system application is presented for distributed energy resource management in
a microgrid consisting of distributed generation units, storage units, and controllable loads.
In order to coordinate the distributed energy resources, an agent-based approach based on
coordination and networking has been developed, and its performance is demonstrated by
software simulation [22].

Communication is another important subject in multi-agent systems. Agents must be
able to communicate successfully with each other in order to perform all kinds of actions,
such as sharing information, coordinating, and negotiating. The main way to achieve this
is to develop communication methods that will support the features of agents, such as
autonomy. Communication methods have been studied in the literature of distributed
systems for many years [23–25]. The general approach in this field is to provide com-
munication between components via network protocols at various levels [26]. However,
this approach is insufficient when the needs of multi-agent systems and the properties of
agents are considered. Here, the main problem is the autonomous structure of agents in the
multi-agent system. In a communication approach based on network protocols, there are
expressions that can be used during communication. The contents of these expressions, and
details on how these expressions can be used (in which situations and in what order) are
determined by precise rules. However, rule-based communication methods defined in this
way are not suitable for multi-agent systems because they constrain the autonomous nature
of agents. In applications that a single agent cannot solve or effectively solve using his
own knowledge and individual abilities, multi-agent systems, in which many agents come
together to solve them in a coordinated manner, are becoming more and more important.
Each role given to the agents in the system has responsibilities, abilities, authorizations,
and rules depending on the goals of the system.

3. Multi-Agent Systems for Microgrid Control

Multi-agent systems consist of multiple intelligent agents that interact to solve prob-
lems that may be beyond the capabilities of the system. For many years, multi-agent
designs and architectures have been proposed for applications in power systems and
power engineering [27–29]. Distributed energy resources used in microgrid applications
are increasing day by day, and making microgrid control more complex. The multi-agent
system is well suited for managing this complexity.

There are many advantages of multi-agent systems in microgrid control applica-
tions [30]:

Distributed architecture: The structure of distributed generation resources conforms
to multi-agent system architectures based on local knowledge and decision making.
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Flexibility: In the microgrid system modeled with distributed energy resources and
loads, agents can be easily deployed and provide flexibility for future expansion in the
system, thanks to its “plug and play” capabilities.

Resilience: The multi-agent system can respond quickly and adapt to faults. In
addition, changes in grid topology (disconnection of a load or generator) do not interrupt
both local and global system goals (for example, stability and efficiency).

Multi-agent-based control systems for microgrids have some limitations that hinder
their widespread adoption but also offer an opportunity for future research [30]:

Emerging behavior: The autonomous and distributed nature of intermediaries can lead
to unpredictable consequences. While the intents and targets of agents are programmable,
the effect of runtime interactions is not always predetermined. Such immediate behav-
ior may be beneficial in some situations (e.g., market transactions). However, in some
applications, this uncertainty can be a disadvantage.

Portability: Hardware implementation of multi-agent system designs and architectures
can be difficult. The most recent applications of multi-agent system-based control of
microgrids are virtual test software simulations (e.g., MATLAB Simulink). The performance
of many multi-agent systems approaches on real microgrid hardware has not been widely
tested yet.

Scalability: The higher computational power available today allows researchers to
model larger microgrids with many agents coordinating actions on a single platform.
However, the ability of multi-agent systems to scale with increases in problem size (with
agents across multiple platforms) or diversity (with agents of multiple types) is not well
understood.

Security: The massive shift from physical infrastructure to smarter technology increases
the risk of security and privacy breaches from malicious outside actors and disruptors.

When examining the active research areas of multi-agent systems in the context of
microgrids presented in the literature in order to understand their current involvement
in microgrid development, it can be seen that most studies have focused on distributed
microgrid control [31–35]. Electrical energy trading, optimization, and power restoration
are other popular application areas. The areas wherein multi-agent systems are used in
microgrid control, and their properties, are presented in Table 1.

Table 1. Control subjects in the microgrid in which multi-agent system-based control is applied.

Author and Year Applications of MAS in
Microgrid Aim Application

Victorio et al., 2021 [31]
Chung et al., 2013 [32]
Almada et al., 2021 [33]
Jabeur et al., 2022 [34]
Zheng and Cai. 2010 [35]

Distributed Control

Solving the real and
reactive power mismatch
arising from distributed

generation and
maintaining the balance

between supply and
demand in microgrid.

Multi-agent system-based microgrid
control models are created using

artificial neural networks and fuzzy
systems for tasks such as generation

planning and load forecasting for
operations planning

Logenthiran et al., 2010 [36]
Jin et al., 2021 [37]
Khan et al., 2019 [38]
Khan and Wang. 2017 [39]

Optimization
Increase efficiency by

optimizing the actions of
microgrid components.

An artificial immune system-based
algorithm is used to optimize the

efficiency of renewable energy
sources in the system and maximize

power generation.

Alhasnawi et al., 2021 [40]
Wang et al., 2020 [41]
Mohamed et al., 2019 [42]

Power Restoration

Provide power restoration
in the event of a

large-scale power outage
in microgrids.

A hierarchical control strategy is
implemented along with a

multi-agent immunity algorithm for
rapid restoration of strength.
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Table 1. Cont.

Author and Year Applications of MAS in
Microgrid Aim Application

Luo et al., 2018 [43]
Gomes et al., 2020 [44]
Sesetti et al., 2018 [45]

Electrical Energy
Trading

Maximizing the revenue
from the microgrid.

Creates a pricing mechanism for the
microgrid in the competitive

electricity market and algorithms for
price determination based on

demand and supply strategies.

Many studies have used multi-agent system-based controllers to optimize microgrid
operations [36–38]. Awareness of green energy technologies in microgrids has been widely
adopted for reducing CO2 emissions and for a clean environment. Distributed energy
resources such as the PV system, diesel engines, gas turbines, small wind turbines, and fuel
cell technologies are developing within the power system. The control and maintenance
of this power have a great impact on power systems. Multi-agent system technology is
adopted for optimum use of electrical power in microgrids. In [39], multi-agent system
technology used for microgrid control, optimization, and market distribution [39]. In [42],
the multi-agent system with a time-varying microgrid topology is expressed as the best
control strategy to address all data restoration problems in microgrids.

Because loads and resources within a microgrid can be diverse and distributed, the
real-time response and the distributed generation resource management are critical in
preventing local power outages. It is also important to do this efficiently and cost-effectively
to achieve an economically viable microgrid. In addition, some studies consider the
characteristics of source or load types, and self-regulate themselves with other agents to
optimize for cost and efficiency globally. Multi-agent systems have also been used for
the power restoration of microgrids [40,41]. The load restoration algorithm consists of
agents that make synchronized load restoration decisions based on information learned
directly from their neighbors. The global knowledge is discovered based on the mean
consensus theorem, although only direct connections are made to neighbors. Multi-agent
systems have been applied for electrical energy trading or market model analysis [43–45].
Efforts have been made to establish a power market model for the efficient operation of the
microgrid. A multi-agent system electricity trading algorithm is proposed to maximize the
revenue from the microgrid [46].

4. The Case Study: Multi-Agent-Based Control of DC Microgrid
4.1. Designed DC Microgrid

As a case study, the multi-agent-based control of a DC microgrid is designed and
presented in this study. The designed DC microgrid model is shown in Figure 3. The
microgrid includes the wind turbine, the solar PV system, the battery energy storage
system (BESS), the synchronous generator, DC loads, and the grid. This system is designed
with MATLAB/Simulink.
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4.1.1. PV System Model

The PV system model consists of 25 series-connected Suntech STP270S-24 PV modules.
The solar irradiation to the system is defined as time-varying. The PV modules produce
direct current when the solar irradiation falls on them. However, the voltage and current
values depend on natural conditions such as solar irradiation and ambient temperature.
Therefore, a maximum power point tracking (MPPT) algorithm is used to ensure maximum
power generation for any operation condition. The parameters of the designed PV system
in the MATLAB/Simulink model are shown in Table 2.

Table 2. The block parameters of the designed PV system.

The Block Parameters of PV Value

Open circuit voltage 44.49 (V)
Short-circuit current 8.19 (A)

Voltage at maximum power point 35.00 (V)
Current at maximum power point 7.71 (A)

Temperature coefficient of open
circuit voltage 0.1504% (V/◦C)

4.1.2. Wind Turbine Model

The wind energy system model, whose parameters are given in Table 3, consists of a
three-phase salient pole permanent magnet synchronous generator (PMSG), a wind turbine
and a blade angle control system with an output power of 10 kW. PMSG produces three-
phase alternating current with the kinetic energy generated by the rotation of the blades
with the wind. However, the voltage and frequency values depend on the wind speed.
The wind speed is defined to the system in a time-varying manner. These values are set to
change at certain time intervals. Since the PMSG generates variable voltage and frequency,
a rectifier is used next to the PMSG. Additionally, similar to the PV system, a MPPT
algorithm is utilized with a DC-DC converter to get the maximum available power from the
wind system and to ensure maximum energy conversion efficiency. The MPPT algorithm
generates a current reference for the DC-DC converter by using the torque reference, output
DC voltage (the common DC bus voltage) and the wind speed. A hysteresis controller
compares this current reference and the actual current value to generate the switching
signal for the DC-DC converter.
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Table 3. The block parameters of the designed wind turbine.

The Block Parameters of Wind
Turbine Value

Nominal mechanical output power 10 (kW)
Base power of electrical generator 10/0.9 (kVA)

Base wind speed 12 (m/s)
Maximum power at base wind speed 0.8 (pu)

Base rotational speed 1.2 (pu)

4.1.3. Synchronous Generator Model

A synchronous generator is included in the system to take precautions against natural
variables and sudden output power changes occurring in the output power of the wind
turbine and PV system. Actually, it is used to support the sustainability and stability of the
microgrid. The block parameters of the synchronous generator are given in Table 4.

Table 4. The block parameters of the designed synchronous generator.

The Block Parameters of
Synchronous Generator Value

Nominal power 1000 (VA)
Line-to-line voltage 400 (V)

Frequency 50 (Hz)
Stator resistance 0.00285 (pu)

4.1.4. Battery Energy Storage System (BESS)

The BESS is connected to the common DC bus via a bidirectional DC-DC converter
to balance the differences between the instant supply power and the demand. Thus, it
provides sustainable energy to the loads. Besides, it also mitigates power fluctuations in the
wind energy conversion system output power. The block parameters of the 650 V, 20 Ah
Li-ion battery used as a BESS are given in Table 5.

Table 5. The block parameters of the Li-ion battery used as a BESS.

The Block Parameters of
Li-Ion Battery Value

Nominal voltage 650 (V)
Rated capacity 20 (Ah)

Initial state-of-charge (SoC) 60 (%)

In the system, the energy management is carried out together with the battery control
system, and the balance between the generated power and the demand is ensured. The
voltage control action is performed with the common DC bus reference voltage value. If
the total output power of the generation units is higher than the load power, the DC bus
voltage will increase. Similarly, if the total output power of the generation units is lower
than the load demand power, then the DC bus voltage will decrease. This change shows
the imbalance between the generation and demand. Based on this variation, a simple
voltage controller is used as an energy management system. If the common DC voltage is
higher than the specified reference voltage level, the controller generates a negative power
reference for the BESS, and the BESS is charged. Conversely, when the common DC bus
voltage is lower than the reference voltage level, the controller generates a positive power
reference for the BESS, and the BESS is discharged.

4.2. Proposed Multi-Agent-Based Control Strategy

The conventional power systems use a master controller that collects all system infor-
mation to manage the network and make decisions. With the increase in distributed energy
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resources in power systems, the power network is getting more complex. In a microgrid,
the central control may introduce many drawbacks while it manages and controls many
distributed energy resources, loads and storage units [3]. In this study, a distributed control
with a multi-agent system is proposed instead of centralized control to overcome the prob-
lems caused by diversity in production and load resources. In addition to providing power
quality and supply–demand balance by creating an effective management and control
mechanism in the microgrid controlled by a multi-agent system, tasks such as battery
charge–discharge, battery life improvement, reference bus voltage control, and reduction of
voltage fluctuations are also performed by agents. A distributed generation agent, battery
agent, load agent and grid agent are designed in the system. Agents communicate with
each other to perform their role in the control of the microgrid. The roles of agents in the
system can be described as follows:

Distributed Generation Agent: This agent represents distributed generation units such
as wind turbines and PV modules in the microgrid. It receives the voltage and current
information separately from PV modules, wind turbines and synchronous generators, and
uses these data in control. It performs MPPT for the PV systems and wind turbines. It
also controls the total power produced in the PV systems, wind turbines and synchronous
generators, and share the data with other agents.

Battery Agent: This agent represents the BESS in the microgrid. It controls the battery
charge and discharge action by using the battery, the generation and consumption data that
it receives from other agents. It also shares the BESS power information (produced/stored)
with other agents. It monitors the state of charge (SoC) level and requests power from the
distributed generation agent and/or the grid agent when the SoC level is low.

It also controls the charging and discharging of the battery and ensures that the
common DC bus voltage is stabilized. PS refers to the supply power in the microgrid
system, and its equation is given in Equation (1). PS is the sum of the wind turbine output
power (Pwt), the photovoltaic system output power (Ppv), the synchronous generator power
(Psg), and the battery power (Pb).

PS = Pwt + Ppv + Psg + Pb (1)

Pd refers to the demand power in the microgrid system, and its equation is given in
Equation (2). Pd is the sum of the power of DC loads (Pdc_load) and power of AC loads and
the grid (Pac_load).

Pd = Pdc_load + Pacload (2)

In cases in which PS is greater than Pd, the battery is charged by communicating with
other agents thanks to the battery agent, due to the excess power produced in the microgrid
system. However, in cases in which PS is smaller than Pd, the battery is discharged by
communicating with other agents due to the lack of enough power generation in the
microgrid system.

Load Agent: This agent represents loads in the microgrid. It receives the consumed
power information from all loads in the system and transfers it to other agents. It has the
ability to monitor, control and negotiate the power level and link status of the controllable
load. Particularly when the microgrid is in island mode, it may interrupt, depending on the
available power and SoC of the BESS. It has critical load and non-critical load separation
capability. In addition, it plays a critical role in the system by sending the information on
whether or not the supply–demand balance is provided to other agents.

Grid Agent: This agent represents the grid side within the microgrid. It monitors
the grid voltage, phase angle and frequency, and is responsible for notifying other agents
of changes in the microgrid state. It provides power and current control exported to or
imported from the grid. With the data it receives from other agents, the PCC point is
disabled, allowing the system to operate in island mode. It is responsible for monitoring
and negotiating power from generation units and importing or exporting power when the
microgrid is in on-grid mode.
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The cooperation diagram between the agents in the designed multi-agent system is
shown in Figure 4. Additionally, Table 6 gives a general idea of how and for what tasks
these agents are designed, and also contains the necessary messages for interactions.
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Table 6. Communication and coordination of agents.

Number Communication and Coordination

1 Distributed generation agent receives power, voltage and current information from distributed generation sources.
2 The distributed generation agent makes MPPT with the information it receives and transfers it to the resources.
3 Battery agent receives voltage, current, power and SoC information from the battery.
4 Battery agent implements the battery control algorithm and transfers it to the battery.
5 Load agent receives power consumed from critical and non-critical loads.

6 Load agent transmits information for the exit of non-critical loads according to the system
supply/demand situation.

7 Grid agent receives voltage, current and power information from the grid.
8 Grid agent converts the common DC bus voltage to AC with DQ control and transfers it to the grid.
9 Load agent requests network agent to open/close PCC.

10 Grid agent notifies the installation agent of the mode of the system (on/off grid).
11 Grid agent notifies mode to distributed generation agent (on/off grid).
12 Distributed generation agent transmits the generated power to the grid agent.
13 Grid agent notifies battery agent mode (on/off grid).
14 Battery agent reports common DC bus voltage information to the grid agent.
15 Load agent requests power from the distributed generation agent.

16 Distributed generation agent gives production information to the load agent and requests load shedding in
underproduction.

17 Load agent requests power from the battery agent.
18 Battery agent provides production information to load agent and requests charge shedding when SoC is low.

5. Simulation Results

The designed DC microgrid and proposed and multi-agent-based microgrid controller
are modelled with MATLAB/Simulink, and simulations representing different cases are
carried out. Natural variables such as solar irradiation and wind speed affect the generated
power level of the microgrid system. Therefore, the system has been tested on different
scenarios depending on the renewable generation unit’s situation to test the effectiveness
of the designed multi-agent-based control.
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5.1. Scenario I: Solar and Wind Power Are Both Available

In order to test the performance of the system in variable solar irradiation conditions,
the solar irradiation is changed from 400 to 1000 W/m2 in the simulation studies, as given
in Table 7.

Table 7. Variable solar radiation values.

Time (sn) Value (W/m2)

0–2 1000
2–4 400
4–6 800

Similarly, the variable wind speed, defined in Table 8, is used in the simulations to
validate the performance of the proposed controller for different operation conditions.

Table 8. Variable wind speed values.

Time (sn) Value (m/s)

0–0.5 5
0.5–2.5 12
2.5–6 10

The output power of the solar PV system, together with the solar irradiation value
that changes with time, is given in Figure 5. Since the available solar power increases and
decreases with the solar irradiation level, thanks to the MPPT controller, the output power
of the PV system also tracks it and generates maximum power for any operation condition.
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Figure 5. The output power of the PV system.

Simultaneously, the wind speed also varies and the available wind power changes. To
achieve maximum use of the renewable energy resources, the microgrid controller should
control these units properly. Figure 6 shows the changes of power values of all components
in the system. The PV and wind system power levels are obtained with variable values
of wind speed and solar irradiation as mentioned before. The controller controls the
BESS’s charge and discharge condition and power of the batteries to ensure the power
sustainability and stable common DC bus voltage. AC and DC loads are the loads in the
system. One can observe that for variable generation (because of variable wind speed and
solar irradiation) and variable load conditions, the DC bus voltage is kept constant, and the
microgrid stability is ensured. It is seen that the system still works efficiently in the time
period when the load increases. In the system, the synchronous generator is programmed
to run if the battery SoC level is below a certain limit. Since the supply and demand balance
can be achieved and the SoC is not below this limit, the synchronous generator is not
activated, except at the start. In addition, it is proven in the figure that the agents provide
full control and take an active role in the system.
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Figure 6. The variation in system components’ power level for different conditions.

Figure 7 shows the voltage level of the common DC bus. The reference value for the
common DC bus voltage is determined as 800 V, and it is controlled by the battery agent
in the system. Thus, it is possible to provide the voltage and current values demanded by
the grid agent. As can be seen in the figure, the DC bus voltage is well controlled for any
operation condition.
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Figure 7. The voltage of the common DC bus.

To explore the operation of the other units, the voltage, current, charge level and
power values of the BESS are given in Figure 8. The BESS is controlled by the battery agent.
When the generated power cannot meet the total load in the system, the BESS discharges
and transfers power to the system, in light of the information transferred by the distributed
generation agent and the load agent to the battery agent. The battery current, voltage and
power values vary with the generated and load power level.
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Figure 8. The battery voltage, current, SOC level and charge/discharge power variation.

In Figure 9, the supply, demand and the supply demand difference in the designed
microgrid system are given. Accordingly, the generation in the system can always meet
demand. Thanks to the monitoring of the difference between supply and demand by the
load agent, non-critical DC loads are removed from the system when the power obtained
from the distributed generation sources and the battery does not meet the consumption;
at the same time, the microgrid is switched to the island mode operation by deactivating
the grid connection at the PCC. When the supply power is more than the demand, the
system continues to feed the non-critical DC loads and the grid and operation in grid-
connected mode.
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5.2. Scenario II: Only Solar Power Is Available

In this scenario, while the same solar irradiation value defined as in Table 7 is used
for PV system, the wind speed is kept at 0 during the simulation. Therefore, the wind
turbine was disabled during the simulation of this scenario. Figure 10 shows the variation
in the power values of all components in the system for this condition. While there is no
change in the PV system power level, AC and DC load, compared to the first scenario, it
is observed that more battery power is required to supply the system. It is determined
that the maximum power level provided by the battery (discharge power) to the microgrid
system increased from 30 kW to 36 kW, representing a 20% increase compared to the first
scenario. As mentioned before, the system is used to provide power if the renewable
resources and the battery cannot supply the load. The PV system and BESS supply power
to the microgrid system in this scenario, and the synchronous generator does not run again
except at the start, because the SOC level of the BESS is bigger than the SOC limit.
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Figure 10. The variation in the power level of each unit in the microgrid for different operation
conditions with no wind speed.

Figure 11 shows the voltage level of the common DC bus. A reference value of 800 V is
ensured for any solar irradiation and load level thanks to the multi-agent-based microgrid
control system. The controller agents define the operation point and determine the required
operation mode for any unit. Thus, it is possible to keep the bus voltage constant in order
to supply the loads. In addition, it has been proven that the agents provide full control even
when the PV power is variable and there is no wind power, and ensure system stability
and stable DC bus voltage for any condition.
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6. Conclusions

In this study, an overview of multi-agent-based system applications in microgrids
is presented. Agent theory, multi-agent systems and concepts that facilitate microgrid
operation and control are introduced, and agent interaction, coordination, and cooperation
are discussed in the context of multi-agent system features. The application of multi-agent
systems in microgrids for different purposes such as market operations, fault detection,
and fault location has been highlighted. In addition, a multi-agent-based controller for the
DC microgrid system is proposed and tested as a case study. The presented DC microgrid
consists of a solar PV system, wind turbine, synchronous generator, BESS, loads and grid
connection. To control this microgrid, agents, their roles and interactions were designed.
This system was tested in MATLAB/Simulink, and the performance of the multi-agent-
based system was validated. The simulation results show that the multi-agent-based
controller improves the stability and power quality of the microgrid.

With the growing interest in distributed generation systems and control of microgrids,
multi-agent system-based control development studies are becoming more and more impor-
tant. Microgrid control and protection applications using multi-agent systems, intelligent
distribution control, modeling, and optimization have good research potential. Agent com-
munications continue to evolve, adapting to changing network communication protocols.
The improved agent provides a faster response time and adaptability. The standardization
of multi-agent system architecture and applications will lead to more system interoper-
ability in the microgrid and a smart grid environment. However, the inherent uncertainty
of software complexity, hardware incompatibility, and security risk of malicious external
actors limit the widespread adoption of the multi-agent systems to control microgrids.
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Abstract: Instead of storing the energy produced by photovoltaic panels in batteries for later use to
power electric loads, green hydrogen can also be produced and used in transportation, heating, and as
a natural gas alternative. Green hydrogen is produced in a process called electrolysis. Generally, the
electrolyser can generate hydrogen from a fluctuating power supply such as renewables. However,
due to the startup time of the electrolyser and electrolyser degradation accelerated by multiple
shutdowns, an idle mode is required. When in idle mode, the electrolyser uses 10% of the rated
electrolyser load. An energy management system (EMS) shall be applied, where a storage technology
such as a lithium-ion capacitor or lithium-ion battery is used. This paper uses a state-machine EMS of
PV microgrid for green hydrogen production and energy storage to manage the hydrogen production
during the morning from solar power and in the night using the stored energy in the energy storage,
which is sized for different scenarios using a lithium-ion capacitor and lithium-ion battery. The
mission profile and life expectancy of the lithium-ion capacitor and lithium-ion battery are evaluated
considering the system’s local irradiance and temperature conditions in the Australian climate. A
tradeoff between storage size and cutoffs of hydrogen production as variables of the cost function is
evaluated for different scenarios. The lithium-ion capacitor and lithium-ion battery are compared
for each tested scenario for an optimum lifetime. It was found that a lithium-ion battery on average
is 140% oversized compared to a lithium-ion capacitor, but a lithium-ion capacitor has a smaller
remaining capacity of 80.2% after ten years of operation due to its higher calendar aging, while LiB has
86%. It was also noticed that LiB is more affected by cycling aging while LiC is affected by calendar
aging. However, the average internal resistance after 10 years for the lithium-ion capacitor is 264% of
the initial internal resistance, while for lithium-ion battery is 346%, making lithium-ion capacitor a
better candidate for energy storage if it is used for grid regulation, as it requires maintaining a lower
internal resistance over the lifetime of the storage.

Keywords: green hydrogen; PV; supercapacitor; DC microgrids; lithium-ion batteries; sizing

1. Introduction

Energy can be stored in different forms, and one of these forms is fuel. Fuel was
used since the industrial revolution in the 18th century to run the machines and used
for thousands of years earlier in heating, lighting and cooking, which makes it a more
conventional means of energy that humans use in their life. The main challenge of using
fuel is its chemical irreversibility and burning releases compounds such as CO2, which
contributes to the greenhouse gas effect. One method to overcome the side effect of
fuel is to use fuels that do not release CO2 when consumed, such as hydrogen. The
problem with using hydrogen as a fuel is that its industrial production comes mostly from
fossil and nonrenewable sources. From that, the importance of green hydrogen becomes
clear, and researchers are working on more efficient ways of producing hydrogen from
renewable sources.

Energies 2023, 16, 2122. https://doi.org/10.3390/en16052122 https://www.mdpi.com/journal/energies
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The fact that green hydrogen production only requires water and a renewable energy
source, promoted the development of microgrids for green hydrogen production. Renew-
able microgrids have been widely used for providing power to homes in rural areas where
the power grid is not available [1].

Pairing hydrogen production/storage with solar or wind microgrid batteries powers
residential areas in a zero-emission manner.

One of the challenges of using solar power for hydrogen production is its intermittent
and unpredictable power output. The hydrogen production cell is sensitive to power
fluctuations where multiple shutdowns and restarts accelerate the degradation of the cell.
Extending the life of the hydrogen cell happens by putting the cell in idle mode, where it
becomes 10% of the production load.

Overcoming the power intermittency and securing the idle mode required power from
PV is achieved by including energy storage in the microgrid. Currently, the most used
storage technology integrated with solar and wind power systems is based on Lithium-ion
(Li-ion) batteries [2]; nevertheless, due to the high cost, the need for stable temperature, and
the limited lifetime of Li-ion batteries [3], there is a need for alternative electrical energy
storage solutions to keep up with the development and integration of renewable plants.
One such technology is represented by Li-ion capacitors (LiCs). LiCs are a promising
solution for energy storage [4], which can overcome some of the disadvantages of Li-ion
batteries, which were mentioned before.

Conventional systems for green hydrogen production are based on grid-connected
facilities supplied by renewable sources and use the excess energy for hydrogen production
as a method of storing the energy. The current focus in the field of green hydrogen
production is on utilizing distributed microgrids or retrofitting existing renewable energy
plants to optimize production [5]. Energy storage (ES) based on LiC is compared with
LiB ES, with a focus on size, remaining capacity, and internal resistance, to determine the
best fit for green hydrogen production. The energy management system (EMS) is being
developed to ensure the efficient operation of the electrolyser and the ES production [5].

The ES sizing optimization problems are divided into two parts: system modeling with
input parameters and real data from the system location, and output part for evaluating
the outputs such as SoC [6]. A sizing algorithm is then used to iterate the simulation for
different input parameters and search for the optimal solution according to the system
criteria that shall be met. Searching methods can be used for sizing such systems, such
as directed search [7] or the sparrow search algorithm, if required optimization is multi-
dimensional [8].

There is increasing attention on establishing a DC microgrid to eliminate AC power
conversions and further increase efficiency [9]. The goal is to maximize the production
of green hydrogen and supply commercial needs through the main production of the
microgrid or through excess energy instead of storing it in batteries.

The sizing of the storage needs to be optimized for outdoor climatic conditions at the
grid’s location (ES has no temperature-controlled environment). The capacity of Li-ion
batteries and Li-ion capacitors is dependent on the temperature at the site location. The
degradation rate of both storage technologies is also dependent on the temperature and
number of full equivalent cycles (FEC) of the cell. Increasing the size will reduce the FEC
of the storage and will increase its lifetime but will also increase its cost. Thus, an energy
management system (EMS) shall be used to maximize the hydrogen production and the
expected life of storage cells and secure the power of the load in idle mode. This work
aims to propose and provide an analysis of two storage technologies and compare them to
suggest the best technology for green hydrogen production applications.

This paper is divided into the following sections: Section 2, Green hydrogen produc-
tion system; Section 3, Li-ion capacitor and Li-ion battery degradation behavior; Section 4,
Sizing results for the Li-ion capacitor and Li-ion battery; Section 5, Sensitivity analysis
of Li-ion capacitor and Li-ion battery; Section 6, Discussion and future work Section 7,
and Conclusion.
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2. Green Hydrogen Production System

In this paper, the main focus is to optimize the ES size that assists hydrogen production
from PV power. This section gives an insight into the components and operation of
the system.

The green hydrogen production from a PV facility consists of PV arrays, an energy
storage system, and a hydrogen generator through electrolysis (Electrolyser).

There are different water electrolysis technologies such as Alkaline Electrolysis Cells,
Proton Exchange Membrane (PEM), and Solid Oxide Electrolysis Cells. PEM electrolysis
technology is widely established as an efficient and suitable option for hydrogen produc-
tion from renewable-powered systems due to its high efficiency, and ability to produce
high-purity hydrogen [10,11]. PEM has some challenges, such as the use of expensive
catalyst materials and shorter-life membrane materials. To maintain a long lifetime of the
electrolyser, an EMS is required.

Replicating the system model of the solar hydrogen pilot plant in greater Brisbane [5],
the electrolyser power is 66% of the PV nominal power. The aim of this work is to demon-
strate the DC off-grid hydrogen production as shown in Figure 1. The figure presents
the DC Microgrid for green hydrogen production used [9,12], as DC microgrids produce
hydrogen more efficiently by eliminating unnecessary AC power conversions from the
system. In [9] as in Figure 1, the power conversion between a 380V DC bus supplied
by PV powers the electrolyser, while a 48V bus is tied to the ES, and the 380 V–48 V is
powered through a bidirectional DC-DC converter. The power electronics of the system are
not considered in this work, but the storage and EMS components of the system are the
focus. The modeled system in this work consists of a nominal 1500 W PV and 1000 W PEM
electrolyser, an ES that uses LiC or LiB cells, and an EMS that governs the operation of the
electrolyser and the power flow from/to the ES.
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In Figure 2, The PEM electrolyser has three stats of operations managed by the EMS as
follows [13]:
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• H2 Production mode: During this state, the electrolyser is producing hydrogen at its
rated production capacity powered by the PV panels generation; if the PV generation
drops during the day, the ES will substitute.

• Standby/Idle mode: During this state, the electrolyser consumes 10% of its rated
production capacity power to sustain the required temperature and pressure of the
electrolyser. The electrolyser is ready to return to the production state in a short mode
transitioning time.

• Off/Failure mode: During this state, the electrolyser is in a total shutdown, where it
losses the pressure and the temperature required by the electrolyser.
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Figure 2. EMS state machine for the electrolyser.

There are data inputs that govern the electrolyser load transitions from one state to
the other such as the state of charge (SoC) of the ES, solar irradiation, and solar irradiation
forecast. The irradiation is the current solar irradiation, and the irradiation forecast is the
irradiation predicted for the next day. Transitions from each state to the other are as follows:

• The transition from idle to production mode takes place when the solar irradiation is
higher than a specific threshold (Irr_threshold). This is considered a hot start of the
electrolyser because it sustains its required startup pressure and temperature.

• The transition from production to idle mode takes place when the SoC of the ES drops
to a certain threshold where the remaining stored energy in the ES will power the
electrolyser with 10% of its rated power to avoid the total shutdown situation. The
electrolyser remains in the production mode even after crossing the ES SoC threshold
if the Irradiation forcast the next day is enough to generate energy that will sustains
the system for the next 24 h.

• A transition to the fail mode where a total shutdown and depressurization of the elec-
trolyser occurs when the ES is fully discharged and SoC is almost zero. Transitioning
from the fail mode to the idle mode is considered a cold start where the temperature
increases and pressure builds up to be in the idle state conditions, which takes more
time than the hot start.

Irradiation forecast signal selects whether the transition from production to idle mode
happens at a high SoC (SoC_threshold1) and the night production is reduced or at a low
SoC (SoC_threshold2) where the night production is increased.
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3. Li-ion Capacitor and Li-ion Battery Degradation Behavior
3.1. Li-ion Capacitor and Li-ion Battery under Consideration

Hybrid supercapacitors, also known as lithium-ion capacitors (LiC), are an emerging
technology that combines the advantages of an electric double-layer capacitor (EDLC) with
those of a lithium-ion battery. LiC has a high-power density and can withstand temperature
fluctuations, making it suitable for outdoor applications. It also has a longer cycle lifetime
and higher power density than lithium-ion batteries (LiB). LiB, on the other hand, is more
susceptible to degradation due to temperature fluctuations and has a lower power density.
Additionally, LiB is more sensitive to fluctuations in power supply and requires a higher
oversizing to prevent degradation.

In outdoor applications where ES is not placed in a temperature-controlled environ-
ment, LiC offers several advantages over LiB as an energy storage solution. Its ability to
withstand temperature fluctuations and its longer cycle lifetime make it a more reliable
option. Additionally, having an optimized size for the ES reduces the overall cost of the
system. A comparison of the degradation behavior between LiB and LiC showed that LiC
had better performance in terms of cycle life compared to LiB but the bottleneck is in the
calendar life of the LiC [14]. In Table 1 the specifications of the used LiB and LiC in this
study are presented.

Table 1. Datasheet parameters of LiB and LiC.

Property LiC LiB

Nominal capacity 4 Ah 13 Ah
Nominal voltage 3.2 V 2.26 V

Maximum voltage 4 V 2.9 V
Minimum voltage 2.5 V 1.5 V

Max. charge/discharge current 30 A 130 A
Calendar life 5 years 25 years

Internal resistance 6 mΩ 1.5 mΩ
Specific energy 48.8 Wh/kg 74 Wh/kg
Energy density 77.7 Wh/l 146 Wh/l

Operation and storage temperature −25 ◦C to 65 ◦C −40 ◦C to 50 ◦C

ES is needed for PV systems that are used for hydrogen production because of the
intermittent and fluctuating nature of solar power and the need to keep the electrolyser
in production or idle mode and avoid a total shutdown. In Australia, PV systems are
exposed to various weather conditions, including extreme heat in the summer and cool
temperatures in winter, which affects the performance of the PV panels and the efficiency
of the hydrogen production process.

The use of ES in this system allows for the storage of excess solar energy that can be
used during times of low solar irradiance or high demand for hydrogen. This helps to
ensure a consistent and reliable supply of hydrogen, which is essential for industrial and
transportation applications [15].

3.2. Li-ion Capacitor and Li-ion Battery Degradation

Laboratory testing on LiC cells was performed to study their degradation behavior
in different operating and environmental conditions. The aging tests were conducted by
continuously charging and discharging the LiCs with a 100% cycle depth, and various
C-rates and temperatures, as presented in [12]. The results of the tests were used to develop
an aging model for the LiC cells, which was then used to predict the capacity fade of the
LiC storage over a period of time and in variable temperature and load conditions [16].
From [16] the cycling aging was measured, where the capacity fade of the LiC (C fCycling LiC)
was approximated using Equations (2) and (3). In (2) A is the degradation factor of the LiC
as a function of current (I) and temperature (T). C fCycling LiC is a function of the cycle count
during simulation (nc), I and T. nc as a function of time is counted during the simulation
using (1), where Qpresent is the cell storage capacity. In Figure 3, the expected number of
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full equivalent cycles (FECs) of the LiC before reaching the 20% capacity fade at various
temperatures and currents is presented.

nc(t) =

∫
I

2 ·Qpresent
dt (1)

A(I, T) = 0.0027− 0.00036 · I + 7.79 · 10−6 · I2 + 4.3 · 10−7 · I · T + 8.85 · 10−7 · T (2)

C fCycling LiC(t, I, T) = 100− A(I, T) · nc + A(I, T) · nc0.95 (3)
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The data for the LiB degradation behavior analysis was obtained from the literature [17–19],
and the cycling capacity fade is estimated using the model formulated in (4) and (5).
End_o f _li f e_FECLiB is the expected number of FECs that the LiB can withstand at various
temperatures and currents before reaching the 20% capacity fade, which is presented in
Figure 4.

End_o f _li f e_FECLiB(I, T) = 2.4 · 104 + 573.1 · I − 904 · T − 9.6 · I · T + 9.1 · T2 (4)

C fCycling LiB(t, I, T) =
20% · nc

End_o f _li f e_FECLiB
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Overall, the laboratory testing and degradation behavior analysis demonstrated the
superiority of LiC over LiB as an energy storage solution in applications that makes high
FEC and are placed outdoors; however, by considering the calendar aging of LiC and LiB
it is found that the calendar aging effect on the LiB is very small (0.8% capacity loss per
year) [18] compared to the calendar aging of the LiC cells which is dependent on the idle
time conditions of the LiC, such as SoC and the temperature, as shown in Figure 5. The
capacity fade caused by calendar aging of the LiC C fcalendar_LiC as a function of SoC and T
is formulated in (6) and derived from the calendar aging test performed in [20] and aligned
with the shelf life from the LiC datasheet (5 years shelf life at room temperature and 0%
SoC). C fcalendar_LiC is the percentage of the faded capacity over the time (t) before the end
of life (EOL) which is a 20% loss of the starting capacity.

