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Special Issue “Probability Theory and Stochastic Modeling
with Applications”

Francisco Germán Badía * and María D. Berrade

Department of Statistical Methods, University of Zaragoza, 50018 Zaragoza, Spain; berrade@unizar.es
* Correspondence: gbadia@unizar.es

This Special Issue (SI), titled “Probability Theory and Stochastic Modeling with Appli-
cations”, is concerned with the theory and applications of stochastic models. It consists
of sixteen papers, and we would like to thank all the authors for their positive answers to
our call for papers for the SI, as well as for their efforts to provide a high-quality contri-
bution. The outcome of each paper is also due to the reviewers, who helped the authors
to clarify their research, detect mistakes or come up with new ideas following the re-
view. Forty-two reviewers were involved in the revision of this SI, with between two and
three working on each paper. Therefore, we would like to recognize their commitment to
research improvement.

Among the papers with a theoretical approach to the SI’s subject matter, that of S. Jiang,
N. Liu and Y. Liu [1] focused on a theoretical analysis framework and computing issues
regarding the steady probabilities in block-structured, discrete-time Markov chains. Their
proposal extends previous results on quasi-birth-death processes.

The work of H. M. Alshanbari, Z. Ahmad, H. Al-Mofleh, C. B. Ampadu and S. K. Khosa [2]
proposes a method to obtain new probability distributions that cover the gap in models
that fit data sets with extreme values. This is a common problem in a number of areas,
such as reliability/survival, finance or hydrology, where heavy-tailed distributions are
required for goodness of fit. The major disadvantage of previous research is that a number
of parameters must be introduced to the models to ensure they have enough flexibility to
match extreme observations. The authors try to avoid this shortcoming, thus preventing
estimation and re-parametrization problems.

Z. Zhang and S. Ross [3] present new research on dueling bandit problems with the
objective of determining the best among a set of n players with games involving two
players. The authors aim to find the optimum policy that minimizes the expected number
of games needed to find the best player. The proposed strategy outperforms other policies
in the literature, and this superiority suggests its potential use for algorithm development
in large-scale applications.

The paper [4] by A. Oya addresses the solution to a number of problems in signal
processing by means of quaternion models, which have a higher capacity to manipu-
late multi-dimensional data than conventional kernel-based formulations. This research
presents a general framework based on Hilbert space theory that simplifies the statistical
treatment, resulting in a suitable approach to signal detection.

B. A. Escobedo-Trujillo, J. Garrido-Meléndez, G. Alcalá, and J. D. Revuelta-Acosta [5]
deal with an optimal control problem with applications in car suspension systems and
the accumulation of pollution caused by the consumption of gas, oil, etc. A number of
assumptions prove the existence of optimal controls that can be useful in real life, according
to the examples.

The research [6] carried out by A. García-Pérez is centered on robust statistics for
handling spatio-temporal data. He presents a new estimator of the variogram used in
prediction by kriging. When a random characteristic is measured at different locations and
times, sample data are realizations of a random field and the variogram is the function that

Mathematics 2023, 11, 3196. https://doi.org/10.3390/math11143196 https://www.mdpi.com/journal/mathematics
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measures the dependence between observations. This is a valuable tool for the analysis of
spatio-temporal phenomena such as temperature or precipitation, and the new estimators
defined in this paper are less sensitive to outliers than previous ones. The objective of
this investigation is, therefore, relevant to the analysis of climatic change and geostatistics,
among others.

The work [7] of J. Escobar and A. Poznyak addresses the problem of parameter
estimation in auto-regressive-moving average with exogenous input (ARMAX) models
under non-Gaussian noise. The authors also provide a review of the significant literature
on this subject. This type of time series is found in Econometrics studies.

The research [8] by A. G. Nogales focuses on Bayesian statistics, exploring the proper-
ties of the Bayes estimator of densities and sampling distributions. These estimators, which
are provided by the posterior predictive distribution and density, respectively, are key to
making inferences from the data. The Bayesian interpretation holds in many studies and is
expected to become more widely used in the era of Big Data.

A second group of papers [9–11] is centered on the application of stochastic models in
economics. M. C. Pocelli, M. L. Esquível, and N. P. Krasii [9] developed a spectral analysis
to distinguish Bitcoin from some traditional currencies and gold. The particular volatility
property of the former is highlighted.

L.-P. Shao, J.-J. Chen, L.-W. Pan and Z.-J. Yang [10] study the deregulated electricity
market. Using fuzzy variables and robust optimization, the authors provide the electricity
transaction policy under different expected costs so that the expectation of the risk-averse
distribution system operator is fulfilled.

J.C.J. Ferreira, A.P. Matias Gama, L. P. Fávero, R. Goulart Serra, P. Belfiore, I. Pinheiro
de Araújo Costa, and M. dos Santos [11] use quantile regression to explain the variability
in economic growth over time in emerging and developed countries. They also analyze
the significance of two explanatory variables, time and country, by means of random
coefficient models.

Four papers [12–15] are devoted to reliability/survival: G. M. Rodrigues, E. M. M.
Ortega, G. M. Cordeiro, and R. Vila [12] build a new quantile regression model to analyze
the effect of covariates on the quantiles of the survival times. When compared to classical
approaches, it presents several advantages and presents some of them as particular cases.

Two reliability measures, the residual lifetime and the inactivity time, are analyzed by
F.G. Badía and M.D. Berrade [13]. The authors study their behaviour under changing risks
when there are no observable covariates, using mixtures of distributions.

H. Lee, J.H. Cha and M. Finkelstein [14] present a preventive maintenance policy for a
system with two dependent components. The authors model the real-life situation when
non-failed components are severely affected by the failed ones. Thus, the reliability of the
former is worse after repairing the failed units than before the failure. This is known as a
worse-than-minimal repair.

Z. Zhang and W. Gui [15] deal with accelerated life testing. The authors consider a
cumulative risk model, assuming that there is a lagged effect of increasing the stress level,
rather than its being instantaneous. Their study involves a parameter estimation of the
Chen distribution, which is more flexible than the exponential and Weibull models.

The last paper [16] by R. Real-Miranda and J.D. López-Barrientos is connected to both
economics and reliability, as it is motivated by insurance in the extraction of non-renewable
resources. The probability of ruin is key for actuaries; therefore, the cost and the time to
failure have to be weighted. Stochastic dynamic programming is the basis of this research.

Funding: The work of both authors was supported by the Spanish Ministry of Science and Innovation
under Project PID2021-123737NB-I00.

Acknowledgments: We would like to thank Helene Hu from the Mathematics Editorial Office for
her friendly support and help in our task as guest editors. She has resolved all our concerns with
kindness and efficacy.

Conflicts of Interest: The authors declare no conflict of interests.
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A Wavelet-Based Computational Framework for a
Block-Structured Markov Chain with a Continuous
Phase Variable

Shuxia Jiang 1, Nian Liu 2 and Yuanyuan Liu 3,*

1 School of Traffic and Logistics, Central South University of Forestry and Technology, Changsha 410004, China
2 Department of Statistics and Probability, Michigan State University, East Lansing, MI 48824, USA
3 School of Mathematics and Statistics, HNP-LAMA, New Campus, Central South University,

Changsha 410083, China
* Correspondence: liuyy@csu.edu.cn

Abstract: We consider the computing issues of the steady probabilities for block-structured discrete-
time Makrov chains that are of upper-Hessenberg or lower-Hessenberg transition kernels with a
continuous phase set. An effective computational framework is proposed based on the wavelet
transform, which extends and modifies the arguments in the literature for quasi-birth-death (QBD)
processes. A numerical procedure is developed for computing the steady probabilities based on the
fast discrete wavelet transform, and several examples are presented to illustrate its effectiveness.

Keywords: Markov chains; stationary distribution; wavelet transform; numerical algorithm

MSC: 60J10; 33F05

1. Introduction

Consider a two-dimensional block-structured discrete-time Markov chain (DTMC)
{(Ln, Xn) : n ∈ N} on the state space N× R, where N and R are sets of non-negative
integers and real numbers, respectively. Denote by B(R) the Borel σ-field of the set R.
The transition probability law is time homogeneous and is characterized by the following
transition kernel

Pij(x, A) = P{(Ln+1, Xn+1) ∈ j× A|(Ln, Xn) = (i, x)},

where i, j ∈ N, x ∈ R and A ∈ B(R). Recall that a two-dimensional function F(x, A) is
called a kernel if it is a measurable function in x for each A ∈ B(R), and a non-negative
measure on R for each x ∈ R. When A = (−∞, y], we write F(x, A) to be F(x, y) for
simplicity. Note that the kernel function Pij(x, y) is stochastic in the sense that Pij(x, ∞) :=
limy→∞ ∑j≥0 Pij(x, y) = 1 for all i and all x. The level and phase of each state (i, x) are
respectively represented by the first component i and the second component x. For any
i ≥ 0, define �i = {(i, x) : x ∈ R} to be the i level set. Then, the state space E can be
decomposed as E =

⋃∞
i=0 �i. For n ≥ 1, the corresponding n-step transition kernel is

given by

Pn(i, x; j, A) = ∑
k∈N

∫
R

Pn−1(i, x; k, dz)P(k, z; j, A) = P{Xn ∈ j× A|X0 = (i, x)}.

Two different types of block-structured discrete-time Markov chains are the focus of
this paper. The first one is the discrete-time GI/M/1-type Markov chain, whose transition

Mathematics 2023, 11, 1587. https://doi.org/10.3390/math11071587 https://www.mdpi.com/journal/mathematics5
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kernel matrix PGI(x, y) := (PGI(i, x; j, y))i,j∈N is level independent and has the following
lower-Hessenberg block form:

PGI(x, y) =

⎛⎜⎜⎜⎜⎜⎝
B0(x, y) A0(x, y) 0 0 · · ·
B1(x, y) A1(x, y) A0(x, y) 0 · · ·
B2(x, y) A2(x, y) A1(x, y) A0(x, y) · · ·
B3(x, y) A3(x, y) A2(x, y) A1(x, y) · · ·

...
...

...
. . . . . .

⎞⎟⎟⎟⎟⎟⎠. (1)

The second one is the discrete-time M/G/1-type Markov chain, whose transition
kernel matrix PM(x, y) := (PM(i, x; j, y))i,j∈N is level independent and has the following
upper-Hessenberg block form:

PM(x, y) =

⎛⎜⎜⎜⎜⎜⎝
B0(x, y) B1(x, y) B2(x, y) B3(x, y) · · ·
A0(x, y) A1(x, y) A2(x, y) A3(x, y) · · ·

0 A0(x, y) A1(x, y) A2(x, y) · · ·
0 0 A0(x, y) A1(x, y) · · ·
...

...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎠, (2)

These block-structured Markov chains are of the special features that the transition of
the level is skip-free to the right or skip-free to the left, respectively.

Tweedie [1] proposed the GI/M/1-type Markov chain with a continuous phase set
and demonstrated that the positive recurrent GI/M/1-type Markov chain is of the operator-
geometric stationary distribution. Thus, Tweedie [1] extended the well-known results for
the GI/M/1-type Markov chain with a finite phase set, which was derived by Neuts [2].
Tweedie’s finding was later applied by Breuer [3] to investigate the stationary distribution
for the embedded GI/G/k queue with a Lebsegue-dominated inter-arrival time distribution.
A positive recurrent tridiagonal block-structured quasi-birth-death (QBD) process with a
continuous phase set, as well as a computational framework of its stationary distribution,
are investigated by Nielsen and Ramaswami [4]. They also demonstrated the motivation
for investigating a model with a continuous phase set. The computational framework
was recently extended and improved by Jiang et al. [5] by incorporating the wavelet
transform approach.

The GI/M/1-type and M/G/1-type Markov chains with a finite phase set were
investigated systematically by Neuts in 1981 [2] and 1989 [6], respectively. Effective solver
tools for solving the stationary distribution for these chains were developed by Bini et al.
in [7], based on the algorithms collected in [8]. It is known that the matrices R and G
are key matrices for solving stationary distributions for GI/M/1-type and M/G/1-type
Markov chains, respectively. Since R and G are closely connected by Ramaswami dual
and Bright dual, the computation of matrix R for GI/M/1-type chains can be reduced to
the computation of matrix G for M/G/1-type Markov chains ([9–12]). Several effective
algorithms have been developed to compute the matrix G, such as functional iteration,
Newton iteration, invariant subspace method, cyclic reduction and Ramaswami Reduction.
Please refer to [13] for a detailed description of the algorithms.

As far as we know, the following two issues are still not well addressed in the literature:
(i) For a positive recurrent GI/M/1-type Markov chain with a continuous phase set,

numerical algorithms for computing the stationary distribution are missing, although the
theoretical framework has been established in [1],

(ii) M/G/1-type Markov chains are of the same importance as GI/M/1-type Markov
chains. However, both the theoretical and computational framework are missing for
M/G/1-type Markov chains with a continuous phase set.

The current research is motivated to investigate the above two issues. This paper is
organized into six sections. We provide an overview of DTMCs on a general state space and
the wavelet series expansion in two dimensions in Section 2. The GI/M/1-type Markov

6



Mathematics 2023, 11, 1587

chains are introduced in Section 3, most of which are well known in the literature [1], except
for the computational analysis. The analysis of stationary distributions for M/G/1-type
Markov chains is performed in Section 4. Numerical experiments, including a brief de-
scription of numerical algorithms and two illustrative examples, are presented in Section 5.
Comparisons among different algorithms are executed with respect to the accuracy and
speed of calculation. Conclusions are presented in Section 6. Please refer to Table A1 for a
summary of frequently used notations.

2. Preliminaries

2.1. Basics about DTMCs on a General State Space

We present some basic concepts for DTMCs on a general state space. Please refer
to [14] for more details.

Let Φn be a DTMC on a general state space E endowed with the countably generated
σ-field B(E). Define τA = {n ≥ 1 : Φn ∈ A} to be the first return time on A. For a
non-negative nontrivial measure ψ, the chain Φn is called ψ-irreducible if there exits a
non-negative nontrivial measure ϕ, such that Φn is ϕ-irreducible, i.e.,

L(x, A) := P{τA < ∞|Φ0 = x} > 0

for any A ∈ B(E), ϕ(A) > 0 and any x ∈ A, and ψ is a maximal irreducible measure
with respect to ϕ. A set A ∈ B(E) is called a Harris recurrent if L(x, A) = 1 for all
x ∈ A. The chain Φn is called a Harris recurrent if it is ψ-irreducible and every set in
B+(E) := {A ∈ B(E) : ψ(A) > 0} is Harris recurrent. A Harris recurrent chain has an
unique invariant measure Π such that

Π(A) =
∫

E
Π(dx)P(x, A).

A Harris recurrent chain with a finite Π(E) is said to be Harris positive recurrent.
If Φn is Harris positive recurrent and aperiodic, then

Π(A) = lim
n→∞

Pn(x, A),

which implies that the limit of the transition kernel exists independently of the initial
state (i, x). In this case, Π(A) is called the invariant probability measure or the stationary
probability distribution.

We now introduce the censored Markov chain, which will be used later to deal with the
invariant probability distributions for block-structured Harris positive recurrent chains. Let
A be a non-empty subset in B(E). Let θk be the kth time that Φn successively visits a state
in A, i.e., θ0 = inf{m ≥ 0 : Φm ∈ A} and θk+1 = inf{m ≥ θk + 1 : Φm ∈ A}. The censored
Markov chain ΦA =

{
ΦA

k , k ≥ 0
}

on A is defined by ΦA
k = Φθk , k ≥ 0, whose one-step

transition kernel is denoted by PA(x, B), x ∈ E, B ∈ B(E). Define

APn(x, B) = P{Φn ∈ B, Φm /∈ A, 1 ≤ m ≤ n | Φ0 = x},

and

UA(x, B) =
∞

∑
n=1

APn(x, B).

When starting with Φ0 = x ∈ A and B ⊆ A, the censored chain ΦA evolves according
to the transition law

PA(x, B) = UA(x, B) = P{ΦτA ∈ B | Φ0 = x}.

7
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2.2. Basics about Wavelet in Two Dimensions

This section is concerned on some basics about the wavelet, most of which is taken
from [5] directly. Please refer to [15,16] for more details about the wavelet analysis.

Respectively denote the scaling function and the wavelet function by φ and ψ. For all
j ∈ Z, let φj,n(x) = 2−j/2φ

(
2−j(x− 2jn)

)
and ψj,n(x) = 2−j/2ψ

(
2−j(x− 2jn)

)
. Define

three wavelets

W(1)(x1, x2) = φ(x1)ψ(x2), W(2)(x1, x2) = ψ(x1)φ(x2), W(3)(x1, x2) = ψ(x1)ψ(x2),

and for all j in Z,

W(k)
j,n1,n2

(x1, x2) =
1
2j W(k)

(
x1 − 2jn1

2j ,
x2 − 2jn2

2j

)
, n1, n2 ∈ Z, 1 ≤ k ≤ 3.

Now, we consider the wavelet series expansion of a two-dimensional function. For each
i ∈ Z, define column vectors φi(x) = [φi,n(x) : n ∈ Z], ψi(x) = [ψi,n(x) : n ∈ Z],

and ζi(x) =
[
φT

i (x), ψT
i (x)

]T . By Lemma 3.1 in [5], any function u(x, y) ∈ L2(R2) can be
expanded as follows

u(x, y) = ζT(x)Uζ(y), (3)

where ζ(x) = [ζi(x) : i ∈ Z] is a column vector, the diagonal blocks of U are written as

Ui =

[
0 U(1)

i

U(3)
i U(3)

i

]

with (U(k)
i )m,n =< u, W(k)

i,m,n >.
Let U(x, y) be a kernel function whose density function is assumed to exist and is

denoted by u(x, y) := ∂U(x,y)
∂y . On the one hand, by performing (3) for the density of the

kernel function U(x, y), which is referred to as the wavelet transform (WT), we can find the
matrix U, also known as the associated matrix of U(x, y). On the other hand, for a given
associated matrix U, we can find the density function u(x, y) by performing (3) in the other
side, which is called the inverse wavelet transform (IWT).

As you will see in the following sections, it is crucial to deal with the convolution
operations of the transition kernels in order to investigate the stationary distributions.
The wavelet transform is introduced to transform these convolution operations into matrix
operations by expanding the kernels using the wavelet series. For any A ∈ B(E), define
the convolution C1 ∗ C2 of two kernel functions C1(x, y) and C2(x, y) by

C1 ∗ C2(x, A) =
∫
R

C1(x, dz)C2(z, A),

and define C(k)
1 (x, y) recursively by

C(k)
1 (x, y) =

∫
R

C(k−1)
1 (x, dz)C1(z, y) =

∫
R

C1(x, dz)C(k−1)
1 (z, y),

where C(0)
1 (x, x) = 1 and C(0)

1 (x, y) = 0 for any y �= x. If ν is a signed measure on E,
we write

ν ∗ C1(A) =
∫

E
ν(dx)C1(x, A).

In order to expand the kernel functions through the wavelet transform, we need the
following assumption and theorem, which are both taken from [5].

8
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Assumption 1. All the kernel functions Bi(x, y) and Ai(x, y), i ≥ −1 belong to ∑H, where
H ⊂ R is of finite Lebesgue measure, and ∑H is the set of kernel functions U(x, y) having a density
function u(x, y) equaling to zeros outside of H × H.

Theorem 1 ([5]). Let {Fk(x, y), k ≥ 1} be a sequence of kernel functions in ∑H. Denote their
density functions by { fk(x, y), k ≥ 1}, and their associated matrices by {F̄k, k ≥ 1}.

(i) For any fixed n, the convolution kernel function F1 ∗ F2 ∗ · · · ∗ Fn(x, y) is also in ∑H, and
its associated matrix is ∏n

k=1 F̄k;
(ii) For any fixed n, the additive kernel function (F1 + F2 + · · ·+ Fn)(x, y) is also in ∑H and

its associated matrix is ∑n
k=1 F̄k;

(iii) If fn(x, y) converges to f (x, y), then the kernel function F(x, y) :=
∫ y
−∞ f (x, y)dy is

also in ∑H, and its associated matrix is F̄ = limn→∞ F̄n.

3. GI/M/1-Type Markov Chains

Consider a GI/M/1-type Markov chain (Ln, Xn), whose transition law P given by (1)
satisfies that for any C ∈ B(R)

P(i, x; j,R) = 0, j > i + 1,

P(i, x; j, C) = Ai−j+1(x, C), i ≥ j− 1, j ≥ 1,

P(i, x; 0, C) = Bi(x, C), i ≥ 0.

Define the kernel R(x, C) to be the expected number of visits to (i + 1)× C, starting
from (i, x) under the taboo set of

⋃i
k=0 �k. From [1], we know that the censored Markov

chain (Ln, Xn)�0 of the GI/M/1-type Markov chain on the zero level set �0 has the following
transition kernel

P�0
GI(x, C) =

∞

∑
k=0

R(k) ∗ Bk(x, C).

The following theorem is taken from [1], which characterizes the invariant probability
measure for GI/M/1-type Markov chains with a continuous phase set.

Theorem 2 ([1]). Suppose that the GI/M/1-type Markov Chain (Ln, Xn) with a continuous phase
set is Ψ-irreducible and Harris positive recurrent. Then, its unique stationary probability measure Π,
decomposed by Π(A) = (Π0(A), Π1(A), Π2(A), · · · ), satisfies the following recursive formula

Πk(A) = Π0 ∗ R(k)(A),

where the kernel R(x, A) is the minimal non-negative solution of the following equation

R(x, A) =
∞

∑
i=0

R(i) ∗ Ai(x, A),

and Π0(A) is uniquely determined by

Π0 ∗ P�0
GI(x, A) = Π0(A),

∞

∑
k=0

Π0 ∗ R(k)(x, E) = 1.

Applying Theorem 2 and Theorem 1, we can obtain the following theorem directly.

Theorem 3. Suppose that the GI/M/1-type Markov Chain (Ln, Xn) with a continuous phase set is
ψ-irreducible and Harris positive recurrent and that Assumption 1 holds.

(i) The kernels P�0
GI(x, y) and R(x, y) are in ∑H, whose associated matrices are, respectively,

denoted by P̄�0
GI, R̄ and B̄k.

9
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(ii) The invariant probability measure Πk is in ∑H. Let Π̄k be the associated row vector
of Πk(y), i.e., πk(y) = Π̄kζ(y), where πk(y) is the density of Πk(y), and ζ(y) is defined in
Section 2.2. Then, we have

Π̄k = Π̄0R̄(k),

and
Π̄0 P̄�0

GI = Π̄0, Π̄0(I − R̄)−11 = 1,

where P̄�0
GI = ∑∞

k=0 R̄(k) B̄k and 1 is the vector of 1’s with an appropriate dimension.

4. M/G/1-Type Markov Chains

In this section, we consider a M/G/1-type Markov Chain (Ln, Xn), whose transition
law P, given by (1), satisfies that for any C ∈ B(R)

P(i, x; j, C) = 0, for j < i− 1, i ≥ 1,

P(0, x; j, C) = Bj(x, C),

P(i, x; j, C) = Aj−i+1(x, C), for j ≥ i− 1, i ≥ 1.

Define τ�i
= inf{n ≥ 1 : Ln ∈ �i} to be the first return time to the level set �i for any

i ≥ 0. For any x ∈ R and any A ∈ B(R), define the following kernel function

G(x, A) = P
{

τ�i
< ∞, Xτ�i

∈ A | L0 = i + 1, X0 = x
}

,

which is independent of i due to the level independent structure of the chain. The first
result is about the kernel G(x, A), which plays a key role in analyzing M/G/1-type
Markov chains.

Theorem 4. Suppose that the M/G/1-type Markov chain (Ln, Xn) is ψ-irreducible. For any
A ∈ B(R), the kernel G(x, A) is the minimal nonnegative solution of the following equation

G(x, A) =
∞

∑
i=0

Ai ∗ G(i)(x, A), (4)

where G(i)(x, A) is the i-fold convolution of the kernel G(x, A) itself.

Proof. We first show that the kernel G(x, A) is a solution of Equation (4).
By conditioning on the state of the first transition, the kernel G(x, A) can be decom-

posed as follows

G(x, A) =
∫
R

∑
i∈N

[P{L1 = i, X1 ∈ dy | L0 = 1, X0 = x}

×P
{

τ�0 < ∞, Xτ�0
∈ A | L0 = i, X0 = y

}]
=

∫
R

∑
i∈N

Ai(x, dy)P
{

τ�0 < ∞, Xτ�0
∈ A | L0 = i, X0 = y

}
. (5)

We will use the inductive arguments to show

G(i)(y, A) = P
{

τ�0 < ∞, Xτ�0
∈ A | L0 = i, X0 = y

}
, i ≥ 1. (6)

Since the chain is level independent, when i = 1, we have

G(1)(y, A) = G(y, A) = P
{

τ�k
< ∞, Xτ�k

∈ A | L0 = k + 1, X0 = y
}

10
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for any k ≥ 0. Suppose that G(n) satisfies

G(n)(y, A) = P
{

τ�0 < ∞, Xτ�0
∈ A | L0 = n, X0 = y

}
.

By conditioning on the state of the first hitting on level �n and using the strong Markov
property, we have

P
{

τ�0 < ∞, Xτ�0
∈ A | L0 = n + 1, X0 = y

}
=
∫
R

P
{

τ�n < ∞, Xτ�n
∈ dx | L0 = n + 1, X0 = y

}
P
{

τ�0 < ∞, Xτ�0
∈ A | Lτ�n

= n, Xτ�n
= x
}

=
∫
R

P
{

τ�n < ∞, Xτ�n
∈ dx | L0 = n + 1, X0 = y

}
P
{

τ�0 < ∞, Xτ�0
∈ A | L0 = n, X0 = x

}
=
∫
R

G(1)(y, dx)G(n)(x, A)

= G(n+1)(y, A).

Substituting (6) into (5), we have

G(x, A) =
∫
R

∞

∑
i=0

Ai(x, dy)G(i)(y, A) =
∞

∑
i=0

Ai ∗ G(i)(y, A),

where we exchange the order between integration and summation by Fubini theorem.
Next we demonstrate that G(x, A) is the minimal non-negative solution of (4). We

divide the proof into two steps.
We first define a sequence of kernels {TN(x, A), N ≥ 1} by setting T0(x, A) = 0, and

TN+1(x, A) =
∞

∑
i=0

Ai ∗ T(i)
N (x, A), N ≥ 0.

Let Ĝ(x, A) be any solution of Equation (4). Obviously, Ĝ(x, A) ≥ 0 = T0(x, A).
Suppose that TN−1(x, A) ≤ Ĝ(x, A), then T(i)

N−1(x, A) ≤ Ĝ(i)(x, A) for i ≥ 1. Moreover,
we have

TN(x, A) =
∞

∑
i=0

Ai ∗ T(i)
N−1(x, A) ≤

∞

∑
i=0

Ai ∗ Ĝ(i)(x, A) = Ĝ(x, A). (7)

Similarly, if we assume inductively that TN−1(x, A) ≤ TN(x, A) , we have

TN(x, A) =
∞

∑
i=0

Ai ∗ T(i)
N−1(x, A) ≤

∞

∑
i=0

Ai ∗ T(i)
N (x, A) = TN+1(x, A),

and so TN(x, A) is monotonically increasing in N. Hence, the limit T∗(x, A) := limN→∞ ↑
TN(x, A) exists. Further, we have

T(k)
N (x, A) ↑ T(k)

∗ (x, A), k ≥ 1,

By taking the limit of both sides of Equation (6) and using the dominated convergence
theorem, we know that the kernel T∗(x, A) is a solution of (4), i.e.,

T∗(x, A) =
∞

∑
i=0

Ai ∗ T(i)
∗ (x, A),

We further have that T∗(x, A) is the minimal solution since T∗(x, A) ≤ Ĝ(x, A).

11
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Next, we need to prove that T∗(x, A) = G(x, A). Define

GN(x, A) = P
{

τ�0 ≤ N, Xτ�0
∈ A | L0 = 1, X0 = x

}
, N ≥ 1.

Obviously, we know that GN(x, A) ↑ G(x, A). By conditioning on the state of the first
transition, we have

GN+1(x, A) =
∫
R

N

∑
i=0

P
{

τ�0 ≤ N, Xτ�0
∈ A | L0 = i, X0 = y

}
× P{L1 = i, X1 ∈ dy | L0 = 1, X0 = x}. (8)

Denote
M(i)

N (y, A) = P
{

τ�0 ≤ N, Xτ�0
∈ A | L0 = i, X0 = y

}
.

