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1. Introduction

Digital agriculture, defined as the analysis and collection of various farm data, is
constantly evolving. Data collected on an ongoing basis from fields, machinery, weather
stations, sensors, and systems are used to perform a wide range of tasks and to make
optimal decisions in the running of agricultural production. Platforms or management
software for agriculture have tremendous potential. Digital agriculture relies heavily
on detailed image analysis, artificial neural networks, machine learning, the Internet of
Things (IoT), and big data [1,2]. The aforementioned digital agriculture techniques can
be successfully used for qualitative assessments of agricultural crops, diagnoses of plant
diseases, yield predictions, classification issues, and intelligent weed controls [3–7]. With
the rapid developments of precision farming and digital agriculture, more and more farms
are turning to tools based on artificial intelligence. The purpose of this Special Issue was
to publish high-quality research and review papers that cover issues related to digital
innovations in agriculture. Below, we have included highlights from all of the articles
published in this Special Issue.

2. Papers in This Special Issue

In the research described in the first article [8], the authors attempted to find correla-
tions between several selected neural network models and statistical methods commonly
used in agriculture. The comparison has a universal dimension—it applies to crop pro-
duction, livestock production, and the quality of the natural environment. The authors
emphasize that artificial neural networks are a convenient, fast, and accurate tool; therefore,
they have become very popular. The authors recommend their use in preparing analyses
for agriculture.

In the second article [9] , the authors performed a review of the current state of
research on the use of artificial intelligence, the Internet of Things, and hyperspectral
imaging for crop disease detection. In addition, they compared several different techniques
for diagnosing disease symptoms in plants. Convolutional neural network models proved
to be the most efficient and effective methods for locating visual patterns in images.

In the third article [10], the authors systematically analysed climate services for agri-
culture in Africa. They reviewed 50 literature items from 20 African countries to develop
such services. It was found that the development of such services is still in the early stages,
as innovations in mobile telephony and Internet services integrated with climate services
are presently undergoing a trial stage. The article confirms the need to integrate indigenous
and scientific knowledge systems in creating climate information in Africa.

In the fourth review article [11], the authors managed the discussion of Findable,
Accessible, Interoperable, and Reusable (FAIR) data in sustainable agriculture. With digital
agriculture generating more and more data, there is a need to create systems for collecting
reliable information. In conclusion, the authors proposed a method for identifying the
main problems in making FAIR data available.

Agriculture 2023, 13, 1686. https://doi.org/10.3390/agriculture13091686 https://www.mdpi.com/journal/agriculture
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The fifth comprehensive review article [12] is an interesting summary of the relation-
ships between sustainable agriculture and the Internet of Things (IoT). The authors hope
to involve robots, cloud computing, and artificial intelligence in agricultural production
even more than has been done before. In addition, the paper evaluates selected tools
and equipment used in wireless sensor applications in IoT agriculture. The challenges of
combining the technology with conventional agricultural operations were pointed out.

In the sixth paper [13], the authors attempted to determine whether milk flow char-
acteristics can be considered biomarkers of lameness incidence in cows. A study was
conducted on more than 100 head of dairy cows, and both cortisol concentrations in the
animals’ blood and milking characteristics were evaluated. The conducted experiment
confirmed the thesis that milk flow characteristics can act as biomarkers of lameness in
dairy cows.

The seventh article [14] deals with the simulation of fuel consumption depending on
the load level of the tractor engine. A 95 kW engine with a partial power shift transmission
was tested using the PTO dyno test method. It was observed that the engine load and fuel
consumption were directly proportional to the engine load levels. Statistical analyses of the
results indicated an exponential relationship between fuel consumption and engine load
levels. The published research provides an opportunity to design an innovative agricultural
tractor with a higher fuel efficiency.

In the eighth article [15], the authors made predictions regarding the reproductive
success of multiparous dairy cows among a primiparous population, based on selected
parameters generated by sensors. They tested an automatic milking system during the
pregnancy of multiparous dairy cows and evaluated the system’s accuracy based on blood
parameters. In the group of non-pregnant cows, more samples with elevated cortisol were
observed. Other interesting correlations indicated the risk of mastitis or oxidative stress in
cows, depending on the presence or absence of pregnancy.

The ninth article [16] dealt with image analysis techniques for the optimization of a
peanut planting space in Hainan. The study’s authors used PlanetScope images with a
spatial resolution of 3 m. The research was based on the construction of three models for
peanut planting area extraction, based on the support vector machine (SVM), BP neural
network (BPNN) and random forest (RF) classification algorithms. The results confirmed
the effectiveness of PlanetScope imagery in solving agricultural problems. The RF model
successfully optimized the planting of peanuts.

In the tenth article [17], the authors used deep learning neural networks, specifically
the LC-DenseFCN point surveillance algorithm, to count chickens in a closed-circuit camera
environment. Compared to conventional counting and other popular techniques, the
proposed optimized method offers the potential for the fast and accurate counting of
chickens residing at high densities.

The eleventh article [18] concerned on the identification of risk factors for detecting
lameness in cows using natural biosensors. Before the study, the authors hypothesized
that the formation of inline biomarkers would depend on the lameness of dairy cows in
early lactations. Among other things, the study indicated that low milk fat content was
maintained from before the onset of the disease until the very day of its confirmation.

In the twelfth article [19], the authors presented a study to assess the impact of
lameness on the feeding attributes of dairy cows. The study used a sensor-nose band
that a dairy cow wore just after calving. They found that lameness affected cows’ feeding
preferences and changes in biomarkers. For example, the lowest eating time was found on
the day of diagnosis, and the highest on the ninth day before lameness was detected.

The thirteenth article [20] discusses developing a lettuce growth model using U-Net.
Arabidopsis plants were used as the model-training material. The DL model developed for
Arabidopsis works well for modelling the growth of other target species.

In the fourteenth article [21], the authors developed a predictive yield model for rice.
Phenological data and hyperspectral imaging data were used to build the model. The
final model was based on the values of vegetation indices: NDVI, EVI, SAVI, and REP.
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The generated model was characterized by a high accuracy (R2 = 0.84). In addition, the
optimal time intervals for predicting rice yields were identified. The results show the high
usefulness of data from late vegetative and flowering stages.

In the fifteenth article [22], the authors dealt with the individual identification of cattle
faces using neural networks, a deep learning method. The activity involved an image
analysis technique and modern RetinaNet technology. The selected algorithm allowed for
a very high identification precision of up to 99.8%, and a very short average processing
time of 0.0438 s per image.

In the sixteenth article [23], the authors determined the management zones within a
field using remote sensing for variable rates of nitrogen fertilization of wheat. Simplified
and hybrid models were used, and machine learning was also involved. The methodology
for creating the models was enriched with information on phenological phases and the
occurrence of agricultural droughts. The results showed that agronomic and climatic
information allow for improving and optimizing the designation of management zones.

The seventeenth article [24] addresses an innovative method for monitoring soil
nutrients using hyperspectral remote sensing. Linear and nonlinear algorithms were used
to perform the task, including machine learning, LASSO, and GBDT algorithms. The results
showed that LASSO and GBDT algorithms can improve the quality of TN, TP, and TK soil
content estimation. This has great application significance in agriculture.

In the eighteenth article [25], the authors used the method of multiple regression and
artificial neural networks to model the essential oil content and yield of trans-anethole
obtained from fennel. The study aimed to identify the most accurate predictive tool.
The results showed that artificial neural networks made more accurate predictions than
regression methods. The published research may be useful for breeders of plants in the
Apiaceae family to model the various complex polygenic traits of crop plants, which is
important from the points of view of industry, herbal uses, pharmaceuticals, etc.

The nineteenth article [26] uses a four-stage image processing algorithm to identify
and count Metis plana Walker, an oil palm pest from Malaysia. The solution described by the
authors was designed to distinguish between live and dead bagworm larvae using motion
detection. Highly accurate results were obtained, i.e., 73–100% accuracy was achieved at a
camera distance of 30 cm in close conditions. Using deep learning with Faster R-CNN in
the methodology is a feasible, practical, and reliable method for bagworm detection. The
above research is of great practical importance.

In the twentieth article [27], the authors detected and identified sows using image
analysis. Two accurate models based on deep learning, Mask-RCNN and UNet-Attention,
were developed. A very high recognition rate of 96.8% for a specific individual was
obtained by using the Mask-RCNN model. The proposed system allowed for recognition
of various behaviours, such as eating, drinking, etc.

The twenty-first article [28] deals with modifying and improving classification meth-
ods that can be applied to agriculture. The authors applied multi-temporal data fusion
to specific types of images (i.e., MS and SAR) using a dynamic time-warping method in
paddy rice classification. Three different types of SPOT6 satellite images and nine Sentinel-
1A synthetic aperture radar images were used. Using neural networks made it possible
to significantly improve the overall accuracy of the collected images. In turn, the best
performance of the classification results was obtained from the decision tree.

In the twenty-second article [29], the authors presented the concept of modelling the
mechanical properties of fresh and stored large cranberry fruit using multiple linear regression
and artificial neural network models. The analyses aimed to determine the apparent elasticity
index of large cranberry fruit variables relating to harvest time, water content, storage time
and conditions. Using neural modelling techniques allowed for more accurate prediction of
the elasticity of the tested material compared to classical regression techniques.

The twenty-third article [30] presents an innovative approach for fast identification
and counting of pig herds in complex image segmentation. The proposed DeepLab V3+
network model was created based on the neural networks, a deep learning method. The

3



Agriculture 2023, 13, 1686

approach used made it possible to obtain the values of comprehensive evaluation indicators
at a very high level of 86%.

In the twenty-fourth article [31], artificial neural networks were used to identify the
key meteorological factors affecting the harvest date and yield of soybeans (Glycine max
L. Merrill) variety Augusta. To perform the task, the most important dates of successive
development stages, meteorological data, and yield data were collected. The ranking of
factors shaping yield and harvest date was obtained using the sensitivity analysis of a
neural network. The study results are highly practical in nature, indicating “difficult for
soybeans” periods, during which special care should be taken to ensure they remain in
good condition.

The twenty-fifth article [32] evaluates the performance of various communication
systems used through the Internet of Things in agricultural production. The authors
conducted a detailed analysis of the specific protocols and simulation tools used to improve
connectivity and connection quality. Using two gateways with Adaptive Data technology
can increase the network delivery without changing energy consumption. The results
presented are promising for broader data optimization.

In the twenty-sixth article [33], the authors used an improved YOLOX-S algorithm for
robots picking kiwi fruit based on image analyses. The analysis results proved that the
authors’ improved model helped improve the precision of kiwi fruit detection, reduced the
number of model parameters, and improved the system’s speed. This approach can also be
applied to other fruits or objects in general, so-called small, targets.

The twenty-seventh article [34] proposed a tea recognition method based on a light
convolutional neural network and support vector machine (L-CNN-SVM). The purpose
of this method was to recognize tea using wavelet numerical data generated by wavelet
decomposition and reconstruction of the time–frequency signal. First, a redundant discrete
wavelet transform was used to decompose the wavelet components of hyperspectral images
of three teas (black, green, and yellow), which were used to construct the datasets. Second,
a lightweight CNN model was improved to generate a tea recognition model. The results
showed that the tea recognition results based on the L-CNN-SVM method outperformed
MobileNet v2+RF, MobileNet v2+KNN, MobileNet v2+AdaBoost, AlexNet, and MobileNet
v2. For the recognition results of the three teas using a LL plus HL plus LH wavelet
component reconstruction, the overall accuracy rate reached 98.7%.

The twenty-eighth article [35] uses a fractional differential order for the soil hyperspec-
tral inversion of iron oxide. Among other things, the content and movement of iron oxide
in soil informs numerous degradation processes. Analysing the content of this component
in the soil is difficult, because its analytical spectra overlap with the infrared components
of organic matter. In addition to a specific spectral transformation, a soil iron oxide content
prediction was made using artificial intelligence. It was shown that using a fractional-order
differential transformation can significantly improve the results for this type of analysis.

In the twenty-ninth article [36], the authors used supervised classifiers for feature
analyses, in order to evaluate the accuracy of a maturity analysis of fruit palm fruit. For this
purpose, unconstrained remote sensing, advanced multivariate techniques, and artificial
neural networks were used. Measurements were made in real-time. A very high image
processing efficiency of more than 93% was achieved.

The thirtieth article [37] deals with improved optimization systems using the NSGA-III
algorithm to improve the precision of two-way fertilizer applications. A test of the rotational
speed and opening length of a bidirectional granular fertilizer applicator was conducted. A
fertilizer rate prediction model based on machine learning was developed. Applying the new
method led to a halving of the absolute error. The presented research significantly improves
the quality of fertilizer spreading.

In the thirty-first article [38], the authors proposed PLSR models for predicting of
the content of functional components in Brassica juncea based on hyperspectral imaging.
The contents of chlorophyll, carotenoids, phenols, glucosinolates, and anthocyanins were
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studied. Incorporating SNV and first-order derivative pre-processing with spectral data
into the study methodology yielded models with low prediction errors.

In the thirty-second article [39], the authors collected a dataset of whitefly-infested cotton
leaves containing 5135 images divided into two main classes, namely healthy and unhealthy.
They then used a compact convolutional transform (CCT) approach to classify the image
dataset. Experimental results showed the effectiveness of the proposed CCT-based approach
compared to other state-of-the-art approaches. The produced model achieved an accuracy of
97.2%.

The thirty-third article [40] presents a fuzzy certification of wheat quality. This anal-
ysis is based on a fuzzy model for wheat analysis. The authors developed a MATLAB
application, with which they modelled perceptions concerning wheat’s main physical and
chemical characteristics, obtaining a wheat batch quality index. The generated algorithm
makes it possible to obtain and use a global quality index, which is applicable not only
in the commercial sphere as a quality reference and for pricing, but also as a measure for
evaluating processing capabilities.

In the thirty-fourth article [41], a multi-objective logistic distribution path optimization
model with time constraints was constructed, and a genetic algorithm was used to optimize
the commercial distribution path for fresh agricultural products. Combining the genetic
algorithm with a real case to be studied, the study aimed to solve enterprises’ narrow
distribution paths and promote the model’s application to similar enterprises with similar
characteristics. The results show that (1) the commercial distribution path scheme optimized
by the genetic algorithm can reduce distribution centre distribution costs and improve
customer satisfaction, and (2) the genetic algorithm can bring economic benefits and reduce
transportation losses in trade for trade distribution centres with the same spatial and quality
characteristics as distribution centres for fresh agricultural products.

The thirty-fifth article [42] presents a data science approach that agglomerates the soil
parameter space into a limited number of soil process functional units (SPUs) that can run
agricultural process models. In reality, two unsupervised classification methods were devel-
oped to generate a 3D multidimensional data product consisting of SPUs, each defined by a
multidimensional parameter distribution along a depth profile from 0 to 100 cm.

In the thirty-sixth article [43], the authors hypothesised that an automated body condition
scoring system could indicate health and pregnancy success in cows. Therefore, this study
aimed to determine the association of automated recorded body condition score (BCS) with
pregnancy and inline biomarkers, such as milk beta-hydroxybutyrate (BHB), milk lactate
dehydrogenase (LDH), milk progesterone (mP4), and milk yield (MY) in dairy cows.

In the thirty-seventh article [44], an intelligent control system for temperature and
humidity in a piggery was proposed, based on machine learning and a fuzzy control
algorithm. Sensors were used to collect data on temperature and humidity values and store
these data in chronological order. These data formed a time series to train the GRU model,
which was used to predict the curve of temperature and humidity changes in the piggery
over the next 24 h.

In the thirty-eighth article [45], the authors proposed a lightweight maize disease
identification model called the Double Fusion block with Coordinate Attention Network
(DFCANet). DFCANet mainly consists of two components: Double Feature Fusion with
Coordinate Attention and Down-Sampling (DS) modules. The results show that DFCANet
has an average recognition accuracy of 98.47%.

The thirty-ninth article [46] is about a high-accuracy model for predicting blueberry yields,
trained using structurally innovative datasets. Data were collected between 2016 and 2021, and
included agronomic, climatic, soil data, and satellite data on vegetation. In addition, vegetation
periods by BBCH scale and aggregates were considered. Of the 11 models, the Extreme Gradient
Boosting algorithm performed best, with a MAPE prediction error of 12.48%.

The fortieth paper [47] proposed a novel scheme to optimise the decision-making
capability of a combination of control and PID controller parameters, in order to improve
the feasibility and practicality of variable fertiliser applicators. Firstly, an EDEM was
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applied to obtain the minimum acceptable bore length and the appropriate gap between the
spiral vanes and the discharge cavity wall, followed by calibration experiments to establish
a fertiliser rate-fitting model using polynomial fitting. Secondly, a modified sparrow search
algorithm (SSA) with a chaotic operator and a mutation section of the DE algorithm was
used to optimise the control combination using accuracy, homogeneity, and control time as
evaluation criteria.

In the forty-first article [48], the research aimed to develop linear and non-linear models
for predicting the protein content percentage of pea seeds, and to conduct a comparative
analysis of the performance of these models. The analyses also focused on identifying the
variables with the greatest influence on protein content. The research involved machine
learning (specifically, artificial neural networks) and multiple linear regression (MLR)
methods. The input parameters of the models were weather, agronomic, and phyto-
phenological data from 2016 to 2020. The neural model (N1) performed better than the
multiple regression (RS) model. The RMS error of the N1 model was 0.838, while the RS
model obtained a mean error value of 2.696. The MAPE error for the N1 and RS models
was 2.721 and 8.852, respectively. The sensitivity analysis conducted for the best neural
network showed that the independent variables most influencing the protein content of
pea seeds were soil abundance of magnesium, potassium, and phosphorus.

The forty-second article [49] aimed to investigate the automatic detection of Basal Stem
Rot (BSR) at the seedling stage, using a pre-trained deep-learning model and hyperspectral
images. The oil palm seedling image was divided into three regions to determine whether
there were significant spectral changes at different leaf positions. How background images
affect detection performance was also investigated. The segmented images of the plant
sapling were automatically generated using a convolutional neural network (RCNN) based
on the mask region. Three models were used for BSR detection: a convolutional neural
network with a depth of 16 layers (VGG16) trained on the segmented image, and the
VGG16 and Mask RCNN models trained on the original images. The results show that
the VGG16 model performed best in terms of accuracy (91.93%), precision (94.32%), recall
(89.26%), and F1 score (91.72%).

In the forty-third article [50], an automatic classification of the larval stage of the
cutworm, starting from the second (S2) to the fifth (S5) stage, was proposed using a
structure based on transfer learning. Five different CNN architectures, namely VGG16,
ResNet50, ResNet152, DenseNet121, and DenseNet201, were used to categorise the larval
stages. Of the five models used, the DenseNet121 model had the best classification accuracy
of 96.18%. In addition, all developmental stages from S2 to S5 could be identified with high
accuracy (94.52–97.57%), precision (89.71–95.87%), sensitivity (87.67–96.65%), specificity
(96.51–98.61%), and F1 score (88.89–96.18%).

In the forty-fourth article [51], a study was carried out that created a dataset containing
images of the leaves of cash crops, which were divided into two basic categories, namely
healthy and unhealthy. The next step was to train a deep model to identify healthy and
unhealthy leaves. The trained YOLOv5 model was used to identify stains in exclusive and
public datasets. This study quickly and accurately identified even a small disease patch
using YOLOv5. This research aimed to provide the best hyper-parameters for classifying
and detecting healthy and unhealthy parts of leaves in exclusive and public datasets. The
trained YOLOv5 model achieves a 93% accuracy on the test set.

The forty-fifth article [52] concerned research on the trajectory of agricultural machin-
ery. The paper proposed a multi-node path planning algorithm based on the Improved
Whale Optimised ACO (ACO) algorithm, called IWOA-ACO. The algorithm first intro-
duces an inverse learning strategy, a non-linear convergence rate, and an adaptive inertia
factor to improve the global and local convergence ability. The simulation results show that,
in a flat environment, the length and energy consumption of the planned IWOA-ACO path
are the same as those of Particle Swarm Optimisation ACO (PSO-ACO), and are 0.61% less
than those of WOA-ACO. Furthermore, in a bumpy environment, the length and energy
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consumption of the IWOA-ACO planned path is 1.91% and 4.32% less than for PSO-ACO,
and 1.95% and 1.25% less than for WOA-ACO.

The forty-sixth article [53] dealt with the development and evaluation of the Maize
Yield Prediction System (MYPS), which uses a Short Message Service (SMS) and the Internet
to enable rural farmers and government officials to predict end-of-season maize yields in
Tanzania. The system uses Long Short-Term Memory (LSTM) deep learning models to
predict end-of-season maize yields at the district level, based on remote sensing (NDVI)
and climate data. The deep learning models are very effective in yield prediction, achieving
a mean absolute percentage error (MAPE) of 3.656% and 6.648%, respectively, on test data.

The forty-seventh article [54] analysed the performance of pea (Pisum sativum L.) seed
yield prediction using a linear (MLR) and a non-linear (ANN) model. The study used
meteorological, agronomic, and phytophysical data from 2016 to 2020. The neural model
(N2) generated highly accurate predictions of pea seed yield, with a correlation coefficient
of 0.936 and RMS and MAPE errors of 0.443 and 7.976, respectively. The model significantly
outperformed the multiple linear regression model (RS2), which had an RMS error of 6.401
and a MAPE error of 148.585. The sensitivity analysis conducted for the neural network
showed that the traits with the greatest impact on pea seed yield were the onset of maturity,
harvest date, total rainfall, and mean air temperature.

The forty-eighth paper [55] trained and compared the performance of two machine
learning methods, a multivariate regression network and a ResNet-50-based neural net-
work, for predicting plant biomass and determining plants’ relative growth rates in aero-
ponic cultivation. The training dataset consisted of images of 57 plants taken at two different
angles every hour over five days. The results show that images taken from a top-down
perspective give better results for the multivariate regression network. In contrast, images
taken from the side are better for the ResNet-50 neural network. The best biomass estimates
are obtained from the multivariate regression model trained on the top camera images
using a moving average filter, giving a mean square error of 0.0466 g. The best estimates of
relative growth rate are obtained from the ResNet-50 trained on images from both cameras,
giving a mean square error of 0.1767 g/(g-day).

The forty-ninth article [56] aimed to evaluate different vegetation indices to predict the
growth rates and harvest points of lettuce. Twenty-five genotypes of biofortified green lettuce
were evaluated. Green leaf index (GLI), normalised green–red difference index (NGRDI),
spectral slope saturation index (SI), and total colour index (HUE) were calculated from images
taken 1, 8, 18, 24 and 36 days after transplanting (vegetative state). Averages were compared
using the Scott-Knott test (p ≤ 0.05), and simple linear regression models were generated to
monitor growth rates, yielding R2 values ranging from 62% to 99%. Multivariate analysis
confirmed genetic dissimilarity, with a correlation coefficient of 88.49%.

Finally, in the fiftieth article [57], a machine vision system was developed using a
dataset of 7328 high-density images (1229 pixels per centimetre) of planthoppers collected
in the field using sticky light traps. The dataset included four planthopper classes: brown
planthopper (BPH), green leafhopper (GLH), white-backed planthopper (WBPH), and
zigzag leafhopper (ZIGZAG). Five deep CNN models—ResNet-50, ResNet-101, ResNet-
152, VGG-16, and VGG-19—were applied and tuned to classify the planthopper species.
The experimental results indicated that the ResNet-50 model performed the best overall,
achieving average values of 97.28% for accuracy, 92.05% for precision, 94.47% for recall,
and 93.07% for the F1 score.

3. Conclusions

The Special Issue “Digital Innovations in Agriculture” brings fascinating insights into
the agricultural sector’s future. The use of advanced ICT, data analytics, and artificial
intelligence makes it possible to achieve sustainability, increase production efficiency,
and improve animal husbandry. Digital innovations have the potential to revolutionise
agriculture, and their implementation can contribute to a more sustainable, productive,
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and knowledge-based agricultural space. We hope that these papers will stimulate further
research into this domain.
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Abstract: We hypothesized that lameness has an impact on milk flow traits. The aim of the current
study was therefore to investigate the relation between lameness and milk flow traits in dairy cows.
For this study 73 healthy and 55 cows with lameness were selected. Lameness was diagnosed by a
local specialized veterinarian, according to the standard procedure. The blood samples were collected
during clinical examination. The milking properties of cows were evaluated twice in a row—during
evening and morning milking. The selected cows in the current lactation did not receive veterinary
treatment, and correct hoof trimming was not performed at least four weeks before the experiment.
The measurements were taken by two electronic mobile milk flow meters (Lactocorder®®, WMB AG,
Balgache, Switzerland). Milk flow data were processed using LactoPro 5.2.0 software (Biomelktechnik
Swiss). Cortisol concentration was measured with the automated analyzer TOSOH®® AIA-360 (South
San Francisco, CA, USA). We found out that milk flow traits can act as biomarkers of lameness in
dairy cows. We determined that the milk yield in the first minute of healthy dairy cows was 1.77 kg
higher than that of lame cows. The electrical conductivity during the initial time of milking of healthy
cows was 0.24 mS/cm lower than that of the lame group. The milking duration of LA cows was
1.07 min shorter and the time of incline in milk flow from 0.5 kg/min till the reach of the plateau
phase was longer. The risk of lameness was most clearly indicated by an increase in blood cortisol
concentration; if its blood level in cows exceeds 1 μg/dL, the risk of identifying lameness increases
4.9 times.

Keywords: lameness; biomarkers; dairy cows; precision dairy farming

1. Introduction

Lameness is one of the most severe health problems in dairy cows and is described
as a disease that presents itself with a walking dysfunction, which is becoming a frequent
and serious problem of animal welfare, herd productivity, and herd management [1]. The
clinically severe lameness ranges from 26 to 54% [2], but foot lesions, that cause lameness
in cattle, are multifactorial and trauma, infection, and metabolic disorders are contributing
factors [3]. In order to identify healthy and lame cows, the information of the herd health
reports can be used [4]. Higher surveillance rates may increase the possibility of an earlier
detection of lameness, since most of the time farmers tend to underestimate the actual
lameness prevalence in their herd [5].

Although, measurement of pain in animals is challenging, there are established meth-
ods of estimating stress, caused by pain or discomfort. Thus, the assessment of stress in

Agriculture 2021, 11, 227. https://doi.org/10.3390/agriculture11030227 https://www.mdpi.com/journal/agriculture
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farm animals can be used to evaluate animal welfare [6]. Lameness can be defined as an
abnormal behavior (presenting itself with reduced velocity and altered stride, lowered
head, and curved back). It negatively affects animal production and welfare, such as a
reduced ability of the cow to engage in social interactions and with its environment [7].
Cortisol concentration of the animal can be a valuable biomarker of chronic stress. Signifi-
cant differences were found when comparing cortisol concentrations in hair of healthy and
diseased cows (i.e., retained placenta, displaced abomasum, clinical hypocalcemia, metritis,
clinical mastitis, and surgical procedures) [8]. Pain experienced from lameness could act as
a stressor in dairy cattle [9]. Adverse situations trigger responses of the adrenal glands,
which in turn increases glucocorticoid concentrations [10]. Cortisol has been suggested as a
stress biomarker in lame cattle [11]. Our past results indicate that lameness influenced the
frequency of visits to the automatic milking system (AMS), the productivity of the cows,
and the interval between milking. The sum of all the negative consequences has a major
impact on herd profitability, as well as on the health and welfare status of the cows. It is
highly recommended to perform a comprehensive analysis of AMS variables in order to
guarantee an effective management of performance and hoof health of dairy cows [12].
Miguel-Pacheco et al. [13] stated that further studies are required to investigate the poten-
tial use of capabilities and maximal benefits of the technologies available in AMS as a tool
to measure and monitor the health status of cows. According Van Hertem et al. [14] in
future research image-processing techniques should be tested for improving the lameness
detection accuracy. To increase the prediction accuracy in automatic lameness detection,
associations between the independent variables should be included [5].

The aim of the current study was therefore to evaluate the relation between lameness
and milk flow traits in dairy cows.

2. Materials and Methods

2.1. Animal Selection

The research was carried out in accordance with the standards set by the Animal
Welfare and Protection of the Republic of Lithuania (No. 108-2728; 2012, No. 122-6126).
The study approval number is PK016965.

Lithuanian black and white dairy cows without any reproductive or other disorders
were monitored carefully for claw health status on a commercial dairy farm. On the
farm 128 cows (on average 2.8 ± 0.2 lactations and 60.1 ± 3.1 days postpartum) were
selected for the experiment: 73 healthy (HL group) and 55 cows with lameness (LA group).
Lameness was diagnosed by a local veterinarian who specializes in hoof care, according
to the standard procedure described by Sprecher et al. [15]: 1 = normal, 2 = presence of a
slightly asymmetric gait, 3 = the cow clearly favored one or more limbs (moderately lame),
4 = severely lame, and 5 = extremely lame (non-weight-bearing lame). Visual locomotion
scoring was conducted once weekly for four consecutive weeks by the same observer.

The blood samples were collected during the exact general clinical examination by
using a tube without anticoagulant (BD Vacutainer, Crawley, UK) and were centrifuged at
3.500 RPM, 20 ◦C for 10–15 min. Samples were delivered to the Large Animal Clinic’s Labo-
ratory of Clinical Tests at the Lithuanian University of Health Sciences Veterinary Academy.

All cows with lameness were treated with Naxcel (100 mg ceftiofur/mL; Zoetis
Canada, Kirkland, QC, USA) administered subcutaneously at the dosage of 2.2 mg/kg
of body weight. Treatment was repeated at 24-h intervals. At the same time, Rimadyl
Cattle®® solution (50 mg carprofen/mL; Zoetis, Belgium) was delivered by subcutaneous
injection at a dose of 1.4 mg per 1 kg body weight only once.

We hypothesized that lameness has an impact on milk flow traits in dairy cows such
as: total milk yield, milk yield during the first minute, milk output during the first two
minutes, milk output during the first three minutes, time to milk flow of 0.5 kg/min, time
of main milking phase, time of incline in milk flow from 0.5 kg/min till the reach of the
plateau phase, time at plateau phase, time at decline phase, time at stripping, milking speed
traits (kg/min), highest milk flow, average milk flow on main milking phase, maximum
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milk yield per minute, and electrical conductivity (mS/cm). The latter includes electrical
conductivity at highest milk flow, mS/cm, electrical conductivity during the initial time,
mS/cm of milking (beginning peak level of the electrical conductivity), and maximum
electrical conductivity after reaching the highest milking speed, mS/cm (Table 1).

Table 1. Description of evaluated traits with Lactocorder®®.

Indicator Description

MGG Total milk yield (kg/milking)
MG1 Milk yield during first min (kg)
MG2 Milk yield during first 2 min (kg)
MG3 Milk yield during first 3 min (kg)

tMGG Time at MGG (min)
tS500 Time to milk flow of 0.5 kg/min

tMHG Time of main milking phase (min)
tAN Time of incline in milk flow from 0.5 kg/min till the reach of the plateau phase (min)
tPL Time at plateau phase (min)
tAB Time at decline phase (min)

tMNG Time at stripping (min)
HMF Highest milk flow (kg/min)

DMHG Average milk flow on main milking phase (kg/min)
HMG Maximum milk yield (kg) per min

ELHMF Electrical conductivity at highest milk flow (mS/cm)

ELAP Electrical conductivity during the initial time of milking (beginning peak level of the
electrical conductivity) (mS/cm)

ELMAX Maximum electrical conductivity after reaching the highest milking speed (mS/cm)
BIMO Absence or presence of bimodality

Cows on the farm are milked twice a day with 24 places of parallel milking parlors
(DeLaval VMS; DeLaval International AB Tumba, Botkyrka, Sweden). The milking proper-
ties of cows were evaluated twice in a row—during evening and morning milking. The
selected cows in the current lactation did not receive veterinary treatment, and correct hoof
trimming was not performed at least four weeks before the experiment.

The cows were studied during the winter period of the year 2019. Diets were formu-
lated according to requirements of the seventh revised edition of the Nutrient Requirements
of Dairy Cattle by National Research Council (NRC 2001) that meet or exceed the energy
needs for 550 kg lactating Holstein dairy cows producing 35 kg/day. TMR for cows
composed of 35% corn silage, 10% grass silage, 5% grass hay, and 50% grain concentrate
mash (50% barely and 50% wheat). Composition of ration—DM (%)—48.8; 83 NDF (% of
DM)—28.2; ADF (% of DM)—19.8; NFC (% of DM)—38.7; CP (% of DM)—15.8; NEL 84
(Mcal/kg)—1.6. TMR was fed to the cows twice per day at 10:00 a.m. and 08:00 p.m.

2.2. Measurements

Lameness in cows was assessed on the visual locomotion scale (VLS) from 1 to 5.
Based on these results, the cows were divided into two groups: HL group—healthy cows
(VLS score = 1–2 for all hooves) and LA group—lame cows (VLS ≥ 3 for at least one
hoof) [15].

The milk flow of cows was recorded twice in a row during the morning and the
evening milking. The measurements were taken by two electronic mobile milk flow meters
(Lactocorder®®, WMB AG, Balgache, Switzerland). Milk flow data were processed using
LactoPro 5.2.0 software (Biomelktechnik Swiss). Table 1 provides a detailed description of
the milk flow traits of the cows studied in this experiment.

The milk flow curves were grouped according to their shape: the normal curve
(absence of bimodality, BIMO = 0) and the bimodal curve (BIMO = 1; a flow pattern with
two rises separated by a clear drop in milk flow below 0.2 kg/min shortly after the start
of milking).
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Cortisol concentration was measured using the automated analyzer TOSOH®® AIA-
360 (South San Francisco, CA, USA), which uses a competitive fluorescent enzyme im-
munoassay, which runs in small, single-use test cups that contain all necessary reagents.
Daily checks, calibration curves, and maintenance procedures were performed as described
in the system operator’s manual.

2.3. Statistical Analysis

Data were analyzed using the IBM SPSS Statistics software (version 25.0, IBM, Munich,
Germany). Prior to analyses, the normality of all the data recorded in the study was
assessed by the Shapiro–Wilk normality test. The descriptive statistics of data are presented
as mean ± standard error of the mean of a sample (M ± SEM). Differences between the
groups of cows were inspected with the independent T test (p < 0.05). Pearson’s chi-square
test (χ2) for independence was used to determine if there was a statistically significant
relationship between cow health and the bimodality of their milk flow curve.

Using a binary multivariable logistic regression, we investigated the relationship of
lameness with blood cortisol concentration, the bimodality of the milk flow curve, and
those milk flow variables that showed statistically significant differences between the
groups of cows. Lameness for logistic regression analysis was defined as the dependent
variable (where 1 means lameness and 0 means no lameness), all explanatory variables
were divided into two classes based on their arithmetic mean (class 0 < M, class 1 ≥ M). In
the backward stepwise model, all insignificant variables were excluded in accordance with
the significance of the Wald test and the Hosmer and Lemeshow method. Wald’s test was
used to determine whether the effect on the dependent variable was statistically significant,
and the Hosmer–Lemeshow test—to confirm that the logistic regression model fits the
data and Nagelkerke coefficient R2—was used to assess the suitability of the model. Three
statistically significant indicators were used in the final multivariable binary regression
model. The continuous explanatory variables of the model (based on their arithmetic
mean) were divided into two categorical classes: MGG < 16.5 kg or ≥16.5 kg; blood cortisol
concentration < 1.00 μg/dL or ≥1.00 μg/dL. The results of the logistic regression are
presented in terms of the odds ratio (OR) and 95% confidence interval (PI).

3. Results

3.1. Relationship of Lameness with Milk Yield and Electrical Conductivity Traits of Dairy Cows

The data presented in Table 2 demonstrate that the milk yield of healthy dairy cows
was 1.77 kg higher than that of lame cows, as well as the milk yield in the first minute
(0.34 kg more; p < 0.01). Higher milk yields in healthy cows were also observed during the
second and third minutes of milking, but these differences between the groups were not
statistically significant.

Table 2. Milk yield (kg) traits of cows (n = 128).

Variable Group M SE

MGG
HL 17.14 0.366

LA 15.37 ** 0.422

MG1
HL 2.28 0.085

LA 1.94 ** 0.098

MG2
HL 5.38 0.177

LA 4.96 0.204

MG3
HL 8.33 0.256

LA 7.84 0.295
** p < 0.01. MGG—total milk yield (kg/milking); MG1—milk yield during first minute (kg); MG2—milk yield
during first 2 min (kg); MG3—milk yield during first 3 min (kg); HL—healthy group; LA—lameness group.
M—mean; SE—standard error of the mean of a sample.
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MGG—total milk yield (kg/milking); MG1—milk yield during first min (kg); MG2—
milk yield during first 2 min (kg); MG3—milk yield during first 3 min (kg); HL—healthy
group; LA—lameness group.

MGG was higher in the group of healthy cows (0.3 kg) in the morning and in the
group of LA cows. In contrast, it was higher in the evening (1.0 kg). The data are presented
in Figure 1.

Figure 1. Milk yield (kg) traits of cows by milking. MGG—total milk yield (kg/milking); MG1—milk yield during first
minute (kg); 2MG—milk yield during first 2 min (kg); 3MG—milk yield during first 3 min (kg).

The ELAP of healthy cows was statistically significantly lower (−0.24 mS/cm, p < 0.01)
than that of the LA group. It should also be noted that all the studied indicators of milk
electrical conductivity were higher in cows with signs of lameness compared with healthy
cows (Table 3).

Table 3. Electrical conductivity traits (mS/cm) in milk of cows, (n = 128).

Variable Group M SE

ELHMF
HL 5.72 0.042

LA 5.73 0.048

ELAP
HL 6.10 0.052

LA 6.34 ** 0.060

ELMAX
HL 5.98 0.054

LA 5.99 0.062
** p < 0.01; ELHMF—electrical conductivity at highest milk flow; ELAP—electrical conductivity during the
initial time of milking; ELMAX—maximum electrical conductivity after reaching the highest milking speed;
HL—healthy group; LA—lameness group. M—mean; SE—standard error of the mean of a sample.

We did not find statistically significant differences between the electrical conductivity
of evening and morning milking (Figure 2).

ELHMF—electrical conductivity at highest milk flow; ELAP—electrical conductivity
during the initial time of milking; ELMAX—maximum electrical conductivity after reaching
the highest milking speed; HL—healthy group; LA—lameness group.
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Figure 2. Electrical conductivity traits (mS/cm) in milk of cows by milking.

3.2. Relationship of Lameness with Milking Time and Speed Traits

The milking duration (tMGG) of LA cows was shorter (−1.07 min, p < 0.05), as was
the value of the tMNG (−0.41 min, p < 0.01), but the tAN duration was longer (0.26 min,
p < 0.001) compared to lame cows (Table 4). Similar trends were observed between the
groups of cows when comparing morning milking and evening milking data (Figure 3).

Table 4. Milking time (min) traits of cows by health status and lameness level (n = 0.128).

Variable Group M SE

tMGG
HL 9.29 0.304

LA 8.22 * 0.350

tS500
HL 0.18 0.012

LA 0.10 *** 0.014

tMHG
HL 7.62 0.260

LA 7.11 0.300

tAN
HL 0.57 0.035

LA 0.83 *** 0.041

tPL
HL 3.65 0.194

LA 3.13 0.224

tAB
HL 3.40 0.215

LA 3.14 0.247

tMNG
HL 0.61 0.104

LA 0.20 ** 0.120
* p < 0.05, ** p < 0.01, *** p < 0.01; tMGG—time at total milk yield; tS500—time to milk flow of 0.5 kg/min;
tMHG—time of main milking phase (min.); tAN—time of incline in milk flow from 0.5 kg/min till the reach
of the plateau phase (min); tPL—time at plateau phase (min); tAB—time at decline phase (min); tMNG—time
at stripping (min); HL—healthy group; LA—lameness group. M—mean; SE—standard error of the mean of
a sample.
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Figure 3. Milking time (min) traits of cows by milking. tS500—time to milk flow of 0.5 kg/min;
tMNG—time at stripping (min); tAN—time of incline in milk flow from 0.5 kg/min till the reach of
the plateau phase (min).

All means of the milking duration indices in healthy cows were higher during morning
and evening milking, except for tAN, which was higher in the LA cow group during both
milking periods (0.24–0.29 min, p < 0.05).

tMGG—time at total milk yield; tS500—time to milk flow of 0.5 kg/min; tMHG—time
of main milking phase (min); tAN—time of incline in milk flow from 0.5 kg/min till the
reach of the plateau phase (min); tPL—time at plateau phase (min); tAB—time at decline
phase (min); tMNG—time at stripping (min); HL—healthy group; LA—lameness group.

Lame cows had higher HMF and HMG values, but the differences with the healthy
group were not significant. The data are presented in Table 5.
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Table 5. Milking speed traits (kg/min) of cows by health status and lameness level (n = 0.128).

Dependent Variable Group M SEM

HMF
HL 3.19 0.099

LA 3.22 0.115

DMHG
HL 2.26 0.063

LA 2.24 0.073

HMG
HL 3.12 0.097

LA 3.15 0.112
HMF—highest milk flow (kg/min); DMHG—average milk flow during main milking phase (kg/min); HMG—
maximum milk yield (kg) per minute; HL—healthy group; LA—lameness group. M—mean; SEM—standard
error of the mean of a sample.

HMF—highest milk flow (kg/min); DMHG—average milk flow during main milking
phase (kg/min); HMG—maximum milk yield (kg) per minute; HL—healthy group; LA—
lameness group.

The average values of all milking speed traits were slightly (0.02–0.07 kg/min) higher
during the morning milking of healthy cows and, conversely, during the evening milking
(0.01–0.05 kg/min) higher in the group of lame cows (Figure 4).

Figure 4. Milking speed traits (kg/min) of cows by milking.

3.3. Relationship of Lameness with Bimodality in Milk Flow of Cows

After evaluating the milk flow curves of cows, we determined 37.5% of the total
bimodal curves. The analysis showed that the bimodality of the milk flow curve was
statistically significantly associated with the health status of cows (p < 0.001). As a result,
23.3% of HL cows were found to have bimodal curves, whereas for 56.4% of LA cows
bimodal curves were obtained.

In healthy cows (Figure 5) more bimodal milk flow curves were found during evening
milking (1.94 times), while in sick cows, on the contrary, during morning milking (1.24 times).
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Figure 5. Prevalence of bimodality in milk flow curves by health status of cows and milking. HL—
healthy group; LA—lameness group.

3.4. Relationship of Lameness with Blood Cortisol Concentration and Milk Flow Traits in Cows

The average blood cortisol concentration of lame cows (1.40 ± 0.082 μg/dL) was
2.1 times higher (p < 0.001) than in healthy cows (0.68 ± 0.071 μg/dL).

As can be seen from the data in Figure 6, healthy cows showed a higher blood cortisol
concentration before evening milking (1.93 times, p < 0.001), while lame cows, in contrast,
before morning milking (1.14 times).

Figure 6. Cortisol concentration (μg/dL) in blood of cows by health status and milking. HL—healthy
group; LA—lameness group.

We also found that the concentration of cortisol was 1.9 times higher (p < 0.001) in
cows with a bimodal milk flow curve (1.42 ± 0.090 μg/dL) compared to cows with a
normal milk flow curve (0.73 ± 0.070 μg/dL). Blood cortisol concentration was positively
associated with lameness as well as the bimodality of the milk flow curve.

Multivariable binary logistic regression analysis (Table 6) showed that the blood
cortisol concentration (p = 0.001), the total cow’s milk yield (p = 0.021), and the bimodality
of the milk flow curve (p = 0.015) can be used to predict lameness early. Of all the parameters
studied, the risk of lameness was most clearly indicated by an increase in blood cortisol
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concentration. If its blood level in cows exceeds 1 μg/dL, the risk of identifying lameness
increases 4.9 times (95% CI = 1.943–12.328).

Table 6. Binary multivariable regressions factors indicating a statistically significant risk in predicting
lameness of cows (n = 0.128).

Categorical
Variables

Classes p OR
95% CI. for OR

Lower Upper

BIMO
0

0.015 2.860 1.222 6.690
1

Cortisol
(μg/dl)

<1
0.001 4.895 1.943 12.328≥1

MGG (kg)
<16.5

0.021 0.382 0.169 0.865≥16.5
OR—odds ratio, PI—95% confidence interval. BIMO—absence (BIMO = 0) or presence of bimodality (BIMO = 1);
MGG—total milk yield (kg/milking).

4. Discussion

Lameness is the biggest challenge for dairy farms to overcome [14]. Associations
were found between lameness and many parameters measured automatically by sensors,
revealing the high potential of detecting lameness by analyzing automatically measured
performance and behavior data [16]. This study showed that the level of blood cortisol
in the HL group was lower than that in the LA group. Significantly higher levels of
plasma cortisol concentration in the LA group can be associated with stress experienced
by the animals in this group, and more pronounced reactions to the milking process.
Cortisol concentration can be a valuable biomarker of chronic stress. On the day of
diagnosis, elevated serum cortisol concentrations have been registered in cows diagnosed
with lameness [17].

The measurement of cortisol concentrations could detect clearly defined differences
between healthy and clinically diseased (i.e., retained placenta, clinical hypocalcaemia,
clinical mastitis, displaced abomasum, metritis, and surgical procedures) lactating cows
for evaluation of the effect of a stressor, though a comparison of cortisol concentration
with or without stressor would be necessary [18]. As previously noted, on the day of
diagnosis, increased concentrations of serum cortisol were determined in cows diagnosed
with lameness [19]. In a previous study the hair cortisol concentration of clinically sick (i.e.,
laminitis, metritis, mastitis) and cows with a compromised physiological state (parturition)
was higher than that of clinically healthy cows [19]. Redbo [20] reported that chronic stress
diminished the sensitivity of the adrenal cortex. Growing bulls responded to a long stress
period due to tethering with a lower plasma cortisol concentration after receiving ACTH
stimulation in comparison to bulls in the control group [21]. Hair cortisol concentrations
have been shown to correlate with adrenocortical activity after ACTH challenge during
the 14-d interval before the collection of hair [22], indicating its value as a biomarker
for painful and acute events in this period for animals kept in the same environment [8].
Fischer-Tenhagen et al. [6] claim that cortisol concentration acts as a valuable biomarker for
chronic lameness in dairy cows. Cortisol has been employed as a stress biomarker in lame
cattle [11]. On the day of diagnosis, serum cortisol concentrations were elevated in cows
diagnosed with lameness [23]. The study of O’Driscoll et al. [17] demonstrated, that on the
day of diagnosis, the cortisol concentration in serum was elevated in cows with sole ulcers.
Our data did not show any influence of the lameness score on the cortisol concentration,
which is in agreement with O’Driscoll et al. [17] who reported the cortisol concentration in
cows with sole hemorrhages.

In our study, the negative relationship between milk yield and blood cortisol con-
centration in cows of the LA group could be attributed to the deteriorating welfare of
animals due to lameness. The results of this study are confirmed by the results obtained
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by Miyazawa [24], where a negative association between milk yield and plasma cortisol
concentration and hormone release in response to the process of milking has been es-
tablished [25]. This study concluded that lameness is a stress factor in Lithuanian black
and white cows, which leads to elevated cortisol concentrations. The increase of stress in
lame cows affected the milking process—weaker stimulation of milk ejection reflex and
consequently lower milk yield in lame cows. During milking, the milk flow was recorded
with a specially rebuilt set of Lactocorders (Werkzeug und Maschinenbau Berneck AG,
Balgach, Switzerland). Over-milking has been defined as milking that has been continued
after the milk flow has suddenly dropped below 0.2 kg/min. Milk within the udder can be
divided into two fractions: cisternal milk, which is immediately extracted by the machine
and does not require oxytocin release, and alveolar milk, which can only be removed by
the active involvement of the animal, when oxytocin release affects the milk ejection [26].
When the animals are physiologically stressed, suffering from acute events, or long-term
bad conditions of milking [27], we can record physiological responses such as high levels
of cortisol and diminished sensitivity to ACTH [28]. Redbo et al. [20] documented that
chronic stress leads to a lowered sensitivity of the adrenal cortex. Reduced secretion of
ACTH and cortisol during continuous stressful situations, such as chronic lameness, is
a clear example of the hormonal regulation to prevent prolonged exposure to elevated
concentrations of cortisol as described by Knights and Smith [29]. It is often described that
this leads to a clear partial or total inhibition of the milk ejection reflex, a delay in milk
ejection, and/or a reduced milk flow [30]. Such a delayed milk ejection presents itself with
bimodal milk flow curves [31]. De Mol et al. [32] and Kamphuis et al. [33] also showed this
effect in their models. Milk yield may have an effect on prediction accuracy for lameness,
but Pavlenko et al. [34] even excluded it from their models because it had no association
with lameness in their data.

5. Conclusions

Concerning the important findings of our present study, we conclude that milk flow
traits can act as biomarkers of lameness in dairy cows. We found that milk yield and
yield in the first minute (0.34 kg) of healthy dairy cows was 1.77 kg higher than that of
lame cows. The electrical conductivity during the initial time of milking of health cows
was 0.24 mS/cm lower than that of the LA group. The milking duration of LA cows was
1.07 min shorter, the time of incline in milk flow from 0.5 kg/min till the reach of the
plateau phase was longer. The risk of lameness was most clearly indicated by an increase
in blood cortisol concentration. Cows with blood cortisol exceeding 1 ug/dL are 4.9 times
more likely to be lame. From practical point of view the results of our study suggest that
lameness of cows had negative impact on milk flow traits. This can help to detect lame
cows via their milk flow traits.
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Abstract: This study is focused on the estimation of fuel consumption of the power-shift transmission
(PST) tractor based on PTO (power take-off) dynamometer test. The simulation model of PST
tractor was developed using the configurations and powertrain of the real PST tractor. The PTO
dynamometer was installed to measure the engine load and fuel consumption at various engine load
levels (40, 50, 60, 70, 80, and 90%), and verify the simulation model. The axle load was also predicted
using tractor’s specifications as an input parameter of the simulation model. The simulation and
measured results were analyzed and compared statistically. It was observed that the engine load,
as well as fuel consumption, were directly proportional to the engine load levels. However, it was
statistically proved that there was no significant difference between the simulation and measured
engine torque and fuel consumption at each load level. The regression equations show that there
was an exponential relationship between the fuel consumption and engine load levels. However, the
specific fuel consumptions (SFC) for both simulation and measured were linear relationships and
had no significant difference between them at each engine load level. The results were statistically
proved that the simulation and measured SFCs were similar trends. The plow tillage operation could
be performed at the gear stage of 7.65 km/h with higher working efficiency at low fuel consumption.
The drawback of this study is to use a constant axle load instead of dynamic load. This study
can provide useful information for both researchers and manufacturers related to the automated
transmission of an agricultural tractor, especially PST tractor for digital farming solutions. Finally,
it could contribute to the manufacturers developing a new agricultural tractor with higher fuel
efficiency.

Keywords: tractor; powershift transmission; fuel consumption; load level; simulation model

1. Introduction

Tractors, which are machines, deal with various works including agricultural, con-
struction, and forestry [1]. Specifically, agricultural tractors perform various agricultural
works such as plow tillage [2], subsurface drainage operation [3], rotary [4], and baler [5].
According to the Mordor Intelligence statistics [6], the global market of agricultural tractors
is expected to have 4.02% of annual growth rate in 2025 than that in 2020. Among them,
approximately 50% of the tractor global market is in the Asia–Pacific region. In Korea,
farmers aged over 65 years old account for 6.7% of the total in 2010; this is expected to be
11.3% in 2050 [7,8]. To compete with the largest tractor manufacturing companies in the
global market, and to fulfill the consumers’ demands, advanced technologies along with
the highest facilities should be introduced.
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Advanced technologies such as autonomous, artificial intelligence are applied for
agricultural tractors considering driving comfort for aged farmers, higher working ef-
ficiency due to lack of labor, and precision farming for increasing production [9]. To
confirm the users’ flexibility, precise work, and higher efficiencies during operations, sev-
eral researchers and manufacturers are developing numerous powertrain systems, these
include manual transmission (MT), automatic transmission (AT), dual-clutch transmission
(DCT), continuously variable transmission (CVT), and power-shift transmission (PST) for
agricultural tractors [10,11].

The PST is one of the standard modern tractor systems that is comparatively easier
and convenient for the user to control and maintain the vehicle on-field [12]. The PST has
two types: the partial PST, which can shift two or more speeds without clutch, having
clutch to shift gears, and cannot control machine itself; and the full PST, which can shift all
gears without clutching, and the machine can control itself. The PST allows changing gear
stages precisely on the run under load conditions of the vehicles [13]. The PST is equipped
with a wide range of gear stages without a loss (or minimum) of power during power
delivery from engine to driving axles [9]. The PST can apply from low power vehicles to
high power vehicles and has become popular as a precise technology. The performance of
agricultural machinery varies from nation to nation based on the working environment.
Therefore, it is important to conduct the efficiency of the PST tractor.

The fuel consumption of the tractor depends on workloads because the working
loads are varied by operation conditions such as engine speed, soil properties of the field,
operation types based on implements, and transmission gear stages. Among them, the
engine speed and transmission gear stages mostly affect the fuel efficiency of the tractor [14].
The fuel efficiency of the tractor can be optimized by adjusting engine load conditions. The
engine load varies on throttle opening of the engine [15]. Therefore, the engine load level
of an engine was considered as mostly affected factor to estimate fuel consumption in this
study.

Numerous approaches have been proposed to optimize engine speed for improving
the fuel efficiency of the tractors. A passive eco-driving system derived for optimal engine
speed considering workloads [16]. Jiang [17] developed a PID (proportional-integral-
derivative) controller to maintain engine speed for estimating fuel consumption. The
performance was reported as better than the existing mechanical governor. Lee [14]
developed a model-based controller for fuel consumption based on working loads during
plow tillage operation. Therefore, the engine load level is an important factor to estimate
the optimal fuel consumption of the agricultural tractors.

The above literature revealed that fuel consumption can be optimized by controlling
engine load levels. However, the development of theoretical or model-based control algo-
rithms to control the engine speed is comparatively difficult for highly sensible various
tuning methods and has limitations due to time delay, and feedback control process [18].
Moreover, the model-based controllers are needed to validate by field experiment, which re-
quires a tractor installed measurement system that is highly time-consuming and expensive.
The only simulation can be an alternative method to minimize cost and experimental time.
Saunders [19] developed the discrete element method (DEM) simulation to improve and
verify the moldboard plow performance. They believed the simulation method is much
more convenient, easier, high accuracy, as well as time-saving. Therefore, a comprehensive,
easier, and highly adaptable and reliable simulation method is applied to estimate the fuel
consumption in this study.

In addition, digital farming has recently been one of the interesting and value-added
topics in automation or unmanned agricultural machinery as well as precision agricul-
ture. As the engine load greatly affects fuel consumption, power transmission efficiency,
the decision-making support system of an automatic transmission system or unmanned
agricultural vehicles, is one of the key issues for smart digital farming. To address the
current issue for digital farming, PTO (power-take-off) dynamometer, which is an indoor
test bench, is commercially used as a simple engine load control device in this study. PTO
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dynamometer, which does not require a long period to install, and comparatively low cost
than that of measurement tractor for measuring the fuel consumption according to the
engine load conditions. The engine load is adjusted, controlled, and optimized by the PTO
dynamometer load.

This study is a basic study to develop an efficient PST tractor based on different field
conditions, implement type, and crop types according to the required hydraulic power,
as the PST tractor transmission is performed by the hydraulic pressures. The novelty of
this study is that the fuel consumption of the PST tractor was estimated by the simulation
method and verified for optimal engine load conditions based on the measured PTO
load by PTO dynamometer. Therefore, the objective of this study is to estimate the fuel
consumption of PST tractor based on engine load levels using the measured PTO loads by
PTO dynamometer. The specific objectives are as follows: (i) to measure engine loads by
PTO dynamometer for verifying the simulation model, and (ii) to estimate and analyze the
specific fuel consumption of PST tractor.

2. Materials and Methods

2.1. Tractor Transmission Configurations

In this study, a 95 kW PST tractor (TS130, TYM Co., Ltd., Gongju, Korea) was used to
estimate the fuel consumption. The dimension of the tractor (Length × Width × Height)
were 4490 × 2360 × 2940 mm. The rated engine torque is 415 Nm at the rated rotational
speed of 2200 rpm. The transmission is power-shift with a combination of 18 × 18 gear
stages for both forward and reverse directions. The weight distribution of the PST tractor
is 40.3 and 59.7% of the front and rear axle, respectively, whereas the gross weight is 44,587
N. The specifications of the PST tractor were listed in Table 1.

Table 1. The specifications of the power-shift transmission (PST) tractor used in this study.

Parameters Specifications

Model TS130, TYM, Korea

Weight (N) Gross weight (N) 44,587
Weight distribution (%) 40.3 and 59.7

Engine

Type Tier 4
Rated power (kW) 95
Rated torque (Nm) 415
Rated speed (rpm) 2200

Shifting method Power-shift

Transmission
Gear stages 6 (1, 2, 3, 4, 5, 6)

Sub-shifting stages 3 (L, M, H)
Combinations (forward × reverse) 18 × 18

Tire
Model (front and rear) 380/85R24 and 460/85R38

Diameter (front and rear) (mm) 1256 and 1770

The powertrain of the PST tractor is composed of 2 power shifts (high and low), main
clutch: 6 driving shifts (1, 2, 3, 4, 5, and 6) of hydraulic power-shift type and sub-shifting: 3
range shifts (L, M, and H) of mechanical type. The engine power is transmitted to the main
clutch dealing with the forward-reverse and high-low shifts. Sequentially the driving shaft
is connected to driving shift gear, range shaft gear, and PTO shift gear to drive the rear PTO.
This is the partial PST because the sub-shift (Range shift) is performed by a mechanical
gear system. The schematic diagram of the powertrain of the partial PST tractor is shown
in Figure 1.
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Figure 1. The schematic diagram of the PST tractor transmission.

2.2. Tractor Dynamic Model
2.2.1. Axle Load Prediction

To estimate the fuel consumption of an agricultural tractor, load conditions should
be considered. As the main clutch of PST is performed by the hydraulic power, the axle
torque cannot predict using the gear ratio of the transmission. Therefore, the axle torque
was predicted using tractor specifications. Tractor based prediction model is defined as
the theoretical axle torque. Theoretical axle torque of a tractor is calculated under ideal
conditions using weight and engine specifications [20]. Both front and rear axle torques
of the PST tractor can be calculated using Equations (1)–(4) based on the gross weight of
tractor, weight distribution ratio, traction coefficient, and wheel radius.

Tf = Wf × μ × rf, (1)

Tr = Wr × μ × rr, (2)

Wf = W × ɷ f, (3)

Wr = W × ɷ r, (4)

where Tf and Tr are the front and rear axles torque (Nm), respectively; W, Wf, and Wr are
the gross, front, and rear axle weight of the tractor (N), respectively; rf and rr are the front
and rear wheel tires radius (m), respectively; μ is the coefficient of traction (0.8) [21], ɷ f,
and ɷ r are the weight distribution ratio of both front and rear axles (%), respectively.

2.2.2. Specific Fuel Consumption (SFC)

To analyze the actual fuel consumption, the engine loads, which were measured by
PTO dynamometer were used to calculate the specific fuel consumption (SFC) [22]. The
engine performance of an agricultural tractor is highly affected by fuel efficiency due to the
working load variation. It does not mean that fuel consumption is the only factor of fuel
efficiency. The SFC is the index of the fuel efficiency that is the work done by an engine per
unit horsepower and per unit time. The SFC of an agricultural tractor was calculated using
the following Equations (5) and (6) [23].

SFC =
FC

Pengine
, (5)
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Pengine =
2π × Tengine × Nengine

60, 000
, (6)

where FC is the fuel consumption (kg/h); SFC is the specific fuel consumption (g/kWh);
Pengine is the engine power (kW); Tengine is the engine torque (Nm), and Nengine is the
engine speed (rpm).

2.3. Simulation Model of PST Tractor

In this study, the simulation model of PST was developed based on the powertrain
of the PST tractor. The simulation model of the PST was developed using the commercial
simulation software namely LMS AMESim (version 16, SIEMENS AG, Munich, Germany),
which is operated by the 95 kW engine. The engine power is generally divided into the
main transmission and rear PTO. The engine power of the main transmission is supplied to
the driving axle through the high-low, hydraulic clutch pack (main clutch), and mechanical
sub-shifting (range shifts: creep and range). In the PST, the constructions of three main
clutch packs are the same. Therefore, the simulation model was simplified and conducted
simulation using one main clutch pack to estimate the fuel consumption precisely. In this
study, the measured data and engine characteristics map were applied to conduct and
verify the simulation model of the PST. The predicted axle load was also used as an input
parameter to characterize the simulation model as a real PST tractor used in this study. The
simulation model of the entire PST tractor was shown in Figure 2.

Figure 2. The simulation model of the entire PST tractor used in this study.

2.4. Dynamometer Test Bench and Specifications

In this study, a PTO dynamometer, which is an indoor test bench was installed to
measure the fuel consumption of the PST tractor according to the engine speed. The fuel
consumption measurement device (REO-CFMT, 3R Co., Ltd., Siheung, Korea), is used in
this study. The PTO dynamometer was connected to the rear PTO of the PST tractor and
the engine load was adjusted by controlling the dynamometer load. Quantum X (HBM:
MX840B) data acquisition system (DAQ) was used to measure the dynamometer load and
fuel consumption of the PST tractor. Using the measured fuel consumption, the SFC of the
PST tractor was determined at various throttle levels of engine. The experiment of the PTO
dynamometer test was carried out by [24]. The PTO dynamometer test bench was shown
in Figure 3.

In this study, the engine load levels were divided into six levels like 40, 50, 60, 70 80,
and 90%. The full load (100%) condition was applied to develop the engine characteristics
map to conduct the simulation because the fuel consumption of tractor can be optimized by
operating the engine at full load condition [25,26]. Farias et al. [27] also considered not less
than 30% of the engine load level. According to the Nebraska tractor test, the SFC increases
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for more than 30% of engine loads [28]. Because the engine is required to have very low
speed and longer gears; also, the tractor is required to apply withstanding its load.

Figure 3. The PTO dynamometer test bench used in this study.

The eddy current type PTO dynamometer (SE 500, SAJ, Pune, India) was used in this
study. This type of dynamometer offers a wide range of capacities from 5 to 720 kW for
engine test. In this study, a 500 kW PTO dynamometer was installed and the load cell
type was U4000. It has the precision strain gauge load cell torque measurement system
that provides high accuracy torque measurement for engine test, where was maximum
torque of 3000 Nm at 1800 rpm. The accuracy of this dynamometer: ±0.25% of the rated
torque and ±1% of speed, where was the speed range of 1600~4500 rpm. The detailed
specifications of the PTO dynamometer used in this study were listed in Table 2.

Table 2. The specifications of the dynamometer used in this study.

Parameters Specifications

Model SE 500, SAJ, India
Type EDDY Current

Maximum power (kW) 500
Maximum torque (Nm) 3000 @1800 rpm

Speed (rpm) 1600~4500
Inertia (kgm2) 2.196
Load cell type U4000

Weight (kg) 1500

2.5. Simulation Procedures
2.5.1. Model Verification and Generalization

The raw data, which were measured using PTO dynamometer were preprocessed
by data filtering. The data filtering was used to remove the observations that contain the
errors or undesirable observations for analysis and applied in the simulation model for
verifying the model. The entire measured data were 12 sets, which were divided into 7 and
5 sets for the calibration and validation, respectively, in this study. The calibration datasets
were applied to the simulation model of the PST tractor to determine the hourly fuel
consumption and finally, the specific fuel consumptions were calculated. The validation
datasets were used to verify the simulation model.
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In this study, the plow tillage load was also applied to generalize the verified simula-
tion model. The representative plow tillage load data was calculated from literature [14].
To select the suitable gear stage at low fuel consumption, the representative load data
was plotted in the engine performance curve that generalized the simulation model for
agricultural operations. Because, the engine performance curve has two regions: one is
governed region which was controlled by governor, and another is the ungoverned region
which was controlled by the engine load. Generally, the fuel consumption is comparatively
low before ungoverned region but the engine might be shut down at a low speed due to
the working load fluctuations. Moreover, the fuel consumption in the governed region was
higher whereas was the engine torque is lower. Tractor might be unable to perform field
operations at high load conditions. Therefore, the plow load data should be plotted on the
engine performance curve to select a suitable gear stage for plow operation. The procedure
of the model verification and generalization is shown in Figure 4.

Figure 4. The block diagram of model verification and generalization used in this study.

2.5.2. Engine Characteristics Map

The engine static torque is a function of engine speed and throttle level [10,29]. The
mathematical model of engine torque is in Equation (7) for a 95 kW engine.

Tengine = f
(
Nengine, a

)
, (7)

where Tengine is the engine torque (Nm); Nengine is the engine speed (rpm), and a is the
throttle level (%).

Throttle level means to control the engine power by regulating the fuel amount to enter
into the engine. Engine throttle opening greatly depends on throttle angles [30]. In this
study, the engine characteristics map was developed using AMESim 3D graphical platform.
The engine characteristic map was developed for engine full load (100%) condition from
engine test. The engine torque was calculated at each throttle level (%) using Equation
(7), which was applied to develop the static engine map used in this study, whereas the
maximum torque was 500 Nm at 1600 rpm for 100% of throttle opening. The simulation
was conducted using the developed engine map, shown in Figure 5.
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Figure 5. The 95 kW engine map used in this study.

2.5.3. Simulation Parameters

The block diagram of the simulation procedure was shown in Figure 6. The engine
power is divided into the transmission and rear PTO of the tractor. The transmission
power supplied by the forward-reversed shaft was delivered to the driving axle through
the high-low, the main clutch operated hydraulically, and mechanical sub-shifting. In this
study, the measured load was applied in the rear PTO to conduct the simulation. The axle
load was also predicted using a theoretical model, where the specifications of a real PST
tractor were used, and a 95 kW engine was applied in the simulation model. The engine
characteristics map (Figure 5) was applied to the engine.

Figure 6. The block diagram for applied simulation parameters in this study.

2.6. Analysis Method

In this study, several statistical approaches were used in this study to evaluate the
estimated fuel consumptions for both simulation and measured experiment. One-way
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ANOVA (Analysis of variance), and Duncan’s multiple range test (DMRT) were performed
to analyze the significance of the engine torque for both simulation and experimental
methods with respect to the throttle level of the engine. The fuel consumption was also
analyzed statistically. The software used for the analysis was IBM SPSS Statistics (SPSS
25, SPSS Inc., New York, NY, USA). The error and accuracy of the SFC for various throttle
levels were analyzed for both simulation and experimental methods by regression methods.
The coefficient of determination and p-value were also determined. The R-square value,
which is over 0.90 is considered reliable for comparison between two variables [31]. The
R-squared can be obtained by the following Equation (8).

R2 = 1 − ∑i (yi − ŷi)
2

∑i (yi − ý)2 , (8)

where R2 is the regression coefficients of the SFC for both methods; yi is the ith measured
SFC (g/kWh); ŷi is the ith simulation SFC (g/kWh), and ý is the mean of the measured
SCF (g/kWh).

The simulation and experimental methods by PTO dynamometer test to measure
the SFC of the tractor were also compared statistically and determined the accuracy and
error by the root mean square error (RMSE) and relative deviation (RD) along with the
R-squared value for both methods. The RMSE and RD can be obtained using the following
Equations (9) and (10).

RMSE =

√
1
N ∑i(ŷi − yi)

2, (9)

RD =
RMSE
Mean

× 100, (10)

where N is the number of the total SFC data; RMSE is the root mean square error of the
SFC (%), and RD is the relative deviation of the SFC (%), which was calculated by the ratio
of the RMSE to the mean of the SFC of the tractor.

3. Results

3.1. Engine Torque

In this study, engine torque was measured based on the engine load levels (40, 50, 60,
70, 80, and 90%) by installing PTO dynamometer and the simulation model was calibrated
to conduct the simulation of the model. It was observed that the engine torques were
gradually increased and reached the maximum engine torques for each load level at
1600 rpm of the engine speed. After then, the engine torques decreased gradually until the
engine speed of 2200 rpm. It was noticed that there was a similar trend for both simulation
and measured engine torques. Even there was almost the same increasing rate of the engine
torque for each load level.

It was observed that the highest maximum engine torques for both simulation and
measured were found at 90% of load level and the lowest maximum torques for both
methods were at 40% of load level. It means that the engine torques were increasing with
an increasing rate of the engine load levels. The results indicate that the engine torques
were directly proportional to the engine load levels. Both simulation and measured engine
torques were shown in Figure 7.

After analyzing, it was found that the highest maximum engine torques for both
simulation and measured were 455 and 450 Nm at 90% of load level, respectively. The
lowest maximum torques for both methods were also found 200 Nm at 40% of load
level. The simulation and measured engine torques were also compared statistically using
ANOVA along with DMRT test. It was noticed that there was no significant difference
among the simulation and measured engine torques at each load level, where the p-value
was less than the significant value of 5%. The ANOVA along with DMRT test results of
both simulation and measured engine torques were listed in Table 3.
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Figure 7. The measured and simulation engine torques at various load levels.

Table 3. The statistical analysis of both simulation and measured engine torques at various engine load levels.

Method Simulation Engine Torques (Nm)
p-Value

Load Levels (%) 40 50 60 70 80 90

Maximum 200 247.52 306.12 346.53 400 455

0.000

Minimum 164.36 205.45 254.08 287.62 335 369.80
Avg. ± S.D.* 186.62 ± 11.30 a 230.08 ± 14.49 b 284.55 ± 17.92 c 322.11 ± 20.28 d 371.76 ± 23.70 e 419.41 ± 28.07 f

Method Measured Engine Torques (Nm)

Maximum 200 250 300 350 400 450
Minimum 166 207.50 249 290.50 332 373.50

Avg. ± S.D.* 185.91 ± 11.71 a 232.38 ± 14.63 b 278.86 ± 17.56 c 325.34 ± 20.48 d 371.81 ± 23.41 e 418.29 ± 26.34 f

a,b,c,d,e,f Means within each column with the same lettering are not significantly different at p < 0.05 according to Duncan’s multiple range
test. * Avg. ± S.D. is the Average ± Standard Deviation.

3.2. Specific Fuel Consumption (SFC)

In this study, the fuel consumption was measured to estimate the SFC. Figure 8 shows
the simulation and measured hourly fuel consumption at six levels (40, 50, 60, 70, 80, and
90) of engine load. It was observed that fuel consumption of both simulation and measured
were also increasing sharply with an increase of the engine load levels. For load levels of 40,
50, and 60%, the increasing rate of fuel consumption was almost parallel with each other. In
the case of 70% of engine load level, the fuel consumption was dramatically increased after
2000 rpm of engine speed. For 80 and 90% of engine load levels, the fuel consumptions
were also parallel between them but there were comparatively higher mean differences
from the fuel consumption of 70% of engine load level.

The highest and lowest maximum hourly fuel consumptions for both simulation
and measured were found around 20.22 and 19.95, and 6.42 and 6.55 kg/h at 90 and 40%
of engine loads, respectively. It was observed that the average increasing rate for both
simulation and measured fuel consumption were comparatively higher at 70% of engine
load than that of other load levels, accounting for 8.45 and 8.60 kg/h, whereas the average
fuel consumptions for both simulation and measured at 60 and 80% of engine loads were
6.14 and 6.24, and 12.93 and 11.56 kg/h, respectively. The statistical analysis results show
that there was no significant difference between simulation and measured hourly fuel
consumption at each load level because the statistical analysis proved that the p-value
between the simulation and measured fuel consumption was less than the significance
level of 5%. The statistical analysis results of hourly fuel consumptions for both methods
were listed in Table 4.
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Figure 8. The simulation and measured hourly fuel consumption at various load levels.

Table 4. The statistical analysis of both simulation and measured hourly fuel consumptions at various engine load levels.

Method Simulation Fuel Consumption (kg/h)
p-Value

Load Levels (%) 40 50 60 70 80 90

Max. at 2200 rpm 6.42 7.72 10.14 15.19 17.08 20.22

0.000

Min. at 1100 rpm 1.57 2.42 2.42 4.88 7.67 8.90
Avg. ± S.D. 3.76 ± 1.41 a 4.88 ± 1.70 b 6.14 ± 2.04 c 8.45 ± 3.23 d 12.93 ± 3.18 e 15.15 ± 3.65 f

Method Measured Fuel Consumption (kg/h)

Max. at 2200 rpm 6.55 7.88 10.35 15.19 17.43 19.95
Min. at 1100 rpm 1.61 2.47 3.36 4.98 7.83 9.08

Avg. ± S.D.* 3.84 ± 1.44 a 4.98 ± 1.73 b 6.27 ± 2.09 c 8.60 ± 3.23 d 11.56 ± 3.25 e 15.35 ± 3.58 f

a,b,c,d,e,f Means within each column with the same lettering are not significant different at p < 0.05 according to Duncan’s multiple range test.
* Avg. ± S.D. is the Average ± Standard Deviation.

In this study, both simulation and measured hourly fuel consumptions (FC) were used
to calculate the SFC of the engine. Further, the engine power (Pengine) was calculated from
the measured engine torque and speed to determine the SFC (g/kWh). Figure 9 shows
the average SFC of the engine for both simulation and measured at different load levels.
The regression equations (y) of the SFC of both simulation and measured with respect to
the engine load levels represented that the SFC of both simulation and measured were
increased almost 13.66 and 13.94 g/kWh, respectively for each 10% increase of engine
loads. It indicates the engine load levels have a significant effect on the SFC of the PST
tractor. From regression equations, it was also observed that the SFC of both methods
were an exponential relationship with different engine load levels. The R-squared of both
simulation and measured SFC were found almost 0.9831 and 0.9835, respectively.

The ANOVA and DMRT test results of the SFC for both simulation and measured
at various load levels were listed in Table 5. The analysis results show that there was no
significant difference between the simulation and measured SFC at the significance level
of 5%, whereas the standard error (SE) was 1.14. The maximum average (Avg. ± S.D.)
SFC of both simulation and measured were 239.91 ± 51.37 and 244.81 ± 52.41 g/kWh,
respectively at 90% of engine load level, whereas the minimum average (Avg. ± S.D.)
SFCs were calculated at 40% of engine load, accounting for approximately 51.35 ± 9.81 and
52.40 ± 10.01 g/kWh for both simulation and measured methods, respectively.
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Figure 9. The regression of the average measured and simulation Specific Fuel Consumption (SFC)
at various load levels.

Table 5. The statistical analysis of both simulation and measured specific fuel consumptions (SFC) at various engine load
levels.

Method Specific Fuel Consumption (g/kWh)
p-Value SE

Load Levels (%) 40 50 60 70 80 90

Simulation 51.35 ± 9.81 a * 68.81 ± 14.22 b 18.71 ± 18.71 c 118.46 ± 30.24 d 202.92 ± 44.86 e 239.91 ± 51.37 f
0.000 1.14Measured 52.40 ± 10.01 a 70.21 ± 14.51 b 90.14 ± 19.09 c 120.88 ± 30.24 d 207.06 ± 45.78 e 244.81 ± 52.41 f

a,b,c,d,e,f Means within each column with the same lettering are not significant different at p < 0.05 according to Duncan’s multiple range test.
* Average ± Standard Deviation.

To identify the similarity, accuracy, tendency, and error between the simulation and
measured SFC, linear regression, R2, RMSE, and RD were calculated. Figure 10 shows the
regression analysis of SFC for both methods. The R-squared value was 0.99, whereas the
RMSE and RD were found approximately 1.89% and 2.54%. From the regression equation
(y), it is clear that the simulation and measured SFCs were a linear relationship between
each other. The results indicate that the SFC for both simulation and measured were a
similar trend.

It is important to generalize the simulation model at low fuel consumption and high
engine torque for agricultural operations. Therefore, the representative plow tillage load
data was plotted in the engine performance curve (Figure 11). It was observed that the
SFC was steadily increasing after 1500 rpm of the engine. It means that the engine should
operate at a low speed to reduce fuel consumption. However, the working efficiency would
be lower at low engine speed. It might suddenly turn off the engine due to the fluctuation
of loads. Therefore, the engine speed should be adjusted within the ungoverned region
where the working efficiency was comparatively higher but the fuel consumption was
relatively lower.
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Figure 10. The linear regression of the average simulation and measured SFC.

Figure 11. The engine performance curve at engine full load condition.

The plow operation loads, which were calculated comparing with the literature [14],
were performed for two gear selections. M2-High and M3-Low were 7.56 km/h and 9.81
km/h, respectively, which were selected to perform plow tillage at the same agricultural
field. The ratios of the calculated torque to the rated torque were presented in Figure 11. It
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showed that the plow tillage operation loads belonged to the ungoverned region of the
engine performance curve, where the plowing at the gear stage of 7.56 km/h was relatively
low fuel consumption and high working load for full engine load conditions. In the case
of the 9.81 km/h gear stage, the fuel consumption was comparatively higher with low
working load.

4. Discussion

In this study, the engine torque and fuel consumption of the PST tractor were measured
at various engine load levels (40, 50, 60, 70, 80, and 90%); also, the simulation model of the
PST tractor was verified by the measured PTO load data. The results of this study were
discussed as below:

(1) It was noted that the engine torques for both simulation and measured were directly
proportional to the engine load level. The statistical analysis (DMRT) proved that
there was no significant difference between the simulation and measured engine
torque at each load level. Kolator and Bialobrzewski [32] reported that engine load
condition has a highly significant effect on tractor performance.

(2) It was observed that the increasing rates of the fuel consumptions were parallel with
each other and sharply increased with respect to the engine speed. Only for 70% of
engine load level, the fuel consumption was dramatically increased after 2000 rpm
of engine speed. It might be caused by an excessive flow that is the main reason
for fuel losses [33]. Those results indicate that the hourly fuel consumptions were
also directly proportional to the engine load levels. The SFCs at various engine load
levels were analyzed statistically. The statistical analysis showed that there was no
significant difference between the simulation and measured SFC as the significant
level of 5%. The regression analysis with respect to throttle level showed that the
increasing rate for both the simulation and measured SFCs at each load level. The
results indicated that the engine load levels have a highly significant effect on the SFC
of the PST tractor. Shafaei [31] reported over 0.90 of R-squared value will be reliable
to verify the relationship. From the regression equation, it is clear that there was an
exponential relationship between the SFC and engine load levels.

(3) To distinguish the similarity, accuracy, and error between the simulation and experi-
mental methods to estimate the SFC, statistical tests (R-squared, RMSE, and RD) were
also conducted. From the regression equation, it was clear that there was a linear
relationship between the simulation and measured SFC. The statistical results proved
that the simulation SFC was similar to the measured SFC.

(4) It was observed that the engine generated power was higher at 9.81 km/h (M3-Low)
than the soil strength, which indicated the loss of power. It was believed that the
power loss had occurred by the travel reduction ratio (slip) [34]. The results indicated
that the gear selection of 7.56 km/h (M2-High) was highly beneficial to conduct
plow tillage operation using the 95 kW partial PST tractor considering high engine
torque. To optimize the fuel consumption, the gear selection should be shifted to
the M2-High instead of M3-Low because M3-Low generates low engine torque that
might be suddenly turn-off the engine due to high soil strength [14].

In addition, several researchers proved the reliability of the simulation method based
on comfortability, easier, and convenience. The simulation method, which has also been
reliable to conduct the performance, design, estimation, and evaluation [35] of the agricul-
tural machinery, reduce labor cost and time-consuming instead of field experiment [36].
The results revealed that the PTO dynamometer can easily control the engine load to esti-
mate fuel consumption. As the simulation results of SFC represent the PTO dynamometer
measured SFC results, the simulation results can be commercially applied to improve the
fuel efficiency of the PST tractor. Finally, this study can contribute to the manufacturers to
develop a new agricultural tractor with high fuel efficiency.
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5. Conclusions

This study was emphasized to simulate the fuel consumption of the PST tractor. The
simulation of the PST tractor was developed using the configurations and powertrain
of the real PST tractor manufactured by the Korean company. The PTO dynamometer,
an indoor test bench, was installed to measure the engine load and fuel consumption at
various throttle levels (40, 50, 60, 70, 80, and 90%) of the PST tractor according to the engine
speed. The tractor axle load was predicted using the specifications of the tractor as an input
parameter of the simulation model. The major findings of this study were listed as below:

(1) It was observed that the highest maximum engine torques for both simulation and
measured were 455 and 450 Nm at 90% of engine load, respectively. The lowest
maximum torques for both methods were also found at 200 Nm at 40% of engine
load. It was also observed that the maximum engine torques for both simulation
and measured were at 1600 rpm of engine speed for all engine throttle levels. The
statistical analysis (DMRT) proved that there was no significant difference between the
simulation and measured engine torque at each throttle level. However, it was noticed
that the engine torques for both simulation and measured were directly proportional
to the engine throttle level.

(2) The highest and lowest maximum hourly fuel consumptions for both simulation
and measured were found around 20.22 and 19.95, and 6.42 and 6.55 kg/h at 90 and
40% of engine load, respectively. It was observed that the average increasing rate
for both simulation and measured fuel consumption were comparatively higher at
70% of engine load than that of other engine load levels, accounting for 8.45 and 8.60
kg/h. The regression equations of the SFC of both simulation and measured with
respect to the engine throttle levels represented that the SFC of both simulation and
measured were increased almost 13.66 and 13.94 g/kWh, respectively for each 10%
increase of engine load. The R-squared of both simulation and measured SFC were
found almost 0.9831 and 0.9835, respectively. The analysis results show that there
was no significant difference between the simulation and measured SFC, whereas the
standard error (SE) was 1.14. The R-squared value was 0.99, whereas the RMSE and
RD were approximately 1.89% and 2.54%, respectively.

In summary, the engine torques were directly proportional to the engine load levels.
The statistical analysis (DMRT) proved that there was no significant difference between
the simulation and measured engine torques. The simulation and measured SFCs were an
exponential relationship with various engine load levels. However, both simulation and
measured SFCs were linearly relationship and have statistically no significant difference
between them. It was also found a similar trend for both methods.

The drawback of this study is the prediction load using tractor and engine speci-
fications, which were applied to the axle, were constant. Howard [37] conducted the
fuel efficiency of the continuously variable transmission (CVT) tractor with respect to
drawbar power that was a dynamic load [38]. Gui [28] suggested applying the engine
speed controller to estimate the optimal fuel efficiency of the agricultural tractor. Lee [14]
also developed the engine speed control system to improve fuel efficiency and verify by
tillage operation, which was also a dynamic workload. Finally, it can be said that the field
operation is needed to estimate the fuel efficiency for commercialization. However, it is
planned to conduct field operations considering various types of implements based on
major agricultural operations.

In conclusion, it can be said that PTO dynamometer, which can control the engine
loads to estimate the fuel consumption, minimize labor cost and time rather than field
operations, and this study can be helpful to the manufacturers to develop and improve a
new agricultural tractor with higher fuel efficiency. It could be recommended that the users
should perform the plow tillage at the gear stage of 7.65 km/h for low fuel consumption
with respect to higher working efficiency. This study could also contribute to digital farming
by improving fuel efficiency, which was the key issue for the automated transmission of
an agricultural tractor. In the future, it is planned to conduct field operations based on
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implements type and crops for dynamic load data, and field data will be stored in a server
system, which is a core goal of smart digital farming for an agricultural machinery sector.
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3 Dr. Leonas Kriaučeliūnas Small Animal Clinic, Veterinary Academy, Lithuanian University of Health
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Abstract: The aim of the current study was to evaluate the relationship of different parameters from
an automatic milking system (AMS) with the pregnancy status of multiparous cows at first service and
to assess the accuracy of such a follow-up with regard to blood parameters. Before the insemination
of cows, blood samples for measuring biochemical indices were taken from the coccygeal vessels
and the concentrations of blood serum albumin (ALB), cortisol, non-esterified fatty acids (NEFA)
and the activities of aspartate aminotransferase (AST) and gamma glutamyltransferase (GGT) were
determined. From oestrus day to seven days after oestrus, the following parameters were registered:
milk yield (MY), electric milk conductivity, lactate dehydrogenase (LDH) and β-hydroxybutyric
acid (BHB). The pregnancy status was evaluated using ultrasound “Easy scan” 30–35 days after
insemination. Cows were grouped by reproductive status: PG− (non-pregnant; n = 48) and PG+
(pregnant; n = 44). The BHB level in PG− cows was 1.2 times higher (p < 0.005). The electrical
conductivity of milk was statistically significantly higher in all quarters of PG− cows (1.07 times)
than of PG+ cows (p < 0.05). The arithmetic mean of blood GGT was 1.61 times higher in PG− cows
and the NEFA value 1.23 times higher (p < 0.05) compared with the PG+ group. The liver function
was affected, the average ALB of PG− cows was 1.19 times lower (p < 0.05) and the AST activity was
1.16 times lower (p < 0.05) compared with PG+ cows. The non-pregnant group had a negative energy
balance demonstrated by high in-line milk BHB and high blood NEFA concentrations. We found
a greater number of cows with cortisol >0.0.75 mg/dL in the non-pregnant group. A higher milk
electrical conductivity in the non-pregnant cows pointed towards a greater risk of mastitis while
higher GGT activities together with lower albumin concentrations indicated that the cows were more
affected by oxidative stress.

Keywords: automatic milking system; reproduction; blood; metabolic profile

1. Introduction

As milk production per cow has increased, fertility in dairy cows has decreased. This
can be explained by genetics, physiology, nutrition and management issues and these
variables have been examined at the animal, organ and cellular level at critical time points
during the production life of dairy cows [1]. An increased adoption of technologies will
enable farmers to have access to rich data sources that can aid in further improving animal
health and welfare [2].

The system “Herd Navigator” (Lattec I/S, Hillerød, Denmark), according to Yu and
Maeda [3], works autonomously and delivers real-time physiological information about
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lactating cows and at the same time also helps with farm management decisions. This
system alerts and advises dairy farmers of each cow’s condition and health. The system
contains unique biological models that consider measured parameters, cow information
and additional risk factors to keep the herd healthy. In this way, it prevents costly treatments
and large production losses. Significant improvement results on reproduction, mastitis and
ketosis have been proven on the farms that are running the system [3]. The use of Herd
Navigator technology enhances our understanding of the factors influencing the modern
milk cow’s reproductive physiology and informed decision-making can enhance fertility
in dairy cows. In addition to helping with reproductive management decisions, Herd
Navigator generated data offers a new opportunity to evaluate luteal activity parameters [4].
Inferior cattle performance can be monitored on a real-time basis with Herd Navigator and
factors that lead to ketosis and reproductive management can be recognized and corrected
to increase farm performance [5]. Although it requires a considerable investment during
the installation stage, which would be costly for small farms, the tool is profitable for
large farms compared with the frequent manual collection of progesterone information [6].
Additional assays augmented by the analyzer (urea nitrogen, lactate dehydrogenase and β-
hydroxybutyrate) can be used in real-time to classify metabolic diseases and animal mastitis
for more detailed monitoring [7]. According to Yu and Maeda [3], an in-line Herd Navigator
system automatically provides real-time physiological information on lactating dairy cows
for farm management decisions. This is not only a new tool for scientific research but also
may enhance production, food safety, animal wellbeing and the environment. According
to our past study, we found that the real-time measured β-hydroxybutyrate levels and
changes in their dynamics correlated with different reproductive statuses, productivity and
number of lactations [8]. Previous results highlighted that lactate dehydrogenase changes
in the automatic milking system (AMS) indicators of cows may be considered an additional
tool for improving reproductive management in dairy herds but further research-based
studies are necessary before a practical application [9]. The Herd Navigator system has led
to promising preliminary results but further work is required to validate it [2]. The aim
of this study was to determine the prediction of reproductive success in multiparous first
service dairy cows by parameters from in-line sensors and blood metabolic profiles. We
hypothesized that in-line measurements could be predictive of the fertility status in dairy
cows. To test our hypothesis, we investigated the relationship between the AMS and blood
biochemical parameters with cow reproductive success.

2. Materials and Methods

2.1. Location and Animals

The research was conducted during the period from 1 February to 30 October in 2019
(272 days). The experiment was carried out on a commercial dairy farm (in total around
1300 cows) located in the southern part of Lithuania (54.9753923◦ N, 23.7662303◦ E). A total
of 92 Lithuanian Holstein cows were selected based on the following criteria: having
had two or more lactations (2.9 ± 0.13 lactation), from 60–90 (on average 78 ± 6) days in
milk (DIM) and being clinically healthy. The cows were kept in a free housing system,
milked with 15 DeLaval milking robots (DeLaval Inc. Tumba, Sweden) (average number of
milkings per day = 3.5) and were fed a total mixed ration (TMR) two times per day at a
set time, balanced according to their physiological requirements. The TMR was composed
of 25% corn silage, 15% grass silage, 4% grass hay and 50% grain concentrate. The main
nutritional characteristics were dry matter (DM) (%) 48.8%, neutral detergent fiber (% of
DM) 28.2% DM, acid detergent fiber (% of DM) 19.8% DM, non-fiber carbohydrates (%
of DM) 38.7% DM and crude protein (% of DM) 15.8% DM; the net energy for lactation
(Mcal/kg DM) was 1.6. The feed ration was composed to fit the requirements of a 550 kg
Holstein cow producing on average 35 kg/day of milk (during the experiment). The
average of the body condition score in a 5-point scale was 2.70 (±0.15). Oestrus was
identified when a cow exhibited one or more of the following signs: progesterone alarm
(registered by the Herd Navigator system), an increase on the walking activity of cows
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(registered by the AMS), mucosal discharge, restlessness, vigilance, tail lift, the occlusion of
the vulvar mucosa and a strong uterine tone by clinical examination. Twelve hours after
the onset of oestrus, the cows were inseminated. The pregnancy status was evaluated using
ultrasound “Easy scan” (IVM imaging, Scotland) 30–35 days after insemination. Cows
were grouped by reproductive status: PG− (non-pregnant; n = 48) and PG+ (pregnant;
n = 44).

Welfare and Protection of the Republic of Lithuania (study approval number PK016965).

2.2. Measurements

From oestrus day to seven days after oestrus, the following parameters from the AMS
were registered: milk yield (MY), electric milk conductivity (EC) front right (FR), front left
(FL), back left (BL), back right (BR), lactate dehydrogenase (LDH), β-hydroxybutyric acid
(BHB) and blood parameters: albumin (ALB), aspartate aminotransferase (AST), gamma
glutamyltransferase (GGT), blood cortisol concentration and non-esterified fatty acids
(NEFA) (Table 1).

Table 1. Measured parameters and their source.

Measured Parameters Source

Milk yield (MY) Herd Navigator
Electric milk conductivity (EC) front right (FR), front left

(FL), back left (BL), back right (BR) Herd Navigator

Lactate dehydrogenase (LDH) Herd Navigator
β-hydroxybutyric acid (BHB) Herd Navigator

Albumin (ALB) Hitachi 705 analyzer
Aspartate aminotransferase (AST) Hitachi 705 analyzer

Gamma glutamyltransferase (GGT) Hitachi 705 analyzer
Cortisol Analyzer AIA-360

Non-esterified fatty acids (NEFA) Rx Daytona, Randox Laboratories

The research was carried out in accordance with the provisions of the Law on Animal.
The blood samples were collected using an evacuated tube without an anticoagulant

(BD Vacutainer®, Eysin, Switzerland). The blood samples were centrifuged at 3500 RPM for
10–15 min. Samples were delivered to the Large Animal Clinic’s Laboratory of Clinical Tests
at the Lithuanian University of Health Sciences Veterinary Academy. The obtained blood
serum was examined using the Hitachi 705 analyzer (Hitachi, Tokyo, Japan)) and DiaSys
reagents (Diagnostic Systems GmbH, Berlin, Germany) to determine the concentrations
of blood serum albumin (ALB) and the activities of aspartate aminotransferase (AST) and
gamma glutamyltransferase (GGT). The blood cortisol concentration levels were deter-
mined with automated immunoassay analyzer AIA-360 (Tosoh Bioscience, USA) using the
fluorescence enzyme immunoassay method. The samples for NEFA were analyzed using
an automated wet chemistry analyzer (Rx Daytona, Randox Laboratories Ltd., London,
UK) using reagents from Rx Daytona (Randox Laboratories Ltd., London, UK).

An automated real-time analyzer, Herd Navigator, was used in combination with a
DeLaval milking robot for milk BHB and LDH detection (DeLaval Inc, Tumba, Sweden). An
in-line sampler in the milking robot automatically took a representative sample of several
milliliters of milk from an individual cow during milking and determined the concentration
of those parameters. In the Herd Navigator system, the LDH activity and BHB values were
measured using dry stick technology. The raw measurements were corrected according to
company-determined methods to account for variations in the surrounding humidity and
differences between sets of dry sticks. The most extreme outliers were then taken out of
the equation. Measurements exceeding 200 μmol/min per liter were set to a 200 maximum
value and all negative values were removed because they did not comply with the usual
range of measurements obtained from the Herd Navigator system. This editing of data is
usual for data from the Herd Navigator system.
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2.3. Data Analysis and Statistics

The statistical analysis of the AMS and Herd Navigator variables was carried out using
SPSS 25.0 software (IBM Corp, released 2017, IBM SPSS Statistics for Windows, Version 25.0.
Armonk, NY, USA: IBM Corp.). The data (according to a Shapiro–Wilk test) were normally
distributed. The results were expressed as a standard error of the mean of a sample (M
and SEM). Data of parameters from in-line sensors were tested for significance (p < 0.05)
using the repeated measures analysis. A general linear model was used to evaluate the
differences between groups (PG− and PG+) of cows and variables with repeated (seven
days) measurements (MY, FL, FR, BL, BR, LDH, BHB and cortisol, ALB, AST, GGT, NEFA).
The difference in times of the variables with repeated measurements was tested using a
Bonferroni post-hoc test.

The relationship between the level of indicators of the metabolic blood profile, the AMS
variables and the group of cows according to their reproductive status was determined
using the chi-squared (χ2) statistic. A multivariable binary logistic regression technique
was carried out using pregnancy as the dependent variable (where 1 denoted pregnancy
and 0 denoted absence) to investigate the relationship between the predicted variable
and variables from the AMS and the blood metabolic profile indicators of cows. The
predictors for logistic regression were considered class variables in the analyses. The
values of ALB were classified: <21 g/L, 21–36 g/L and > 36 g/L [10], AST: <78 U/L and
78–132 U/L [10], GGT: <8.11 U/L and 8.11–27.79 U/L [11] and NEFA: <0.320 mmol/L
and ≥0.320 mmol/L [12]. The cortisol of cows was recorded as < 0.45 mg/dL, 0.47–
0.75 mg/dL and > 0.0.75 mg/dL [10]. The values of milk LDH were grouped as being ≤
25 μmol/min or > 25 μmol/min, MY ≤ 44 kg/d and >44 kg/d, BHB < 0.06 mmol/L and
>0.06 mmol/L and were classified on the basis of the arithmetic mean. Based on the average
of all udder quarters, cows were divided into three EC levels: (1) EC = 3.5–3.9 mS/cm,
(2) EC = 4.0–4.4 mS/cm and (3) EC = 4.5–5.0 mS/cm [13]. For each cow, we calculated
the difference in udder quarters EC (DifEC) between the maximum and minimum EC
values. With this in mind, we grouped the cow data into classes: DifEC < 0.5 mS/cm and
DifEC ≥ 0.5 mS/cm. The factors that contributed to the possibility of pregnancy were
analyzed with multivariable logistic regression models by applying a backward stepwise
logistic model to eliminate all non-significant explanatory variables. The results of the
logistic regression are presented in terms of the odds ratio (OR) and its 95% confidence
interval (PI), which indicates a 95% probability that the true OR is likely to be within the
specified range.

3. Results

3.1. Relation of Cows’ Pregnancy Success with Automatic Milking System (AMS) Parameters

The analysis revealed a statistically significant relationship of changes of the AMS
parameters on the pregnancy success of cows (Table 2). The BHB level in PG− cows was
1.2 times higher (p = 0.003). The electrical conductivity of milk was statistically significantly
higher in all quarters of PG− cows (1.06–1.07 times) than that of PG+ cows (p < 0.05).
Although LDH was 1.28 times higher in the PG− group, the difference with the PG+ group
was not statistically significant.
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Table 2. Automatic milking system (AMS) variables by groups of cows.

Parameter
PG− (n = 48) PG+ (n = 44) p (Between Days) p (Between Groups

M SEM M SEM

MY (kg/d) 44.56 2.252 43.99 2.203 0.009 0.231
FL (mS/cm) 4.41 0.06 4.17 0.048 0.423 0.002
FR (mS/cm) 4.45 0.05 4.17 0.043 0.192 <0.001
BL (mS/cm) 4.37 0.043 4.15 0.05 0.521 0.002
BR (mS/cm) 4.42 0.047 4.14 0.044 0.458 <0.001

LDH (μmol/min) 29.23 3.288 22.81 2.310 0.560 0.366
BHB (mmol/L) 0.06 0.001 0.05 0.001 0.078 0.003

PG+ = pregnant cows; PG− = non-pregnant cows; M = mean; SEM = standard error of the mean of a sample; MY = milk yield; FL = electric
milk conductivity of front left; FR = electric milk conductivity of front right; BL = electric milk conductivity of back left; BR = electric milk
conductivity of back right; LDH = lactate dehydrogenase; BHB = β-hydroxybutyric acid.

3.2. Relation Between Cows’ Pregnancy Success and Biochemical Parameters in Serum

The arithmetic mean of blood GGT activity was 1.61 times higher in PG− cows
compared with the PG+ group (p = 0.017). The NEFA value was 1.23 times higher compared
with PG+ cows (p = 0.049). On the other hand, the average ALB level of PG− cows was
1.19 times lower (p = 0.017) and the AST activity was1.15 times lower (p = 0.048). The
average cortisol value was 1.66 times lower in PG+ cows but this difference was not
statistically significant (Table 3).

Table 3. Metabolic profile indicators of blood.

Parameter
PG− PG+ p (Between Days)

p (Between Groups)
M SEM M SEM

Cortisol (mmol/L) 1.37 0.358 0.83 0.119 0.612 0.227
ALB (g/L) 20.85 1.257 24.85 1.046 0.201 0.017
AST (IU/L) 49.51 2.666 57.37 2.755 0.543 0.048
GGT (IU/L) 10.46 1.555 6.50 0.519 0.487 0.017

NEFA (mmol/L) 0.16 0.008 0.14 0.006 0.199 0.049

PG+ = pregnant cows; PG− = non-pregnant cows; M = mean; SEM = standard error of the mean of a sample; ALB = albumin; AST =
aspartate aminotransferase; GGT = gamma glutamyltransferase; NEFA = non-esterified fatty acids.

3.3. The Relationship of Cow Pregnancy with Milk and Blood Parameters

There were 1.7-fold more cows with cortisol > 0.0.75 mg/dL in the PG− group com-
pared with the PG+ group but also 1.7-fold fewer cows with cortisol < 0.45 mg/dL (Figure 1A).
PG+ cows tended to have higher blood ALB levels compared with the PG− group (p = 0.008).
Cows with ALB < 21 g/L accounted for 27.3% in the PG+ group (there were 2.1 times fewer
in the PG− group). The recommended ALB level was set for a 1.3 times higher number of
cows in the PG+ group compared with the PG− group. On the other hand, 9.1% of cows
with ALB > 36 g/L were found in the PG+ group while there were no such cows in the PG−
group (Figure 1B). There were 1.2 times more cows with AST < 78 U/L (p = 0.117) in the
PG+ group compared with the PG− group. The chi-squared independence test (Figure 1),
in which a question was asked about the relationship between the pregnancy of cows
and the level of AST, did not show a statistically significant relationship (Figure 1C). PG+
cows tended to have a lower GGT (Figure 1D). If there were 50% of such cows in the PG−
group, then in the PG+ group there were twice as many. There were four times more cows
with NEFA > 0.320 mmol/L (p = 0.031) in the PG− group compared with the PG+ group
(Figure 1E).
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Figure 1. Frequency of PG+ and PG− cows by level of metabolic blood profile indicators: (A)—cows  by cortisol level; (B)—
cows  by albumin level; (C)—cows  by aspartate aminotransferase level; (D)—cows  by gamma glutamyltransferase
level; (E)—cows  by non-esterified fatty acids level; ALB = albumin; AST = aspartate aminotransferase; GGT = gamma
glutamyltransferase; NEFA = non-esterified fatty acids; PG+ = pregnant cows; PG− = non-pregnant cows.

When analyzing the dependence of cow pregnancy success and studied milk indicators
(Figure 2), a statistically significant relationship was found only with milk BHB and EC
(p < 0.001). The number of cows with BHB ≤ 0.06 mmol in the PG+ group was 2.6 times
higher than in the PG− group (Figure 2B). The analysis showed that relatively low EC
levels in milk (3.5–5.0 mS/cm) were found in the studied cows (Figure 2B). The PG+ group
had a 1.6-fold higher number of cows (p < 0.001) with a low EC (3.5–3.9 mS/cm) compared
with the PG− group. In the PG− group, more (1.4–1.5-fold) cows were found with a larger
EC difference between udder quarters in milk (Figure 2E) and also a larger MY (Figure 2A).
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Figure 2. Frequency of PG+ and PG− cows by level of AMS variables. (A)—cows  by milk yield level; (B)—cows  
by β-hydroxybutyric acid level; (C)—cows  by lactate dehydrogenase level; (D)—cows  by electric milk conductivity
level; (E)—cows  by difference between electric milk conductivity values in udder quarters level; MY = milk yield; BHB
= β-hydroxybutyric acid; LDH = lactate dehydrogenase; EC = electric milk conductivity; DifEC = difference between EC
values in udder quarters. PG+ = pregnant cows; PG− = non-pregnant cows.

A multivariable logistic regression analysis showed that cows with a higher ALB
activity in the blood were less likely (OR = 4.230; 95% CI = 1.635–10.946, p = 0.003) to
become pregnant (p = 0.049). We also found that at relatively low EC levels in milk, cows
were more likely to become pregnant (OR = 4.230; 95% CI = 1.635–10.946, p = 0.01) when
their milk ECs were higher and met recommended levels [14].

4. Discussion

We found that in-line milk BHB levels in non-pregnant multiparous dairy cows at
first service was 1.2 times higher than in pregnant cows. Animals with an elevated blood
BHB had lower pregnancy success at first artificial insemination than healthy cows [3].
However, a decrease of pregnancy success within 70 days post-voluntary waiting period
was reported by Ospina et al. [14]. Moreover, a greater number of inseminations per
pregnancy (2.8 vs. 2.0, respectively), a lower peak activity (35% less activity), a shorter
activity at oestrus (14% less hours) and a longer interval from calving to first observed
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oestrus also prolonged days open for multiparous cows in cows with ketosis than in healthy
cows [15]. The mean predicted blood BHB of cows with ketosis was higher in early [16]
lactation but decreased rapidly with the stage of lactation toward the level found in more
healthy cows [8]. Subsequent studies revealed that there was an association between
excessive negative energy balance (NEB) and decreased reproductive performance [17]
According to the milk BHB results we can state that non-pregnant cows had a higher risk
of ketosis.

According to our results, the in-line electrical milk conductivity of non-pregnant cows
was 1.06–1.07 higher. Norberg et al. [18] aimed to evaluate the accuracy of electric milk
conductivity (EMC) for predicting infection status; it also has some potential in terms
of detecting mastitis. EMCs are parameters for the detection of mastitis in dairy farms
equipped with in-line sensors [19]. During mammary tissue inflammation, the osmotic
balance is maintained by an increase of Na+ and Cl−; in particular, Na+ derived from
the highly Na+ concentrated extracellular environment is the main ion responsible for the
increase of the electrical conductivity [20]. Based on that, we can suspect that non-pregnant
cows have a greater risk of mastitis.

Our results of the blood biochemical parameters of non-pregnant cows showed that
the GGT activities and NEFA values were higher and the albumin concentration was lower.
We found that pregnant cows tended to have a higher blood albumin concentration. In
dairy cows in the puerperium, a certain degree of fatty liver is noticed, which leads to the
dysfunction of organs, releasing the enzymes of hepatocytes. Thus, the GGT activity in the
blood increases significantly [21]. The strong association between NEFA concentrations and
reproductive performance is likely because of the more direct physiological relationship
between NEFA concentrations and a NEB [22]. The concentration of NEFA increases
because of lipolysis, which is positively stimulated by glucagon [23]. According to Yang
et al. [24], increased serum GGT may be a marker of oxidative stress, which is strongly
associated with hypertension, dyslipidemia and an abnormal glucose tolerance. Albumin
can be considered to be a negative acute-phase protein [25] with subnormal concentrations
indicating an impaired liver function following a diverted synthesis to positive acute-phase
proteins [26]. A low level of serum albumin may be associated with hepatocyte dysfunction,
fat infiltration, degeneration and damage to liver tissue [27]. Albumins are also negative
acute-phase proteins and their low serum levels can be found in various acute or chronic
inflammations [28]. In the cows tested, slightly reduced serum albumin levels may have
been caused by testing and a slightly reduced feed intake, which only confirmed the need
to monitor the internal homeostasis of high-yielding animals [29].

Considering the data of our study, the AST was significantly lower in PG− compared
with PG+ but the GGT activity was higher. This can be explained as the AST acts as a non-
specific liver enzyme and is not inevitably accompanied by liver damage but often appears
in connection with puerperal disorders. Increased AST activities were also measured
shortly before and after normal parturition in cows and can be explained by the caruncle
transformation and their degradation. Higher levels of AST enzymes were also recorded
with a higher rate of muscle cell damage caused by the mobilization of body reserves [22].

Our results described in this study showed that the non-pregnant group had a negative
energy balance demonstrated by high in-line milk BHB and high blood NEFA concentra-
tions. Several studies have reported that a NEB as measured by NEFA or BHB has a strong
association with reproductive performance. NEFA and BHB have a detrimental effect on
reproductive performance [8]. In the early postpartum period, dairy cows resynthesize fat
and muscle to support lactation and this in turn alters the blood metabolic and hormone
profiles, which affects milk yield and fertility [16].

In our study we found a greater number of cows with cortisol > 0.0.75 mg/dL in the
non-pregnant group. According to Burnett et al. [30] chronic and acute stress can trigger
disruptions in reproductive function. Chronic stress is linked to disruptions in the pulsatile
pattern of gonadotropin-releasing hormone (GnRH) and the consequent impairment of
estrous behavior expression [31]. Stressors such as isolation, transport and restraint (acute
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causes) have been found to interfere with the endocrine events preceding ovulation and
thus results in ovulation failure [32].