C fcalendar_LiC(SoC, T) =
20% ·

(
101.7 + 1.018 · SoC− 0.57 · T + 0.0053 · SoC · T − 0.01 · T2)

t
(6)
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3.3. Li-ion Capacitor and Li-ion Battery Internal Resistance Development

The internal resistance (IR) development during the lifetime of the ES is an important
parameter that governs the response behavior of the ES in regulating the grid. IR increase
due to the aging of LiC and LiB is studied and modeled.

The [20] IR increase due to calendar aging is modeled in Figure 6 which presents the
required time in months to have a 200% increase in the LiC IR. The LiC IR increase due to
calendar aging was modeled as a function of temperature and SoC.

In [16] the LiC IR increase due to cycling aging (IRCYCLING_LiC) was approximated
using Equations (7) and (8). In (7), B is the IR increasing factor of the LiC as a function of
current (I) and temperature (T) and ESRCYCLING_LiC is a function of the cycle count during
simulation (nc), I and T.

B(I, T) = −0.0076− 0.0013 · I + 3.3 · e−5 · I2− 3.7 · e−6 · I · T + 0.0008 · T− 1.8 · e−7 ·T2 (7)

IRCYCLING_LiC(t, C− rate, T) = 100− BC−rate,T · nc + BC−rate,T · nc0.95 (8)
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From [18], the IRCYCLING_LiB is approximated to increase by 10% for each 3000 FEC.
The time required for the IR of the LiB to increase by 200% was modeled as a function of
idling SOC and temperature and the results are presented in Figure 7.
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Figure 7. The expected time, expressed in months, for the LiB to increase the IR to 200% due to
calendar aging.

It can be noticed that for the case of the IR, idling at lower SoCs for the LiBs has the
opposite effect than for LiCs and elongates the calendar lifetime.

4. Storage System Sizing for the Australian Climate

In Figure 8, the simulation model for the considered system is presented showing
the PV source, electrolyser load, EMS and ES. The system model is used for iterative
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simulations for 10 years period (2012 to 2022) to be used for optimizing the system size.
The components of the system are described as follows:

• PV source is a 1500 W nominal capacity. PV capacity size is fixed for all test cases.
• Electrolyser for hydrogen generation is 1000 W in generation mode and 100 W in idle

mode (Two electrolyser units are used).
• EMS as described in Figure 2. The state machine governs the load operation and the

states where the power from the PV is delivered to the load or the energy storage.
• Energy storage unit (ES) represents the LiC or the LiB models including the aging

models of each energy storage technology.
• System model inputs are the temperature and irradiation for 10 years at Brisban,

Australia. Output signals such as the SoC and ES capacity fade over 10 years [21].
Irradiation forecast is also considered as an input to the EMS state machine.
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Figure 8. Green hydrogen production from the PV system model for simulation.

After setting the system model the sizing process starts.
In the literature, several optimization algorithms are used depending on the complexity

and the number of optimized parameters. While the sparrow search algorithm can be
used for a multi-dimensional problem such as day-ahead active power scheduling [8], hill
climbing sizing problems only need a directed search algorithm that changes one parameter,
simulate, evaluate and iterate [7]. The goal of the algorithm, which is presented in Figure 9,
is to find the optimal ES size with a similar method to perturb and observe what increases
or decreases the size in such a manner to speed up the sizing process.

The objective of the sizing is to have the optimal storage size that sustains the operation
of the system during the night. The used constraint for sizing was fail mode avoidance
where fail mode happens if the ES could not meet the demand of the electrolyser. The
sizing process has two parts: the simulating modeled system in Figure 8 and the evaluation
of the outputs through the algorithm in Figure 9.
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The process starts by setting the initial size of the simulation and the iteration number
and then running the simulation. If the output load signal does not show a fail state
(Load = 0) and the simulation has reached the end time (t = t_end), the size of the simulation
is reduced by 25% and the iteration number is incremented. The process then runs the
simulation again from t = 0 with the new size. If the mode of the system is “Fail” and
the simulation has not reached the end time (t 6= t_end), the size of the simulation is
increased by 50% and the iteration number is incremented and the simulation starts over.
The sizing process ends when the system is not in the fail mode and the time reached t_end
in the simulation.

In the next section, the system is sized for different cases and the results are analyzed.

5. Sizing Results for the Li-ion Capacitor and Li-ion Battery

In Table 2, six different sizing cases for both the LiC and LiB as ES for the green
hydrogen system are presented. Each case has a different EMS state machine setting named
idle,1, 2, and 3. Each EMS state machine number represents a different SoC threshold
for the transition from production mode to idle mode as shown in Figure 2 to match the
production time during the night with the ES size. Depending on the Irradiation forecast
SoC threshold is selected, and whether the transition from production to idle mode happens
at a high SoC (SoC_threshold1= 60 to 30%) and the night production is reduced or at low
SoC (SoC_threshold2 = 25% in all cases) where the night production is increased. While the
idle state machine secures the required power for the electrolyser to remain in idle mode
during the night. The size is presented as the number of cells and Ah size. The size of the
LiC is considered 100% for comparison purposes between LiC and LiB and illustrates the
oversizing. The capacity fade is measured at the end of 10 years of operation where the
fade is due to both cycling and calendar aging. For each case, the energy delivered to the
electrolyser is represented in the parameter electrolyser load per year.
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Table 2. Comparison between LiC and LiB ES for the green hydrogen production from PV (*refers to
the remaining capacity after 10 years of operation).

LiC LiB

Cases

LiC
Size

[C
ells]

Size
[A

h]

LiC
Size

[%
]

R
em

aining
C

apacity
*

[%
]

LiC
IR

[%
]

LiB
Size

[cells]

Size
[A

h]

LiB
Size

[%
]

R
em

aining
C

apacity
*

[%
]

LiB
IR

[%
]

State
Machine for ES

(SoC_threshold1)

Electrolyser
Load per

Year [MWh]

1 1610 6440 100 80.8 260 620 8680 135 89.4 342 3
(SoC ≤ 30%)

5.23
2 910 3640 100 80.60 262.6 368 5152 142 87.87 344.7 4.83

3 710 2840 100 80.3 263.6 287 4018 141 87 346 2
(SoC ≤ 40%) 4.58

4 610 2440 100 80.2 264 247 3458 142 86.45 346.7 1
(SoC ≤ 50%)

4.39
5 528 2112 100 79.8 265.6 214 2996 142 85.8 348 4.24

6 280 1120 100 80.3 270 117 1638 146 83.3 353 Idle
(SoC ≤ 60%) 3.2

As it can be seen from Table 2 and Figure 10, increasing the size of the ES is reflected
in the delivered energy to the electrolyser which means higher production of hydrogen.
However, the relation is exponential as shown in (9) and (10).

Electrolyser_load_per_yearLiC= 4.8 · e(1.326·10−5 · size) −3.4 · e(−0.00072 · size) (9)

Electrolyser_load_per_yearLib= 4.67 · e(1.347·10−5 · size)−3.6 · e(−0.00057 · size) (10)
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Figure 10. Sizing of LiC and LiB ES and the energy delivered to the electrolyser per year.

From Figure 10, it was found that LiB is oversized in all cases compared to LiC. In
Figure 11, the green hydrogen production from the PV system was simulated for 14 days
for cases 1, 3 and 6. Case 6 (blue) represents the smallest ES size where the storage only
secures the power to the electrolyser to remain in the idle mode and avoid total shutdown,
while Case 1 (red) represents the biggest ES size which powers the electrolyser load during
the night to produce hydrogen. Case 1 also shows that the ES is not charged to 100% SoC
during the day because it takes a longer time to be fully charged (PV capacity is fixed for
all cases while the ES size increases) and this causes a higher effect of calendar aging in the
case of LiC ES. The LOAD (H2 Electrolyser) shows that the electrolyser works with full
capacity during the day in Case 6 because the ES is small in this case to deliver 10% of the
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load power during the night while in Case 1 the ES is large enough to keep the electroryser
during the night. The results in Figure 11 are from LiB ES simulation but it applies for both
LiC and LiB in terms of the delivered power to the load as they are sized in each case to
provide the same power.
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Figure 11. Simulation of 14 days of the system showing the temperature, irradiation, electrolyser
load and SoC for cases 1,3 and 6. These results are from LiB ES simulation.

In Figure 12, the histogram plots show that the ES spends more time in low SoC in big
ES such as Case 1 and spends more time in higher SoC in small ES such as Case 6, and from
Figure 5, it is known that lower SoC for longer time shortens the calendar life of the ES;
however, smaller ES sizes have a higher cycling aging compared to the bigger ES scenarios.
Figure 13 represents the relation between the electrolyser energy in MWh and the capacity
fading percentage. Increasing the energy storage size leads to increased electrolyzer load
energy, and decreased aging due to cycling, but it also increases the aging due to staying
in a low state of charge (SoC) for longer periods. This impact is more visible in the LiC
energy storage system. LiB has longer retention of capacity but comes with an increased IR
to around 350% after 10 years of operation, while LiC has a less IR increase to around 265%
in the same period as shown in Figure 14.
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Figure 12. 3D histogram of the simulated 6 cases showing the time ES spent on each temperature
and SoC state.
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yser load.
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Figure 14. IR of the LiC and LiB ES after 10 years of operation as a function of the energy delivered
to the electrolyser load.

Maintaining low IR is important when using ES not only for energy storage but also
for grid regulation, where the ES is used to provide a rapid response by either absorbing
or injecting power into the grid. High IR is also a sign of lower efficiency of the ES and
increasing power losses [14].

In Table 2, while each case was sized using the algorithm in Figure 9 to achieve the
same Energy Delivered to Electrolyser for LiC and LiB, it was found that LiB is oversized
in all cases compared to LiC. However, LiC has a smaller remaining capacity compared
to LiB after 10 years of operation which makes the LiB a better ES for the application,
but considering the IR and the need to use the ES for grid regulation, LiC is the better
option because lower IR means better response to the grid which suffers from the power
fluctuations from PV. From Figure 12 it is found that case 4 has an even distribution of high
and low SoC stay time, where the effect of calendar aging and cycling aging is minor in
the case of LiC. LiB performs better in cases 5 and 6 because LiB is not affected much by
the calendar capacity fade, and upsizing the ES in the case of LiB means a higher energy
production for green hydrogen and a lower capacity fade by 6%. LiC has a high potential
in the green hydrogen production from PV if the low IR is required in the grid design for
better response and lower power losses due to ES degradation.

6. Discussion and Future Work

The motivation behind this work was driven by the increasing trend of green transi-
tioning initiatives undertaken by governments worldwide. One such project is the Redlands
Research Facility located east of Brisbane, Australia, which aims to establish a green hydro-
gen plant using locally produced solar energy. The green hydrogen pilot plant consists of
a microgrid that uses concentrated-PV (CPV) and PV arrays, backed with commercially
available batteries, to enhance its energy efficiency and a 40 kW PEM electrolyser [5] sup-
plied with 5.5 L per hour of water. The project aimed to provide experimental validation
and an integrated modeling of a hybrid renewable energy process that utilizes solar power,
energy storage, and non-potable water to produce, store, and use hydrogen.

Another approach that arised within the project was to develop a fully DC microgrid
that eliminates the unnecessary AC conversion components from the hydrogen production
microgrid [12]. This led to the development of a downscaled fully DC hydrogen generation
microgrid and a 500 W electrolyser and energy storage were required [9].
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Using LiC was proposed for this application as an alternative energy storage to LiB, be-
cause of LiC’s promising characteristics and the advantages provided by the hybridization
of supercapacitors and Li-ion batteries [4].

Commercially available LiC cells were tested for characterization under different
conditions and went through an extensive aging test, where each cell went under different
aging conditions to model its performance and aging behavior and predict its performance
in different climates using system simulation [16].

The aging models for both LiC and LiB were derived from lab tests and the literature.
An EMS was modeled to imitate the operation of the green hydrogen microgrid, and
the system was modeled and used to make a size optimization and estimation of the
degradation happening to the energy storage after an operation of 10 years. The results
show that LiC has a lower optimal size in terms of Ah compared to LiB because of its
temperature tolerance and it degrades much slower in terms of FEC; however, LiC loses
much of its capacity due to calendar aging which is not very effective on the LiB. Though,
calendar aging increases the internal resistance of the LiB more than the LiC.

Future work will consider the usage of LiC for grid regulation and power smoothing
as well as using it for storage. Also, it will consider the power generation data from the
CPV and PV at the Redlands facility and make a comparison between the performance
of the LiC regulating the grid at the beginning and after years of operation where the
performance is dependent on the remaining capacity and the internal resistance.

7. Conclusions

The study provides an analysis of Li-ion capacitors and Li-ion batteries as energy
storage systems for green hydrogen production from PV in the Australian climate. The
study compares the performance of LiC and LiB in six different cases using four modes of
EMS state machines and a sizing algorithm that optimize the energy storage to secure a
safe operation of the electrolyser and increase its productivity. The EMS state machine has
an idle mode where the size is minimum and the ES is required only to deliver 10% of the
electrolyzer load power to avoid a total shutdown. The other EMS modes are operating the
system for different sizes. The EMS uses inputs such as irradiation and irradiation forecast
and temperature from the plant location. The system model is used for iterative simulations
for 10 years period to be used for optimizing the system size. A directed search algorithm
was used to reduce the number of search iterations in the sizing process. The results show
that LiB is oversized in all cases compared to LiC, but LiC has a smaller remaining capacity
after 10 years of operation due to the higher calendar aging. However, considering the IR
and the need to use energy storage for grid regulation, LiC can be a better option because a
lower IR means a better response to the grid. Additionally, IR after 10 years of operation for
LiC is 264% of its initial IR, while for LiB it is 346%. Furthermore, the average remaining
capacity after 10 years of operation for LiC is 80.2%, while for LiB it is 86%. These results
indicate that while LiB may have a higher remaining capacity, it also has a higher IR. The
study shows that Li-ion battery performs better in cases not affected much by the calendar
capacity fade and upsizing the energy storage in the case of Li-ion battery means a higher
energy production for green hydrogen and a lower capacity fade by 6%. Overall, LiC has a
high potential in green hydrogen production from PV if the low IR is required in the grid
design for better response and lower power losses due to energy storage degradation.
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Nomenclature
Notation Definition Unit
LiC Li-ion Capacitor -
LiB Li-ion Battery -
Cf Capacity Fade -
nc(t) Cycle count during simulation -
IR Internal Resistance Ω
SoC State of Charge %
ES Energy Storage -
PV Photovoltaic -
CPV Concentrated Photovoltaic
EMS Energy Management System -
MWh Megawatt-hours -
EOL End of Life -
T Temperature ◦C
I Current A
t Time s
t_end End time of simulation -
Q_present Cell storage capacity Ah
SoC_threshold1 State of Charge threshold for transition from Production to Idle mode %
SoC_threshold2 State of Charge threshold to remain in production mode %
fail Fail state of the electrolyser (total shut down) -
idle idle state of the electrolyser (10% of the rated power) -
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Abstract: With the development of microgrids (MGs), an energy management system (EMS) is re-
quired to ensure the stable and economically efficient operation of the MG system. In this paper, an
intelligent EMS is proposed by exploiting the deep reinforcement learning (DRL) technique. DRL
is employed as the effective method for handling the computation hardness of optimal scheduling
of the charge/discharge of battery energy storage in the MG EMS. Since the optimal decision for
charge/discharge of the battery depends on its state of charge given from the consecutive time steps, it
demands a full-time horizon scheduling to obtain the optimum solution. This, however, increases the
time complexity of the EMS and turns it into an NP-hard problem. By considering the energy storage
system’s charging/discharging power as the control variable, the DRL agent is trained to investigate
the best energy storage control method for both deterministic and stochastic weather scenarios. The
efficiency of the strategy suggested in this study in minimizing the cost of purchasing energy is also
shown from a quantitative perspective through programming verification and comparison with the
results of mixed integer programming and the heuristic genetic algorithm (GA).

Keywords: battery energy storage systems; deep reinforcement learning; energy management system;
microgrid; optimization; renewable energy resources

1. Introduction

A microgrid (MG) is a compact grid, including distributed energy resources (DERs)
and local loads, and gained great attention to address the issues of integrating renewable
energy resources (RESs) into the grid [1,2]. Because of this, a typical MG often consists of
a variety of renewable energy power production devices, energy storage systems (ESSs),
loads, as well as ancillary equipment, including energy converters and controllers [3].
The study on MGs covers a wide range of topics, including research on MG architecture,
power electronics control [4], investment and operating costs [5], dynamic and transient
stability [6–8], protection [9], safety, and maintenance. The ESSs control approach drew the
most attention among them as the study area for MG energy dispatching [10].

The problem with developing the optimal strategy to control the dispatchable DERs
and ESSs is significant, as the stability and efficiency of MG are suffering from the intermit-
tent and stochastic characteristics of RESs [11]. The energy management system (EMS) is
responsible for maintaining the MG operating in a low-cost and stable way. Particularly
when MG is operating in grid-connected mode, EMS also works on the management of
electricity trading between MG and the utility grid [12]. Therefore, implementing proper
optimization algorithms to organize the EMS determinants of the performance of MG
economic operation [2,5,10]. Exploiting the battery energy storage system (BESS) is essen-
tial for preserving the MG’s power balance and minimizing the effect of intermittent and
uncontrollable renewable energy.
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The requirement for a proper continuous joint economy–dynamics model of EMS
operation that appropriately incorporates accurate battery cycle age, degradation cost, and
price is stressed in [13]. It was thoroughly studied in [13] that energy management and
the BESS optimal scheduling can be challenging when the amount of data is large, and
the operational strategy is defined by nonlinear/nonconvex mathematical models. Deep
learning algorithms recently offered fresh approaches for tackling challenging MG control
and energy management issues as a result of the growth of artificial intelligence [14]. An
effective technique for the realization of artificial intelligence without historically labeled
data is DRL [15,16]. First, developments in computer power, particularly highly parallelized
graphical processing unit (GPU) technology, enabled deep neural networks to be trained
with thousands of weight parameters. Second, DRL took advantage of a sizable deep
convolutional neural network (CNN) to improve representation learning. Third, experience
replay was employed by DRL to solve the correlated control issues.

The MG energy management problem fits inside the deep reinforcement learning
solution framework as a real-time control problem, and there was some excellent research
in this area [17–19]. Reference [20] applied a novel model-free control to determine an
optimal control strategy for a multi-zone residential HVAC system to minimize the cost of
generating energy consumption while maintaining user comfort. To analyze the influence
of different scenario combination models on the MG energy storage disposition strategy,
a problem environment model of the energy storage disposition was created using the
example of the MG system for private users [21]. Reference [22] proposed an EMS for
the real-time operation of a dynamic and stochastic pilot MG on a university campus in
Malta, consisting of a diesel generator, photovoltaic modules, and batteries. Reference [23]
performed reinforcement learning training for the unpredictability of the solar output of
the MG to lower the MG’s power cost using the data anticipated by the neural network.
Reference [24] proposes a model-based approximate dynamic programming algorithm
and thoroughly considers load, photovoltaic, real-time electricity price fluctuation, and
power flow calculation. It then uses a deep recurrent neural network to approximate the
value function. From the standpoint of ensuring the security of power grid operation,
reference [25] suggested a deep reinforcement learning-based control technique for power
grid shutdown. Retail pricing strategies are provided by [26] using Monte Carlo reinforce-
ment learning algorithms from the viewpoint of distribution system operators, with the
objectives of lowering the demand-side peak ratio and safeguarding user privacy. The
advantages of applying deep reinforcement learning for online progress optimization of
building energy management systems in a smart grid setting are explored in [27], and a
sizable Pecan Street Inc. database is used to confirm the method’s efficacy. Additionally, a
model-free DRL was used to improve the reliability and resiliency of (distribution) grids
in the context of Internet of Things (IoT) [28] and by forming islanded [29] and multi-MG
systems [30].

However, a critical problem with the optimization of the BESS scheduling by the
EMS in MG is time complexity. The optimal operation (charge/discharge) of the BESS in
each time step (e.g., each hour) depends on its operation point (and consequence state of
charge (SoC)) in the previous time step and also affects the optimal point in the future
time step. To address this issue, the common method is finite horizon predictive EMS [31].
Nevertheless, a full-day (24 h) time horizon is needed to achieve the optimum solution
for designing the BESS charging profile. Notably, the time complexity of the optimization
problem of the BESS in a full-day period is N24, where N is the discretized number of
possible charge/discharge levels based on the power (current) and energy ratings of the
BESS. To handle this problem, dynamic programming, given by Bellman’s optimality
principle, was used to tackle the scalability and time complexity of the EMS optimization
problems using deep Q-learning methods [32]. Yet, the curse of dimensionality is the
problem with discrete Q-learning, which turns it into an NP-hard problem. Furthermore,
including the dispatchable DGs in the EMS as well as energy trading with the grid (or other
MGs [33]) along with the BESS, increases the dimension space for the EMS and makes the
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problem computationally intractable (particularly for real-time applications [34,35] and
market clearing).

To tackle the computational hardness of the BESS scheduling in the MG, we propose
using the model-free DRL. The DRL agent randomly selects the charge/discharge rate of the
BESS and dispatchable unit, such as the diesel generator (DG), for each timestep, based on
which the EMS schedules electricity and trading for MG and the grid. The selected values
are sent to the reward function, obtaining a reward or penalty towards the state–action
pair. DRL learns from the reward and updates the scheduling policy to avoid penalized
actions and practice highly rewarded actions. This process is repeated for a large number
of randomized episodes to guarantee the optimality of the solution. Using deep neural
networks with an appropriate training algorithm that trains the DRL to maximize future
expected rewards helps to realize the problem objectives. The trained DRL can observe the
intermittently generated power from RESs, organize the dispatchable resources and grid
power to keep the power balance of MG, sell electricity to the grid and earn some profit at
the time of high electricity prices, and purchase electricity from the grid at the time of low
electricity price.

The contributions of the paper are summarized as follows:

• In this paper, the DRL technique is utilized to handle the time complexity and large di-
mension space associated with the NP-hardness of optimal charge/discharge schedul-
ing of the BESS. For this purpose, the DRL structure and the state–action–reward
tuple are appropriately designed. The continuous deep deterministic policy gradient
(DDPG) is used as the training algorithm to avoid the curse of dimensionality issue.

• The DRL can also handle time complexity associated with the nonconvexity of opti-
mization problems for the BESS scheduling and nonlinear power flow. Complemen-
tarity constraints should be imposed to avoid simultaneous charge/discharge of the
BESS that makes the problem non-convex. Alternatively, using slack integer variables
increases the computational burden of the optimization problem.

• Therefore, the trained DRL is practicable for real-time BESS scheduling in MGs for
different applications, such as frequency (dynamics) support and ancillary services
that are needed to cover intermittent RESs.

• The searching space algorithm is proven to be environment-free and adaptable for
EMS in various MG architectures with different scales.

• In order to comprehensively reveal the advantages of this method, the optimization
results are compared with the results of the mixed integer nonlinear programming
(MINLP) and genetic algorithm (GA).

2. Microgrid Architecture and Modeling

In this paper, we consider the MG including the BESS, a DG under technical constraints,
a wind turbine (WT), and a photovoltaic generation (PV) with both deterministic and
stochastic power generation, a load with uncertain demand. In order to minimize the 24-h
accumulated electricity purchase fee, electricity purchased from the utility grid and hourly
electricity prices are also taken into account. The configuration of the MG model is shown
in Figure 1.
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Figure 1. Microgrid architecture, which consists of DERs including RESs (PV and WT), DG, and the 
battery ESS, and loads. The MG can be disconnected from the utility grid and work in autonomous 
mode, where DERs supply the local load and the BESS holds the consumption–production balance. 

2.1. PV Generation 
In community MGs, photovoltaic power generation equipment is a key renewable 

energy resource that can transform light energy directly into electrical energy using pho-
tovoltaic power production panels. It has a great deal of economic potential and is re-
nowned for its cleanliness and economy. The photovoltaic power generating system, 
which includes photovoltaic elements including solar panels, AC and DC inverters, solar 
charge and discharge controllers, and loads, is often positioned on the roof of the building. 
Grid-connected type, off-grid type, and multi-energy complementing type are the three 
categories into which solar power-generating devices fall according to the system network 
structure of the MG. Off-grid photovoltaic power generating systems are appropriate for 
isolated islands, remote mountainous areas, and other locations, since they cannot inter-
change electricity with external power networks. A grid-connected photovoltaic power 
generating system is employed to generate electricity for the community MG under study 
in this research, which may interchange electrical energy with the main grid or other mi-
crogrids. 𝑃 (𝑡) + 𝑃 (𝑡) + 𝑃 (𝑡) = 𝑃 (𝑡) (1) 

The output of the photovoltaic power generation system in the MG primarily de-
pends on its power generation, which is inextricably linked to weather factors, such as the 
highest and lowest temperatures, the average temperature, and the intensity of the day’s 
light, all of which have an impact on the solar panels’ ability to produce electricity. This 
paper makes the assumption that the sun shines from 7 am to 8 pm, that its output power 
varies nonlinearly with light intensity and ambient temperature, and that its light inten-
sity swings from weak to strong and then to weak. The probability density function and 
mathematical model of a solar power-generating panel are as follows, and the output 
power of a typical photovoltaic power generation device roughly obeys the distribution: 
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Figure 1. Microgrid architecture, which consists of DERs including RESs (PV and WT), DG, and the
battery ESS, and loads. The MG can be disconnected from the utility grid and work in autonomous
mode, where DERs supply the local load and the BESS holds the consumption–production balance.

2.1. PV Generation

In community MGs, photovoltaic power generation equipment is a key renewable
energy resource that can transform light energy directly into electrical energy using photo-
voltaic power production panels. It has a great deal of economic potential and is renowned
for its cleanliness and economy. The photovoltaic power generating system, which includes
photovoltaic elements including solar panels, AC and DC inverters, solar charge and dis-
charge controllers, and loads, is often positioned on the roof of the building. Grid-connected
type, off-grid type, and multi-energy complementing type are the three categories into
which solar power-generating devices fall according to the system network structure of the
MG. Off-grid photovoltaic power generating systems are appropriate for isolated islands,
remote mountainous areas, and other locations, since they cannot interchange electricity
with external power networks. A grid-connected photovoltaic power generating system
is employed to generate electricity for the community MG under study in this research,
which may interchange electrical energy with the main grid or other microgrids.

Pgrid(t) + Ppv(t) + Pwt(t) = Pload(t) (1)

The output of the photovoltaic power generation system in the MG primarily depends
on its power generation, which is inextricably linked to weather factors, such as the highest
and lowest temperatures, the average temperature, and the intensity of the day’s light,
all of which have an impact on the solar panels’ ability to produce electricity. This paper
makes the assumption that the sun shines from 7 am to 8 pm, that its output power varies
nonlinearly with light intensity and ambient temperature, and that its light intensity swings
from weak to strong and then to weak. The probability density function and mathematical
model of a solar power-generating panel are as follows, and the output power of a typical
photovoltaic power generation device roughly obeys the distribution:

f
(

IT
Imax

)
=

γ(α + β)

γ(α) + γ(β)

(
IT

Imax

)α−1(
1− IT

Imax

)β−1
(2)

{
α = µ( µ(1− µ)/σ ˆ2− 1)

β = (1− µ)( µ(1− µ)/σ ˆ2− 1)
(3)

PPV = ϕPVSPV
IT
IS
[1 + αPV(Tr − Ts)] (4)

where γ is the gamma function, and α and β are the relevant parameters of the β dis-
tribution. In Formulas (2)–(4), PPV is the rated output power of the photovoltaic power
generation system; ϕPV is the power frequency reduction coefficient of the photovoltaic
power generation system; Tr and Ts represent the actual temperature and standard temper-
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ature of the photovoltaic module, respectively; IT is the actual light intensity of the solar
panel at 25 ◦C ambient temperature; and αPV is the power temperature coefficient of the
PV panel. The value of αPV for different materials of the PV panel is not the same, and the
general value is αPV = −0.45.

2.2. Wind Turbine

Due to its high construction cost, wind power generation equipment, another signif-
icant renewable energy resource in MGs, is not as commonly employed as solar power
generation equipment. Additionally, as the production of wind energy is very volatile,
unpredictable, and is significantly influenced by external variables such as the weather, it
is sometimes challenging to make precise short-term projections. Currently, probability
distributions are frequently employed to suit the wind speed distribution of wind turbines,
with Weibull, Normal, Rayleigh, and other distributions among the most popular choices.
The Weibull distribution is one of them and has the following probability density function
expression:

f (v) =
k
a

(v
a

)k−1
exp

(
−vk

ak

)
(5)

{
k = σ

µ

a = µ

γ(1+ 1
k )

(6)

where the wind turbine’s wind speed ν, its mean value, and its standard deviation are
represented by the letters σ, and µ, respectively. The probability density function of the
Welsh distribution, which is currently in widespread usage, can be used to calculate the
wind speed distribution of the wind turbine. It is therefore possible to determine the wind
turbine’s output power by substituting the wind speed into the mathematical model of the
wind turbine. The specific mathematical equation is as follows:

PWT =





Pe
ve−vin

v− Pe
ve−vin

vin vin ≤ v ≤ ve

Pe ve ≤ v ≤ vout
0 other

(7)

where pwt is the output power of the wind turbine, Pe is the rated power, ν is the current
wind speed, νe, νin, and νout are the rated wind speed, cut-in wind speed, and cut-out wind
speed, respectively.

2.3. Battery Energy Storage System (BESS) Modeling

To maintain the stable operation of the MG and balance the system power, an energy
storage system must be implemented due to the intermittent and unstable properties
of distributed power generating modes, such as solar and wind power. Batteries are
frequently employed as high-efficiency energy storage devices, and their internal energy
state conforms to the following equation:

EESS(t) = EESS(t− 1) + ηchPESS,ch(t) ∗ ∆t− 1
ηdisch

PESS,disch(t) ∗ ∆t (8)

where ηch and ηdisch denote charge and discharge efficiency. The battery’s capacity to charge
and discharge at time t is represented by EESS(t), while the time t between two charging
and discharging operations is represented by ∆t. The charging and discharging of power
PESS(t) of the energy storage system in the MG system is typically employed as an essential
control variable to take part in the MG energy scheduling, which is the subject of this study.
To avoid the charge and discharge happening at the same time, while solving EMS as an
optimization problem, we define binary variables.
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2.4. Diesel Generator (DG)

The diesel generator (DG) is used to boost its flexibility and independence. When the
power production of renewable energy resources becomes stochastic and unreliable, MG
relies on electricity stored in the BESS and acquired from the main grid. If the BESS runs
out of energy and the main grid has a high electricity price, generating power from DG is
the most cost-effective solution to keep loads supplied by MG. The power output and cost
factors of DG were modelled as the function of fuel cost:

F(PDG(t)) = aP2
DG(t) + bPDG(t) + c (9)

where PDG(t) represents the power output of DG; a, b, and c represent the cost factor of DG.

2.5. Loads and Utility Grid (UG)

In a MG system, the component that uses the most electricity is referred to as the load.
The load demand for a fixed MG system is often not customizable since it depends on the
MG’s characteristics and the surrounding climate. The load curve is employed as a set
quantity of input to the MG system in this paper’s energy scheduling problem. The load is
expressed as Pload(t) for time step t.

For the modelling of the utility grid, the power purchased from the grid to MG and
the power sold from MG to the grid are mainly considered, representing as P+

grid and P−grid,
respectively. In addition, further descriptions of load and grid will be discussed with the
objective function and power balance equation in the next section.

3. DRL-Based MG Energy Management System
3.1. Objective Function

Depending on the requirements of the microgrid system, various control goals can
be established, such as minimizing pollutant emissions, cutting back on fuel costs for
power generation, reducing voltage offset, cutting back on network active power loss,
or increasing voltage stability. Typically, only one control objective or a mix of control
objectives can be chosen. This paper seeks to reduce the sum of the cost of power from the
external grid and the cost of fuel costs. The form is given in (10):

F (st, at, t ) = min [CTotal(t)]
CTotal(t) =

∫ T
t=0 CGrid(t) ∗ PGrid(t)dt +

∫ T
t=0 F(PDG (t))dt

(10)

where CGrid, PGird and F(PDG (t)) represent the real-time electricity price, the power gen-
erated by the external grid and the fuel cost of DG in time t, respectively, and Pgrid, PDG
satisfies the power balance constraint in (11). Ctotal represents the total cost of the entire
MG to obtain electrical energy from the main grid and DG.

PPV(t) + PWT(t) + Pess(t) + PDG(t) + PGrid(t) = PLoad(t) (11)

Additionally, in this paper, time t ∈ D, D = {1, 2 . . . 24} and the unit of t is one hour.

3.2. State Space

The reinforcement learning algorithm DDPG transforms the mentioned control target
into a solution form. The energy storage charging and discharging power controller is
the agent in the reinforcement learning issue, and the MG mathematical model created in
Section 2 serves as the environment. Utilizing the agent and the environment’s ongoing
interaction to get the optimal control strategy is the aim of reinforcement learning. As a
result, it is necessary to identify the unique representation of the Markov state sequence
quadruple (S, A, R, π) for this issue.
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For the MG model, the information provided by the environment to the agent is
generally renewable energy output, time-of-use electricity price, load, and state of charge
of electric energy storage. Therefore, the state space of the microgrid model is defined as:

st = [PPV(t), PWT(t), PGrid(t), PLoad(t), SOC(t), CGrid(t)] (12)

In the state space: PPV , PWT are the power output of the renewable energy in the t
period, kW; PLoad(t) is the load demand of the MG in the t period, kW; CGrid is the time-
of-use electricity price (purchased from external grid by microgrid) in the t period (time
of use price, TOU), AUD/(kWh); and SOC(t) is the state of charge of the energy storage
system in time t.

3.3. Action Space

After the agent observes the state information of the environment, it selects an action
from the action space A according to its own policy set π. Based on controllable devices in
MG, the output of DG and the charge/discharge power of the BESS were introduced to the
action space. Therefore, the action space of the MG considered in this paper is expressed
by:

at = [PESS(t), PDG(t)] (13)

3.4. System Constraints

To ensure the simulation result is realistic, the energy storage system is set to operate
under the constraints of charging and discharging power with a practicable range of the
state of charge, and its state of charge also has both limitations to ensure the BESS will not
have overheating problems caused by over-voltage or over-current issues. Considering the
size and minimum power output of DG, a power constraint is applied by (10):

Pmin
ESS ≤ PESS(t) ≤ Pmax

ESS (14)

SOCmin ≤ SOC(t) ≤ SOCmax (15)

Pmin
DG ≤ PDG(t) ≤ Pmax

DG (16)

3.5. Reward Function

The objective function and the constraints must be combined when creating the reward
function R. The following is the definition of the reward function from state t to state t + 1:

R(st, at, t) = −
[∫ t+1

t
Cgrid(t) ∗ Pgrid(t)dt + β(t)

]
(17)

The first component represents the amount of power used, during this time, β(t) = 0,
and the second component is the penalty item provided to define the limitations. When
the constraints (9)–(11) are not satisfied, β(t) is given a constant with a very big value.
When the state–action pair does not exceed the system limitations, the value of β(t) is zero,
ensuring the estimation of the agent only depends on the price and power of the utility
grid. However, if the state–action pair exceeds the limit, β(t) is assigned a large penalty
value to penalize the taken action by the agent. Reward function maximization is the goal
of reinforcement learning; hence a minus sign must be added before these two elements.

4. Deep Reinforcement Learning Algorithm
4.1. DRL Structure

Based on the Markov decision process, reinforcement learning (RL) helps intelligent
agents choose actions that will result in the greatest overall reward during their interactions
with the environment. An environment and an agent are typically present in RL models, see
Figure 2. The agent learns how to react to the environment depending on its current state,
while the environment rewards the agent in return. RLs can be categorized as either model-
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based or model-free, depending on whether explicit environment modeling is necessary.
Some typical RL algorithms are as follows: (1) Q-learning, which generates the action for
the following step using the quality values Q(s, a) stored in the Q-table, and updates the
quality value, where a stands for the learning rate, g for the deduction factor, R for the
reward, a and s for the action and state in the current step, and a’ and s’ for the action and
state in the following step; (2) the deep Q-network (DQN), which employs deep learning
algorithms (such as DNN, CNN, and DT) to produce a continuous Q-quality value in
order to get around Q-exponentially learning’s rising computational cost; (3) The policy
gradient algorithm, which generates the next-step action based on the policy function
(which quantifies the state and action values at the current step) rather than a quality value
such as Q; (4) The actor–critic algorithm, which uses the actor to generate the next-step
action based on the current-step state and then adjusts its policy based on the score from
the critic, whereas the critic uses the critic function to score the actor at the current step [21].