By conditioning on the state of the first return time to level �i−1 and repeating the
same arguments, we have

M(i)
N (y, A) ≤

∫
R

P
{

τ�i−1
≤ N, Xτ�i−1

∈ dx | L0 = i, X0 = y
}

M(i−1)
N (x, A)

= G(1)
N ∗ M(i−1)

N (y, A)

≤ G(2)
N ∗ M(i−2)

N (y, A)

≤ · · ·
≤ G(i−1)

N ∗ M(1)
N (y, A)

= G(i)
N (y, A). (9)

By (8) and (9), we can deduce that

GN+1(x, A) ≤
∫
R

N

∑
i=0

Ai(x, dy)G(i)
N (y, A)

≤
∫
R

∞

∑
i=0

Ai(x, dy)G(i)
N (y, A)

=
∞

∑
i=0

Ai ∗ G(i)
N (x, A)

Finally, note that G1(x, A) = A0(x, A) = T1(x, A), and so from (6), we have by
induction GN(x, A) ≤ TN(x, A). Taking the limit as N → ∞ gives G(x, A) ≤ T∗(x, A), as
required.

In the following, we will investigate numerical computing issues of the invariant
probability distribution for M/G/1-type chains. The key point is to set up the Ramaswami
algorithm, a well-known result for M/G/1-type chains with finite phases, for the M/G/1-
type chains with continuous phases.

Theorem 5. Suppose that the M/G/1-type Markov chain (Ln, Xn) is ψ-irreducible and Harris pos-
itive recurrent. Let the unique invariant probability measure be Π with Π(C) = (Π0(C), Π1(C),
Π2(C), . . . ), C ∈ B(R). Then, the measure Π satisfies the following recursive formula

Πk(C) = Π0 ∗ B̂k(C) +
k

∑
i=1

Πi ∗ Âk+1−i(C), (10)

where

B̂k(x, C) =
∞

∑
i=k

Bi ∗ G(i−k)(x, C), k ∈ N,

12
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Âm(x, C) =
∞

∑
i=m

Ai ∗ G(i−m)(x, C), 1 ≤ m ≤ k, (11)

and Π0 is a unique solution of the equation Π0(C) = Π0 ∗ B̂0(C).

Proof. By (6), we know that for any v ≥ 1 and i ≥ 0, the kernel function G(v)(x, C) is the
probability that the Markov chain first returns to level �i by hitting the state (i, C), given
that it starts from the state (i + v, x). The transition kernel function of the Markov chain
embedded at epochs of visits to the set A =

⋃∞
m=0 �m is given by

PA(x, C) =

⎛⎜⎜⎜⎜⎜⎝
B0(x, C) B1(x, C) . . . Bk−1(x, C) B̂k(x, C)
A0(x, C) A1(x, C) . . . Ak−1(x, C) Âk(x, C)

0 A0(x, C) . . . Ak−2(x, C) Âk−1(x, C)
...

...
...

...
0 0 . . . A0(x, C) Â1(x, C)

⎞⎟⎟⎟⎟⎟⎠.

We now explain how to determine the transition kernel PA(x, C). The first k block
columns of the kernel function PA(x, C) are the same as those of P(x, C), since the chain
(Ln, Xn) can only move down by one level at a time. As for the (k + 1)th (i.e., last) block
column of PA(x, C), its first entry is as follows.

B̂k(x, C) = P{(L1, X1)
A ∈ k× C | (L0, X0)

A = (0, x)}
= P{L1 = k, X1 ∈ C | L0 = 0, X0 = x}

+
∞

∑
i=k+1

∫
R
[P{L1 = i, X1 ∈ dy | L0 = 0, X0 = x}

×P{τ�k
< ∞, Xτ�k

∈ C | L1 = i, X1 = y}]

= Bk(x, C) +
∞

∑
i=k+1

Bi ∗ G(i−k)(x, C)

=
∞

∑
i=k

Bi ∗ G(i−k)(x, C).

The equality (11) can be proved in a similar way.
Since this chain (Ln, Xn) is ψ-irreducible and a Harris positive recurrent, for ∀x ∈

X, M ⊆ E, starting from x, the set M will almost certainly be returned infinitely, and so is
the censored Markov chain (Ln, Xn)A. Thus, (Ln, Xn)A is also ψ-irreducible and a Harris
positive recurrent. Let ΠA(C) = (ΠA

0 (C), ΠA
1 (C), . . . , ΠA

k (C)) be the unique invariant
probability measure of (Ln, Xn)A.

Next, we will demonstrate that (Π0(C), Π1(C), . . . , Πk(C)) is also an invariant mea-
sure of the censored chain ΦA

n . Define the measure Π◦ by

Π◦
i (C) :=

∫
R

ΠA
i (dx)UA(x, i× C), i ∈ N.

By Propostion 10.4.8 in [14], we know that

ΠA
i (C) = Π◦

i (C), 0 ≤ i ≤ k (12)

and that Π◦ is invariant measure for (Ln, Xn). Since (Ln, Xn) is assumed to be a Harris
positive recurrent, the invariant measure is unique up to a constant. This shows that
Π◦(C) = cΠ(C) for some constant c, from which and (12), and we have

ΠA
i (C) = cΠi(C), for 0 ≤ i ≤ k.

13



Mathematics 2023, 11, 1587

Since ∑k
i=0 ΠA

i (−∞, ∞) = 1, we can obtain

c =
1

∑k
i=0 Πi(−∞, ∞)

.

Thus, we have proved that (Π0, Π1, Π2, . . . , Πk) is an invariant measure of ΦA. Taking
into account the last block equation of ΠA(C) = Π ∗ PA(C), we have

Πk(y) = Π0 ∗ B̂k(y) +
k

∑
i=1

Πi ∗ Âk+1−i(y), k ≥ 1. (13)

This proves (10).
To determine Π0(C), we reset A = �0 and consider the censored chain (Ln, Xn)A,

whose transition kernel is given by

P�0(x, C) = B̂0(x, C).

By (13), we know that Π0(C) = Π0 ∗ B̂0(C).

Applying Theorem 5 and performing the wavelet series expansion, we can obtain the
following theorem directly.

Theorem 6. Suppose that the M/G/1-type Markov chain (Ln, Xn) is ψ-irreducible and Harris
positive recurrent and that Assumption 1 holds.

(i) The kernels G(x, y), Āk(x, y) and B̄k(x, y) are in ∑H, whose associated matrices satis-
fies that

¯̂Bk =
∞

∑
i=k

BiḠi−k, ¯̂Ak =
∞

∑
i=k

AiḠi−k.

(ii) The invariant probability measure Πk is in ∑H. Let Π̄k be the associated row vector of
Πk(y). Then, the associated matrices satisfy

Π̄k =

[
Π̄0

¯̂Bk +
k−1

∑
i=1

Π̄i
¯̂Ak+1−i

](
I − ¯̂A1

)−1
, k ≥ 1, (14)

where Π̄0 = Π̄0
¯̂B0.

Remark 1. (i) We note that the entries in the associated matrices of a kernel function may be
negative. Hence, the associated transition kernel matrices Ā′

ks and B̄′ks cannot construct a stochastic
transition matrix.

(ii) We now consider numerical algorithms for computing the associated matrix Ḡ. In the litera-
ture, several known algorithms, including the functional iteration ([17,18]), Newton iteration ([19]),
invariant subspace method ([20]), cyclic reduction ([21]) and Ramaswami Reduction ([22]), have
been developed to solve the G-matrix for M/G/1-type chains with a finite phase. For a collection of
these algorithms, please refer to [13]. Similar to what we did in Theorems 4 and 5, we can set up the
corresponding algorithms for Ḡ by modifying these algorithms from the finite phase to the general
phase. We omit the details in order to avoid tedious presentations.

5. Numerical Experiments

5.1. Discrete Wavelet Transforms

We need to perform discrete wavelet transforms for numerical experiments. Without a
loss of generality, we assume that the phase space is taken to be R. In the following, we
only give a simple presentation of the computation framework; please refer to Section 5
in [5] for more details.

14
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We first consider numerical issues of the M/G/1-type Markov chain with a continuous
phase, which are divided into the following steps:

Step 1: Choose appropriate real numbers y, y and positive integer N. Then, evenly
sample N points from the truncated phase space [y, y]. Performing the DWT in Algorithm
5.1 in [5] to kernels Ai(x, y) and Bi(x, y) produces the associated sample matrices (Ai)asm
and (Bi)asm.

Step 2: Solve the the associated sample matrix Gasm through the algorithms listed in
(ii) of Remark 1, such as functional iteration, Newton iteration, invariant subspace method,
cyclic reduction and Ramaswami Reduction.

Step 3: Solve the associated sample invariant probability vector Πasm using Theorem 6.
Step 4: Performing the IDWT in Algorithm 5.2 in [5] to the matrix of Gasm and the

vector Πasm produces the kernels G(x, y) and Π(x).
Now, we consider numerical issues of GI/M/1-type Markov chains with the continu-

ous phase, which are also divided into four steps. The first step and the last step are the
same as that for the M/G/1-type Markov chains. In Step 3, we solve the associated sample
invariant probability vector Πasm based on Theorem 3. For Step 2, we use the Ramaswami
dual to solve the associated sample matrix Rasm. It is known that the Ramaswami dual [11]
enables us to compute the matrix R for a GI/M/1-type chain with a finite phase in terms of
computing the matrix G for a dual M/G/1-type Markov chain. Note that the Ramaswami
dual can be modified and extended to the case of M/G/1-type and GI/M/1-type chains
with a continuous phase.

5.2. Illustration with Examples
5.2.1. Example 1: An M/G/1-Type Chain

The Markov chain in this example is modified from Example 2 in [5] by extending the
tri-diagonal structure to the more general upper-Hessenberg setting.

Denote by Si, i ≥ 0 the arrival times of a Poisson process with parameter λ. Let S0 = 0.
Define a sequence of i.i.d. random variables V(Sn), n � 0, which are distributed with

P{V(Sn) = j} = pj, j ≥ −1,

where p′js are non-negative constants such that ∑∞
j=−1 pj = 1. We define

L(t) =
{

L(S0) = L(0), if 0 = S0 � t < S1,
max{0, L(Sn−1) + j}, if V(Sn) = j, Sn � t < Sn+1,

(15)

Y(t) =
{

Y(Sk) + (t− Sk), if V(Sk) = �, Sk � t < Sk+1,
t− Sk, if V(Sk) = −1, Sk � t < Sk+1,

(16)

where n ≥ 1, j ≥ −1, k ≥ 0, � ≥ 0.
Let Ln = L(Sn) and Yn = Y(Sn+1 − 0), then (Ln, Yn) is a M/G/1-type chain, whose

phase space is R+. Its transition kernels are derived as

A0(x, y) = p−1
(
1− e−λy), for all x, y,

Aj+1(x, y) =

{
0, if y < x;
pj

[
1− e−λ(y−x)

]
, if y � x,

if j ≥ 0.
(17)

and finally

B0(x, y) = A0(x, y) + A1(x, y), Bi(x, y) = Ai+1(x, y), i ≥ 1. (18)
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The marginal invariant probability measures for the M/G/1-type chain (Ln, Yn) has
analytical expressions, as follows:

LΠ0 =
p−1−∑∞

n=0 npn
p−1

,

LΠk =
Lπ0(∑∞

n=k pn)+∑k−1
i=1 ∑∞

j=0 Lπi pk−i+j
p−1

,

PΠ(y) =
{

0, if y < 0
1− e−λp−1y, if y � 0,

(19)

where LΠk and PΠ(y) are, respectively, the level and phase marginal invariant probabil-
ity measures.

Take p−1 = 1
2 , pk = ( 1

3 )
k+1, k ≥ 0. From (19), we can have the following exact value

of the marginal level stationary probabilities

LΠ0 =
1
2

, LΠk =
1
4
(

2
3
)k, k ≥ 1.

Evenly take 256 samples on [0, 45] as values of x and 256 samples on [0, 50] as values of
y, and choose the Haar wavelet for the wavelet transform. Figure 1 presents the numerical
solutions of kernel functions G(x, y). The marginal distributions are obtained numerically
based on the Gasm solved by functional iteration. The numerical solutions for level marginal
distribution and phase marginal distribution are, respectively, shown in Figures 2 and 3,
together with the corresponding analytical solutions. For each method used to derive Gasm,
we calculate its mean absolute error defined as 1

K+1 ∑K
k=0 |LΠk −L Π̂k|, where K = 500 and

LΠ̂k is the numerical solution of the marginal level stationary probability at level k. (We
take K = 500 because values of LΠk when k > 500 are small enough to be considered as neg-
ligible.) In this example, different methods of solving matrix G lead to the same numerical
solutions of level and phase marginal distributions. According to Figure 4, performances
of various methods are similar in the sense of accuracy and computational time.

Figure 1. Numerical solution of kernel function G(x, y).
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Figure 2. Level marginal invariant probability distribution LΠk.

Figure 3. Phase marginal invariant probability distribution PΠ(y).

Figure 4. Difference among methods on level marginal invariant probability distribution LΠk.
The legend of the first plot includes mean absolute errors, and the legend of the second plot in-
cludes computational times. (FI: functional iteration, CR: cyclic reduction, NI: Newton iteration, RR:
Ramaswami Reduction and IS: invariant subspace)

5.2.2. Example 2: A GI/M/1-Type Chain

Consider a first-come first-served single server GI/G/1 queuing system, which was
considered by [1] for the theoretical analysis of the invariant probability distribution.
Here, we consider the computational issue. In this GI/G/1 queue, the service times and
interarrival times are distributed with general distribution functions S(x) and F(x). We
assume that both the mean arrival interval λ =

∫ ∞
0 tdF(t) and the mean service time

μ0 :=
∫ ∞

0 tdS(t) are finite.
Let Ln be the number of customers right before the arrival time of the nth customer

and let Xn be the remaining service time just after the nth arrival. Let Zn be the departure

17
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time of the nth customer, and let X(t) be the remaining service time at time t of a customer
who is receiving the service. Write

Dt
n(x, y) = P{Zn ≤ t < Zn+1, X(t) ≤ y|X(0) = x}.

Then, (Ln, Xn), n ≥ 1 is a GI/M/1-type Markov chain with discrete levels and contin-
uous phases, whose transition probabilities are given by (1) with (see [1])

An(x, y) =
∫ ∞

0
Dt

n(x, y)dF(t), (20)

Bn(x, y) =

(
∞

∑
j=n+1

Aj(x, ∞)

)
S(y). (21)

From [1], we know that if λ > μ0, then (Ln, Xn) has an invariant probability measure
Πj with

Πk(·) = d
∫ ∞

0
dS(x)R(k)(x, ·)

where the constant d is given by

d = 1 +

(∫ ∞

0

[
∞

∑
n=0

Fn∗(x)

]
dS(x)

)[
exp

∞

∑
n=1

(
1−

∫ ∞

0
[1− Fn∗(x)]dS∗n(x)

)
/n

]
.

To illustrate our algorithm, we would like to compare numerical solutions for the level
of marginal distribution with its analytical value. For numerical calculation, let F(t) be
uniformly distributed in the interval (0, 1], i.e., F(t) ∼ U(0, 1), and let the service time be
exponentially distributed with parameter μ, i.e., S(t) ∼ exp(μ). Then we have, for n ≥ 1

Dt
n(x, y) =

{
μn−1(t−x)n−1

(n−1)! (e−μ(t−x) − e−μ(t−x+y)), t ≥ x,
0, t < x,

and, for n = 0
Dt

0(x, y) = I[0,y](x− t).

The kernels An(x, y) and Bn(x, y) are calculated as follows. For n ≥ 1, by (20)

An(x, y) =
∫ 1

x

μn−1(t− x)n−1

(n− 1)!

(
e−μ(t−x) − e−μ(t−x+y)

)
dt

=
1− e−μy

μ

∫ 1−x

0

μn

(n− 1)!
tn−1e−μtdt.

For 0 ≤ x ≤ 1, y ≥ x

A0(x, y) =
∫ x

x−y
1dt =

∫ x

0
1dt = x,

and for 0 ≤ x ≤ 1, y < x

A0(x, y) =
∫ x

x−y
1dt = y.

For n ≥ 0, by (21) we have

Bn(x, y) = (1− e−μy) ·
∫ 1−x

0

[
1−

n−1

∑
j=0

e−μt (μt)j

j!

]
dt.
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Since λ = 1/2 and E[S] = μ0 = 1
μ , the queuing system is stable if

ρ =
1/λ

1/E[S]
=

E[S]
λ

=
2
μ
< 1.

It is well known that the level marginal invariant probability distribution is

LΠj = cj(1− c),

where c is the solution of
∫ ∞

0 e−μt(1−c)dF(t) = c on the interval [0, 1]. Since F ∼ U(0, 1),
then

e(c−1)μ − 1 = c(c− 1)μ.

For numerical experiments, we take μ = 4.7. The constant c is solved to be approxi-
mately 0.2885. The exact marginal level distribution LΠ can be obtained. On the other hand,
we can perform the numerical algorithm in the previous section to approximate LΠ. We
may then compare the numerical results to the analytical results, and provide a verification
of the algorithm afterward. Here, we do not consider the marginal phase distribution, since
its closed form cannot be obtained.

Evenly take 256 samples on [0, 1] as values of x and 256 samples on [0, 1.5] as values of
y, and choose the Haar wavelet for a wavelet transform. The numerical solutions of kernel
functions G(x, y) and R(x, y) are shown in Figure 5. The level marginal distribution of
this queuing system could be computed by a previous algorithm. We show the numerical
solutions using Gasm solved by functional iteration, together with the analytical solutions
in Figure 6. Among the five numerical methods mentioned in (ii) of Remark 1, we note
that the method of the invariant subspace does not work during the run of the algorithm,
which may be caused by the fact that some matrices are not invertible. With numerical
solutions of marginal invariant probability distributions for the level and phase, we can
further estimate the mean and variance of the queue length and the remaining service time,
which are listed in Table 1. This implies practical uses of invariant probability distributions.

Since we are not able to obtain analytical solutions of marginal invariant probability
distributions for the phase, only the analytical mean and variance for the level are presented
in Table 1. When using the Ramaswami reduction, the mean queue length is the most
accurate among four methods, but the variance of the queue length is not close to the
analytical variance. However, the mean and variance solved using the functional iteration
are both relatively accurate.

Figure 5. Numerical solutions of kernel functions. The right picture is about the kernel R(x, y),
and the left is about its dual kernel G(x, y).
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Figure 6. Level marginal invariant probability distribution LΠk.

We compare properties of the other four methods according to their mean absolute
errors and speeds of computation. From Figure 7 and Table 1, the functional iteration
performs the best among all the four methods, since it is the fastest and also the most
accurate. When we raise the sample size from 256 to 512, it takes 20.98 s to solve Gasm
using a functional iteration. The computational times of the cyclic reduction, Newton
iteration and Ramaswami reduction are 116.35 s, 1997.53 s and 2191.45 s, respectively.
The differences between the mean absolute errors of numerical solutions and the errors
when using a sample size of 256, however, are only around 10−4.

Figure 7. Difference among methods on level marginal invariant probability distribution LΠk.
The legend of the first plot includes mean absolute errors, and the legend of the second plot includes
computational times. (FI: functional iteration, CR: cyclic reduction, NI: Newton iteration and RR:
Ramaswami Reduction).

Table 1. Mean and variance of level and phase.

Queue Length (Level) Remaining Service Time (Phase)

Method Mean Variance Mean Variance

FI 0.3415 0.3680 0.3125 0.1127
CR 0.6964 1.3918 0.3345 0.1255
NI 0.6964 1.3918 0.3345 0.1255
RR 0.3911 0.9596 0.4385 0.1641

Analytical 0.4054 0.5698 - -

6. Conclusions

For invariant probability measures of Harris positive recurrent GI/M/1-type or
M/G/1-type Markov chains with discrete levels and a general phase set, we establish
wavelet-based computational frameworks in this paper. A theoretical analysis framework is
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also established for M/G/1-type Markov chains. These results extend the known findings
in [4,5] for QBD processes to the current more general block-structured Markov chains.
Numerical experiments support the effectiveness of our numerical algorithms based on
DTWC. An interesting observation in Example 2 is that among the adopted five algorithms
for G-matrix, the functional iteration performs the best, but the invariant subspace may fail.

For future research, it is interesting to consider block-structured continuous-time
Markov processes with discrete levels and continuous phases. In this case, the processes
should be presented in terms of the extended generators. It is expected that the research
is more challenging when setting up these models and preforming the theoretical and
numerical analysis of their invariant probability measures.
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Appendix A

Table A1. Summary of frequently used notations.

Notation Description

E State space of a Markov chain
�i The i level set of Markov chain {(Ln, Xn) : n ∈ N}
τ�i

The first return time to the level set �i
PGI(·, ·) Transition kernel matrix of GI/M/1-type Markov chain
PM(·, ·) Transition kernel matrix of M/G/1-type Markov chain
PA(·, ·) One-step transition kernel of a censored Markov chain on set A

Π Invariant probability measure
U Associated matrix of kernel function U(x, y)

∑H Set of kernel functions having a density function equaling to zeros outside of H × H
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Abstract: In this paper, we propose a useful method without adding any extra parameters to obtain
new probability distributions. The proposed family is a combination of the two existing families of
distributions and is called a weighted sine-G family. A two-parameter special member of the weighted
sine-G family, using the Weibull distribution as a baseline model, is considered and investigated in
detail. Some distributional properties of the weighted sine-G family are derived. Different estimation
methods are considered to estimate the parameters of the special model of the weighted sine-G family.
Furthermore, simulation studies based on these different methods are also provided. Finally, the
applicability and usefulness of the weighted sine-G family are demonstrated by analyzing two data
sets taken from the engineering sector.

Keywords: Weibull model; trigonometric function; family of distributions; simulation; statistical
modeling; engineering data

MSC: 62N01; 62N02

1. Introduction

A challenging work for researchers is to look for flexible probability models to cater to
the analysis of various types of data that possess extreme observations, such as (i) Reliability
data [1], (ii) healthcare data [2], (iii) financial data [3], (iv) hydrological data [4], (v) time-to-
event data [5–7], and (vi) lifetime data analysis [8,9], etc. However, the traditional distribu-
tion does not provide the best fit for the data sets, as it has extreme observations. Based on
the available literature, we know that the heavy-tailed (HT) distributions have proven to
be substantial for the data sets that possess extreme observations. Unfortunately, there are
only a few probability models that possess HT characteristics. Therefore, researchers are
always in search of new probability distributions that possess HT characteristics.

To improve the flexibility of the existing models, new methods have been suggested;
see the truncated burr XG family [10], Fréchet Topp Leone-G family [11], shifted Gompertz-
G family [12], Teissier-G family [13], and Gudermannian-generated family [14], among oth-
ers. Thanks to these methods, they have significantly improved the fitting power of the
existing distributions. However, there are certain deficiencies/problems associated with
these methods, for instance, these methods involve from one to five or more additional
parameters. This fact leads to estimation difficulties and re-parametrization problems.
To avoid the re-parametrization problem, researchers are focusing on generating new meth-
ods without adding extra parameters. In this regard, Kumar et al. [15] suggested a useful
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method using a trigonometric function, namely, a sine-G family. Let X have a sine-G family
with a cumulative distribution function (CDF) K(x; ϑϑϑ), if it is given by

K(x; ϑϑϑ) = sin
(π

2
G(x; ϑϑϑ)

)
, x ∈ R, (1)

where ϑϑϑ is a parameter vector and G(x; ϑϑϑ) is a baseline CDF with respect to Equation (1).
Since G(x; ϑϑϑ) is a baseline CDF, it must obey the following properties:

• G(x; ϑϑϑ) is a non-decreasing function.
• The maximum of G(x; ϑϑϑ) is when x = ∞ : G(∞; ϑϑϑ) = 1.
• The minimum of G(x; ϑϑϑ) is when x = −∞ : G(−∞; ϑϑϑ) = 0.

For more contributed work using the sine function, we refer interested readers
to [16–23]. Ahmad et al. [24] produced further efforts by proposing another method
without any additional parameters. They used the T-X method to generate a weighted T-X
(WT-X) family. For detailed information about the T-X method, we refer to [25]. The CDF
F(x; ϑϑϑ) of the WT-X method is

F(x; ϑϑϑ) = 1− [1− K(x; ϑϑϑ)]

eK(x;ϑϑϑ)
, x ∈ R, (2)

where K(x; ϑϑϑ) is a baseline CDF with respect to Equation (2).
To bring further flexibility to the sine-G and WT-X methods, we propose another

useful approach that possesses the HT characteristics. The proposed approach is obtained
by following the spirit of the WT-X method along with the sine-G family. The proposed
method may be called a weighted sine-G (WS-G) family of distributions. The key features
of the WS-G method are (i) it has no extra parameters and (ii) it provides a useful alternative
to the sine-G and WT-X methods, with possible different aims in terms of modeling.

Suppose X has the WS-G distributions with parameter vector ϑϑϑ, then, the CDF F(x; ϑϑϑ)
of X is

F(x; ϑϑϑ) = 1−
[
1− sin

(
π
2 G(x; ϑϑϑ)

)]
esin( π

2 G(x;ϑϑϑ))
, x ∈ R, (3)

with PDF

f (x; ϑϑϑ) =
(π

2

) g(x; ϑϑϑ) cos
(

π
2 G(x; ϑϑϑ)

)
esin( π

2 G(x;ϑϑϑ))

[
2− sin

(π

2
G(x; ϑϑϑ)

)]
, x ∈ R, (4)

where d
dx G(x; ϑϑϑ) = g(x; ϑϑϑ).

Furthermore, the survival function (SF) S(x; ϑϑϑ) = 1− F(x; ϑϑϑ), hazard function (HF)
f (x;ϑϑϑ)

1−F(x;ϑϑϑ) , and cumulative HF (CHF) H(x; ϑϑϑ) = − log[1− F(x; ϑϑϑ)] are, respectively, given by

S(x; ϑϑϑ) =

[
1− sin

(
π
2 G(x; ϑϑϑ)

)]
esin( π

2 G(x;ϑϑϑ))
, x ∈ R, (5)

h(x; ϑϑϑ) =
(π

2

) g(x; ϑϑϑ) cos
(

π
2 G(x; ϑϑϑ)

)[
1− sin

(
π
2 G(x; ϑϑϑ)

)] [2− sin
(π

2
G(x; ϑϑϑ)

)]
, x ∈ R, (6)

and

H(x; ϑϑϑ) = − log

([
1− sin

(
π
2 G(x; ϑϑϑ)

)]
esin( π

2 G(x;ϑϑϑ))

)
, x ∈ R. (7)

The WS-G method has certain advantages while implementing it in practice. The ad-
vantages of the WS-G method are given by

• Since the WS-G method has no additional parameters, it may reduce the estima-
tion problems.

• Due to no additional parameters, the WS-G method avoids the re-parametrization problems.
• The WS-G method possesses heavy-tailed (HT) characteristics; see Section 3.

24



Mathematics 2023, 11, 1583

Besides the above advantages, the WS-G method also has certain limitations. The limi-
tations of the WS-G method are

• Due to the complicated form of the PDF of the WS-G method, more computational
efforts are required to derive its distributional properties.

• Since the quantile function of the WS-G method is not in an explicit form, the
computer software must be implemented to generate random numbers from the
WS-G distributions.

Based on the WS-G method, we study an updated form of the Weibull distribution,
namely, a weighted sine-Weibull (WS-Weibull) distribution. Some basic functions of the
WS-Weibull model are obtained in Section 2. Visual behaviors of the PDF of the WS-Weibull
distribution are also presented. Some distributional properties of the WS-G method are
discussed in Section 3. Section 4 is devoted to estimate the parameters of the WS-Weibull
distribution using different estimation methods. The applicability of the WS-Weibull
distribution is shown in Section 5. Some concluding remarks are presented in Section 6.

2. Special Model

This section offers some basic functions of a special member (i.e., WS-Weibull dis-
tribution) of the WS-G method with support (0, ∞). Furthermore, the behaviors of the
WS-Weibull distribution are also presented.