According to our results we found a positive correlation between LDH and milk EC at
udder quarter level and BHB. In the AMS, the sensors that measure electrical conductivity
are the most commonly used to detect mastitis. These sensors can continuously measure
the concentration of ions in milk during the milk harvesting process, albeit with variable re-
sults [33]. Although lactate dehydrogenase testing at present is only commercially available
in Herd Navigator, it is currently used for the automatic detection of mastitis [34]. Accord-
ing to Khatun et al. [33] LDH activity was strongly associated with mastitis. Subclinical
ketosis is a risk factor for subsequent diseases and has been associated with mastitis. It has
been demonstrated that BHB concentrations exceeding thresholds of 1.1 and 1.6 mmol/L
are associated with a decreased probability of pregnancy and an increased culling risk,
respectively [35]. According to our results we found that the Herd Navigator system does
not just take a role as a novel tool for scientific research but could also be used in manag-
ing cow reproduction from a practical point. An in-line system automatically provides
real-time physiological information for farm management decisions [3]. We confirmed the
hypothesis that that in-line measurements could be predictive of the fertility status in dairy
cows. By monitoring in-line parameters from the Herd Navigator such as BHB and EMC
we could predict reproductive success in multiparous first service dairy cows. Our results
suggest paying attention to non-pregnant cows having a higher risk of a negative energy
balance and mastitis greatly affected by oxidative stress.

5. Conclusions

According to the results of the current study, we can conclude that the prediction of
reproductive success in multiparous first service dairy cows by parameters from in-line
sensors can be achieved through in-line biomarkers such as BHB and EMC. BHB levels
were 1.2 times higher and electrical milk conductivity was 1.06–1.07 times higher in non-
pregnant cows compared with pregnant cows. We also found that cows in the non-pregnant
group had a negative energy balance indicated by high milk BHB and high blood NEFA
concentrations. Higher milk EMC in the non-pregnant cows pointed towards a greater
risk of mastitis while higher GGT activities together with lower albumin concentrations
indicated that the cows were more affected by oxidative stress. More cows with a higher
cortisol concentration in the non-pregnant cow group indicated the negative impact of
stress on pregnancy success.
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Abstract: The remote sensing extraction of large areas of arecanut (Areca catechu L.) planting plays
an important role in investigating the distribution of arecanut planting area and the subsequent
adjustment and optimization of regional planting structures. Satellite imagery has previously been
used to investigate and monitor the agricultural and forestry vegetation in Hainan. However, the
monitoring accuracy is affected by the cloudy and rainy climate of this region, as well as the high level
of land fragmentation. In this paper, we used PlanetScope imagery at a 3 m spatial resolution over the
Hainan arecanut planting area to investigate the high-precision extraction of the arecanut planting
distribution based on feature space optimization. First, spectral and textural feature variables were
selected to form the initial feature space, followed by the implementation of the random forest
algorithm to optimize the feature space. Arecanut planting area extraction models based on the
support vector machine (SVM), BP neural network (BPNN), and random forest (RF) classification
algorithms were then constructed. The overall classification accuracies of the SVM, BPNN, and
RF models optimized by the RF features were determined as 74.82%, 83.67%, and 88.30%, with
Kappa coefficients of 0.680, 0.795, and 0.853, respectively. The RF model with optimized features
exhibited the highest overall classification accuracy and kappa coefficient. The overall accuracy of
the SVM, BPNN, and RF models following feature optimization was improved by 3.90%, 7.77%, and
7.45%, respectively, compared with the corresponding unoptimized classification model. The kappa
coefficient also improved. The results demonstrate the ability of PlanetScope satellite imagery to
extract the planting distribution of arecanut. Furthermore, the RF is proven to effectively optimize
the initial feature space, composed of spectral and textural feature variables, further improving the
extraction accuracy of the arecanut planting distribution. This work can act as a theoretical and
technical reference for the agricultural and forestry industries.

Keywords: arecanut; PlanetScope satellite image; random forest algorithm; feature optimization;
area extraction

1. Introduction

Arecanut (Areca catechu L.) is a perennial evergreen tree of the palm family and
an important Chinese medicinal plant. It is common in some areas of southern Asia
to chew the fruit; however, it is currently listed as a class 1 carcinogen by the World
Health Organization International Agency for Research on Cancer. At present, arecanut
is principally distributed in the Asian countries of India, Indonesia, Bangladesh, China,
Myanmar, Thailand, the Philippines, Vietnam, and Cambodia [1]. It is a key economic
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crop in the tropical and subtropical regions of China, with a planting history of more than
1000 years. Principle sowing locations include tropical regions such as Hainan and Taiwan,
with smaller distributions in Guangxi, Yunnan, Hunan, and Fujian. The production of
arecanut in Hainan Province currently accounts for more than 90% of the domestic total.
Furthermore, in 2019, the planting area, harvest area, and total output reached 115,171 ha,
83,318 ha, and 272,200 t, respectively [2]. This identifies arecanut as one of the largest
tropical cash crops in Hainan Province, playing a crucial role in the industry and farmers’
income within the province.

The negative impact of diseases (i.e., yellow leaf disease) has resulted in the recent
reduction in the arecanut planting area and yield. The area of areca affected by yellow
leaf disease has reached 533.3 km2, with an increase of 20–30 km2 per year; moreover, the
annual loss caused by yellow leaf disease is estimated to exceed 2 billion yuan [3]. As
a major pillar of industry in Hainan Province, the reduction in the arecanut output has
generated huge economic losses to arecanut growers in the province. Therefore, there is
an urgent need for the timely and accurate extraction of the planting area of arecanut in
Hainan in order to grasp the dynamic changes of this crop and to effectively manage the
development of the arecanut industry in Hainan.

Remote sensing technology holds numerous advantages, such as high efficiency,
dynamic applications, wide spatial coverage, and fast data acquisition, allowing for the
rapid, accurate, and dynamic monitoring of crop planting areas [4–6]. Current research
on the monitoring of crop areas typically employs remote sensing technology to classify
crops and extract planting information. In small-scale areas, unmanned aerial vehicle
(UAV) aerial remote sensing platforms are often used for the extraction of crop planting
areas. For example, Zheng et al. [7] used RGB, NIR-GB, and multispectral images from
unmanned aerial vehicle (UAV) to extract rice plants information at the early growth stages.
Shen et al. [8] integrated UAV technology with moderate spatial resolution (MSR) data
to estimate crop planting areas using random stratified sampling, making the crop area
estimation accuracy more than 95% with a 95% confidence interval. Based on the extraction
of crop area, more scholars use UAV remote sensing to monitor growth and predict yield [9].
However, UAV remote sensing has limitations in its endurance time and flight radius, and
it is not suitable for large-scale crop surveys.

Satellite imagery is associated with a high and wide field of view, fast data collection,
repeatable coverage, and continuous observations [10], and is frequently applied for
the large-scale extraction of crop planting areas. Based on moderate resolution imaging
spectroradiometer (MODIS) time series data, Pan et al. [11] established the crop proportion
phenology index (CPPI) for estimating wheat area, with the root mean square error (RMSE)
in fractional crop area predictions ranging roughly from 15% in the individual pixels to 5%
above 6.25 km2. Zhang and Lin [12] fused Landsat-8 OLI time series with phenological
parameters for the extraction of rice planting area in cloudy areas based on object-oriented
algorithms, providing high-precision rice distribution maps with an overall accuracy of
92.38%. Liu et al. [13] constructed a decision tree model based on multitemporal HJ-1
CCD images to accurately extract corn planting area in Zhecheng County, Henan Province,
China. However, these satellite data are mostly limited by low spatial resolution or short
revisit period, which are not suitable for crop monitoring in some regions (i.e., the tropical
and subtropical regions) with fragmented plots and cloudy and rainy weather.

With the development of remote sensing technology, the high-resolution PlanetScope
satellite cluster can achieve daily global coverage with a 3 m spatial resolution, providing
an effective data source for the extraction of agricultural and forestry planting information
in tropical and subtropical regions. Arecanut is a tropical palm typically reaching 10–20 m
tall with a straight and slender trunk. Its dark green leaves can spread 2 m across. These
morphological features of arecanut present its distinctive spectral and texture features from
the high-resolution imagery that differentiate arecanut land from other lands. The objective
of this research was to (i) establish a high-precision arecanut information extraction method
based on feature space optimization, which is composed of spectral and texture features
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extracted from PlanetScope satellite images, and (ii) evaluate the performance of three
machine learning algorithms with support vector machine (SVM), BP neural network
(BPNN), and random forest (RF) algorithms combined with the optimized feature space in
an attempt to extract the arecanut information. The results provide theoretical and technical
references for the remote sensing extraction of agricultural and forestry information.

2. Materials and Method

2.1. Study Area

The study area is located in Beida Town, Wanning City, Hainan Province, China
(110◦23′–110◦40′ E, 18◦86′–19◦01′ N) with an area of 276.09 km2 (Figure 1). The area has
a tropical monsoon climate, with an average annual temperature of 23.6 ◦C, a monthly
average temperature of 18.7–28.5 ◦C, annual precipitation of approximately 2200 cm, and
average annual sunshine hours over 1800. Beida Town is located in a hilly mountainous
area. The soil type is Ferralsols according to IUSS Working Group WRB [14].

Figure 1. Geographic location of the study area with the spatial distribution of land use/cover type
survey sites.

Hainan Province contains the largest arecanut production area in China, with the great-
est planting area located in Wanning City. In 2018, the planting area reached 18,138 hm2,
accounting for 16.5% of the total planting area in Hainan [2]. Beida Town is the principal
planting area of arecanut in Wanning City. The town also grows cash crops such as rubber,
pineapple, and lychee.

2.2. Data Acquisition and Processing
2.2.1. PlanetScope Satellite Image Acquisition and Preprocessing

The PlanetScope small satellite constellation currently has more than 170 satellites in
orbit, surpassing all current satellites in terms of resolution (3–4 m), frequency (daily), and
global coverage [15]. In the current paper, we selected a high-quality clear and cloudless
PlanetScope satellite image collected on 21 March 2019. The PlanetScope image used is
an orthographic data product (3B) that has undergone sensor and radiometric calibration,
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as well as orthorectification and atmospheric correction. The satellite image has a spatial
resolution of 3 m and contains four spectral bands in the blue, green, red, and near-infrared
regions. Table 1 lists the PlanetScope satellite parameters.

Table 1. Specifications of PlanetScope satellite.

Parameter Parameter Value

Track International Space Station
OrbitSun-synchronous orbit

Orbital inclination 52◦, 98◦

Spatial resolution 3–4 m

Spectral band

Band1: Blue (455–515 nm)
Band2: Green (500–590 nm)
Band3: Red (590–670 nm)
Band4: NIR (780–860 nm)

Track height 400 km, 475 km

Sensor type Bayer filter CCD camera

Width 24.6 km × 16.4 km

2.2.2. Ground Sample Data Collection

The principal land use/cover types in the study area are farmland, forest, impervious
surface (urban and rural areas; industrial and mining, water conservancy construction,
and transportation land), water (rivers, lakes, ponds, etc.), and arecanut grove. Table 2
lists the visual interpretation characteristics of the main features in the study area. Ground
sample data were obtained through field surveys with a GPS receiver on 19–21 March 2019.
The coverage size of the field should be more than 10 m × 10 m. According to the location
of the survey sites, the field boundaries were then drawn based on Google Earth Pro
(version 7.3.2.5776). Finally, a total of 850 field polygon samples were determined. There
are 150 samples for water, 150 for impervious surface, 200 for forest, 150 for farmland,
and 200 for arecanut grove, with 70% and 30% of the samples used for training and
verification, respectively.

Table 2. Visual interpretation signs of features in the study area.

Feature Category Image Characteristics Feature Description

Water

Light green, the larger the water body, the darker the color. Pit ponds
are small in area, with clear boundaries and irregular shapes; rivers

are in regular curved strips; lakes have large water areas, darker
colors, and irregular shapes.

Impervious surface Light purple and brown with irregular shapes, bare soil, and less
vegetation coverage.

Forest Dark green, the plots are irregularly distributed, with uniform tone
and clear texture.
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Table 2. Cont.

Feature Category Image Characteristics Feature Description

Farmland Light green, with clear stripes, regular continuous distribution, and
uniform texture.

Arecanut Light green, granular canopy distributed in a large area, irregular
plot shape, uniform texture, and small amount of soil exposure.

2.3. Feature Variable Selection
2.3.1. Primary Selection of Characteristic Variables

• Primary selection of spectral characteristic variables

The spectral characteristic variables initially selected included four original spectral
bands and five widely used vegetation indices (Table 3). A spectral band can act as an
important indicator for the extraction of ground feature information from remote sensing
images. Here, we used the blue, green, red, and near-infrared reflectance bands of the
PlanetScope image as the primary selection variables for spectral features. The blue band
is susceptible to factors such as soil background, and plays a key role in the distinction
between soil and vegetation; the green band is more sensitive to different types of plants
and can be used to distinguish between vegetation types [16]; the red band is the principal
absorption band of chlorophyll and is an important indicator of plant vitality [17]; and
the near-infrared band can remove the influence of the atmosphere (e.g., aerosols and thin
clouds) and can reflect the vegetation growth and coverage [18].

Table 3. Description of the spectral characteristic variables selected in this study.

Spectral Characteristic Formula 1 Reference

Blue band RB [16]
Green band RG [16]
Red band RR [17]

Near-infrared band RNIR [18]
Difference Vegetation Index (DVI) RNIR − RR [19]

Modified Soil Adjusted Vegetation Index (MSAVI) 1
2 [(2RNIR + 1)−

√
(2RNIR + 1)2 − 8(RNIR − RR)] [20]

Normalized Difference Vegetation Index (NDVI) (RNIR − RR)/(RNIR + RR) [21]
Ratio Vegetation Index (RVI) RNIR/RR [22]
Soil Brightness Index (SBI)

√
RNIR2 + RR2 [23]

1 RR, RG, RB, and RNIR denote the red, green, blue, and near-infrared band.

Based on the principal feature types in the study area, the Difference Vegetation
Index (DVI), Modified Soil Adjusted Vegetation Index (MSAVI), Normalized Difference
Vegetation Index (NDVI), Ratio Vegetation Index (RVI), and Soil Brightness Index (SBI)
were selected (Table 3). DVI is extremely sensitive to changes in the soil background
and can better identify vegetation and water bodies [19]; MSAVI can reflect the soil and
vegetation coverage information on the ground under the influence of soil background
factors, and can accurately identify low vegetation coverage [20]; NDVI is sensitive to green
vegetation and can reflect vegetation growth status and coverage [21]; RVI enhances the
radiation difference between vegetation and soil, and can characterize biomass information
under different vegetation coverage [22]; and SBI is sensitive to the soil background and
can effectively extract construction and bare land in the absence of vegetation cover [23].
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• Primary selection of texture feature variables

Texture is a visual feature that reflects the homogeneity of the image and describes the
grayscale spatial distribution of the image pixel neighborhood [24]. Each feature contained
in remote sensing images has its own unique texture structure. However, the spectrum
of an object may vary between features, while different objects may also have the same
spectrum, resulting in difficulties in identifying objects. The stem of the arecanut tree
is upright, arborous, up to 30 m tall, and with obvious circular leaf marks. Moreover,
the leaves are clustered at the top of the stem and with a length of 1.3–2 m. The tree
bears fruit to many pines of a long and narrow lanceolate shape, a 30–60 cm length, and
2.5–4 cm width. The upper pinna is connate and the tip has irregular teeth. Furthermore,
the arecanut has a row spacing of 2.5 to 3.0 m and a plant spacing of 2.0 to 2.5 m. Thus, the
forests of this crop present textural features that are obviously distinct from other ground
objects within the high spatial resolution remote sensing image.

We selected the Gray-Level Co-Occurrence Matrix (GLCM) method to select eight
texture feature indicators: Mean (Me), Variance (Var), Homogeneity (Hom), Contrast (Con),
Dissimilarity (Dis), Entropy (Ent), Second moment (SM), and Correlation (Cor), Table 4
shows their formulas [25]. Based on the four spectral bands of the PlanetScope satellite
image, a total of 32 texture features were subsequently extracted.

Table 4. Description of the texture features selected in this study.

Texture Feature Formula 1 Description

Mean ∑
i

∑
j

P(i, j)× i Reflects the regular degree of texture.

Variance ∑
i

∑
j
(i − Mean)2 × P(i, j) Reflects the deviation between the pixel and mean values;

the larger the grayscale change, the larger the value.

Homogeneity ∑
i

∑
j

P(i, j)× 1
1+(i−j)2

Reflects the local gray uniformity of the image; the more
uniform the local, the larger the value.

Contrast ∑
i

∑
j

P(i, j)× (i − j)2 Reflects the sharpness of the image and the depth of the
texture.

Dissimilarity ∑
i

∑
j

P(i, j)× |i − j| Similar to contrast, with greater linearity; the higher the
local contrast, the higher the dissimilarity.

Entropy −∑
i

∑
j

P(i, j)× log P(i, j) Reflects the texture complexity; the larger the value, the
more complex the texture.

Second Moment ∑
i

∑
j

P(i, j)2 Reflects the uniformity of the image distribution and texture
thickness.

Correlation ∑
i

∑
j

(i−Mean)×(j−Mean)×P(i,j)2

Variance Reflects the image local relevance.

1 P(i, j) is the element value of the image at point (i, j).

2.3.2. Feature Variable Optimization Method

The random forest (RF) algorithm, proposed by Breiman and AdeleCulter in 2001,
integrates multiple trees based on ensemble learning, with a single decision tree taken as
the basic unit [26,27]. Due to its strong noise tolerance, avoidance of overfitting, and ability
to handle high-dimensional data, RF is not only applied to classification tasks, but can also
calculate the importance of a single feature variable. In particular, RF performs feature
screening using a feature importance evaluation, whereby the contribution value of each
feature on each decision tree is determined, and the average values are compared between
features. The out-of-bag (OOB) error rate is typically used as the evaluation index to
measure the feature contribution, denoting the variable importance (VI) of different feature
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variables. The feature optimization is then realized by ranking features by importance. The
feature variable importance, VI, is calculated as follows:

VI =
∑N

k=1 BM
nk

− BM
ok

M
(1)

where N is the number of generated decision trees, M is the number of feature variables,
BM

nk
is the out-of-bag error of the k-th decision tree when feature M is added to the noise

interference, and BM
ok

is the out-of-bag error of the k-th decision tree without noise inter-
ference. The addition of feature M with random noise dramatically reduces the accuracy
rate of the out-of-bag data, indicating the strong influence of this feature on the prediction
results of the sample, and thus its importance is relatively high [28].

2.4. Classification Model Building Method

The proposed classification framework initially calculates the training sample feature
variables and subsequently constructs three classification models based on the BP neural
network (BPNN), RF, and support vector machine (SVM) algorithms. These models are
applied to extract the arecanut and other surrounding ground features. The extraction
results are then verified using the verification samples and compared to determine the
most accurate classification model.

2.4.1. BP Neural Network Algorithm

BPNN is a multilayer feedforward neural network that adopts the error back propaga-
tion algorithm to train the model. As the most widely used neural network to date [29], it
uses the gradient descent method to minimize the mean square error between the actual
and expected output values. BPNN is able to perform both signal forward propagation
and error backward propagation. The input signal of BPNN propagates forward through
the input layer and each hidden layer, and finally reaches the output layer, where the
actual output value is obtained and compared with the expected output value. If the two
output values are not equal, the error will enter back propagation, where the output error
is adjusted with a threshold and weight at each layer via gradient descent. This results
in a neural network model that has an expected output value within the error tolerance
range. The BPNN is composed of the input, output, and hidden layers, and is trained by
constantly adjusting the threshold and weight. The specific implementation process is
as follows:

• Dataset entry: define randomly divided training set P_train, validation set T_test,
training label P class and verification label T class.

• Data normalization: the mapminmax function is used to normalize and map the data
to the range of 0–1 to avoid significant differences between the input and output data.

• A neural network is established and the network parameters are set.
• The training parameters are defined and network training is performed. The number

of iterations, learning rate, training error target, and maximum number of failures are
set to 200, 0.001, 0.0001, and 10, respectively. The train (net, P, T) function is used for
network training.

• Network simulation is performed using the sim (net, test matrix) function and
the overall recognition accuracy of BPNN is obtained based on the predicted and
expected values.

2.4.2. Random Forest Algorithm

The application of RF in classification tasks centers around the bootstrap method to
randomly extract and return s samples from the sample set. Following n sample iterations,
n training sets are obtained with n decision tree models. The generated n decision trees are
then integrated into a random forest with multiple tree classifiers to determine the final
prediction result [28]. Multiple decision trees are constructed during the training phase and
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the final class output is the pattern of a single decision tree class. The number of decision
trees ntree is set to 500, while all other parameters are taken as the default values.

2.4.3. Support Vector Machine

SVM, first proposed by Vapnik [30], is based on statistical learning theory, and in
particular, the principle of structural risk minimization [31]. Under linear separability, SVM
aims to determine the optimal classification hyperplane of the two types of samples in the
original space. For linear inseparability, the relaxation variable is added for analysis, and
the samples in the low dimensional input space are mapped to the high dimensional feature
space via nonlinear mapping, resulting in linearity and allowing for the determination
of the optimal hyperplane in the feature space. Optimizing the segmentation hyperplane
separates the sample types and minimizes the error, resulting in the accurate classification of
data. More details of the SVM calculation process can be found in the relevant literature [32].
SVM has a simple structure and strong adaptability and robustness, and is thus applicable
to a wide range of linear, nonlinear, classification, and regression problems. We employed
SVM to build a monitoring model for arecanut yellowing disease using the mapminmax
function to normalize the training and validation sets and to scale the data within [0,1]. The
svmtrain and svmpredict commands were then implemented in LIBSVM 3.23 to train the
samples and test the validation set, respectively. SVM system default values were used for
the linear kernel function and parameters such as penalty factor c and kernel parameter g.

3. Results

3.1. Feature Space Optimization

The initial feature space contains a total of 41 feature variables (9 spectral and 32 tex-
tural feature variables). A large number of feature variables will generate redundant data,
increasing the model complexity and affecting the classification accuracy. We employed
the RF algorithm to evaluate the importance of the 41 feature variables in the initial feature
space, ranking their importance based on the feature variable weights. Figure 2 presents
the importance rankings of the target feature variables, whereby the first 12 feature weights
are greater than 1, the middle 12 feature weights range between 0.5 and 1, and the latter
17 feature weights are less than 0.5. Then, according to the order of feature importance, the
first k (i = 1, 2, . . . . . . , 41) feature variables were selected to construct the random forest
classification model of arecanut, and the overall classification accuracy was subsequently
calculated. The overall classification accuracy is maximized to 88.3% when the number
of feature variables equals 14. Therefore, the first 14 feature variables (CorNIR, VarNIR,
MeNIR, MeR, RB, EntNIR, RR, RNIR, ConNIR, MeB, RG, NDVI, SBI, and HomNIR) were
selected to construct the optimized feature space.

Figure 2. Importance ranking of the first 14 feature variables for constructing the optimized
feature space.
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3.2. Extraction of Arecanut Planting Information

In this study, two feature spaces (i.e., initial feature space and optimized feature space)
were used as the input of three machine learning algorithms (i.e., SVM, BPNN, and RF) to
extract the arecanut planting information, respectively. A total of six classification models
were constructed based on SVM, BPNN, and RF to extract the arecanut planting area in
the study region, denoted as SVM-1, BPNN-1, and RF-1 for the initial feature space input
and SVM-2, BPNN-2, and RF-2 for the optimized feature space as input. Ground survey
data were used to evaluate the classification accuracy of the initial and optimized feature
space inputs, and the impact of feature optimization on the extraction accuracy of arecanut
planting area was then analyzed.

Table 5 reports the classification accuracy of arecanut based on the different classi-
fication models. Following RF feature optimization, the user’s and producer’s accuracy
of SVM-2 are observed to exceed those of SVM-1 by 10.35% and 7.54%, respectively. The
producer’s accuracy for BPNN-2 remained changed, while the user’s accuracy increased
from 81.86% to 87.50%. In addition, the user’s and producer’s accuracy of the RF-2 model
is 0.60% and 7.58% higher than those of the SVM-1 and RF-1 models, respectively. The
overall accuracy of SVM-2, BPNN-2, and RF-2 is determined as 74.82%, 83.67%, and 88.30%,
respectively, which is 3.90%, 7.77%, and 7.45% higher than that of SVM-1, BPNN-1, and
RF-1. Moreover, the Kappa coefficients of SVM-2, BPNN-2, and RF-2 are 0.680, 0.795, and
0.853, respectively, exceeding those of SVM-1, BPNN-1, and RF-1.

Table 5. The classification accuracy of arecanut based on different classification models with different feature subsets.

Model
Omission
Error/%

Commission
Error/%

User’s
Accuracy/%

Producer’s
Accuracy/%

Overall
Accuracy/%

Kappa
Coefficient

SVM-1 24.24 27.54 72.46 75.76 70.92 0.630
BPNN-1 15.15 18.84 81.16 84.85 75.90 0.698

RF-1 13.64 8.06 91.94 86.36 80.85 0.760
SVM-2 19.70 17.19 82.81 83.30 74.82 0.680

BPNN-2 15.15 12.50 87.50 84.85 83.67 0.795
RF-2 6.06 7.46 92.54 93.94 88.30 0.853

In order to compare the extraction effects of SVM, BPNN, and RF on the arecanut
planting area, we further compared and analyzed the classification results of SVM-2, BPNN-
2, and RF-2 following feature space optimization (Table 5). RF-2 is observed to have the
highest overall accuracy, improving on those of BPNN-2 and SVM-2 by 5.53% and 18.02%,
respectively. In summary, the classification model following feature space optimization has
the ability to improve the extraction accuracy of the arecanut planting area, with the feature
optimized RF-2 model identified as the most suitable for arecanut planting information
extraction, effectively improving the extraction accuracy of arecanut.

In order to verify the influence of different classification algorithms on the extraction
accuracy of arecanut, we further constructed a confusion matrix for the classification results
of SVM-2, BPNN-2, and RF-2 (Table 6) and investigated the omission and misclassification
of arecanut. The SVM-2 results reveal that 17.19% of the identified arecanut are misclassified
forest land and farmland, while 19.70% are misclassified as forest land. The BPNN-2 and
RF-2 models reduced the omission and commission errors of arecanut compared to SVM-2,
with RF-2 exhibiting the lowest omission and commission errors. Thus, the optimized RF-2
model is identified to have the greatest separability for arecanut, forest, and farmland.
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Table 6. Confusion matrix of the classification results based on SVM-2, BPNN-2 and RF-2 models.

Model. Land Use Type Water Impervious Surface Forest Farmland Arecanut Total

SVM-2

Water 49 0 0 0 0 49
Impervious surface 0 50 0 0 0 50

Forest 1 0 59 46 13 119
Farmland 0 0 0 0 0 0
Arecanut 0 0 7 4 53 64

Total 50 50 66 50 66 282

BPNN-2

Water 49 0 0 0 0 49
Impervious surface 0 50 0 0 0 50

Forest 0 0 50 15 4 69
Farmland 1 0 12 31 6 50
Arecanut 0 0 4 4 56 64

Total 50 50 66 50 66 282

RF-2

Water 49 0 0 0 0 49
Impervious surface 0 50 0 0 0 50

Forest 0 0 57 17 1 75
Farmland 1 0 6 31 3 41
Arecanut 0 0 3 2 62 67

Total 50 50 66 50 66 282

3.3. Regional Application

In order to visually compare the classification effect of the study area images under
different methods, we selected the central area of the study area image and employed
SVM-2, BPNN-2, and RF-2 to determine the distribution map of the arecanut extraction
results on a regional scale (Figure 3). Table 6 and Figure 3 reveal that the SVM-2 model has a
serious leakage of cultivated land in the study area, almost all of which is classified as forest
and arecanut. Furthermore, a large extent of forest is wrongly divided into arecanut. The
BPNN model effectively overcomes the mixed separation of farmland and other vegetation,
and the distinction between arecanut and forest is more obvious. The classification results
of the RF model are generally consistent with those of the BPNN model, while the former
improves on the misclassification of farmland in the northern region. In summary, based on
the feature variables following RF feature optimization, the application of the RF method
can extract the arecanut planting area in the study region more effectively compared to the
BPNN and SVM models.

Arecanut planting area extraction models based on the support vector machine (SVM),
BP neural network (BPNN), and random forest (RF) classification algorithms were then
constructed. The overall classification accuracies of the SVM, BPNN, and RF models
optimized by the RF features were determined as 74.82%, 83.67%, and 88.30%, with Kappa
coefficients of 0.680, 0.795, and 0.853, respectively.
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Figure 3. The distribution map of arecanut extracted based on different classification models with the feature space
optimization of PlanetScope imagery. (a) SVM-2, (b) BPNN-2, and (c) RF-2.

4. Discussion

The fusion of spectral and textural features to construct a classification model pre-
sented in the current paper has been demonstrated to achieve promising results in the
extraction of arecanut planting area. However, numerous spectral features have not been
considered. Follow-up research should include additional spectral features based on the
extraction method of arecanut planting area employed in this paper. In addition, more
data sources should be adopted to construct a more accurate method for the extraction of
arecanut planting area.

The selection of characteristic variables is crucial for the construction of a classification
model. In particular, the presence of irrelevant, weakly related, or redundant features in the
primary selected features will directly affect the classification accuracy and generalization
ability of the model [33]. Therefore, feature selection is required to remove such features.
The RF feature variable optimization algorithm can determine each feature variable weight,
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reducing the redundancy of the feature variables and improving the classification accuracy
and generalization ability. However, this optimization approach does not consider the
correlation between various features, thus further improvement is required. Future research
will focus on determining the feature correlations while removing the redundancy between
the features. In addition, simpler and more efficient feature selection algorithms are
required for the model input selection.

The choice of modeling method affects the accuracy of the classification model. Al-
though SVM, BPNN, and RF have strong applications in research, they are associated
with several limitations. For example, although the SVM method is able to deal with
various nonlinear problems through the selection of the kernel function, determining the
kernel function and related parameters proves to be a difficult task, thus restricting its
application [34]. The work presented in the current paper is not based on certain theoretical
standards and only the linear kernel function is selected. The next step should consider
other kernel functions in order to select the optimal function, which can then allow for
the further optimization of the model parameters to obtain a higher precision model. The
BPNN method has strong nonlinear fitting and generalization abilities, and the established
network model is stable. However, the BPNN method also faces limitations, for example,
the accurate determination of the number of hidden layer nodes. In particular, the network
fails to converge for small node numbers and the fault tolerance is poor, while for a large
number of nodes, the network has a long learning time and is prone to overfitting. Al-
though RF has a strong tolerance to noise and is not prone to overfitting, its parameters
are more complicated and features with more value divisions are likely to have a greater
impact on RF decision-making, thereby affecting the accuracy of the model. Determining
how to improve these methods is reserved for future work.

5. Conclusions

Current methods based on low- and medium-resolution satellite images are not able
to meet the demand for the high-precision extraction of arecanut area in Hainan due
to the cloudy and rainy climate and severe land fragmentation. In the current paper, a
high-precision extraction method for arecanut planting area was proposed based on image
feature space optimization using PlanetScope satellite imagery. Results demonstrate the
ability of the spectral and texture features of PlanetScope satellite data to effectively extract
the planting distribution of arecanut. The Kappa coefficients of the SVM, BPNN, and RF
models following the RF feature optimization were determined as 0.680, 0.795, and 0.853,
with overall classification accuracies of 74.82%, 83.67%, and 88.30%, respectively. The ap-
plication of feature optimization improves the overall accuracy by 3.90%, 7.77% and 7.45%,
respectively. This indicates the strong applicability of feature space optimization based on
PlanetScope satellite imagery for the extraction of arecanut planting area. The research
results provide theoretical and technical references for the remote sensing extraction of
agricultural and forestry information.
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Abstract: The density of a chicken population has a great influence on the health and growth of the
chickens. For free-range chicken producers, an appropriate population density can increase their
economic benefit and be utilized for estimating the economic value of the flock. However, it is very
difficult to calculate the density of chickens quickly and accurately because of the complicated envi-
ronmental background and the dynamic number of chickens. Therefore, we propose an automated
method for quickly and accurately counting the number of chickens on a chicken farm, rather than
doing so manually. The contributions of this paper are twofold: (1) we innovatively designed a full
convolutional network—DenseFCN—and counted the chickens in an image using the method of
point supervision, which achieved an accuracy of 93.84% and 9.27 frames per second (FPS); (2) the
point supervision method was used to detect the density of chickens. Compared with the current
mainstream object detection method, the higher effectiveness of this method was proven. From
the performance evaluation of the algorithm, the proposed method is practical for measuring the
density statistics of chickens in a farm environment and provides a new feasible tool for the density
estimation of farm poultry breeding.

Keywords: deep learning; aquaculture automation; computer vision; chicken detection

1. Introduction

Refined agriculture is a significant trend of agricultural development for the future,
among which agricultural informatization is a development direction vigorously advocated
for at present [1]. Realizing the informatization of the agricultural industry is helpful
to promote the intellectualization of agricultural management, increase the output of
agricultural products, and obtain greater economic benefits [2,3].

The aquaculture industry also has great prospects in the trend of agricultural informa-
tization. As with other production technologies in the agricultural field, the main goal of
intelligent farming is to increase productivity and take operational measures related to the
environment to reduce costs [4–7]. In intelligent aquaculture, some of the main parameters
concerned include temperature, humidity, light intensity, and population density. Welfare
considerations affect the sale of poultry products, and breeding density is seen as a priority
for animal welfare [8]. For broiler breeding, compared with cage rearing, group rearing is
more reliable [9]. An appropriate breeding density will improve the growth performance of
chickens as well as their immunity and carcass yield [10–12]. However, there are few stud-
ies on the rapid monitoring of chicken population density. Most methods of monitoring
chicken populations involve studying the morphology of the chickens and observing their
physiological behaviors. For example, Yao Y. et al. [13] designed a classifier to determine
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the sex of chickens. A. Aydin [14] used 3D vision cameras to observe chickens’ walking
posture to assess whether they had lameness or other behavioral problems. Tu X. et al. [9]
developed a real-time automatic feed weight monitoring system which could automati-
cally detect the intake and weight of individual turkeys. Chakchai so-in et al. [15] used
traditional image processing methods and four algorithms, such as K-means, to classify
images of chickens taken by cameras arranged in a chicken farm; the accuracy of the logic
filter algorithm was the highest, achieving an accuracy of 80%. Similarly to Chakchai so-in,
we also monitored the density of chickens and counted them from images taken with a
camera in a chicken farm. The difference is that we chose to use a deep learning method
to process the images. In free-range chicken farms, the traditional method of counting
chickens is often manual, which has the following challenges:

1. The motility of the flock makes it difficult to perform a complete count of the flock;
2. The process is time consuming.

Deep learning has been widely used in different environments of many fields and
has proven to be a very efficient method. Of course, it is also widely used in various
agriculture-related fields [16], such as animal density detection and animal counting.
Beibei Xu et al. [17] used drones to collect images of cattle raised on a large scale and used
the method of instance segmentation to detect and count the photos of these cattle, with
the highest accuracy of 94%. Hung Nguyen et al. [18] used object detection to identify
and count wild animals, and they were able to identify the animals with 96% accuracy by
setting up a fixed camera position to photograph the path. Mengxiao Tian et al. [19] used
the density map method to count pigs in a pigsty and finally achieved a mean absolute
error (MAE) of 1.67. According to a recent survey of deep learning in agriculture [20],
deep learning has a wide application value in poultry breeding. This article focuses on
the detection and counting of free-range chickens on a poultry farm to achieve rapid
management of the poultry farm.

In this study, we used a deep learning method to automate the counting of free-range
chickens on a poultry farm. The chicken farm was indoors and covered by greenhouses;
therefore, we used surveillance cameras to collect data from the chicken farm. Due to
the high density of the chicken population, there was a high degree of overlap between
the individual chickens, and the overlapping chicken population made it difficult to
distinguish the individuals. Therefore, the object detection and density map methods were
not suitable for this task; as such, we chose to use the method of point supervision for
processing. We innovatively combined the segmentation loss function designed by Issam
H. Laradji et al. [21] and DenseNet [22] to create a new semantic segmentation model,
LC-DenseFCN, to meet the actual requirements.

2. Related Work

2.1. DenseNet

Since ResNet [23] was put forward, a variety of ResNet networks have emerged in
an endless stream, and each has its own characteristics; the network performance has also
been improved to some extent. With its excellent performance, the Dense Convolutional
Network (DenseNet) won the best paper of IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) 2017. The DenseNet (Dense Convolutional Network) proposed
in the paper is mainly a comparison with ResNet and Inception Network, which has some
reference in thought but is a new structure. The network structure is not complicated, but
it is effective and comprehensively outperforms ResNet in the CIFAR index. It can be said
that DenseNet has absorbed the best part of ResNet and has had more innovative work
conducted on it, further improving the network performance.

2.2. FCN

The fully convolutional network (FCN) [24] is the pioneering work that applied the
convolutional neural network (CNN) structure to the field of image semantic segmentation
and achieved outstanding results; accordingly, it was awarded the Best Paper Honorable
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Mention of CVPR in 2015. CNNs have been driving progress in the field of image recog-
nition in recent years. Whether it is whole-picture classification or object detection, key
point detection has been greatly developed with the help of CNNs. However, image se-
mantic segmentation is different from the above task, which is a space-intensive prediction
task. In other words, it needs to predict the categories of all pixels in an image. FCN
trains an end-to-end, point-to-point network for semantic segmentation and represents
the state of the art. This is the first time that an end-to-end FCN has been trained for
pixel-level prediction.

2.3. Localization-Based Counting Algorithm

Issam H. Laradji et al. proposed a positioning counting method based on point
supervision, i.e., an object counting model in which the dataset labels are all point labels
of unit pixels [21]. In this model, a compound loss function (LC-Loss) is designed for
monitoring counting. The structure of the model itself can use most of the semantic
segmentation models of FCN, so there is only a need to modify the function to achieve a
good counting effect. This model is suitable for object counting tasks in the order of 10 or
100, and the annotation of datasets is relatively simple. Its backbone network structure
is not complicated and has great value in migration applications. In the localization-
based counting algorithm model, the backbone networks used are LC-FCN [21] and
LC-ResFCN [21]. The reasons for choosing to use both networks are as follows: (1) FCN is
relatively simple and has a fast segmentation result in semantic segmentation; (2) based
on FCN, combined with ResNET-50 network, the accuracy can be relatively improved,
and due to the unique residual structure of ResNet, the computing speed will not be
greatly affected.

2.4. Object Detection Algorithms for Contrast Experiment

In recent years, great progress has been made in object detection algorithms, and
current object detection algorithms are mainly divided into two categories. The first are
two-stage algorithms, such as R-CNN [25], Fast R-CNN [26], Faster R-CNN [27], and Mask
R-CNN [28], which rely on a CNN to generate a region proposal network first, and then
classify and regress on the region proposal network. The other are one-stage algorithms,
which can directly predict the bounding box and class probability from the input image
by using only a convolutional neural network structure. The three algorithms used in this
paper are Mask R-CNN, YOLOv3 [29], and EfficientDet [30].

The early YOLOv1 [31] has several shortcomings: (1) the input size is fixed, and the
output layer is a fully connected layer; (2) it is not suitable for detecting small objects—
although each grid can predict many bounding boxes, only the bounding box with the
highest IoU (intersection over union) is selected as the object detection output. To address
these problems, YOLOv2 [32] was proposed. In YOLOv2, by using a convolution layer, the
output layer replaces the fully connected layer of YOLOv1. YOLOv2 cancels all dropout
and uses batch normalization in the convolution layer. Compared with the previous
YOLOv1 and YOLOv2, YOLOv3 shows great improvements. The backbone network of
YOLOv3 is Darknet53, and its most important feature is the use of the residual network
structure. Furthermore, the DarknetConv2D structure is used in the convolution part. As a
result, YOLOv3 largely improves the detection accuracy while maintaining a high detection
speed. Based on the excellent performance of Yolov3, Yao Y. et al. [13] used the YOLOv3
algorithm to detect the images of chickens, to achieve the purpose of counting chickens
and segmenting single chickens.

Mask R-CNN is a compact, versatile object detection framework. It can not only detect
the objects in an image, but also give a high-quality detection result for each object. Beibei
Xu et al. [17] used Mask R-CNN to detect and count cattle, and achieved good results
in the field of animal detection and counting. Mask R-CNN extends the Faster R-CNN
by parallel adding a new branch to the bounding box recognition branch for predicting
the object mask. Mask R-CNN (an extension of Faster R-CNN) which also allows for
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instance segmentation (associating specific image pixels to the detected object) is selected
for further study. Instance segmentation allows not only the detection of each animal,
but also the delineation of its boundaries within the image, thereby allowing further
potential applications for livestock welfare monitoring. The benefits provided by instance
segmentation allow for diverse future applications including estimations of animal pose
and direction of travel. In this work, however, we constrain interest to the object detector
capabilities of Mask R-CNN.

The EfficientDet algorithm was proposed by the Google brain team. By means of
improving the multiple dimensioned feature fusion structure of FPN and borrowing ideas
from the EfficientNet [33] model scaling method for reference, its contribution mainly
includes two points: (1) EfficientDet proposed the BiFPN network, which allows simple
and fast multi-scale feature fusion; (2) a compound scaling method was proposed, which
can uniformly scale the resolution, depth, and width of all the backbone, characteristic and
predictive networks. Based on these improvements, EfficientDet can provide high-accuracy
and rapid testing with fewer parameters.

3. Materials and Methods

3.1. Overview of Our Framework

This section describes the pipeline which is proposed for processing RGB images that
are captured by camaras to detect and count chickens using a deep learning algorithm.
The structure of chicken detection and counting in camera images is illustrated in Figure 1.
The RGB images acquired by the camera are used to extract features from the full image
using DenseNet (our DenseFCN network is a fully convolutional network; therefore, we
removed the full connection layer for processing pixel-level predictions). Then, a decon-
volution operation is carried out to up-sample the feature map of the last convolutional
layer and restore it to the same size as the input image; in this way, a prediction can be
generated for each pixel while retaining the spatial information in the original input image.
Finally, the feature map of the up-sampled is classified, pixel by pixel. The ground truth
was annotated manually for every chicken in the training sets (we used LC-Loss as the loss
function for the network; therefore, we only needed to mark one pixel of the chicken); then,
network training was performed after labeling for parameter optimization, followed by
chicken detection and counting in testing sets.

3.2. Dataset Preparation and Pre-Processing

The provision of sufficient and diverse chicken population datasets was a pre-requisite
for this work. As the research area is at an advanced level in the industry, there was a
lack of appropriate publicly available datasets; therefore, we completed the whole process
of data collection by ourselves. The images used in this research were taken at Sichuan
Meishan City Song’s chicken farm. Part of the chicken farm is indoors and covered by
greenhouses; therefore, we used surveillance cameras to collect data on the environment of
the free-range chicken farm. We installed multiple Hikvision DS-IPC-B12-I cameras in the
chicken farm and filmed it from different locations. The shooting angle was mainly from
top to bottom, and the collection time was in March 2020. The collected videos were pre-
processed, the monitoring videos were framed, the invalid fragments were deleted, and the
key frames were then extracted. Some images that were not easy to identify in morphology,
did not have obvious features, or were too blurred were abandoned, and most of the
images obtained were clear. However, due to the movement characteristics of chickens, a
small number of images were relatively fuzzy. In order to improve the robustness of the
model, we added some relatively fuzzy images into the dataset. In addition, the dataset
also contained some daily behaviors of chickens, such as eating, drinking, and jumping,
which improved the richness and diversity of the dataset. We finally selected 1200 valid
images of chickens with a resolution of 1080P as the dataset, including images of chickens
with different densities. The detection dataset was divided in a ratio of 5:1 to build the
training set and the test set. For data annotation, we used the deep learning annotation
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tool LabelMe to manually label the images and marked the position of a single chicken in
the image with RGB (255.0.0) pixels.

 

Figure 1. The structure of the chicken detection and counting algorithm.

The environment in which chickens are raised is complex and sometimes affected by
inclement weather, such as low temperatures and heavy rain. In the process of digital image
acquisition, coding, transmission, and processing, noise always exists [34]. Due to the
advanced equipment we used, and the good weather conditions during the data collection
stage, there was less noise in the collected dataset. In an actual scene, the equipment is
often affected by aging circuits and the environment, and the noise level is very high.
In order to improve the robustness of the model, we randomly selected 200 images from the
dataset and added salt and pepper noise to simulate a more realistic shooting environment.
Noise brings a lot of difficulties to image processing, which has a direct impact on image
segmentation, feature extraction and image recognition. Therefore, it was necessary to
filter the collected images. Median filtering is based on the theory of order statistics of a
nonlinear signal processing technology and can effectively restrain noise. Its basic principle
is to replace the value of a point in a digital image or sequence with the median value
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of each point in a neighborhood of the point, so that it becomes the true value close to
the surrounding pixel value, to eliminate the isolated noise points, which is particularly
useful for speckle noise and salt and pepper noise, because it does not depend on the
surroundings of those values with a typical value difference that is very large. Figure 2
shows some of the filtered images with salt and pepper noise.

Figure 2. Adding salt and pepper noise and median filtering process.

3.3. The Detection and Counting Algorithm

LC-DenseFCN is an extension of LC-FCN, which takes DenseNet as the backbone
network, removes the full connection layer, and fuses and deconvolves the feature map
with rich semantic information, eventually forming a fully convolutional network that
can perform pixel-level prediction. Like FCN, LC-DenseFCN is divided into two stages:
(1) the convolution process of feature extraction from the image; and (2) the deconvolution
process of fusion and deconvolution of the extracted feature maps of different layers.

3.3.1. Convolution

The process of feature extraction mainly consists of four DenseBlocks and three
Transition layers. The DenseBlock is composed of several composite functions, including
batch normalization, ReLU activation function, and a convolutional layer. DenseNet is
a convolutional neural network with tight connections. Any two layers in this neural
network are directly connected, i.e., the input of each layer in the network is the union
of the output of all previous layers, and the features learned by this layer will be directly
transmitted to all subsequent layers as inputs. This tight connection only exists in the
same DenseBlock, but there is no such tight connection in different DenseBlocks. This
structure can reduce the network parameters, reduce gradient disappearance, and improve
feature utilization.

3.3.2. Deconvolution

In general CNN structures, a pooling layer is used to reduce the size of the output
image. The input image of VGG16 [35] was shrunk 32 times after pooling five times; in
ResNet, some convolutional layers are also involved in the process of reducing the image
size. What we needed to obtain was a segmented image with the same size as the original
image; therefore, we needed to deconvolve the last layer. In the process of DenseNet’s
feature extraction of the image, the size of the feature image is gradually reduced. Firstly,
we deconvolved the feature graph of DenseBlock4 to make its size the same as that of the
feature graph of DenseBlock3 and fused them. Then, deconvolution was performed on the
feature map obtained after fusion to make its size the same as that of DenseBlock2, and we
then fused it with the feature map of DenseBlock2. Finally, deconvolution with a stride of
8 was performed on the fused feature image to obtain the detection results.

3.3.3. Loss Function

LC-Loss enables the model to produce an area block where each object is and finally
counts the number of areas; the required monitoring signal is a position point for each
object, not a bounding box. The loss function is called location-based counting loss, and it
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has four items. The first two require the model to give the semantic label of each pixel of
the graph, while the last two require the model to learn to separate the areas with multiple
objects and remove the areas without objects.

L(S, T) = LI(S, T) + LP(S, T) + LS(S, T) + LF(S, T) (1)

Here, S is the figure given by the ground truth (GT), and T is the output of the network.
On each pixel is a softmax vector, which represents the probability that this pixel belongs
to each kind of object. Finally, Argmax is taken on each output pixel to divide the region.

Image-level loss: Ce is given by the GT of this figure and the set of object classes
that exist in the figure; C¬e represents the set of object classes that do not exist. Stcc is the
maximum probability of category c of S per pixel. That is, the model is encouraged to
predict c if there is class c in the GT and is penalized to predict c if there is.

LI(S, T) = − 1
|Ce| ∑

c∈Ce

log(Stcc)− 1
|C¬e| ∑

c∈C¬e

log(1 − Stcc) (2)

Point-level loss: This loss is normal softmax cross-entropy loss; thus, the background
category needs to be ignored, and this item will only be calculated for the marked posi-
tion points.

LP(S, T) = −∑
i∈Is

log(SiTi ) (3)

Split-level loss: The loss contains two implementation methods—the line split method
and the watershed split method.

1. Line split method.

z(E) =
1
|E| ∑i∈E

Si0 (4)

Each blob in the blob set B is formed by a series of point sets around the central
coordinate p of the blob. For any point in the point set BP, it will form a pairing with its
surrounding points (Pi, Pj). Additionally, a line can then be used to separate Pi and Pj.
The position where the lines separate will be the background with the highest probability
of learning. This separates one blob from the surrounding blobs.

2. Watershed split method.

LS(S, T) = − ∑
i∈Tb

αi log(Si0) (5)

Here, Si0 represents the probability that pixel I belongs to background 0, and ai
represents the number of pixels in each blob that belong to that blob. This loss lets the
model learn so that there is a clear dividing line between the two adjacent blobs.

False positive loss: LF discourages the model from predicting a blob with no point
annotations in order to reduce the number of false positive predictions (FP). The loss
function is defined as follows:

LF(S, T) = − ∑
i∈Bf p

log(Si0)Bf p (6)

where Bf p represents the pixels that predict which category the blob belongs to, excluding
the background category, which is a circle of pixels around a point; and Si0 represents
the probability that the category i belongs to the background category. The probability of
category i belonging to the background category in the whole process optimization is 1, to
achieve the purpose of removing false positive predictions, where the loss is optimized
only when there is an false positive prediction; otherwise, the loss is not optimized.
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3.4. Experimental Environment and Evaluation Protocol

The operating system of the experiment was Ubuntu 16.04, the deep learning frame-
work used in all experiment was Pytorch 0.4, and all experimental results were obtained on
an NVIDIA Geforce RTX 2080 super GPU (Santa Clara, CA, USA), with a video memory of
8 GB.

In this paper, there are some differences between the evaluation criteria of point
supervision algorithms and object detection algorithms. Mean Absolute Error (MAE),
Mean Square Error (MSE), Root-Mean-Square Error (RMSE), Mean Relative Error (MRE),
and accuracy are used as the evaluation metrics of the point supervision algorithms,
including LC-FCN, LC-ResFCN and LC-DenseFCN. MAE is the most commonly used
index to measure accuracy. It is the average error in a more general form and also an
important ruler for evaluating models in machine learning. MSE is the most commonly
used error in regression loss function. It is the mean of the sum of squares of the difference
between the predicted value, f (x), and the target value, y. RMSE reflects the square root
of the mean of the square variance between the predicted value and the actual observed
value. MRE is generally used to analyze the accuracy of results. Accuracy represents the
ratio of correctly predicted samples to the total number of predicted samples; the definition
formula is as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(7)

where TP, FP, TN and FN represent true positive, false positive, true negative and false
negative, respectively.

Moreover, the precision, recall and average precision (AP) and frames per second
(FPS) are utilized as the evaluation metrics of point supervision algorithms and object
detection algorithms, including LC-DenseFCN, YOLOv3, Mask R-CNN and EfficientDet.
The precision reflects the proportion of true predicted positive in all the predicted positive,
but the recall reflects the proportion of true predicted positive in all of the positives.
For the precision–recall curve [36], the larger the area enclosed by the curve, the better
the performance. Another important performance index is speed; only fast speed can
realize real-time detection, which was extremely important for our application scenario.
A common measure of speed is FPS, i.e., the number of images that can be processed
per second.

4. Results

This section presents the performance evaluation of the proposed method to detect
and count chickens in different experimental settings. First, we conducted a performance
comparison of the segmentation model under different backbones; then, we conducted a
loss function analysis; and finally, we performed a comparison with the state-of-the-art
object detection algorithms.

4.1. Performance Comparison of Segmentation Model under Different Backbones

We compared the proposed LC-DenseFCN model with two typical existing methods:
LC-FCN and LC-ResFCN. We evaluated the two competing methods on the same test
images collected from the chicken farm; the training process of these competing methods is
shown in Figure 3. The following can be noted: (1) the loss of LC-FCN converged slowly
and fluctuated greatly, while Mean Absolute Error (MAE) jittered greatly and even showed
an upward trend with the increase in epoch; (2) the loss of LC-ResFCN converged faster,
but the MAE was not stable enough and the jitter was obvious; (3) the MAE of the early
training process oscillated, but the late convergence effect was better. The convergence
speed of loss was a little slower than that of LC-ResFCN in the early stage, but the overall
convergence was more stable without large fluctuations. After analysis, the deep network
framework was not suitable for such a small dataset. LC-DenseFCN uses DenseNet as
the backbone network, and its smaller number of parameters makes the network easier to
train; therefore, LC-DenseFCN had better convergence. Moreover, we have summarized
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the performances in terms of error and accuracy in Table 1. As can be seen from the table,
LC-DenseFCN, in this paper, achieved the best accuracy of 93.84%, and all errors were the
lowest in test datasets. It is obvious that the dense connection structure and feature reuse
method of DenseNet achieved better results than the other two methods in our experiment.

Figure 3. The point supervision algorithm training progress through 100 epochs (MAE means Mean Absolute Error).

Table 1. Accuracy and error values of three point supervision methods.

Accuracy
(%)

Mean
Absolute

Error

Mean
Square
Error

Root-Mean-
Square
Error

Mean
Relative

Error

LC-FCN 91.40 1.60 5.14 2.27 0.86
LC-ResFCN 92.32 1.38 3.71 1.93 0.77

LC-DenseFCN 93.84 1.30 2.25 1.51 0.67

4.2. Loss Function Analysis

In this section, we present assessments of the effect of each term of the loss function on
the counting and localization results. As can be seen from Figure 4b, the model using only
two terms (the image-level loss LI and the point-level loss LP) resulted in a single blob that
grouped many object instances together. From Figure 5, we can see that this performed
poorly in terms of the MAE and counting accuracy. Then, we introduced the split-level
loss function LS to encourage the model to predict blobs that did not contain more than
one point-annotation. As shown in Figure 4c, the model after adding LS predicted several
blobs as object instances rather than one large single blob. However, because LI + LP + LS
did not penalize the model for predicting blobs with no point annotations, it caused the
model to make false predictions, which also resulted in a model counting accuracy of only
0.68 (see Figure 5b). Finally, we introduced the false positive loss LF which discouraged
the model from predicting blobs with no point annotations. By adding this loss term to the
optimization, LC-DenseFCN achieved significant improvements, as seen in the qualitative
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and quantitative results, which are shown in Figures 4d and 5. Furthermore, the results of
Figures 4 and 5 also verify the role played by each part of LC-Loss on the whole network.
Each term of the loss function plays a corresponding role, which is well adapted to the
model that we proposed, and a complete LC-Loss can make our network achieve the
best performance.

  

Figure 4. Qualitative results of LC-DenseFCN trained with different terms of the proposed loss function. (a) Test images
obtained from our test dataset. (b) Prediction results using only image-level and point-level loss terms. (c) Prediction results
using image-level, point-level and split-level loss terms. (d) Prediction results trained with the full proposed loss function.

Figure 5. Comparison of different parts of the proposed loss function for counting and localization performance.
(a) The mean absolute error (MAE) performance of the three loss functions. (b) The counting accuracy of the three
loss functions.

4.3. Comparison with State-of-the-Art Object Detection Algorithms

Object counting is a computer vision task that can be applied to surveillance and
vehicle counting. In the past, object detection has been regarded as the mainstream method
for counting tasks. We compared LC-DenseFCN with three state-of-the-art object detection
algorithms, namely, YOLOv3, EfficientDet and Mask R-CNN. To allow the readers to
visually compare the results of the different methods, the predictions processed by the
competing methods are visualized in Figure 6. As shown, all four methods used in the
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experiment achieved a good performance for the less dense image of chickens. However,
object detection methods did not perform well for dense or heavily overlapped parts of the
image. After a preliminary analysis, the purpose of the object detection method is to frame
the object out; as such, it requires more complete characteristics of the object, resulting in
a poor detection effect for multiple overlapping objects. As a point supervision method,
LC-DenseFCN does not need the full features of the object; hence, it can perform well in
processing images where multiple objects overlap.

Figure 6. Predictions on the test images for four detection algorithms.

It can be seen from Figure 7 there is an inverse relationship between the precision and
recall, which means the higher the precision, the lower the recall. However, we expected
to detect all the target objects, which means higher recall rates, and also expected higher
precision rates of the detected objects. At around recall = 0.82, 0.93, 0.95, 0.96, the inflection
point appeared in all four curves known as balance points where the precision and recall
achieved the best values, and then the precision dropped sharply.

The counting experiment results of the test image set are shown in Table 2. It can
be seen from the table that the counting accuracy of LC-DenseFCN reached 0.97, which
was the highest among the four methods, and the values of FPS and AP were also higher
than those of the other three object detection methods. Among the three object detection
algorithms, the counting accuracy of EfficientDet reached 0.96, which was only 0.01% lower
than that of LC-DenseFCN. Moreover, the AP of EfficientDet was also very close to that of
LC-DenseFCN, but the FPS value was only 4.33. The counting accuracy and AP of Mask
R-CNN were not good enough, because compared with other object detection algorithms, it
also needed to segment the objects, which increased the difficulty of detection and resulted
in a low FPS. If using cameras to observe a chicken farm in real time, a high detection speed
is very necessary. The result indicates that LC-DenseFCN is most effective in real-world
datasets, because such datasets consist of data from different, complex scenes with different
density distributions and different degrees of occlusion.
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Figure 7. Comparisons of precision–recall curves for four detection cases.

Table 2. Comparison of counting results with three competing methods.

Ground
Truth

Detected
Counting
Accuracy

Counting
Error

Average
Precision

Frames Per
Second

LC-DenseFCN 4872 4748 0.97 0.03 0.94 9.27
YOLOv3 4872 4396 0.90 0.10 0.89 5.11

EfficientDet 4872 4697 0.96 0.04 0.92 4.33
Mask R-CNN 4872 4213 0.86 0.14 0.86 2.04

5. Discussion

In this paper, we have proposed LC-DenseFCN, a deep learning algorithm, for the
detection and counting of chickens from camera images. The key novelty of the work is the
presentation of the LC-DenseFCN algorithm and the demonstration of its effectiveness for
this important poultry monitoring task. As for the feasibility of this approach, we discuss
the following:

(1) In terms of processing accuracy, the source of detection was images collected by only
two cameras on the chicken farm. Due to the fixed collection angle, the information of
the overall environment could not be obtained; as a result, the information acquired
was limited. Meanwhile, the movement characteristics of the chickens could also lead
to a large error. In this regard, multiple cameras can be installed at different angles of
the chicken farm, and the images collected by multiple cameras can be integrated to
assess the overall situation of the chicken farm. Moreover, the overlapping situation
of multiple chickens can be improved by installing cameras on top of the farm, which
helps to effectively reduce counting errors. In general, although some individuals
may have been missing in the test process, we finally achieved real-time monitoring
of the number of chickens. The number of chickens should, theoretically, be in a
dynamic range, and the final data can be obtained by statistical methods; thus, it will
not have a significant impact on the overall accuracy;

(2) In terms of processing speed, in order to meet a farmer’s need to obtain information
on their chickens at any time, real-time processing of images collected by the camera is
required. This is why we considered using the point supervision method. Compared
to object detection methods, the point supervision method does not need to know
the exact size of the object; therefore, the processing method is much simpler, and
for counting tasks, the size of an object is of no practical use. The current seman-
tic segmentation and instance segmentation methods were not considered due to
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their slow processing speed and the large amount of time spent on data annotation.
The experimental results indicate that the LC-DenseFCN algorithm performs well;
the detection speed was 9.27 FPS, which is sufficient for real-time detection.

Based on the above discussion, we believe that the proposed method is effective
for automatic poultry management and the development of refined agriculture. Further-
more, we have provided a new idea for the application of agricultural intelligence in the
breeding industry.

6. Conclusions

In this study, deep learning technology was applied to the detection and counting of
chickens, and a high-precision algorithm for chicken detection and counting was proposed.
Firstly, we obtained video data from a camera installed on a chicken farm. Then, we
took frames from the video and created a dataset of 1200 images. For meeting the needs
of practical applications, we designed a point supervision model (LC-DenseFCN) and
compared it with other point supervision models (LC-FCN and LC-ResFCN) and object
detection models (EfficientDet, YOLOv3 and SSD). The experimental results indicate that
the LC-DenseFCN algorithm performs well; the detection accuracy was 93.84%, and the
counting accuracy reached up to 97%. Moreover, LC-DenseFCN could process images
at 9.27 FPS, which was faster than any other model; therefore, its performance meets
the requirements of practical applications. In order to prove the effectiveness of the
combination of LC-Loss and model, we conducted a split experiment on LC-Loss, and
the results showed that each loss of LC-Loss had a corresponding effect, and our model
was matched with LC-Loss. As for the experimental results, we discussed the realization
method of the automatic estimation of the quantity of chickens on the farm, which provided
the train of thought for the automatic management of chicken farms. In future work, we
will concentrate on assessing the performance of LC-DenseFCN in counting poultry species
and further explore the impact of stocking density on animal welfare.
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Abstract: In this study we hypothesized that the lameness of early lactation dairy cows would
have an impact on inline biomarkers, such as rumination time (RT), milk fat (%), milk protein (%),
milk fat/protein ratio (F/P), milk lactose (L, %), milk electrical conductivity of all udder quarters,
body weight (BW), temperature of reticulorumen content (TRR), pH of reticulorumen content (pH),
and walking activity (activity). All 30 lame cows (LCs) used in this experiment had a score of 3–4,
identified according to the standard procedure of Sprecher et al. The 30 healthy cows (HC) showed
a lameness score of one. RT, milk fat, MY, milk protein, F/P, L, milk electrical conductivity of all
udder quarters, and BW were registered using Lely Astronaut® A3 milking robots each time the
cow was being milked. The TRR, cow activity, and pH of the contents of each cow’s reticulorumen
were registered using specific smaXtec boluses. The study lasted a total of 28 days. Days “−14” to
“−1” denote the days of the experimental period before the onset of clinical signs of lameness (day
“0”), and days “1” to “13” indicate the period after the start of treatment. We found that from the
ninth day before the diagnosis of laminitis until the end of our study, LCs had higher milk electrical
conductivity in all udder quarters, and higher milk fat to protein ratios. On the 3rd day before
the onset of clinical signs of the disease until the day of diagnosis, the milk fat of the LC group
was reduced. The activity of the LCs decreased sharply from the second day to the first day after
treatment. RT in the HC group tended to decrease during the experiment. pH in LCs also increased
on the day of the appearance of clinical signs.

Keywords: lameness; inline biomarkers; fresh dairy cows

1. Introduction

Lameness is an important health and welfare concern in dairy farming. Producers
are aware of how painful this condition is to the animal. They are more than willing to
put effort into controlling lameness, even if these control measures seem inconvenient;
however, the prevalence of lameness in the herd remains underestimated [1]. Many
cases go untreated for several weeks, and those that are treated often develop repeated
cases, requiring further treatment [2]. In any herd, lameness has negative implications
on productivity and behavior [3], and this may be heightened in farms where milking
robots are used. In problematic herds with a high incidence of lameness, there is a huge
economic loss due to the reduction in milk yield and weight loss [4–6]. Lame cows have
lower milk yields, shorter rumination times, lower milk temperatures, and a lower intake
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of supplements, and exhibit greater refusal to go to milking [7]. These changes in milk
composition can be used to determine lameness of infectious and non-infectious origins;
this observation is supported by Bonfatti et al. (2020) [8]. Bramley et al. (2013) [9] found
that herds that are at higher risk for lameness were also at much higher risk for acidosis.
Acidosis systematically impacts the physiology of animals, including laminitis and a
diffuse aseptic inflammation of the laminae [10,11]. Vasoactive substances (histamine and
endotoxins) are released during a decline in ruminal pH and as the result of bacteriolysis
and tissue degradation. These substances cause vasoconstriction and dilation, which
ultimately destroy the microvasculature of the corium. The effects of rumen acidosis in
fresh dairy cows are mainly manifested by decreased milk fat content, decreased fiber
digestibility, and diarrhea [11]. AlZahal (2008) [12] also observed a decrease in pH below
5.6 and a rumen temperature exceeding 40 ◦C. According to AlZahal et al. (2008) [12],
rumen temperature negatively correlates with rumen pH. Therefore, changes in rumen
temperature can be used to determine acidosis, and this can potentially be achieved using
radio-telemetric devices [13]. According to Zhang et al. (2015) [14], lameness also decreases
milk yield and days in milk (DIM) as well as the milk fat and fat-to-protein ratio. Milk fat
depression has been associated with a decreased acetate-to-propionate ratio [15]. Analyzing
the fluctuations in the ratio of milk fat to protein and their relationship to the pH value of
the rumen content, it was found that the ratio of milk fat to protein, showing sub-acute
ruminal acidosis (SARA), is <1 [15]. Miekley et al. (2012) [16] investigated the use of milk
electrical conductivity and cow activity for the early diagnosis of mastitis and laminitis.
Lukas et al. (2009) [17] reported that the milk electrical conductivity is a reliable indicator of
mastitis, but Khatun et al. (2019) [18] argue that the electrical conductivity of milk is not a
very sensitive indicator for the detection of mastitis, even if is the most widely used method
for the early diagnosis of mastitis recorded by automatic milking systems. However, Lukas
et al. (2009) [17] described that other metabolic and digestive problems such as ketosis,
left displaced abomasum, a retained placenta, and lameness were also associated with a
clear increase in milk electrical conductivity. Walker et al. (2008) [19] observed that lame
cows spend more time lying down, less time standing, and less time walking. Mazrier
et al. (2006) [20] confirmed that the use of electronic devices to record walking time of cows
can detect lameness 7–10 days before the onset of clinical signs, which is associated with
decreased activity in cows. Cows with lameness have also been found to spend less time
eating and to be less active compared with non-lame cows [21,22].

Demonstrating the negative changes associated with lameness, especially when ac-
counting for other factors, would help dairy producers to better evaluate the negative
effects of even simple cases of lameness and would likely lead to more improved lameness
monitoring and treatment methods. The expanding use of automatic milking systems
(AMSs) provides many challenges and opportunities to dairy producers. The use of
AMSs also has the advantage of monitoring cow-level milking frequency and quarter-level
production and milk quality, which can support illness detection tools [23]. King et al.
(2018) [23] also found that some of the markers registered by automatic milking systems
change in association with lameness in cows. Nonetheless, not all health disorders can
be detected electronically, and producers must still physically assess and fetch cows for
milking if their milking interval is too long [24–26].

Based on the information in the literature, we hypothesized that the lameness of fresh
dairy cows would have an impact on inline biomarkers, such as rumination time (RT),
milk yield (MY), milk fat (%), milk protein (%), milk fat/protein ratio (F/P), milk lactose
(L, %), milk electrical conductivity of all udder quarters, body weight (BW), temperature
of reticulorumen content (TRR), pH of reticulorumen content (pH), and walking activity
(activity). With this study we aimed to investigate the identification of risk factors for the
detection of lameness with the help of biosensors.
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2. Materials and Methods

2.1. Location and Animals

The investigation was conducted at the Lithuanian University of Health Sciences, and
at one farm containing dairy cows (54.9754◦ N, 23.7684◦ E) in the period from 1 July 2020
to 15 December 2020.

All animal experimental procedures were approved; the approval number is PK016965.
Sixty Lithuanian black and white breed cows (on average 5 years old) were selected from a
herd of 500 dairy cows, which were being kept in a loose system. A lameness diagnosis was
performed by trained staff (by the same one person) according to the standard procedure
described by Sprecher et al. [26]: 1 = normal, 2 = presence of a slightly asymmetric gait,
3 = the cow clearly protects one or more limbs (moderately lame), 4 = severely lame, and
5 = extremely lame (non-weight-bearing lame). Visual locomotion scoring was conducted
once weekly for four consecutive weeks by the same observer. Based on Warnick et al., [27],
the causes of lameness were categorized as sole ulcer, abscess, and foot rot. Sole ulcer
(pododermatitis circumscripta) included degenerative or necrotic defects in the sole near
the sole heel junction. Abscess (white line abscess, sole abscess) was defined as a pus-filled
cavity of the white line or sole of the foot. Foot rot (interdigital phlegmon) was swelling of
the soft tissues of the foot, resulting in symmetrical swelling above the coronary band and
spreading of the toes, in some cases with necrosis of the tissue between the claws.

All 30 LCs used in this experiment had a score of 3–4, presenting severe lameness
with pronounced arching of the back, they were reluctant to move, and were unwilling
to complete weight transfer off the affected limb. The 30 HCs had a lameness score of
1. The study lasted for a total of 28 days. Days “−14” to “−1” denote the days of the
experimental period before the onset of clinical signs of lameness (day “0”), and days
“1” to “13” indicate the period after the start of treatment. Average DIM was 60 (±10)
days. Treatment was repeated at 24-h intervals for a total of three days. Rimadyl Cattle®

(50 mg/mL) s.c. injection (Zoetis, Belgium) at a dose of 1.4 mg/kg body weight was
performed once as well.

Cows were provided with a total mixed ration (TMR) consisting of 20% corn silage,
20% grass silage, 50% flaked grain concentrate, 5% grass hay, and 5% of mineral mixture.
The ration was composed as to exceed or meet the requirements of a 550-kg Holstein cow
producing 40 kg of milk per day. Composition of ration: dry matter (DM) (%) 49.00; neutral
detergent fiber (% of DM) 28.00; acid detergent fiber (% of DM) 20.00; crude protein (% of
DM) 16.00; non-fiber carbohydrates (% of DM) 39.00; net energy for lactation (Mcal/kg).
Feeding was carried out every day at 05:00 and 17:00. The milking process was done with
five Lely Astronaut® A3 milking robots with free traffic.

2.2. Measurements

Lely Astronaut® A3 milking robots with free traffic were used to milk the cows and
they collected information about the cows: MY, BW, RT, L, F/P, milk fat, and milk protein
milk electrical conductivity (mS/cm) of all quarters of the udders (front left (MCFL), front
right (MCFR), rear left (MCBL), rear right (MCBR)).

With the help of smaXtec boluses (smaXtec animal care technology®), the parameters
pH, TRR, and cow activity were monitored in real-time and were registered every 10 min
each day. Data were measured with the help of specific antennas (smaXtec animal care
technology®). For the monitoring of pH, TRR, and activity an indwelling and wireless data
transmitting system (smaXtec animal care GmbH, Graz, Austria) was used. The system was
controlled by a microprocessor. Data (pH, TRR) were collected using an analogue-to-digital
converter (A/D converter) and stored in an external memory chip. Calibration of the
pH-probes was performed using pH 4 and pH 7 buffer solutions at the beginning of the
experiment. All data were obtained using smaXtec messenger® computer software.
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2.3. Data Analysis and Statistics

Data were analyzed with the SPSS 26.0 (SPSS Inc., Chicago, IL, USA) program package.
The normal distribution of variables was assessed using the Kolmogorov–Smirnov test
(inline variables were not normally distributed). To assess the differences between the
compared LC and HC groups over a 28-day period, we used the general linear model
repeated measures and Fisher’s standard deviation (SD) criterion. Differences were consid-
ered statistically significant at p ≤ 0.05. Linear regression was also used to analyze changes
in the studied inline biomarkers.

3. Results

The average weight of the cows was 700 kg. Average milk yield during 2020 was
12,000 kg per cow and year.

3.1. Relationship of Lameness in Fresh Dairy Cows with Milk Traits

The lame cows were less productive (on average—9.4 kg/d; p < 0.001 of milk yield),
had a higher milk fat concentration (on average 0.74 percentage points p < 0.001), lower
milk protein content (on average—0.243 percentage points; p = 0.031), and had a higher
milk fat/protein ratio (on average—0.297; p < 0.001), compared to healthy cows. Lame
cows’ milk was found to have a lower lactose content (on average–0.141 percentage points;
p < 0.001) and all udder quarters had higher milk electrical conductivity (on average—
2.1–7.6 mS/cm; p < 0.001) (Table 1).

Table 1. Milk traits by group of cows (LSM ± SD).

Variable HC LC p

MY (kg) 43.39 ± 7.65 34.00 ± 9.59 <0.001
Fat (%) 4.15 ± 0.54 4.89 ± 0.67 <0.001

Protein (%) 3.74 ± 0.35 3.50 ± 0.44 0.031
F/P 1.11 ± 0.09 1.41 ± 0.11 <0.001

Lactose (%) 4.66 ± 0.05 4.52 ± 0.07 <0.001
MCFL (mS/cm) 67.1 ± 2.24 74.6 ± 2.81 <0.001
MCFR (mS/cm) 66.3 ± 2.98 73.9 ± 3.74 <0.001
MCBL (mS/cm) 67.5 ± 2.61 71.7 ± 3.27 <0.001
MCBR (mS/cm) 69.5 ± 1.96 71.5 ± 0.05 <0.001

MY—milk yield; Fat—milk fat; Protein—milk protein; F/P—milk fat to protein ratio; Lactose—milk lactose;
MCFL—milk electrical conductivity of front left udder quarter; MCFR—milk electrical conductivity of front right
udder quarter; MCRL—milk electrical conductivity of rear left udder quarter; MCRR—milk electrical conductivity
of rear right udder quarter; HC—healthy cow group; LC—lame cow group; data are presented as least square
means (LSM), standard deviation (SD); p ≤ 0.05—means in the row differed significantly.

In 90.48% of the milk samples of the LC group (Figure 1A), the F/P ratio exceeded 1.2,
and only 9.52% of the samples met the reference norm (p < 0.001). The lactose level in milk
exceeded 4.6% in 90.91% of milk samples from HC cows and only 4.76% in milk samples
from LC cows (p < 0.001). Results are presented in Figure 1B.

Milk productivity of HC increased linearly from 38.7 ± 0.15 kg to 57.90 ± 0.18 kg
(p < y = 0.5504x + 39.869; R2 = 0.9322, p < 0.001). From the ninth day before the diagnosis
of laminitis until the end of the experiment, the milk production of the LC group of cows
was statistically significantly lower compared to the group of healthy cows (p < 0.05); and
only on the eighth day after the start of treatment did the milk yield of LC cows begin to
increase slightly (Figure 2A).
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Figure 1. Relation of laminitis with milk fat-to-protein ratio (A) and lactose level (B). F/P—milk fat
to protein ratio; L—milk lactose (%); HC—healthy cow group; LC—lame cow group.
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Figure 2. Changes in milk milk yield (A), fat (B), protein (C), fat to protein ratio (D), lactose (E), milk
electrical conductivity of front left and right udder quarter (F), milk electrical conductivity of rear left
and right udder quarter (G). MCFL—milk electrical conductivity of front left udder quarter; MCFR—
milk electrical conductivity of front right udder quarter; MCBL—milk electrical conductivity of rear
left udder quarter; MCBR—milk electrical conductivity of rear right udder quarter; HC—healthy
cow group; LC—lame cow group.
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Milk fat (y = −0.0202x + 4.2357, R2 = 0.2156, p = 0.013) and protein content in HC
decreased during the experiment (y = −0.0187x + 3.8052, R2 = 0.5748, p < 0.001). On the
3rd day before the onset of clinical signs of the disease until the day of diagnosis, the milk
fat of LC was significantly reduced (p < 0.001). In these cows, milk fat (Figure 2B) began to
stabilize at day 8 and milk protein began to increase at day 9 after treatment (Figure 2C).

The milk fat-to-protein ratio in LC was higher compared to healthy cows during the
first 25 days of the experiment (p < 0.001). The average value of this indicator in both
groups of cows at the end of the experiment was the same (Figure 2D).

Milk lactose in HC tended to decrease during the experimental period (y = −0.0025x +
4.7129, R2 = 0.3256, p = 0.002) and was higher than in LC (p < 0.001). A steady increase in
this indicator in LC was observed from the 8th day from the beginning of treatment to the
end of the experiment (Figure 2E).

The electrical conductivity of HC tended to increase according to linear regression
analysis (R2 = 0.26–0.40, p = 0.005, and p < 0.001). In LC this indicator was higher compared
to HC and fluctuated during the experiment (Figure 2F,G).

3.2. Relationship of Lameness in Cows with Reticulorumen Indicators, Activity, and Body Weight

In the LC group, we found lower mean RT values (−133.42 min/d, p < 0.001) and
higher activity values (+1.38 steps/h, p = 0.027) and body weight (+5.69 kg, p < 0.001)
compared to the HC group (Table 2).

Table 2. Reticulorumen indicators, activity, and body weight by group of cows (LSM ± SD).

Variable HC LC p

RT (min/day) 517.6 ± 21.80 384.2 ± 52.41 <0.001
pH 6.43 ± 0.17 6.46 ± 0.22 0.231

TRR ◦C 39.16 ± 0.87 39.33 ± 1.17 0.059
Activity (steps/h) 8.55 ± 0.45 9.93 ± 0.37 0.027
Body weight (kg) 734.5 ± 15.44 728.8 ± 20.89 <0.001

RT—rumination time; pH—reticulorumen pH; HC—healthy cow group; LC—lame cow group; data are presented
as least square means (LSM), standard deviation (SD); p ≤ 0.05—means in the row differed significantly.

The RT in HC tended to decrease during the experiment (y = −1.9354x + 553.78.
R2 = 0.3647, p < 0.001) and was significantly higher than in LCs from the start of the
experiment until the 11th day after treatment (p < 0.001). For LCs we could not apply linear
regression in the analysis of their RT change (Figure 3A).
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Figure 3. Change in rumination time (A), reticulorumen pH (B), activity (C), reticulorumen tem-
perature (D), and body weight (E) of cows by group during the experiment. RT—rumination time;
Activity—cow activity; TRR—reticulorumen temperature; BW—body weight; HC—healthy cow
group; LC—lame cow group.

As seen in Figure 3B, the pH in LC cows increased significantly from day −2 to day
0 (p < 0.001), then decreased until the 3rd day after treatment (p < 0.001), and increased
until the end of the experiment. The pH of the reticulorumen in HCs was more stable
throughout the observation period.

The activity of cows in the LC group decreased sharply from day “−2” to the first day
after treatment, then increased, but began to decrease again at 10 days after the start of
treatment. In HC this indicator changed less throughout the experiment (Figure 3C).

The highest TRR (Figure 3D) in cows of the LC group was recorded from “−3” to
“0” days (40.00 ◦C–40.16 ◦C). At the end of the experiment, the TRR of this group of cows
dropped to 39.32 ◦C ± 0.229 ◦C (p < 0.001).

The BW of LC decreased throughout the experimental period (y = −2.474x + 747.37,
R2 = 0.8409, p < 0.001), whereas in HC it was more stable (Figure 3E).

4. Discussion

According to the results of our study, we found that lame cows were less productive;
the milk production of lame cows was lower than in healthy cows. Huxley et al. (2013)
reported milk yield losses per case of lameness, with most losses ranging from 270 to
574 kg/lactation [3]. Cow-level studies of lameness in AMS herds have reported reduced
milk yield, reduced total and voluntary milking frequency, and greater daily lying time for
lame cows [28–30]. Lameness had a detrimental effect on most outcome variables analyzed,
especially to parameters related to milk production and AMS visits. Lame cows produced
1.6 kg/d less milk during the 6-d data collection period in some studies. Furthermore, a
higher milking order index was registered for moderately lame cows [31].

We found that lame cows in all udder quarters had higher milk electrical conductivity.
The monitoring of affected milk electrical conductivity has promise as an indirect and
rapid method for the detection of subclinical mastitis [32]. The technology is based on
measuring potassium, sodium, and other free ions, especially chloride, which is directly
proportional to electrical conductivity. In normal milk, the concentration of Cl− is around
75–130 mg/100 mL; however, due to inflammation, the amount of free Cl− can increase up
to 111–198 mg/100 mL. These changes can appear rapidly and sporadically, depending on
the type of mastitis developing [32]. Lameness, as a problem affecting crossbred dairy cattle
herds, has tremendous effects on animal health, production, welfare, and reproduction [33].
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Severe pain in lame cows modifies the normal rising and lying behavior of cattle. The
chances of mastitis increased the longer the cows remained lying down [33]. A positive
relationship was observed between poor claw health and an increased incidence of clinical
mastitis [34].

Our study shows that lame cows had a lower milk protein content and a higher milk
fat-to-protein ratio. On the 3rd day before the onset of clinical signs of the disease until
the day of diagnosis, the milk fat of lame cows was significantly reduced. In the milk of
lame cows, lower concentrations of milk lactose were registered. Lameness in crossbred
dairy cattle may affect the milk composition. Olechnowicz and Jacekowski (2010) detected
a significant decrease in the average milk yield and in milk components of fat, protein,
and lactose content in cows with clinical lameness, as compared to non-lame cows [35];
due to lameness, the cows exhibited poor absorption and assimilation of nutrients, since
they were under more stress and pain and had increased oxidative agents, which in
turn resulted in significantly lower average monthly protein, fat, and lactose contents
and production compared to non-lame cows. In their subsequent trial, Olechnowicz and
Jacekowski (2012) [36] observed that clinical lame cows had significantly lower milk protein
content than healthy cows.

The activity of cows in the LC group decreased sharply from day “−2” to the first day
after treatment, then increased but began to decrease again at the end of the experiment.
According to literature, alterations in limb movements develop due to pain from claw
disorders [36]. In multiple studies, however, it has become evident that it is difficult for
farmers to reliably detect lameness. For this reason, a number of attempts have been made
to incorporate technical equipment into gait analysis and to develop automatic detection
systems to warn farmers about lameness incidences in their herds [31,37,38]. Currently,
two main types of systems are used on farms [38–41]: permanently installed in the animal’s
environment (e.g., weighing platforms, 3-dimensional cameras, video analysis), or systems
attached to the cow (e.g., pedometer). However, according to Rutten et al. (2013) [38],
the aforementioned systems are mainly used to detect severe lameness, which is already
easily detected visually. Lameness leads to several changes for cows, both in their gait and
behavior. However, in most studies the cows with different lameness scores have been
grouped together, whereas little is known about lameness-induced behavioral changes in
moderately lame cows specifically.

Moderately lame cows, compared with non-lame cows, demonstrated a lower average
locomotor activity, which can be explained by the reduced time of being elevated on
their feet [19] and is in agreement with observations in cows with lameness of differing
severity [22,41]. Furthermore, the locomotory activity registered during the first hour
after feed delivery or push-ups was lower in moderately lame cows than in non-lame
cows. This result suggests that non-lame cows are quicker to react to the feed push-ups
or delivery [42–44] and provides proof for the hypothesis that lame cows have trouble
getting up and walking to the feed alley for freshly delivered feed. Furthermore, a greater
difference in locomotion activity 1 h after milking has been suspected between lame and
non-lame cows. Juarez et al. (2003) [45] found that the percentage of cows lying down after
returning from the milking parlor increased with the growing severity of lameness. This
presumably occurs due to a painful weight-bearing process (while waiting for and during
milking), which increases with the severity of lameness. The average locomotor activity
and the locomotor activity during the hour after feed delivery or push-ups were lower in
moderately lame cows compared to non-lame cows. The daily lying duration of moderately
lame cows in the present study ranged between that of non-lame and previously observed
severely lame cows, which points to a positive relationship between lying duration and
the degree of lameness. The prolonged lying duration in combination with an increased
number of lying bouts in moderately lame cows resulted in a longer average lying duration
than in non-lame cows. The changes in lying behavior are associated with the reduced
time that lame cows spend on their feet [19], possibly as a way to avoid bearing weight on
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damaged limbs [45]. Furthermore, moderately lame cows also showed a lower average
level of neck locomotion than non-lame cows [29].

During our study, RT in healthy cows tended to decrease during the experiment and
was higher than in lame cows from the start of the experiment until the 11th day after
treatment. According to Weigele et al. (2018) [30], the number of eating chews and eating
time per 24 h were shorter in moderately lame than in non-lame cows. Moreover, no
effect of moderate lameness was evident on the number of ruminating chews, ruminating
time, number of boluses, average ruminating speed, and the average number of rumi-
nating chews per bolus [30]. Moderately lame cows also displayed less frequent visits to
the concentrate feeder than non-lame cows. In contrast, both lame and non-lame cows
showed a similar probability of concentrate leftovers [30]. A reduced number of eating
chews and eating time were found in moderately lame cows, which was also found by
Beer et al. (2016) [46]. In accordance with Palmer et al. (2012) [47], due to painful limbs or
feet, lame cows spent less time standing and eating. Bareille et al. (2003) [48] observed a
lower total feed intake in lame cows compared to non-lame cows, which could be related
to their poorer BCS [19,49]. On the other hand, several studies have reported a higher
feeding rate (feed intake per min) in lame cows and thus came to a conclusion that they
eat faster than their non-lame counterparts [21,50,51]. Taking these results (no difference
in average mastication speed but reduced eating time and number of eating chews) into
account, Weigele et al. (2018) [30] assumed that moderately lame cows had a poorer
breakdown of feed. Moderate lameness did not affect rumination duration, number of
ruminating chews, number of boluses, or the average ruminating speed. Although cows
can ruminate while standing, the greater part of rumination usually takes place while
lying down [52,53], whereas eating is performed while standing. Therefore, the effect of
lameness on rumination might not be as significant as its effect on eating. This notion is
supported by Thorup et al. (2016) [51], who also observed reduced eating behavior but
similar rumination behavior when comparing lame and non-lame cows.

We found that pH in lame cows increased on the day of the appearance of clinical
signs, then decreased until the 3rd day after treatment, and increased until the end of the
experiment. Changes in the rumen initiate several systemic changes. Increased organic
acid, particularly lactic acid, and thus a reduced pH value, result in decreased ruminal
motility, predisposing cows to ruminitis and hyperkeratosis [54]. In many dairy opera-
tions, the biggest concern is not acute acidosis but subclinical acidosis, whereby a minute
accumulation of lactic acid is detectable in the rumen; however, pH still decreases. Daily
episodes of pH < 5.5 for given periods ultimately lead cattle to low-grade, subclinical aci-
dosis. Symptoms include an erratic appetite, bodyweight loss, diarrhea, and lameness [55].
Laminitis occurs in acute, chronic, and subclinical forms [56]. Acidosis and laminitis are
linked with alterations in the hemodynamics of the peripheral microvasculature [57]. Var-
ious theories have been developed to explain the pathogenesis of laminitis. Vasoactive
substances such as histamine and endotoxins are released during ruminal acidosis and as
the end-products of bacteriolysis and tissue degradation. These substances influence va-
sodilation and vasoconstriction, ultimately destroying the corium’s microvasculature [58].
Ischemia results in reduced oxygen and nutrient availability for the extremities of the
corium. This degrades the junctions between tissues that are critical for locomotion [57].
The insidious rotation of the distal phalanx (pedal bone) often results in permanent damage.
Signs of subclinical laminitis are yellowish discolorations and hemorrhages of the sole [56].
Other clinical manifestations include dorsal wall concavity, double soles, heel erosion, and
ridging of the dorsal wall [59]. Pododermatitis aseptica diffusa is the scientific name for
laminitis, an aseptic inflammation of the foot’s dermal layers. Studies have concluded
that body condition score, body weight, rear lateral digital variations, non-tarsal rear limb
superficial swelling, abnormal hoof overgrowth, and limb laceration were risk factors for
clinical lameness.
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5. Conclusions

The risk factors identified for lameness with the help of sensors were lower milk yield,
milk protein and lactose contents, bodyweight, activity, and rumination time, and higher
milk electrical conductivity and milk fat-to-protein ratio.

From the ninth day before the diagnosis of laminitis until the end of our experiment,
the milk production of lame cows was lower than that of healthy cows. LCs exhibited a
higher milk electrical conductivity in all udder quarters, lower milk protein and lactose
contents, as well as a higher milk fat-to-protein ratio. On the 9th day before the onset of
clinical signs of the disease until the day of diagnosis, the milk fat of the lame cows was
reduced. The bodyweight of LCs decreased throughout our experimental period. The
activity of lame cows decreased sharply from the first day to the second day after treatment.
RT in healthy cows tended to decrease during the experiment and was higher than in lame
cows from the start of the experiment until the 11th day after treatment. The reticulorumen
pH in lame cows also increased on the day of the appearance of clinical signs.

From a practical point of view, we recommend the use of the following biomarkers for
the early diagnosis of lameness in fresh dairy cows: milk yield, milk electrical conductivity,
milk composition (protein, lactose, and fat), walking activity, rumination time, and reticu-
lorumen pH. In future studies, we recommend extending the study period to 30 days or
more before the onset of clinical signs of lameness.
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Abstract: We hypothesized that lameness in fresh dairy cows (1–30 days after calving) has an impact
on attributes of feeding registered with a noseband sensor. The aim of this study was to investigate
the impact of lameness in fresh dairy cows on attributes of feeding (registered with the RumiWatch
noseband sensor): rumination time (RT), drinking time (DT), eating time (ET), rumination chews
(RC), eating chews (EC), chews per minute (CM), drinking gulps (DG), bolus count (B), and chews
per bolus (CB). The measurement registration was started at the first day after calving and continued
until 30 days after calving. There were 20 Lithuanian black and white breed cows selected. Lameness
diagnosis was performed by trained staff based on a locomotion score system and it was diagnosed
on average on the 15th day after calving. The causes of lameness were categorized as sole ulcer,
abscess and foot rot. Special attention was paid to attributes of feeding registered 14 days before
and 13 days after diagnosis. The 10 lame cows (LG) used in this experiment had a lameness score
of 3–4 presented with severe lameness: they were reluctant to move and unwilling to complete
weight transfer off the affected limb. The 10 healthy cows (HG) were given a lameness score of 1.
We found that lameness of fresh dairy cows has an impact on inline registered ingestive behaviors
biomarkers—the mean RT of HG cows was as much as 2.19 times higher than that of LG cows on
the day of diagnosis of lameness, later this difference between the groups decreased to the sixth day
of treatment, then increased again and decreased at the end of the experiment. The lowest eating
time was found on diagnosis day and the highest on the ninth day before determination of lameness.
Drinking time was higher in the HG group, with the exception of 10 and 9 days prior to clinical signs
of disease in LG cows. A downward trend in rumination chews was observed in LG cows from day 7
until the onset of clinical symptoms. The bolus count decreased from day 3 before diagnosis to day 1
after diagnosis in LG cows. The largest difference in this indicator between groups was found on day
of diagnosis. Analysing the pattern of CM values in the LG group, we found a decrease from 10 days
before to 2 days after diagnosis. The CB value was almost the same in both groups of cows at the end
of the experiment, but largest difference between the groups was found on day 7 after clinical sings
of lameness.

Keywords: rumination; locomotion; precision dairy farming

1. Introduction

In dairy farming, lameness is one of the major welfare and health problems [1].
Traditionally, the detection of lameness has relied on visual inspection to detect animals
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with abnormal gait [2]. The early detection of health disorders is an important point in dairy
cattle farming, since early detection of the disease has a major influence on the severity
of diseases, the animal welfare and the economics of dairy production [1]. Identification
of healthy and lame cows was entirely based on the herd health reports of the farm. The
accuracy of these herd health reports depended on the correct identification of lameness
by the herdsman, the amount of reported cases of lameness and the expertise of the
veterinarian [3]. The monitoring of physiological parameters may allow to detect changes
before the appearance of clinical signs and earlier diagnosis would greatly benefit cows
by preventing disease progression [4]. Sensors have become an integral part of modern
dairy farming, which allows for continuous monitoring of the individual in the herd [3].
Accelerometer sensors are used in lame animal detection in livestock industries [2]. The
automation of lameness detection or gait scoring is an important topic in research and
several different approaches have been developed [3]. Studies focusing on ground reaction
forces, pressure sensitive walkways and accelerometers measured the asymmetry of the
gait when walking, other studies used computer vision to analyze the gait automatically. In
these studies, the main focus was put on gait parameters-step overlap, hoof release angle
and back arch curvature [5–7]. Raw data of Benaissa et al. (2019) [8]. illustrate that the
widely used collar-mounted accelerometer classifies ruminating and feeding behaviors with
accuracy closely comparable to the RumiWatch noseband sensor [8]. In our past studies,
we found that cows with subclinical ketosis had shorter rumination and drinking times
and lesser rumination chews, chews per minute, boluses, and chews per bolus [9]. Van
Hertem et al. (2013) reported that for the automated detection of lameness a combination
of farm data on the milk yield, rumination time and neck activity can be used [3]. During
the nighttime, a significantly lower rumination time and milk yield were registered in lame
animals. Lame animals showed a higher night to day ratio of neck activity. In a 10-fold
cross-validation procedure, a logistic regression model for automated clinical lameness
detection according to behavioral and performance data achieved a correct classification
rate of 0.86, a specificity of 0.85, and a sensitivity of 0.89. An ear-tag sensor, a type of on-
animal sensor, was used to precisely detect walking, standing, grazing, and lame walking
activities [3]. Furthermore, strong correlations with lameness are suggested with unique
animal-based parameters—such as leg hygiene, body condition scoring (BCS), and hock
condition—that have been used in animal welfare determination practices [10]. With
more research and use, this classification algorithm could be integrated into an automatic
livestock monitoring system to provide real time information on an individual’s health
status, that is problematic under current extensive livestock production systems [2]. A tri-
axial accelerometer fitted in the ear-tag can successfully differentiate lame walking activity
from normal walking, standing and grazing behaviors. In one research paper, it was noted
that the leg and collar deployed accelerometers failed to successfully classify both normal
and lame walking activity. However, this could have been affected by sensor placement
and the simulation not being a true representation of lameness [2]. Miguel-Pacheco et al.
(2014) stated that further studies are needed in order to expand the use and benefits of the
technologies available as a tool to measure and monitor the health status of cows [11].

The RumiWatch Sensor (RWS) built into the cow nose-halter, uses data gathered by
a pressure sensor in combination with data gathered by a triaxial accelerometer to detect
specific behavioral characteristics in dairy cows [12]. The RWS is able to record and store
individual animal behavior over several days with high precision [13,14]. The RWS is
a useful tool for research as it records bolus counts, number of rumination chews, total
number of eating chews, and the time spent ruminating for grazing cows and supplemented
grazing cows [12].

We hypothesized that lameness of fresh dairy cows (1–30 days after calving) has an
impact on the attributes of feeding registered by the noseband sensor. The aim of this
study was to investigate the impact of lameness on attributes of feeding registered with
the RumiWatch noseband sensor: rumination time, drinking time, eating time, rumination
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chews, eating chews, drinking gulps, bolus count, chews per minute, and chews per bolus
before and after diagnosis of lameness fresh dairy cows.

2. Materials and Methods

2.1. Animals, Location, and Experimental Design

This study was conducted at the Lithuanian University of health sciences, and one
commercial dairy farm (54.9754◦ N, 23.7684◦ E) during 1 July 2020–15 December 2020. All
animal experimental procedures were approved, approval number is PK016965. During
investigation time, the total incidence of lameness in the herd was about 10%. Fifty from
1550 Lithuanian Black and White breed multiparous dairy cows coming up to parturition
were selected (on average 5 years of age), which were being kept in a loose-housing system.
The recording of the feeding behavioral data was started at the first day after calving and
continued until 30 days after calving by applying the RumiWatch noseband halter.

The selected cows were monitored daily for signs of lameness. Lameness diagnosis
was performed by trained staff according to the standard procedure described by Sprecher
et al. [15]: 1 = normal; 2 = presence of a slightly asymmetric gait; 3 = the cow clearly
favored one or more limbs (moderately lame); 4 = severely lame; and 5 = extremely lame
(non-weight-bearing lame). Of cows monitored in this experiment, 10 out of 50 had a
lameness score of 3–4, represented by severe lameness and they were diagnosed on average
on the 15th day post partum. They were reluctant to move and unwilling to complete
weight transfer off the affected limb. The 10 lame cows comprised the lame group (LG)
and were examined by a claw health professional to determine the cause of lameness. Six
of the cows were diagnosed with sole ulcers, three with abscess, and one with foot rot.
These results match the findings of Warnick et al. [16], where the causes for lameness in a
herd were categorized as sole ulcer (60%), abscess (20%), and foot rot (20%). According
Warnick et al. [16], sole ulcer was defined as degenerative or necrotic defects in the sole
near the sole–heel junction. Abscess was defined as a pus-filled cavity of the white line or
sole of the foot. Foot rot was swelling of the soft tissues of the foot resulting in symmetrical
swelling above the coronary band and spreading of the toes, in some cases with necrosis of
the tissue between the claws.

Immediately after identification of lameness, all lame cows had their claws treated
and received subcutaneous administrations of Naxcel (100 mg/mL; Zoetis, Kirkland, QC,
Canada), at the dosage of 2.2 mg/kg of body weight. Treatment was repeated at 24-h
intervals for a total of three consecutive days and a subcutaneous injection of Rimadyl
Cattle® (50 mg/mL) solution (Zoetis, Belgium) at a dose of 1.4 mg per 1 kg body weight
once. After treatment lameness was identified by the same trained staff according to the
standard procedure described by Sprecher et al. [15]. After treatment, the lameness score
of the cows improved.

Based on the principle of analogues (Table 1), 10 healthy cows (HG) were selected-
same breed, same production, and lactation number. Cows in the healthy group had
maintained a lameness score of 1 throughout the study period. Data from the RumiWatch
noseband halter from 14 days before and 13 days after the diagnosis of lameness was
used to compare with non-lame cow data during the same period. The healthy cows were
monitored during the same days as the lame cows.

Table 1. Characteristics of experimental groups.

Group Breed Average of DIM
Average of Milk Yield of Past

Lactation (kg/Year)
Partulation Average of Number of Lactation

HG Lithuanian Black and White 15 12500 (±500) Multiparous 3

LG Lithuanian Black and White 15 12100 (±350) Multiparous 3

HG—healthy cows; LG—lame group; DIM—days in milk; kg/year—kilograms per year.
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Cows were provided with a total mix ration (TMR) consisting of 20% corn silage,
5% grass hay, 20% grass silage, 50% grain concentrate mash, and 5% of mineral mixture.
TMR was formulated accordingly to meet or exceed the requirements of a 550 kg Holstein
cow producing 40 kg/d of milk. Diet was delivered every day at 05.00 and 17.00 h.
Composition of ration are presented in Table 2. Cows were milked with DeLaval milking
robot (DeLaval Inc., Tumba, Sweden).

Table 2. Composition of ration.

Parameters Values Units

Dry matter (DM) 49 %

Neutral detergent fiber 28 % of DM

Acid detergent fiber 20 % of DM

Non-fiber carbohydrates 39 % of DM

Crude protein 16 % of DM

Net energy for lactation 1.7 Mcal/kg
DM—dry matter; % of DM—percent of dry matter; Mcal/kg—megacalorie per kilogram.

2.2. Measurements

Experimental days from ‘−14’ to ‘−1’ denote the period before the onset of clinical
signs of lameness (day ‘0’) in the LG (lame) group of cows and days ‘1’ through ‘13’ indicate
the period from the start of lameness treatment and recovery period.

Throughout the investigation time, the RumiWatch Sensor (RWS; Itin + Hoch GmbH,
Liestal, Switzerland), for the measure of the ruminative behavior, was used on the 50 cows
selected for the study (Figure 1). The RWS is comprised of a noseband halter that has a
built-in pressure detector and a liquid-filled pressure tube.

 

Figure 1. Cow with the RumiWatch Sensor.
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The pressure sensor and the tube are placed in a belt on the nose bridge of the cow.
The triaxial accelerometer, the data logger, and a secure digital memory card are located
on the right belt ring, mounted in a waterproof plastic box. In another box on the left
belt ring, the batteries are incorporated. Data collected by the pressure sensor and the
triaxial accelerometer were recorded with a frequency of 10 Hz and saved on the secure
digital memory card. To ensure the best possible detection of the jaw movements by the
pressure sensor, the belt around the nose and the lower jaw left 3 to 5 cm of movement
space to the nose bridge and was located between 11 and 16 cm behind the nasal tip. The
recorded data were read out by the RumiWatch Manager (version 2.1.0.0, Itin and Hoch
GmbH) and processed through the evaluation software, called the RumiWatch Converter
(C2, version 0.7.3.2, Itin and Hoch GmbH).

With the help of RWS the following attributes of feeding were registered: Drinking
time (DT)—time spent for drinking, including interruptions between drinking gulps up
to 5 s.; Rumination time (RT)—time spent for rumination chews including chewing inter-
ruptions up to 5 s.; Eating time (ET)—time spent for eating chews, including interruptions
between eating chews up to 5 s.; Rumination chews (RC)—number of chews during rumi-
nation for breakdown of the regurgitated materials into smaller particles using the molars;
Eating chews (EC)—total number of prehension bites and breakdown chews while eating;
Drinking gulps (DG)—total number of drinking gulps while drinking; Bolus (B)—number
of boluses during rumination; Chews per minute during rumination (CM)—chews for
one minute; Chews per bolus (CB)—chews performed during rumination between the
regurgitation and swallowing of one bolus.

2.3. Data Analysis and Statistics

The statistical analysis of RumiWatch data was performed with the SPSS 25.0 (SPSS Inc.,
Chicago, IL, USA) program package. The normal distribution of variables was assessed
using the Kolmogorov–Smirnov test. After that, we used the general linear repeated mea-
sures model and Fisher’s standard deviation criterion to compare the indicators between
the study (healthy and lame) groups.

The results of RumiWatch indicators were given as least square means (LSM) and
standard deviation (SD). A linear regression was applied to determine the change in the
estimated RumiWatch variables during the two experiment periods: (1) period until the
onset of clinical signs (days from ‘−14’ to ‘−1’) and (2) treatment period (days from ‘0’ to
‘13’). A probability of less than 0.05 was considered significant (p < 0.05).

3. Results

3.1. Impact of Fresh Dairy Cows Lameness on Ingestive Behaviors Registered with RumiWatch
Noseband Sensor

As can be seen from the data in in the Table 3, the average values of all indicators
recorded by the RumiWatch sensor were significantly higher in healthy cows. The average
indicators of HG cows were higher than the average indicators of lame cows from 1.1 times
(p ≤ 0.05; drinking gulps and chews per minute) to 3.1 times (p < 0.001; chews per bolus).

3.2. Changes in Ingestive Behaviors Registered with RumiWatch Noseband Sensor in Lame and
Non-Lame Cows during the Experiment

The rumination time, eating time, rumination chews and bolus count indicators
in healthy cows were higher (p < 0.001) than in lame cows throughout the experiment
(Figure 1).

In the lame group, there was a linear trend towards a decrease in rumination time
(R2 = 0.30), rumination chews (R2 = 0.31), and bolus (R2 = 0.25) indicators from the begin-
ning of the experiment to lameness identification day. In the healthy group, a similar trend
was observed only for drinking gulps values (R2 = 0.26). For lame cows, an increase in
drinking gulps (R2 = 0.54) and chews per minute (R2 = 0.37) was observed from the start of
lameness treatment to the end of the experiment. Other indicators changed less (Table 4).
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Table 3. Results of RumiWatch noseband sensor data of dairy cows that were eventually diagnosed
with subclinical lameness and cows that remained healthy. Least square means (LSM) and standard
deviation (SD) by groups of cows.

Indicator Healthy Lame p

RT (min/h) 24.56 ± 0.44 15.94 ± 0.43 <0.001

ET (min/h) 6.44 ± 0.2 3.71 ± 0.12 <0.001

DT (min/h) 0.70 ± 0.03 0.28 ± 0.03 <0.001

RC (n/h) 1558.57 ± 33.12 1053.9 ± 34.88 <0.001

EC (n/h) 430.96 ± 13.25 242.69 ± 13.35 <0.001

DG (n/h) 152.96 ± 5 135.61 ± 4.21 0.048

B (n/rumination) 24.55 ± 0.52 16.32 ± 0.54 <0.001

CM (n/min) 61.66 ± 1.1 56.75 ± 1.02 0.050

CB (n/rumination) 11.10 ± 0.4 3.61 ± 0.42 <0.001
RT—Rumination time (time in minutes spent for rumination chews); ET—Eating time (time in minutes spent
for eating chews); DT—Drinking time (time in minutes spent for drinking); RC—Rumination chews (chews
during rumination for mechanical breakdown of the regurgitated materials); EC—Eating chews (number of
prehension bites); DG—Drinking gulp (total number of drinking gulps while drinking); B—number of boluses
per rumination) CM—Chews per minute (chews for one minute); CB—Chews per bolus (chews performed
during rumination).

Table 4. Evaluation of changes in ingestive-related behaviors Indicators by period of the experiment.

Indicator
Period until the Onset of Clinical Signs Treatment Period

Healthy Lame Healthy Lame

RT
y = −0.14x + 24.61,

R2 = 0.1,
p = 0.75

y = −0.33x + 13.99,
R2 = 0.3,
p < 0.001

y = 0.1x + 22.69,
R2 = 0.05,
p = 0.45

y = 0.18x + 14.28,
R2 = 0.07,
p = 0.39

ET
y = −0.1x + 5.93,

R2 = 0.16,
p = 0.16

y = −0.05x + 3.47,
R2 = 0.05,
p = 0.39

y = −0.04x + 6.48,
R2 = 0.05,
p = 0.41

y = −0.002x + 3.62,
R2 = 0.0007,

p = 0.89

DT
y = 0.01x + 0.69,

R2 = 0.17,
p = 0.15

y = −0.008x + 0.22,
R2 = 0.15,
p = 0.18

y = −0.02x + 0.95,
R2 = 0.3,
p < 0.001

y = 0.005x + 0.23,
R2 = 0.05,

p = 0.5

RC
y = −1.68x + 1595.3,

R2 = 0.002,
p = 0.67

y = −24.56x + 923.8
R2 = 0.31,
p < 0.001

y = 3.67x + 1470,
R2 = 0.007,

p = 0.73

y = 20.85x + 866.65,
R2 = 0.15,
p = 0.17

EC
y = −8.83x + 382.05,

R2 = 0.22,
p = 0.082

y = −4.43x + 225.11,
R2 = 0.11,
p = 0.18

y = −0.49x + 419.57,
R2 = 0.001,

p = 0.86

y = 2.94x + 206.64,
R2 = 0.11,
p = 0.19

D
y = −4.52x + 145.63,

R2 = 0.25,
p = 0.049

y = −5.04x + 133.83,
R2 = 0.21,
p = 0.083

y = 3.34x + 84.59,
R2 = 0.15,
p = 0.163

y = 5.95x + 92.65,
R2 = 0.53,
p < 0.001

B
y = 0.11x + 26.53,

R2 = 0.07,
p = 0.32

y = −0.25x + 14.75,
R2 = 0.24,
p = 0.05

y = 3.34x + 84.59,
R2 = 0.15,
p = 0.16

y = 0.2x + 14.65,
R2 = 0.09,
p = 0.22

CM
y = 0.14x + 64.18,

R2 = 0.01,
p = 0.62

y = −0.19x + 59.14,
R2 = 0.01,
p = 0.68

y = −0.42x + 62.89,
R2 = 0.10,
p = 0.27

y = 1.67x + 42.88,
R2 = 0.37,
p < 0.001

CB
y = 0.19x + 10.66,

R2 = 0.18,
p = 0.09

y = −0.11x + 2.76,
R2 = 0.23,
p = 0.06

y = −0.45x + 16.37,
R2 = 0.25,
p = 0.05

y = 0.15x + 2.56,
R2 = 0.13,
p = 0.22

RT—Rumination time (time in minutes spent for rumination chews); ET—Eating time (time in minutes spent for eating chews); DT—
Drinking time (time in minutes spent for drinking); RC—Rumination chews (chews during rumination for mechanical breakdown of
the regurgitated materials); EC—Eating chews (number of prehension bites); DG—Drinking gulp (total number of drinking gulps while
drinking); B—number of boluses per rumination); CM—Chews per minute (chews for one minute); CB—Chews per bolus (chews performed
during rumination).