Q(s, a)← Q(s, a) + α[R + γmaxa′Q(s′, a′)−Q(s, a)]
s← s′

(18)
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Three types of algorithms may be used to solve reinforcement learning optimization
problems: value function-based algorithms, policy gradient-based algorithms, and search-
based and supervised algorithms [24]. The solution techniques based on the value function
are the main topic of this work. Examples include the dynamic programming algorithm,
the Monte Carlo algorithm, the time series difference algorithm, etc. Among these, the
dynamic programming approach is useful for addressing problems when there is a model,
and the state space has a small dimension. The downside of the Monte Carlo approach
is that it requires entire state sequence information, which is challenging to get in many
aperiodic systems. It is a straightforward algorithm that is not model-based. A complete
state sequence is not necessary for the time series difference approach to estimate the value
function. The online difference algorithm SARSA and the offline difference algorithm
Q-learning algorithm are two examples of the traditional time series difference approach.
Both approaches retain a Q-table to tackle minor issues. The problem with reinforcement
learning is when the state and action space is continuous or discrete on a very large scale, it
is necessary to keep an exceptionally big Q-table, which poses storage challenges. However,
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this issue was resolved by the advancement of deep neural networks. A deep reinforcement
learning technique that is more suited for difficult issues may be produced by using deep
neural networks rather than Q-tables. Deep Q-learning (deep Q-network, DQN) is a
common algorithm.

Q(s, a)← Q(s, a) + αδ (19)

The action value function is represented by Q(s, a), while the learning rate is repre-
sented by δ. The ideal reinforcement learning control method can be discovered when the
update formula converges. The DQN replaces the Q-function Q(s, a/Z) in Q-learning by
using a deep neural network. Following the calculation of the current target Q-value using
Formula (3), the neural network’s parameter is adjusted based on the mean square error
between the current target Q-value and the Q-value provided by the Q-network.

4.2. Deep Deterministic Policy Gradient (DDPG)

Based on the DRL algorithm that was introduced above, DDPG is adopted as the
optimization algorithm to reduce the MG’s cost. DDPG is an RL algorithm that learns the
policy and Q-function simultaneously. This approach processes off-policy data through the
Bellman equation to achieve the learning goals towards the Q-function, and DDPG then
learns the policy from the Q-function. According to the Q-function: Q∗(s, a) and current
state space, the optimized action a∗(s) can be obtained from this equation:

a∗(s) = argmax
a

Q∗(s, a) (20)

The loss function of the Q-network can be described as the learning process of the
Q-network under the guidance of the reward function. By using the temporal difference
principle, the loss function can be defined as (16):

L
(
wC

)
=
[
Q
(

s, a
∣∣∣wQ

)
−
(

r + γ
(
Q
(

s_, a_
∣∣∣wQ

)))]2
(21)

In this formula, Q
(
s, a
∣∣wQ) represents the Q-function in the current states and the

accumulated future reward of the agent when the action of this state was executed. For
the next states, s_, the Q-function is defined as the same as the last states. In Q

(
s_, a_

∣∣wQ),
s_ and a_ represent the state–action pair in the next states and wQ is the weight of the
Q-network. The actions in DDPG are determined by the policy; r represents the reward
corresponding to the excused action from the current states s to the next states s_.

The objective function for the Q-network is defined as:

F
(
wC

)
= min

[
L
(
wC

)]
(22)

By introducing the learning rate θ, the update date mode can be described as:

wC ←−wC + θ∇wCL
(
wC

)
(23)

The DDPG is presented in Algorithm 1.
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Algorithm 1 Deep deterministic policy gradient

1: Input: Initialize Q-function and policy, clean out replay buffer D;
2: Define objective parameters for Q-function and policy in θ and φ;
3: Loop;
4: Based on current observation, generate state-action pair (s, a);
5: Practice action in the environment;
6: Obtain the reward r and move to next state s′, check the ending signal e;
7: Append (s, a, r, s′, e) to relay buffer D;
8: if s′ is the last state and ending signal e is true;
9: for training episodes do;
10: Import transients T(s, a, r, s′, e) from D;
11: Solve the objectives by transients

O(r, s′, d) = r + γ(1− e)Qobj

[
s′, Pobj(s′)

]
;

12: Obtain updated Q-function
∇ 1
|T| ∑(s,a, r,s′ ,e)∈T(Q(s, a)−O(r, s′, d))2;

13: Obtain updated policy

∇ 1
|T| ∑s∈T Qobj

(
s′, Pobj(s′)

)
;

14: Update objective networks’ weight
wC ←−wC + θ∇wCL

(
wC) ;

15: end for;
16: end if;
17: until reward convergence.

5. Case Study
5.1. Simulation Settings

Table 1 demonstrates the trading price between the utility grid and MG. Table 2
and Figure 3 present system parameters, including the power generation of PV and WT,
the load demand, and the electricity price from the utility grid side. Each column has
24 rows, and each row indicates the corresponding parameter in one hour, which means
the sampling period time is one hour and the whole period of simulation is 24 h. The
parameters in Table 2 are highly determined by realistic weather and load demand. This
case study considers a deterministic scenario on a sunny day. PV output reaches a peak
in the afternoon and WT randomly generates electricity fluctuating around its average
value. Load demand has two peaks during both daytime and night. Market price increases
when load demand is high. Otherwise, electricity sells in a cheap way when a demand
valley is shown. Through this simplified MATLAB simulation model, the effectiveness
of the DDPG algorithm is demonstrated. The program of the model made use of the
Reinforcement Learning Toolbox in MATLAB to train the Q-agent and policy. In addition,
to make comparisons of simulation results, YALMIP/GUROBI, which is a commercial
optimization solver, is practiced for processing the nonlinear programming model. Here,
we further explain the profits and optimality of the proposed algorithms.

Table 1. Purchases and sell price.

Electricity Purchase (AUD/kWh) Electricity Sells (AUD/kWh)

1.1 0.85
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Table 2. Input parameters.

PV (kW) WT (kW) Load (kWh) Price (AUD/kWh)

0 50 50 0.434137
0 50 60 0.42391
0 50 60 0.42
0 50 54 0.426393
0 40 40 0.448192
10 30 40 0.503548
25 30 65 0.598517
30 40 79 0.63099
50 45 100 0.650717
60 45 120 0.654483
65 50 110 0.661257
75 45 77 0.645917
75 45 70 0.626667
70 55 68 0.633886
70 55 75 0.639901
60 60 90 0.647722
40 65 117 0.667376
27 60 125 0.683024
10 55 130 0.7
0 55 125 0.673981
0 60 130 0.623744
0 60 90 0.558902
0 55 80 0.493186
0 55 75 0.456695
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5.2. Simulation Results and Discussion

From the beginning, Figure 4 demonstrates the curve of the reward function. The
graph shows that after around 550 episodes of training, the agent’s reward infinitely
approaches zero. As a consequence, the agents are effectively trained, and the simulation
results are effective. Part of the code can be shown in Algorithm 1.
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Figure 4. Training profile.

Having illustrated the realism and validity of the simulation, Figure 5 shows the power
output profiles of ESS, DG, load, and utility grid. The load profile shows that, during the
daytime, electricity demand keeps rising from 6 to 10 am, resulting in the first peak value at
125 kW. Then, demand descends to 75 kW at 1 pm, before it quickly lifts to the second peak
value, which is 130 kW at 7 pm. The peak value remains for 2 h and demand decreases
to 70 kW at the end of the day. Regarding the power exchange between the MG and the
utility grid, most of the time, MG sells electricity to the utility grid and purchases electricity
from the utility grid when the load demand increases to the second peak value during the
evening. DG power output rises from midnight for 1 h to 40 kW and slowly drops to 30 kW
in 17 h. DG profile then directly drops to zero in one hour and returns to 30 kW at 11 pm.
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Figure 6 demonstrates the SOC profile of ESS. Considering the SOC profile with the
BESS charge and discharge profile, the state of charge starts from 40% and charges to
approximately 60% in 0–6 am. Then the BESS module turns to float charging mode, keeping
the SOC at 60% until the second load peak comes. From about 18 pm, a dramatic decreasing
trend is found. The BESS discharges and supplies the load with the utility grid and RES
from 18 pm to 23 pm. Finally, the BESS is slightly charged from RES and grid for 1 h.
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In order to describe the effectiveness of the DDPG algorithm, the charge/discharge
profile of ESS, state of charge, and electricity price are plotted on one graph. As shown in
Figure 7, the BESS charges when the electricity price is relatively low, resulting in a rise in
SOC. On the other hand, the BESS discharges when the price is relatively high, resulting
in a decrease in SOC. Such a kind of energy management schedule strategy produced by
DDPG lowers the cost of power procurement while increasing the profitability of power
sales. Figure 8 demonstrates the cost profile in MG. The system only has 5 h at a high cost.
It remains at a low cost for 14 h and has a negative cost, i.e., profit for 5 h. Therefore, the
MG with DDPG scheduled EMS can effectively reduce the operating cost.
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5.3. Results Comparision and Analysis

To demonstrate the efficacy of DDPG further, we compared its performance with the
GA and the MINLP method, with identical simulation data. MINLP is an adaptable model-
ing tool for EMS because it can address nonlinear problems with continuous and integer
variables. Figure 9 shows the convergence process of the genetic algorithm, illustrating its
effectiveness.
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Table 3 shows the cost parameters of DG, corresponding to Formula (9).

Table 3. DG cost parameters.

a b c

0.001 0.15 77.44

The following three figures demonstrate the difference between DDPG, MINLP, and
GA in electricity trading between MG and the utility grid. According to Figure 10a, from
0 am to 17 pm, DDPG has an outstanding performance that sells electricity from MG to the
utility grid the whole time, and for the rest of the period, DDPG purchases electricity at an
average of 40 kW per hour. Figure 10b shows that MINLP spends half of the whole time
period selling electricity from MG to the grid, and the total amount of sold electricity is
around 300 kWh, which is the half amount of DDPG. Considering the purchased electricity,
MINLP purchased almost the same amount of electricity from the grid as the amount it
sells. Figure 10c reveals that from 0 am to 17 pm, GA has two hours for purchase with a
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lower average power output value than DDPG. Hence, we can conclude that DDPG has
the extraordinary capability of selling energy from MG to the utility grid.
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In addition, focusing on the energy storage system, the following six figures demon-
strate the BESS performance including charge and discharge power and state of charge,
obtained by three introduced algorithms. Tables 2 and 4 present the system constraints,
such as the charge and discharge power constraints of the energy storage system, the power
output constraints of DG, and the constraints of ESS’s state of charge.

Table 4. System Constraints.

PESS(kW) PDG(kW) SOC

[−40, 40] [0, 60] [0.2, 0.85]

Based on Figure 11, it is obvious that DDPG stores energy in the BESS when the
utility power price is lower in a day, and DDPG discharges ESSs from 6 pm to 10 pm,
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selling electricity to the grid at the peak value of the price, earning the maximum profit for
MG during this period. It is worth noting that the cost of DG was set to 0.5 AUD/kWh,
and Figure 3 shows that the electricity price is higher than 0.5 in the period of 6 am to
23 pm. From that perspective, theoretically, DG should remain at its maximum output
when its cost is lower than the electricity price, as the results are shown in Figure 11, for
the linear programming DG output profile. On the other hand, the BESS should be charged
as fully as possible (under the system constraints), which is the most desirable energy
management schedule. However, DDPG just slightly charges the BESS for 20% and stops
the charging/discharging movement until the second price peak is reached. Additionally,
according to Figure 12, we notice that GA has a better performance on both the BESS
and DG power profiles. The curve is greatly shaking due to the prediction error, but the
charging and discharging depth of the BESS and power output of DG is greater than the
corresponding value of DDPG.
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However, with the unsatisfied profile produced by DDPG, it can be a kind of advantage
that the BESS and DG do not reach their constraints, which results in less degradation
cost for long-term operation in MG and reduces the possibility for the happening of safety
issues.

Table 5 compares the simulation results of three different techniques. In terms of
the overall cost created by EMS, MINLP has the lowest purchasing cost, with a cost of
45.772 AUD per day. GA comes in second, followed by DDPG. However, in terms of
computation time, DRL can be processed faster than GA and MINLP.

Table 5. Result comparisons.

DDPG-Based DRL MINLP GA

Purchasing Cost (AUD) 87.333 45.772 88.406
Computation Time (s) 1.202061 2.745373 23.328163

Compared with MINLP and GA, in this small scale and accurately modeled MG,
DDPG’s exploring strength is not as strong in finding a policy with high accuracy as
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MINLP, because during the space searching process, agent actions are effect by system
noise. However, if we consider the DDPG in a more realistic scenario, DDPG does have
its unique advantages. For example, MINLP can only be implemented on a small-scale
MG system, as the large-scale MG with hierarchy architecture will make the mathematical
modeling process extremely complex and computationally time-consuming, which is not
practical in the real world. In contrast, as DRL is a set of model-free algorithms, DDPG can
adapt to any unknown MG structure. Additionally, compared with the GA, DDPG can be
quickly used for a new dataset that only spends a very short time for secondary training
for its deep neural network. The other two algorithms take a long time for modeling and
convergence, respectively. Lastly, DDPG has the capability to handle the task of a high
degree of stochastic data, which is very common in RES-based MG. The other two are not
compatible due to the same reason. These three unique characteristics of DDPG determine
that it is valuable and realistic to reduce the purchasing cost of MG.

6. Conclusions

This paper developed a DRL-based MG energy management system and obtained
an energy schedule policy for one day with a sampling time of one hour. EMS policy
aimed to reduce the MG electricity cost. The structure of the DRL agent was designed
by defining appropriate functions related to the state–action–reward tuple. The DDPG
algorithm was adopted to train the DRL agent using a simulated MG. The performance of
the DRL agent was compared with the results of the MINLP and GA. This paper revealed
both the advantages and disadvantages of the DDPG-based DRL.

The DDPG-based DRL agent for EMS in MGs has the following strengths and draw-
backs:

• The DRL agent tries a large number of trial-and-error episodes during training, by
which all possible combinations of the BESS charge/discharge schedule, with various
initial SoC, are tested. The DDPG optimizes the DRL network to maximize the rewards
and thus minimizes the purchasing cost. This training process costs computational
costs.

• In an MG with a simple structure and determinant load/weather, the DRL agent
would cost more computation time for training compared with GA and MINLP.
In the simulated scenario, the DRL achieved higher purchasing costs, but smaller
computation time for real-time action.

• The training process of DRL would increase in a large-scale MG system, but after
training, the DRL agent reveals superior computation for real-time performance.

• The DRL agent is able to deal with uncertainties that happened in MG, such as
stochastic power generation produced by RESs in MG.

• When the EMS is adapted to a new location, e.g., replacing a new database with EMS,
the DRL agent can quickly be adapted by training its deep neural network.

In future development, with the aid using the transfer learning principle, GA and
MINLP can be used for training the DRL for enhancing its rewards to approach linear
programming results.
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Abbreviations

BESSs Battery energy storage system ESS Energy storage system
CNN Conventional neural networks GA Genetic algorithm
DDPG Deep deterministic policy gradient GPU Graphical process units
DER Distributed energy resources MGs Microgrids
DG Diesel generator MINLP Mixed integer nonlinear programming
DNN Deep neural network PV Photovoltaic
DRL Deep reinforcement learning RESs Renewable energy resources
DT Decision tree SoC State of charge
DQN Deep Q-network TL Transfer learning
EMS Energy management system WT Wind turbine
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Abstract: Renewable energy communities are considered as key elements for transforming the
present fossil fuel-based energy systems of islands into renewable-based energy systems. This
study shows how renewable energy communities can be deployed in the Maltese context to achieve
higher penetration of residential-scale photovoltaic systems. Case studies for five renewable energy
communities in the Maltese LV distribution network have been analyzed in detail. A novel community
battery energy storage sizing strategy was proposed to determine the optimal storage capacity at each
energy community. The main objective of the community battery storage in each REC is to minimize
the reverse power injection in the grid (minimize the total reverse energy and reverse peak power
values), as well as to reduce the peak evening electricity demand. The optimal sizes for communal
BESSs were determined to be of 57 kWh (EC 1), 55 kWh (EC 2), 31 kWh (EC 3), 37 kWh (EC 4) and
10 kWh (EC 5), respectively. The community storage systems were observed to reduce the overall
impact of all five energy communities on the grid infrastructure. Power system simulations were
performed for a typical spring day to evaluate the impact of communal BESS placement on the
node voltages for all five energy communities. The results showed that the community storage
was more effective at reducing the node rms voltage magnitudes when deployed at the end of
the respective energy communities, rather than at the beginning of the community. During peak
generation hours, reductions of up to 0.48% in the node rms voltage magnitudes were observed. This
contrasts with reductions of only 0.19% when the community storage was deployed at the beginning
of the energy communities.

Keywords: battery sizing; community storage; peak shaving; renewable energy community

1. Introduction

The Renewable Energy Directive (2018/2001/EU) of the European Union (EU) [1]
aims to make renewables more accessible to citizens, giving them the possibility to engage
in joint renewable energy projects. The directive defines citizen-driven renewable energy
communities (RECs) as legal entities that can produce, consume, store, and sell renewable
energy or provide flexibility services to the grid through demand-response and storage.

Citizens are becoming increasingly environmentally and socially conscious towards
energy issues. As a result, there is an increase in demand for more democratic processes in
energy policies. Figure 1 summarizes the key elements of these RECs. RECs enable citizens
to actively participate in the energy market through the deployment of community-scale
storage and data obtained from second-generation smart meters [2]. The aggregation of
participants in RECs is also advantageous to the distribution system operators (DSOs) as
multiple flexible assets can be accessed through a single reference point. Recent literature
on RECs has addressed issues related to the regulatory barriers [3–7], maximization of
self-sufficiency [8–11], local energy sharing strategies [12–17] and the interaction of RECs
with the power system [3,18].

1.1. Regulatory Challenges of RECs

Di Silvestre et al. [3] provide an in-depth analysis of the European REC experience,
focusing on possible regulatory changes, together with technical and financial hurdles.
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The authors analyze, in detail, the existing legislation and incentives set up in the EU
member states in the wake of RED-II. An overview of the strengths of the RECs as a novel
approach to energy management, as well as any critical issues related to their adoption,
was also given. Ceglia et al. [4] define the social, economic and technical aspects of
RECs, highlighting their advantages with respect to previous EU (and Italian) energy
sharing directives. A case study for a REC in Benevento (Italy) was also described through
data obtained from the HOMER database. The authors showed that RECs are more
advantageous than conventional systems and systems of efficient users (SEU) on social
and economic factors. Katsaprakakis et al. [5] provide a model for energy communities
in Greek islands that aimed to achieve 100% energy self-sufficiency based on the lessons
learned from existing Greek RECs in Sifnos, Crete, and Chalki. The case studies considered
various elements, including general information about the existing Greek RECs, local
power production (conventional and renewable), energy cooperatives and the Clean Energy
transition agenda. The study by O’Neill-Carrillo et al. [6] identified possible practices that
could overcome the technical and social challenges leading to the formation of RECs. The
governance of the community was deemed as a fundamental pillar for the success of
these communities. The three critical aspects that were identified are: sense of community,
teamwork, and empowerment. Sense of community implies that any differences between
the needs of the individual and the collective should not lead to conflicts within the
community. Effective teamwork and coordination are critical to the success of the RECs.
These aspects can only be reached if there is a set of rules that people agree on beforehand
to collectively manage local resources. Empowerment enables citizens to have the proper
tools to participate in the RECs, while ensuring that they are accountable for their decision-
making and actions. Chamorro et al. [7] categorize RECs as being either Urban, Rural
or Universities. Urban RECs are formed in cities, providing opportunities for sector
coupling by combining energy, water, gas, and transportation services. Rural RECs provide
inexpensive and reliable electricity supply to households and local businesses, which can
also be isolated from the main grid. University RECs are typically living laboratories for
green technologies as these emulate small cities. These simulated environments can provide
ideal test sites for innovative technologies and management strategies.

1.2. Energy Optimisation Strategies for RECs

The maximization of self-sufficiency and self-consumption for prosumers is one of the
most researched topics in literature. This is also the case when considering the integration
of renewable energy sources and energy storage systems in RECs. Self-consumption (and
self-consumption index KPI) defines how much of the local PV production is used locally,
while the self-sufficiency (and self-sufficiency index KPI) defines the percentage of energy
needs that the local generation can cater for. The authors of [8] developed a multi-variable
optimization strategy that minimizes the energy provision costs for a representative REC
in Flanders, Belgium. The mixed-integer linear model considers the electricity tariffs, the
ratio of electrification of heating and transportation sectors, and the capital expenditure
(CAPEX) of renewable energy sources and storage systems. The REC outperformed the
other scenarios in the both the financial and environmental KPIs; however, the financial
advantages over individual prosumers were not significant. This implies that for a wide
adoption of RECs, citizens will need to be suitably incentivized. Similarly, Barone et al. [9]
developed a multi-variable dynamic REC simulation model in TRNSYS and applied it
to a case study in the island of El Hierro (Canary Islands, Spain). The simulation tool
is aimed at achieving energy independence for remote islands, rather than focusing on
its applicability to generalized objectives. A limitation of this study is that the solar PV
generation was based on weather data from a nearby location, while the consumption data
were obtained from real world data. Doroudchi, Khajeh and Laaksonen [10] maximize the
self-sufficiency of RECs by introducing community and distributed storage to minimize
the energy exchange with the utility grid. Excess generation from the community-owned
solar PV generation is stored as thermal energy in both community scale and distributed
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electric heat energy storage. The study showed that the payback period for the community
scale storage is less than the distributed electric heat energy storage, even though the
payback period depends on the usage. However, one should note that the sizing of the
communal and distributed thermal storage was not a result of the problem formulation but
was determined arbitrarily. Cielo et al. [11] proposed an optimization procedure to size
community solar photovoltaic systems with integrated energy storage. The optimization
procedure is based on the maximization of both self-consumption and self-sufficiency of
the RECs. The sizing strategy is, however, heavily skewed towards economic REC models
and frameworks. When applied to an Italian context, internal return rates of approx. 11%
were obtained, highlighting the attractiveness of exploiting the REC concept.
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1.3. Citizen Driven Energy Markets

An important feature for RECs is the possibility of energy exchange between all the
participants (utility, prosumers, and consumers). The authors of [12] proposed a local
energy sharing strategy with a focus on price-forming methods. The proposed methods
can be integrated into a net-billing system and adopted for different regulatory set-ups.
This strategy can be used to improve local supply-demand balancing, reduce voltage
deviations, and improve social welfare. However, the interactions and implications for
the utility power system are not clear. Dolatabadi, Siano and Soroudi [13] proposed a
real time optimization algorithm that preserves the privacy of prosumers within an REC.
Similarly, Di Silvestre et al. [3] show how Blockchain technology can contribute to the
development of RECs by enabling P2P energy trading with secure transactions while
protecting personal data. The algorithm assesses the impact of energy exchanges within
the community for the provision of ancillary services to the utility. The energy exchanges
within the REC were considered as virtual self-consumption by the prosumers, together
with the provision of ancillary services. However, this strategy would limit the market
participation by consumers that cannot own local renewables and/or storage systems. The
authors of [14] proposed a peer-to-peer (P2P) energy trading system for RECs that would
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enable each prosumer to manage their energy consumption, storage scheduling and energy
trading. The proposed community-based P2P energy trading system combines an online
energy control with a double auction trading algorithm. The authors of [15,16] consider the
scheduling of community energy storage to maximize the usage by all consumers while
accounting for operational constraints. The scheduling heuristic makes use of a day-ahead
auction approach to share the resources within the REC by making use of a time-of-use
(TOU) tariffs. Aziz, Dagdougui and Elhallaoui [17] applied mean field game theory to
determine Nash equilibrium strategies for an REC that includes 100 prosumers (with solar
photovoltaic systems), located in Montreal city. The REC is formed through a virtual power
bank that contains the distributed BESSs of the prosumers. The solutions for the community
microgrid optimization minimize household individual cost functions and, in turn, reduces
the aggregate cost by at least 40%.

1.4. Interaction of RECs with the Main Grid

While there are several studies analyzing the interaction of integrating battery energy
storage at utility level (high-voltage and medium-voltage) with the utility grid, the topic
of how RECs affect the electricity network has not yet received due attention in the liter-
ature [3]. The integration of storage at utility level (high-voltage and medium-voltage)
is beyond the scope of this study, as RECs in the Maltese context are being envisaged
at the LV network. The authors of [3] discuss how the formation of RECs will impact
present interactions of prosumers with the electric power system by focusing on the Italian
scenario. The authors also raised a number of questions, that remain to be addressed, for
the effective integration of RECs into power systems, including the number of points of
common coupling (PCC) with the main grid, the assessment of the impact on the main grid,
the capability to provide ancillary services, and the capability to support the widespread
adoption of demand response, amongst others. Sudhoff et al. [18] consider the reduction
in the peak power exchange between the community and the electric grid through the
prosumer PV and battery systems, together with flexible loads. A case study comparing
rural, urban, and suburban RECs showed that the establishment of RECs resulted in less
energy being required from outside the community. The study also shows that there is no
minimum REC size to offer ancillary services to the grid using the local available assets.

1.5. Renewables in the Maltese Islands

The penetration of renewable energy sources in Malta has been increasing over the
years, despite the demographic and spatial limitations of the Maltese islands. During 2021,
9.9% of the electricity supply in Malta was obtained from renewable sources (mainly photo-
voltaics). The domestic sector accounted for 93.6% of the total stock of solar photovoltaic
(PV) installations and 46.1% of the total energy production [19]. The scenario depicted in
Figure 2 compares the present Maltese RES share to that of other EU countries. However,
the challenges that must be overcome to achieve higher penetrations of RES in the Maltese
distribution network should not be taken lightly. The RECs provide an attractive solution
to overcome some of the existing challenges.

The rest of the paper is organized as follows. Section 2 describes the methodology used
for the study reported in this paper. Section 3 contains a description of the five considered
renewable energy communities in the Maltese LV distribution network. Section 4 describes
the proposed battery sizing strategy that determines the minimum BESS based on the
defined battery utilization factor (BUF). Section 5 describes a case scenario for the five RECs
on a typical spring day, showing the impact of the placement of the communal BESS on the
voltage profiles of the energy communities. A summary of the obtained simulation results
is given in Section 6 on the implications of this study.

100



Energies 2022, 15, 9518Energies 2022, 15, x FOR PEER REVIEW 5 of 22 
 

 

 
Figure 2. Share of Energy from Renewable Sources in the EU in Gross Electricity Consumption. 
Source: Eurostat (online data code: nrg_ind_ren). 

The rest of the paper is organized as follows. Section 2 describes the methodology 
used for the study reported in this paper. Section 3 contains a description of the five con-
sidered renewable energy communities in the Maltese LV distribution network. Section 4 
describes the proposed battery sizing strategy that determines the minimum BESS based 
on the defined battery utilization factor (BUF). Section 5 describes a case scenario for the 
five RECs on a typical spring day, showing the impact of the placement of the communal 
BESS on the voltage profiles of the energy communities. A summary of the obtained sim-
ulation results is given in Section 6 on the implications of this study. 

2. Methodology 
This study shows how RECs could be deployed in the Maltese context to improve 

the penetration of RES. The centralized community storage in the RECs was aimed at in-
creasing the self-sufficiency of the RECs. In addition, the reduction in the peak electricity 
demand and minimization of the reverse power flows into the utility grid was also ad-
dressed. This study also proposes a community-scale battery energy storage system 
(BESS) sizing strategy, based on the battery utilization factor. This strategy was previously 
evaluated by the authors of [20] for utility scale storage and adapted to community scale 
applications. The methodology used in this paper is summarized in Figure 3. The work-
flow is subdivided into three main parts as follows: 

Figure 2. Share of Energy from Renewable Sources in the EU in Gross Electricity Consumption.
Source: Eurostat (online data code: nrg_ind_ren).

2. Methodology

This study shows how RECs could be deployed in the Maltese context to improve the
penetration of RES. The centralized community storage in the RECs was aimed at increasing
the self-sufficiency of the RECs. In addition, the reduction in the peak electricity demand
and minimization of the reverse power flows into the utility grid was also addressed.
This study also proposes a community-scale battery energy storage system (BESS) sizing
strategy, based on the battery utilization factor. This strategy was previously evaluated by
the authors of [20] for utility scale storage and adapted to community scale applications.
The methodology used in this paper is summarized in Figure 3. The workflow is subdivided
into three main parts as follows:
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Figure 3. Methodology applied in this study to analyze the potential of RECs in reducing the reverse
power flows and reducing the evening peak demand.

101



Energies 2022, 15, 9518

(1) collection and analysis of consumption and PV generation data (Section 3)

During the initial stages, the topologies for renewable energy communities in the
Maltese context were defined. Data collection and the analysis of the real-world consump-
tion and PV generation data were performed. The aggregated results grouped according to
each respective REC are summarized in the next section.

(2) sizing of communal battery storage systems (BESSs) (Section 4)

The historical electricity consumption and PV generation data were used as an input
to the battery utilization factor (BUF) sizing strategy. The BUF was used to determine the
minimum BESS for each respective REC for the functionality and operational constraints
described in this study.

(3) power system simulations to show RECs can improve the local voltage profiles (Section 5)

Steady-state power system simulations for a typical Maltese spring day were then
used to produce the voltage profiles of each respective REC. The consumer and prosumer
electricity net-demand profiles specify the net active power across each node in the REC,
except at the substation transformer. A power-flow solution was implemented in MAT-
LAB/Simulink to obtain the node voltages of each REC, over a 24 h period and with a
15 min resolution.

Problem Formulation and Constraints

As has been defined in the previous sections, the main objective of the community
BESS in each REC is to minimize the reverse power injection in the grid (minimize the
total reverse energy and reverse peak power values), as well as to reduce the peak evening
electricity demand. Therefore, the objective of the communal BESSs aims to minimize the
power losses at the PCC of each REC. The objective function can be defined by:

Ploss = min
{
∑ttotal

t=1 ∑nt
i,j=1,i 6=j gi,j

(
V2

i + V2
j − 2 ViVj cos

(
θi − θj

))}
(1)

where t is the time interval; ttotal = 96 is the total time period (with 15 min resolution); gi,j is
the conductance between buses i and j; nt is the total number of branches in the REC; Vi
and Vj are the voltage magnitudes of the buses i and j; and θi and θj are the voltage angles
of buses i and j.

The BESS systems were sized according to the methodology defined in Section 4. The
following assumptions and constraints were considered for the BESS sizing and the analysis
carried out in the next sections:

• The power balance equation at the PCC of each REC is defined by:

Pgrid
t = Pnetload

t + Pcharge,BESS
t − Pdischarge,BESS

t (2)

where Pgrid
t is the power from/to the grid; Pnetload

t = PdistrbutedPV
t − PdistirbutedLoad

t
is the difference between the distributed PV generation and the load consumption;
Pcharge,BESS

t , Pdischarge,BESS
t are the power charged and discharged by the BESS.

• The BESS round-trip energy efficiency consisting of the battery charging and discharg-
ing efficiencies (includes that of the power electronic converter) is assumed constant
at 85%. The efficiency of the power electronic converter is assumed to remain constant
for any output power from the BESS. Therefore, the charging efficiency, ηcharge,bess, is
of 92.2% and the discharging efficiency, ηdischarge,bess, is of 92.2%.

• The BESS SoC is constrained to within the range between an SoCmin,bess
t of 20% and

an SoCmax,bess
t of 80% to prolong the lifetime, i.e.:

SoCmin,bess
t ≤ SoCactual,bess

t ≤ SoCmax,bess
t (3)

where SoCactual,bess
t is the actual battery SoC at any time of the day.

102



Energies 2022, 15, 9518

• The BESS useable energy capacity is constrained to use the energy available within
the range as defined by the SoC constraints, i.e.:

Emin,bess
t ≤ Eactual,bess

t ≤ Emax,bess
t (4)

where Eactual,bess
t is the available battery energy at any time of the day.

• The maximum discharge power Pdischarge,bess
t was limited to a maximum value of

1C (Pdischarge,bess
MAX ):

Pdischarge,bess
t ≤ Pdischarge,bess

MAX (5)

• The maximum charging power Pcharge,b
t was limited to a maximum value of Pdischarge,bess

MAX :

Pcharge,bess
t ≤ Pcharge,bess

MAX (6)

• The actual energy stored in the BESS, EActual,bess
t , is determined by adding the net-

energy of the BESS in the previous time step, EActual,bess
t−1 , to the energy charged in the

BESS, Echarge,bess
t , and subtracting the discharged energy, Edischarge,bess

t . The energy
conservation equation of the BESS is defined by:

EActual,bess
t = EActual,bess

t−1 + Echarge,bess
t − Edischarge,bess

t (7)

• The peak shaving operation is only functional if the evening maximum demand
Pdemand,REC

t at the grid operators PCC exceeds the pre-defined maximum limit of
the respective REC. In these cases, the BESS discharges to reduce the peak demand
according to the available energy in the BESS:

Pdemand,REC
MAX ≤ Pdemand,REC

t (8)

• The BESS is assumed to be discharged at the start of the analysis (initial SoC of 20%).
• The self-discharge rate was considered negligible.
• Other battery-specific characteristics were not considered.

3. Energy Communities in a Maltese Context

Figure 4 shows the simplified line diagram of a typical secondary substation in the
Maltese LV distribution network. The substation has 182 nodes, with 192 single-phase
consumers and 14 three-phase consumers. The consumers are divided across five feeders
connected to the secondary (LV) side of a 250 kVA, 11,000/400 V, 50 Hz, Dyn11 substation
transformer with off-load tap changer. The off-load tap setting is set to −5%, such that
the voltage levels at the end of the feeders have a suitable voltage level all year round.
The effective turns ratio is set to 10,450/400 V to satisfy the limits defined in the Enemalta
Network Code [21].

RECs at a LV network level can take various shapes and sizes. In this study, it is
assumed that the energy community (EC) configurations are a direct result of how the
consumers are presently connected to the LV network. Each LV feeder was considered as a
separate REC. In this way, RECs can be formed without the need to reconfigure the present
distribution network. Therefore, each EC consists of different combinations of single-phase
and three-phase consumers/prosumers.

The distribution of the customers connected at each feeder is given in Table 1. The net-
demand profiles for each of the single-phase and three-phase consumers were obtained from
the local DSO in the form of a single spreadsheet for a one-year period (from 1 May 2020
to 31 April 2021) with a 15-min time resolution. Table 1 additionally shows the subset
of consumers that also have a functional residential-scale PV system installed (i.e., the
prosumers in the RECs). The PV generation profiles for each of the residential-scale PV
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systems were also obtained in the same format from the local DSO. An important limitation
is that most of the single-phase main meters did not have any logs for the exported active
power. Therefore, the relationship between the PV generation and exported active power
had to be analyzed and approximated for each individual consumer. The single-phase
PV systems installed capacities range between systems of 1.38 kWp and 4.38 kWp, while
the three-phase PV systems range between 1.84 kWp and 10.8 kWp. The total installed
PV capacity in each of the RECs are as follows: 52.72 kW (REC 1), 48.56 kW (REC 2),
37.87 kW (REC 3), 29.07 kW (REC 4) and 12.78 kW (REC 5).
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Figure 4. Simplified line diagram of the LV network at secondary substation. Feeder nodes are
color coded for ease of reference (Red—Feeder 1, Black—Feeder 2, Blue—Feeder 3, Purple—Feeder 4,
Orange—Feeder 5). Nodes where PV systems are connected are shown in green. Substation trans-
former is showing the nominal ratio without the off-load tap changer settings. The numbers in the
figure identify the individual nodes of the LV network.

Analysis of the Net-Demand

Figure 5 illustrates the daily net-demand curves for each of the RECs. The estimated
REC net-demand characteristics were determined from the data measured by the smart
meters installed at the respective consumers/prosumers. This estimate of the total net-
demand per REC gives a good approximation but it does not consider the distribution
losses. Detailed analysis of the daily net-demands of all five RECs shows that oversupply
occurs on more than 340 days for RECs 1 to 4, while for REC 5, oversupply occurs on
265 days. Oversupply was always observed to occur during the middle of the day as this
coincides with the peak of PV generation.