2.1. The WS-Weibull Distribution

Suppose X has the Weibull model with support (0, ∞); then, its CDF G(x; ϑϑϑ) is
given by

G(x; ϑϑϑ) = 1− e−λxδ
, x ≥ 0, δ, λ ∈ R+, (8)

with PDF

g(x; ϑϑϑ) = δλxδ−1e−λxδ
, x > 0,

where ϑϑϑ = (δ, λ)�. Using G(x; ϑϑϑ) = 1− e−λxδ
in Equation (3), we define the CDF of the

WS-Weibull model. Suppose X has the WS-Weibull model, then, its CDF F(x; ϑϑϑ) is

F(x; ϑϑϑ) = 1−

[
1− sin

(
π
2

(
1− e−λxδ

))]
esin

(
π
2

(
1−e−λxδ

)) , x ≥ 0, (9)

with PDF

f (x; ϑϑϑ) =
δλπxδ−1e−λxδ

cos
(

π
2

(
1− e−λxδ

))
2esin

(
π
2

(
1−e−λxδ

)) [
2− sin

(π

2

(
1− e−λxδ

))]
. (10)

For different values of δ and λ, Figure 1 offers different plots: f (x; ϑϑϑ) (WS-Weibull),
g(x; ϑϑϑ) (Weibull), and k(x; ϑϑϑ) (sin-Weibull) distributions. Figure 1 shows that the shapes
of f (x; ϑϑϑ), g(x; ϑϑϑ) and k(x; ϑϑϑ) have different forms such as right-skewed, symmetrical, left-
skewed, and decreasing.
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Figure 1. Plots of f (x; ϑϑϑ) of the WS-Weibull distribution for different values of δ and λ.

Table 1 shows the summation formula exact values for the PDFs of the WS-Weibull,
Weibull, and sin-Weibull distributions for different values of x, δ, and λ at truncated N
terms. From Table 1 and Figure 1, it can be concluded that the PDF value of the WS-Weibull
distribution is less than the PDF values of the Weibull and sin-Weibull distributions for the
same x, δ and λ. These results are calculated by using R software (version 4.2.2).

Furthermore, the SF, CHF, and HF of the WS-Weibull distribution are

S(x; ϑϑϑ) =

[
1− sin

(
π
2

(
1− e−λxδ

))]
esin

(
π
2

(
1−e−λxδ

)) , (11)
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H(x; ϑϑϑ) = − log

⎛⎝
[
1− sin

(
π
2

(
1− e−λxδ

))]
esin

(
π
2

(
1−e−λxδ

))
⎞⎠, (12)

and

h(x; ϑϑϑ) =
δλπxδ−1e−λxδ

cos
(

π
2

(
1− e−λxδ

))
2
[
1− sin

(
π
2

(
1− e−λxδ

))] [
2− sin

(π

2

(
1− e−λxδ

))]
, (13)

respectively.

Table 1. The summation formula and the exact value for the PDFs of WS-Weibull, Weibull, and sin-
Weibull distributions for different values of x, δ, and λ at truncated N terms.

x δ λ N
WS-Weibull sin-Weibull Weibull

Summation Exact Value Summation Exact Value Exact Value

0.5 0.8 1.2 2 0.4090627 0.6170058
4 0.3950064 0.3946863 0.6167320 0.6167320 0.5535454
10 0.3946863 0.6167320

2.2 2 0.1841287 0.3880394
4 0.1718327 0.1714237 0.3855453 0.3855445 0.5714233
10 0.1714237 0.3855445

1.5 1.2 2 1.0064660 1.1198750
4 0.9908311 0.9906327 1.1198280 1.1198280 0.8327257
10 0.9906327 1.1198280

2.2 2 0.6842317 1.1132750
4 0.6566751 0.6559729 1.1124090 1.1124090 1.0720057
10 0.6559729 1.1124090

1.0 0.8 1.2 2 0.1009522 0.2080368
4 0.0945207 0.0943092 0.2069571 0.2069568 0.2891464
10 0.0943092 0.2069568

2.2 2 0.0230105 0.0560985
4 0.0201815 0.0201114 0.0530495 0.0530471 0.1950136
10 0.0201114 0.0530471

1.5 1.2 2 0.1892854 0.3900691
4 0.1772264 0.1768297 0.3880446 0.3880440 0.5421496
10 0.1768297 0.3880440

2.2 2 0.0431448 0.1051847
4 0.0378403 0.0377088 0.0994678 0.0994634 0.3656504
10 0.0377088 0.0994634

2.5 0.8 1.2 2 0.0058948 0.0145537
4 0.0049978 0.0049798 0.0133140 0.0133129 0.0657602
10 0.0049798 0.0133129

2.2 2 0.0003286 0.0008248
4 0.0001409 0.0001402 0.0003815 0.0003809 0.0150408
10 0.0001402 0.0003809

1.5 1.2 2 0.0005063 0.0012709
4 0.0001970 0.0001960 0.0005335 0.0005326 0.0247858
10 0.0001960 0.0005326

2.2 2 0.0000110 0.0000277
4 0.0000001 0.0000001 0.0000004 0.0000004 0.0008725
10 0.0000001 0.0000004

Figure 2 displays HF plots for the WS-Weibull distribution for various δ and λ values;
it can be observed that the HF shapes of the WS-Weibull distribution can be increasing,
decreasing, and unimodal.
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Figure 2. Plots of hWS−Weibull(x; ϑϑϑ) of the WS-Weibull distribution for different values of δ and λ.

2.2. The Behaviors of the PDF and HF of the WS-Weibull Model

Here, we discuss the behaviors of the PDF and HF of the WS-Weibull distribution.
The behaviors of the PDF of the WS-Weibull distribution when x → 0 and x → ∞ are,
respectively, given by

lim
x→0

f (x; ϑϑϑ) =

⎧⎪⎨⎪⎩
∞ if δ < 1,
πλ if δ = 1,
0 if δ > 1,

and

lim
x→∞

f (x; ϑϑϑ) = 0.

Similarly, the behavior of the HF defined in Equation (13) when x → 0 and x → ∞ are,
respectively, given by

lim
x→0

hWS−Weibull(x; ϑϑϑ) =

⎧⎪⎨⎪⎩
∞ if δ < 1,
πλ if δ = 1,
0 if δ > 1,

and

lim
x→∞

hWS−Weibull(x; ϑϑϑ) =

⎧⎪⎨⎪⎩
0 if δ < 1,
2λ if δ = 1,
∞ if δ > 1.

Now, we compare the behaviors of the HF of the Weibull, sin-Weibull (as a special
case from the family in Equation (1)), and WS-Weibull distributions. The behavior of the
HF of the Weibull distribution when x → 0 and x → ∞ are, respectively, given by

lim
x→0

hWeibull(x; δ, λ) =

⎧⎪⎨⎪⎩
∞ if δ < 1,
λ if δ = 1,
0 if δ > 1,

and

lim
x→∞

hWeibull(x; δ, λ) =

⎧⎪⎨⎪⎩
0 if δ < 1,
λ if δ = 1,
∞ if δ > 1.
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Now, the behavior of the HF of the sin-Weibull distribution when x → 0 and x → ∞
are, respectively, given by

lim
x→0

hsin−Weibull(x; δ, λ) =

⎧⎪⎨⎪⎩
∞ if δ < 1,
πλ
2 if δ = 1,

0 if δ > 1,

and

lim
x→∞

hsin−Weibull(x; δ, λ) =

⎧⎪⎨⎪⎩
0 if δ < 1,
2λ if δ = 1,
∞ if δ > 1.

From the above results, we can conclude that the HF behaviors of these distributions
are roughly similar.

Table 2 displays the summary of the HF limits for the WS-Weibull, Weibull, and sin-
Weibull distributions. From the above mathematical results and numerical illustration in
Table 2, we can conclude that the HF behaviors of these distributions are roughly similar.

Table 2. The summary of the HF limits for the WS-Weibull, Weibull, and sin-Weibull distributions.

Distributions
Limit as x → 0 Limit as x → ∞

δ < 1 δ = 1 δ > 1 δ < 1 δ = 1 δ > 1

WS-Weibull ∞ πλ 0 0 2λ ∞

Weibull ∞ λ 0 0 λ ∞

sin-Weibull ∞ π
2 λ 0 0 2λ ∞

3. Distributional Properties

Here, we give some distributional properties associated with the proposed method.

3.1. Expansion for the CDF

Using the power series representation for sin(x) and ex, we can write the CDF as

F(x; ϑϑϑ) = 1−
1−∑∞

n=0(−1)n

(
π
2 G(x;ϑϑϑ)

)2n+1

(2n+1)!

∑∞
n=0

(
sin

(
π
2 G(x;ϑϑϑ)

))n

n!

.

3.2. Expansion for the PDF

Using the power series representation for sin(x), cos(x), and ex we can write the
PDF as

f (x; ϑϑϑ) =
π

2
g(x; ϑ)

∑∞
n=0

(−1)n

(
π
2 G(x;ϑ)

)2n

2n!

∑∞
n=0

(
sin

(
π
2 G(x;ϑ)

))n

n!

⎛⎜⎜⎜⎝2−
∞

∑
n=0

(−1)n

(
π
2 G(x; ϑ)

)2n+1

(2n + 1)!

⎞⎟⎟⎟⎠.

3.3. Quantile Function

We solve for Q(p) in the following, where 0 < p < 1,
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p = 1−
1− sin

(
π
2 G(Q(p))

)

e
sin

(
π
2 G(Q(p))

) .

After some algebraic manipulations, we arrive at

Q(p) = G−1
[
− 2

π
sin−1(1−W−1((1− p)e))

]
,

where W−1(·) is the negative branch of the Lambert function.

3.4. Moment-Generating Function

The moment-generating function is defined as

MX(t) =
∞

∑
r=0

tr

r!

∫ ∞

0
xr f (x)dx.

For the given family of distributions, we have

MX(t) =
π

2

∞

∑
r=0

tr

r!

∫ ∞

0
xrg(x; ϑ)

∑∞
n=0

(−1)n

(
π
2 G(x;ϑ)

)2n

2n!

∑∞
n=0

(
sin

(
π
2 G(x;ϑ)

))n

n!

×

⎛⎜⎜⎜⎝2−
∞

∑
n=0

(−1)n

(
π
2 G(x; ϑ)

)2n+1

(2n + 1)!

⎞⎟⎟⎟⎠dx.

3.5. Incomplete Moments

The incomplete moments are defined by

Mr(x) =
∫ x

0
xr f (x)dx.

For the given distribution, we have

Mr(x) =
π

2

∫ x

0
xrg(x; ϑ)

∑∞
n=0

(−1)n

(
π
2 G(x;ϑ)

)2n

2n!

∑∞
n=0

(
sin

(
π
2 G(x;ϑ)

))n

n!

×

⎛⎜⎜⎜⎝2−
∞

∑
n=0

(−1)n

(
π
2 G(x; ϑ)

)2n+1

(2n + 1)!

⎞⎟⎟⎟⎠dx.

3.6. The rth Non-Central Moment

The rth non-central moment is defined as

μ′r =
∫ ∞

0
xr f (x)dx.
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For the proposed family, we have

μ′r =
π

2

∫ ∞

0
xrg(x; ϑ)

∑∞
n=0

(−1)n

(
π
2 G(x;ϑ)

)2n

2n!

∑∞
n=0

(
sin

(
π
2 G(x;ϑ)

))n

n!

⎛⎜⎜⎜⎝2−
∞

∑
n=0

(−1)n

(
π
2 G(x; ϑ)

)2n+1

(2n + 1)!

⎞⎟⎟⎟⎠dx.

Now, we compute the above integral numerically. Table 3 displays the summation
formula and the numerical integration (NI) values for the rth non-central moments of
the WS-Weibull, Weibull, and sin-Weibull distributions for different values of r, δ, and
λ at truncated N terms. From the given results in Table 3, it can be concluded that the
rth non-central moments of the WS-Weibull distribution is less than the rth non-central
moments of the Weibull and sin-Weibull distributions for the same r, δ, and λ.

Table 3. The summation formula and the numerical integration values for the rth non-central
moments of the WS-Weibull, Weibull, and sin-Weibull distributions for different values of r, δ, and λ

at truncated N terms.

r δ λ N
WS-Weibull sin-Weibull Weibull

Summation NI Summation NI Exact Integration

1.0 0.8 1.2 2 0.2712448 0.4416135
4 0.2560016 0.2556559 0.4294283 0.4294168 0.9020998
10 0.2556559 0.4294168

2.2 2 0.1271481 0.2070096
4 0.1200027 0.1198406 0.2012978 0.2012924 0.4228660
10 0.1198406 0.2012924

1.5 1.2 2 0.4124430 0.5530663
4 0.3983605 0.3980281 0.5457003 0.5456939 0.7994250
10 0.3980281 0.5456939

2.2 2 0.2753402 0.3692180
4 0.2659389 0.2657171 0.3643006 0.3642963 0.5336831
10 0.2657171 0.3642963

2.0 0.8 1.2 2 0.2331464 0.4881900
4 0.2027422 0.2022463 0.4433054 0.4432577 2.1067990
10 0.2022463 0.4432577

2.2 2 0.0512301 0.1072717
4 0.0445493 0.0444403 0.0974091 0.0973986 0.4629345
10 0.0444403 0.0973986

1.5 1.2 2 0.2609388 0.4347446
4 0.2453182 0.2449682 0.4215772 0.4215647 0.9336954
10 0.2449682 0.4215647

2.2 2 0.1162921 0.1937518
4 0.1093305 0.1091745 0.1878835 0.1878779 0.4161181
10 0.1091745 0.1878779

3.0 0.8 1.2 2 0.4160335 0.9762510
4 0.3061227 0.3051022 0.7563797 0.7561286 8.3717721
10 0.3051022 0.7561286

2.2 2 0.0428522 0.1005556
4 0.0315312 0.0314261 0.0779084 0.0778826 0.8623072
10 0.0314261 0.0778826

1.5 1.2 2 0.2236855 0.4328695
4 0.2024038 0.2019931 0.4071599 0.4071336 1.3888889
10 0.2019931 0.4071336

2.2 2 0.0665511 0.1287876
4 0.0602193 0.0600971 0.1211385 0.1211307 0.4132231
10 0.0600971 0.1211307
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3.7. Rényi Entropy

The Rényi entropy of a random variable X is a measure of the variation of uncertainty.
It is defined by

Iυ(X) = (1− υ)−1 log
(∫ ∞

−∞
f (x)υdx

)
, υ > 0 and υ �= 1.

Using the WS-Weibull density, we obtain

f (x; ϑϑϑ)υ =

(
δλπ

2

)υ xυ(δ−1)e−λυxδ
(

cos
(

π
2

(
1− e−λxδ

)))υ

eυ sin
(

π
2

(
1−e−λxδ

)) [
2− sin

(π

2

(
1− e−λxδ

))]υ
.

Then, the Rényi entropy of the WS-Weibull density takes the form

Iυ(X) = (1− υ)−1 log

⎧⎪⎨⎪⎩
(

δλπ

2

)υ ∫ ∞

0

xυ(δ−1)e−λυxδ
(

cos
(

π
2

(
1− e−λxδ

)))υ

eυ sin
(

π
2

(
1−e−λxδ

))

×
[
2− sin

(π

2

(
1− e−λxδ

))]υ
dx
}

.

Table 4 displays the summation formula and the NI values for the Rényi entropy of
the WS-Weibull, Weibull, and sin-Weibull distributions for different values of υ, δ, and λ at
truncated N terms. From Table 4, we can observe that the values of the Rényi entropy for
the WS-Weibull distribution is less than the Rényi values of the Weibull and sin-Weibull
distributions for the same υ, δ, and λ.

Table 4. The summation formula and the numerical integration values for the Rényi entropy of
WS-Weibull, Weibull, and sin-Weibull distributions for different values of υ, δ, and λ at truncated
N terms.

υ δ λ N
WS-Weibull sin-Weibull Weibull

Summation NI Summation NI Exact Value

0.5 0.8 1.2 2 0.3572427 0.7321667
4 0.2645767 0.2631333 0.6566993 0.6564579 1.4347754
10 0.2631333 0.6564579

2.2 2 −0.4004269 −0.0255028
4 −0.4930927 −0.4945364 −0.1009705 −0.1012118 0.6771066

10 −0.4945364 −0.1012118

1.5 1.2 2 0.3055993 0.4904644
4 0.2511143 0.2501745 0.4488667 0.4487522 0.8705198
10 0.2501745 0.4487522

2.2 2 −0.0984913 0.0863738
4 −0.1529758 −0.1539160 0.0447768 0.0446617 0.4664292

10 −0.1539160 0.0446617

2.0 0.8 1.2 2 −1.0818547 −0.3444082
4 −1.0767934 −1.0767260 −0.3439980 −0.3439978 0.3118210

10 −1.0767261 −0.3439978

2.2 2 −1.8395245 −1.1020779
4 −1.8344632 −1.8343958 −1.1016677 −1.1016675 −0.4458487
10 −1.8343958 −1.1016675

1.5 1.2 2 −0.2044980 0.1123635
4 −0.1918153 −0.1916098 0.1136098 0.1136103 0.5103751

10 −0.1916098 0.1136103

2.2 2 −0.6085886 −0.2917271
4 −0.5959058 −0.5957003 −0.2904808 −0.2904803 0.1062845

10 −0.5957004 −0.2904803
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Table 4. Cont.

υ δ λ N
WS-Weibull sin-Weibull Weibull

Summation NI Summation NI Exact Value

4.0 0.8 1.2 2 −1.7438683 −0.9049445
4 −1.7437275 −1.7437268 −0.9049410 −0.9049410 −0.3185747
10 −1.7437268 −0.9049410

2.2 2 -2.5015382 −1.6626142
4 -2.5013973 -2.5013966 −1.6626107 −1.6626107 −1.0762445
10 -2.5013966 −1.6626107

1.5 1.2 2 −0.3274484 0.0083556
4 −0.3237034 −0.3236696 0.0085064 0.0085064 0.3971834

10 −0.3236696 0.0085064

2.2 2 −0.7315390 −0.3957349
4 −0.7277940 −0.7277602 −0.3955842 −0.3955842 −0.0069071
10 −0.7277602 −0.3955842

3.8. The HT Characteristics of the WS-G Method

Here, we provide a complete mathematical description to derive the HT characteristics
of the WS-G method.

3.8.1. The Regularly Varying Characteristics of the WS-G Method

The regularly varying characteristics (RVC) play an important role in defining HT
distributions. This subsection offers the RVC of the WS-G method. Using Karamata’s
theorem [26], in terms of SF S(x; ϑϑϑ), we have

Theorem 1. Suppose K̄(x; ϑϑϑ) = 1− K(x; ϑϑϑ) represents the SF of a regularly varying function
(RVF), then S(x; ϑϑϑ) = 1− F(x; ϑϑϑ) also represents the SF of a RVF.

Proof. Assume limx→∞
K̄(tx;ϑϑϑ)
K̄(x;ϑϑϑ) = τ(t) is a finite and nonzero function ∀ t > 0. Then,

by incorporating the expression in Equation (5), we have

S(tx; ϑϑϑ)

S(x; ϑϑϑ)
=

[
1− sin

(
π
2 G(tx; ϑϑϑ)

)]
esin( π

2 G(tx;ϑϑϑ))
× esin( π

2 G(x;ϑϑϑ))[
1− sin

(
π
2 G(x; ϑϑϑ)

)] ,

S(tx; ϑϑϑ)

S(x; ϑϑϑ)
=

[
1− sin

(
π
2 G(tx; ϑϑϑ)

)][
1− sin

(
π
2 G(x; ϑϑϑ)

)] × esin( π
2 G(x;ϑϑϑ))

esin( π
2 G(tx;ϑϑϑ))

,

S(tx; ϑϑϑ)

S(x; ϑϑϑ)
=

[1− K(tx; ϑϑϑ)]

[1− K(x; ϑϑϑ)]
× esin( π

2 G(x;ϑϑϑ))

esin( π
2 G(tx;ϑϑϑ))

. (14)

Applying limx→∞ on both sides of Equation (14), we obtain

lim
x→∞

S(tx; ϑϑϑ)

S(x; ϑϑϑ)
= lim

x→∞

[1− K(tx; ϑϑϑ)]

[1− K(x; ϑϑϑ)]
× esin( π

2 G(x;ϑϑϑ))

esin( π
2 G(tx;ϑϑϑ))

,

lim
x→∞

S(tx; ϑϑϑ)

S(x; ϑϑϑ)
= τ(t)× esin( π

2 G(∞;ϑϑϑ))

esin( π
2 G(t∞;ϑϑϑ))

. (15)

As we mentioned earlier, G(∞; ϑϑϑ) = 1. Thus, from Equation (15), we obtain

lim
x→∞

S(tx; ϑϑϑ)

S(x; ϑϑϑ)
= τ(t)× esin( π

2 )

esin( π
2 )

,

lim
x→∞

S(tx; ϑϑϑ)

S(x; ϑϑϑ)
= τ(t). (16)
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The expression in Equation (16) is finite and nonzero ∀ t > 0. Therefore, S(x; ϑϑϑ) is
an RVF.

3.8.2. The Regular Variational Result

Suppose X possesses the power law behavior, then, we have

K̄(x; ϑϑϑ) = 1− K(x; ϑϑϑ) = P(X > x) ∼ x−σ.

By implementing the results of Karamata’s characterization theorem, we can write
S(x; ϑϑϑ) as

S(x; ϑϑϑ) = x−σL(x),

where L(x) is a slowly varying function (SVF). Note that

S(x; ϑϑϑ) =
[1− K(x; ϑϑϑ)]

esin( π
2 G(tx;ϑϑϑ))

(17)

Since 1− K(x; ϑϑϑ) ∼ x−σ, from Equation (17), we obtain

S(x; ϑϑϑ) =
x−σ

e1−x−σ ,

S(x; ϑϑϑ) = x−σL(x),

where L(x) = 1
e1−x−σ .

Now, if we demonstrated that L(x) is a SVF, the RVC of the WS-G method derived
above is true. In order to demonstrate that L(x) is a SVF, we must show that

lim
x→∞

L(tx)
L(x)

= 1, ∀ t > 0. (18)

Now, we use
L(tx)
L(x)

=

1
e1−(tx)−σ

1
e1−x−σ

,

L(tx)
L(x)

=
e1−x−σ

e1−(tx)−σ . (19)

Appling limx→∞ on both sides of Equation (19), we obtain

lim
x→∞

L(tx)
L(x)

= lim
x→∞

e1−x−σ

e1−(tx)−σ ,

lim
x→∞

L(tx)
L(x)

= 1.

4. Eight Estimation Methods for the WS-Weibull Parameters

Eight estimation methods have been opted for in this section to estimate the WS-
Weibull parameters, namely, the weighted least-squares (WLSE), ordinary least-squares
(OLSE), maximum likelihood (MLE), the maximum product of spacing (MPSE), Cramér-von
Mises (CVME), Anderson-Darling (ADE), right-tail Anderson-Darling (RADE), and per-
centile estimator (PCE).
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4.1. Maximum Likelihood

Suppose that x1, x2, ..., xn are given values of a random sample of size n from the
WS-Weibull distribution with parameters δ and λ. The log-likelihood function for the
WS-Weibull model with PDF in (10) is given by

�(ϑϑϑ) = n log
(π

2

)
+ n log(δλ)− λ

n

∑
i=1

xδ
i +

n

∑
i=1

log
(

2− sin
(π

2

(
1− e−λxδ

i

)))
+ (δ− 1)

n

∑
i=1

log(xi)−
n

∑
i=1

sin
(π

2

(
1− e−λxδ

i

))
+

n

∑
i=1

log
(

cos
(π

2

(
1− e−λxδ

i

)))
, (20)

where ϑϑϑ = (δ, λ)�. The function provided in Equation (20) can be numerically solved
by using the Newton–Raphson method (iteration method). The partial derivatives of
Equation (9) with respect to the parameters δ and λ are

∂�

∂δ
=

n
δ
− λ

n

∑
i=1

xδ
i log(xi)−

π

2
λ

n

∑
i=1

xδ
i log(xi)e−λxδ

i tan
(π

2

(
1− e−λxδ

i

))
− π

2
λ

n

∑
i=1

xδ
i log(xi)e−λxδ

i cos
(π

2

(
1− e−λxδ

i

))
+

n

∑
i=1

log(xi)

− π

2
λ

n

∑
i=1

xδ
i log(xi)e−λxδ

i cos
(

π
2

(
1− e−λxδ

i

))
2− sin

(
π
2

(
1− e−λxδ

i

)) ,

and

∂�

∂λ
=

n
λ
− π

2

n

∑
i=1

xδ
i e−λxδ

i cos
(π

2

(
1− e−λxδ

i

))
− π

2

n

∑
i=1

xδ
i e−λxδ

i tan
(π

2

(
1− e−λxδ

i

))

− π

2

n

∑
i=1

xδ
i e−λxδ

i cos
(

π
2

(
1− e−λxδ

i

))
2− sin

(
π
2

(
1− e−λxδ

i

)) −
n

∑
i=1

xδ
i .

By setting ∂�
∂δ = 0 and ∂�

∂λ = 0, one can solve them numerically to obtain the MLEs of
the parameters δ and λ.

4.2. Ordinary and Weighted Least-Squares

The OLSE of the WS-Weibull parameters can be obtained by minimizing the following
function with respect to δ and λ,

V(δ, λ) =
n

∑
i=1

[
F(xi|δ, λ)− i

n + 1

]2
.

Further, the OLSE of the WS-Weibull parameters can also be obtained by solving the
non-linear equation

n

∑
i=1

[
F(xi|δ, λ)− i

n + 1

]
Δs(xi|δ, λ) = 0, s = 1, 2,
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where

Δ1(x(i)|δ, λ) =
∂

∂δ
F(x(i)|δ, λ)

=λ
π

2
xδ
(i) log(x(i)) cos

(
π

2

(
1− e−λxδ

(i)

))
e
−λxδ

(i)−sin

(
π
2

(
1−e

−λxδ
(i)

))

×
[

2− sin
(

π

2

(
1− e−λxδ

(i)

))]
, (21)

and

Δ2(x(i)|δ, λ) =
∂

∂λ
F(x(i)|δ, λ)

=
π

2
xδ
(i) cos

(
π

2

(
1− e−λxδ

(i)

))
e
−λxδ

(i)−sin

(
π
2

(
1−e

−λxδ
(i)

))

×
[

2− sin
(

π

2

(
1− e−λxδ

(i)

))]
. (22)

The WLSE of the WS-Weibull parameters are obtained by minimizing the following

W(δ, λ) =
n

∑
i=1

(n + 1)2(n + 2)
i(n− i + 1)

[
F(xi|δ, λ)− i

n + 1

]2
,

with respect to δ and λ. Moreover, the WLSE can also be obtained by solving the non-linear
equation

n

∑
i=1

(n + 1)2(n + 2)
i(n− i + 1)

[
F(xi|δ, λ)− i

n + 1

]
Δs(xi) = 0, s = 1, 2,

where Δ1(·|δ, λ) and Δ2(·|δ, λ) are, respectively, defined in Equations (21) and (22).

4.3. Maximum Product of Spacing

The MPSE is considered an alternative to the maximum likelihood method. Let
Di(δ, λ) = F

(
x(i)|δ, λ

)
− F
(

x(i−1)|δ, λ
)

, for i = 1, 2, . . . , n + 1, be the uniform spacing of a

random sample from the WS-Weibull model, where F
(

x(0)|δ, λ
)
= 0, F

(
x(n+1)|δ, λ

)
= 1

and ∑n+1
i=1 Di(δ, λ) = 1. The MPSE of the WS-Weibull parameters can be obtained by

maximizing the “geometric mean of the spacing”

G(δ, λ) =

[
n+1

∏
i=1

Di(δ, λ)

] 1
n+1

,

with respect to δ and λ, or by maximizing the "logarithm of the geometric mean" of sample-
spacings given by

H(δ, λ) =
1

n + 1

n+1

∑
i=1

log Di(δ, λ).

Moreover, the MPSE can be obtained by solving the following nonlinear expression

1
n + 1

n+1

∑
i=1

1
Di(δ, λ)

[
Δs(x(i)|δ, λ)− Δs(x(i−1)|δ, λ)

]
= 0, s = 1, 2,

where Δ1(·|δ, λ) and Δ2(·|δ, λ) are defined in Equation (21) and Equation (22), respectively.
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4.4. Cramér-Von Mises Estimation Approach

The CVME of the WS-Weibull parameters is obtained by minimizing

C(δ, λ) = − 1
12n

+
n

∑
i=1

[
F(xi|δ, λ)− 2i− 1

2n

]2
,

with respect to δ and λ. Moreover, the CVME can be numerically obtained by solving the
following non-linear equation

n

∑
i=1

[
F(xi|δ, λ)− 2i− 1

2n

]
Δs(xi|δ, λ) = 0, s = 1, 2,

where Δ1(·|δ, λ) and Δ2(·|δ, λ) are, respectively, presented in Equations (21) and (22).