The mean rumination time of healthy cows was as much as 2.19 times higher (p < 0.001)
than that of lame cows on the lameness identification day, later this difference between the
groups decreased to the sixth day of treatment, then increased again and decreased at the
end of the experiment (Figure 2A). The changes in rumination time of lame cows could
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be described by linear regression, showing a downward trend in this indicator from the
beginning to the end of the experiment. In the healthy group, a decreasing trend of this
indicator was also observed during the experiment, but the value of R2 was small (Table 2).
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Figure 2. Changes in ingestive-related behaviors parameters by day of the experiment. * shows that
the values of the HG and LG groups differ significantly at p < 0.05. RT—Rumination time (time in
minutes spent for rumination chews); ET—Eating time (time in minutes spent for eating chews);
DT—Drinking time (time in minutes spent for drinking); RC—Rumination chews (chews during
rumination for mechanical breakdown of the regurgitated materials); EC—Eating chews (number of
prehension bites); DG—Drinking gulp (total number of drinking gulps while drinking); B—number
of boluses per rumination) CM—Chews per minute (chews for one minute); CB—Chews per bolus
(chews performed during rumination). LG—lame cows’ group, HG—healthy group. Days ‘−14’ to
‘−1’ denote the experimental period before the onset of clinical signs of lameness (day ‘0’) in the LG
group, and days ‘1’ to ‘13’—the period after the start of treatment.
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The lowest eating time (2.01 ± 0.1) was found on lameness identification day and the
highest (2.72 times higher, p < 0.001) on day ‘−9’ before the onset of clinical signs of the
disease (Figure 2B).

Drinking time was significantly (p < 0.001) higher in the healthy group, with the
exception of ‘−10’ and ‘−9’ days prior to clinical signs of disease in lame cows. The largest
difference between groups (7.38-fold) was found on day 7 of treatment (Figure 2C).

A downward trend in rumination chews (Figure 2D) was observed in lame cows from
day 7 before until the identification of lameness. During the mentioned period, the value
of the indicator decreased 2.07 times (p < 0.001). On the last day of the experiment, the
mean rumination chews differed between the groups 1.53-fold (p < 0.001).

The mean eating chews value of lame cows decreased 1.50 times from the beginning
of the experiment to lameness identification day (p < 0.001), while in the healthy group, on
the contrary, it increased 1.13 times. Eating chews was 1.55-fold higher in the healthy cow
group (p < 0.001) on the last day of the experiment compared to the lame group (Figure 2E).

Eating chews (Figure 2E) in the healthy group during the experiment increased
(R2 = 0.4718) from the second day to the end of the experiment (1.45 times, p < 0.001). The
highest eating chews value were found in lame cows on the third day after identification of
lameness, and the lowest (2.19 times lower) on the first day after identification of lameness
(p < 0.001).

During the experimental period, drinking gulps decreased in the healthy group
(y = −4.0578x + 203.98, R2 = 0.434) (Table 2). In lame cows, the lowest drinking gulps
(176.00 ± 4.351) (total number of drinking gulps while drinking) was set on lameness
identification day, and the highest value (1.59 times higher, p < 0.001) was on the 12th day
after identification of lameness (Figure 2F).

The value of indicator bolus (Figure 2G) decreased (1.59 times p < 0.001) from day
‘−3’ to day ‘+1’ in lame cows. The largest difference in this indicator between groups was
found on day ‘0’ (2.17 times, p < 0.001). Twelve days after the identification of lameness,
the difference between the groups decreased.

Analyzing the change in chews per minute (Figure 2H) in the lame group, we found a
decrease (2.27 times, p < 0.001) in this indicator from ‘−10’ to ‘2’ days of the experiment.
After that, we noticed an increase up to day ‘+8’. Chews per minute values in the healthy
group fluctuated less during the experimental period.

The chews per bolus value were almost the same in both groups of cows at the end of
the experiment, but the largest difference between the groups (9.70 times) was found on
day 7 (Figure 2I).

4. Discussion

Lameness has a large impact on dairy farming industry development [17]. Therefore,
in the past few years a growing number of electronic techniques have been incorporated
into the dairy industry with the aim to detect lameness quicker and more accurate [7].
Automated lameness detection could provide useful cow- and herd-level information to
address an information gap, particularly regarding mild and moderately lame cows [18].
The indirect methods mainly used an accelerometer to detect the behavior and activity of
cows [19]. In this study, we investigated the impact of lameness on attributes of feeding
registered with the RumiWatch noseband sensor: rumination time, drinking time, eating
time, rumination chews, eating chews, drinking gulps, bolus count, chews per minute,
and chews per bolus before and after diagnosis of lameness fresh dairy cows. According
to our results, lame cows demonstrated a reduction in the rumination time (on average
8.62 min/h less), eating time (on average 2.73 min/h less), rumination chews (on average
504.67 n/h less), drinking time (on average 0.42 min/h) and bolus count (on average
8.23 n/rumination) less that non lame cow throughout the experiment).

Monitoring of rumination time alone, or when combined with other variables, has
been described as a means of detecting illness in dairy cattle and it was closely associated
with subclinical and clinical health disorders [20].
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Past studies found that lameness has affected a number of rumination behavior
characteristics, in terms of decreased daily feed intake, feeding time [21–23], rumination
time [21,23], and increased feeding rate [21,22]. However, none of these studies investigated
lameness, rumination, and feeding behavior at the same time [24]. According to Thorup
et al. [25] when compared to not lame cows, lame cows are likely to exhibit a different
feeding behavior such as increased feeding rate and decreased feeding time, whereas
rumination time seems much less affected by lameness. Thorup et al. [25] found that
lameness problems would require measurement of feeding as well as rumination to be
registered automatically. Using a combination of two or more feeding behaviors is likely
to increase the accuracy of detecting problems. Also, Soriani et al. [26] found that cows
with a shorter rumination time had a greater incidence of clinical disease (including ketosis
and lameness).

Rumination can also be affected by the social hierarchy of cows, where a lower rank
implies less eating and therefore less ruminating, less lying, and more standing, which in
turn leads to an increased chance of lameness [3].

Also, the lowest eating time (2.01 ± 0.1 min/h) was found on lameness identification
day for lame cows). According literature, lame cows may compensate for the reduction
in total feeding time by increasing their feed intake rate [22]. Alternatively, the change in
feeding behavior observed in lame animals may adversely affect rumen function—e.g.,
consuming the total daily dry matter intake over fewer meals, at an increased rate—may
decrease rumination. Finally, the discomfort or stress associated with lameness may
directly affect rumen function via central depression of the centers controlling rumination.
A previous work has demonstrated that rumination is negatively associated with higher
levels of cortisol [26]. The time dairy cattle spend eating varies greatly when combined
across experimental conditions and there are signs of a compensatory mechanism between
ruminating and eating time [27]. According to our results, the highest eating chews value
was found in lame cows on the third day after identification of lameness, and the lowest
(2.19 times lower) on the first day after identification of lameness According to literature,
eating duration and the number of eating chews decreased in moderately lame cows [28].
Lame cows spent less time eating to reduce the time spent standing on painful feet or
limbs [29]. Bareille et al. [30] state that lame cows have reduced total feed intake than non-
lame cows. Thorup et al. found weaker eating behavior but similar rumination behavior in
lame cows compared with non-lame cows [25]. According to the measurement of reduced
eating time and number of eating chews, we can assume that moderately lame cows in
our study potentially had a poorer comminution of feed [28]. Weigele et al. [29] found
that the number of boluses, ruminating time, number of ruminating chews, and average
ruminating speed, however, were not affected by moderate lameness. Lameness reduced
feeding frequency by 44% [24]. Constrained feeding time forces cows to eat faster, and in
this respect, lameness may be viewed as a feeding time constraint by cows [30].

The lowest number of drinking gulps was found on lameness identification day for
lame cows (176 ± 4.35 n/h) and the highest (1.59 times higher) was found on the 12 day after
identification of lameness). Many factors can put a strain on water consumption: dry matter
of the diets, changes in ambient temperatures, increased loss of water due to increased
milk production, amount of feed ingested, consumption of sodium and potassium, not to
mention physiological factors and diseases [31].

To our knowledge, the present study is the first study to investigate impact of lame-
ness in fresh dairy cows on attributes of feeding registered with on-line sensors (such as
rumination time, drinking time, eating time, rumination chews, eating chews, drinking
gulps, bolus count, chews per minute, chews per bolus before, and after diagnosis of
lameness fresh dairy cows). This study showed that the attributes of feeding registered
with on-line sensors could also be used for an automatic detection of lameness.
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5. Conclusions

In conclusion, lameness seemed to impair attributes of feeding registered with nose-
band sensor in fresh dairy cows and confirming our hypothesis, results of the present study
could be integrated for early identification of lameness in fresh dairy cows. According
to our results, we found that lameness of fresh dairy cows affects the inline registered
ingestive behaviors biomarkers. In addition, reduction in the rumination time, eating time,
rumination chews, drinking time and bolus count in lame group on lameness identification
day, may serve as lameness indicators. Also, eating behavior changes as early as 10 days
before the visual identification of lameness.

For practicians, we recommend the use of the following biomarkers for the early
diagnosis of lameness in fresh dairy cows such as rumination time, eating time, rumination
chews, drinking time and bolus count.

Further studies are required for the early automatic detection of lameness, combining
the parameters from current study with other in-line biomarkers (such as reticulorumen
pH, temperature and etc.), also, with including also the social hierarchy of cows.
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Abstract: To overcome the challenges related to food security, digital farming has been proposed,
wherein the status of a plant using various sensors could be determined in real time. The high-
throughput phenotyping platform (HTPP) and analysis with deep learning (DL) are increasingly
being used but require a lot of resources. For botanists who have no prior knowledge of DL, the
image analysis method is relatively easy to use. Hence, we aimed to explore a pre-trained Arabidopsis
DL model to extract the projected area (PA) for lettuce growth pattern analysis. The accuracies of
the extract PA of the lettuce cultivar “Nul-chung” with a pre-trained model was measured using
the Jaccard Index, and the median value was 0.88 and 0.87 in two environments. Moreover, the
growth pattern of green lettuce showed reproducible results in the same environment (p < 0.05). The
pre-trained model successfully extracted the time-series PA of lettuce under two lighting conditions
(p < 0.05), showing the potential application of a pre-trained DL model of target species in the study
of traits in non-target species under various environmental conditions. Botanists and farmers would
benefit from fewer challenges when applying up-to-date DL in crop analysis when few resources are
available for image analysis of a target crop.

Keywords: digital farming; deep learning; image analysis; plant area; growth pattern

1. Introduction

Food security is a big challenge for many geographic areas, and present agricultural
production practices could not support the present food demand worldwide [1]. To
overcome this problem, agricultural data are utilized, which is called digital agriculture,
to more effectively cultivate plants in real time [2]. Phenotyping data is a key process in
digital agriculture as it can reveal the status of plant extracts from image-based data [3].

The amount of phenomics data extracted from a high-throughput phenotyping plat-
form (HTPP) has been increasing, and more diverse image-based sensor data are expected
from the platform [4]. However, extracting features of interesting traits from an image is
challenging because there are currently no general analysis tools available. Projected area
(PA), defined as the measured whole plant area based on images, is considered as the most
utilized feature in plants. The semantic segmentation of plants based on legacy methods
such as adjusting the contrast with the region of interest (ROI) was applied, but the result
was not successful because the legacy method is very sensitive to lighting conditions. Ma-
chine learning (ML)-based image analysis has shown superior performance over the legacy
method [5,6]. Deep learning (DL)-based image analysis methods even further reduced the
error rates [7–9]. A previous study indicated that U-Net showed superior performance in
the semantic segmentation of Arabidopsis [8]. In this study, U-Net successfully distinguished
the subtle differences among plants exposed to various types of gamma radiation [8].

The extraction of target phenotypes in target plant species using image analysis
showed a very effective process with DL [10,11]. However, DL training for crop segmen-
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tation requires a large amount of resources and time, as shown in lettuce [12]. The main
reason was due to labeling images that include plant and background information usually
generated by manual laborers [13]. In addition, trained label images for the DL model need
to be embedded in various steps for the pre-and post-processing of the original images.
As a result, the built image analysis pipeline for a crop requires time and collaboration
with other scientists such as an image scientist [14]. The Arabidopsis pre-trained model
already has the necessary information for separate plant areas over the background area
that was defined as PA, but this has not been explored in other plant species. Investigating
the possibility of utilizing a pre-trained model has a notable advantage over building a
new model for a target plant. In addition to the minimal effort needed for building a new
model, the manually intense annotation of a large number of plant images and training
DL is not necessary. Moreover, botanists could utilize the pre-trained model with little
knowledge of DL models for a target plant. A previous study on plant disease detection
suggested that the pre-training of VGG-16 that was used for various general tasks could be
applied in plant disease detection [15]. However, there has been no report that utilizes a
model pre-trained in a model plant for different species in a growth pattern analysis.

In this study, we aimed to explore the application of a pre-trained Arabidopsis DL
model called U-Net for the segmentation of green lettuce cultivars under the same and
different environmental conditions.

2. Materials and Methods

2.1. Plant Growth Condition, Image Acquisition, and Analysis

Green lettuce cultivars (Danong seeds, Andong, Kangwon, Korea) were placed in
a soil mixture (Hueng-nong Bio, Pyeontaek-Si, Republic of Korea) and covered with a
translucent plastic dome in an environmentally controlled room. Two plant-to-sensor type
HTPPs were utilized, and each HTPP had different lighting conditions. In HTPP one, the
environmental conditions were identical to those of the pre-trained DL model in Arabidopsis.
In HTPP two, all environmental conditions were identical to those of the platform, except
that the lighting intensity was 400 μmol ms−1 s−1, which was two-fold higher than that of
platform one (200 umol ms−1 s−1). In each platform, two trays were randomly placed for
technical replication. After 3 days of planting, the plastic dome was removed, and images
were obtained with HTTP [8] every hour from 7:00 to 20:00 for 23 days. In HTPP two, a
black plastic dome was placed around the camera to remove excessive lighting.

A schematic of the image analysis pipeline was available [8] and the image process
was executed with a 4 × 2 image cropping Python line option within the pipeline.

2.2. Evalution of Image Analysis Result

Thirty-five images of lettuce were randomly selected in HTPP one in various plants
and growth stages. In addition, the same number of images were selected at HTPP
two. Seventy images that were selected from the HTTP one and two were manually
annotated (Figure 1A) with an annotation tool [8]. Binary transformation was applied on
the annotated images using a polygon drawing function in the Python image library (PIL),
and this binary image was defined as ground truth (GT) data for further analysis. Errors at
the edge of the binary images from the pre-trained DL model were removed (Figure 1C,D)
with post-processing. Figure 1B shows the comparison of the GT image and post-processed
pre-trained image (Figure 1D) with intersection over union evaluation (IoU) in lettuce [16].
The IoU is known as the Jaccard index and is utilized for segmentation of images [17] and
plant images [18]. The IoU scores for HTPPs one and two were calculated.
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Figure 1. Summary of extract projected area (PA) between ground truth (GT) and U-Net model
at two lighting intensities. Thirty-five images were selected at various plant and growth stages
in a random manner. (A) Manual labeling of the leaf area of a selected lettuce image. (B) Binary
transformation (PA) of GT for the lettuce image. (C) Binary transformation (PA) of the selected
image with U-Net. (D) Binary transformation (PA) with U-Net using the error correction method.
(E) Comparing accuracies of extract PA between the GT and U-Net models using the Jaccard index.

2.3. Growth Analysis and Statistical Analysis

The average PA with standard deviation was calculated using the native function
in R (R Foundation for statically computing, Vienna, Austria) [19] and eight samples per
14 time-steps per day were visualized with Plotly [20]. For technical replication in the
same environment, two randomly placed trays were compared. We then compared lettuce
growth under different lighting conditions using the daily changes graph in Plotly (Plotly
Technologies Inc., Montréal, QC, Canada) [20].

Statistical analyses were performed using R [19] for the selected time, 13:00, on 9, 12,
and 18 days after sowing (DAS) to determine whether there were differences between
the technical replications using t-test. The entire process was repeated for the effect of
environmental variation for different lighting intensities at the same time on 14, 18, and 21
DAS using Duncan’s multiple range test, based on a significance level of p < 0.05.
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3. Results

3.1. Evaluation of PA Extraction in Green Lettuce

In a previous study, the U-Net DL model accurately extracted the PA for Arabidopsis
growth patterns [8]. This DL model was built for Arabidopsis, and in this model, the
accuracies in the lettuce PA were needed to be checked before further analysis. The
evaluation matrix had an IoU score that ranged from 0.8 to 0.97, with a median value of
0.88 in the HTPP one (Figure 1E). In a previous study, a crop segmentation study using
an ML model obtained a yield of approximately 0.85 [21]. Therefore, although no lettuce
image was used for the DL model, we obtained results that were comparable to those of
the previous crop segmentation study. This showed the possibility of detecting seedling
and mature lettuce even when pre-trained in different plant species. Furthermore, these
results indicate that the extraction of the growth pattern of green lettuce in the time-series
data was possible.

3.2. Lettuce Growth Analysis

The growth pattern analyzed with PA showed different growth rates on different
dates in green lettuce (Figure 2). Previous lettuce studies suggested that initial growth
was relatively slow, followed by a very rapid growth phase in various studies, including
exposure to different lighting sources [22] and carbon dioxide levels [23]. In these studies,
the PA or biomass of lettuce was measured days apart and showed very similar growth
patterns. In this study, the growth patterns in hourly intervals and a previous study were
compared [24]. In a previous study, a rapid growth phase 12 days after emergence (DAE)
was found as well as a rapid growth phase 16 DAS or 13 DAE (Figure 2). The slight
differences might be due to the different cultivars used in each study. Overall, our results
indicate that image analysis using a pre-trained DL model is suitable for analyzing the
growth pattern of lettuce in an environmentally controlled setting. This information is
helpful for investigating interesting traits in lettuce given that it could detect drastic growth
phases and changes in hours rather than days. The technical replication study showed
reproducible results (p < 0.05) in lettuce placed in a slightly different location in HTPP one
(Table 1).

 

Figure 2. Comparing the growth pattern of the green lettuce cultivar between technical replications.
Images were acquired between 07:00 to 20:00 in a 1-h interval. The results are presented as the mean
of each time point from replication one (n = 8) and replication two (n = 8).
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Table 1. Comparing projected area (PA) of green lettuce at fixed lighting condition (200 μmol ms−1 s−1)
on multiple days after sowing (DAS) and time. Values in the same column followed by an asterix are
significantly different (p < 0.05).

DAS Time (24 h) Replication PA (cm2)

9 13:00 One 1.8394
13:00 Two 2.2356

12 13:00 One 3.9754
13:00 Two 4.6765

18 13:00 One 32.3245
13:00 Two 30.7201

3.3. Lettuce Growth at Differernt Lighting Intensities

The HTPP one, which had the same lighting conditions as the pre-trained model,
produced very uniform images of lettuce (Figure 3A) and accurate image analysis results
(Figure 3C). At HTPP two, a black plastic dome was placed over the camera to remove ex-
cess light, and it showed lettuce images with various backgrounds (Figure 3B). Surprisingly,
the pre-trained model accurately extracted the PA, even in various background images
(Figure 3D).

Figure 3. Visualized of cropped and processed images of green lettuce at 19 days after sowing (DAS). (A) Cropped individual
lettuce images at 200 μmol ms−1 s−1. (B) Cropped individual lettuce images at 400 μmol ms−1 s−1. (C) Visualized image
analysis result of lettuce at 200 μmol ms−1 s−1. (D) Visualized image analysis result of lettuce at 200 μmol ms−1 s−1.

In summary, the technical replication study showed that green cultivars grown in
different trays did not differ from each other (Table 2) at 14, 18, and 21 DAS (p < 0.05). In
addition, drastic changes were observed under different lighting conditions with technical
replication in each environment (Supplementary Figure S1 and Table S2). The results
indicate that the pre-trained DL model could be applied for the comparison of a large
number of samples from different environments.
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Table 2. Comparing projected area (PA) of green lettuce at two lighting conditions on multiple days
after sowing (DAS). Values in the same column followed by a different letter are significantly different
(p < 0.05).

DAS Light Condition Replication PA (cm2)

14 200 μmol ms−1 s−1 One 7.8281a
200 μmol ms−1 s−1 Two 8.6423a
400 μmol ms−1 s−1 One 6.3605b
400 μmol ms−1 s−1 Two 5.5361b

18 200 μmol ms−1 s−1 One 33.1341a
200 μmol ms−1 s−1 Two 31.8327a
400 μmol ms−1 s−1 One 21.4811b
400 μmol ms−1 s−1 Two 19.9635b

21 200 μmol ms−1 s−1 One 74.2587a
200 μmol ms−1 s−1 Two 69.8884a
400 μmol ms−1 s−1 One 45.7692b
400 μmol ms−1 s−1 Two 46.1067b

4. Discussion

Digital agriculture requires a lot of data for cultivation to maximize yield and select
the optimal harvest time [2]. Even though the conventional practice utilized a large amount
of data, only a small fraction of the data was quantified. The main reason for this is that a
farmer accesses the current status of a plant with experience and intuition, but little plant
data are recorded. The emerging inexpensive image sensors [4] lead to the acquisition of
more quantitative data for each crop in different environments. In addition, more uniform
data acquired from the HTPP is expected [25]. This would enable the accumulation of
image data to study agronomical traits in the future [26].

The quality of image processed output for agriculture data has improved significantly
since the process is utilized using ML and DL [9]. Machine learning- and DL-based
methods have been applied in various crops and model plants, and they demonstrated
the effectiveness of the process [9]. However, DL models constructed for crops require
significant amounts of time and resources [12], given that each model requires training data,
and the data is generated by manual labeling of individual images for specific traits [27].
In addition, the pre-and post-processing steps to acquire quality data require effort. Thus,
the construction of an entire image analysis pipeline might not be achievable for a small
research group to analyze images [14]. Therefore, it is necessary for small researchers to
utilize pre-trained DL models in non-target species for interesting traits in their target
species.

A pre-trained general DL model called the VGG-16 model was applied for plant
disease detection studies [28] but the VGG-16 model was not built for a plant. A previous
study utilized generally built pre-trained DL for disease detection, and there have been no
known studies for the agronomical traits in crops. To the best of our knowledge, this is the
first study to utilize pre-trained DL for target plants in non-target plants. Arabidopsis and
lettuce are completely different species but share a similar genetic leaf shape controlling
mechanism; thus, the leaf shape characteristics are similar. The lettuce seedlings and
mature plants were accurately detected with the Arabidopsis pre-trained model (Figure 1E).
In addition, this study showed that a very fine-scale growth pattern analysis was possible
with reproducible results. The U-Net could have analyzed the leaf shape information in
order to separate it from the soil or background information, even though it is almost
impossible to understand learned information (features) from a pre-trained DL model.
Future research on whether learned information from a pre-trained DL model transfer
information into a new DL model [27], also known as “transfer learning”, for interesting
traits in different plant species could be performed. The method significantly reduced the
efforts needed to train and utilize the DL model for agronomical traits because relatively
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little information is needed to construct new DL models [27]. The phenotypic effect of
lighting in lettuce has been well documented in multiple studies [22,29]. However, time-
series responses in different lighting conditions are difficult to find, given that the image
analysis pipeline utilized limited images in a few environment settings. As a result, the
image analysis pipeline performed very well in a specific dataset. Even in DL-based models,
limited annotated images perform very well in a specific environment [15]. Recently, fully
documented time-series data have been available [12] but they were tested in two growing
seasons in a greenhouse for various environmental factors, including lighting. At this point,
fully documented time-series data on the effects of lighting are not available.

The increased volume of images that require up-to-date image analysis tools [9]
and DL models [12] could provide solutions future applications. This study showed the
possibility of applying pre-trained DL to study interesting traits in different species with
less effort. This could be a very cost-effective process when groups of botanists and image
scientists develop generalized tools for botanists who have little or no prior knowledge of
ML or DL models.

5. Conclusions

The pre-trained model showed accurate results, expressed as an IoU score as high as
0.97, in extracting lettuce growth patterns under the same environmental conditions as
Arabidopsis. The reproducible result confirmed by statistical test (t-test) between replication
measurement on 9, 12, and 18 DAS. Moreover, lettuce grown under the two lighting condi-
tions showed significant separation on 14, 18 and 21 DAS between the two environments
(p < 0.05). This study clearly indicates the feasibility of applying a pre-trained DL model to
analyze the growth patterns of another crop under various environmental conditions.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/agriculture11090890/s1, Figure S1: Comparing the growth pattern of a green lettuce
between the two lighting conditions. The results are presented as the mean of eight samples for
each tray at different conditions. Each tray had a lighting condition of 200 μmol ms−1 s−1 (A1)
with replication (A2) and a lighting condition at 400 μmol L ms−1 s−1 (B1) with replication (B2).
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Abstract: Rice is a primary food for more than three billion people worldwide and cultivated on about
12% of the world’s arable land. However, more than 88% production is observed in Asian countries,
including Pakistan. Due to higher population growth and recent climate change scenarios, it is
crucial to get timely and accurate rice yield estimates and production forecast of the growing season
for governments, planners, and decision makers in formulating policies regarding import/export
in the event of shortfall and/or surplus. This study aims to quantify the rice yield at various
phenological stages from hyper-temporal satellite-derived-vegetation indices computed from time
series Sentinel-II images. Different vegetation indices (viz. NDVI, EVI, SAVI, and REP) were used to
predict paddy yield. The predicted yield was validated through RMSE and ME statistical techniques.
The integration of PLSR and sequential time-stamped vegetation indices accurately predicted rice
yield (i.e., maximum R2 = 0.84 and minimum RMSE = 0.12 ton ha−1 equal to 3% of the mean rice
yield). Moreover, our results also established that optimal time spans for predicting rice yield are
late vegetative and reproductive (flowering) stages. The output would be useful for the farmer and
decision makers in addressing food security.

Keywords: rice yield; vegetation indices; hyper-temporal data; PLSR

1. Introduction

The rapid increase in the world population exerts pressure on the agriculture sector
and threatening the food security of the world [1]. Among cereals, rice is one of the prime
sources of food with high nutritive value (i.e., containing carbohydrate, vitamins (B, E,
thiamine), and minerals (Ca, Mg, Fe). Rice is widely grown, consumed globally (i.e., daily
food of 3.5 billion people worldwide), and accounts for 19% of the dietary energy [2].
Globally, 90% of the rice comes from Asia, which is approximately 640 million tons per
annum [3,4]. Pakistan ranks 11th at the global rice production list and contributes 8% to
the world’s total rice trade [3]. Pakistan produced seven (7) million tons of rice in the year
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2017–2018 and earned a foreign exchange of two-billion dollars ($USD) from rice export [5].
The high-quality nutritious rice (e.g., basmati) produced in the country is available at
affordable price in the international market and thus contributing in food security for the
increasing global population [6].

Timely and accurate predictions of crop yield before harvest at a large scale is crit-
ical for food security and administrative planning, especially in the current continually
changing global environment and international situation [7,8]. Different approaches have
been adopted for precise yield estimation and each method has its own strengths and
limitations. For instance, the traditional field surveys and crop statistics are useful for
precisely estimating crop yield; however, when crop yield prediction of the large region is
desired, the surveys prove inadequate due to budget, time, and large skilled manpower
constraints [9]. The use of Earth observation data (remote sensing) offers an effective
system for monitoring agriculture and quantifying crop yield at large spatial extent. The
remotely sensed solution is fast, cost-efficient, and non-destructive [10,11]. In addition, the
repetitive data acquisition capability of remote sensing sensors makes them an ideal choice
for retrieving temporal information of crop phenology, plants health (stress), response to
weather and soil nutrients (i.e., manure and fertilizer), variation in plant biomass, and
ultimately its effect on yield production [12,13].

Satellite remote sensing also enables crop yield estimation at field, landscape, and
regional scales for making policies and ensuring food security [14,15]). Yield estimation of
various crops, such as wheat [11], corn [16], and sugar beet [17] is done successfully using
assimilation algorithms on RS data. In recent research, two approaches are commonly used
for this purpose: one is canopy reflectance data, and the other is based on the spectral
indices. The free availability of optical remote sensing data of Sentinel-2 satellite with
multiple spectral bands in the red, red edge, and near infrared (NIR) is making RS an ideal
choice for monitoring agricultural crops, vegetation phenology [18] (Caballero et al., 2020),
temporal variability in cropping [19], as well as environmental monitoring and land cover
mapping [20].

Different vegetation indices (VIs) derived from satellite images are effective indica-
tors of vegetation status and are positively correlated with crop yield. The Normalized
Difference Vegetation Index (NDVI) has been widely used for predicting crop yield and
identifying growth stages [20–22]. Similarly, other variants of NDVI such as Soil Adjusted
Vegetation Index (SAVI) and Enhanced Vegetation Index (EVI) have been found effective
for crop growth monitoring in the initial filling stages of the crop [21,22]. While using
canopy reflectance data to directly estimate crop yield, multivariable analysis methods
are commonly introduced to support the dataset analysis. Partial least squares regression
(PLSR), stepwise multiple linear regression (SMLR), artificial neural network (ANN), etc.
are helpful to construct and validate the multivariate remote sensing models of estimat-
ing the yield and improve the accuracy of crop yield estimation through satellite remote
sensing, specifically when analyzing the quantitative relationship between RS variables
obtained from satellite images and crop yield [11].

The impacts of different phenological and growth stages (i.e., vegetative, reproductive,
and ripening) on yield production are rarely explored. Very few researchers quantified
the impact of growth stages on crop yields and assigned different weightage to different
growth stages [21,23]. Some studies conclude that physiological status (e.g., crop growth)
and biochemical contents (e.g., nitrogen) of pre-heading stage is more crucial [24,25],
while other found that high rice biomass at post-heading stages is essential for optimum
production [23]. Similarly, few studies highlight the relationship between late reproductive
growth period and rice yield [26,27]. The overall objective of this study is to forecast rice
yield and investigate the relationship between remote sensing derived VIs at different
phenological stages of rice crop and its yield. The study also aims to identify the most
critical growth period (phenological stage) for quantification of rice yield with hyper-
temporal sentinel-II and derived-indices using Partial Least Square Regression (PLSR)
model to improve the estimation accuracy of rice yield by remote sensing.
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2. Materials and Methods

2.1. Study Area

This study was carried out at Sheikhupora district (Latitude 31◦30′00′′ to 31◦65′30′′ N and
Longitude 73◦40′00′ ′ to 74◦23′00′ ′ E) of Punjab, Pakistan (Figure 1). Sheikhupora district
is located between Ravi and Chenab rivers and irrigated by river water from two canals
(Upper Chenab and Khanpur Canals). Climatically the region is dominated by the wet
monsoon, thus making it favorable for rice crop. The annual precipitation ranges from 120
to 720 mm, which mainly occurs between July and August [28]. The study area is dominated
by alluvial clay and loamy soil rich in humus and mineral composition. The mineralogical,
chemical and geotechnical compositions of soil (pH = 8, EC = 1.1−4.5 dS m−1 with soil field
capacity from 45–71%) make the region ideal for rice cultivation [29]. Due to the favorable
conditions, Sheikhupora district is the second largest rice-producing district in Pakistan
with an average production of 2–2.5 million tons annually [5,30].

Figure 1. Map of the study area (sampling sites are marked as red square dots).

2.2. Data Collection
2.2.1. Field Data

Stratified-random-sampling procedure was used to collect data from 137 plots well
distributed in the study area. The rice fields with minimum size of 60 × 60 m (i.e., corre-
sponding to the coarse pixel size of satellite images used in this study) were considered for
the purpose of sampling, monitoring, and analysis. In most of the paddy fields, the rice crop
was transplanted in start of July (after seed sown in the nursery at the start of June). These
sampled plots were carefully monitored from transplanting till harvesting period. The rice
produced in each plot (Figure 2) was carefully measured and recorded for further analysis.
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Figure 2. The pictorial view of different phenological or growth stages of rice in field conditions.

2.2.2. Satellite Data Preprocessing and Vegetation Index

The optical remote sensing data of Sentinel-II satellite for year 2016 was used in
this study. The availability of multiple spectral bands in the red, red edge, and near
infrared (NIR) part of the EM spectrum with 10–20 m resolution makes Sentinel-II an ideal
choice for studying vegetation phenology and monitoring agricultural crops for stress
level, nutrient contents, pest attack, and yield estimation [31–33]. The cloud free Sentinel-2
time-series images (i.e., spanning from growing to harvesting phase) were pre-processed
for atmospheric correction using Sen2Cor processing. The atmospherically corrected
images were then used for computing vegetation indices (Table 1) from times series satellite
images spanning from sowing till harvesting period of the rice crop. Vegetation indices are
mathematical transformations using two or more spectral bands devised to enhance certain
characteristics of vegetation [34]. Several images to cover the entire growth period of rice
crop were used and vegetation indices were computed using Google Earth Engine (GEE).

Table 1. Mathematical formulas of vegetation indices (NDVI, SAVI, EVI, and Red Edge Position).

Vegetation Indices (VIs) References

NDVI = ρ(NIR)−ρ(Red)
ρ(NIR)+ρ(Red) Rouse et al. (1974) [35]

SAVI = 1 + L ρ(NIR)−ρ(Red)
ρ(NIR)+ρ(Red)+L

where L = 0.5, to minimize the brightness effect of soil
Huete (1988) [36]

EVI = G ρ(NIR)−ρ(Red)
ρ(NIR)+C1×ρ(Red)−C2×ρ(Blue)+L

where G = 2.5; L = 0.5 (Soil adjusted factor); C1 and C2 are constants to reduce
aerosols effects.

Liu and Huete (1995) [37]

Red Edge = ρ(Red)+ρ(Red Edge3)
2

REP = 704 + 35
[

Red Edge−ρ(Red Edge1)
ρ(Red Edge2)−ρ(Red Edge1)

]
where 704 and 35 represent interpolation constants that can be adjusted according
to available band’s wavelength

Filella and Penuelas (1994) [38]

126



Agriculture 2021, 11, 1026

2.3. Geo-Statistical Analysis

The PLSR is an established multivariate analysis technique commonly used in chemo-
matric and hyperspectral data analysis [39,40]. The Partial Least Square Regression (PLSR)
analyses were performed to all time-series vegetation indices (explanatory variables) with
rice yields (response variable). In PLSR model development, the selection of optimum
number of latent variables (LVs) is more critical, as increase of the number of LVs would
improve the accuracy of the model, while selection of too many variables can lead to the
over fitting and the error would increase [41]. To minimize this over fitting problem, the
optimal number of LVs was selected based on achieving a combination of a high R2 and
a low root mean squared error of the prediction (RMSEP) (Figure 3). The PLSR model
was evaluated by plotting the 1:1 relationship graph between the predicted and measured
values of the yield (Figure 3). The evaluation indices were the R2 and the RMSE. A larger R2

shows that the model is better, while smaller RMSE values indicate the stronger estimation
ability of the model. To evaluate the performances of the prediction models, leave-one-out
cross-validation [42] was used, in which the model was iteratively trained on multiple time
series data and then used to predict yield. PLSR can be mathematically expressed as:

Y = a + b1X1 + b2X2 + · · ·+ bnXn (1)

where Y is response variable (rice yield), X1, X2–Xn are the selected latent variables (LVs),
which are the time series images, in this case a is the intercept and b1–bn represent the
regression coefficients (also known as β-coefficients) for different predictors.

 
Figure 3. The RMSE and R2 plot. The RMSE is decreasing as the number of latent variable increases.
After a certain number of latent variables, the decrease in RMSE was negligible and that was taken as
the optimum number of variables for PLSR model development.

2.4. Spatial Distribution and Mapping of Rice Yield

To model the spatial distribution of rice yields, a two-step procedure was adopted.
The thematic map of rice crop was developed using phenological based mapping al-
gorithms (Figure 4). In this routine, the phenology profiles (or signatures) serves as
numerical key for discerning different crop types grown in the region of interest [43,44].
The time series vegetation indices (e.g., NDVI profiles computed from optical data for
the entire growth span of rice crop: 130 days) were used to demarcate the rice crop
and to compute the rice cultivated area. The phenological-mapping-routine takes into
account the entire range (minimum–maximum) of vegetation index values (e.g., NDVI
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in this case) at each time stamp (e.g., from transplanting till harvesting) and can be
mathematically expressed as:

R = (NDVI1min and NDVI1max) and (NDVI2min and NDVI2max) NDVInmin and NDVInmax) (2)

where R represents response variable (rice), and NDVI1, NDVI2, and NDVIn represent ND-
VIs derived from RS data at different crop phenological stages starting from transplanting
till harvesting.

 
Figure 4. The framework of methodology followed for phenology-based rice mapping and yield estimation.

To develop the spatial distribution maps of rice yield, the models of statistical analysis
(the regression equations of PLSR analysis) were inverted to the time series vegetation
indices of rice masked areas (developed from phenological based mapping) and were
validated with an independent dataset.
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3. Results

3.1. Rice Yield Estimation (Field Level Data)

The statistical descriptions of the measured rice yield are summarized in Table 2. In
calibration datasets (with sample size n = 96), the rice yield varies between 3.06 ton/ha and
4.15 ton/ha with mean equal to 3.70 ton/ha. The standard deviation (SD) was ±0.31 ton/ha
and coefficient of covariance (CV) equal to 0.083 ton/ha. The graphical display reflects that
the calibration dataset is near normally distributed.

Table 2. Statistical description of the field measured rice yield with graphical displays of calibration and validation datasets.

Dataset
Type

Sample
Size (n)

Minimum
(ton/ha)

Maximum
(ton/ha)

Mean
(ton/ha)

SD
(ton/ha)

CV
(ton/ha)

Graphical Distribution

Calibration 96 3.06 4.15 3.70 0.31 0.083

 

Validation 41 3.16 4.15 3.71 0.29 0.078

 

The summary statistics of validation sets (n = 41) shows that rice yield ranges
between 3.16 ton/ha and 4.15 ton/ha with average equal to 3.71 ton/ha. The standard
deviation (SD) was ±0.29 and coefficient of covariance (CV) equal to 0.078 ton/ha.
The validation data are also normally distributed (Table 2: see the graphical display
at last column).

3.2. Variation in Temporal Profiles of Vegetation Indices with Rice Phenology

The temporal profiles of vegetation index spanning across the full growth period
of rice crop are shown in Figure 5. The vegetation index (e.g., NDVI) values were
least (minimum) at transplanting phase and showed gradual increase with increase in
vegetative parts (Figure 5). The vegetation indices reached at peak in the late vegetative
phase and continually maintained high values (e.g., spectral plateau) till flowering
phase. At post flowering phase (e.g., ripening phase), the vegetation index values
started declining and reached its minimum at fully ripened harvesting phase (see
Figure 5).
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Figure 5. (a) The temporal profiles of vegetation index (NDVI) and (b) different growth stages of rice crop. The points are
not equally spaced (subplot a) due to the unavailability of cloud free images of the study area (i.e., monsoon season; late
July and early August).

3.3. Prediction of Rice Yield and the Performance of Vegetation Indices

The prediction of rice yields using PLSR and time series vegetation indices are sum-
marized Table 3. The integration of PLSR and sequential-time-stamped-vegetation indices
were found effective for quantifying rice yields. The time series NDVI yielded the highest
R2 = 0.83 (lowest RMSEcv = 0.12 ton/ha) followed by EVI (R2 = 0.80, RMSEcv = 0.14 ton/ha),
SAVI (R2 = 0.79, RMSEcv = 0.14 ton/ha), and REP (R2 = 0.64, RMSEcv = 0.17 ton/ha). The
performance of different indices (NDVI, SAVI, EVI, REP) for rice yield estimation were
consistent for both calibration and validation datasets (Table 3, Figure 6c,f,i,l).

Table 3. Results of the PLSR applied to time series vegetation indices (NDVI, SAVI, EVI, and REP). Number of latent variables (in
PLSR model), calibration R2, validation R2, calibration RMSE (RMSEC), and cross validation RMSE (RMSECV) are summarized.

Indices
No. of Latent Variables

in PLSR Model
Calibration R2 RMSEC (ton/ha) Validation R2 RMSECV (ton/ha)

NDVI 6 0.87 0.11 0.83 0.12
EVI 6 0.85 0.12 0.80 0.14

SAVI 6 0.84 0.12 0.79 0.14
REP 5 0.70 0.16 0.62 0.17
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Figure 6. The analysis based on temporal NDVI, EVI, SAVI, and REP. The R2 increases and RMSE decreases with augmenting
the number of variables unless it reaches saturation (dashed elliptical in Panels a,d,g,j). After certain number of latent
variables, the decrease in RMSE was negligible and that was taken as the optimum number of variables for PLSR model
development. The temporal profiles of vegetation indices are similar in shape except REP (Panels b,e,h,k). The regression
coefficients lines show that sowing, late vegetative, flowering and ripening are important phases for predicting rice yields
using PLSR. The measured vs. predicted (Panels c,f,i,l) manifest that yield was best predicted using temporal NDVI data
(yielded highest R2 and lowest RMSE).

Using the time series profiles of NDVI, EVI and SAVI, the PLSR models selected six
latent variables (Figure 6, Table 3). The selected six latent variables explained most of the
variance (e.g., as the case of NDVI where R2 = 0.83) and the addition of further variables
hardly improve the model performance (e.g., the total 21 variables yield maximum R2 of 0.84)
(Figure 6a,d,g,j). The important latent variable (in this study, time stamped vegetation
indices) was located at late vegetative, reproductive (flowering), and ripening phases of
rice growth (Figure 6b,e,h,k). Using time series Red Edge Position (REP) data, the number
of selected latent variables were five (05) with high regression coefficient (or B-coefficient)
values at flowering, ripening, and late vegetative phases (Figure 6c).

3.4. Spatial Varability in Rice Yield Potential

The distribution map (developed from best predicting PLSR model, time series vegeta-
tion indices and map of rice grown area) reflects that rice yield distribution varies in space and
ranges between 1.5 to 4.2 ton/ha (Figure 7a). The upper limit of rice yields (i.e., 4.20 ton/ha) in
the distribution map were closely matching with the ground measured yield (4.15 ton/ha).
The minimum limit was underestimated in the spatial distribution map of rice yield
(1.5 ton/ha) compared to the ground measured minimum yield (3.06 ton/ha). The valida-
tion of spatial distribution maps against independent ground measured yield data (30% of
the total samples) confirms that yield was predicted with high accuracy (see Figure 7b). The
high R2 (0.83) and low RMSE (0.14 tons/ha) manifested a close match between measured and
predicted rice yields (Figure 7b).
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(a) 

 
(b) 

Figure 7. The distribution of rice yield varies spatially (ranging from 1.5 to 4.2 ton/ha) in the study area (a). The predicted
yield (based on distribution map) shows strong relation with measured yield (b).
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4. Discussion

The field data (Table 2) reflect that the measured rice yield production (minimum
(3.06 ton/ha), mean (3.7 ton/ha), maximum 4.15 (ton/ha) in the study area is within the limits
of rice crop statistics within the country (i.e., ranging from 2.4 ton/ha to 10 ton/ ha). These
numbers are far less than the statistics of the neighboring countries (i.e., China, Vietnam,
Bangladesh) and could be attributed to the variety of rice [45], uneven water usage, weeds
and pest attacks, and post-harvest loses (e.g., shattering and improper drying and storing etc.).
The super basmati grown in the study area produces high quality rice and is famous for its
aromatic fragrance; however, it is less productive compared to other hybrid varieties.

The time series profiles show that vegetation indices (Figure 8a) are minimum at the
transplantation stage and gradually increase in vegetative phase (tillering, panicle, and
flowering stages). A decline was observed in the vegetation indices after post flowering
phases (e.g., dough, ripening). This initial increase in vegetation index values could
be associated with increase in leaf area coverage (LAI, biomass) and the post flowering
phase decline could be attributed to the senescing of rice crop. The temporal variation in
vegetation indices (in this study) are in line with the findings of previous studies [46,47],
where the peak greenness is achieved at flowering/milk phases and decline was observed
in dough stages and reaching minimum at ripening phase (Figure 8).

 
(a) 

 
(b) 

Figure 8. (a) The range and mean temporal profiles of Normalized Difference Vegetation Index
(NDVI) spanning the entire growth period of rice crop. (b) The temporal profile of vegetation index
(NDVI) is closely in-line with the findings of [47] (shown in plot “b”).
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The integration of PLSR and time series vegetation indices accurately predicted rice
yields (the maximum R2 = 0.83 and least RMSE = 0.12 ton/ha (3.12% of the mean yield). The
slightly better performance of NDVI (relative to SAVI, EVI, and REP) could be attributed
to the canopy characteristics (e.g., structural, vegetation percent cover) of rice crop. The
abundance of stem and leaf blades of rice crop obscures the background soil visibility and
leads to enhanced vegetation (rice) reflectance signals, thus allowing slope-based-index
(such as NDVI) to perform more precise estimates of rice yield [48,49].

Using PLSR regression, the prediction accuracy enhances with augmenting the number
of variables (NDVI, EVI, SAVI, and REP) and leads to high R2 and low RMSE until the
model stabilized at a certain point. In this study, the PLSR model saturate at the addition
of six latent variables (Figure 6a,d,g,j) and captured maximum variance present in dataset.
The addition of further variables hardly improves the prediction of rice yield and displays
a flat line [50]. The selected latent variables belong to late vegetative, reproductive (panicle,
flowering, milky), and ripening phases (Figure 6b,e,h,k) and reflects the critical importance
of these growth stages in rice yield production. The picking of late vegetative phase may
be associated with an increase in biomass and leaf covered area (leaves and shoots fully
develop at this stage and gain maximum crop height). The high correlation at reproductive
phases could be associated with the formation panicle, flowering, milk, dough, and maturity
of grain, which directly influence the crop yields. The results of this study are also consistent
with the findings of existing literature, where booting stage highly influences the rice yield
production [51]. The outcomes of this study help in estimating the rice yield and highlight the
critical phases in the life cycle (of rice crop) where monitoring and human intervention (such
as usage of water and agrochemicals) can enhance the yield production.

5. Conclusions

This study aims to accurately quantify rice yield and identify the critical growth
stages that influence the rice yield production. The integration of PLSR and time series
vegetation indices (i.e., spanning across the entire rice crop growth period) results in
accurate predictions of rice yield. Among vegetation indices, NDVI performs the best
(yield high R2 and low RMSE) followed by EVI, SAVI, and REP. Using the time stamped
vegetation indices, the PLSR coefficients identified the growth stages that influence the rice
yield. The growth stages (selected latent variables) belong to late vegetative, reproductive
(panicle, flowering, milky), and ripening phases. The selected critical growth stages were
common in all four types of vegetation indices (i.e., NDVI, EVI, SAVI, and REP) used. This
study concludes that PLSR can effectively be used for rice yield estimation and identifying
critical stages of the rice growth cycle. The precise yield estimation (rice in this case) allows
decision makers to strategize policy regarding yield import and export. The outcome of
this study can also help the farmers to monitor rice at critical time spans and allow them to
intervene (e.g., usage of water, fertilizer, pesticides etc.) in a timely manner. The timely
interventions thus help in producing more yields which in turn is essential for minimizing
hunger (SDG 2), alleviating poverty (SDG 1), ensuring land (SDG 15) and food security.

However, the present study did not compare the accuracy of PLS algorithm with
artificial neural networks, support vector machines, other geo-statistics, etc., for yield
forecasting. These would be interesting directions for future study.
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Abstract: Individual identification plays an important part in disease prevention and control, trace-
ability of meat products, and improvement of agricultural false insurance claims. Automatic and
accurate detection of cattle face is prior to individual identification and facial expression recogni-
tion based on image analysis technology. This paper evaluated the possibility of the cutting-edge
object detection algorithm, RetinaNet, performing multi-view cattle face detection in housing farms
with fluctuating illumination, overlapping, and occlusion. Seven different pretrained CNN models
(ResNet 50, ResNet 101, ResNet 152, VGG 16, VGG 19, Densenet 121 and Densenet 169) were fine-
tuned by transfer learning and re-trained on the dataset in the paper. Experimental results showed
that RetinaNet incorporating the ResNet 50 was superior in accuracy and speed through performance
evaluation, which yielded an average precision score of 99.8% and an average processing time of
0.0438 s per image. Compared with the typical competing algorithms, the proposed method was
preferable for cattle face detection, especially in particularly challenging scenarios. This research
work demonstrated the potential of artificial intelligence towards the incorporation of computer
vision systems for individual identification and other animal welfare improvements.

Keywords: cattle face detection; RetinaNet; deep learning; precision livestock

1. Introduction

Animal husbandry is undergoing a transition from extensive farming to precision
livestock farming and welfare breeding. However, the farming facilities and technologies
play crucial parts in affecting the economic benefits of large-scale pastures. Inadequate
management probably directly damages the health of livestock and is adverse to the food
quality and safety, and the development of the livestock industry [1]. Therefore, there
is an urgent need for cost-effective technology methods to address these challenges in
animal agricultural systems, such as lack of labor and difficulties in real-time monitoring.
Precision farming has aroused more interest recently due to the increasing concern over
sustainable livestock and production efficiency [1–5]. Precision farming takes advantage of
modern information technologies as an enabler of more efficient, productive, and profitable
farming enterprises. For example, Internet of Things (IoT) are used for collecting data on
the whole lifecycle of livestock, including breeding, slaughtering, meat processing, and
marketing; Big Data and Artificial Intelligence (AI) can provide accurate analysis and
real-time physical dynamics of each animal species as for a scientific basis for decision-
making and analysis of farm managers. Among these, recognition of individual livestock
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is an indispensable and significant task in precision livestock management since it has a
tremendous breadth of applications. Quick and accurate recognition of individual farm
animals is of major importance for illness prevention and control [6], genetic enhancement
of varieties [7], quality security of dairy products [8], and reduction of agricultural fake
insurance claims [9].

Classical livestock identification techniques, such as ear notching [10], ear tattoo-
ing [11], hot iron branding [12], and ear tags [13–16], is subject to equipment loss, dupli-
cation, fraud, animal welfare security, monitoring cost, and distance challenges. Instead,
based on biometric traits, non-contact identification is a new trend in livestock identifi-
cation due to its uniqueness, invariance, low cost and easy operation, and high animal
welfare. The non-contact identification methods, such as retinal vascular patterns [17,18],
iris patterns, and muzzle print patterns [19,20], utilize computer vision and pattern recog-
nition to extract biological features of livestock for individual identification. However, as
an individual’s most direct external visual information, the difference in facial features
allows the livestock’s face to be used more extensively to identify the individual. From the
perspective of farm practice, compared with the biometric recognition methods noted, face
identification is more intuitive and compatible with habits. There is also no need for coop-
eration of livestock fixed postures. In addition, face identification has great advantages in
terms of anti-interference and scalability, which is analogous to human face identification.

Detection of livestock face is often conducted prior to individual identification and
tracking in biometric and surveillance systems. Many approaches have been put forward
in the literature for animal face detection. Mukai et al. employed the Haar and HOG
(Histogram of Oriented Gradients) feature to build the classifiers for pet faces and proved
the effectiveness for detecting the cat and dog faces [21]. Local Binary Pattern (LBP)
features have been used to extract local texture features from different levels of Gaussian
filtered images of cattle faces for face detection [22]. Clark presented pigs’ face detection by
identifying the features utilizing the Viola–Jones approach for cascade classifiers and basic
likelihood functions [23]. Mohammed et al. aimed to detect multi-view faces in cattle with
accuracy enhancement using three classifiers and temperature thresholding. Cattle face
detection was established in thermal imaging by adopting HOG as a feature and Support
Vector Machine (SVM) as a classifier [24]. Akihiko et al. combined face detection with
digital cameras to automatically find dogs and cats in the images with acceptable speed
performance by integrating edge-based features with multi-layer classifiers [25].

However, the heavy involvement of handcrafted features prevents these approaches
from application to complex scenarios in terms of speed and accuracy. The use of the Con-
volutional Neural Network (CNN) to detect livestock has been demonstrated as successful
and promising for further research with regard to variable inputs, processing speed, and
accuracy for object detection in images [26]. Alžběta et al. dealt with a reliable dog face
detection approach in the images by adopting the two-step technique using the cascade
of regressors [27]. The recent advances in deep learning [28–34] have shown their great
potential in object detection and classification of thousands of global images due to higher
accuracy, precision, and quicker processing speed. Faster R-CNN has been directly used
for face detection combined with PANSNet-5 in the cow face recognition framework [35].
Considering the practical scenario of multi-face detection task of livestock cattle identity au-
thentication, Gou et al. improved Faster R-CNN by substituting ZF network for Inception
v2 as the basic network [36].

Despite these advances in livestock face detection, the subtle changes in lighting,
severe pose variation, false acceptances because of complex background, color similarity
between livestock and background, shape deformation, and occlusion present serious
challenges to face detection in an actual setting such as a cattle feedlot. Consequently, it is
highly necessary to perform a wider assessment of face detection algorithm performance
across a range of livestock production settings. The rapid development of object detection
with deep learning provides promising techniques for face detection. RetinaNet, a recently
proposed powerful object detection framework, which surpasses the detection performance
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of cutting-edge, two-stage R-CNN family object detectors and matches the speed of one-
stage object detectors, appears to be the most prospective for livestock face detection. In
the previous research, RetinaNet was used to explore for detection of road damages [37],
automated detection of firearms in cargo X-ray images [38], and the task of indoor assistance
navigation for blind and visually impaired persons [39]. Despite the general appeal of
RetinaNet, it has not been evaluated in great detail for precision livestock monitoring
practices. Given the urgent need to develop technologies that can assist with livestock
production and welfare management, it is timely to assess the application of a state-of-
the-art machine learning algorithm for precision livestock monitoring. Due to their great
significance concerning animal husbandry, cattle were chosen as the case study to explore
the performance of RetinaNet-based object detection for multi-view face detection.

2. Related Work

Face detection is a particular application of object detection that accurately finds the
target face and its location in images. Object detection is currently a very active research
field in computer vision that facilitates high-level tasks such as automatic individual iden-
tification and intelligent image recognition. The early object detection methods, including
Viola–Jones detectors, HOG detector, and deformable part-based model were built based
on handcrafted features, which render the time complexity high and many of the windows
redundant [40]. In addition, manually designed features in the traditional object detection
are not sufficiently robust to deal with the wide diversity of image changes encountered
in practice; thereby, CNN was introduced into the object detection community. Due to its
relatively superior performance of learning for robust and high-level feature representa-
tions of an image, CNN-based object detection prevents extracting complicated features
and their reconstruction process in traditional object detection. Therefore, after R. Girshick
et al. took the lead to propose the region-based CNN features for object detection in 2014,
the object detection algorithms evolved from R-CNN at an unprecedented speed and have
made much progress in recent years. Current state-of-the-art CNN-based object detectors
can be grouped into two-stage algorithms and one-stage detection algorithms.

The two-stage detectors start with the extraction of object proposals through selective
search or Region Proposal Network (RPN), and then the candidate regions are classified
and regressed for precise coordinates. Regression-based algorithms such as Yolo and SSD
require the sampling densely at various positions with different aspect ratios first, then
provide the direct prediction of object categorization and a bounding box using CNN.
Although the end-to-end procedure of the regression-based detectors outperforms the
region-based detectors in processing speed, they achieve lower mean average precision
because of example imbalance between object and background. As a result, T.-Y. Lin
et al. designed a novel one-stage detector called RetinaNet in 2017 to address the class
imbalance and increase the importance of hard examples [41]. “Focal loss” was used in
RetinaNet to redefine the standard cross-entropy loss, so the training could automatically
downweight the simple examples and center more on hard and misclassified examples.
Focal loss enables RetinaNet to achieve comparable accuracy of two-stage algorithms and
also maintains relatively high processing speed [41].

Considering the aspects of operating speed and accuracy in farming practice, Reti-
naNet was selected in this paper for further study. For face detection, unlike the human
face, consideration should be given to changes in cattle’s face and body orientation due to
their random roaming. Therefore, this paper will explore the effectiveness of RetinaNet
for multi-view cattle face detection. Advancements in deep learning networks present
an opportunity to extend the research to the empirical comparisons of the typical CNN
backbones for RetinaNet in the task of detecting multi-view cattle face.
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3. Materials and Methods

3.1. Overview of the Proposed Framework

Figure 1 shows the overall workflow proposed for processing RGB images that are
captured by 2-D cameras to detect multi-view cattle faces based on RetinaNet. The RGB
images acquired by 2-D cameras are used as input images after image preprocessing,
including image partitioning and image resize. The backbone, including ResNet, VGG,
and Densenet, is selected for feature extraction, and then the Feature Pyramid Network
(FPN) strengthens the multi-scale features formed in the former convolutional network to
obtain more expressive feature maps, which contain a rich and multi-scale feature pyramid.
The feature map selects two Fully Convolutional Network (FCN) sub-networks with the
same structure but without sharing parameters for cattle face classification prediction and
bounding-box prediction. Ground truth was annotated manually for every cattle face in the
training sets and then network training was performed after labeling for forming the cattle
face detector, followed by the output of multi-view cattle face detection in testing sets.

Figure 1. The proposed framework for the detection of multi-view cattle face based on RetinaNet.

3.2. RetinaNet-Based Object Detection

The name of RetinaNet comes from its dense sampling on the input image. RetinaNet
is designed to evaluate the proposed focal loss for class imbalance in regression-based
algorithms. The framework consists of three parts: (i) the front backbone network for
feature extraction, (ii) FPN for constructing the multi-scale feature pyramids, and (iii) two
subnetworks for object classification and bounding box regression. Focal loss is a newly
high-sufficient loss function that replaces the training with the sampling heuristics and
two-stage cascade while dealing with class imbalance. The details for backbones and FCN
sub-networks, commonly used in R-CNN-like detectors, are expounded in the original
papers, and this section mainly describes FPN and focal loss of the algorithm.

3.2.1. Feature Pyramid Networks

FPN is adopted to strengthen the feature extraction of backbone for weak semantic
features using a top-down pyramid and lateral connections (see Figure 2). As indicated in
the blue blocks, the bottom-up path is the feed-forward calculation for the main convolu-
tional network, which calculates the feature hierarchy with different proportions. For the
feature pyramid, the pyramid level is defined for each stage and the output of the last layer
in each stage is chosen as the feature map because the deepest layer of each stage should
have the strongest characteristics. Specifically, for the ResNet101 used in the RetinaNet,
the outputs of these final residual blocks for conv2_x, conv3_x, conv4_x, and conv5_x are
denoted as {C2, C3, C4, C5}. Since conv1 will occupy plenty of memory, it is not included
in the pyramid.
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Figure 2. The architecture of FPN.

The top-down flow marked in green obtains high-resolution features by upsampling
the feature maps with coarser space but stronger semantics from higher pyramid levels.
Later, the bottom-up path is connected laterally to reinforce these features. Specifically,
the weak feature map is upsampled twice, and then the upsampling map is merged with
the corresponding bottom-up map. This cycle is repeated until the final resolution map
is produced. We only need to combine a 1 × 1 convolutional layer with C5 to produce
low-resolution images to run the iteration. Next, we append a 3 × 3 convolution to perform
on each merged image so as to diminish the aliasing effect of upsampling. The same applies
to other layers and the final feature map set is called {P2, P3, P4, P5} for object classification
and bounding box regression, corresponding to {C2, C3, C4, C5}, respectively.

3.2.2. Focal Loss

The box regression sub-net and classification sub-net in the RetinaNet are imple-
mented using the standard Smooth L1 loss (Formula (1)) and the Focal loss (Formula (3)),
respectively, as the loss functions. Focal loss is a cross-entropy loss that can be dynamically
scaled. A weighting factor is added for the traditional cross-entropy function, which can
automatically drop the weight of the loss contributed by simple examples and center more
on hard samples to solve the class imbalance.

SmoothL1(x) =
{

0.5 x2 i f |x| < 1
|x| − 0.5 otherwise

(1)

x = f (xi)− yi (2)

FL(P) = −∂t(1 − P)γ log(P) (3)

P =

{
p i f z = 1

1 − p otherwise
(4)

Here, x is the error value between the estimated value f (xi) and ground truth yi; ∂t and γ
are two tunable focusing hypermeters and they function as the role of balancing the ratio
between simple and difficult examples; p is the estimated possibility for the given label
class. Thus, if the figure of math is 1, it specifies the label class and P is the same as the p in
this situation.

3.3. Datasets Preparation and Preprocessing

To address the scarce dataset for cattle face detection and recognition using deep learn-
ing, datasets were collected from two housing farms located in Jiangxi Province, China,
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and there were 85 healthy scalpers and Simmental ranging in age from 6 to 20 months.
The experiment was conducted under various scenes such as different illumination, over-
lapping, and postures without human intervention, and it took three days to complete
this data collection. Examples of multi-view cattle face in different scenes are displayed
in Figure 3. This work aims to simulate and facilitate the detection and identification of
cattle face by future mobile devices instead of surveillance cameras, and it is common to
collect the images where the cattle faces occupy large areas. The cattle were filmed using a
Sony FDR-AX 40 camera with MOV video format (3840 × 2160 pixels) at 25 frames per
second. The camera on a tripod was fronted straight to the standing cow with a view of
3 cow’s face width and 1.5 cow’s face length. The original images cropped from videos
were in JPG format at 3840 by 2160 pixels. After extracting valuable data frames of every
video in MATLAB, the selected images were clipped using MATLAB and then be resized to
224 × 224 pixels. Notably, to ensure the effectiveness of detection performance, during the
image selection, different situations of cattle faces for each cow were selected and highly
similar faces, especially in consecutive frames, were avoided. The datasets contained a total
of 3000 images (1000 negative images included) that were split into training and testing in
the proportion 2:1.

   

  

Figure 3. Examples of cattle faces in different scenes.

LabelImg is the annotation tool that was used to label the ground truth for cattle faces
using RectBox for training datasets. For labeling, the region of every cattle face was selected
and annotated using the RectBox in the image. Then, the class label named cattle face
needed to be marked on the bubble pop up on the screen. The details of data annotation
include object name, box location, and image size, as shown in Figure 4.
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Figure 4. Example of annotation (green) for cattle face and details of a labeled cattle face.

4. Results

4.1. Implementation Details

The experiment was conducted on a desktop computer equipped with Windows
10 64-bit and an NVIDIA GeForce GTX 1080 graphics card. The proposed framework was
written employing available libraries including numpy 1.16.5 and scikit-learn 0.21.3 in
Python3.6. Keras 2.31 combined with tensorflow-gpu-2.1.0 was installed to provide a deep
neural network framework for Python that was compatible with the Python version.

Transfer learning was adopted because of the limited computing resources and
datasets for training. Transfer learning was to fine-tune a particular model for the in-
tended task based on existing models. The backbones used in the proposed framework
were initialized by ResNet-pretrained model using COCO datasets and VGG-pretrained
model using ImageNet datasets and Densenet-pretrained model using ImageNet datasets.
All 200,000 training iterations took approximately 17 h, and the best performing epoch
for the model was chosen on testing data after the training loss converged. The threshold
was set at 0.5 for the Intersection-over-Union (IoU) of confidence and bounding-box in all
network models.

4.2. Performance Analysis with Different Backbones

As referred in Section 3.1., the original ResNet 50 backbone model of RetinaNet can
be replaced with ResNet 101, ResNet 152, VGG 16, VGG 19, Densenet 121, and Densenet
169. The experiment compared the RetinaNet with ResNet 50 with these various backbone
CNNs. The results in Figure 5 demonstrate the comparison Average Precision (AP) and
Average Processing Time (Atime) between different backbones using 1000 images, includ-
ing 500 positive samples with cattle face and 500 negative samples without cattle face. In
addition, to better assess the performance of various models on cattle face detection in
detail, we also computed True Positive (TP), False Positive (FP), and False Negatives (FN)
of seven backbones and then calculated the corresponding precision, recall, and F1 score,
as presented in Table 1.
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Figure 5. Average precision and average processing time of cattle face detection using different backbones.

Table 1. Comparison of detection results with different backbones.

Backbone Precision Recall F1 TP FP FN

ResNet 50 0.9980 1.0000 0.9990 500 1 0
ResNet 101 0.9840 1.0000 0.9920 500 8 0
ResNet 152 0.9840 1.0000 0.9920 500 8 0

VGG16 0.8040 1.0000 0.8910 500 122 0
VGG19 0.8800 1.0000 0.9390 500 65 0

Densenet 121 0.3850 0.4220 0.4030 211 337 289
Densenet 169 0.6270 0.2760 0.3830 138 82 362

It can be seen from Figure 5 that the average precision of VGG 16 and VGG 19 are
slightly higher than the value of ResNet 50 and achieve the best average precision, but
the average processing time of ResNet 50 outperforms other backbones. As for cattle face
detection, Densenet has a poor detection effect with the best average precision of 88.35%
and the fastest processing time of 0.1370 s. AP and Atime are both significant metrics in the
matter of how practical the system might be in actual use. Therefore, considering processing
time and accuracy, the detection algorithm with ResNet 50 as the feature extraction model
is regarded as having the best performance, whose AP reaches 99.8% and Atime is 0.0438 s
per image.

As observed in Table 1, the cattle face detection model using ResNet 50 yields a
precision of 99.8%, a 100% of recall and an F1 score of 0.9990, which are higher than other
backbones. Moreover, the results concerning cattle face detection errors depict that the
model achieves the lowest FP and FN rates with only 1 in 500 cattle faces potentially being
misclassified in the case of ResNet 50. In contrast, although deeper ResNet including
ResNet101, ResNet 152, and VGG network architectures obtain better performance on FP,
they are reported to receive more falsely detected cattle face, especially using VGG. As
with the results shown in Figure 5, the lowest scores on precision, recall, and F1 score are
reported by employing Densenet due to the superior FP and FN rates but the lowest TP
rate. Some representative examples for the prediction on the test image processed by seven
different backbones is visualized in Figure 6.
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(a) ResNet 50 (b) ResNet101 (c) ResNet152  

    
(d) VGG16 (e) VGG19 (f) Densenet 121 (g) Densenet 169 

Figure 6. Comparisons of cattle face detection processed by seven different backbones.

4.3. Comparison with Other State-of-the-Art Object Detection Algorithms

The proposed RetinaNet based multi-view cattle face detection is also compared to
show its advantages over the typical existing object detection approaches. Yolov3 and
Faster R-CNN are the typical works of object detectors in practice. For instance, Faster
R-CNN has been attempted to explore the multi-class fruit detection [42–44], livestock
detection [45], posture detection of pigs [46], and cattle face detection [35]. Yolov3 has also
been applied to fruit and fruit disease detection [47–50], plant and plant disease and pest
detection [51–53], livestock behavior detection [47,54], and fish detection [55]. Therefore,
experiments in this paper are conducted to compare the testing results of these competing
methods with the ground truth information, and the results are summarized in Table 2.

Table 2. Comparison of detection results with three competing methods.

Methods AP Atime Precision Recall F1 TP FP FN

Yolov3 0.9968 0.1368 0.8700 1 0.9300 498 72 2
Faster R-CNN 0.9857 0.1526 0.9940 1 0.9970 500 3 0

RetinaNet + ResNet 50 0.9980 0.0438 0.9980 1 0.9990 500 1 0

It is observed from Table 2 that RetinaNet with ResNet 50 show better detection
performance than Yolov3 and Faster R-CNN in both detection accuracy and calculation
requirement for future online detection (AP of 99.8% and Atime of 0.0438 s). The results
indicate that RetinaNet is most competent in real-world practice as the datasets are in
different complex scenes with severe face-pose variation and different degrees of occlusion.
Yolov3 and Faster R-CNN achieved nearly similar performance with RetinaNet in AP
(99.68% for Yolov3 and 99.8% for RetinaNet) and F1 score (0.9970 for Faster R-CNN and
0.9990 for RetinaNet), respectively, but the F1 score is preferable as the metric for ”true
positive detection” whilst average precision is preferable for ”boundary extraction” of
cattle face. Therefore, Yolov3 and Faster R-CNN are not sufficiently reliable in complex
multi-view cattle face detection.
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4.4. Evaluation of Multi-View Cattle Face Detection Results

The major misdetections of the abovementioned algorithms concern multi-view cattle
face in complex conditions. To clearly observe the comparisons of results for multi-view
cattle face detection in different scenes, 100 images were selected from 500 positive samples
for three scenes of partial occlusion, light change, and posture change, and then the
detection AP values and F1 scores were calculated separately for these competing detection
models, as shown in Table 3.

Table 3. Comparison of detection results under different conditions.

Methods
Partial Occlusion Light Variation Posture Change

AP F1 AP F1 AP F1

Yolov3 0.9980 1.0000 1.0000 1.0000 0.9720 0.9980
Faster R-CNN 0.9910 0.9990 1.0000 1.0000 0.9840 0.9980

RetinaNet + ResNet 50 1.0000 1.0000 1.0000 1.0000 0.9980 0.9990

As seen in Table 3, RetinaNet with ResNet 50 outperforms Yolov3 and Faster R-CNN
under three particularly challenging situations. Three detection models all present very
accurate detection results with AP of 100% and F1 score of 1.0000 in the situation with
light changes, which implies that CNN-based deep learning algorithms are robust to
illumination variations. However, as observed, there are inaccurate detection boundaries
using Yolov3 and false cattle face detections using Faster R-CNN while the performance of
RetinaNet remains relatively high in partial occlusion situation. Although three detection
models do not present good detection results in posture change situations, RetinaNet
achieves better performance in detection accuracy and boundary accuracy owing to the
structure of FPN and focal loss in the model. Faster R-CNN presents the advantage of RPN,
which is commonly used in two-stage detectors, and thus the boundary precision is higher
than Yolov3. To facilitate the readers to visually observe the comparisons of results, this
paper compares the predictions processed by the above-competing methods under partial
occlusion and posture change situations, as shown in Figure 7.

   
(a) Yolov3 (b) Faster R-CNN (c) RetinaNet 

   
(d) Yolov3 (e) Faster R-CNN (f) RetinaNet 

Figure 7. Comparisons of cattle face detection processed by three object detection algorithms in
partial occlusion and posture change situations.
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5. Discussion

This paper evaluated an up-to-date object detector, RetinaNet, to automate the face
detection process for a livestock identification vision system in the farmland. The key
novelty of the study is the application evaluation of the RetinaNet algorithm with various
backbones and comparisons with typical competing detection models for multi-view
cattle face detection in complex and relevant cattle production scenarios. The essence of
the detection in this paper is bounding-box location and classification with confidence.
Previous studies in cattle face suffered the deviation of the bounding-box [56] and the
challenge for dataset collection from complex scenarios [35]. The strong point of the
RetinaNet is the capability to perform both relatively high detection accuracy and fast
processing time of cattle face within the imagery. This allows for the development of
further algorithms to perform tasks such as facial expression assessment from the imagery
for welfare monitoring. Cattle face detection in the paper is the first step toward real-time
individual livestock identification in farming environments that have different applications,
such as the cattle insurance industry, meat products traceability [57], and other animal
welfare improvements.

Transfer learning is an essential part of machine learning as pretrained CNN models
can be fine-tuned and re-trained to perform new tasks when limited annotated data exists
for training. However, the generalization capabilities of various deep networks on different
datasets might change due to their architecture [43,58,59]. Therefore, this study compared
the performance quantitatively of ResNet, VGG, and Densenet with different depth to
select the optimal backbone in this detection task. The results indicate that RetinaNet with
ResNet 50 achieves the best performance with an average precision of 99.8%, F1 score of
0.9990, and average processing time of 0.0438 s. Since backbones with better performance
can improve the accuracy of detection, and there is no agreed pretrained CNN model
in object detection algorithms, this backbone could be properly adjusted and optimized
depending on the circumstances and applications. For instance, Yolov3 incorporating the
DenseNet for apple detection in various growth periods [49] was considered to perform
well. Still, ResNet may be better for fruit detection and instance segmentation [43], and
plant disease detection achieves better results using VGG architecture [60].

For demonstrating the feasibility of the proposed framework further, this study made
the performance comparisons with two competitive algorithms of object detection on the
same datasets. The detection results presented illustrate that the AP and Atime provided
by the RetinaNet with ResNet 50 model are significantly better than the other two models,
reflecting the superiority of the proposed cattle face detection model. Considering the
multi-view face caused by various unstructured scenes in actual cattle production scenarios,
such as overlapping, occlusion, and illumination changes, the cattle face detection accuracy
could be reduced to some extent. The F1 scores and average precision metrics were assessed
over unstructured scenes in the study, and it is worth mentioning that the performance
of RetinaNet was better than other algorithms. Some detection results of cattle faces are
shown in Figure 8. Especially for partial occlusion and light variation situations, the
accuracy of cattle face detection using RetinaNet reaches 100%, but the posture change
situation is particularly challenging, even using RetinaNet and computer vision in general.
The suggested main reason for this performance discrepancy of posture change situation
can be attributed to multiple behaviors, such as leaning over to graze or drink and lying on
the side to rest, which then bring difficulties to cattle face detection.
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(a) Posture variation (b) Posture variation (c) Fuzzy 

   
(d) Illumination (e) Illumination (f) Overlapping 

Figure 8. Detection results of cattle faces in various unstructured scenes.

6. Conclusions

Developing deep learning for object detection and image processing is crucial to the
livestock identification system, which substitutes for wearable devices such as RFID ear
tags, thus reducing the damage to animals. To establish the livestock machine vision system
capable of monitoring individuals, this paper focused on cattle face detection, which is an
important component of envisaged future technology. The state-of-art RetinaNet detection
model proposed in this study was assessed on various unstructured scenes. The compared
metrics performed successfully across a range of scenarios with an average precision score
of 99.8% and an average processing time of 0.0438 s. The results presented indicate that the
proposed model was particularly effective for the detection of cattle faces with illumination
changes, overlapping, and occlusion. Compared to the existing algorithms, the proposed
model has better universality and robustness both in accuracy and speed, which makes
it generally more applicable for actual scenes. However, the conditions of training and
testing are the same in this work, and the robustness of the system may be questioned;
thus, further experiments are needed.

This work has potential for computer vision system integration into mobile apps to
perform not only livestock detection and counting and individual identification, but also
facial expression recognition for animal welfare. Despite the significantly high success of
the proposed method, it is still far from being a generic tool that could be used in actual
livestock production scenarios. Future work will focus on a lightweight neural network
to improve the running speed of cattle face detection. In addition, future work will also
concentrate on building an autonomous livestock individual identification system using
facial features.
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Abstract: Enhancing digital and precision agriculture is currently inevitable to overcome the eco-
nomic and environmental challenges of the agriculture in the 21st century. The purpose of this
study was to generate and compare management zones (MZ) based on the Sentinel-2 satellite data
for variable rate application of mineral nitrogen in wheat production, calculated using different
remote sensing (RS)-based models under varied soil, yield and crop data availability. Three models
were applied, including (1) a modified “RS- and threshold-based clustering”, (2) a “hybrid-based,
unsupervised clustering”, in which data from different sources were combined for MZ delineation,
and (3) a “RS-based, unsupervised clustering”. Various data processing methods including machine
learning were used in the model development. Statistical tests such as the Paired Sample T-test,
Kruskal–Wallis H-test and Wilcoxon signed-rank test were applied to evaluate the final delineated
MZ maps. Additionally, a procedure for improving models based on information about pheno-
logical phases and the occurrence of agricultural drought was implemented. The results showed
that information on agronomy and climate enables improving and optimizing MZ delineation. The
integration of prior knowledge on new climate conditions (drought) in image selection was tested
for effective use of the models. Lack of this information led to the infeasibility of obtaining optimal
results. Models that solely rely on remote sensing information are comparatively less expensive
than hybrid models. Additionally, remote sensing-based models enable delineating MZ for fertilizer
recommendations that are temporally closer to fertilization times.

Keywords: precision agriculture; management zones; remote sensing; Sentinel-2; clustering; winter
wheat; drought; digital agriculture

1. Introduction

In recent years, there has been an intense growth in the world population, which
is projected to reach 9.7 billion by 2050 [1]. Population growth puts enormous pressure
on agricultural productivity growth, but also on the increasing environmental impact of
the agri-food sector [2,3]. In many regions of the world, small farms are the main food
producers, and this group will be under pressure to increase production efficiency [4].
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Important elements in the process of agricultural production growth are biological and
technological progress [5]. In the scope of technological progress, the most promising
developments are considered to be precision agriculture (PA) (agriculture 3.0) and digital
agriculture (agriculture 4.0) [6–8].

Precision agriculture or site-specific management can provide food security and
sustainable development [3,6,9–11]. It is based on innovative system approaches which
comprise several technologies, such as global navigation satellite system (GNSS), geo-
graphic information system (GIS), proximal sensing (PS) and remote sensing (RS), artificial
intelligence (AI), machine learning (ML), automatic guidance, section control, variable rate
technology (VRT) and advanced information processing for timely within- and between-
season crop managements [12–15]. The main purpose of PA is to optimize crop manage-
ment concerning spatial and temporal variabilities, which results in optimized utilization
of farm inputs such as fertilizers, pesticides, herbicides and seeds [16]. All of this is aimed
at increasing farm profitability and achieving the Sustainable Development Goals (SDGs)
such as No Poverty, Zero Hunger and Reduced Inequalities. For such a purpose, a wide
range of data and information from field inventory, crop growth and yield patterns must
be analysed [17]. With this correctly processed information, agricultural inputs such as fer-
tilizers, water or energy can be applied in a spatially variable manner using homogeneous
production zones, i.e., management zones (MZ) [16].

The RS and PS are the most researched technology in PA [18]. Their effective use
requires the delivery of information and communication technologies (ICT) tools, including
algorithms for RS, that are useful to the user: farmers with limited knowledge capital,
which is currently indicated as one of the main barriers to the adaptation and spread of
PA [18]. The need to support and develop simplified, low-tech precision farming methods
seems therefore justified.

MZ are defined as sub-units of farm fields with a relatively homogeneous combination
of yield-limiting factors [16,19]. Each zone can be managed with a different but specific
single-rate management practice to maximize the efficiency of farm inputs [16,19]. Methods
to create MZ have been developed for almost 3 decades, and the evolution of methods to
create them is widely reported in the literature [2]. Generally, MZ delineation approaches
can be categorized based on the provided data and information from different sources [2].
These methods are generally based on farmers’ knowledge [20], soil physical and chemical
attributes [21–24], geomorphology [25], yield [26–31], electrical conductivity (EC) [32,33]
and RS [17,34,35] data, and also hybrid models that combine information from different
data sources [36–47].

Each of those approaches has its pros and cons. Although the hybrid method is
theoretically comprehensive and more accurate, additional field measurements such as
soil sampling or proximal soil sensing are expensive, labor-intensive and time-consuming,
and require seasonal sampling to specify nutrient level due to temporal variability of
soil properties [22,48–50]. Besides, large commercial agricultural fields reportedly do
not completely represent spatial variability [51]. RS methods deliver key components of
precision farming and provide valuable data from crop coverage and actual crop growth
patterns to delineate MZ [52]. With spatiotemporal continuity along with cost-effectiveness,
RS has a capacity for time-series analysis [17]. However, optical satellite imagery is
associated with the main limitation of being affected by atmospheric haze or cloud, which
often occurs in temperate and rainy regions [17].

A broad range of active/passive satellite RS data is currently available with various
properties, such as spatial resolution, temporal resolution, spectral range and viewing
geometry [53]. The launch of Sentinel-2A (2015) and Sentinel-2B (2017) satellites by the
European Space Agency (ESA) boosted the PA applications since the data are freely avail-
able [54]. Sentinel-2 satellites are equipped with a passive multispectral instrument (MSI),
including 13 spectral channels, 4 bands at 10 m, 6 bands at 20 m and 3 bands at 60 m
spatial resolution [55]. These satellites have a high revisit time of ten days with one satellite
and five days as a constellation (2–3 days at mid-latitudes) [56]. Currently, ESA provides
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the Level-2A products of this mission as bottom of atmosphere (BOA) reflectance and
atmospherically corrected images [57].

Remote sensing of vegetation is mainly based on the green (495–570 nm), red (620–
750 nm), red-edge (680–730 nm), near- and mid-infrared bands (850–1700 nm) regions
of the spectrum [35]. In order to obtain information from vegetation status, these bands
can be used to derive vegetation indices [35]. The normalized difference vegetation index
(NDVI) [58], a normalized difference between the reflectance of red and near-infrared (NIR)
spectral bands, is the most common crop parameter used in MZ delineation, because of its
ease of calculation and interpretation [2,35]. Along with NDVI, some biophysical variables
such as leaf area index (LAI), fraction of absorbed photosynthetically active radiation
(FAPAR) and the fraction of vegetation cover (FVC) were also used in this research [59].
LAI is defined as half the developed area of photosynthetically active elements of the
vegetation per unit of horizontal ground area [59], FAPAR corresponds to the fraction of
photosynthetically active radiation absorbed by the canopy [59] and FVC is the ratio of the
vertically projected area of vegetation to the total surface area [60].

Several studies for MZ delineation on multispectral satellite images exist in the lit-
erature. Song et al. [37] delineated and compared MZ based on soil data, yield data,
and crop RS information from one multispectral satellite scene, as well as their combi-
nation. Additionally, Martins et al. [47] generated a MZ map with a combination of soil
attributes, EC, yield maps and a vegetation index (VI) of one multispectral satellite image.
Georgi et al. [17] developed a segmentation algorithm for generating MZ from within-field
crop patterns using only multi-temporal, multi-spectral satellite images.

The above examples [17,37,47] reveal that several studies conducted MZ delineation
with various methods and different data types. However, none of them considered agron-
omy (e.g., BBCH stage) and especially climate information (e.g., soil moisture conditions,
drought), which could negatively affect the implemented models. Additionally, compara-
tive approaches need to be tested to improve the MZ delineation considering data and/or
knowledge availability, time and cost-benefit analysis and accuracy.

Above all, the extent of available agricultural spatial data for farmers is also an im-
portant issue in the development of homogeneous MZ and homogeneous productivity
zones. The ideal scenario is when the producer/farmer has multi-years spatial data on
yield, crop vegetation, soil and climate, but literature reports indicate that the level of farm
datafication varies [61]. Practice shows that the ideal scenario exists in regions with high
adaptation of PA technologies, e.g., where the use of combine harvester yield monitors
is common practice [18]. In most cases, these data are less available. This also applies
to smaller farms with lower adaptation of PA technologies. Proposing new digital tech-
nologies for such users, such as Decision Support Systems (DSS) and Farm Management
Information Systems (FMIS), there is a need to develop simplified algorithms/methods for
the creation of MZ, based on one or two seasons’ data. The problem of determining the
MZ of simplified algorithms that work in practice, i.e., in FMIS, is presented in research by
Santaga et al. [62].

The overall aim of the study is to generate and compare MZ maps prepared using
different models. The first model was termed as “RS- and threshold-based clustering”
and was adopted from Georgi et al. [17] with partial modifications. The second model
was a “hybrid-based and unsupervised clustering” model, a hybrid model in which a
combination of data from different sources was utilized for MZ delineation. The last
approach was called “RS-based unsupervised clustering”, which was similar to the first
model but with a different classification. The secondary objectives were to statistically
analyse the models’ outputs, as well as to improve the accuracy of MZ delineation by
incorporating agronomy and climate information in the applied models. Finally, a MZ map
was presented to guide spring mineral nitrogen fertilization of winter wheat in specific
phenological phases based on fertilization dates.
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2. Materials and Methods

2.1. Study Area

The research was conducted on the 50.2 ha field on the experimental farm of the
Poznań University of Life Sciences, RGD Brody, located in Brody (52.43 N, 16.29 E according
to WGS84), Wielkopolskie Voivodeship, Poland (Figure 1). The field dedicated to the
research was covered with winter wheat crop (Triticum aestivum cv. ‘RGT Reform’), carried
out in the reduced soil tillage system and non-irrigated.

Figure 1. The geographic location of the study area in Brody, Wielkopolska province, Poland.

The average annual precipitation sum of the study area (1960–2019) was 599 mm,
and the annual mean air temperature was 8.5 ◦C, while in 2019 and 2020, the annual
precipitation sum was 462 and 520 mm respectively, with the mean air temperature of
the study at 10.8 and 10.6 ◦C, respectively. Meteorological data were obtained from the
meteorological station of Brody Experimental Station and were recorded according to the
World Meteorological Organization guidelines.

The farm soils in the study area are light, loamy sands, developed on loamy sands
overlying loamy material, and are classified as Albic Luvisols according to World Reference
Base nomenclature [63,64].

2.2. Data
2.2.1. Soil Sampling

Soil physical and chemical properties were determined by infield sampling and
laboratory analysis. Soil samples were taken mechanically, in a semi-automatic operation,
from the 0–30 cm field layer in a 4 ha grid, where one average, mixed sample consisted
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of 16 primary samples. Sampling was carried out in spring 2020. In the present study,
analyses were performed to determine pHKCl, phosphorous (P2O5), potassium (K2O) and
magnesium (Mg) contents. These are the most commonly used parameters determined
by farmers in agrotechnical practice, especially small-scale farming, because of the low
implementation costs. Additionally, an analysis of soil organic matter (OM) content was
performed as one of the important factors determining sorption and water properties of
arable soils.

Soil physico-chemical parameters were determined as follows: pH in 1M KCl ac-
cording to PN-ISO 10390-1997, available phosphorus and potassium by the Egner-Riehm
method [65] according to PN-R-04023 and PN-R-04022 respectively, and magnesium by the
Schachtschabel method [66] according to PN-R-04020. OM content was determined by the
Tiurin method (T methode) [67] with the Van Bemmelen coefficient of 1.724.

2.2.2. Yield Data

Winter wheat yield data were recorded automatically during harvest in 2019 and 2020
with a modified Claas Lexion 480 combine harvester. Data were recorded at a temporal
resolution of 1 Hz for each of the harvester passes. The recorded raw yield data were post-
processed and filtered to mitigate lag times and exclude outliers. A detailed description of
the combine harvester prototype equipped with a system for monitoring qualitative and
quantitative grain parameters is described by Czechlowski and Wojciechowski [68,69].

2.2.3. Elevation Data

The basic hypsometric data were obtained using the measuring system of the modified
combine harvester described by Czechlowski and Wojciechowski [64]. The combine was
equipped with a Novatel RT2 PROPAK V3 GNSS receiver with a GPS-702-GG: a dual-
frequency (L1/L2) antenna and a SmallTRIP 3.2 GPRS/NTRIP modem with automatic
connection to the Real-Time Kinematic (RTK) NAWGEO service of the ASG-Eupos network.
The possibility of using this type of data to create digital elevation models of agricultural
field surfaces was reported by Czechlowski et al. [70]. The slope map was generated based
on the interpolated elevation map (DEM) as a percent slope (See Preprocessing Section).

2.2.4. RS Data

A time series of Sentinel-2 L2A images from 1 January 2018 to 1 July 2020 was down-
loaded from The Copernicus Open Access Hub [71]. Sentinel-2 L2A data are atmospheri-
cally and geometrically corrected. Additionally, layers such as a scene classification layer,
cloud mask, cloud shadow mask and snow mask were provided along with Sentinel-2
L2A raw data. During the downloading stage, it was attempted to download the data
with minimum possible cloud cover by checking the quick layer of every data point. The
quick layer of each data point is accessible in the Copernicus Open Access Hub which
is embedded in the detailed information of each Sentinel-2 scene. Finally, 119 scenes of
Sentinel-2 L2A were downloaded. Table 1 shows the number of downloaded data per year
and month.

Table 1. Monthly distribution of 119 Sentinel-2 L2A scenes available from 1 January 2018 to
1 July 2020.

Year

Month
Jan Feb Mar Apr May June July Aug Sep Oct Nov Dec

2018 1 2 1 5 8 2 6 7 5 8 2 1
2019 0 4 2 6 5 8 3 3 5 5 2 4
2020 3 3 4 7 4 3 - * - * - * - * - * - *

* Not analysed.
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2.3. Models

Three models were separately implemented to delineate MZ. In the following sections,
each model is described in detail. First, a brief introduction of each model is provided, then
its flowchart is presented and related parts are explained.

2.3.1. Model-1 (RS- and Threshold-Based Clustering)

The first model was fundamentally adopted from Georgi et al. [17], who developed a
segmentation algorithm for generating MZ of within-field crop patterns by solely using
multi-temporal and multi-spectral satellite images. Thus, the input to the model was the
time series of RS data. However, the RapidEye data used in [17] was replaced with Sentinel-
2 L2A data because of its free and open data policy. Moreover, a different approach was
applied for selecting cloud-free and cloud shadow-free data using mask layers embedded
in Sentinel-2 L2A products. The workflow of model-1 is summarized in Figure 2 and the
whole process of this model was subdivided into 4 parts (Sentinel-2 data processing, Data
selection, Processing of NIR bands, and Segmentation and classification), and a detailed
description of each part is provided in the following sections.

Figure 2. The workflow of model-1 (RS- and threshold-based clustering).
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Sentinel-2 Data Processing

As inputs to the model, 119 scenes of the Sentinel-2 L2A were imported. First, all
bands were resampled to 10 m pixel size, which was inevitable due to differences in spatial
resolutions. The cloud-free and cloud shadow-free data were extracted by investigating the
quality scene classification layer, quality cloud confidence, cloud probability mask, cloud
mask and shadow mask layers embedded in Sentinel-2 L2A products. For each scene, the
mentioned layers were investigated by visual quality control. Finally, NDVI was calculated
for all images. The entire workflow was conducted in SNAP V7 software [72].

Data Selection

The data were selected with two constraints. Standard deviation (SD) was calculated
for each NDVI data point, and the SD values <0.02 were dropped to exclude the images of
dense vegetation cover with no spatial patterns. Then, the mean of each NDVI data point
was calculated, and the values between 0.3 and 0.78 were selected since the values <0.3
and >0.78 depict the corresponding images of vegetation canopy, which is too sparse (bare
soil background) or too dense, respectively [73]. When the canopy becomes too dense,
NDVI saturates because red reflectance does not change much, but near-IR reflectance
increases [73]. This stage was implemented in Python 3.8 by using ‘rasterio’, ‘unidip’ and
‘numpy’ packages. For selected dates, NIR bands of Sentinel-2 data were extracted, on
which the consequent steps were implemented. This model was conducted based on NIR
bands, while NDVI data were used only for data selection since ratio indices such as NDVI
cause noise patterns and artifacts that challenge the MZ delineation [17,74]. This resulted
in 24 out of 119 raster data, as summarized in Table 2.

Table 2. Acquisition dates of final selected Sentinel-2 data.

Data Data Data

25 February 2018 8 February 2019 20 February 2020
6 April 2018 18 February 2019 11 March 2020
9 April 2018 25 February 2019 5 April 2020
31 May 2018 28 February 2019 8 April 2020
3 June 2018 18 June 2019 22 June 2020
8 June 2018 20 June 2019
3 July 2018 25 June 2019

31 October 2018 24 August 2019
7 November 2018 27 August 2019
5 December 2018

Total in 2018: 10 Total in 2019: 9 Total in 2020: 5

Processing of NIR Bands

Each image was converted to relative values by Equation (1), i.e., a normalization to a
percentage, where 100% was equal to the average NIR value of each image.

Normed pixel value =
(

Pixel value − Minimum
Mean − Minimum

)
× 100 (1)

where Minimum is the minimum value of the whole scene and Mean is the mean value of
the whole scene. Then, an average of NIR bands for each year was calculated, thus the NIR
time series of each year formed a raster stack. Then, normalization and averaging for the
generated data were applied as well.

Segmentation and Classification

A 3 × 3 median filter was applied to eliminate the small zones and smooth the
class boundaries, and the result was normalized as previously mentioned. Eventually, a
thresholding method was implemented on the classification, whereby the 10%, 35%, 65%
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and 90% quantiles were calculated, and the final raster was classified into five classes.
These quantile values were empirically chosen [17]. The final five classes were termed
‘very low’ (1), ‘low’ (2), ‘average’ (3), ‘high’ (4) and ‘very high’ (5), which correspond to
yield expectancy. The processing of NIR bands, classification and mapping was conducted
in QGIS V3.10 [75].

2.3.2. Model-2 (Hybrid-Based, Unsupervised Clustering)

The Second approach is based on a hybrid model for MZ delineation that combined
data from different sources (see Figure 3). This method was recently applied by researchers
in several studies [44–47]. However, in these studies [44–47], principal component analysis
(PCA) was utilized to reduce data dimensionality and minimize the dependencies among
variables. In this study, PCA was replaced with machine learning-based feature selection
(random forest (RF) feature importance). The flowchart of model-2 is shown in Figure 3 and
the whole workflow of this model was subdivided into 5 parts (Input data, Preprocessing,
Processing, Output (MZ map) and Validation), and a detailed description of each part is
provided in the following sections.

Figure 3. The workflow of model-2 (hybrid-based, unsupervised clustering).

Input Data

For this method, data from 4 different sources were integrated, including (1) soil
nutrition data comprising soil pHKCl, P2O5, K2O, Mg and OM, (2) topographical data
comprising elevation and slope of the study area, (3) yield data from 2019 and 2020 and (4)
RS data comprising NDVI and biophysical variables of LAI, FAPAR and FVC of Sentinel-2
data at the heading stage of wheat (15 May 2020 for this study area) [37]. The NDVI and
biophysical variables were derived in SNAP V7 [72].

Preprocessing

Descriptive statistics (minimum, maximum, mean, SD, standard error (SE), coeffi-
cient of variation (CV), skewness and kurtosis) of soil, elevation and yield samples were
calculated. Since the locations of soil, yield and elevation data are different, no geosta-
tistical analysis was possible prior to correlation analysis and feature selection. Thus,
semi-variogram parameters (nugget (C0), sill (C + C0) and range) were estimated to repre-
sent the spatial distribution of soil, yield and elevation data [76]. Several semi-variogram
models, including circular, spherical, tetraspherical, pentaspherical, exponential, Gaus-
sian, rational quadratic, hole effect, k-Bessel, J-Bessel and stable, were evaluated. The
best-fit model with the lowest root-mean-square (RMS) error was selected for each data
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point. Then, the data were interpolated using the best-fit model and ordinary kriging
(OK) procedure. Since the resolution of the satellite data is 10 m, all the variables (e.g.,
soil, yield and elevation data) were interpolated to 10 m spatial resolution. Based on
Martins et al. [44], variables that are temporally stable and correlated with crop yield were
selected, which are crucially significant to delineate MZ [47]. Therefore, a correlation matrix
was generated using Spearman’s correlation to specify the relationship among variables on
interpolated data with the spatial resolution of 10 m. Unlike other recent studies [44–47],
in this study, RF with variance reduction criterion was utilized instead of PCA to rank the
features, reduce data dimensionality and minimize the dependencies amongst variables.
The final variables were selected by considering Spearman’s correlation matrix (using
correlation coefficient criterion) and RF feature importance (using mean squared error
criterion). Deriving descriptive statistics, correlation analysis and feature selection was
performed in Python 3.8 using ‘pandas’, ‘scipy’, ‘rasterio’, ‘numpy’, ‘matplotlib’, ‘seaborn’
and ‘sklearn’ packages. The geostatistical analysis and interpolation were conducted in
ArcGIS V10.7 [77].

Processing

MZ delineation was performed by the fuzzy c-means algorithm using Management
Zone Analyst (MZA) software V1.0. [36,78]. Furthermore, two types of cluster validity
functions, fuzzy performance index (FPI) [79,80] and normalized classification entropy
(NCE) [81], were used to determine the optimum number of zones. The FPI is a measure
of the degree of separation, i.e., fuzziness, between classes, with values ranging from 0
to 1 [36]. Additionally, the NCE measures the degree of disorganization between classes [36].
The minimum values of these indices suggest the optimum number of clusters since it
represents the least membership sharing (FPI) or the highest amount of organization (NCE),
as shown in Equations (2) and (3) [36]. The settings used in the MZA software included
similarity measure = Mahalanobis distance, fuzziness exponent = 1.3, the maximum num-
ber of iterations = 300, convergence criteria = 0.0001, minimum number of zones = 2
and maximum number of zones = 8. Finally, the ideal number of zones was selected by
considering the lowest values of FPI and NCE:

FPI = 1 − c
(c − 1)

[
1 − 1

n

n

∑
k=1

c

∑
i=1

(uik)
2

]
(2)

NCE =
c

(n − c)

[
− 1

n

n

∑
k=1

c

∑
i=1

uikloga(uik)

]
(3)

where c is the number of clusters, n is the number of observations, uik is the fuzzy member-
ship and loga is the natural logarithm. Following clustering, mapping was conducted in
QGIS V3.10 [75].

2.3.3. Model-3 (RS-Based, Unsupervised Clustering)

The approach applied here differed from model-1, in that a K-means clustering al-
gorithm was conducted to compare the classification of this model (threshold-based clus-
tering) with a simple clustering procedure. Other components of model-3 were similar
to model-1 (Figure 2). As can be seen from Figure 4, the whole workflow of model-3 was
subdivided into 3 sections (Sentinel-2 data processing, Data selection and Classification)
and the description of each part was provided in Section 2.3.1.

The K-means algorithm was performed with 5 classes and 100 iterations in SNAP
V7 [72]. Moreover, mapping was conducted in QGIS V3.10 [75].

2.4. Model Improvement

To improve the result of the final MZ maps, the RS-based models (model-1 and
model-3) were enriched with climate and agronomy information. The agronomic infor-
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mation used is the date of sowing and the dates of subsequent spring mineral nitrogen
fertilization treatments, which are carried out three times, as is typical for this region.
The timing of the three application rates is linked to the phenological phases of plant
development and to climate and soil conditions (beginning of vegetation, stem-shooting
phase, earing). Agronomic and drought information were used to select RS images. This
is a knowledge-based selection of input RS data under new climate conditions, such as
drought. Additionally, both RS-based models were performed concerning phenological
phases, which starts from seeding to harvesting time using expert knowledge. To overcome
this, the models should be run with single-year RS data and considering phenological
phases in a specific year. The abnormal climate condition, such as drought in the analysed
period, can impact the final yield map, which affects the performance of the models. The
RS-based models were performed only for 2020 RS data to avoid this, by selecting data after
19 September 2019 (seeding date) in the 2019–2020 season. This resulted in 5 RS datasets
that passed the data selection constraints (Table 2). Since this analysis was conducted for
single-year data, the generated MZ maps can guide fertilization before the fertilization
time approaches considering the growth stages of wheat. In this study area, fertilization
was performed at four dates in the 2019–2020 season (23 January 2020, 17 February 2020, 25
March 2020 and 21 April 2020). With regard to fertilization dates and available selected RS
data, two MZ maps for fertilization were generated for 25 March 2020 and 21 April 2020.

Figure 4. The workflow of model-3 (RS-based, unsupervised clustering).

2.5. Sampling for Validation

A stratified random sampling procedure was conducted for drawing validation data.
Yield maps were converted to relative values (see the Processing of NIR Bands Section)
and then averaged based on the models over the available years [17]. For each sample, the
relative yield value and corresponding class ID were sampled based on the MZ map [17].
The size and conjectured SD of each class were considered to determine the sample size of
each class. The number of samples was computed by Equation (4) [82]:

N =(
∑i=1 WiSi

So
)

2
(4)

where N is the number of samples, Wi is the proportion of mapped area for class i, Si is
the SD of stratum i, So is the expected SE of overall accuracy and C is the total number
of classes. The Si of each class was conjectured since no specific data for samples were
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available to determine the Si of each class by the assumption that Si is higher for classes
with low area proportion. Afterwards, So was assumed equal to 0.01 [82]. Finally, equal
distribution (EDi) (Equation (5)) and weighted distribution (WDi) (Equation (6)) of each
class’ samples were calculated to determine the sample size of each class. The final number
of samples for each class (Ni) (Equation (7)) was assessed by averaging these distributions.
The sampling procedure was performed in QGIS V3.10 [75].

EDi = N × Wi (5)

WDi =
N
C

(6)

Ni =
(EDi + WDi)

2
(7)

2.6. Validation

To validate and evaluate the final MZ, a variety of statistical tests were performed. The
Paired Sample T-test, Kruskal–Wallis H-test and Wilcoxon signed-rank test were applied
to samples of each class and compared with each other to explore whether there were
statistically significant differences. The Paired Sample T-test requires normally distributed
data, so it was performed on logarithmically transformed sample values for the second
time after the test was performed without normalization. The purpose of MZ delineation
is to classify the wheat parcel into homogeneous zones, thus the separability of final zones
was tested. Finally, boxplots for each model were used along with fitted lines through
the medians of each class. The validation was conducted in Python 3.8 by using ‘pandas’,
‘scipy’, ‘numpy’ and ‘matplotlib’ packages.

3. Results

3.1. Model-1

Figure 5a shows the delineated, 5-class MZ map based on model-1. The higher the
number of zones, the better the crop vitality and yield expectancy will be. Based on this
map, the north and south-west parts of the field (Zones 5 and 4) show a more productive
crop pattern compared with the west and east parts. The statistical tests (Table S1 see the
(Supplementary Material)) indicated inseparability between classes for values with p > 0.05,
and these values are highlighted in red in Table S1. According to Table S1, although the
result of the Kruskal–Wallis H-Test, which compares the separabilities of the zones all at
once, showed that all classes are separable with the p-value of 2.9 × 10−54 in all other tests,
the pairs of the zones 3–4, 3–5 and 4–5 are inseparable. The results of the Paired Samples
T-test for the pairs of the zones 3–4, 3–5 and 4–5 were 0.60, 0.63 and 0.95, respectively. The
p-values of the Paired Samples T-test (log of data) for the mentioned zones were equal to
0.86, 0.80 and 0.70, respectively. Finally, the results of the Wilcoxon signed-rank test for
these zones were 0.34, 0.08 and 0.77. Moreover, in the Wilcoxon signed-rank test, the pair
of the zones 1–2 did not support the separability hypothesis, with a p-value of 0.08. On the
other hand, values with p < 0.05 indicate separable zones. Additionally, the boxplot shown
in Figure 6a confirms the result of the statistical tests, with overlaps observed for the pairs
of the zones 3–5 and 1–2.

3.2. Model-2

The results of descriptive statistics for soil, yield and elevation samples are summa-
rized in Table 3. Despite the sufficient number of samples for elevation (DEM), OM and
yields for 2020 and 2019, the numbers of soil pHKCl, P2O5, K2O and Mg samples were
fewer than the expected number for interpolation as there were just 14 samples in the
50 ha area. The authors of this study are well aware of the small sample size, but this is the
typical soil sampling density used in state public advisory practice. As shown in Table 3,
the average yield in 2020 dropped by approximately 400 kg ha−1 compared with that of
2019. This lower productivity is attributed to the severe spring drought that occurred in

163



Agriculture 2021, 11, 1104

major parts of Poland, including this study area [83]. The CV of the analysed attributes
can be categorized from low (CV < 12%) to moderate (12% ≤ CV < 60%) based on the
classification suggested by Warrick and Nielsen [84].

Figure 5. Delineated MZ maps of model-1 (a), model-2 (b) and model-3 (c).

Figure 6. Boxplots of stratified sampling for model-1 (a), model-2 (b) and model-3 (c). The white circles out of the whiskers
show outliers.
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Table 3. Descriptive statistics of DEM, soil attributes and wheat yield.

Attributes n Min Max Mean SD SE CV Skewness Kurtosis

DEM 2020 (m) 67,158 92.42 100.12 96.21 2.36 0.01 0.02 0.06 −1.45
OM 2011 (%) 52 1.14 2.64 1.66 0.44 0.06 0.26 0.92 −0.33
pHKCl 2020 14 6.00 7.1 6.44 0.32 0.08 0.05 0.44 −0.45

P2O 2020 (mg 100 g soil−1) 14 17.20 36.6 25.71 5.92 1.58 0.22 0.20 −1.07
K2O 2020 (mg 100 g soil−1) 14 23.00 34.0 26.86 3.55 0.95 0.13 0.64 −0.80
Mg 2020 (mg 100 g soil−1) 14 8.50 12.4 9.89 1.41 0.38 0.14 0.70 −1.04

Yield 2019 (t ha−1) 9613 0.39 15.18 7.19 1.56 0.02 0.22 −1.25 5.01
Yield 2020 (t ha−1) 8520 0.36 13.12 6.82 1.58 0.02 0.23 −1.30 3.11

Table 4 represents the results of the geostatistical analysis. It suggested the best-
fit models to be exponential (DEM, yield 2019, yield 2020) J-Bessel (OM, pHKCl), Gaus-
sian (K2O, Mg) and Hole Effect (P2O5), based on the minimum RMSE. The values of
Nugget/Sill could be used to determine the degree of the spatial autocorrelation, in which
the values < 25%, 25–75% and >75% suggest strong, moderate and weak spatial depen-
dencies, respectively [85]. DEM and OM showed strong spatial dependence, while other
parameters showed moderate degrees. The range of the semi-variogram was the distance
over which the samples are correlated with each other [86]. A low value of Nugget/Sill
and a high range of an attribute generally indicate that high precision can be obtained by
kriging [85].

Table 4. Semi-variogram parameters of DEM, soil attributes and wheat yields.

Variables Model
Nugget

(C0)

Partial
Sill
(C1)

Sill
(C0 + C1)

Nugget/Sill
C0/(C0

+ C1)

Range
(m)

RMSE

DEM Exponential 0 0.0005 0.0005 0 1.4042 0.0209
OM J-Bessel 0.0266 0.2443 0.2709 0.0982 1247.5 0.1665

pHKCl J-Bessel 0.0299 0.0778 0.1077 0.2776 925.03 0.2391

P2O5
Hole
Effect 12.883 28.331 41.214 0.3126 915.83 4.2782

K2O Gaussian 6.4560 16.516 22.972 0.2810 1147.2 2.8914
Mg Gaussian 1.0110 2.7338 3.7448 0.2970 1147.2 1.0427

Yield
2019 Exponential 1.6169 0.7382 2.3551 0.6865 490.05 1.3108

Yield
2020 Exponential 1.2226 2.2208 3.4434 0.3550 1301.7 1.0925

Figure 7 shows the maps using the best-fit model, including interpolated soil, elevation
and yield, along with RS data.