One of the primary concerns resulting from the reverse power flow is the signif-
icant voltage rise that can occur along the feeder. The feeder voltage could potentially
increase enough to violate the±10% steady state tolerance defined in the Enemalta network
code [21]. The voltage levels of the other feeders in the LV network can also be affected by
the reverse power flowing back to the substation transformer. An additional concern is that,
on a larger scale, the reverse power flow could lead to dynamic stability issues. During
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instances of reverse power, there is a lack of system inertia, which is an issue when coupled
with the intermittency risks associated with PV generation.

Table 1. Consumers and PV systems connected to the secondary substation LV network.

Single-Phase Three-Phase
Maximum Feeder

LengthsREC
(Feeder) Phase Consumers PV Systems Consumers PV Systems

1
A 10 4

9 3 542.466 mB 12 4
C 19 2

2
A 12 7

1 - 221.6 mB 15 6
C 9 5

3
A 16 4

3 1 623.16 mB 25 7
C 17 2

4
A 5 2

1 1 302.074 mB 12 3
C 13 4

5
A 1 -

- - 621.852 mB 13 4
C 13 1
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Figure 5. Daily Net-Demand Curve for each of the eCs during the considered period. (a) EC1
(Feeder 1). (b) EC2 (Feeder 2). (c) EC3 (Feeder 3). (d) EC4 (Feeder 4). (e) EC5 (Feeder 5). Positive
active power values for the net-demand represent the power consumption by the consumer loads
while negative active power values represent the reverse power flow due to the local PV generation.
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One must note that this study was performed during the COVID-19 pandemic. The
COVID-19 pandemic has affected every aspect of life, including the operation of the utility
grid due to changes in the energy usage patterns of residential, commercial, and public
entities. According to a study published by the Malta National Statistics Office [19], the
total electricity supplied in 2020 amounted to 2496.4 GWh, which is a decrease of 5.4%
when compared to the previous year.

4. Community BESSs for the RECs

Community battery energy storage systems (BESSs) have a typical storage capacity
ranging between tens of kilowatt-hours (kWh) and a few megawatt-hours (MWh). BESSs
are an effective and energy efficient solution to limit reverse power flows in the LV distri-
bution network. The community-scale BESSs can be sized according to a wide variety of
site performance requirements. In this paper, the community-scale BESSs are deployed at
specific nodes in the REC and controlled to reduce the power exchanges with the medium
voltage network (11 kV). Two locations for the integration of BESS into the RECs were
investigated in this study: at the start of the REC and at the end of the REC. Figure 6 shows
an example of the possible locations that were identified for EC5. These siting constraints
were imposed by the typical densely populated Maltese towns/villages that do not enable
the deployment of central community BESSs at the intermediate nodes.
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4.1. Community BESS Sizing Strategy

Sizing strategies that are available in the literature typically result in a trade-off
between the near-term cost and long-term technical complexity. In this study, the battery
utilization factor (BUF), previously defined in [20], was used to size the BESSs at each
respective REC. The BUF is determined by the daily variations in the state of charge (SoC)
(i.e., cycling of the BESSs) as the BESS operates daily to minimize the power exchanged
with the grid. The daily variations in the SoC of the BESSs is affected by the operating
conditions, including the charge and discharge rates, depth of discharge, cycle duration,
and length of time in the standby mode [20]. The BUF for the community-scale BESS at
each respective REC can be defined by:

BUF =
∑365

n=1

( W1TChargen
TReversePowern

)(W2TDischargen
TPeakDemandn

)

Number of days
(9)

where n = 1, . . . , 365 are the days over the considered period; W1 is the weighting during
the charging periods based on the daily SoC variations during charging; W2 is the weighting
during the discharging periods based on the daily SoC variations during discharging. The
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daily charging duty cycle for the nth day is defined as the ratio of the actual charging time
(TCharge in minutes) to the reverse power flow duration (TReveresePower in minutes). TCharge
is defined as the time duration required to charge the battery to full capacity each day
while TReveresePower is the daily time interval during which reverse power flows back to the
substation transformer. The daily discharging duty cycle for the nth day is defined as the
ratio of the actual discharging time (TDischarge in minutes) to the duration of the EC evening
peak (TPeakDemand in minutes). TDischarge is the daily time duration required to discharge
the battery to the minimum SoC while TPeakDemand is the time interval during which the
maximum power at the EC exceeds the pre-set daily limit.

4.2. BUF and Optimal Community BESS (Present PV Penetrations)

The flowchart in Figure 7 describes the BESS sizing procedure. The BUF calculation,
as defined in (9), was used as a discrete computational procedure to determine the opti-
mal BESS solution for each of the RECs. The BESS optimization process for the RECs is
independent of the objective function being optimized. This was conducted by initially
defining for each REC: Pcharge,bess

MAX ; the lower BESS capacity bound, Cbess
MIN ; an upper BESS

capacity bound, Cbess
MAX ; and the number of iterations by the step size, Cbess

step . The evaluated
BESS capacity, Cbess

x , is initially set to the lower capacity bound and the BUF is determined
by the methodology shown in Figure 7. The Cbess

x is then incremented with each iteration
of the BUF algorithm. Each iteration gives a BUF point on the curve that can be plotted on
a BUF vs. BESS capacity curve. An example of the BUF vs BESS capacity curve is shown in
Figure 8. The maxima resulting from this curve yields the BESS capacity with the maximum
utilization factor. Due to the weighted formulation of (9), there can only be one maximum
for each BUF vs BESS capacity curve. The BUF was determined for BESS systems rated
between 1 kWh and 200 kWh (in steps of 1 kWh) at a Pcharge,bess

MAX of 0.1C up to 0.5C (in steps
of 0.1C). The resulting BUF vs BESS capacity curves are shown in Figure 8. The Pdemand,REC

MAX
daily maximum power limits for each respective REC were set as a constant throughout
the entire year according to the pre-determined thresholds for the daily peak demands at
each EC. These were determined to be 10 kW (EC1 to EC4) and 7 kW (EC5), respectively.
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Figure 7. Flowchart of the BESS sizing procedure using the BUF Strategy (n = 1, . . . , 365 is the
day number.
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Figure 8. Battery Utilization Factor for BESS systems rated from 1 kWh to 200 kWh at charging rates
of 0.1C up to 0.5C. (a) BUF for EC 1. (b) BUF for EC 2. (c) BUF for EC 3. (d) BUF for EC 4. (e) BUF
for EC 5.

An analysis of Figure 8 reveals that the BUF characteristic are directly dependent on
the daily net-demand characteristics (including the reverse power flows and peak evening
load demands). In all of the RECs, the BUF was observed to be affected by low values of
Pcharge,bess

MAX , with the worst performance occurring at 0.1C. However, the improvements

observed in the BUF for Pcharge,bess
MAX above 0.3C were negligible. The lowest BUF from all ECs

can be observed at EC5 as the BESS can only charge during the reverse power periods. If the
peak load demand does not exceed the threshold, the BESS does not discharge, resulting in
extended periods of idle time. The highest BUF was observed for EC2 that has high reverse
power flows and peak demands that are of similar magnitudes. The optimal sizes for
communal BESSs (at a charging rate of 0.3–0.5C) were determined to be of 57 kWh (EC 1),
55 kWh (EC 2), 31 kWh (EC 3), 37 kWh (EC 4) and 10 kWh (EC 5), respectively.

4.3. Energy Community Net Demand with BESSs

The hourly net-demand curves for the each of the RECs with the addition of commu-
nity storage are considered in this section. Only the results obtained with the determined
BESSBUF are given in this section for each of the RECs. For EC1, additional results were
included for a BESS twice the optimal value to compare the operational performance. The
simulations were performed to evaluate the impact of the BESSBUF on the reverse power
flow and total energy demand at each REC. In addition, the daily SoC variations for the
community scale BESS are also given.

4.3.1. Energy Community 1

Figure 9a shows the hourly net-demand curves with and without the BESSBUF of
57 kWh (showing the average power over 15-min intervals in kW), together with the daily
SoC for EC1 over the considered year. The total energy demand in the EC without storage is
of 111.3 MWh, while the total energy flowing back to the substation amounts to 17.5 MWh.
The total energy demand in the EC with BESSBUF is of 102.98 MWh, while the total energy
flowing back to the substation amounts to 8.19 MWh. The BESS is not large enough to
eliminate the reverse power flows on most days. One can observe that the BESS is cycled
nearly daily between the predefined SoC limits. An exception occurs in the period between
mid-July and mid-September due to lower magnitudes of reverse power flow resulting
from higher electricity demands. In addition, one can also observe that the BESS does
not always have sufficient energy to limit the evening peak demand to the pre-defined
set point.
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Figure 9. Net demand with and without storage and daily variations in the State of Charge for EC1.
(a) With a 57 kWh BESS. (b) With a 114 kWh BESS.

Increasing the size of the BESS to 114 kWh results in further reductions of the reverse
power flow. With this larger BESS, the total energy flowing back to the substation reduces
to 4.66 MWh. The total energy demand reduces to 99.7 MWh as more energy was supplied
by the BESS during peak shaving operation on most days where the demand exceeded
the defined set-point. Figure 9b shows the hourly net-demand curves with and without
storage, together with the SoC variations for EC1. The BESS works in daily microcycles on
days where: (a) the absorbed reverse power flow exceeds the discharged energy during
the evening peak demand periods; and (b) the absorbed reverse power flow is much less
than the evening peak demand periods. While these microcycles have the advantage of
increasing the lifetime of the battery, this comes at significantly higher capex and spatial
footprint requirements. The latter is an extremely critical aspect due to the densely built
Maltese environment, which limits the deployment of distributed large-scale BESSs.

4.3.2. Energy Community 2

Figure 10a shows the hourly net-demand curves with and without the BESSBUF of
55 kWh (average power over 15-min intervals in kW), together with the SoC variations
for EC2, over the entire year. The total energy demand in the EC without storage is of
77.23 MWh, while the total energy flowing back to the substation amounts to 52.3 MWh.
The total energy demand in the EC with BESSBUF is of 67.47 MWh (reduction of 12.64%),
while the total energy flowing back to the substation amounts to 41.47 MWh (reduction
of 20.7%). One can observe that the BESS is cycled nearly daily between the predefined
SoC limits, except in the period between May and July, when the electricity demand was
low and the PV generation was high. However, the BESS is not large enough to eliminate
the reverse power flows on all days. In addition, the BESS does not always have sufficient
energy to limit the evening peak demand to the pre-defined set point.

4.3.3. Energy Community 3

Figure 10b shows the hourly net-demand curves with and without a 31 kWh BESS
(average power over 15-min intervals in kW), together with the SoC variations for EC3, over
the considered period. The total energy demand in the EC without storage is of 59.65 MWh,
while the total energy flowing back to the substation amounts to 32.78 MWh. The total
energy demand in the EC with BESSBUF is of 55.2 MWh (reduction of 7.46%), while the total
energy flowing back to the substation amounts to 27.8 MWh (reduction of 15.19%). One
can observe that the BESS is cycled nearly daily between the predefined SoC limits, except
in the period between early-May and the end of June, when the daily maximum electricity
demand is very close to the defined setpoint. However, the BESS is not large enough to
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eliminate the reverse power flows on all days. In addition, the BESS does not always have
sufficient energy to limit the evening peak demand to the pre-defined set point.
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Figure 10. Net demand with and without storage and daily variations in the State of Charge. (a) EC2
with a 55 kWh BESS. (b) EC3 with a 31 kWh BESS.

4.3.4. Energy Community 4

Figure 11a shows the hourly net-demand curves with and without a 37 kWh BESS
(average power over 15-min intervals in kW), together with the SoC variations for EC4,
over the considered period. The total energy demand in the EC without storage is of
56.01 MWh, while the total energy flowing back to the substation amounts to 23.42 MWh.
The total energy demand in the EC with BESSBUF is of 50.75 MWh (reduction of 9.39%),
while the total energy flowing back to the substation amounts to 17.57 MWh (reduction of
25%). One can observe that the BESS is cycled nearly daily between the predefined SoC
limits, except in the period between the beginning of May and mid-July. From Figure 11a,
one can observe that the BESS is effective in limiting the maximum demand to the required
reference of 10 kW for all days in this period. In this EC, the BESS is not large enough to
eliminate the reverse power flows on all days. In addition, the BESS does not always have
sufficient energy to limit the evening peak demand to the pre-defined set point, except in
the period between the beginning of May and mid-July.
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Figure 11. Net demand with and without storage and daily variations in the State of Charge. (a) EC4
with a 37 kWh BESS. (b) EC5 with a 10 kWh BESS.

110



Energies 2022, 15, 9518

4.3.5. Energy Community 5

Figure 11b shows the hourly net-demand curves with and without a 10 kWh BESS
(average power over 15-min intervals in kW), together with the SoC variations for EC5, over
the considered period. The total energy demand in the EC without storage is of 55.05 MWh,
while the total energy flowing back to the substation is the lowest of all ECs, at 2.78 MWh.
The total energy demand in the EC with BESSBUF is of 54.3 MWh (reduction of 1.36%),
while the total energy flowing back to the substation amounts to 1.94 MWh (reduction
of 30.2%). Even though the size of the BESS is small, the BESS is underused throughout
the entire year. During May and June, the electricity demand is lower than the maximum
threshold, resulting in the BESS operating at the maximum SoC of 80%. Hence, the BESS
could not reduce the reverse power flows during this period. In the late summer months,
the electricity demand increases due to the cooling requirements (air-conditioning loads).
This results in no reverse power flow and, hence, the BESS operates at the minimum SoC of
20%. Therefore, one can clearly conclude that the BESS was underused between May and
September 2020. Between October 2020 and April 2021, the reverse power flows and the
evening peak demands were reduced as the BESS was cycled on a frequent basis. Increasing
the size of the BESS to values higher than the BESSBUF at the present levels of PV generation
would yield even further underutilization. Assuming that the electricity demand of REC5
does not increase, energy independence from the utility grid can be achieved by increasing
both the PV generation and the BESS size.

5. Case Study: Typical Maltese Spring Day

The secondary substation distribution network shown in Figure 4 was modelled in
MATLAB/Simulink. The cables and overhead lines were represented as distributed Pi-
transmission line models. Technical data on each cable segment included the cable type
per segment, segment lengths, and the electrical parameters per unit length (resistance,
inductance, and line-to-ground capacitance) were provided by the local DSO to achieve a
detailed schematic. These detailed cable parameters are critical to evaluating the effects of
high periods of PV generation on the node voltage profiles of each energy community.

Electrical parameters of the secondary substation transformer were also included for
these simulations. The primary side of the substation transformer acts as the slack bus
to balance the active power and reactive power in the modelled network. This bus acts
as a reference to the simulation model and is the only known voltage at the start of the
simulation. Single-phase and three-phase load buses were implemented at each node to
model the respective consumer loads and local PV generation.

Power flow simulations were carried out for two grid placement scenarios to eval-
uate the impact of communal BESS placement on the node voltages of all five energy
communities. The first location is at the start of the feeder (Location 1) as the BESSs can
be located within the substation or in its vicinity (i.e., the most accessible location). The
second location is at the end of the feeder (Location 2), where the reduction in the energy
community node rms voltages is expected to be more significant. However, in practice,
there might be practical limitations that could not allow the deployment of communal
BESSs at Location 2 (refer to Section 5).

5.1. Spring Net-Demand Characteristics

Spring is the best performing season for PVs in Malta due to a combination of cooler
ambient temperatures, low electricity demand for heating/cooling, high irradiation levels
and high levels of sun-hours [20]. On the other hand, winter has a higher electricity demand
resulting from space/water heating and the lowest levels of sun hours, when compared to
the other seasons.

The hourly net demand curves without community BESS for 8 May 2020 are shown in
Figure 12. One can observe that the net demand curves for all ECs on this day follow the
duck curve characteristic. Oversupply occurs during the middle of the day, as this coincides
with the peak of PV generation. This negative net-demand occurs between, approximately,
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8 am and 6 pm for all ECs. EC2 has the highest reverse power of all the ECs at −23.8 kW,
with the reverse peak being twice the evening peak demand.
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Figure 12. The hourly net demand curves for all ECs on 8 May 2020.

5.2. EC Net-Demand Characteristics with Community BESS

The hourly net demand curves with community BESS for 8 May 2020, together with
the SoC variations for each EC, are shown in Figure 13. The net-demand curves are obtained
from a snapshot taken of the simulations carried out in Section 4.3. Therefore, the initial SoC
for each EC is determined from the operation of the community BESS on the previous days.
The initial SoC values for EC1 to EC5 are 20%, 45%, 79.2%, 58.2%, and 76.6%, respectively.
One can immediately deduce that, for EC3 and EC5, the difference between the maximum
SoC and the initial SoC significantly limits the capacity to reduce the reverse power flows
for the considered day.
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Figure 13. Net demand of the ECs with community storage for the selected case scenario. (a) The
SoC variations of the BESS at the respective ECs. (b) The resulting net-demand at each EC.

Figure 13a shows the SoC variations for each BESS, whereby all of the community bat-
teries reach the predefined limit of 80% during instances of reverse power flows. Figure 13b
shows that EC2 has the highest reverse power of all the ECs, at −13.1 kW. For all of the ECs,
the peak demands are limited to the predefined maximum power setpoints. An exception
to this result occurs for EC1, where part of the peak demand is not compensated by the
BESS as there was not enough capacity available. As expected, EC3 and EC5 showed
small reductions in the reverse power flows due to the high initial SoC. These results
clearly show that there is a compromise between the consumer’s objective to maximizing
self-consumption and the utility’s objectives of maintaining a minimum base load and
reducing the reverse power flows.
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5.3. Impact of Communal BESS Placement on the EC Nodes

Simulations were then performed to verify the effect of the communal BESS placement
on the voltage profile at each EC. Three case studies were simulated: (a) No communal
BESS; (b) Communal BESS placed at the start of EC (substation secondary side); and
(c) Communal BESS placed at the end of EC (furthest node from substation secondary
side). Figure 14a shows a swarm plot of the phase (line-to-neutral) RMS voltages of all the
nodes present in REC 1, at 15 min intervals throughout the day, without the communal
BESS. From the figure, one can observe that there are overvoltage events due to the reverse
power flow between 2:00 p.m. and 1:30 p.m. This corresponds to the period where solar
PV generation reached a maximum. Violations of the 230 V +10% maximum limit were
observed on multiple nodes in the REC.
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Figure 14. Swarm plot of the node phase voltages in REC 1 at 15-min intervals throughout the day.
The green line represents the 230 V + 10% maximum limit (line-to-neutral). Each point is a resultant
phase voltage at one of the nodes in the LV network. (a) No communal storage. (b) Communal
storage placed at start of REC. (c) Communal Storage placed at the end of the REC.

Figure 14b shows a swarm plot of the phase (line-to-neutral) RMS voltages of all the
nodes present in REC 1, at 15 min intervals throughout the day, with the communal BESS at
the start of the REC. From the figure, one can observe that there are no significant changes
in the voltage distributions over the whole day, as violations of the 230 V + 10% maximum
limit were observed on multiple nodes in the REC. Figure 14c shows a swarm plot of the
phase (line-to-neutral) RMS voltages of all the nodes present in REC 1, at 15 min intervals
throughout the day, with the communal BESS at the end of the REC. From the figure, one
can observe that there are reductions in the maximum voltages at the nodes, with violations
of the 230 V + 10% maximum limit only occurring at 1 pm. In addition, there were also
reduced voltage variations across all nodes in the network over the entire day (This is
shown by smaller clusters in the swarm plot).

Similar plots were obtained for all five of the RECs and are not included here for
the purpose of clarity. However, the resulting voltage variations at each node of the

113



Energies 2022, 15, 9518

five RECs that can be determined from these swarm plots are summarized in the bar graph
of Figure 15. The horizontal line (purple) represents the 230 V + 10% maximum voltage
limit for each of the five ECs. Without the communal BESS, this maximum voltage limit is
exceeded in multiple nodes of nearly all of the ECs, with the exception of EC2. The most
severe voltage magnitudes occurred in EC 3, where all the nodes exceeded the maximum
voltage threshold. The resulting maximum voltages for EC1 to EC5 are 254.45 V, 253.25 V,
255.17 V, 253.75 V and 253.54 V, respectively. The minimum voltages that result during
the peak power demand for EC1 to EC5 are 227.19 V, 228.87 V, 228.11 V, 228.23 V and
226.45 V, respectively.
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Figure 15. Bar graph of node voltage variations for each EC with and without the community BESS.
The horizontal lines represent the 230 V ± 10% nominal voltage range for the Maltese LV network:
Maximum limit (Purple), Nominal voltage (Red) and minimum voltage (Pink).

With the communal BESSs installed at the start of the EC, a reduction in the magnitude
and duration of the reverse power flow at the substation was observed. EC 3 and EC 5 show
the least reductions in reverse power flow as the initial SoC was close to the defined
maximum threshold. in ECs where the initial SoC was low (e.g., EC 1 and EC 2), the
operation of the communal BESS reduced the voltage magnitudes, however the max-
imum voltage limit was still exceeded in nearly all ECs, with the exception of EC 2.
The resulting maximum voltages for EC1 to EC5 are 254.16 V (−0.14%), 253 V (−0.1%),
254.9 V (−0.11%), 253.37 V (−0.15%) and 253.05 V (−0.19%), respectively. Due to the re-
duction in power consumption during the peak demand, the minimum voltages for EC1 to
EC5 increased to 227.51 V (+0.14%), 229.4 V (+0.23%), 228.71 V (+0.26%), 228.74 V (+0.22%)
and 227.22 V (+0.34%), respectively.

With the communal BESSs installed at the end of the EC, the reductions in the magnitude
and duration of the reverse power flow resulted in the lowest maximum voltages in the ECs.
Similarly to the previous case scenario, EC 3 and EC 5 show the least reductions in reverse
power flow as the initial SoC was close to the defined maximum threshold. in ECs where
the initial SoC was low (e.g., EC 1 and EC 2), the operation of the communal BESS reduced
the voltage magnitudes. In this scenario, the maximum voltage limit was only exceeded
in EC 1 and EC 3. The resulting maximum voltages for EC1 to EC5 are 253.24 V (−0.48%),
252.76 V (−0.19%), 254.9 V (−0.11%), 252.9 V (−0.33%) and 252.67 V (−0.34%), respectively.
Due to the reduction in power consumption during the peak demand, the minimum volt-
ages for EC1 to EC5 increased to 227.53 V (+0.15%), 229.43 V (+0.25%), 228.77 V (+0.29%),
229.47 V (+0.54%) and 228.62 V (+0.96%), respectively.
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6. Discussion

As mentioned in the previous sections, the challenges of achieving high penetrations
of renewables in the Maltese distribution network, and in island power systems in gen-
eral, should not be taken lightly. The formation of RECs provides an attractive solution
to efficiently use any available assets by locally consuming the energy generated from
renewables. The analysis for the five hypothetical RECs carried out in this study shows
that, with the present penetration of renewables, the substation transformer sees an annual
net-demand of 359.24 MWh, with the total reverse power injected in the grid amounting to
128.78 MWh. The maximum evening peak electricity demand at the transformer reaches
153 kW, while the reverse peak reaches a maximum of −125 kW. Deploying the energy
storage units sized according to the BUF strategy (BESSBUF) within the RECs resulted in a
7.95% reduction in the total energy demand from the grid during peak demand hours, and
16.9% reduction in the total energy supplied back to the grid during midday. The maximum
evening peak electricity demand at the transformer was reduced to 78.2 kW, while the
reverse peak reaches a maximum of −53.5 kW. Therefore, the installed PV capacity within
the five RECs can be increased by up to 7.4% from the present installed capacity, while
reaching the present reverse energy injection levels into the grid. This assumes a typical
specific yield of 1626 kWh/kWp for PV systems in the Maltese islands [22].

By reducing their daily peak electricity demand and the reverse power flow into
the utility grid, RECs can minimize their impact on the utility grid through increased
self-sufficiency. The case study for a typical Maltese spring day showed that the communal
BESS can also provide advantages within the same RECs. When installed at the end of
the RECs, the communal BESS reduced the node rms voltages magnitudes by up to 0.48%
by absorbing the reverse power flow. The degree of reduction in reverse power flow
depends on the initial SoC of the batteries. Larger community storage systems could be
deployed if additional ancillary services are provided to the grid in order to minimize the
payback period and maximize profits. The ancillary services could include power quality
improvement, regulation, and flexibility reserve.

Limitations

One should note that modelling assumptions were performed that might affect the
results. As already mentioned in Section 3, most single-phase main meters in households
where PV systems were installed did not have any logs for the exported active power.
Therefore, the relationship between the PV generation and the exported active power for
this study had to be analyzed and approximated for each individual consumer. This might
affect the potential energy reductions for the modelled RECs.

Another assumption of this study concerns the controllability of the storage units
within the REC. BESSs control the real power injection/absorption symmetrically on all
three phases. However, in practice, all the three phases might not be available at the
last node of the REC. An individual phase can directly feed several consumers as it is
significantly cheaper to deploy single phase conductors than three phases (+neutral). In
this context, only the partial load on that phase of the REC can be compensated by the BESS.
Normally, there are no connections among phases (through power electronic converters) to
allow for intra-phase power transfer. In addition, the charging/discharging rates must be
limited to avoid overloading the conductors.

7. Conclusions

Renewable energy communities in the Maltese context can provide significant advan-
tages to the citizens and the DSO. This study investigated the coordinated operation of the
energy storage assets within the community, aiming at reducing the peak power exchanged
between the REC and the main grid. Each LV feeder in the considered secondary substation
was considered as an REC, such that RECs can be formed without the need to reconfigure
the present distribution network. Each REC consists of different combinations of single-
phase and three-phase consumers/prosumers. An analysis of the daily net-demand curves
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for each REC revealed that oversupply occurs on more than 340 days for RECs 1 to 4, while
for REC 5 oversupply occurs on 265 days. Community storage was proposed in this study
as a means to reduce the peak power exchanged by each REC with the grid. The proposed
sizing strategy for the community BESS is based on the battery utilization factor, which
uses historical data for both demand and PV generation and ensures maximum utilization
of the storage assets. The optimal sizes for the communal BESSs were determined to be of
57 kWh (EC 1), 55 kWh (EC 2), 31 kWh (EC 3), 37 kWh (EC 4) and 10 kWh (EC 5), respec-
tively. Detailed analysis of the daily net-demand curves with and without storage for the
each of the RECs showed reductions in the energy demand and reverse power flow during
peak PV hours. The communal BESSs in the RECs are cycled nearly daily between the
predefined SoC limits, except in certain periods of the year where the electricity demand is
higher than the norm or when it is very close to the defined reference value.

Finally, power flow simulations were carried out on a typical spring day for two grid
placement scenarios (start and end of the feeder, respectively). The impact of the communal
BESS placement on the node voltages of all five energy communities was determined
through a detailed analysis of the node phase rms voltages of each REC. The battery
placement was seen to play a part in the benefits to the energy community itself. When
the BESS was placed at the end of the EC, the voltage violations of the maximum limit
were observed only for two communities out of the five modelled (EC 1 and EC 5), with
resulting maximum voltages for EC1 to EC5 of 253.24 V (−0.48%), 252.76 V (−0.19%),
254.9 V (−0.11%), 252.9 V (−0.33%) and 252.67 V (−0.34%), respectively.
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Nomenclature

BESS Battery Energy Storage System
BESSBUF Battery Energy Storage System sized according to BUF
BUF Battery Utilization Factor
CAPEX Capital Expenditure
DSOs Distribution System Operators
EC Energy Community
EU European Union
ICT Information and Communications Technology
KPI Key Performance Indicators
kWh kilowatt-hours
LV Low Voltage
MWh megawatt-hours
P2P Peer-to-Peer
PV Photovoltaic
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RECs Renewable Energy Communities
SoC State of Charge
TOU Time-of-Use
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Abstract: In an electrical microgrid, distributed renewable generation is one of the main tools used
to achieve energy sustainability, cost efficiency and autonomy from the grid. However, reliance
on intermittent power sources will lead to a mismatch between generation and demand, causing
problems for microgrid management. Flexibility is key to reducing the mismatch and providing
a stable operation. In such a context, demand response and energy storage systems are the main
factors that contribute to flexibility in a microgrid. This paper provides an assessment of the technical
and economic impacts of a microgrid at the building level, considering photovoltaic generation,
battery energy storage and the use of electric vehicles in a vehicle-to-building system. The main
novel contributions of this work are the quantification of system efficiencies and the provision of
insights into the design and implementation of microgrids using real on-site data. Several tests
were conducted using real on-site data to calculate the overall efficiencies of the different assets
during their operation. An economic assessment was carried out to evaluate the potential benefits
of coordinating battery storage with a vehicle-to-building system regarding the flexibility and cost-
efficient operation of the microgrid. The results show that these two systems effectively increase
the levels of self-consumption and available flexibility, but the usefulness of private electric vehicles
in public buildings is constrained by the schedules and parking times of the users. Furthermore,
economic benefits are highly dependent on the variability of tariffs and the costs of energy storage
systems and their degradation, as well as the efficiency of the equipment used in the conversion chain.

Keywords: microgrids; electric vehicles; vehicle-to-building; battery energy storage; distributed generation

1. Introduction
1.1. Motivation

Following the recent challenges related to climate change mitigation and reducing
dependency on fossil fuels, new technologies have been developed to increase end-use
energy efficiency and improve the harvest of renewable energies cost-effectively. The
increased penetration of distributed energy resources, such as wind, solar photovoltaic (PV)
and biomass sources, and energy storage systems has rekindled interest in the development
of electric microgrids. According to the Microgrid Exchange Group, “A microgrid is a
group of interconnected loads and distributed energy resources within clearly defined
electrical boundaries that acts as a single controllable entity with respect to the grid” [1].
Electric microgrids have the ability to work independently of the main utility grid and
can be used to promote the installation of distributed energy generation, reduce the costs
of energy transportation, improve local power quality, increase renewable source self-
consumption levels and provide auxiliary services to the main grid. Microgrids are also
highly desirable in situations in which the high reliability of an energy supply service is
required for critical facilities, such as hospitals, airports and military centers [2]. Microgrids
can also be used to maintain energy supply in remote locations and to supply areas isolated
during catastrophic events.
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Microgrids can be classified into different types, each with its own purpose and appli-
cation [3]. Isolated microgrids are mostly used on islands and in off-grid locations, being
frequently reliant on diesel generators for supply. Commercial or industrial microgrids
have large generation capacities and are focused on economic benefits via reduced costs
or by providing the utility grid with ancillary services. Military microgrids are used for
military and naval operations and have high redundancy levels. Community microgrids
are centered around small villages or neighborhoods and have high levels of participants fo-
cused on reducing electricity costs and increasing autonomy and self-consumption. Lastly,
building/campus microgrids are focused on aggregating loads and generation in order to
increase building/campus efficiency. They differ from community microgrids in that, in
most cases, generation and demand assets have the same owner.

The microgrid tested in this work is a campus microgrid located in the Department of
Electrotechnical Engineering at the University of Coimbra. The characteristics of the micro-
grid are explained in Section 3. Microgrids rely on high levels of distributed generation,
mostly renewable sources, which are inherently intermittent and non-dispatchable. Such
dependency commonly leads to a mismatch between generation and demand, which is
mitigated by either curtailing generation or injecting surplus energy into the grid, thus
reducing cost efficiency and being particularly harmful in utility grids not prepared for
bidirectional power flows [4]. As the share of intermittent power sources in a grid increases,
the more difficult it will be to strike a balance between renewable generation and demand.
The most visible symptom of this problem is the famous “duck curve”, which has become
prevalent in countries with high solar generation penetration [5]. The “duck curve” is
the result of the solar output rising during the day, when demand is lower, and a steep
ramp-up occurring during the late afternoon when the sun goes down. The consequences
are the curtailment of generation, potentially negative energy prices and grid stress caused
by turning the generation assets on and off following the quick ramp-up and -down.

For a microgrid to work efficiently, it is desirable to reduce as much as possible the
mismatch between supply and demand. Therefore, flexibility is paramount in maximizing
the use of existing resources in order to increase cost efficiency and maintain the stability
of the grid or microgrid. The level of flexibility present in a microgrid is highly correlated
with its demand-response capability and energy storage systems, such as batteries and
vehicle-to-building (V2B) systems [6,7].

Electric mobility has also seen significant technological breakthroughs, not only due
to the decreasing costs of batteries but also due to the higher availability of charging
infrastructures and the incentives provided by most countries for the acquisition of electric
vehicles (EVs). During the first half of 2022, 4.3 million battery and plug-in hybrid EVs were
delivered worldwide—an increase of 62% compared to the same period in 2021. By the end
of 2022, nearly 27 million EVs are expected to be in operation [8]. The number of sales is
predicted to reach 26 million EVs per year by 2030, corresponding to a share of 28% of total
motor sales [9]. EVs can have a stronger impact when considering smaller sub-grids, such
as community or campus microgrids. For the standard EV client, the concept of vehicle-
to-building/home is easier to understand and hence more attractive [10]. Alongside
government policies and incentives promoting the transition to EVs, it is important to
direct efforts towards developing the infrastructure needed for standardizing vehicle-to-
grid interaction and simplifying the technologies required for it to become conventional for
social and market acceptability [11].

Regarding energy storage, almost all of the existing options for microgrid-level energy
storage are focused on stationary battery systems, due to the recent developments in terms
of both price and performance which have made the technology viable. However, it is also
important to take into account the increasing penetration of EVs, which will play a huge
role in microgrid management, since EVs can be used both for demand response and as
energy storage resources using vehicle-to-building systems. The massification of battery
energy storage systems (BESSs) will also open up new possibilities for grid management,
including microgrids, building energy management and vehicle-to-grid interaction.
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This work aims to contribute a technical and economic assessment of the usage of
battery energy storage systems and vehicle-to-building systems integrated into a campus
microgrid to quantify system efficiencies and provide insights into the design and imple-
mentation of microgrids. All the assets were already installed inside the building, and data
were collected during real operations, providing more realistic data than simulated results.
The operational efficiencies were assessed and used to evaluate round-trip efficiency and
cycle economies, which information is to be used as a reference by the energy manage-
ment system. Furthermore, an economic assessment with different scenarios was made
to highlight the impacts that flexibility can have in terms of increasing a building’s self-
consumption and reducing overall electricity needs. In summary, the novel contributions
to the field of study are:

a. An analysis of round-trip efficiencies of the most commonly used distributed energy
systems in a microgrid using real on-site data;

b. A technical comparison of conventional bidirectional EV chargers and novel silicon
carbide (SiC) bidirectional EV chargers;

c. Insights regarding the economic aspects of using BESSs and vehicle-to-building for
load shifting and peak shaving in buildings.

1.2. Related Works

In Europe, there is a current policy trend to work towards near-zero energy buildings
(nZEBs). One of the main research subjects is the implementation of better energy storage
facilities in buildings. Battery systems and, more recently, vehicle-to-building systems have
been subjects of increasing research in the past decade due to more accessible costs, more
variety in the technology available on the market, the potential for flexibility and policies
that encourage nZEB renovations.

The way in which EVs are used is also evolving. Increasing numbers of EV models
are being built with an increased focus on the bidirectional transfer of power. This feature
presents a viable solution for increasing flexibility by adding a new storage asset to mi-
crogrids. The functionality of EVs will not be limited to mobility only; they will provide
various services to the user and the grid through the vehicles’ unused battery capacities
being taken advantage of. The work presented in [12] offers a comparison between vehicle-
to-grid, vehicle-to-building and vehicle-to-home (V2H). It is stated that V2G is the most
complex and ambitious concept to apply, being heavily reliant on the penetration of EV
technology to be successful. V2B and V2H are easier to implement, neither requiring large
infrastructures or large numbers of EVs to be available. Another advantage is that these two
methods prove to be more beneficial for the individual user. In [13], an economic evaluation
of EV charging integrated into microgrids is presented. A campus microgrid is used as a
test bench and several business models based on the self-consumption of electricity and
smart charging are simulated. It concludes that using PV systems coupled with smart
charging presents the highest profit for the operator. The installation of a battery storage
system is less profitable, but increases flexibility and reduces dependency on the grid,
particularly when PV is not being generated. In [14], the authors simulate a V2B system
with six electric vehicles and evaluate the impact of battery degradation. The results prove
that V2B has relatively significant profit potential, even considering the costs associated
with battery degradation.