4.5. Anderson–Darling and Right-Tail Anderson-Darling

Suppose that x(1), x(2), . . . , x(n) is the ordered random sample from F(x|δ, λ) of the
WS-Weibull model. The ADE of the WS-Weibull parameters can be obtained by minimizing

A(δ, λ) = −n− 1
n

n

∑
i=1

(2i− 1)[log F(xi|δ, λ) + log S(xi|δ, λ)],

or by solving the non-linear equation

n

∑
i=1

(2i− 1)
[

Δs(xi)

F(xi|δ, λ)
− Δi(xn+1−i)

S(xn+1−i|δ, λ)

]
= 0, s = 1, 2,

Moreover, the RADEs of the WS-Weibull parameters can be obtained by minimizing

R(δ, λ) =
n
2
− 2

n

∑
i=1

F(xi:n|δ, λ)− 1
n

n

∑
i=1

(2i− 1) log S(xn+1−i:n|δ, λ),

with respect to δ and λ, which are equivalent by solving the non-linear equations

−2
n

∑
i=1

Δs(xi:n|δ, λ) +
1
n

n

∑
i=1

(2i− 1)
Δs(xn+1−i:n|δ, λ)

S(xn+1−i:n|δ, λ)
= 0, s = 1, 2,

where Δ1(·|δ, λ) and Δ2(·|δ, λ) are presented in Equation (21) and Equation (22), respectively.

4.6. Percentile

From (8), the PCE of the parameters of WS-Weibull model can be obtained by mini-
mizing the following function

P(p|δ, λ) =
n

∑
i=1

[
x(i) −

(
− 1

λ
log
[

1− 2
π

sin−1(1−W−1((1− p)e))
])1/δ

]2

,

with respect to δ and λ, where 0 < p < 1.

4.7. Simulation Study

In order to explore the performances of the estimators of the WS-Weibull distribution,
we consider some detailed simulation studies. The performances of the estimators are
judged by considering several statistical tools. These tools include

• The absolute value of biases given by

|Bias(ϑ̂ϑϑ)| = 1
N

N

∑
i=1

|ϑ̂ϑϑ− ϑϑϑ|.
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• The mean square error of the estimates given by

MSE
(

ϑ̂ϑϑ
)
=

1
N

N

∑
i=1

(ϑ̂ϑϑ− ϑϑϑ)2.

• The mean relative estimates

MRE =
(

ϑ̂ϑϑ
)
=

1
N

N

∑
i=1

|ϑ̂ϑϑ− ϑϑϑ|/ϑϑϑ.

The values of the estimators are calculated for different samples of sizes, say
n = {30, 80, 120, 200, 350}, taken from the WS-Weibull model. We use R codes throughout
the simulations with the nlminb function within the stats package [27].

The simulation studies are carried out for the following parameter combinations:
δ = {0.45, 0.75, 1.50, 4.00} and λ = {0.50, 1.00, 1.75, 3.00}. For each setting, the process is
repeated N = 5000 times and the average values of |Bias|, MSE, and MRE for δ and λ are
obtained. To save space, four out of sixteen simulated outcomes are reported in Tables 5–8.
The numbers in each row have superscripts giving the ranks of the estimates of all methods,
and the ∑ Ranks is the partial sum of the ranks. Furthermore, Figures 3–6 display the
heatmaps of the |Bias|, MSE, and MRE for the δ and λ of the simulation results.

Table 9 gives the partial and overall ranks of the estimates, thus indicating that the
MPSEs outperform all other estimates for the WS-Weibull model distribution, with an
overall score of 117.5.

Table 5. Simulation results for ϑϑϑ = (δ = 0.45, λ = 0.50)ᵀ.

n Est. Est. Par. WLSE OLSE MLE MPSE CVME ADE RADE PCE

30 |BIAS| δ̂ 0.05995{4} 0.06450{6} 0.05682{3} 0.05619{1} 0.06912{7} 0.05653{2} 0.06200{5} 0.13974{8}

λ̂ 0.08844{4} 0.09183{6} 0.08879{5} 0.07678{1} 0.10129{7} 0.08676{2} 0.08707{3} 0.12877{8}

MSE δ̂ 0.00602{4} 0.00688{6} 0.00560{3} 0.00472{1} 0.00846{7} 0.00533{2} 0.00660{5} 0.02904{8}

λ̂ 0.01418{5} 0.01533{6} 0.01395{4} 0.00947{1} 0.01996{7} 0.01316{2} 0.01324{3} 0.02630{8}

MRE δ̂ 0.13322{4} 0.14334{6} 0.12627{3} 0.12487{1} 0.15361{7} 0.12562{2} 0.13777{5} 0.31052{8}

λ̂ 0.17688{4} 0.18366{6} 0.17758{5} 0.15356{1} 0.20259{7} 0.17352{2} 0.17415{3} 0.25754{8}

∑ Ranks 25{5} 36{6} 23{3} 6{1} 42{7} 12{2} 24{4} 48{8}

80 |BIAS| δ̂ 0.03464{4} 0.03822{6} 0.03195{1} 0.03310{2} 0.03910{7} 0.03377{3} 0.03631{5} 0.10987{8}

λ̂ 0.05339{5} 0.05558{6} 0.05247{2} 0.04897{1} 0.05771{7} 0.05269{4} 0.05253{3} 0.11998{8}

MSE δ̂ 0.00192{4} 0.00232{6} 0.00165{1} 0.00166{2} 0.00249{7} 0.00182{3} 0.00212{5} 0.01895{8}

λ̂ 0.00492{5} 0.00541{6} 0.00457{2} 0.00378{1} 0.00598{7} 0.00468{4} 0.00460{3} 0.02945{8}

MRE δ̂ 0.07698{4} 0.08494{6} 0.07100{1} 0.07355{2} 0.08688{7} 0.07504{3} 0.08068{5} 0.24415{8}

λ̂ 0.10679{5} 0.11117{6} 0.10493{2} 0.09794{1} 0.11542{7} 0.10538{4} 0.10505{3} 0.23997{8}

∑ Ranks 27{5} 36{6} 9{1.5} 9{1.5} 42{7} 21{3} 24{4} 48{8}

120 |BIAS| δ̂ 0.02861{4} 0.03150{6} 0.02625{1} 0.02709{2} 0.03195{7} 0.02796{3} 0.02994{5} 0.09873{8}

λ̂ 0.04350{5} 0.04567{6} 0.04224{2} 0.04037{1} 0.04672{7} 0.04320{4} 0.04294{3} 0.11737{8}

MSE δ̂ 0.00131{4} 0.00158{6} 0.00112{1} 0.00113{2} 0.00165{7} 0.00124{3} 0.00145{5} 0.01581{8}

λ̂ 0.00304{5} 0.00333{6} 0.00288{2} 0.00255{1} 0.00354{7} 0.00297{4} 0.00296{3} 0.03116{8}

MRE δ̂ 0.06358{4} 0.06999{6} 0.05834{1} 0.06019{2} 0.07099{7} 0.06212{3} 0.06653{5} 0.21941{8}

λ̂ 0.08699{5} 0.09135{6} 0.08447{2} 0.08073{1} 0.09345{7} 0.08639{4} 0.08588{3} 0.23474{8}

∑ Ranks 27{5} 36{6} 9{1.5} 9{1.5} 42{7} 21{3} 24{4} 48{8}
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Table 5. Cont.

n Est. Est. Par. WLSE OLSE MLE MPSE CVME ADE RADE PCE

200 |BIAS| δ̂ 0.02157{4} 0.02409{6} 0.01990{1} 0.02058{2} 0.02430{7} 0.02128{3} 0.02262{5} 0.08542{8}

λ̂ 0.03250{5} 0.03426{6} 0.03147{2} 0.03055{1} 0.03475{7} 0.03224{4} 0.03205{3} 0.10781{8}

MSE δ̂ 0.00073{4} 0.00091{6} 0.00062{1} 0.00065{2} 0.00094{7} 0.00071{3} 0.00081{5} 0.01231{8}

λ̂ 0.00168{5} 0.00187{6} 0.00158{2} 0.00146{1} 0.00194{7} 0.00165{4} 0.00163{3} 0.02986{8}

MRE δ̂ 0.04793{4} 0.05353{6} 0.04422{1} 0.04574{2} 0.05399{7} 0.04728{3} 0.05027{5} 0.18983{8}

λ̂ 0.06501{5} 0.06852{6} 0.06294{2} 0.06111{1} 0.06950{7} 0.06449{4} 0.06410{3} 0.21563{8}

∑ Ranks 27{5} 36{6} 9{1.5} 9{1.5} 42{7} 21{3} 24{4} 48{8}

350 |BIAS| δ̂ 0.01625{4} 0.01819{6} 0.01503{1} 0.01551{2} 0.01826{7} 0.01614{3} 0.01703{5} 0.07426{8}

λ̂ 0.02426{5} 0.02557{6} 0.02364{2} 0.02330{1} 0.02577{7} 0.02418{4} 0.02399{3} 0.09992{8}

MSE δ̂ 0.00042{4} 0.00052{6} 0.00036{1} 0.00038{2} 0.00053{7} 0.00041{3} 0.00046{5} 0.00954{8}

λ̂ 0.00096{5} 0.00106{6} 0.00091{2} 0.00086{1} 0.00109{7} 0.00095{4} 0.00094{3} 0.02750{8}

MRE δ̂ 0.03612{4} 0.04042{6} 0.03341{1} 0.03447{2} 0.04059{7} 0.03587{3} 0.03784{5} 0.16503{8}

λ̂ 0.04853{5} 0.05114{6} 0.04729{2} 0.04660{1} 0.05154{7} 0.04836{4} 0.04797{3} 0.19983{8}

∑ Ranks 27{5} 36{6} 9{1.5} 9{1.5} 42{7} 21{3} 24{4} 48{8}

Table 6. Simulation results for ϑϑϑ = (δ = 0.45, λ = 3.00)ᵀ.

n Est. Est. Par. WLSE OLSE MLE MPSE CVME ADE RADE PCE

30 |BIAS| δ̂ 0.05971{4} 0.06420{6} 0.05651{3} 0.05581{1} 0.06864{7} 0.05621{2} 0.06158{5} 0.13667{8}

λ̂ 1.12196{5} 1.21709{6} 1.08373{3} 0.84246{1} 1.51324{7} 1.01079{2} 1.11567{4} 1.63339{8}

MSE δ̂ 0.00609{4} 0.00693{6} 0.00556{3} 0.00466{1} 0.00850{7} 0.00525{2} 0.00658{5} 0.02832{8}

λ̂ 4.22063{5} 5.49202{6} 3.15053{3} 1.31291{1} 10.36952{8} 2.49643{2} 4.12599{4} 9.25795{7}

MRE δ̂ 0.13270{4} 0.14267{6} 0.12557{3} 0.12401{1} 0.15252{7} 0.12491{2} 0.13685{5} 0.30370{8}

λ̂ 0.37399{5} 0.40570{6} 0.36124{3} 0.28082{1} 0.50441{7} 0.33693{2} 0.37189{4} 0.54446{8}

∑ Ranks 27{4.5} 36{6} 18{3} 6{1} 43{7} 12{2} 27{4.5} 47{8}

80 |BIAS| δ̂ 0.03402{4} 0.03796{6} 0.03160{1} 0.03287{2} 0.03885{7} 0.03293{3} 0.03535{5} 0.11267{8}

λ̂ 0.57172{4} 0.64569{6} 0.53441{2} 0.48778{1} 0.69673{7} 0.54880{3} 0.57223{5} 0.79479{8}

MSE δ̂ 0.00188{4} 0.00232{6} 0.00163{1.5} 0.00163{1.5} 0.00251{7} 0.00176{3} 0.00204{5} 0.02171{8}

λ̂ 0.61772{5} 0.80634{6} 0.51857{2} 0.36839{1} 1.00380{7} 0.54497{3} 0.60290{4} 1.00973{8}

MRE δ̂ 0.07559{4} 0.08435{6} 0.07021{1} 0.07304{2} 0.08634{7} 0.07318{3} 0.07855{5} 0.25038{8}

λ̂ 0.19057{4} 0.21523{6} 0.17814{2} 0.16259{1} 0.23224{7} 0.18293{3} 0.19074{5} 0.26493{8}

∑ Ranks 25{4} 36{6} 9.5{2} 8.5{1} 42{7} 18{3} 29{5} 48{8}

120 |BIAS| δ̂ 0.02747{4} 0.03039{6} 0.02559{1} 0.02655{2} 0.03090{7} 0.02686{3} 0.02865{5} 0.10426{8}

λ̂ 0.44990{4} 0.50301{6} 0.41951{2} 0.39811{1} 0.52717{7} 0.43823{3} 0.45485{5} 0.70458{8}

MSE δ̂ 0.00121{4} 0.00147{6} 0.00107{1} 0.00108{2} 0.00155{7} 0.00116{3} 0.00134{5} 0.01861{8}

λ̂ 0.36433{4} 0.45494{6} 0.31850{2} 0.25459{1} 0.52517{7} 0.34239{3} 0.37420{5} 0.76800{8}

MRE δ̂ 0.06105{4} 0.06754{6} 0.05686{1} 0.05900{2} 0.06866{7} 0.05969{3} 0.06367{5} 0.23169{8}

λ̂ 0.14997{4} 0.16767{6} 0.13984{2} 0.13270{1} 0.17572{7} 0.14608{3} 0.15162{5} 0.23486{8}

∑ Ranks 24{4} 36{6} 9{1.5} 9{1.5} 42{7} 18{3} 30{5} 48{8}

200 |BIAS| δ̂ 0.02204{4} 0.02465{6} 0.02002{1} 0.02099{2} 0.02480{7} 0.02159{3} 0.02250{5} 0.08845{8}

λ̂ 0.35292{5} 0.39916{6} 0.31828{2} 0.31005{1} 0.41017{7} 0.34345{3} 0.34659{4} 0.57534{8}

MSE δ̂ 0.00077{4} 0.00096{6} 0.00064{1} 0.00067{2} 0.00099{7} 0.00074{3} 0.00082{5} 0.01333{8}

λ̂ 0.21230{5} 0.27196{6} 0.17276{2} 0.15367{1} 0.29665{7} 0.19999{3} 0.20515{4} 0.49874{8}

MRE δ̂ 0.04898{4} 0.05478{6} 0.04449{1} 0.04665{2} 0.05511{7} 0.04798{3} 0.05001{5} 0.19655{8}

λ̂ 0.11764{5} 0.13305{6} 0.10609{2} 0.10335{1} 0.13672{7} 0.11448{3} 0.11553{4} 0.19178{8}

∑ Ranks 27{4.5} 36{6} 9{1.5} 9{1.5} 42{7} 18{3} 27{4.5} 48{8}

350 |BIAS| δ̂ 0.01603{4} 0.01790{6} 0.01472{1} 0.01516{2} 0.01798{7} 0.01583{3} 0.01670{5} 0.07556{8}

λ̂ 0.25736{5} 0.29045{6} 0.23334{2} 0.22047{1} 0.29502{7} 0.25314{3} 0.25613{4} 0.45532{8}

MSE δ̂ 0.00041{4} 0.00051{6} 0.00034{1} 0.00036{2} 0.00052{7} 0.00040{3} 0.00044{5} 0.00980{8}

λ̂ 0.10852{5} 0.13908{6} 0.08890{2} 0.08355{1} 0.14606{7} 0.10417{3} 0.10831{4} 0.30891{8}

MRE δ̂ 0.03563{4} 0.03978{6} 0.03271{1} 0.03369{2} 0.03995{7} 0.03517{3} 0.03712{5} 0.16791{8}

λ̂ 0.08579{5} 0.09682{6} 0.07778{2} 0.07349{1} 0.09834{7} 0.08438{3} 0.08538{4} 0.15177{8}

∑ Ranks 27{4.5} 36{6} 9{1.5} 9{1.5} 42{7} 18{3} 27{4.5} 48{8}
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Table 7. Simulation results for ϑϑϑ = (δ = 0.75, λ = 0.50)ᵀ.

n Est. Est. Par. WLSE OLSE MLE MPSE CVME ADE RADE PCE

30 |BIAS| δ̂ 0.09871{4} 0.10640{6} 0.09417{3} 0.09199{1} 0.11374{7} 0.09328{2} 0.10185{5} 0.16592{8}

λ̂ 0.09056{4} 0.09400{7} 0.09115{5} 0.07839{1} 0.10412{8} 0.08816{2} 0.08853{3} 0.09283{6}

MSE δ̂ 0.01668{4} 0.01937{6} 0.01524{3} 0.01283{1} 0.02362{7} 0.01442{2} 0.01768{5} 0.04375{8}

λ̂ 0.01595{6} 0.01825{7} 0.01529{5} 0.01017{1} 0.02430{8} 0.01422{2} 0.01442{3} 0.01468{4}

MRE δ̂ 0.13161{4} 0.14186{6} 0.12556{3} 0.12265{1} 0.15166{7} 0.12437{2} 0.13580{5} 0.22122{8}

λ̂ 0.18112{4} 0.18800{7} 0.18230{5} 0.15677{1} 0.20825{8} 0.17631{2} 0.17705{3} 0.18565{6}

∑ Ranks 26{5} 39{6} 24{3.5} 6{1} 45{8} 12{2} 24{3.5} 40{7}

80 |BIAS| δ̂ 0.05830{4} 0.06451{6} 0.05363{1} 0.05486{2} 0.06619{7} 0.05670{3} 0.06013{5} 0.11911{8}

λ̂ 0.05319{5} 0.05535{6} 0.05218{2} 0.04890{1} 0.05732{7} 0.05259{3.5} 0.05259{3.5} 0.06567{8}

MSE δ̂ 0.00544{4} 0.00663{6} 0.00471{2} 0.00462{1} 0.00719{7} 0.00513{3} 0.00591{5} 0.02320{8}

λ̂ 0.00468{5} 0.00510{6} 0.00449{2} 0.00378{1} 0.00560{7} 0.00455{3} 0.00456{4} 0.00782{8}

MRE δ̂ 0.07774{4} 0.08602{6} 0.07150{1} 0.07315{2} 0.08825{7} 0.07561{3} 0.08017{5} 0.15881{8}

λ̂ 0.10637{5} 0.11070{6} 0.10437{2} 0.09780{1} 0.11464{7} 0.10519{4} 0.10517{3} 0.13135{8}

∑ Ranks 27{5} 36{6} 10{2} 8{1} 42{7} 19.5{3} 25.5{4} 48{8}

120 |BIAS| δ̂ 0.04696{4} 0.05194{6} 0.04361{1} 0.04479{2} 0.05282{7} 0.04612{3} 0.04939{5} 0.10186{8}

λ̂ 0.04386{5} 0.04606{6} 0.04274{2} 0.04059{1} 0.04722{7} 0.04351{4} 0.04341{3} 0.05651{8}

MSE δ̂ 0.00349{4} 0.00428{6} 0.00301{1} 0.00304{2} 0.00451{7} 0.00334{3} 0.00387{5} 0.01717{8}

λ̂ 0.00310{5} 0.00340{6} 0.00299{2} 0.00261{1} 0.00363{7} 0.00303{3.5} 0.00303{3.5} 0.00589{8}

MRE δ̂ 0.06262{4} 0.06925{6} 0.05814{1} 0.05973{2} 0.07043{7} 0.06149{3} 0.06586{5} 0.13582{8}

λ̂ 0.08773{5} 0.09212{6} 0.08547{2} 0.08117{1} 0.09444{7} 0.08703{4} 0.08683{3} 0.11303{8}

∑ Ranks 27{5} 36{6} 9{1.5} 9{1.5} 42{7} 20.5{3} 24.5{4} 48{8}

200 |BIAS| δ̂ 0.03643{4} 0.04049{6} 0.03307{1} 0.03426{2} 0.04082{7} 0.03593{3} 0.03793{5} 0.08370{8}

λ̂ 0.03296{5} 0.03447{6} 0.03222{2} 0.03115{1} 0.03499{7} 0.03278{4} 0.03263{3} 0.04497{8}

MSE δ̂ 0.00209{4} 0.00258{6} 0.00176{1} 0.00180{2} 0.00266{7} 0.00203{3} 0.00230{5} 0.01152{8}

λ̂ 0.00173{5} 0.00190{6} 0.00165{2} 0.00152{1} 0.00197{7} 0.00171{4} 0.00169{3} 0.00375{8}

MRE δ̂ 0.04857{4} 0.05399{6} 0.04409{1} 0.04568{2} 0.05443{7} 0.04791{3} 0.05058{5} 0.11160{8}

λ̂ 0.06592{5} 0.06895{6} 0.06445{2} 0.06230{1} 0.06999{7} 0.06557{4} 0.06525{3} 0.08995{8}

∑ Ranks 27{5} 36{6} 9{1.5} 9{1.5} 42{7} 21{3} 24{4} 48{8}

350 |BIAS| δ̂ 0.02723{4} 0.03035{6} 0.02505{1} 0.02571{2} 0.03051{7} 0.02704{3} 0.02837{5} 0.06672{8}

λ̂ 0.02468{5} 0.02597{6} 0.02395{2} 0.02366{1} 0.02613{7} 0.02460{4} 0.02448{3} 0.03502{8}

MSE δ̂ 0.00116{4} 0.00145{6} 0.00099{1} 0.00102{2} 0.00148{7} 0.00114{3} 0.00126{5} 0.00720{8}

λ̂ 0.00097{5} 0.00107{6} 0.00091{2} 0.00088{1} 0.00109{7} 0.00096{4} 0.00095{3} 0.00213{8}

MRE δ̂ 0.03631{4} 0.04046{6} 0.03340{1} 0.03428{2} 0.04068{7} 0.03606{3} 0.03783{5} 0.08897{8}

λ̂ 0.04937{5} 0.05193{6} 0.04791{2} 0.04732{1} 0.05227{7} 0.04921{4} 0.04896{3} 0.07005{8}

∑ Ranks 27{5} 36{6} 9{1.5} 9{1.5} 42{7} 21{3} 24{4} 48{8}

Table 8. Simulation results for ϑϑϑ = (δ = 4.00, λ = 3.00)ᵀ.

n Est. Est. Par. WLSE OLSE MLE MPSE CVME ADE RADE PCE

30 |BIAS| δ̂ 0.52826{5} 0.57159{7} 0.49972{3} 0.49193{2} 0.61053{8} 0.50005{4} 0.55036{6} 0.47654{1}

λ̂ 1.11327{6} 1.20970{7} 1.07414{4} 0.82845{1} 1.50679{8} 1.01227{3} 1.09974{5} 0.85244{2}

MSE δ̂ 0.47263{5} 0.54656{7} 0.42643{4} 0.36760{2} 0.66271{8} 0.41285{3} 0.51336{6} 0.35080{1}

λ̂ 4.47860{6} 5.30036{7} 2.98339{4} 1.22399{1} 10.16763{8} 2.43795{3} 3.46274{5} 1.44294{2}

MRE δ̂ 0.13207{5} 0.14290{7} 0.12493{3} 0.12298{2} 0.15263{8} 0.12501{4} 0.13759{6} 0.11914{1}

λ̂ 0.37109{6} 0.40323{7} 0.35805{4} 0.27615{1} 0.50226{8} 0.33742{3} 0.36658{5} 0.28415{2}

∑ Ranks 33{5.5} 42{7} 22{4} 9{1.5} 48{8} 20{3} 33{5.5} 9{1.5}
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Table 8. Cont.

n Est. Est. Par. WLSE OLSE MLE MPSE CVME ADE RADE PCE

80 |BIAS| δ̂ 0.31405{5} 0.34365{7} 0.29344{2} 0.29929{3} 0.35267{8} 0.30589{4} 0.32689{6} 0.28668{1}

λ̂ 0.58521{5} 0.64431{7} 0.54668{3} 0.49869{2} 0.69457{8} 0.56545{4} 0.58551{6} 0.49536{1}

MSE δ̂ 0.16033{5} 0.19008{7} 0.14142{3} 0.13794{2} 0.20551{8} 0.15127{4} 0.17565{6} 0.12673{1}

λ̂ 0.65356{5} 0.80065{7} 0.56111{3} 0.38873{1} 0.99591{8} 0.58436{4} 0.65407{6} 0.40210{2}

MRE δ̂ 0.07851{5} 0.08591{7} 0.07336{2} 0.07482{3} 0.08817{8} 0.07647{4} 0.08172{6} 0.07167{1}

λ̂ 0.19507{5} 0.21477{7} 0.18223{3} 0.16623{2} 0.23152{8} 0.18848{4} 0.19517{6} 0.16512{1}

∑ Ranks 30{5} 42{7} 16{3} 13{2} 48{8} 24{4} 36{6} 7{1}

120 |BIAS| δ̂ 0.24785{5} 0.27563{7} 0.22778{1} 0.23683{3} 0.27983{8} 0.24208{4} 0.25873{6} 0.23191{2}

λ̂ 0.46276{6} 0.51714{7} 0.42345{3} 0.40160{1} 0.54292{8} 0.45070{4} 0.45972{5} 0.40345{2}

MSE δ̂ 0.09895{5} 0.12081{7} 0.08373{2} 0.08601{3} 0.12657{8} 0.09418{4} 0.10699{6} 0.08253{1}

λ̂ 0.38541{6} 0.47566{7} 0.32147{3} 0.25482{1} 0.54743{8} 0.35719{4} 0.38073{5} 0.25766{2}

MRE δ̂ 0.06196{5} 0.06891{7} 0.05695{1} 0.05921{3} 0.06996{8} 0.06052{4} 0.06468{6} 0.05798{2}

λ̂ 0.15425{6} 0.17238{7} 0.14115{3} 0.13387{1} 0.18097{8} 0.15023{4} 0.15324{5} 0.13448{2}

∑ Ranks 33{5.5} 42{7} 13{3} 12{2} 48{8} 24{4} 33{5.5} 11{1}

200 |BIAS| δ̂ 0.19032{5} 0.21310{7} 0.17553{1} 0.18020{3} 0.21485{8} 0.18778{4} 0.20132{6} 0.17810{2}

λ̂ 0.34904{5} 0.39646{7} 0.32026{3} 0.30712{1} 0.40727{8} 0.34387{4} 0.35187{6} 0.31010{2}

MSE δ̂ 0.05734{5} 0.07127{7} 0.04936{1} 0.05018{3} 0.07360{8} 0.05576{4} 0.06396{6} 0.04942{2}

λ̂ 0.20823{5} 0.26525{7} 0.17626{3} 0.15069{1} 0.28980{8} 0.19912{4} 0.21183{6} 0.15211{2}

MRE δ̂ 0.04758{5} 0.05327{7} 0.04388{1} 0.04505{3} 0.05371{8} 0.04694{4} 0.05033{6} 0.04453{2}

λ̂ 0.11635{5} 0.13215{7} 0.10675{3} 0.10237{1} 0.13576{8} 0.11462{4} 0.11729{6} 0.10337{2}

∑ Ranks 30{5} 42{7} 12{2} 12{2} 48{8} 24{4} 36{6} 12{2}

350 |BIAS| δ̂ 0.14365{5} 0.16163{7} 0.13133{1} 0.13467{3} 0.16271{8} 0.14229{4} 0.15007{6} 0.13357{2}

λ̂ 0.26016{6} 0.29563{7} 0.23584{3} 0.22725{1} 0.30114{8} 0.25688{4} 0.25873{5} 0.23506{2}

MSE δ̂ 0.03327{5} 0.04177{7} 0.02804{2} 0.02876{3} 0.04261{8} 0.03259{4} 0.03626{6} 0.02789{1}

λ̂ 0.11087{6} 0.14275{7} 0.09219{3} 0.08504{1} 0.15033{8} 0.10750{4} 0.10999{5} 0.08680{2}

MRE δ̂ 0.03591{5} 0.04041{7} 0.03283{1} 0.03367{3} 0.04068{8} 0.03557{4} 0.03752{6} 0.03339{2}

λ̂ 0.08672{6} 0.09854{7} 0.07861{3} 0.07575{1} 0.10038{8} 0.08563{4} 0.08624{5} 0.07835{2}

∑ Ranks 33{5.5} 42{7} 13{3} 12{2} 48{8} 24{4} 33{5.5} 11{1}

Table 9. Partial and overall ranks of the classical estimation methods for several parametric values.