The maps suggested a high correlation of RS data with the yield map of 2020. More-
over, high values were generally observed in the central part of the field. Soil pHKCl and
P2O5 maps were consistent since the values of P2O5 were high and neutral in the west
and east parts of the field. However, the values were low and somewhat acidic in the
southern part. In terms of K2O, Mg and OM, higher values were observed in the Eastern
part. Besides, DEM and slope values were higher in the western part. Figures 8 and 9
show the results of correlation analysis and selection of features with high correlation with
yield 2020 data. The RS data (NDVI, LAI, FCV and FAPAR) were highly and positively
correlated with yield 2020. The feature selection also showed that yield 2019 and NDVI are
appropriate features for clustering.

Besides, the optimum number of classes was found by computing two cluster validity
indices (FPI, NCE). Figure 10 shows the plotted values of FPI and NCE against the number
of clusters, with the optimum number being the value at which FPI and NCE are minimum,
i.e., 5 clusters. This was consistent with model-1 results in terms of the number of zones.
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The result of MZ in 5 classes by fuzzy c-means clustering (Figure 5b) showed a better
condition in the central part of the field from west to east (Zone 5). This map was consistent
with the features (NDVI and yield 2019 data) that were used in the MZ delineation pro-
cess. As reported in Table S2, the p-value of the Kruskal–Wallis H-Test for this model was
3.2 × 10−117, which means that all of the zones support the separability hypothesis. How-
ever, the results of other statistical tests showed that the pair of the zones 2–3 did not
support the separability hypothesis, with p-values of 0.37 (Paired Samples T-test), 0.46
(Paired Samples T-test (log of data)) and 0.55 (Wilcoxon signed-rank test). This can also be
observed in the boxplot (Figure 6b).

Figure 7. Spatial distribution maps of soil attributes including pHKCl (a), P2O5 (b), K2O (c), Mg (d) and OM (e), the spatial
distribution maps of RS data including NDVI (f), LAI (g), FCV (h) and FAPAR (i), the spatial distribution maps of yield for
2019 (j) and 2020 (k) and the spatial distribution maps of geomorphology data including DEM (l) and Slope (m).

3.3. Model-3

Figure 5c shows the delineated MZ map for model-3, which suggests that the central,
eastern and western parts of the field have higher yield expectancy. However, a low yield
pattern was observed at the edge of the field. According to Table S3, the p-value of the
Kruskal–Wallis H-Test for this model was 1.2 × 10−102. Nevertheless, the pair of the zones
4–5 did not support the separability hypothesis, with p-values of 0.37 (Paired Samples
T-test), 0.18 (Paired Samples T-test (log of data)) and 0.99 (Wilcoxon signed-rank test), as
they are also overlapping along with the pair of the zones 1–2 (Figure 6c).
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Figure 8. Spearman’s correlation matrix amongst soil attributes, RS data, yield data and geomorphol-
ogy data.

Figure 9. Result of RF feature importance.

3.4. Improvement of Model Results
3.4.1. Model-1

Figure 11 shows the delineated MZ maps in 5 classes for model-1 considering agron-
omy and climate information. Figure 11a shows the MZ map that is based on the RS data
before 25 March 2020 (see Table 2). Thus, it can be used as a fertilization recommendation
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map at 25 March 2020. Figure 11b shows the result of model-1 with the RS data before
21 April 2020. Additionally, this map can be utilized as a fertilizer recommendation map
at 21 April 2020. As can be seen in Tables S4 and S5, all zones passed the separability
hypothesis (p-value < 0.5), thus all zones are separable. The boxplots of these maps also
confirmed the results of statistical tests (Figure 12). Zones 4 and 5 passed the test, though
they showed partial overlap.

Figure 10. Fuzzy performance index (FPI) and normalized classification entropy (NCE) calculated to determine the optimum
number of clusters for the study area.

3.4.2. Model-3

Likewise, MZ delineation was conducted for model-3 with the hypothesis (agronomy
and climate information) that was considered for improving the MZ results. Figure 13
shows the MZ maps for two dates before fertilization. As shown in Table S6, all zones were
separable (p-value < 0.5). However, zones 3 and 4 did not pass the statistical test, and the p-
values of statistical tests were 0.78 (Paired Samples T-test), 0.73 (Paired Samples T-test (log
of data)) and 0.08 (Wilcoxon signed-rank test) (Table S7). The boxplot of both maps confirms
the statistical tests (Figure 14). Similar to model-1, zones 4 and 5 were overlapping.
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Figure 11. Delineated MZ maps of model-1 for fertilization at 25 March 2020 (a) and 21 April 2020 (b).

Figure 12. Boxplots of stratified sampling for model-1 for fertilizations at 25 March 2020 (a) and 21 April 2020 (b). The white
circles out of the whiskers show outliers.
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Figure 13. Delineated MZ maps of model-3 for fertilization at 25 March 2020 (a) and 21 April 2020 (b).

Figure 14. Boxplots of stratified sampling for model-3 for fertilization at 25 March 2020 (a) and 21 April 2020 (b). The white
circles out of the whiskers show outliers.

4. Discussion

This study followed a comparative analysis for MZ mapping that was aimed at
optimizing fertilization in the context of PA. The comparative analysis has been tested
by experiments based on the Sentinel-2 satellite data. The results showed only marginal
consistency among the mapping outputs without any additional agronomy and climate
information, which confirms the hypothesized challenges in the best model selection.
Although statistical tests were considered to be appropriate validation tools, it is also
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suggested that the quality of the final results be eventually confirmed by a farmer and
those engaged in the ongoing cultivation process.

In terms of the applied models, model-1 was partially adopted from Georgi et al. [17],
and solely relied on RS data without any additional source of information. One of the
advantages of this model is the utilization of NIR bands that are less noisy and more
physical than band ratio vegetation indices such as NDVI. Therefore, NIR bands were
used in model-3 as well. Besides, labelling of the zones from low to high was convenient
compared with using a thresholding procedure for MZ delineation in other methods. On
the other hand, labelling and sorting the zones in a clustering method (e.g., k-means) is a
demanding task. All in all, the main disadvantage of model-1 was the lack of agronomy
and climate information that can negatively impact the result.

Model-2 integrated data from multiple sources that potentially provide additional
information for MZ delineation. This resulted in an enhanced accuracy of the final results.
Nevertheless, one may note that such a workflow increases the costs, whereas this model is
considered impractical without the incorporated sample data (soil, yield, elevation, etc.).
Here, the optimum number of soil sampling data was not accessible (14 samples in 50 ha)
(Table 3). Furthermore, the soil sampling data which were applied here comprised only
chemical attributes and lacked soil physical attributes, such as soil compaction, texture and
electric conductivity, providing further influential information on soil condition. Addition-
ally, the certainty of utilizing RS data was confirmed in this model, as previously claimed
by Martins et al. [47] and Song et al. [37]. Besides, the results of this study showed the
high correlation of RS data with the yield map in correlation analysis and feature selection
(See Figures 8 and 9). The k-means clustering method was used in model-3 to eliminate
the NIR bands’ preprocessing part (see Figure 2) and reduce the data computation of
model-1. However, the labelling and sorting of the zones remain an issue in this method,
as previously mentioned.

Although Georgi et al. [17] indicated that a three-year timeframe would be sufficient
to depict the crop pattern for MZ delineation, the results of this study witnessed an inferior
performance considering the years 2018, 2019 and 2020. Instead, focusing on one crop
growing season in 2019–2020 yielded the best results. Climate change is to blame for this, as
it influences crop patterns and results in year-to-year variations in crop yield. For example,
in 2020, the average yield had dropped by 400 kg/ha in comparison to 2019 (see Table 3).
As a result, one of the finest data sources for MZ delineation would be high-resolution
remote sensing data, such as unmanned aerial vehicle (UAV) data, as it contains detailed
spatial information and one UAV data point before the fertilization date can be used to
create MZ and apply the generated MZ map for fertilization. Additionally, Nawar et al. [2]
asserted that in terms of performance and cost, remote sensing data such as UAV or satellite
data are more suitable for informing variable rate nitrogen fertilizer application than soil
characteristics’ data, such as electric conductivity and soil texture.

Several studies [45,47] recently applied Cohen’s Kappa coefficient to evaluate de-
lineated MZ maps with yield maps. However, this method was avoided due to some
rationales. First, the classification of yield maps entails highly expert agronomic knowl-
edge by which elements such as climate and agronomy information should be considered
to classify the yield maps. Further, yield maps inherently comprise continuous values,
subject to bias and information loss when converted and interpreted in categorical/integer
data values. Last but not least, statistical tests from Georgi et al. [17] were adopted, which
we think will provide an appropriate platform for validating the MZ map.

Further analyses for improvement of MZ delineation showed superior performance
of model-1 and model-3 when agronomy and climate information were considered. The
output MZ maps of both performed better and were similar and consistent, unlike other de-
lineated MZ maps that lacked agronomy and climate information (see Figures 5, 11 and 13).
This supports the importance of this information.

As an additional analysis, RS-based models were calibrated by solely considering
agronomy information. Thus, the data within the phenological phases from 2018 to 2020
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(2 seasons) were selected, i.e., leaving out data before seeding and after harvesting in
two seasons. However, the results showed inferior performance of the RS-based models
compared to the model considering both agronomy and climate information. This is parallel
to suggestions presented in [4] indicating that information on crops, soil or phenological
phases increases the quality of the model. Thus, incorporating both agronomy and climate
information was strongly suggested in MZ delineation for PA. This issue is inevitable
under new climate conditions with more frequent drought and other extreme events. As
such, the requirement of considering this information is to conduct a model in a single year.
Accordingly, the generated MZ map can be used as a guide for fertilization.

In a similar study, Santaga et al. [45] investigated simplified and advanced models
for creating variable nitrogen fertilization maps using satellite imagery, yield maps and
protein maps embedded in FMIS architecture. In contrast to the results of [45], in this study,
in addition to simplified models, hybrid models were tested using non-advanced soil data,
which should be considered more accessible to agricultural producers than yield or protein
maps. In both studies, both simplified and hybrid or advanced models can be effectively
implemented in the expanding FMIS [87].

5. Conclusions

This study compared three models based on the Sentinel-2 satellite data for manage-
ment zones’ (MZ) delineation in the context of precision agriculture (PA) on an example
of a winter wheat field. The remote sensing (RS)-based models 1 and 3 did not require
any additional data and were thus considered less expensive than model-2. Additionally,
agronomy (wheat phenological phases) and climate information (drought) were considered
to improve MZ maps when applying RS-based models. The results also showed that MZ
delineation is prone to uncertain results, particularly under new and rapidly changing
climate conditions, if no agronomy expert knowledge and climate information were incor-
porated. These findings enhance the understanding of the role of new climate conditions
for RS-based PA algorithms in rainfed farming with the potential agricultural drought and
its impact in applying fertilizer. As drought stress is on the rise and had a significant impact
on the growth of most arable crops in central Europe, it is suggested to perform low-cost
RS-based techniques only for the current season. This information provides additional,
reliable and current information to improve MZ delineation for optimizing fertilization in
a single-year context.

In conclusion, an algorithm has been designed and its use has been evaluated for a few
test cases for the integration of soil, crop and yield information, together with knowledge
about agronomy and climate information. This will improve the results of MZ delineation
and generate a guiding map to prescribe variable rates of fertilization before the necessary
fertilizer application dates.

It is recommended for future research to use remote sensing data with high spatial
resolution, such as satellite images with higher resolution and drone images, in the de-
lineation of MZ maps since delineation of MZ maps with single-year data is feasible
using the proposed method. It is also suggested to use cost-benefit analysis to evaluate
the implemented MZ maps, e.g., in the context of variable rate fertilization. However,
it was concluded that the quality of the final MZ maps should be eventually calibrated
in collaboration with farmers and all these steps help farmers set up their fertilization
operation to address problem areas and maximize yield.

This study has compared three models for creating MZ, focused on implementation
in cloud-based farm management information systems (FMIS). The results of this work,
as well as those of Santaga et al. [45], indicate that for FMIS, it is necessary to develop not
only advanced models for creating MZ or variable nitrogen fertilization strategies, but also
simplified and hybrid models for those users who do not have multiyear crop vegetation
data or simplified soil data. Further work in this area is recommended.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/agriculture11111104/s1, Table S1: The results of statistical tests for model-1. The red-shaded
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cells show inseparability between classes (p > 0.05), Table S2: The results of statistical teste for model-2.
The red-shaded colour follows the description from Table S1, Table S3: The results of statistical tests
for model-3. The red-shaded colour follows the description from Table S1, Table S4: The results of
statistical tests for model-1 for fertilization at 25 March 2020, Table S5: The results of statistical tests
for model-1 for fertilization at 21 April 2020, Table S6: The results of statistical tests for model-3 for
fertilization at 25 March 2020, Table S7: The results of statistical tests for model-3 for fertilization at
21 April 2020. The red-shaded colour follows the description from Table S1.
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Abstract: Soil nutrients play a vital role in plant growth and thus the rapid acquisition of soil nutrient
content is of great significance for agricultural sustainable development. Hyperspectral remote-
sensing techniques allow for the quick monitoring of soil nutrients. However, at present, obtaining
accurate estimates proves to be difficult due to the weak spectral features of soil nutrients and the
low accuracy of soil nutrient estimation models. This study proposed a new method to improve soil
nutrient estimation. Firstly, for obtaining characteristic variables, we employed partial least squares
regression (PLSR) fit degree to select an optimal screening algorithm from three algorithms (Pearson
correlation coefficient, PCC; least absolute shrinkage and selection operator, LASSO; and gradient
boosting decision tree, GBDT). Secondly, linear (multi-linear regression, MLR; ridge regression,
RR) and nonlinear (support vector machine, SVM; and back propagation neural network with
genetic algorithm optimization, GABP) algorithms with 10-fold cross-validation were implemented
to determine the most accurate model for estimating soil total nitrogen (TN), total phosphorus (TP),
and total potassium (TK) contents. Finally, the new method was used to map the soil TK content at a
regional scale using the soil component spectral variables retrieved by the fully constrained least
squares (FCLS) method based on an image from the HuanJing-1A Hyperspectral Imager (HJ-1A
HSI) of the Conghua District of Guangzhou, China. The results identified the GBDT-GABP was
observed as the most accurate estimation method of soil TN (R2

cv of 0.69, the root mean square
error of cross-validation (RMSECV) of 0.35 g kg−1 and ratio of performance to interquartile range
(RPIQ) of 2.03) and TP (R2

cv of 0.73, RMSECV of 0.30 g kg−1 and RPIQ = 2.10), and the LASSO-GABP
proved to be optimal for soil TK estimations (R2

cv of 0.82, RMSECV of 3.39 g kg−1 and RPIQ = 3.57).
Additionally, the highly accurate LASSO-GABP-estimated soil TK (R2 = 0.79) reveals the feasibility of
the LASSO-GABP method to retrieve soil TK content at the regional scale.

Keywords: VIS-NIR spectroscopy; screening algorithm; estimation model; HJ-1A imagery

1. Introduction

The rapid and efficient monitoring of soil nutrients has become an important prereq-
uisite for agricultural production management and ensuring the healthy development of
crops. However, current soil nutrient estimations are often obtained using field sampling
and laboratory analysis, which is time-consuming and costly. The monitoring of soil nu-
trients via hyperspectral remote-sensing techniques is rapid and efficient, and numerous
related studies have been performed within the past 30 years [1–4].
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Current research on the retrieval of soil nutrients via hyperspectral remote-sensing
technology typically focuses on two factors: the determination of characteristic variables
and the construction of the estimation model. The determination of suitable characteristic
variables ensures high-precision estimations. Statistical analyses (e.g., Pearson correlation
coefficient (PCC) and partial least squares regression (PLSR)) are frequently employed to
determine these variables [5,6]. For example, Liu et al. (2007) obtained the 620–810 nm char-
acteristic variables of soil organic matter by correlation and multiple regression analyses [5].
Vibhute et al. (2019) determined the characteristic variables of soil nitrogen at 480, 511, 653,
997, 1472, 1795, 2210, and 2296 nm based on correlation analysis [6]. However, statistical
variable selection methods in high-dimensional space can fail due to a lack of significance
testing and parameter estimations in the model [7]. Following the development of data
mining technology, several machine learning algorithms have been introduced to deter-
mine the characteristic variables of soil nutrients. Zhang et al. (2019) proposed a method
combining mutual information and ant colony optimization to select soil total nitrogen
(TN) characteristic bands at 943, 1004, 1097, 1351, 1550, 1710, 2123, and 2254 nm [8]. Despite
the great progress made by these studies, determining the characteristic variables remains
to be difficult due to the weak spectral responses to soil nutrients. Therefore, additional
screening algorithms, particularly machine learning approaches, are required in order to
accurately determine the characteristic variables.

Existing relationship models between spectral variables and soil nutrient contents can
be classified into two categories; linear and nonlinear models. Linear estimation methods
build linear mathematical relationships between spectral variables and soil nutrient con-
tents. Multiple linear regression (MLR) and partial least squares regression (PLSR) are the
most commonly used linear estimation methods for soil nutrients [9–11]. However, correla-
tions between spectral variables and soil nutrients are rarely linear in nature [12]. Thus,
machine learning models were introduced to solve this problem. The random forest (RF),
support vector machine (SVM), and back propagation neural network (BPNN) algorithms
are frequently employed to estimate soil nutrients [13–15]. Compared with linear models,
nonlinear methods improve on the explanatory power of the spectral changes related to
soil nutrients. However, large-scale training samples for SVM approaches are difficult to
obtain and implement due to their complexity, huge memory requirements, and extensive
computational time in quadratic programming routines [16]. In addition, RF is prone to
overfitting in regression models when learning specific details and noise in the training
data [17,18]. BPNN is associated with large weights and threshold uncertainties, affecting
the estimation accuracy [19,20]. Therefore, there is a great need to determine an optimal
algorithm for high accuracy soil nutrient content estimations.

This study has the aim of developing a new method to accurately estimate soil nutrient
contents. In order to achieve this aim, we set the following objectives: (1) to determine
the optimal screening algorithm from three algorithms (Pearson correlation coefficient,
PCC; least absolute shrinkage and selection operator, LASSO; and gradient boosting
decision tree, GBDT) for the accurate selection of soil nutrient characteristic variables; (2) to
implement the MLR, ridge regression (RR), back propagation neural network with genetic
algorithm optimization (GABP), and SVM to determine a high-accuracy model for the
estimation of soil nutrient contents; and (3) to apply a high-accuracy method to map the
soil nutrient contents at the regional scale using HuanJing-1A Hyperspectral Imager (HJ-1A
HSI) imagery. Both the hyperspectral data and HJ-1A HSI images were collected in the
Guangdong province and Conghua District of Guangzhou, China.

2. Materials and Methods

2.1. Study Area

Guangdong province, China was selected as the study area in order to build the
optimal hyperspectral estimation model of soil nutrients (Figure 1a), while Conghua
District within Guangdong was selected to map the soil nutrient contents (Figure 1b). The
East-West and North-South spans of Guangdong province are approximately 800 and

178



Agriculture 2021, 11, 1129

600 km, respectively. The province belongs to the East Asian monsoon region, with middle
subtropical, south subtropical, and north tropical zone climate types from the north to
south. Mean annual temperature and precipitation of the area are 21.8 ◦C and 1789.3 mm,
respectively. Guangdong is an important grain production region, with a crop planting
area of 4.28 × 104 km2 in 2019 and total grain yield of 1.19 × 1010 kg.

 

Figure 1. (a) MODIS land cover map from the MCD12 product of the study area with a spatial distribution of 75 soil samples;
(b) the test study area determined from the 2016 Cultivated Land Map planted with rice of the Conghua National Land
Department, with a spatial distribution of 33 soil samples used to assess the accuracy of the estimated soil nutrient content.

2.2. Data and Pre-Processing
2.2.1. Soil Sampling and Chemical Analysis

A total of 75 soil samples were gathered for constructing hyperspectral estimate
models of soil nutrients contents based on a 50 × 50 km sampling grid within Guang-
dong province and field actual conditions to ensure uniform distribution of the soil sam-
ples [21,22]. Surface soil samples (0–20 cm) were collected at five sampling locations at
each site. To remove stones and other large debris, the samples were air-dried and sieved
through a 2 mm polyethylene sieve. After that, the samples were pulverized into fine
powder. The soil nutrient content and soil spectral reflectance were then determined by
dividing each sample into two parts. Soil TN was measured using the semi-micro Kjeldahl
method described by Walkley and Black [23]. Soil TP and TK were determined via an
ultraviolet spectrophotometer (UV-2600, Shimadzu CO, LTD., Kyoto, Japan) and a flame
photometer (FP640, INESA Analytical Instrument CO, LTD., Shanghai, China), respectively.
The soil nutrient content statistics from the 75 soil samples are presented in Table 1.

Table 1. Statistic information for soil nutrient contents in the study area.

Soil Nutrients Min Q1 Median Q3 Max Mean SD Skewness Kurtosis CV

TN 0.21 0.99 1.33 1.70 2.79 1.36 0.57 0.43 0.21 41.91
TP 0.13 0.37 0.59 1.00 3.15 0.75 0.55 1.90 5.21 73.33
TK 0.62 4.75 9.66 16.84 30.39 10.55 7.61 0.61 −0.23 72.13

Note: soil total nitrogen, TN; total phosphorus, TP; and total potassium, TK; unit: g kg−1. Q1, first quartile; Q3, third quartile; SD, standard
deviation; CV, coefficient of variation (%).

Moreover, the mapping of Guangdong Province needs multiple HJ-1A images with
100 m spatial resolution. In addition, it is very difficult to obtain multiple high-quality
satellite images of the whole province on the same day. Therefore, in this study, Conghua
district was selected for conducting the soil nutrient mapping experiment. A total of
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33 soil samples were collected in Conghua District (Figure 1b) to verify the feasibility of
mapping soil nutrient content at the regional scale. The acquisition time of the HJ-1A HSI
image coincided with the collection of the samples, which are evenly distributed in the
whole image. The soil sample collection principle and pretreatment are consistent with the
Guangdong province samples.

2.2.2. Spectral Measurements and Pre-Processing of Soil Samples

Soil spectral measurements were performed on 75 soil samples collected across the
province. An AvaField portable spectrometer (Avantes, Inc., Apeldoorn, Holland) was
used to measure soil spectral reflectance, which has a spectral range and resolution of
340–2511 and 0.6 nm, respectively. The spectral measurements were carried out in a dark
room to regulate the lighting environment and minimize the influence of stray light. The
soil spectral reflectance values were measured using a 50 W halogen lamp with a 10◦ field
of view in vertical contact with the soil sample. Each sample was uniformly tiled on a
black cloth and measured five times. The average spectrum was calculated and used in
further processing. Prior to the collection of the reflectance readings, the spectrometer was
calibrated every three samples with a white Spectralon. To decrease signal noise, we used
Savitzky–Golay smoothing with a window size of 10. In addition, the smoothed spectral
data (raw spectral, R) were processed with the first derivative (FD), second derivative (SD),
and reciprocal logarithmic (RL) to eliminate or reduce the effect of background noise and
account for signal intensity fluctuations induced by soil surface spectral scattering and
absorption. The outcomes of the processing are shown in Figure 2.

 
Figure 2. Transformed spectral indices of soil samples: (a) raw spectral curves; (b) first derivative spectral curves; (c) second
derivative spectral curves; and (d) reciprocal logarithmic spectral curves.

2.2.3. Image Acquisition and Pre-Processing

In order to extend the application of the established model at the regional scale, a
HJ-1A image acquired on 30 October 2017 with a 100 m spatial resolution and 115 bands
(459–956 nm) was used to map the soil nutrient contents. The image was subjected to
radiometric correction, atmospheric correction, geometric precision correction, and stripe
noise reduction (Figure 3) using ENVI 5.3 (Exelis Visual Information Solutions, Inc., Boulder,
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CO, USA). The image’s spectral resolution was 5 nm, which was substantially coarser than
the AvaField portable spectrometer’s measured spectral interval of 0.6 nm. ENVI’s spectral
resampling technique was utilized to spectrally resample the measured soil spectral data
gathered with the AvaField portable spectrometer in order to match the spectral resolution
of the HJ-1A HSI data.

 

Figure 3. The HJ-1A image: (a) untreated and (b) stripe noise reduction.

2.3. Methods

This section is organized into four parts. In Section 2.3.1, we describe how the optimal
algorithm of screening the soil nutrient characteristic variables can be determined using
the PLSR fit degrees. The second section explains how the optimal prediction algorithm
for soil nutrients can be screened from four algorithms by their prediction accuracy. In
Section 2.3.3, we detail the mapping of soil nutrient base on HJ-1A image data using the
above the optimal screening and predicting algorithms. Section 2.3.4 describes accuracy
validation methods for the predicting models and mapping.

2.3.1. Determining the Optimal Screening Algorithm of the Characteristic Variables

One of the most important steps in the development of the optimal hyperspectral
estimation method of the soil nutrient contents was the determination of the characteristic
variables [8,24,25]. Additionally, the determination of the accurate screening algorithms
is key for characteristic variables of the soil nutrient content. In order to determine the
optimal screening algorithm of the characteristic variables, we compared traditional linear
screening algorithm (PCC) and nonlinear screening algorithms (LASSO and GBDT) based
on two evaluation steps. First, the characteristic variables were screened using PCC, GBDT
and LASSO might be correlated with each other. That is, there are collinearities among the
variables. Therefore, the variance inflation factor (VIF) of a stepwise regression was applied
to eliminate the collinearity of the selected characteristic variables. The set of variables
having a VIF lower than 10 [26] was retained. The three screening algorithms are described
in detail as follows:

LASSO: The least absolute shrinkage and selection operator, proposed by Tibshirani
(1996), minimizes the sum of squares of residuals under the constraint that the sum of the
absolute values of the regression coefficients (penalty coefficient) is less than a pre-defined
constant. This produces regression coefficients (RC) strictly equal to 0 and removes low-
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weight variables and can therefore effectively deal with complex high-dimensional data
problems [27]. LASSO can be defined as follows:

arg min
B

{
∑n

j=1 yi − ∑
p
j=1 xijBj

}
,

subject to ∑
p
j=1

∣∣Bj
∣∣ ≤ t,

(1)

where yi represents the measured spectral data in the ith band; n is the spectral dimension-
ality; Bj denotes the input weight in the jth spectral sample; xij is the covariate vector of
the ith measured spectral data and j spectral sample; and p is the spectral sample number.

GBDT: The gradient boosting decision tree is a boosting algorithm that calculates the
information gain during the branching of the decision tree to determine the spectral variable
to be split and the corresponding split value. Once all decision trees are constructed, the
feature importance (FI) is obtained by calculating the information gain of the decision tree
feature and dividing by the total frequency of the feature in all trees of the GBDT strong
learner [28]:

FI = ∑ I(a, D)

Na
, (2)

where I(a, D) denotes the feature (spectral variable) information gain; a is the feature; D is
the soil sample; and Na is the total frequency of feature a in all trees.

PCC: The Pearson correlation coefficient is commonly employed to screen character-
istic variables. Here, the PCC was implemented between the spectral variables and soil
nutrient content to determine characteristic variables with the largest correlation coefficient
(p ≤ 0.05 significance level). The Pearson correlation coefficient can be expressed as:

ri =
∑N

n=1
(

Rni − Ri
)
(yn − y)√

∑N
n=1

(
Rni − Ri

)2
∑N

n=1(yn − y)2
, (3)

where Rni is the spectral value of the ith spectral variable of the nth soil sample point; Ri is
the average spectral value of the ith spectral variable; yn is the soil nutrient content of the
nth soil sample point; and y is the average value of the soil nutrient content.

Once the characteristic variables were selected by each algorithm, PLSR fit degrees
(R2) [29–31] between the measured soil nutrient contents and characteristic variables were
compared. The screening algorithm with the maximum fit degree was determined as the
optimal.

2.3.2. Determining the Accurate Model for Estimating Soil Nutrients

In this study, the screened characteristic variables were used as independent variables
and each of the soil nutrient (TN, TP and TK) contents were used as the dependent variable.
Additionally, four different algorithms were applied to build the relationship models
between characteristic variables and soil nutrients: MLR, RR, SVM, and GABP. The four
algorithms are described in detail as follows:

(1) Multi-Linear Regression

Multi-linear regression is a type of regression analysis for multiple independent
variables. The optimal combination of these independent variables is taken to estimate the
dependent variables. This model can describe the influence of each variable on the soil
properties and is widely used in soil property estimations [32–34]. We adopted MLR to
estimate soil nutrient content using the following formula:

ZMLR = a0 + a1x1 + a2x2 + · · ·+ anxn, (4)

where ZMLR is the dependent variable (soil nutrient content); xi (i = 1, 2, . . . , n) is the
independent variable (spectral variables); ai (i = 1, 2, . . . , n) represents the regression
fitting coefficient; and a0 is the intercept.
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(2) Ridge Regression

Ridge regression (RR) is a least square estimation method that improves on its prede-
cessors. In particular, it abandons the unbiasedness of the least square method, thus losing
part of the information and reducing the accuracy and making the regression coefficient
more realistic and reliable [35]. The existence of multiple collinear relations between in-
dependent variables magnifies the mean square error. This error is reduced by using RR
estimation rather than the standard least square estimation [36,37]. The RR is expressed as:

β̂(k) = (X,X + kI)−1X,Y, (5)

where β̂(k) is the ridge regression estimate of β; and k is the ridge parameter. When k = 0,
the least square estimate of β is equal to β̂(0).

(3) Support Vector Machine

SVM, proposed by Cortes and Vapnik (1995), is a robust supervised learning model
with a capacity for solving practical problems (e.g., nonlinearity and high dimensionality).
SVM greatly simplifies the traditional regression process through efficient “transduction
inference” from training samples to predictions [38]. The SVM model can be expressed as:

f(x) = wi·∅i(x) + b, (6)

where f(x) is the soil nutrient estimate; x is the characteristic variable; wi is the weight
coefficient; b is the error term; ∅i denotes a nonlinear transfer function; and ω and b
are calculated by the following convex optimization problem with an e-insensitivity loss
function [39]:

min :
1
2
||w||2 + C ∑N

i (ξi + ξ∗i ), (7)

s.t.

⎧⎨
⎩

yi − w∅(x)− b ≤ ε + ξ∗i
w∅(x) + b − yi ≤ ε + ξ∗i

ξi, ξ∗i ≥ 0
, (i = 1, · · · , n), (8)

where ||w||2 represents the flatness of the m-dimensional space; ε is a parameter that
indicates the maximum allowed error between the measured and estimated values; ξi
and ξ∗i are slack variables and C is the penalty factor. Equations (7) and (8) belong to the
convex quadratic programming problem with inequality constraints. In order to obtain the
Lagrangian multipliers, the equations are converted into a dual problem via the Lagrange
multiplier method. The constrained original objective function (Equation (8)) is then
transformed into the unconstrained Lagrangian objective function:

min :
1
2 ∑n

i,j=1(αi − α∗i )
(

αj − α∗j
)
(∅(xi)∅

(
xj
)
) + ε ∑n

i=1(α
∗
i + αi)− ∑n

i=1 yi(α
∗
i − αi), (9)

s.t.
{

∑n
i=1
(
αi − α∗i

)
= 0

0 ≤ α∗i ≤ C, i = 1, · · · , n
, (10)

where αi − α∗i is the transformation of w. The SVM function is expressed as:

f(x) = wi·∅i(x) + b = ∑n
i=1(αi − α∗i )K(xi, x) + b, (11)

where K (xi, x) = ∅(xi)∅
(
xj
)

is the kernel function. The radial basis function was selected
as the kernel function.

(4) Genetic Algorithm-Back Propagation Neural Network

The GABP algorithm optimizes the structure and connection weight of the back prop-
agation neural network using the parallel random search ability of the genetic algorithm,
effectively avoiding a local optimal solution [40]. We adopted the population search method
to optimize the weights and thresholds of the neural network (Figure 4).
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Figure 4. Flow chart for the genetic algorithm-back propagation neural network.

2.3.3. Estimating Regional-Scale Soil Nutrient Contents Using HJ-1A Hyperspectral Data

Once the optimal variable screening and predictor models were selected, the method
was applied to mapping the contents of the soil nutrient using HJ-1A image with 115 bands
(459–956 nm) and 5 nm spectral resolution, which will not provide the above characteristic
variables with beyond 956 nm wavelength. Thus, the characteristic variables should be
re-screened from the resampling measured soil spectral data with 5 nm spectral resolution
using the above optimal screening algorithm and to develop the corresponding estimation
models. Then, the model was applied to mapping the contents of the soil TK using the
HJ-1A HSI image for the Conghua district at the regional scale.

Moreover, in order to apply the methods to Conghua district, the HJ-1A image was con-
sidered to contain pure pixels. However, the coarse image spatial resolution of 100 × 100 m
generally prevents the existence of pure pixels, with mixed pixels (including crop and
soil) typically dominating the study area. Thus, the fully constrained least squares (FCLS)
method [41] was used to obtained pure pixels and spectral reflectance of soil (Figure 5).

 

Figure 5. Component decomposition maps of the mixed pixels using FCLS: (a) vegetation abundance maps, (b) soil
abundance maps, and (c) spectral reflectance of soil at the 900 nm band of the HJ-1A image.
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2.3.4. Accuracy Validation

The coefficient of determination (R2), concordance correlation coefficient (CCC), ratio
of performance to interquartile range (RPIQ), the root mean square error of calibration
(RMSEC), and cross-validation (RMSECV) were used as statistical measures to assess the
performance of estimation models. The RPIQ is defined as the ratio of IQ to RMSECV [42].
IQ is the interquartile range (IQ = Q3 − Q1) of the observed values. Q1 and Q3 denote the
first and third quartile, respectively.

3. Results

3.1. Optimal Algorithm for the Screening of the Characteristic Variables

In order to determine the characteristic variables, the three choosing algorithms (PCC,
LASSO, and GBDT) were implemented on 6272 spectral data of the R, FD, SD, and RL
(Figure 2) and soil nutrient contents in the 75 sample points collected across the province.
Figure 6 illustrates the correlation coefficients of the spectral variables. Stepwise regression
with VIF analysis was further used to eliminate the collinearity among the spectral variables
screened by the PCC algorithms (Table 2).

 
Figure 6. Correlation coefficients between the soil total nitrogen (TN), total phosphorus (TP), and
total potassium (TK) concentrations and the various spectral variables.

Table 2. PCC-determined characteristic variables of the three soil nutrients.

Soil Nutrient Spectral Variables Correlation Coefficients VIF

TN FD562, SD714 −0.44, −0.26 1.70, 1.51
TP FD1009, FD356, SD905 −0.50, 0.45, −0.32 2.65, 1.32, 1.42
TK R2498, FD442 0.20, 0.50 1.08, 4.14

Considering the possible existence of a nonlinear relationship between the spectral
variables and soil nutrient contents, we introduced the GBDT and LASSO algorithms for
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the screening task. Numerous experiments were performed, identifying the prediction
error of the GBDT algorithm to tend towards stability for screening criteria of soil TN, TP,
and TK in the GBDT algorithm equal to FI > 0.015, FI > 0.015, and FI > 0.01, respectively.
Figure 7 depicts the feature importance and regression coefficient of the screened spectral
variables. For the LASSO algorithm we employed RC �= 0 as the screening criteria.
Stepwise regression with VIF analysis was further employed to eliminate the collinearity
among the spectral variables screened by the GBDT and LASSO algorithms. Table 3 reports
the final results of the screening characteristic variables for the three soil nutrients (TN, TP,
and TK).

 

Figure 7. GBDT feature importance and LASSO regression coefficient.

Table 3. GBDT- and LASSO-determined characteristic variables of the three soil nutrients.

Models Soil Nutrient Spectral Variables VIF

LASSO

TN FD454, FD904, FD1302, FD1418, FD1707, FD2342,
FD2367, SD529, SD668

3.14, 2.85, 4.42, 6.35, 3.48, 3.68, 6.44, 3.99, 3.78

TP FD423, FD489, FD516, FD649, FD1816, FD2222,
FD2386

2.34, 2.48, 2.28, 2.13, 3.01, 1.66, 6.07

TK FD659, FD904, FD965, FD1128, FD1521, SD1006 2.89, 4.21, 2.78, 4.40, 3.10, 1.48

GBDT
TN FD572, FD977, FD1084, FD1015, FD2051, SD418 8.97, 4.56, 1.45, 3.87, 1.37, 3.42
TP FD663, FD747, FD1009, SD831 2.68, 3.00, 3.42, 7.45
TK FD1045, FD1069, FD1784, FD1796, FD2348 4.42, 2.52, 5.57, 8.53, 6.17

In order determine the most accurate screening algorithm, the PLSR approach was
selected to construct the model between soil nutrients and the characteristic variables from
the three algorithms based on 75 soil samples from the province. The PLSR relationship
models are described as follows:

PCC − PLSP

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

YN = 1.505 − 224 × FD562 − 9717 × SD714

(
R2 = 0.17

)
YP = 1.698 − 1091 × FD1009 + 46 × FD356 + 224 × SD905

(
R2 = 0.35

)
YK = 12.91 + 9 × R2498 + 6173 × FD442

(
R2 = 0.40

)
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LASSO − PLSP

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

YN = 1.530 + 4928 × SD668 + 38 × FD1418 + 53 × FD1302 + 786 × FD454 + 26
×FD2367 − 4079 × SD529 − 37 × FD1707 + 32 × FD2342 − 157 × FD904

(
R2 = 0.15

)
YP = 0.646 + 1362 × FD516 + 159 × FD1816 − 414 × FD423 − 57 × FD649

− 121 × FD489 − 50 × FD2222 + 67 × FD2386

(
R2 = 0.15

)
YK = 8.871 + 290, 321 × SD1006 + 15, 335 × FD965 + 2839 × FD1521 − 11, 052

×FD659 − 15, 362 × FD904 − 1372 × FD1128

(
R2 = 0.47

)

GBDT − PLSP

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

YN = 1.908 − 366 × FD572 − 265 × FD2051 + 237 × FD1084 − 1086 × SD418

−61 × FD977 + 364 × FD1015

(
R2 = 0.26

)
YP = 1.657 − 504 × FD663 − 1232 × FD1009 + 915 × FD747 − 4946 × SD831

(
R2 = 0.37

)
YK = 19.188 − 2601 × FD2348 − 7380 × FD1045 − 14, 742 × FD1069

+1605 × FD1796 + 1207 × FD1784

(
R2 = 0.24

)
The results identify the optimal algorithms of soil TN, TP, and TK as GBDT, GBDT,

and LASSO, with R2 values of 0.26, 0.37, and 0.47, respectively. Among three nutrients, the
LASSO-PLSR showed the best estimation of soil TK.

3.2. Determining the Optimal Model for Soil Nutrient Content Estimations

The MLR, RR, SVM, and GABP models were adopted to determine the relationship
between the characteristic variables and soil nutrients (Figure 8). The GABP model exhib-
ited the highest predicative capability for the three soil nutrients, with scatter plots closer
to the 1:1 line compared to MLR, RR, and SVM. Additionally, it offered the most accurate
estimates in cross-validation with R2

cv of 0.69, RMSECV of 0.35, and RPIQ = 2.03 for TN;
R2

cv of 0.73, RMSECV of 0.30 and RPIQ = 2.10 for TP, R2
cv of 0.82, RMSECV of 3.39, and

RPIQ = 3.57 for TK, respectively (Table 4). The prediction effect of soil TK is obviously
better than that of TN and TP, which may be due to potassium being a metal element,
with a spectral response sensitivity that exceeds other non-metal elements (e.g., nitrogen
and phosphorus).

 

Figure 8. Scatter plots of measured and estimated values.
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Table 4. Accuracy assessment of estimated soil nutrient contents (unit: g kg−1).

Soil
Nutrients

Model R2 (C) CCC RMSEC R2
cv RMSECV RPIQ

TN

MLR 0.22 0.37 0.50 0.17 0.51 1.39
RR 0.21 0.35 0.50 0.18 0.51 1.39

SVM 0.13 0.26 0.53 0.11 0.57 1.25
GABP 0.76 0.86 0.28 0.69 0.35 2.03

TP

MLR 0.36 0.55 0.40 0.32 0.47 1.34
RR 0.34 0.47 0.43 0.33 0.44 1.43

SVM 0.36 0.49 0.41 0.35 0.41 1.54
GABP 0.77 0.87 0.26 0.73 0.30 2.10

TK

MLR 0.48 0.67 5.30 0.42 5.52 2.19
RR 0.44 0.61 5.32 0.43 5.33 2.27

SVM 0.54 0.72 5.17 0.52 5.31 2.28
GABP 0.86 0.92 2.88 0.82 3.39 3.57

3.3. Mapping Soil Nutrient Contents Using the Proposed Method

Table 4 demonstrates the soil TK estimation accuracy exceeding that of TN and TP.
Therefore, we applied the proposed method to map soil TK contents in Conghua District
at the regional scale using HJ-1A imagery because the spectral wavelength of HJ-1A data
ranged from 459 to 956 nm, which had different range and spectral bands of wavelengths
from those of the spectral variables involved in the above estimation models. The model
based on 75 sample points collected across the province could not be utilized for the HJ-1A
images. We employed the LASSO-GABP method to re-screen the optimal spectral variables
from the resample measured soil spectral data with 5 nm spectral resolution and to develop
the corresponding estimation models. The screened spectral variables were determined as
band462, band464, band466, band470, band477, band484, band574, and band652. The soil
TK was estimated with reliable accuracy (R2 of 0.82, RMSEC of 3.28 g kg−1; Figure 9).

Figure 9. Scatter plots of the measured and estimated values based on resample measured soil
spectral data.
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Figure 10 demonstrates the spatial distribution of the soil TK contents obtained using
the estimation model. The soil TK content is generally concentrated within 10–20 g kg−1,
with flat areas exhibiting a higher content and areas with high slopes and close proximity to
rivers associated with lower content. This may be linked to soil erosion, which is consistent
with the actual situation.

 
Figure 10. Spatial distribution of the soil total potassium content for the study area.

The 33 sample plots (Figure 1b) were used to verify the feasibility of mapping soil
nutrient content by calculating the R2, RMSE, and RPIQ values (Table 5). The estimation
accuracy of soil TK content was relatively high, with an R2 of 0.79 and RMSE of 4.01 g kg−1.
This indicates that the GABP model is capable of mapping the soil TK content. However,
the estimation accuracy of the regional-scale retrievals is lower than that of the point-scale.
This may be due to the limitation of the narrow spectral region of the HJ-1A HSI data
(450–960 nm).

Table 5. Estimation accuracy of soil total potassium content using the GABP model based on the
33 validation sample plots (unit: g kg−1).

Dataset Mean Max Min SD R2 RMSE RPIQ

Soil TK
Measured Value 18.35 30.57 2.64 6.67

0.79 4.01 1.86Estimated Value 20.01 36.42 1.36 8.86

4. Discussion

In the current paper we compared three algorithms (PCC, LASSO, and GBDT) and
four models (MLR, RR, SVM, and GABP) in terms of soil nutrient estimations in order to
determine a method for the prediction of high-accuracy soil nutrients.

In this method, to the best of our knowledge, this is the first attempt to use the
LASSO and GBDT algorithms to determine the characteristic variables for soil nutrient
estimations. LASSO with PLSR fit degree (R2) of 0.47 was determined as optimal for the
accurate selection of soil TK characteristic variables, and GBDT for TN and TP with R2

of 0.26 and 0.37. This indicates the significant nonlinear spectral response mechanism
of the soil nutrients. The result found that 16 characteristic variables obtained using the
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optimal screening algorithms are sensitive to soil nutrients: FD572, FD977, FD1084, FD1015,
FD2051, SD418 for TN, FD663, FD747, FD1009, SD831 for TP and FD659, FD904, FD965, FD1128,
FD1521, SD1006 for TK. Some selected wavelengths are in general agreement with previous
research [43–45].

Previous studies generally employ linear models to estimate soil nutrients [2,46–48]. In
order to improve the estimation accuracy of soil nutrients, we adopted linear (MLR and RR)
and nonlinear (SVM and GABP) algorithms to construct the soil nutrient estimation models
based on the determined spectral characteristic variables (Table 3). The validation results
(Table 4) revealed the GBDT-GABP algorithm to perform the best in soil TN (R2

cv of 0.69,
RMSECV of 0.35, and RPIQ = 2.03) and TP (R2

cv of 0.73, RMSECV of 0.30, and RPIQ = 2.10)
estimations, while LASSO-GABP was optimal for soil TK (R2

cv of 0.82, RMSECV of 3.39,
and RPIQ = 3.57), which are in general agreement with previous research results with R2

from 0.56 to 0.84 (TN), 0.65 to 0.81 (TP), and 0.67 to 0.82 (TK) [43,49–54]. The proposed
model constructed using machine learning algorithms outperformed the linear models.
This indicates the existence of a significant nonlinear relationship between the soil nutrients
and spectral characteristic variables.

In order to validate the regional-scale applicability of the new method, HJ-1A image
data obtained from pure pixels using the fully constrained least squares (FCLS) method was
used to map soil TK with the best estimation accuracy (R2 = 0.86) on point scale. Results
using the 33 validation sample plots demonstrate the screened spectral characteristic
variables to explain 79% of the variance in the TK content, with an RMSE of 4.01 g kg−1 for
the mapping of TK content. This indicates the great potential of GABP to map the soil TK
content at a large scale. However, the point-scale estimation accuracy is higher than that of
the regional-scale due to the narrow spectral range of the HJ-1A HSI data. Future research
will map the TK contents using satellite hyperspectral images covering a wider spectral
region (350–2500 nm).

The prediction effect of soil TK is obviously better than that of TN and TP (Table 3).
This may be because potassium is a metal element, with a spectral response sensitivity that
exceeds other non-metal elements (e.g., nitrogen and phosphorus). The introduction of
additional soil elements (including metals and nonmetals) to explore this phenomenon
will be the focus of further work.

We employed 75 soil samples to develop the models and validate the method for the
whole Guangdong province, while 33 sample plots were used to verify the feasibility of
mapping soil nutrient content in Conghua District. Although the sampling design was
conducted based on different soil characteristics and soil types, the sample sizes were
relatively small. Future studies will employ larger sample sizes to further develop and
validate the proposed method.

5. Conclusions

The determination of characteristic variables is key for accurate hyperspectral esti-
mation models of the soil nutrient content. This paper introduced the LASSO and GBDT
algorithms to screen the optimal relevant characteristic variables of soil TN, TP, and TK.
The estimation models of soil nutrient content were subsequently developed using the
selected characteristic variables and field observations of soil nutrient content. The most
accurate estimation model was then adopted to explore the possibility of spatially map-
ping the soil nutrient content using HJ-1A data. The results demonstrated that compared
with the statistical analysis method, the machine learning method effectively screened the
characteristic variables. In addition, based on the RMSECV values, the GABP models of the
soil nutrient contents determined the most accurate estimates at the soil sample point level.
The new method provides the potential for soil nutrient mapping at the regional scale
with a reasonable accuracy using hyperspectral imagery. Results indicate the ability of the
LASSO and GBDT algorithms to improve the estimation accuracy of soil TN, TP, and TK,
which are crucial for agricultural management. The proposed machine learning method
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has the potential to effectively select the spectral characteristic indices of soil nutrients,
increasing the accuracy of the results.
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3 Department of Horticulture Sciences, Faculty of Agriculture and Natural Resources,
University of Tabriz, Ahar 5451645857, Iran; mehdiyounessi377@gmail.com

4 Department of Plant Breeding and Biotechnology, University of Tabriz, Tabriz 5166616471, Iran;
s.aharizad@tabrizu.ac.ir

5 Kohgiluyeh and Boyerahmad Agricultural and Natural Resources Research and Education Center,
Agricultural Research Education and Extension Organization (AREEO), Yasouj 7589172050, Iran;
abdipur.m@gmail.com

6 Field and Horticultural Crops Research Department, Kurdistan Agricultural and Natural Resources Research
and Education Center, Agricultural Research, Education and Extension Organization (AREEO),
Sanandaj 6616936311, Iran

* Correspondence: m.sabzinojedeh@gmail.com (M.S.-N.); gniewko.niedbala@up.poznan.pl (G.N.);
mniazian@ut.ac.ir (M.N.); Tel.: +98-9147346259 (M.S.-N.)

Abstract: Foeniculum vulgare Mill. (commonly known as fennel) is used in the pharmaceutical,
cosmetic, and food industries. Fennel widely used as a digestive, carminative, galactagogue and
diuretic and in treating gastrointestinal and respiratory disorders. Improving low heritability traits
such as essential oil yield (EOY%) and trans-anethole yield (TAY%) of fennel by direct selection does
not result in rapid gains of EOY% and TAY%. Identification of high-heritable traits and using efficient
modeling methods can be a beneficial approach to overcome this limitation and help breeders select
the most advantageous traits in medicinal plant breeding programs. The present study aims to
compare the performance of the artificial neural network (ANN) and multilinear regression (MLR) to
predict the EOY% and TAY% of fennel populations. Stepwise regression (SWR) was used to assess
the effect of various input variables. Based on SWR, nine traits—number of days to 50% flowering
(NDF50%), number of days to maturity (NDM), final plant height (FPH), number of internodes (NI),
number of umbels (NU), seed yield per square meter (SY/m2), number of seeds per plant (NS/P),
number of seeds per umbel (NS/U) and 1000-seed weight (TSW)—were chosen as input variables.
The network with Sigmoid Axon transfer function and two hidden layers was selected as the final
ANN model for the prediction of EOY%, and the TanhAxon function with one hidden layer was
used for the prediction of TAY%. The results revealed that the ANN method could predict the EOY%
and TAY% with more accuracy and efficiency (R2 of EOY% = 0.929, R2 of TAY% = 0.777, RMSE of
EOY% = 0.544, RMSE of TAY% = 0.264, MAE of EOY% = 0.385 and MAE of TAY% = 0.352) compared
with the MLR model (R2 of EOY% = 0.553, R2 of TAY% = 0.467, RMSE of EOY% = 0.819, RMSE of
TAY% = 0.448, MAE of EOY% = 0.624 and MAE of TAY% = 0.452). Based on the sensitivity analysis,
SY/m2, NDF50% and NS/P were the most important traits to predict EOY% as well as SY/m2, NS/U
and NDM to predict of TAY%. The results demonstrate the potential of ANNs as a promising tool to
predict the EOY% and TAY% of fennel, and they can be used in future fennel breeding programs.

Keywords: artificial neural networks; essential oil; fennel; medicinal plant; trans-anethole; stepwise
regression
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1. Introduction

Fennel (Foeniculum vulgare Mill. var. vulgare), which belongs to the Apiaceae family, is
an open-pollinated plant, originating from the Mediterranean regions where it is possible
to observe high genetic diversity. Fennel essential oil is widely used in pharmaceutical,
food, and cosmetic industries. Trans-anethole is the main compound of the fennel essential
oil, and the highest value of this compound is existing in seeds of fennel [1]. Trans-anethole
is known as a flavoring agent in the food industry and in the production of perfume, as
well as an anti-bloating compound in traditional medicine. It is an effective substance in
the taste and smell of fennel [2–4].

Medicinal plants have a special place in traditional medicine folk and are used as
treatment for many diseases [5,6]. Essential oils are naturally occurring in medicinal and
aromatic plants which are rich in valuable biochemical compounds with high bioactivities
such as antibacterial, antioxidant and phytotoxic activity [7–10].

Classical breeding methods, including the selection and release of elite cultivars, as
well as the recognition of the agronomic traits as the suitable criteria to use in breeding
programs, are being remembered as fast, easy and reliable methods to introduce superior
fennel cultivars. Screening the best indicators to use in essential oil yield (EOY%) improve-
ment plans and finding the correlation between EOY% and its components is the first
priority [11–13]. Piccaglia and Marotti [14] reported that biomass weight and the number of
umbels per plant are positively related to the essential oil content (R = 0.651 and 0.569, re-
spectively) [14]. Cosge et al. [15] have elucidated that EOY% positively correlated with the
1000-grain weight trait [15]. The phenotypic expression process of quantitative and poly-
genic traits such as EOY% is non-linear, intricate, complex and time-variant. This intricacy
is due to the high diversity within and between populations, also due to environmental
impacts [16–18]. Therefore, because of the low heritability of EOY%, direct selection to
improve this characteristic may lead to low genetic gain [19], whereas the indirect selection
of EOY% through high-heritable and related characters with EOY% directly or indirectly
affects the EOY% via positive or negative effects of other traits [20,21].

So far, some modeling studies have been used for EOY% prediction and researchers
have studied the EOY% using physiological, phenological, morphological and phyto-
chemical properties of plant by application of parametric analysis such as path analysis
(PA), stepwise regression (SWR) and other techniques [11,14,15,22]. Previous studies have
used linear procedures such as correlation analysis and multiple linear regressions (MLR),
in which a linear correlation among variables is presumed. Nevertheless, linear meth-
ods were inadequate and could not really explain the interactions between variables and
EOY% [23–25]. These complex relationships require non-linear methods such as adaptive
neuro-fuzzy inference system (ANFIS), Bayesian classification (BC), artificial neural net-
works (ANNs) and genetic expression programming (GEP) to overcome the drawbacks of
linear methods and find an accurate relationship among the studied traits [26–30]. Non-
linear nonparametric machine learning algorithms, such as ANN, have great potential in
yield component analysis and indirect selection of highly complex quantitative traits of
plants, which are strongly affected by several genes, the environment and their interaction
(G × E) [31].

Some researchers have used the ANN method to predict the performance of some
medicinal plants such as cumin (Cuminum cyminum L.) [32], ajowan (Trachyspermum ammi L.) [33]
and sunflower (Helianthus annuus) [30].

The ANN topology is used to solve complex systems which it tries to imitate into
numerical models [23]. ANN models are classified according to their structure, neurons
type, etc. Furthermore, according to the training convergence in an ANN model, different
algorithms can be used [34]. Multi-layer perceptron (MLP) is one of the most commonly
used ANNs in biological studies [25,35–39]. An MLP is a feed-forward ANN model that
contains an input layer, one or more hidden layers and an output layer. In each MLP,
multiple layers of nodes in a directed graph are fully connected to the next one and each
node (except for the input nodes) is a neuron with a nonlinear activation function [40].
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According to the literature review, there is no report on forecasting fennel EOY% and
trans-anethole yield (TAY%) using ANN methods, and predicting these traits based on
the characteristics and parameters affecting them using an effective ANN method seems
necessary to facilitate the process of breeding such complex traits. Therefore, the aims
of the current project were to (1) model and predict the most important ingredient in
the essential oil of fennel using an artificial neural network, (2) compare the predicted
results with the results of conventional regression-based method and (3) determine the
most important selection criteria for EOY% and TAY% in different fennel populations using
sensitivity analysis. The developed model could be helpful to improve the TAY% and
EOY% of different fennel subspecies/varieties.

2. Materials and Methods

2.1. Plant Material Source and Recorded Traits

In the present study, the seeds of 16 populations of fennel (Foeniculum vulgare Mill.
var. vulgare) from Iran, 2 populations from Turkey and 2 populations from Germany
(Table 1) were collected and cultured in the experimental field section at the Faculty of
Agriculture, University of Tabriz, Iran (46◦17′ N, 37◦5′ E), with an altitude of 710 m during
2017–2018. Plant authentication was performed by using the voucher specimens (Table 1)
available at the herbarium of the University of Tabriz, Tabriz, Iran. The soil texture was
loamy clay with a pH value of 7.5 and less than 1% organic matter. The field was not
under cultivation for any plant during the past year. The seeds of each population were
sown in a plot (4 m × 0.5 m) as a randomized complete block design (RCBD) with three
replications. The fertilizers used in this study were 70 kg N, 40 kg P and 25 kg K per hectare.
Essential oil yield (EOY%), trans-anethole yield (TAY%), and different agro-morphological
traits including number of days to germination (NDG), number of days to 50% flowering
(NDF50%), number of days to 100% flowering (NDF100%), number of days to maturity
(NDM), initial plant height (IPH) (plant height at the time of the first inflorescence emer-
gence), final plant height (FPH) (plant height at harvest time), number of stems (NS), stem
diameter (SD), number of internodes (NI), length of the first internode (LFI), length of
the longest internode (LLOI), length of the last internode (LLAI), length of the peduncle
(LP), number of umbels (NU), biomass per square meter (B/m2), 1000-seed weight (TSW),
seed yield per plant (SY/P), seed yield per square meter (SY/m2), number of seeds per
plant (NS/P), number of seeds per umbel (NS/U) and harvest index (HI) were randomly
recorded from 15 plants per plot. An analysis of variance (ANOVA) was conducted to
assess the significant statistical differences among evaluated fennel populations for the
studied characteristics. A normality test was conducted with SAS software before the
analysis of variance. The means of significant differences of traits (average of two years)
were used for the statistical analysis (Table 2).

2.2. Isolation of Essential Oils and GC/MS Analysis

For the isolation of essential oils, 100 g of mature seeds of each population were
subjected to hydro-distillation using a Clevenger-type apparatus for 3 h and the collected
essential oil was dried over anhydrous sodium sulfate and kept at 4 ◦C until analysis. Some
physical characteristics of mature seed including moisture content and average length,
thickness and density of selected seeds were equal to 8%, 5.5 mm, 1.6 mm and 410 Kg/m3,
respectively. Chemical compositions of essential oils were analyzed by an Agilent 7890A
Network GC system pooled with Agilent 5975C Network with Triple-Axis mass detector.
The GC analysis was carried out on the Agilent 7890A Network GC system equipped with
a splitless model injector (with 1.0 μm volume and 250 ◦C temperature). The carrier gas
was helium with a flow rate of 1.1 mL/min and the capillary column used was HP 5-MS
(30 m × 0.25 mm, film thickness 0.25 μm). The column pressure was fixed to 56,054.38 Pa.
The oven temperature was initially kept at 50 ◦C for 2 min after injection and then increased
to 250 ◦C with a rate of 6 ◦C/min heating ramp and kept constant at 250 ◦C for 4 min.
The ionization voltage and mass range were 70 eV and 34–500 m/z, respectively. The
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temperatures 280 ◦C and 250 ◦C were used as anion source and interface temperatures,
respectively. Constituents of the essential oils were recognized based on their retention
time and mass spectra pattern with related available data or with the Wiley library and
literature. Percentages of each compound were calculated from the given GC peak area
and these data were used for quantification purposes.

Table 1. Locality and average of essential oil yield and trans-anethole yield of studied fennel populations.

No Population Variety Locality
Voucher
Number

Latitude
(N)

Longitude
(E)

Essential Oil
Yield (%)

trans-
Anethole
Yield (%)

1 Salzland Vulgare Germany Ah123 51◦78′ 11◦77′ 2.29 ± 0.85 1.46 ± 0.59
2 Gotha Vulgare Germany Ah115 51◦07′ 10◦87′ 2.14 ± 0.73 1.77 ± 0.57
3 Gazianetp Vulgare Turkey Ah114 37◦05′ 37◦37′ 2.67 ± 0.79 2.30 ± 0.68
4 Izmir Vulgare Turkey Ah113 38◦35′ 27◦07′ 1.63 ± 0.41 1.17 ± 0.32
5 Bonab Vulgare Iran Ah111 37◦35′ 46◦03′ 2.89 ± 1.03 2.24 ± 0.91
6 Birjand Vulgare Iran Ah110 32◦84′ 59◦18′ 0.73 ± 0.24 0.54 ± 0.16
7 Tatmaj Vulgare Iran Ah126 33◦69′ 51◦62′ 1.88 ± 0.79 1.50 ± 0.54
8 Torbatejam Vulgare Iran Ah127 35◦23′ 60◦66′ 2.90 ± 0.92 2.45 ± 0.76
9 Meshkinshahr Vulgare Iran Ah120 38◦37′ 47◦69′ 2.30 ± 0.61 1.70 ± 0.62

10 Khorobiabanak Vulgare Iran Ah118 33◦89′ 54◦87′ 0.99 ± 0.41 0.73 ± 0.51
11 Moghan Vulgare Iran Ah121 39◦62′ 47◦87′ 4.12 ± 1.32 2.68 ± 0.68
12 Ziar Vulgare Iran Ah129 32◦50′ 51◦94′ 1.66 ± 0.69 1.14 ± 0.42
13 Shirvan Vulgare Iran Ah124 37◦39′ 57◦96′ 2.42 ± 0.86 1.77 ± 0.68
14 Karaj Vulgare Iran Ah116 35◦77′ 51◦06′ 1.54 ± 0.64 1.07 ± 0.44
15 Kerman Vulgare Iran Ah117 30◦30′ 57◦13′ 0.82 ± 0.33 0.55 ± 0.19
16 Khorramabad Vulgare Iran Ah119 33◦48′ 48◦44′ 2.89 ± 0.67 2.10 ± 0.71
17 Neishabour Vulgare Iran Ah122 36◦19′ 58◦83′ 2.02 ± 0.77 0.33 ± 0.15
18 Varamin Vulgare Iran Ah128 35◦34′ 51◦62′ 3.77 ± 0.94 3.12 ± 0.67
19 Hamedan Vulgare Iran Ah112 34◦81′ 48◦48′ 2.92 ± 0.91 2.16 ± 0.56
20 Tabriz Vulgare Iran Ah125 38◦07′ 46◦08′ 2.50 ± 0.76 0.50 ± 0.12

Table 2. Descriptive statistics of morphological, phonological and yield-related characteristics in the fennel populations.

Characteristic Abbreviation Min Max Mean Standard Deviation

Number of days to germination NDG 7 18 12.45 4.21
Number of days to 50% flowering NDF50% 59 102 79.18 16.56
Number of days to 100% flowering NDF100% 82 114 92.36 24.98

Number of days to maturity NDM 126 180 145.68 36.15
Initial plant height (cm) IPH 39.47 82.89 58.29 17.14
Final plant height (cm) FPH 68.56 198 107.25 36.84

Number of stems NS 1 4 2.58 1.25
Stem diameter (cm) SD 2.75 15.85 8.54 3.62

Number of internodes NI 6 14 9.35 3.48
Length of the first internode (cm) LFI 3.11 9.32 6.13 2.04

Length of the longest internode (cm) LLOI 5.48 19.14 14.59 5.74
Length of the last internode (cm) LLAI 2.36 11.71 7.64 1.91

Length of the peduncle (cm) LP 4.85 14.29 9.25 4.89
Number of umbels NU 12 58 36.25 15.70

Biomass (g/m2) B/m2 654.25 1457.83 124.91 62.25
Thousand seed weight (g) TSW 2.85 7.65 5.16 3.11

Seed yield per plant (g) SY/P 12.35 86.54 32.67 10.29
Seed yield (g/m2) SY/m2 115.12 542.28 315.21 82.27

Number of seeds per plant NS/P 985 9153 7859 2141
Number of seeds per umbel NS/U 112 276 192.51 78.29

Harvest index (%) HI 12.11 46.82 37.26 16.28
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2.3. Data Processing and Statistical Analysis
2.3.1. Input Variables Selection

To ensure a realistic model, only a portion of independent variables was carefully
chosen. At the beginning of this process, the relationship between the dependent and inde-
pendent variables was found using Pearson’s correlation. The important input variables
were selected based on the stepwise regression (SWR) analysis results. Pearson correlation
and SWR analyses were conducted using SAS® software.

2.3.2. Multiple Linear Regression

Multiple linear regression (MLR) (stepwise method) was used and for each dependent
variable (EOY% and TAY%), the desired models were fixed. All values for the independent
variables X (Table 2) are related to the dependent value of the variable Y. The general
equation is as follows (Equation (1)):

yi = β0 + β1×1 + β2×2 + . . . + βnxn + εi (1)

where yi is EOY% or TAY%, β0 + βn are coefficients of regression, x1 − xn are input variables
and ε is an error associated with the ith observation. Stepwise regression was applied to
estimate the MLR coefficients. The MLR analysis was carried out using SAS® software.

2.3.3. Artificial Neural Network

The computation of ANN was conducted using Neuro-Solutions software version
5.07 software package from NeuroDimension Inc. (http://www.Neurosolutions.com,
accessed on 22 November 2021). The variables including EOY% and TAY% were used as
the dependent and the other traits were defined as independent variables. Two different
ANN models were established for each EOY% and TAY%. The training and testing of ANN
and MLR were carried out based on the recorded traits from 15 samples of each of the
20 fennel populations over two years. Therefore, the field experiment dataset was based
on the 15 samples of 20 fennel populations. All the data were randomly divided into three
subsets: 65% for training, 20% for network test and 15% for validation. This classification
was based on (i) the results of previous studies with the same number of data, and (ii) trial
and error and comparing the modeling results with different ratios. Descriptive statistical
analysis of the measured traits in two years is shown in Table 2.

For the efficient ANN analysis and to avoid bias estimation due to differences in units
of input variables, all data were normalized and transferred into values between −1 and +1
for hyperbolic tangent and 0 and 1 for sigmoid transfer functions [25] using Equation (2).

xnorm =

[(
(

xi−xmin

xmax−xmin
)

)
× 0.8

]
+1 (2)

where xi is the original data, xnorm is the normalized input or output values and xmax and
xmin are the maximum and minimum values of the resultant variable, respectively.

The three main input, hidden and output layers are essential for building the topology
of a neural network system. In this study, the output of the network is assumed by
Equation (3).

yt = α0 +
n

∑
j=1

αj f (
m

∑
i=1

βijyt−1 + β0j) + εt (3)

where yt is the network output (essential oil), n and m are the number of hidden nodes and
number of input nodes, respectively, and f shows the transfer function. βij {i = 1, 2, . . . , m;
j = 0, 1, . . . , n} are the weights from the input to hidden nodes, αj {j = 0, 1, . . . , n} are the
vectors of weights from the hidden to the output nodes and α0 and β0 j denote the weights
of arcs leading from the bias terms, which always are equal to 1.

The feed-forward multilayer perceptron (MLP) architecture with three layers and a
Back-Propagation (BP) training algorithm along with the Levenberg–Marquardt, Momen-
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tum and Conjugate Gradient learning algorithms were applied in the present study. The
most appropriate topology in various numbers of hidden layers (1–4) and neurons related
to each layer was determined by trial and error tests. Several activation functions including
Tangent Hyperbolic Axon, Linear Tangent Hyperbolic Axon, Sigmoid Axon and Linear
Sigmoid Axon were tested with the aim of finding the equation with high capability in
both hidden and output layers.

2.4. Performance and Sensitivity Analysis

Three statistical quality parameters, mean absolute error (MAE), root mean square
error (RMSE) and coefficient of determination (R2), were used to compare the performance
of the developed ANN with different transfer functions and hidden layers and MLR models
for estimating the desired output of EOY% and TAY% according to Equations (4)–(6),
respectively.

MAE =
1
n∑n

i,j=1

∣∣yi − yj
∣∣ (4)

RMSE =

√
∑n

i,j=1 (yi − yj)
2

n
(5)

R2 =
∑n

i,j=1 (yi − yi)(yj − yj)√
∑n

i=1 (yi − yi)
2∑n

j=1 (yj − yj)
2

(6)

where n is the number of data, yi is the observed values, yj represents the predicted values
and the bars denote the mean of the variable. High values of R2 and low values of RMSE
and MAE indicate the better performance of the ANN and MLR model.

After developing the final ANN model, a sensitivity test was applied for choosing
the most influential input variables on the EOY% and TAY% as the outputs. For this, the
dataset was run without any input variables (i.e., SY, NS, NDM, TSW, NU and NI), and the
models’ performance was assessed using R2, RMSE and MAE. Neuro-Solutions software
(version 5.0) was used for the ANN model developing, evaluating and sensitivity analysis.

3. Results and Discussions

3.1. Selection of Input Variables

Since the input variables have a significant effect on the weighted coefficients and
the final architecture of the model, the selection of these variables is a very important
step for the development of the model [35]. To this end, Pearson’s correlation coefficient
was used to consider the relationship between dependent variables (EOY% and TAY%)
and the other characteristics (as the independent variables) (Figures 1 and 2). EOY% had
the highest positive correlation with HI (R = 0.794), followed by SY/m2 (R = 0.756), NU
(R = 0.754), SY/P (R = 0.732), NDM (R = 0.706), NS/P (R = 0.699), LFI (R = 0.676) and NS/U
(R = 0.467). A negative significant correlation coefficient was observed between EOY% and
NDF50% (R = −0.842), NDF100% (R = −0.659), NI (R = −0.719), LLOI (R = −0.713), FPH
(R = −0.661), LP (R = −0.616) and SP (R = −0.518) (Figure 1). Rahimmalek et al. [41] also
reported a negative significant correlation between essential oil yield with plant height
and flowering date of Iranian fennel accessions. Overall, the results of the correlation
analysis showed that HI, SY/m2, NU, SY/P and NS/P are the most important parameters
to determine essential oil yield in fennel populations. As reported by Bahmani et al. [11,22]
and Cosges [15], there is a significant correlation between the essential oil content of fennel
and length of the peduncle, stem diameter, plant height, the weight of dry biomass, number
of nodes, number of leaves, length of middle internodes, number of inflorescences and
1000-seed weight [11,15,22].
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Figure 1. The Pearson correlation coefficient of input variables with EOY% of fennel populations in both ANN and MLR
models. For detailed information on trait abbreviations, see Table 2. ns, * and **, non-significant, significant at the 0.05 and
0.01 probability level, respectively.

Figure 2. The Pearson correlation coefficient of input variables with TAY% of fennel populations in both ANN and MLR
models. ns, * and **, non-significant, significant at the 0.05 and 0.01 probability level, respectively.

TAY% (as a second dependent variable) had the strongest positive correlation with
HI (R = 0.823) followed by SY/P (R = 0.693), SY/m2 (R = 0.693), EOY% (R = 0.590),
NS/P (R = 0.573), NU (R = 0.572) and LFI (R = 0.456), as well as a negative significant
correlation with LLOI (Figure 2). The correlation between various traits can be positively
or negatively affected by other variables and these low coefficients can significantly reduce
the capability of the correlation analysis to select the input variables [42,43]. However,
there are parameters than other morphological and yield components that affect the oil
yield and trans-anethole content of fennel. The correlation of climatic data (temperature)
with oil yield and trans-anethole content of Iranian fennel accessions was assessed and a
negative correlation between oil yield and Tmax and a positive correlation between trans-
anethole and Tmax (r = 0.459) were reported [41]. These results indicate the importance
of environmental parameters in assessing the correlation analysis of fennel populations.
Incorporating such data into the model can increase the decision-making power and
accuracy of the predictive model. In addition to perform the correlation analysis, stepwise
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regression (SWR) analysis was employed in this study to optimize the number of input
variables [43].

Based on the SWR (Tables 3 and 4), nine traits out of eleven (SY/m2, NDF 50%, NS/P,
NU, FPH, NS/U, NDM, TSW and NI) were entered into the models as the most suitable
input variables (the dependent variables were EOY% and TAY%). The number of umbels
is an important yield component characteristic that can affect grain yield and subsequently
the essential oil yield of fennel populations. This characteristic affect both EOY% and TAY%
of the evaluated fennel population of the present study. These results are consistent with
the results of Sefidan et al. [44] and Kalleli et al. [45].

Table 3. Stepwise regression analysis for essential oil yield as dependent variable.

Step Entered Variables in Model Partial R2 Model R2

1 SY/m2 0.1642 0.1642
2 SY/m2, NDF 50% 0.1415 0.3057
3 SY/m2, NDF 50%, NS/P 0.1276 0.4333
4 SY/m2, NDF 50%, NS/P, NU 0.0781 0.5114
5 SY/m2, NDF 50%, NS/P, NU, FPH 0.0742 0.5856

Adjusted R2 = 0.5533.

Table 4. Stepwise regression analysis for trans anethole yield as the dependent variable.

Step Entered Variables in Model Partial R2 Model R2

1 SY/m2 0.123 0.123
2 SY/m2, NS/U 0.114 0.237
3 SY/m2, NS/U, NDM 0.1056 0.3426
4 SY/m2, NS/U, NDM, TSW 0.0561 0.3987
5 SY/m2, NS/U, NDM, TSW, NU 0.052 0.4507
6 SY/m2, NS/U, NDM, TSW, NU, NI 0.0441 0.4948

Adjusted R2 = 0.4672.

Although HI and LFI were significantly correlated with EOY% and TAY%, according to
the SWR analysis, these parameters could not be recognized as appropriate input variables
(Tables 3 and 4). MLR results revealed the weakness of the correlation method, which can
be due to the indirect positive and negative effects of other traits on the correlation between
dependent traits (EOY% and TAY%) and other independent traits [43]. Bahmani et al. [11]
also applied SWR to identify to most important characteristics affecting the essential oil
content of Iranian fennel and reported low partial R2 values for inserted variables in the
model (partial R2 = 0.32, 0.06, 0.03, 0.02 and 0.02 for number of leaves, length of peduncle,
plant height and days to 50% flowering, respectively). The low estimated partial R2 values
for all independent variables indicate the insufficient efficiency of the linear regression
model in interpreting the relationships between independent and dependent variables.
Therefore, a non-linear model is needed to better interpret these relationships.

3.2. Prediction of Dependent Variables Using MLP/ANN Model

Several factors as numbers of the hidden layer (s) and their neurons (nods) and
determination of the transfer function are important for the selection of input variables.
They can be determined using trial and error [46]. There are four different transfer functions
to running supervised neural networks, namely Sigmoid Axon, Linear Sigmoid Axon,
Tangent Hyperbolic Axon and Linear Tangent Hyperbolic Axon, to select the proper
transfer function (Table 5).

As presented in Table 6, the lowest values of MAE and RMSE and the highest R2

values were obtained by the Sigmoid Axon function in both training and testing stages for
the prediction of EOY%, as well as the TanhAxon transfer function to predict TAY%.
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Table 5. Summary of the components of the neural networks used to predict essential oil and trans-anethole yield of
fennel populations.

ANN Method
Number of

Hidden Layers

Number of
Neurons in

Each Hidden
Layer

Transfer Function Learning Algorithm
Number of

Epochs

Multi-layer
perceptron (MLP) 1–5 1–20

Sigmoid Axon Levenberg–

50–2000
Linear Sigmoid Axon Marquardt

TanhAxon Momentum
Liner TanhAxon Conjugate Gradient

Table 6. The performance of the best artificial neural network models to predict outputs.

Output
Network
Structure

Transfer
Function

Learning
Algorithm

Training Testing Cross Validation

R2 a RMSE b MAE c R2 a RMSE b MAE c R2 a RMSE b MAE c

Essential
oil yield 11-9-7-1 Sigmoid

Axon

Levenberg–
Marquardt

(LM)
0.953 0.522 0.375 0.929 0.544 0.385 0.904 0.552 0.389

Trans-
anethole

yield
11-10-1 TanhAxon Momentum 0.794 0.246 0.334 0.777 0.264 0.352 0.764 0.258 0.359

a: Determination coefficient; b: root mean square error; c: mean absolute error.

The results of the linear transfer functions are not presented to maintain the clarity of
the useful and applied results. In the testing and training phases, linear transfer functions
reduced the efficiency of the models. These functions apply a simple linear conversion to
the processed input variables and transfer it to the output stage, whereas nonlinear and
TanhAxon functions produce outputs in the ranges 0 to 1 and −1 to 1, respectively [25].
Similar to the present study, Sigmoid Axon and TanhAxon functions have been applied in
previous studies [24,25,32,35]. This is probably due to the high capability of these functions
to justify nonlinear changes compared to the other functions. Various ANN models were
implemented by selected transfer functions, with 1–5 hidden layers and 1–20 nodes per
layer. As shown in Table 6, for the prediction of EOY%, the ANN model with two hidden
layers provided the best performances in the training phases (R2 = 0.953, RMSE = 0.522,
and MAE = 0.375) and testing (R2 = 0.929, RMSE = 0.544 and MAE = 0.385). Therefore,
the results of Tables 5 and 6 reveal that the best EOY% (essential oil) predictive model
consisted of an input layer with 11 input variables (NDF50%, NDF100%, NDM, FPH,
NI, NU, SY/P, SY/m2, NS/P, NS/U, and TSW) and two hidden layers with nine and
seven neurons in each layer, i.e., the 11-9-7-1 structure (Figure 3). The TanhAxon transfer
function, Momentum learning algorithm and one hidden layer (with 11-10-1 structure)
were the best parameters in the ANN model to predict TAY% of fennel (Table 6). This
topology had the minimum amounts of RMSE and MAE and the highest coefficient of
determination (Table 6). Levenberg–Marquardt back-propagation and Logsig and Tansig
transfer functions for hidden and output layers algorithm and the number of 10 neurons
in the hidden layer have been reported as best parameters of an ANN for the modeling
and optimization of anethole ultrasound-assisted extraction from fennel seeds [47]. One
of the main objectives of ANN modeling studies is to achieve a simple model with the
least number of hidden layers and neurons and the highest performance values [30,32].
Niazian et al. [25] reported an ANN model with a 4-4-1 structure, for the prediction of
grain yield in ajowan (Trachyspermum ammi L.) belonging to the Apiaceae family [25]. These
results will be useful to fit an excellent model structure of ANN in future research on the
Apiaceae family.
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Figure 3. The topology of the ANN with 11 input parameters for prediction of essential oil yield.

An insufficient number of epochs can decrease the ANN performance and too many
epochs can increase the risk of network overtraining and subsequent memorization [25].
To minimize the over-training and memorization, a pretest using two hidden layers and
various numbers of epochs (50–2000) was conducted and the convergence point between
training and validation was considered as the completion of training time to avoid over-
training (Figure 4).

Figure 4. The convergence of the average MSE value during training and validation of the final
11-9-7-1 ANN structure to predict the essential oil yield of fennel populations.

The comparison of predicted and measured EOY% values is shown in Figures 5 and 6
for both training and testing datasets in the form of scatter plots. As shown in the scatter
plots, the measured data and the ANN model had the same distribution. The EOY% values
predicted by the ANN model tended to follow the corresponding actual ones quite closely.

A scatter plot was also applied to compare observed and predicted values of TAY%
from the ANN model in both training and testing datasets. The ability of the ANN
model to predict TAY% in training (R2 = 0.794) and testing (R2 = 0.777) stages are shown
in Figures 7 and 8, respectively. According to the scatter plot, there was no significant
difference between predicted data and measured data of TAY% in the ANN model in both
training and testing datasets (Figures 7 and 8).
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Figure 5. Scatter plot of measured and predicted essential oil yield of fennel populations in the
training stage of ANN.

Figure 6. Scatter plot of measured and predicted essential oil yield of fennel populations in the
testing stage of ANN.

3.3. Comparing MLR and ANN Models to Predict EOY% and TAY% of Fennel Populations

The MLR models, especially when there are linear relationships between the input and
output variables are known as efficient modeling approaches [48]. In order to determine
the strength of linear regression to predict EOY% and TAY%, two stepwise regression of
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MLR models were determined and the following equations (Equations (7) and (8)) were
computed to predict dependent variables.

Figure 7. Scatter plot of measured and predicted trans-anethole yield of fennel populations in the
training stage of the ANN.

Figure 8. Scatter plot of measured and predicted trans-anethole yield of fennel populations in the
testing stage of the ANN.

EOY% = 0.037 + 0.216 SY/m2 + 0.113 NDF 50% + 0.126 NS/P + 0.086 NU + 0.079 FPH (7)

TAY% = 0.915 + 0.196 SY/m2 + 0.108 NS/U + 0.089 NDM + 0.073 TSW + 0.065 NU + 0.044 NI (8)
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According to Equation (7), the predicted value of EOY% is a linear transformation of
seed yield per square meter, number of days to 50% flowering, number of seeds per plant,
number of umbels and final plant height variables. On the other hand, seed yield per square
meter, number of seeds per umbel, number of days to maturity, thousand seed weight,
number of umbels and number of internodes were entered in the SWR model, when TAY%
was considered as a dependent variable (Equation (8)). The depended variables are those
that selected based on stepwise regression analysis (Tables 3 and 4). As shown in Tables 3
and 4, independent variables explained approximately 55% and 47% of variations in EOY%
and TAY%, respectively. Therefore, the linear model was not strong enough to explain
the variations of the dependent variables. The MLR constructions (Equations (7) and (8))
showed the importance and the effect of independent variables on dependent variables and
these equations revealed that how the amounts of EOY% or TAY% in fennel can change by
different amounts of independent variables. Bahmani et al. [11] used an MLR model to
find the relationship between independent variables and grain yield of fennel and showed
that 55.41%, 12.72%, 2.21% and 11.63% of total variance of grain yield was explained by
weight of dry biomass, days to 50% flowering, number of inflorescent and days to 70%
seed pasty, respectively [11]. Niazian et al. [25] studied the seed yield of ajowan using an
MLR model and introduced shoot dry weight, number of umbellets in main inflorescence,
number of branches and the biological yield as important independent variables [25].

The results of the ANN and MLR models’ development based on performance eval-
uation indices including R2, RMSE and MAE provide a set of the reasonable criteria for
comparison between two modeling methods. Compared to the MLR model, the ANN
models could predict EOY% and TAY% much better than the MLR model with 39.97% and
32.69% increases in R2, reductions of 0.30 and 0.20 in RMSE and reductions of 0.25 and 0.12
in MAE, respectively. According to the obtained results, the ANN model had higher predic-
tive power than the MLR model and was more efficient than MLR in predicting EOY% and
TAY% traits in fennel populations. The different performance of the two models to predict
EOY% and TAY% shows the importance of choosing the more suitable model. The superi-
ority of the ANN modeling methods compared to the MLR methods has been reported in
other previous studies [24,25,32,35]. The supremacy of ANN modeling seems to be due to
the high capability of this model to capture the highly nonlinear and complex relationship
between EOY% or TAY% and the relevant traits [23]. There is a considerable variation
among different populations of fennel in terms of seed yield, yield components, essential
oil content and essential oil composition [11,49]. This variation along with high genotype
× environment interaction create a difficult situation to improve the fennel population
for the desired traits in a short period using conventional statistical methods and direct
selection [49]. However, using non-linear predicting methods, breeders are able to estimate
the desired values of their desired traits in a faster and more confident way. Therefore, an
advanced computational method can play a complementary role to conventional statistical
methods previously employed to improve the fennel populations [11,49].

3.4. Sensitivity Analysis

A sensitivity analysis is a method of studying the behavior of a model and assessing
the significance of each input variable on the values of the output variable of the model.
Sensitivity analysis provides insight into the usefulness of individual variables. With the
help of this kind of analysis, it is possible to judge which inputs for modeling EOY%
or TAY% parameters should be considered as the most and least significant ones in the
ANN model [36]. For this purpose, the sensitivity tests for ANN and MLR models were
performed without a specific input variable, i.e., SY/m2, NS/P, NDF50%, NS/U and NDM.
The results of the sensitivity test for EOY% showed that the highest RMSE (0.608, 0.911) and
MAE (0.439, 0.659) and the lowest R2 (75.45, 39.12) were achieved without seed yield per
square meter in both ANN and MLR models (Table 7). Number of days to 50% flowering
and number of seeds per plant were the other most effective characteristics on the EOY%
of fennel populations. As shown in Table 7, the ANN and MLR models for TAY% without
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the seed yield per square have the lowest R2 (61.43 and 35.52) and highest RMSE (0.332
and 0.532) and MAE (0.487 and 0.471), respectively. As the results showed, SY/m2 is the
most influential factor to predict EOY% and TAY% in both models.

Bahmani et al. [11] investigated the direct and indirect effects of some morphological
traits on the essential oil content of fennel populations by using path analysis. They
reported that the number of leaves, days to 50% flowering and plant height had direct
effects on essential oil content in the first year of the experiment as well as days to 50%
flowering, stem diameter and the number of seeds per largest inflorescence in the second
year of the experiment [11]. Abdipour et al. [24] used the sensitivity analysis in both ANN
and MLR models to find the importance of each input variable on the oil content of sesame
and reported capsule number per plant as the most important input variable that can
significantly affect RMSE, MAE and R2 of both ANN and MLR models [24]. In the other
study, sensitivity tests were conducted in both MLR and ANN models and results showed
that the highest RMSE and MAE and the lowest R2 were achieved in the MLR and ANN
models without biological yield [25].

Table 7. Sensitivity analysis and selecting three of the most influential inputs on the essential oil and trans-anethole yield of
fennel populations.

Output Method
ANN MLR

R2 a (%) RMSE b MAE c R2 a (%) RMSE b MAE c

Essential oil yield

The best ANN (with all input) 95.30 0.522 0.375 55.33 0.819 0.624
ANN without SY/m2 75.45 0.608 0.439 39.12 0.911 0.659

ANN without NDF50% 84.70 0.585 0.421 42.18 0.747 0.571
ANN without NS/P 85.98 0.578 0.416 44.25 0.812 0.583

trans-anethole
yield

The best ANN (with all input) 79.41 0.246 0.334 46.72 0.448 0.452
ANN without SY/m2 61.43 0.332 0.487 35.52 0.532 0.471
ANN without NS/U 66.40 0.316 0.459 37.14 0.431 0.384
ANN without NDM 68.40 0.308 0.445 38.76 0.416 0.335
a: Determination coefficient; b: root mean square error; c: mean absolute error.

Since fennel is an indeterminate plant, having continuous growth of new leaves,
flowers and seeds during the growing season, it can be said that indeterminate populations
of fennel with a long period from flowering to maturity are the best in stable environmental
conditions. This finding can be seen in the results of the sensitivity analysis (Table 7),
indicating that the number of days to 50% flowering and number of days to maturity had
significant effects on EOY% and TAY%, respectively. The findings of previous studies
determined possible differences and similarities in essential oils and chemical composition
of various plants at different phenological stages in the various medicinal plants [49–51].
The results showed that the EOY% and TAY% depend on different phenological stages. The
effect of phenological stages on essential oil and its composition may be due to its effect
on enzyme activity and the metabolism of essential oil production [52]. The contribution
of each input trait to predict EOY% and TAY% are ranked from highest to lowest in both
ANN and MLR models in Table 7.

4. Conclusions

Identifying high-heritable yield components and using efficient modeling methods
can help breeders select the most advantageous traits in medicinal plant breeding programs.
The results of the present study revealed that the ANN compared to the MLR was able to
predict the EOY% and TAY% of fennel populations with more accuracy. The classical MLR
model could not interpret the non-linear relationships between EOY% and TAY% and their
corresponding independent variables. However, the ANN model showed more accuracy in
interpreting complex relationships among EOY%, TAY% and other variables in the model,
according to R2, RMSE and MAE indicators. These results showed that the selected ANN
model could surely replace MLR to predict EOY% and TAY% of fennel populations. Based
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on the sensitivity analysis, SY/m2, NDF50%, and NS/P were the most important traits to
predict EOY%, whereas SY/m2, NS/U and NDM were the most important traits to predict
the TAY% of fennel populations. The findings of the present study can provide important
information to improve the EOY% of the other medicinal plants of the Apiaceae family.
Plant breeders can also use the optimized artificial neural network models to model other
complicated polygenic traits of medicinal plants, such as the content of various secondary
metabolites that are more valuable for the food and pharmaceutics industries.
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Abstract: The bagworm is a vicious leaf eating insect pest that threatens the oil palm plantations
in Malaysia. The economic impact from defoliation of approximately 10 to 13% due to bagworm
attack might cause about 33 to 40% yield loss over 2 years. Due to this, monitoring and detecting of
bagworm populations in oil palm plantations is required as the preliminary steps to ensure proper
planning of control actions in these areas. Hence, the development of an image processing algorithm
for detection and counting of Metisa plana Walker, a species of Malaysia’s local bagworm, using
image segmentation has been researched and completed. The color and shape features from the
segmented images for real time object detection showed an average detection accuracy of 40% and
34%, at 30 cm and 50 cm camera distance, respectively. After some improvements on training dataset
and marking detected bagworm with bounding box, a deep learning algorithm with Faster Regional
Convolutional Neural Network (Faster R-CNN) algorithm was applied leading to the percentage
of the detection accuracy increased up to 100% at a camera distance of 30 cm in close conditions.
The proposed solution is also designed to distinguish between the living and dead larvae of the
bagworms using motion detection which resulted in approximately 73–100% accuracy at a camera
distance of 30 cm in the close conditions. Through false color analysis, distinct differences in the
pixel count based on the slope was observed for dead and live pupae at 630 nm and 940 nm, with the
slopes recorded at 0.38 and 0.28, respectively. The higher pixel count and slope correlated with the
dead pupae while the lower pixel count and slope, represented the living pupae.

Keywords: bagworms; image segmentation; color features; deep learning; faster R-CNN; false color

1. Introduction

In Malaysia, the palm oil sector is described as one of the key contributors to the
national economy and currently, the palm oil industry has contributed a GNI of RM
79.9 billion in 2017 [1]. The palm oil industry spans the value chain from upstream
plantations to downstream processing with the oil palm planted area in Malaysia at about
5.81 million hectares in 2017 [2].

The oil palm bagworm is a leaf eating insect that has caused 43% yield loss in two years
period [3]. Based on bygone records of bagworm infestations (1986–2000), it has been
confirmed that over 63,955 ha of oil palm planted in 69 estates in Peninsular Malaysia
had been attacked by the M. plana and P. pendula bagworm species [4]. Integrated pest
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management of the bagworms has been implemented in the past, however, information
on their population dynamics, incidences, biological characteristics and dispersion are
still understudied.

Based on the literature, there are several examples of image processing that have been
applied in agriculture. An exclusion of the non-leaf portion from the leaf’s main area was
applied by Mora et al. [5] to estimate the leaf area index (LAI) subsequently allowing more
precise values of physiological information at the whole-plant level. An autonomous field
robot was used for spraying and pollinating date clusters; it tracked its targets continuously
whilst in motion. To realize the robot function, image processing algorithms were designed
and implemented by Shapiro et al. [6] to be used in a spraying guidance system that was
based on a proportional controller, evaluating the system dynamics and examining its
behaviour under different parameters. Steward et al. [7] acquired sequential images of
weed patches to switch nozzles on and off at correct locations in a plantation. The image
processing algorithm, through image segmentation, was also used by Amatya et al. [8]
to segment out branch and cherry regions from leaves and background for sweet cherry
harvesting. They obtained 89.6% branch pixel classification exactness by applying RGB
color structures on each pixel together with a Bayesian classifier for separating the branch
pixels. Balch et al. [9] introduced fast color-based tracking and incorporated it with motion-
based tracking to detect ants in a simultaneous video stream, and also presented new
approaches for investigating the spatial movement of ant colonies.

Realizing the importance of precise data collection, efforts to develop a ground-based
device using a deep learning image processing algorithm targeted to detect bagworms has
been developed in this work. A Faster R-CNN was used to detect and count the bagworms
on site. Robustness was evaluated by the ability to exclude moving objects which come
in the form of flying insects in an oil palm plantation. As part of this study, an automatic
detection system was the practical approach which used image processing techniques for
the detection of the bagworms and classification algorithms to classify them according
to the different properties of the images. The need for development of image processing
algorithm for bagworm detecting and counting is crucial especially distinguishing the
living and dead bagworms population. By meeting the target, planters can be assisted
using an automated bagworm counter device to carry out census prior to control actions
activity and can save the pesticides usage due to accurate timing of bagworms control.

2. Four Stage Methodology for the Bagworm Detection Algorithm

The proposed image processing algorithm comprises of four stages which involve
image segmentation, shape extraction using morphological operators, object detection
using deep learning with Faster R-CNN, image classification to distinguish between the
stages of the bagworms, and finally, counting of the bagworms. Details of the designed
procedure (Figure 1) followed by the experimental results of each stage is explained in the
following subsections:

2.1. First Stage—Image Segmentation

The first stage involved the development of an image segmentation algorithm to
localize/detect the region of interest (RoI) in the dataset based on color processing. The
data obtained from the color processing was used to track the bagworms.

In stage 1100 RGB images from the site at Kg Teluk Bunot, Banting, Selangor, Malaysia
was taken using a digital fixed-lens camera. The spatial resolution of each image was
4288 × 2845 pixels. The images were then resized to 300 × 199 pixels and filtered using a
Gaussian smoothing technique with a 2D convolution operator to blur the image for noise
reduction. These steps are comparable to using a mean filter, but with a different kernel
that represents the shape of a Gaussian hump. The results were filtered again to sharpen,
enhance the edges, and to allow detailed high-frequency image information to pass whilst
lessening slow-changing data in the images. This was implemented by subtracting the
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blurry parts of the image [9]. Finally, the centre of focus where the bagworms resided was
set as the target area [10].

 

Figure 1. Big picture of the four stage methodology for bagworm detection.

2.2. Second Stage—Morphological Image Processing

The second stage used the morphological operator method, which focused on the
extraction of shapes and patterns whilst removing non-targeted regions in the dataset.

In stage 2, the results were obtained using a Pyramid mean shift filter and Gaussian
blur filter, which were both applied to the image in a Figure 2a, resulting in the images
shown in Figure 2b,c.

   
(a) (b) (c) 

Figure 2. Morphological image processing using: (a) Original RGB image, (b) Polarized image after Pyramid mean shift
filter, and (c) Gaussian blur filter.
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Next, a color space of the image (Figure 2b) was converted from the RGB to a hue,
saturation, value (HSV) to search for a specific color that represented the bagworms
(Figure 3).

 

Figure 3. Color space conversion from RGB to HSV.

From the HSV color space, the Upper and Lower color range was determined using
Color Picker software, where this range corresponded to the bagworm images. For the
bagworms, the color ranges were as follows:

{Lower bagworms = [int(0.0 × 179), int(0.0 × 255), int(0.8 × 255)]}
{Upper bagworms = [int(0.2 × 179), int(1.0 × 255), int(1.0 × 255)]}
Subsequently, the threshold of the HSV image was found by subtracting the RoI

with the HSV threshold image (Figure 4). Finally, the subtracted image was converted to
grayscale and dilated to obtain the threshold image shown in Figure 5.

 

Figure 4. Targeted object with HSV.

 

Figure 5. Threshold bagworms image.

2.3. Third Stage—Object Detection through Deep Learning and Classification

The third stage involved classification, which employed a supervised classifying
algorithm. This algorithm was based on trained data, specific to size and shape recognition
to distinguish between the stages of bagworms. Experiments were conducted on three
groups of M. plana Walker, which were classified according to their stages of development
as shown in Table 1. The first group contained the early larval stage, 1–3. The second group
was made up of the late larval stage, 4–7. The third group was the pupal stage (positioned
at the bottom part of the oil palm fronds).

In stage 3, an algorithm was developed to detect the bagworms and classify them
into groups of stages. This was achieved by training the dataset from the images for object
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detection and recognition. A deep learning technique with Faster R-CNN coupled with a
Region Proposal Network (RPN) [11] was used to predict the object bounds and exact scores
at each position. The Faster R-CNN model with a RPN is a fully-convolutional network
that simultaneously predicts object bounds and objectness scores at each position. RPNs
are trained end-to-end to generate high quality region proposals, which are used by Faster
R-CNN for detection. With a simple alternating optimization, RPN and Faster R-CNN can
be trained to share convolutional features. It enables a unified and deep-learning-based
object detection system to run at 5–17 fps. The learned RPN improves region proposal
quality and object detection accuracy. With almost 8000 images plus videos, the dataset
was trained to produce a trained detection model which was based on the Faster R-CNN
algorithm and classified into sets of images with bagworms or without bagworms. There
are two steps involved in preparing the system to detect the bagworm; training and testing.
Training is the process to produce a trained detection model. It was based on Faster R-CNN
algorithm. Each step of training reports the loss. It will start high and get lower and lower
as training progresses. The model trains until the loss consistently drops below 0.05.

The progress of the training job is monitored using TensorBoard as shown in Figure 6.
A total of 8000 samples were trained from 400 images with an average of 20 samples per
image. Training images were manually marked with bounding boxes that indicated areas
where bagworms exist. Once training is completed, the model is tested with another input
image to verify the accuracy of bagworm detection.

Figure 6. Loss of dataset during training progress.

TensorFlow had been opted for since it is an open source artificial intelligence library
and it allows creation of large-scale neural networks with many layers. It has the fastest
growing library with active support and a lot of pre-trained models including the Faster
R-CNN. The deep learning (DL) with Faster R-CNN algorithm for detecting bagworms is
illustrated in the flow chart as shown in Figure 7.

Table 1. Bagworm classification corresponding to real sizes subjected to the stages of development.

Group Bagworm Stages Real Sizes, mm

1 1–3 1.3–4.4
2 4–7 4.5–10.1
3 pupal 10.2–13.6

The classification of the larval stages was carried out by grouping the larval stages
based on their real size. Purpose of grouping the bagworms according to their stages is
to assist detection of the larvae and pupae based on their eating behavior, position on
palm frond and movement characteristic. These groups are planned to be used as targeted
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objects in three mode of selection in automated detector device. Here, three groups have
been defined and shown in Table 1. Based on their actual size, which ranged from 1–12 mm,
the image dataset consisted of bagworm pixel intensity trained according to each stage.
Then, the input RGB images were resized without distorting their aspect ratio. Since there
were various shapes of the bounding box, a good size representation was achieved by
measuring the diagonal distance of the box. This was to simplify the detection without
investigating the orientation of the bagworm.

 

Figure 7. Process flow for the Faster R-CNN algorithm with moving object detection.

Figure 7 describes the process flow of the bagworm detection algorithm using the
DL with Faster R-CNN. It detected any movement of the bagworm by substracting the
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moving foreground from static background by using BackgroundSubstractorMOG2. The
image from camera was initially froze into sequence of frames and labeled as current and
previous frame. The algorithm continued processing the next frame until video captured
was stopped. Then, after identify and masking the bounding box for the moving object, the
living bagworm was visualized in a green box, whilst the dead bagworm was identified in
a grey box.

2.4. Fourth Stage—Counting and Determination of the Living and Dead Larvae and Pupae
through Motion Tracking and False Color Analysis

At the fourth stage, the technique for distinguishing the living and dead larvae and
pupae through the motion analysis algorithm and false color analysis is done. Then, the
counting algorithm was used to count the bagworm populations corresponding to the
specified groups.

All the images captured at the field consisted of bagworms and leaflets, and contained
zero static backgrounds. A static background is a clean background without a subject to
be detected. Therefore, the BackgroundSubtractorMOG2 technique was used to produce
the static background. Images from the camera were frozen into a sequence of frames. For
simplicity, two frames were labelled as the current frame and the previous frame. The
algorithm kept on continuing to the next frame until the video capture was stopped. This
condition generated an assumption, where the moving bagworm was identified as a living
bagworm and the static bagworm was recognized as a dead bagworm [12].

The living and dead bagworms were determined through motion tracking and false
color analysis. An image where the bagworms were detected contained the image of
the bagworm size and mortality. Using the pixel arrangement as a Cartesian coordinate
system, a bounding box was drawn over the detected regions in the image. Mortality was
determined by analyzing the bounding box for moving objects by placing it on the masked
images. If a box contained masked moving objects, then the bagworm was classified as
alive (labelled in a green box) and a living bagworm counter was incremented. Dead
bagworms were detected and accounted for when the bounding box analysis found no
movement in the masked images and were represented in a grey box (Figure 7).

2.5. Motion Tracking for Determination of the Living and Dead Larvae

Motion analysis was used to detect dead and living larvae. It detected any movement
of the larvae by subtracting the moving foreground from the static background. The
following describes the motion analysis algorithm process.

i. Previous frame was processed to be the static background image using Background-
SubtractorMOG2.

ii. Current frame was applied to the GaussianBlurr to filter the noise and become the
foreground image.

iii. Masked the background image with the foreground image.
iv. Applied the cv2.countNonZero of the overlapping background image with the

foreground image.
v. If there was a nonzero counter, it meant there was movement in the frame.

2.6. False Color for Determination of the Living and Dead Pupae

60 samples of dead and living pupae were randomly placed on a black ground canvas.
Two light sources had been identified to be economical and practical, namely the 940 nm
(IR) and 630 nm (red). These two wavelength points were selected based on the spectral
reflectance properties of the living and dead pupae, which were significantly different
between the 630 nm and the 940 nm. The data was achieved using a spectroradiometer in
other experiments [13] to find the reflectance percentage at specific wavelengths for the
pupae. The images for 630 nm and 940 nm were then captured in RGB format. The images
were converted to grayscale before an average of all the pixel’s values were picked within
a pupa’s boundary. The average pixel values were collected for all samples.

219



Agriculture 2021, 11, 1265

The steps for pixel counting are mentioned as follows:

1. Source captured in RGB
2. Location of each pupa was marked to calculate the slope value under the red vision

(630 nm) as compared to the IR (940 nm) of the pupa at the same location.
3. Viewed image in grayscale using OpenCVimshow (img, imgfile, grayscale_option)
4. Zoomed each pupa until the pixel value was displayed.
5. Picked all the pixels from a pupa image.
6. Averaged the pixel values.

2.7. Counting

After all the bagworm detection procedures had been conducted, counting was carried
out by averaging the total bagworms detected for 200 frames of an image. In this study,
200 frames were set during the snapshot.

2.8. Experimental Setup

The experiment was conducted under three different controlled conditions. The
controlled conditions were set up as follows: (a) fully closed area, (b) half open area and
(c) fully open area as shown in Figure 8. Meanwhile, the position of the camera from the
targeted objects was set at 30 cm and 50 cm distance from the subjects to compensate for
changes in lighting conditions and shadowing. Other factors that had to be accounted
for were vibration and false capture of objects, such as other insect species that may have
flown into the field of view of the camera setup.

  
(a) (b) 

 
(c) 

Figure 8. Controlled conditions (a) fully closed area, (b) half open area, and (c) fully open area.
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2.9. Data Analysis

Data on detection accuracy with different approaches were analyzed using a one-way
ANOVA and the means were separated by the Least Significant Difference (LSD) test at
p < 0.05. The Pearson product-moment correlation coefficient was calculated to evaluate
detection performance of the live and dead larvae of the bagworms using deep learning
algorithm and manual counting.

3. Results

3.1. Stage-1 and 2

In the color space processing method, which involved morphological image process-
ing, the results showed that the accuracy of the detection was low; the averages were 40%
and 34%, at the 30 cm and 50 cm camera distances, respectively (Table 2). This was due to
the color similarity between the damaged leaflets and the bagworms (Figures 9 and 10).

Table 2. Color processing performance at different camera distances and conditions.

Camera Distance Condition
Algorithm
Detection

Human
Detection

Detection, %

30 cm
Open 9 19 47

Closed 10 19 53
Half open 4 19 21

50 cm
Open 3 19 26

Closed 7 19 36
Half open 9 19 46

The different camera distances gave different coverage areas of the whole frond. The
farther the distance (50 cm), the wider the area that could be covered on a single frond.
However, it showed poor feature details of the bagworms (Figure 9). Meanwhile, the
closer the distance (30 cm), the better the details were but the coverage area was limited.
This condition might cause problems when the setup is applied in the field, where more
camera snapshots will be needed to cover the whole frond. Based on site measurements, it
was revealed that the 30 cm camera distance needed 9 snapshot sessions and the 50 cm
camera distance required 6 snapshot sessions to cover the whole frond. By applying the
color processing approach, the controlled conditions did not significantly affect the results
(Figures 9 and 10). Although the camera distance was adjusted to 30 cm and 50 cm, the
results had low detection accuracy as shown in Table 2.

The results for bagworms detection using a color processing technique at 30 cm and
50 cm camera distances is shown in Figures 9 and 10, respectively. This colorimetric
approach gave a poor result on detecting bagworms, although, the input images had been
controlled in terms of light source or surrounding light and snapshot distances from the
subject. The HSV (Hue, Saturation, and Value) parameters had been set to their optimum
values, with the lower limits set at [0,0,204] and the upper limits adjusted to [36,255,255],
nevertheless, wrong and missed detections of the RoI were still observed. This was due
to the damaged leaflets having a close intensity and color range with the bagworms [14]
(Figure 11).

Based on Figure 11, the effect of the damaged palm leaflet which had the same color of
the bagworms led to the difficulty to detect the RoI and attributed to the wrong detection
of the bagworms.

221



Agriculture 2021, 11, 1265

  
(a) (b) 

 
(c) 

Figure 9. Object detection based on 30 cm camera distance with: (a) open, (b) closed and (c) half
open areas.

  
(a) (b) 

 
(c) 

Figure 10. Detection based on 50 cm camera distance with: (a) open, (b) closed and (c) half-open areas.

3.2. Stage-3

The results of the deep learning (DL) approach for detecting bagworms, captured at
camera distances of 30 cm and 50 cm are shown in Figures 12 and 13. By adopting this
technique, the detection accuracy improved tremendously as compared to the stage 1 and
2 methods. The green boxes represented the boundary boxes which contained the RoI of
the bagworms. Figures 12b and 13b show better bagworm recognition as compared to the
open and half open areas.
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Figure 11. Wrong detection of targeted objects through the color processing technique.

  
(a) (b) 

 
(c) 

Figure 12. Detection based on 30 cm camera distance through DL with controlled conditions:
(a) open, (b) closed and (c) half-open areas.

The summary results of the DL approach with Faster R-CNN for stage 3 is illustrated
as follows:

From Table 3, it was proven that the DL with Faster R-CNN gave better results. There
was a significant difference in terms of detection accuracy between the 30 and 50 cm camera
distances, where p < 0.05 for the closed condition, as compared to other conditions. It
generated the highest detection accuracy, recorded at 100% and 90%, respectively (Figure 14).
Whereas, there was a slightly low detection at 30 cm and 50 cm camera distances for open
and half open conditions, resulting in 90% and 80% detection. The wrong detection was
observed, 10% and 20%, due to insufficiently strong trained data.

223



Agriculture 2021, 11, 1265

(a) (b) 

 
(c) 

Figure 13. Detection based on 50 cm camera distance through DL with: (a) open, (b) closed and
(c) half-open areas.

Table 3. DL performance to detect bagworms at different camera distances and areas.

Camera Distance Condition
Algorithm
Detection

Human
Detection

Detection, %

30 cm Open 9 10 90 a
30 cm Closed 10 10 100 b
30 cm Half open 9 10 90 a
50 cm Open 8 10 80 a
50 cm Closed 9 10 90 b
50 cm Half open 8 10 80 a

Note: Rows with different letters were significantly different (p < 0.05) after one-way ANOVA using the LSD test.

Based on Figure 14, the different image processing approaches between Stage 1&2
and Stage 3 gave different levels of detection accuracy and it was proven by the one-way
ANOVA analysis with the Least Significant Difference (LSD) test at p < 0.05. By using the
color processing technique, it was revealed that the percentage of the detection accuracy
was low. The highest detection accuracy for the Stage 1&2 methods was recorded at the
55% detection accuracy at the 30 cm camera distance.