The work in [15] addresses energy sharing through a transactive energy market in
community microgrids, using stationary vehicles and EVs as flexibility resources. The
proposed method indicates that, with the management of energy storage resources, it is
possible to reduce the mismatch between demand and local generation as well as operating
costs. The method also highlights the benefits of aggregating stationary or mobile assets to
increase impacts on the grid. Similarly, Ref. [16] simulates a method for energy communities
in which EVs are used as flexibility resources between several buildings. The results show
that the flexibility provided by EVs is more impactful in terms of providing reduced
costs and increased self-consumption for buildings integrated into energy communities as
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compared with the individual management of buildings. In [17], a concept of collaborative
charging for vehicle-to-building is proposed. The study demonstrates that it is economically
viable for a building manager to provide free EV charging to users in exchange for control
of the storage capacity during allotted time periods. The user benefits from the free energy
and the building benefits from the increased storage reserve that can be used to reduce
power peaks or increase self-consumption of intermittent renewable sources. In [18], a
coordination scheme for EV charging in office buildings is proposed. The method is focused
on taking advantage of integrated distributed resources, such as PV generation and battery
storage systems, to achieve an energy cost reduction by coordinating with the known
schedules of the building employees and loads. This method illustrates an energy cost
reduction of 14% when compared with a first-come-first-served approach. In [19], the
authors study the impacts that plug-in EVs can have regarding contributions to a nearly
zero-energy building. The results show that, by sharing even a fraction of their battery
capacities, plug-in EVs can reduce the amount of energy supplied by the grid by up to 40%
in the considered scenarios. The authors also conclude that stationary storage systems have
increased benefits when used to compensate for the intermittent presence of charging EVs.
Similarly, the works [20,21] analyze vehicle-to-building-to-vehicle in different management
schemes to reduce a building’s energy signature and its electric consumption. On the topic
of integration into microgrids, Ref. [22] focuses on the system and protocols needed for
microgrids to integrate EVs. The authors suggest utilizing a blockchain-based method to
provide adequate security and protection for users’ data.

Most of the aforementioned works conclude upon the effectiveness, value or prof-
itability of V2G as a resource to be integrated into buildings or cities. However, there
are few works exploring the efficiencies and losses of energy transactions between assets,
such as V2G or BESS, integrated into the same building/microgrid. The work in [23] is
claimed to be the first to experiment on the round-trip efficiency of V2G systems. The
results achieved for V2G efficiency are very close to those achieved for the experiments in
this paper, but the scope of the research is narrow and does not include analysis of other
common operations inside buildings, such as charging from PV or from/to BESS. In [24],
the relationship between energy cost and efficiency is studied. The authors present data
regarding V2G efficiency using EVs and plug-in hybrid EVs and make remarks about the
economic impacts and benefits of V2G for system operators. In [25], a thorough study is
presented regarding several aspects of V2G in order to propose regulations to maximize
profit and determine optimal operating points. The work mentions the efficiency of V2G
but does not present any experimental results that demonstrate or can be used by system
operators to account for losses during energy transactions in microgrids or buildings. All
these works approach V2G efficiencies in different ways but fail to provide a panoramic
view of the expected efficiencies in a microgrid.

On the subject of operational stability, in a microgrid environment, the enclosed and
limited resources mean that power fluctuations pose higher risks to operational stability [26].
The high reliance on intermittent resources heightens the probability of unwanted power
fluctuations. Due to their ability to store energy and schedule charges, electric vehicles,
as well as energy storage systems, present new opportunities for applying demand-side
measures, such as demand response [27]. Demand response has been proven to dramat-
ically increase microgrid reliability by minimizing peak demand, increasing the match
between generation and demand, and improving cost efficiency [28–32]. Grid operators
also rely on other demand-side measures, such as tariffs and monetary incentives, to smooth
the demand curve and modify consumption habits to better match the existing energy
availability [33]. All these works conclude that EVs will have a major role in achieving
nZEB building status, whether from the perspective of supplying extra storage capacity
to buildings, improving charging services for users or providing ancillary services, such
as demand response. As such, this work focuses on analyzing the efficiency of several
methods for integrating EVs in microgrids, the main one being vehicle-to-building.
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Battery energy storage systems have been subject to considerable advances in the past
decade, and the battery pack price has fallen from over 1000 €/kWh in 2010 to 132 €/kWh
in 2021 [34], and the forecasts point to a 100 €/kWh mark by the middle of this decade. Such
a reduction in costs will lead to higher incentives for energy storage systems in stationary
applications, as well as the electrification of the transportation sector. The main limitation
of such battery systems has been their limited numbers of cycles, which cause the capacity
to degrade both with time and usage. Daily charge–discharge cycles will gradually degrade
a battery’s health and reduce its efficiency and useful capacity. Therefore, it is important
to address the issue of battery degradation and its impacts on the economic and technical
operations of the microgrid.

The work in [35] presents two experiments designed to assess the battery degradation
caused by V2G and calendar aging due to temperature and state of charge (SoC). For these
experiments, batteries were discharged twice a day at the maximum power. With this
usage profile, it was shown that the lifetime of the battery pack decreased to nearly half its
predicted lifetime. These experiments also led to a new method to track the battery’s state of
health. In [36], a methodology is proposed to quantify EV battery degradation from driving
only versus driving and vehicle-to-grid services. It was concluded that interactions, such
as peak load shaving and frequency regulation, at a typical power rate, do not significantly
accelerate battery degradation when compared with degradation due to driving or calendar
aging. When correctly used, vehicle-to-grid/building impacts on battery degradation are
insignificant. In [37], a thorough battery degradation model is suggested that considers
calendar aging, capacity throughput, temperature, state of charge, depth of discharge and
current rate. The results of such work indicate that this model can extend the life of the EV
battery beyond the situation in which there is no V2G by optimizing state of charge and
power transfer. In [38], measurements made to study the power losses during the charge
and discharge of an EV are presented. One-way losses varied from 12% to 36%, with most
losses occurring inside power electronics. Based on these results, the authors underline the
importance of choosing adequate charging stations for increasing efficiency.

According to the European Environment Agency [39], reducing system losses and
therefore being able to achieve more efficient distribution systems, whether they are cen-
tralized systems or microgrids, is crucial to achieving the targets for decarbonization and
decentralization of the electric grid. The aforementioned works are all in agreement that
vehicle-to-building is crucial to achieving reduced emissions in buildings and improving
energy costs and efficiency, in which battery storage systems and electric vehicles have a
natural synergy. Therefore, this work aims to complement such conclusions by contributing
real-use data on vehicle-to-building system efficiency and strategies for the implementation
of such systems in microgrid environments.

1.3. Paper Organization

The remainder of the paper is structured as follows: Section 2 presents the characteris-
tics of the microgrid, as well as the specifications of the equipment used in the experimental
work. Section 3 presents the results of the experimental tests, as well as an economic assess-
ment of several different scenarios in which various levels of storage capacity are available
to the building, which results are discussed in Section 4. Lastly, Section 5 summarizes the
paper, highlighting its main conclusions.

2. Materials and Methods
2.1. Microgrid Characteristics

The experiments were conducted at the Department of Electrical Engineering of
the University of Coimbra. The building has an area of about 10,000 m2 and electricity
consumption of 500 MWh/year. The building comprises several classrooms, laboratories,
administrative services and three research institutes. The highest energy consumption of
the building is in the periods from 10 am to noon and from 5:30 pm to 7 pm. This partially
coincides with peak tariff hours: 9:30 am to noon and 6:30 pm to 9 pm. The distribution

123



Energies 2022, 15, 8905

transformer that services the building has a maximum load of 630 kVA and operates with a
load factor of around 30–40%. The building is equipped with 292 PV panels corresponding
to about 70 kW with AC injection. A diagram of the microgrid installed in the building is
presented in Figure 1.
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Figure 1. DEEC microgrid schematic.

An energy storage system consisting of three LG Chem RESU10H 400V Li-ion [40]
batteries is operational, with a total capacity of about 29.4 kWh (27.9 kWh of usable energy).
The batteries are connected to three Sunny Boy Storage 5.0 [41] single-phase inverters, each
with a rated power of 5 kW and a rated max efficiency of 97.5%.

The building is also equipped with the ability to ensure V2G/V2B electric vehicle
charging with several conventional DC chargers and one prototype of a silicon carbide
charger, all using the CHAdeMO protocol. The selected DC charger is a Magnum CAP
three-phase bidirectional DC charger [42] with a maximum charging output of 10 kW
and an efficiency of 93% at rated voltage and power. The power circuit of the chargers is
composed of an AC/DC and a DC/DC converter and transformers to deliver the correct
power either to the vehicle or to the residence outlet. Due to the high switching frequency
of the semiconductors for power conversions and the conduction losses, large amounts
of heat are produced during the operation of the charger, which requires the usage of
a forced ventilation system. Along with the onboard CPU, all these components and
power conversions accrue losses during the charging operation, further decreasing the
efficiency. The segregation of these losses is beyond the scope of this paper, with the
charger considered as a single entity. A prototype of a fully functional three-phase SiC
technology DC charger is also available and was used for further testing in parallel with
the conventional DC charger. Due to its novel technology, the SiC charger is smaller and
produces less heat and noise, having higher efficiency when compared to the conventional
DC charger [43,44].

The building is also equipped with several heating, ventilation and air conditioning
(HVAC) systems for temperature regulation in classrooms, offices and laboratories. During
the summer and winter months, nearly 40% of the demand is due to the HVAC systems.
These conditions are ideal to test and apply demand-control measures. For this, smart ther-
mostats were developed and used to regulate the part of the HVAC load inside classrooms.
The results of these tests are not within the scope of this paper, since they were previously
studied in [45]. Lastly, monitoring software has been developed to display the data for and
the status of all the microgrid’s assets in real time. The monitoring system is used to make
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decisions based on the current and predicted parameters of the microgrid, considering
electricity prices, predicted PV production, building occupancy, weekdays and seasonal
changes. A screenshot of the display is presented in Figure 2.
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Figure 3 presents a daily net load diagram and PV production for two days in the
Department of Electrical and Computer Engineering during the late summer (Septem-
ber 2020). The difference between the net load from the weekend (Sunday) to the weekday
(Monday) is clearly visible, as well as the grid injection due to excess solar generation.
As can be seen, there is clearly a mismatch between PV generation and demand. During
weekends and summertime, the demand level is lower than the generation, leading to
a generation surplus (negative net demand), and some energy needs to be injected into
the grid, which is paid with a very low tariff. Similarly, during weekdays, the peak in PV
generation coincides with the lunch break.
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It can be observed that there is a need for energy flexibility to improve the usage of the
energy resources. By coordinating the PV production with the available storage capacity,
it is possible to reduce the energy injected into the grid and use it later in the day when
electricity tariffs are higher. This situation will ensure a double benefit to the microgrid by
increasing self-consumption and reducing peak demand. EVs can be used to mitigate this
issue. By leaving a vehicle connected to the building during lunch breaks and work hours,
the building management system may opt to use the EV’s available storage to supplement
the building’s BESS and artificially increase demand when there is a renewable generation
surplus. This energy can either be paid for by the EV owner at a lower price or returned

125



Energies 2022, 15, 8905

to the building later in the day during peak hours. Additionally, by increasing the levels
of flexibility in the building, it will be possible to increase the autonomy of the microgrid
from the utility grid and further increase the existing photovoltaic generation, thereby
approaching the goal of a near-zero emissions building.

2.2. Microgrid Efficiency

The interconnection between different sources of energy generation, energy storage
systems and a variety of loads implies many stages of power conversion for voltage level
compatibility in the power exchange. PV systems generate DC power, but most building
loads are in AC. Even when storing solar energy in a battery, a DC-to-DC converter has to
be used to make the voltages and currents compatible with a BESS. The need for all these
energy conversions adds up to infrastructural costs and reduces the overall efficiency of the
microgrid. Hence, it is desirable to look for opportunities to reduce the number of power
conversions needed and to increase the efficiency of the power conversion equipment. An
example of a solution is the direct charging of EVs or BESSs using PV energy [46]. Currently,
the solar energy produced is converted to AC to enter the grid and then it is converted back
to DC to charge the electric vehicle. By having a direct DC link from the PV generation to
the EV charger, it is possible to avoid one stage of power conversion and reduce the cycle
losses by about 10% while still maintaining the AC connection and the possibility of V2B,
as was assessed in the experimental trials.

EV chargers are another source of cycle inefficiency. Since most of the charging is
carried out directly from the grid, conversion from AC to DC is needed. This power
conversion is performed using high-speed semiconductors (MOSFETs) with high switching
frequencies which generate switching and conduction losses, leading to large amounts
of heat that must be managed. A new semiconductor technology, silicon carbide (SiC),
is being introduced in electronics, with considerable benefits [47]. SiC semiconductors
have much lower drain–source resistance and are much faster, which translates into lower
conduction and lower switching losses. These characteristics allow the construction of
lighter and smaller charging stations with higher efficiency, fewer ventilation needs and
even potentially lower costs with mass production [48].

Regarding the efficiency of vehicle-to-building systems, there is a trade-off, since,
compared with traditional unidirectional charging, it leads to an increased number of
charging and discharging cycles and hence to increased battery degradation and operational
losses. There are several factors and variables that affect battery degradation, ranging
from chemistry to driving habits to charging conditions, among others. As such, studies
regarding the impact of vehicle-to-grid/building on battery degradation have reached
different conclusions, from neglectable to relevant impacts [36,49–52]. Battery degradation
reduces the usability of the vehicle, and operational losses diminish economical returns
and overall system efficiency. These two constraints limit the profitability of V2B and are
a barrier to convincing the user to commit their vehicle to the building. In order to be
attractive to the user, V2B must have relevant economic benefits and a proper assessment
of the costs and benefits must be provided.

Regarding BESSs, they are composed of a power conversion system connected to the
grid and a battery management system (BMS) to ensure even charge distribution in the
battery cells and reliable battery operation. Energy losses present in a BESS are due to
conversion losses, ohmic resistance losses and battery losses, with the battery accounting for
the majority of these losses. Battery losses occur due to internal resistance, heat produced
during the electrochemical reactions, cell voltage imbalance, charging profile, BMS self-
consumption, aging and temperature. For example, frequently using fast and ultra-fast
charging (>1 C) will rapidly decrease battery capacity, whereas freezing temperatures slow
the electrochemical reactions, reducing performance, and high temperatures accelerate
aging due to stress. Each one of these components will contribute a small amount to the
overall losses of the system, and careless operation will accelerate the natural capacity
degradation of the battery, reducing the number of working cycles. Since BESSs are still
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relatively expensive, it is desirable to take maximum advantage of available capacities to
ensure cost-effectiveness.

3. Results

In this section, the experimental trials for the BESS and V2G systems are presented.
The results are for several tests with different working conditions. For the BESS, full charge–
discharge cycles were made, and, for V2G, different power levels were used to charge
the battery for a given time period and SoC. The conducted experiments also intended to
ensure an overview of the overall power losses and efficiencies present in the BESS during
a full charge–discharge cycle. The round-trip efficiency (RTE) could then be calculated and
used to evaluate the operating efficiencies of the overall system. The round-trip efficiency
of an energy storage system is a term used to describe how much useful energy the system
can provide versus the amount of energy inputted into the system.

3.1. Solar PV Monitoring

The PV system has been monitored daily since the start of its operation. It was
identified that there was a surplus of generation during weekends from 10 am to 4 pm
and on clear sunny days on workdays during lunch hours. About 70 kWh need to be
injected into the grid each day of the weekend and about 40 kWh during weekdays in the
summer. During winter, there is very little injection of generation into the grid. Over the
last 4 years, the system has ensured an average generation of about 75 MWh/year, of which
around 3 to 4 MWh/year are estimated to be generation surplus to be injected into the grid.
The inverters have a calculated average efficiency of around 95%, which means that only
71.25 MWh/year are used in the building.

3.2. Li-on Batteries

The objective of the experiments with the Li-on batteries was to collect data from
different locations of the power circuit to assess the efficiencies of the charging and dis-
charging processes. Figure 4 presents a diagram of the circuit along with the different
powers measured, P1 to P4. The points that were chosen to take measurements from were:
Point A—between the main grid and the converter; Point B—between the converter and
the terminals of the batteries before the BMS. Each battery has a total energy capacity of
9.8 kWh and 9.3 kWh of usable energy. Therefore, in the charging–discharging tests, only
9.3 kWh of energy was cycled. The values for the SoC use as a reference the usable energy
capacity, e.g., 0% SoC in the results corresponds to 5% real SoC (500 Wh) of the battery.
The tests consisted of ensuring a full charge–discharge cycle, from 0% to 100% to 0% of
the usable SoC, and measuring the currents and voltages at Points A and B. The energy
was then calculated in each stage, as well as the respective efficiencies. The efficiencies
were calculated using Equations (1) to (4). Equation (1) presents the round-trip efficiency
(ηRTE), Equation (2) the converter charging efficiency (ηchar), Equation (3) the converter
discharging efficiency (ηdischar) and Equation (4) the battery efficiency (ηbat).

ηRTE =
P4
P1

(1)

ηchar =
P2
P1

(2)

ηdischar =
P4
P3

(3)

ηbat =
P3
P2

(4)
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Figure 4. Electric circuit schematic and measuring points in the bidirectional grid–inverter–battery
power flow.

A full charge and discharge cycle was tested for each of the three batteries with the
maximum charging power allowed by the inverter, which is 4.8 kW, corresponding to
around 0.5 C. The second round of tests was then performed with one of the batteries,
where the same measurements were repeated for 0.1 C and 0.3 C. At the time of these
tests, the BESS had around one year of lifetime and had been working at around a charge–
discharge cycle every two days. The state of health of all the batteries was around 95%. The
results of the first round of tests are presented in Tables 1 and 2.

Table 1. Energy measurements for Points A and B, in Wh.

Battery Operation Point A Point B Battery
Losses

Converter
Losses

A Charge 9158 8885
720.4

273.6
Discharge 7809 8164 355.5

B Charge 9138 8855
676.1

282.4
Discharge 7799 8079 280.3

C Charge 9149 8832
686.1

317.3
Discharge 7852 8146 294.2

Table 2. Calculated efficiencies.

Battery ηchar ηdischar ηBat ηRTE

A 97.01% 95.64% 91.89% 85.26%

B 96.90% 96.52% 91.23% 85.34%

C 96.53% 96.38% 92.23% 85.81%

From these results, it can be seen that the efficiency of the converters is around the rated
value of 97%. Most of the system losses occur inside the battery due to its electrochemical
reactions, internal resistance and temperature. Part of the energy lost inside the battery
is used for the operation of the battery management system, which is integrated directly
inside the battery. In sum, the round-trip efficiency for this BESS is around 85%, with 5% of
the energy lost in conversion and nearly 10% of it lost while being stored inside the battery.
Ohmic losses due to cabling are also present, but since they are highly dependent on the
system’s physical architecture and the value is too small to have a real economic impact,
they were not considered. Nevertheless, in this system, ohmic losses account for 0.5%
of the total losses, this percentage being diluted inside the losses throughout the various
cycle stages.
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The third round of tests was made to ascertain the differences in efficiency caused by
a different charging power level. One battery was chosen, and the full charge–discharge
tests were repeated. Table 3 presents the achieved results. As expected, the charging power
affected the efficiencies.

Table 3. Calculated efficiencies for different C values.

C ηchar ηdischar ηBat ηRTE

0.1 C 94.1% 94.43% 95.03% 84.45%

0.3 C 94.8% 95.01% 95.04% 85.60%

0.5 C 96.6% 96.52% 91.23% 85.34%

With lower currents, the inverters will work farther from the nominal operating point,
thus reducing efficiency. Oppositely, less current will benefit the battery by producing less
heat and reducing electrochemical stress. Even though at lower Cs the battery efficiency
increases, the overall round-trip efficiency will be higher when working with lower values
of power and at the inverter’s rated power. Higher C values were not possible to test due
to the inverter power ratings.

A brief analysis was also made regarding battery degradation by measuring the state
of health (SoH), which is the metric used to measure the condition of a battery, this being
the ratio between the battery’s current capacity and the specified rated capacity. Li-ion
batteries will lose capacity and gain internal resistance over time due to the wear and tear
of the cathodes and anodes. Common factors that affect battery aging are calendar time, cell
chemistry, temperature, average SoC, C rate, cycle number and depth of discharge (DoD).
In this case, the batteries are installed in an underground garage, where the temperature is
mostly constant all year round. At the time of these measurements, they had an estimated
age of 3 years and had been operating with 5 full charge–discharge cycles per week (on
weekdays), counting around 625 cycles since the start of operation. In normal conditions,
the C rate was kept at 0.5 C, and the DoD was from 100% to 5%, which is larger than what
is normally advised. The SoH was then measured with external equipment. The measured
values and also the SoHs calculated by each of the integrated battery management systems
are shown in Table 4.

Table 4. Measured states of health of the batteries.

Battery BMS
SoH Measured SoH

A 96% 94.96%

B 96% 95.21%

C 97% 97.18%

Two of the batteries indicated a decrease in storage capacity of around 4–5% and the
other a decrease of 3%. The lifetime expectancy stated by the manufacturer is 10 years or
6000 cycles for the maintenance of at least 60% of their initial rated energy storage capacities.
This means that, in all cases, capacity degradation is within or below the expected levels of
−4%, with around 300 cycles per annum. Further analysis of battery degradation and its
costs was beyond the scope of this paper but is planned for future research.

3.3. V2G Chargers

For the V2G assessment, two three-phase bidirectional DC chargers were tested. One
charger used conventional silicon MOSFETs, and another charger was built using high-
efficiency silicon carbide technology. The purpose of these experiments was to evaluate
the efficiencies and to identify the different types of losses occurring in the electric circuit
comprising the grid, the charger and the EV. A Nissan Leaf with a 40 kWh battery and V2G
capacity was used for the tests.

129



Energies 2022, 15, 8905

An approach similar to the one applied in the battery tests was taken. Strategic points
in the power circuit were identified, and at each of these points the voltage and current
were measured to calculate the power and energy. The measuring points were as follows:
Point A—AC measurement between the grid and the charger; Point B—DC measurement
at the output of the charger; Point C—DC measurement at the terminal ends of the vehicle’s
battery. The considered circuit and the points are illustrated in Figure 5.
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Several tests were performed for each charger with power levels of 2.5 kW, 5 kW,
7.5 kW and 10 kW, during both charging and discharging. All tests were conducted with
a battery SoC of about 50%, as at this level the losses due to battery energy storage are
reduced. For each power level, the vehicle was put on charge for the time necessary
time for a change of 2% in the SoC, following a discharge, at the same power level, for
a similar amount of time. The SoC of the battery was monitored using the onboard
software. A test was also performed in which an order to charge the vehicle at 0 kW
of power was placed on the charger to study its standalone consumption (only Point A
was monitored), as well as to evaluate the standby consumption. The efficiencies were
calculated using Equations (5) to (6). Equation (5) presents the charger charging efficiency
(ηchar), Equation (6) the discharging efficiency (ηdischar) and Equation (7) the round-trip
efficiency of the charger (ηcyc).

ηchar =
Eb
Ea

(5)

ηdischar =
Ea
Eb

(6)

ηcyc = ηchar × ηdischar (7)

The values of the calculated efficiencies for the charger are presented in Table 5, with
negative values of power for discharge. One of the main conclusions that can be derived
from these tests is that for higher power values there will be an increase in charger efficiency
(leading to higher cycle efficiency). This was expected, mainly due to the operation being
near the rated conditions of the chargers. Another reason is that by increasing power, the
constant losses present in the chargers become less impactful than the delivered power.

Besides the losses caused by the Joule effect in the copper wirings and charger cable
and the semiconductors losses (switching and conduction), there are other electronic
components, such as transformers, relays and other passive elements, that contribute to
the overall losses during operation (leakage currents, hysteresis losses, etc.). These losses
remain mostly constant during the operation and are independent of the charging power.
Thus, when working with higher power levels, their impact on the overall efficiency is
less noticeable.

The results also indicate a relevant disparity between charging and discharging efficien-
cies. This can be explained by the asymmetrical path that is needed for power conversion.
Whereas in AC to DC a rectifier is used, the reverse operation is performed by an inverter,
which will have different levels of loss, and the current flows through a different circuit.
Figure 6 presents a comparison of the charger efficiencies.
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Table 5. Chargers and Cycle Efficiencies.

Charger Power Charger Efficiency Cycle Efficiency

C
on

ve
nt

io
na

lD
C

C
ha

rg
er

2.5 kW 84.80%
64.60%−2.5 kW 76.65%

5 kW 89.56%
76.56%−5 kW 85.49%

7.5 kW 90.80%
79.55%−7.5 kW 87.62%

10 kW 91.10%
80.39%−10 kW 88.25%

Si
lli

co
n

C
ar

bi
de

C
ha

rg
er 2.5 kW 94.01%

90.93%−2.5 kW 96.73%

5 kW 94.66%
91.22%−5 kW 96.37%

7.5 kW 95.30%
91.60%−7.5 kW 96.12%

10 kW 95.46%
91.86%−10 kW 96.23%
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Temperature is also an impactful factor regarding overall efficiency, and, during the
developed tests, both chargers were situated inside a cool and dry place, where the air
temperature was mostly constant. The SiC charger was noticeably cooler during operation
than the conventional IGBT charger. The first charger was also noticeably quieter due to its
requiring less ventilation, and therefore less power was needed for temperature control.
This is one of the main reasons for the increased efficiency levels of the SiC charger. By
using SiC semiconductors, the overall losses in power conversion are reduced. There will be
smaller switching and conduction losses, less heat produced and therefore less power used
for ventilation. The increased bandgap in the SiC charger also allows the semiconductors
to work at higher voltages and with higher frequencies, with higher efficiency.

Regarding charging, it can be concluded that higher levels of power will lead, in
most cases, to higher efficiencies. Nevertheless, the impact of charging with high levels of
current on the efficiency and health of the batteries must also be taken into account. For the
conducted experiments, charging and discharging powers were kept at about 0.5 C, which
was considered safe and not high enough to hinder the batteries’ health. These results
also show the advantages of SiC technology in terms of achieving a boost of more than

131



Energies 2022, 15, 8905

10% of the cycle efficiency. The SiC charger was also much less affected by the different
charging powers.

The charging of EVs not only results in changes to the electricity demands of buildings
but can also have a significant impact on power quality. An EV charger is a nonlinear
load that can produce large current harmonics that will flow through an electric grid,
distorting voltage. Residential EV owners could face problems with power quality and, in
larger buildings, when considering a high number of chargers and several EVs charging
simultaneously, the harmonics could have a relevant impact on the voltage levels. Previous
works [53,54] regarding the harmonic impact of multiple electric vehicle charging have
concluded that harmonic limitations may be a greater barrier than power limitations
regarding EV charging. The IEEE 519–2022 [55] is the current active standard that dictates
the maximum distortion allowed for electric power systems in the USA.

During the charging and discharging tests, the harmonic current components were
monitored. The main purpose was to assess the level of harmonics produced by the used
chargers. As can be observed in Figure 7, the total current harmonic distortion is situated
at around 3.6%, and the following harmonics are all under the requirements of the IEEE
519–2022 standard. Specifically, in the tested case, the building has three EV chargers
installed, but since the transformer is underutilized (with a load factor of around 30–40%)
the current harmonics created by the EV charging were not expected to have a significant
impact on the voltage levels of the building.

Energies 2022, 15, x FOR PEER REVIEW 14 of 24 
 

 

Figure 6. Charger Efficiency Comparison: SiC vs. conventional chargers. 

The charging of EVs not only results in changes to the electricity demands of build-
ings but can also have a significant impact on power quality. An EV charger is a nonlinear 
load that can produce large current harmonics that will flow through an electric grid, dis-
torting voltage. Residential EV owners could face problems with power quality and, in 
larger buildings, when considering a high number of chargers and several EVs charging 
simultaneously, the harmonics could have a relevant impact on the voltage levels. Previ-
ous works [53,54] regarding the harmonic impact of multiple electric vehicle charging 
have concluded that harmonic limitations may be a greater barrier than power limitations 
regarding EV charging. The IEEE 519–2022 [55] is the current active standard that dictates 
the maximum distortion allowed for electric power systems in the USA. 

During the charging and discharging tests, the harmonic current components were 
monitored. The main purpose was to assess the level of harmonics produced by the used 
chargers. As can be observed in Figure 7, the total current harmonic distortion is situated 
at around 3.6%, and the following harmonics are all under the requirements of the IEEE 
519–2022 standard. Specifically, in the tested case, the building has three EV chargers in-
stalled, but since the transformer is underutilized (with a load factor of around 30%–40%) 
the current harmonics created by the EV charging were not expected to have a significant 
impact on the voltage levels of the building. 

 
Figure 7. Current harmonics with a conventional charger. 

3.4. Economic Assessment 
Using the aforementioned results, an economic assessment was carried out, consid-

ering several different scenarios for the DEEC building. Net load diagrams for a weekday 
and a weekend day are presented in Figure 8a,b. In these load diagrams, the impact of PV 

Figure 7. Current harmonics with a conventional charger.

3.4. Economic Assessment

Using the aforementioned results, an economic assessment was carried out, consider-
ing several different scenarios for the DEEC building. Net load diagrams for a weekday
and a weekend day are presented in Figure 8a,b. In these load diagrams, the impact of PV
generation is visible. The steep peaks are explained by the sample rate, of 10 min, which
means that the load diagram shows drastic changes in consumption, particularly during
the late afternoon (19:30 h). The building is also prone to heavy loads due to the use of
electric motors in laboratories, which originate the various peaks during the workday. Since
the peak load of the building is low when compared to the installed power (292 kW), there
is little advantage in aiming for a peak shaving strategy, although the use of such a method
is feasible in other buildings. Instead, the main purpose of the BESS and V2B systems with
respect to cost efficiency is to absorb the surplus generation and take advantage of the
tariff variation.

For the economic analysis of the scenarios, it was first considered to group the available
storage capacities for both the BESS and V2B and take into account the sum of the storage
capacities as a whole. However, this was not possible due to: (1) the difference in the
efficiencies of the charging cycles when using the BESS or V2B and (2) the fact that the
periods of availability for the BESS and V2B are different, since, whereas BESS storage
capacity is available 24/7, the availability of V2B is constrained by user habits. If the EV is
privately owned, then the only hours when it is available for the building microgrid are
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during work hours. Inversely, if the EV is owned by the company using the building, the
period in which it is guaranteed to be available for V2B is during off-work hours. Since only
private EV users currently utilize the building chargers, the first case for V2B availability
was considered, that is, storage capacity from V2B being only available during work hours
(9 am to 6 pm). For these reasons, the storage capacities for the BESS and V2B were treated
as separate, and several scenarios were studied with different amounts of storage.
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capacity was added. This value was chosen based on the existing two V2G chargers, and 
the assumption was made that each user allotted 15 kWh of the EV battery for V2B oper-
ations and that the capacity injected into the grid had to be recovered by the end of the 
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ble time, for a standard Portuguese working schedule, is from 09:00 to 18:00; given this, 
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The base scenario is one in which where there is no energy storage capacity whatsoever
to be used by the building. This scenario will be used for comparison and for calculating
economic and technical benefits. In Scenario A, the existing and operational BESS, with
a total of 27.9 kWh of battery storage, was considered. For the analysis of the scenarios
with V2B, some considerations have to be made: for Scenario B, 30 kWh of V2B storage
capacity was added. This value was chosen based on the existing two V2G chargers, and the
assumption was made that each user allotted 15 kWh of the EV battery for V2B operations
and that the capacity injected into the grid had to be recovered by the end of the day. This
is a limitation and, in some cases, may lead to an increase in demand during peak hours
and a reduction in the overall usable storage capacity. The considered available time, for a
standard Portuguese working schedule, is from 09:00 to 18:00; given this, V2B capacities are
only available during that time. Due to these limitations, the economic benefits from the
building’s point of view are limited. There is almost no generation surplus to be considered
during weekdays, and during weekends the users are not typically present in the building.
Instead, the plausible benefit for the building is related to using smart charging to avoid
charging EVs during peak hours.

By calculating the energy consumed during peak hours on weekdays and the genera-
tion surplus during the peak periods, it was concluded that there is a margin to upgrade
the building storage capacity by 70 kWh, which is under consideration. Since there is a
need for more storage capacity and the DEEC building has plans for increasing the storage
capacity of the DEEC building, scenarios C and D were considered, in which the storage
capacities for the BESS and V2B were increased to double their existing values to assess the
economic impacts. The different scenarios are summarized in Table 6.

Table 6. Tested Scenarios.

Scenario BESS Capacity (kWh) V2B Capacity
(kWh)

Base 0 0
A 27.9 0
B 27.9 30
C 70 0
D 70 60
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When assessing the scenarios, it is important to take into account the weekly tariff
cycle currently in use by the DEEC building: during weekdays, the peak periods are from
09:30 h to 12 h and from 18:30 h to 21 h, and there is no peak tariff during weekends. The
rest of the weekly tariffs and their prices are presented in Appendix A. During injection,
the value paid for by the grid was calculated to be EUR 0.18 per injected kWh. The cost
for the base scenario was calculated to be 76.6 €/day during weekdays and 27.64 €/day
for the weekends. These were the reference costs to be used to calculate savings. Other
assumptions were made. For the BESS, it was considered that the SoC at the start of the
day was always zero, and for V2B it was assumed that the vehicles all had at least 15 kWh
available for the grid at the start of the day and that each vehicle was charged with equal
amounts of power and energy. The results for the economic scenarios are presented in
Figures 9–12.
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4. Discussion
4.1. Microgrid Efficiency Analysis

Following the experimental results, the obtained data were gathered and Table 7 was
created to summarize the efficiencies of all the tested assets as well as to evaluate the final
operational efficiency. All the values for efficiencies presented in the table are the values
achieved through the developed experiments, except those for the grid transformer and the
efficiency of the EV battery (marked with an asterisk (*) in Table 7), for which the datasheet
value for the asset was used.

In the ‘Operation’ column, several possible energy-transfer actions are presented. For
example, the ‘PV-Grid’ line is the efficiency related to transferring photovoltaic energy
directly to the grid, whereas ‘G2V’ refers to a grid-to-vehicle operation. When SiC is
mentioned, this means that the electric vehicle charging was made using the SiC charger.
For the efficiencies of the EV chargers, the values at maximum power were used. The
efficiency of the operation was then calculated by multiplying the different efficiencies at
each stage for each operation. For instance, for the ESS to EV operation, power must be
converted from DC to AC, then AC to DC in the charger; lastly, both the storage efficiencies
of the ESS battery and the EV battery have to be considered as well for calculating the
round-trip efficiency. The real values of round-trip efficiencies have small variations of
+−1% due to differences in the battery storage systems, the EV batteries and the operating
conditions. Nevertheless, the stated values provide a distinct overview of the efficiencies
present for each operation.
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Table 7. Microgrid stage efficiencies.

Operation
Conversion Grid

BESS
EV EV EV

Total
DC-AC AC-DC TRF * Char. Disc. Total

PV-Grid 95% - 99% - - - 94% 94%

Grid-BESS - 96.9% 99% 91.23% - - 87.51% 87.51%

BESS-Grid 96.52% - 99% 91.23% - - 87.17% 87.17%

BESS-EV (B2V) 96.52% - - 91.23% 91.10% - 76.20% 76.20%

BESS-EV (SiC) 96.52% - - 91.23% 95.46% - 79.85% 79.85%

G2V - - 99% - 91.10% - 85.68% 85.68%

G2V (SiC) - - 99% - 95.46% - 89.78% 89.78%

V2G - - 99% - - 88.25% 83.00% 83.00%

V2G (SiC) - - 99% - - 96.23% 90.50% 90.50%

V2B (EV-BESS) - 96.9% - 91.23% - 88.25% 74.11% 74.11%

V2B SiC(EV-BESS) - 96.9% - 91.23% - 96.23% 80.82% 80.82%

The purpose of the table is to provide an overview of the expected efficiencies in the
assessed microgrid. The table can then be integrated into a decision-making algorithm that
takes into account the efficiencies of each microgrid asset, allowing the prediction of energy
generation, available capacity and user limitations relevant to choosing when and how to
store energy or maximize economic benefit. By analyzing the table, it can be concluded
that opting for SiC technology chargers will significantly improve the overall efficiency
of operation. Grid operators or building management systems should give priority to
charging–discharging using this type of equipment, when available, over conventional
chargers. With SiC chargers, storing energy in EVs is more efficient than storing it in
BESSs. This decision is also heavily dependent on the number of available SiC charges,
user limitations and EV available capacities. The least efficient operations for the microgrid
are charging or discharging an electric vehicle directly to or from another BESS. In these
types of operations, a significant amount of energy is lost during power conversion. Since
there is no direct DC-to-DC charging in this system, power has to be converted twice: once
when going into the grid and again when injected either into a BESS or EV. Therefore,
charging an EV directly from a BESS should be avoided when taking into account efficiency
factors. These results indicate that the installation of a DC bus connecting solar, battery
and DC charger systems could be an interesting solution to increase the efficiency of the
system even more. This would allow the charging of EVs directly from PV generation
(a direct solar charging solution), avoiding the conversion of this energy to AC and back
to DC. In the following section, these efficiencies will be used for an assessment of the
economic impacts.