ϑϑϑᵀ n WLSE OLSE MLE MPSE CVME ADE RADE PCE

30 5 6 3 1 7 2 4 8
80 5 6 1.5 1.5 7 3 4 8

(δ = 0.45, λ = 0.50) 120 5 6 1.5 1.5 7 3 4 8
200 5 6 1.5 1.5 7 3 4 8
350 5 6 1.5 1.5 7 3 4 8

30 5 7 3 1 8 2 4 6
80 5 6 2 1 8 3 4 7

(δ = 0.45, λ = 1.00) 120 5 6 1.5 1.5 7 3 4 8
200 5 6 1.5 1.5 7 3 4 8
350 5 6 1 2 7 3 4 8

30 5 7 3 1 8 2 4 6
80 4.5 6 2 1 8 3 4.5 7

(δ = 0.45, λ = 1.75) 120 4.5 6 2 1 7.5 3 4.5 7.5
200 5 6 1.5 1.5 7.5 3 4 7.5
350 5 6 1.5 1.5 7.5 3 4 7.5
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Table 9. Cont.

ϑϑϑᵀ n WLSE OLSE MLE MPSE CVME ADE RADE PCE

30 4.5 6 3 1 7 2 4.5 8
80 4 6 2 1 7 3 5 8

(δ = 0.45, λ = 3.00) 120 4 6 1.5 1.5 7 3 5 8
200 4.5 6 1.5 1.5 7 3 4.5 8
350 4.5 6 1.5 1.5 7 3 4.5 8

30 5 6 3.5 1 8 2 3.5 7
80 5 6 2 1 7 3 4 8

(δ = 0.75, λ = 0.50) 120 5 6 1.5 1.5 7 3 4 8
200 5 6 1.5 1.5 7 3 4 8
350 5 6 1.5 1.5 7 3 4 8

30 5.5 7 3 1 8 2 4 5.5
80 5.5 7 2 1 8 3 4 5.5

(δ = 0.75, λ = 1.00) 120 5 7 2 1 8 3 5 5
200 5 7 2 1 8 3 4 6
350 5 7 1.5 1.5 8 3 4 6

30 5 7 3 1 8 2 4 6
80 4.5 6 2 1 8 3 4.5 7

(δ = 0.75, λ = 1.75) 120 4.5 6 1.5 1.5 8 3 4.5 7
200 4.5 6 1.5 1.5 8 3 4.5 7
350 4.5 6 1.5 1.5 7 3 4.5 8

30 5 6 3 1 8 2 4 7
80 4.5 6 1.5 1.5 7 3 4.5 8

(δ = 0.75, λ = 3.00) 120 4 6 1.5 1.5 7 3 5 8
200 4 6 1.5 1.5 7 3 5 8
350 4 6 1.5 1.5 7 3 5 8

30 6 7 4 1 8 2 5 3
80 6 7 2 1 8 3 5 4

(δ = 1.50, λ = 0.50) 120 5.5 7 2 1 8 3 4 5.5
200 5.5 7 2 1 8 3 4 5.5
350 5 7 1.5 1.5 8 3 4 6

30 6 7 3 1 8 2 5 4
80 5 7 2 1 8 3 5 5

(δ = 1.50, λ = 1.00) 120 5 7 2 1 8 3 5 5
200 5 7 1.5 1.5 8 3 4 6
350 5 7 1.5 1.5 8 3 4 6

30 5.5 7 3 1 8 2 5.5 4
80 4.5 7 1.5 1.5 8 3 4.5 6

(δ = 1.50, λ = 1.75) 120 4.5 7 1.5 1.5 8 3 4.5 6
200 4.5 6 1.5 1.5 8 3 4.5 7
350 5 6 1.5 1.5 8 3 4 7

30 5.5 7 3 1 8 2 5.5 4
80 4 6.5 2 1 8 3 5 6.5

(δ = 1.50, λ = 3.00) 120 4 6.5 1.5 1.5 8 3 5 6.5
200 4 6 1.5 1.5 8 3 5 7
350 4 6 1.5 1.5 8 3 5 7

30 5 7 5 2 8 3 5 1
80 6 7 3 2 8 4 5 1

(δ = 4.00, λ = 0.50) 120 6 7 3 2 8 4 5 1
200 6 7 2 2 8 4 5 2
350 6 7 2 1 8 4 5 3
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Table 9. Cont.

ϑϑϑᵀ n WLSE OLSE MLE MPSE CVME ADE RADE PCE

30 6 7 4 1 8 3 5 2
80 6 7 3 1.5 8 4 5 1.5

(δ = 4.00, λ = 1.00) 120 5.5 7 2 3 8 4 5.5 1
200 6 7 1 2 8 4 5 3
350 6 7 1 2 8 4 5 3

30 6 7 4 2 8 3 5 1
80 5.5 7 3 2 8 4 5.5 1

(δ = 4.00, λ = 1.75) 120 5.5 7 2.5 2.5 8 4 5.5 1
200 6 7 2 3 8 4 5 1
350 5.5 7 2 3 8 4 5.5 1

30 5.5 7 4 1.5 8 3 5.5 1.5
80 5 7 3 2 8 4 6 1

(δ = 4.00, λ = 3.00) 120 5.5 7 3 2 8 4 5.5 1
200 5 7 2 2 8 4 6 2
350 5.5 7 3 2 8 4 5.5 1

∑ Ranks 404 523 171 117.5 616.5 244 369.5 434.5

Overall Rank 5 7 2 1 8 3 4 6

Figure 3. The heatmaps of the simulated biases, MSE and MRE of the eight simulation methods for
δ = 0.45 and λ = 1.00.

Figure 4. Cont.
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Figure 4. The heatmaps of the simulated biases, MSE and MRE of the eight simulation methods for
δ = 0.75 and λ = 1.00.

Figure 5. The heatmaps of the simulated biases, MSE and MRE, of the eight simulation methods for
δ = 1.50 and λ = 1.75.

Figure 6. The heatmaps of the simulated biases, MSE and MRE, of the eight simulation methods for
δ = 4.00 and λ = 1.75.

5. Data Modeling

In this section, we carry out the practical evaluation of the WS-Weibull model. This
fact is shown by choosing two data sets from the engineering sector. Both the data sets
represent the failure times of the electronic components.
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Using the failure time data sets, we compare the results of the WS-Weibull model with
three other different well-known variants of the Weibull model. These models are given
by the (i) exponentiated Weibull (for short “E-Weibull”), distribution, (ii) new exponential
cosine Weibull (for short “NEC-Weibull”) distribution, and (iii) logarithmic Weibull (for
short “L-Weibull”) distribution. The CDFs of the above-competing probability modes are
expressed, respectively, by

G(x; θ, ϑϑϑ) =
(

1− e−λxδ
)θ

, x ≥ 0, θ > 0,

G(x; β, ϑϑϑ) = 1− cos

(
π

2

[
1− e−λxδ

1− (1− β)e−λxδ

])
, x ≥ 0, β > 0,

and

G(x; α, φ, ϑϑϑ) = 1−

⎛⎝1−
φ
(

1− e−λxδ
)

φ− log
[
1− e−λxδ

]
⎞⎠α

, x ≥ 0, α, φ > 0.

The comparison of the WS-Weibull, E-Weibull, NEC-Weibull, and L-Weibull distribu-
tions is made using four different selection criteria. The selection criteria are chosen with
the aim of figuring out the most suitable model for the failure time data set. The selection
criteria are given by

• Akaike information criterion:
The Akaike information criterion (AIC) is a useful method for evaluating how close/well
a model fits the given data. It provides estimates of the relative amount of information
lost by a given probability model. Therefore, a model that loses less information is a
mark of the best fitting. It is calculated as

2k− 2�.

• Consistent Akaike information criterion:
The consistent Akaike information criterion (CAIC) is another useful tool for compar-
ing the quality of the model fitting. It is obtained as

2nk
n− k− 1

− 2�.

• Bayesian information criterion:
The Bayesian information criterion (BIC) is another statistical criterion for choosing
the best model among a set of competing models. Generally, a model with lower BIC
is preferred. The value of the BIC is obtained as

k log(n)− 2�.

• Hannan Quinn information criterion:
Another model-fitting criterion is the Hannan-Quinn information criterion (HQIC). It
also measures the goodness of fit of a given probability model. The HQIC is obtained as

2k log[log(n)]− 2�.

The numerical values of the above selection criteria are computed with the help of
computer software called R-package using the BFGS method.
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5.1. Data 1

The first data set has fifty observations and represents the failure times of 50 (in weeks)
components. These data were originally reported by [28]. Later on, numerous authors
analyzed this data set; see [29–31].

Corresponding to the first failure times data, some basic description measures are skew-
ness = 2.306048, kurtosis = 9.408282, range = 48.092, minimum = 0.013, maximum = 48.105,
mean = 7.821, median = 5.320, variance = 84.75597, standard deviation = 9.2063, 1st quartile
= 1.390, and 3rd quartile = 10.043; the size of the data, say n, is 50. A visual description of
the first failure times data set is presented in Figure 7.
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Figure 7. Visual description of the first failure times data set.

After analyzing the first data set, the values of δ̂MLE, λ̂MLE, θ̂MLE, α̂MLE,, and β̂MLE are
presented in Table 10. A visual display of the profiles of the LLF of δ̂MLE and λ̂MLE of the
WS-Weibull distribution is presented in Figure 8. The plots in Figure 8 reveal a unique
solution of the MLEs of the WS-Weibull distribution.

Table 10. Using the first failure times data, the values of δ̂MLE, λ̂MLE, θ̂MLE, φ̂MLE, α̂MLE, and β̂MLE

of the fitted distributions.

Models δ̂MLE λ̂MLE θ̂MLE φ̂MLE α̂MLE β̂MLE

WS-Weibull 0.84861 0.06628 - - - -

E-Weibull 0.32947 1.39376 5.28710 - - -

L-Weibull 0.55268 0.55492 - 0.48751 1.22066 -

NEC-Weibull 0.42927 1.03216 - - - 2.96768
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Figure 8. The profiles of the LLF of δ̂MLE and λ̂MLE of WS-Weibull using the first failure times data.

Table 11 provides the values of the selection criteria of the WS-Weibull and other
competing probability models. From the numerical description of fitted models in Table 11,
it can be observed that the WS-Weibull is the best probability model for analyzing the
failure data set. The second-best suitable model is the L-Weibull distribution. Whereas,
the third-best model is the NEC-Weibull distribution.

After the numerical comparison of the WS-Weibull distribution and other variants
of the Weibull distribution presented in Table 11, we also provide a visual illustration
of the WS-Weibull distribution. For the visual comparison using the first failure times
data, we select the plots of the fitted CDF, SF, PDF, quantile-quantile (QQ), and probability-
probability (PP); see Figure 9. The visual description in Figure 9 reveals that the WS-Weibull
distribution closely follows the first failure times data.

Table 11. For the first failure times data, the values of selection criteria of the competing distributions.

Models AIC CAIC BIC HQIC

WS-Weibull 306.28000 306.53530 310.10400 307.73620

E-Weibull 315.68840 316.21010 321.42440 317.87270

L-Weibull 309.23860 310.12750 316.88670 312.15110

NEC-Weibull 310.05400 310.57570 315.79000 312.23830
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Figure 9. A visual illustration of the WS-Weibull distribution using the first failure times data.

5.2. Data 2

The second failure times data set also consists of fifty observations and represents
the failure times of 50 (per 1000 h) components. These data were also originally reported
by [28].

Linked to the second failure times data, the basic description measures are given by
skewness = 1.416739, kurtosis = 4.084622, range = 15.044, minimum = 0.0360, maximum =
15.0800 mean = 3.3430, median = 1.4140, variance = 17.48477, standard deviation = 4.181479,
1st quartile = 0.2075, 3rd quartile = 4.4988, and n = 50. A visual description of the second
failure time data set is provided in Figure 10.
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Figure 10. Visual description of the second failure times data set.

Corresponding to the second failure times data set, the numerical values of the MLEs(
δ̂MLE, λ̂MLE, θ̂MLE, α̂MLE, β̂MLE

)
are presented in Table 12. Furthermore, a visual display of

the profiles of the LLF of δ̂MLE and λ̂MLE of the WS-Weibull model is provided in Figure 11.
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The plots of the profiles of the LLF in Figure 11 confirm a unique solution of δ̂MLE and
λ̂MLE.
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Figure 11. The profiles of the LLF of δ̂MLE and λ̂MLE of WS-Weibull using the second failure
times data.

Corresponding to the second failure times data, the values of the selection criteria
of the WS-Weibull and other competing probability models are presented in Table 13.
From Table 13, again, it can be observed that the WS-Weibull is the best probability model
for analyzing the engineering data set.

In addition to the numerical comparison of the WS-Weibull distribution and other
variants of the Weibull distribution, we show the performances of the WS-Weibull distribu-
tion visually. For the visual illustration of the WS-Weibull distribution, again we plotted
the empirical CDF, SF, PDF, QQ , and PP; see Figure 12. Based on the visual description of
the WS-Weibull distribution in Figure 12, we can observe that the WS-Weibull distribution
closely fits the second failure times data.

Table 12. Using the second failure times data, the values of δ̂MLE, λ̂MLE, θ̂MLE, φ̂MLE, α̂MLE, and β̂MLE

of the fitted distributions.

Models δ̂MLE λ̂MLE θ̂MLE φ̂MLE α̂MLE β̂MLE

WS-Weibull 0.69934 0.18176 - - - -

E-Weibull 0.53984 0.76136 1.37903 - - -

L-Weibull 0.10962 0.64226 - 5.09788 8.88077 -

NEC-Weibull 0.52723 0.57884 - - - 0.69887

Table 13. For the second failure time data, the values of selection criteria of the competing distributions.

Models AIC CAIC BIC HQIC

WS-Weibull 208.60920 209.86460 213.43330 211.06550

E-Weibull 210.90750 211.42920 216.64350 213.09180

L-Weibull 212.46140 213.35030 220.10950 215.37390

NEC-Weibull 210.69880 211.22050 216.43490 212.88310
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Figure 12. A visual illustration of the WS-Weibull distribution using the second failure times data.

6. Concluding Remarks

In recent times, the introduction of new families of distributions by using the trigono-
metric function has received great attention, especially thanks to the distributional flexibility
in terms of modeling a wide variety of real data in applied sectors. In this study, we explore
a new natural combination of sine-G and WT-X approaches. This combination led to a
new method for generating new probability models named a weighted sine-G method.
Thanks to the weighted sine-G method, it increases the distributional flexibility of the
existing models without adding any new parameters. Certain distributional properties of
the WS-G distributions are obtained. Based on the WS-G method, a new probability model,
called the weighted sine-Weibull distribution, was studied. Eight different methods were
implemented to estimate the parameters of the WS-Weibull distribution. After presenting
distributional properties and simulation studies, we checked the practical ability of the WS-
Weibull distribution by considering two engineering data sets. The practical applications
demonstrate that the WS-Weibull distribution outperforms some well-established variants
of the Weibull distribution.

Author Contributions: Conceptualization, H.M.A., Z.A. and C.B.A.; Methodology, H.M.A., Z.A. and
C.B.A.; Software, H.M.A., Z.A., H.A.-M. and S.K.K.; Validation, Z.A. and H.A.-M.; Formal analysis,
H.M.A., H.A.-M. and S.K.K.; Data curation, H.M.A. and Z.A.; Writing—original draft, H.M.A., Z.A.,
H.A.-M., C.B.A. and S.K.K.; Visualization, H.A.-M. All authors have read and agreed to the published
version of the manuscript.

50



Mathematics 2023, 11, 1583

Funding: This research was funded by Princess Nourah bint Abdulrahman University Researchers
Supporting Project number (PNURSP2023R 299), Princess Nourah bint Abdulrahman University,
Riyadh, Saudi Arabia.

Data Availability Statement: The data sets are available from the corresponding author upon request.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Sindhu, T.N.; Atangana, A. Reliability analysis incorporating exponentiated inverse Weibull distribution and inverse power law.
Qual. Reliab. Eng. Int. 2021, 37, 2399–2422. [CrossRef]

2. Liu, X.; Ahmad, Z.; Gemeay, A.M.; Abdulrahman, A.T.; Hafez, E.H.; Khalil, N. Modeling the survival times of the COVID-19
patients with a new statistical model: A case study from China. PLoS ONE 2021, 16, e0254999. [CrossRef]

3. Shen, Z.; Alrumayh, A.; Ahmad, Z.; Abu-Shanab, R.; Al-Mutairi, M.; Aldallal, R. A new generalized rayleigh distribution with
analysis to big data of an online community. Alex. Eng. J. 2022, 61, 11523–11535 [CrossRef]

4. Moccia, B.; Mineo, C.; Ridolfi, E.; Russo, F.; Napolitano, F. Probability distributions of daily rainfall extremes in Lazio and Sicily,
Italy, and design rainfall inferences. J. Hydrol. Reg. Stud. 2021, 33, 100771. [CrossRef]

5. Chen, P.; Ye, Z.S. Estimation of field reliability based on aggregate lifetime data. Technometrics 2017, 59, 115–125. [CrossRef]
6. Xu, A.; Zhou, S.; Tang, Y. A unified model for system reliability evaluation under dynamic operating conditions. IEEE Trans.

Reliab. 2019, 70, 65–72. [CrossRef]
7. Zhang, L.; Xu, A.; An L.; Li, M. Bayesian inference of system reliability for multicomponent stress-strength model under

Marshall-Olkin Weibull distribution. Systems 2022, 10, 196. [CrossRef]
8. Luo, C.; Shen, L.; Xu, A. Modelling and estimation of system reliability under dynamic operating environments and lifetime

ordering constraints. Reliab. Eng. Syst. Saf. 2022, 218, 108136. [CrossRef]
9. Zhuang, L.; Xu, A.; Wang, X.L. A prognostic driven predictive maintenance framework based on Bayesian deep learning. Reliab.

Eng. Syst. Saf. 2023, 234, 109181. [CrossRef]
10. Bantan, R.A.; Chesneau, C.; Jamal, F.; Elbatal, I.; Elgarhy, M. The truncated burr XG family of distributions: Properties and

applications to actuarial and financial data. Entropy 2021, 23, 1088. [CrossRef]
11. Reyad, H.; Korkmaz, M.C.; Afify, A.Z.; Hamedani, G.G.; Othman, S. The Fréchet Topp Leone-G family of distributions: Properties,

characterizations and applications. Ann. Data Sci. 2021, 8, 345–366. [CrossRef]
12. Eghwerido, J.T.; Agu, F.I. The shifted Gompertz-G family of distributions: Properties and applications. Math. Slovaca 2021, 71,

1291–1308. [CrossRef]
13. Eghwerido, J.T.; Nzei, L.C.; Omotoye, A.E.; Agu, F.I. The Teissier-G family of distributions: Properties and applications. Math.

Slovaca 2022, 72, 1301–1318. [CrossRef]
14. Altun, E.; Alizadeh, M.; Yousof, H.M.; Hamedani, G.G. The Gudermannian generated family of distributions with characteriza-

tions, regression models and applications. Stud. Sci. Math. Hung. 2022, 59, 93–115. [CrossRef]
15. Kumar, D.; Singh, U.; Singh, S.K. A new distribution using sine function-its application to bladder cancer patients’ data. J. Stat.

Appl. Probab. 2015, 4, 417.
16. Mahmood, Z.; Chesneau, C.; Tahir, M.H. A new sine-G family of distributions: Properties and applications. Bull. Comput. Appl.

Math. 2019, 7, 53–81.
17. Al-Babtain, A.A.; Elbatal, I.; Chesneau, C.; Elgarhy, M. Sine Topp-Leone-G family of distributions: Theory and applications. Open

Phys. 2020, 18, 574–593. [CrossRef]
18. Jamal, F.; Chesneau, C.; Aidi, K. The sine extended odd Fréchet-G family of distribution with applications to complete and

censored data. Math. Slovaca 2021, 71, 961–982. [CrossRef]
19. Jamal, F.; Chesneau, C.; Bouali, D.L.; Ul Hassan, M. Beyond the Sin-G family: The transformed Sin-G family. PLoS ONE 2021, 16,

e0250790. [CrossRef]
20. Tomy, L.; Chesneau, C. The Sine Modified Lindley Distribution. Mathematical and Computational. Applications 2021, 26, 81.
21. Sakthivel, K.M.; Dhivakar, K. Transmuted Sine-Dagum Distribution and its Properties. Reliab. Theory Appl. 2021, 16, 150–166.
22. Muhammad, M.; Alshanbari, H.M.; Alanzi, A.R.; Liu, L.; Sami, W.; Chesneau, C.; Jamal, F. A new generator of probability models:

The exponentiated sine-G family for lifetime studies. Entropy 2021, 23, 1394. [CrossRef] [PubMed]
23. Rajkumar, J.; Sakthivel, K.M. A New Method of Generating Marshall–Olkin Sine–G Family and Its Applications in Survival

Analysis. Lobachevskii J. Math. 2022, 43, 463–472. [CrossRef]
24. Ahmad, Z.; Mahmoudi, E.; Dey, S.; Khosa, S.K. Modeling vehicle insurance loss data using a new member of TX family of

distributions. J. Stat. Theory Appl. 2020, 19, 133–147. [CrossRef]
25. Alzaatreh, A.; Lee, C.; Famoye, F. A new method for generating families of continuous distributions. Metron 2013, 71, 63–79.

[CrossRef]
26. Seneta, E. Karamata’s characterization theorem, feller and regular variation in probability theory. PUblications L’Institut Math.

2002, 71, 79–89. [CrossRef]
27. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria,

2022. Available online: https://www.R-project.org/(accessed on 31 October 2022).

51



Mathematics 2023, 11, 1583

28. Murthy, D.; Xie, M.; Jiang, R. Weibull Models; Wiley series in probability and statistics; John Wiley and Sons: Trenton, NJ, USA, 2004.
29. de Andrade, T.A.; Bourguignon, M.; Cordeiro, G.M. The exponentiated generalized extended exponential distribution. J. Data Sci.

2016, 14, 393–413. [CrossRef]
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Abstract: Consider a set of n players. We suppose that each game involves two players, that there is
some unknown player who wins each game it plays with a probability greater than 1/2, and that our
objective is to determine this best player. Under the requirement that the policy employed guarantees
a correct choice with a probability of at least some specified value, we look for a policy that has a
relatively small expected number of games played before decision. We consider this problem both
under the assumption that the best player wins each game with a probability of at least some specified
value p0 > 1/2, and under a Bayesian assumption that the probability that player i wins a game
against player j is vi

vi+vj
, where v1, . . . , vn are the unknown values of n independent and identically

distributed exponential random variables. In the former case, we propose a policy where chosen
pairs play a match that ends when one of them has had a specified number of wins more than the
other; in the latter case, we propose a Thompson sampling type rule.

Keywords: best arm identification; dueling bandit

MSC: 90-10; 62L99

1. Introduction

Consider a set of n players, numbered 1, . . . , n. Suppose that each game played in-
volves two players, and that a game between i and j is won by i with some unknown
probability pi,j = 1 − pj,i. Assuming that there is an unknown player i∗ such that
pi∗ ,j > 1/2, j �= i∗, our objective is to identify player i∗. To do so, at each stage, we
choose two of the players to play a game, with the winner of the game being noted. With a
policy being a rule for determining whether to stop and make a choice as to which is the
best player (namely, which player is i∗) or to choose a pair to play the next game, we want
to find a policy that, with probability at least 1− δ, makes the correct choice, while at the
same time minimizing the expected number of games that need be played before a choice
is made. We do this both under the Cordorcet assumption that pi∗ ,j ≥ 0.5 + ε, j �= i∗,
where ε ∈ (0, 0.5) is a known number, as well as under a Bayesian model that makes the
Bradley–Terry–Luce [1,2] assumption that Pi,j =

vi
vi+vj

, where v1, . . . , vn are the unknown
values of n independent exponential random variables with a mean of 1.

Our problem is closely related to the multi-arm bandit problem, where the objective is
to find the best arm. In the conventional stochastic setting, the learner is asked to sample a
single arm at each stage and receive a real-valued feedback generated from the unknown
distribution associated with the sampled arm. There is a variety of works addressing the
identification of the best arm (see, for instance, [3–6]). However, in many scenarios, such
as search engine and online recommendation, it is often difficult to obtain explicit and
reliable feedback regarding a single arm, as the feedback often shows the preference of the
user among a list of options (e.g., ‘A looks better than B’). A more appropriate framework,
known as dueling bandit, utilizes the pairwise comparison as actions and learns through
pairwise preference. Though most dueling bandit algorithms focused on minimizing the
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cumulative regret [7–9], many recent works (such as [10–12]) were developed under various
notions of the best arm.

In Section 2, we look at the Condorcet winner setting. We propose two policies that
use a knockout tournament structure to successively eliminate players. We suppose that,
in each round, players still in contention are randomly paired and play a match, where a
round j match ends when one of them has mj more wins than the other. The match winners
move on to the next round and the losers are eliminated from contention. The winner of
the final match is then chosen as being the best. We show how to determine the critical
numbers mj so as to guarantee that the probability that i∗ is the chosen player is at least
1− δ. We also consider a modification of this rule such that if in a round j match there has
not been a winner after nj games, then that match is ended and both of its participants
are eliminated. We present upper bounds on the mean number of games needed by these
policies as well as numerical evidence that these rules outperform others in the literature.

In Section 3, we turn our attention to the Bradley–Terry–Luce model. We propose a
randomized policy whose logic uses a Thompson sampling approach to determine how to
choose the next pair. To utilize this policy, we show how to effectively simulate from the
posterior joint distribution of the player’s values and how to effectively use simulation to
determine the posterior probability that a given player has the largest value.

Conclusions are presented in the final section.

2. The Condorcet Winner Model

In this section, we make the Condorcet assumption that there is an unknown player
i∗ such that pi∗ ,j ≥ p0 = 0.5 + ε, j �= i∗, where ε ∈ (0, 0.5) is a known number. Let k be
the positive integer for which 2k−1 < n ≤ 2k. Our policy utilizes a knockout tournament
structure as follows.
Knockout Tournament Framework

• Initialization: all players are alive
• For round t = 1, 2, . . . , k

– If the number of alive players is odd, one of the players is randomly selected
and given a bye. The others are randomly paired up.

– If the number of alive players is even, randomly pair up these players.
– Each pair then plays a match, consisting of a series of games. Depending on

the match rules, at some point one of the players is declared the winner of the
match.

– The match winners along with the player given a bye, if there was such a player,
remain alive and move on to the next round. The match losers are eliminated.

• Claim the winner of the match in round k as the best dueler.

In the following two sections, we will present two ways of determining the winner for
each match. Note that players who receive a bye in some rounds automatically advance to
the next round.

2.1. A Gambler’s Ruin Rule

Adopting the framework above, we propose a Gambler’s Ruin Rule (GRR) to deter-
mine the winner of each match. Let r0 = p0

1−p0
= 1+2ε

1−2ε , let k be the positive integer for

which 2k−1 < n ≤ 2k, let m∗
t = logr0

(2t/δ) = ln(2t/δ)
ln(r0)

, and let mt = ceil(m∗
t ), t ≥ 1, where

ceil(a), called the ceiling of a, is the smallest integer at least as large as a.
Gambler’s Ruin Rule

• In round t, each pair plays a sequence of games until one of them has achieved mt
more wins than the other, with the one with more wins being declared the winner.

Lemma 1. GRR identifies the best dueler i∗ with probability at least 1− δ.
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Proof. Given that i∗ successfully proceeds to round t, the probability that i∗ is eliminated
in round t, denoted by Pt, can be upper bounded by using the gambler’s ruin probability

Pt ≤
1− rmt

0

1− r2mt
0

=
1

1 + rmt
0

<
1

rm∗
t

0

=
δ

2t

To win the tournament, i∗ needs to win all k rounds. Hence,

P(i∗ is eliminated) = P(∪k
t=1{i∗ is eliminated at round t})

≤
k

∑
t=1

P(i∗ is eliminated at round t)

<
k

∑
t=1

Pt

< δ

which indicates that the probability of finding the best arm is at least 1− δ.

Next, we show how to upper bound the expected number of games played when
using GRR.

Let Nm(p) be the total number of games for a match between players A and B, which
ends when one of the players is ahead by m, where p is the probability that player B wins
each game. The following Lemma shows that E[Nm(p)] is a unimodal function that is
maximized when p = 0.5.

Lemma 2. The expected number of plays until one of the players is ahead by m is a decreasing
function of p when p ≥ 1/2.