Meanwhile, by applying the Stage 3 method (DL), the percentage of detection accuracy
increased up to 100% at the 30 cm camera distance. From both stages’ techniques, it was
revealed that the 30 cm camera distance resulted in better detection performance and
showed more accurate feature details of the bagworms.

Figure 15 shows the results for the bagworm group detection based on their real
sizes at the 30 cm camera distance. The RoI was detected based on the boundary boxes,
which were labelled according to larval group, on Group 1 (G1) and group 2 (G2) that were
tracked in real-time in the field and the results are shown in Table 4. The results of the
algorithm detection correspond reasonably close with the results of human detection. The
correlation coefficients of the detection rate for group 1 and group 2 were 0.914 and 0.891
at standard deviation of 0.581 and 0.162, respectively.

224



Agriculture 2021, 11, 1265

 

Figure 14. Detection accuracy based on different image analysis techniques according to the Stage
1&2 and Stage 3 methods at different camera distances. Note: Bars across a group with the different
letters were significantly different (p < 0.05) after the LSD test.

   
(a) (b) (c) 

Figure 15. Classification of bagworm stages according to features extracted and marked with bounding box: (a) Test 1,
(b) Test 2, and (c) Test 3.

Table 4. Bagworm group classification performance between algorithm and human.

Data
Samples

Algorithm Detection Human Detection Wrong Detection
of G1, %

Wrong Detection
of G2, %Group 1 Group 2 Group 1 Group 2

Figure 15a 3 8 3 8 0 0
Figure 15b 5 10 6 12 17 17
Figure 15c 6 8 6 12 0 33

Based on Table 4, the results of the algorithm detection were comparable with human
detection for group 1 classification, and led to an almost 100% accurate detection. However,
for Group 2 classification, 17–33% wrong detection was recorded due to the inconsistent
distance of the image sensor to the bagworm and the moving orientation of the bagworms
in Group 2.
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3.3. Stage-4

Through motion tracking, the algorithm was able to distinguish between living and
dead bagworms based on motion-tracking. Any motion detected in the bounding box was
classified as a live bagworm. Bounding boxes created from previous detections were used
to indirectly calculate the bagworm sizes and classified them into groups. The results of
the detection of the living and dead bagworms are shown in Table 5.

Table 5. Algorithm performance on the determination of living and dead bagworms according to bagworm group.

Groups
Deep Learning Detection Actual Number of Bagworms Wrong Detection of Live

Bagworms, %
Wrong Detection of
Dead Bagworms, %Live Dead Live Dead

G1 3 1 3 1 0 0
G2 8 5 11 5 27 0

The results in Table 5 showed that the algorithm was able to distinguish between the
living and dead larvae, 100% in Group 1. However, false detection amounting to 27% was
observed when distinguishing Group 2. The reason for false detection is when bagworms
overlapped each other. This false detection can also be a miss-detection because sometimes
bagworms are still alive but they are parasitized.

A Pearson product-moment correlation coefficient was computed to assess the rela-
tionship between the detection of the live and dead G1 larvae using DL algorithm and
manual counting. There was a positive correlation between the two variables (DL algo-
rithm and manual counting), r = 0.961, n = 30, p = 0.002 (live larvae) and r = 0.990, n = 30,
p = 0.003 (dead larvae). A scatterplot summarizes the results (Figure 16).

 
 
 
 
 
 
 
 

 

 

Figure 16. Detection performance of the live and dead G1 larvae by deep learning (DL) and man-
ual counting.

From a scatterplot in Figure 17, there was a positive correlation between the two
variables (DL algorithm and manual counting), r = 0.961, n = 30, p = 0.004 for live G2
larvae and r = 0.982, n = 30, p = 0.002 for dead G2 larvae. Overall, there was a strong or
positive correlation between the detection of the live and dead G1 and G2 larvae via DL
algorithm and manual counting. This indicated that DL algorithm showed a capability
to be used in automatic detection system and able to produce high accuracy compared to
manual counting.
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Figure 17. Detection performance of the live and dead G2 larvae by deep learning (DL) and man-
ual counting.

The results of the living and dead pupae detection were achieved using our custom
machine learning algorithm, which is presented in Table 6. A false color imaging method
was used [15]. From the false color results, distinct differences in the pixel count based
on the slope were observed for the dead (0.34) and live pupae (0.28) in the spectral band
range of 630 nm (Red) and 940 nm (IR). This was possible due to the spectral reflectance
properties between the dead and living specimens (0.38 and 0.26, respectively).

Table 6. Measured slope on reflectance of living and dead pupae specimens using 630 nm and
940 nm wavelengths.

Descriptive
Statistics

Spectral Reflectance False Color Imaging

Live Dead Live Dead

Mean 0.26 ± 0.02 0.38 ± 0.02 0.28 ± 0.02 0.34 ± 0.02
Min 0.26 ± 0.02 0.38 ± 0.02 0.15 ± 0.01 0.30 ± 0.02
Max 0.27 ± 0.02 0.38 ± 0.02 0.46 ± 0.01 0.46 ± 0.01

4. Discussions

In color processing technique, it was revealed that percent detection of the bagworms
was low, ranging from 30–40%. Although variables such as surrounding light effect and
camera distance were controlled and minimized, the results seem to be similar due to
difficulty to differentiate color between bagworm and damage palm leaflet. Within HSV
colorspace, the bagworm color range was searched and Upper and Lower color range
was determined, however, the damage leaflet has a close and same color range which
is brownish color (normal practice observation) [14]. This nature condition contributed
to low detection accuracy of the bagworm through color processing technique. In order
to overcome this constraint, deep convolutional neural networks were practiced and
applied. It has been broadly applied in various challenging and puzzling tasks namely
segmentation [16], classification [17] and object detection [18]. In this study, by applying
a deep CNN, the percentage of detection accuracy was increased, up to 100% (Figure 14).
A closer camera distance resulted in a higher percentage of detection accuracy due to
there being more details in the images. The result was almost the same as reported by
Najib et al. [19], whereby a closer camera distance gave 100% detection accuracy and
better detection performance. However, the imaging environment needs to be properly
controlled to minimize the variables and increase the detection accuracy. Frankly, any
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movement such as shadow, noise and override from surrounding was the main challenge
that needed to be considered and minimized [12]. A high resolution imagery, such as
1600 × 1200 pixels or more, is needed for strong detection. Thus, camera distance plays
an important role to maximize details of the recognized object during snapshot [20]. By
employing the closed conditions at the 30 cm and 50 cm camera distances, the highest
percentages of detection accuracy were obtained, at 100 and 90%, respectively. Furthermore,
the video processing or motion tracking method was applied at the 30 cm camera distance
in the closed condition, with the aspect ratio of the video file being fixed to 16:9 to get
an accurate result. Indeed, by classifying bagworms according to groups, the algorithm
was able to successfully distinguish between the stages of the bagworms, which relied
on a bounding box that possessed the orientation and stage of the bagworms. According
to Gutierrez et al. [21], the best approach based on pests, Bemisia tabaci and Trialeurodes
vaporariorum detection and identification accuracy is investigated using machine learning
and deep learning models. By applying the ML algorithms, K-nearest neighbour (KNN)
and Multilayer Perceptron (MLP), the best healthy and unhealthy pest detection average
rate were obtained with an accuracy rate of 63.8% and 64.9%, respectively. Whilst, the
DL algorithm was getting an accuracy rate of 85.5% for the pest detection, implying that
the DL technique is a better solution than the ML technique. Ding and Taylor [22] has
carried out a DL with a neural network model to detect, categorize and count the moths
population and attained a good result. By working under idyllic experimental settings, it is
predicted that the model can obtain better results, although, the sunlight and obstructions
might affected the images quality. Then, Xie et al. [23] has integrated a sparse-coding
method for encrypting insect images using a multi-kernel learning (MKL) approach to
make an insect detection system, whereby obtained a mAP (mean average precision) result
of 86% for 24 type of insects in the fields. Another approach was compared through a
supervised classifier, which was generated and developed by Diago et al. [24] to portray the
grapevine canopy, measured leaf area and yield by using RGB images, with referred to the
Mahalanobis distance. The segmentation algorithm was successfully discriminate the leaves
and grape cluster with 92% and 98% accuracy, respectively. The contrast between object,
black grapes with leaves and surrounding determined the performance of segmentation.
Another study done by Nuske et al. [25], successfully applying the image processing
technique to estimate yield in the vineyard. Based on their results, different light conditions
demonstrated an excellent color features and texture condition descriptors, aiming for
grape bunch segmentation. With an average error between 3 to 11%, the total yield could be
well projected. In addition, Xia et al. [26] reported that small insect pests detection should
be carried out under controlled light conditions due to variable illumination effects. High
resolution imagery such as 1600 × 1200 pixels or more is needed for strong detection. The
visible imagery had a higher resolution and was able to display more detailed features, such
as the target geometry and localization to discriminate the background. Furthermore, the
Faster R-CNN which was created from SPP-Net, achieved bold-alteration performance in
accuracy, speed and accomplish end-to-end networking as part of the main object detection
work [27]. The convolutional layers create a set of anchors at diverse scales and aspect
ratios, predicting the bounding box coordinates together with a probability score and
determining the region whether it is an object or background. Through the feature maps,
the anchors are developed by spatially sliding a 3 × 3 window. Then, these features are
applied for object classification and bounding box regression layers, whereby it functions
to determine or verify whether the region proposal is a targeted object or just a background.
Meanwhile, the bounding box is forecasting the coordinates of the region. In our study,
further analysis by pixel counting under greyscale images resulted in different slope values
for both pupae, which successfully gave positive results, with an 89% detection accuracy.

5. Conclusions

We can conclude that a 4-stage image processing algorithm can be used to detect
bagworms. Deep learning with Faster R-CNN is a feasible, practical, and reliable method
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for bagworm detection. An accuracy of 100% detection is possible as demonstrated by the
accuracy achieved in stage 3 of the algorithm. A camera distance of 30 cm, in a controlled
lighting environment resulted in the highest percentage of detection accuracy. The motion
tracking and false color approaches have successfully distinguished between the living
and dead larvae and pupae, respectively, with up to 100% and 89% accuracy.
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Abstract: The agricultural sector remains a key contributor to the Moroccan economy, representing
about 15% of gross domestic product (GDP). Disease attacks are constant threats to agriculture and
cause heavy losses in the country’s economy. Therefore, early detection can mitigate the severity
of diseases and protect crops. However, manual disease identification is both time-consuming and
error prone, and requires a thorough knowledge of plant pathogens. Instead, automated methods
save both time and effort. This paper presents a contemporary overview of research undertaken
over the past decade in the field of disease identification of different crops using machine learning,
deep learning, image processing techniques, the Internet of Things, and hyperspectral image analysis.
Additionally, a comparative study of several techniques applied to crop disease detection was carried
out. Furthermore, this paper discusses the different challenges to be overcome and possible solutions.
Then, several suggestions to address these challenges are provided. Finally, this research provides a
future perspective that promises to be a highly useful and valuable resource for researchers working
in the field of crop disease detection.

Keywords: machine learning; deep learning; image processing; hyperspectral image analysis

1. Introduction

Agriculture is the mainstay of many countries. Due to population growth, the demand
for food is steadily increasing. To satisfy this pressing need, it is necessary to increase agri-
cultural productivity and protect crops. Nevertheless, crops are highly prone to different
diseases due to a large number of pathogens present in their environment. Some of these
disease pathogens are virus organisms, whereas others are fungal or bacterial [1]. Crop
diseases can reduce productivity by 10% to 95% [2], resulting in a significant decrease in the
quantity and quality of agricultural production. Therefore, early identification of diseases is
crucial to avoid huge losses and reduce the excessive use of pesticides, which can harm hu-
man health and the environment. In most cases, and especially in developing countries and
small farms, farmers identify crop diseases with the naked eye based on visual symptoms.
This is a tedious task that requires expertise in plant pathology and excessive treatment
time [3]. Moreover, if the field is attacked by a rare disease, farmers seek expert advice to
obtain an accurate and efficient diagnosis, which obviously generates additional treatment
costs [4]. Thus, this method of visual observation is not practical and feasible for large farms
and may even yield erroneous predictions due to biased decisions [5]. The restrictions of the
traditional approach have motivated researchers to develop technological proposals for the
early identification of crop diseases in an accurate, fast, and reliable manner, and in order
to meet the increasing demands of consumers and alleviate the environmental impact of
chemical inputs on the environment and health. In this regard, several methods [6–9] have
been proposed to automate the process of disease detection. These methods for automatic
recognition of crop diseases are divided into two groups, direct and indirect methods [10].
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Direct methods comprise molecular [11] and serological techniques [12,13] that provide
accurate and direct detection of the pathogens triggering the disease, although these tech-
niques require a significant amount of time for the collection, processing, and analysis of
the collected samples. By comparison, optical imaging techniques [14,15] are among the
indirect methods that are able to identify diseases and predict the health of the crop through
different parameters such as morphological change and transpiration rate. Fluorescence
and hyperspectral imaging [16] are some of the most widely used indirect methods for
early disease identification. Although hyperspectral images are a valuable source of data
and contain more information than ordinary photos [17], hyperspectral devices are very
expensive, bulky, and difficult to obtain for low-income farmers. Alternatively, other types
of digital cameras are available at reasonable prices in electronics stores. As a result, most
of the automatic identification processes considered so far are focused on visible domain
images, which enables the use of very accurate and fast algorithms. Hence, this review
focuses on various approaches based on image processing techniques and spectroscopy for
automatic crop disease detection using numerous approaches and algorithms using deep
and machine learning, fuzzy logic, and transfer learning.

The main objectives of this paper are, first, to identify the major issues that have
not yet been properly explored in previous studies on the automation of the disease
recognition process; and, second, to highlight future directions that may help circumvent
these challenges. The upcoming sections are structured in the following order. Section 2
provides an insight into the current state of the art in disease recognition. Then, Section 3
is devoted to the comparative study of the various techniques used, identifying their
advantages and drawbacks, followed by Section 4, in which the results are discussed and
analyzed. In Section 5, the gaps in the existing literature are addressed. These shortcomings
constitute possible avenues to explore in future research, which is addressed in Section 6.
Eventually, the conclusion is drawn in Section 7.

2. Background

Manual identification of crop diseases is both fastidious and inaccurate, meaning it
is only feasible in small farms [5]. In contrast, automatic disease detection is significantly
more accurate and takes less time and labor [18]. As a result, numerous studies [19–22]
have been conducted and are discussed in detail below. This section provides a review of
different techniques applied in the identification of crop diseases, presents the taxonomy of
various crop diseases, and describes the concept of image processing and machine learning.
It also demonstrates the application of hyperspectral imagery, the Internet of Things, and
deep and transfer learning in the field of disease recognition.

2.1. Taxonomy of Crop Diseases and Their Symptoms

The leaves of crops are highly prone to diseases, which are a natural phenomenon [23].
However, if corrective measures are not taken at the right time to stop the spread of
the disease, it leads to a significant reduction in the quality and quantity of agricultural
products [24]. Crops are affected by various pathogens [1] such as viruses, bacteria, fungi,
and deficiencies. Thus, the pathogens responsible for the disease are classified into two
categories [25]: autotrophs, which thrive on living tissue, or saprophytes, which dwell on
dead tissue. The symptoms of the disease adversely affect the development and growth of
crops and are easily visible. Leaf discoloration is the first symptom of disease in plants. In
addition, the shape and texture of the leaves are highly useful in detecting various diseases.
Therefore, different diseases, such as mildew, rust, and powdery mildew, can be detected
by processing images of the leaves [26,27].

The following is a brief description of the three common types of plant diseases [28]
that are illustrated in Figure 1 and described in Table 1:

• Virus diseases [1]: Among all plant diseases, those caused by infection are difficult to
identify and diagnose; moreover, these symptoms are mistaken for signs of nutritional
deficiency or injury, as there is no preconceived indicator that can be constantly
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monitored. Whiteflies, leafhoppers, aphids, and cucumber crawling insects are regular
carriers of virus diseases.

• Fungal diseases [1]: Foliar diseases are caused by a fungus, such as downy mildew,
anthracnose, and powdery mildew. It initially appears on old lower leaves, which
have gray-green spots or are soaked in water. As the parasite matures, these spots
darken and cause fungus to grow on them.

• Bacterial diseases [1]: Pathogens cause serious diseases in vegetables. They do not
directly enter the vegetation, but rather through injuries or apertures in the crop. Crop
injuries result from various pathogens, insects, and agricultural implements during
tasks such as picking and pruning.

Figure 1. Different types of pathogens: viruses, fungi, and bacteria.

Table 1. Classification of some leaf diseases with their symptoms.

Plant Leaf Diseases Symptoms Pathogen Category

Rice
- Brown spot/Bipolaris oryzae
- Blast leaf/Pyricularia oryzae Cavara

- Whitish-gray center
- An irregular dark brown - Fungi

Cotton

- Faliar leaf/Stemphylium solani
- Areolate mildew/Cercospora
- Leaf spot/Alternaria spot
- Bacterial blight/Xanthomonas campestris

- Spot of light-yellow color with dark
brown margins

- Tanned brown spot
- Circular dark brown leaf spots to black
- Halo yellowish green

- Fungi,
bacterial,

- virus
- Fungi
- Fungi
- Bacterial

Citrus
- Melanose/Diaporthe citri
- Greasy spot/Amycosphaerella africana
- Canker/Xanthomonas citri subsp

- The leaf becomes rough to the touch
- Blister yellowish-brown
- Includes flattened, swollen, cracked, round

to irregular sunken

- Fungi
- Fungi
- Fungi,

bacterial

Tomato

- Early blight/Alternaria tomatophila
- Late blight/Phytophthora infestans
- Powdery mildew/Leveillula taurica
- Yellow curl/tomato infectious chlorosis virus

- Dark ring spot around it yellow
- The dark spot is growing rapidly
- Curly and yellowish leaf
- Soaked in the water ringed by a yellow halo

- Fungi
- Fungi
- Fungi
- Virus

Maize - Stalk rot/Erwinia carotovora - Yellowing of dull green leaves and the
lower parts of the stem - Fungi

Wheat
- Rust/Puccinia triticina Erikss.
- Powdery mildew/Blumeria graminis
- Bacterial blight/Pseudomonas syringae

- Pale leaves spots
- While gray or brown spot
- Halo yellowish green

- Fungi
- Fungi
- Bacterial

Watermelon
- Anthracnose/Colletotrichum obiculare
- Downey mildew/Pseudoperonospora cubensis

- Irregular yellow patches
- Yellow to white spots - Fungi

2.2. Application of Machine Learning and Image Processing in Disease Identification

Foliar images are an excellent and rich source of data on plant pathology and mor-
phological behavior; thus, these data must be thoroughly extracted and analyzed. Image
processing plays [28] a crucial role in the diagnosis and analysis of leaf diseases. The proce-
dure adopted in this leaf disease identification process is illustrated in Figure 2, showing
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an insight into the different techniques employed by the authors to detect the disease by
means of image processing and artificial intelligence.

Figure 2. Different approaches for the identification of leaf diseases.

The primary step [29] in identifying diseases is the acquisition of images. In most cases,
images can be fetched either from a digital camera or an imaging system. As raw images
tend to contain noise, removing these impurities is required. As a result, the second step
is known as image pre-processing, and involves the removal of unwanted distortions, in
addition to contrast enhancement, to clarify and brighten the image features. For example,
a Gaussian function that creates soft blur is commonly used to lessen the noise in the image.
Subsequently, image segmentation [30] is the third step in which the image is segmented
from its background, whereas the region of interest (ROI) is partitioned to emphasize the
prominent features. The fourth step is feature extraction [31], which unveils the information
and details of an image. As a side note, the leaf features usually include shape, texture,
and color, which are used to diagnose the crop. Thus, these chosen features form an
input feature vector which is then fed into the classifier. Using this vector, it is possible to
discriminate one class of objects from another. The final step is classification [32]. Note that
the choice of a suitable classifier depends on the specific problem. The classifier’s aim is to
recognize the images by sorting them into several predefined classes based on the resulting
feature vector obtained in the fourth step. For this purpose, the classification task contains
two phases, namely, training and testing. The training operation trains the classifier on
a training dataset; thus, the greater the number of training sets, the better the accuracy
obtained. It should be noted that the result, which is the crop’s healthy state or diseased
state associated with the species name, must be achieved as swiftly as possible.

2.3. Application of Deep and Transfer Learning in Disease Recognition

Over the past decade, deep learning [33–35] and transfer learning [19,36] applications
in agriculture have gained widespread success and yielded highly promising outcomes due
to their capability to reliably learn and discern visual features. Numerous intriguing stud-
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ies [33,35,37–40] have been published on the employment of these promising approaches for
identifying diseases. Of particular note, the use of transfer learning is a trend that is becom-
ing increasingly popular and is widely used by researchers [41,42]. Furthermore, transfer
learning is not a sole technique, but rather a set of fine-tuned techniques, which enables the
development of highly accurate models on a more restrictive specialized dataset, such as
those for plant diseases. Mohanty et al. [43] showed that the fine-tuning approach is far
better than a CNN model that is trained from scratch. Another model is the Neural Network
(NN), which is broadly employed and recommended to analyze hyperspectral data for the
premature detection of diseases. Its basic mechanism was inspired by the human nervous
system, and it possesses specific capabilities such as learning and generalization that aid
in crop disease diagnosis. In contrast to other machine learning methods, it has a more
accurate diagnostic capability because it is better able to combine training sets. Another
similar comparative study was undertaken by Zhu et al. [44], wherein back-propagation
neural networks (BPNNs) were tested with the support vector machine (SVM), random
forest (RF), latent Dirichlet allocation (LDA), extreme learning machine (ELM), LS-SVM,
and partial least squares discrimination analysis (PLS-DA) for pre-symptomatic detection
and classification of tobacco mosaic virus (TMV) disease with the use of hyperspectral
imaging. Similarly, Zhu et al. [45] studied the feasibility of hyperspectral imaging as a
non-invasive technique for early detection of TMV disease with machine learning classifiers
and the variable selection technique. The results revealed that the back-propagation neural
network model (BPNN) achieved 95% accuracy, whereas the chemometric models achieved
an accuracy of 80%. It is worth mentioning that it is possible to implement pattern identifi-
cation methods such as the random forest and support vector machine by utilizing a new
pattern recognition technique, named the Artificial Intelligent Nose. Cui et al. [46] provided
a review of different invasive and non-invasive techniques, including their advantages
and drawbacks, in which the authors noted that the smart nose is a non-invasive and fast
method for plant disease diagnosis. In essence, neural networks ensure the highest quality
and unaltered spectral information for hyperspectral data analysis. The most well-known
study of the ANN spawned the concept of deep learning, which has recently become
popular in farming applications. Deep learning has received increasing and widespread
interest from many researchers, particularly since 2018, as shown in Table 2. Researchers
have made remarkable progress in crop image classification; some of the most typical
and representative models are the convolutional neural network (CNN), auto-encoder
(AE) recurrent neural network (RNN), and restricted Boltzmann machine (RBM). Many
fascinating studies have been published on deep learning for crop disease classification
and detection. Among these works, that of Ma et al. [47] presented a deep convolutional
neural network (DCNN) model able to detect over four types of cucumber disease. In a
comparison with other traditional methods, such as the support vector machine, naive
Bayes, and AlexNet, the DCNN was capable of identifying the different cucumber diseases
with very high accuracy of up to 93.41%. Similarly, Tran et al. [48] offered a monitoring
system for tomato growth and to maximize tomato yield. This system was able to classify
nutritional deficiencies and diseases during growth. Thus, agricultural experts evaluate the
symptoms based on the results to protect tomato crops. In a similar manner, to effectively
monitor apple tree growth at each stage and estimate the yield, Tian et al. [49] deployed a
dense YOLOV3 model that utilizes techniques for data augmentation to prevent overfitting.
Their approach was found to be valid and applicable to apple orchards, although their
study included wavy lights, interlaced fruit, and complex backgrounds.
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Table 2. A brief summary of different research on transfer and deep learning since 2018 for identifying
crop diseases.

Year Authors Model
Dataset

Accuracy
Crop Name Nb of Classes Nb of Images Name of Dataset

2020 Singh et al. [37] MobileNet, R-CNN 13 types 27 2598 PlantVillage 70.53%

2020 Al-bayati et al. [38] DNN, SURF, GOA Apple 6 2539 PlantVillage 98.28%

2019 Arsenovic et al. [39] CNN-Multichannel 12 species of crops 42 79,265 PlantVillage 93.67%

2019 Costa et al. [40]
InceptionV3 and CNN
using a Hierarchical
Approach

Apple,
Tomato, peach 16 24,000 PlantVillage 97.74%

2019 Geetharamani et al. [35] 9-layer deep CNN 14 species of crops 39 61,486 Leaf disease dataset 96.46%

2018 De Luna et al. [50] CNN, Faster R-CNN Tomato 4 4923 Own 91.67%

2018 Ferentinos et al. [33] Overfeat, VGG16,
AlexNet 25 species of crops 58 87,848 Open Dataset 99.53%

2.4. Hyperspectral Imaging Applied to Disease Recognition

The hyperspectral imagery method has been strongly developed during the past two
decades [51], and used to identify abiotic and biotic stresses in cultivated plants [52]. Hy-
perspectral imaging is a technique combining spectroscopy and imagery, making it possible
to simultaneously obtain the spatial and spectral information of an object. Disease infection
causes changes in plant biochemical and biophysical properties, such as transpiration rate,
tissue structure, water, and pigment content. These changes can then alter plant spectral
properties, intercellular space, and water content [53]. However, the hyperspectral system
is able to capture these spectral features. Zhu et al. [44,45] conducted a similar study to
detect TSWV infection growth in tobacco, in which the authors reported that hyperspectral
reflectance was gathered in the visible and near-infrared range to distinguish between
healthy and infected TSWV tobacco leaves using statistical analysis methods. Primarily,
the TSWV presence was identified at 14 DPI. Moreover, Zhu et al. [45] demonstrated that
hyperspectral imaging is able to detect the tobacco mosaic virus (TMV) infection before
showing any symptoms, while utilizing SPA for the selection of the effective EW wave-
length and, most significantly, for identifying various diseases. Due to the huge number of
spectral values that are highly correlated in the hyperspectral dataset, high dimensionality
and multi-collinearity frequently appear in hyperspectral data [54,55]. Accordingly, the
selection of EWs is crucial for hyperspectral analysis in order to lessen the computational
complexity, increase the efficiency of using hyperspectral data, and reduce the computa-
tional complexity. Thus, to address this multi-collinearity issue, a variety of approaches and
methods have been presented, such as the successive projection algorithm (SPA) [45,56],
partial least squares regression (PLSR) models [54] and genetic algorithms (GAs).

2.5. Application of IoT in the Field of Leaf Disease Recognition

The Internet of Things (IoT) has improved agricultural capabilities. IoT applications
can help farmers at any time during their farming activities and keep them updated with
the latest crop and weather information to remotely monitor their fields. By means of IoT
applications [57–59], farmers can make plans for the next season’s harvest. Furthermore,
they can detect crop diseases at an early stage to curb the spread of disease and save their
yield. Agricultural IoT apps clearly play a major role in increasing agricultural production
and decreasing crop losses due to diseases. In this context, a large amount of research has
been conducted to identify diseases, as shown in Table 3. Truong et al. [60] devised an
IoT-based system made up of various devices that is able to deliver real-time environmental
information and send it to the cloud to be stored. These environmental data are processed
and scrutinized to predict weather conditions by means of the SVM algorithm deployed
in the cloud in order to detect crop fungal diseases. In addition, better results have been
achieved when the Internet of Things and image processing have been combined and
implemented in the area of disease recognition. Krishna et al. [58] implemented an IoT
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system featuring SMS alerts that enables automatic disease detection and pesticide spraying
using the NodeMCU.

Table 3. Summary of the literature survey on Internet of Things systems.

Researchers Detection Techniques and Algorithms Parameter Evaluation

M. Mishra et al. [39]
2021

An IoT-based automated plant disease monitoring and
detection system, using the median filter and a modified
optimizer called the SCA-based RideNN Cycling
Neural Network

The RideNN model based on SCA achieved accuracy of 91.56%

Devi et al. [37]
2019 IoT system using GLCM, RFC, and k-means clustering The overall accuracy of disease detection and classification

based on RFC-GLCM was almost 99.99%

Krishna et al. [38]
2019 IoT system using SVM and k-means clustering An immediate SMS alert to the farmer

Chen et al. [36]
2019 RiceTalk platform using an AI model and IoT devices Net prediction accuracy was 89.4%

Win et al. [41]
2018

IoT-based remote rice monitoring IoT system using deep
learning and transfer learning Real-time monitoring of environmental parameters

Truong et al. [40]
2017 IoT system using SVM Real time analysis

3. Comparison of Various Crop Disease Detection Techniques

The primary objective of this section is to provide an overview of research carried
out during the past decade for identifying crop diseases. Table 4 provides an outline of
several methodologies adopted by researchers in the field of crop disease using machine
learning, image processing, the Internet of Things, transfer learning, and deep learning
techniques. It also indicates the limitations and gaps that need to be filled to help develop
an automatic, efficient, accurate, and faster system in the future. Thus, in the conducted
research, the authors conclude that deep learning provides accurate and highly promising
results compared to other classification and detection methods. Additionally, the use of
preprocessing techniques significantly improves segmentation accuracy. The k-means
algorithm is the most widely and commonly used technique [29,58,61–63] for segmenting
diseased leaves and classifying crop diseases. In practice, no generalizable algorithm is
able to solve all issues, so choosing a suitable learning algorithm for a specific problem
is a crucial step for the model efficiency. Note that the extracted texture features are
the most relevant and most useful for representing the disease-affected regions in the
images, which are then employed to train the support vector machine (SVM) and neural
network (NN) classifier. It is further emphasized that these texture features are arithmetical
parameters that are automatically calculated by means of the gray level co-occurrence
matrix (GLCM) [64,65], as stated below:

1. ASM: The second angular momentum that stands for the total sum of squares in the
GLCM.

Energy = ∑N−1
i,j=0

(
Pi,j
)2 (1)

2. Contrast: Denotes the sum of the difference in local intensity, where i �= j.

Contrast = ∑N−1
i,j=0 Pi,j(i − j)2 (2)

3. Entropy: The quantity of image information necessary for the compression.

Entropy = ∑N−1
i,j=0 − ln

(
Pi,j
)

Pi,j (3)

4. Correlation: Refers to the linear dependence of the adjacent pixels’ gray levels.

Correlation = ∑N−1
i,j=0 Pi,j(i − μ)(j − μ)/σ2 (4)
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where Pi,j is the i, j component of the GLCM normalized symmetric matrix and N denotes
the number of gray levels. σ2 is the intensity variation of all pixels as given below:

σ2 = ∑N−1
i,j=0 Pi,j(i − μ)2 (5)

Moreover, the average of GLCM is μ given by:

μ = ∑N−1
i,j=0 iPi,j (6)

5. Homogeneity feature: Represents the homogeneity of the voxel pairs of the gray level,
and is equal to 1 for a diagonal GLCM.

Homogeneity = ∑N−1
i,j=0 Pi,j/1 + (i − j)2 (7)

Ultimately, the models for identifying and classifying crop diseases were evaluated
by means of various metrics, which were specific to the model used in each study, such
as sensitivity, precision (P), recall (R), quality measure (QM), and F1-score. The statistical
evaluation measures used to analyze the quantitative performance of crop disease detection
models with deep and transfer learning can be calculated as follows:

Precision =
TP

(TP + FP)
(8)

where Precision (P) is the fraction of true positives (TP) to the total amount of relevant
results, that is, the sum of TP and false positives (FP). For multi-class classification problems,
P is averaged across the classes.

Sensitivity =
TP

(TP + FN)
(9)

Sensitivity/Recall (R) is the fraction of TP to the total amount of TP and false negatives
(FN). For multi-class classification problems, R obtains the average of all classes.

Speci f icity =
TN

(TN + FP)
(10)

Specificity is the proportion of true negative (TN) samples to all healthy samples (true
negatives and false positives). This measure is utilized to evaluate the performance of a
proposed model in forecasting true negatives.

Accuracy =
TP + TN

(TP + TN + FP + FN)
(11)

Accuracy is the proportion of correctly classified samples to the total number of clas-
sified samples. This measure is employed to assess the overall performance of a sug-
gested model.

F1_score =
2 × (Sensitivity × Precision)
(Sensitivity + Precision)

(12)

F1-score is the harmonic average of both precision and recall. For multi-class classifica-
tion problems, F1 is averaged across all classes, where:

TP: represents the number of true positive image samples that are perfectly identified as infected.
FP: is the number of false-positive image samples that are incorrectly classified as infected.
TN: is the number of true-negative image samples that are correctly classified as healthy.
FN: is the number of false-negative image samples that are incorrectly identified as uninfected.
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As revealed in the previous studies [66], it was found that accuracy was the most
widely adopted metric; it was widely used in 72% of the articles reviewed, followed by
the confusion matrix, then precision, recall, and the F1 measures. Some research has
examined the root mean square error (RMSE), mean absolute error, R-squared, and mean
squared error (MSE), among others. The authors note that it is difficult, if not impossible,
to make a comparison across papers because different metrics were used for different tasks,
different models, datasets, and parameters; in addition, different crops and diseases were
analyzed under different conditions. Furthermore, it is very important to examine whether
the researchers tested their implementation on an identical dataset (e.g., by splitting the
dataset into training and validation sets), or whether they used different datasets to test
their solution.

Table 4. Related work in the area of crop disease identification.

Title Methodology Advantages Disadvantages

Tomato plant disease detection using
transfer learning with C-GAN

synthetic images
(Abbas et al., 2021)

[19]

This research paper provides a DL-based method
for detecting tomato disease that uses the C-GAN
to generate the synthetic images of tomato leaves

for data augmentation purposes. Then, a
pre-trained DenseNet121 model is fine-tuned on

synthetic and real images to classify tomato leaves
images into ten disease categories.

- The proposed method reached an accuracy of up to
99.51%, 98.65% and 97.11% in classifying tomato
leaf images to the categories of 5, 7 and 10,
respectively. It is shown that this method
outperforms the current methodologies.

- The C-GAN prevents overfitting and
- enhances the network generalization

- The tomato disease detection was executed on the
leaves, but other plant areas such as stems, and
branches must be highly involved.

- The study was only done on tomato plant disease.

MEAN-SSD: A novel real-time detector
for apple leaf diseases using improved

light-weight convolutional
neural networks

(Sun et al., 2021) [21]

- This paper proposes a lightweight CNN
detection model suitable for mobile
device deployment, namely MEAN-SSD,
to detect apple leaf diseases in real time.
Data annotation and augmentation
techniques were used to generate 26,767
disease spot images for training by
collecting 2230 original images with
simple backgrounds from the laboratory
and complex backgrounds images
collected from the orchard.

- The model is capable of automatically
extracting the features of five common
disease spots from apple leaves.

- The results showed that the MEAN-SSD model is
able to detect apple diseases accurately by reaching
83.12 mAP and a speed of 12.53 FPS.

- The MEAN block is used as a basic module to boost
the detection speed and shrink the model’s size.

- Disease detection was only devoted to apple leaf
diseases and more specifically to 5 types of disease
spots, such as Brown spot, grey spot, Mosaic,
Alternaria blotch, and Rust.

Detection of oil palm leaf disease based
on color histogram and

supervised classifier
(Hamdani et al., 2021)[20]

- A new method for detecting oil palm
leaf disease is proposed in this paper to
discriminate between two leaf classes:
healthy and diseased. Then, feature
extraction is carried out in the RGB (R,
G, and B), LAB (a and b), HSI (H and S),
and HSV (H and S) color spaces by
splitting the histogram of the 8-bin color
channel. This is further performed on
the segmented leaf regions resulting
from the k-means clustering. A total of
41 selected features are produced using
PCA and subsequently fed into the
ANN classifier.

- The classification results have shown that the
proposed method performs satisfactorily, as
evidenced by the high specificity, sensitivity, and
accuracy values, which reach 100%, 99.3%, and
99.67% respectively.

- The applied method produces a smaller number of
features with discriminatory and more
powerful characteristics.

- According to the classification outcomes, an error
occurred due to a leaf being misclassified as a
healthy one.

- The study was only conducted on the oil palm
leaf disease.

Detection of Rice Leaf Diseases Using
Image Processing

(Pothen et al., 2020)
[22]

The proposed system identifies three diseases
(bacterial leaf blight, leaf smut, and brown spot)

that affect rice plant leaves using IP and ML
techniques. This system, in turn, helps farmers

save their crops at an early stage. As a first step in
the process sequence, the images are collected and

further pre-processed to ensure that the image
features are upgraded and undesired distortions

are eliminated, followed by segmenting the
images through the Otsu thresholding algorithm.
Using the segmented area, a range of features are

extracted using the LBP and HOG. Then, these
obtained features are classified using the SVM and

reached 94.6%.

- SVM + HOG with polynomial kernel function can
be used to detect other plant diseases.

- The proposed work is relevant, offering better
precision (of 94.6%) compared to other work.

- One downside of the LBP fundamental operator is
its inability to capture certain prevailing features.

Image Processing Technologies for
Automatic Detection of Plant Disease

and Alerting System in
Agricultural Farms

(Mugithe et al., 2020) [7]

The authors developed a system able to detect leaf
diseases and alert the farmer in case of the need to

promptly act to circumvent the spread of the
disease in the field. They employed IP techniques
that entail six steps. Firstly, the leaf images were

taken in real time via a webcam connected to
RaspberryPi. Secondly, the images were

pre-processed, segmented, and clustered using the
k-means clustering algorithm, then features (e.g.,

perimeter and light intensity) were retrieved from
the images. Lastly, these extracted features were
evaluated to classify the leaf diseases. Once the

disease is detected, the buzzer rings and an alert is
generated so that the farmer can intervene

promptly. Note that this system works in two
ways, namely in the GUI and in real time.

- The results of the disease Alternaria Alternata
achieved precision of 95.16313% in the
graphical interface.

- The use of a warning system when detecting
a disease.

- The authors did not address any other disease and
not even the reported results are obvious.
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Table 4. Cont.

Title Methodology Advantages Disadvantages

Plant Disease Detection Using Internet
of Thing (IoT)

(Usman et al., 2020)
[67]

This paper presents the innovation of the IoT in
agricultural infection and insect pest control. Data
on insects and diseases are collected using a WSN,
so an IoT-based control framework was proposed

to obtain horticultural data from a farm with
levels of trees and three frameworks. First, a

computation framework was deployed to deem
whether the plant is healthy or affected and

second, an automated framework determined the
disease closeness in the plants, and a mechanized

framework was then set up to recognize the
diseases through humidity, temperature, and
shade sensors. Thus, through its sensors, the

plants’ progress is registered and then dissected
using Arduino programming. Then, this collected
information is transmitted to the cloud by WIFI to

be processed and analyzed. Eventually, this
information is compared to the whole data to

determine if the studied plant is healthy
or affected.

- The proposed IoT-based model is low-cost.
- Low-income farmers can purchase it and take

benefit of it for curtailing the disease spread.

- The authors restricted their model to only the three
following parameters: temperature, moisture, and
leaf shade. Another constraint is that the evaluated
features for the considered parameters are not
accurate. Moreover, a range of features was taken
from these parameters that may fluctuate
unexpectedly depending on the
environmental conditions.

- The leaves of diseased plants are not classified, so
the disease types are still not able to be known.

Detection of Plant Leaf Disease using
Digital Image Processing

(Mojjada et al., 2020)
[29]

This article focuses on the early identification of
plant leaf diseases by image analysis. Thus,

automated disease detection reduces the work for
monitoring agricultural sites. The identification of

diseases is carried out through various IP
techniques and ML; in particular, a genetic

optimization algorithm was used after image
segmentation by k-means to obtain optimized

results and they also exploited SVM for
disease classification.

- The algorithm used was tested with an accuracy of
75% in five classes of infected leaf images identified
for corn, tomato, bell pepper, peach, and grape.

- Very common methods were used in the paper.

Precision Method for Pest Detection in
Plants using the Clustering Algorithm in

Image Processing (Reddy et al., 2020)
[68]

This work presents an accurate method for
detecting pests in plants using the k-means

clustering algorithm. Disease recognition involves
steps such as image acquisition, image

preprocessing, segmentation, and classification.
First, the RGB leaf images were converted to HSV

for partitioning, and then the median filter and
boundary detection algorithm were both applied

during the pre-processing step to suppress the
clamor. Finally, the k-means clustering was

employed to cluster the images.

- This paper provides an efficient and accurate
framework for the detection of affected images.

- The k-means clustering provides high accuracies
compared to other methods and takes less time for
the processing.

- Very typical and old techniques were considered in
this paper.

Detection and Classification of Plant
Diseases Using Image Processing and

Multiclass Support Vector Machine
(Khan et al., 2020)

[69]

The authors described a framework for plant
disease using ML and IP techniques. First, the
suggested algorithm is applied to a 148-image

dataset which contains 5 types of leaves diseases,
namely, Alternaria, fire blight, Anthracnose, and
Cercospora leaf spot, and the plant images were
split up into two sets. A training set is composed
of 73 images and a testing set is composed of 75

images. Then, image segmentation is performed to
isolate the pathogenic parts of the leaf. Then, 13

texture features were extracted from the image, of
which, nine features (standard deviation, variance,
mean, entropy, smoothness, skewness, RMS root

mean square, inverse difference, and kurtosis) are
calculated using the assigned segment in RGB

color space. The other four features (homogeneity,
contrast, energy, and correlation) are determined
from a grayscale image. Finally, the healthy and

diseased leaves are classified based on the feature
vector extracted using SVM.

- The obtaining results for plant disease detection
showed that the proposed method yields a highly
accurate rate of up to 92.8571%.

- The intervention of the operator is crucial to select
the segment affected by the disease because this
operation is not automatically executed in the
system rather, it is performed by visual examination
of the three segments.

Evolutionary feature optimization for
plant leaf disease detection by deep

neural networks
(Al-bayati et al., 2020)

[38]

The researchers used a DNN for apple leaf disease
identification, namely black rot, apple scab, and

cedar rust, by applying the GOA and Robust
Accelerated Feature SURF, where GOA was

employed for feature optimization and SURF was
applied for feature extraction. Prior to the
implementation of DNN, many steps were

performed, such as the image improvement in the
pre-processing process and the ROI segmentation.
Then, the features were extracted using the SURF

descriptor, followed by the optimization by the
GOA algorithm, and, finally, the disease

classification was carried out by the use of DNN.

- The experiments showed that the method based on
DNN optimized by SURF provides a higher mean
value of 98.28% in comparison with the other
techniques; hence the accuracy of the model
increases by 18.03%. Thus, the basic model has
better transferability compared to the metric model.

- Only foliar diseases of apples were addressed in
this paper.

Leaf Disease Detection using Image
Processing (Karthikeyan et al., 2020) [65]

This research used IP techniques along with the
SVM classifier to detect plant diseases. The

identification of plant diseases requires the steps
of transforming an RGB image to grayscale, then

enhancing the image using the adaptive color
histogram AHE, extracting 13 textural features

using the GLCM and, finally, using SVM to
classify the different types of diseases. Note that

more than 500 images were taken for training and
testing with intensity values ranging from 0 to 255.

- The system reveals the presence of disease in the
leaves in a shorter time and at a lower cost than
conventional systems.

- The accuracy rate is not given; also, the structure of
the algorithm is complicated.

Plant disease detection using
image processing

techniques(Sawant et al., 2020)
[70]

An IM and DL techniques-based approach was
proposed for plant disease identification. First,
pictures of healthy and unhealthy leaves are
acquired and then stored in the database for
preprocessing. Additionally, the images are

pre-processed using different techniques such as
histogram equalizer, Contrast Limited AHE, and

image resizing. Then, once the RGB image is
converted to CLAHE, it is resized to 70 × 70 for
better resolution. Moreover, the leaf features are

extracted and released to the CNN using the
SoftMax function for plant disease classification.

Note that the first layer has 1000 neurons.

- The CNN method enables accurate detection and
classifies diverse plant diseases using IP techniques. - Results were not provided in this paper.
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Table 4. Cont.

Title Methodology Advantages Disadvantages

Convolutional neural network for
automatic identification of plant diseases

with limited data
(Afifi et al., 2020)

[6]

Several approaches were developed in this study
to identify plant diseases with little data. A DAML

and triplet network approach was set up using
three architectures of CNN (ResNet50, 34, and 18).
Using a large dataset, the approaches were trained
and then fitted from 5 to 50 images per disease for

detecting new diseases.

- The model reached an accuracy of up to 99% when
the change from the source domain to the targets
was slight, but when the change was significant, the
accuracy was up to 81%.

- The results showed a significant error rate for
DAML methods of 22.2 per 50 shots and 42.6 per 5
shots compared to the other methods.

- The basic model lags significantly behind the
other methods.

Leaf disease detection using
machine learning
(Fulari et al., 2020)

[71]

An efficient method for the identification of a
healthy or infected leaf was presented using IP

and ML techniques. The data were taken from the
Kaggle website which contains more than 12,949
images. The method implies different steps such

as image preprocessing, segmentation of the
image, feature extraction (shape, color, and

texture) with the use of GLCM, and classification
with the use of SVM.

- The SVM offers a number of advantages over other
classifiers, as it is efficient in
high-dimensional spaces.

- The SVM yielded an accuracy of up to 80% while
the CNN provided an accuracy of up to 97.71%.

- The presented method, based on the CNN, provides
good accuracy. Nevertheless, it is tedious and a lot
of time is required to train the model.

Deep transfer learning models for
tomato disease detection

(Ouhami et al., 2020)
[72]

The authors conducted a study to identify the
most suitable DL model for identifying tomato
diseases based on RGB leaf images, which were

split into 6 different kinds of infections and
parasitic attacks. Thus, two architectures of DL

models, namely DensNet121 with 161 layers and
VGG16, were used to perform the study.

- The results obtained were very promising with an
accuracy of up to 95.65%, 94.93% and 90.5%
respectively for the DensNet161, DensNet121, and
VGG16 models, which shows that DensNet161 with
20 training periods surpassed the other two
architectures.

- DensNet models require significantly fewer
parameters and calculations to achieve
optimum performance.

- Adverse transfer can occur and may dramatically
lower the model’s accuracy.

A new segmentation method for plant
disease diagnosis

(Gurrala et al., 2019)
[64]

IP and AI methods were used for the recognition
of diseases such as scab, anthracnose, blight, and

spots on plants. First, the RGB image was
converted to grayscale, and the image was then
segmented using the k-means and the modified

CPDA algorithm. Thus, from the result obtained, a
comparison was made between these two
segmentation algorithms. The statistical

parameters of the segmented image were
calculated using the GLCM method; that is, the
characteristics (entropy, mean, variance, type,

RMS, contrast, correlation, energy, homogeneity,
regularity, kurtosis, asymmetry, IDM moment of

difference). Finally, the SVM classifier was trained
with a dataset of about 100 images of leaves

affected by the disease.

- The proposed modified CPDA detection algorithm
yields more accurate results than the
k-means clustering.

- Even if a disease is detected in a shorter time, the
accuracy is limited.

IoT Enabled efficient Detection and
Classification of Plant Diseases for

Agricultural Applications
(Devi et al., 2019)

[61]

The authors proposed a simple and efficient
IoT-based solution for the detection of bunch top
and Sigatoka diseases in banana tree located on

hills. First, 80 hill banana plant images are
captured and then resized to 256 × 256 in the

image preprocessing phase. Then, the
preprocessed image is converted to a gray image.

Thus, the histogram equalization technique is
used to equalize the histogram of the resized gray
image so that the intensities of the image are better

distributed for better segmentation, which is
performed by k-means clustering. From the
segmented image, the GLCM features are

extracted and uploaded to the cloud for further
analysis. From these extracted characteristics, the
hill banana diseases are classified using the RFC

technique. Finally, the data is collected and
analyzed by agricultural experts. In addition, this

system allows remote monitoring of
environmental parameters such as soil humidity
and temperature to prevent diseases caused by

climate change and pathogens
as much as possible.

- The performance results showed an overall
detection accuracy of 99.99% and demonstrate that
RFC-GLCM-based leaf disease classification works
best for the hill banana dataset.

- Agricultural experts provide solutions to farmers in
case of plant disease or massive changes in
environmental parameters on the agricultural field.

- The accuracy of the system depends on the ambient
conditions of the agricultural field, such as the angle
of image capture and the lighting in the field.

A Preprocessing Approach for Accurate
Identification of Plant Diseases in Leaves

(Deepa et al., 2018)
[73]

In this paper, the proposed method takes RGB
images as the input and applies the preprocessing

methods, such as image sharpness and median
filters, to eliminate the noise from images, and for
deblurring and edge detection. Then, these images

were segmented using k-means clustering. It
should be mentioned that they used the peak
signal-to-noise ratio in order to measure the

quality of the images.

- The results show that the method adopted allows
better identification of plant leaf diseases.

- They studied only three diseases: Alternaria
Alternata disease, Bacterial Blight, and
Anthracnose disease.

- They did not consider extracting characteristics or
classifying diseases into different groups.

AI and IoT methods for plant disease
detection in Myanmar

(Win et al., 2018)
[74]

The researchers developed two prototypes. The
first is a mobile application that classifies diseases

on rice plants. With this simple application, the
farmer can easily identify the diseases or pests on

rice plants, without using agronomists. The
second is a system for monitoring temperature,

atmospheric pressure, water level, and the
sunlight level of rice fields. Using this system, the
intensive work is reduced by remotely monitoring

this environmental data from anywhere an
Internet connection is available. For the

development of the mobile app, they collected 6
kinds of rice pictures, of bacterial leaf blight,

brown spot, rice blast, mice attack, insects, and
healthy rice. In addition, they used the Arduino

nano to turn off/on the solenoid valve, which was
directly connected to the Raspberry Pi every 30

min, to ensure efficient power and a long system
runtime. Diseases were classified using TL and

DL models.

- They developed a simple Android app to monitor
the temperature and battery level on a SensorTag.
Thus, the farm sensor data reading can be easily
viewed on smartphones or PCs.

- They installed 8 SensorTags in different areas. The
distance between them and the Raspberry Pi was
less than 50 m. To monitor a wide range of many
rice fields, another type of communication system,
rather than the Bluetooth technology of the
SensorTags, must be considered. A problem was
encountered with the SensorTag coil battery, Under
normal conditions, the batteries last at least a year
while keeping the SensorTag alive. However,
firmware level changes were added to the
SensorTag to advertise all the time so, the LEDs on
the SensorTags blink and the batteries only last a
few weeks. Hence, they needed to replace the
button batteries many times.
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Plant diseases recognition based on
image processing technology

(Sun et al., 2018)
[75]

A multiple linear regression-based plant disease
identification system is presented, along with a

histogram-based segmentation method for
accurate and automatic threshold calculation. The

proposed system is based on IP techniques
including four steps: preprocessing, image

segmentation, feature extraction, and regression
model. First, the spatial domain image denoising

is used to filter the noise. Then, an improved
histogram-based segmentation method is

developed to distinguish lesions from normal
foliage, which automatically determines the

threshold and optimizes the segmentation process.
Next, the regional growth method is used for

multi-point selection to extract certain
disease-affected areas. Then, lesion feature

extraction is performed in terms of shape, texture,
and color. Finally, a multiple linear regression

model is implemented to determine the type of
disease, and then the least-squares estimation

algorithm is used to calculate the coefficients and
confidence intervals to set up the disease

recognition system.

- The obtained results proved that the proposed
recognition system has high accuracy, reliability,
and effective recognition ability of plant diseases.

- The histogram segmentation method has great
advantages, such as speed, efficiency, and accuracy.

- The error rate increases progressively as the disease
state becomes more complex because, as the disease
worsens, the characteristic parameters become more
complex and so the results become unstable.

An IoT based smart solution for leaf
disease detection

(Thorat et al., 2017)
[76]

This paper presents a solution based on a smart
farming technique using WSN, a Raspberry PI

module, and a camera to establish wireless
communication. In addition, CV techniques were
used, such as masking, segmentation, and feature

extraction to identify leaf diseases.It should be
noted that they used the Apache server to retrieve

and send data.

- The proposed system allows remote monitoring of
the farm. Thus, the recognition of different leaf
diseases was carried out successfully.

- The power supply of the system is limited, so the
whole process stops if the system fails, which is an
inconvenience. Moreover, the images taken during
the day can be affected by excessive sunlight or
reflections, which means the leaf color cannot be
identified by the camera or captured clearly at night.

Plant disease detection using
hyperspectral imaging

(Moghadam et al., 2017)
[77]

The authors used hyperspectral imaging (SWIR
and VNIR), ML techniques, and IP for detecting

tomato wilt virus in capsicum plants. First, images
were acquired from a hyperspectral imaging

system consisting of two Headwall push-broom
hyperspectral cameras, namely the SWIR

hyperspectral camera that provides a spatial
resolution of 384 pixels and a spectral range of 900

to 2500 with 168 spectral bands, and the VNIR
hyperspectral camera, which provides a spatial

resolution of 384 pixels. Then, these images were
pre-processed using different pre-processing

techniques such as the space-adaptive filtering
approach for detection and grid removal. In

addition, these images were segmented using an
unsupervised k-means clustering algorithm.

Further, discriminative feature extraction was
performed using the full spectrum, VNIR, SWIR,

and vegetation indices. Finally, these features were
employed to train classifiers for discriminating

leaves obtained from inoculated and healthy
plants.They also used other techniques in the

process of disease identification as follows:They
used the KL divergence or relative entropy to

estimate the distances between two distributions
of the control group and of the inoculated

group.Note that the high-pass filter used is a
third-order Butterworth FIR filter, which is

applied to flatten the power spectral density of the
image in order to detect a known signal corrupted

by additive white noise.

- The obtained results showed excellent
discrimination based on the full spectrum.

- The effectiveness of feature extraction techniques
used for automatic disease classification in
greenhouse experiments.

- The cluster analysis was able to successfully classify
the image spectra into two classes by using the
significant difference in spectral profile between the
vegetation and its surroundings.

- The researchers treated only one disease, TSWV.
- They were not able to correlate the reduction in

overall values of SWIR dissimilarity with a plant
pathogenic biophysical interaction for DAI 7 and 10.

Deep Learning for Image-Based Cassava
Disease Detection

(Ramcharan et al., 2017)
[41]

A new model for the identification of plant
diseases is proposed based on TL to train a CNN
using a dataset of 2756 images in order to identify

two types of damage caused by pests and three
diseases. This model was deployed on a mobile

application.

- The CNN avoids the tedious and complex step of
extracting features from images to train models on a
mobile device. The results proved that the TL
approach offers greater precision in cassava, and is
also an affordable, fast, and easily deployable
strategy for digital devices. The model accuracy
was 96% for RMD and CMD, 95% for GMD, and
98% for brown spot and cassava.

- Due to several factors, such as the lighting in a
complex environment, accurate identification of
diseases is challenging.

Early detection and classification of
tobacco leaves inoculated with tobacco

mosaic virus based on hyperspectral
imaging technique
(Zhu et al., 2016)

[44]

The authors proposed a procedure for the early
detection of tobacco disease infected with the

mosaic virus by different ML algorithms based on
hyperspectral imaging techniques. Images of

healthy leaves inoculated with TMV for a period
of 7 days, i.e., after inoculation, were acquired by a
hyperspectral imaging system every day with the

VNIR wavelength region 380–1023 nm. In
addition, the spectral reflectance of the predefined
ROI was extracted from the hyperspectral images

using the ENVI software. The different ML
algorithms, namely, RF, SVM, BaBPNN, LS-SVM,

PLS—DA, ELM, and LDA were used to
quantitatively classify the stages of tobacco disease

using EW that were selected using the SPA.

- BPNN and ELM models successfully detected
healthy and diseased tobacco leaves (2 DPI, 4 DPI, 6
DPI); the detection rates were 98.33% and
96.67%, respectively.

- The classification accuracy of the training set and
the test set was 84.17% and 75% respectively.

- They used a single VNIR component from the
electromagnetic spectrum.

- Generation of average spectra from a single ROI
rather than all pixels.

- The performance of the SPA-PLS-DA model was
relatively poor compared to other models and the
accuracy was slightly lower 75%.

Plant disease detection using image
processing (Khirade et al., 2015)

[78]

This article discussed IP-based methods for the
detection of plant diseases, in particular

segmentation and feature extraction algorithms.
Concerning the segmentation techniques, they
exploited the k-mean clustering, boundary and

spot detection algorithm, and the Otsu threshold
algorithm. Regarding the feature extraction

techniques, they studied various methods, such as
the color co-occurrence method, and regarding the

disease classification phase, they used various
algorithms such as ANN, BBPN, and SVM to

accurately classify various leaf diseases.

- A variety of IP and machine learning (ML)
techniques are discussed.

- The authors did not suggest any system and no
results were given.
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Detection of unhealthy region of plant
leaves and classification of plant leaf

diseases using texture features
(Arivazhaga et al., 2013) [79]

A software solution is proposed for the detection
of unhealthy regions and the automatic

classification of diseases using the extracted
texture characteristics. Thus, the scheme of the

process consists of four steps. First, the acquired
RGB leaf images were converted to HSV format.

Then, the green pixels were masked and removed,
followed by a segmentation process. Further, the
texture characteristics were computed using the

Color-Co-Occurrence Matrix and, finally, the
classification was first performed using the

minimum distance criterion, which yielded a gain
of 86.7%. Results were then improved by the

SVM classifier.

- The proposed method was tested on ten species of
plants: beans, mango, lemon, jackfruit, banana,
sapota, potato, and tomato. The results gave an
accuracy of 94.74% using the SVM classifier.
Therefore, the proposed approach can classify leaf
diseases with little computational effort.

- Various reasons lead to an erroneous classification,
namely, the identifying vectors of the taken features
have to be optimized, and the symptoms of the
diseased plant leaves vary from the early to the
late stage.

Early detection of diseases on leaves by
image processing

(Han et al., 2013)[80]

The authors worked on images of vine leaves
affected by mildew at different stages that were

acquired by photographic sensors. They were able
to detect diseases that are visible and barely visible

to the naked eye using techniques based on the
image representation in color space, and hybrids
including information on both color and texture.

Thus, for visual plant diseases, they were oriented
towards changing the color space, in particular, to
facilitate detection. To ensure better visualization,
they were interested in the bands of each image
(the V band of the YUV color space). Regarding
diseases barely visible to the eyes, as a solution,

they used the image analysis method that
combines color and texture information.

Otherwise, the most relevant challenge was the
disease detection at an early stage. As an optimal
solution, they worked on thermal imaging, which
is very effective in detecting water stress. Finally,

they calculated the Mahalanobis distance for
image segmentation.

- As an advantage of the texture analysis (conversion
of the image into hybrid space), they discerned 3
classes of textures and, for each class, 20 learning
patches, to choose from.

- The use of a thermal imaging device allows the
premature detection of leaf diseases.

- They only treated mildew disease.
- The downside of using the color space change

method is that when the mildew stains are at the
early stage, this method does not work well; hence,
the need to couple this type of color treatment with
one based on texture analysis.

- They did not calculate the area infected with
mildew disease.

Classification of cotton leaf spot disease
using image processing edge detection

techniques (Revathi et al., 2012)
[81]

This article describes how to identify the part
affected by leaf diseases using IP techniques. First,
to segment the image, the authors used the Canny

and Sobel edge detection technique and finally,
they proposed an HPCCDD to analyze the images

and classify the different diseases.

- The percentage was indicated to reduce leaf
diseases.

- The validation was undertaken via MATLAB.
- The authors only discussed cotton crops.

Color image segmentation using
K-Medoids

Clustering(Yerpude et al., 2012)
[82]

A color image segmentation method was
proposed using k-medoids clustering; the idea is
to find groups of objects by finding the medoids

for each group. The main objective of this paper is
the critical analysis of different disease

segmentation techniques.

- The obtained result shows the effectiveness of the
k-medoids algorithm on different types of images,
such as grayscale images. Moreover, the proposed
method is not sensitive to noise.

- The segmented images are highly reliant on the
centroids. However, they did not consider finding
the optimal number of segments to obtain more
accurate results.

- The k-means algorithm is very sensitive to outliers,
as the data distribution can be significantly
distorted if an object has an extremely large value.

Color transform-based approach for
disease spot detection on plant leaf

(Chaudhary et al., 2012)
[83]

A comparison was made between the effect of
YCbCr, HSV, and CIELAB color spaces in the

disease spot detection process since disease spots
are different in color but not in intensity level.

First, the different images of wheat, soybeans, rice,
corn, cotton, mustard, apple, magnolia, and cherry

leaf were taken. Then, these RGB images were
converted to YCbCr color space using the color
transformation formula and further to CIELAB
and HSV color space. Then, for smoothing and

enhancing the image, a median filter was applied.
Finally, the segmentation of the image was carried
out using the Otsu method on the components of
the color space: Cr for filtered YCbCr, component

H for the filtered HSV space, and component A for
the LAB filtered color space.

- The experimental results show that the noise
generated by the camera flash, background, and
vein can be effectively removed using the CIELAB
color model.

- Unfortunately, due to an imbalance in pigment
formation and micronutrient deficiency, the color of
the vein is different from the leaf spots. Thus, in
some cases, these disease spots cannot be detected
with precision using the CIELAB method.

Fast and accurate detection and
classification of plant diseases

(Al-Hiary et al., 2011)
[84]

The acquisition of the leaf RGB images is
undertaken to perform color space transformation.

Once the segmentation of these images is
performed using k-means clustering, the value of

the green pixels is masked using the threshold
obtained through Otsu’s method. In addition, the

affected clusters were converted to the hue
saturation value. For texture analysis, the SGDM

matrix is used for the formation of each image.
Finally, the disease recognition process is

performed by the ANN classifier.

- The color occurrence method is an advantageous
strategy that gives exact precision.

- The methodology can be improved to increase the
recognition rate of the classification process and to
automatically estimate the severity of the
disease detected.

Early detection of Fusarium infection in
wheat using hyper-spectral imaging

(Bauriegel et al., 2011) [85]

In this paper, Fusarium head disease was detected
by spectral analysis in wheat, barley, oat, and rye

plants. The PCA distinguishes affected from
healthy tissue in the wavelength ranges 927–931
nm, 682–733 nm, 560–675 nm, and 500–533 nm.

The SAM method is used to classify the degrees of
infection. Finally, the best time to identify ear

blight is the stage between 71–85 on the BBCH
scale. They analyzed 292 spectra and 80 spectra for
diseased and healthy tissue, respectively, in time

series experiments. Smoothing was performed for
these spectra with the “proc expand” function.

Then, the first derivative was calculated and 104
individual spectra were subjected to PCA to assess

the relevant wavelengths for discriminating
between healthy and blight-infected tissue.

- The robustness and efficiency of the proposed
algorithm are proved by experimental results of a
database of about 500 plant leaves.

- The SAM image analysis method correctly classifies
the degree of disease at 87%, and the visual
assessment error is 10%.

- The SAM method yields accurate classification
results; it is not practical for an online application
because the analysis of 512 spectral bands involves
a significant amount of computation.

- It is impossible to distinguish between different
degrees of infection using only spectral analysis,
due to the lack of symptoms.

- The disadvantage of using the SAM method is that
it is time consuming. Indeed, it involves the
configuration of the reference spectra for the
classification and, at the same time, the analysis of
all the spectral bands.

• The Difference between machine learning and deep learning

The difference between machine and deep learning lies [86] first in the fact that ma-
chine learning algorithms deal with quantitative and structured data and, second, the
operator is responsible for choosing the right algorithm to extract the features that will
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influence the prediction. Deep learning algorithms deal with unstructured data and the
algorithm is trained to extract the influential elements in the prediction as shown in Figure
S1 in the Supplementary Materials. It should be noted that deep learning algorithms, com-
pared to ML algorithms, demand a large amount of data and high computational power.

4. Discussion

In this paper, the authors reviewed many research articles and identified 129 studies
eligible for systematic review using the PRISMA statement as presented in Figure S2 in
the Supplementary Materials, these studies involve methodologies in image processing,
machine learning, and deep learning particularly focused on the identification and classifi-
cation of plant diseases. The study showed that the techniques most used in the literature,
in general, are the support vector machine [22,59,61,65] (SVM), random forest [87] (RF),
artificial neural network [84] (ANN) and convolutional neural network (CNN) [35,39,50].

Additionally, many scientific contributions have focused on the prediction of ma-
jor diseases affecting wheat, rice, and potatoes, such as powdery mildew [88,89], late
blight [90,91], and blast [92,93]. The challenging aspect of this work is the evaluation and
investigation of the computational efficiency of each study compared to other studies,
because each paper applies different metrics to a variety of diseases in different crops. In
addition, many techniques and pretreatment approaches are used to predict disease pres-
ence or severity. Accordingly, it is nearly impossible to generalize and compare different
articles because it is paramount to follow the same experimental conditions. Thus, the
present comparison of the different approaches used was strictly constrained, for example,
by considering the types of crops on which the work was undertaken, in addition to the
kinds of diseases considered during the work. Therefore, based on these constraints, from
the results obtained in related works, it is observed that deep learning-based models have
outperformed the classical approaches such as random forest, support vector machine,
and k-nearest neighbors classifiers, knowing that the performance of these algorithms
has been proven and validated using metrics such as accuracy, sensitivity, specificity, and
F1-score etc.

Table 4 shows that several researchers applied spectral analysis using thermal and
optical remote sensing images, in addition to multispectral and hyperspectral images. As
shown by Duarte-Carvajalino et al. [94], multispectral images were found to be relevant
for the early-stage detection of disease, whereas hyperspectral images, which are the
most widely used in the existing literature, can predict disease even before symptoms are
visible to the naked eye. Note that this difference is due to the spectral resolution used
by the two technologies. However, compared to hyperspectral imaging, multispectral
imaging offers less data complexity [95]. However, hyperspectral image analysis has
various limitations. Several authors have highlighted the high dimensionality of the data
as one of the difficulties encountered. As pointed out by Mahlein et al. [95], the high
degree of interband correlation leads to information redundancy, generating convergence
instability in multivariate prediction models. It is observed that the dataset used by most
of the researchers is taken from PlantVillage, and, in the image preprocessing process,
most researchers used the histogram equalization to improve the contrast, and the median,
Gaussian filter, and Gabor filter for denoising and image enhancement. Furthermore, for
image segmentation, researchers have focused on the hue using the k-means and fuzzy
c-means algorithm to segment the images; this procedure enables extraction of the region
of interest from the given image. Using this, plant features such as texture, shape, and color
have often been extracted using the gray-level co-occurrence matrix (GLCM), local binary
patterns (LBPs), and histogram of oriented gradients (HOG). This is the most prominent
step in the classification process. The researchers used different classification algorithms
based on machine learning, and deep and transfer learning, for the classification phase,
such as the decision tree classifier (TC), random forest (RF), naive Bayes (NB), support
vector machine (SVM), artificial neural network (ANN), probabilistic neural network
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(PNN), back-propagation neural network (BPNN), convolutional neural network (CNN),
and InceptionV3.

The SVM and NN are mainly used in disease classification. The main advantage of
NNs is that they can tolerate noise and are built from available data. The SVM, in turn,
offers outstanding classification performance because it nonlinearly maps the input feature
vector into a high dimensional space where it can be easily separated. Nevertheless, SVMs
are not suitable when the data is very noisy. Hence, when many redundant variables form
the input vector, it is possible to the use principal component analysis (PCA) dimensionality
reduction method, as used by Kadir et al. [96]. In addition, the convolutional neural network
(CNN), faster R-CNN, Vgg16, and ResNet50 models have been used to fully automate the
classification process. Moreover, a new approach employed by Turkoglu et al. [97] is the
extreme learning machine (ELM), which offers faster learning and better performance and
generalization with lower computational cost. The advantages and disadvantages of the
classifiers used in the literature are summarized in Table 5.

Table 5. Comparison of various classifiers.

Classifier Advantages Drawbacks

Artificial Neural Network
ANN Faster and more accurate than KNN and MMC Strict because the data can only belong to 1 class

Random Forest Can classify a large data set with excellent accuracy Constraints on storage and processing time

Multiclass-Support Vector Machine Helps to classify the data in several classes Not suitable when the data is noisy

Least-Square SVM Fast and not complicated Pruning techniques must be applied to be sparse

K-Nearest Neighbours
KNN No time spent on training

More time spent on testing and it is expensive to
test each instance as well sensitive to noise and

yields

Extreme learning machine
ELM Faster training and better generalization Overfitting (occurs when a complex model has

several parameters)

Naïve Bayes
Less training data is required. It works better than

its counterparts when the assumption of an
independent variable is true

Conditional independence may reduce accuracy

Penalized Discriminant Analysis
PDA

Beneficial when the problem has a large number of
noisy features High calculation cost

Bag of Words Uncomplicated, robust, efficient It supposes that all words are independent of each
other

CNN/Deep learning It removes the need for a feature extraction step
and classification time is shortened

A large amount of data is required for training and
it is expensive to compute.

They require better hardware such as Graphical
Processing Unit (GPU).

Transfer Learning This helps to apply CNN to problems with a small
amount of training data

The pretrained model may not have classes with
the desired labels all the time

In this regard, a study was carried out by Ngugi et al. [98] to compare the performance
of 10 deep learning models using the PlantVillage dataset, namely AlexNet, ResNet-101,
GoogleNet, DenseNet201, Vgg16, Inceptionv3, InceptionResNetv2, SqueezeNet, ShuffleNet,
and MobileNets. We present the results obtained by the different architectures for all the
performance measures in Table 6 below.
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Table 6. The test set performance of 10 models considered in this comparative study.

Architecture Recall F1-score Precision Accuracy Specificity

AlexNet 0.9843 0.9856 0.9871 0.9897 0.9997

InceptionV3 0.9906 0.9916 0.9926 0.9948 0.9999

GoogleNet 0.9874 0.9881 0.9891 0.9899 0.9997

SqueezeNet 0.9791 0.9787 0.9785 0.9837 0.9996

DenseNet201 0.9965 0.9961 0.9958 0.9973 0.9999

VGG16 0.9932 0.9930 0.9928 0.9951 0.9999

ResNet101 0.9936 0.9929 0.9924 0.9851 0.9999

ShuffleNet 0.9901 0.9897 0.9895 0.9929 0.9998

MobileNetv2 0.987 0.9862 0.9895 0.9905 0.9997

InceptionResNetv2 0.9887 0.9893 0.9901 0.9930 0.9998

According to Table 6, the DenseNet201 model is the most suitable because it requires
less storage and has the advantage of having the best performance measures (accuracy =
0.9973, precision = 0.9958, recall = 0.9965, specificity = 0.9999, F1 score = 0.9961). However,
it requires a longer learning time (82 h) compared to the InceptionV3 and ResNet-101
models; nonetheless, their accuracies are slightly lower than those of DenseNet201. There-
fore, special care should be taken when choosing between these three architectures, as
each model has certain advantages and limitations. By comparison, the small MobileNet,
SqueezeNet, and ShuffleNet architectures are desirable in embedded and mobile applica-
tions where computing resources are limited, due to their short learning times and low
storage requirements, while still achieving high accuracy.

In this regard, another comparative study of four machine learning algorithms—k-
nearest neighbors, decision tree, naive Bayes, and logistic regression—was performed by
Ahmed et al. [99] to detect three rice plant diseases where the images were taken from the
same PlantVillage database.

As shown in Figure 3, the best accuracy (over 97% by applying it to the test dataset)
was obtained by the decision tree algorithm after 10 cross-validations.

Figure 3. Comparison between machine learning algorithms.

To briefly summarize this section, it is inferred that multispectral and hyperspectral
imagery represents a valuable source of useful information for developing autonomous non-
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invasive systems to predict abiotic and biotic stresses in plants. Additionally, the integration
of multiple data sources will strengthen and increase the stability and generalization
capabilities of the algorithms. Furthermore, from the results obtained in the literature, it
appears that the automatic extraction of leaf features performed by deep learning-based
models is more relevant and efficient than the process of extracting these features using
traditional approaches such as the grey level co-occurrence matrix (GLCM), area-based
techniques (ABTs), and scale invariant feature transform (SIFT). However, it is noted that
there is a lack of validation of the models used in real-world scenarios. Therefore, proper
validation is necessary for the studies to have an accurate and general impact.

5. Unresolved Challenges in the Crop Disease Detection Field

The above section presents a wealth of promising research undertaken in the past few
years in the area of crop foliar disease recognition and detection using a range of techniques.
In the existing literature to date, there are numerous unresolved challenges that remain
to be address and overcome to derive robust and feasible crop disease detection systems
that can operate accurately under various field conditions. The most prominent of these
highlighted challenges are:

5.1. Insufficient Data

The major problem in the use of deep learning models for plant disease detection is the
insufficiency of datasets in terms of both diversity and size [100] because these models have
extremely large data requirements. In the majority of cases, the identification of plant dis-
eases has been performed under ideal and controlled conditions [43], such as the presence
of a single disease with a homogeneous background. In addition, environmental conditions
are not considered; hence, the accuracy rate obtained will be higher than that actually
obtained in a practical application. Additionally, image labeling is a very laborious and
tedious task. Due to these factors, the production of a reliable, efficient, and comprehensive
dataset is extremely challenging. At present, there are six ways to deal with the lack of
a dataset: data augmentation techniques, data sharing, citizen science, transfer learning,
synthetic data, and few-shot learning.

5.2. Imbalanced Data

The most commonly used datasets for crop disease detection are cleaned or their
unbalanced nature is ignored to fully concentrate on training algorithms and avoid being
distracted by other problems. However, in real-world settings, the distribution across
classes is skewed and unbalanced [101], ranging from mildly biased to severely unbalanced.
This poses a challenge for predictive modeling and may require specialized techniques, such
as re-sampling techniques, because the machine learning algorithms typically employed
for classification are built around the assumption of an equal number of examples for each
class. As a result, some of the models have poor predictive performance, especially for the
minority class which is more susceptible to misclassification than the majority class.

5.3. Vanishing Gradient Problem

Hochreiter’s work [102] showed an issue called the “vanishing gradient problem” that
arises during the training phase when employing back-propagation learning techniques
with neural networks. Specifically, each weight of the neural network is updated based
on the current weight and is proportionally related to the partial derivative of the error
function. However, this updating of the weights may not take place in some cases due to
an extremely small gradient that approaches zero. As a result, the gradient descent does
not converge to the optimum and the neural network stops completely [103].

5.4. Exploding Gradient Problem

The opposite problem to the vanishing problem is the gradient explosion problem [104].
Specifically, the gradients become increasingly larger as the back-propagation algorithm
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advances. This will lead to extremely large updates of the network weights and causes the
gradient descent to diverge, which means that the system becomes unstable [103]. Thus,
the model will lose its ability to learn efficiently. In general, as we move up the network
during back-propagation, the gradient grows exponentially by repeatedly multiplying the
gradients. As a result, the weight values can become incredibly large and spill over to
become a non-numerical value (NaN).

5.5. Overfitting and Underfitting Problem

Learning models have excessively high chances of overfitting and underfitting the
data in the training stage due to the large number of parameters involved, which are
correlated in complex ways. Such situations reduce the ability of the model to perform well
on the tested data. Thus, it is considered that a learning algorithm is underfitting when it is
unable to grasp the underlying trend in the data. Its occurrence simply means high bias,
low variance, and that the model does not fit the data well enough. This usually occurs
when fewer data are available to build an accurate model and also when a linear model
is attempted to be built with non-linear data. Conversely, a model is said to be overfitted
when it is trained with a large quantity of data; it then learns from noise and inaccurate
data inputs in the dataset. Then, the model does not correctly categorize the data due to
excessive detail and noise. Its occurrence simply means low bias and high variance. The
overfitting occurs in nonlinear and nonparametric approaches, as these kinds of learning
algorithms have greater leeway in setting up an unrealistic model. Ideally, both of these
should not exist in models, but they are generally challenging to eliminate. This problem
was noted by Ahmad et al. [105], whose model based on efficient convolutional neural
networks tends to overfit during the training of the first epochs.

5.6. Image Acquisition: Conditions of Image Capture (Lighting, Spatial Location, Wind and
Camera)

Ideally, images should be captured under similar conditions. However, in practice,
this may only be feasible in the laboratory because it is extremely difficult to monitor the
conditions of capture. Thus images may present unpredictable characteristics, making
disease identification a daunting task. Moreover, the variable capture conditions have
proven to be a challenging issue in measuring the severity of citrus leaf canker [106] and in
identifying citrus diseases [107]. In light of this, several endeavors have been undertaken
to develop methods of invariant illumination [108]. Nevertheless, their success to date is
still relatively modest.

• Lighting Issue

Crops grow in natural environments that fluctuate greatly. Thus, images are im-
pacted by numerous factors, such as wind, illumination, and other climatic conditions.
Consequently, lighting issues are inevitable, and completely eliminating the variations is
almost impossible. Nevertheless, certain endeavors have been made to mitigate them, e.g.,
Pourreza et al. [109] developed a system to detect real-time citrus Huanglongbing disease
using a narrow-band imaging and polarizing filter set. Specular lighting, the simultaneous
presence of light and shadow, is the most difficult problem to deal with. However, the
presence of specular lighting can be lessened by changing either the angle at which the
image is taken or the leaf position, although this likely causes some degree of reflection.
Furthermore, specular reflections and shadows were noted by Zhou et al. [110] as the main
source of error in monitoring Cercospora leaf spot on sugar beets, which occurred because
of the automatic captures that complicate the prevention of lighting problems.

• Camera

The image resolution is one of the crucial factors that has a direct influence on the
image features. A higher resolution enables the detection of small lesions and spores.
Moreover, the device being used to capture the image also influences these features.
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5.7. Image Preprocessing

During the preprocessing and storage of leaf images, more information is lost as the
compression ratio is increased. This may not dramatically influence the analysis of large
lesions, but may severely distort small symptoms. Therefore, compression should be kept
to a minimum or even avoided, especially if the symptoms are tiny.

5.8. Image Segmentation and Symptom Discrimination

In general, symptoms do not have clear boundaries; they gradually disappear in nor-
mal tissue, making the distinction between healthy and diseased areas highly ambiguous.
This clearly affects the accuracy of the threshold and extracted features. Although manual
and visual representation cannot clearly determine the edges, any machine-based represen-
tation will be prone to many subjective issues. Notably, the issue of subjective delineation of
affected regions was first addressed by Olmstead et al. [111] and later by Moya et al. [112],
who emphasized that some sort of external reference needs to be established for proper
validation of disease identification methods. However, without the use of a reference,
Oberti et al. [113] observed for leaf powdery mildew that the number of false negatives or
positives seen on the symptom discolored zones is too high. In summary, few solutions
have been suggested for this problem because inconsistencies are intrinsic to the process.
Furthermore, other difficulties are encountered when segmenting and locating regions of
interest (ROIs):

- A leaf may overlap with another leaf or other parts of the plant, and they may even be
tilted or covered with dew or dust.

- Images with complex backgrounds can render the segmentation of ROIs where symp-
toms appear challenging and intricate.

5.9. Feature Selection and Extraction

Although some plant species can be identified on the basis of leaf shape, other species
have similar leaf shapes. Furthermore, symptoms do not necessarily arise in zones that are
easily accessible; in practice, they can frequently be under the leaves or covered by other
obstructions, or diseases can appear on the stems, fruits, or even flowers. Unfortunately, the
latter problem has not attracted enough attention on the part of researchers. Furthermore, it
is observed from the literature to date that researchers have mainly focused on the disease
detection on the upper leaf surface. Nevertheless, Fuentes et al. [34] suggested using the
faster network R-CNN for detecting a number of tomato plant diseases in several locations.

5.10. Disease Classification

In many of the cases listed below, the classifier used to identify plant diseases may not
be able to distinguish between them; for example, if the symptoms presented by different
diseases are visually very similar, as both Ahmad et al. [114] and Wiwartet al. [115] have
stated. In addition, the difficulties stated below are highly relevant to measuring the disease
severity:

• Differences in disease symptoms: According to the disease development stage, a
specific disease can present very distinct characteristics in the symptoms’ shape,
color, and size, causing serious identification problems. It should be noted that
many different diseases can occur at the same time, making it extremely complex
to distinguish between combinations of symptoms and individual symptoms. This
problem was noted by Camargo et al. [116] when handling symptoms produced by
black streak disease on banana leaves, and Moya et al. [112] when evaluating powdery
mildew severity on squash leaves.

• Diseases can occur simultaneously with many disorders, such as nutritional deficien-
cies, pests, and diseases: Typically, most techniques consider that there is only a single
disease per image when, in reality, several other diseases can be present at the same
time, in addition to other kinds of disorders, such as nutritional deficiencies and pests.
These simultaneous symptoms can be either separate or physically combined, making
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disease identification a significant challenge. In this regard, Bock et al. [106] observed
the simultaneous presence of symptoms arising from different diseases and noted that
this can lead to identification issues, and that more advances will be required to cope
with this issue.

• The symptoms’ similarity between different disorder types: Symptoms resulting from
various disorders, such as diseases, phytotoxicity, presence of parasites, and nutritional
deficiencies, can be visually similar. As a result, it can be extremely difficult to
determine a symptom’s source with certitude, particularly if only the visible spectrum
is used in the identification process. This forces methods to rely on tiny differences to
discriminate between the symptoms. Numerous researchers have stated that some
disorders have close similarities, leading to major issues of discrimination. In this
regard, Ahmad et al. [114] reported that symptoms resulting from Fusarium, Mosaic
Potyvirus, Alternaria, and Phomopsis in soybean were very similar, and their classifier
was unable to discern between them. This explains why the majority of studies
conducted to date have chosen to tackle only diseases whose symptoms are quite
dissimilar and, even then, their choices remain a significant challenge.

5.11. Other Challenges

Some other challenges facing automatic plant disease identification techniques cannot
be categorized in the same way as those mentioned above. These challenges include
reducing complexity, in addition to computational and memory demands [117], because
low-cost computers and cameras have a very limited computational resource. At the same
time, as image resolution is increasing, the computational resources are also growing.
Another major concern is the lack of properly labeled [37] and sufficiently large datasets
with high variability. This is notably the biggest hurdle when training recurrent neural
network (RNN) models for plant disease detection, because collecting images in the field
is not only a laborious task but also requires the guidance of agricultural experts for
accurate annotation. Nevertheless, two free datasets exist [118]—PlantVillage and the Image
Database of Plant Disease Symptoms dataset PDDB. Moreover, at present, no appropriate
technology has been developed to automatically crop the leaf images around the affected
area. A further issue is that hyperspectral data contain more than one hundred adjacent
spectral bands and thus cannot be linearly trained [119]. Furthermore, these bands in
different spectral regions are highly redundant [54,55] when extracting information to form
an artificial neural network (ANN).

6. Future Work and Possible Solutions to Ongoing Limitations

In the previous section, gaps in the existing literature were highlighted to orient future
research in this area. Thus, future work should first aim at acquiring diverse and large-size
datasets to further promote research in this direction. Moreover, it is highly desirable
to develop compact convolutional neural network CNN-based models that can achieve
higher accuracy and promote the use of these technologies in the embedded platforms.
Secondly, more emphasis should be placed in future research on the development of
reliable methods and techniques to remove backgrounds and incorporate other forms of
data, such as meteorological trends, disease occurrence history, and spatial location, to
enhance the accuracy and reliability of disease identification systems. Additionally, disease
recognition at different locations on plants and trees, such as the stems, blooms, and fruits,
should receive greater attention from researchers due to its tremendous importance. One
possible means to circumvent some of the limitations is to implement constraints to restrict
variations in image capture conditions. However, even with very tight restrictions, many
challenges will remain.

Some of the key challenges can be mitigated through the use of the most sophisticated
approaches borrowed from the machine learning and computer vision fields. These in-
clude Markov random fields, mean shift, graph theory, and large margin nearest neighbor
classification (LMNN), among other methods that have not yet been properly harnessed.
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In this regard, the proposed solutions to remedy the challenges presented above can be
summarized as follows.

6.1. Data Augmentation Techniques

If the aim is to avoid the overfitting problem and expand the size of the dataset without
manually collecting new images, data augmentation techniques are a possible solution
for any limited data problem [120,121]. Data augmentation incorporates a collection of
methods that improve the attributes and size of training datasets. Thus, DL models can
perform better when these techniques are exploited, such as rotation, canny edge detection,
shear, image noise addition, shift, and flipping.

6.2. Tackling Overfitting Problem

Overfitting is one of the fundamental problems encountered when using learning
models, and occurs due to the sensitivity to the scale of the cross-entropy loss and the
continuous updating of the gradient. Three classes exist to avoid the overfitting problem.
The first acts on both the model parameters and the model architecture. This includes
the most familiar approaches, such as batch normalization [122], weight decay [123], and
dropout [124]. Weight decay is the technique that is commonly used by default in all
algorithms as a universal regularizer. The second class operates on model inputs such
as data augmentation and corruption. One of the causes of the overfitting problem is
the lack of training data; as a result, the learned distribution does not exactly reflect
the real distribution. In contrast, the marginalized corrupted feature (MCF) exclusively
improves the solution in data augmentation. MCF is a new approach to combat overfitting
in supervised learning [125]. The main idea of the MCF is to allow the models to be
regularized by training them on corrupted data copies, without raising the computational
complexity. The final class works on the output of the model. A technique was recently
proposed by Pereyra et al. [126] based on penalizing confident output distributions for
model regularization. This method has demonstrated its high capacity to regularize CNN
and RNN models. Hence, it will be judicious to explore these techniques in the field of crop
disease detection.

6.3. Few-Shot Learning

In cases in which the dataset is extremely small, the techniques mentioned above may
not be useful; that is, if there is a task in which the classification must be built with only
one or two samples per class, and each sample is difficult to find. In such a case, innovative
approaches are needed; one of these is few-shot learning (FSL) [127]. This is a relatively
recent subfield of machine learning that needs more refinement and research. FSL allows
the classification of new data when there are only a few training samples with supervised
information. The approach of building an FSL classifier is suitable for solving the kind of
problem related to rare plant pathologies, in which images are lacking for use in the training
set. Typically, two major approaches are implicated in solving one-shot or few-shot machine
learning issues, namely, the data-level approach and the parameter-level approach.

6.4. Transfer Learning

Recent research has revealed the extensive use of deep CNNs, which require a large
quantity of data to perform effectively. The common challenge associated with the use of
such models concerns the lack of training data. Specifically, collecting a large volume of
data is an exhausting task, and no successful solution is available at this time. Therefore,
in order to solve the fundamental dilemma of insufficient data, it is advisable to use TL
models, which are highly effective in such cases [128]. In simple terms, transfer learning is
the process by which the model trained for a specified task is reused as the starting point
for training a new model. It attempts to transfer information from the original domain to
the destination domain. This learning process is illustrated in Figure 4.
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Figure 4. Transfer learning process.

Forthcoming research endeavors can be devoted to automatically estimate the detected
disease severity, and expanded to attain the highest accuracy and speed via developing
hybrid approaches such as genetic algorithms (GAs) and neural networks (NN) to increase
the disease recognition rate, and combining particle swarm optimization (PSO) with other
tools, such as gradient search techniques, to ensure a much higher speed. In addition,
advanced and appropriate preprocessing techniques should be adopted to prevent noise
interference in disease detection, in addition to partitioning the training and test data by
employing more advanced techniques, such as stratified sampling, in order to create a well-
balanced data partition, and avoid underfitting and overfitting. In addition, optimizing
feature vectors should be contemplated to increase the disease recognition rate in these
various stages, and recurrent neural network (RNN) models and the long-term memory
function should be used to extract memory and temporal dimensions that can subsequently
be harnessed for plant growth estimation. Finally, a web application can be designed with
a range of features, such as displaying the identified diseases in the crops from leaf images
taken by a smartphone camera. A discussion forum can also be developed for agronomists
and farmers to talk about treatment and early preventive measures for the encountered
diseases. Moreover, plant electrophysiology is a promising avenue for future research [129],
i.e., the electrical signal response produced in plants can be used for real-time disease
detection. This approach is based on the fact that plants perceive the environment, and
this perception is translated by a generation of electrical signals that essentially represent
changes in their underlying physiological processes. Under the influence of stress, the
metabolic activities of plant tissues and cells are unstable, which is inevitably reflected
in the plant’s physiological electrical properties. As a result, the extraction of substantial
characteristics from the generated electrical signals, such as impedance, varying capacitance,
and conductivity, would be a highly interesting research direction for the classification of
diseases in plants and crops.

7. Conclusions

Crop diseases are one of the main challenges in the farming sector. Thus, there is
a need to identify crop diseases at the earliest stage to lessen disease severity and to
curb disease propagation on farms. Accordingly, prominent and advanced research has
been conducted in recent years on several kinds of disease identification techniques, as
presented in this work. The main difference between other surveys and the present paper is
the thorough technical analysis of the individual papers, and the approaches that have been
applied to date. This provides a guideline and references to scientific communities. This
paper also provides readers with insights into the automatic crop disease detection process
and the key factors, namely the lack of sharp edges around the symptoms; fluctuating
imaging conditions; variable symptoms presented by diseases; similar symptoms presented
by different disorders; and the concomitant presence of symptoms arising from various
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disorders. These issues have a relevant impact on the effectiveness of both the image
processing methods and the analytical tools that have been introduced to date. From this
survey, it is concluded that image preprocessing directly impacts the segmentation process.
Moreover, the k-means clustering algorithm was found to be the most suitable technique
for segmenting disease-affected leaves. In addition, convolutional neural network (CNN)
models were revealed to be extremely powerful and proficient in locating visual patterns in
images. Notably, the use of computer vision and artificial intelligence in crop diagnostics
in the agricultural sector is still recent, which implies that their numerous alternatives
and opportunities remain to be explored, which may help mitigate the above-mentioned
challenges. Additionally, with the increase in available computing power, previously
demanding strategies can now be easily executed. Thus, based on this in-depth study of
the existing literature on crop foliar disease automatic detection, in upcoming work the
researchers intend to develop an efficient, accurate, low-cost, and swift system capable of
identifying crop diseases from foliar images. In addition, this identifying system will be
implemented in a mobile application, allowing an alert to be sent to the farmer once the
disease is detected to enable him to intervene as soon as possible.
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CNN Convolutional Neural Network
DNN Deep Neural Network
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BBPN Back-Propagation Neural Network
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DAML Deep Adversarial Metric Learning
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M-SVM Multiclass-Support Vector Machine
LS-SVM Least Squares Supporting Vector Machine
RF Random Forest
PDA Penalized Discriminant Analysis
ELM Extreme Learning machine
NB Naïve Bayes
VGG Visual Geometry Group
ResNet Residual Neural Network
C-GAN Conditional Generative Adversarial Network
GPU Graphics Processing Unit
MEAN block Mobile End Apple Net block
FSL Few-Shot Learning
GOA Grasshopper Optimization Algorithm
GA Genetic Algorithms
PSO Particle Swarm Optimization
PCA Principal Component Analysis
LDA Linear Discriminant Analysis
PLS—DA Partial Least Squares Discrimination Analysis
SPA Successive Projection Algorithm.
SAM Spectral Angle Mapper
BBCH Biologische Bundesanstalt, Bundessortenamt and CHemical industry
RBM Restricted Boltzmann Machine
AE Auto-Encoder
EW Effective Wavelengths
GLCM Gray Level Cooccurrence Matrix
CPDA Color Processing Detection Algorithm.
GUI Graphical User Interface
LBP Local Binary Patterns
HOG Histogram-Oriented Gradient
HSV Hue Saturation Value
RoI Region of Interest
HPCCDD Homogeneous Pixel Counting technique for Cotton Disease Detection
CMD Cassava Mosaic Disease
RMD Red Mite Damage
GMD Green Mite Damage
TMV Tobacco Mosaic Virus
VNIR Visible and Near-Infrared
SWIR Short Wavelength Infrared
ENVI Environment for Visualizing Images
KL Kullback Leibler
ABT Area-Based Techniques
SIFT Scale Invariant Feature Transform
MFC Marginalized Corrupted Features
LMNN Large Margin Nearest Neighbor
PRISMA Preferred reporting items for systematic reviews and meta-analyses
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115. Wiwart, M.; Fordoński, G.; Żuk-Gołaszewska, K.; Suchowilska, E. Early diagnostics of macronutrient deficiencies in three legume
species by color image analysis. Comput. Electron. Agric. 2009, 65, 125–132. [CrossRef]

116. Camargo, A.; Smith, J. An image-processing based algorithm to automatically identify plant disease visual symptoms. Biosyst.
Eng. 2009, 102, 9–21. [CrossRef]

117. Liu, J.; Wang, X. Plant diseases and pests detection based on deep learning: A review. Plant Methods 2021, 17, 1–18. [CrossRef]
118. Hughes, D.; Salathé, M. An open access repository of images on plant health to enable the development of mobile disease

diagnostics. arXiv 2015, arXiv:1511.08060.
119. Cucci, C.; Casini, A. Hyperspectral imaging for artworks investigation. In Data Handling in Science and Technology; Elsevier:

Amsterdam, The Netherlands, 2020; Volume 32, pp. 583–604.
120. Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.;

Farhan, L. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. J. Big Data 2021, 8,
1–74.

121. Shorten, C.; Khoshgoftaar, T.M. A survey on image data augmentation for deep learning. J. Big Data 2019, 6, 1–48. [CrossRef]
122. Laurent, C.; Pereyra, G.; Brakel, P.; Zhang, Y.; Bengio, Y. Batch normalized recurrent neural networks. In Proceedings of the 2016

IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China, 20–25 March 2016; pp.
2657–2661.

123. Zhang, G.; Wang, C.; Xu, B.; Grosse, R. Three mechanisms of weight decay regularization. arXiv 2018, arXiv:1810.12281.
124. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks

from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.
125. Maaten, L.; Chen, M.; Tyree, S.; Weinberger, K. Learning with marginalized corrupted features. In Proceedings of the International

Conference on Machine Learning, Atlanta, GA, USA, 16–21 June 2013; pp. 410–418.
126. Pereyra, G.; Tucker, G.; Chorowski, J.; Kaiser, Ł.; Hinton, G. Regularizing neural networks by penalizing confident output

distributions. arXiv 2017, arXiv:1701.06548.
127. Kadam, S.; Vaidya, V. Review and analysis of zero, one and few shot learning approaches. In Proceedings of the International

Conference on Intelligent Systems Design and Applications, Vellore, India, 6–8 December 2018; pp. 100–112.
128. Zhuang, F.; Qi, Z.; Duan, K.; Xi, D.; Zhu, Y.; Zhu, H.; Xiong, H.; He, Q. A comprehensive survey on transfer learning. Proc. IEEE

2020, 109, 43–76. [CrossRef]
129. Chatterjee, S.K.; Malik, O.; Gupta, S. Chemical sensing employing plant electrical signal response-classification of stimuli using

curve fitting coefficients as features. Biosensors 2018, 8, 83. [CrossRef]

259





Citation: Lei, K.; Zong, C.; Yang, T.;

Peng, S.; Zhu, P.; Wang, H.; Teng, G.;

Du, X. Detection and Analysis of Sow

Targets Based on Image Vision.

Agriculture 2022, 12, 73.

https://doi.org/10.3390/

agriculture12010073

Academic Editors:

Gniewko Niedbała

and Sebastian Kujawa

Received: 17 November 2021

Accepted: 1 January 2022

Published: 6 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

agriculture

Article

Detection and Analysis of Sow Targets Based on Image Vision

Kaidong Lei 1, Chao Zong 1,*, Ting Yang 1, Shanshan Peng 1, Pengfei Zhu 1, Hao Wang 1,2 Guanghui Teng 1,*

and Xiaodong Du 3

1 College of Water Conservancy & Civil Engineering, China Agricultural University, Beijing 100083, China;
leikaidong@cau.edu.cn (K.L.); sy20193091754@cau.edu.cn (T.Y.); pengss1007@126.com (S.P.);
zpfmyl666@163.com (P.Z.); b20213090690@cau.edu.cn (H.W.)

2 Chongqing Academy of Animal Sciences, Chongqing 402460, China
3 New Hope Liuhe Co., Ltd., Beijing 100102, China; duxiaodong2@newhope.cn
* Correspondence: chaozong@cau.edu.cn (C.Z.); futong@cau.edu.cn (G.T.); Tel.: +86-010-62737583 (G.T.)

Abstract: In large-scale sow production, real-time detection and recognition of sows is a key step
towards the application of precision livestock farming techniques. In the pig house, the overlap
of railings, floors, and sows usually challenge the accuracy of sow target detection. In this paper,
a non-contact machine vision method was used for sow targets perception in complex scenarios,
and the number position of sows in the pen could be detected. Two multi-target sow detection and
recognition models based on the deep learning algorithms of Mask-RCNN and UNet-Attention were
developed, and the model parameters were tuned. A field experiment was carried out. The data-set
obtained from the experiment was used for algorithm training and validation. It was found that
the Mask-RCNN model showed a higher recognition rate than that of the UNet-Attention model,
with a final recognition rate of 96.8% and complete object detection outlines. In the process of image
segmentation, the area distribution of sows in the pens was analyzed. The position of the sow’s head
in the pen and the pixel area value of the sow segmentation were analyzed. The feeding, drinking,
and lying behaviors of the sow have been identified on the basis of image recognition. The results
showed that the average daily lying time, standing time, feeding and drinking time of sows were
12.67 h(MSE 1.08), 11.33 h(MSE 1.08), 3.25 h(MSE 0.27) and 0.391 h(MSE 0.10), respectively. The
proposed method in this paper could solve the problem of target perception of sows in complex
scenes and would be a powerful tool for the recognition of sows.

Keywords: computer vision; sow; image processing; behavior; precision livestock; animal welfare

1. Introduction

In China, African swine fever is ravaging farms across the country, the pig-raising in-
dustry is set to be upgraded with technological innovations [1]. At present, the management
of livestock production mainly relies on experienced farmers [2], which is time-consuming
and greatly dependent on individual judgments [3]. With the rapid expansion of the farms
and the increased number of livestock, new technologies are urgently needed to improve
production efficiency. The technologies of precision livestock farming have proved a suc-
cess in many fields, and machine vision perception in pigs is one of the key applications [4].
In the production of sows, the sows’ reproductive performance most important factor in
the production efficiency of a pig farm [5–8]. The quick recovery of sows after giving
birth can help to increase their follow-up breeding rate. In this process, the observation,
identification, and tracking of sows are essential for better farm management and pro-
duction performance [9]. Identifying sows through contact-free machine vision tracking
is a first step in the development of smart pig farms [10–13]. With the development of
machine vision technology and artificial intelligence (AI), the behavior of animals can even
be perceived without human participation in daily management [14].

Agriculture 2022, 12, 73. https://doi.org/10.3390/agriculture12010073 https://www.mdpi.com/journal/agriculture
261



Agriculture 2022, 12, 73

Object detection is a type of machine vision technique for detecting the region of
interest (target object) in digital images, which has been of considerable interest in precision
livestock farming [15–21]. In recent years, a series of object detection algorithms [22–24]
based on deep learning have been developed with advantages of high precision, fast speed,
and strong practicability in the field. Deep learning technology has been used for the
detection of animal objects [14,25–28] and has also been used for the assessment of animal
welfare [12,29–31]. The Convolutional Neural Network (CNN) based on deep learning has
shown superior performance in pig image segmentation, behavior recognition, posture
detection, and identification [29,32–35]. However, these applications are mostly in a simple
scene and controlled condition with limited disturbances.

In a pig house, objects with different shapes, colors, and influencing factors, such as
illumination, occlusion, and adhesion, will challenge the performance of target detection.
Through literature, it is found that the YOLO method has been widely used in animal
detections, but it also requires high hardware capacity which is very expensive [36]. In
the follow-up study, the application of real-time sow detection will be performed in large-
scale farms, therefore, the cost and running speed of the sow detection models needs to
be comprehensively considered. The deep learning algorithms called Mask R-CNN and
UNet-Attention have shown good detection capabilities on targets of various circumstances
and have been successfully applied in many fields [37,38], with relatively low expense in
hardware and high calculating speed. In the algorithm of UNet-Attention, an attention
mechanism is added to improve the effectiveness of the model, which focuses on regional
information conducive to object realization and suppresses irrelevant information. The
UNet-Attention model has a simple algorithm statement, and even low-resolution informa-
tion could be easily located and recognized. Its segmentation speed is fast, which can meet
the purpose of real-time monitoring of sows. The algorithm based on the Mask Scoring R-
CNN framework is supposed to solve image segmentation from complex backgrounds [39].
The Mask RCNN is designed for image instance segmentation, which has an advantage in
instance segmentation from the complex background image [38]. Both algorithms do not
require high hardware capacity and can rapidly recognize the target form images, which
are suitable for real time and large-scale applications in the future.

Up until now, very few studies have been reported in the sow image segmentation
using the UNet-Attention and Mask R-CNN algorithms. Therefore, it is necessary to
analyze these two algorithms for the sow’s object detection in complex scenes.

In this study, deep learning and image analysis technologies have been used to rapidly
acquire sow information in complex scenes. The main contents are as follows: Development
of sow target detection method based on deep learning algorithms; Assessment of the
segmentation and recognition performances in sow detection between Unet-Attention and
Mask-RCNN algorithms; Identity and analysis of sows’ behaviors in the pen, based on the
segmentation.

2. Materials and Methods

2.1. Animal and Housing

The experiment was conducted on a pig farm in Shandong province, China. The target
objects were randomly selected Yorkshire pigs of 2nd–3rd Birth, weighing 245–260 kg.
There were a number of 416,873 images were collected. These sows were raised in large
pens and fed once a day at 10:00 a.m. and provided ad libitum water from the drinking
trough. The sows can move freely in the pen. Due to free movement and contact of the
sows, adhesion of sows in images often occurred. The room temperature was maintained
at 29–30 ◦C. The size of the large pen was 3.15 m (L) × 2.06 m (W) × 2.44 m (H). The
schematic diagram of the pig raising system is shown in Figure 1.
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Figure 1. Data acquisition platform.

2.2. Data Acquisition Platform

The image acquisition equipment was Azure Kinect DK (Microsoft Corporation,
U.S.). The camera continuously collected digital images and videos in .mkv format (16:9;
1920 ∗ 1080 pixels), with a sampling frequency of 60 Hz. As shown in Figure 1, the camera
was connected to a computer through a USB 3.0 cable for storing data. The open source
programming language of Python was used in the acquisition procedures.

The Kinect DK captured images of the sow as well as other things of feeder, drinking
trough, railings, floor, etc., which formed a complex environment during the target detection
process. The preprocessing procedures were as follow:

1. The collected video set in .mkv format was processed into .JPG format images through
Python language, and then labeled with the Labelme software to form a .json format
file.

2. In the training process, to increase the robustness of the Convolutional Neural Net-
work, the input image of the sow was augmented. The data augmentation mainly
used horizontal and vertical flipping, cropping, scale transformation, and rotation.
The diversity of the data was also increased in this process.

2.3. Model Development

The program was run under the Pytorch framework in the Ubuntu16.04 system, and
CUDA8.0 and cuDNN5.0 were used to accelerate training. The Central Processing Unit
(CPU) of deep learning machines was Corei7-8700k (Intel), and the graphics processing
unit (GPU) was GTX1080Ti (NVIDIA), and the memory was 32 GB. The data-set had a
total number of 416,873 images. The image structure similarity algorithms were used for
selection [40] to avoid a large number of similar images. A number of 15,094 images were
sorted out. The data-set was divided into the training set and test set, according to the
ratio of 9:1. The images were evenly divided into two data-set according to the complexity
(stocking density and scale) during training and testing processes. Two optimized deep
learning models Unet-Attention and Mask R-CNN were developed for analysis.

2.3.1. Development of the Sow Detection Model Based on Unet-Attention

The Unet-Attention was an algorithm based on the Unet network structure, which had
been proposed by Ozan Oktay [37]. To better extract the sows from complex backgrounds in
this study, the convolution kernel of stage2 to stage4 in the Attention module was replaced
with deformable convolution (DCNV2). The network structure is shown in Figure 2 [37].
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Figure 2. Block diagram of the Unet-Attention segmentation model.

Unet-Attention included two stages, with the first stage of down-sampling and the
second stage of up-sampling. The down-sampling part was Visual Geometry Group
Network 16 (VGG16), and the feature maps corresponding to the down-sampling layer
were spliced in the up-sampling stage to achieve feature fusion. Before the down-sampling
features were spliced with the up-sampling features, the attention block was used to re-
adjust the down-sampling features. This module generated a gating signal to control
the importance of features at different spatial locations. Specifically, the input features
(xl) were scaled with attention coefficients (α) computed in Attention Gate (AG), and the
spatial regions were selected by analyzing both the activations and contextual information
provided by the gating signal (g) collected from a wide scale. The grid resampling of
attention coefficients was done using trilinear interpolation [37]. The Attention Block is
shown in Figure 3:

Figure 3. The proposed AG Attention Block.

In the application of Unet-Attention, the input image was progressively filtered and
downsampled by factor 2 at each scale in the encoding part of the Unet network. The Ags
filtered the features propagated through the skip connections. The feature selectivity in Ags
was achieved by using contextual information (gating) extracted in wide scales (Figure 3).

The Equation (1) of Attention Block is as follows:

ql
att = ψT(σ1(WT

χ χl
i + WT

g gi + bg)) + bψ

αl
i = σ2(ql

att(χ
l
i , gi; Θatt))

(1)

where αi is the attention coefficient, xl is the input features of channels change, ΨT , W are
operations of vectorization, g is the gating signal, l is convolution layer, Φl is the trainable
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kernel parameters, I is the pixel vector σ2 corresponds to the sigmoid activation function,
parameters Θatt contains: linear transformations bg, bψ are model bias terms.

In the process, g and xl were multiplied by the weight matrix, which could be learned
through backpropagation. The importance of each element was determined according to
the goal of the algorithm. The term of attention was introduced to increase the weight
matrix and to learn the importance of each element and the target.

The uNet-Attention algorithm used a deformable convolution kernel. Compared
with the traditional convolution kernel whose size was fixed, the sampling method of the
deformable convolution kernel was obtained through learning, mainly by adding offsets to
the traditional convolution sampling points to obtain new sampling points and at the same
time adding a modulation mechanism.

The deformable convolution can not only offset the input but also adjust the weight of
each position input, as shown in Equation (2).

y(p) =
K

∑
k=1

wk · x(p + pk + Δpk) · Δmk (2)

where the convolution kernel has k sampling positions, wk and pk represent the weight
of the k position and the preset offset respectively, Δmk is set to add the weight of each
sampling point.

For the loss function of the uNet-Attention algorithm, the Focal Loss was adopted, For
y ≥ 0, p was the probability of the output of the model α, which balanced the contribution
of positive and negative samples to the final loss, as shown in Equation (3).

L(p) =
{ −α(1 − y′)γlogy′, y = 1

−(1 − α)y′γlog(1 − y′), y = 0
(3)

Intuitively, the modulation factor reduced the loss contribution of the simple example
and extended the low loss range of the samples [41].