4.2. Economic Analysis

Following the economic analysis, the main results are summarized in Table 8.
In scenario A, only the operating BESS is used (27.9 kWh). During the weekday, the

batteries store energy during super off-peak hours and discharge during peak hours at
lunch and late afternoon. Since there is no PV generation surplus and the peak power is
not troublesome to the building, the benefit of operating the BESS during weekdays is
restricted to the profit achieved due to the reduction in consumption during peak hours.
The calculated daily cost was EUR 72.33 for weekdays, which represents a saving of EUR
426 in electricity consumption per day or 1114 €/annum (for the calculations of yearly
savings, 261 weekdays and 104 weekend days were considered). At the weekends, due
to the PV generation surplus, the batteries charge during lunch hours. In this case, the
battery capacity is not sufficient to absorb all the generation surplus, and about 40 kWh of
PV generation is still injected into the grid. The stored energy is then used by the building
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during the normal tariff period at night (since there is no peak period during weekend
days). Without the BESS, the weekend daily electricity cost is EUR 38.06, whereas with the
BESS the daily cost decreases to EUR 35.9.

Table 8. Results for the economic scenarios.

Scenario
Grid Injection

(kWh)
Energy Consumed in Peak

(kWh)
Cost

(€/Annum)

Weekday Weekend Weekday Weekend Weekday Weekend

Base 0 74.83 133.33 N/A 19,993 3958

A 0 48.05 107.29 N/A 18,879
(−5.56%)

3733
(−5.66%)

B 0 28.98 93.37 N/A 18,648
(−6.72%)

3606
(−8.86%)

C 0 5.33 61.83 N/A 15.865
(−20.64%)

3179
(−19.67%)

D 0 0 61.16 N/A 15,980
(−20.07%)

3231
(−18.36%)

Scenario B takes advantage of both the BESS and V2B storage capacity. During the
weekday, the BESS charges at night and discharges during daily peak hours. At the
weekend, the BESS waits until noon to start charging and until the late afternoon for the
discharge. The cost on weekdays is reduced to EUR 71.45 per day and on weekends to EUR
34.68 per day. For V2B, during weekend days, the same schedule of availability was used as
that on weekdays (9 am to 6 pm). Therefore, the V2B system starts discharging the battery
of an EV as soon as the client enters the workplace. (Note: V2B power is capped at 10 kW.)
Since it was considered a restriction that the energy used by the building be returned to the
EV by the end of the day to the V2B client, it was only possible to utilize 18.8 kWh of the
storage capacity during weekends. This value is the sum of the energy discharged from
the vehicle in the morning period (5.3 kWh) and the predicted late-afternoon discharged
energy (11.5 kWh) before 6 pm. Even though there is still leftover capacity in the EVs, if
the building overcharges the vehicles during the period in which there is an excess of solar
generation it will not be able to recover that charge due to the time limit imposed by the
EV clients, for whom the day ends at 6 pm. If a client leaves earlier, before 5 pm, then
their vehicle would have charged more energy than the amount supplied to the building.
This is not necessarily a problem, and benefits/consequences will vary depending on the
economic model adopted by the building operator for V2B, but for this work the aim was
to ensure flexibility and the maintenance of an energy equilibrium; if the building operator
wishes to prevent this issue, V2B charging would have to be halted in the afternoon, as
soon as the charged value was equal to the discharged value in the morning. In both cases,
the usable storage capacity for V2B will be lower than the initially allotted capacity of
30 kWh. If there were no schedule limitations, then it would be possible to recoup all the
charged energy in the EVs later in the afternoon. This is a barrier to the efficacy of V2B
and highlights the advantage of 24/7 BESS availability. Due to the constraint of energy
equilibrium, there will be an increase in demand late in the afternoon on workdays. The
system operator must therefore plan accordingly, so that neither the client is left lacking
energy nor is the electricity bill increased due to charging during peak hours.

Due to the generation surplus during weekends, a scenario in which the BESS is
upgraded to a larger capacity was considered. In scenario C, the scheduling for charg-
ing/discharging is the same as in scenario A: during weekdays, the BESS charges during
super off-peak hours (2 am to 6 am) and discharges during peak hours. At weekends, it
waits for the PV generation surplus to charge and discharges during the evening. Using
this method, the energy injected into the grid decreases from 74.83 kWh to 5.33 kWh—a
reduction of more than 90%. With a BESS with 70 kWh capacity, the daily costs are reduced
to EUR 60.78 per weekday and the energy injected into the grid decreases from around
7 MWh/year to only 0.5 MWh/year. The cost for weekends is reduced to EUR 30.56—a
reduction of 19.6% from the base cost.
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Finally, in the last scenario, 60 kWh of V2B storage capacity was added to the BESS.
The schedules are similar to those in scenario C, and during weekdays the batteries charge
at night, during the super off-peak period, and discharge at peak hours. As soon as the
EV clients enter the workplace, the system starts discharging the batteries using the V2B
system. According to the defined constraints, the system must try to maintain a zero sum
between the charged and discharged energy in the EVs. Therefore, during the afternoon,
the amount of energy charged to the parked vehicles is limited by the amount of energy
discharged into the grid during the morning period and the predicted late-afternoon energy
discharge. When the maximum usable storage from V2B is reached, the system initiates
the BESS charging cycle. As soon as the energy surplus from PV generation is over, the
V2B system starts discharging until 6 pm or when the maximum energy limit is reached.
The gap between V2B and battery discharge is due to clients leaving at 6 pm, but batteries
only start discharging at 6:30 pm, when the peak tariff period starts. Once again, due to
the constraints of the V2B schedule and energy equilibrium, the usable storage capacity
is reduced. From the available 70 kWh allocated to the EV users, only a maximum of
25.83 kWh was used at once. In comparison, for the BESS, 49 kWh of storage capacity was
used. In this scenario, the morning peak period consumption is eliminated and all the
excess surplus energy is used by the system. This scenario leads to savings of EUR 61.23
per weekday and EUR 31.06 at weekends.

As can be seen from the comparisons presented in Table 8, it was possible to signifi-
cantly reduce the energy injected into the grid and the energy consumed during peak hours.
Expanding the existing BESS to 70 kWh (Scenario C) is more cost-effective than trying to
complement the existing battery storage capacity with V2B (Scenario B). However, if the
building has available EV users, it may be faster and easier to create additional storage
using V2B than to invest in upgrading the existing system.

The usability of V2B is heavily limited by its availability. The small difference in the
reduction in energy consumed in peak periods between scenarios C and D is caused by the
schedule limitation for V2B, since it is not possible to use that storage capacity to cover the
late-afternoon peak. During peak periods, priority is given to the BESS, due to the system
being more efficient (Table 7). As such, if the BESS is capable of soaking up all the energy
consumed during peak, it is not economically viable to rely on V2B, because it will not
be possible to take advantage of a difference in price from the tariff, leading to reduced
savings. This was demonstrated in scenario C during weekdays, in the time periods where
V2B charges and discharges had the same cost, having no direct economic benefit. Building
operators may still opt to use V2B in similar scenarios to reap other technical benefits.

5. Conclusions

This work has presented a technical and economic analysis of a battery energy storage
system and a vehicle-to-building system integrated into a campus microgrid. The results
were gathered using the distribution systems already operating in a campus microgrid.
For the technical analysis, full charge–discharge cycles were considered to calculate the
round-trip efficiencies of several common interactions in the microgrid. A prototype SiC
bidirectional charger was analyzed and compared with a conventional V2G charger, and a
power quality analysis of vehicle chargers was also conducted. The results showed that
the SiC technology is superior to conventional IGBT bidirectional chargers, with operating
efficiency increases ranging from 10 to 26% depending on the power used. The results also
showed that, in most cases, using energy stored in batteries is more efficient than using the
same amount of energy stored in vehicles. The more stages and transitions of power there
are in a microgrid, the less efficient the overall performance will be. The installation of a
DC bus connecting PV generation, batteries and DC charging systems could significantly
increase the round-trip efficiency of all energy transfers.

For the economic analysis, the impacts of the BESS and V2B regarding the reduction
of excess grid injection and peak-hour energy consumption were explored. Four different
scenarios with different levels of storage capacity were simulated. It can be concluded
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that, by using both a BESS and V2B, it is possible to significantly reduce the peak energy
consumption and the grid energy injection. However, a BESS is more effective in reduc-
ing peak energy consumption and more cost-effective than V2B. The usability of V2B is
hindered by the availability of EV clients and tariff periods. If it is not possible to take
advantage of different tariff prices when V2B is available, it will not be possible to obtain a
cost advantage. The benefits of V2B are also limited by the conditions agreed upon between
the microgrid operator and the EV users. In this analysis, it was decided that the quantity
of energy charged into the vehicle by the microgrid must be recovered by the end of the
same day. This led to situations in which consumption shifted but without originating any
economic benefit. In comparison, the BESS was more efficient, and the 24/7 availability
provided the most flexibility for the microgrid. As for V2B, due to the volatility and relative
unpredictability of the users’ schedules, it should be seen as a way to complement existing
storage when available and not as the main means of achieving flexibility.

Electric vehicles and energy storage systems have been shown to be primary agents
with respect to achieving the objective of nZEB status. The results of this work provide in-
sights and a technical table to be used by building and microgrid designers or operators for
the development of better system architectures and better planning for existing resources.
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Appendix A

The electricity tariffs and prices per kWh paid by the DEEC building are presented in
Table A1. A decision was made to use the prices for 2021 so as to avoid the high volatility
of prices due to the socio-economic situation in Europe in 2022. The price paid per kWh
injected into the grid is the median value of the daily OMIE—the Iberian Electricity Market
Operator—for March 2021.

Table A1. Weekly tariff cycle for the DEEC building.

Period Weekdays Weekends Price

Peak 09:30–12:00
18:30–21:00 N/A 0.205932 €/kWh

Normal
07:00–09:30
12:00–18:30
21:00–24:00

09:30–13:00
18:30–22:00 0.115202 €/kWh

Off-Peak 00:00–02:00
06:00–07:00

00:00–02:00
06:00–09:30
13:00–18:30
22:00–24:00

0.090208 €/kWh

Super Off-Peak 02:00–06:00 02:00–06:00 0.062263 €/kWh

Grid Injection N/A N/A 0.040842 €/kWh
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Abstract: Past studies of microgrids have been based on measurements of fuel consumption by
generators under static loads. There is little information on the fuel efficiency of generators under
time-varying loads. To help analyze the impact of time-varying loads on optimal generator operation
and fuel consumption, we formulate a mixed-integer linear optimization model to plan generator
and energy storage system (ESS) operation to satisfy known demands. Our model includes fuel
consumption penalty terms on time-varying loads. We exercise the model on various scenarios and
compare the resulting optimal fuel consumption and generator operation profiles. Our results show
that the change in fuel efficiency between scenarios with the integration of ESS is minimal regardless
of the imposed penalty placed on the generator. However, without the assistance of the ESS, the fuel
consumption increases dramatically with the penalty imposed on the generator. The integration of
an ESS improves fuel consumption because the ESS allows the generator to minimize power output
fluctuation. While the presence of a penalty term has a clear impact on generator operation and fuel
consumption, the exact type and weight of the penalty appears insignificant; this may provide useful
insight for future studies in developing a real-time controller.

Keywords: microgrid optimization; energy storage system; time-varying loads; fuel efficiency; energy
management; generator

1. Introduction

Demand for energy is increasing significantly worldwide. This is particularly true in
the United States Department of Defense (DoD), which is the largest consumer of energy in
the federal government [1]. As warfighting transitions into the cyber and space domains,
energy “has been and will remain a fundamental enabler of military capability” according
to the United States (US) Office of Assistant Secretary of Defense for Energy, Installations,
and Environment [2]. Military organizations need reliable and sustainable microgrid power
systems to effectively generate energy required for deployed military operating bases.

Microgrid Operations

When temporary military bases are built in forward operating areas such as the Middle
East, self-sustainability is one of the most important features to take into account, as one
cannot rely on local power grids. An islanded microgrid is formed when an electrical grid
is capable of operating in isolation from the main grid [3]. Islanded microgrid operations
are very common in military settings.

An islanded microgrid typically consists of generators, an energy storage system (ESS),
and loads that need to be met. A centralized controller calculates the optimal power flow
balance between the generators and the ESSs [4], as shown in Figure 1. This ensures that all
critical loads are met during all microgrid operating modes [5,6]. As a result, the controller
improves reliability, reduces cost, and diversifies power generation. As microgrids are
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intended to be self-sufficient, the ESS is one of the primary ways to ensure that the system
is stabilized against fluctuating loads and unmanaged energy sources [5].

Figure 1. Notional microgrid controller flowchart with power distribution and communication flow.
Adapted from Craparo and Sprague [7].

A key function of the controller is to determine the optimal power flow among the
generators, ESSs, and loads in such a way as to satisfy demand while minimizing fuel
consumption. To accomplish this, the controller must model fuel consumption as a function
of generator output. Existing studies primarily utilize fuel efficiency (or consumption)
profiles based on static generator output (e.g., [8–11]). To build these profiles, generator
manufacturers run generators at various constant loads for long periods of time and
measure the resulting fuel consumption [12]. In practice, loads encountered on islanded
microgrids are generally not constant but instead vary over time, often quite rapidly.
To our knowledge, no data exist quantifying generator efficiency under time-varying loads.
However, data from other settings (e.g., automotive fuel efficiency) suggest that fluctuating
loads may significantly degrade generator efficiency [13].

In this study, we develop an optimization-based approach to model loss of efficiency
with fluctuating generator output and to optimally plan generator and ESS operations in
such a way as to minimize fuel consumption while satisfying demand. To our knowledge,
this is the first work to consider efficiency losses due to fluctuating generator output. In
addition to potential fuel savings, reducing generator output fluctuations can improve
generator stability as well as operational lifetime [14,15]. Additionally, any potential fuel
savings at an islanded microgrid are generally magnified when one considers the fully
burdened cost of fuel, accounting for the monetary and energy costs associated with
transporting fuel to the location at which it will be consumed. Ref. [8] provides an overview
of this cost in military settings, including both the energy cost and cost in human life to
transport fuel to a forward operating theater.

2. Background and Literature Review

Previous studies explore different approaches to vary the architecture of microgrids,
find unique ways to optimally schedule energy distribution, and formulate optimization
models. It is imperative to optimize microgrids to be cost effective and reliable to deploy
based on measure of fuel consumption.

2.1. Microgrid Architecture Variation

The two main energy resources that make up an islanded microgrid architecture are
the generator(s) and the ESS. It is important to determine the correct size of these resources
in a microgrid to meet the power demand at any given time [16,17]. One way to prop-
erly size microgrid components is in accordance to the peak-load demand criteria [18].
In addition to using peak-load demand data, research has been conducted on integrating
an optimal hybrid photovoltaic (PV)/wind/diesel generating system combination identi-
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fied by a sizing algorithm based on power supply availability and power system design
specifications [19].

Building off of a rudimentary sizing algorithm using past daily and seasonal load
fluctuation, a more sophisticated dynamic energy flow model is used to determine the
appropriate size of the microgrid components [20]. Then, past weather information such as
solar and wind data are utilized to maximize the microgrid’s “islanding time”, which is
defined as the time the microgrid can operate in a self-sufficient manner without external
fuel supplies or connection to a main power grid [21].

An ESS sizing methodology uses a mixed-integer linear program (MILP) to choose
an optimal storage size by taking initial investment costs and microgrid operating costs
into account [22]. Similarly, some researchers have taken a more economic approach
by introducing a cost–benefit analysis using forecast data to minimize total microgrid
costs while maximizing the benefits from the respective storage size through an MILP
technique [23].

2.2. Optimal Energy Scheduling Techniques

Optimal energy scheduling improves energy utilization while minimizing generator
fuel consumption costs in a microgrid. An initial optimal energy scheduling technique was
used to show that microgrid with ESS saves a significant amount of fuel compared to a
microgrid without an energy storage unit [24]. Indeed, multiple studies have identified the
ESS as a key component to ensure cost reduction [24,25]. Energy scheduling is especially
important when ESSs are introduced into the microgrid architecture, as the system has the
ability to store additional power for future use [22,23]. To reduce fuel cost and increase fuel
efficiency, load scheduling becomes a crucial addition to the controller algorithm.

Another way to minimize fuel cost is to implement a day-ahead scheduling opti-
mization technique for various microgrid operation modes such as utility grid-connected
mode and off-grid operation mode [25]. Some work in day-ahead scheduling incorporates
weather forecast data and models its impact on renewable production [26,27].

Instead of modeling a microgrid as a single entity, the particle swarm optimization
(PSO) technique models the energy resources as individual particles that are parallel with
each other, which creates a large network made up of many entities [28,29]. The parallel
modeling technique enables shorter computation time when compared to a general MILP
approach. The PSO optimization approach reduces computation time while minimizing
energy production expense [29].

Ref. [30] considers the optimal scheduling of a diesel generator and an ESS, where
the ESS is modeled using a detailed nonlinear model. They address the resulting planning
problem with a combination of MILP and PSO. Ref. [31] models an islanded microgrid using
a Markov decision process framework and then uses approximate dynamic programming
to solve the resulting schedule optimization problem, while [32] considers the problem of
placing distributed generators in such a way as to maximize efficiency and reliability.

2.3. Fuel Consumption Minimization

The main goal in most islanded microgrid research is to minimize fuel consumption,
which often corresponds to maximizing generator efficiency. A common approach to
quantify fuel consumption is using a cost optimization scheme of various power-sharing
techniques to share the load between energy resources in a microgrid [33]. On highly
nonlinear power-sharing schemes, linear, nonlinear, and dynamic strategies have sought to
maximize microgrid efficiency [20,22,24,25,33].

Power-sharing techniques have been used to determine if additional electrical loads
with expensive operating costs would effect the generator fuel consumption [10]. Other
studies have minimized fuel consumption by integrating additional and various combina-
tions of energy resources such as PV cells, batteries, and generator cycling in a microgrid
architecture [34]. As fuel consumption is an important measure of performance, the goal
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of this paper is to minimize fuel consumption while ensuring that the power demand is
efficiently met.

Some researchers have considered microgrids in settings other than strictly land-
based. For instance, Ref. [35] considers shipboard microgrids and propose a hierarchical
coordinated control approach to effectively manage the distinct operating modes inherent
in these systems; Ref. [36] studies the hybridization of railway vehicles as a potential means
to improve efficiency while satisfying various operational constraints. They demonstrate
the potential for significant emmissions reduction by incorporating a properly sized ESS.

2.4. Novel Contribution and Organization

To our knowledge, all previous studies, including those in our literature review,
have modeled generator fuel efficiency based on fuel curves derived by measuring fuel
efficiency under static loading conditions (e.g., [12]). Experience from other domains
(e.g., automotive) suggests that generator efficiency may be significantly degraded under
dynamic load conditions such as those observed in microgrid operations [13]. To study
the potential impact of this degradation, we introduce a generator penalty term designed
to model a loss of efficiency as the generator output fluctuates. We include an ESS in
our notional microgrid to allow the generator to produce a more constant output, despite
fluctuating demand.

We first consider a linear approach where the fractional change in generator power
is multiplied by a predefined scalar penalty coefficient and added to the cumulative fuel
consumption. Second, we use a piecewise linear approach to vary the penalty coefficient
based on the fractional change in generator power.

This paper is organized as follows. Section 3 describes our microgrid architecture and
MILP optimization model. Section 4 exercises the model on a case study and highlights
important insights. Section 5 presents the conclusion and final thoughts from this study
as well as various recommendations for future research areas.

3. Methodology

This section describes our MILP optimization model of a forward operating base
(FOB) microgrid, where the primary objective is to minimize the overall generator fuel
consumption while satisfying a required power demand. Our microgrid equipment consists
of a fuel-based generator and an ESS, and we exercise our model using power demand
data collected from a US FOB located in the Middle East [37].

The MILP acts as a rudimentary power system controller which controls the power
flow between the generator and ESS to satisfy the demand. Figure 1 depicts our controller
architecture, including the power flow and communication flow. The controller maintains
communication between the three separate components; however, power is only produced
by the generator. This power may satisfy the demand directly or charge the ESS. The ESS
may discharge power to meet demand.

3.1. Microgrid Architecture

This section describes the components of our notional FOB microgrid, as shown
schematically in Figure 1.

3.1.1. Fuel-Based Generator

We model a 60 kilowatt (kW) Advanced Medium Mobile Power Sources (AMMPS)
generator. This is a US Army-authorized power-generating unit that replaces the second
generation Tactical Quiet Generator (TQG). We obtained steady-state generator fuel con-
sumption data for four power settings, shown in Figure 2, from the US Army Base Camp
Integration Lab [38].
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Figure 2. Steady-state fuel consumption data from a 60 kW AMMPS generator at four distinct
operating regions obtained from previous studies [38].

3.1.2. Energy Storage System

We model a 25 kilowatt-hours (kWh) ESS with a maximum charge rate and discharge
rate of 20 kW with 90% round-trip efficiency (RTE); these values approximate the character-
istics of a lithium-ion battery [39]. We constrain the ESS to maintain a state of charge (SOC)
between 20% and 80% in order to prolong the lifespan of the ESS [40,41]. We initialize
the ESS to an SOC of 50% in the first time period to simulate a continuously operating
power system.

3.2. Optimization Model

The overall objective of the MILP optimization model is to minimize generator fuel
consumption while satisfying demand demandt in each time period t in T. Demand may
be satisfied by the generator, the ESS, or some combination of the two. Additionally,
the generator can produce power exceeding the demand, and the additional power charges
the ESS. We denote the power produced by the generator in time step t as gent, the power
used to charge the ESS (battery) as cbattt, and the power discharged from the battery as
dbattt. Then, the power balance equation is

demandt = gent + effd · dbattt − cbattt ∀ t ∈ T (1)

where effd is the discharge efficiency of the battery. We express the battery SOC SOCt as a
percentage of the maximum charge battcap and calculate it as

SOCt = SOCt−1 − dbattt ·
dt

battcap
+ effc · cbattt ·

dt
battcap

∀ t ∈ T (2)

where effc represents the charging efficiency of the battery and dt represents the length of
our time step in hours.

We restrict our generator to operate between a minimum power output of minGen = 15 kW
and a maximum power output of maxGen = 60 kW:

minGen ≤ gent ≤ maxGen ∀ t ∈ T. (3)
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Similarly, we define maxCharge and maxDischarge as the maximum charge and dis-
charge rates of the battery, and we constrain the battery to maintain an SOC between
minSOC and maxSOC:

0 ≤ dbattt ≤ maxDischarge ∀ t ∈ T (4)

0 ≤ cbattt ≤ maxCharge ∀ t ∈ T (5)

minSOC ≤ SOCt ≤ maxSOC ∀ t ∈ T. (6)

To simulate ongoing operations and avoid end-of-horizon effects, we require that the
final SOC is equal to the initial SOC:

SOC1 = SOC|T|. (7)

The overall objective of the MILP optimization model is to minimize the fuel consumed
by the generator. As shown in Figure 3, we use a least-squares linear fit to represent steady-
state fuel consumption based on our data. The linear fit is defined by its slope and intercept,
where slb is the fuel consumption slope of 0.0113 and inb is the fuel consumption intercept
of 0.0933. This steady-state fuel consumption is typically the only fuel consumption term
accounted for in previous studies, as shown in Equation (8). Figure 4 shows the resulting
steady-state generator efficiency curve.

min ∑
t∈T

[
slbgent + inb] (8)

Figure 3. Fuel consumption of a 60 kW AMMPS generator with a linear fit based on generator
steady-state power output data.

To address our primary study objective, we include an additional “penalty term”
penaltyt to capture the efficiency loss incurred when the generator output power fluctuates
rapidly from time period to time period:

min ∑
t∈T

[
slbgent + inb + penaltyt

]
. (9)
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We now describe our methodology for calculating penaltyt.

Figure 4. Fuel efficiency curve of a 60 kW AMMPS generator based on generator steady-state power
output data.

3.3. Generator Penalty Concept

We consider two different approaches to calculate the “penalty term” penaltyt in
Equation (9). First, we calculate penaltyt as a linear function of the (approximate) fractional
change in generator output from time period to time period. Second, we calculate penaltyt
as a piecewise linear function of the fractional change in generator output.

3.3.1. Linear Penalty Approach

First, we express penaltyt as a linear function of the fractional change in generator
output from one time period to the next. Let f rac_chgt denote the fractional change
in generator output from time period t − 1 to time period t. Then, f rac_chgt is exactly
calculated as

f rac_chgt =
|gent − gent−1|

gent−1
∀ t ∈ T. (10)

In order to formulate a linear optimization model, we instead calculate an approximate
value for f rac_chgt. First, we calculate the absolute change in generator output abs_chgt =
|gent − gent−1| for all t in T using the linear constraints

abs_chg1 = 0 (11)

gent − gent−1 ≤ abs_chgt ∀ t ∈ [2, ..., T] (12)

gent−1 − gent ≤ abs_chgt ∀ t ∈ [2, ..., T] (13)

where we rely on the fact that fluctuations are penalized in our objective function, and thus,
the solver chooses the smallest feasible value for abs_chgt, given the values of gent−1
and gent.

After calculating the value of abs_chgt using Equations (12) and (13), we must address
the non-linearity caused by the gent−1 term in the denominator of Equation (10). We do
this by partitioning the generator’s operating range [minGen, maxGen] into a set of discrete
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operating regions i ∈ I. Each operating region i is defined by its lower bound li and upper
bound ui, where l1 = minGen, u|I| = maxGen, and li = ui−1 for i = 2, ..., |I|. We utilize
binary variable Yi,t to indicate that the generator is operating in region i at time t and
enforce this using the following constraints:

∑
i∈I

Yi,tli ≤ gent ≤∑
i∈I

Yi,tui ∀ t ∈ T (14)

∑
i∈I

Yi,t = 1 ∀ t ∈ T. (15)

To obtain our linear approximation to Equation (10), we replace the gent−1 term
in the denominator by the midpoint of the generator’s operating region at time t − 1,
i.e., ∑i∈I Yi,t−1

li+ui
2 . We include the binary variable Yi,t−1 in the numerator of our calculation

and obtain the following expression for f rac_chgt:

f rac_chgt = ∑
i∈I

Yi,t−1abs_chgt

(li + ui)/2
∀ t ∈ T. (16)

This expression is still nonlinear due to the product of a binary variable and a con-
tinuous variable in the numerator. However, we linearize this expression by defining
the continuous variable Pi,t and using the following system of constraints to ensure that
Pi,t = Yi,t−1abs_chgt:

0 ≤ Pi,t ≤ Yi,t−1(maxGen−minGen) ∀ i ∈ I, t ∈ T (17)

abs_chgt − (maxGen−minGen)
(
1−Yi,t−1

)
≤ Pi,t ≤ abs_chgt ∀ i ∈ I, t ∈ T. (18)

Our expression for f rac_chgt is then

f rac_chgt = ∑
i∈I

Pi,t

(li + ui)/2
∀ t ∈ T. (19)

Lastly, we define scalar penalty coefficient pcoe and express our objective function
with linear fluctuation penalty as

min ∑
t∈T

[
slbgent + inb + pcoe ∑

i∈I

2Pi,t

li + ui

]
. (20)

3.3.2. Piecewise Linear Penalty Approach

Next, we expand upon our linear penalty approach by constructing a piecewise
linear penalty term. This allows us to model more complex penalty functions, such as a
marginal penalty that increases with the fractional change in generator output f rac_chgt.
To construct our piecewise linear function, we first define a discrete set of regions for the
value of f rac_chgt for all t ∈ T, which is defined similarly to the generator operating regions
in Section 3.3.1. Denote the lower and upper bounds for fractional change region h ∈ H
as loh and uph, where lo1 = 0, up|H| =

maxGen−minGen
(l1+u1)/2 , and loh = uph−1 for h = 2, ..., |H|.

Then, let binary variable Wh,t indicate that f rac_chgt lies within region h, and enforce this
using the following constraints:

∑
h∈H

Wh,tloh ≤ f rac_chgt ≤ ∑
h∈H

Wh,tuph ∀ t ∈ T (21)

∑
h∈H

Wh,t = 1 ∀ t ∈ T. (22)

Let sloh and inth denote the slope and intercept, respectively, of the piecewise linear
penalty function in region h. Then, we wish to express penaltyt as
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penaltyt = ∑
h∈H

Wh,t(sloh f rac_chgt + inth) ∀ h ∈ H, t ∈ T (23)

where, again, we have a product of a binary variable and a continuous variable Wh,t f rac_chgt.
To linearize this term, we introduce the continuous decision variable Qh,t and use the fol-
lowing system of constraints to ensure that Qh,t = Wh,t f rac_chgt:

0 ≤ Qh,t ≤ up|H|Wh,t ∀ h ∈ H, t ∈ T (24)

f rac_chgt − up|H|
(
1−Wh,t

)
≤ Qh,t ≤ f rac_chgt ∀ h ∈ H, t ∈ T. (25)

Thus, our objective function is

min ∑
t∈T

[
slbgent + inb + ∑

h∈H

(
slohQh,t + inthWh,t

)]
. (26)

We experiment with four different piecewise linear penalty functions shown in Figure 5.
We calculate sloh = h · slo1 for each linearization region h = 1, ..., |H|. The intercept inth
of each segment in the piecewise linear curve is calculated so as to define a continuous
piecewise linear function. The four piecewise linear functions are defined by their initial
slopes (i.e., slo1), which vary from 0.1 to 0.4 as shown in the figure legend, with int1 = 0 for
each function.

Figure 5. Fuel consumption plots for piecewise linear penalty profiles with varying initial slopes.

Our model appears in its entirety in Appendix A, which is followed by a table contain-
ing our parameter values.

4. Results and Analysis

We now exercise our optimization model on various scenarios. We first study the
impact of including an ESS in our microgrid architecture by solving the model with and
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without an ESS; then, we quantify the impact that various penalty terms have on the
microgrid’s fuel consumption and the optimal generator and ESS usage.

We implement our model using Python’s Pyomo package and solve it using the
IBM ILOG CPLEX Interactive Optimizer 12.10.0.0 on a computer with 16 GB RAM and a
2.60 Ghertz (Hz) CPU [42]. The instances described in this section contain approximately
414–9501 constraints and 221–5761 decision variables, of which 60–2016 are binary. These
instances solve to a 0–1% optimality gap in approximately 1–20 s.

We consider demand data obtained during the summer months from a US FOB located
in Afghanistan and collected by the Army Logistics Innovation Agency (LIA) during the
Contingency Base–Demand Data Collection (CB-DDC) project. Figure 6 depicts the power
demand profile in a 48 h period, which we implement in the optimization model.

Figure 6. US FOB power demand scenario over a 48 h time frame during the summer season.

4.1. Linear Penalty

We first consider a linear penalty term with coefficients of 0.2 gallons (gal)/∆, 0.4 gal/∆,
0.6 gal/∆, and 0.8 gal/∆. Figure 7 shows the optimal power production for each of these
coefficients, which is solved to a 1% optimality gap. As the figure indicates, most of the
demand is satisfied by the generator. Rapid generator fluctuations decrease substantially
when any of the penalties is imposed, and the decrease is larger for a higher penalty
coefficient. Figure 8 shows the battery state of charge for these instances.

Mirroring Figure 7, Table 1 summarizes the results for each of the four penalty slope
coefficients. We observe that the presence of a penalty significantly impacts the overall
breakdown of power production, while the exact value of the penalty does not significantly
affect this breakdown for the penalty values we consider. However, as the rightmost
column indicates, an increasing penalty coefficient does increase fuel consumption when
no ESS is present.
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Figure 7. Power output plot based on linear penalty coefficients imposed on the generator for the
summer demand scenario.

Table 1. Optimal fuel consumption and power output with various linear penalties for the summer
demand scenario.

Penalty Cumulative Fuel
Consumption (gal)

Demand Met by
Generator (%)

Demand Met by
Energy Storage

System (%)

Generator Output
Used to Charge
Energy Storage

System (%)

Cumulative Fuel
Consumption w/o

Energy Storage
System (gal)

No Penalty 169.97 99.85 0.15 0 170.18
Linear 0.2 171.47 97.23 2.77 2.92 171.44
Linear 0.4 171.30 97.08 2.92 3.11 175.23
Linear 0.6 171.71 97.14 2.81 3.05 177.76
Linear 0.8 171.86 96.85 3.15 3.37 180.28
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Figure 8. Battery state of charge for the instances shown in Figure 7.

4.2. Piecewise Linear Penalty

Finally, we consider the four piecewise linear penalty functions shown in Figure 5
and display the optimal solution for each of these four cases in Figure 9. The changes in
generator and ESS optimal power production are minimal across the four piecewise linear
penalty variations. Most of the demand is satisfied by the generator, as the dark green
dominates the surface area of each plot. Additionally, the fluctuation in generator power
output and ESS discharge rate decreases when the piecewise linear initial slope increases
across the four penalties. When the generator exceeds the demand, the additional power
charges the ESS for future use. Figure 10 shows the corresponding battery SOC.

Mirroring the graphical results, Table 2 depicts the corresponding numerical results for
each of the different piecewise linear penalties. The results across the four piecewise linear
penalties indicate that about 3% of the demand is satisfied by the ESS. The results display a
consistent pattern of the generator supplying most of the demand. Again, the numerical
results from the table reveal that the weight of the piecewise linear penalty coefficient is
insignificant, as the generator and ESS scheduling power patterns are consistent across the
four penalty variations. With no ESS present, we observe increasing fuel consumption with
increased penalty coefficients, as expected.

154



Energies 2022, 15, 7943

Figure 9. Power output plot based on piecewise linear penalty coefficients imposed on the generator
for the summer demand scenario.

Figure 11 reiterates the importance of imposing a penalty on the generator. When an
ESS is present but no penalty is imposed on generator fluctuations, the ESS is not utilized.
This is not unexpected due to the fact that the ESS has an RTE less than 100%. While the ESS
could, in principle, enable the generator to operate in a more efficient region of its produc-
tion curve for a greater proportion of time, this apparently does not occur for this instance.
The ESS is utilized more when a penalty is imposed on the generator, as optimization
smooths out the generator power output to minimize cumulative fuel consumption.
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Figure 10. Battery SOC for the instances shown in Figure 9.

Table 2. Optimal fuel consumption and power output with various piecewise linear penalties for the
summer demand scenario.

Penalty Cumulative Fuel
Consumption (gal)

Demand Met by
Generator (%)

Demand Met by
ESS (%)

Generator Output
Used to Charge ESS

(%)

Cumulative Fuel
Consumption w/o

ESS (gal)

No Penalty 169.97 99.85 0.15 0 170.18
Pi. Lin. 0.1 170.76 97.47 2.53 2.69 171.44
Pi. Lin. 0.2 171.06 97.21 2.79 2.93 172.71
Pi. Lin. 0.3 171.78 96.73 3.27 3.50 173.97
Pi. Lin. 0.4 171.69 97.12 2.88 3.07 175.24
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Figure 11. Optimal power distribution over various architectures for the summer demand scenario.

4.3. Impact of ESS Round-Trip Efficiency

The generator and ESS optimal power production vary drastically between the sce-
nario with a penalty imposed on the generator and a scenario without a penalty imposed
on the generator. In general, the activity of the ESS increases significantly when a penalty is
imposed on the generator. In all previous scenarios, the ESS is set to a 90% RTE, which is
consistent with the research outlined in Section 2. While technological advancement may
increase the ESS RTE above 90%, the price of the ESS increases rapidly as the RTE increases.
This is a very important factor in microgrid design.

We now study the impact of the ESS RTE on overall fuel consumption. We consider
six different ESS RTEs reflective of various ESS technologies, including future technologies
achieving high efficiencies: 70%, 75%, 80%, 85%, 90%, and 95%. For each ESS RTE, we
run the model using four different piecewise linear penalty functions for each of ten
different 24 h demand scenarios. The cumulative fuel consumption for each of these
240 configurations appears as a circular marker in Figure 12, where ESS RTE appears on
the horizontal axis and the generator penalty function is denoted by color. (For readability,
we introduce a small horizontal jitter at each ESS RTE.) Solid lines indicate the average fuel
consumption for each ESS RTE, broken down by penalty function. As the figure indicates,
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there is considerable variability among scenarios for a given ESS RTE, and the average fuel
consumption decreases only modestly with increasing ESS RTE. Since a lower RTE is often
cheaper to obtain, this study shows possible effects and tradeoffs that designers would
have to make when selecting an ESS for their respective microgrid architecture. Our results
indicate that the presence of an ESS in a microgrid is of much more importance than its
exact specifications for the configuration we consider.