Proof. Suppose that p �= 1/2, and let r = p/(1− p). We first show that E[Nm(p)] is a
decreasing function of p for p > 1/2. Let, for i ≥ 1, Xi = 1 if player A wins game i and let
it be −1 otherwise. Then, Wald’s equation gives that

E[Nm(p)](2p− 1) = E[
Nm(p)

∑
i=1

Xi]

=
m

1 + rm − mrm

1 + rm

where the final equality used the gambler’s ruin probability

P(
Nm(p)

∑
i=1

Xi = m) =
1− rm

1− r2m =
1

1 + rm

Because 2p− 1 = r−1
r+1 , the preceding gives

E[Nm(p)] = m
r + 1
r− 1

rm − 1
rm + 1
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As r is an increasing function of p, it suffices to show that f (r) ≡ r+1
r−1

rm−1
rm+1 is a decreasing

function of r when r > 1. Now,

f ′(r) =
(

rm−1+m(r+1)rm−1
)
(r−1)(rm+1)

(r−1)2(rm+1)2

−
(

rm+1+(r−1)mrm−1
)
(r+1)(rm−1)

(r−1)2(rm+1)2

= 2mrm+1−2mrm−1−2r2m+2
(r−1)2(rm+1)2

Let g(r) = mrm+1 −mrm−1 − r2m + 1. It suffices to show that g(r) < 0 for all r > 1. Now,

g(r) = (r2 − 1)mrm−1 − r2m + 1

= (r2 − 1)mrm−1 − (r2 − 1)(
m−1

∑
i=0

r2i)

= (r2 − 1)(mrm−1 −
m−1

∑
i=0

r2i)

By the arithmetic and geometric means’ inequality,

∑m−1
i=0 r2i

m
≥ m

√√√√m−1

∏
i=0

r2i = rm−1

Thus,
g(r) ≤ (r2 − 1)(mrm−1 −mrm−1) = 0

Hence, E[Nm(p)] decreases in p when p > 1/2. Because E[Nm(p)] is a continuous function
of p that is symmetric about 1/2, it follows that its maximal value occurs when p = 1/2,
which completes the proof.

Corollary 1. E[Nm(p) ≤ m2.

Proof. This follows as it is well known that E[Nm(1/2)] = m2.

Now, let Gt be the number of games played in round t, and let G = ∑k
j=1 Gt be

the total number of games played. As Lemma 2 implies that E[Xm] ≤ m2, we see that
E[G] ≤ ∑k

t=1 2k−tm2
t . This upper bound can be improved by using that the m2 upper

bound can be decreased if the best player is involved in the match. Indeed, it follows from
Lemma 2 that the mean number of games in a match involving the best player ,which ends
when one of the players is ahead by m, is upper bounded by

b(m) = m
r0 + 1
r0 − 1

rm
0 − 1

rm
0 + 1

.

Proposition 1.

E[number of plays] ≤ ∑k
t=1 2k−tm2

t −∑k
t=1
(
m2

t − b(mt)
)

∏
j−1
s=1

rmt
0

1+rmt
0
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Proof. Let R be the number of rounds played by the best player. Conditioning on whether
the best player plays in round t yields that

E[Gt] ≤ (2k−t − 1)m2
t + P(R ≥ t)b(mt) + P(R < t)m2

t

= 2k−tm2
t − P(R ≥ t)(m2

t − b(mt))

and the result follows because the proof of Lemma 1 implies that P(R ≥ t) ≥ ∏t−1
s=1

rms
0

1+rms
0

.

Remark 1. The upper bound of Proposition 1 is attained when n = 2k, pi∗ ,j = p0, j �= i, and
pi,j = 0.5, i, j �= i∗.

Of other methods considered in the literature, the closest to ours is the rule proposed
in [13]. (Other rules, such as those of [12,14], deal with more specific models that typically
assume, among other things, that there is a ranking of the players such that the probability that
a higher ranked player will win a game against a lower ranked one is at least 0.5. In addition,
numerical results cited in [13] indicate that its rule tends to outperform the others.)

Although the rule of [13], like GRR, uses a knockout tournament structure that elimi-
nates half the remaining players in each round, it differs in two ways from GRR. The first is
in how a match is decided, with the rule in [13] having a match consisting of a fixed odd
number g of games and then letting the winner of the match be the one with more wins.
The second way is that g is fixed and does not depend on the round. We now argue that
the GRR way of deciding the winner of a match is superior.

Let the m-rule be the rule where each match, in any round, is decided when one of the
players has m more wins than the other, and let the g-rule be one where each match consists
of g games. To compare these, let L1(m, p) and L2(g, p) be the probabilities that the better
player would lose a match when using an m-rule and when using a g-rule, when the better
player wins each game with probability p. (Thus, L2(g, p) = P(Bin(g, p) < (g + 1)/2),
where Bin(g, p) is a binomial random variable with parameters (g, p).) The following table
gives some values for these quantities when p = 0.6.

Thus, for instance, if p0 = 0.6, then the use of the g-rule with g = 77 would result in
each match being 77 games and have a resulting success probability of about 1− k× 0.0376.
On the other hand, use of the m-rule with m = 8 would lead to the same success probability,
with the mean number of games in a match between i and j having a value that ranges
between 8 and m2 = 64 as |Pi,j − 0.5| ranges from 0.5 to 0. On the other hand, if one wanted
a larger success probability, then a g-rule with g = 93 and the m-rule with m = 9 both
would result in a success probability of approximately 1− k × 0.02536, with the g-rule
requiring 93 games per match, and the m-rule requiring a mean number of games per
match ranging from 9 to a maximum of 81.

The GRR rule modifies the m-rule by allowing a different value of m in each round.
Because the number of matches in each round decreases exponentially, it seems intuitive
to have shorter matches in earlier rounds, which is what GRR does. For instance, in the
case where k = 5 and Pi∗ ,j = 0.6, j �= i and Pi,j = 0.5, i, j �= i∗, Table 1 indicates that if
mt = 11, t ≤ k, then the probability of an incorrect choice is approximately 0.057, with
the mean number of games needed being 3422.31. On the other hand, the mean number
of games needed in this case by the GRR rule with δ = 0.057 is 3093.72 (The means are
computed by using Proposition 1).

The next section considers a modification of the GRR rule.
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Table 1. Comparison of match win probabilities for g- and m-rules when p = 0.6.

m L1(m, 0.6) g L2(g, 0.6)

8 0.0376 77 0.0376
9 0.02535 93 0.02537
10 0.01704 109 0.01724
11 0.0114 125 0.0118
15 0.00228 197 0.00226

2.2. Modified Gambler’s Ruin Rule

One underlying drawback of GRR is that it may play too many games between two
suboptimal arms to determine which seems better. In such cases, one might consider
eliminating both arms as none of them show the potential to be best. Therefore, we can
often improve GRR by limiting the number of games in each match, and drop both arms
if none of them can win the match by the end. The resulting rule, called the Modified
Gambler’s Ruin Rule (MGRR), is as follows.
Modified Gambler’s Ruin Rule

• Let w∗
t = 1

4ε ln(2t/δ), let wt = ceil(w∗
t ), and let nt = ceil(3w∗

t /ε), t ≥ 1. In round t,
play each pair until either one is ahead by wt, with the leader being the winner, or until
the total number of games reaches nt, in which case both arms are eliminated.

As a preparation of showing the strength of MGRR, we need the following Lemma.

Lemma 3. For 0 ≤ x ≤ 1
1− x
1 + x

≤ e−2x.

Proof. Let f (x) = (1− x)e2x − (1 + x). It suffices to show that f (x) ≤ 0 for 0 ≤ x ≤ 1.
Now,

f ′(x) = e2x − 2xe2x − 1

f ′′(x) = −4xe2x

Since f ′′(x) ≤ 0, it follows that f ′(x) is decreasing, which, since f ′(0) = 0, shows that f (x)
is decreasing. Hence, f (x) ≤ f (0) = 0.

Lemma 4. MGRR identifies the best arm i∗ with probability at least 1 −δ.

Proof. Given that the best player successfully advances to round t and that she wins each
game played in round t with probability a, let Pt(a) denote the conditional probability that
the best player is eliminated in round t. Let Xi, i ≥ 1 be independent Bernoulli random
variables such that

Xi =

{
1 with probability a
−1 with probability 1− a

and let Sr(a) = ∑r
i=1 Xi, r ≥ 1. Then,

Pt(a) = P(Sr(a) hits− wt before wt ∪ Sr(a) does not hit wt within nt steps)

≤ P(Sr(a) hits− wt before wt) + P(Sr(a) does not hit wt within nt steps)

≤ P(Sr(a) hits− wt before wt) + P(Snt(a) < wt)

58



Mathematics 2023, 11, 1568

Because a ≥ p0 = 1/2 + ε and both terms on the right side of the preceding inequality are
decreasing in a, we have that

P(Sr(a) hits− wt before wt) ≤ (1/r0)
wt

≤ (
1− 2ε

1 + 2ε
)

1
4ε ln(2t/δ)

≤ e− ln(2t+1/δ)

=
δ

2t+1

where the second inequality follows by Lemma 4. In addition,

P(Snt(a) < wt) ≤ P(Snt(p0) < wt)

= P(Snt(p0))− 2ntε < wt − 2ntε)

≤ exp(− (wt − 2ntε)2

2nt
)

≤ exp(−25
24

ln(2t+1/δ))

< exp(− ln(2t+1/δ))

=
δ

2t+1

where the third inequality uses Azuma inequality (see [15]). Hence, Pt(a) ≤ δ
2t , which

shows that the conditional probability that the best player is eliminated in round t given that
she advances to that round is at most δ

2t . However, by the same argument as in Lemma 1,
this shows that the probability that the best arm is identified is at least 1− δ.

Remark 2.

• Since the number of games is upper bounded in each match, we are able to derive the upper
bound of the total number of games when using MGRR:

number of game ≤
k

∑
t=1

2k−tXt

=
3

4ε2

k

∑
t=1

2k−t(ln 2t+1 + ln
1
δ
)

=
3n
4ε2

k

∑
t=1

ln 2t+1 + ln 1
δ

2t

<
3n
4ε2 (4 + ln

1
δ
)

= O(
n ln 1

δ

ε2 )

• There is basically no downside in using MGRR as opposed to GRR. Although w∗
t > m∗

t , the
difference is usually small and often wt = mt. To see this, note that

w∗
t

m∗
t
=

ln( 1+2ε
1−2ε )

4ε
(1)
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Since 1+2ε
1−2ε − 1 = 4ε

1−2ε , the Taylor series expansion of f (x) = ln(x) about 1 gives that

ln(
1 + 2ε

1− 2ε
) ≈ 4ε

1− 2ε
− (

4ε

1− 2ε
)2/2 + (

4ε

1− 2ε
)3/3

For an illustration, suppose ε = 0.05, δ = 0.01. Then, w∗
3 = 33.42, m∗

3 = 33.31, n3 = 2006,
so w3 = m3 = 34. Now, if Pi,j = 1/2, then the mean and variance of the number of games
needed between players i and j until one is up by m is m2 and 2m2(m2 − 1)/3 (see [16] for
the variance formula). Letting NGRR and NMGRR be the number of round 3 games such a
match would take when using GRR and when using MGRR, it follows that the mean and
standard deviation of NGRR are 1156 and 943.46. Hence, as NMGRR = min(NGRR, 2006),
it follows that MGRR stops the match when the number of games played is roughly one
standard deviation above the mean of NGRR, which should result in a reasonable decrease
in the mean number of games needed. (For instance, if X is exponential with mean 1, then
E[min(X, 2)] = 1− e−2 = 0.865.)

• The validity of w∗
t > m∗

t follows from (1) upon using Lemma 3.

The following Table 2 compares the performances of GRR and MGRR when pi∗ ,j =

p0, pi,j = 0.5, i∗ �= i �= j, and n = 2k.

Table 2. Mean number of games needed by GRR and MGRR.

ε = 0.1, δ = 0.05 k = 2 k = 3 k = 4 k = 5

GRR 203.18 591.48 1482.14 3415.14
MGRR 196.82 565.21 1378.99 3112.67

k = 3, δ = 0.05 ε = 0.05 ε = 0.1 ε = 0.2 ε = 0.3

GRR 2240.49 591.48 153.51 61.40
MGRR 2156.00 563.03 148.96 75.65

3. The Bradley–Terry–Luce Bayesian Model

Suppose now that player i has an unknown associated value vi, and that a game
between players i and j is won by i with probability vi

vi+vj
. Furthermore, suppose that

v1, . . . , vn are the values of n independent exponential random variables V1, . . . , Vn having a
mean of 1. As before, our objective is to identify player i∗, where i∗ = argmax vi. However,
because we are assuming a prior distribution on the values, we now require that the
posterior probability that our decision is correct is at least 1− δ. That is, if C is the event that
we made the correct choice, then we require that our rule is such that P(C|all data) ≥ 1− δ.
Subject to this constraint, we want the expected number of games played to be relatively
small. Because we want to finish as soon as possible and we require that the posterior
probability that we have made the correct decision is at least 1− δ, it is clearly optimal to
stop as soon as there is some r for which P(Vr = maxj Vj|all data) ≥ 1− δ. More precisely,
if wi,j is the number of times that i has beaten j, then we should stop and declare for r if
P(Vr = maxj Vj|wi,j, i �= j) ≥ 1− δ.

The rule we suggest for determining the pair to play the next game is a randomized
policy that relates to the Thompson sampling approach used in bandit problems (see [17,18]).
Letting V(1) > V(2) > . . . > V(n) be the ordered values of V1, . . . , Vn, and Pi,j, i �= j, be the
posterior probability that V(1) = Vi, V(2) = Vj, then i and j are chosen to be the next pair
with probability Pi,j + Pj,i. We can implement this rule by simulating a random vector
V∗

1 , . . . , V∗
n having the conditional distribution (given all data) of V1, . . . , Vn. If V∗

i and V∗
j

are the two largest of V∗
1 , . . . , V∗

n then i and j are chosen to play the next game. Because it is
difficult to directly simulate from the posterior distribution of V1, . . . , Vn, we next develop
a Markov chain Monte Carlo approach for doing so.
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3.1. The Sampling Approach: MCMC

With wi,j denoting the current number of times player i has beaten j, the conditional
(e.g., posterior) density of V = (V1, . . . , Vn) is

f (x1, . . . , xn) = Ce−∑i xi ∏
i �=j

(
xi

xi + xj

)wi,j

(2)

for a normalization factor C.
As noted previously, we now want to simulate from the preceding distribution and let

the next game be between the two indices whose simulated values are largest. However, be-
cause directly simulating V from (2) does not seem computationally feasible (for one thing,
C is difficult to compute), we utilize the Hasting–Metropolis algorithm (see [19]) to generate
a Markov chain whose limiting distribution is given by (2). The Markov chain is defined as
follows. When its current state is x = (x1, . . . , xn), a coordinate that is equally like to be any
of 1, . . . , n is selected. If i is selected, a random variable Y is generated from an exponential
distribution with mean xi, and if Y = y, then y = (x1, . . . , xi−1, y, xi+1, . . . , xn) is consid-
ered as the candidate next state. In other words, if we let y = (x1, . . . , xi−1, y, xi+1, . . . , xn),
the density function for the candidate next state is

q(y|x) = 1
n

1
xi

e−y/xi

The next state of the Markov chain, call it x∗, is such that

x∗ =
{

y with probability α(x, y)
x with probability 1− α(x, y)

where

α(x, y) = min

{
f (y)
f (x)

q(x|y)
q(y|x) , 1

}
The limiting distribution of this Markov chain is the posterior distribution of V1, . . . , Vn.

Consequently, we can approximately simulate from the posterior by generating a large
number of states of the chain and then choosing the two largest indices of the final state
to play the next game. However, as it probably makes little difference if we choose i and j
to play the next game not with the exact posterior probability that these are the two arms
with largest values but with a probability close to the exact one, in practice, we do not
need to determine many states of the Markov chain. Indeed, it is not clear that using the
exact probabilities would lead to improved results. (In practice, for n ≤ 10, 100 states of
the Markov chain should suffice.) Moreover, after choosing a pair and observing the result
of their game, then because of the new posterior distribution, which given the result of
the last game should not be much different from the previous one, the initial state of the
Markov chain used to determine the next pair should be chosen to be the final state of the
previous chain.

Whereas the preceding simulations can be used to estimate the probability that a given
player is best, we do not recommend using it to determine when to stop. Indeed, if a player’s
probability of being best appears to have a reasonable chance of being as large as 1− δ, we
propose to use the method in the next subsection to estimate P(Vr = maxj Vj|all data).
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3.2. The Stopping Criteria: A Simulation Approach

In this subsection, we will present a simulation approach to estimate P(Vr = maxj Vj|
all data). It follows from (2) that for r = 1, . . . , n

P(Vr = max
i

Vi|wi,j, i �= j) =
E[I{Vr = maxi Vi}∏i �=j(

Vi
Vi+Vj

)wi,j ]

E[∏i �=j(
Vi

Vi+Vj
)wi,j ]

(3)

=
E[∏i �=j(

Vi
Vi+Vj

)wi,j |Vr = maxi Vi]

nE[∏i �=j(
Vi

Vi+Vj
)wi,j ]

= K E[∏
i �=j

(
Vi

Vi + Vj
)wi,j |Vr = max

i
Vi], (4)

where V1, . . . , Vn are iid exponentials with rate 1.
Thus, we can use simulation to estimate Pr ≡ P(Vr = maxi Vi|wi,j, i �= j), r = 1, . . . , n as

follows. In the tth simulation run, generate n independent exponentials with rate 1, V1, . . . , Vn

and let i∗ be such that Vi∗ = maxi Vi. To estimate E[∏i �=j(
Vi

Vi+Vj
)wi,j |Vr = maxi Vi], let

Xj(r) =

⎧⎨⎩
Vj, if j �= i∗, j �= r
Vi∗ , if j = r
Vr, if j = i∗

and let b(t)r = ∏i �=j(
Xi(r)

Xi(r)+Xj(r)
)wi,j . Perform the preceding for each r = 1, . . . , n. If we

conduct m simulation runs, then the estimator of P(Vr = maxi Vi|wi,j, i �= j) is ∑m
t=1 b(t)r

∑n
r=1 ∑m

t=1 b(t)r
.

In practice, it turns out that the variance of ∏i �=j(
Vi

Vi+Vj
)wi,j is very large. While this

might not make much difference when using the proposed policy, it makes simulation stud-
ies of the effectiveness of the procedure difficult. To ameliorate this difficulty, we suggest
using the following importance sampling estimator, which in our numerical experiments
tended to reduce the variance by over 30%.

An Importance Sampling Estimator

Suppose we are at a stage where every player has at least one win. Let wi = ∑j �=i wi,j
be the total number of wins of player i, and let w = ∑n

i=1 wi be the total number of
games played. Further, let Y1, . . . , Yn be independent, with Yi being exponential with rate

w
nwi

, i = 1, . . . , n. Then, the importance sampling identity (see [19]) gives

E[I{Vr = max
i

Vi}∏
i �=j

(
Vi

Vi + Vj
)wi,j ]

= (
n

∏
i=1

nwi
w

) E[I{Yr = max
i

Yi}∏
i �=j

(
Yi

Yi + Yj
)wi,j

n

∏
i=1

exp
(
(

w
nwi

− 1)Yi
)
] (5)

Thus, each simulation run generates Y1, . . . , Yn and, for each r = 1, . . . , n, yields an
unbiased estimator of E[I{Vr = maxi Vi}∏i �=j(

Vi
Vi+Vj

)wi,j ]. In each run, all but one of these
n estimators will equal 0.

We now give numerical examples comparing the Thompson sampling rule with the
MGRR rule. It is worth noting that the implementation of Thompson sampling rule does
not require knowledge of ε, which specifies the least gap between the best player and an
arbitrary player. We consider two examples with 5 players, where in the first example
we use fixed strength v = (0.3, 0.5, 0.7, 0.9, 1.5) and in the second example we randomly
generate strengths from exponential (1) for each replication—that is, all replications in the
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first example use the same strength vector, whereas in the second example each replication
starts by simulating player strengths from an exponential with rate 1.

In all cases, when using the MGRR rule, we take ε =
V(1)

V(1)+V(2)
− 1/2. We run 100

iterations of MCMC to determine the next pair and we utilize importance sampling in
estimating the probabilities that check for stopping. The results, using δ = 0.05, are
summarized in Tables 3 and 4. The standard deviation columns refers to the standard
deviation of the estimator of the expected number of games until stopping.

Table 3. Numerical example of Thompson sampling rule where strengths v = (0.3, 0.5, 0.7, 0.9, 1.5).
Replication = 5000.

Method
Percentage of

Correct
Mean Number of

Games
Standard Deviation

MGRR 0.99 115.612 1.39
Thompson Sampling 0.9886 98.9916 0.8671405

Table 4. Numerical example of Thompson sampling rule where strengths are randomly generated
from exponential (1). Replication = 3000.

Method
Percentage of

Correct
Mean Number of

Games
Standard Deviation

MGRR 0.99 8520 354
Thompson Sampling 0.953 248.3 13.5

4. Conclusions

We have considered the problem of finding the best among a set of n players when
we learn about the player’s skills by successively choosing a pair of players and having
them play a game. Our objective is to find a policy that minimizes the expected number
of games to find the best player, subject to the condition that the probability of a correct
choice is at least some specified value.

In our first model, we suppose that it is known that one of the players, called the best,
will win each game it plays with a probability of at least 1/2+ ε, where ε is a known positive
value. The policy we suggest is based on a knockout tournament structure, where we have
pairs play a match, with the winner of the match remaining in contention and the loser
being eliminated. Whereas other policies in the literature using a knockout tournament
structure let a match consist of a fixed number of odd games, with the winner being the
one with more wins, we let a match end when one of the players has won a fixed number
of games more than the other. We argue that our sequential-type matches lead to superior
results. We also show how to improve this policy by letting the number of games one must
be ahead to win the match depend on the number of remaining players, and by allowing
for the stopping of a match after a fixed number of games if neither player has won by then,
with both players being eliminated in this case.

Our second model supposes that each player has an unknown value, and that a
game between two players with values v and w is won by the player with value v with
probability v

v+w . Supposing that these values have a known exponential prior distribution,
the objective is to minimize the expected number of games needed to identify the player
with the largest value, subject to the condition that the posterior probability that our
decision is correct is at least some specified value. We present a Thompson sampling type
policy and give a simulation approach to estimate its resulting expected number of games
needed. The simulation results give evidence of the strength of this policy. Additional
numerical work is planned for future research.
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Abstract: The reproducing kernel Hilbert space (RKHS) methodology has shown to be a suitable
tool for the resolution of a wide range of problems in statistical signal processing both in the real
and complex domains. It relies on the idea of transforming the original functional data into an
infinite series representation by projection onto an specific RKHS, which usually simplifies the
statistical treatment without any loss of efficiency. Moreover, the advantages of quaternion algebra
over real-valued three and four-dimensional vector algebra in the modelling of multidimensional
data have been proven useful in much relatively recent research. This paper accordingly proposes a
generic RKHS framework for the statistical analysis of augmented quaternion random vectors, which
provide a complete description of their second order characteristics. It will allow us to exploit the full
advantages of the RKHS theory in widely linear processing applications, such as signal detection. In
particular, we address the detection of a quaternion signal disturbed by additive Gaussian noise and
the discrimination between two quaternion Gaussian signals in continuous time.

Keywords: quaternion random signal; reproducing kernel Hilbert space; widely linear processing;
detection problem

MSC: 6E22; 60H30

1. Introduction

The importance of Hilbert space theory in statistical signal processing applications lies
in the advantageous mathematical properties they gather, namely, the geometry of Hilbert
spaces and the structure of function spaces [1]. Some recent and interesting applications of
Hilbert space theory can be found in [2,3], to name a few. The characterization of random
processes by means of the reproducing kernel Hilbert space (RKHS) approach has shown to
be a suitable tool for the resolution of many statistical signal processing problems [4,5]. In
the late 1950s, Parzen [6,7] was the one who initially suggested using RKHS methodology
in statistical signal processing and time series analysis. More specifically, he provided a
functional analysis perspective of random processes defined by second-order statistics and
illustrated that the RKHS approach offers an elegant general framework for addressing
a wide range of problems that involve inner product computations, for instance, least-
squares estimation of random variables and signal detection problems. The underlying
idea consisted of transforming via projections, in an specific RKHS, the original functional
data into an infinite-dimensional series representation counterpart, which usually sim-
plified the statistical treatment, with no loss of efficiency at all. Afterwards, in the 70s,
Kailath showed the usefullness of RKHS formulation in the construction of likelihood ratios
and the testing for nonsingularity for several detection problems [8–10]. More recently, a
numerical evaluation of the inner product in an arbitrary RKHS in the real domain was
proposed and then applied in the approximate representation of second-order stochastic
processes by means of series expansions, as well as in the signal detection problem [11].
Although, the underlying RKHS theory in the complex domain has been developed by the
mathematicians [12,13], the machine learning and signal processing communities have
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primarily focused on the case of real kernels [14,15]. However, more recent developments
emphasized extending the use of kernel-based formulation towards more complex set-
tings: the kernel-based approach for treating complex-valued random signals has drawing
increasing interest in the area of statistical signal processing [16–18]. Likewise, matrix-
valued kernels commonly known as operator-valued kernels have been also considered
in recent studies, such as in [19–21], where Hilbert spaces of vector-valued functions with
operator-valued reproducing kernels for multi-task learning are constructed.

Furthermore, recent higher dimensional kernel algorithms have considered mapping
the input samples to quaternion functions because the quaternion domain facilitates the
modelling of three- and four-dimensional signals. Comparing the quaternion model to
the conventional kernel paradigm, which maps the input sample to a real function, the
quaternion model’s capacity to manipulate multi-dimensional data has shown beneficial
when dealing with quadrivariate signals. This suggests that increasing the dimensionality
of the feature space enhances the efficiency of general kernel algorithms [22] and also
enables the learning of various nonlinear features contained in the data. In fact, quater-
nion random signals appear in a variety of fields such as vector-sensor signals, image
processing, aerospace, just to name a few, in order to model physical effects where several
random components are involved [23–26] among others. The great interest in quaternion
signal processing is due to the advantages of quaternion algebra over real-valued four-
dimensional vector algebra in the modelling of such data [27–29]. However, the suitable
statistical processing for quaternion random signals includes all the necessary second order
statistical information accounting for a possible improperness (noncircular) of quaternion
processes. The augmented covariance matrix contains too complementary covariance
matrices in order to exploit complete second order information. This approach is known
as quaternion widely linear (WL) processing. The effectiveness of the WL processing
method for estimation problems involving complex-valued and quaternion-valued data
has been formally demonstrated [30,31]. Althought the existence of RKHSs, positive defi-
nite kernels and an extension of the Mercer’s theorem in the quaternion domain are issues
addressed in the existing research [22,32,33], the extension to the widely linear processing
and the availability of an explicit expression of its inner product are, to our knowledge, still
not addressed.

The challenge we face with quaternion random signals and the RKHS framework
is to extend these ideas to the more general setting of WL processing by considering
the augmented quaternion statistics in order to maximise the use of available statistical
information and to exploit all the advantages of RKHS theory for second-order quaternion
random signals. In this paper we present a general framework to obtain a novel RKHS
for quaternion-valued signals with complete representation capabilities, since it allows us
to represent any quaternion function. To every correlation function corresponds a RKHS
for which this function is its reproducing kernel. So as a result, the closed linear span of a
random signal and the RKHS specified by its correlation function are very closely related
(there is, in fact, an isometric isomorphism). The essential underlying idea is that a natural
connection between stochastic and deterministic functional analysis is provided by the
RKHS framework. Thus, the RKHS can be seen as the natural Hilbert space associated with
a random signal and its inner product can be used to express the solutions to a number of
statistical signal processing problems. Our research focuses on how the WL approach can be
used to construct an RKHS for augmented quaternion-valued random signals. The explicit
description of a quaternion RKHS can allow us to propose general solutions to quaternion-
valued signal processing problems in continuous-time following a WL processing, for
instance, detection problems. These solutions generalise those previously introduced in
the literature in particular cases, for example, under the assumption of circular (rotation-
invariantly distributed) quaternion signals or for mean-square continuous quaternion
signals [34,35]. In fact, we use this quaternion RKHS approach to deal with several problems
of detection, as it is the detection of a deterministic signal disturbed by additive Gaussian
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noise and the discrimination between two quaternion Gaussian signals with unequal
covariances in the continuous-time case.