2.3.2. Development of Sow Detection Model Based on Mask-RCNN

The Mask-RCNN is a model for instance segmentation, developed on the basis of
Faster R-CNN, a region-based convolutional neural network. The Mask Branch of a
small network of Fully Convolutional Networks for Semantic Segmentation (FCN) is
supplemented in the Mask-RCNN model. During the process of Mask-RCNN, images were
loaded and correspondingly preprocessed using pixel-level prediction to get the label map.
The preprocessed images were then put into a pre-trained neural network (ResNeXt, etc.)
to obtain the feature maps. A predetermined ROI (Region of interest) for each point in the
feature map was set to get multiple candidate ROIs. Next, the candidate ROIs to the Region
Proposal Network (RPN) were used for binary classification (foreground or background)
and Bounding-Box (BB) regression and filtration. The ROI Align operation was performed
on the remaining ROIs. The Mask-RCNN model used a per-pixel sigmoid. In the training
step, for ROI in the Kth category, only the Kth mask contributes to Lmask of average binary
cross-entropy loss. The overall process is shown in Figure 4 [38].

Figure 4. Mask-RCNN overall flow chart.
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Backbone is a series of feature maps that convolutional layer was used to extract
images. The backbone of Mask-RCNN was deep residual network 50 (ResNet-50), which
provided a favorable train of thought for training deeper networks. ResNet used cross-layer
connections to make training easier. The ResNet-50 backbone was used along with the
improvement of training performance and speed. The FPN (feature pyramid networks)
structure was composed of three parts: bottom-up, top-down, and horizontal connection.
This structure could merge the features of each level to make it have both strong semantic
and spatial information. The stage2 to stage4 in ResNet-50 convolution kernel was replaced
with 5 identity blocks of deformable convolution DCN (Deep Cross Network) and ResNet-
50.

Mask-RCNN was decomposed into three modules: Faster R-CNN, ROI Align, and
FCN.

There was an ROI Align after ‘head section’, which was to enlarge the output dimen-
sion of ROI Align, to be more accurate when predicting mask. The ROI Align mainly
canceled the quantization operation and used the method of bilinear interpolation to obtain
the image value of pixels with floating-point coordinates, transforming the whole feature
aggregation process into a continuous operation [38]. The process is illustrated in Figure 5.

Figure 5. Characteristics of ROI Align.

There was no quantitative deviation for the ROI Align solution. The pixels in the
original image and the pixels in the featured map were completely aligned, which could
improve the detection accuracy of the model and promote the algorithm ability for instance
segmentation.

For the loss function of the Mask-RCNN algorithm, on the basis of the Fast Region-
based Convolutional Network method (Fast R-CNN), a third loss function for mask gener-
ation was added. The mask branch had an output of the Km∗m dimension for each ROI,
where K represented two-class masks for encoding m∗m images, and each mask had K
categories. The mask map had K channels, which represented the number of possible
categories of the target. When calculating Lmask, only k-th map of these K maps were
processed, and this k represented the object category of the ROI area located by another
recognition branch. For an ROI belonging to the k-thcategory, Lmask only considered the
k-th mask, and other mask inputs did not contribute to the loss function. Such a definition
would allow a mask to be generated for each category, and there would be no inter-class
competition. The multi-task loss function is as follow [38]:

L = Lcls + Lbox + Lmask (4)
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2.4. Assessment of the Model

In this study, a dataset of images of sows in the pen was used to assess the proposed
algorithms. The performance of the classification was measured by Equations (5) and (6).
The obtained results from the detection models were assumed positive or negative.

P =
TP

TP + FP
(5)

R =
TP

TP + FN
(6)

where the number of correctly classified samples, that was the actually positive instances
(samples) were classified as positive, as true positives (TP), and the number of incorrectly
classified instances that were actually negative but classified as positive by the classifier
was defined as false positives (FP). The number of erroneously classified instances that were
actually positive but classified as negative by the classifier was defined as false negatives
(FN), and the number of negative instances that were actually negative and classified as
negative by the classifier was defined as true negatives (TN). P represented for precision,
which was the accuracy rate. R was recall, which was the recall rate.

The models were also assessed using the indicator of Intersection-over-Union (IoU),
which was a standard for measuring the accuracy of detecting corresponding objects in a
specific data set. The IoU represented the overlap rate or degree of overlap between the
generated candidate bound and the ground truth bound, in other words, the ratio of their
intersection and union. C was Candidate bound and G was Ground truth bound. The
expression is as follows:

IoU =
area(C) ∩ area(G)

area(C) ∪ area(G)
(7)

The Average Precision (AP) was used to evaluate the performance of the proposed
models, which averaged the precision rates of all categories by combining IoU as the
boundary. The AP measured the accuracy of the algorithm predictions and illustrated
the percentage of algorithm positive predictions. The Average Recall (AR) referred to the
maximum recall rate in a given number of the test results, and the average value was calcu-
lated on all IoUs and all categories. The IoU threshold value was defined as 0.50:0.75:0.95
to calculate the AP and AR and denoted as AP50/AR50, AP75/AR75 and AP95/AR95,
respectively. To comprehensively analyze the model performance, different threshold
values were used, and non-maximal suppression was applied during the calculations. The
AP was also calculated based on area sizes in pixels with less than 322, between 322 and
962, and larger than 962, which corresponds to APsmall, APmedium and APlarge, respectively.
The term of maxDets referring to the maximum detection number of targets in an image
was used for defining the detection range.

2.5. Sow Behavior Recognition Based on Image Segmentation

Sows have a higher awareness of regional space in a group-raising state and could
form a fixed area for behaviors of feeding and drinking, lying and moving around [42]. As
shown in Figure 6, it is a schematic diagram of the position of the sows in the pen. The
dark green part is the shared trough for the sows to feed and drink. The staff cleaned the
water tank at 7:30 every morning and maintained a continuous water supply. At 9:50 in
the morning, the water in the shared trough would be emptied, and the dry feed was then
concentrated and fed at 10:00–10:30 in the morning. After 10:30, the staff cleaned the trough
to prevent the left feed from becoming moldy. The drinking water was again switched on
to maintain ad libitum water supply.
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Figure 6. A schematic diagram of sows in the pen. Note: In order to ensure that each sow has a larger
living space, three sows could be accommodated in the real pen at a time. In order to better illustrate
the current situation, there are six sows drawn in this schematic diagram.

The green part in the image is the sow’s feeding and drinking area. When the sow’s
head segmentation image was in the green area, the behavior of feeding or drinking
behavior was recognized (the area in the red box in the figure). Due to the particularity
of the sow feeding process, only the period of 10:00–10:30 in the morning was used for
feeding, and if the head of the sow was detected in the feeding and drinking area during
this period, it was judged as the sow’s feeding behavior. On the contrary, in other periods, if
the head of the sow was detected in this area, it would be recognized as the sow’s drinking
behavior.

In Figure 6, when the sow’s head was detected in the gray area, and the sow is judged
as standing and lying behaviors. Aiming at how to distinguish lying down and standing
behaviors, this paper used the pixel value area method to identify the lying and standing
behaviors of sows. The IMAQ tool in the LabVIEW software (National Instruments, United
States) created the frame and calculated the image width (in pixels). The image type was
set to Grayscale, and the IMAQ tool extracted a monochrome plane, and the image Dst
Out function was a reference to the target image. When ‘Image Dst’ was connected, ‘Image
Dst Out’ was the same as ‘Image Dst’. Then, the ROI To Mask function in the IMAQ tool
selected the region of interest, and finally, the pixel value was obtained. The block diagram
in LabVIEW is as shown in Figure 7.

Figure 7. Block diagram of calculating pixel value in LabVIEW.
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3. Results and Discussions

3.1. Performance of the Developed Models

In the complex pig house environment, the established deep learning target detection
algorithms perfectly identified the target object of the sow as shown in Tables 1–3. The
collected image data had been treated with preprocessing, model establishment, and
model recognition. The AP and AR were used as the performance evaluation indices, as
summarized in Tables 1 and 2. In the Tables, area referred to the number of pixels in the
segmentation mask, and the maxDets was the maximum detection threshold of each image.
It can be seen in Tables 1 and 2, the higher the value of IoU, the lower the accuracy and
recall rates. Table 3 shows the average precisions of Mask-RCNN under different settings,
where APs, APm, and APl stand for AP of small, medium and large objects, respectively.
In the algorithm evaluation, AP50 was generally selected. The IoU threshold of the detector
was greater than 0.5, and the accuracy of MaskRCNN reached 96.8%. At the same time,
the model also defined different values, such as IoU and area for calculation. According to
Tables 1 and 2, the final model operation results were not as good as the model with IoU
greater than 0.5.

Table 1. The Average Precision (AP) rates of Mask-RCNN and UNet-Attention.

Model AP IoU Area maxDets

Mask-RCNN

0.772 0.50:0.95 all 100
0.968 0.50 all 100
0.948 0.75 all 100
0.000 0.50:0.95 small 100
0.083 0.50:0.95 medium 100
0.792 0.50:0.95 large 100

UNet-Attention

0.010 0.50:0.95 all 100
0.025 0.50 all 100
0.006 0.75 all 100
0.000 0.50:0.95 small 100
0.000 0.50:0.95 medium 100
0.046 0.50:0.95 large 100
0.010 0.50:0.95 all 100

Table 2. The Average Recall (AR) rates of Mask-RCNN and UNet-Attention.

Model AR IoU Area maxDets

Mask-RCNN

0.291 0.50:0.95 all 1
0.802 0.50:0.95 all 10
0.802 0.50:0.95 all 100
0.000 0.50:0.95 small 100
0.135 0.50:0.95 medium 100
0.823 0.50:0.95 large 100

UNet-Attention

0.004 0.50:0.95 all 1
0.030 0.50:0.95 all 1
0.167 0.50:0.95 all 5
0.000 0.50:0.95 small 100
0.000 0.50:0.95 medium 100
0.176 0.50:0.95 large 100

Table 3. Mask -RCNN performance Indicators.

Task AP AP50 AP75 APsmall APmedium APlarge

Bbox 0.6586 0.9668 0.8543 0.0000 0.1010 0.6751
Segm 0.7720 0.9682 0.9480 0.0000 0.0826 0.7925
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A test set of sow images was used to verify the trained models. From Tables 1–3, it can
be seen that the Mask-RCNN algorithm shows better object detection performance. The
training and test images were filtered by the similarity algorithm [43] to get preprocessed
image data for predictions. Some scholars used image processing to recognize the postures
of animals [44,45], but the current segmentation performance was not good for animals
in complex environments. Interference from floors, railings, brackets, feeders, drinking
troughs affected the detection accuracy and could be misidentified as the sow target.

In this study, the Mask-RCNN algorithm accurately outlined the target object from the
complex background. The sow segmentation outcome determined the performance of the
algorithm. Figures 8 and 9 show the target object of perception using Mask-RCNN and
UNet-Attention algorithms. The segmentation results were evaluated using the complete-
ness of the outlines. It was found that the Mask-RCNN algorithm performed better than
UNet-Attention in the segmentation.

Figure 8. Target detection of Mask-RCNN: (a) without adhesion; (b,c) with adhesion. The green
outline is the segmentation outcome.

Figure 9. The target detection using UNet-Attention model, (a) without adhesion; (b,c) with adhesion.
The pink outline is the segmentation outcome. The (d–f) are the processing binary diagrams of (a–c),
respectively.

The targets in the image were usually overlapped, and the irrelevant objects could
be mis-detected. In the algorithm process, non-target samples, such as railings, feeders
and drinking troughs were often identified as the target. The UNet-Attention algorithm
could also be affected by the patterns on the sows’ backs. If there were overlaps or only
part of the target in the image, the accuracy of detection and recognition could be poor. The
model structure of the UNet-Attention algorithm could reduce its detection efficiency in
the target of the sow. The optimization of the loss function and the network structure in the
UNet-Attention algorithm was preferred, and certain layers could be flexibly customized
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according to the information of the target and surrounding environment [46,47]. The
Mask-RCNN was based on He et al.’s (2018) work [38], which gained the detection results
using Feature Pyramid Network (FPN) and a divided Network [48]. Mask RCNN had
competitions among classes, and the network produced each class of mask. The addition
of the ROI Align layer, the interpolation of the feature map, and the direct ROI Pooling
quantization operation made the obtained mask have a slight offset from the actual object
position. In this research, the Mask-RCNN algorithm of target segmentation performed
well. Figure 10 shows the advantages of the Mask-RCNN algorithm in the detection: when
the epoch was close to 30, the model had a better convergence effect. After starting training,
the status of training was monitored by indicators, such as loss, loss-mask, loss-objectness,
and others. Figure 10 shows that the loss has a downward trend after each complete
iteration (a complete iteration means that all samples have been passed through). A proper
learning rate could be ensured after each round of complete training, and the loss was
reduced to a smaller extent after a period of time. The curves in Figure 10 also show some
jumps up and down, which are related to the batch size set during stochastic gradient
descent. When the batch size was very small, there would be a large degree of instability. If
the batch size was set larger, it would be relatively stable.

Figure 10. Performance index of the Mask-RCNN model algorithm. (Note: Loss is the total loss
function of the model; loss-classifier and loss-box-reg are the rpn classification error; loss-mask is the
segmentation error; loss-objectness and loss-rpn-box-reg are the model’s detection error).

The UNet-Attention algorithm built a model on a fully connected convolutional layer,
which only needed a small amount of training image data to get accurate segmentation.
The computing speed of a computer would be slow to process the target with sizes and
shapes in big differences. Moreover, the prediction result of the UNet-Attention model was
not very satisfactory in treating a sow with patterns on its back.

In the literature on pig image segmentation, some authors have proposed an inter-
active image segmentation method based on improved graph cuts aiming at a specific
target pig [49]. To segment pig images in a complex background, an image segmentation
algorithm based on wavelet modulus maximum and edge growth has been proposed, but
the algorithm processing process is relatively cumbersome [50]. The traditional detection
algorithms of Haar + AdBoost and HOG + SVM only had the accuracy of 65.8 and 37.3,
respectively [51]. The deep learning methods have achieved higher accuracy compared
with traditional ones. A study proposed the use of infrared thermal imaging cameras to
fuse infrared optical images to improve the effect of pig contour segmentation, with a
success rate of 94% [52]. Zhang et al. (2019) proposed a real-time sow behavior detection
algorithm based on deep learning (SBDA-DL), with an accuracy of 93.4% [51]. In this
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study, the Mask-RCNN algorithm had a high accuracy rate (96.8%) and could achieve sow
contour segmentation well. The speed of Mask-RCNN was 720 ms, which could meet the
requirement of real-time monitoring of sows.

3.2. Analysis of Poor Segmentation

Under the interference of railings, debris, and drinking troughs in the pig house, the
segmentation effect of Mask-RCNN was good, as shown in Figure 8. It could realize image
segmentation of sows in a complex pig pen, and the shape and position of sows in the pen
could be further identified.

However, the segmentation effect of the UNet-Attention model was poor. As shown in
Figure 11, the markings on the sow affected the segmentation performance (Figure 11a,c),
and the railing, as well as the drinking trough in the pen (Figure 11b,c), would be incorrectly
segmented as a sow target.

Figure 11. Performance effect of the UNet-Attention algorithm.

The UNet-Attention model is a classic network, which has a large number of appli-
cations in image segmentation tasks. However, the same network structure may show
different performances in different scenarios. Increasing the network layers may improve
the segmentation performance to specifically satisfy the segmentation of sows.

3.3. Image Recognition of Sow Behaviors and Positions

The activity behavior and location of the sow in the pen is an indicator to evaluate the
animal’s living conditions. In this study, the image segmentation algorithm was used to
determine the position and contour of the sow’s head, and then to determine the behavior of
the sow. If the head of the sow was in the drinking and feeding area, it could be determined
that the sow was drinking or feeding. The change in the pixel area of the contour of the
sow could determine whether the sow was standing or lying down.

There were fixed areas for different behaviors of sows in group housing [42]. As shown
in Figure 12, the sows are feeding and drinking at the pen trough, and the sows’ heads
were in the blue box, which represented the feeding and drinking area. When the sow’s
head was detected in the blue box, it could be judged as feeding or drinking behavior. As
mentioned in the section on materials and methods, when the time was from 10:00–10:30
every morning, it was judged to be the feeding behavior of the sow. On the contrary, at
other times of the day, it was judged as drinking behaviors.
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Figure 12. Image segmentation of sows with behaviors and different areas (The blue box: drinking
and feeding areas; The green box: activity and lying areas).

The green box in Figure 12 is the lying and activity area of the sow pen. The lying
and standing behaviors were distinguished based on the size of the image segmentation
area. In addition, binary grayscale image of sows with different behaviors and positions
(Figure 13). The pixel area value of the standing behavior was {2214–2641}, and the pixel
value area range of lying behavior was {3025–3299}, therefore, for the data collected in this
study, when the pixel value area of the segmented image of the sow was less than 3025,
it was judged as a standing behavior. Meanwhile, a lying sow had a pixel value greater
than 3025. However, the above data was based on a small amount of data, and there would
also be the influence of individual body size differences, so this method was suitable for
samples of sows of similar body size and weight.

Figure 13. Binary grayscale image of sows with different behaviors and positions.

Analyzing the active and resting behaviors of the sow after weaning could effectively
get the physiological status of the sow. As shown in Figure 14, a sow is randomly selected,
and within 24 h, the percentage of time spent on different behaviors has been analyzed.
The circle inscribed in the blue rectangle, numbered 1 in the picture is the sow resting state
in the lying area, and the time is more concentrated after the lights are turned off at night.
Number 2 is that the sow stands in the active area, and the time is concentrated in the
daytime. Numbers 3 and 4 are sows standing in the feeding and drinking area. Since the
daily feeding time is a fixed 30 min, the sow’s feeding time is from 10:00–10:30, numbered
as 4. The rest time is the proportion of the sow’s drinking behavior, numbered as 3. This
analysis could effectively figure out the sow’s daily activity and rest patterns within 24 h.
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Figure 14. The proportion time of different sow behaviors in 24 h (1, lying down; 2, standing sows
in the active area; 3, standing sows in the feeding and drinking area, and drinking water; 4 the sow
being eats in the drinking and feeding area).

Table 4 shows the lying, standing, drinking and feeding time of 6 sows within 24 h.
The average lying, standing, and drinking time of sows was 12.67 h, 11.33 h, and 3.25 h,
respectively. Figure 15 shows the cumulative timetable of different behaviors of six sows in
24 h. The average time spent on lying down for sows in 24 h accounted for 52.8%, while
the percentage of standing time was 47.2%. Due to the noise caused by the staff working in
the house during the daytime, the sows spent much time standing. However, when the
barn became quiet, sows were more likely to lie down and rest.

Table 4. Timetable for sows in standing, lying, feeding and drinking within 24 h.

1 2 3 4 5 6 Average Value Mean Square Error

Lying time/h 13.5 12 11 13 14 12.5 12.67 1.08
Standing time/h 10.5 12 13 11 10 11.5 11.33 1.08
Drinking time/h 3.5 3.0 3.0 3.5 3.5 3.0 3.25 0.27
Feeding time/h 0.5 0.4 0.5 0.4 0.25 0.3 0.391 0.10

Figure 15. The distribution of time spent on lying, standing, feeding and drinking within 24 h.

Figures 15 and 16 show the proportion of time spent by sows in the lying behavior
within 24 h. During the period from 21:00 to 7:00, there was no light in the pig house. The
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sows rested intensively, so the lying time accounted for a relatively high proportion, and
the average hourly proportion of lying behavior accounts for 97.53%. The house was quiet
from 14:00 to 16:00. The sows were mostly lying down and resting. The average hourly
proportion of lying was 84.7% from 14:00 to 16:00. In Figure 17, sows mainly lied down
and rested from 20:00 to 6: 00 the next morning, so the average drinking time was 0. From
7:00 to 11:00 and from 15:00 to 19:00, the proportion of drinking water increased, and the
average hourly drinking behavior accounted for 43.73%.

Figure 16. Percentage of lying time in 24 h.

Figure 17. Percentage of drinking time in 24 h.

3.4. Application of the Sow Target Detection Model and Its Perspectives

With the development of livestock husbandry, precision livestock farming technology
becomes more and more popular. In Europe, there are relevant policy requirements for
the identification and traceability of farm animals, which mainly involved stress and
welfare [53]. In particular, the technology has brought a lot of conveniences, greatly
reduced the amount of labor and workload, improved production efficiency, and laid the
foundation for large-scale operations. As mentioned in this article, sow behavior can be
judged through image segmentation and further analyzing the sow’s drinking, lying and
standing time. At the same time, comprehensively judge the physiological state of the sow.
In recent years, the Internet of Things (IoT) has also been widely applied in the precision
farming process. Livestock production can be remotely monitored and controlled in real-
time, which greatly improves production efficiency [54–57]. It is of great significance to
apply the sow recognition algorithm to efficiently and accurately identify the physiological
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behaviors of the sow. The algorithm proposed in this paper is part of the follow-up precision
sow perception system, which will be later deployed together with IoT technology for
production evaluation and decision-making.

Meanwhile, the model should have a high accuracy rate, and portable controllers
embedded in the algorithms can be optimized to adapt to various complex pig house
environments. As shown in Figure 18, in the follow up study, a real-time monitoring
system will be developed. The Mask-RCNN algorithm will be firstly used to segment the
image of sows, and the sow’s position and shape will be obtained after segmentation. After
that, the sow’s behavior recognition will be performed, and finally, precision control of the
micro-environment and management in the barn will be conducted to better raise the sows.

Figure 18. PLF (Precision Livestock Farming) of sow information perception diagram.

4. Conclusions

An approach for sow target detection based on deep learning for complex pig house
environments has been proposed. A data acquisition system with two types of algorithms
of UNet-Attention and Mask-RCNN was established. It has been found that Mask-RCNN
had a better recognition rate, completeness, and faster running speed in analyzing the sow
image dataset compared with UNet-Attention. The shape and position of sows in a pen can
be detected through the segmentation, and the sow’s behavior of eating, drinking and lying
can also be identified. In the follow-up study, the network layer structure of the model
will be optimized to achieve a better recognition effect. The Mask-RCNN algorithm will be
further investigated for real-time monitoring of sows in large scale production.
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Abstract: This study employed a data fusion method to extract the high-similarity time series feature
index of a dataset through the integration of MS (Multi-Spectrum) and SAR (Synthetic Aperture
Radar) images. The farmlands are divided into small pieces that consider the different behaviors of
farmers for their planting contents in Taiwan. Hence, the conventional image classification process
cannot produce good outcomes. The crop phenological information will be a core factor to multi-
period image data. Accordingly, the study intends to resolve the previous problem by using three
different SPOT6 satellite images and nine Sentinel-1A synthetic aperture radar images, which were
used to calculate features such as texture and indicator information, in 2019. Considering that a
Dynamic Time Warping (DTW) index (i) can integrate different image data sources, (ii) can integrate
data of different lengths, and (iii) can generate information with time characteristics, this type of
index can resolve certain classification problems with long-term crop classification and monitoring.
More specifically, this study used the time series data analysis of DTW to produce “multi-scale time
series feature similarity indicators”. We used three approaches (Support Vector Machine, Neural
Network, and Decision Tree) to classify paddy patches into two groups: (a) the first group did not
apply a DTW index, and (b) the second group extracted conflict predicted data from (a) to apply a
DTW index. The outcomes from the second group performed better than the first group in regard to
overall accuracy (OA) and kappa. Among those classifiers, the Neural Network approach had the
largest improvement of OA and kappa from 89.51, 0.66 to 92.63, 0.74, respectively. The rest of the
two classifiers also showed progress. The best performance of classification results was obtained
from the Decision Tree of 94.71, 0.81. Observing the outcomes, the interference effects of the image
were resolved successfully by various image problems using the spectral image and radar image for
paddy rice classification. The overall accuracy and kappa showed improvement, and the maximum
kappa was enhanced by about 8%. The classification performance was improved by considering the
DTW index.

Keywords: remote sensing; time series; data fusion; feature extraction; dynamic time warping; crop
phenological information

1. Introduction

Paddy rice takes up the largest crop area and has great significance for the global
economy, society, and culture. Presently, farmland surveys in various countries are mainly
manual surveys, which are time-consuming, labor-intensive, and extremely inefficient. It
is hard to conduct a large-scale survey in a short time. However, with the advancement
and development of satellite remote sensing detection technology in recent years, farmland
monitoring methods have become well-accepted. The use of satellite image data as a
monitoring tool along with the use of the machine learning approach has become a major
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solution for land cover measurements. This includes supervised learning and unsupervised
learning in machine learning. This greatly reduces the manpower and material resources
required for agricultural monitoring and management [1,2].

Many types of research have been dedicated to investigating satellite optical data to
carry out the target GIS map for delineation of paddy field areas by image classification
through the pixel-based method. This includes Maximum Likelihood, Neural Network,
Decision Tree, Support Vector Machine, K-means, ISODAT, etc. Different classification
methods can be applied by using by the material of Landsat TM and ETM+ series, SPOT
series, MODIS, Sentinel-2 and 3, RADARSAT series, ERS-1 and ERS-2, ENVISAT/ASAR,
IRS, AVHRR, Sentinel-1A, Aerial-Photo, UAV, etc. In addition, related research is focused
on how to increase the accuracy of paddy rice fields. For instance, a series of Vegetation
Indicators (VI) and Texture Indicators (TI) may become the proper material for interpreta-
tion results and classification accuracy, which can be reinforced. The VI indicators include
the Ratio Vegetation Index (RVI), NDVI, Soil-adjusted Vegetation Index (SAVI), etc. The
texture indicators include the Gray Level Co-Occurrence Matrix (GLCM), Fractal dimen-
sion, Semi-Variogram, etc. Hence, the benefits of statistical analysis and machine learning
can be greatly improved. In addition to pixel-based classification, the Region-based Object
Classification (ROC) is also well-accepted. There are two main steps for ROC: (1) image seg-
mentation and (2) image classification. The method also renders an effective performance
in classification. On the other hand, some scholars have imported Synthetic Aperture Radar
(SAR) with multiple time-series data to detect the area of rice fields, which has attracted
new attention in recent years. The SAR data are not affected by sunlight. Accordingly,
there are many kinds of research that perform Image Fusion (IF) processing between MS
and SAR as well [3,4]. Unfortunately, traditional image fusion methods seem to be unable
to solve the large differences between the two images, and it is not easy to overcome
some practical limitations. For example, the images after fusion are prone to produce
unexpected noise [5,6]. The errors of data fusion by multi-period sequence images are often
accumulated into classification progress. It generally results in unsatisfactory classification
outcomes. That is, the image fusion can not obtain the crop phenological information in
detail, which is important for image classification [7]. Rice patches may be affected by
mixed crops of land-use on a single patch, different planting seasons, and different varieties,
which are governed by different farmer behaviors. In addition, using a single image may
result in the interference of cloud and fog effects, which can obstruct the classification
results. Furthermore, it destroys the structure of the landscape for considering a single
period of texture/vegetation indicator through image fusion.

Therefore, this research does not aim at using the IF methods but uses the concept of
the DF method at the starting point. The DF method requires a set of integrated calculations,
rather than a method of evaluating data through a single model [8,9]. More specifically,
this is a hybrid model to employ different data sources or analysis methods. Related
research shows that most of the past studies focused on the fusion of multiple methods [9].
In this study, the data fusion process extracts the variation of features based on various
periods with the following considerations. First, the length of time-series changes of
different data sources is different. Second, the different properties of data sources vary
greatly. Whereas the quality of the original spectral bands must be effectively converted
into rational indicators or textures, the different resource data have different resolutions and
formats. Third, the method for changing characteristics of patches of different properties
vary at different times. It has to effectively extract this relevant information for our research.
Hence, DTW is applied in this study for multi-period images for data fusion [10]. It
was successfully applied to rice area survey [11,12], landscape changes [10,13], forest
type classification [14], farmland mapping [15–20], crop phenological period of factor
analysis [21], crop yield estimation [22], etc. This research plans to extract the phenological
information in the fragmented landscape from the image through the DTW method to
achieve the purpose of rapid mapping, stability, and high accuracy when making rice
farmland thematic maps.
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Consequently, this study uses the Dynamic Time Warping (DTW) method to compare
the similarity results of MS and SAR image datasets by vegetation index and texture index
characteristics, respectively. The similarity index results can show the relations in the
change of each different land-use of patches. That is, the DTW is examined by the DF
method, which contains numerical responses (spectrum, indicators, and textures) to detect
similar features in different time series. These relations can improve the classification results
efficiently. Hence, three approaches (Support Vector Machine, SVM; Neural Network, NN;
and Decision Tree, DT) are used to classify the paddy patches with two groups: (a) without
applying the DTW index and (b) considering the DTW index. We adopt the most common
classifiers such as SVM, NN, and DT. The goal is not to compare the performance of those
three classifiers and determine which one is the best. The key point is to find a possible
solution to rationally integrate them with consideration of the function of DTW employing
two kinds of image data (optical and radar). The paper contains four steps: Step 1, the first
stage of the accuracy of consistency classification; Step 2, the discussion of the accuracy
of inconsistency classification; Step 3, examples of multi-scale features and description of
integration results; Step 4, the overall accuracy of the hybrid classification.

2. Research Materials and Design

2.1. Research Materials
2.1.1. Research Site

The study was located at Yunlin County, which is in the Jianan Plain of western Taiwan.
It is a major agricultural county for Taiwan. The annual grain output is noteworthy. It
mainly produces rice, head, vegetables, peanuts, sweets, and other grains. The coordinates
of longitude and latitude are 27′00”120 E, 48′00”23 N. The soil is rich in organic nitrogen,
phosphorus, potassium, and other elements, which makes the land abundant in agricultural
production. The soil is fertile, and the climate is suitable. Irrigation and rainfall are
abundant. Therefore, this study selected Yunlin Xiluo, as in Figure 1. Figure 2a is a map
of farmland patches in this area. The total area is about 5016.21 ha with 53,212 patches.
Figure 2b is the ground truth data of the study area taken in the first half of 2019 by
the Agriculture and Food Agency. Since the main axis of this research is to classify and
interpret rice fields, the classification of ground truth data is only divided into paddy rice
and non-paddy rice, as in Table 1.

 
Figure 1. Study area.
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(a) 

 
(b) 

Figure 2. The patches are taken from the photo in 2019. (a) Farmland patches in study area. (b) The
ground truth data from the Agriculture and Food Agency.

Table 1. The ground truth data of Xiluo in 2019.

Categories Number of Patches Area (ha)

Paddy Rice 7699 1634.96

Non-Paddy Rice 45,513 3379.83

Total 53,212 5014.80

2.1.2. Research Data
SPOT 6 Images

SPOT images basically have four bands, which are multi-spectral images of B, G, R,
and IR, with a spatial resolution of 6 m. This study selected SPOT-6 images on 23 January,
1 March, and 9 April in 2019. The time differences between the three were 37 days and
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39 days, respectively. Figure 3 below is the three SPOT6 optical satellite images selected
for this study. The SPOT6 satellites are easy to attain in Taiwan, and they are already
atmospherically and geometrically corrected. They are completed by the Central University
Space Remote Sensing Center. Hence, this study decided to use them. However, in this
study, we only used the three indicators of G, R, and IR to generate indicators of ancillary
information. For detailed indicator descriptions, please see the content in Section 2.2.

   
Time: 23 January 2019 Time: 1 March 2019 Time: 9 April 2019 

Figure 3. The selected SPOT6 satellite image.

Sentinel-1A Images

Sentinel-1A has a shooting period of 12 days, and Sentinel-1 is equipped on four
sensors for different shooting purposes, namely Stripmap Mode (SM) and Interfero-metric
Wide Swath Mode (IW), Extra Wide Swath Mode (EW), and Wave Mode (Wave Mode,
WM). Its spatial resolution is 5 × 20 m (16 × 66 feet). To have a better understanding of the
rice growth cycle time of this survey, the short time of Sentinel-1 radar image material in
this study includes all radar images between 31 January and 7 May 2019. Since the radar
images are 12 days old during the shooting cycle, nine radar images during this period
are finally selected. All the data can be downloaded from the European Space Agency
(ESA) website for free [23]. The downloaded images must be downloaded through the
SNAP software. There are three pre-processing steps: radiometric correction, geometric
correction, and image speckle noise removal. The selection of radar images was taken on
1/31, 2/12, 2/24, 3/8, 3/20, 4/1, 4/13, 4/25, 5/7. This study uses images in IW mode
because this mode is the main operating mode for shooting on land. The shot type is IW
and VV polarization and VH polarization images.

2.2. Research Design

In this study, 3 of SPOT6 optical satellites and 9 of Sentinel-1A synthetic aperture radar
images were used (total 12 images) to identity features such as textures and indicators.
The feature value information was extracted using patches as the smallest unit. In the
meantime, the time-series features were constructed. Dynamic Time Warping was used
to produce “multi-scale time series feature similarity indicators”. DTW is dynamic pro-
gramming [10,11]. The algorithm of this approach compares two sequences with different
lengths. It effectively solves the deviation of time distortion in identification and calculates
the Euclidean distance between the two sequences to determine the similarity of content
information. The gap between the vector distances is rationally found. This indicator can
convert an image in a time series of feature information on different scales and different
sources into ancillary information.

Figure 4 outlines steps for research, and it has four parts: 1, image feature calculation
and database construction; 2, classification algorithm; 3, comparison of classification results.
The contents are as follows.
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Figure 4. Steps for this study.
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1. Image feature calculation and dataset construction: In the optical image part, in
addition to the four basic bands of red light (Red), green light (Green), blue light (Blue),
and near-infrared light (NIR), this research included Ratio Vegetation Index (RVI)
and Normalized Difference Vegetation Index (NDVI) and four Co-occurrence matrix
(Gray Level Co-Occurrence Matrix, GLCM) texture indexes, including Homogeneity,
Contrast, Dissimilarity, and Entropy, making a total of 19 types of feature information.
It is worth mentioning that GLCM and associated texture features are image analysis
techniques. An image is composed of pixels, each with an intensity (a specific gray
level) suitable to apply GLCM, as different combinations of gray levels often co-occur
in an image or image section. Texture feature calculations use the contents of GLCM to
measure the variation in intensity (image texture) at the pixel of interest; on the other
hand, the radar part uses C-band synthetic aperture radar (SAR) of two polarized
images, called VV and VH. In addition to VV and VH, the 4 aforementioned kinds
of texture information were also adopted. There was a total of 10 types of feature
information. The features are shown in Table 2. In addition, the variation of satellite
images for different time features could become a key factor when observing paddy
rice and non-paddy rice patterns. We assign this part of the data as Label A.

2. Classification algorithm: This study used Support Vector Machine (SVM), Neural
Network (NN), and C5.0 Decision Tree (DT) machine learning algorithm models. We
conducted the training and verification of the models. The model training and veri-
fication rate ranged from 70% (37,227 patches) to 30% (15,985 patches). This further
illustrates that the design of this research is different from the traditional method.
We applied the three classification methods with two direct classification methods
and a hybrid classification method to perform better classification outcomes. Direct
classification methods use three machine learning models to directly classify the image
data information (optical, index, and texture) features (Label A data set). Generally
speaking, paddy rice is a long-period crop that requires an indicator and involves the
combination of optical, index, and texture features for recording the variation over
a long period. Hence, this study adopted two stages to solve the problem. The first
stage was to import the image data to three classifiers (SVM, DT, and NN). The second
stage was to extract the confusion samples (or patches) from the first stage to employ a
new factor (DTW), which considers the time variation factor to improve classification
performance. Specifically, this new ancillary information (DTW) was used for the
dynamic calculation of the two-time series, and Euclidean distance matrices were com-
puted one by one. For example, optical image characteristic band B to band G is one
group, band B to band R is another group, etc. All combinations had to be calculated.
The total number of feature information groups reached 26 levels. It was necessary
to add 351 combinations of optical feature similarity. The similarity index between
the two-time series features was produced, and the dataset was consolidated by the
combination of the time series in patch features. The 351 combinations contained
Optical Image Feature Similarity (171 attributes), Radar Image Feature Similarity
(28 attributes), and the two combinations of feature similarity indicator (optical image
+ radar image) groups (152 at-tributes). Therefore, in this study, all data combinations
were generated to form a DTW index (Figure 5). We hope this process can resolve the
confusion around classification patches (samples). In the meantime, the inconsistent
patches from the classification model were further refined.

3. The comparison of classification: The training model accuracy had two parts. The first
part was the result of the direct classification method, which was assigned as Label B.
The second part was the result of the hybrid classification, which was assigned Label
C. The comparison items were computed from an analysis of commission errors and
omission errors. The overall accuracy and kappa values were also employed. We also
compared the performance of Label B and Label C.
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Table 2. Ancillary Information.

Vegetation Index Formula

RVI
(Ratio Vegetation Index)

R
NIR

NDVI
(Normalized Difference Vegetation Index)

NIR−R
NIR+R

PVI
(Perpendicular Vegetation Index)

NIR−NIRsoil√
1+B2

SAVI
(Soil-adjusted Vegetation Index) (1 + L)× NIR−R

NIR+R+L

TSAVI
(Transformed Soil-adjusted Vegetation Index)

B(NIR−NIRSoil)
R+B(NIR−A)+X(1+B2)

CMFI
(Cropping Management Factor Index)

R
NIR+R

GI
(Greenness Index)

NIR
G

IPVI
(Infrared Percentage Vegetation Index)

NIR
NIR+R

MSAVI
(Modified Soil-adjusted Vegetation Index)

(
2NIR+1−

√
(2NIR+1)2−8(NIR−R)

)
2

OSAVI
(Optimization Soil adjusted Vegetation Index)

NIR−R
NIR+R+Y

GESAVI
(Generalize Soil- adjusted Vegetation Index)

NIR−NIRSoil
R+Z

HOM
(Homogeneity) Homogeneity =

N
∑

i=0

N
∑

j=0

1
1+(i−j)2 Cij(d, θ)

CON
(Contrast) Contrast = ∑i,j|i − j|2 p(i, j)

DIS
(Dissimilarity) Dissimilarity =

n
∑

i=0

n
∑

j=0
Cij|i j|

ENT
(Entropy) Entropy =

n
∑

i=0

n
∑

j=0
Cij log Cij

Experienced Coefficient for L = 0.5; X = 0.08; Y = 0.16; Z = 0.35 considering multiple scattered conditions:
RSoil = A + B × R; (A = 0.011, B = 1.16) [24]. NIRSoil = BR − A; The A and B is the soil line parameters. BR = Blue light × B.

Figure 5. The DTW index of analyzed data sets for steps.
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3. Research Methods

3.1. Support Vector Machine

The Support Vector Machine (SVM) is a popular machine learning tool that offers
solutions for both classification and regression problems. Support vector machines (SVMs)
are well-accepted supervised learning methods used for classification. The SVM classifier
supports binary classification and multiclass classification, whereas the structured SVM
trains a classifier for generally structured output labels. Moreover, there exist many hyper-
planes that may be able to classify the data. One rational choice as the best hyperplane is to
produce the largest separation, or margin, between the two classes. The optimal choice of
the hyperplane is the distance from the selected sample to the nearest sample point on each
side, which is maximized. The study considers the concept of improving statistical learning
theory, generally applied as an effective classifier to solve many practical problems. The
feature of these classifiers is to minimize the empirical classification error and maximize the
geometric margin [25]. The support vector machine is requested to select an appropriate
kernel function. The function of the kernel is to take data as input and convert it into the
required form. This is because different types of data cannot be linearized in the original
space. When separated, the data after nonlinear projection can be more separated in a
higher-dimensional space, usually linear, polynomial, Radial Basis Function (RBF), and
Sigmoid Function. We explain the classification methods of SVM in detail. The value of
bias is set to 0. The core function is adopted as RBF. The c = 10 and gamma = 0.1 are used
as the initial conditions for setting parameters. The stopping criterion of 0.001 was used as
a standard to terminate the program and output the results.

3.2. Neural Network

The neural networks are information processing networks inspired by the way bio-
logical neural systems process data. Neural Networks (NN) were first proposed in the
early 1940s as an attempt to simulate human brain cognitive learning processes [26]. They
are programmed with a primary function, which is to develop models of problems based
on trial and error or learning procedures. In the last decades, Back Propagation Neural
Network has been widely applied in many fields. The relations among massive data and a
certain phenomenon are obtained through a learning system (instead of calculation). In the
past, scientists and researchers experienced that the inputs of attributes (included ancillary
information) for remote sensing images are usually used to apply to image classification. If
a paddy area spatial dataset was well developed to perform the input variables and output
categories rationally, it may be appropriate to apply Back Propagation Neural Network as
a learning machine [27]. Basically, the neural network consists of many nodes to connect
input neurons and output neurons to three sorts of layers: input layer, hidden layer, and
output layer. The study adopted Multi-Layer Perception. Our MLP consists of at least three
layers of nodes: an input layer, a hidden layer with 13 neurons, and an output layer of
classification. The optical input has 19 neurons, and the radar input has 8 neurons. The
active function used the sigmoid function. The output used 800 epochs or 0.02% difference
as a criterion to obtain the classification outcomes.

3.3. Decision Tree

A decision tree is a tree structure containing internal and external nodes connected
by branches. A decision tree is a data-driven predictive model where it is mapped from
the observation of samples about an item to conclusions about its target value. It is usually
used as a tool for scientists and engineers to generate “rules” [28]. The internal node is a
decision-making point to investigate a decision function to determine which child node to
visit next. On the other hand, an external node is also known as a leaf or terminal node,
which has no child nodes and, with respect to a label, characterizes the given data that
lead to being visited. In general, a decision tree is employed as follows. It presents a
datum (a vector composed of several attributes) to the root node of the decision tree. It
may depend on the result of a decision function used by an internal node, and the tree will
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branch to one of the children of the node. This process will repeat until a terminal node
is approached and a label or value is then assigned to the given data. The height of DT is
limited to 17 layers, which uses the Exhaustive Algorithm to display all the possibilities of
the condition the samples should fit in.

3.4. DTW Methods

DTW is one of the algorithms for computing the similarity on two temporal sequences.
Hence, DTW can be successfully applied to temporal sequences of video, audio, and
graphics data. That is, any data that can be turned into a linear sequence can be analyzed
by DTW as well. A well-known application has been automatic speech recognition for
different speaking speeds. It can also be used in partial shape matching applications.
Reviewing the DTW past research, Petitjean et al. (2012) used the DTW algorithm for SPOT
time-series satellite images to classify the land-use coverage. This research incorporated
the K-means and DTW into image measurement to obtain the classification. The results
show that the similarity of multi-period images is matched by using DTW, which performs
better in classification outcomes of multi-period images than that of a single image use [10].

Similarity measurements between the two sequences are named as “warping path”. In
this path the two signals may be aligned at the same time. The signal with an original set of
points X (original), Y (original) is converted to X (warped), Y (warped). Related technique
sequences of varying speed may be averaged using this technique. While two different
time series data are matched with each other, it can be seen directly through a line chart or
other visualized graphs whether there is a strong similarity between the two. It is possible
to objectively quantify the degree of similarity between the two images.

To calculate the DTW similarity of two-time series, one can establish an m × n Eu-
clidean distance matrix. Then, a cost matrix or cumulative matrix Mc based on the distance
matrix is generated. The cumulative matrix is Mc (i, j) defined as follows:

MC(i, j) = min

⎧⎨
⎩

MC(i − 1, j − 1)
MC(i − 1, j)
MC(i, j − 1)

+ M(i, j) (1)

In Equation (1), MC(i, j) represents a matrix from a point (i, j) of the route. The
accumulated value of the minimal value in (1) has three terms. The optimal value can be
found by considering MC(i, j) with two periods of distance in DTW by computing from
(1, 1) to (i, j).

Since the DTW can analyze two sets of timing information with different scales and
timing lengths, it produces the most intuitive numerical value to show the degree of
similarity of the timing fluctuations between the two sets of information [10–22]. This study
presumes that different sources of information have their contributions for classification.
We utilized the “multi-scale time series feature similarity” indicators from the concept of
data fusion, especially considering the ancillary information of radar data, to compare the
optical image data to produce the similarities. According to Equation (1), this study uses
Python to write a “multi-scale time series feature similarity indicators” program that can
process multiple time series feature information in batches. The program merges all the
characteristics into it as well. The features are computed as a feature similarity index, and
then each of the rest of the features step-by-step will be imported. All the aforementioned
data are applied to the classification outcomes from three approaches (SVM, NN, and DT)
by inconsistent classified results. The best way to resolve the inconsistent classified results
is to use new ancillary information (such as DTW).

3.5. Accuracy Verification

To test the accuracy of the final automated classification model, this study uses the
Confusion Matrix and kappa value in image interpretation and classification accuracy of the
final results of this research. Four different regions are randomly selected in this study area as
verification regions to check the final results of the developed new classification model.
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3.6. Model Software

In this study, we used IBM SPSS Modeler 18.1 to carry out the analysis. The software
is user-friendly with graphical interference to display how the outcome is obtained.

4. Results and Discussion

4.1. Examples of Optical and Radar Timing Characteristics Data

The results of this research are shown in Label A in Figure 4. Conventionally, vegetation
indices and texture information can successfully classify paddy rice through image classifi-
cation. However, this study made further progress. Taking a closer look at the radar image,
Figure 6 shows the texture characteristic curve of Sentinel-1A (VH) and (VV) polarization
images, respectively. Overall, entropy and homogeneity display dramatic differences in the
time series analysis for paddy rice and non-paddy rice. In addition, rice and non-rice also
show differences among these indicators. By carefully examining the texture analysis of
Figure 6a,c in the changes of rice growth, it can be found that rice transplanting (transplanting
rice seedlings) happens after 31 January. While the rice grows, the rice leaves gradually cover
the surface soil. Then the leaves continuously have edges broken, and the bright spots and flat
areas increase at the same time. The changes in the entire texture information are inconsistent,
and the texture value decreases. After paddy heading from 24 February to 1 April as the ears
of rice grow, the degree of texture disorder (see the entropy indicator) gradually increases,
while the homogeneity decreases slightly and the homogeneity area produces a smaller value.
From 1 April to 25 April as the rice leaves grow to cover the soil reflection, the texture tends
to be consistent. The entropy decreases while the homogeneity increases. On 27 May when
the rice ears are mature and exposed, the paddy harvest period begins. The rice ears of these
highly reflective objects reduce the uniformity, so the texture value increases sharply [29].
According to the analysis of the aforementioned waveband information, we notice certain
temporal characteristics of the trend information t. In the past, we tended to ignore these
changes in the time axis. In Figure 6, the x axis is the observation time, and y axis is the
normalization value of each type of texture information. Previously, there was a lack of an
ideal tool to effectively integrate the information. If we employ the subsequent classification
algorithms to increase the effective image information, we can certainly provide some help for
the classification of rice fields.

 
(a) 

Figure 6. Cont.

291



Agriculture 2022, 12, 77

 
(b) 

 
(c) 

 
(d) 

Figure 6. Sentinel-1A VH and VV variation, (a) paddy rice (VH), (b) non-paddy rice (VH), (c) paddy
rice (VV), and (d) non-paddy rice (VV).
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4.2. Comparison on Direct Classification Method and Hybrid Classification Method

Since the range of study area is too large, we chose a small area to display the classifi-
cation performance result. However, the confusion matrix is generated by the entire study
area. The range is presented as the red frame in Figure 7.

Figure 7. Display area with detailed information.

4.2.1. Direct Classification Method

The results of this research are shown in Label B in Figure 4. Table 3 shows the
analysis results of the direct classification methods of this study. From top to bottom, the
methods are SVM, NN, and DT. Among the three classification methods, DT achieved
the best accuracy and kappa value of 93.26% and 0.76, respectively. The worst result was
NN; overall accuracy and kappa value were, respectively, 89.51% and 0.66. It seems that
the overall median value is the SVM method. Figure 8 shows the results displayed by
the three algorithms. The blue frame in Figure 8 indicates that the calculation result is
inconsistent compared to the ground truth data. In terms of direct classification, no matter
which algorithm we used, the commission errors of rice still accounted for a certain number
of cases.

However, we decided to examine how to integrate the optical information and radar
information by considering multiple data resources with multiple algorithms. See Table 3
for further information. For this algorithm, the commission error of rice is quite serious.
Although a large number of texture images in the analysis process are used, it seems that
there are still many commission errors in the classification problem. Even if we use radar
information at the same time, this does not seem to enhance the performance. On the
other hand, this shows that the current analysis results may tend to be over-trained in the
non-rice part. There are many reasons for the result of rice misclassification. This reason
is a common phenomenon in the problem of rice classification because the rice samples
are grown on the ground in different time scenarios. To solve the problem of commission
errors, we employ a hybrid classification method in the next step.
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Table 3. Direct classification.

SVM
Ground Truth Producer’s

AccuracyPaddy Rice Non-Paddy Rice Sum of Columns

Direct
Classification

Paddy Rice 7173 3868 11,041 0.65

Non-Paddy Rice 526 41,645 42,171 0.99

Sum of Rows 7699 45,513 53,212

User’s Accuracy 0.93 0.92
Accuracy 91.74%

kappa 0.72

NN
Ground Truth Producer’s

AccuracyPaddy Rice Non-Paddy Rice Sum of Columns

Direct
Classification

Paddy Rice 7075 4958 12,033 0.59

Non-Paddy Rice 624 40,555 41,179 0.99

Sum of Rows 7699 45,513 53,212

User’s Accuracy 0.92 0.89
Accuracy 89.51%

kappa 0.66

DT
Ground Truth Producer’s

AccuracyPaddy Rice Non-Paddy Rice Sum of Columns

Direct
Classification

Paddy Rice 7250 3139 10,389 0.70

Non-Paddy Rice 449 42,374 42,823 0.99

Sum of Rows 7699 45,513 53,212

User’s Accuracy 0.94 0.93
Accuracy 93.26%

kappa 0.76

(a) 

Figure 8. Cont.
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(b) 

(c) 

Figure 8. Comparison of direct classification and ground truth data, (a) SVM, (b) NN, and (c) DT.

4.2.2. Hybrid Classification

The results are shown in Label C in Figure 4. The hybrid classification method is
divided into two parts. In the first, the patches show consistency after the first stage of
classification, regardless if they show rice or non-rice (49,084 patches). The number of
patches with inconsistent parts is 4128, so we execute re-classification. In the meantime,
the DTW index information of “multi-scale time series feature similarity indicators” is
employed. The DTW is calculated based on the values for the entire image, and the
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extraction of the inconsistent patches is carried out individually. Then, they are newly
plugged into the dataset and re-classified. Therefore, we explain the results of the three
parts as follows: 1, the accuracy of consistency classification; 2, inconsistency classification
patches for discussion; 3, DTW indicator results; 4, hybrid classification method integration
accuracy results.

Step 1. The first stage of accuracy of consistency classification.
This study uses a two-stage classification. Showing the results of the first stage of the

multi-calculation classification method, Table 4 presents the patches that were consistent in
the classification among the three algorithms. The meaning of this analysis is that current
input feature variables for classification reach the best limitation of classification. In other
words, considering a classification model under the condition of maximizing the accuracy
of image data, the maximum classification approach of the machine learning model may
be found.

Table 4. Consistency of classification outcome.

Ground Truth
Producer’s
AccuracyPaddy Rice

Non-Paddy
Rice

Sum of
Columns

Consistency of
Classification

Paddy Rice 6904 2208 9112 0.76

Non-Paddy Rice 292 39,680 39,972 0.99

Sum of Rows 7196 41,888 49,084

User’s Accuracy 0.96 0.95
Accuracy 94.91%

kappa 0.82

Step 2. Discuss accuracy of consistency classification.
Table 5 presents the patches that were inconsistent in the classification among the three

algorithms. From top to bottom, they are SVM, NN, and DT. Among these three classifica-
tion methods, DT had the best accuracy and kappa value of 73.64% and 0.26, respectively.
The worst result was NN. Its overall accuracy and kappa value were, respectively, 25.34%
and −0.14. Table 5 shows that the patches had inconsistent classifications under different
classification approaches. Both rice and non-rice samples had extreme commission errors
and omission errors. Furthermore, there are many reasons for the resulting commission
errors of rice. The complications of image quality and planting methods (time difference,
mixed planting) are the major reasons. It is very difficult to resolve them by using an
existing classifier unless time-history data are employed. Hence, in this study, we decided
to incorporate DTW and time feature variables to provide three algorithms for the second
stage classification. According to the results when employing DTW in the classification
process, the proposed approach enhanced classification to the maximum classification level.

Table 5. Inconsistency of classification outcome.

SVM

Ground Truth
Producer’s
AccuracyPaddy Rice

Non-Paddy
Rice

Sum of
Columns

Inconsistency of
Classification

Paddy Rice 269 1660 1929 0.14

Non-Paddy Rice 234 1965 2199 0.89

Sum of Rows 503 3625 4128

User’s Accuracy 0.53 0.54
Accuracy 54.12%

kappa 0.03
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Table 5. Cont.

NN

Ground Truth
Producer’s
AccuracyPaddy Rice

Non-Paddy
Rice

Sum of
Columns

Inconsistency of
Classification

Paddy Rice 171 2750 2921 0.06

Non-Paddy Rice 332 875 1207 0.72

Sum of Rows 503 3625 4128

User’s Accuracy 0.34 0.24
Accuracy 25.34%

kappa −0.14

DT

Ground Truth
Producer’s
AccuracyPaddy Rice

Non-Paddy
Rice

Sum of
Columns

Inconsistency of
Classification

Paddy Rice 346 931 1277 0.27

Non-Paddy Rice 157 2694 2851 0.94

Sum of Rows 503 3625 4128

User’s Accuracy 0.69 0.74
Accuracy 73.64%

kappa 0.26

Step 3. Examples of multi-scale time series feature similarity indicators and description
of integration results.

Table 6 presents a dataset that converts the time series dynamic relationship of the
information. That is, each patch is generated by an index for the calculation of “multiscale
time series feature similarity indicators” in this research. Because the amount of data is too
large, we extracted a part of the data to present the research results.

Table 6. The relations of patches and multi-scale of features.
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In Table 6, the y axis is the number of patches in the demonstration area, including
number of 53,212. The x axis is the number of combinations of multi-scale time series
features, i.e., 351 features, and each grid value in Table 6 is the time series between the
two-time series features of different patches. The higher the similarity value is, the more
similarity between them. For instance, taking patch ID = 1 as an example, one to four groups
of feature groups of similar value indexes are sorted by size as follows: feature dataset
2 (0.7318) > dataset 3 (0.2544) > dataset 1 (0.1027) > dataset 4 (0.0869). The information of
the feature number is derived from dataset one to four as (1) Dataset1: SPOT6 red light
band vs. SPOT6 green light; (2) Dataset2: SPOT6 red light band vs. SPOT6 blue light;
(3) Dataset3: SPOT6 red light band vs. SPOT6 near-infrared light; (4) Dataset4: SPOT6
near-infrared light vs. crop management factor index (CMFI).

The above example shows the calculation of this indicator. The similarity between
time series features of different scales can be converted into actual values, and the dataset’s
multiple features can be integrated into a worksheet, which greatly increases the analysis
among different time domains and various data sources. It is worth mentioning that our
analysis at this stage analyzes the entire image. The above analyses are easy to govern
numerically because we can trace the IDs for their corresponding locations.

Step 4. The overall accuracy of the hybrid classification.
Table 7 shows the analysis results of the hybrid classification method of this study.

The results are presented for SVM, NN, and DT. From the results, when we compare
the three classification methods, DT had the best classification result. The accuracy and
kappa values were 94.71% and 0.81, respectively. NN showed the worst result again, with
overall accuracy and kappa values of 92.63% and 0.74, respectively. The NN approach
still greatly improved the classification accuracy when applying DTW. The other two
classifiers (SVM and DT) also had increased performance in classification for DTW. The
final classification results of DT and SVM are largely the same. This also shows that the new
ancillary information of DTW can sustainably improve the classification results. Figure 9
shows the results of the three algorithms. By zooming in on the selected area, it can be
found that the original direct classification method achieved more significant improvement
in commission errors than in omission errors. Figure 9 shows that there are many yellow
frames indicating correction of NN, which also means that the prediction accuracy of NN
in the hybrid classification method is improved when compared to the direct classification
method. In other words, the result shows that the DTW indicator can provide better
classification performance. To sum up, we decided to employ the DTW index in the
classification process. Our results show how the DTW index resolved the confusing parts of
the image. As usual, if a pixel is classified as the same pattern by different classifiers, very
few errors are produced [9]. However, if a pixel is not classified as the same category for a
different classifier, deployment of a new indicator (DTW) can be expected to update the
erroneous pattern.

Table 7. Outcomes for hybrid classification.

SVM

Ground Truth
Producer’s
AccuracyPaddy Rice

Non-Paddy
Rice

Sum of
Columns

Hybrid
Classification

Paddy Rice 7360 2626 9986 0.74

Non-Paddy Rice 339 42,887 43,226 0.99

Sum of Rows 7699 45,513 53,212

User’s Accuracy 0.96 0.94
Accuracy 94.43%

kappa 0.80

298



Agriculture 2022, 12, 77

Table 7. Cont.

NN

Ground Truth
Producer’s
AccuracyPaddy Rice

Non-Paddy
Rice

Sum of
Columns

Hybrid
Classification

Paddy Rice 7184 3407 10,591 0.68

Non-Paddy Rice 515 42,106 42,621 0.99

Sum of Rows 7699 45,513 53,212

User’s Accuracy 0.93 0.93
Accuracy 92.63%

kappa 0.74

DT

Ground Truth
Producer’s
AccuracyPaddy Rice

Non-Paddy
Rice

Sum of
Columns

Hybrid
Classification

Paddy Rice 7397 2512 9909 0.75

Non-Paddy Rice 302 43,001 43,303 0.99

Sum of Rows 7699 45,513 53,212

User’s Accuracy 0.96 0.94
Accuracy 94.71%

kappa 0.81

Usually, there are two ways to express classification accuracy, the first is the overall
accuracy (OA), and the second is the kappa value. OA represents the proportion of the
number of correctly classified samples to the total number of samples, but such indicators
are easily affected by the omission error and commission error rate. Thus, the kappa value
must be considered. The kappa is a better reference than OA to observe commission errors
and omission errors. For instance, kappa results for SVM (0.72 vs. 0.80), NN (0.66 vs. 0.74),
and DT (0.76 vs. 0.81) are adopted in Tables 3 and 7 which proved that the three classifier
models are satisfactory in terms of applying DTW.

(a) 

Figure 9. Cont.
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(b) 

(c) 

Figure 9. Comparison on hybrid classification and ground truth data, (a) SVM, (b) NN, and (c) DT.

Overall, DTW is based on the dynamic programming method for effectively reduc-
ing search and comparison time. The multi-scale time series feature similarity indicators
developed in this research have the ability to transform multi-dimensional data into two-
dimensional information. The reason for applying DTW is because the status of crops is a
long-term characteristic. This research shows that time features are helpful for long-term
characteristic image classification. In particular, it can be used in small farmland areas and
fragile landscapes. Through the integration of DTW data, it can overcome the limitations of
the large difference between optical images and radar images. In addition, the different spatial
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resolutions of the two types of images are integrated. Moreover, the various limitations of
different atmospheric conditions in the shooting process of the two images are resolved. This
indicator has extremely high potential in the detection of crop phenology.

5. Summary and Conclusions

This study developed a multi-scale time series feature similarity index through the
Dynamic Time Wrapping (DTW) theory to integrate multi-source scale time-series image
information. The training/test dataset was analyzed through a verification process proving
that the original feature information was added to the time series similarity index of the
multi-scale time series feature data. The conclusions of this paper are as follows:

1. This study used SPOT6 optical images and Sentinel-1A radar images as the materials
of research, which differs from the mainstream use of image fusion in the interpreta-
tion in past studies. The massive time series features in the datasets are integrated into
a simple index to present the data dimensions in a single dataset. This approach pro-
vides new possibilities for subsequent analysis of information considering different
scales of data.

2. The homogeneity and entropy in radar images provides some new information in
time series analysis, which greatly helps the classification of paddy rice. It is found
that the behavior of time variations can distinguish paddy rice and non-paddy rice
easily.

3. This study uses the “direct classification method” and “hybrid classification method”
for comparison. The characteristic information of optical satellite images and radar
images is applied to directly perform classification methods for their behaviors. The
results show that the overall accuracy results of the direct classification method are
91.7% (kappa value 0.72, SVM), 89.5% (kappa value 0.66, NN), and 93.26% (kappa
value 0.76, DT). In the second stage of classification, the patches were classified
optically with DTW feature information using three approaches, and neutral patches
were added in the first stage, producing the overall accuracy results of 94.43% (kappa
value is 0.80, SVM), 92.63% (kappa value is 0.74, NN), and 94.71% (kappa value is
0.81, DT). This also proves the DTW is robust.

4. This result renders a feasible way to integrate radar feature information with optical
feature information, especially in multi-period data. The optical images in different
periods are difficult to obtain due to the influence of weather conditions. Radar
images can be obtained regularly since cloud and fog interference can be avoided. A
possible solution has been designed to overcome their disadvantages, which could
lead to better classification performance. Considering those various restrictions, it is
especially suitable for small farmland areas and fragile landscapes.
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Abstract: The use of climate services (CS) for the provisioning of climate information for informed
decision-making on adaptation action has gained momentum. However, a comprehensive review of
the literature to evaluate the lessons and experiences of CS implementation in the African agriculture
sector is still lacking. Here, we present a systematic review (mapping) of 50 pieces of literature
documenting lessons and experiences of CS adoption in the agriculture sector of 20 African countries.
The qualitative analysis of the reviewed literature revealed: (1) CS implementation overwhelmingly
relied on a participatory process through workshops and participatory scenario planning meetings to
connect users with actors along the CS value chain of forecast production, translation, integration, and
application. Additionally, innovations such as mobile phones and internet service are increasingly
being integrated with CS to strengthen the relationship between CS providers and users. They are,
however, mostly at the trial stage and tend to have a varying impact depending on available facilities
and infrastructure in the community. (2) Although there is a growing recognition of the need for the
integration of indigenous and scientific knowledge systems in the production of climate information,
such integration is currently not happening. Rather, indigenous knowledge holders are engaged
in a participatory process for insight on modalities of making scientific climate information locally
relevant and acceptable. Given the aforementioned findings, we recommend further research on
modalities for facilitating indigenous knowledge mainstreaming in climate information production,
and investigation of options for using innovations (e.g., mobile) to enhance the interactions between
CS users and CS providers. Such research will play a great role in scaling up the adoption of CS in
the African agricultural sector.

Keywords: Africa; knowledge systems; climate change; agriculture; adaptation

1. Introduction

Agricultural development and sustainability in Africa are linked to the discourse
around poverty and wellbeing [1,2]. Moreover, the agriculture sector in most developing
countries is highly vulnerable to climate change due to compounding factors, including lack
of capital, poor infrastructure, dependence on rain-fed agriculture, insecure land rights,
and degradation of natural resources [3,4]. Consequently, several initiatives aimed at
enhancing stakeholders’ access to tailored and contextual climate information for adapting
farming practices to climate and socioeconomic risks are being promoted [5–7]. In this
regard, Climate Services (CS) has become a popular initiative. (In this study, we adopt the
American Meteorological Society’s definition of CS, which defines CS as scientifically-based
information and products that enhance users’ knowledge and understanding about the
impacts of climate on their decisions and actions.) “Climate services, involve the timely
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production, translation, and delivery of useful climate data, information and knowledge
for societal decision-making and climate-smart policy and planning” [8].

Several initiatives for scaling up the implementation of CS in the African agricul-
ture sector have been adopted. Some of these initiatives include: the African Center of
Meteorological Applications for Development (in 1995), the Climate Services Partnership
(in 2011), the Global Framework of Climate Services (in 2012), and the Climate Services
for Resilient Development Partnership (in 2017). These initiatives have been used in sev-
eral approaches to facilitate the production and dissemination of climate information to
stakeholders in the agricultural sector. The Global Framework of Climate Services, for
example, implemented several projects in many African countries that aimed to facilitate
timely delivery of contextual climate information to stakeholders through a collaborative
participatory process [5,9–11]. Similarly, the African Centre of Meteorological Application
for Development initiative implemented several projects aimed at producing forecasts
of an appropriate timeline that are most suitable to decision-making in the agricultural
sector [12–14].

Despite the growing number of initiatives promoting the adoption of CS in the African
agricultural sector, there have been no regional level syntheses (Africa scale) of issues
driving the adoption of CS and how CS has impacted adaptation actions in the African
agricultural sector. Nevertheless, there have been several country-level studies on the
contributions of CS to climate risk management in the agriculture sector [15,16]. Ref [17]
investigated users’ needs for CS. Ref [18] investigated the role of participatory processes in
enhancing CS implementation in the agriculture sector. Ref [16] investigated the importance
of CS for food security in East Africa. Ref [19] analyzed the process of forecast production
and translation into relevant information for the agriculture sector. Ref [20] investigated the
value of forecasts to farming activities, with the view of identifying content and timescale
forecasts which are more appropriate for adapting farming operations to climate and
socioeconomic risks.

Although these studies have provided important insight into the knowledge and
experience of CS implementation in the African agriculture sector, they are, however,
mostly at a national to sub-national scale. Thereby, they run the risk of missing important
information for robust/generalizable interpretation of CS’ impact on the African agriculture
sector [21], which may lead to a biased interpretation of CS contributions to the African
agriculture sector.

There is, therefore, a dearth of systematic review on the lessons and experiences of CS
implementation in the African agriculture sector [22,23]. In order to fill this gap, we apply
a systematic mapping review, drawing from lessons and experience in the literature on CS
implementation across Africa. We ask: (1) how do the CS models characterize the process
of climate information production and dissemination? (2) What types of information are
provided by the CS? (3) How does CS facilitate indigenous knowledge systems’ integration
in the provisioning of these interventions? (4) How does the adoption of CS promote
two-way learning (bottom-up and top-down) about climate-smart agricultural practices?

The rest of this paper is organized as follows: Section 2 describes the methods used
for data extraction and analysis. Section 3 presents the results by (i) giving insights
into how existing CS models shapes the process of climate information production and
dissemination; (ii) elaborating on the characteristics of the CS and the types of information
they disseminate; (iii) exploring how CS facilitates knowledge systems’ integration; and
(iv) providing insights on how the CS facilitates two-way learning about climate-smart
agricultural practices. Section 4 concludes with a summary of the main findings and
reflections on areas of future research.

2. Methods

2.1. Systematic Mapping Review (SMR) Data Selection Process

This paper adopts an SMR approach, wherein a thematic content analysis is used to
analyze extracted data from all the reviewed literature. The execution of the SMR approach

306



Agriculture 2022, 12, 160

entailed six steps: definition of research questions, literature search, literature screening
for papers, data extraction, coding, and mapping (Figure 1). A systematic literature search
was conducted using the following databases: AGRIS, CAB Abstracts, ISI Web of Science,
Scopus, Emerald, Open Access Theses and Dissertations (OATD), and Directory of Open
Access Journals (DOAJ). We limited our selections to literature published between 2000 and
2019. We additionally searched for published reports, policy briefs, and working papers
using the following databases and organization websites: Food and Agriculture Organi-
sation of the UN (FAO), International Fund for Agricultural Development (IFAD), Centre
for International Forestry Research (CIFOR), World Agroforestry Centre (ICRAF), Food
and Agriculture Organization of the United Nations, International Food Policy Research
Institute (IFPRI), International Institute for Environment and Development, International
Centre for Tropical Agriculture (CIAT), Bioversity International, International Centre for
Agricultural Research in the Dry Areas (ICARDA), International Crops Research Institute
for the Semi-Arid Tropics (ICRISAT), International Institute of Tropical Agriculture (IITA),
International Livestock Research Institute (ILRI), and World Agroforestry Centre.

The focus was on literature addressing the application of climate services in the
agricultural sector in Africa. The study considered only studies published in English,
which we acknowledge as a limitation. We used the following search terms [(Farm*
OR Agr*) AND (Climate* OR Global change OR Resilience) AND (climate services OR
climate info* OR knowledge systems OR knowledge network OR knowledge flow)] to
search for literature. The literature search, including searches for published journal papers,
reports, book chapters, conference papers, working papers, and policy briefs, resulted in
6713 papers.

The papers collated through the literature search were assessed for inclusion through
a multi-tiered process: firstly based on the title, then by abstract, and finally by full-text
review (Figure 1). The papers that were screened and included for full-text review must
fulfill the following criteria: (1) Published between 2000 and 2019, (2) subject area must
be related to CS use and management in the agricultural sector in Africa, (3) studies that
addressed different models of CS used in the African agricultural sector and the knowledge
systems that inform the functioning of the CS models were adjudged as meeting the
relevant intervention criteria, and (4) studies that evaluated the impact and outcomes of CS
on the sustainability of the African agricultural sector were judged as meeting the relevant
outcomes criteria.

The screening for full-text review resulted in 50 published studies (Figure 1) which
were subjected to the full-text review and used in the literature mapping analysis. In-
terestingly, the screening exercise resulted in the identification of 359 studies on CS use
and management in the agricultural sectors of developing countries other than Africa.
These 359 studies were not used in the literature mapping analysis but were reviewed to
gain comparative insight into CS use and management in the agricultural sectors of other
developing countries.

2.2. Review Analysis

The selected 50 pieces of literature (Table 1) focusing on Africa were analyzed using
qualitative (thematic content) analysis with the view of generating all possible responses
to the study’s four research questions. The information extracted from the studies com-
prised households’/farmers’ socioeconomic profile, conceptual framework, data collection
methods, the process and type of information content produced and disseminated via
the CS, and the dissemination pathways. The thematic content analysis was performed
in Microsoft Excel to guide the thematic grouping of collected data and substantiate the
interpretation of results. Repeated crosschecking during the data extraction and coding
process served to reduce the risk of error.

Thematic content analysis was conducted by coding the extracted data into themes
and categorizing the codes into broader themes. The coding was applied at three levels [24]:
initial/open coding, focused coding, and thematic coding. The study’s research questions

307



Agriculture 2022, 12, 160

guided the initial/open coding of the extracted data until no further new codes emerged
(thematic saturation) [25]. Abductive reasoning was used to allow themes to emerge from
the data to provide reasonable answers to all four research questions. In an abductive
reasoning process, logical inferences are made by finding the simplest and most likely
explanation to an observation or set of observations [26].

 

Figure 1. Summary diagram of the literature screening process.

2.3. Overview of Extracted Data

The unit of analysis (Table 1) in the selected studies is mostly sectoral targeting of
the entire agricultural sector. Some of the studies are, however, more specific, targeting
rural households, farmers, and/or pastoralists. The analysis method adopted in the
selected studies varied. Most of the selected literature applied a mixed method, combining
household surveys with focus group discussions (14). Some of the studies were based on
the review and evaluation of implemented CS projects across Africa (9). The third most
common methodological approach used in the selected studies is a model-based approach
to improving the tailoring of climate forecasts to the farmers’ contexts, and understanding
the value of climate forecasts to crop and livestock productivity (4). Some of the studies are
based on a traditional literature review to understand the conceptualization and application
of CS (6). Some of the studies used a workshop approach to tease out factors shaping CS
application and effectiveness (see Figure 2).

The distribution of the study site across regions in Africa varies, with most of the
studies located in the Western Africa region (26%). This is followed by the Southern African
region (23%). Twenty percent of the studies are located in the East Africa region. Although
we did not record any study focusing specifically on the Central and Northern Africa
region, 20% of the selected studies focused on Africa in general while the geographical
region of 11% of the selected remains unspecified.
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Figure 2. Methodological approach usage in CS project analysis (%).

Table 1. List of the 50 kinds of literature analyzed for this study.

SN Publication Type Unit of Analysis Study Scale Study Country

1 Research article Farmers National Senegal

2 Research article Agriculture sector National Kenya

3 Research article Agriculture sector Regional–Southern Africa Swaziland, Zambia

4 Research article Farmers National Burkina Faso

5 Research article Agricultural institutions National Burkina Faso

6 Research article Households National Kenya

7 Research article Sectoral–Agriculture National Kenya

8 Research article Sectoral-Agriculture Regional–West Africa Mauritania, Niger, Ivory Coast, and Ghana

9 Research article Sectoral–Agriculture Regional–East Africa Kenya and Ethiopia

10 Research article Farmers Regional Ghana, Uganda and Cameroon

11 Research article Farmers Regional–East Africa Kenya, Ethiopia, IGAD countries

12 Research article Households National South Africa

13 Research article Farmers National Zimbabwe

14 Research article Farmers National Lesotho

15 Research article Households National Lesotho

16 Research article Households Sub-national Mali

17 Research article Sectoral–Agriculture Global, but have Kenya case studies Global

18 Research article Sectoral–Agriculture Regional–Africa NA

19 Research article Sectoral–Agriculture National Malawi

20 Research article Sectoral–Agriculture Regional–Africa NA
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Table 1. Cont.

SN Publication Type Unit of Analysis Study Scale Study Country

21 Research article Farmers National Zimbabwe

22 Research article Sectoral–Agriculture Regional–Africa Africa

23 Research article Sectoral–Agriculture global Global

24 Research article Pastoralists Regional Kenya, Ethiopia

25 Research article Households National Uganda

26 Research article Pastoralists National Burkina Faso

27 Research article Pastoralists National Burkina Faso

28 Research article Sectoral–Agriculture West Africa West Africa countries

29 Research article Households National Burkina Faso

30 Research article Farmers National Senegal

31 Research article Sectoral–Agriculture National Uganda

32 Research article Sectoral–Agriculture National Ghana

33 Research article Pastoralists National Senegal

34 Research article Households National Zambia

35 Research article Sectoral-Agriculture, water Global Africa

36 Research article Households National Uganda

37 Research article Farmers National Mali

38 Technical report Sectoral–Agriculture Regional–Africa Africa

39 Book chapter Households National Uganda

40 Book chapter Households National Uganda

41 Review paper Sectoral–Agriculture Regional–Sub-Saharan Africa Africa

42 Review paper Sectoral–Agriculture Global Africa-South Africa, Zimbabwe

43 Review paper Sectoral–Agriculture Global Africa

44 Review paper Sectoral–Agriculture Global Sudan, Kenya

45 Review paper Sectoral–Agriculture Global unspecified

46 Review paper Sectoral–Agriculture Regional West Africa countries

47 Review paper Sectoral–Agriculture Global NA

48 Conference
proceedings Sectoral–Agriculture Sub-national Kenya

49 Working paper Households Regional Africa

50 Working paper Farmers and pastoralists National Tanzania

3. Results

3.1. Characterizing the Process of Climate Information Production

The organizational collaboration process underpinning the process of climate infor-
mation production and dissemination in all the reviewed case studies followed a similar
value chain approach. The value chain has three distinct phases: forecast production, fore-
cast translation and integration into agriculture relevant climate information, and climate
information communication and adoption in decision-making [5,9,11,27–29]. The nature
of the relationship among the actors along the three phases of the value chain is the key
factor that shapes the nature and function of the CS model in the African agriculture sector.
Figure 3 presents the identified key challenges associated with each of the three phases of
the CS value chain.
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Figure 3. CS value chain characterizing phases of forecast production and translation climate information.

Forecast Production: Most activity at the forecast production stage focuses on the pro-
duction of forecasts that are in accord with the timescale at which decisions are made in the
agriculture sector [30–32]. The assumption is that such harmony can increase the relevance
and adoption of forecasts in the agriculture sector. This is further discussed in Section 3.2.
The key actors are the national meteorological departments and regional/international
forecast-producing organizations.

Translation and Integration: The translation and integration stage focuses on the
application of a transdisciplinary approach through the encouragement of a collaborative
process that facilitates interaction among diverse actors of the varying disciplinary fields
to promote the translation and integration of forecasts into information on climate risk
warning and risk response strategy relevant for the agriculture sector [13,15,33–35]. The
key issue includes the establishment of an appropriate modality for the integration of
scientific and indigenous knowledge systems in produced climate information to facilitate
its sociocultural relevance and acceptance. This is elaborated in Sections 3.2 and 3.3

Application: The application stage focuses on a two-way interaction with farmers
to understand their socio-cultural characteristics to implement a dissemination pathway
that will facilitate access and uptake of disseminated information [36–40]. The key issue
identified in this phase includes the development of a comprehensive socioeconomic profile
of the community to implement an appropriate dissemination pathway that facilitates rural
people’s access to disseminated information while also providing them with a platform for
feedback on their experience and expectation for revision and reformation of disseminated
information. This issue is elaborated in Sections 3.3 and 3.4

3.2. Types of Interventions and Climate Information Provided through CS

The types of interventions provided in the African agriculture sector through CS were
thematically grouped into 11 categories (Figure 4). Most of the interventions are within the
thematic group of analysis of adoption pathways (19%). The type of interventions within
this group mostly focussed on analyzing the adoption pathways for effective CS uptake in
the agriculture sector [9,40,41]. To optimize CS adoption by relevant actors’ across scales in
the African agriculture sector, project implementers employ several strategies including
socioeconomic characterization of households to identify efficient and effective information

311



Agriculture 2022, 12, 160

dissemination pathways [9,11,42,43], while some projects used peer-to-peer and social
learning to promote and facilitate CS use awareness among potential users [42,44]. Some
projects chose an economic pathway by analyzing households willingness to pay for
CS to identify the cost-effective strategy for promoting CS’ adoption in the agriculture
sector [45,46].

 

Figure 4. Thematic groupings of CS according to issues of focus.

The second most common thematic groups of interventions are needs and gaps anal-
ysis (14%) and early warnings for food security (14%). In the context of needs and gaps
analysis, CS is used to specifically target the local contextual needs of farmers/users con-
cerning their information needs for livelihood system adaptation to climate change. In the
context of early warning, CS is used for timely and relevant information communication
to users to facilitate their early preparation for various risks including drought, wildfire,
erratic rainfall, etc., to help ensure food security at household and community levels. The
third most common thematic group of intervention is the valuation of CS’ application in the
agriculture sector (10%). Interventions within this thematic group are mostly focused on
the evaluation of CS’ contribution to the economic viability of agricultural practices and CS’
contribution to agriculture productivity, e.g., crop yield. The fourth most common thematic
group of interventions are Information and Communication Technology (ICT) integration
in CS (9%) and status of CS use in Africa (9%). Interventions focusing on ICT integration
mostly focused on the investigation of options for using ICT to enhance farmers’ access to
relevant climate information in a cost-effective and timely manner. These types of studies
are relatively recent but are growing exponentially in number. A positive trend was ob-
served between the year of project implementation and the type of intervention the projects
provide. This is especially true for project interventions focused on ICT integration in CS
applications. Although this type of intervention is currently the least common, nevertheless,
most of the projects providing this type of intervention are recent, with most occurring
between 2011 to 2019. This is a strong indication that this type of intervention is steadily
growing and may become the dominant type of intervention in the future. Other thematic
groups of interventions that are sparingly provided through CS include: analysis of how CS
can improve crop production (5%), people’s perceptions of CS (5%), issues and challenges
of climate risk prediction (5%), gender and social differentiation in CS deployment (5%),
and collation of indigenous knowledge systems use in risk management (5%).
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3.3. Types of Climate Information Provided through CS

There are three main types of climate information commonly provided through CS.
These are forecasts, agrometeorological services, and early warnings.

Forecasts use in farming operations: Several CS projects in the African agriculture sector
have applied forecasts of varying timescale in providing risk warning and risk response
advisory services to farmers [36,47,48]. The literature synthesis and mapping process iden-
tified five timescale forecasts as the most widely used forecasts in the production of climate
risk warnings and risk response advisory services: (1) Weather forecasts (daily to weekly),
(2) Seasonal forecasts (on a timescale of 1–6 months), (3) Short-term forecasts (1–5 years),
(4) Intra-decadal/Medium-term forecasts (5–10 years), and (5) Decadal forecasts. The
most commonly used among these forecasts are short-term, seasonal, and weather fore-
casts [11,28,33]. Intra-decadal and decadal forecasts are sparingly used in agricultural risk
management, even though they may be more useful for making a strategic decision and
anticipatory adaptation plans [26,27,38].

Table 2 presents a summary of how these forecasts are used in risk warning and
risk response advisory services for informing stakeholders in the agriculture sector. We
also present additional information on how the forecasts are used in decision making
and the identified gaps based on users’ information needs and the type of information
communicated to them [49].

Table 2. Observed forecasts and their use in the agriculture sector.

Forecast Typical Content
Application in Decision

Making
Gaps Reference

Weather forecasts
(daily to weekly)

They normally contain
detailed likelihood of the

occurrence of climate
events, e.g., rainfall

possibility

Decision making on daily
farming operations:

Timing of fertilizer and
chemical applications,

timing of fungicide
applications.

None identified [10,27,50]

Seasonal forecasts (on
a timescale of
1–6 months)

Seasonal rainfall onset and
cessation, the rainfall

amounts, rainfall duration,
rainfall distribution, and

anticipated extreme
weather events such as
drought, flood, fire risk,

strong wind/wind gusts,
hail, frost, among others.

Used in making tactical
decisions on the

scheduling of: When to
plow the fields, when to

sow, when to add
fertilizers, when to

irrigate, when to provide
pesticides, when to

harvest, when to sell, and
choice of seed variety

for planting.

Desired but not widely
available information include

optimal sowing date,
evapotranspiration, insolation,

soil water availability (to
inform the scheduling

of irrigation).

[10,13,31,36,45,48]

Short-term forecasts
(1–5 years)

Mostly used in the
livestock sector for

preparedness messages
and education on:

fodder availability, water
resource availability,

potential disease
occurrence zone.

Desired but not yet widely
available information includes:

Forecasts of parasite and
animal diseases

[13,31,36,41,45,46,48]

Intra-decadal/
Medium-term

forecasts (5–10 years)
Sectoral decision making [10,13,46]

Decadal forecasts

No record of the use of decadal
to medium-term projections.
Although it acknowledged

that such could inform future
agricultural research

investments, irrigation and
water resource management
planning, and training needs

for agricultural extension staff.

[46,51]
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The generation of timescale forecasts that are relevant to the timeline at which decisions
are made in the agriculture sector is increasingly relying on the nature of the partnership
and collaboration among the transdisciplinary actors (climatologists, meteorologists, and
agriculturalists) operating in the agriculture and climate information space. Although this
partnership has played a key role in advancing the uptake of CS in the Africa agriculture
sector, there are, however, gaps reported in the selected studies concerning differences
between the type of information desired by users and the type of information they receive
via the CS.

Most of the reported gaps are associated with seasonal forecast usage. This includes
several additional important pieces of information to optimize the resilience of agricultural
operations to climate change’s impact. An example is a desire for information on crop water
requirements and evapotranspiration rate, which users believe will enhance the efficiency
of the use of irrigation systems as a climate change response strategy [4,50]. There were
also identified gaps in the literature that are associated with the use of short-term forecasts.
Many studies reported the absence of forecasts on the precise occurrence of parasite and/or
livestock disease as a result of climate change. Users believe that such information will
enable them to anticipate and adjust their management strategy to manage climate change’s
impact on their livestock [5,52]. There are, however, differences in the extent to which
seasonal and short-term forecasts are used across African countries. For example, a study
in Malawi reported that there is no availability of models to predict the different periods
when the rains can set in [34,35], whereas this type of limitation is not an issue in many
other African countries [9]. In general, we did not record any gap associated with the use
of intra-decadal and decadal forecasts in the agriculture sector; this is largely because such
forecasts are currently seldom used in the African agriculture sector.

Agrometeorological services: Agrometeorological services are the second most common
type of climate information provided by the CS [36,53]. Included in this category is
information provided to manage the impact of both climate change and climate variability.
This includes advisory information on the scheduling of planting operations, weeding,
fertilizer applications, etc. CS is also, in some cases, used to provide information on climate-
smart agriculture practices (CSA). The type of CSA information communicated includes
conservation farming practices like ridging, minimum tillage, soil conservation practices,
etc. [52,54]. The use of CS to communicate agrometeorological services and CSA to farmers
is acknowledged as a valuable innovation to assist decision-making and develop farmers’
specific adaptive capacities [36]. Table 3 presents a summary of how agrometeorological
services are used in farming operations and the associated benefits. The benefits associated
with agrometeorological services integration in farming operation decision-making can be
summarized by an increase in crop productivity and a decrease in cropping costs in terms
of inputs and working time [36,37].

Table 3. Commonly used agrometeorological services.

Farming Operation Agro-Meteorological Services CSA Benefits References

Land preparation Advice on weather and seasonal
forecasts, and crop calendar

Land conservation
practices [36,55]

Weeding Soil moisture and
weather forecasts

Land conservation
practices to reduce weed

infestation
[52,54]

Sowing
Forecasts on onset and offset of

rain seasons with
sowing calendar

Avoid loss due to crop failure
to germinate or establish

because of dry spells
[44,52,56]

Crop variety choice

Insight from forecasts on rain
distribution, average annual

rainfall, and seasonal forecasts in
combination with crop calendar
is used to advise farmers on crop

type and variety to sow

[45,52]
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Early warning interventions: The third type of climate information provided through
CS are early warnings. Early warning intervention provisioning is commonly used for
drought, flood, and wildfire risk warnings [27,40,44,52,54]. Early warnings are rarely solely
disseminated to users; rather, they are provided in combination with agrometeorological
services [33,36,37,45]. The early and timely delivery of early warnings is increasingly being
facilitated through the integration of ICT CS dissemination strategy.

3.4. Extent of Scientific and Indigenous Knowledge Systems Integration in CS

The review of studies to understand the extent to which scientific and indigenous
knowledge systems are integrated into CS revealed that knowledge system integration is
not yet an issue of significant emphasis in CS adoption in the African agriculture sector.
Of the reviewed studies, 72% applied only scientific knowledge systems and did not in
any way integrate indigenous knowledge system CS applications [9–11,41]. However, 17%
of the reviewed studies collated indigenous practices of climate risk prediction and risk
response strategy [8,13,56]. Although the documented indigenous knowledge system is not
included in the content of information disseminated via the CS, they are nevertheless, on
rare cases, used to fine-tune the statistical forecast of risks and risk response strategy [55,57].

Nonetheless, indigenous knowledge systems are not entirely neglected in the current
model of CS deployment. Eleven percent of the reviewed literature reported the inclusion of
indigenous knowledge holders in the process of a forecast’s translation into relevant climate
information for actors in the agriculture sector. The study deduces that the inclusion of
indigenous knowledge holders in the process of CS deployment is mainly for two purposes.
The first is to promote the acceptance of CS by rural farmers, because rural farmers in Africa
overwhelmingly rely on indigenous knowledge systems for their operations [27,41,55].
The second purpose is for the fine-tuning of statistical forecasts to suit the local context of
climate risk warning and risk response strategy.

Resistance to information adoption often occurs when new knowledge interplays
negatively with old knowledge [30,57,58]. This assertion can be attributed to the challenge
of meteorological forecasts’ acceptance, especially by rural farmers in many African coun-
tries where CS is sometimes rejected in favor of the old way of farming because the new
information tends to interfere with the traditional way of farming [55]. This type of resis-
tance is very common among the elderly, who tend to favor the traditional way of farming
that is rooted in their indigenous knowledge system [59]. However, there is a growing
trend towards the co-production of forecasts, whereby indigenous knowledge holders
collaborate with researchers and meteorologists to generate plausible forecasts for their
locality [8,27,49]. The approach currently tends to focus on using a participatory process
for consensus on plausible risk scenarios for the local community as a way of securing the
people’s trust and confidence in the disseminated information [27,35]. As a result, most CS’
lack information on the indigenous system of risk prediction and risk response.

The study, therefore, infers that an actionable point of entry for indigenous knowledge
system integration into CS would be to integrate scientific risk response strategy with local
sociocultural farming coping practices. Integration must occur across all three phases of the
CS value chain. This means much needs to be done to encourage integration at forecasts
production and forecast translation phase.

3.5. CS’ Role in Facilitating Two-Way Learning for Robust Adaptation Action

To analyze how the adoption of CS has facilitated two-way learning (bottom-up and
top-down) about climate change mitigation and adaptation in the agriculture sector, we
analyzed the selected literature for information on methods used to facilitate a feedback
relationship among actors in the value chain of CS. This is because the production and
dissemination of contextual climate information for actors in the agriculture sector relies
mainly on the structure and feedback loop of the network of relations that exists among the
actors [7,16].
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The analysis of the selected literature indicates that the relationships among the actors
in the CS value chain operate mainly on a participatory collaborative process. This collabo-
rative process is primarily through workshops and participatory scenario planning meet-
ings. The participatory collaborative process is used for the production of relevant climate
information, development of appropriate channels for information dissemination, and pro-
motion of local ownership in climate information production and dissemination [9,49,60].
This ultimately influences learning and revisiting to ensure the relevancy, suitability, and
usability of information disseminated via the CS [35,61,62]. Table 4 provides a summary of
recorded evidence of how the participatory process approach in CS deployment facilitates
two-way learning (bottom-up and top-down).

Table 4. Evidence of participatory process influence in CS application.

Case Key Impact Reference

The participatory process is targeted at facilitating the relationship between CS
providers and local farmers to enable CS providers to understand the user’s

socio-cultural context to provide contextual information
User’s context [11,41]

The participatory process was used to spur farmers group interest in CS which
resulted in them taking ownership and initiative of the process of CS
dissemination and application in farming practices in their locality

Ownership and taking the initiative [6,11,28,49]

The participatory process was used to improve local people understanding of
and trust meteorological weather and climate forecasts

Trust and confidence in
meteorological forecasts [49]

There are several recorded case studies where participatory processes have
successfully been used to improve the rate of CS application in farming

practices by local farmers
CS usage [10,49]

There are several recorded case studies where participatory processes have
successfully been used to provide inclusive training to users to enhance their

capacity to understand and apply disseminated information via the CS
Capacitation of users [10,27]

Nevertheless, the cost and difficulty of gathering all relevant stakeholders in a work-
shop are limiting the effectiveness of this approach. This is evident in the reported gaps
(Table 2) in the information disseminated through the CS [32,40]. CS providers, therefore,
need to be proactive in interacting with the farmers regarding their needs for climate
information and in determining a more suitable feedback mechanism for maintaining the
relevancy of CS [63,64]. To this end, several methods for reaching smallholder farmers have
been attempted by various agencies, but a scalable solution has yet to be found [16,31].
The internet and mobile phone (SMS) are the two prominent new and innovative methods
being used to facilitate collaborations among the actors. They are, however, still in infancy
and need a lot of research to improve their efficiency. The use of the internet, for example,
has been constrained by lack of facilities and, in some cases, by unwillingness on the part
of the local people to pay the internet fee for accessing CS [44,65]. SMS, on the other hand,
has also been constrained by poor signal/reception in many regions and, in most cases, the
feedback communication between CS providers and users via SMS has been reported to
be inefficient and inadequate [66]. There is, therefore, a need for further investigation for
insight on appropriate modalities for facilitating impactful and sustainable reciprocated
relationships among the actors along the CS value chain via the use of SMS and the internet,
particularly within the context of African rural communities.

4. Conclusions

The integration of CS in climate information in the decision-making process in the
agriculture sector is a valuable innovation that can enhance the resilience of the sector to
the impacts of climate change. In the reviewed literature on selected African countries’
agricultural sectors, considerable progress has been made in the integration of CS in
the decision-making process. The outcomes of the analysis of the study’s four research
questions are summarized as follows:
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The role of CS in climate information integration in decision-making in the agricultural
sector is explained through the three distinct phases in the value-chain: forecast production,
forecast translation and integration, and climate information communication and adoption
in decision-making (Section 3.1). The key findings from the study show that the nature
of collaboration among the actors operating in each phase is a key determinant of the
efficiency of the CS model and the usability of the communicated climate information.

Forecasts, agrometeorological services, and early warnings are the three main types of
climate information communicated through CS. The five timescale forecasts widely used in
CS for communication of information on climate risk warning and risk response advisory
services are: (1) Weather forecasts (daily to weekly), (2) Seasonal forecasts (on a timescale of
1–6 months), (3) Short-term forecasts (1–5 years), (4) Intra-decadal/Medium-term forecasts
(5–10 years), and (5) Decadal forecasts. Agrometeorological services communicated via the
CS are comprised mostly of advisory information on the scheduling of planting operations,
weeding, fertilizer applications, and climate-smart agriculture practices. The third type of
climate information provided through CS is early warnings. The early warning system
uses an integrated communication system to help farmers and decision-makers prepare
for climate risks. Common climate risks event managed by early warning interventions
includes drought, flood, and wildfires.

Reflecting on insights from the review of the various timescale forecasts used in CS
deployment, two contemporary realities are observed to drive the high demand for shorter
timescale forecasts in the African agriculture sector:

1. Most decision-making in the agriculture sector, such as the scheduling of planting or
harvest operations that could benefit from integrated and targeted climate forecasts,
is made at a range of temporal and spatial scales that are matching with a shorter-
term forecast timeline. Not surprisingly, several authors [11,15,60,66] reported that
farmers are more interested in weather and seasonal forecasts. This is in contrast to
CS’ demand in the forest sector, where the majority of foresters are interested in longer
timescale forecasts, due mostly to the fact that product harvesting is usually on a long
timescale range of 8–30 years.

2. Another factor is the socio-economic profile of the farmers. The majority of farmers in
the agriculture sector in the African countries are subsistence farmers, with poor and
limited capacity for long-term planning. Hence, the timescale of their management de-
cisions is often based on a short timescale. Consequently, the farmer mostly demands
forecasts of shorter timescale horizons (weather and seasonal). This demand/supply
factor plays a crucial role in tilting CS providers to mostly focus on providing fore-
casts for short timescales. Nevertheless, there is a gradual increase in the demand for
forecasts of a longer timeline horizon.

The dominant use of forecasts of a shorter timescale in CS is also an indication of a
dearth of effort towards long-term anticipatory adaptation actions in most African countries’
agriculture sectors. This may pose an unforeseen challenge to the sustainability of the
agriculture sector. Without a considerable effort to understand what the future scenario and
outlook will be for the African agriculture sector in the face of a changing climate, it may
be that the government is unknowingly setting up the sector for a massive failure. There is
a need for enhanced capacity towards being able to anticipate, predict the future scenario
of the agriculture sector in the face of climate change across the scale from national to local
so that appropriate anticipatory adaptation action can be devised and implemented.

The review of the extent to which CS facilitates indigenous knowledge systems’ inte-
gration in climate information communication revealed that indigenous knowledge system
integration is not yet an issue of significant emphasis in CS adoption in the African agricul-
ture sector. Nonetheless, indigenous knowledge systems are not entirely neglected in the
current model of CS deployment. Little of the reviewed literature reported the inclusion of
indigenous knowledge holders in the process of forecasts translation into relevant climate
information for actors in the agriculture sector.
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CS facilitates two-way learning (bottom-up and top-down) about climate-smart agri-
cultural practices through the adoption of a participatory process in the generation and
communication of climate information. This collaborative process is primarily through
workshops and participatory scenario planning meetings. This ultimately influences
learning and revisiting to ensure the relevancy, suitability, and usability of information
disseminated via the CS.

Though CS usage has improved the communication and use of climate information
in the African agricultural sector, the study findings have shed light on research gaps and
opportunities that should be explored to maximize the benefit of CS application in the
African agriculture sector. These are summarized as follow:

1. The most commonly used forecasts in the African agricultural sector are short-term,
seasonal, and weather forecasts. Intra-decadal and decadal forecasts are sparingly
used in agricultural risk management. This is a worrying trend because intra-decadal
and decadal forecasts are useful for making strategic decisions and anticipatory adap-
tation plans. In order, therefore, to shift away from reactionary adaptation actions,
the study recommends a further investigation on appropriate modalities for facili-
tating the integration of intra-decadal and decadal forecasts in climate information
communication and usage in the African agricultural sector.

2. The poor integration of indigenous knowledge systems in CS adoption is a concern
that warrants an increased emphasis on knowledge systems integration in CS de-
ployment. This can be adopted as a strategy for facilitating CS acceptance, especially
at the local scale. To this end, the study recommends further research on modali-
ties of aligning scientific climate risk response strategies with farmers’ sociocultural
farming/coping practices.

3. Participatory process (e.g., workshop and participatory scenario planning) is increas-
ingly used in CS adoption for facilitating forecast translation into relevant climate
information and promoting two-way learning on climate risk and risk response strat-
egy. To this end, several methods for reaching smallholder farmers (e.g., mobile
phone) have been attempted by various agencies, but a scalable solution has yet to
be found. Mobile phone usage in rural Africa is faced with challenges that impact its
efficiency. The study, therefore, recommends a further investigation on appropriate
modalities for facilitating impactful and sustainable reciprocated relationships among
the actors along the CS value chain, with a specific focus on modalities for enhanc-
ing the efficiency of mobile phone usage in climate information communication in
rural Africa.

4. The particular time-scale at which management decisions are made and the avail-
able forecast timescale greatly influences the integration of climate information in
management action in the agriculture sector.
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Abstract: The study investigated the selected mechanical properties of fresh and stored large cran-
berries. The analyses focused on changes in the energy requirement up to the breaking point and
aimed to identify the apparent elasticity index of the fruit of the investigated large cranberry fruit
varieties relating to harvest time, water content, as well as storage duration and conditions. After
25 days in storage, the fruit of the investigated varieties were found with a decrease in mean acidity,
from 1.56 g·100 g−1 to 1.42 g·100 g−1, and mean water content, from 89.71% to 87.95%. The findings
showed a decrease in breaking energy; there was also a change in the apparent modulus of elasticity,
its mean value in the fresh fruit was 0.431 ± 0.07 MPa, and after 25 days of storage it decreased to
0.271 ± 0.08 MPa. The relationships between the cranberry varieties, storage temperature, duration of
storage, x, y, and z dimensions of the fruits, and their selected mechanical parameters were modeled
with the use of multiple linear regression, artificial neural networks, and support vector machines.
Machine learning techniques outperformed multiple linear regression.

Keywords: large cranberry; mechanical properties; cranberry compression; water content; mathematical
modelling; machine learning

1. Introduction

The large cranberry (Vaccinium macrocarpon Aiton) is mainly cultivated as an industrial
crop in North America (Canada and north-eastern regions of the USA) since peat soils
and wetlands, commonly occurring there, constitute the optimum substrate for cranberry
cultivation; the crop is also grown in Europe, mainly in Latvia and Belarus, and, in recent
years, in south-eastern Poland [1]. The highest harvest in 2019 was recorded in the USA
and amounted to 359,110 tons from a cultivation area of 15,580 ha. In Canada 172,440 tons
were harvested from an area of 6393 ha, while in Belarus 235 tons of cranberries from an
area of 101 ha [2].

Depending on the variety, the fruit of the large cranberry is spherical with a common
diameter of 20 mm and skin color ranging from pink to dark purple [3]. Cranberry fruit
and juice are highly valued in medicine because of their antimicrobial and antimycotic
properties, producing beneficial effects, for instance, in the treatment of kidney diseases
and inflammation of the urinary tract [4,5]. The high contents of polyphenols, including
anthocyanins, flavonoids, stilbenes, phenolic acids, and proanthocyanidins also confirm
the fact that cranberry fruits offer health benefits [6,7].

The harvesting of cranberries in large plantations is carried out using highly efficient
mechanical shakers. “Wet harvesting” technology (where a given section of the plantation
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is flooded with water) makes it possible to increase the effectiveness of the harvest and to
reduce damage to fruit collected mechanically, compared to fruit collected using the “dry
harvest” method [8–10]. Mechanical defects occurring during harvest, transportation to a
processing plant, and handling activities such as cleaning, rinsing, and other post-harvest
operations adversely affect the quality of the raw material, eliminating a part of or an entire
batch designated for commerce or food processing. This is linked to the fact that the fruit is
crushed or bruised leading to a decrease in water content, as well as changes in the texture
and firmness of the berries [11]. A decrease in water content in soft fruit after storage was
reported in prior literature [12,13].

There is increased usage of this raw material and higher demands regarding quality
requirements defined by food and pharmaceutical industries for cranberries, which pre-
dominantly are harvested mechanically in commercial plantations. For this reason, it is
necessary to investigate the mechanical properties, which will make it possible to deter-
mine the timing of harvest and storage conditions. A study investigating the mechanical
properties of cranberry skin and flesh was conducted by Gorzelany et al. [14]. Skin and
flesh puncture testing was carried out with a cylindrical stamp, with a diameter of 2 mm,
which was pressed into the fruit. The recorded measurements included puncture strength
and energy and absolute lengthwise deformation.

Given the spherical shape of cranberries of the selected varieties, their mechanical
properties may be determined using methodology applicable to spherical fruit, such as
high-bush blueberries, redcurrants, tomatoes, onions, and Brussels sprouts [15,16]. The
analysis of force-displacement relation showed the value of acceptable force and relative
displacement as a reaction to preset load.

In a uniaxial compression test, applied with quasi-static loading, cranberries were
compressed between two flat horizontal planes until breaking point [17]. To interpret the
results, it is necessary to apply the appropriate statistical methods which make it possible
to accurately assess the effect of the selected factors on the relevant mechanical parameters
of the fruit of large cranberries as well as the chemical characteristics of the raw material.

Mathematical modelling is a very common method used in food technology and agri-
culture [18–22]. Accurate models allow the prediction of the physicochemical properties
of food and optimize storage conditions. There are two approaches to the mathematical
modelling of the mechanical properties of food. The first is based on experimental data
(empirical), and the second is based on the physical nature of the phenomenon (theoretical).
Since empirical modelling is more precise and easier to develop [23], this approach is
becoming increasingly popular. Various methods and techniques are employed for em-
pirical modelling in the food industry, including artificial intelligence techniques such as
artificial neural networks (ANNs) and support vector machines (SVMs). Many applications
of empirical modelling in the food industry were reported in prior literature. The ANN
technique was useful for the determining changes in the water content, protein, and gluten
in stored wheat [24], for accurate and rapid prediction of the moisture and fat content of
tofu [25], for the development of a crispness prediction model of crunchy food [26], or the
estimation of sugar concentration in food products [27]. Chauchard et al. [28] proposed
the sensor for acidity prediction in grapes based on NIR spectroscopy and Least-Squared
Support Vector Machine regression. The same technique was employed to predict the
mechanical properties of prawns [29]. The Support Vector Machine was reported as a
regression technique for the development of an accurate model of the soluble solid content
of apples [30].

The aim of this research was to investigate the effect of the duration of storage on
the fruits’ selected physical (content of water and total acidity) and mechanical properties,
including deformation, breaking energy, and apparent elasticity index. The results obtained
can be considered a useful tool when the harvesting, transportation, and processing of
cranberry fruits is developed and optimized. The acquired results were assessed using
statistical analysis and mathematical modelling. The comparison of models developed
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with the use of multiple linear regression and machine learning was the additional aim of
the research.

2. Materials and Methods

2.1. Characteristics of the Research Material

The research material consisted of three cranberry fruit varieties: Ben Lear, Pilgrim,
and Stevens, obtained from a plantation located in Radomyśl nad Sanem (50◦40′52′′ N
21◦56′41′′ E; Stalowa Wola District, Podkarpackie Region). The cranberry plantation was
established in 2014 on plots with a modified substrate, the top layer of which was fine-
grained washed sand with a thickness of 0.4 m. The meteorological conditions in the year
of research are characterized in Table 1 [31].

Table 1. Weather conditions during cranberries vegetation in the year 2018.

Weather Parameters
Months Period

III IV V VI VII VIII IX X III-X

Air temperature (◦C) 0.6 14.5 17.5 19.3 20.6 20.8 16.2 10.8 15.0
Rainfalls (mm) 32.4 16.5 41.3 40.2 134.9 74.4 36.1 39.5 415.3

Air relative humidity (%) 73.4 60.6 63.0 66.6 73.5 74.4 75.3 78.0 70.6

Fruits were collected in the maturation stage (fruit being ready for harvest). The date
of fruit harvest depended on the variety: 29 September 2018 for the Stevens variety and
10 October 2018 for the Pilgrim and Ben Lear varieties. Fruits of each cranberry variety
were divided into three batches: two were placed in cold storage at temperatures of 4 ◦C
and 10 ◦C, and one sample was stored at a temperature of 20 ◦C.

2.2. Measurement of the Chemical Properties

The water content of the fresh cranberries and the material kept in cold storage
(randomly selected plant samples) was determined using the dryer method (105 ◦C)—PN-
90/A-75101-03 [32], whereas total acidity of the material was determined in accordance
with PN-90/A-75101-04 [33].

2.3. Measurement of the Mechanical Properties

The selected mechanical parameters of cranberry fruit (randomly selected samples)
were determined in the uniaxial compression test between two horizontal plates using a
Zwick/Roell 2010 testing machine (ZwickRoell GmbH & Co. KG, Ulm, Germany). The
following parameters were defined for the measurement process: initial stress applied to
the sample was 0.1 N, and the speed of the loading panel during the test was 0.5 mm·s−1.
Values of maximum breaking force F (N) and deformation λ [mm] were recorded after each
series of measurements. Characteristics of the force—deformation were determined based
on the strength test. A summary value of the unit energy inputs (work) was considered in
calculating the values of the apparent elasticity index Ec as a measure of the effective value
of mechanical resistance of the investigated material.

Ec =

∫ λ
0 F(λ)·dλ

0.26·x·y·λ (1)

where Ec is an apparent modulus of elasticity, F is a maximum breaking force (N), x and y
are the dimensions of the ellipsoid in the direction perpendicular to the acting load (mm),
and λ is a deformation in the direction of the loading applied (mm).

2.4. Method of Building Linear Models Using Multiple Linear Regression

Multiple linear regression (MLR) is the most commonly used linear regression. It is
often used as a predictive tool, and it helps to explain the relationship between multiple
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independent variables (X1, X2 . . . Xk) and the tested dependent variable (Y). The model’s
coefficient of determination, R2, explains the percentage variation in the dependent variable
explained by the model; in other words, it is a measure of model fit.

The computational problem of multiple regression is to fit a straight line to a set of
points. The most frequently used method for its implementation is the method of least
squares. The method enables adjusting parameters of the regression equation so that the
sum of squares of distances of measurement points from the determined line is as small
as possible.

The equation of the regression line is in the form:

Y = β0 + β1X1 + β2X2 + · · ·+ βkXk + ε (2)

where Y is the dependent (explained) variable, [X1, X2, . . . , Xk] are the independent
(explanatory) variables, [β0, β1, β2, . . . , βk] are the parameters of the equation, and ε is the
random component (model residual).

In this study, three regression models were built. The models were named Rλ, RW,
and REc, according to the labels of the independent characteristics that were analyzed
(λ—deformation, W—breaking energy, and Ec—modulus of elasticity). The whole set of
available measurement data consisted of 244 records and included six independent traits:
variety, storage temperature, duration of storage, and the x, y, and z dimensions were used
for the analyses.