Figure 12. Total fuel consumption for varying ESS RTE and penalty functions for ten different
summer demand scenarios. Circular markers indicate individual model runs, while lines indicate
average fuel consumption for each ESS RTE and penalty funtion.

5. Conclusions and Future Work

This paper formulates an MILP optimization model that prescribes optimal generator
and ESS usage to minimize fuel consumption while satisfying demand. A novel feature
of this model is that it includes a penalty on generator output fluctuations. This penalty
represents additional fuel that is consumed when the generator’s output varies over time,
and it has not been modeled in prior research. The inputs to the optimization model
include a power demand scenario as well as the relevant characteristics of the generator,
ESS, and penalty function.

We also exercise the MILP on a case study derived from actual FOB demand data. Our
results indicate that an ESS is critical to achieving a smooth generator operating profile.
When a penalty term is included in the objective function, we observe much smoother
generator output profiles, with peak loads satisfied by the ESS and excess generator power
used to charge the ESS during periods of low demand. This results in modest immediate
fuel savings and can be expected to lengthen the operational lifetime of the generator, which
is an important consideration in practice. We observe only minimal changes in our optimal
solutions as we vary the magnitude of the penalty term, indicating that the presence of a
penalty term is more important than its exact magnitude for the values we consider.
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Future Work

While our MILP provides important insights on the impact of the penalty term on the
optimal generator output profile and the resulting fuel consumption, it is not appropriate
for implementation in a microgrid. The primary reason for this is that the MILP requires a
complete demand profile as an input; it is thus “omniscient” and not suitable for real-time
operation, where future demands are unknown. Thus, a natural next step for future research
is to develop a real-time controller that attempts to replicate the smooth operating profiles
observed in our optimal solutions. Our results indicate that the optimal load profiles are
not sensitive to the exact form or magnitude of the penalty function. The implication of this
is that if researchers can develop a real-time controller that produces load profiles similar to
those obtained in our solutions, that controller can be expected to perform well in a variety
of settings.

Our model excursions consider a simple microgrid architecture and demand data
based on a US FOB in the Middle East. It is critical to explore multiple microgrid ar-
chitectures when varying locations have different resources and technologies available.
An appropriate next step is to alter the microgrid architectures by implementing different
generators of varying sizes or even modifying the discharging and charging rates of the
ESS as well as exploring additional demand scenarios.

With the initial exploration of generator penalty terms using a simple microgrid
optimization model, this paper shows that a simple penalty term imposed on the generator
has a significant influence on the optimal solution and overall fuel consumption. Due to
the lack of empirical real-world data, our penalty terms are only notional. Further studies
in the field are needed to examine the effect of time-varying loads on generator efficiency.
These studies will lead to more realistic penalty terms that can optimally distribute power
between the generator and ESS more accurately.
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Appendix A. FOB Model with Linear Piecewise Penalty
Sets and Indices:

t ∈ T = {0, 10, 20, 30, ..., T} Time periods
i ∈ I = {0, 1, 2, 3, 4} Generator operating region (for linearization purposes)
h ∈ H = {0, 1, 2, 3, 4} Generator fractional change regions (for linearization

purposes)
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Parameters:

slb Generator base fuel consumption slope (gal/kW)
inb Generator base fuel consumption intercept (gal)
demandt Load that is demanded in time step t (kW)
li Start of fractional change region i (kW)
ui End of fractional change region i (kW)
loh Lower boundary of penalty region h (∆)
uph Upper boundary of penalty region h (∆)
sloh Slope of penalty function in region h (gal/∆)
inth Intercept of penalty function in region h (gal)
dt Time step (hours)
battcap Battery capacity (kWh)
effd Discharge efficiency of battery
effc Charge efficiency of battery
maxCharge Maximum battery rate of charge (kW)
maxDischarge Maximum battery rate of discharge (kW)
minGen Minimum generator load (kW)
maxGen Maximum generator load (kW)
minSOC Minimum battery state of charge (%)
maxSOC Maximum battery state of charge (%)

Decision Variables:

gent Continuous (≥ 0) Generator power flow in time step t (kW)
cbattt Continuous (≥ 0) Power flow used to charge battery in time step

t (kW)
dbattt Continuous (≥ 0) Power flow out of battery in time step t (kW)
SOCt Continuous (≥ 0) Battery state of charge in time step t (%)
abs_chgt Continuous (≥ 0) Absolute difference in generator power flow be-

tween time step t− 1 and t (kW)
Yi,t Binary 1 if gent in region i in time step t and 0 otherwise
Pi,t Continuous (≥ 0) Auxiliary variable used for linearization:

Pi,t = Yi,tabs_chgt (kW)
f rac_chgt Continuous (≥ 0) Fractional [0-1] change in generator power flow

between time step t− 1 and t
Yi,t Binary 1 if f rac_chgt in region h in time step t and 0

otherwise
Qh,t Continuous (≥ 0) Auxiliary variable used for linearization:

Qh,t = Wh,t f rac_chgt

Objective Function:

min ∑t∈T

[
slbgent + inb + ∑h∈H

(
slohQh,t + inthWh,t

)]

Constraints:

demandt = gent + effd · dbattt − cbattt ∀ t ∈ T
minGen ≤ gent ≤ maxGen ∀ t ∈ T

SOCt = SOCt−1 − dbatt · dt
battcap

+ effc · cbattt ·
dt

battcap
∀ t > 1

0 ≤ dbattt ≤ maxDischarge ∀ t ∈ T
0 ≤ cbattt ≤ maxCharge ∀ t ∈ T
minSOC ≤ SOCt ≤ maxSOC ∀ t ∈ T
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SOC1 = SOCT

gent − gent−1 ≤ abs_chgt ∀ t ∈ T
gent−1 − gent ≤ abs_chgt ∀ t ∈ T
0 ≤ Pi,t ≤ Yi,t(maxGen−minGen) ∀ i ∈ I, t ∈ T
abs_chgt − (maxGen−minGen)(1−Yi,t) ≤ Pi,t ≤ abs_chgt ∀ i ∈ I, t ∈ T
∑i∈I Yi,tli ≤ gent ≤ ∑i∈I Yi,tui ∀ t ∈ T

∑i∈I
2Pi,t

li + ui
= f rac_chgt ∀ t ∈ T

∑h∈H Wh,tloh ≤ f rac_chgt ≤ ∑h∈H Wh,tuph ∀ t ∈ T
0 ≤ Qh,t ≤ up|H|Wh,t ∀ h ∈ H, t ∈ T
f rac_chgt − up|H|(1−Wh,t) ≤ Qh,t ≤ f rac_chgt ∀ h ∈ H, t ∈ T
∑i∈I Yi,t = 1 ∀ t ∈ T
∑h∈H Wh,t = 1 ∀ t ∈ T
Yi,t ∈ {0, 1} ∀ i ∈ I, t ∈ T
Wi,t ∈ {0, 1} ∀ h ∈ H, t ∈ T

Table A1. Parameter Values.

Parameter Value

slb 0.0113
inb 0.0933

dt 1
6

h

battcap 25 kWh
effd

√
0.9%

effc
√

0.9%
maxCharge 20 kW

maxDischarge 20 kW
minGen 15 kW
maxGen 60 kW
minSOC 20%
maxSOC 80%
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Abstract: DC microgrids have shown to be a good approach for better accommodating stochastic
renewable energy sources (RES) and for the charging of electric vehicles (EVs) at the distribution level.
For this, fast-acting energy storage units (ESSs) are essential. This requires that both the bi-directional
power converter topology and the control scheme present the right set of features. The ESS discussed
in this paper consists of a new DC-DC converter based on a tapped inductor (TI) for a higher voltage
gain at moderate duty cycles. The direction of the current in its intermediate inductor does not
need to be reversed for power flow reversal, leading to a faster action. Moreover, it can employ a
multi-state and multi-variable modulation scheme that eliminates the right half-plane (RHP) zero,
common in boost-type converters. In order to achieve good dynamic performance across a wide
range of operating points, a control scheme based on feedback linearization is developed. This paper
presents the modeling of the five-switch DC-DC converter operating in the tri-state buck–boost mode.
A systematic approach for deriving control laws for the TI current and output voltage based on
exact state feedback linearization is discussed. The performance of the proposed control scheme is
verified by simulation for a supercapacitor (SC)-based ESS. It is compared to that of a conventional
control scheme for a dual-state buck–boost mode with cascaded PI controllers designed based on
small-signal models. The results show that both control schemes work similarly well at the operating
point that the conventional control scheme was designed for. However, only the proposed scheme
allows the SC-based ESS to control the current injected into the DC microgrid with the voltage of the
SC varying between the expected range of rated to half-rated.

Keywords: exact feedback linearization; multi-variable controller; bi-directional DC-DC converter;
energy storage systems

1. Introduction

The decentralization of power generation has become a topic of high interest for
industry and academia. The integration of stochastic renewable energy sources (RESs) at the
distribution level is facilitated by incorporating them into a microgrid [1]. DC microgrids
are a good option since many RESs (photovoltaic and fuel cells) and energy storage units
present DC output characteristics [2]. The efficiency of the DC-DC interfaces tends to be
higher than in DC-AC, and issues such as frequency regulation, reactive power control and
synchronization are avoided [3,4]. The control of segments of the distribution system as a
microgrid also helps with the deployment of new large loads, such as electric vehicles (EVs).
However, fast-acting energy storage systems (ESSs) are essential for balancing supply and
demand, thus regulating the DC bus voltage [5–7].

The power converters of the ESSs must be bi-directional and can be either isolated
or non-isolated. The dual-active bridge (DAB) is an example of the former, allowing
higher voltage gains than the latter at the expense of a higher switch count. Among the
non-isolated bi-directional DC-DC converters, there are the Class C and the four-switch

Energies 2022, 15, 7923. https://doi.org/10.3390/en15217923 https://www.mdpi.com/journal/energies
165



Energies 2022, 15, 7923

converter, with two half-bridges and an intermediate inductor. The relatively low voltage
gains of these topologies can be increased with topologies that employ tapped inductors
(TIs) [8]. In [9], a three-switch converter with a TI is discussed. By employing a tri-state
modulation scheme, the right half-plane (RHP) zero that appears in the control-to-output
transfer function of the converters can be eliminated, thus increasing the speed of response
of the converter [9,10]. It should be noted that for the three topologies mentioned above,
the current in the intermediate inductor must be reversed for power flow reversal, which
slows down the operation. In [11], a five-switch bi-directional DC-DC converter that does
not present this constraint was presented. Moreover, it can also operate with tri-state
modulation for an improved dynamic response [12].

Power converters frequently employ linear PI-type controllers [13,14]. They are de-
signed based on converter models linearized around a specific operating point. The perfor-
mance of PI controllers tends to degrade if the operating point of the converter changes.
This might be a significant issue for ESSs that are prone to wide variations in the output
current, as well as for the input voltage, when supercapacitors (SCs) are used as storage
units. Recall that SCs typically operate with voltages in the range of rated to half-rated.
For cases such as this, state feedback linearization techniques are a good and effective
alternative. State feedback linearization has been applied to unidirectional buck, boost
and buck–boost converters in [15–17], respectively. It was also applied to a bi-directional
Class C converter in [18,19], and to a four-switch converter in [20]. One potential issue in
these cases is when the inductor current is used as a feedback term in the denominator of
the control law. Note that this quantity crosses zero during power flow reversal, leading
to a potential singularity. The above converters are all single-input single-output (SISO)
systems, but the technique has also been applied to multi-input multi-output (MIMO)
systems. In [21], exact feedback linearization was used in a three-port boost converter for
interfacing a PV panel to a battery and load. In [22], it was applied to a four-level buck
converter with two flying capacitors and an LC output filter. Suitable control laws were
developed to generate the duty cycles of the three switches so as to regulate three of the
four state variables.

In this paper, state feedback linearization is applied to a new bi-directional DC-DC
converter with a TI for an increased voltage gain at moderate duty cycles. A multi-state
modulation scheme with multiple modulation signals is used to eliminate the RHP zero
typically found in converters with intermediate inductors. Unlike previously reported
DC-DC converters, this one allows reversal of the power flow without reversing the
intermediate inductor current. This is beneficial since the inductor current, which is often
used in the denominator of the control laws, will always be positive, eliminating potential
singularities. It is a dual-input dual-output (DIDO) system, which is the simplest form of
a MIMO system, where the magnitude of the inductor current presents a certain degree
of independence with regard to the output voltage. In principle, it can be adjusted as a
trade-off between converter losses and the speed of response of the output voltage.

This paper is organized as follows. In Section 2, the five-switch bi-directional DC-DC
converter is introduced. Section 3 presents the modeling of the system for both power
flow directions, and how they are combined into a single model. Section 4 presents the
derivation of the control law of the converter based on state feedback linearization, while
Section 5 presents the system parameters, with considerations for controller design. The
performance of the five-switch converter operating in the tri-state buck–boost mode with
state feedback by means of simulation is verified in Section 6. It also presents a comparison
with the conventional dual-state buck–boost with cascaded inner current outer voltage
loops with linear PI controllers. Finally, Section 7 provides the final conclusion of this
research work.

2. The Five-Switch Bi-Directional DC-DC Converter

The bi-directional DC-DC converter considered in this paper is shown in Figure 1. It
consists of five switches interfacing two DC buses, Bus 1 and Bus 2, through a TI. This
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is modeled as an ideal transformer with two windings (LT1 and LT2) and a magnetizing
inductance (LM) in parallel with the primary winding. The turns ratio of the windings,
LT1/LT2, is n/1. The converter can present a high voltage gain (V2/V1) in the conventional
dual-state scheme without an overly high duty cycle, by properly selecting the turns ratio
n [23]. Capacitors C1 and C2 are low-pass input and output filters. The energy storage
unit, in Bus 1, and cabling to the converter, as well as the DC microgrid, are modeled by a
voltage source in series with a resistor (V1–R1 and V2–R2).
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Figure 1. The 5-switch bi-directional DC-DC converter.

For the proper operation of the power converter, switches S1 to S4 should be unidirec-
tional in terms of current, such as those used in PWM current source inverters (CSIs): IGBTs
with reverse blocking capability or IGBTs/MOSFETs in series with a diode. Conversely,
ST (the switch that taps the inductor to the common node of the DC buses) is a standard
MOSFET with an anti-parallel body diode for bi-directional current flow. The converter
allows a number of paths for the inductor current, or states of operation, as shown in
Table 1. State SXY concerns a moment when switches SX and SY are on/activated together.
They can be used in a switching cycle with two or three states [12,23]. Circuit current
and voltage waveforms are also presented in [12,23]. Power flow reversal occurs without
changing the direction of the current in the magnetizing inductance (iLM), favoring a fast
dynamic response.

Table 1. Possible states of operation.

State Current Path i’1 i’2 vLM Power Flow

S2T S2 and ST iLM 0 vC1 > 0 Bus 1 to inductor
S4T S4 and ST 0 − iLM vC2 > 0 Bus 2 to inductor
S3T S3 and D(ST) * 0 n iLM −n vC2 Inductor to Bus 2
S1T S1 and D(ST) * −n iLM 0 −n vC1 Inductor to Bus 1
S23 S2 and S3 (n iLM)/(n + 1) (n iLM)/(n + 1) (n vC1 − n vC2)/(n + 1) Bus 1 to Bus 2
S14 S1 and S4 (−n iLM)/(n + 1) (−n iLM)/(n + 1) (n vC2 − n vC1)/(n + 1) Bus 2 to Bus 1
S34 S3 and S4 0 0 0 Free-wheeling (fw)
S12 S1 and S2 0 0 0 Free-wheeling (fw)

* D(ST) refers to the anti-parallel body diode of ST.

Based on the operating states and current paths presented in Table 1, Figures 2 and 3
present the current paths, highlighted in red, for all possible operating states for each power
flow direction.
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Figure 3. Current paths (in red) for the operating states of the reverse mode. (a) State S4T; (b) State
S14; (c) State S1T; (d) State S12.

The converter can operate in the dual-state modes [10] and in the tri-state modes [11].
The tri-state buck–boost mode is selected for this paper. In the forward mode, with power
flowing from Bus 1 to Bus 2, states S2T, S3T and S34 are used. Conversely, in the reverse
mode, states S4T, S1T and S12 are used. The PWM modulator for this type of operation is
shown in Figure 4. It employs two modulation signals, m1 and m2, where the magnitude of
m2 is larger than of m1 and an auxiliary signal (q) that determines the direction of the power
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flow: q = 1 in the forward direction and q = 0 in the reverse direction. This modulator is
used for obtaining the gating signals for the switches in both forward and reverse modes,
shown in Figures 5 and 6.
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Figure 6. Reverse mode: the carrier-based modulation scheme. (a) Carrier and modulating signals;
(b) gating signals of the switches; (c) states of operation.

The impact of the modulation signals (m1 and m2) on the gating signals of the switches
(vgS1–vgST) and the duration of the states for tri-state buck–boost operation is illustrated in
Figures 5 and 6, respectively, for the forward and reverse modes. There, one can see that
a switching period consists of three states among those shown in Table 1. Assuming that
the peak value of the sawtooth carrier (Vm) is 1 V, and that m1 < m2 ≤ 1, the duty cycle of
state S2T = D2T = m1. Likewise, D3T = (m2 − m1) and D34 = (1 − m2). In the second segment,
m1Ts to m2Ts, when only S3 is on, the inductor current flows through S3 and the body diode
of ST, sending energy from the inductor to Bus 2. For the reverse mode, D4T = m1, D1T =
(m2 − m1) and D12 = (1 − m2). According to Table 1, these are equivalent states to those in
the forward mode. For instance, in the second segment, m1Ts to m2Ts, when only S1 is on,
the inductor current flows through S1 and the body diode of ST, sending energy from the
inductor to Bus 1.

3. Modeling of the Five-Switch Converter

In this section, the modeling of the converter is performed based on the analysis of
the operating states that are generated by the PWM modulator for both the forward and
reverse modes. The objective is to find a model that describes the system behavior as a
function of the control variables m1, m2 and q. It is based on the differential equations of
the three state variables of the bidirectional power converter: current in the magnetizing
inductance (iLM) and voltages across the filter capacitors (vC1 and vC2).
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By applying KVL and KCL for the three states of operation and averaging them for
the forward mode, one obtains

diLM
dt

=
vC1

LM
(m1)−

n vC2

LM
(m2 −m1) (1)

dvC1

dt
=

V1

R1C1
− vC1

R1C1
− iLM

C1
(m1) (2)

dvC2

dt
=

V2

R2C2
− vC2

R2C2
+

n iLM
C2

(m2 −m1) (3)

Repeating the process for the reverse mode, one obtains

diLM
dt

= −n vC1

LM
(m2 −m1) +

vC2

LM
(m1) (4)

dvC1

dt
=

V1

R1C1
− vC1
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+

n iLM
C1

(m2 −m1) (5)

dvC2

dt
=

V2

R2C2
− vC2

R2C2
− iLM

C2
(m1) (6)

By multiplying (1)–(3) by q and (4)–(6) by q and adding them, one obtains a final
averaged model, valid for both forward and reverse modes:

diLM
dt

=
.

iLM =
vC1

LM
(u2)−

vC2

LM
(u1) (7)

dvC1

dt
=

.
vC1 =

V1

R1C1
− vC1

R1C1
− iLM

C1
(u2) (8)

dvC2

dt
=

.
vC2 =

V2

R2C2
− vC2

R2C2
+

iLM
C2

(u1) (9)

where the new control variables, u1 and u2, are defined as

u1 = (m2 −m1)nq−m1q (10)

u2 = m1q− (m2 −m1)nq (11)

4. Exact State Feedback Linearization

The non-linear characteristics of this system can be observed in the model developed
in the previous section. It includes cross-products between the state variables and the new
control variables u1 and u2. Using the conventional linearization approach based on small
signal variations around an operating point to design conventional PI controllers, informa-
tion would be lost and the system would not be fully described by the resulting model.

The main goal of an ESS is usually to control the output current, i2, which can be
achieved indirectly through the output voltage, vC2. Frequently, this is achieved by em-
ploying a cascaded inner inductor current and outer output voltage control loop. However,
since the developed model presents two control variables, u1 and u2, and in order to give
more flexibility to the considered non-linear controller, this paper implements a parallel
control structure. In this case, the inductor current reference can be chosen according to
the system needs, with high values favoring a faster dynamic response and lower ones for
improved efficiency.

The first step of the controller design is to rewrite the DIDO system, presented in
Figure 7, in an affine linear form to apply the theory of exact state feedback linearization.
This is achieved by means of (12) and (13).

.
x = f (x) + g(x)u (12)
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y = h(x) (13)

where x ∈ Rn is the state vector; u ∈ Rm. relates to the control inputs; y ∈ Riy defines
the controlled outputs; f, g and h are differentiable vector fields. Considering the model
developed in the last section,

x = [iLM, vC1, vC2]
t = [x1, x2, x3]

t (14)

u = [u1, u2]
t (15)

f (x) =
[

0,
V1

R1C1
− x2

R1C1
,

V2

R2C2
− x3

R2C2

]t
(16)

g(x) =



− x3

LM

x2
LM

0 − x1
C1x1

C2
0


, g1(x) =

[
− x3

LM
, 0,

x1

C2

]t
, g2(x) =

[
x2

LM
,− x1

C1
, 0
]t

(17)

h1(x) = x1 = [1, 0, 0]; h2(x) = x3 = [0, 0, 1] (18)
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There are several methods for obtaining the feedback linearization of the DIDO sys-
tem [24–27]. First, the model is rewritten in a different set of coordinates, using the output y
and its successive derivatives. This procedure is performed based on Equation (13), obtaining

.
yi = L f hi +

m

∑
j=1

(
Lgjhi

)
uj (19)

where Lfh and Lgh are, respectively, Lie derivatives of the smooth scalar vector h(x) as a
function of f (x) and g(x). If Lgjhi(x) = 0 for all j, then the inputs do not appear, and, as
highlighted by [22,24], one needs to differentiate repetitively as

yri
i = L f

(ri)hi +
m

∑
j=1

(
LgjL

ri−1
f hi

)
uj (20)

until LgjL
ri−1
f hi 6= 0 for at least one j. The values of ri are the sub-relative degrees of the

DIDO system, and LgjL
ri−1
f hi is the Lie derivative of the i-th output as a function of f (x) and

g(x) [22,24]. In such a case, (20) can be rewritten as




yr1
1
· · ·
yri

i


 = A(x) + E(x)




u1
· · ·
u2


 (21)
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where

A(x) =




Lr1
f h1

· · ·
Lri

f hi


 (22)

and

E(x) =




Lg1Lr1−1
f h1 · · · LgmLr1−1

f h1

· · · · · · . . .
Lg1Lri−1

f hi . . . LgmLri−1
f hi


 (23)

Matrix E(x) is called the decoupling matrix of the DIDO system. If it is nonsingular,
the following input transformation can be defined:

u = −E−1 A(x) + E−1(x)z (24)

where z concerns new input variables.
Substituting (24) into (21) results in a linear and decoupled differential relation between

the output y and the new input z [19].




yr1
1
· · ·
yi

i


 =




z1
· · ·
zi


 (25)

It is important to remark that (21), or its closed loop (25), creates a new model for the
converter. If this new state vector, represented by the original outputs and their derivatives,
does not match the same number of states (ns) of the original system, it means that this
new mathematical model is not describing the dynamics of all states in the converter. As a
consequence, any analysis based on this new model would disregard the remaining states.
These are called the zero dynamics of this new representation. For a complete analysis of
the converter, one must consider these new variables as well as these zero-dynamics.

Taking into account the 5-switch converter operating with the tri-state buck–boost
mode with two control variables (u1 and u2) and two state variables to be controlled (iLm
and vC2), one can find the sub-relative degrees by considering m = 2 (two inputs) and i = 1
and 2 (two outputs).

By solving the Lie derivatives, one can find the sub-relative degrees of the system
as follows.

For y1 = h1 = x1 = iLm = [1, 0, 0], then





Lg1h1 = [1 0 0]
[
− x3

LM
, 0, x1

C2

]t
= − x3

LM

Lg2h1 = [1 0 0]
[

x2
LM

,− x1
C1

, 0
]t

= x2
LM

(26)

For y2 = h2 = x3 = vC2 = [0, 0, 1], then





Lg1h2 = [0 0 1]
[
− x3

LM
, 0, x1

C2

]t
= x1

C2

Lg2h2 = [0 0 1]
[

x2
LM

,− x1
C1

, 0
]t

= 0
(27)

Thus, the sub-relative degrees of the system are r1 = 1 and r2 = 1. Knowing these two
values, it is possible now to fully define matrix E(x) as

E(x) =

[
Lg1Lr1−1

f h1 Lg2Lr1−1
f h1

Lg1Lr2−1
f h2 Lg2Lr2−1

f h2

]
=

[
Lg1L0

f h1 Lg2L0
f h1

Lg1L0
f h2 Lg2L0

f h2

]
(28)
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Therefore, by replacing (26) and (27) with (28), matrix E(x) is finally given by

E(x) =

[
− x3

LM

x2
LMx1

C2
0

]
(29)

Next, one computes vector A(x) as

A(x) =

[
Lr1

f h1

Lr2
f h2

]
=

[
L f h1
L f h2

]
(30)

where 



L f h1 =
[
1 0 0

][
0, V1

R1C1
− x2

R1C1
, V2

R2C2
− x3

R2C2

]t
= 0

L f h2 =
[
0 0 1

][
0, V1

R1C1
− x2

R1C1
, V2

R2C2
− x3

R2C2

]t
= V2

R2C2
− x3

R2C2

(31)

Thus,

A(x) =
[

0,
V2

R2C2
− x3

R2C2

]t
(32)

With matrices E(x) and A(x) defined, one obtains the control law of the converter from
(24) as

u =

[ x3−V2
R2x1

x3(x3−V2)
R2x1x2

]
+

[
0 C2

x1
LM
x2

x3C2
x1x2

]
z (33)

It should be noted that, since, for this particular converter, iLM = x1 does not need to be
reversed for power flow reversal and vC1 = x2 ≈ V1 > 0 and vC2 = x3 ≈ V2 > 0, there are no
singularities in the linearized system. Particularizing (25) for this converter, one observes
that the equivalent system is linear and decoupled, as shown in (34). It can be represented
by a block diagram, as shown in Figure 8.

[
y1

1
y1

2

]
=

[ .
iLm.
vC2

]
=

[
z1
z2

]
(34)
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For tracking reference values for iLM and vC2, given by iLM_ref and vC2_ref, respectively,
one can use simple proportional controllers to obtain inputs z1 and z2 required in (34). This
implies taking

z1 = −λ1

(
iLM − iLM_re f

)

z2 = −λ2

(
vC2 − vC2_re f

) (35)

The overall system, with the original system, state feedback linearization network
and simple proportional controllers, is shown in Figure 9. In general, the objective of the
“control system” is to provide the modulation signals that will result in the tracking of some
reference quantities. In this case, the modulation signals are m1 and m2 and the quantities
to be tracked are iLM = x1 and vC2 = x3. The modulation signals can be obtained from (10)
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and (11), provided that u1 and u2, signals in the input of block “system” in Figure 9, are
known. According to (33) and as depicted in Figure 9, u1 and u2 are functions of the state
variables iLM = x1, vC1 = x2 and vC2 = x3, as well as z1 and z2. The latter are the outputs of
the proportional controllers of the inductor current and output voltage loops, shown in
Figure 8 and (35).
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4.1. Remark: Tuning Guidelines

One interesting feature for the proposed control scheme is the fact that it relies on only
two parameters, λ1 and λ2. These are indeed the desired closed-loop poles imposed by the
control algorithm. They impose new dynamics to the closed-loop states represented by
iLM and vC2, respectively. Their choice is completely straightforward; they directly impose
the new time response of these variables. One can either choose them following practical
considerations (desired time constant for these variables) or by a standard pole-placement
procedure [28].

4.2. Zero Dynamics Analysis

Now, it is necessary to study the remaining dynamics of the system, the so-called zero
dynamics. In the present case, they are trivial and are represented by the remaining state
vC1. For this analysis, one considers the dynamics when the controlled ones reach their
equilibrium point. Then, the control amounts to (remark that z = 0 for this analysis)

u =




vC2−V2
R2iLM

vC2(vC2−V2)

R2iLMx2


 (36)

and the zero-dynamics become

.
vC1 = − vC1

R1C1
− vC2(vC2 −V2)

C1R2vC1
+

V1

R1C1
(37)

This system has two equilibrium points given by

vC1 =
V1

2
±
√

V1
2

4
− vC2(vC2 −V2) (38)

Only the larger solution is feasible. This one has as a Jacobian

− 1
R1C1

+
vC2(vC2 −V2)

C1R2


V1

2
+

√
V1

2

4
− vC2(vC2 −V2)



−2

(39)

This is negative inside a large operation region. Hence, the zero dynamics are asymp-
totically stable in this region, and, consequently, the full system is asymptotically stable.
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5. System Parameters

The application scenario for the performance verification of the five-switch converter
with the proposed control scheme is as an interface between two DC buses/elements, as
depicted in Figure 1. It is assumed that the values of V2 and R2 are known. The rated
voltages were taken as V1 = 96 V and V2 = 380 V and the rated power 1.9 kW. Other
converter parameters are as follows: turns ratio n = 2, LM = 38.8 µH, C1 = 76.8 µF, C2 = 76.8
µF, and fsw = 250 kHz. The feeder resistances are R1 = 0.0625 Ω and R2 = 0.0625 Ω. These
parameters are similar to those used in [12,23], which discuss the power electronic aspects
of the five-switch DC-DC converter. The gains (λ1 and λ2) of the non-linear controller
with state feedback linearization for the converter operating in tri-state buck–boost mode
were computed, based on pole placement from linear control theory, as 250 k and 350 k,
respectively. These gains are computed taking into account the behavior of a first-order
system, where they relate to the time constant (Ts) of such systems. In this case, Ts_λ1 = 16
µs and Ts_λ2 = 11.4 µs.

In order to demonstrate the feasibility and benefits of the proposed mode of operation,
tri-state buck–boost, and state feedback linearization, its performance is compared in the
next section with a conventional technique. Usually, a converter such as this operates in
dual-state buck–boost mode with a cascaded inner current (iLM) and outer voltage (vC2)
control loop, as presented in Figure 10.
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The small-signal model is obtained by means of the standard linearization of (7)–
(9). For operation in dual-state buck–boost mode, considering the modulation schemes
discussed in Section 2, one has to set m2 to 1 V, to eliminate the free-wheeling states (S34
for the forward mode and S12 for the reverse mode), and then control the converter with a
single input, m1. The value of q is set at 1, since the forward power flow, boost mode, is the
worst case concerning the design of the PI controller. With m1 as the control variable, m2 = 1
and q = 1, one substitutes (10)–(11) into (7)–(9) to obtain new state equations as a function of
a single control variable: m1. Then, one employs the conventional linearization technique,
based on small-signal variations around a base operating point, to obtain transfer functions
(iLM(s)/m1(s) and vC2(s)/iLM(s)). The first can be found to be

GiLM(s) =
iLM(s)
m1(s)

=
[R2C2(VC1 + nVC2)]s +

[
n2R2(1−m1)ILM + VC1 + nVC2

]

(R2C2LM)s2 + (LM)s + n2R2(1−m1)
2 (40)

It is used for designing the PI-type controller of the inner current loop for zero error in
steady state to step changes. For the design of the outer voltage control loop, considering
that its bandwidth is 10–20% of the one for the inner current loop, the latter can be assumed
to be a unity gain. Next, one can derive an expression for vC2(s)/iLM(s)), applying the
current division principle that relates the current in the output capacitor (iC2(s)) to iLM(s).
This results in

iC2(s) = niLM(s)(1−m1)− i2(s) = niLM(s)(1−m1)−
vC2(s)−V2

R2
(41)

Finally, by assuming that V2 remains constant, one can compute the transfer function
of the output capacitor voltage over the inductor current as

GvC2(s) =
vC2(s)
iLM(s)

=
nR2(1−m1)

(R2C2)s + 1
(42)
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In this particular case, standard type-2 PI controllers can be designed to provide
the chosen bandwidths and phase margins for the inner and outer control loops. The
parameters of the linear PI controllers were computed as follows. For the inner current
loop, the bandwidth is selected as 50 kHz with a phase margin of 60◦, resulting in Kpi
= 0.0427, τi = 11.88 µs and fpi = 186.7 kHz. For the outer voltage loop, the bandwidth is
chosen as 10 kHz with a phase margin of 60◦, leading to Kpv = 75.43, τv = 12.62 µs and fpv =
7.93 kHz.

In Figure 11, the Bode diagrams of the linear cascaded control presented in Figure 10
are shown. From this figure, one can see that the compensated systems (orange plots)
present the desired bandwidths and phase margin characteristics, validating the design of
the type-2 PI controllers employed in the control law.
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6. Performance Verification

Two types of tests were conducted, by means of simulations with PSIM, to demonstrate
the feasibility and the advantages of the proposed five-switch converter operating in tri-
state buck–boost, with a non-linear control scheme based on state feedback linearization.
First, it is assumed that the input (V1) and output (V2) voltages are kept constant at 96 V
and 380 V, respectively. The output current reference signal (i2_ref ) is a square waveform of
±5 A and 5 Hz. This can be seen as the case where the five-switch converter (and control
law) acts as an interlink converter between two strongly regulated DC buses, meaning that
their voltages remain constant regardless of the power injected into, or withdrawn from,
the DC buses. This can be considered as the base case. Here, the main goal is to verify
whether one can control the output current (i2) that is injected from one bus to another.
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Next, an SC is used in Bus 1 (V1) to work as a storage unit for a controlled DC
microgrid, which is defined in Bus 2 (V2) for this case study. SCs are devices with high
power density and high charge/discharge rates that can be used to provide sudden bursts
of power by managing currents with high gradients. Typically, the voltage on an SC is
allowed to vary between half-rated and rated values. For the DC microgrid side, to emulate
the power variations inherent to a DC microgrid, a sinusoidal ripple of 20 V (peak-to-
peak) with a frequency of 120 Hz is added to the voltage source V2, meaning that instead
of staying constant at 380V, this voltage source will vary from 370 V to 390 V. This is a
typical condition and concerns the connection of a DC bus to an AC bus (grid or load)
through a single-phase DC-AC interface, where such an interface creates DC-side current
and voltage harmonics at two times (120 Hz) the grid frequency (60Hz). This case might
present a challenge for the performance of the conventional PI controllers, designed for
a fixed operating point. Conversely, the non-linear control scheme with state feedback
linearization should be able to compensate for these conditions, presenting similar behavior
in a wide range of operating points. For this test, the same output current profile from the
previous case is used.

Finally, the efficiency of the five-switch DC-DC converter operating in the tri-state
buck–boost mode at rated conditions, V1 = 96 V and V2 = 380 V, with the output current
varying from −5 A (reverse mode) to 5 A (forward mode), is investigated.

6.1. Tests with Fixed Values of V1 and V2

Figure 12 shows some key waveforms concerning the operation of the proposed
non-linear controller with a fixed voltage at Bus 1 (Figure 12a) and Bus 2 (Figure 12b). In
Figure 12c, one sees that the output current (i2) follows the reference signal (i2_ref). This is
achieved indirectly by controlling the output voltage of the converter (vC2), as shown in
Figure 12d. The reference (iLM_ref) and inductor current (iLM) are shown in Figure 12e. There,
one sees that iLM tracks iLM_ref very well and that power flow reversal, with i2 changing
from −5 A to 5 A, can be obtained without reversing iLM. Moreover, the control of the two
state variables, vC2 and iLM, is achieved in a decoupled way, as discussed in Section 4. It is
worth pointing out that the iLM_ref is kept at 30 A until t = 0.25 s, when it is changed to 40 A,
and then changed back to 30 A at t = 0.35 s. This action has two goals. The first is to show
the good tracking capability of the inductor current control loop to step changes. A change
in i2_ref has a minor effect on iLM. The second is to show the impact of the magnitude of
iLM on the values of the modulation signals, as discussed below. The waveforms of control
variables (u1 and u2), which include the flag “q” with the direction of the power flow, are
shown in Figure 12f. Those concerning the modulation signals (m1 and m2) used in the
PWM modulator can be seen in Figure 12g. They remain within the range of the sawtooth
carrier, 0 to 1 V, as expected. There, one can see that as iLM_ref increases, the magnitude of
the modulation signals (m1 and m2) decreases.