In summary, the major contributions of this paper are three-fold:

1. From the augmented covariance matrix of a quaternion-valued signal, we construct
the corresponding RKHS instead of designing quaternion-valued kernels that verify
the necessary conditions for the associated quaternion reproducing kernel Hilbert
space (QRKHS) to exist, as in [36].

2. First, we develop the properties of the RKHS associated with the correlation matrix of
an augmented complex vector process and, second, we obtain an explicit expression
of the widely QRKHS inner product that can effectively transform the functional
quaternion data into a series representation simplifying their statistical treatment.

3. We show the potential applications of the widely QRKHS for quaternion-valued
processes in signal processing problems such as signal detection.

The rest of the paper is organized as follows. Section 2 briefly outlines the basic
characteristics of quaternion-valued random signals and, for the sake of completeness,
introduces the key results from RKHS theory in the case of vector-valued functions, as
this is the main mathematical tool employed in this paper. Section 3 presents a detailed
description of the proposed RKHS for quaternion-valued random signals. In Section 4
the QRKHS approach is used to obtain solutions for several Gaussian signal detection
problems and a numerical example is shown to illustrate the solution proposed for the
detection of a quaternion deterministic signal disturbed by additive quaternion Gaussian
noise. Finally, concluding remarks, limitations, and perspectives are given in Section 5.

2. Preliminaries and Motivations

Here, we summarize the notations employed throughout the paper and we review
some quaternions and RKHS theory facts necessary for the development of the manuscript
and in order to make the paper self-contained.

We denote matrices with boldfaced uppercase letters, column vectors with boldfaced
lowercase letters, and scalar quantities with lightfaced lowercase letters. Quaternion (or
complex) conjugate, transpose, and Hermitian (i.e., transpose and quaternion conjugate)
are represented by superscripts (·)∗, (·)T and (·)H, respectively. Throughout this paper, all
the random variables considered are assumed with zero-mean.

2.1. Quaternion Random Signals

Let {i, j, k} be the imaginary units satisfying:

i2 = j2 = k2 = ijk = −1

ij = k = −ji

jk = i = −kj

ki = j = −ik

A quaternion q ∈ H is defined as

q = a + ib + jc + kd

where a, b, c, d are four real numbers. Quaternions form a noncommutative normed division
algebra H, i.e., for p, q ∈ H, pq �= qp in general. The conjugate of a quaternion q is
defined as q∗ = a− ib− jc− kd and the norm of a quaternion is ‖q‖ =

√
qq∗ =

√
q∗q =√

a2 + b2 + c2 + d2. The involution of a quaternion q over a pure unit quaternion η (that is,
η2 = −1) is

qη = ηqη−1 = ηqη∗ = −ηqη

There are three types of Hilbert spaces in H depending on how the vectors are mul-
tiplied by the scalars because of the non-commutativity in the quaternion domain: left,
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right, and two-sided [37]. This fact may entail some drawbacks, for example, the set of
linear operators acting on a one-sided Hilbert space does not have a linear structure. How-
ever, by fixing an arbitrary Hilbert basis, it is possible to introduce a notion of two-sided
multiplication. The definition of a right quaternionic Hilbert space is given as follows [38].

Definition 1. A right quaternionic Hilbert space is a complete and separable vector space under
right multiplication by quaternions, Hq, with an inner product 〈·, ·〉Hq : Hq ×Hq → H satisfying
the following properties, for f, g, h ∈ Hq and v ∈ H

1. 〈f, g〉∗Hq
= 〈g, f〉Hq

2. 〈f, g + h〉Hq = 〈f, g〉Hq + 〈f, h〉Hq

3. 〈f, gv〉Hq = 〈f, g〉Hq v
4. 〈fv, g〉Hq = v∗〈f, g〉Hq

5. ‖f‖2
Hq

= 〈f, f〉Hq > 0 unless f = 0.

Many of the well-known characteristics of complex Hilbert spaces are also present in
quaternionic Hilbert spaces, such as the fact that every separable quaternionic Hilbert space
has a basis. Once a Hilbert basis is fixed, any right quaternionic Hilbert space becomes a
left quaternionic space and vice versa [38].

Definition 2. A continuous-time quaternion random signal is a stochastic process q(t) ∈ H of
the form

q(t) = a(t) + ib(t) + jc(t) + kd(t), t ∈ T (1)

with T a real set and a(t), b(t), c(t), d(t) real stochastic processes.

Likewise, we can use the following modified Cayley-Dickson representation [29]

q(t) = α(t) + kβ(t) (2)

where α(t) = a(t) + ib(t) ∈ C and β(t) = d(t) + ic(t) ∈ C are complex signals in the plane
spanned by {1, i}.

We will denote the correlation function of q(t) as Rq(t, s) = E[q(t)q∗(s)]. Moreover,
H(q) denotes the closed span of all quaternion-linear combinations of finitely many random
variables q(t) and their limits in quadratic mean (q.m.).

Analogously to the complex case, a complete description of the second-order proper-
ties of a quaternion random signal q(t) is attained by considering the augmented quaternion
random vector as [27]

q(t) = [q(t), qi(t), qj(t), qk(t)]T (3)

This type of quaternion processing that takes into account the quaternion signal and
its involutions over the three pure unit quaternions {i, j, k} is known as full-widely linear
(FWL) processing. The relationship between the augmented quaternion vector (3) and the
real random signals in (1) is given by

q(t) = 2T[a(t), b(t), c(t), d(t)]T

where

T =
1
2

⎡⎢⎢⎣
1 i j k
1 i −j −k
1 −i j −k
1 −i −j k

⎤⎥⎥⎦
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is a unitary quaternion operator, i.e., THT = I4. Thus, the augmented correlation matrix
Rq(t, s) = E[q(t)qH(s)] is of the form

Rq(t, s) =

⎡⎢⎢⎢⎢⎣
Rq(t, s) Rqqi(t, s) Rqqj(t, s) Rqqk(t, s)

Ri
qqi(t, s) Ri

q(t, s) Ri
qqk(t, s) Ri

qqj(t, s)

Rj
qqj(t, s) Rj

qqk(t, s) Rj
q(t, s) Rj

qqi(t, s)

Rk
qqk(t, s) Rk

qqj(t, s) Rk
qqi(t, s) Rk

q (t, s)

⎤⎥⎥⎥⎥⎦ (4)

with Rqqi(t, s), Rqqj(t, s) and Rqqk(t, s) the three complementary correlation functions. Like-
wise, by using the modified Cayley-Dickson representation (2), the augmented quaternion
vector q(t) can be expressed as

q(t) =
√

2A[α(t), β(t), α∗(t), β∗(t)]T

with A given by

A =
1√
2

⎡⎢⎢⎣
1 k 0 0
1 −k 0 0
0 0 1 −k
0 0 1 k

⎤⎥⎥⎦ (5)

A is a unitary (one-to-one) quaternion operator, i.e., AHA = AAH = I4, thus it
preserves inner product (an isometry) [39]. Then, the augmented correlation matrix
Rq(t, s) can be obtained from the correlation matrix of a(t) = [α(t), β(t), α∗(t), β∗(t)]T,
i.e., Rq(t, s) = 2ARa(t, s)AH, with Ra the correlation matrix corresponding to the aug-
mented complex random vector a(t).

2.2. Reproducing Kernel Hilbert Spaces

Let H be an auxiliary Hilbert space of m-variate complex-valued functions defined
on T, f(t) = [ f (1)(t), f (2)(t), . . . , f (m)(t)]T, with f (i) ∈ H, i = 1, 2, . . . , m, a complex Hilbert
space with a computationally convenient norm (usually a L2-space or a RKHS). Then, H is
a Hilbert space under the inner product

〈f, g〉H =
m

∑
i=1
〈 f (i), g(i)〉H

Definition 3. Let H be a linear space of functions on T. We say that H is a reproducing kernel
Hilbert space (RKHS) of functions f : T → H, when for any y ∈ H and s ∈ T the linear functional
which maps f ∈ H to 〈f(s), y〉H is continuous on H.

According to the Riesz representation theorem [40], we obtain that, for every s ∈ T
and y ∈ H, there is a linear operator Ks : H → H such that verifies the following
reproducing property

〈f(s), y〉H = 〈f, Ksy〉H (6)

Moreover, for every t, s ∈ T we also introduce the linear operator K(t, s) : H → H

defined as follows
K(t, s)f := (Ksf)(t)

for f ∈ H. Thus, the kernel K satisfies the following property, for every f, g ∈ H

〈K(t, s)g, f〉H = 〈Ksg, Ktf〉H

Alternatively, a RKHS can be also defined by means of its reproducing kernel. To this
end, let L(H) be the set of all the bounded linear operators from H to H.
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Definition 4. An L(H)-valued reproducing kernel is a function K : T × T → L(H) such that K

is self-adjoint and nonnegative-definite. For each L(H)-valued reproducing kernel K on T, there
exists a unique Hilbert space H, called RKHS of K, consisting of H-valued functions on T such that

1. K(·, s)f ∈ H for all s ∈ T and f ∈ H, and
2. 〈f(s), g〉H = 〈f, K(·, s)g〉H for all f ∈ H, s ∈ T, and g ∈ H

There exists a bijective correspondence between L(H)-valued reproducing kernels
and H-valued RKHS which is central to the theory of vector-valued RKHS. In fact, for
each H-valued RKHS, there exists a unique L(H)-valued reproducing kernel K on T that
satisfies the above conditions. For this reason, K is called the reproducing kernel of H.

Moreover, the RKHS H can be spanned by the set {Ksf|s ∈ T, f ∈ H}. For
f = ∑n

i=1 ciKti yi and g = ∑n
j=1 djKsj wj the inner product is of the form

〈f, g〉H =
n

∑
i,j=1

cid∗j 〈yi, K(ti, sj)wj〉H

According to the Mercer’s theorem for quaternionic kernels [33] and the Quaternion
Moore-Aronszajn theorem [32] the existence and uniqueness (up to an isomorphism)
of quaternion valued reproducing kernel Hilbert spaces is guaranteed for any positive
definite quaternion-valued kernel, i.e., there exists a unique quaternion Hilbert space of
functions for which the positive definite kernel is a reproducing kernel. Furthermore, a
Mercer’s type series expansion can be extended to represent continuous quaternion-valued
kernels. Therefore, we address the construction of a QRKHS associated with the augmented
correlation function Rq(t, s) which allows us to exploit all the advantages of RKHS theory
in the quaternion FWL processing and obtain unified solutions to the quaternion signal
detection problems. Based on the RKHS theory of complex random vectors, discussed in
the next section, and taking into account the representation of the augmented quaternion
vector in terms of the complex vector a(t), we derive an explicit expression for the inner
product corresponding to the QRKHS.

3. Quaternion RKHS Representation in WL Processing

3.1. RKHS Representation for Complex Random Vectors

Following the procedure developed in [6] for real stochastic processes, we apply the
concepts of RKHS theory described in the previous section in the context of random signal
processing by considering the correlation matrix of a complex vector stochastic process
as the kernel. To do so, let x(t) = [x(1)(t), x(2)(t), . . . , x(m)(t)]T, t ∈ T, be a m-variate
second-order complex-valued random signal defined on the probability space (Ω,A,P),
and with correlation matrix R(t, s), whose elements are R(l,p)(t, s) = E[x(l)(t)x(p)∗(s)],
t, s ∈ T; l, p = 1, 2, . . . , m.

Theorem 1. Let H be an auxiliary Hilbert space of m-variate complex-valued functions f defined on
T. Assume that R(t, s) belongs to the direct product Hilbert space H⊗H and define the correlation
operator R on H as

(Rf)(i)(t) = 〈R(i)(t, ·), f〉H =
m

∑
j=1
〈R(i,j)(t, ·), f (j)〉H , i = 1, 2, . . . , m

where R(i)(t, s) denotes the i-th row of R(t, s), i = 1, . . . , m. Then R is a linear, self-adjoint,
non-negative definite, and completely continuous operator of H into itself.
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Proof. Note that R is well defined and, for all f ∈ H, Rf ∈ H. Furthermore, R is self-adjoint
and non-negative definite since R(t, s) is a correlation matrix and R(t, s) = RH(s, t). Now,
from the fact that ‖R‖H⊗H = M < ∞ and the Cauchy-Schwarz inequality follows

〈Rf, g〉H =
m

∑
j=1
〈(Rf)(j), g(j)〉H ≤ M‖f‖H‖g‖H < ∞

for all f, g ∈ H. Thus, R is a bounded operator. Finally, a bounded linear operator between
normed spaces is always continuous [41] [Theorem 4.42].

From this theorem R is an L(H)-valued reproducing kernel and therefore, there exists
a unique RKHS generated by R(t, s), H(R). Moreover, R is a trace class operator, i.e.,

∞

∑
n=1

〈R(t, ·)fn, R(·, t)fn〉H(R) =
∞

∑
n=1

〈R(t, t)fn, fn〉H < ∞

by using the reproducing property (6) in H(R) and with {fn}n a basis for H. It follows
from the spectral theory of completely continuous operators that the set of eigenvalues of
R is an infinite sequence of positive real numbers converging to zero. In order to obtain a
concrete structure, let νn and ρn be the eigenvalues and orthonormal eigenfunctions of R in
H, then the kernel enjoys a representation as follows [40]

R(t, s) =
∞

∑
n=1

νnρn(t)ρ
H
n (s) (7)

which converges in H⊗H and ‖R‖2
H⊗H = ∑∞

n=1 ν2
n < ∞. When the convergence of the

series expansion in (7) is pointwise in t, s ∈ T, for instance if R(t, s) is continuous, then the
RKHS generated by R(t, s), denoted by H(R), can be spanned by the set {√νnρn(t)} and
the reproducing inner product can be obtained as follows

〈f, g〉R =
∞

∑
n=1

1
νn
〈f, ρn〉H〈ρn, g〉H (8)

for f(t) = ∑∞
n=1〈f, ρn〉Hρn(t) and g(t) = ∑∞

n=1〈g, ρn〉Hρn(t).
Let H(x) be the Hilbert space spanned by the variables of the complex-valued random

vector x(t). Hence, if f ∈ H, the notation 〈x, f〉H is an element of H(x) such that E[〈x, f〉H] = 0
and E[〈x, f〉H〈x, g〉∗H] = 〈Rf, g〉H, with f, g ∈ H. Similarly, if f ∈ H(R), 〈x, f〉R denotes a
random variable in H(x) that can be expressed as follows

〈x, f〉R =
∞

∑
n=1

1
νn
〈x, ρn〉H〈ρn, f〉H

By denoting xn = 〈x, ρn〉H, it can proved that they are uncorrelated random variables
and verify E[xnx∗n] = νn. Thus, if the convergence of the series expansion in (7) is absolute
in t, s ∈ T the following series representation for x(t) can be deduced

x(t) =
∞

∑
n=1

xnρn(t), t ∈ T

which is the projection of x(t) onto the subspace of H(x) spanned by the random variables
{xn/

√
νn}.
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3.2. Quaternion RKHS Representation

Based on the results on RKHSs for complex vector processes described above we
derive a RKHS for augmented quaternion random processes (3). To do this, let us consider
the augmented complex random vector a(t) = [α(t), β(t), α∗(t), β∗(t)]T with correlation
matrix Ra(t, s), which is obtained from the Cayley-Dickson representation (2). Assume
that Ra(t, s) belongs to the direct product Hilbert space H⊗H and denote by νn and ρn(t)
the eigenvalues and orthonormal eigenfunctions of Ra in H, respectively. It can be easily
proved that ρn(t) are of the form

ρn(t) = [ρ
(1)
n (t), ρ

(2)
n (t), ρ

(1)∗
n (t), ρ

(2)∗
n (t)]T

and 〈ρn, ρm〉H = 2Re〈ρ(1)n , ρ
(1)
m 〉H + 2Re〈ρ(2)n , ρ

(2)
m 〉H = δnm. Then, Ra(t, s) can be rep-

resented by the series expansion of (7) and the RKHS associated can be spanned by
{√νnρn(t)} with the inner product given in (8). Since the augmented correlation ma-
trix (4) is related to Ra(t, s) by the equality Rq(t, s) = 2ARa(t, s)AH, the eigenvalues and
eigenfunctions of Rq are of the form

λn = 2νn, φn(t) = Aρn(t)

with A given in (5). Let Hq be some coefficient or auxiliary right quaternionic Hilbert space
with a computationally convenient norm (e.g., a L2 space) with 〈·, ·〉Hq its inner product.
Assume that the augmented correlation matrix Rq belongs to the direct product Hilbert
space Hq ⊗Hq. Let H∗ be the subspace of Hq which contains the augmented quaternion
functions, i.e., H∗ is the image of H under the unitary map with matrix A, Af ∈ H∗ ⊆ Hq,
with f ∈ H. It is isomorphic to H and widely linear with the product by scalar

f(t)q = [ f (t)q, f i(t)qi, f j(t)qj, f k(t)qk]T = [ f (t)q, ( f (t)q)i, ( f (t)q)j, ( f (t)q)k]T ∈ H∗

for f = [ f , f i, f j, f k]T ∈ H∗, q ∈ H. This isomorphism allows us to obtain the following
representation for the augmented correlation matrix from the series expansion (7) for
Ra(t, s)

Rq(t, s) =
∞

∑
n=1

λnφn(t)φ
H
n (s) (9)

which converges in H∗ ⊗ H∗. In particular, the eigenfunctions corresponding to the
augmented correlation matrix belong to this subspace, φn ∈ H∗, and are orthonormal,
〈φn, φm〉Hq = 〈Aρn, Aρm〉Hq = 〈ρn, ρm〉H = δnm.

Thus, a RKHS generated by Rq(t, s), denoted by H(Rq), can be defined as the span
of the set of the eigenfunctions, i.e., it consists of all augmented quaternion functions
f ∈ H∗ ⊆ Hq for which

∞

∑
n=1

1
λn
|〈f, φn〉Hq |2 < ∞

Then, the reproducing kernel inner product of two augmented quaternion functions
in H(Rq) can be expressed as shown

〈f, g〉Rq =
∞

∑
n=1

1
λn
〈f, φn〉Hq〈φn, g〉Hq (10)

Theorem 2. The expression given by Equation (10) defines an inner product on H(Rq), is well-
defined and verifies the reproducing property (6).

Proof. First, we prove that (10) really defines an inner product on H(Rq). In fact, by using
the properties of 〈·, ·〉Hq as an inner product in Hq, it is easy to check that (10) satisfies for
f, g, h ∈ H(Rq) and v ∈ H the following properties
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(i) 〈f, g〉∗Rq
= ∑∞

n=1
1

λn
〈φn, g, 〉∗Hq

〈f, φn〉∗Hq
= 〈g, f〉Rq

(ii) 〈f, g + h〉Rq = ∑∞
n=1

1
λn
〈f, φn〉Hq(〈φn, g〉Hq + 〈φn, h〉Hq) = 〈f, g〉Rq + 〈f, h〉Rq

(iii) 〈f, gv〉Rq = ∑∞
n=1

1
λn
〈f, φn〉Hq〈φn, g〉Hq v = 〈f, g〉Rq v

(iv) 〈fv, g〉Rq = 〈g, fv〉∗Rq
= v∗〈f, g〉Rq

(v) ‖f‖2
Rq

= 〈f, f〉Rq = ∑∞
n=1

1
λn
|〈f, φn〉Hq |2 > 0 unless f = 0.

Now, note that Rq(·, s)f ∈ H(Rq), for all s ∈ T and f ∈ H∗, since

∞

∑
n=1

1
λn
|〈Rq(·, s)f, φn〉Hq |2 =

∞

∑
n=1

1
νn
|〈Ra(·, s)f, ρn〉H|2 < ∞

where f = Af for f ∈ H and Rq(·, s)f = 2ARa(·, s)f ∈ H∗. Finally, Equation (10) satisfies
the reproducing property for f ∈ H(Rq) and g ∈ H∗ as demonstrated below

〈f, Rq(·, s)g〉Rq =
∞

∑
n=1

1
λn
〈f, φn〉Hq〈φn, Rq(·, s)g〉Hq

=
∞

∑
n=1

1
νn
〈f, ρn〉H〈ρn, Ra(·, s)g〉H

= 〈f, Ra(·, s)g〉Ra = 〈f(s), g〉H

= 〈f(s), g〉Hq

with f = Af and g = Ag, f, g ∈ H, and by using the fact that the inner product in H(Ra)
verifies the reproducing property.

In a similar way to the complex case, we define the random variables

qn = 〈q, φn〉Hq =
√

2〈a, ρn〉H (11)

with 〈a, ρn〉H = 2Re〈α, ρ
(1)
n 〉H + 2Re〈β, ρ

(2)
n 〉H real-valued uncorrelated random variables.

Thus, qn are real-valued uncorrelated random variables, E[qnqm] = λnδnm, and they allow
us to obtain the following series representation

q(t) =
∞

∑
n=1

qnφn(t), t ∈ T (12)

In the following examples, some interesting representations for quaternion random
processes are deduced as particular cases of those obtained in this section by developing
the RKHS theory in the field of WL processing.

3.2.1. Example 1: Karhunen-Loéve-Type Representation

Firstly, let q(t), t ∈ [0, I], be a continuous in quadratic mean quaternion random signal.
Consider H = L2[0, T], the space of square integrable functions and let H be the space
of vector functions f = [ f (1), f (2), f (3), f (4)]T such that ‖f‖H = ∑4

i=1 ‖ f (i)‖2
2 < ∞. Let νn

and ρn(t) be the eigenvalues and eigenfunctions of the integral operator Ra defined on H

as follows

(Raf)(t) =
∫ I

0
Ra(t, s)f(s)ds

then, a Karhunen-Loéve-type expansion (12) can be deduced for the augmented quaternion
vector q(t) with the random variables

qn =
∫ I

0
φH

n(t)q(t)dt =
√

2
∫ I

0
ρHn(t)a(t)dt

73



Mathematics 2022, 10, 4432

This Karhunen-Loéve-type representation was proposed in [28] for a quaternion signal
in continuous-time based on augmented statistics and was applied to the problems of
estimation and detection.

3.2.2. Example 2: Gaussian Quaternion Signal plus Wiener Noise Representation

Now, let us consider the quaternion random process given by

q(t) =
∫ t

0
s(τ)dτ + w(t), t ∈ [0, I]

with s(t) a Gaussian, continuous in quadratic mean, quaternion signal with correlation
function L, and w(t) a Q-proper (i.e., the three complementary correlation functions
vanish) standard Wiener process, with correlation function R. Moreover, s(t) and w(t)
are independent.

Let La and Ra be the correlation matrices corresponding to the complex random
vectors obtained from the Cayley-Dickson representation of s(t) and w(t), respectively. In
this case, Ra(t, s) = min{t, s}I4 and H = H(Ra) its associated RKHS which consists of
complex functions f = [ f (1), f (2), f (3), f (4)]T, with first derivate f′ satisfying that∫ I

0
f′H(t)f′(t)dt < ∞

Denote by

Ka(t, s) =
∫ s

0

∫ t

0
La(u, v)dudv

then, the kernel Ka belongs to the direct product space H(Ra)⊗ H(Ra). Let νn and ρn be
its eigenvalues and eigenfunctions, respectively. The following series representation can be
obtained for the augmented vector q(t)

q(t) =
∞

∑
n=1

(∫ t

0
Aφn(u)du

)
qn, t ∈ [0, I]

where the random coefficients are given by

qn =
√

2
∫ I

0
φH

n(t)da(t)

and φn(t) are the eigenfunctions of La, i.e., ρn(t) =
∫ t

0 φn(u)du. A similar series expansion
was obtained by [42] for real signals and is especially useful in the problems of estimating
and detecting a Gaussian signal in additive white Gaussian noise.

4. Application to Detection Problems in the Quaternion Domain

4.1. Detection of Quaternion Deterministic Signals in Quaternion Gaussian Noise

The first issue we tackle is how to detect a quaternion deterministic signal that has
been corrupted by quaternion additive Gaussian noise. A coordinate-free representation
of the augmented quaternion noise based on the QRKHS associated with its augmented
correlation function will allow us to obtain a log-likelihood ratio expression which unifies
a variety of formulas for the optimum detection statistic (for instance, in terms of series
expansions, solutions to integral equations, etc.). Specifically, the detection problem is
formulated as follows

H0 : y(t) = q(t), t ∈ [0, I]
H1 : y(t) = s(t) + q(t), t ∈ [0, I]

(13)

with s(t) a quaternion continuous completely known signal and q(t) a quaternion mean-
square continuous Gaussian noise. P0 and P1 stand for the probability measures corre-
sponding to the null and alternative hypotheses, respectively. Different signal and noise
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representations can be used to derive a number of likelihood ratio formulas. In accordance
with Grenander’s Theorem [43] a method for determining likelihood ratios for continuous-
time observation models entails first reducing the observation signal to an equivalent
sequence, followed by determining the limit of the likelihood ratio for the truncated se-
quence. For this purpose, our approach considers the random coefficients obtained from
the QRKHS representation of the observation quaternion random signal. Then, using
calculations involving RKHS inner products, we compute the log-likelihood ratio to obtain
a suitable detector expression.

Theorem 3. Suppose that s(t) belongs to H(Rq), then the detection problem (13) is not singular
(P0 ≡ P1) and the log-likelihood ratio test is as follows

log
dP1

dP0
(y) = 〈y, s〉Rq −

1
2
||s||2Rq

(14)

Proof. From (12) and the fact that s(t) ∈ H(Rq) we can replace the continuous-time
problem (13) by the following discrete one

H0 : yn = qn, n = 1, 2, . . .
H1 : yn = sn + qn, n = 1, 2, . . .

with qn given in (11) and sn = 〈s, φn〉Hq . Consequently, applying the Grenander’s Theorem [43] to

the discrete detection problem above we obtain thatP0 ≡ P1 since ∑∞
n=1

|sn|2
λn

= ||s||2Rq
< ∞ and

log
dP1

dP0
(y) =

∞

∑
n=1

ynsn

λn
− 1

2

∞

∑
n=1

|sn|2
λn

Taking into account that 〈y, s〉Rq = ∑∞
n=1

1
λn
〈y, φn〉Hq〈φn, s〉Hq = ∑∞

n=1
ynsn
λn

we prove
(14).

4.2. Discrimination between Two Quaternion Gaussian Signals

The second detection problem we study is the discrimination problem between two
quaternion random signals which is formulated by the following hypotheses pair

H0 : y(t) = q1(t), t ∈ [0, I]
H1 : y(t) = q2(t), t ∈ [0, I]

(15)

where qi(t), i = 1, 2, are Gaussian, continuous in quadratic mean, quaternion signals with
correlation functions Ri(t, s), respectively. P0 and P1 stand for the probability measures
corresponding to the null and alternative hypotheses, respectively, and verify that P0 ≡ P1,
that is, the detection problem (15) is not singular. Let ai(t), i = 1, 2, be the complex random
vectors associated with the Cayley-Dickson representation of qi(t), i = 1, 2, respectively.
Let νn and ρn be the eigenvalues and eigenfunctions of operator Ra1 on the RKHS H(Ra2).
Then the log-likelihood ratio for the underlying hypothesis test problem is provided in the
following theorem.

Theorem 4. The log-likelihood ratio test corresponding to (15) can be expressed as follows

log
dP1

dP0
(y) =

1
2

∞

∑
n=1

log νn +
1
2

∞

∑
n=1

1− νn

νn
y∗nyn (16)

where the uncorrelated random variables yn =
√

2〈a1, νnρn〉Ra1
, underH0 and yn =

√
2〈a2, ρn〉Ra2

,
under H1.
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Proof. From the conditions of nonsingularity required we obtain that Ra2 −Ra1 ∈ H(Ra2)⊗
H(Ra2) and that Ra2 dominates to Ra1 , that is, Ra2 − Ra1 is a correlation matrix too [1]. On
the other hand, Ra2 is Hilbert-Schmidt on L2[0, I] since Ra2(t, s) is a continuous function
on [0, I]⊗ [0, I]. Thus, there exists an isomorphism between H(Ra2) and L2[0, I] [44], so
ρn = R1/2

a2
ψn with ψn ∈ L2[0, I]. Using the series expansion (12) for the observation

quaternion signal y(t) with H = H(Ra2)

y(t) =
∞

∑
n=1

yn

(
AR1/2

a2
ψn

)
(t), t ∈ T

we get the following equivalent problem in terms of the random coefficients yn

H0 : yn =
√

2〈a1, νnρn〉Ra1
� N(0, 2νn), n = 1, 2, . . .

H1 : yn =
√

2〈a2, ρn〉Ra2
� N(0, 2), n = 1, 2, . . .