2.5. Artificial Neural Networks

Artificial neural networks (ANNs) are a group of tools that are very useful for regres-
sion, classification, clustering, and other tasks. The most important advantage of ANNs is
the fact that they are trained based on a data set (e.g., experimental data set) and, there-
fore, don’t have to be programmed. This means that no prior knowledge about modelled
phenomenon is necessary. In this research, a multilayer perceptron (MLP) was used for
nonlinear regression. MLP consists of layers: an input layer, one or more hidden layers, and
an output layer. The hidden layers and the output layer are composed of very simple units
called artificial neurons. The input layer is composed of nodes that transfer input signals
into the structure of ANN. In MLP, signals are forwarded only from the input layer through
the hidden layers to the output layer where the output signals of ANN are produced (with
no feedback loops). For this research, MLP with one hidden layer was used. The error back-
propagation algorithm was employed for MLP training to adjust the connection weights in
the network starting from their initial random values. The training process minimizes the
error between the target output vector and output signals calculated by the ANN. Some
parameters need to be adjusted in the MLP development process, namely the number
of neurons in the hidden layers and transfer functions of neurons. During this research,
these parameters were adjusted using a trial-and-error method. For each regression model,
5000 ANNs were trained with the use of Statistica v. 13 software. The number of neurons
in the hidden layer was changed from 10 to 40. Different activation functions were used,
namely sigmoid, hyperbolic tangent, and exponential. The experimental data set of 244
vectors were first normalized and then divided randomly into training, test, and validation
sets at a 70:15:15 ratio.

2.6. Sensitivity Analysis

Sensitivity analysis in neural networks is a method that provides information about
the relative importance of independent input variables in the model. In this research, the
sensitivity analysis implemented in a Statistica v. 13 environment was used to calculate
the influence of the input parameters on the output parameter of the ANN model. This
method consists of two steps. First, the values of each input variable are replaced by its
mean value, calculated based on the training data set. Then an error ratio is calculated. The
error ratio is a quotient of the network error with a certain input changed by its mean value,
and the network error with the input with the original value is calculated. Based on the
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error ratios of all input parameters, a percentage influence of independent input variables
on the output of an ANN model can be determined. A similar sensitivity analysis method
was used by Hadzima-Nyarko et al. [34] to model and analyze the structural damage after
an earthquake.

2.7. Support Vector Machines

The support vector machine (SVM) was first proposed by Vapnik [35]. This technique is
generally used for classification or nonlinear regression. There are many papers describing
details of the underlying concept and the theoretical background of SVM [36,37]. Two types
of SVM models can be used for the regression process: ε-type and υ-type support vector
regression method. For this research, the ε-SVM regression model was used. The regression
function is defined as:

y = f (x) = wT ϕ(x) + b (3)

where w is the weights vector and b is the bias, x is an input feature vector, and y is target
vector. The objective function (4) is minimized.

1
2

wTw + C
N

∑
i=1

ξi + C
N

∑
i=1

ξ∗i (4)

subject to the constraints
wT ϕ(xi) + b − yi ≤ ε + ξi
yi − wT ϕ(xi)− b ≤ ε + ξ∗i
ξi, ξ∗i ≥ 0, i = 1, . . . , N

(5)

where C is the capacity constant, ε is the size of the ε-insensitive tube which can be inter-
preted as the accuracy demanded for the approximation, φ(x) is the kernel function, and
ξi, ξ∗i are slack variables. The kernel function is crucial for the performance of the SVM
model. Kernel functions used for SVM regression models are e.g., polynomial, sigmoid,
and radial basis function (RBF). RBF kernel was reported as the most appropriate for
nonlinear regression [38]. Gaussian radial basis function (6) was used as a kernel function
in this study.

K(xi, x) = exp(−γ||x − xi||2) (6)

When the ε-SVM regression model with RBF kernel function is used, the three parame-
ters should be adjusted: C, ε, and γ. Proper tuning of these parameters can greatly improve
the generalization capacity of the model. The correct value of γ parameter in RBF kernel
can avoid under-fitting and over-fitting phenomena in prediction [39]. The ε influences
the bias significantly, and its optimal value depends on the type of noise present in the
dataset [40,41]. The C parameter affects the number of support vectors, and the proper
value of C can minimize the over-fitting problem [42]. In this research, C, ε, and γ were
adjusted by the trial-and-error method. The dataset was randomly divided into training
and validation sets in a ratio of 3:1. The ten-fold cross-validation method was used. All
experiments were performed in Statistica v. 13 software.

2.8. Criteria of Accuracy Assessment of Models

The accuracy of the models developed in this research was evaluated based on two
criteria, namely coefficient of correlation (R) and root mean squared error (RMSE) which
are calculated as follows:

R =
∑(Ymeas − Ymeas)

(
Ypred − Ypred

)
√

∑ (Ymeas − Ymeas)
2

∑
(

Ypred − Ypred

)2
(7)
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RMSE =

√
1
n

n

∑
i=1

(
Ypred − Ymeas

)2
(8)

where: Ypred is the absolute predicted value, Ypred is the average predicted value, Ymeas is
the absolute measured (experimental) value, and Ymeas is the average of measured values.

The better a model is, the closer to 1 the R-value is and the closer to 0 the RMSE
value is.

3. Results

3.1. Water Content

The mean water content in the fresh fruits of the relevant large cranberry varieties
is detailed in Table 2. The results differed slightly and ranged between 89.19 and 90.05%.
After 14 days in storage, the water content of the berries decreased on average by 1%
compared to fresh fruit. After 25 days of storage the lowest water content was found in
the Pilgrim variety (87.66%) and the highest value of the parameter was identified in the
Stevens variety (88.12%).

Table 2. The mean water content [%] in fruit of the selected cranberry varieties, relative to duration
of storage.

Cranberry Variety
Duration of Storage

0 Days 14 Days 25 Days

Ben Lear 89.19 ± 0.76 88.51 ± 0.82 88.06 ± 0.66
Pilgrim 90.05 ± 0.90 88.92 ± 0.79 87.66 ± 0.77
Stevens 89.88 ± 0.67 89.54 ± 0.70 88.12 ± 0.65

Mean 89.71 ± 0.78 88.99 ± 0.77 87.95 ± 0.69
Statistical data are expressed as means ± SD.

3.2. Acidity of Cranberries

The mean acidity of the fresh fruit representing the selected cranberry varieties is
presented in detail in Table 3. The mean acidity was in the range of 1.50–1.60 g·100 g−1.
After 14 days in storage, the acidity of the berries decreased on average by 0.08 g·100 g−1

compared to fresh fruit. After 25 days of storage the lowest acidity was found in the Stevens
variety (1.30 g·100 g−1) and the highest value of the parameter was identified in the Pilgrim
variety (1.50 g·100 g−1). Compared to fresh fruit, the most significant decrease in acidity
following 25 days of storage was observed in the case of the Stevens variety.

Table 3. The mean total acidity (g·100 g−1) of fruit of the selected cranberry varieties, relative to
duration of storage.

Cranberry Variety
Duration of Storage

0 Days 14 Days 25 Days

Ben Lear 1.60 ± 0.13 1.57 ± 0.11 1.47 ± 0.12
Pilgrim 1.57 ± 0.09 1.44 ± 0.11 1.50 ± 0.10
Stevens 1.50 ± 0.14 1.42 ± 0.10 1.30 ± 0.08

Mean 1.56 ± 0.12 1.48 ± 0.11 1.42 ± 0.10
Statistical data are expressed as means ± SD.

3.3. Mechanical Properties of Cranberry Fruit

Based on the test results (Table 4), it was observed that irrespective of the variety
and storage conditions (4 ◦C, 10 ◦C, 20 ◦C), there was a relationship between the selected
mechanical parameters of cranberry fruit and duration of storage. The lowest values of the
mechanical parameters were identified in the fruit kept in storage for 25 days. Analysis of
the specific mechanical parameters showed a significant decrease in their values, which
were as follows:
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− deformation at the breaking point (λ) 7.83 ± 1.47 mm, after 25 days in storage
4.20 ± 1.54 mm;

− breaking energy (W) 230.74 ± 56.96 mJ, after 25 days in storage 94.96 ± 43.25 mJ;
− apparent elasticity module (Ec) 0.4306± 0.07 MPa, after 25 days in storage 0.2715 ± 0.08 MPa.

Table 4. Mean values of the selected mechanical parameters of selected cranberry varieties in a
process of uniaxial compression, relative to duration of storage.

Variety Duration of Storage λ (mm) W (mJ) Ec (MPa)

Ben Lear 0 days 8.51 c ± 2.48 249.02 c ± 92.87 0.45 b ± 0.11
Ben Lear 14 days 6.67 b ± 1.12 154.28 b ± 49.48 0.29 a ± 0.07
Ben Lear 25 days 4.55 a ± 1.24 103.15 a ± 36.94 0.25 a ± 0.06

Mean 6.58 ± 1.61 168.82 ± 59.76 0.33 a ± 0.08
Pilgrim 0 days 6.49 b ± 0.85 199.50 b ± 37.98 0.37 b ± 0.05
Pilgrim 14 days 4.21 a ± 1.02 102.94 a ± 42.77 0.32 a ± 0.05
Pilgrim 25 days 3.78 a ± 1.75 84.06 a ± 33.32 0.30 a ± 0.11

Mean 4.83 ± 1.21 128.83 ± 38.02 0.33 ± 0.07
Stevens 0 days 8.50 b ± 1.07 243.69 b ± 40.03 0.46 c ± 0.06
Stevens 14 days 7.50 b ± 0.90 234.51 b ± 32.17 0.36 b ± 0.04
Stevens 25 days 4.26 a ± 1.63 97.66 a ± 59.50 0.25 a ± 0.08

Mean 6.75 ± 1.2 191.95 ± 43.9 0.36 ± 0.06
0 days 7.83 c ± 1.47 230.74 c ± 56.96 0.43 c ± 0.07

All groups 14 days 6.13 b ± 1.01 163.91 b ± 41.47 0.32 b ± 0.05
25 days 4.20 a ± 1.54 94.96 a ± 43.25 0.27 a ± 0.08
Mean 6.05 ± 1.34 163.20 ± 47.27 0.34 ± 0.07

Statistical data are expressed as means ± SD. Means in a column followed by different letters show significant
differences (α = 0.05) according to the LSD test.

3.4. The Results of Multiple Linear Regression

The developed Rλ, RW, and REc regression models were based on six independent
variables (variety, storage temperature, duration of storage, x, y and z dimensions). Detailed
results of the multiple regression analysis for the presented independent variables and the
dependent variables are presented in Table 5.

Table 5. Regression coefficients, standard errors, and probability levels for the developed regression
models.

Factor

Rλ: R = 0.578
RMSE = 2.934

Free Term = 17.272

RW: R = 0.579
RMSE = 56.027

Free Term = 508.691

REc: R = 0.475
RMSE = 0.138

Free Term = 0.810

b
Standard
Error b

p Significance b
Standard
Error b

p Significance b
Standard
Error b

p Significance

Variety (Vr) 0.299 0.139 0.033 + 13.223 4.857 0.007 + 0.007 0.012 0.551 -
storage temperature (ST) 0.013 0.021 0.522 - −0.13 0.721 0.857 - −0.001 0.002 0.627 -
duration of storage (DS) 0.002 0.023 0.932 - −1.809 0.805 0.026 + 0.001 0.002 0.681 -
y dimension −0.131 0.044 0.003 + −7.273 1.531 0 + −0.01 0.004 0.009 +
x dimension −0.586 0.072 0 + −16.374 2.514 0 + 0 0.006 0.97 -
z dimension 0.041 0.038 0.278 - 3.736 1.325 0.005 + −0.013 0.003 0 +

Determination of the level of statistical significance: - non-significant. + significant for α = 0.05.

The variable for which statistical significance was not confirmed at the α = 0.05 level in
all models was storage temperature. In the Rλ model, the statistically significant traits were
variety, y and x. Whereas in the RW model, the statistically significant traits were: variety,
storage time, and the y, x, and z dimensions. The situation was different in the REc model,
where only two variables were statistically significant, namely the y and z dimensions.

Based on the results from Table 5, considering only statistically significant traits,
multiple regression equations were constructed for each model, which took the form:
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Rλ = 17.272 + 0.299 · Vr − 0.131 · y − 0.586 · z (9)

RW = 508.691 + 13.223 · Vr − 1.809 · ST − 7.273 · y − 16.374 · x + 3.736 · z (10)

REc = 0.810 − 0.01· y − 0.013· z (11)

3.5. Artificial Neural Networks

For each output parameter (λ, W and Ec) a separate neural model was developed
(NNλ, NNW, NNEc). In Table 6, the structure and quality metrics of the best neural models
are presented. Model structure means the number of neurons in each layer of MLP: input—
hidden—output. The number of nodes in the input layer equals the number of input
parameters of model, which is six. The number of neurons in the hidden layer was selected
by trial-and-error method. In the output layer there is one neuron calculating the value of
the output value of neural model.

Table 6. Structures and error metrics of best neural models.

Model Model Structure
Train Validation

RMSE R RMSE R

NNλ 6-48-1 1.392 0.685 1.176 0.677
NNW 6-10-1 41.048 0.805 53.281 0.752
NNEc 6-47-1 0.065 0.890 0.067 0.878

For deformation, the best architecture of the model is 48 neurons in the hidden layer.
This model is of rather low accuracy with an R-value of 0.69 for the train data set and
0.68 for the validation data set. Better performance was obtained in the case of NNW model.
The best architecture of ANN is network containing 10 neurons in the hidden layer with R
value of 0.80 for train data set and 0.74 for the validation data set. For the NNEc the best
model was achieved for architecture with 47 neurons in the hidden layer. The accuracy of
this model can be stated as satisfactory with a relatively high R-value (0.89 for the train
data set and 0.88 for the validation data set).

3.6. Sensitivity Analysis

The best MLP models described in Table 6 were used for sensitivity analysis. For better
readability, the results are presented as a percentage influence of certain input variables on
the output parameter.

As presented in Figure 1, in the case of deformation, a cranberry variety influences
this parameter the most (23.04%). The geometrical dimensions, duration of storage, and
storage temperature similarly affect deformation (from 14.21% to 16.97%). The parameter
influencing breaking energy the most was duration of storage (45.64%). A significantly
lower impact was observed for the variety and x dimensions. The influence of the y and z
dimensions and storage temperature was minimal. The modulus of elasticity was affected
the most by storage temperature (41.45%). Lower influence was noticed for the duration of
storage (19.25%) and variety (14.96%). The impact of geometrical dimensions on Ec was
very low.

3.7. Support Vector Machines

The three separate SVM models (SVMλ, SVMW and SVMEc) were developed with the
same six input parameters (variety, storage temperature, duration of storage, and the x, y,
and z dimensions) and different output parameters (deformation λ, breaking energy W, or
modulus of elasticity Ec). Model parameters (C, ε and γ) were adjusted by trial-and-error
approach. For all three models these parameters were as follows: C = 10, ε = 0.03, and
γ = 0.24. Error metrics of models of the best accuracy are detailed in Table 7.
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Figure 1. The relative importance of input variables of MLP model on deformation λ, breaking energy
W, and modulus of elasticity Ec.

Table 7. Error metrics of best SVM models.

Model
Train Validation

RMSE R RMSE R

SVMλ 1.581 0.595 1.451 0.705
SVMW 51.905 0.626 53.869 0.758
SVMEc 0.113 0.702 0.122 0.665

The best accuracy was obtained for the SVMW model (R = 0.76 for validation data set).
A lower correlation between experimental results and model prediction was observed for
the SVMλ model (0.71). The SVMEc model was low accuracy with R-value of 0.67.

In this research, the three methods of modelling were used to develop models of
relationships between large cranberry variety, storage temperature, duration of storage, x, y,
z dimensions of fruits, and mechanical parameters, namely deformation, breaking energy,
and modulus of elasticity. The regression method produced models of very low accuracy
(R = 0.578 for deformation, R = 0.579 for breaking energy, and R = 0.475 for modulus
of elasticity). The better models were developed with the use of artificial intelligence
techniques. The best model for deformation and breaking energy was produced with the
use of the SVM method. The error metrics for the validation data set calculated for these
models are significantly better than for regression models (R = 0.705, RMSE = 1.451, and
R = 0.758, RMSE = 53.869, respectively). Neural networks produced slightly worse models
for these mechanical parameters. In the case of the modulus of elasticity, the ANN model
was found to be the most accurate model (R = 0.878, RMSE = 0.067 for validation data set).
In Figures 2–4, the performance of the best models of deformation λ, breaking energy W,
and modulus of elasticity Ec for the validation data set is presented.

Figure 2. Predicted values versus measured values of deformation for validation data set
(SVMλ model).

331



Agriculture 2022, 12, 200

Figure 3. Predicted values versus measured values of breaking energy for validation data set
(SVMW model).

Figure 4. Predicted values versus measured values of modulus of elasticity for validation data set
(NNEc model).

4. Discussion

Compared to fresh fruit, the most significant decrease in water content after 25 days of
storage was observed in the Pilgrim variety. The fresh cranberries examined in a study by
Oszmiański et al. (2017) [42] were found with varied water content, ranging from 87.21%
in the Pilgrim variety and 87.52% in the Stevens variety to 89.94% in the Ben Lear variety.
Similar water content in the fresh cranberries of the investigated varieties (87.0–87.5%) was
reported by Oszmiański et al. (2018) [43]. Paniagua et al. [12] found a decrease in water
content in blueberry fruit by 1.34% after three weeks of storage. Ruse et al. [13] reported a
decrease in moisture content by 2% in cranberries stored in closed PP boxes in air ambiance
for six months.

Compared to this study, a study by Teleszko [44] reported slightly higher acidity in
the fresh cranberries of the Ben Lear variety amounting to 2.18 g·100 g−1, whereas Oszmi-
ański et al. [42] found that total acidity in the fresh cranberries ranged from 1.95 g·100 g−1

in Pilgrim and 2.25 g·100 g−1 in the Stevens variety to 2.29 g·100 g−1 in the Ben Lear variety.
In another study, Oszmiański et al. [43] reported slightly higher acidity in the investigated
cranberry varieties, with values in the range of 2.1–2.4 g·100 g−1.

Modelling and the development of regression models are very common and important
in many scientific fields. Model accuracy is crucial in real-life applications, and experimental
data is used for model development. Therefore, besides traditional techniques, artificial
intelligence algorithms are often used for modeling. In this research, ANN and SVM
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provided much better results for the estimation of the mechanical parameters of large
cranberry when compared to the MLR technique. Similar results were reported in state of
art literature, where these techniques were used to develop regression models for various
relationships. Karsavran and Erdik [45] developed sea-level prediction models and revealed
that the ANN and SVM models outperformed MLR. The best performance resulted from
ANN model with a coefficient of correlation R = 0.76. The same techniques were used by
Mohammed et al. [46] to estimate time and cost indexes to predict the site overhead cost.
They reported that the ANN and SVM techniques produced more accurate models than the
MLR technique. A slightly higher accuracy of the ANN model (R = 0.99) when compared
to SVM (R = 0.97) was reported by Afradi and Ebrahimabadi [47] who used AI methods to
predict the penetration rate of tunnel boring machine. Sabzi-Nojadeh et al. [48] compared
the accuracy of ANN and MLR models used to predict the oil yield and trans-anethole yield
of fennel populations; ANN performed better (R = 0.96 and R = 0.88) than MLR (R = 0.74
and R = 0.68).

5. Conclusions

Knowledge of the mechanical parameters of fruits is crucial to optimize the storage
process. Especially in the case of delicate fruit such as large cranberry. Therefore, the me-
chanical parameters of cranberry fruits in relation to storage conditions were investigated,
and mathematical models of relationships under study were developed. The results of
this study revealed that the water content in the fresh fruit of the relevant large cranberry
varieties ranged between 89.19 and 90.05%. After 25 days of storage, the lowest water
content was found in the Pilgrim variety (87.66%), and the highest value of this parameter
was identified in the Stevens variety (88.12%). The mean acidity of fresh fruit representing
the selected cranberry varieties was in the range of 1.50–1.60 g·100 g−1. After 25 days
of storage, the lowest acidity was found in the Stevens variety (1.30 g·100 g−1), and the
highest value of this parameter was identified in the Pilgrim variety (1.50 g·100 g−1). It
was observed that irrespective of the variety and storage conditions (4 ◦C, 10 ◦C, 20 ◦C),
there was a relationship between the selected mechanical parameters of cranberry fruit and
the duration of storage. The lowest values of the mechanical parameters were identified in
fruit kept in storage for 25 days. The ANN and SVM prediction models of relationships
under study outperformed MLR models. The accuracy of the ANN and SVM models was
comparable. In the case of deformation and breaking energy, the best performance was
observed for the SVM model (R = 0.705 and R = 0.758, respectively). ANN produced the
best model for modulus of elasticity (R = 0.878).
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Abstract: Accurate identification and intelligent counting of pig herds can effectively improve the
level of fine management of pig farms. A semantic segmentation and counting network was proposed
in this study to improve the segmentation accuracy and counting efficiency of pigs in complex image
segmentation. In this study, we built our own datasets of pigs under different scenarios, and set three
levels of number detection difficulty—namely, lightweight, middleweight, and heavyweight. First, an
image segmentation model of a small sample of pigs was established based on the DeepLab V3+ deep
learning method to reduce the training cost and obtain initial features. Second, a lightweight attention
mechanism was introduced, and attention modules based on rows and columns can accelerate
the efficiency of feature calculation and reduce the problem of excessive parameters and feature
redundancy caused by network depth. Third, a recursive cascade method was used to optimize
the fusion of high- and low-frequency features for mining potential semantic information. Finally,
the improved model was integrated to build a graphical platform for the accurate counting of pigs.
Compared with FCNNs, U-Net, SegNet, and DenseNet methods, the DeepLab V3+ experimental
results show that the values of the comprehensive evaluation indices P, R, AP, F1-score, and MIoU of
LA-DeepLab V3+ (single tag) are higher than those of other semantic segmentation models, at 86.04%,
75.06%, 78.67%, 0.8, and 76.31%, respectively. The P, AP, and MIoU values of LA-DeepLab V3+
(multiple tags) are also higher than those of other models, at 88.36%, 76.75%, and 74.62%, respectively.
The segmentation accuracy of pig images with simple backgrounds reaches 99%. The pressure test
of the counting network can calculate the number of pigs with a maximum of 50, which meets the
requirements of free-range breeding in standard piggeries. The model has strong generalization
ability in pig herd detection under different scenarios, which can serve as a reference for intelligent
pig farm management and animal life research.

Keywords: complex background; pigs; DeepLab V3+; attention mechanism; count

1. Introduction

Group free-range breeding will be the mainstream breeding method of pig farms
in the future, and the increase in the number of pigs will lead to an increase in manual
inspection [1]. The achievement of automatic pig identification, trajectory tracking, and
quantity statistics by using computer vision technology has become a current research
hotspot [2]. In this field, foreground segmentation of pig herd images and separation of
adhesive individual images are the basis for achieving automatic inventory of pig num-
bers [3]. Owing to the complexity of pig images, such as light changes, crowding, stacking,
and occlusion, the existing semantic segmentation technology still faces problems, such
as missing segmentation and mis-segmentation, which result in inaccurate counting [4,5].
Therefore, enhancing the characterization ability of high- and low-frequency detail infor-
mation of images, along with improving the utilization rate of individual characteristic
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information of pigs, are the key research directions to improve the semantic segmentation
accuracy of pig images [6].

Fully convolutional neural networks (FCNNs) [7] have promoted the rapid devel-
opment of semantic segmentation algorithms. Deformable convolution [8] enhances the
adaptability of the model to scale transformation by adding direction vectors to each
parameter of the convolution kernel and adaptively adjusting the scale and receptive
field [9]. U-Net [10] introduces different scale features in the coding layer through the
jump connection structure to recover the lost information and achieve accurate positioning
of pixels. SegNet [11], based on a codec structure, saves the pooled index in the coding
stage, accurately recovers image size and spatial information, and effectively retains the
integrity of high-frequency details. Compared with U-Net, SegNet cannot capture multi-
scale information effectively, while U-Net has many learning parameters, so its training is
relatively slow. PSPNet [12], based on a multiscale feature aggregation structure, uses a
pyramid pooling module to capture feature information of different regions for alleviating
the problem of multiple scale changes. DeepLab series models [13–15] combine DCNNs
and dense CRFs to achieve better detection accuracy. Google introduced deep detachable
convolution in atrous spatial pyramid pooling (ASPP) [13] and a decoder [16] to reduce
the computational complexity of the network, in order to achieve a better DeepLab V3+
network [14]. However, the internal parallel structure of ASPP in DeepLab V3+ models
makes the branch information independent, and lacks spatial correlation. The decoding
phase only fuses one of the multistage shallow features on the backbone network, resulting
in partial loss of effective information, segmentation discontinuity, and rough segmentation
boundaries. In feature fusion, high-level feature output is directly fused with shallow
features in the backbone network, thus ignoring the noise problem introduced into the
semantic feature graph due to the misalignment of high–low features, and damaging the
semantic segmentation accuracy [17].

The attention mechanism module has been widely applied in image classification,
target detection, and tracking tasks [18–20]; it has recurrent models of visual attention [21]
and residual attention networks for image classification [22], all of which use the attention
mechanism to generate high-level feature maps to guide the forward propagation of the
network. Squeeze-and-excitation networks (SENet) [23] compress the feature graph chan-
nels into a single point to obtain the category properties between the channels. Finally, the
gate mechanism fuses the channel relationship into the original feature graph to obtain
the final feature graph. EncNet [24] and DFNs [25] use the channel attention mechanism
to obtain global context information of the image and construct dependencies between
categories. Subakan et al. [26] first proposed the self-attention mechanism and acquired
the global dependence of input information, which was eventually applied to the field
of machine translation. In addition, self-attention generative adversarial networks [27]
introduce the self-attention mechanism module to provide a better image generator for
generating better images. DANet [28] adopts self-attention and channel attention mecha-
nisms to establish long-term context-dependent relationships in the spatial and channel
dimensions, respectively. At present, few attention mechanisms are applied to complex
images of pigs—in particular, the extraction of rich detail information and small target
information in complex images of pigs needs to be improved.

On the basis of the abovementioned existing methods, this study proposes a semantic
segmentation network with a light attention mechanism. The main contributions of this
work are as follows:

(1) The current DeepLab V3+ semantic segmentation framework has too many network
layers and slow speed. Thus, by embedding the attention module based on rows and
columns into the backbone network, we can achieve the lightweight and fast network
computing efficiency that the traditional semantic segmentation algorithm and other
attention modules do not have;

(2) In view of the problem of detail information loss in semantic segmentation algorithms,
a recursive cascade mechanism is introduced to supplement the detail information
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of the unit input feature graph to the output feature graph. This approach better
integrates the high-level semantic information into the low-level high-resolution
feature graph, improving the segmentation accuracy;

(3) This study integrates deep learning models and attention mechanisms, and it prelimi-
narily achieves the application of complex image inventory of pigs.

2. Materials and Methods

2.1. Self-Built Datasets

The basic dataset was collected from large-scale breeding farms in Nanyang city,
Henan Province. The collection period was from June to December 2019. The collection
device was a Hikvision Smart Ball Camera (DS-2DE4320IW-DEDS-2DE4320IW-D, made in
Hangzhou, China), which had 3 million pixels and 20 × optical zoom; its infrared radiation
at night could reach 100 m. As shown in Figure 1, the pigs were 80-day-weaned Yorkshire
piglets. The basic dataset was characterized by single-pig and multi-pig (5–7) scenarios.
The collection environment included different weather conditions—such as cloudy day,
sunny day, and rainy day—to test the robustness of the algorithm.

   

(a)  (b) (c) 

Figure 1. Video capture scene: (a) piggery during the day; (b) another piggery at night; (c) camera
position.

The extended dataset included different species and orders of magnitude in all weather,
captured via the Internet. The self-built dataset consisted of 5000 images with a normal-
ized resolution of 512 × 256 pixels. In this study, 4500 typical images were selected for
annotation, among which 3500 were selected as training set images and 1000 as verification
set images. The remaining 500 unlabeled images were used as the test set. As shown
in Figure 2, the extended dataset was characterized by a typical complex environment,
including human beings, weeds, trees, and light, as well as adhesion and occlusion of the
images themselves. In addition, different orders of magnitude of pig groups were set to
verify the segmentation and counting ability of the model. This approach increased the
generalization and robustness of the segmentation model.

2.2. Experimental Design

In this work, the software environment was the Windows 10 operating system. Python
was the programming language, and TensorFlow was the open-source framework for deep
learning. The hardware environment was an NVIDIA RTX3060 16 G graphics card, Intel(R)
Core(TM) I7-11800H CPU, and 16 GiB DDR.

To better evaluate the model correctly, this study adopted the evaluation indices
commonly used in semantic segmentation: precision (P, %), recall (R, %), average precision
(AP, %), F1 score (F1), mean intersection over union (MIoU, %), and algorithm running
efficiency in frames per second (fps). Calculation of each evaluation index is shown in
Equations (3)–(5):

P =
TP

TP + FP
× 100% (1)

R =
TP

TP + FN
× 100% (2)
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AP =
∫ 1

0
P(R)dR × 100% (3)

F1 − score = 2
P·R

P + R
× 100% (4)

MIoU =
1

k + 1

k

∑
i=0

TP
TP + FP + FN

(5)

where TP represents the positive sample for which the model prediction is positive, FP
represents the positive sample for which the model prediction is negative, FN represents
the positive sample for which the model prediction is negative, TN represents the negative
sample for which the model prediction is negative, and AP is the integration of precision
in recall. The model performance is better when the AP value is higher. F1 score is the
harmonic average of precision and recall, and its value range is (0,1). MIoU is the most
direct evaluation index in image segmentation; it is the average union ratio of two sets
of real value and predicted value, and k + 1 is the number of categories (including empty
classes).

   
(a)  (b) (c) 

   
(d) (e) (f) 

   

(g)  (h) (i) 

Figure 2. Pig images in different environments: (a) overlap of pigs; (b) object occlusion; (c) ad-
hesion of pigs; (d) light; (e) nature; (f) other interfering factors; (g) lightweight herd (1–10 pigs);
(h) middleweight herd (10–20 pigs); (i) heavyweight herd (over 20 pigs).

2.3. Improved Light Attention DeepLab V3+ Method
2.3.1. Original DeepLab V3+ Model Analysis

The encoding module of the DeepLab V3+ network extracted high-level semantic
feature maps of images through ResNet101 and connected to ASPP modules with multiple
cavity convolution dilation rates. After multiscale sampling of the high-level feature graph
and combination in the channel dimension, the multiscale low-dimensional feature matrix
was obtained using a convolution kernel with a size of 1 × 1. The decoding module
sampled the feature graph four times and fused it with the low-level feature image in the
middle of ResNet101. After the bilinear insertion sampling, the segmentation graph was
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output. The network structure of DeepLab V3+ is shown in Figure 3. When the DeepLab
V3+ network was used in the field of pig segmentation, problems such as rough contour
segmentation and complex background segmentation errors could be found in this network.

Figure 3. The DeepLab v3+ network structure.

2.3.2. Lightweight Attention Mechanism

The feature map of the coding module acquired the high-level semantic information
of the image, while ResNet101 sampled the low-level details of the image. This not only
increased the amount of feature computation, but also lost many key features, leading
to the noise problem in the fusion of high- and low-frequency features. Domestic and
foreign scholars have proposed various attention mechanisms—such as nonlocal attention
mechanisms [29], dual attention mechanisms [30], and cross-attention mechanisms [31]—to
improve the performance of segmentation models. All of the abovementioned attention
mechanisms improved the segmentation model to varying degrees, but greatly increased
the required computational resources at the same time. Therefore, this study proposed an
attention module and a recursive cascade mechanism based on rows and columns. On the
one hand, this method could aggregate global information more effectively and increase
the network’s receptive field. On the other hand, the attention module had very little effect
on video memory and computation due to the lightweight module design method.

Given that the feature graph had a total of W × H pixels (where W and H were
the width and height of the feature graph, respectively), the size of the relational matrix
between the pixels was WH × WH. The size of this matrix was very large, and the attention
mechanism was usually placed in the depths of the network; otherwise, too many pixels
would make the relational matrix too large, which would significantly increase the compu-
tation required by the GPU, and even lead to incapability of the limited video memory to
store the matrix. Therefore, in this study, the attention mechanism was introduced into the
dimensional reduction feature graph, and the feature parameters were rescreened. Only the
relationships between rows or the relationships between columns were calculated to decom-
pose the original relationship matrix of WH × WH size into two small matrices—namely,
the WW and HH size matrices. After decomposition, the space occupied by the two small
matrices and the amount of computation required by the large matrix were geometrically
reduced (WW + HH ≤ WH × WH). Figures 4 and 5 show the row- and column-based
attention modules, respectively.
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Figure 4. Row-based attention module.

Figure 5. Column-based attention module.

We supposed the input of the module was a feature graph M ∈ RC×H×W , where C,
H, and W are the number of channels, height, and width of the feature graph, respectively.
First, the input feature graph was transformed by the feature tensor. M was reshaped and
transposed to obtain M1 ∈ RCW×H . M2 and M3 were then obtained by M in the same
way. Next, matrix multiplication and Softmax operation were performed on M2 and M1 to
obtain the relational matrix A. The process can be described by the following formula:

Aij =
exp(M2[i, :]M1[:, j])

∑D
k=1 exp(M2[i, :]M1[:, k])

(6)

where Aij computes the relationship between the ith row and the jth row. Each row in
attention map A refers to the relationship between this pixel feature and all of the other
pixel features, which can be used to aggregate new features. M2 [i,:] refers to the ith row of
the matrix M2; M1 [:, j] refers to the jth column of matrix M1. After obtaining the relational
matrix A, we can use A to perform feature aggregation operations on the original feature
graph. This supposes that RT( ) is a function of shape remodeling and transposition. The
new aggregated feature graph was obtained by the following formula:

M′ = αRT(AM3) + M (7)

where α is a scale parameter used to adjust the weight of polymerization features. The two
formulae mentioned above could be used to obtain the line-based attention module. The
column-based attention module is similar to the row-based attention module.

This study cascaded the column-based module with the row-based module. First, the
input feature graph M was fed into the row-based attention module to obtain the output
feature graph M’. Second, M’ was fed into the column-based attention module as an input
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to obtain the final aggregation feature E. Through recursion, each pixel feature in the E
feature graph was the weighted sum of all other pixel features. In this study, the features
were effectively aggregated and the latent semantic information was fully mined. At the
same time, the time and space consumption were much smaller than those of the traditional
attention module. The recursive cascade mechanism structure is shown in Figure 6.

Figure 6. Recursive mechanism.

2.3.3. Improved Network Model

On the basis of the traditional DeepLab V3+ model, this study mainly improved the
feature fusion part deep in the model network. After the initial high-dimensional feature
images were extracted through the ASPP module and the dimensionality was reduced, the
initial feature images were fused by a recursive cascade mechanism. First, the row-based
attention mechanism was used to extract semantic information. Then, the column-based
attention mechanism was cascaded to deepen the feature information. Theoretically, the
computation of the model could be reduced exponentially, and the high-dimensional
feature information of the image could be further optimized to provide support for the
subsequent high- and low-frequency feature fusion. The improved model structure is
shown in Figure 7.

 

Figure 7. Light attention DeepLab V3+ network structure.

3. Results

3.1. Model Training Experiment

In this study, five representative semantic segmentation models including FCNNs,
SegNet, U-Net, DenseNet, and DeepLab V3+ were reproduced. The initial learning rate
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was set to 0.01, and the regularization coefficient was set to 0.001. With the increase in
epoch times, the learning rate followed the principle of exponential decay, and decreased
to 0.05 times the original. The comparison of the loss value of model training is shown in
Figure 8. After approximately 1000 iterations, the models converged rapidly and the loss
function curve was still declining. After 2000 iterations of training, the model was stable.
The loss value of this method was 0.002, which meant that the training effect of the model
was the best. The comparative experiment of operation efficiency of the proposed method
is shown in Figure 9. Images with different resolutions were introduced into models of
different batch sizes for training. The results showed that the segmentation speed was
faster when the resolution was smaller, and the fastest was up to 441 fps. However, smaller
resolution did not mean higher segmentation accuracy, because smaller scale images lost
more information. Therefore, we finally chose a suitable size of 512 × 256 pixels for the
model training set.

Figure 8. Comparison of training loss of different models: Here, loss1 represents our method in this
study; loss2 represents the traditional DeepLab v3+ result; loss3 represents the DenseNet result; loss4
represents the SegNet result; loss5 represents the U-Net result; loss6 represents the FCNNs result.

Figure 9. Processing speed of our method.

3.2. Segmentation Experiment
3.2.1. Qualitative Comparative Analysis

The proposed method was further compared with the existing segmentation methods
of FCNNs, U-Net, SegNet, DenseNet, and traditional DeepLab V3+. Image segmentation
results were presented in lightweight, middleweight, and heavyweight difficulty. The
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visualization results are shown in Figure 10, illustrating the advantages of the new model
more intuitively.

   

   

   

   

   

   

   
(a) (b) (c) 

Figure 10. Comparison results of different segmentation models: (a) lightweight image; (b) mid-
dleweight image; (c) heavyweight image.
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The pictures in the first line are the segmentation results of FCNNs. As observed, the
algorithm had an effect on the overall segmentation of pigs; however, it could not achieve
fine-grained individual differentiation, resulting in serious overlap.

The pictures in the second line are the segmentation results of U-Net. Here, the
phenomenon of overlapping segmentation decreased significantly; however, the processing
of details was still insufficient, and the processing of lightweight images was imperfect.
With the increase in difficulty, the phenomena of missing segmentation and overlapping
segmentation appeared simultaneously, and the problem of adhesion had not been properly
solved.

The pictures in the third line are the segmentation results of SegNet. The algorithm
solved the overlapping problem; however, an oversegmentation phenomenon was observed
in the segmentation results of lightweight and heavyweight images, and the feeder was
mistakenly separated. In addition, the processing of middleweight images was improved
compared with that of the former models.

The pictures in the fourth line are the segmentation results of DenseNet. The prob-
lem of oversegmentation and overlapping had been solved, but the problem of missing
segmentation existed to different degrees.

The pictures in the fifth line are the segmentation results of the traditional DeepLab
V3+, which had a good segmentation effect on the whole. However, the segmentation of the
detailed parts of the pig itself—such as legs, back, and outline—was rough. In particular,
the typical overlapping occlusion phenomenon was observed in the lightweight image,
and the segmentation accuracy needed to be improved.

In comparison, the pictures in the sixth line are the segmentation results of the im-
proved LA-DeepLab V3+ model, which had well inherited the complex background seg-
mentation capability of the former. After the label sample was expanded, this study added
separate feeders, drinkers, people, and other external labels, which not only retained the
image details better, but also made the multi-category prediction results more accurate and
comprehensive.

The pictures in the seventh line are the truth value of manual segmentation. Therefore,
the proposed improved model properly dealt with the abovementioned shortcomings by
accurately representing the details of the image; it also solved the problem of missing
segmentation and segmentation discontinuity.

The segmentation results of different complex backgrounds in this study are shown
in Figure 11. The method in this study extended several other typical labels—including
feeders, drinkers, people, sky, and trees—on the basis of the pig label. The purpose was
to solve the problem of misidentification and classification, deepen the understanding of
specific scenes, enhance the ability of the model to further distinguish different complex
background factors, and provide support for deeper semantic segmentation, such as be-
havior. The results showed that the proposed algorithm could deal well with different
scenes, complex lighting, occlusion, and overlap problems, and it had a certain degree of
generalization ability. The model maintained its segmentation accuracy under the complex
background, and provided effective support for individual behavior recognition and pig
farm counting in the future.

3.2.2. Quantitative Comparative Analysis

Segmentation evaluation indices of different models were given in this study to quan-
tify the performance of the models. Table 1 shows that the P, R, AP, F1 score, and MIoU
values of LA-DeepLab V3+ (single tag) in this study were the highest, at 86.04%, 75.06%,
78.67%, 0.8, and 76.31%, respectively. Among them, AP and MIoU showed obvious differ-
ence and significance. Compared with the FCNNs, U-Net, SegNet, DenseNet, and DeepLab
V3+ methods, AP improved by 27.24%, 22.63%, 13.28%, 6.03%, and 2.79%, respectively.
MIoU improved by 14.10%, 13.67%, 7.79%, 2.33%, and 5.80% over the FCNNs, U-Net,
SegNet, DenseNet, and traditional DeepLab V3+ methods, respectively. In addition, the P,
AP, and MIoU values of LA-DeepLab V3+ (multiple tags) in this study were the second
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highest, at 88.36%, 76.75%, and 74.62%, respectively. The traditional DeepLab V3+ method
maintained its advantages in R and F1 score of 74.75% and 0.79, respectively; however, the
differences were insignificant. Overall, the proposed algorithm was absolutely optimal.
The difficulty of the pig dataset with complex background set in this study meant that
achieving an accuracy of more than 90% with other simple scenes was impossible, because
the sample size of the simple background in our dataset was itself very low. We specially
tested the image segmentation of pig herds under a simple background in order to further
verify the accuracy and effectiveness of the algorithm in this study. The accuracy remained
above 99%, which could better realize the accurate inventory of pig herds.

     

     

     
(a) Feeder scene (b) Drinker scene (c) People scene (d) Tree scene (e) Sky scene 

Figure 11. Segmentation results of different scenes.

Table 1. Segmentation results of the different methods.

Methods P R AP F1-Score MIoU

FCNNs 71.60% 68.46% 51.43% 0.69 62.21%
U-Net 74.46% 68.66% 56.04% 0.71 62.64%
SegNet 78.04% 62.66% 65.39% 0.69 68.52%

DenseNet 76.14% 68.94% 72.70% 0.72 73.98%
DeepLab v3+ 84.10% 74.75% 75.88% 0.79 70.51%

LA-DeepLab v3+
(single tag) 86.04% 75.06% 78.67% 0.80 76.31%

LA-DeepLab v3+
(multiple tags) 88.36% 70.03% 76.75% 0.78 74.62%

3.2.3. Generalization Experiment

The improved model was tested on the public dataset PASCAL VOC 2012 (VOCde-
vkit) [32] after extended training. Not all images in VOC2012 were suitable for segmenta-
tion in this model. We selected some images including people, sky, and trees to verify the
robustness of this model against complex backgrounds.

In Figure 12, the first line is the original image, the second line is the real label
corresponding to the original image, and the third line is the segmentation result of our
method. The results showed that the self-built dataset in this study mainly focused on the
segmentation and counting of pigs. Thus, the segmentation effect of background factors
was rather rough—in particular, the adhesion of people and bicycles, the fine segmentation
of trees’ internal cavities, and the processing of contours were imperfect. However, rough
segmentation of complex backgrounds could be realized on the whole, which was helpful
for the model to further learn the complex background of pigs. In conclusion, the proposed
LA-DeepLab V3+ model still achieved good segmentation performance on the PASCAL
VOC 2012 datasets, further verifying the generalization of the proposed model.
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(a)  (b)  (c)  (d)  (e)  

Figure 12. Segmentation results of different scenes on PASCAL VOC 2012: (a) people scene; (b) sky
and people scene; (c) sky, people, and tree scene; (d) tree scene; (e) tree and people scene.

3.3. Model Deployment and Visual Counting Applications

The purpose of semantic segmentation was to obtain the whole life cycle law of pig
quantity, behavior, category, and trajectory tracking. In this study, the H5 program was
used to build a graphical user interface for the application of pig counting. As shown in
Figure 13, the model selected in the figure was the DeepLab V3+ model, which introduced
a lightweight attention mechanism.

    
(a) (b) (c) (d) 

Figure 13. Counting application of pigs in complex environments based on the H5 program.
(a) The home page; (b) The lightweight image (1–10 pigs); (c) The middle-weight images (10–20 pigs);
(d) The heavyweight images (more than 20 pigs)

In the figure, panel (a) shows the home page. A photo was uploaded through shooting
or an album, and then it was submitted to the program for segmentation and counting.

Panel (b) shows the count result of the lightweight image (1–10 pigs). If we could
accurately detect the number of piglets in the actual breeding process, then early warning
of the death and injury caused by extrusion in the production process could be provided.
The accuracy of this model for lightweight image segmentation was more than 99.8%.

Panel (c) shows the counting result of middleweight images (10–20 pigs). The accuracy
of the small pig group with black and white color could reach 99.9%, and 13 pigs could be
accurately counted.
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Panel (d) shows the counting result of heavyweight images (more than 20 pigs). The
proposed model could effectively segment the wild black pigs with complex background
and multiscale targets, and the segmentation accuracy was approximately 97%. In addition
to the segmentation of all 24 objects, other kinds of tags could be effectively distinguished.

At present, the average recognition accuracy of the pig and human labels is 97.65%
and 95.86%, respectively. For other labels—such as trees, sky, drinkers, and feeders—the
recognition was relatively low. The number of model labels had some significance; thus,
the overall evaluation index of the model was lowered. The application results showed
that the proposed model had a good application effect on fine-grained segmentation tasks.

4. Discussion

4.1. Analysis of Each Model

The comparison results showed that each model had unique advantages. FCNNs used
a deconvolution process to restore image resolution and optimize segmentation results;
however, the downsampling operation of this method weakened the feature extraction
ability of the model, resulting in poor segmentation ability of details of pig images with
complex backgrounds; therefore, its segmentation performance index was poor. U-Net
and SegNet are U-shaped codec structures. The segmentation model based on dilated
convolution could enlarge the local receptive field of the original convolution kernel;
however, the proportion of some pig targets in the overall image was small; thus, these
two segmentation methods were still imperfect in the performance method. DenseNet
greatly reduced the number of parameters, which not only consumed memory but also
led to insufficient extraction of low-frequency features; as a result, missing segmentation
occurred. On the basis of the traditional DeepLab V3+, the proposed method further
integrated high- and low-frequency features to bridge the semantic gap between different
feature graphs; thus, better accuracy and stronger feature expression were achieved. In
addition, the lightweight attention mechanism not only retained the advantage of attention,
but also avoided excessive consumption. Next, the algorithm could be further optimized
based on the extraction ability of image depth features and the complexity of the network.

4.2. Analysis of Improved Segmentation Methods

As shown in Figure 14, very few cases of mis-segmentation and missing segmentation
occurred in the test set when using the proposed method in this study.

    

    
(a) (b) (c) (d) 

Figure 14. Results of false and missing segmentation. (a) missing segmentation indoors; (b) mis-
segmentation outdoors; (c) mis-segmentation indoors; (d) missing segmentation outdoors

Among them, the main reason for (a), (c), and (d) was that the image of the pigs was
too difficult. The label comparison in the first line showed that ensuring the accuracy of the
label was difficult. In addition, the target was very dense and the image depth information
was low. As a result, identification in the case of serious occlusion was difficult. As shown
in (b), mis-segmentation of tree trunks and missing segmentation of distant small targets
occurred due to the influence of the real environment in the field.
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More sample data and label quantity could be added to improve its segmentation
ability.

4.3. Pressure Test of the Counting Application System

This study conducted pressure test analysis to further test the robustness and general-
ization of the counting application. Representative images with different scenes were input
into the counting system to detect their robustness against occlusion, overlap, adhesion,
illumination, and multiscale targets. Figure 15 shows an example of an error on the current
application platform.

    

(a)  (b)  (c)  (d)  

Figure 15. Error examples in counting applications: (a) missing segmentation; (b) mis-segmentation;
(c) missing count; (d) pressure test.

In the figure, panel (a) represents missing segmentation after the small-scale target was
blocked in the image perspective. As shown in panel (b), mis-segmentation occurred due to
overlapping and adhesion problems. Panel (c) shows the count error caused by the leg target
being too small after severe occlusion. Panel (d) shows the cases of missing segmentation
and mis-segmentation in the field environment containing all of the abovementioned
problems. This shows that the counting accuracy gradually decreased with the increase in
the number of pigs.

The pressure test results showed that the application could calculate the number of
pigs up to a maximum of 50, and that the counting accuracy of pigs with less than 30 was
high. This could meet the requirements of standard free-range piggery, but the counting of
large-scale free-range piggery requires further study. The errors of the model were mainly
caused by insufficient feature extraction of small-scale targets in the foreground, or after
occlusion.

However, the application can meet the requirements of pig population identification
and counting in most common scenarios. The optimization can be further improved by
setting a minimum target scale threshold, supplementing large-scale sample data, and
optimizing the model network.

5. Conclusions

In this study, we proposed a novel semantic segmentation method with a lightweight
attention mechanism. By fusing high- and low-frequency features and reducing redundant
parameters, the DeepLab V3+ semantic segmentation method was optimized, and a pig
counting system was built.

First, this study constructed pig datasets for different scenarios, including field, in-
door, day and night, white pigs, black pigs, humans, trees, and other images of the real
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environment. According to the number of pigs, three kinds of quantity detection difficulty
were set: lightweight (1–10), middleweight (10–20), and heavyweight (more than 20).

Second, a lightweight attention mechanism was introduced based on the DeepLab
V3+ deep learning method to improve the segmentation accuracy of complex images of
pigs. The attention module based on rows and columns improved the efficiency of feature
calculation. Recursive cascade mode was adopted to optimize the fusion of high- and
low-frequency features, and potential semantic information was mined in order to reduce
time and space consumption. In this study, the values of the segmentation evaluation
indices P, R, AP, F1 score, and MIoU of LA-DeepLab V3+ (single tag) were the highest, and
the P, AP, and MIoU values of LA-DeepLab V3+ (multiple tags) were the second highest.
Quantitative and qualitative experiments showed that the segmentation effect of the model
was improved significantly.

Finally, the improved model was integrated to enhance the efficiency of pig counting,
and a graphical counting platform was built to achieve accurate pig counting. The counting
network could calculate the number of pigs up to a maximum of 50, and the counting
accuracy of pigs with less than 30 was higher, meeting the requirements of free-range
counting in standard piggery.

The optimization can be further improved by setting a minimum target detection
threshold, supplementing large-scale sample data, and optimizing the model network.
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Abstract: Feeding a growing global population requires improving agricultural production in the face
of multidimensional challenges; and digital agriculture is increasingly seen as a strategy for better de-
cision making. Agriculture and agricultural supply chains are increasingly reliant on data, including
its access and provision from the farm to the consumer. Far-reaching data provision inevitably needs
the adoption of FAIR (Findable, Accessible, Interoperable, and Reusable) that offer data originators
and depository custodians with a set of guidelines to safeguard a progressive data availability and
reusability. Through a systematic literature review it is apparent that although FAIR data principles
can play a key role in achieving sustainable agricultural operational and business performance, there
are few published studies on how they have been adopted and used. The investigation examines:
(1) how FAIR data assimilate with the sustainability framework; and (2) whether the use of FAIR
data by the agriculture industry, has an impact on agricultural performance. The work identifies a
social science research gap and suggests a method to guide agriculture practitioners in identifying the
specific barriers in making their data FAIR. By troubleshooting the barriers, the value propositions of
adopting FAIR data in agriculture can be better understood and addressed.

Keywords: FAIR data; findable; accessible; interoperable; reusable; sustainability

1. Introduction

The global need for agricultural production has been increasing [1], and most food
production remains soil-based. With nearly all arable land under cultivation [2], agriculture
is projected to encounter several challenges including: sustaining maximum production,
limited natural resources, endangered environments and ecosystems, soil degradation
and erosion [3,4]. It is quantitatively confirmed that farming strategies, methods and
decision making are key factors in the future of sustainable and enhanced agricultural
production [5,6]. Operationally, digital agriculture and data/information mutually rely
on each other [3,7,8]. The volume of digital data in agricultural landscapes has grown
exponentially, much of it collected by sensors (both remote sensing and the Internet of
Things). Agricultural knowledge building, appropriate management responses [9] and
farm management decisions [10] highly depend on the data collected through the use of
digital technologies, and ubiquitous internet technologies provide access to all these data,
delivered on demand via high-speed broadband to mobile tablet devices [11]. Precision
agriculture technology employs data [12] to perform operations such as economising crop
inputs, optimising machinery performance and appropriate location finding [13]. The
digital agricultural revolution has led to a plethora of websites and mobile applications
(Apps) that are now available to assist the farmer, agronomist, agribusiness investor,
landscape manager and researcher in decision making. However, the applications and
tools are only as good as the data they use, and because of the disparity of data collection,
formats, and storage only a fraction of the required data are utilised. Current common
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limitations in system models for decision support are: (1) data scarcity (quantity, resolution,
and quality) and (2) inadequate knowledge systems to effectively communicate the results
to the end-user. These limitations are greater obstacles to the use of the tools than gaps in
theory or technology [14,15]. Seamless automated data collection (from both public and
private sources), data interoperability and the federation of multidisciplinary data (plant,
animal, soil, land, climate, weather, machinery, farm business, economics, marketing, trade,
etc.) are required, preferably utilising open cloud-based systems for data storage and open
standards for data exchange. Combining these data in new technologies, such as those
deploying data mining, machine learning, artificial intelligence algorithms and digital
twins, will ultimately provide the holistic viewpoint needed for sustainable agricultural
production [3,7,16].

Improving agricultural knowledge, appropriate management responses [9] and farm
management decisions [10] requires the stakeholders to increasingly depend on data
collected through the use of digital technologies, such as the internet, sensors and mobile
computing at a more localised scale [11]. Precision agricultural technologies massively
employ data [12] to perform operations such as economised crop inputs based on high
resolution location finding [3,16–18], hence requiring a robust database management system
with far-reaching data provision [19]. Since financial benefits highly depend upon the
suitability of the chosen farming techniques and technology, access to data, data literacy
and/or technical support are important needs in the adoption of innovative practices in the
agricultural sector [20–22]. FAIR data principles, first published by Wilkinson [23], provide
data originators and data depository custodians with a set of guidelines to ensure data
availability and reusability. While recognising an ever-growing need for automation of
wide-ranging data encounter, recovery, integration and analysis, the FAIR data principles
make this goal possible, by combining multidisciplinary, cross-disciplinary data, with
disparate data formats, from different sources, as well as by emphasizing that each of the
principles should be equally valid to both humans and machines [23–25].

FAIR (findable, accessible, interoperable, reusable) data principles add more value
to data by enhancing data utility, especially for legacy data sets. Data findability focuses
on maintaining its worldwide uniqueness through persistent identifiers that are machine-
readable and index-able to assist individuals and artificially intelligent systems. It is an
exclusive, persistent way to refer to the data using standard digital object identifiers (DOI),
uniform resource identifiers (URI) or uniform resource locators (URL). Accessibility ensures
that the data and other digitised information are available subject to specified conditions of
access. It has three major components, i.e., access protocol, access permission and metadata
permanency. Accessibility confirms that the data can be accessed by humans and devices
using standard internet protocols, provided that the access controls allow that. The controls
may require managing data licensing in a convenient way. Interoperability makes sure
that the data and other digitised information is unambiguously understood machine-to-
machine. In accordance with FAIR principles, data and metadata should be conveyed
using syntactic and semantic data structures covering the raw and highly processed data.
Ontologies, communicated through a resource description framework (RDF) or other open-
source frameworks, can carry data integration across the board. Through interoperability,
heterogeneous data distributed across disparate databases and devices can be brought
together in standardised and harmonised formats. Reusability segregates conventional data
management from FAIR data stewardship, which requires a multi-layered approach that
addresses the demand of data to be reusable. Fully described contextual and descriptive
machine-readable metadata is required to allow new consumers to reuse data for new
needs and applications, decades after those data were collected. It also requires enhanced
provenance metadata for tracing changes to names, editions, and parameters of analysis.
Principally, if data are not comprehensively and unambiguously described in a machine-
readable form, they have little benefit, regardless of whether they are published with open
access [23–28]. The adoption of FAIR data principles, a thorough review of literature reveals,
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is in its infancy in agricultural systems despite recognition of its value and development
of guidelines.

This study conducts a systematic literature review aimed at: (1) understanding the
adoption and use of FAIR data principles in the agriculture industry; (2) demonstrating
by what means the sub-indicator/characteristics of FAIR data complement sustainable
agricultural performance indicators, and the way the sustainability indicators assimilates
with the sustainable agricultural performance indicators; and (3) whether FAIR data have
impacted agricultural industry performance. Furthermore, this study uniquely describes
how the adoption of FAIR data contribute to sustainable agricultural (operational and
business) performance, by summarising the literature with comprehensive methodological
approaches that demonstrate FAIR data implementation processes. The research identifies
a social science research gap and suggests a method to guide agriculture practitioners
in identifying the specific barriers to making their data FAIR, and to duly analyse the
barriers to better understand and address the value propositions of adopting FAIR data
in agriculture.

2. Methodology

This systematic literature review follows more rigorous and transparent methodology,
following guidelines by Van der Knaap et al. [29], Moher et al. [30] and Koutsos et al. [31].

2.1. Scoping

This study attempts to answer two related research questions: To what extent have
FAIR data principles been adopted by the agricultural industry? and what role do FAIR
data principles play in agricultural performance?

The research uses the Web of Science digital database, initially created by the Institute
for Scientific Information (ISI) but now maintained by Clarivate [32], to search for more
authentic and comprehensive scientific literature. Considering the multidisciplinary nature
of FAIR data in agriculture, the search includes all the relevant Web of Science categories
and pertinent publications/journals. The broad literature search shows a clearer research
gap in this area, with no previous studies found that address the above research questions.

2.2. Planning

To find the qualified publications from the Web of Science, a far-reaching search
approach was carried out by using the most appropriate terms or keywords (given below),
combining with the Boolean operators (AND and OR). The search query we used is
as follows:

(“FAIR data” OR “FAIR data principles” OR “FAIR data guidelines” OR “ FAIR
principles” OR “FAIR guidelines” OR “findability” OR “accessibility” OR “inter-
operability” OR “reusability” OR “findable” OR “accessible” OR “interoperable”
OR “reusable” OR “datasets” OR “data sources”) AND (“metadata standards”
OR “metadata schema” OR “metadata schenes” OR “big date” OR “data man-
agement” OR “database”)

The search was limited by document type (article, review), years (2016–present) and
language (English). Following eligibility criteria, an additional search was conducted
through Google Scholar [33], applying the ‘snowballing’ (or ‘backward and forward snow-
ball’) technique [34]. The search was broadened because: (1) FAIR data are a relatively
new subject in the agriculture disciplines; and (2) agriculture is a multidimensional and
multidisciplinary subject that encompasses sociology, data science, economic, environ-
mental sciences, etc. The suitability criterium of the additional literature was assessed as
being peer-reviewed (approved by two independent reviewers), following Van derWindt
et al. [35] guidelines.

The selection criteria of the selected studies through the Web of Science were based on:
(1) the role of FAIR data towards agricultural performance; (2) the implementation of FAIR
data principles: i.e., applied research; (3) a comprehensive methodological approach, tools
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and/or rules, etc. To exclude studies not related to agricultural research (exclusion criteria),
the query results were refined by choosing most appropriate Web of Science categories:
(1) Agriculture Multidisciplinary; (2) Agriculture Dairy Animal Science; (3) Soil Science;
(4) Plant Sciences; (5) Green Sustainable Science Technology; and (6) Computer Science
Interdisciplinary Applications.

This review includes all the studies (with document type article, review) from the
last six years (2016–present) since the FAIR data principles were first published in 2016.
The search was confined to English language papers published by the top five publishing
houses, i.e., Elsevier, Springer Nature, MDPI, Wiley and Taylor & Francis, since that covered
most high-quality peer-reviewed papers.

At the initial stage, the total number of studies obtained was 1042. To further confine
the research focus to agriculture, the selection excluded numerous journals having entirely
different scope areas, for instance medical sciences, astronomy, industrial engineering,
computation and mathematics, etc. bringing the total number of studies to be assessed
to 469. There were five studies included through the ‘Google Scholar’ search. More
details are provided in the PRISMA (Preferred Reporting Items for Systematic reviews and
Meta-Analyses) statement (Figure 1).
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Figure 1. Systematic review based on PRISMA flowchart [30].

2.3. Identification/Search

Details of the studies found through the ‘advanced search option’ of the Web of Science
were exported into a reference manager (Endnote) and spreadsheet (Excel) for further
assessments. A Google Scholar search was again used to ensure that the maximum number
of relevant papers were captured, given the multidisciplinary and multidimensional nature
of the research objective. The snowballing technique was helpful for additional searching as
there was a limit on searching imposed in the Web of Science database. All studies obtained
from the search queries were fully checked based on their titles, abstracts, keywords, year
of publication and the research area and so on, to confirm their eligibility for inclusion.
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2.4. Screening

All the eligible literature found though the Web of Science and Google Scholar searches
were saved (with title, keywords, abstracts) in two separate files. Duplicates (3 studies)
were deleted. That resulted in 42 studies (full text) downloaded for a thorough assessment.

2.5. Eligibility/Assessment

The inclusion criteria comprise studies that: (1) cover the role of FAIR data in relation to
agricultural performance; (2) take a FAIR data approach to agricultural data; and (3) include
a comprehensive methodological segment on the practical implementation of FAIR data
principles. As shown in Figure 1, out of 469 studies, 45 records remained after being refined.
After deletion of duplicate studies, abstract reading and full-text skimming, there were
12 studies to be considered for full-text assessment.

Since the primary process of this systematic review has been to find studies that clearly
describe the role of FAIR data in relation to agricultural performance, as well as evidence
(i.e., a methodology approach) of the practical implementation of FAIR data principles, the
selected papers were assigned a strength of evidence based on a grading system, described
in Table 1:

Table 1. Strength of evidence based on a grading system.

Grade Criteria

Substantiated

include a clear role of FAIR data in relation to agricultural performance
include a comprehensive methodological approach that demonstrates
FAIR data implementation processes
scientific, evidence based, empirical, quantitative and/or case study

Partially substantiated

include a clear role of FAIR data in relation to agricultural performance
include a comprehensive methodological approach that demonstrates
FAIR data implementation processes
scientific, evidence based, empirical, quantitative and/or case study

Unsubstantiated studies discussing the role of FAIR data in other contexts and do not
qualify for the eligibility criteria

Finally, eight studies met the final appraisal criteria. The eight finalists were examined
and assessed for their strength of evidence. Of the final eight studies, two (N = 2 or 25%)
were graded as partially substantiated with the strength of evidence II, and six (N = 6
or 75%) were graded as substantiated with the strength of evidence I (Table 2). Average
citation rate of the included studies is calculated as 7.
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Table 2. Assessment of the selected studies based on their strength of evidence.
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1 Wijk et al. [36] Sci. and Tech;
Other topics * * * * +++ I 03

2 Harrison et al.
[37]

Agri.; Genetics
and Heredity * * * * +++ I 14

3 Dorich et al.
[38]

Sci. and Tech; Env.
Sci. & Ecology * * * * +++ I 05

4 Giuliani et al.
[39] Remote Sensing * * * * +++ I 19

5 Specka et al.
[40]

Computer Science;
Geology * * * * +++ I 02

6 Arnaud et al.
[41] Computer Science * * * * +++ I 04

7 Hackett et al.
[42] Plant Sciences * * * ++ II 01

8 Singh et al.
[43] Plant Sciences * * * ++ II 11

* Shows study descriptions (with respect to methodology, types) a Authors; b Web of Science research areas of the
included studies; c Substantiated (+++); Partially substantiated (++); Unsubstantiated (+); d Strength; e Citations.

In this literature review, the included studies were shortlisted based on the inclusion
criteria that were confined to the studies: (1) classified under the six Web of Science cat-
egories: Agriculture Multidisciplinary, Agriculture Dairy Animal Science, Soil Science,
Plant Sciences, Green Sustainable Science Technology and Computer Science Interdisci-
plinary Applications; (2) listed as article and/or review; (3) written in the English language;
(4) comprise applied implications of FAIR data, its implementation and comprehensive
methodological approach; (5) published with the top-ranked publishers, i.e., Elsevier,
Springer Nature, MDPI, Wiley and Taylor & Francis, in all the journals nominated for the
research area; and (6) published within last six (2016–present) years. There were three
studies selected through Google Scholar, using the snowballing search technique, based on
the reference lists of the studies obtained from Web of Science search. Notably, during our
literature review process, we found three studies, i.e., Capalbo et al. [15], Weersink et al. [11]
and Wolfert et al. [44], describing the importance of data/big data in the agricultural perfor-
mance without relating to FAIR data principles. Our search also found four research papers,
i.e., Koers et al. [45], Robinson et al. [46], Roitsch et al. [47], Ingram et al. [48] and Bahlo
et al. [49], recommending the adoption of FAIR data principles to enhance agricultural
performance, without explaining how or why. These papers do not meet the selections
criteria; hence, they were excluded during screening and eligibility processes.

It is acknowledged that farming is a multifaceted business with no ‘best bet’ or ‘one
method fits all’ solution due to the multiplicity of unforeseen factors. All the above
criteria may introduce bias in this systematic review that may influence or contrast with
the findings.
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2.6. Presentation/Interpretation

According to the Web of Science research areas, two studies were categorised under
‘Plant Sciences’, one listed under ‘Remote Sensing’, and five studies relates to Agriculture,
Science and Technology, Genetics & Heredity, Environmental Science, Ecology, and Geology
categories Moreover, the included eight studies have been published to different prominent
journals (Table 3).

Table 3. Web of science categories and journals included.

ID Web of Science Categories Journal

1 Multidisciplinary Sciences Scientific Data

2 Agri., Dairy & Animal Science; Genetics &
Heredity Animal Genetics

3 Green & Sustainable Science & Technology;
Env. Sci.

Current Opinion in Env.
Sustainability

4 Remote Sensing Int’l Journal of Applied Earth
Observation & Geoinformation

5 Computer Sci., Interdisciplinary
Applications; Geosciences, Multidisciplinary Computers & Geosciences

6
Computer Sci., Artificial Intelligence;
Computer Sci., Information Systems;

Computer Sci., Interdisciplinary Applications
Patterns

7 Plant Sciences Applications in Plant Sciences
8 Plant Sciences Trends in Plant Science

Although the trend is increasing (Figure 2), the minimal number of studies demon-
strates very slow adoption of FAIR data principles reported in agricultural research publica-
tions, which may reflect on the slow uptake by the agricultural researchers and practitioners.

2018 2019 2020

Figure 2. Total number of the studies included and growing trendline.

3. Findings

Since the publication of the FAIR data guidelines [23], there are only eight published
studies found through this systematic literature review approach of their adoption in agri-
cultural data. Though these studies confirm the significant role that FAIR data can have on
agricultural operational and business performance, the actual implementation of FAIR data
principles in the agricultural industry appears to be minimal. Figure 3 demonstrates indica-
tors, sub-indicators of FAIR data, their impacts on sustainable agriculture performance and
their assimilation with the sustainability framework [50,51]. The detailed analysis of the
final selected papers with respect to their objectives, roles towards agricultural performance,
scope and the sources or tools employed, is listed in Table 4.
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Figure 3. Indicators, sub-indicators, their impacts on sustainable agri. performance, & assimilation
with sustainability framework.

Table 4. Authors, objectives, and roles of FAIR data towards agricultural performance, scopes and
sources or tools in the included studies.

Author, Objective & Scope FAIR Data Role Towards Agricultural Performance

1. Wijk et al. [36]

Objective: To list a well-coherent and interoperable
dataset (following FAIR data principles) to help
standardization of agricultural household surveys
approach by collecting information on 758 variables, to
better quantify more than 40 different indicators on
farm and household characteristics, welfare,
productivity and economic performance.
Scope:
- In line with the rural household multiple

indicator survey (RHoMIS).
- A total of 21 countries in Central America,

sub-Saharan Africa and Asia.

Rural Household Multiple Indicator Survey (RHoMIS) aims to:

‚ promptly characterise a sequence of key indicators across the range
of agricultural products and off farm activities, together with
marketplace integration, nutrition, food security, poverty and
greenhouse gas (GHG) emissions.

‚ measure on- and off-farm paths to food security, various diets and
variations in poverty for rural smallholder farm households.

‚ attain sustainable development goals that require more improved
sustainable food production and development of rural economies.

‚ better understand the relationships between farming practices,
livelihood and the influences on farm performance and household
welfare that help with developing targeted investment to advance
in agronomic development. Trustworthy indicators at
farm-household level of both agri. performance and household
wellbeing help to better understand and model these relationships,
and to review, revise and update the strategy and execution of
intermediations involved officials through an extensive array of
changing geographies and socio-economic features.

‚ manage propagation of survey tools and indicators heading to
illogical, incoherent and un-interoperable datasets.
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Table 4. Cont.

Author, Objective & Scope FAIR Data Role Towards Agricultural Performance

2. Harrison et al. [37]

Objective: To develop high-quality and rich-supporting
metadata (in line with FAIR data guidelines) to
describe the project’s animals, specimens, cell cultures
and experimental assays.
Scope:
- Functional annotation of animal genomes

(FAANG) with an initial focus on farmed and
companion animals.

- UK, USA.

Functional annotation of animal genomes (FAANG) metadata helps in:

‚ creating sample and experiment metadata standards to enhance
data recording.

‚ standardising global vocabularies and or expressions by using
ontologies.

‚ utilising the wide-ranging livestock datasets produced outside of
the project by employing less rigorous legacy guidelines.

‚ developing authentication software to help the community in
fulfilling the metadata standards and to input their data to the
public archives, hence actively support the community.

‚ providing a community data portal that classifies all sample and
experimental datasets by using a single-focused user interface.

‚ successfully dealing with the challenges faced by the consumers in
creating infrastructure that mutually and efficiently coordinate
genome-to-phenotype research activities.

‚ maximising the usefulness and inter-comparison of assay data.
‚ creating a powerful genome-to-phenotype resource and supports

on-going developments in animal data standards as a whole, to
support the community.

3. Dorich et al. [38]

Objective: To create the Global N2O Database
(following FAIR data principles) to serve as a
repository for N2O datasets to be publicly available
data and for analytical advances.
Scope:
- Global N2O Database.
- Nitrous oxide emissions.
- Global.

The Global N2O Database deals with farming-oriented (nearly 20% of the
total global) GHG emissions and is likely to improve evaluations level by
improving annual N2O estimates. The Global Nitrous oxide (N2O)
Database aims to:

‚ improve Nitrous oxide (N2O) emission estimates that are primarily
obtained from agriculture and is an intoxicating greenhouse gas
(GHG) that is roughly 300 times more intense than CO2 and is the
most hazardous ozone-draining material.

‚ improve N2O assessments, detection of hotspots and alleviation
priority zones, and better interpretation of climate change
feedbacks.

‚ help with providing an opportunity for methods comparisons by
collecting exact data from all practices.

‚ provide value-added computation of annual emissions within a
monitoring, reporting and verification process (MRV) scheme for
enhanced policy making, for instance greenhouse gas exchanges
and to reduce N2O emissions.

‚ help to moderate and better prepare for climate change by
developing and verifying practical abatement strategies in the land
use sector, as agriculture has a cause and effect’ correlation with the
climate change.
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Table 4. Cont.

Author, Objective & Scope FAIR Data Role Towards Agricultural Performance

4. Giuliani et al. [39]

Objective: To develop an innovative, scalable and
flexible framework to monitor land degradation at
various scales by using various components of the
Global Earth observation system of systems (GEOSS)
platform to leverage EO resources.
Scope:
- Monitoring land degradation at various scales

system.
- Land degradation.
- Global.

Monitoring of land degradation at various (national, regional, global)
scales system, in accordance with the UN SDG 15.3.1 framework, is a
successful milestone that effectively embed science into the
decision-making process. This system enables users to use EO-based
resources more effectively and efficiently. It further aims to:

‚ reduce climate change and biodiversity losses, as well as ensuring
food security and sufficient provision of ecosystem services, at the
same time.

‚ produce multidisciplinary reliable knowledge on quantifiable
objectives, at different scales, in order to proficiently support
applied policymaking to ensure balanced functioning of the
ecosystem.

‚ achieve sustainable development goals (SDG) 15.3.1., by following
the data-information-knowledge pattern using the Trends.Earth
model [52] and several data sources to produce the indicator.

‚ provide more flexible and scalable version of Trends.Earth to
enhance decision-making processes and to scope of our planet, for
instance natural resources, etc.

‚ strengthen respective regional capacities to effectively assess and
map the degraded lands as per the UN sustainable development
goals (SDGs).

‚ institute ‘data analytics’ podia that can potentially help nations to
discover, access and use the necessary datasets to evaluate land
degradation.

5. Specka et al. [40]

Objective: To frame new model, BonaRes metadata
schema (following FAIR principles), by integrating the
INSPIRE and DataCite metadata schemas.
Scope:
- Model based on two schemas, i.e., INSPIRE and

DataCite metadata.
- The BonaRes metadata schema for geospatial

soil-agricultural research.
- Global.

In compliance with the INSPIRE and DataCite metadata schemes and
FAIR data principles, a modern research data management, BonaRes
metadata:

‚ supports cross-portal metadata interoperability with other
INSPIRE-compliant spatial data infrastructures (SDIs).

‚ increases the visibility and findability of researchers’ investigation,
as the data can be assigned a digital object identifier (DOI), which is
essential for data publications and data citations.

‚ allows targeted dataset queries and to better the discovery and
reusability of research data.

6. Arnaud et al. [41]

Objective: To annotate multidisciplinary research data
with the appropriate ontologies to stimulate the
ontology content to fill the gap rather than developing
completely new ontologies.
Scope:
- Consultative group on international agricultural

research (CGIAR) methodology.
- Multidisciplinary ontologies—Focuses on

ontologies in the fields of agronomy, crop,
environment, plant, and socio-economic.

- Global.

Annotation of and integrative, multifaceted, versatile, associative
research data with the most suitable ontologies aims to comply with the
FAIR data principles, and to strengthen the findability of data for further
reuse, hence adding to the return on investment (RoI) for information
collection and storage. It further aims to:

‚ provide most appropriate ontologies with more applicable and
reliable data control, including data stewardship, ownership and
robust policy.

‚ enhance technological structure (essential softwares, connectivity
and servers) that plays key role in arranging and classifying the
tangible data structures, i.e., ontologies, taxonomies and structured
vocabularies to finally form a supportable data management
system.

‚ exclusively increase the influence of agronomic research and
development (R&D) by following FAIR data guidelines to build
community trust level.
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Table 4. Cont.

Author, Objective & Scope FAIR Data Role Towards Agricultural Performance

7. Hackett et al. [42]

Objective: To present biodiversity data workflow, i.e.,
data collection and curation, from multiple sources
while abiding by FAIR data principles, to enable
researchers, managers, and policymakers to address
issues of global and future concern.
Scope:
- Biodiversity associated with globally vulnerable

prairie fen wetlands. Plant diversity research and
species-focused studies concerning the biology,
ecology and behaviour of the federally
endangered Poweshiek skipperling.

- Plant communities and the federally endangered
Poweshiek skipperling (Oarisma poweshiek).

- Michigan prairie Fens, USA.

Global biodiversity information facility (GBIF) data sets:

‚ help to deal with the heterogeneity of biodiversity data issues, faced
by data collections units, research and management communities,
by implementing FAIR data principles for large-scale research.

‚ provides new opportunities to better understand vibrant natural
systems and help establishing more applied data resource
management.

‚ successfully address specific queries in the fields of phylogenomics,
biogeography climatology, ecology and evolution, etc.

8. Singh et al. [43]

Objective: To develop a single database for annotated
plant stress images that supports FAIR principles (of
accessibility and reusability) to propose an overarching
strategy for utilizing ML techniques that methodically
enables the application of plant stress phenotyping at
multiple scales across different types of stresses,
program goals, and environments.
Scope:
- Plant stress phenotyping ‘plant stress severity’ to

encompass both biotic and abiotic stresses.
- Plant stress phenotyping, Maize plants.
- Iowa, USA.

Plant stress evaluations measure the visible signs and/or indications of
stress and its progress on different plant units (e.g., leaf, stem, or roots) at
the leaf, canopy, plot and field levels. A comprehensive database for
annotated plant stress images, embedded with FAIR data principles,
aims to:

‚ choose stress-resistant varieties and to develop better
stress-management schemes.

‚ standardise visual evaluations and to utilise imaging techniques to
better enhance the precision and trustworthiness of stress
assessment in contrast with single-handed visual measurement.

‚ enhance machine learning (ML) approaches combined with
image-based phenotyping to get up-to-date insights from highly
organised, annotated (supported with explanations and/or
comments), and high-dimensional (provided with the staggeringly
higher number of dimensions) datasets across wide-ranging
stresses and crops.

‚ concurrently build up the pace, precision, trustworthiness and
scalability of stress phenotyping, and agility for highly varying
program objectives; whereas innovative ML algorithms offer
extended plant stress phenotyping techniques to deal with these
challenges.

‚ advance mechanisation and accuracy of plant stress gravity
evaluations that improve the proportion of genetic gain within
crops, providing comprehensive management approaches. Notably,
stress gravity evaluations in plants are important for appraising
management strategies, plant breeding choice approaches and
checking novel varieties for their capacity to alleviate crop damages.
Additionally, efficiently quantify plant traits under different
environmental circumstances with a stipulated precision and
accuracy at various scales from organs to canopies.

Sustainable and enhanced agricultural production highly rely on the farming strategies,
methods and decision making made by the stakeholders [5,6,53]. Accomplishment of FAIR
data principles ensures data findability, accessibility, interoperability and reusability that
extensively contributes better decision making towards both the operations and business
management. Figure 3 demonstrates on how the sub-indicator/characteristics of FAIR
data lead to sustainable agricultural performance indicators, and the way the sustainability
indicators assimilate with the sustainable agricultural performance indicators, ultimately
complementing the sustainability triple bottom line framework.
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4. Discussion

The analysis of papers found through this systematic literature review clearly demon-
strate that the provision of FAIR data can help improve agriculture operational and business
performances. The multidimensional challenges in agriculture demand better decision
making, which in turn relies on better access to data for wiser decision making. In this
regard, a big responsibility lies on the shoulders of the stakeholders, i.e., farmers, farm
managers, agronomists, service providers, researchers, etc. to make their data FAIR.

However, the systematic literature review also found only a few documented cases
of practical examples that relate FAIR data to agricultural performance. While there may
be many reasons for the low number of published case studies of adoption of FAIR data
in agriculture, this review strongly indicates a need for social science research to explore
what those reasons may be. Clearly, the stakeholders’ value propositions for the adoption
of FAIR data in agriculture need to be better understood.

In accordance with Rogers’ [54], diffusion of innovation theory simply having knowl-
edge of a new idea is not enough. By and large, informative individuals go through a
persuasion stage to build either positive or negative attitudes towards the new idea, in
accordance with innovation decision processes. Every novel idea carries a certain level
of hesitation as the individual consumers of various personality types weigh up their
appetite for risk and capacity for adopting change and so on. It is keenly realised that
researchers should incorporate and comprehend the farmers’ social perspectives, seeing
that the comprehension of attitude and social capacity are the key indicators towards viable
agriculture and central to better explore the community attitudes and behaviour [55,56].

Firstly, agriculture practitioners’ attitude towards data and data sources in addition
to their capability to employ the information are critical factors for the useful utilisation
of those data [57,58]. Data are key in decision making [27], whereas the practitioners’
attitude towards data authenticity, data source, its genuineness and applicability are critical
factors towards its usefulness [57,58]. Secondly, practitioners and stakeholders play their
respective roles towards the betterment of agriculture. If agricultural data—as a key input
in decision-making—are not findable, and accessible, they will be of no use even though
they are well researched. Stakeholders’ data comprehension and knowledge exchange at
all levels are important factors towards agricultural improvement [59]. If the data are not
comprehendible to the end-users, they will not be used in accordance with the notion of
the behavioural economics [60]. Thirdly, the available agriculture data are found disparate,
disorganised and disarrayed [61]. The required datasets are either not available [62,63] or
the consumers are provided with restricted and/or limited access [19].

Theory of reasoned action (TRA) uncovers that an individual’s objective and decision
making depends upon the level of information or data they have [64]. Stakeholders’
knowledge building, including that of FAIR data, is essential. In this way, those with
limited or no technical knowledge are asked to educate themselves with the emerging
technology to better adapt with the modern advancements. Adoption of digital agriculture
in general, and the adoption of FAIR data principles in particular, are facing several
challenges. Politically, in Australia for instance, digital agriculture needs more proactive
steps towards policy making, cooperation, administration and cross industry collaboration.
Socially, digital literacy among all the key stakeholders can play a vital role to better
comprehend value proposition of digital agriculture, and to bridge the trust gap between
consumers, technology providers and data custodians. While device connectivity and the
required data input are key prerequisites to make the technology work, the lack of mobile
connectivity and internet telecommunications infrastructure, and limited or no access to
the required data, curtail practitioners to use the technology at its best [65]. Economically,
the Australian agriculture sector estimates an increase by 42% in its technology-oriented
capital by 2030, whereas the farming sector needs to adopt the latest farming technologies
and techniques to meet future production demands. Digital agriculture can add a gross
value of AUD 20.3 billion [63], while better agricultural planning and appropriate farming
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techniques have a potential to further supplement AUD 100 billion to the Australian
economy by 2030 [66].

The provision of FAIR data is a well-documented constraint in modern agricul-
ture [19,67,68], but there is little to no research on why FAIR data are not made available. If
FAIR data are widely regarded as important, why is it not widely adopted? Is stakeholders’
knowledge and perception towards FAIR data a barrier? To comprehend these questions,
a FAIR data process flowchart has been devised as a guiding template to direct the social
research. Using plain language, this flowchart attempts to step an agricultural practitioner
through the requirements for FAIR data to ascertain where they perceive barriers and
difficulties in adopting FAIR data processes.

The flowchart (Figure 4) intends to test the extents to which each of the required FAIR
data components (findability, accessibility, interoperability, reusability) present barriers to
adoption, whether these barriers are equally distributed across the four components and
whether there are specific steps within each component that present higher barriers than
others. By troubleshooting the specific barriers of each requirement, the value propositions
of adopting FAIR data in agriculture can be better understood and addressed.

Figure 4. Cont.
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Figure 4. FAIR data process flowchart diagram in plain language.

5. Conclusions

The advent of digital agriculture has provided agricultural practitioners with access
to a plethora of internet resources, sensors and applications for decision support in their
operations and businesses. The FAIR data principles were designed to address the challenge
of how to harness the increasing volume of disparate, but relevant data to improve decision
making and enhance agricultural performance. This systematic literature review reinforces
this hypothesis but finds very few published examples of how adopting the principles
are related to agricultural performance, indicating that the value proposition is yet to be
realised. To explore this tardiness will require social science research to find the specific
barriers in making data findable, accessible, interoperable and reusable, so that benefits of
digital agricultural can be more broadly gained.
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Abstract: Genotype and weather conditions play crucial roles in determining the volume and stability
of a soybean yield. The aim of this study was to identify the key meteorological factors affecting
the harvest date (model M_HARV) and yield of the soybean variety Augusta (model M_YIELD)
using a neural network sensitivity analysis. The dates of the start of flowering and maturity, the
yield data, the average daily temperatures and precipitation were collected, and the Selyaninov
hydrothermal coefficients were calculated during a fifteen-year study (2005–2020 growing seasons).
During the experiment, highly variable weather conditions occurred, strongly modifying the course
of phenological phases in soybean and the achieved seed yield of Augusta cultivar. The harvesting
of mature soybean seeds took place between 131 and 156 days after sowing, while the harvested
yield ranged from 0.6 t·ha−1 to 2.6 t·ha−1. The sensitivity analysis of the MLP neural network made
it possible to identify the factors which had the greatest impact on the tested dependent variables
among all the analyzed factors. It was revealed that the variables assigned ranks 1 and 2 in the
sensitivity analysis of the neural network forming the M_HARV model were total rainfall in the first
decade of June and the first decade of August. The variables with the highest impact on the Augusta
soybean seed yield (model M_YIELD) were the mean daily air temperature in the second decade of
May and the Seljaninov coefficient values calculated for the sowing–flowering date period.

Keywords: soybean; yield; sensitivity analysis; vegetation period; weather conditions; artificial
neural network

1. Introduction

Soybean (Glycine max [L.] Merrill) is the most important legume crop worldwide with
a forecast of production at 353.8 million tonnes [1]. It is also the main source of valuable
plant protein and the second source of oil, and the global demand for soybean has been
constantly growing. Poland is highly dependent on soybean meal imports, a current
volume of around 2.5 million tons. Independence from protein imports can be ensured by
an increase of the acreage of soybean cultivation. Over the last ten years, the cultivation area
has increased from <1000 to 25,552 hectares (in 2021) [2,3], but soybean is still considered
to be a new crop for Polish farmers. One of the reasons for such a small acreage is the
location of Poland, which is over 49 degrees latitude, north of the world’s main soybean
cultivation regions. There are several major factors which limit soybean’s fitness for its
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purposes, and they are as follows: long daytime duration, low temperature at the time
of germination and flowering, and requirements for rainfall [4]. The lack of suitable
cultivars adapted to climatic conditions is the main problem for soybean cultivation in
Poland. Primarily, early maturing cultivars (“000”) [5] have been promoted in Poland.
However, the key issue for the higher latitude adaptation is the proper combination of
allelic variants at the E1, E2, E3, and E4 loci [6]. The varieties having all four recessive
alleles are insensitive in terms of photoperiod; for example Nawiko and Augusta, which
was bred at the Department of Genetics and Plant Breeding, Poznań University of Life
Sciences. Further, the very high variability and diversity of weather conditions observed in
individual years, which is a characteristic of Poland’s transitional climate, can be considered
an additional obstacle for soybean adaptation, causing significant fluctuations in the dates
of the flowering initiation and maturity [7]. Unfavorable growing conditions—including
cold stress—cause a reduction in soybean yield and its nutritional value [8,9].

There are many different factors that affect soybean adaptiveness around the world. In
Central and South Germany, a positive correlation between seed yield with solar radiation
(r = 0.32) and precipitation (r = 0.33) was found to be significant, but the same factor was
negatively correlated with Crop Heat Units (CHU) (r = −0.42). Varieties from maturity
group MG 00 were less correlated with the tested environmental factors than varieties from
maturity group MG 000 [10]. In the far east, the yield-limiting, environmental factor is
temperature, but for the Krasnodar region, the yield was positively related to the hydrother-
mal coefficient; a lack of moisture becomes a significant disadvantage for soybean in this
region [11]. Also, in Argentina, the moisture availability during the period from flowering
to pod formation is critical for productivity [12]. Precipitation is considered a major factor
in the formation of soybean yield components in most regression models [13,14], and water
deficiency is reported to be one of the most important environmental factors, reducing
crop (including soybean) productivity more than any other factor [15,16]. Both too-high
and too-low temperatures can reduce the yield of soybean. Cold stress at the flowering
stage negatively affects the elements of the plant habits and seed yield of soybean, which
results in a high level of yield decrease shown in late cultivars, while a smaller and similar
yield decrease was observed in early and medium–early cultivars [17]. Both elevated
temperature and water stresses post-flowering significantly affected plant growth and yield
parameters negatively. The combined effects of the two factors were more severe than the
individual stresses [18].

Moreover, global warming has been a new factor that has increased the incidence of
extreme weather events in recent years. The effect of temperature rise may vary. Annual
global mean temperatures varied from 15.0 to 15.3 ◦C and are likely to exert a positive
impact on the average yield [19]. Tacarindua et al. [20,21] reported that temperature rise
during the growing season from 26 to 30 ◦C affected the reduction of dry mass production,
harvest index, seed number, pod number, and single-seed size, and thereby seed yield.
Predicting models demonstrated a nonsignificant decrease in the global average soybean
yield of 3.1% per ◦C increase with large uncertainties [22].

Thus, genotype and weather conditions have a significant impact on the amount
and stability of soybean yield, which depends on many other cultivation factors [23,24].
Therefore, breeding new soybean cultivars for such conditions—as well as selecting Euro-
pean cultivars for cultivation—is much more difficult and requires long-term experiments.
Analyses of the influence of weather factors on the phenological data and yield should
be carried out on the same genotype. It is reported that Augusta is the only variety that
has been cultivated in Poland for a long period of time (since 2002). For this reason, the
results from 16 years of cultivation of this variety were used to determine the impact of
meteorological conditions on the harvest date and soybean yield.

In this pilot study, the neural modeling method was used. Artificial neural networks
(ANN) are a tool designed to implement various types of problems, including the perfor-
mance of prognostic and deterministic analyses [25–31]. The reason for the great interest in
neural networks is the fact that they are called “universal function estimators”, and they
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are capable of solving problems of a linear and non-linear nature. Often, the simultaneous
use of multiple linear regression (MLR) and artificial neural networks can be found in the
literature. Unfortunately, linear methods are characterized by much lower analysis results
than ANNs [32–34]. It should be noted that artificial neural networks operate on a “black
box” principle; that is, they do not provide complete information regarding the method of
obtaining specific answers or detailed relations between the input and output variables [35].
To be able to extract as many clues and messages as possible from a trained network, several
techniques were used, including neural network sensitivity analysis. This analysis is used
to determine how “sensitive” the model is to changes in model parameter values and to
changes in the model structure. The so-called “sensitivity of the network” is determined,
among others, by the error ratio. A high network sensitivity to a given parameter suggests
that the system’s performance may change drastically with a small change in that parameter.
Conversely, a low sensitivity suggests a small change in performance [35,36]. In this way, it
is easy to identify variables of high importance in influencing the variability of the output
factors—i.e., the main problems set by the model developers, which are then solved by
the network.

The aim of this study was to identify the key meteorological factors affecting the
harvest date and yield of soybean using a neural network sensitivity analysis based on
two deterministic models.

2. Materials and Methods

2.1. Plant Material

Polish soybean cultivar Augusta, one of the earliest soybean cultivars in Europe, was
used as the plant material in this study. It was developed at the Department of Genetics and
Plant Breeding of the Poznań University of Life Sciences (PULS) and registered in Poland in
2002. Augusta was selected from two crosses: (1) in the first step, the cross between Fiskeby
V and line PI 194,643 was made and the line 104 was obtained; (2) in the second step, the
line 104 was crossed with line 11, belonging to G. soja (Siebold & Zucc.) syn. G. ussuriensis
(Regel & Maack) wild species. Line 11 of G. soja is growing in a natural environment in the
far east latitude region of Russia, similar to Poland, and is a day-long tolerant genotype.
Thus, Augusta has two sources of photoperiod insensitivity and chilling tolerance.

2.2. Field Test

The field experiment was conducted at the Agricultural Research Station Dłoń, Poznań
University of Life Sciences, Poland (51◦41′37” N, 17◦04′06” E) during the 2005–2020 growing
seasons. The plot soils are classified as Haplic Luvisols (LVh, WRB Soil Classification—FAO) [37]
and the previous crop for the experiment was wheat. The Augusta seeds were sown from
20 to 28 of April at the density of 60 seeds per 1 m2. Just after sowing, a pre-emergence
herbicide that contained linuron (0.1 g·m−2) and S—metolachlor (0.14 g·m−2) was applied.
The fertilizer was used according to the conventional farming practices in this area (N
30 kg·ha−1, P 80 kg·ha−1, K 120 kg·ha−1). The dates of the beginning of flowering and
maturity were recorded due to the BBCH scale. The yield results were collected from the
fields measuring from 0.5 to 5.0 hectares, on which the seeds of Augusta were multiplied.

The average daily temperatures and precipitation, measured according to the WMO
guidelines for 2005–2020, were obtained from a Vantage Vue 6357 UE 9 meteorological sta-
tion (Davis Instruments, United States) located approximately 400 m from the experimental
field. Atmospheric conditions and information on vegetation length and yield from 2005 to
2020 are shown in Figures A1 and A2.

2.3. Division of Experimental Data into Sets Used in the Analyses

All experimental data collected in the database were divided into two sets. This
division resulted from the assumptions made about the use of deterministic models in
indicating the independent variables with the greatest influence on the evaluated feature,
i.e., harvest date (model M_HARV) and yield (model M_YIELD). The procedure for the
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experimental data intended for the development and specific verification of each of the
deterministic models is presented below (Figure 1).

Figure 1. The division of experimental data into sets according to the assumptions made about the
construction and application of deterministic models.

2.4. Methodology for Predictive Model Development

Primary meteorological data were used to develop deterministic neural models
(M_HARV, M_YIELD). These included: mean air temperature and precipitation totals
for each decade, starting from the first decade of April to the third decade of September
(M_HARV, M_YIELD) in the current agronomic season. Some of the proposed indepen-
dent variables required additional calculations. For example, these included the values of
Selyaninov hydrothermal coefficients (HTC) (Equation (1)), calculated for different time
intervals depending on the deterministic assumptions of the selected models, growing
degree days (GDD) > 6 ◦C and the total precipitation for selected vegetation periods.

HTC = (P · 10)/Σt (1)

where:

P—total monthly rainfall (mm),
Σt—sum of monthly average daily air temperatures > 6 ◦C.

The duration of the soybean growing season (M_HARV, M_YIELD) was also deter-
mined. The independent variables in the developed models were the date of harvest
(M_HARV) and yield (M_YIELD). The date of harvest was presented as a number of days
since the beginning of the year, while the yield was t·ha−1. A detailed list of independent
and dependent variables taken into account in the development of each model, along with
the range of their values, is presented in Table 1.
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Table 1. The neural models’ data structure.

Symbol Unit of Measure Variable Name Model M_HARV Model M_YIELD The Scope of Data

T-IV-1 ◦C Average air temperature
in the 1st decade of April + + 1.8–12

T-IV-2 ◦C Average air temperature
in the 2nd decade of April + + 5.9–15.9

T-IV-3 ◦C Average air temperature
in the 3rd decade of April + + 6.9–17.4

T-V-1 ◦C Average air temperature
in the 1st decade of May + + 9.4–18

T-V-2 ◦C Average air temperature
in the 2nd decade of May + + 10.7–17.9

T-V-3 ◦C Average air temperature
in the 3rd decade of May + + 11.1–22

T-VI-1 ◦C Average air temperature
in the 1st decade of June + + 14.1–22.5

T-VI-2 ◦C Average air temperature
in the 2nd decade of June + + 15.8–24.6

T-VI-3 ◦C Average air temperature
in the 3rd decade of June + + 15.5–24.1

T-VII-1 ◦C Average air temperature
in the 1st decade of July + + 16.4–25.2

T-VII-2 ◦C Average air temperature
in the 2nd decade of July + + 17.9–25.6

T-VII-3 ◦C Average air temperature
in the 3rd decade of July + + 16.3–26.9

T-VIII-1 ◦C
Average air temperature

in the 1st decade
of August

+ + 17.2–26.4

T-VIII-2 ◦C
Average air temperature

in the 2nd decade
of August

+ + 17.8–24.5

T-VIII-3 ◦C
Average air temperature

in the 3rd decade
of August

+ + 15.8–22.3

T-IX-1 ◦C
Average air temperature

in the 1st decade
of September

+ + 12.9–20.7

T-IX-2 ◦C
Average air temperature

in the 2nd decade
of September

+ + 11.5–18.8

T-IX-3 ◦C
Average air temperature

in the 3rd decade
of September

+ + 10.3–16.4

O-IV-1 mm Total precipitation in the
1st decade of April + + 0–28.5

O-IV-2 mm Total precipitation in the
2nd decade of April + + 0–32.5

O-IV-3 mm Total precipitation in the
3rd decade of April + + 0–22.4

O-V-1 mm Total precipitation in the
1st decade of May + + 3–40.2

O-V-2 mm Total precipitation in the
2nd decade of May + + 0–71

O-V-3 mm Total precipitation in the
3rd decade of May + + 0.4–62

O-VI-1 mm Total precipitation in the
1st decade of June + + 0–61.8

O-VI-2 mm Total precipitation in the
2nd decade of June + + 0.4–67.7

375



Agriculture 2022, 12, 754

Table 1. Cont.

Symbol Unit of Measure Variable Name Model M_HARV Model M_YIELD The Scope of Data

O-VI-3 mm Total precipitation in the
3rd decade of June + + 0–69

O-VII-1 mm Total precipitation in the
1st decade of July + + 0–94

O-VII-2 mm Total precipitation in the
2nd decade of July + + 4–109

O-VII-3 mm Total precipitation in the
3rd decade of July + + 1.2–76

O-VIII-1 mm Total precipitation in the
1st decade of August + + 0–189.5

O-VIII-2 mm Total precipitation in the
2nd decade of August + + 1.5–53

O-VIII-3 mm Total precipitation in the
3rd decade of August + + 2.3–74.5

O-IX-1 mm Total precipitation in the
1st decade of September + + 0–41.4

O-IX-2 mm Total precipitation in the
2nd decade of September + + 0–72

O-IX-3 mm Total precipitation in the
3rd decade of September + + 0–52.5

STE_SK ◦C
Growing Degree-Days

(GDD) in the
sowing-flowering period

+ + 873.67–1146.53

STE_SZ ◦C
Growing Degree-Days

(GDD) in
sowing-harvest period

+ + 2309.87–2818.43

SO_SK mm Total precipitation in the
sowing-flowering period + + 37.5–236.9

SO_SZ mm Total precipitation in the
sowing-harvest period + + 180–584.2

S_SK - HTC in the
sowing-flowering period + + 0.37–2.59

S_SZ - HTC in the
sowing-harvest period + + 0.66–2.1

S Day Sowing date + + 108–116
K Day Flowering date + + 160–174
Z Day Harvest date - + 240–271
W Day Length of vegetation + + 128–156

“+”—the variable exists in the model, “-”—the variable does not exist in the model.

The next step in performing the appropriate analyses was the selection of appropriate
neural network architectures that make up the M_HARV and M_YIELD models. By
using Statistica v.7.1. [38], it was possible to test the Automatic Network Designer, a tool
that automatically evaluates a large number of different network architectures of varying
complexity, selecting a set of those that best suit a given problem. In the first stage of work
with the Automatic Network Designer, several types of neural networks were selected in
order to test them in terms of the quality of implementation of deterministic problems.
The tool allows for verifying 5 types of networks, i.e., multilayer perceptron (MLP) (three-
layer and four-layer), radial basis function network (RBF), probabilistic neural network
(PNN), and generalized regression neural network (GRNN). According to the literature
data, the most popular type of network selected for the implementation of prognostic
and deterministic issues is MLP with two hidden layers [39,40]. After verification of the
preliminary results obtained during the pilot analyses, 3 types of networks were selected
for further, more detailed testing: RBF and MLP (three-layer or four-layer). The linear
transfer function and two activation functions—linear and logistic—were chosen for the
MLP network. In the next step, the complexity of each type of network was determined.
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For the RBF network, the minimum number of neurons was assumed to be 5, while the
maximum number was 80. For the MLP (three-layer) network, a minimum of 3 neurons
and a maximum of 25 were assumed in the second layer. For the MLP (four-layer) network,
the third layer contained a minimum of 3 neurons and a maximum of 25 neurons. After
establishing the above assumptions, an analysis was carried out for 10,000 networks. This
number of tested networks is most common in other studies. The interpretation of the
values that characterize the learning quality and the error values for the networks developed
allowed for the selection of the final network type, for which the analyses continued. The
final analysis was of an MLP network with two hidden layers. The selection of the best
final networks forming deterministic models was based on the most favourable values of
parameters relating to their quality, i.e., standard deviation, mean value from error modules,
the quotient of standard deviations, and correlation coefficient. With results which are
ambiguous or difficult to evaluate, networks with high correlation coefficients and a low
value of mean absolute error were sought. Finally, two MLP networks were selected with
the following ratios: MLP 45:45-21-21-1:1 (M_HARV) and MLP 46:46-21-21-1:1 (M_YIELD).
The structure of the two selected MLP networks, including the independent and dependent
variables, is shown in Figure 2.

Figure 2. The network structure for models Harvest (M_HARV) and Yield (M_YIELD).

The model Harvest (M_HARV) contained 45 neurons (nods) in the input, 21 in the
first hidden layer, 21 in the second hidden layer, and 1 in the output.

The Yield model (M_YIELD) contained 46 neurons in the input, 21 in the first hidden
layer, 21 in the second hidden layer, and 1 in the output.

To train and validate the selected MLP networks that formed the M_HARV and
M_YIELD models, sets 1 and 2 were randomly divided into two sets: a training set (70% of
cases) and a validation set (30% of cases). The data collected in the training set enabled the
calculation of the gradient, weight, and value of any loads on the network. The role of the
validation set was to control the training error of the network during the training procedure.
If the validation set’s error increased for several consecutive epochs, the training process
was halted. The most important task of this set was to prevent the overfitting of the neural
network. Two error backpropagation methods were chosen to train the network forming
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M_HARV and M_YIELD models. As can be seen in Table 2, individual networks forming
M_HARV and M_YIELD models were taught with different conditions ending the network
training process. The best results were achieved at different epochs.

Table 2. A number of epochs and training methods for neural networks.

Predictive Model M_HARV M_YIELD

Neural network architecture MLP 45:45-21-21-1:1 MLP 46:46-21-21-1:1
The training epochs

Back-propagation method 2 * 30 *
* means the best result in the indicated training epoch

2.5. Neural Network Sensitivity Analysis

The analysis of the sensitivity of the neural network makes it possible to identify the
factors with the greatest impact on the tested dependent variables among all the analyzed
factors. After removing a specific explanatory variable (independent feature) from the
model, its influence on the value of the total error of the neural network is observed. This
allows for the significance (validity) of the tested factors to be determined. To accomplish
the above task, the error quotient and rank are used. The error quotient expresses the
ratio of the error to the total error of all independent variables. As its value increases,
the importance of a given variable increases. If for any of the independent variables the
quotient drops below 1, such a variable should be removed from the model to improve its
quality. A rank that acts as a place in the ranking list indicates the characteristics according
to decreasing error. The rank value of 1 proved to be the most important influence on the
explanation of the variability of the dependent variable.

3. Results

During the experiment, highly variable weather conditions were observed, which
strongly altered the course of phenological phases in soybean and the achieved seed yield
of Augusta cultivar. The soybean flowering phase was observed between 11 and 25 June in
the interval from 52 to 62 days from the sowing of seeds. Harvesting of mature soybean
seeds took place from 30–31 August (in 2012, 2016, and 2017) to 30 September in 2020,
i.e., from 131 to 156 days after sowing in 2012 and 2020, respectively. Soybean yields
obtained during the study years ranged from 0.6 t·ha−1 and 2.6 t·ha−1 in 2015 and 2020,
respectively. Soybean yields were generally low mainly due to very variable weather
conditions (Figure A1). During the sixteen study years, harvested yield ranged from
0.6 t·ha−1 during extreme drought in 2015 to 2.6 t·ha−1 in 2020. During the eight years,
harvested yield was below 2 tons, from 1.2 to 1.8 t·ha−1. In only six years of the study,
yields ranged from 2.0–2.2 t·ha−1 (Figure A2).

The growing degree days (GDD) from soybean sowing to flowering ranged from
873–893 in 2017 and 2009 to over 1100 in 2007 and 2012. It was during this period in the six
years of the study (2008, 2015, 2011, 2006, and 2017) that very low rainfall was recorded
to be less than 100 mm; and in 2020, the sum of rainfall in the period from sowing to
flowering was 236 mm. Thus, dry or very dry years (only 37.5 mm of precipitation in 2008)
were observed, associated with the occurrence of droughts in the first growing season, and
extremely rainy years causing the flooding of the experimental fields in 2020.

GDD over the entire soybean growing season ranged from 2309 in 2017 to 2818 in
2018. During the entire soybean growing season in 2008, 2015, and 2019, a total of less than
200 mm of precipitation was recorded, while 584 mm of precipitation fell in the rainy year of
2020. A calculated HTC indicates catastrophic drought; 0.3–0.5-drought; 0.5–1.0 humidity
below balance; 1–2 sufficient amount of water; 2–4 excess of water. The lowest value of
HTC in the period from sowing to flowering was recorded in 2008 (0.369), while the highest
value was 2.59 in 2020. Humidity below balance occurred until flowering in 2006, 2011,
2015, and 2019. Analyzing the results of HTC in the whole growing period of soybean, no

378



Agriculture 2022, 12, 754

drought was observed, while a level of humidity below balance was recorded in 2008, 2015,
2018, and 2019, as well as an excess of water in 2020.

Sensitivity analysis for the M_HARV model identified the factor “total precipitation in
the first decade of June” as the factor that most influenced the timing of soybean harvest
(rank 1). The second important factor of the M_HARV model (rank 2) was the total rainfall
in the first decade of August. The third important variable was the value of the Seljaninov
coefficient, calculated for the period from sowing to harvest (Table 3).

Table 3. A sensitivity analysis of the neural networks.

Variable

Model

M_HARV M_YIELD

Quotient Rank Quotient Rank

T-IV-1 1.019 38 0.991 35
T-IV-2 0.977 44 1.024 26
T-IV-3 1.060 33 0.990 36
T-V-1 1.065 31 1.006 30
T-V-2 1.325 6 1.225 1
T-V-3 1.281 12 1.021 27
T-VI-1 1.091 26 1.036 22
T-VI-2 1.013 39 1.006 31
T-VI-3 1.052 34 0.979 39
T-VII-1 1.266 13 1.134 5
T-VII-2 1.320 7 1.097 10
T-VII-3 1.201 16 0.962 45
T-VIII-1 0.930 45 1.013 28
T-VIII-2 1.111 22 1.101 7
T-VIII-3 1.065 30 0.971 42
T-IX-1 1.172 18 1.034 23
T-IX-2 1.008 42 1.134 4
T-IX-3 1.075 29 1.053 18
O-IV-1 1.185 17 1.100 9
O-IV-2 1.008 40 0.972 41
O-IV-3 1.286 10 0.914 46
O-V-1 1.338 5 1.127 6
O-V-2 1.338 4 1.042 21
O-V-3 1.028 37 1.067 15
O-VI-1 1.707 1 0.966 44
O-VI-2 1.298 8 1.087 11
O-VI-3 1.147 19 1.101 8
O-VII-1 1.064 32 1.032 24
O-VII-2 1.087 27 0.976 40
O-VII-3 1.209 15 0.969 43
O-VIII-1 1.486 2 1.056 17
O-VIII-2 1.129 20 1.076 13
O-VIII-3 1.034 35 1.069 14
O-IX-1 1.008 41 1.002 33
O-IX-2 1.029 36 1.004 32
O-IX-3 1.096 24 1.027 25

STE_SK 1.127 21 0.984 38
STE_SZ 1.083 28 1.049 19
SO_SK 1.286 9 0.989 37
SO_SZ 1.099 23 1.012 29
S_SK 1.282 11 1.163 2
S_SZ 1.345 3 1.153 3

S 1.007 43 1.080 12
K 1.216 14 1.064 16
Z - - 0.995 34
W 1.094 25 1.042 20
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The factor with the greatest influence on soybean seed yield (M_YIELD model) was
the mean air temperature in the second decade of May. This variable was given a rank of
1 in the sensitivity analysis of the neural network. The factor that received rank 2 was the
HTC values calculated for the period from sowing to flowering. The variable with rank
3 was also the HTC value but was determined for a different time interval, i.e., from sowing
to harvesting (Table 3).