In general, no major difference can be seen between the two control schemes regarding
the control of the output current (i2) in Figures 12c and 13c. Both control schemes present
fast and accurate tracking of the output current reference (i2_ref ). However, this is achieved
with different values for the iLM; see Figures 12e and 13e. For the conventional cascaded
control scheme, the inductor current reference iLM_ref varies with the output voltage refer-
ence (vC2_ref). When the power flow is reversed, at t = 0.3 s and t = 0.4 s, iLM also changes,
but it remains always positive. This is a feature of the five-switch bi-directional DC-DC
converter. Thus, iLM and vC2 are coupled variables for the cascaded linear controller. Finally,
Figure 13f shows that only one modulation signal, m1, is used for both power flow direc-
tions for the converter operating in dual state with the conventional cascaded controller,
while the other one, m2, is kept at 1 V.
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Figure 12. Waveforms for the tri-state buck–boost control with state feedback linearization. (a) Volt-
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Figure 12. Waveforms for the tri-state buck–boost control with state feedback linearization. (a) Voltage
at Bus 1 (in V), (b) voltage at Bus 2 (in V), (c) reference and output current (in A), (d) reference
and output capacitor voltage (in V), (e) reference and inductor current (in A), (f) non-linear control
variables, (g) PWM modulation signals.
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Next, Figure 13 presents the results for essentially the same test, but for the converter
operating in dual-state mode with the cascaded linear controller. In this case, the output
voltage (vC2) is adjusted by varying the inductor current (iLM).
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(d) reference and output capacitor voltage (in V), (e) reference and inductor current (in A), (f) PWM
modulation signals.
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6.2. Tests with an SC at Bus 1 and Bus 2 with a Sinusoidal Ripple

In this test, the fixed voltages, or “strong buses”, previously used in Bus 1 and Bus
2, are replaced, respectively, by an SC (a storage element) and a controlled DC microgrid,
which corresponds to another common application for bi-directional DC-DC converters.
This concerns a more demanding operating condition where the input (V1) and output
(V2) voltages of the converter can vary considerably, driving the operating point of the
converter further away from the base operating point. There are several papers focused on
the sizing of SCs for given applications [29–31], which are typically in the order of 100 s of
F. In this particular test, a small supercapacitor (95 mF) was considered for the test so that
one can observe the impact of its voltage variation on the response of the inductor current
(iLM) and output voltage (vC2) control loops, in a single time frame.

Figure 14 shows some relevant waveforms for this test. In Figure 14a, one sees the DC
microgrid voltage at Bus 2 with the 20 V/120 Hz sinusoidal ripple. In Figure 14b, one sees
that the output current (i2) tracks very well the reference signal (i2_ref ), a square wave of
±5 A and 5 Hz. The waveform of V1, the SC voltage at Bus 1, is shown in Figure 14c. It starts
at 96 V and decreases due to a positive value for i2. At t = 0.3 s, it reaches approximately
72 V and starts to increase as the value of i2 changes to −5 A. Thus, the variation in V1 and
V2 has no negative impact on the performance of the proposed control scheme. Moreover,
vC2 in Figure 14d and iLM in Figure 14e track their reference signals accurately. Note that, in
this case, the inductor current reference (iLM_ref) was kept constant at 35 A. Good tracking
performance was achieved with the waveforms of control variables (u1 and u2) shown in
Figure 14f and modulation signals (m1 and m2) shown in Figure 14g.

The five-switch converter operating with dual-state buck–boost and conventional
linear cascaded control loops is subjected to the same test. The results are shown in Figure 15.
In Figure 15a, one sees that the DC microgrid voltage waveform at Bus 2 (V2) is the same
as in the test for the non-linear controller. In Figure 15b, one sees that this conventional
modulation and control scheme tracks the positive output current reference (i2_ref ) well
until the moment that the decreasing SC voltage, (V1 in Figure 15c), reaches a value of
approximately 80 V. This is when the modulation signal (m1) and several waveforms
start to oscillate. The control scheme starts to malfunction. At t = 0.3 s, when the power
flow reverses and i2_ref = −5 A, the output current (i2) fails to track it, becoming more
negative (lower) than i2_ref . The inductor current (iLM) and inductor current reference
(iLM_ref) waveforms, shown in Figure 15e, are limited at the maximum value, 50 A. One
sees in Figure 15f that the modulation signal (m1) decreases following the change of i2_ref
to −5 A, but starts to increase, unlike in the previous test for fixed values of V1 and V2
(Figure 13f), when its average value remained relatively constant. Overall, as a result of i2
becoming more negative than i2_ref at t = 0.3 s, V1 increases more than expected, reaching
140 V at t = 0.4 s. From this point on, the linear controller is able to control the output current,
but keeping the input voltage in the range of 120–140 V. In summary, due to the issues in
tracking the reference output current/voltage in operating conditions different from the
designed ones, the conventional control scheme fails to track the reference output current,
which can even lead to damage to the SC and switches, due to overvoltage conditions.

6.3. Results for SC Voltage Falling to Half-Rated Value

For this test, to have the SC voltage decreasing from rated (96 V) to half-rated (48 V)
using the same square output current reference (i2_ref ) of ±5 A and 5 Hz, the SC used in
the previous test is replaced by a smaller one of 55 mF. Figure 16 shows some relevant
waveforms for this test. Moreover, since the DC microgrid voltage waveform at Bus 2 (V2)
is the same as in the previous tests, it is omitted in the next figure.
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Figure 14. Waveforms for the tri-state buck–boost control with state feedback linearization for
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A), (f) non-linear control variables, (g) PWM modulation signals.
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Figure 16. Waveforms for the tri-state buck–boost control with state feedback linearization for test 3.
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voltage (in V), (d) reference and inductor current (in A), (e) non-linear control variables, (f) PWM
modulation signals.
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In Figure 16a, one sees that the output current waveform (i2) tracks very well i2_ref .
The voltage at the SC (V1) is shown in Figure 16b. It starts at 96 V and decreases due to
the positive value for i2. At t = 0.3 s, it reaches 48 V and starts to increase as the value of i2
changes to−5 A. Thus, the larger variation in V1 has no negative impact on the performance
of the proposed control scheme. The output capacitor voltage (vC2) in Figure 16c and the
inductor current (iLM) in Figure 16d track their reference signals accurately. Note that in
this case, the inductor current reference (iLM_ref) was increased to 45 A in order to avoid the
saturation of the control variables, which tend to increase as V1 decreases. Good tracking
performance was achieved with the waveforms of control variables (u1 and u2) shown in
Figure 16e and modulation signals (m1 and m2) shown in Figure 16f.

The results for the conventional dual-state modulation and linear cascaded control
loops under the same conditions are shown in Figure 17.
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and VTO is the forward voltage of the diode. Subscripts S and D correspond to MOSFET 

and diode quantities, and RMS and AVG to root-mean-square and average values. 

Since the MOSFET and diode are in series, for S1 to S4, they have the same values of 

average and RMS current. Thus, the total conduction losses for S1 to S4 can be defined as 

������� = ������

�(��� + ��) + ������
(���) (45)

Figure 17. Waveforms for the conventional cascaded control scheme for test 3. (a) Reference and
output current (in A), (b) voltage at Bus 1 (in V), (c) reference and output capacitor voltage (in V),
(d) reference and inductor current (in A), (e) PWM modulation signals.
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In Figure 17a, one sees that this conventional modulation and control scheme tracks
the positive output current reference (i2_ref ) well until the moment that the decreasing SC
voltage, (V1 in Figure 17b), reaches a value of approximately 80 V. At this point, similar
to the previous test with the slightly larger SC, the modulation signal (m1) and several
waveforms start to oscillate and the control scheme starts to malfunction. At t = 0.3 s, when
the power flow reverses and i2_ref = −5 A, the output current (i2) fails to track it, becoming
more negative (lower) than i2_ref. The inductor current (iLM) and inductor current reference
(iLM_ref) waveforms, shown in Figure 17d, are limited at the maximum value, 50 A. Overall,
as a result of i2 becoming more negative than i2_ref at t = 0.3 s, V1 increases more than
expected, reaching 160 V at t = 0.4 s. This is when i2_ref becomes positive again but, still,
i2 fails to track it. Nonetheless, V1 decreases. At t = 0.5 s, when i2_ref becomes −5 A and
with V1 with a value of approximately 85 V, which is close to its rated value (96 V), the
conventional control scheme starts to work again, with i2 tracking i2_ref well, until the end
of the test. Again, note that the linear controller is not able to keep the SC voltage within
the desired range of 96–48 V.

6.4. Efficiency Estimation

Having shown that the five-switch DC-DC converter operating with tri-state modula-
tion and the proposed non-linear controller behave equally well regardless of the operating
point, it is important to assess the impact of such a modulation and control scheme on
the power losses. For this, two main sources of losses are considered in this analysis:
conduction and switching losses on the semiconductors.

For the conduction losses, recall that switches S1 to S4 consist of MOSFETS in series
with diodes to realize semiconductor switches that are unidirectional in current, while ST
concerns a MOSFET only. In terms of losses, this means that the conduction losses in such
devices (S1 to S4) will be defined as the sum of the conduction losses in each semiconductor,
while ST follows the conventional losses calculation for a standard MOSFET. From the
power semiconductor theory, one knows that

PcondMOSFET = iSRMS
2RDS (43)

PcondDiode = iDRMS
2RT + iDAVG VTO (44)

where RDS and RT are, respectively, the conduction resistance of the MOSFET and diode,
and VTO is the forward voltage of the diode. Subscripts S and D correspond to MOSFET
and diode quantities, and RMS and AVG to root-mean-square and average values.

Since the MOSFET and diode are in series, for S1 to S4, they have the same values of
average and RMS current. Thus, the total conduction losses for S1 to S4 can be defined as

PcondSD = iSDRMS
2(RDS + RT) + iSDAVG (VTO) (45)

For the switching losses, the following equations, (46) and (47), are used for the
calculations. One important detail for the switching loss estimation is that, if the voltage
across the series connection of the MOSFET and the diode is positive, the losses will be
all concentrated in the MOSFET; thus, for this case, PswDiode = 0. Likewise, if the voltage
across the series connection of the MOFEST and the diode is negative, the losses will be all
concentrated in the diode; thus, for this case, PswMOSFET = 0.

PswMOSFET = fsVDS

(
t f isrise + tris f all

)

2
+ fsVDSkoss (46)

PswDiode = fsVDQRR (47)

where fs is the switching frequency; tf and tr are, respectively, the rise and fall times of the
MOSFET; koss is the coefficient related to the losses due to the output capacitance Coss of the
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MOSFET; QRR is the coefficient related to the losses due to the reverse recovery time of the
diode.

From the above equations, one sees that it is necessary to obtain the RMS and average
currents of the switches/diodes and maximum voltage of the switches (VDS) and the diodes
(VD). This can be derived from the information presented in Table 1 and the analysis of the
operating states presented in Figures 2 and 3. Moreover, it is important to select suitable
power devices that match the power ratings of the desired application. Considering the
voltage and current levels of the case studies discussed previously, Table 2 presents the
devices chosen for this loss estimation analysis.

Table 2. Power semiconductors chosen for this study.

Components Devices Parameters

S1 to S4 and ST 5× IPW90R120C3 (900 V/36 A)
RDS = 0.12 Ω; tf = 25 ns;

tr = 20 ns; koss = 3.9855 × 10−8 J/V

D1 to D4 4× FFSH30120A (1200 V/30 A) RT = 0.013 Ω; VTO = 1.45 V

The final plots considering the estimated efficiency of each mode/power flow direction,
as a function of the output current, are presented next. This can be seen in Figures 18 and 19.
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As can be seen from Figures 18 and 19, as the output current increases its absolute
value, the efficiency of the system tends to drop, which is to be expected, since larger values
of output current should increase the RMS and average values of the currents flowing
through the semiconductors. Although the efficiency for low output currents is virtually
the same for both modes, another aspect to be highlighted is the fact that, as the output
current increases its absolute value, the reverse mode presents lower power losses, thus
presenting higher efficiency than the forward mode. This can be explained by the fact that,
for the reverse mode, the high-voltage side is the one directly connected to the primary
winding of the tapped inductor, which means that the lower average current of this DC
bus results in a smaller current ripple for the magnetizing current, thus lowering the losses
of the overall system.

It should be noted that the power loss/efficiency estimation is performed taking into
consideration the power devices presented in Table 2, where one possible option would
be to select, depending on the availability, power devices with better characteristics for
increased efficiency of operation.

7. Conclusions

The performance of energy storage systems (ESSs), in terms of the dynamic response
and tracking of the reference output current, depends on the features of the power converter
and control scheme. This paper presented the modeling of a novel five-switch DC-DC
power converter, which presents a high voltage gain (V2/V1) and does not require the
reversal of the intermediate inductor current to achieve power flow reversal. In terms
of the control scheme, by operating this converter in a tri-state buck–boost mode, one
eliminates the right half-plane (RHP) zero from the output-to-control transfer function,
which facilitates the design of the control loop. Moreover, by employing the exact state
feedback linearization technique, the converter should be able to operate in a wider range
than that with a PI controller designed considering the conventional small-signal model of
the converter. A systematic approach for modeling the converter and obtaining a control
law with exact feedback linearization was presented. Note that since the inductor current,
a state variable, does not need to reverse during power flow reversal in this particular
converter, there will be not potential issues of “divide by zero” in the control law.

The performance of the five-switch DC-DC power converter with the proposed modu-
lation (tri-state buck–boost) and control scheme (exact state feedback linearization) was
verified by means of simulations. The selected application was as the interface of a super-
capacitor (SC)-based ESS to an output DC bus, such as a DC microgrid. It was compared
to the converter operating in the conventional dual-state buck–buck mode with linear
cascaded current control loops. As expected, both control schemes present similar good
behavior at the operating point that the conventional scheme was designed for. When
the input voltage (V1) varies even moderately, which is common in SC-based ESSs, the
conventional scheme fails to track the output current reference. Conversely, the proposed
modulation and control scheme tracks accurately, with a good dynamic response and zero
steady-state error, the output current reference even with the SC voltage varying in a wide
range, from rated to half-rated. This is an important feature of the interfaces of SC-based
ESSs that is difficult to obtain with conventional power converters and control schemes.

Directions for Further Development

Having validated the mathematical model and proposed a control scheme for the five-
switch bi-directional DC-DC converter, the next step is experimental verification. In this
way, other aspects, such as the efficiency, power density and electromagnetic compatibility
(EMC), of the converter can be assessed. As power semiconductor switches, MOSFETs,
with their fast switching speeds and low RDS(ON), are the natural choice. For switches S1
to S4 series diodes, to match the switching speeds of MOSFETs, devices with fast switching
characteristics and low reverse recovery times, such as Schottky diodes, should be added to
the MOSFETs to provide the unidirectional current, or reverse blocking, feature. Regarding
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the proposed control scheme and PWM modulator, the TMS320F28035 microcontroller
from Texas Instruments provides the means for its realization. Note that these are common
choices for DC-DC converters used as interfaces of distributed energy resources.
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Abstract: In order to achieve a state-of-charge (SOC) balance among multiple energy storage units
(MESUs) in an islanded DC microgrid, a SOC balancing and coordinated control strategy based
on the adaptive droop coefficient algorithm for MESUs is proposed. When the SOC deviation is
significant, the droop coefficient for an energy storage unit (ESU) with a higher (or lower) SOC is
set to a minimum value when discharging (or charging). The ESU with the higher (or lower) SOC
is controlled to discharge (or charge) with the rated power, while the other ESU compensates for
the remaining power when the demanded discharging (or charging) power is greater than the rated
power of the individual ESU. Otherwise, when the demanded discharging (or charging) power is
lower than the rated power of either ESU, the ESU with the higher (or lower) SOC releases (or absorbs)
almost all the required power while the other ESU barely absorbs or releases power, thus quickly
realizing SOC balancing. When the SOC deviation is slight, the fuzzy logic algorithm dynamically
adjusts the droop coefficient and changes the power distribution relationship to balance the SOC
accurately. Furthermore, a bus voltage recovery control scheme is employed to regulate the bus
voltage, thus improving the voltage quality. The energy coordinated management strategy is adopted
to ensure the power balance and stabilize the bus voltage in the DC microgrid. A simulation model is
built in MATLAB/Simulink, and the simulation results demonstrate the effectiveness of the proposed
control strategy in achieving fast and accurate SOC balance and regulating the bus voltage.

Keywords: DC microgrid; coordinated control; energy management; SOC balancing; droop control;
fuzzy logic algorithm

1. Introduction

Due to the intermittence of renewable energy sources and unpredictable load fluctu-
ations, instantaneous power imbalances are caused. An energy storage system (ESS) is
usually used to provide energy support and enhance the system’s reliability [1–4]. To meet
the power rating of the corresponding converter and ensure the safety and reliability of
the ESS, multiple energy storage units (MESUs) are required to be configured into an ESS.
When the line impedances and real capacities are different, state-of-charge (SOC) deviation
among MESUs is produced [5–7]. Maintaining SOC balance can avoid the overcharging
and over-discharging of MESUs and maximize the available energy storage capacity and
charging/discharging rates [8–10].

The battery SOC balancing control strategy based on multi-agent is proposed in [11].
The proposed SOC balancing strategy has a plug-and-play capability. Moreover, different
capacities of batteries and the decline in the battery capacity after a long-term operation
are considered in the control strategy. In [12], the total reflected capacity in the system is
estimated by summing the reflected capacity, SOC, and Ah rating of each battery. The total

Energies 2022, 15, 2943. https://doi.org/10.3390/en15082943 https://www.mdpi.com/journal/energies
191



Energies 2022, 15, 2943

reflected capacity divided by the reference current from the controller gives the reference
time for each battery to discharge or charge. In [13], to balance the SOCs of all energy
storage units (ESUs), the reference current of each ESU is obtained by a fuzzy controller
with SOC and DC-link voltage as inputs.

Droop control is a popular current sharing method in the primary control layer, espe-
cially for islanded low-voltage DC microgrids [14–16]. The droop control has been widely
applied in DC microgrids [17,18]. In [19], the droop coefficient, inversely proportional to
the nth order of SOC, is used to balance the SOCs of ESUs in the DC microgrid. The ESUs
with a higher SOC can be controlled to deliver more power, whereas those with a lower
SOC deliver less power. In [20], the double-quadrant SOC-based droop control method is
used. In the charging/discharging process, the droop coefficient is positively/inversely
proportional to the nth order of SOC. In [21], a new decentralized strategy is proposed to
balance the SOC of each ESU. The virtual resistance of the droop controller is modified
by the fuzzy controller, so the battery with the lowest SOC is charged faster than others.
In [22], the droop resistance is adjusted based on the exponential function of the difference
between an individual battery’s SOC and the average SOC of all the batteries in a DC
microgrid. In [23], a highly accurate power-sharing method is presented to balance the
SOC. In this method, the objective of the PI controller is to regulate the SOC of each battery
equal to the average SOC. The nominal voltage reference of droop control is adjusted by
sliding mode control to achieve SOC balancing [24,25]. In [26], a secondary control based
on a consensus algorithm has been proposed to regulate the DC-bus voltage reference and
balance the SOC of ESUs. In [27], a SOC balancing scheme considering different SOCs,
and capacities is achieved by a high-pass-filter-based SOC balancing method. However,
under the larger SOC deviation, the above control methods do not consider accelerating
SOC balance by controlling ESUs with higher SOC to discharge at maximum power (or to
charge at minimum power) or ESUs with lower SOC to charge at maximum power (or to
discharge at minimum power).

In order to quickly and accurately balance the SOCs of MESU and ensure stable opera-
tion of the DC microgrid, SOC balancing and coordinated control based on an adaptive
droop coefficient algorithm are proposed in this paper. The fuzzy logic algorithm does not
need the system model. However, it relies on the knowledge formulated by an experienced
operator or expert to achieve the control objectives. This paper adopts the fuzzy logic
algorithm to dynamically adjust the droop coefficients to realize a more accurate SOC
balancing control. The main contributions of this paper are summarized as follows:

(1) The droop coefficient of ESUs with higher/lower SOC under discharge/charge is
regulated to a minimum value in the case of a significant SOC deviation. SOCs can be
balanced quickly;

(2) The droop coefficient is automatically adjusted by the fuzzy logic algorithm to accu-
rately balance SOC in the case of a slight SOC deviation;

(3) The DC bus voltage recovery control is adopted to eliminate the voltage error caused
by the traditional droop control, realizing automatic recovery control of the bus voltage;

(4) To ensure the power balance and stabilize the bus voltage, the energy coordinated
management strategy based on SOC balancing of the DC microgrid has been adopted.

2. Analysis of the SOC Unbalance

The studied islanded DC microgrid system is depicted in Figure 1 [28]. The photo-
voltaic (PV) power generation system provides energy to the DC bus. The two ESUs absorb
the excess power from or release power to the bus to achieve the bus voltage stability and
supply the load.
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Figure 1. Topology of islanded DC microgrid. 
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In the DC microgrid, the droop control can be expressed by the following:

Uout = Ure f − kIout (1)

where Uref and Uout are the reference and actual output voltages of the DC/DC converter; k
represents the droop coefficient; Iout is the output current of the DC/DC converter.

SOC of the battery is the follows:

SOC = SOC0 −
η
∫

idt
Ce

(2)

where SOC0 is the SOC initial value; Ce and i represent the capacity and output current; η
denotes the battery efficiency.

Considering the line impedance and using (1), current i can be written as follows:

i = Iout = −
(Ure f −Uout)

(k + Rline)
(3)

where Rline is line impedance.
Combining (2) and (3), the changing rates of SOCs of the two batteries are given by

the following: 



S
.

OC1 = − η(Ure f 1−Uout)

Ce1×(k1+Rline1)

S
.

OC2 = − η(Ure f 2−Uout)

Ce2×(k2+Rline2)

(4)

where k1, 2, Rline1, 2, and Uref1, 2 are the droop coefficient, line impedance, and output voltage
reference of ESU1 and ESU2.

Further, one can obtain

S
.

OC1

S
.

OC2
=

Ce2 × (k2 + Rline2)

Ce1 × (k1 + Rline1)
(5)
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It is known from (5) that SOC deviation would be created when the actual capacity,
droop coefficient, or line impedance of these MESU are different.

3. The SOC Balancing Strategy Based on Adaptive Droop Coefficient Algorithm
3.1. The Adaptive Droop Coefficient Algorithm

The average SOC and SOC deviation are shown in (6) and (7).

SOCavg =
SOC1 + SOC2

2
(6)

∆SOCi = SOCi − SOCavg (7)

The SOC balancing strategy based on the adaptive coefficient algorithm is shown in
Figure 2, and explanations are described below.
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(1) |∆SOCi|>2.5%

When the SOC deviation is significant (i.e., |∆SOCi|>2.5%), to accelerate SOC equal-
ization, the droop coefficient is set as follows;

In the charging process, as follows:
{

ki_0 = kmin ∆SOCi ≤ −2.5%
ki_0 =

∣∣∣ SOCavg−SOCi
SOCavg−SOCmax

∣∣∣ · kmax ∆SOCi > −2.5%
(8)

where ki_0 represents the initial coefficient; i = 1, 2; kmin and kmax are the minimum and
maximum values of the droop coefficient; SOCmax is the maximum value of SOC.

In the discharging process, as follows:
{

ki_0 = kmin ∆SOCi ≥ 2.5%
ki_0 =

∣∣∣ SOCavg−SOCi
SOCavg−SOCmax

∣∣∣ · kmax ∆SOCi < 2.5%
(9)
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The PI limiter of the outer loop is the following:
{

Ilim_max = 0.5Ce
Ilim_min = −0.2Ce

(10)

The droop coefficients are set according to (8) and (9). In combination with the outer
loop limiter, the following two goals can be achieved:

(a) If the power to be released reaches Pdmax ≤ P < 2Pdmax or the power to be absorbed
reaches Pcmax ≤ P < 2Pcmax, the battery with the lower (higher) SOC absorbs (releases)
the rated power when charging (discharging). The other units compensate for the resid-
ual power automatically. Here, Pdmax and Pcmax represent the rated discharging and
charging power;

(b) If the power to be released reaches P < Pdmax or the power to be absorbed reaches
P < Pcmax, the battery with lower (higher) SOC absorbs (releases) all power when charging
(discharging), and the other unit’s output power is nearly zero.

(2) |∆SOCi| ≤ 2.5%

When the SOC deviation is slight (i.e., |∆SOCi| ≤ 2.5%), the droop coefficient is
adjusted by the fuzzy control algorithm to balance the SOCs accurately. The ESUs’ droop
coefficient can be expressed as follows:

ki = ki_0 + ∆ki, (i = 1, 2) (11)

where ∆ki is the droop coefficient increment and it is determined by the fuzzy control
algorithm; ki_0 is set as the same as when |∆SOCi|>2.5%.

The fuzzy control algorithm generates a droop coefficient increment according to the
power deviation and the SOC deviation of ESUs to adjust the drooping coefficient and
realize SOC balance control.

3.2. Design of the Fuzzy Logic Algorithm

The fuzzy control method has the advantage of not requiring an accurate model and
adaptively modifying the key parameters according to the designed fuzzy rules [29–31].
Therefore, the fuzzy control algorithm is used to adjust the droop coefficient to achieve
accurate SOC balancing when the SOC deviation is slight.

The variation of the droop coefficient determines the amount of power absorbed or
released by each ESU, thus affecting the variation of SOC. Therefore, the deviations in
power and SOC between ESUs are selected as the inputs of the fuzzy control algorithm.
The corresponding relationship between the physical and fuzzy domains of variables for
the fuzzy control algorithm is shown in Table 1.

Table 1. Relationship between physical and fuzzy domain.

Variables Physical Domain Quantization Factor Fuzzy Domain

∆SOC [−50,50] 0.02 [−1,1]

dP
Charge: [−10,10] 0.1 [−1,1]

Discharge: [−25,25] 0.04 [−1,1]
∆k [−0.2,0.2] 5 [−1,1]

The membership functions of the input variables and output variables of the fuzzy
controller are shown in Figure 3. The variables of ∆SOC, dP, and ∆k are mapped to three
different fuzzy subsets according to the control experience. The fuzzy control rules can be
designed according to the experiences shown in Table 2. According to the membership
function, and 18 different fuzzy rules in the charging and discharging state, the normalized
control surface can be obtained after defuzzification by the centroid method, as shown
in Figure 4.
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Table 2. Rules of fuzzy controller.

∆SOC dP
∆k

Charging Discharging

P P N Z
P Z P N
P N P N
Z P N P
Z Z Z Z
Z N P N
N P N P
N Z N P
N N Z N
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3.3. Bus Voltage Recovery Control

A voltage deviation equal to kIout is always produced in the traditional droop control.
More power transmission leads to more bus voltage drops. Therefore, a bus voltage
recovery control is added to overcome the bus voltage drop caused by the traditional droop
control and ensure the stability of bus voltage.

Bus voltage can be expressed by the following:
{

Uout = Ure f − kIout + ∆U

∆U =
(

Kp +
Ki
s

)(
Ure f −Ubus

) (12)

where Ubus is bus voltage, and Kp and Ki are the proportional and integral coefficients of
the PI regulator.

The DC bus voltage (kIout) is compensated by the output voltage (∆U). When the
system reaches a steady state, the bus voltage (Ubus) can be controlled to equal the given
voltage (Uref). Therefore, the DC bus voltage without control error is realized.
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3.4. Simulation Waveforms of SOC Balancing Control

A simulation model is built based on MATLAB/Simulink R2021b from MathWorks
(Corporate Headquarters Natick, MA, USA) and parameters are shown in Table 3 [28]. In
simulation settings, the solver is set to ode23tb and the step size is 2 µs.

Table 3. Main parameters of the system.

Description Value

Bus voltage Uout 750 V
Capacitance Cout 2000 µF

Inductance L 2 mH
PV system 55 kW

Important loads 20 kW
Line impedance of ESU1 Rline1 0.03 Ω
Line impedance of ESU2 Rline2 0.05 Ω

Real capacity of ESU1 Ce1 133 Ah
Real capacity of ESU2 Ce2 130 Ah

Non-important loads 4 × 5 kW

(1) ESU-discharging waveforms

Figure 5 presents the comparative simulation results of the proposed method with
the method in [32]. The discharging power of ESS is Pdmax ≤ P < 2Pdmax, and PV and load
power are 10 kW and 40 kW. To maintain the power balance within the DC microgrid, the
ESS needs to release 30 kW, which is more than the maximum discharging power (25 kW)
of an ESU. The initial SOCs of the two ESUs are 70% and 50%. As observed in Figure 5a,
when the SOC deviation of two ESUs is larger than 2.5% (before 0.45 s), ESU1 outputs the
maximum allowable discharging power of 25 kW since it has a larger SOC. The remaining
5 kW power shortage is provided by ESU2. The SOC deviation of the two ESUs is decreased
to less than 2.5% after 0.45 s. Eventually, the SOC deviation is eliminated.
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As seen in Figure 5b, the coefficients are getting close due to the decrease in SOC
deviation. Thus, the output powers of the two batteries also get close, and together they
output 30 kW all the time. The SOC deviation is eliminated at around 1.8 s, and it is much
slower than the proposed method shown in Figure 5a.

When the discharging power ESS is P ≤ Pdmax, the simulation results are shown in
Figure 6. In Figure 6, ESU1 outputs 15 kW of power of the total shortage in the system, and
the output power of ESU2 is nearly 0. The SOC of the two ESUs is balanced at 0.9 s.
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As can be seen from Figures 5 and 6, the SOCs can be balanced quickly. The voltage
deviation can be eliminated automatically under the voltage recovery control. Finally, the
bus voltage is recovered to 750 V, following the defined voltage reference.

(2) ESU-charging waveforms

In Figure 7, PV and load powers are 55 kW and 40 kW, respectively, and there is a
15 kW deficit in the microgrid, larger than the maximum charging power of an EUS. The
SOCs of the two ESUs are 50% and 30%. The ESU2 has a lower SOC, and it is charged with
the rated power of 10 kW, while the other 5 kW of power is charged to the ESU1. At 1.6 s,
the controller is switched to the fuzzy controller to approach the droop coefficient. At 2.4 s,
the SOCs of the two ESUs are balanced.
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In Figure 8, the PV outputs 49 kW of power, but the load only absorbs 40 kW. There is
9 kW of power remaining in the system, and it is less than the rated power of an individual
ESU. ESU1 has a higher SOC, so it barely absorbs power. ESU2 absorbs all 9 kW of power
since it has a lower SOC. The SOC balancing of two ESUs is achieved at 1.5 s, as seen
in Figure 8.

It can be concluded from the above descriptions that the proposed method has
superior performance.

1© In terms of significant SOC deviation.
When the demanded discharging or charging power is greater than the rated power

of an individual ESU, with the proposed method, one ESU is charged or discharged with
the rated power while the other ESU compensates for the remaining power. When the
demanded charging or discharging power is smaller than the rated power of an individual
ESU, one ESU is charged or discharged with the required power while the other remains on
standby to balance the power in the system. Therefore, the proposed method can achieve a
fast SOC balance.

2© In terms of slight SOC deviation.
The droop coefficient is adjusted dynamically by the fuzzy logic algorithm to achieve

accurate SOC balance.
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4. Coordinated Control Based on the Piecewise Adaptive Algorithm
4.1. Coordinated Control Diagram of DC Microgrid

The coordinated control diagram of the DC microgrid is shown in Figure 9.
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Figure 9. Coordinated control diagram of DC microgrid.
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4.2. Power Management and Coordinated Control Strategy

The operation of the DC microgrid can be divided into the following five operation
modes according to different conditions of PV, MESU, and loads:

Mode1: The PV is controlled by the constant voltage control (CVC); the ESU is on
standby; basic loads are supplied;

Mode2: 1©When the residual power is greater than the maximum power of the ESU,
the PV is controlled by CVC. The batteries whose SOCs do not reach the limit are controlled
to absorb constant power, while those whose SOCs reach the limit are on standby. 2©When
the residual power is smaller than the maximum power of the ESU, the PV is regulated by
the maximum power point tracking (MPPT) control, and the batteries stabilize the bus’s
voltage or stay on standby;

Mode3: The PV is controlled by the MPPT control; the bus’s voltage is maintained by
ESU; basic loads are supplied;

Mode4: 1©When the shortage of power is greater than the maximum power of the
ESU, the PV is controlled by the MPPT control. The batteries whose SOCs do not reach
the limit are controlled to stabilize the bus’s voltage, while the one whose SOC reaches the
limit is on standby; non-important loads are cut off in this scenario. 2©When the power
shortage is smaller than the maximum power of the ESU, the PV is regulated by the MPPT
control and the batteries stabilize the bus voltage or stay on standby, supplying basic loads;

Mode5: The PV is controlled by the MPPT control; ESU is on standby; important loads
are cut off gradually according to the PV power.

The correspondence between the DC microgrid and the control mode under each
operating condition is shown in Table 4, and the control mode selection flow diagram is
shown in Figure 10.

Table 4. Running condition and control mode.

SOC Ppv > Pload Ppv < Pload

SOC1 > 90% and SOC2 > 90% Mode1 Mode3
SOC1 > 90% or SOC2 > 90% Mode2 Mode3

10% ≤ SOC1 ≤ 90%
10% ≤ SOC2 ≤ 90% Mode3 Mode3

SOC1 < 10% or SOC2 < 10% Mode3 Mode4
SOC1 < 10% and SOC2 < 10% Mode3 Mode5
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4.3. Simulation Waveforms of the Coordinated Control

(1) Response to a sudden change of PV power

As shown in Figure 11, the initial SOC values are 85% and 75% for ESU1 and ESU2.
Irradiance is constant at 900 W/m2; PV power is 58 kW with MPPT control; the load
is constant at 40 kW. During these 0.1~0.42 s, the SOCs of the two ESUs do not reach
90%, and they keep the bus voltage constant. The system works in Mode3. At 0.42 s,
SOC1 reaches 90%, and ESU1 is on standby. Simultaneously, the maximum PV power is
58 kW, and the load demand is only 40 kW. In order not to exceed the maximum allowable
10 kW charging power of the lithium battery, ESU2 is controlled to operate with a constant
charging current. The PV power outputs 50 kW, and the system switches to control Mode2.
During 0.42~0.81 s, ESU2 is continuously charged, and the bus voltage is controlled by the
PV system. At 0.81 s, the SOC2 reaches 90%, and the charging power of ESU2 is 0. The PV
outputs 40 kW, and the system is switched to Mode1.
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(2) Simulation results under removal of the load

As shown in Figure 12, irradiance is reduced from 450 W/m2 to 0 and the correspond-
ing PV power is reduced from 25 kW to 0. The initial SOCs are set at 35% and 15%. Before
0.9 s, the maximum PV power was 27 kW, and the 13 kW of power shortage was allocated
by the two ESUs, maintaining the bus voltage. The system works in Mode3 at this time.
During these 0.9~1 s, ESU1 is on standby because SOC1 reaches the 10% minimum limit.
The power shortage in the network is slightly less than 20 kW, which was all released by
ESU2. At this time, the system is working in Mode4. After 1 s, the SOCs of both ESUs reach
the lower limit (10%), so they are on standby. However, the maximum power of the PV
cannot be maintained to supply the full basic loads. According to the power of PV and
load, 20/5/5/5/5 kW load is cut off at 1/1.25/1.8/2.2/2.6 s according to their importance.
The remaining power is used to charge the two ESUs. The system is running in Mode5 at
this time.
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5. Conclusions

This paper presents the SOC balancing and coordinated control strategy based on
the adaptive droop coefficient algorithm for MESU. When the SOC deviation is relatively
large, the droop coefficient of an ESU with a lower SOC is set to be the minimum value
in the charging process. In the discharging process, the droop coefficient of an ESU with
a higher SOC is set to be the minimum value. In the charging process, the ESU with a
lower SOC absorbs energy with the rated power or all the charging power, while the one
with a higher SOC absorbs the residual charging power or does not absorb any power.
Meanwhile, in the discharging process, the ESU with a higher SOC delivers energy with
rated power or all discharging power. The ESU with a lower SOC provides the rest of
the charging power or does not deliver any power. Hence, rapid SOC balancing can be
realized. When the SOC deviation is slight, the droop coefficient is adjusted smoothly and
automatically by a fuzzy logic algorithm. The fuzzy logic algorithm adjusts the droop
coefficient according to the inputs of the SOC deviation and output power of each ESU.
Therefore, SOC deviation caused by the actual capacity and line impedance is eliminated,
and accurate SOC balancing is achieved. The coordinated control of the DC microgrid is
being studied to ensure the stable operation of the DC microgrid and the stability of bus
voltage. The simulation results show that the proposed control strategy can realize the
rapid SOC balance of multiple ESUs and maintain the bus voltage stability.
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