Comparison of Models M_HARV and M_YIELD Quality Characteristics

The best neural networks that allowed for the identification of factors with the greatest
influence on harvest date (M_HARV) and soybean seed yield (M_YIELD model) were
selected based on a detailed analysis of the quality parameters of the generated networks.
Detailed results of the analyses are presented in Table 4.

Table 4. The quality and structure of the neural models produced.

Quality Parameter M_HARV M_YIELD

Neural network structure 45:45-21-21-1:1 46:46-21-21-1:1
Learning error [-] 0.1875 0.1273

Validation error [-] 0.0259 0.0062
Mean [day], [t·ha−1] 250.5625 1.825

Standard deviation [day], [t·ha−1] 8.3289 0.4322
Average error [day], [t·ha−1] 1.2849 0.0152

Deviation error [day], [t·ha−1] 3.6788 0.2865
Mean Absolute error [day], [t·ha−1] 2.8846 0.2034

Quotient deviations [-] 0.4416 0.6629
Correlation [-] 0.8976 0.7503

The results of the presented neural models were characterized in each of the considered
cases by the best values of quality measures of the generated neural networks. When it was
difficult to indicate the best network, the values of two quality parameters were considered:
the correlation coefficient (r) and the mean absolute error. The principle followed was
that the value of the correlation coefficient should be the highest with a simultaneous low
value of the mean absolute error. In both analyzed cases, the values of the correlation
coefficient were very high, i.e., for the model M_HARV: 0.898 and for the model M_YIELD:
0.75. The value of the mean absolute error was the highest for the model M_YIELD and it
was 0.203 t·ha−1. Another important parameter in assessing the quality of the generated
neural networks was the error quotient, defined as the quotient of the standard deviation
of the prediction errors and the standard deviation of the output variable. For the model to
be useful for forecasting purposes, the value of this parameter should not exceed 0.7. In the
three analyzed cases, this assumption was fulfilled.

The response plots are a visual representation of the results of the sensitivity analysis
of the neural networks. It shows the relationship between variables of rank 1 and 2 from
the sensitivity analysis and the dependent variable. On the x and y axes of the three-
dimensional plot are placed the values of the selected independent variables, and on the
z-axis are the values taken by the dependent variable. The response plots for MLP 45:45-21-
21-1:1 and MLP 46:46-21-21-1:1 networks are shown in Figures 3 and 4, respectively.

Figure 3 shows the response surface for the MLP network 45:45-21-21-1:1, where the
explanatory variable is harvest date and the explanatory variables are precipitation in the
first decade of June and precipitation in the first decade of August. The graph shows that
the persistence of low average precipitation in the second decade of April and the first
decade of April delays the date of the soybean harvest.

Figure 4 shows the response surface for the MLP 46:46-21-21-1:1 network forming the
M_YIELD model, which shows the relationship between soybean seed yield levels and the
average air temperature in the second decade of May, as well as the HTC values calculated
for the sowing–flowering period. The highest soybean seed yield can be expected when the
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average air temperature in the second decade of May is about 10–12 ◦C, and the value of
the HTC for the sowing–flowering period is relatively low, ranging from 0.4 to 0.8. It can
be concluded that the first factor in question determines soybean yield to a greater extent
than the second independent variable.

Figure 3. The response surface for the harvest date and two variables, O-VII-1 and O-VI-1.

Figure 4. The response surface for a yield and two variables, T-V-2 and HTC.
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The results presented in the previous stages were supplemented with additional
analyses and visualisations of the relations between the observed and predicted values of
the harvest date and soybean yield. The results of the analyses are presented in Figures 5
and 6.

Figure 5. The scatter plot between the observed and predicted values of the soybean harvest date in
model M_HARV.

Figure 6. The scatter plot between the observed and predicted values of the soybean seed yield in
model M_YIELD.
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4. Discussion

An important aspect of the use of neural networks in implementing deterministic
problems is the choosing of an appropriate network topology and training method. A com-
plex phase of testing different neural network topologies allowed us to indicate the most
suitable type of network for the problems presented in this paper. Finally, the MLP network
with two hidden layers was chosen. Training a neural network allows for the combining
of certain behaviors of the model based on many experiences. The user enforces specific
responses to given input signals from the network. The network remembers questions and
answers based on selected patterns of behavior so that when a new “question” is asked, it
gives an answer that is most similar to the original one. In the presented results, all neural
networks were taught using the method of backward error propagation. This method
allows for the creation of neural networks with very favorable quality parameters [25,35].

The selected neural networks forming the M_HARV and M_YIELD models were
characterized by standard values of their quality metrics. The quality parameters of the
M_YIELD model were less accurate than M_HARV. However, it turns out that the values
of correlation coefficient (0.75), mean absolute error (0.2), and deviation quotient (0.663)
obtained for the M_YIELD model fall within the generally accepted criteria related to the
application of this type of tool in agricultural practice [41].

One of the most difficult steps in developing deterministic neural models is choosing
the right independent variables to form the model. These variables should have a real
influence on the development of the explained variable. The correct identification of
explanatory variables requires excellent knowledge of the research object. Admittedly, the
significance of selected variables can be verified by additional analyses and calculations [42],
but it is practical experience that is the most valuable way to correctly match independent
variables to explain the complexity and variability of a specific phenomenon. In our study,
meteorological and phenological data were used with 45 and 46 selected variables for the
M_HARV and M_YIELD models, respectively. We conclude that such a detailed approach
to explaining the influence of weather conditions on the phenology and yield of soybean
in Wielkopolska allowed for the precise identification of variables that have the greatest
influence on harvest timing and seed yield.

Sensitivity analysis of neural networks was used to fully implement the issues pre-
sented in this paper. It is a method that allows for distinguishing important variables in the
model from those that contribute little to the outcome of the network [43]. This method
is widely used in typing the most important variables in issues related to the phenology
and yield of crop species [44,45]. The result of the analysis is the value of the error quotient,
based on which a rank (ranking place) is assigned to a particular trait. It is assumed that
traits with an error quotient below one are not considered when interpreting the importance
of variables.

The sensitivity analysis performed for the two described neural networks indicated
different independent variables that determined to the greatest extent the variability of
the next explained variables: harvest date and soybean seed yield. For the M_HARV
model, these were precipitation amounts in the first decade of June and August. It should
be noted, however, that the factors with an error quotient higher than 1.3 included the
Seljaninov coefficient in the sowing–harvesting range, precipitation in the first and second
decade of May, and temperature in the second decade of May and the second decade of
July. These values testify to the high importance of the mentioned variables in the work
to determine their influence on the optimal harvest date of soybean cv. Augusta. In the
case of the M_YIELD model, all of the highly important factors responsible for yield were
characterized by an error quotient above 1.1.

Both rainfall deficiency and significant excess strongly modify plant development and
yield, and the developmental stage most sensitive to drought stress varies according to the
cultivar used [46]. Drought occurring from late flowering to the beginning of pod filling
results in a reduction in the number of seeds per pod, and drought occurring late in pod
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filling results in a reduction in seed size [47]. The results of our study are consistent with
these findings.

The most important trait assessed by growers and later by farmers is yield potential,
which depends on many factors, including climatic conditions during the growing sea-
son [48]. In the second M_YIELD model, the average air temperature in the second decade
of May, the Seljaninov coefficient values calculated for the period from sowing to flowering,
and then the values of this coefficient calculated for the whole growing season were found
to be the most important variables. Multi-criteria analysis of the results generated by deter-
ministic models should be carried out for each model separately. The values of the error
quotients assigned to explanatory variables of rank 1 or 2 cannot be compared between
the models M_HARV and M_YIELD. Still, these values must be analyzed for each model
independently. In the M_HARV model, the significance of 43 out of 45 tested independent
variables considered in the construction of the model was confirmed. For two variables, i.e.,
T-IV-2 and T-VIII-1, error quotient values below one were calculated. These results testify
to a very good fit of the variables to explain the variability of the modeled phenomenon.
Besides, in further analyses, it would be advisable to exclude the participation of variables
T-IV-2 and T-VIII-1 in developing new deterministic or predictive models. In turn, for the
M_YIELD model, the neural network sensitivity analysis confirmed the significance of
34 out of 46 tested independent variables. In the next stage of work with improving these
models, the contribution of these variables can be eliminated. A detailed interpretation
of the results of the sensitivity analysis of neural networks allows us to conclude that the
harvest date is a factor more dependent on meteorological conditions than the yield of
soybean of the Augusta cultivar.

For many years, the suitability of soybean genotypes for cultivation in Poland de-
pended, among other things, on the tolerance of lower temperatures during the flowering
and the harvest dates. The Augusta variety was bred in Poland, and during its breeding
special attention was paid to these factors. The Fiskeby V cultivar from Sweden was used
in crossbreeding, which is characterized by photoneutrality and resistance to cold stress.
Despite this, as our research showed, it was the temperature in the initial period of plant
growth that had the most significant effect on the yields obtained.

5. Conclusions

Presented deterministic models—M_HARV and M_YIELD—allowed us to use artifi-
cial neural networks for the preliminary identification of major factors affecting the harvest
date and yield of soybean cultivar Augusta.

The sensitivity analysis of the neural network makes it possible to initially select the
factors with the greatest influence on the explained variable while maintaining the adopted
level of significance.

Total precipitation in the first decade of June and the first decade of August were the
variables assigned ranks 1 and 2 in the sensitivity analysis of the neural network forming
the M_HARV model. On the other hand, the variables with the highest impact on the
Augusta soybean seed yield (model M_YIELD) were mean daily air temperature in the
second decade of May and Seljaninov coefficient values calculated for the sowing–flowering
date period.

Further research on the improvement of deterministic models in soybean cultivation
should be carried out on multiple levels. It is worth exploring other analytical methods
that optimize important production factors (controllable) which have a significant impact
on soybean seed yield in terms of quantity and quality.
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Appendix A

 

Figure A1. Rainfall and average air temperatures between January 2005 and December 2020, ARS
Dłoń, Poland.

Figure A2. The length of vegetation and the yield of soybean variety Augusta in the period 2005–2020,
ARS Dłoń, Poland.
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Abstract: The rapid development of Internet of Things (IoT) technology has provided ample op-
portunity for the implementation of intelligent agricultural production. Such technology can be
used to connect various types of agricultural devices, which can collect and send data to servers
for analysis. These tools can help farmers optimize the production of their crops. However, one
of the main problems that arises in agricultural areas is a lack of connectivity or poor connection
quality. For these reasons, in this paper, we present a method that can be used for the performance
evaluation of communication systems used in IoT for agriculture, considering metrics such as the
packet delivery ratio, energy consumption, and packet collisions. To achieve this aim, we carry out
an analysis of the main Low-Power Wide-Area Networks (LPWAN) protocols and their applicability,
from which we conclude that those most suited to this context are Long Range (LoRa) and Long
Range Wide Area Network (LoRaWAN). After that, we analyze various simulation tools and select
Omnet++ together with the Framework for LoRa (FLoRa) library as the best option. In the first
stage of the simulations, the performances of LoRa and LoRaWAN are evaluated by comparing the
average propagation under ideal conditions against moderate propagation losses, emulating a rural
environment in the coastal region of Ecuador. In the second phase, metrics such as the package
delivery ratio and energy consumption are evaluated by simulating communication between an
increasing number of nodes and one or two gateways. The results show that using two gateways
with the Adaptive Data Rate technique can actively increase the delivery ratio of the network while
consuming the same amount of energy per node. Finally, a comparison is made between the results
of the simulation scenario considered in this project and those of other research works, allowing for
the validation of our analytical and simulation results.

Keywords: Internet of Things (IoT); LPWAN; LoRaWAN; Omnet++; FLoRa; agriculture; rural
applications

1. Introduction

The Food and Agriculture Organization of the United Nations (FAO) has estimated
that by the year 2050 the global population will reach 9.7 billion people. It is foreseen
that for the decade 2050–2060 only one-third of the population will live in rural areas,
whereas the remaining 66% will move to ever-growing cities, thus decreasing the size of the
agricultural workforce. Furthermore, there are many regions worldwide that experience
limited rainfall, meaning that between 80% and 90% of the available water is used by
farmers, which in turn leads to shortages of primary sources of this resource (e.g., rivers
and water reserves) [1].

The analysis of scarce water resources and the decline in agricultural labor, combined
with soil infertility among other factors, has led researchers to consider how productivity
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could be improved in this sector to meet the growing demand for food [2]. Different studies
focused on optimizing production in the agricultural sector have shown that the implemen-
tation of different systems based largely on the automation of processes is required [3–7].
Other investigations have focused on improving production systems according to the
demand for quality foods and optimizing the use of water and other resources necessary
in this field [8–11]. Advances in technological and communication solutions allow for the
monitoring of field conditions in agricultural sectors through the use of various systems,
including sensors that acquire agricultural data. These acquisition systems allow for the
local transmission of information, potentially through the implementation of Internet of
Things (IoT) technology based on Internet connectivity [12–14]. This interconnection entails
a degree of intelligence, which allows for controlling and processing variables. The number
of IoT applications has increased exponentially in recent years, playing an important role
in the agricultural sector under the concepts of Precision Agriculture (PA) and Agriculture
4.0 [15,16]. One of the highlights of IoT devices in PA and Agriculture 4.0 is the low power
consumption of devices, the low sampling rate, data transmission/reception, and advances
in communication systems [17–19].

In the scientific literature, few studies have focused on the use of communication
protocols such as RFID/WiFi/Bluetooth for monitoring variables related to the agricultural
sector. This is due to the short range and low coverage of these technologies [20]. Traditional
long-range communication systems, such as satellite communications [21], Wimax [22] and
LTE/4G [23], are most commonly used in this sector. Solutions based on cellular phone
communication could provide a greater range of coverage at the cost of a higher energy
consumption by the end devices. On the other hand, Low-Density Parity-Check (LDPC)
codes, Polar codes, and Ultra-Reliable and Low-Latency Communications (URLLC) are of
particular importance in improving the transmission reliability of wireless networks; hence,
they have been included in the 5G New Radio Standard and in 6G standard currently under
development [24–27]. The requirements of IoT applications have led to the emergence of
Low-Power Wide-Area Networks (LPWANs) [28].

LPWANs are perfect for devices that need to send small amounts of information over
long distances. These distances can be up to 15 km in rural areas and 1–5 km in urban
areas, with the added advantage of low energy consumption (i.e., the associated batteries
can last for 10 years). These communication networks are seen as highly suitable for IoT
applications [29]. Among the most popular LPWAN networks are Weightless, Ingenu
RPMA, Symphony link Sigfox, Long Range (LoRa)/Long Range Wide Area Network
(LoRaWAN), and Narrowband Internet of Things (NBIoT) [30–32].

In recent years, Sigfox and LoRa have been positioning themselves in the world of
LPWANs. Sigfox was developed in France in 2010 and is currently operating in different
countries such as the United States, Ecuador, Mexico, Colombia, South Africa, and Australia,
among others. It is characterized as using an Ultra-Narrow Band (UNB), occupying little
space within the frequency range and employing low data rates.

As for the frequency band, it uses the Industrial, Scientific, and Medical (ISM) fre-
quency bands [33]. Sigfox uses Differential Binary Phase Shift Keying (DBPSK) modulation
for ascending messages and Gaussian Frequency Shift Keying (GFSK) modulation for de-
scending messages. Its main features are low power consumption [34], low cost of devices,
and capacity for bidirectional communication [35,36].

LoRa/LoRaWAN are also networks that play big roles within LPWAN. LoRa was
developed by the startup Cycle in 2010 and was later acquired by Semtech (USA), while
LoRaWAN became a network specification proposal by the LoRa Alliance in 2015. It offers
a MAC layer based on LoRa modulation [37]. LoRa operates in ISM bands, uses spread
spectrum technology, is suitable for transmitting small amounts of data over long distances,
and consumes little energy [38]. LoRaWAN defines three classes of devices for bidirectional
communication through LoRa: Class A, Class B, and Class C. The choice of class depends
on the application [39].
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NB-IoT is a LPWAN which is currently one of the three main LPWANs. It is a
narrowband network that can coexist with LTE or GSM networks on licensed frequencies.
It is standardized by the Third Generation Partnership Project (3GPP), and its specifications
were published in the 3GPP Release 13 in June 2016 [40]. NB-IoT operates on the same
frequencies as LTE and uses QPSK and BPSK modulation, as well as the LTE architecture,
but features some optimizations to meet the requirements of massive IoT users. NB-IoT
devices consume additional energy due to their synchronous communication and Quality
of Service (QoS) handling. This system also provides low latency connectivity for IoT
applications [41].

Latency is considered one of the parameters that allows for measuring the performance
of a communications network; however, there are other variables, such as throughput,
latency, speed, propagation delay, network capacity, range coverage, device lifetime, dura-
tion of useful life, service quality, and cost, that serve as indicators of the quality of links
for data transmission. If a network does not have good performance, it can cause delays,
loss of information, and information transfer limitations [42].

Implementing this system of networks for innovation in the agricultural sector allows
for greater profitability in production while at the same time reducing fertilizer use and en-
vironmental impacts. Farmers can readily obtain information and statistics on crop growth,
and smartphones may be used to remotely control crops, equipment, and decision making.

The remainder of this document is structured as follows: An overview of LPWAN
networks is presented in Section 2, including a comparison of the three main technologies
used, followed by the analysis and results in Section 3. Finally, our conclusions and
direction for future research are provided in Section 4.

2. Methodology

In this section, we analyze the main LPWAN technologies for IoT applications. Addi-
tionally, the different features that define LoRaWAN and its use in the agricultural sector
are studied. Furthermore, the most important simulators used with this technology are
studied, as well as the testing scenarios in this work.

2.1. Internet of Things

The IoT, which is defined as the connection of all types of objects (i.e., elements that
send information) to the Internet, has been gaining in importance and participation in
many fields [43]. IoT provides connectivity for thousands of devices such as sensors and
actuators, among others, and allows for connectivity to a network, allowing the objects to
exchange data. The information provided by the devices is stored in the cloud [44]. One of
its application fields that has gained traction in recent years is agriculture. The use of such
technology has allowed traditional agriculture to be transformed into intelligent agriculture
based on detection, measurement, and response, which allows farmers to obtain a higher
productivity for their crops and better quality products [45]. Some implementations of
IoT in agriculture are: real-time monitoring of farms, meteorological prediction modelling,
customized fertilizer profiles based on soil chemistry, and water conservation. For this pur-
pose, farmers can implement different types of sensors to monitor pH levels, temperature
levels, and humidity levels, among others. These collected data are stored in the cloud for
later use and decision making [46].

With the continuous growth of devices with Internet connectivity, IoT applications
require long-range communication technologies, large-scale connectivity, low energy con-
sumption, and low cost. LPWAN technologies have the required parameters to cover these
needs [47].

2.2. LPWAN Analysis: Technologies

The IoT boom in recent years has led to an increase in the number of connected
devices, giving rise to new technologies capable of interconnecting large numbers of
devices. Current wireless communication technologies such as Bluetooth and ZigBee have
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a short range, while cellular communication technologies (e.g., 3G, 4G, and 5G) have a
medium range but are limited by high power consumption; however, this limitation has
been mitigated with the emergence of LPWAN long-range technologies that have lower
energy consumption [48]. Figure 1 shows the relationship between coverage and data
transmission rate for the most important wireless networks.

Figure 1. Relationship between coverage and data rate for various wireless communication technologies.

LPWAN technologies are wireless networks that allow for the transmission of small
amounts of data over long distances with low power consumption on their final devices.
The technologies also provide connectivity for a large number of devices, making them
ideal candidates for IoT applications [49].

Several types of LPWAN technologies are currently available, some using licensed
frequencies, and others operating in unlicensed spectra. The most popular technologies in
this category include LoRa [50,51] and NB-IoT [52], each with their own unique technical
features. Table 1 compares the key technical features of LPWAN technologies.

To choose an appropriate LPWAN technology for IoT applications, several factors,
including range, coverage, device lifetime, latency, scalability, payload duration, implemen-
tation complexity, quality of service, and cost, must be considered [53]. Consideration of
these parameters allowed us to analyze which of the considered technologies was most
suitable for this project.

From the analysis provided in Table 1, we can conclude that LoRa has advantages in
terms of cost, battery life, and implementation; furthermore, it is commercially available
in several countries. For these reasons, we focus on the use of this technology, which
is adapted to the conditions of rural areas, making it particularly suited to agricultural
applications. Implementation of LoRa will allow for the connection of a large number
of devices over a long range with low power consumption, favoring the monitoring of
climate variables, water consumption in irrigation systems, and crop fertilization. These
parameters are expected to allow for improvements in the quality of products.
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Table 1. Comparative chart of the three main Low-Power Wide-Area Networks (LPWANs) technologies.

Types of LPWAN Technology LoRaWAN SIGFOX NB-IoT

Coverage
2–5 km urban zone

10–20 km rural zone
3–10 km urban zone
20–40 km rural zone

1 km urban zone
10 km rural zone

Standard LoRa Alliance Sigfox 3GPP release 13

Licensed spectrum No No Yes

Frequency

ISM Bands
433 MHz Asia,

868 MHz Europe,
915 MHz N. America

ISM Bands
433 MHz Asia,

868 MHz Europe,
915 MHz N. America

Cell Band LTE

Modulation
Chirp Spread Spectrum

(CSS) DBPSK/GFSK QPSK/BPSK

Data speed 250 bps–50 kbps 100 bps 200 Kbps

Bandwidth 125–250 KHz 100 Hz 200 KHz

Topology star star LTE network

Capacity Connected device 50 K per cell 50 K per cell 100 K per cell

Bidirectional communication yes/Half duplex Limited/Half duplex yes/Half Duplex

Protocol asynchronous asynchronous synchronous

Message per day unlimited
140 uplink
4 downlink unlimited

Maximum payload length 243 bytes
12 bytes uplink

8 bytes downlink 1600 bytes

Security Yes (AES 128b) No Yes (LTE)

Geolocation TDoA RSSI OTDoA
QoS No No Yes

Energy consumption low low high

Latency Low with class C high low

Interference immunity high high low

Installation cost per base station >EUR 1000 >EUR 4000 >EUR 15,000

Final device cost EUR 3–5 <EUR 2 >EUR 20

2.3. LoRa/LoRaWAN

LoRa is a physical layer technology developed by the Semtech Corporation [54].
LoRaWAN is the access layer developed by the LoRa Alliance, which employs LoRa
technology for communication and device management [55].

LoRa allows for the transmission and reception of point-to-point information. Its
low-power and long-range communication, patented by Semtech, is based on spectrum
widening using the Chirp Spread Spectrum (CSS) technique, together with Forward Error
Correction (FEC), making LoRa a robust technology against interference. The application
of CSS is based on modulated pulses of linear frequency bandwidth whose frequency
increases or decreases depending on the encoded information [56]. LoRa operates in
several frequency ranges without license in the ISM bands according to the region [57]. In
Table 2 a comparison of frequencies is given for areas in which it has higher penetration;
Ecuador’s frequency range is also included in the table.
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Table 2. Comparative LoRa frequency chart for Europe, North America, and Ecuador.

Parameters Europe North America Ecuador

Frequency 863–870 MHz 902–928 MHz 902–928 MHz
Channel plan EU863–870 US902–928 AU915–928

Duty cycle <1% No limit No limit
Channel uplink 125/250 KHz 125/500 KHz 125/500 KHz

Channel downlink 125 KHz 500 KHz 500 KHz
Channels 10 64 + 8 + 8 64 + 8 + 8

SF 7–12 7–10 7–12

Table 2 provides parameters based on the ETSI standard, such as the frequency,
number of channels, duty cycle, and Spreading Factor (SF), analyzed for Europe, North
America, and Ecuador. The specifications define that there are 64 channels with a 125 kHz
bandwidth and 8 uplink channels with 500 kHz bandwidth for a total of 72 uplink channels;
however, the 8 channels with 500 kHz bandwidth overlap with the 64 channels. A Duty
cycle is the fraction of time during which the device is occupied. SF allows for improved
network efficiency and capacity while also admitting 7 to 12 bits per symbol; by varying
this parameter, one can achieve long-range communications at the expense of decreased
data speed. Alternatively, decreasing the SF will result in increased data speed at the
expense of shorter distances. Furthermore, the speed varies depending on the area. In
Table 3, a comparison of SF values and data speeds according to the location is provided.
For Europe (EU), the speed ranges from 250 bps to 50 kbps; for North America (NA), it
ranges from 980 bps to 21.9 kbps; for Ecuador (EC), it ranges from 250 bps to 21.9 kbps [58].

Table 3. Comparative chart of Long Range (LoRa) Spreading Factor (SF) parameters according to the
analyzed areas.

SF BW Bitrate (EU) Bitrate (NA) Bitrate (EC)

LoRa SF12 125 kHz 250 bps - 250 bps
LoRa SF11 125 kHz 440 bps - 440 bps
LoRa SF10 125 kHz 980 bps 980 bps 980 bps
LoRa SF9 125 kHz 1.7 Kbps 1.7 Kbps 1.7 Kbps
LoRa SF8 125 kHz 3.1 Kbps 3.1 Kbps 3.1 Kbps
LoRa SF7 125 kHz 5.4 Kbps 5.4 Kbps 5.4 Kbps
LoRa SF7 250 kHz 11 Kbps - -
LoRa SF7 500 kHz - 21.9 Kbps 21.9 Kbps
FSK - - 50 Kbps - -

Table 3 indicates that the bitrate obtained under a given SF may vary with different
bandwidth (BW); for example, SF7 allows us to obtain higher data speeds when using
a higher BW. This analysis was carried out to indicate the maximum values that can be
obtained. In summary, when the SF is varied with the bandwidth, the maximum and
minimum values for the data speed can be defined.

LoRa utilizes a dynamic adjustment method called Adaptive Data Rate (ADR), which
allows the final device to dynamically adjust the transmission power parameters and data
rate according to the distance between the end device and the gateway. This helps to
optimize energy consumption in end devices.

The most important parameters of the LoRa physical layer are the bandwidth, the
scattering coefficient, the frequency, and the Coding Rate (CR). The modes supported for
the CR are 4/5, 4/6, 4/7, and 4/8. When increasing the CR, the transmission time will be
longer as the packet size is larger [59].

2.3.1. LoRaWAN Architecture

The LoRaWAN architecture uses a star network topology, which allows for ease of
implementation and management as there is no need for routing elements.
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The devices that make up a LoRaWAN network are: end devices (e.g., sensors and
actuators), gateways, network servers, and application servers [60]. Its operation starts
when the end devices send encrypted messages to the gateways, which then forward
information to the network server using TCP/IP protocols. In this way, the network server
receives and processes information from the end devices, discarding messages that were
received more than once from different gateways. Additionally, the network server is
responsible for security between the end device and the application server. The application
server decrypts messages and makes information available to the user [61]. In Figure 2,
we show the architecture of a LoRaWAN network. Additionally, LoRaWAN allows for
two-way communication through LoRa.

Figure 2. Long Range Wide Area Network (LoRaWAN) architecture.

2.3.2. LoRaWAN Device Classes

In LoRaWAN, the study of energy consumption in end devices is very important.
There are three types of device classes used to expand the battery life: Class A, Class B, and
Class C.

• Class A. Class A devices are bidirectional end devices with greater energy efficiency;
most of the time, they are in sleep mode. The transmission for the uplink is followed
by two descending link windows within a short period of time. They are used for
applications which do not require the continuous receiving of data, and by default, all
devices come pre-defined as Class A. Figure 3 shows the transmission type of Class
A devices.

• Class B. Class B devices are two-way devices with programmed reception slots that
open additional receiving link windows at programmed times, where the time is
synchronized with beacons transmitted by the gateway. These devices have additional
power consumption. Figure 4 shows the transmission type of Class B devices.

• Class C. Class C devices are two-way devices with a maximum reception slot, which
keep their reception windows open continuously, only closing them when transmitting.
The energy consumption of these devices is excessive, and it is recommended that
they only be used in places where energy is not limited. These are employed for
applications requiring low latency. Figure 5 shows the transmission type of Class
C devices.

Figure 3. Class A transmission.
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Figure 4. Class B transmission.

Figure 5. Class C transmission.

2.3.3. Security

Security is one of the main features in wireless communications, which is why Lo-
RaWAN is one of the few networks in IoT that employs Advanced Encryption Standard
(AES) encryption for applications that require the secure transmission of data. The secu-
rity protocol needs to meet the criteria of LoRAWAN, such as low energy consumption,
installation, and implementation. LoRaWAN devices employ two types of session keys in
the network:

• NetworK Session Key (NwKSKey), consisting of an AES-128 bit encryption key that
is unique to the network server and is shared between the final device and the network
server.

• Application Session Key (AppSKey), implementing end-to-end encryption between
the final device and the application server, is an AES-128 bit encryption key that is
unique to the application server [62].

The security types are depicted in Figure 6.

Figure 6. LoRaWAN Security.

To be operational and part of the LoRaWAN network, the end device must be activated
and authenticated, which can be accomplished in the following ways:

• Air Activation. In this type of activation, the final device exchanges MAC messages
with the server (e.g., request and acceptance). In the process, an address (DevAddr) and
security key are assigned. This is performed each time the final device loses connection.

• Activation By Personalization. In this type of activation, configuration is manual.
When starting up, the device connects directly to the network. This application is not
commonly used [44].
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2.4. LoRaWAN Simulators

There are simulation tools for communication networks that allow users to specify
specific scenarios they want to simulate for a given technology, such as WiFi, Ethernet,
LTE, and so on. These simulations allow for the determination of the virtual behavior of
the network, which is very close to the real conditions of evaluation scenarios. Unlike
implementation scenarios, this field of research allows us to obtain reliable information at
low cost.

There are several types of simulators, depending on the method used:

• Continuous Simulation. These simulators show results produced at all points during
the simulation, not in intervals.

• Discrete-Event Simulation. These simulators model the operation of a system as a
sequence of discrete events at different points in time.

It is important to know the simulators that are available for LoRAWAN, even though
it is a technology that emerged in 2015. Work related to this technology started from 2018,
in the physical layer of LoRa as a first stage [63]. In recent years, work has been ongoing to
update simulators to include MAC support, energy consumption, and other LoRAWAN
parameters [64]. The most commonly used simulators are detailed in the following:

• NS3 is a discrete-event simulator that uses open-source code and is based on the C++
programming language coupled with Python. This simulator allows for the evalu-
ation of LoRaWAN media access capabilities in comparison to a common ALOHA
scheme [65]. By default, NS3 lacks a graphical interface. Another attribute of the
simulator is that it allows for the generation of PCAP files (a file format used for
capturing packets). It is available for Windows and Unix platforms [55,66].

• Omnet++ is an open-source, free simulation software based on C++ programming
for discrete events, which additionally uses a specific high-level language named
NEtwork Description (NED). It has specific functionalities, such as the simulation of
sensor networks, ad-hoc wireless networks, optical networks, and Internet protocols.
OMNET++ has a graphical interface for modelling topologies and analyzing results.
Another consideration is its modular architecture; the simulation kernel can easily be
integrated with other applications. It is compatible with Windows and Unix. This sim-
ulator has been used in both academic and industrial environments. The components
of OMNET++ are: kernel library (C++), NED language, eclipse-based IDE simulator,
command line interface for running simulations (Cmdenv), time execution GUI for
interactive simulations (Qtenv), utilities (file creation tools MAKE), documentation,
and simulation examples [67,68].

• There are also frameworks based on INET which extend it in specific directions, such
as the case of LoRa with FLoRa, which allows for point-to-point simulations. Its
functionality creates a LoRaWAN network with nodes for LoRa, gateways, and the
LoRa server.

• LoRaSim is a SimPy-based discrete event simulator employed for collision simulations
and scalability analysis. Its functionality is limited to simulation between the final
devices and gateways [55,69].

Table 4 compares the three simulators in which their main features for implementation
in LoRa can be seen.

Table 4 indicates that the most notable simulators are NS3 and OMNET++; their use
will depend on the required applications. In our case, we decided to use OMNET++ for our
LoRa applications as it contains a high-level language allowing for analysis of the network.
Furthermore, it contains the FLoRa library. Being an open-source simulator, changes or
modifications to the network can be made by adding modules and extra functionalities. In
our case, we evaluate our network by varying the number of nodes (or end devices), the
number of gateways, and distances.
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Table 4. Comparison of simulators. Adapted from [64] and completed with new data by authors

NS-3 OMNET++ LoRaSim

Discrete event simulator Yes Yes Yes

Open source simulator Yes Yes No

Language C++/Python C++/NED Python/SimPy

Graphic interface No Yes Yes

Operating system Windows/Unix/macOs Windows/Linux/macOs Linux

Application investigative/academic investigative/academic investigative

LPWAN NB-IoT/LoRa LoRa LoRa

Framework LoraPhy/Loramac LoRa loraDir.py/loraDirMulBs.py/
directionalLoraIntf.py

ADR Yes Yes No

Energy Consumption Yes Yes Yes

Bidirectional communication Yes Yes No

Medium spread Yes Yes No

2.5. Use of LoRaWAN Technology in the Agricultural Sector

The use of LoRaWan for IoT applications in agriculture is very helpful, especially for
water irrigation optimization in fields. This situation arises from limitations of access to this
resource or due to droughts. With the implementation of IoT in agriculture, the efficient use
of water and quality food production can be guaranteed. This technology allows farmers
to cover large areas of farmland due to its long-range transmission ability; moreover, its
star topology allows for easy implementation. The cost of implementation is low compared
to the other technologies already analyzed. Another important factor is the low power
consumption, allowing batteries to be used for years, making it ideal for such applications.

Below is a brief synopsis of some use cases in the agricultural sector:

• In a vineyard for wine production, where air temperature and humidity monitoring is
conducted for the optimal growing of grapes, the preferred range can be indicated to
ensure quality. Other measurement methods were not optimal or were even harmful
to production. This allows the growers to determine the best growing season and
improve their production [70].

• Organic fertilizer production is based on vermicomposting, a system that transforms
organic matter through the combined action of earthworms and micro-organisms,
yielding a natural fertilizer with physical, chemical, and biological properties that
benefit soil crops. It is monitored for variables such as temperature and humidity,
which must remain within specific ranges to ensure the survival and reproduction of
earthworms [71].

• Another use-case is temperature and humidity monitoring in a horse stable. Some
tests were carried out, in which there were fluctuations in temperature that caused
more messages to be sent. It was also considered that the fluctuations depended on
the location of the sensors being near entrances and exits [39].

2.6. Evaluation Scenario

The analysis and evaluation in this work is based on an agricultural scenario applied
in rural areas. The coastal region of Ecuador, which is made up of 7 provinces, was chosen.
Manabí is the province with the highest extent of surface area, with 18,893 km2 [72]. The
technology employed for this scenario was LoRaWAN as it allows for wide coverage,
scalability, low cost, and easy implementation. A coverage area of 5 × 5 km was consid-
ered, with a homogeneous distribution of nodes across the simulation area as well as a
standard transmission packet size of 10 bytes. The assigned frequency band for Ecuador is
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902–928 MHz. This frequency does not have a duty cycle restriction, which allowed it to be
considered in this study. In Figure 7, the evaluation scenario is shown.

Figure 7. Evaluation scenario.

Some of the particular features of the chosen agricultural environment are:

• Large areas of land with few obstacles or interferences from other networks as is often
the case in urban environments;

• High density of devices, which should be placed a few meters apart to achieve better
resolution of data from climate monitors on crops;

• Low heterogeneity of the data collected; this means that only a few climatic parameters,
such as humidity, temperature, and so on, need to be acquired. For this reason, similar
devices are needed for the implementation of the network.

For each measurement presented, the simulation window time was 1 day, and we ran
the simulation five times. The results shown in this paper are the average of the five trials.
We performed a simulation to measure the scalability of the LoRa/LoRaWAN network; so
sensor data were not included in the simulation. Therefore, the size of each transmitted
data packet was constant (i.e., 10 bytes long).

2.7. Simulation Environment

To evaluate the proposed scenario, a simulator called Omnet++ was used. This
simulator includes a library of open code called FLoRa, developed by researchers at
Aalto University in Finland for their studies on LoRa and LoRaWAN [73]. This simulation
framework allows for the deployment of a large number of nodes and gateways, configuring
the maximum distance in the coordinates X and Y, as well as the object coordinates;
propagation loss coefficients in the wireless communication medium; and activating or
deactivating the ADR technology in both nodes and the network server (see Section 2.3).

Figure 8 shows the implementation of the LoRa network architecture design, where
the link connected to the GwRouter comes from the gateways located in the simulation area.
This router is connected through any network link to the network server (networkServer in
Figure 8) which, in this case, is represented by InternetCloud and nsRouter. As mentioned
before, we could change the transmission media parameters—in our case, the propagation
losses (LoRaMedium)—as well as other network configurations, such as the transmission
latency, IPv4 routing, and so on, which we kept constant.

For simulations, the tool provides metrics that can be collected to analyze the behavior
of the network that has been simulated. Some of the metrics considered in this study are:

• Packet Delivery Ratio. This is the relationship between the supply of packets sent by
all nodes and the successfully received packets by the network server.

• Energy consumption. This is the total energy consumption of all nodes, expressed in
Joules (J).

• Packet collisions. This is the total number of packet collisions in all gateways present
on the network.
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Figure 8. Configuration of the network architecture for LoRa in the FLoRa simulation environment.

One of the elements analyzed in this project is the scalability of the network, which was
analyzed using the simulator. In the simulation environment, between 100 and 3000 LoRa
devices were deployed. The simulation of scenarios was carried out by varying the follow-
ing input parameters:

• Number of nodes. A simulation was started with 100 nodes (Figure 9), and the
number was increased by 100 nodes for each subsequent simulation. Considering
computational power issues, we were able to achieve up to 3000 nodes in most cases,
a scenario in which each simulation took more than 2 h.

• Number of gateways. Two scenarios were considered—with 1 and 2 gateways—to observe
the network behavior and determine which situation was better for each alternative.

• ADR. The Adaptive Data Rate can be activated or disabled in the simulation configu-
rations. Both options were checked to observe the impact of this mechanism.

• Propagation losses. We considered configurations that allow for the simulation of
ideal propagation conditions (i.e., with almost no losses), as well as moderate propa-
gation conditions, which better represent wireless transmission in rural environments.

Figure 9. FLoRa simulation environment with 100 nodes placed in the simulation area.
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3. Results

The following section details the results obtained from the methodology proposed
for assessing the performance of communication systems used in IoT, such as propagation
losses, energy consumption, and collisions.

First, we detail the impact that the wireless propagation medium has on the packet
delivery factor, contrasting ideal conditions (without losses) with medium conditions (with
moderate losses) simulating the considered rural scenario. Next, simulations are performed
with two gateways within the network to compare their metrics with those obtained with a
single gateway. In the latter case, a rural propagation medium is considered to simulate
as realistic an environment as possible. It should be noted that in all cases the network
with ADR technology enabled is compared to that without (i.e., where transmission power
parameters and the scattering coefficient SF are kept constant).

3.1. Impact of Wireless Medium Propagation with a Single Gateway

Simulating the impact of the propagation medium with a single gateway is one of
the first parameters to consider. The simulation tool includes several scenarios, including
an ideal wireless medium with no propagation losses, another with moderate losses,
and a third with very high losses due to obstruction by buildings and trees, as well as
interference from other networks using the same frequency band. The moderate loss
scenario models an environment with few obstacles and negligible interference. This
represents the rural/agricultural setting of the given LPWAN application. The positive
impact of ADR commands on packet delivery ratio was also measured. When ADR
technology is active, the network server receives information from the gateway about the
Signal-to-Noise Ratio (SNR) to adjust the transmission power or SF. In this way, when
a node has difficulty reaching the network server, adjustments are made such that the
communication improves; conversely, when a node has excellent transmission parameters—
either because it is close to the gateway or there is low interference—power consumption
is reduced, thereby conserving energy. Thus, ADR optimizes energy consumption while
guaranteeing communication between nodes.

3.1.1. Simulating Wireless Medium without Losses in Propagation: Ideal Environment

Figures 10 and 11 show the results under ideal and rural conditions for the propagation
medium, respectively. In both graphs, it can be seen that communication was maintained
with high performance when ADR technology was active (ADR On), while it quickly
declined when ADR was not active (No ADR), that is, when the nodes kept the power
parameters and scattering factor settings with which they were originally configured.

Figure 10. Packet delivery ratio to the network server with a single gateway under ideal propaga-
tion conditions.
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Figure 11. Packet delivery ratio to the network server with a single gateway under propagation
conditions simulating a rural environment.

To analyze the results of the simulation with a gateway, we will place the point at
which there are 100 nodes and the ADR in state No ADR. It can be observed that the delivery
ratio is 85%, and for the ADR in On it increases to 93%, an improvement of 9%.

For the case of 3000 nodes, the delivery of packets with the ADR in No ADR is 51%.
When the ADR is in On for 3000 nodes, the packet delivery factor is 84%, an improvement
of 64%.

3.1.2. Simulating Wireless Medium Moderate Propagation Losses: Rural Environment

In Figure 11, the packet delivery ratio results for the rural environment can be observed.
To analyze these results, we located the point at which there were 100 nodes with the ADR
in state No ADR. From this graph, it can be seen that the packet delivery ratio was 58%,
while with the ADR in On mode, it increased to 68%, comprising an improvement of 17%.
For 3000 nodes, parcel delivery with the ADR in state No ADR was 44% while, when
the ADR was in On mode for 3000 nodes, the package delivery factor increased to 57%,
representing a 30% improvement.

From these results, it can be seen that as the number of nodes increased—both for
the ideal simulation environment and for rural settings—the delivery ratio also decreased,
having a negative impact on the transmission quality. It was observed that ADR technology
improved communication, although it struggled to maintain packet transmission perfor-
mance as the number of nodes increased. This is consistent with the simulated obstacles
and interference in the propagation medium.

3.2. Packet Delivery Ratio Simulation with Two Gateways

To achieve redundancy against incidents, one solution would be to place two gateways
in the simulation area. In this case, if one of the gateways fails, communication between the
nodes and the network server can be maintained. In LoRaWAN, when there are two gate-
ways, the nodes transmit their packets in broadcast mode and are received indiscriminately
by either gateway, with the network server removing duplicate packets. The latter also
decides through which gateway a packet should be sent to a node based on the gateway
with the least congestion and best SNR. In this simulation, we added two gateways and
compared the results for various factors, such as the packet delivery ratio, when using a
single gateway versus when using multiple gateways.

The advantage of having two gateways is that even if one gateway fails, the other can
receive data from and send data to the network server. However, as shown in Figure 12, this
is only true if ADR technology is activated On. The graphs show that the packet delivery
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ratio was the same with one or two gateways when ADR was not active (No ADR, green
and red lines). In this case, the nodes maintained their communication parameters. This
situation is also a result of the simulation area. However, it can be observed that the packet
delivery ratio was further improved when ADR technology was active and both gateways
were operational.

Figure 12. Packet delivery ratio measured with one and two gateways, with and without Adaptive
Data Rate (ADR).

From the graph, it can be seen that the delivery ratio with two gateways, ADR off,
and 100 nodes was 58%, while with two gateways, ADR on, and 100 nodes, it was 87%,
comprising a 50% improvement. For the case of two gateways, ADR off, and 3000 nodes,
the delivery ratio was 45%, while with two gateways, ADR on, and 3000 nodes, it was 80%,
comprising a 77% improvement.

This means that commands sent from ADR when there is only one gateway may
not reach certain nodes; therefore, communication for them will not improve. With two
gateways, however, the improvement in the rate of successful packet deliveries, as well as
scalability and consistency when the number of nodes increases, can be seen; only a 5%
drop in successful packet delivery rate occurred.

ADR technology seeks to increase energy consumption performance by improving
communications. While it is true that the communication performance improves when
it is activated, the simulation results show that the variation in energy consumption was
minimal. In Figure 13, it can be clearly seen that using two gateways or ADR technology
had a minimal impact on energy consumption per node. What can be observed instead,
is that the average energy consumption per node increased linearly with the number of
nodes in the network. This plainly means that with a larger number of nodes transmitting
in the network the interference on each channel increases dramatically, causing each node
to have to re-send packets and to listen to transmissions not directed at the particular node.
This increases the time that the nodes are active, therefore increasing energy consumption.

Having two gateways can in some ways be counterproductive. As shown in Figure 14,
collisions remain low when only one gateway is present, regardless of whether ADR
technology is active or not. When a new gateway is added, packet collisions at each
gateway naturally increase as the packets sent by each node are duplicated. This situation
worsens as the number of nodes increases. As communication is more effective and a greater
number of packets arrive at gateways when ADR technology is active, collisions within
each gateway become much higher and increase linearly as the number of nodes present
in the network increases. Although the server in Figure 12 received packets successfully,
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having high numbers of collisions within the network affects the scalability of the gateways.
This situation could be improved if there were some mechanism by which each node in the
network knows which gateway to transmit packets to the server through, thereby making
the other gateways ignore those packets.

Figure 13. Average energy consumption per node with one and two gateways deployed, with and
without Adaptive Data Rate (ADR).

Figure 14. Packet collisions measured in all gateways of each simulation.

It is necessary to emphasize that for all the results collected in these simulations we
considered the use of a single channel in the LoRa communication band as the FLoRa tool
does not have a feature or option to divide communications among the available channels.
Thus, if we take into account that the channel plan for Ecuador contains 64 channels for
node–gateway communication, network scalability could be increased considerably, being
able to count 100 nodes per channel and, thus, reducing energy consumption while having
high-quality communications.
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3.3. Validation of the Proposed Simulation Environment

To validate the realism of the simulation results, we conducted a review of other
studies on the capabilities of LoRaWAN protocols obtained both analytically and through
simulation. Although the objectives of the presented articles were not the same as those
of this study, the results serve to reinforce the reliability of the simulated results that have
been collected.

The effect that ADR technology has on the packet delivery ratio has also been studied
in [74]. This study analyzed how the Packet Delivery Ratio (PDR) decays with respect to an
increase in distance, over a range between 50 and 300 m, with 1000 nodes deployed. In our
study, the packet delivery rate had low values because the nodes were distributed within
a wider space of 5000 m; but it was validated by the results of the aforementioned study,
where the PDR was lower than 70% with 2000 nodes deployed and ADR activated.

The impact of packet collisions was analyzed in [75], where a technology called Adap-
tive Data Payload (or ADP) was proposed as an alternative to ADR, for which they conducted
a comparison within a simulation environment using algorithms developed in the same
study. The percentage of packet collisions on uplink packets at the gateway remained low
when ADR technology was active, resembling the results obtained in our simulation.

In the article [76], a comparison of delivery ratio results was conducted, both analyti-
cally and through simulation, with respect to the distance and node number. There, the
maximum distance presented was 3000 m, for which a delivery ratio of around 65% was
achieved both theoretically and through simulation with 3000 nodes deployed.

The consumption of energy has also been reviewed, with respect to several scenarios,
in [77]. Consumption was shown to grow linearly with respect to the number of nodes
deployed—a trend very similar to that observed in the present study. Additionally, the PDR
was also analyzed, indicating that it remains consistent as the number of nodes increases.
The simulator used in the aforementioned document was LoRaSim, and a study of the
scalability of LoRa/LoRaWAN networks was also conducted.

The cited studies provide evidence that the simulation environment proposed for the
coastal region comes close to reality regarding the behaviour of LoRa networks; therefore,
the validity of our results can be concluded. However, deployment under actual conditions
and with appropriate instrumentation is always the most reliable way to characterize the
parameters and ranges of a network in an agricultural setting.

4. Conclusions

In this work, we evaluated the performance of communication systems used for
Internet of Things applications in the agricultural sector. LPWAN technology was chosen
as the communication system paradigm for simulation as it allows for the deployment of
wide-area networks with low power specifically for IoT. Within LPWAN, LoRaWAN was
chosen as it met the requirements of the project in terms of scalability, energy consumption,
frequency, data speed, and cost, among other aspects. The OMNET++ simulator was
used, making use of the FLoRa library, which allowed for the modeling of the behavior of
LoRaWAN networks. After analyzing other simulators, this was found to be the one that
best suited the conditions of the evaluation scenario. For our evaluation, we proposed two
propagation scenarios: ideal conditions and moderate losses. The number of nodes varied
from 100 to 3000, and the scenarios were analyzed with respect to one or two gateways.

Based on the results of the simulations performed for evaluation of the LoRaWAN
network in the proposed scenarios, we reached the following conclusions:

• The results show that in an ideal wireless medium and with a single gateway, 100 nodes,
and without ADR (No ADR), the packet delivery was 85%. With the activation of
ADR (ON), this number increased to 93%. In the case of 3000 nodes, delivery with No
ADR was 51% and that with ADR ON was 84%. Thus, with ADR, a better delivery of
packets can be achieved.

• For a medium wireless network with moderate losses and a single gateway, the results
indicated that with 100 nodes and No ADR, delivery of packets was 58%, while that
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with ADR ON increased to 68%. For 3000 nodes, the delivery of packets with No
ADR reached 47%, while with ADR ON, we obtained 62%. As was observed in both
scenarios, as we increase the number of nodes, the packet delivery decreases, having a
negative impact on transmission quality.

• The results with two gateways indicated that with 100 nodes and No ADR, the delivery
of packets was 58%; meanwhile, with the activation of ADR ON, this increased to 87%.
In the case of 3000 nodes, the delivery of packets with No ADR reached 45%, while
that with ADR ON was 80%. Thus, it was observed that the improvement in packet
delivery was especially pronounced as the number of nodes increased.

• The data obtained from the simulations indicated that energy consumption did not
significantly change when ADR technology was turned on with two gateways in the
network. However, the average node consumption increased linearly with the number
of nodes. Additionally, it was found that with two gateways, the communication quality
improves and the coverage radius is extended, albeit at a higher installation cost.

• The number of collisions increased dramatically when the number of nodes in the
network increased and there were two gateways present. This is due to the fact that
all gateways receive packets transmitted by nodes using the broadcast mode then
forward these packets to the network server, which is responsible for eliminating
duplicates. This can be counterproductive if two gateways are present when there are
few nodes in the network. Another situation that could improve this situation is if each
node knows which of the gateways in the network it should communicate with—a
mechanism that does not exist in the protocol, which should be studied further.

• In Ecuador, the frequency band used offers 64 channels for communication uplink.
Taking into account that the scenarios presented here were only simulated with the
use of one channel, the results could be improved if a high number of nodes were
spread among the available channels. LoRaWAN technology has high scalability and
allows for a high density of nodes in a wide terrain area; these are highly desirable
characteristics for applications in rural areas such as precision agriculture, which can
contribute to improving the transmission of data acquired from climatic variables,
visibility state of crops, efficiency in water usage, fertilizer levels, and agricultural
product production capacity.

• Farmland environments have few obstacles to data connectivity, with the SNR received
by gateways directly correlating to the distance from the node, thus influencing the
spreading factor and transmission power. This scenario does not apply in urban
environments, where a node may be close to a gateway but have low SNR due to
nearby obstructions such as buildings.

A comparison was made with the results of other studies, such as those considering
the ADR, particularly in evaluating the effect that it has on the packet delivery ratio. The
results of our study showed low values as the nodes in our scenario were distributed across
5 km. This demonstrates that as the distance between nodes increases, the packet delivery
ratio decreases. Another case studied packet collisions, where the ADR was used; the
results of the previous study were similar to those obtained in our analysis. Additionally,
energy consumption has also been analyzed in other studies, showing that it grows linearly
with respect to the number of deployed nodes; this trend was also observed in our case.

Further Studies

In future work, we expect to simulate the LoRaWAN network behavior with the
presence of several channels, as well as testing frequency change mechanisms when unfa-
vorable communication conditions are present—situations that the simulator used in this
study cannot handle, despite being one of the most complete simulators available.

The simulation of downlink packets was beyond the scope of this study; this is a
situation that must be considered to simulate communication with devices that, in addition
to collecting data with several sensors, have actuators that allow for the regulation of water
and fertilizer supply in agriculture.
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The LoRaWAN protocol is characterized by having devices that send packets to all
nodes simultaneously, which leads to an increase in packet collisions as the number of
nodes increases, directly impacting the protocol’s scalability. Therefore, future studies
should focus on implementing mechanisms that reduce this weakness while preserving
low energy consumption and high communication quality levels.

Finally, a real-life scalability study in a rural setting would be of utmost importance
as it could reveal characteristics that simulators do not allow for or do not model ade-
quately. A deployment with fewer than 50 nodes could be carried out at a reasonable
cost, while a study involving 5000 to 10,000 nodes would require significant financial
investment—not counting the deployment land rights and instrumentation needed to carry
out measurements.
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Abstract: Considering the high requirements of current kiwifruit picking recognition systems for
mobile devices, including the small number of available features for image targets and small-scale ag-
gregation, an enhanced YOLOX-S target detection algorithm for kiwifruit picking robots is proposed
in this study. This involved designing a new multi-scale feature integration structure in which, with
the aim of providing a small and lightweight model, the feature maps used for detecting large targets
in the YOLOX model are eliminated, the feature map of small targets is sampled through the nearest
neighbor values, the superficial features are spliced with the final features, the gradient of the SiLU
activation function is perturbed, and the loss function at the output is optimized. The experimental
results show that, compared with the original YOLOX-S, the enhanced model improved the detection
average precision (AP) of kiwifruit images by 6.52%, reduced the number of model parameters by
44.8%, and improved the model detection speed by 63.9%. Hence, with its outstanding effectiveness
and relatively light weight, the proposed model is capable of effectively providing data support for
the 3D positioning and automated picking of kiwifruit. It may also successfully provide solutions in
similar fields related to small target detection.

Keywords: YOLOX; small target scale; loss function; feature integration; fruit picking

1. Introduction

Agriculture is the source of human clothing, food, housing, and transportation; an
important foundation for people’s lives; the backbone that supports the national economy;
and the guarantee for the country’s stable development. At present, the application of
artificial intelligence in agriculture mainly includes intelligent farm systems with man-
agement and decision-making capabilities based on the background of agricultural big
data [1], motion obstacle target detection and path recognition [2], crop growth and pest
detection [3], weed recognition [4], fruit and vegetable quality detection [5], and automatic
picking based on agricultural robots and other related fields.

Fruit-picking robots can automate picking work, effectively resolving issues related
to labor shortages, high costs, and low efficiency in the manual picking process [6,7].
Determination of the critical criteria of picking robots involves studying the visual system,
while the efficiency and stability of such robots predominantly depend on the speed
and accuracy of fruit recognition, along with the accuracy and adaptability in complex
environments [8,9]. Therefore, research on visual systems that possess the capability to
accurately identify the fruit on trees in complex environments is of substantial value and
practical significance for achieving automatic picking and yield estimation.

Numerous scholars across the world have conducted extensive research on target
object recognition technology [10–13]. In the field of fruit crop detection in natural envi-
ronments, feature extraction and recognition have predominately targeted tomato [14,15],
apple [16–18], cucumber [19,20], strawberry [21], sugarcane [22], pineapple [23], and var-
ious other fruits. Among the various fruits, the planting area and yield of kiwifruit in

Agriculture 2022, 12, 993. https://doi.org/10.3390/agriculture12070993 https://www.mdpi.com/journal/agriculture
411



Agriculture 2022, 12, 993

particular have continued to increase over time. With its high yield and rich nutritional
value, kiwifruit has been widely planted and become popular among consumers. Meth-
ods for detection and recognition are predominantly segregated into traditional machine
vision methods and deep learning methods. As an example of such machine vision, Cui
Yongjie et al. [24] utilized the L*a*b* color space a* channel for kiwifruit image segmen-
tation, and adopted the elliptical Hough transform to fit the contour of a single fruit for
segmentation and recognition. In addition, Fu et al. [25] have proposed the use of 1.1R-G
color characteristics for nighttime kiwifruit image segmentation, and combined the min-
imum circumscribed rectangle method and elliptical Hough transform to identify each
fruit. However, both methods presented unsatisfactory results for fruit segmentation and
unfavorable results for multi-fruit cluster recognition compared to traditional algorithms,
such as SIFT [26], HOG [27], and texture extraction algorithms [28–30]. Kiwifruit images
in the field environment possess vastly diverse features, complex backgrounds, and sub-
stantial differences in morphological features. Traditional machine vision methods are
mainly constructed based on experience and are influenced by samples and human subjec-
tivity; hence, they are unable to effectively meet the demands of applications in complex
field environments.

Deep learning target detection algorithms have experienced significant leaps in perfor-
mance and accuracy, and various model networks have substantially enhanced their ability
to resist scale changes and translation. Song Zhenzhen et al. [31] have constructed a fast
VGG16 model to achieve the detection of kiwifruit in live images by integrating a region
proposal network (RPN) and a fast R-CNN network, while Fu Longsheng et al. [32] have
proposed a network-based LeNet convolutional neural network deep learning model for
multi-cluster kiwifruit images with general applicability to the recognition of multi-cluster
kiwifruits. Although, as research on deep learning-based target detection methods has
focused more on the construction of a deeper networks for the purpose of enhancing
detection accuracy, the associated network models have generally suffered from an overly
large number of parameters. This has led to slow detection speeds, meaning that the algo-
rithms can only be run on high-performance graphics processors and generally have high
equipment requirements. Concurrently, according to analysis of the growth characteristics
of kiwifruit, most targets in kiwifruit detection tasks have predominantly been on small
targets (both absolute and relative scales are relatively small).

Therefore, in the interest of reducing the number of model parameters and enhancing
the model detection speed, the YOLOX-S network, which possesses excellent multi-scale
detection performance and takes into account both the detection speed and accuracy as its
basis, was selected for this research. This work aims to improve on the original network
model, in order to maintain the target detection accuracy while compressing the model,
thus effectively achieving the detection of small kiwifruit targets.

2. Experimental Platform and Materials

2.1. Vision Platform System

In this paper, we primarily focus on the object detection task in the image processing
field. The image recognition module was a Jetson Nano embedded development board,
as presented in Figure 1. The improved model algorithm, which was trained in advance,
was embedded in the board, and wireless communications, remote monitoring, and remote
control were achieved through the 4G network module. The communication system is
mainly divided into the picking-machine end, cloud server end, and client end, ensuring
the transmission and storage of information. Remote wireless control of the picking robot
can also be achieved. In addition, the left and right imagers of the depth camera capture
video or image data, which are sent to a depth imaging processor. This processor correlates
points in the left image with those in the right image, and calculates the depth value of
each pixel in the image by shifting the points in the left image to match with the right
image. Finally, it returns the result to the terminal in order to command the manipulator to
act accordingly.
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Figure 1. Image-recognition embedded module.

2.2. Hardware Platform

A test platform was independently developed by our team, which can be applied as
a fruit picking and transferring platform in hilly and mountainous areas (Figure 2). The
platform has a pure electric drive and a CAN interface for chassis speed regulation, steering,
and attitude feedback. It is capable of stable driving and meets the hardware requirements
of the platform positioning test for the chassis in hilly and mountainous areas.

Figure 2. Electric fruit picking platform used for experimental trials.

2.3. Experimental Configuration and Environment

The used graphics card was an NVIDIA GeForce GTX 3060, and the CPU was an AMD
Ryzen 7 5800H with 16 GB memory. The experimental configuration was Windows 10,
Python 3.8, PyTorch 1.8.1, and CUDA 10.1. The parameter settings are presented in Table 1.
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Table 1. Training parameter settings.

Parameter Value

Momentum 0.937
Weight_decay 0.0005

Batch_size 45
Learning_rate 0.0001

Epochs 500

2.4. Experimental Sample Dataset

The experimental data in this paper were collected from the Internet and from on-site
filming. A total of 1500 images were collected. The photos taken on the spot are all taken
from the orchard. Each picture contained a significantly large number of kiwifruit target
fruits, and the total number of targets was 41,687. The targets in each image were labeled
with fine granularity, in order to facilitate subsequent enhancements in the detection of
small targets.

3. Principles and Methods

YOLOX [33] is a brand new high performance real-time target detection network,
recently launched by Beijing Megvii Technology. It adopts cutting-edge technologies
such as the anchor-free mechanism, decoupled heads, multi-positives, advanced label
assignment strategy, and strong data augmentation. Hence, it has faster speed, higher
recognition accuracy, smaller weight files, and can be easily mounted on mobile devices
with lower configurations, thereby offering high research value. The structure of the
YOLOX-S network selected for this paper is depicted in Figure 3.

Figure 3. Structure of the YOLOX-S network model.

CSPDarknet is the backbone feature extraction network of the YOLOX algorithm,
which is predominantly composed of three modules: Focus, CSPNet, and a spatial pyramid
pooling network. The model first slices an input image for the operation. By sampling
the complete image at equal intervals, multiple sampled images of appropriate size can
be obtained. Subsequently, these images are combined in the channel dimension and
the information in the image is transferred to the channel space, resulting in a down-
sampled image with no information loss. The CSPNet module contains the backbone
feature extraction and residual structure, which can effectively extract image features and
significantly reduces the computational effort while maintaining high accuracy. The SPP
network convolutes the output of the last CSPNet once, then utilizes three different scales
of maximum pooled kernels to integrate the features of the feature image under different
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receptive fields. FPN + PAN is a circular pyramid structure composed of convolution,
sampling, and feature fusion operations, which repeatedly extracts the input image features,
performs feature fusion at different scales, and finally outputs the three feature maps at
different scales to the decoupled head for accurate prediction.

3.1. Pre-Processing of the Data Set

YOLOX utilizes mosaic and mix-up data augmentation methods to substantially enrich
the detection dataset; in particular, random scaling is conducted to supplement the many
small targets and make the network more robust. Mosaic augmentation involves perform-
ing a series of operations, such as flipping, scaling, and color shifting, on multiple different
pictures, followed by cropping and splicing to recombine them into a new image. Hence,
the generated images often contain more targets. Therefore, this kind of augmentation
technique can significantly enrich the background and alleviate the imbalance of positive
and negative samples in the detection process, to a certain extent. Mix-up augmentation
refers to the fusion of two pictures, to some degree, in which the labels of the samples are
also weighted. The prediction results are weighted using the weighted labels in order to
calculate the loss; subsequently, the backpropagation update parameters can be enhanced.
The effect is shown in Figure 4.

  
(a) (b) 

Figure 4. Data enhancement effects: (a) mosaic data enhancement and (b) mix-up data enhancement.

3.2. Improved YOLOX-S Network
3.2.1. Perturbing the Activation Function Gradient

The predominant function of the activation function is to provide non-linearity in the
network structure. Considering that the difference between the gradient propagation effects
of the SiLU and Mish loss functions utilized in the YOLOX model is slight, gradient per-
turbation was considered based on the SiLU activation function. As presented in Figure 5,
the SiLU→SiLU-1 gradient change led to a smoother curve, while the SiLU→SiLU + 1
gradient change became steeper. Given that the Mish activation function worked relatively
well in YOLOv4, it was considered to increase or decrease the gradient change based on
SiLU. Introducing a gradient increase can enhance the generalization ability of the model
more robustly, and as such, we found that the SiLU + 1 activation function enhanced the
generalization ability of the model to a certain extent.
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Figure 5. Variation between the perturbed gradient functions.

The dynamic positive and negative sample allocation algorithm utilized by YOLOX,
SimOTA, is fast and effective. When determining the candidate areas for positive samples,
the center point of a grid (20 × 20, 40 × 40, 80 × 80) was selected as the circle inside the
ground truth (GT), with r being the radius centered on the center point of the GT. In Figure 6,
the green box denotes the GT. It can be observed that there may be mismatches when using
a small feature map. Subsequently, it can be observed that GTs are more likely to match
smaller GTs in larger feature maps, but small feature maps can match a significantly small
number of GTs.

  

Figure 6. Feature matching candidate sample situation.

3.2.2. Nearest Neighbor Interpolation Up-Sampling of 80 × 80 Feature Map

Through in-depth research on the allocation strategy of positive and negative samples
in the YOLOX model, the YOLOX model was found to reduce the number of predicted
samples of the feature map in the confidence loss calculation, where almost all of the
reduced samples were negative. Hence, the problem of imbalance in quantity caused by
too many negative samples was alleviated, thereby suggesting that most targets in the
kiwifruit detection task are small targets (i.e., both the absolute scale and relative scale are
relatively small). Therefore, with the goal of reducing the number of model parameters and
improving the model detection speed, the feature maps (20 × 20, 40 × 40) used for detecting
large targets in the YOLOX model were eliminated. Subsequently, only the 80 × 80 feature
map was retained, and a larger feature map size was introduced on this basis to match the
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GT more effectively. When acquiring the final output from the 80 × 80 feature map, nearest-
neighbor interpolation was utilized for up-sampling. This allows the model to provide
more predictions and better match GTs, thereby extensively reducing the complexity of the
model and the number of parameters. Figure 7 demonstrates the structure of the network
before and after the improvement.

 
(a) (b) 

Figure 7. (a) Original YOLOX feature fusion structure and (b) improved structure, in which only the
80 × 80 feature map structure is preserved.

3.2.3. Transfer of Shallow Features

The performance when using a single output feature map may be unstable under
specific conditions. Considering that the low-level feature semantic information is relatively
small but the target position is accurate, the final feature map and the feature map in
the shallow network were concatenated, in order to better integrate the semantic and
representation information to a certain extent, such that the accuracy of the regression box
could be significantly enhanced (see Figure 8).

 
Figure 8. Structure of the final feature map.

3.2.4. Enhancing the Loss Function

Equations (1)–(5) are the loss functions of the YOLOX-S algorithm. The bounding
box loss functions GIOU_loss and IOU_loss for predicting Reg have certain limitations,
resulting in an inability to effectively optimize the overlap between the detection box and
the real box when one is included in the other. Subsequently, for the confidence degree and
category loss, the original algorithm adopts a binary cross-entropy loss function, which is
not conducive to the classification of positive and negative samples.

Loss = GIOU_Loss + Losscon f + Lossclass, (1)

GIOU_Loss = 1 − GIOU = 1 − (IOU − |Q|
C
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∑
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Lossclass =
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In Equation (2), C represents the minimum circumscribed rectangle of the detection
frame and the priori frame, and Q represents the difference between the minimum circum-
scribed rectangle and the concatenation of the two frames.

In Equations (3) and (4), Iobj
ij and Inoobj

ij indicate whether the target falls into detection
frame j of grid i, and λnoobj represents the loss weight of the localization error. Subsequently,

Ci
j and Pi

j refer to the training values, and
∧
C

j

i and
∧
P

j

i refer to the prediction values.
Therefore, we adopted CIOU_loss as the Reg bounding box loss function and in-

creased the aspect-ratio restriction mechanism, compared with the previous one, such that
the prediction box was more in line with the real box, as demonstrated in Equation (5).
Equation (6) was used to measure the consistency of the aspect ratio, and the confidence
degree and category loss function utilized the PolyLoss function based on the Taylor
expansion approximation of the focal loss [34]. Thus, it not only took into account the
superior binary classification performance of the focal function, but also achieved enhance-
ment of the accuracy and performance on this basis. The convergence speed was also
effectively accelerated.

CIOU_Loss = 1 − (IOU − ρ2(b, bgt)
c2 − αv), (5)

v = 4
π2 (arctan wgt

hgt − arctan wp

hp )
2

α = v
(1−IOU)+V

(6)

where ρ() is the Euclidean distance between the center points of the two boxes, c is the
diagonal length of the smallest circumscribed rectangle of the two, α is the weight coefficient,
and v is the aspect ratio distance between the two frames.

LPloy−1 = − log(Pt) + ε1(1 − Pt), (7)

where Pt represents the probability of target label prediction.

4. Results and Discussion

4.1. Evaluation of Model Performance

In order to evaluate the effectiveness of the proposed method for kiwifruit detection in
different aspects, the mean average accuracy, the number of model parameters utilized, and
the FPS, along with the detection time per sheet, were selected as evaluation metrics. mAP
refers to a comprehensive consideration of precision and recall, which is used to evaluate
the effectiveness of the model, while FPS refers to the number of frames per second, which
can be utilized to measure the real-time performance of the model. Finally, the number of
model parameters reflects the lightness of the model.

recall =
TP

TP + FN

precision =
TP

TP + FP
,

mAP =

N−1
∑

i=0

∫ 1
0 P(R)dR

N

(8)

where TP represents the number of correctly identified images, FP represents the number
of misidentified images, and FN represents the number of missed images. When there is
only one category, mAP is equal to the AP.
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4.2. Analysis and Comparison of the Enhanced Model

In order to efficiently verify the effectiveness of the proposed model, a comparative
experiment was conducted on the enhanced YOLOX-S network using the same training pa-
rameters. Table 2 provides the detailed scores of each evaluation index before and after the
enhancement. Figure 9 presents the AP diagram of the model before and after enhancement.

Table 2. The comparison of model scores before and after enhancement.

Model AP Param Time/ms FPS

IMPROVED 82.62 5,483,590 15.6 101
ORI 76.10 9,937,682 43.2 88

 

Figure 9. The YOLOX-S training curve.

From the perspective of model lightness, the improved model parameters were re-
duced by 44.8% and the model detection speed was increased by 63.9%, verifying the
feature expression ability of the model. Feature map up-sampling and nearest-neighbor in-
terpolation reduced the computational complexity by omitting unnecessary computations,
thus achieving the effect of making the network lightweight.

So as to more intuitively depict the improvement in various aspects for the consid-
ered models, we created a performance comparison diagram with respect to the model
improvement strategies, as shown in Figure 10.

Figure 10. Model improvement strategy performance comparison chart.

As shown by Figure 10, in terms of model effectiveness and accuracy, the expressive-
ness growth of the model is mainly divided into three stages. The first stage is that the
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perturbation of the activation function enhances the generalization ability of the model by
selecting the SILU+1 function, which increases the AP value by 1.13%. The improvement
in the second stage is due to the cancellation of the feature map of the redundant large
target in this detection task, so that the network detection is all concentrated on the small
target, which reduces the calculation of negative samples and the misjudgment of positive
samples, so that the AP value continues to increase by 2.01%. The improvement in the
last stage comes from the design of the new network fusion structure. By splicing the
final output feature map and shallow-level features, the semantic information of the two is
combined, and the loss function is improved in the prediction segment. Compared with the
original model, the enhanced model significantly improved the AP value on the kiwifruit
images by 6.52%, which is a substantial increase.

Figure 11 presents the before and after images for comparison. By comparing the
groups of images, it can be seen that in the (Figure 11a) group of experiments, the fruit
could be effectively identified by the enhanced model, even when there were tree trunks,
branches, and leaves in the way.

  
(a) 

  
(b) 

  
(c) 

Figure 11. (a) Enhancement of fruit recognition under tree trunk and leaf occlusion. (b) Enhancement
of low-density fruit missed recognition. (c) Enhancement of non-target fruit misrecognition.
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However, for the (Figure 11b) group of experiments, the original algorithm was not
able to recognize the low-density fruits effectively. Additionally, for the (Figure 11c) group
of experiments, the original algorithm misidentified the tree trunk as a fruit, but the
enhanced model corrected it, and was able to accurately identify more fruit.

In light of the above, the enhanced algorithm significantly improved the ability to
detect small-scale target fruit and reduced the false recognition and misrecognition rates.
In addition, we compared several state-of-the-art algorithms and conducted training tests
under the same conditions. The proposed enhanced model provided improved results in
all aspects. The performance comparison is given in Table 3. In addition, Table 4 compares
our findings with those of various scholars around the world, and details the advantages
and disadvantages of their techniques.

Table 3. Comparison of mainstream models.

Model mAP@0.5/% FPS

Ours 82.62 101
YOLOv5s 74.12 83
YOLOv3 69.46 68
YOLOv2 67.83 63

Fast R-CNN 80.15 52

Table 4. Comparison and analysis of advantages and disadvantages of methods.

Reference Description Advantages Disadvantages

[24]
Utilized the L*a*b* color

space a* channel for kiwifruit
image segmentation

Accurate segmentation of
a single fruit

susceptible to
external changes

[25]

Combines least
circumscribed rectangle

method and elliptic Hough
transform

Accurate segmentation of
a single fruit

Not ideal for fruit
cluster identification

[35] Improved K-means
algorithm

Multi-target detection
possible

Easily disturbed by
shape and texture

[36] Built a color classifier Low hardware
requirements slow detection

[37]

Construction of the
positional relationship

between fruit and calyx in
linear clusters

high speed

Does not meet the
multi-robot

collaborative
operation

[31]
Merge Region Proposal

Network (RPN) and Fast
R-CNN Network

high speed Poor adaptability in
complex situations

[32] Convolutional Neural
Network Based on LeNet

Multiple fruit clusters can
be recognized

High equipment
requirements and
large amount of

parameters

Ours

Cancel the large object
detection layer

Concatenate shallow features
with final features

high speed
few parameters

Suitable for embedded
mobile devices

AP can be further
improved

It can be seen from the table that the algorithm proposed in this paper can solve the
problem of poor recognition of multiple fruit clusters compared with the traditional image
processing method used in past research [24,25,35–37]. Compared with studies based
on deep learning methods [31,32], the improved accuracy of our algorithm alleviates the
problems of the network model being too large and the equipment requirements being
too high. The recognition in the case of fruit occlusion and misjudgment is improved,
the recognition accuracy and speed of the fruit are further improved, and the parameter
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amount of the model is reduced. It can effectively complete the detection task of kiwifruit
in agricultural production, and has a positive impact on future picking of kiwifruit.

5. Conclusions

The research ultimately proposed an enhanced YOLOX-S target detection algorithm
for kiwifruit picking robots. In order to effectively improve the detection of small-scale
targets, the YOLOX-S algorithm was enhanced through fine-grained annotation of the target
frame of the data set, as well as mosaic and mix-up data augmentation methods. Through
up-sampling of the nearest-neighbor value in the small target feature map and the splicing
of superficial features with the final features, in addition to the optimization of the loss
function, the number of parameters of the enhanced YOLOX-S were significantly reduced
while the AP values was increased. We demonstrated that the proposed enhancement
method is applicable to actual fruit-picking environments, and is beneficial for embedment
in mobile devices.

This research predominantly focused on the detection of kiwifruit. Simultaneously,
the critical key to effective picking is to locate the target and return its three-dimensional
coordinate points.

In further research, we intend to focus on:

(a) At present, the AP of the model has not reached the ideal state. Next, the data set will
be enriched to further improve the performance and accuracy of the model.

(b) We will use pre-processing of the depth image data and color image data by utiliz-
ing the camera’s external and internal parameters, triangulation principles, and the
conversion of pixel coordinates to 3D spatial coordinates to carry out fruit localization.

(c) The proposed algorithm effectively met the basic requirements for fruit picking using
a large-end actuator. However, due to the large number of kiwifruit that need to be
picked, in order to further enhance the efficiency of the manipulator, it is necessary to
further research the picking sequence allocation for kiwifruit.

(d) We will analyze the correlation between data, identify a variety of other types of fruit
through transfer learning, and design a multi-classification general picking model
for orchards.
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Abstract: Accurately distinguishing the types of tea is of great significance to the pricing, produc-
tion, and processing of tea. The similarity of the internal spectral characteristics and appearance
characteristics of different types of tea greatly limits further research on tea identification. However,
wavelet transform can simultaneously extract time domain and frequency domain features, which is a
powerful tool in the field of image signal processing. To address this gap, a method for tea recognition
based on a lightweight convolutional neural network and support vector machine (L-CNN-SVM)
was proposed, aiming to realize tea recognition using wavelet feature figures generated by wavelet
time-frequency signal decomposition and reconstruction. Firstly, the redundant discrete wavelet
transform was used to decompose the wavelet components of the hyperspectral images of the three
teas (black tea, green tea, and yellow tea), which were used to construct the datasets. Secondly,
improve the lightweight CNN model to generate a tea recognition model. Finally, compare and
evaluate the recognition results of different models. The results demonstrated that the results of tea
recognition based on the L-CNN-SVM method outperformed MobileNet v2+RF, MobileNet v2+KNN,
MobileNet v2+AdaBoost, AlexNet, and MobileNet v2. For the recognition results of the three teas
using reconstruction of wavelet components LL + HL + LH, the overall accuracy rate reached 98.7%,
which was 4.7%, 3.4%, 1.4%, and 2.0% higher than that of LH + HL + HH, LL + HH + HH, LL + LL +
HH, and LL + LL + LL. This research can provide new inspiration and technical support for grade
and quality assessment of cross-category tea.

Keywords: redundant discrete wavelet transform; tea; convolutional neural network; classification

1. Introduction

Tea is a drink widely loved by consumers because of its unique flavor and health
function [1]. In particular, unfermented green tea, lightly fermented yellow tea, and fully
fermented black tea have received extensive attention and research. Among them, green
tea contains polyphenols to help prevent cancer [2], and yellow tea and black tea have
strong antioxidant activity [3–5]. Different categories of tea have different characteristics
and quality standards. Even if the same type of tea leaves, it is difficult to distinguish the
type of tea due to different processing techniques and geographical indications of origin.
Therefore, fast and accurate tea classification has always been an active research hotspot,
which is of great significance to the control of tea fermentation time, production process,
and processing links.

The traditional methods of tea classification were generally based on physical and
chemical indicators, and sensory evaluation. Among them, methods based on physical
and chemical indicators, such as gas chromatography-mass spectrometry [6], were not easy
popularized and applied because of time-consuming operations and destructive experi-
ments. Some methods were costly and complicated, such as near-infrared spectroscopy
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detection [7], fluorescence spectroscopy detection [8], electronic tongue, and electronic
nose [9–11], which might limit the universality of tea classification methods. Of course, the
sensory evaluation method is one of the common methods in the tea field [12]. Although
it could make up for the limitations of physical and chemical testing methods, it was
susceptible to the influence of the subjective factors of review experts, which could lead
to inaccurate tea classification [13,14]. Therefore, it is necessary to develop a method to
classify different categories of tea objectively and reliably.

In fact, classification based on the appearance characteristics of tea was a relatively
simple and effective method. Especially the classification of tea based on machine vision has
been widely used [15]. However, the resolution of the tea sample image and the shooting
environment may affect the classification accuracy [16]. With the rapid development of
hyperspectral image processing technology, its application in food analysis is becoming
more and more attractive [17,18]. Studies have shown that analysis based on hyperspectral
images has achieved better results not only in tea internal quality, such as tea polyphenols,
catechins, and tea amino acids [19–21] but also in tea classification, such as the classification
of green tea [22–24], the classification of tieguanyin tea [25], oolong tea varieties [26].
However, most of the studies mentioned above were based on common features, such as
texture features and spectral reflectance, which severely limited further research on tea
classification.

Multi-resolution analysis based on wavelet transform has been extensively studied
in various fields, such as image enhancement, image decomposition and reconstruction,
signal-to-noise separation, and signal filtering based on wavelet transform have been ap-
plied [27]. In addition, wavelet transform has good analysis ability in both the time domain
and frequency domain [28]. Wu et al. proposed entropies from the wavelet coefficient to
successfully classify green, black, and oolong [29]. Bakhshipour et al. extracted wavelet
features to classify black and green teas [30]. Borah et al. extracted wavelet textures to
classify black teas of different levels [31]. Regardless of the form of the wavelet feature, the
research mentioned above provides all the retrieved features of tea biochemistry or compo-
sition for tea classification. Obviously, they neither tried to extract more advanced wavelet
semantic features to classify tea more effectively nor did they try to better understand the
contribution of wavelet coefficient components to tea classification.

In fact, the essence of wavelet transform is to solve the signal energy at different
decomposition scales to form feature vectors for identification. In particular, the wavelet
coefficient components of the image obtained by the discrete wavelet transform method
respectively represent the approximate features and detailed features in different directions.
As we all know, some methods use wavelet coefficients to reconstruct images, and other
methods use wavelet coefficients to achieve signal denoising. At present, there is no
universally accepted consensus on which wavelet coefficient components perform well.
Nevertheless, the research mentioned above was based on the manual wavelet feature
extraction method, which lacked stability and robustness. Therefore, the research on tea
classification still faces many technical issues.

With the wide application of deep learning in different fields, the research ideas of
tea classification have been greatly expanded. To more fully extract the spectral-spatial
joint features in hyperspectral images, the researchers applied deep learning techniques to
the task of tea classification [32]. Deep neural networks are composed of many network
layers and have powerful feature extraction capabilities from low-level to high-level, which
could solve the problem of insufficient and unstable features extraction by traditional
methods [33]. In particular, the combination of deep learning and wavelet transform has
been widely concerned and applied. Some research focused on image stitching based on
convolutional neural network (CNN) and wavelet transform methods [34]. For example,
El-Latif et al. respectively carried out research on the strategies of high-frequency sub-band
splicing and low-frequency sub-band splicing based on wavelet decomposition. In contrast,
some studies applied deep learning methods to process wavelet components to achieve
image reconstruction. For example, Qi et al. used CNN to restore image sub-bands corre-
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sponding to different wavelet coefficient components including low frequency (LL) and
high frequency (LH, HL, and HH) [35]. Wang et al. used CNN to generate corresponding
weight maps for low-frequency and high-frequency wavelet coefficient components [36].
Although the convolutional neural network and wavelet transform exhibited the analysis
potential of different frequency sub-band for the wavelet components obtained by wavelet
decomposition of the image, they have not been applied to the combination of wavelet sub-
bands of different frequencies to achieve accurate classification. In addition, studies have
shown that discrete wavelet transform decomposing time-frequency domain signals from
images could improve classification accuracy [37]. However, it remains unclear how the
optimal combination of multiple wavelet components affects the classification performance
of different teas.

Therefore, a method of tea classification was proposed with the deep semantic features
from wavelet component combination based on the lightweight CNN model, aiming to
further extract features from hyperspectral images. The purpose of this research is to
(1) decompose tea hyperspectral images through redundant wavelet transform to obtain
different wavelet coefficients in different time and frequency domains, thereby improving
the feature expression ability, (2) reconstruct the image with the optimal combination of
wavelet components, and an improved lightweight convolutional neural network model
was proposed, aiming to achieve tea recognition accuracy, and (3) compare and evaluate
the classification results of different kinds of tea to verify the effectiveness of the method
proposed in this study.

2. Materials and Methods

2.1. Sample Collection and Data Set Construction
2.1.1. Collection of Tea Samples

The tea samples used in the experiment were three categories of tea purchased from
large supermarkets and online, including yellow tea, green tea, and black tea. Among them,
yellow tea includes Mogan Huangya (MGHY, produced in Huzhou, China), Mengding
Huangya (MDHY, produced in Ya’an, China), Huoshan Huangya (HSHY, produced in
Lu’an, China), Pingyang Huangtang (PYHT, produced in Wenzhou, China), Junshan
Yinzhen (JSYZ, produced in Yueyang, China). Green tea includes Maofeng (MF, produced
in Huangshan, China) and Liuan Guapian (LAGP, produced in Lu’an, China). In order
to obtain more samples, it is necessary to collect the same category of tea from different
manufacturers. For example, although the geographical indication origin of Qimen black
tea is Qimen County, Huangshan City. We still collect black tea from different company,
including Anchi Tea limited company, Chizhou, China (ACBT), Xiaolukou Tea limited
company (XLBT), Gaoxiang Black Tea Factory, Huangshan, China (GXBT), Qihong Tea lim-
ited company, Huangshan, China (QMQH), and Qimen Tea limited company, Huangshan,
China (HSBT). Moreover, Maofeng (green tea) was collected from different production com-
panies, including Guangming Tea limited company, Huangshan, China (GMMF), Beijing
Zhangyiyuan Jingtailong Tea limited company, Huangshan, China (ZYYMF), Ziwei Tea lim-
ited company, Huangshan, China (ZWMF), Yijiangyuan Tea limited company, Huangshan,
China (YJYMF). In total, 15 kinds of tea samples collected were produced in four provinces
(Anhui Province, Zhejiang Province, Hunan Province, Sichuan Province) in China (Table 1).
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Table 1. Geographical sources of tea.

Tea Category Tea Variety Abbreviations Number Geographical Origins

Black tea QMBT from ACBT ACBT 30 Anhui
QMBT from XLBT XLBT 30 Anhui
QMBT from GXBT GXBT 30 Anhui

QMBT from QMQH QMQH 30 Anhui
QMBT from HSBT HSBT 30 Anhui

Green tea Maofeng from
ZYYMF ZYYMF 30 Anhui

Maofeng from ZWMF ZWMF 30 Anhui
Maofeng from YJYMF YJYMF 30 Anhui
Maofeng from GMMF GMMF 30 Anhui

Liuan Guapian LAGP 30 Anhui

Yellow tea Junshan Yinzhen JSYZ 30 Hunan
Huoshan Huangya HSHY 30 Anhui

Mengding Huangya MDHY 30 Sichuan
Mogan Huangya MGHY 30 Zhejiang

Pingyang Huangtang PYHT 30 Zhejiang

2.1.2. Acquisition of Hyperspectral Images of Tea

The near-infrared hyperspectral imaging (NIR-HSI) system was used to acquire hy-
perspectral images of tea samples. The system mainly consists of an image spectrograph
(Imspector V17E, Spectral Imaging Ltd., Oulu, Finland), two 150W fiber optic halogen
lamps (Model 3900, Illumination Technologies Inc., New York, NY, USA), a camera ob-
scura, and mobile platform. The hyperspectral image obtained by this system has a total
of 616 wavelength bands ranging from 908 to 1735 nm. The structure diagram of the
hyperspectral imaging system is shown in Figure 1.

 

Figure 1. The structure diagram of hyperspectral imaging system.

The preparations before collecting hyperspectral images are as follows: turn on the
light source for preheating 30 min before the experiment, set the distance between the
camera and the tea sample to 38.4 cm, set the sample moving speed on the conveyor
belt to 1 cm/s, and set the exposure time to 20 ms. Set the frame rate to 13 Hz. The
tea samples were evenly spread in a Petri dish with a diameter of 9 cm × 1 cm. The
Petri dish was pre-built with black rubber with approximately zero reflectivity, so as not
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to affect the experimental data. Then, open the operation interface of the hyperspectral
image acquisition software to collect hyperspectral images of the tea samples. Furthermore,
the hyperspectral images were white-boarded and dark-current corrected. Finally, the
Environment for Visualizing Images (ENVI 5.1, ITT visual information solutions, Boulder,
CO, USA) was used to analyze the spectral features of tea.

2.2. Method
2.2.1. Decomposition and Reconstruction of Image Signal by Wavelet

Wavelet transform is a signal time-frequency analysis method, and a common method
is wavelet multi-resolution analysis. When a two-dimensional grayscale image is processed,
a one-dimensional discrete wavelet transform is used to operate the image, two directions
are selected to pass through a filter bank, and the data is reduced by downsampling [38].
That is, the different characteristics of images on various scales are described from the
perspective of space.

Redundant wavelet transform (RWT) is a kind of wavelet transform in which the
decomposition results of signals or images on adjacent scales have redundancy. That is,
the high- and low-frequency information of the signal or image is separated, and finally,
it is decomposed into approximate signals and wavelet surfaces on different frequency
channels. Moreover, the length of the approximation signal and the detail signal after the
signal transformation are the same as the original signal length [39].

The redundant discrete wavelet transform is represented by a filter bank. The output
coefficient obtained after each level of decomposition is twice the input coefficient. The de-
composition formulas of redundant discrete wavelet transform are as Formulas (1) and (2),
and the mathematical expressions for reconstruction are as Formula (3):

cj+1[k] = cj[k] ∗ h[−k] (1)

dj+1[k] = cj[k] ∗ g[−k] (2)

cj+1[k] =
cj[k] ∗ h[k] + dj[k] ∗ g[k]

2
(3)

Among them, h[−k] and g[−k] represent low-pass and high-pass decomposition filters,
respectively, cj and dj represent the coefficients of the low-band and high-band output of
the jth level, ∗ means convolution, the low-pass and high-pass synthesis filters are h[k] and
g[k], respectively. A is the original signal, Aτ is the reconstructed signal.

An image can be viewed as a two-dimensional signal. Applying wavelet theory to
image processing is to use multi-resolution decomposition to decompose the image into
sub-images of different spaces and frequencies, and then encode the coefficients of the
sub-images. At the same time, wavelet transform can better solve the contradiction between
time and frequency resolution, so wavelet transform is very beneficial to the decomposition
and reconstruction of image signals.

2.2.2. Classification Model Based on Improved Lightweight CNN

MobileNet is a lightweight deep neural network based on a depthwise separable
convolution design, which has performed very well in the classification. Among them,
MobileNetV2 introduces an inverted residual and linear bottleneck structure, which makes
the number of network parameters and lower computing costs. The parameters of the
network structure are shown in Table 2.

The MobileNetV2 network includes ordinary convolution (Conv), inverse residual
structure deep separation convolution (Bottleneck), and average pooling (Avgpool). To
enhance the applicability of the network in tea classification and improve the accuracy of
target classification. Based on MobileNetV2 in this study, the following improvements have
been made (as shown in Figure 2 and Table 3). To further reduce computing resources and
save memory space when training the network. Remove the network layer after the 9th
layer, and reduce the number of channels of the convolutional layer from 1280 to 128. The
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three-dimensional feature map was converted into one-dimensional through the Flatten
layer. To better adapt to the problem of tea hyperspectral image classification, SoftMax was
replaced with SVM classifier to improve the generalization ability of the model.

Table 2. Detailed parameters of each layer of CNN (Origin).

Input Operator Channel N Stride Out

224 × 224 × 3 conv2d 32 1 2 112 × 112 × 32
112 × 112 × 32 bottleneck 16 1 1 112 × 112 × 16
112 × 112 × 16 bottleneck 24 2 2 56 × 56 × 24
56 × 56 × 24 bottleneck 32 3 2 28 × 28 × 32
28 × 28 × 32 bottleneck 64 4 2 14 × 14 × 64
14 × 14 × 64 bottleneck 96 3 1 14 × 14 × 96
14 × 14 × 96 bottleneck 160 3 2 7 × 7 × 160
7 × 7 × 160 bottleneck 320 1 1 7 × 7 × 320
7 × 7 × 320 conv2d 1280 1 1 7 × 7 × 1280

7 × 7 × 1280 avgpool - 1 - 1 × 1 × 1280
1 × 1 × 1280 conv2d 3 1 1 1 × 1 × 3

1 × 1 × 3 softmax 3 1 - 3
N: represents the number of repetitions of the Operator.

 

Figure 2. The optimized lightweight CNN.

Table 3. Detailed parameters of improved lightweight CNN.

Input Operator Channel N Stride Out

224 × 224 × 3 conv2d 32 1 2 112 × 112 × 32
112 × 112 × 32 bottleneck 16 1 1 112 × 112 × 16
112 × 112 × 16 bottleneck 24 2 2 56 × 56 × 24
56 × 56 × 24 bottleneck 32 3 2 28 × 28 × 32
28 × 28 × 32 bottleneck 64 4 2 14 × 14 × 64
14 × 14 × 64 bottleneck 96 3 1 14 × 14 × 96
14 × 14 × 96 bottleneck 160 3 2 7 × 7 × 160
7 × 7 × 160 bottleneck 320 1 1 7 × 7 × 320
7 × 7 × 320 conv2d 128 1 1 7 × 7 × 128
7 × 7 × 128 flatten 6272 1 - 1 × 1 × 6272

1 × 1 × 6272 SVM 3 1 - 3
N: represents the number of repetitions of the Operator.
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2.2.3. Tea Classification Model Based on Optimized L-CNN

The technical route of this research was shown in Figure 3. Firstly, the hyperspectral
images of the tea samples were acquired, the wavelet components corresponding to the
hyperspectral image were extracted by redundant wavelet transform, and the combination
of different wavelet components was used as the input of the deep convolutional neural
network. Secondly, the deep convolutional neural network model undergoes transfer learn-
ing, model training, and parameter optimization to generate an optimized classification
model. Finally, the classification model was tested on the selected tea samples. The specific
steps were as follows: The transfer learning process of this research was mainly realized
by using the improved CNN model pre-trained on the large-scale ImageNet dataset as the
source domain. The trained network parameters were used as the initial parameters for the
training of the tea classification model based on hyperspectral images, and the self-built
data sets (the combination of wavelet coefficients extracted from the tea hyperspectral im-
ages) were used to fine-tune the parameters of the L-CNN model to improve the automatic
tea identification ability.

 

Figure 3. The technology roadmap for this study.

The experimental environment of this study is shown in Table 4. The parameters of
the L-CNN were set as follows: the learning rate is 0.0001, the epoch is 50, and the batch
size is 10.

Table 4. Parameters of the experimental environment.

Settings Parameters

CPU Intel (R) Core (TM) i7-8700 CPU @ 3.20G Hz
GPU NVIDIA GeForce GTX 1070 Ti
RAM 16.0 GB

Operating system Win 10_64 bit
MATLAB version MATLAB R2019a
Lab environment Deep Learning Toolbox
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2.2.4. Evaluation Indicator of Classification Model

To accurately evaluate the tea classification model, precision, recall, and accuracy are
used as indicators for model performance evaluation. Precision measures the classification
accuracy of positive samples, recall represents the proportion of correctly classified positive
samples to the total positive samples, and accuracy measures the proportion of all samples
that are accurately classified.

precision =
TP

TP + FP
(4)

recall =
TP

TP + FN
(5)

accuracy =
TP + TN

TP + TN + FP + FN
(6)

In the classification task, when it is determined that the category of a certain type of
tea is positive, the other categories are negative.

TP means that the predicted category is a positive category and the model judges it as
a positive category; that is, the positive category is judged correctly;

FP means that the predicted category is a positive category and the model judges it to
be a negative category; that is, the judgment of the positive category is wrong;

FN means that when the predicted category is a negative category and the model
judges it as a negative category; that is, the negative category is judged correctly;

TN means that when the predicted category is a negative category and the model
judges it as a positive category, the negative category is judged wrong.

In addition, the ROC (receiver operating characteristic) curve is used to compare
different classification results. The horizontal axis of the ROC curve represents the false-
positive ratio (FPR), and the vertical axis represents the true-positive rate (TPR). The closer
the ROC curve is to the upper left corner, the higher the accuracy of the prediction. TPR
and FPR are defined as shown in Equations (7) and (8).

TPR =
TP

TP + FN
(7)

FPR =
FP

TN + FP
(8)

In addition, the ROC curve is divided into two parts according to the position of the
curve. The area under the curve and the horizontal axis part is called AUC (area under
the roc curve), and the value is between [0, 1]. The closer the AUC is to 1, the better the
classification effect of the model.

To more fully demonstrate the classification effect, a confusion matrix is used to
indicate the classification visualization, which describes the relationship between the true
category attributes of the sample data and the classification results in the form of a matrix.
Suppose that for the classification task of type m pattern, V is the test sample set, the
number of samples is n the number of categories is m, and C = {C1, C2, . . . CL} is the
classifier set. L classifiers are used to test in set V, respectively, to obtain the confusion of
each classifier matrix (confusion matrix) CMk(k = 1, 2, . . . L), the confusion matrix of the k
classifier Ck is expressed as follows:

CMk =

⎡
⎢⎢⎢⎣

nk
1,1 nk

1,2 . . . nk
1,m

nk
2,1 nk

2,2 . . . nk
2,m

. . . . . . . . . . . .
nk

m,1 nk
m,2 . . . nk

m,m

⎤
⎥⎥⎥⎦ (9)

Among them, the element in the i-th row and the j-th column represents the number of
the i-th class recognized as the j-th class by the classifier Ck in the sample. If i = j, it means
that the classifier could correctly identify the number of samples, so diagonal elements
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represent the number of correctly classified by classifier Ck, and off-diagonal elements
represent the number of errors classified by classifier Ck. In the confusion matrix, each
column represents the predicted category, and each row represents the true attribution
category (sample label) of the tea. The total number of columns is equal to the total number
of rows, which is the total number of label categories of the data sample. The larger the
diagonal value of the confusion matrix, the greater the probability that the model is correctly
classified, and the better the model effect.

3. Results

3.1. Hyperspectral Images and Spectral Reflectance of Different Types of Tea

One hundred and fifty grams of each sample was sealed, stored, and sent to the hyper-
spectral laboratory for hyperspectral imaging collection in time. The hyperspectral images
of all samples were acquired using a hyperspectral instrument, which accessories were
reported in the previous research of our team [28]. The self-built data set using the collected
hyperspectral images from 15 teas (as shown in Figure 4) contained 450 hyperspectral
images of three categories of tea, including 150 images of black tea, 150 images of green tea,
and 150 images of yellow tea. The data sets were divided into training set, validation set,
and test set according to the ratio of 7:3:5.

Figure 4. Hyperspectral images of three tea categories including black tea, green tea, and yellow tea.

Different parts of the tea samples, such as stems, leaves, and buds, contain significant
differences in the content of substances, so the spectral data between each pixel point is
quite different. To address this issue, 50 regions of interest (ROI) of 20 × 20 pixels were
randomly selected in the sample area. A pixel contains a piece of spectral information, and
the average spectrum of all pixels in the ROI was calculated as the spectral reflectance of a
sample. The original spectrum collection of tea samples is shown in Figure 5.

In Figure 6, the wavelength range is 944–1688 nm, all tea samples had similar trends in
the whole spectral region, most of the reflectance is from 0.4–0.7, but the size of absorbance
is different. In particular, in the three absorption bands located at 1200, 1380, and 1450 nm,
the absorption peak at 1200 nm is attributed to the C-H second overtone; the peak bands
near 1400 nm are attributed to the O-H vibration. It can be seen that black tea, green tea,
and yellow tea have similar spectral features. It is difficult to distinguish different types
of tea based on spectral information alone. To effectively identify different kinds of tea,
further analysis was carried out according to the different spatial information of tea.
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Figure 5. Hyperspectral images of three tea categories including black tea, green tea, and yellow tea.

Figure 6. Combinations of different wavelet components.

3.2. Multi-Component Combination of Wavelet Decomposition of Hyperspectral Image of Tea

To extract the wavelet coefficient combination information of the hyperspectral image
of tea. First, from the full-band hyperspectral image, the wavelet function db2 was used
to perform the redundant discrete wavelet transform (RDWT) in the horizontal direction
to obtain the high-frequency component and the low-frequency component, then the
two components in the vertical direction were respectively performed RDWT. The above
process realized the two-dimensional discrete wavelet transform of the hyperspectral image.
Therefore, the approximate component LL, the horizontal component HL, the vertical
component LH, and the diagonal component HH are obtained from the hyperspectral image
of the tea based on the wavelet transform. Three of the four components are selected to form
a three-channel data as the input of the L-CNN. According to the results of multiple tests, the
five combinations performed well, as shown in Figure 6. Figure 6a shows the combination
of the three high-frequency components LH, HL, and HH. Figure 6b shows the combination
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of the low-frequency component LL and the high-frequency components HH and HH.
Figure 6c shows a combination of low-frequency component LL, high-frequency component
LH, and HL. Figure 6d shows the combination of two low-frequency components LL
and one high-frequency component HH. Figure 6e shows the combination of three low-
frequency components LL. From the visualization map corresponding to the five wavelet
combinations of the tea hyperspectral image in Figure 6, it could be seen that the features
displayed by the different combinations were still significantly different.

3.3. Tea Classification Results Based on the L-CNN-SVM Model

Different combinations based on wavelet components were used as the input of the
three channels of the CNN model, and the classification accuracy is shown in Table 5. It
could be seen from Table 5 that the classification accuracy was 0.940–1.000 for black tea,
0.923–0.980 for green tea, and 0.918–0.980 for yellow tea. The classification effect based on
the wavelet component was better than that of the original hyperspectral image. Among
the five combinations, the classification result based on LL + HL + LH was the best, with an
accuracy of 0.987, and only 0.013% of tea samples were misidentified. The possible reason
was that the three wavelet components represent wavelet information from different angles,
which expanded the expressive ability of tea features. In addition, the contribution of the
HH component to tea classification was relatively low.

Table 5. The accuracy of tea classification based on the combination of different wavelet components.

Input Data Kappa Coefficient Overall Black Tea Green Tea Yellow Tea

Original 0.90 0.933 0.940 0.958 0.904
LH + HL + HH 0.91 0.940 0.980 0.923 0.918
LL + HH + HH 0.93 0.953 0.980 0.941 0.939
LL + LL + HH 0.96 0.973 0.980 0.962 0.980
LL + HL + LH 0.98 0.987 1.000 0.980 0.980
LL + LL + LL 0.95 0.967 1.000 0.980 0.925

In addition, the kappa coefficients [40] were obtained by using reconstructed figures
based on different wavelet components. It could be seen from Table 5 that the Kappa coefficient
based on the LL + HL + LH component was the highest, reaching 0.98, which was 8.2% higher
than that of the original hyperspectral image, 7.1% than that of LH + HL + HH, 5.1% than that
of LL + HH + HH, 2% than that of LL + LL + HH, and 3.1% than that of LL + LL + LL.

To better display the results of tea classification, the confusion matrix was used to analyze
the classification results. In the confusion matrix, the y-axis represented the real tea category,
and the x-axis represented the result of the model classification. A total of 150 images were used
as tests, including 50 each for black tea, green tea, and yellow tea. As shown in Figure 7, the
number of misclassifications of black tea, green tea, and yellow tea using wavelet components
did not exceed 5. Black tea, green tea, and yellow tea were misclassified as 3, 4, and 3 for the
original hyperspectral image, 2, 3, and 5 for LH + HL + HH, 1, 2, and 4 for LL + HH + HH,
2, 0, and 0 for LL + LL + HH, 0, 1, and 1 for LL + LH + HL, 2, 2, and 1 for LL + LL + LL. It
was easy to see that the tea classification results of the CNN model based on the combined
information of the wavelet components performed well. Although there were some errors in
the identification of individual figures, most of the tea samples were correctly identified.
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Figure 7. Confusion matrix of tea classification based on different components.

4. Discussion

4.1. Compare Tea Classification Based on Different Wavelet Component Combinations

Wavelet transform has obvious advantages in local time-frequency analysis. It could
decompose the hyperspectral image of tea leaves with non-stationary signals into high-
frequency components and low-frequency components. Although Fourier transform or
contourlet transform is also a common method in resolution analysis [41], However, Fourier
transform lacks time domain processing and has a very bad effect on non-stationary
information. In addition, the contour of the image is transformed with more redundancy,
which makes it difficult to achieve perfect image reconstruction.

Two-dimensional wavelet transform could be used to characterize the target object
in the image [42]. Li et al. used the texture features obtained by wavelet transform to
classify the famous green tea in China [43]. Bakhshipour et al. extracted wavelet features to
successfully classify black tea [44]. Nevertheless, the above research is limited to shallow
features and lacks wavelet semantic features. Wulandari et al. combined wavelet transform
and a deep learning model to improve classification accuracy [45], which demonstrated the
effectiveness of advanced wavelet semantic features. Therefore, the classification accuracy
of this study using the combination of LL + LH + HL is 98.7%, which was 5.4% higher than
that of the original hyperspectral image, and was higher than that of LH + HL + HH, LL +
HH + HH, LL + LL + HH, and LL + LL + LL with 4.7%, 3.4%, 1.4%, and 2.0%, respectively. It
was because LL + LH + HL included comprehensive wavelet information. On the one hand,
the interference information was removed after wavelet transform, which could realize the
extraction of multi-angle features. On the other hand, multi-angle wavelet features were
used to extract high-level semantic features through deep learning models, which was more
conducive to tea identification.

4.2. Compare Classification Results Based on Different Deep Learning Models

To evaluate the performance of the tea classification model proposed in this study,
our method was compared with the typical classification models AlexNet and MobileNet
v2 [46,47]. It could be seen from Table 6 that the classification accuracy based on our
proposed method was 5.47% and 1.42% higher than that of AlexNet and MobileNet v2,
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respectively. In addition, SVM was used to improve the classification addition method.
Compared with the classification methods of random forest (RF), K-nearest neighbor (KNN),
and adaptive boosting (AdaBoost), the experimental results showed that the classification
accuracy of our proposed method was improved by 0.71%, 2.03%, and 2.74% overall.
In short, the experiment showed that the combination of SVM and lightweight model
improved not only the classification accuracy of the model but also the generalization
ability of the model. Therefore, the proposed model had a better classification effect on tea
classification.

Table 6. Comparison of classification accuracy of different methods.

Method Overall Black Tea Green Tea Yellow Tea

Our method 0.987 1.000 0.980 0.980
MobileNet v2 + RF 0.980 0.980 0.980 0.980

MobileNet v2 + KNN 0.967 0.960 0.980 0.960
MobileNet v2 + AdaBoost 0.960 0.960 0.940 0.980

MobileNet v2 0.973 1.000 0.960 0.960
AlexNet 0.933 0.960 1.000 0.860

4.3. Different Network Visualization Based on Grad-CAM

To visually show the potential recognition capabilities of different models, a color
visualization method was applied: gradient weighted class activation mapping (Grad-
CAM) technology, which embedded the Grad-CAM layer into the convolutional neural
network, thereby making the proposed method more easily observed and explained. Grad-
CAM was used to generate activation heat maps for the classification of different tea
samples, as shown in Figure 8. The first, third, and fifth rows of Figure 8a represented the
original hyperspectral images of black tea, green tea, and yellow tea, and rows 2, 4, and 6
of Figure 8a represented the combination of wavelet components LL + LH + HL extracted
from the hyperspectral images of black tea, green tea, and yellow tea. It could be seen
from Figure 8 that the activated regions that are important for the classification result in
different input images are different. Among them, the darker the color indicates that the
pixel feature of the corresponding position in the original image had a greater impact on
the classification result.

From the second, fourth, and sixth rows of Figure 8, it was found that the stronger
regions in the activated heatmap of LL+LH+HL for tea identification were wider than
those of the original hyperspectral image. In addition, it was found from Figure 8b,d,f
that our proposed method for feature positioning in tea identification could stably find the
relevant target area. Compared with the activated heatmaps of AlexNet and Inception v3,
our method could locate key areas significantly.
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Figure 8. Samples visualization based on Grad-CAM. (a) represents the original hyperspectral
image and wavelet component LL+LH+HL; (b,d,f) represent the activation heatmaps of tea sample
recognition based on the AlexNet model, Inception v3 and our proposed method; (c,e,g) represent
the activated heatmaps superimposed on the original image of tea sample recognition based on the
AlexNet model, Inception v3 and our proposed method.

5. Conclusions

To improve the accuracy of traditional classification methods for tea based on hy-
perspectral images, the combined information of different components decomposed by
redundant discrete wavelet transform was used to classify based on the lightweight CNN
model. The experimental results showed that the combination of wavelet components
LL+LH+HL based on the hyperspectral image of tea had the best classification effect, with
an accuracy of 98.7%. In conclusion, the method of time-frequency signal decomposition
and reconstruction based on hyperspectral images proposed in this study provided a new
idea for tea identification, which will provide technical reference for identifying the grade
and quality of tea.
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