Then [10] the log-likelihood ratio for y1, y2, . . . is given by (16).

4.3. Numerical Example

We consider the model (13) with the following quaternion signal to show the perfor-
mance of the proposed detector (14)

s(t) =
1

π2 cos πt + i
1

π2 cos πt + j
1

π2 cos πt + k
1

π2 cos πt, t ∈ [0, 1]

and the quaternion noise q(t) =
√

2x(t)eiθ + k
√

2x(t)eiθ , with x(t) the zero-mean Wiener
real process and θ an standard Normal random variable, independent of x(t). Moreover,
we consider H = L2[0, 1], the space of square integrable complex functions. Figure 1 shows
the detection probability P = 1− ψ

(
ψ−1(1− α)− d

)
(ψ denotes the cumulative probability

distribution function of a N(0, 1) random variable) in relation to the false-alarm probability
α by using the Neyman-Pearson criterion, in terms of the signal-to-noise ratio

d2 = ||s||2Rq
=

∞

∑
n=1

1
λn
|〈s, φn〉Hq |2

obtained with n = 5 (blue line) and n = 10 (red line) terms, respectively.
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Figure 1. Detection probability versus the false-alarm probability.

5. Conclusions

A generic RKHS framework for the statistical analysis of augmented quaternion ran-
dom vectors has been presented. First, we have developed the properties of the RKHS
associated with the correlation matrix of an augmented complex vector process and, sec-
ond, we have obtained an explicit expression of the widely QRKHS inner product that can
effectively transform the functional quaternion data into a series representation simplifying
their statistical treatment. This novel QRKHS has allowed us to exploit the full advantages

76



Mathematics 2022, 10, 4432

of the RKHS theory to propose general solutions to WL processing problems in continuous-
time, for instance, detection problems. These solutions have shown to generalise those
previously introduced in the literature in particular cases, for example, under the assump-
tion of proper (rotation-invariantly distributed) quaternion signals or for mean-square
continuous quaternion signals [34,35]. In particular, the quaternion RKHS approach has
been applied to deal with the detection of a deterministic signal disturbed by additive
Gaussian noise and the discrimination between two quaternion Gaussian signals with
unequal covariances in the continuous-time case. Note that, in practice, the determination
of eigenvalues and eigenfunctions can be quite involved. However, it is possible to employ
a numerical method of solution, such as the Rayleigh-Ritz method (see [45] for a detailed
study about its practical application).

Further research related to other hypercomplex systems, such as the tessarines, will be
explored in the future to study possible extensions of the results provided in this work.
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Abstract: We consider an optimal control problem with the discounted and average payoff. The
reward rate (or cost rate) can be unbounded from above and below, and a Markovian switching
stochastic differential equation gives the state variable dynamic. Markovian switching is represented
by a hidden continuous-time Markov chain that can only be observed in Gaussian white noise. Our
general aim is to give conditions for the existence of optimal Markov stationary controls. This fact
generalizes the conditions that ensure the existence of optimal control policies for optimal control
problems completely observed. We use standard dynamic programming techniques and the method
of hidden Markov model filtering to achieve our goals. As applications of our results, we study the
discounted linear quadratic regulator (LQR) problem, the ergodic LQR problem for the modeled
quarter-car suspension, the average LQR problem for the modeled quarter-car suspension with damp,
and an explicit application for an optimal pollution control.

Keywords: ergodicity; filtering theory; hidden Markov models; partial observation; Wonham filter
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1. Introduction

In recent years, there has been more attention to a class of optimal control problems
where the dynamic systems are governed means switching diffusions in which the switch-
ing is modeled by a continuous-time Markov chain (ψ) with unobservable hidden states
(also known as partially observed optimal control problems). In these problems, an observ-
able process y whose outcomes are “influenced” by the outcomes of ψ in a known way is
assumed. Since ψ cannot be observed directly, the goal is to learn about ψ by observing y.
Following the last mentioned, this article concerns with an optimal control problem with
discounted and ergodic payoff in which the dynamic system x(t) evolves according to
a Markovian regime-switching diffusion dx(t) = f (x(t), ψ(t))dt + σ(x(t), ψ(t))dW(t) for
given continuous functions f and σ. The reward rate is allowed to be unbounded from
above and from below. In this paper, the Wonham filter to estimate the states of the Markov
chain from the observable evolution of a given process (y) is used. As a result, the original
system x(t) is converted to a completely observable one x(t).

Our main results extend the dynamic programming technique to this family of stochas-
tic optimal control problems with reward (or cost) rate per unit of time unbounded and
Markovian regime-switching diffusions. The regime switching is modeled by a continuous-
time Markov chain (ψ) with unobservable states. Early works include research on an
optimal control problem with an ergodic payoff, considering that the dynamic system
evolves according to Markovian switching diffusions. However, this diffusion does not
depend on a hidden Markov chain [1]. Research on deriving the dynamic programming

Mathematics 2022, 10, 2073. https://doi.org/10.3390/math10122073 https://www.mdpi.com/journal/mathematics
81



Mathematics 2022, 10, 2073

principle for a partially observed optimal control problem in which the dynamic system is
governed by a discrete-time Markov control process taking values in a finite-dimensional
space has also been proposed [2]. Finally, one paper studied the optimal control with
Markovian switching that is completely observable and rewards rate unbounded [3]. As
an application of our results, we study the discounted linear quadratic regulator (LQR)
problem, the ergodic LQR problem for the modeled quarter-car suspension, the average
(ergodic) LQR problem for the modeled quarter-car suspension with damp, and an explicit
application for an optimal pollution control. Other applications with bounded payoff
different from those studied in this work are found in [4–6].

The objective of the theory of controlled regime-switching diffusions is to model
controlled diffusion systems whose dynamics are affected by discrete phenomena. In these
systems, the discrete phenomena are modeled by a Markov chain in continuous time,
whose states represent the discrete phenomenon involved. There is an extensive list of
references dealing with the case of completely observable stochastic optimal control in
which a switching diffusion governs the stochastic systems. A literature review includes
the textbooks [7,8] and the papers [9–14], with several applications, including optimization
portfolios, wireless communication systems, and wind turbines, among others.

Generally, to solve unobserved optimal control problems, where the dynamic systems
are governed by a hidden Markovian switching diffusion, it is necessary to transform them
into completely observed ones, which in our case is done using a Wonham filter.

This Wonham filter estimates the hidden state of the Markov chain from the observable
evolution of the process y. When these estimates are replaced in the original system, this
becomes a completely observable system [15,16] and ([17], Section 22.3). The numerical
results for Wonham’s filter are given in [18].

The paper is organized as follows: in Section 1, an introduction is given. In Section 2,
the main assumptions are given. In this section, the partially observable system is converted
into an observable system. The conditions to ensure the existence of optimal solutions for
the optimal control problem with discounted payoff are given in Section 3. In Section 4,
the conditions to ensure the existence of optimal solutions for the optimal control problem
with average payoff are deduced. To illustrate our results, four applications are developed:
an application on a linear quadratic regulator (LQR) with discounted payoff (Section 5);
the development of a model of a quarter-car suspension LQR with an average payoff
(Section 6); the study of an optimal control of a vehicle active suspension system with damp
(Section 7); and an explicit application for an optimal pollution control (Section 8).

2. Formulation of the Problem

This work focuses on controlled hybrid stochastic differential Equations (HSDE) under
partial observation. To explain this, first, we consider the stochastic differential equations
of the form:

dx(t) = b(x(t), ψ(t), u(t))dt + σ(x(t), ψ(t))dW(t), x(0) = x0, ψ(0) = i, (1)

where b : Rn × E×U → Rn and σ : Rn × E → Rn×d in (1) depend on a finite state and time-
continuous irreducible and aperiodic Markov chain ψ(·) taking values in E = {1, . . . , N}.
For all i, j ∈ E the transition probabilities are given by:

P(ψ(s + t)) = j | ψ(s) = i =

{
qijt + o(t), if i �= j,
1 + qiit + o(t),

where the constants qij ≥ 0 are the transition rates from i to j and satisfy that qii(x) =
−∑i �=j qij(x), the transition matrix is denoted by Q = {qij}i,j=1,2,...,N . The control compo-
nent is u(t) ∈ U with U a compact set of Rm, and W is a d-dimensional standard Brownian
motion independent of ψ(·). Throughout the work, it is considered that both the Markov
chain ψ(·) and the Brownian motion W are defined on a complete filtered probability space
(Ω,F ,P, {Ft}) that satisfies the usual conditions.
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Until now, the switching diffusion (1) seems to be formulated as a classical switching
diffusion, as in [11–14,19], among others. However, we propose that the process ψ is a
hidden Markov chain, i.e., at any given instant of time, the exact state of the Markov chain
ψ(·) cannot be observed directly. Instead, we can only observe the process y given by:

dy(t) = h(ψ(t))dt + σ0dB(t), y(0) = 0, (2)

whose dynamics depends on the value of ψ(·). In Equation (2), h : E → R is a bounded
function, whereas B is a one-dimensional Brownian motion independent of W and ψ, and
σ0 is a positive constant.

Under partial observation, the best way to work is through nonlinear filtering. This
technique studies the conditional distribution of ψ(t) given the observed data accumulated
up to time t, namely:

Ψi(t) = P(ψ(t) = i | σ1(y(s), 0 ≤ s ≤ t)), ∀i ∈ E, (3)

where σ1(y(s), 0 ≤ s ≤ t)) is the σ1-algebra generated by the process y(t) and ∑N
i=1 Ψi(t) = 1.

Taking into account the following notation:

hT(Ψ) = (h(1), h(2), . . . , h(N)),

ΨT(t) = (Ψ1(t), . . . , ΨN(t)),

diag(h) = diag(h(1), . . . , h(N)),

and using the Wonham filtering techniques, we know that the process Ψ in (3) satisfies the
following Equation (see for instance [15] or ([17], Section 22.3)):

dΨ(t) =
[

QΨ(t)− σ−2
0 hT(Ψ(t))

(
diag(h)− hT(Ψ(t))IN

)
Ψ(t)

]
dt (4)

+σ−2
0

(
diag(h)− hT(Ψ(t))IN

)
Ψ(t)dy(t),

where IN is the N × N identity matrix. If we introduce the process:

dw0(t) = σ−1
0 (dy(t)− hT(Ψ(t))dt),

then Equation (4) can be rewritten as:

dΨ(t) = QΨ(t)dt + σ−1
0

(
diag(h)− hT(Ψ(t))IN

)
Ψ(t)dw0(t). (5)

Remark 1. Note that the unique solution of (5) exists up to an explosion time τ (see, for in-
stance [20]). However, τ = ∞ a.s. since Ψi(t) ≤ 1 for all t < τ and ∀i ∈ E.

At this point, we have defined the controlled HSDE with partial observation. To fulfill
the objective of this work, that is, to solve an optimal control problem with the discounted
and average payoff with partial observation, we will transform this problem into one
with complete observation (see for instance [5,6,16]). First, we will establish the following
notational convention.

For the coefficients b : Rn × E× U → Rn and σ : Rn × E → Rn×d

b(x(t), ψ(t), u(t)) = (b1(x(t), ψ(t), u(t)), . . . , bn(x(t), ψ(t), u(t))),

σ(x(t), ψ(t)) = {σkl(x(t), ψ(t))}k=1,...,n;l=1,...,d,
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we have their filtered estimates:

bk(x(t), Ψ(t), u(t)) =
N

∑
i=1

Ψi(t)bk(x(t), i, u(t)), (6)

σkl(x(t), Ψ(t)) =
N

∑
i=1

Ψi(t)σkl(x(t), i), (7)

and with equalities (6)–(7), we establish the new coefficients:

b(x(t), Ψ(t), u(t)) = (b1(x(t), Ψ(t), u(t)), . . . , bn(x(t), Ψ(t), u(t))),

σ(x(t), Ψ(t)) = {σkl(x(t), Ψ(t))}k=1,...,n;l=1,...,d

With the use of above functions and Equation (1), we introduce the components of a
new diffusion process as:

dxk(t) = bk(x(t), Ψ(t), u(t))dt +
d

∑
l=1

σkl(xk(t), Ψ(t))dWl(t), x(0) = x0, (8)

and therefore, we obtain from (5) and (8) the following controlled system with complete
observation:{

dx(t) = b(x(t), Ψ(t), u(t))dt + σ(x(t), Ψ(t))dW(t),
dΨ(t) = QΨ(t)dt + σ−1

0
(
diag(h)− hT(Ψ(t))IN

)
Ψ(t)dw0(t),

(9)

where (x(t), Ψ(t)) ∈ Rn × SN with:

SN = {Ψ = (Ψ1, . . . , ΨN) ∈ RN | Ψi(t) > 0,
N

∑
i=1

Ψi(t) = 1}.

Throughout this work, we will use the following Assumption 1.

Assumption 1.

(a) The control set U is compact.
(b) b : Rn × E × U → Rn is a continuous function that satisfies the Lipschitz continuous

property on x uniformly in (i, u) ∈ E× U , that is, there exists a constant C1 > 0 such that:

max
(i,u)∈E×U

‖b(x, i, u)− b(y, i, u)‖ ≤ C1‖x− y‖.

(c) There exists constants C2, C3 > 0 such that, σ : Rn × E → Rn×d satisfies:

‖σ(x, i)− σ(y, i)‖ ≤ C2‖x− y‖ and xTσ(x, i)σT(x, i)x ≥ C3‖x‖2

for all x, y ∈ Rn and for all i ∈ E.
(d) There exists C4, C5 > 0 with:

‖σ(x, i)‖ ≤ C4(1 + ‖x‖) and ‖b(x, i, u)‖ ≤ C5(1 + ‖x‖)

for i ∈ E and u ∈ U .

Under Assumption 1 and taking into account Remark 1, we know that the system (9)
has a unique solution.

84



Mathematics 2022, 10, 2073

For x ∈ Rn, we denote by ∇νx and Hx the gradient and the Hessian matrix of x,
respectively, and 〈·, ·〉 the scalar product. For a sufficiently smooth real-valued function
ν : Rn ×RN → R. Let:

Lu,Ψν(x, Ψ) :=
〈
∇νx, b(x, Ψ, u)

〉
+

1
2

Tr
[
(Hxν)a(x, Ψ)

]
+〈∇νΨ, QΨ(t)〉+ 1

2σ2
0

Tr
[
(HΨν((x, Ψ)))A2(Ψ(t))

]
with

a(x, Ψ) = σ(x, Ψ)σ(x, Ψ)T ,

A2(Ψ(t)) = [
(

diag(h)− hT(Ψ(t))IN

)
Ψ(t)][

(
diag(h)− hT(Ψ(t))IN

)
Ψ(t)]T ,

the operator associated with Equation (9). In order to carry out the aim of this work, we
define the control policies.

Definition 1. A function of the form u(t) := f (t, x(t), Ψ(t)) for some measurable function
f : [0, ∞)×Rn × SN → U , is called a Markov policy, whereas u(t) := f (x(t), Ψ(t)) for some
measurable function f : Rn × SN → U is said to be a stationary Markov policy. The stationary
Markov policies set is denote by F.

The following assumption represents a Lyapunov-like condition.

Assumption 2. There exists a function (w ≥ 1) ∈ C2(Rn × SN), and constants p ≥ q > 0, such
that:

(i) lim|x|→∞ w(x, Ψ) = +∞, and
(ii) Lu,Ψw(x, Ψ) ≤ −qw(x, Ψ) + p for each u ∈ U and (x, Ψ) ∈ Rn × SN.

It is important to point out that since the ψ(·) is irreducible and aperiodic, we can en-
sure the existence of a unique invariant measure for the Markov–Feller process (x f (·), Ψ(·))
(see [21,22]). Moreover, the Assumption 2 allows us to conclude that the Markov pro-
cess (x f (·), Ψ(·)), where f ∈ F is positive recurrent and there exists a unique invariant
probability measure μ f (dx, Ψ) for which is satisfied:

μ f (w) :=
∫
Rn×SN

w(x, Ψ)μ f (dx, dΨ) < ∞. (10)

Note that for every f ∈ F, the measure μ f belongs to the space defined as follows.

Definition 2. The w-norm is defined as:

‖ ν ‖w := sup
(x,Ψ)∈Rn×SN

| ν(x, Ψ) |
w(x, Ψ)

,

where ν is the real-valued measurable function on Rn × SN and w is the Lyapunov function given
in Assumption 2. The normed linear space of real-valued measurable functions ν with finite w-norm
is denoted by Bw(Rn × SN). Moreover, the normed linear space of finite signed measures μ on
Rn × SN such that:

‖ μ ‖w :=
∫
Rn

w(x, Ψ) | μ | (dx, dΨ) < ∞,

where | μ | is the total variation of μ is denoted by Mw(Rn × SN).

Remark 2. For each ν ∈ Bw(Rn × SN) and μ ∈Mw(Rn × SN), we get:∣∣∣ ∫ ν(x, Ψ)μ(dx, dΨ)
∣∣∣ ≤‖ ν ‖w

∫
w(x, Ψ) | μ | (dx, dΨ) =‖ ν ‖w‖ μ ‖w< ∞,
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that is, the integral
∫

ν(x, Ψ)μ(dx, Ψ) is finite.

The next result will be useful later.

Lemma 1. The condition (ii) in Assumption 2 implies that:

(a) Ex,Ψ, f [w(x(t), Ψ(t))] ≤ e−qtw(x, Ψ) + p
q (1− e−qt);

(b) limt→∞
1
t E

x,Ψ, f [w(x(t), Ψ(t))] = 0 for all f ∈ F, (x, Ψ) ∈ Rn × SN, and t ≥ 0;
(c) μ f (w) ≤ p

q for all h ∈ F.

Proof. (a) After applying Dynkin’s formula to the function eqtw, we use case (ii) of
Assumption 2 to get:

Ex,Ψ, f [eqtw(x(t), Ψ(t)] = w(x, Ψ0) +Ex,Ψ, f
[ ∫ t

0
eqs[Lu,Ψw(x(s), Ψ(s)) + qw(x(s), Ψ(s))]ds

]
≤ w(x, Ψ0) +Ex,Ψ, f

[ ∫ t

0
eqs pds

]
(11)

≤ w(x, Ψ0) +
p
q
(eqt − 1).

Finally, if we multiply the inequality (12) by e−qt, we obtain the result. To prove (b),
it is enough take the limit from the inequality (12). Integrating both sides of (12) with
respect to the invariant probability μ f , we obtain μ f (w) ≤ e−qtμ f (w) + p

q (1− e−qt), i.e.,
μ f (w) ≤ p/q; thus, the result (c) follows.

In this work, the reward rate is a measurable function r : Rn × E×U → R that satisfies
the following conditions:

Assumption 3.

(a) The function r(x, i, u) is continuous on Rn × E× U ; moreover, for each R > 0, there exists a
constant K(R) > 0 such that:

sup
(i,u)∈E×U

|r(x, i, u)− r(y, i, u)| ≤ K(R)|x− y| for all |x|, |y| ≤ R,

i.e., r is locally Lipschitz in x uniformly with respect to i ∈ E and u ∈ U.
(b) r(·, ·, u) is in the normed linear space of real-valued functions Bw(Rn × E) uniformly in u;

that is, there exists M > 0 such that for all (x, i) ∈ Rn × E:

sup
u∈U

|r(x, i, u)| ≤ Mw(x, i).

Notation. The rate reward r : Rn × E× U → R is vector form is given by:

rT(x, Ψ, u) = (r(x, 1, u), r(x, 2, u), . . . , r(x, N, u)),

and its estimation is:

r(x, Ψ(t), u) = ΨT(t)r(x, Ψ, u) =
N

∑
i=1

Ψi(t)r(x, i, u). (12)

Henceforth, for each stationary Markov policy f ∈ F, we write:

r(x, Ψ, f ) := r(x, Ψ, f (x, i)).
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3. The Discounted Case

The objective of this section is to give conditions that guarantee the existence of
discounted optimal policies for the α-discounted payoff criterion we are concerned with.

Definition 3. Let r be as in Assumption 3 and α a positive constant. Given a stationary Markov
policy f ∈ F and an initial state x(0) = x, Ψ(0) = Ψ, the total expected discount payoff (or
discounted payoff, for short) is defined as:

Vα(x, Ψ, f ) := Ex,Ψ, f
[ ∫ ∞

0
e−αtr(x(t), Ψ(t), f )dt

]
.

Observe that the value function does not depend on the time at which the optimal
control problem is studied to get the stationarity of the problem.

The following result shows a bound of the total expected discount payoff given in
Definition 3. We will omit its proof because it is a direct consequence of Assumption 3 and
inequality in Lemma 1a.

Proposition 1. Suppose that Assumptions 2 and 3b hold. Then, for each x in Rn, Ψ ∈ SN and
f ∈ F we have:

sup
f∈F

|Vα(x, Ψ, f )| ≤ M(α)w(x, Ψ) with M(α) := M
α + d

αc
.

implying that α-discounted payoff Vα(·, ·, f ), belongs to the space Bw(Rn × SN). Here, q and p are
as in Assumption 2 and M is the constant in Assumption 3b.

α-discounted optimal problem. The optimal control problem with discounted payoff
consists of finding a policy f ∗ ∈ F such that:

V∗
α (x, Ψ) = Vα(x, Ψ, f ∗) = sup

f∈F
Vα(x, Ψ, f ). (13)

The function V∗
α (x, Ψ) is referred to as the optimal discount payoff, whereas the policy

f ∗ ∈ F is called the discounted optimal.

Definition 4. We say that a function v ∈ C2(Rn × SN) ∩ Bw(Rn × SN), and a policy f ∗ ∈ F

verify (are a solution of) the α-discounted payoff optimality equations (or Hamilton–Jacobi–
Bellman (HJB) equation) if, for every x ∈ Rn and Ψ ∈ SN:

αv(x, Ψ) = r(x, Ψ, f ∗) +L f ∗ ,Ψv(x, Ψ) (14)

= sup
f∈F

{
r(x, Ψ, f ) +L f ,Ψv(x, Ψ)

}
. (15)

Proposition 2. If Assumptions 1, 2, and 3 hold, then:

(a) There exists a function v in C2(Rn × SN) ∩ Bw(Rn × SN) and a policy f ∗ ∈ F, such that
(14) and (15) hold.

(b) The function v coincides with V∗
α (x, Ψ) in (13).

(c) A policy f ∗ ∈ F is an α-discount optimal if and only if (14) and (15) are satisfied.
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Proof.

(a) Theorem 3.2 in [23] ensures that the value function Vα(x, Ψ) defined in (13) considering
Ψ ≡ 0 is the unique solution of the HJB Equation (14) in C2(Rn) ∩ Bw(Rn). The
existence of a function v in C2(Rn × SN) ∩ Bw(Rn × SN) and a policy f ∗ ∈ F, such
that (14) and (15) hold, follows from Theorem 3.1 and 3.2 in [23] for each Ψ ∈ SN
fixed.

(b) By Dynkin’s formula for all (x, Ψ) ∈ Rn × SN , f ∈ F and t ≥ 0:

Ex,Ψ, f [e−αtv(x(t), Ψ(t))] = v(x, Ψ) +Ex,Ψ, f
[ ∫ T

0
L f ,Ψ

[
e−αtv(x(t), Ψ(t))dt

]
(16)

Observe that:

L f ,Ψ
[
e−αtv(x(t), Ψ(t))

]
= −αe−αtv(x, Ψ)

+ e−αtb(x, Ψ, f )vx(x, Ψ)

+ e−αt 1
2

Tr(a(x, Ψ))vxx(x, Ψ)

= e−αt[−αv(x(t), Ψ(t)) +L f ,Ψv(x(t), Ψ(t))].

Therefore, the right-hand member of (16) equals:

Ex,Ψ, f [e−αtv(x(t), Ψ(t))] = v(x, Ψ) +Ex,Ψ, f
[
e−αt(L f ,Ψv(x(t), Ψ(t))− αv(x(t), Ψ(t)))dt

]
and from (15):

Ex,Ψ, f [e−αtv(x(t), Ψ(t))] ≤ v(x, Ψ)−Ex,Ψ, f
[∫ T

0
e−αtr(x(t), Ψ(t), f )dt

]
.

This yields:

v(x, Ψ) ≥ Ex,Ψ, f
[∫ t

0
[e−αtr(x(t), Ψ(t), f )dt

]
+Ex,Ψ, f [e−αtv(x(t), Ψ(t))].

Now, as a consequence of v is in Bw(Rn × SN) and Lemma 1 (a),(b), we have that:

|Ex,Ψ, f [e−αtv(x(t), Ψ(t))]| ≤ Ex,Ψ, f [[e−αt‖v‖ww(x(t), Ψ(t))]

≤ e−αt‖v‖wE
x,Ψ, f w(x(t), Ψ(t))

≤ e−αt‖v‖w

[
e−qTw(x, Ψ) +

p
q
(1− e−qT)

]
(by Lemma 1(a))

→ 0 as t → ∞.

Therefore:

v(x, Ψ) ≥ Ex,Ψ, f
[∫ ∞

0
[e−αsr(x(s), Ψ(s), f )ds

]
= Vα(x, Ψ, f ) for all f ∈ F.

Thus, v(x, Ψ) ≥ Vα(x, Ψ, f ). In particular, if we take f ∗ ∈ F satisfying (14) and proceed
as above, we get:

v(x, Ψ) = V∗
α (x, Ψ, f ∗).

(c) The if part. Suppose that f ∗ ∈ F satisfies Equations (14) and (15). Then, proceeding as
in part (b), we obtain that f ∗ ∈ F is an optimal policy.
The only if part. By mimic the same procedure of part (b), we can obtain that for any
f ∈ F fixed:

αVα(x, Ψ, f ) = r(x, Ψ, f ) +L f ,ΨVα(x, Ψ, f ); for all x ∈ Rn, Ψ ∈ SN . (17)
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On the other hand, by part (b) we can assert that:

αv(x, Ψ) = sup
f∈F

{r(x, Ψ, f ) +L f ,Ψv(x, Ψ)}; for all x ∈ Rn, Ψ ∈ SN . (18)

Now let f ∗ ∈ F be an optimal policy, so that Vα(x, Ψ, f ∗) = v(x, Ψ). Then, we get the
result from (17) and (18).

Remark 3. Briefly, Proposition 2 says that if the HJB-Equations (14) and (15) admit a solution
v ∈ C2(Rn × SN) ∩ Bw(Rn × SN), then v is the optimal discount payoff (13) to the switching
Markovian stochastic control problem with a discounted payoff completely observed, and f ∗ ∈ F is
an optimal stationary policy.

4. Average Optimality Criteria

As in (10), let μ f (ν) :=
∫
Rn ν(x, Ψ)μ f (dx, Ψ) for every ν ∈ Bw(Rn × SN).

Assumption 4. Let (x(t), Ψ(t)) be the solution of the hidden Markovian-switching diffusion (1)–(4).
Then, we suppose that there exist positive constants C and δ such that:

sup
f∈F

|Ex,Ψ, f [ν(x(t), Ψ(t))]− μ f (ν)| ≤ Ce−δt ‖ ν ‖w w(x, Ψ) (19)

for all (x, Ψ) ∈ Rn × SN, ν ∈ Bw(Rn × SN), and t ≥ 0. That is, we assume that the process
(x(t), Ψ(t)) is uniformly w-exponentially ergodic.

Next, we define the long-run average optimality criterion.

Definition 5. For each f ∈M, (x, Ψ) ∈ Rn × SN, and T ≥ 0, let:

JT(x, Ψ, f ) := Ex,Ψ, f
[ ∫ T

0
r(t, x(t), Ψ(t), f )dt

]
. (20)

The long-run expected average reward given the initial state (x, Ψ) is:

J(x, Ψ, f ) := lim inf
T→∞

1
T

JT(x, Ψ, f ). (21)

The function:

J∗(x, Ψ) := sup
f∈F

J(x, Ψ, f ) for all (x, Ψ) ∈ Rn × SN

is referred to as the optimal gain or the optimal average reward. If there is a policy f ∗ ∈ F for which
J(x, Ψ, f ∗) = J∗(x, Ψ) for all (x, Ψ) ∈ Rn × SN, then f ∗ is called average optimal.

Remark 4. In some optimal control problems, the limit of JT(x, Φ, f )/T as T → ∞ might not
exist. To avoid this difficulty, in optimal control problems, it defines the average payoff as a liminf as
in (21), which be interpreted as the worst average payoff that is to be maximized.

For each f ∈ F, let:

J( f ) := μ f (r(·, Ψ, f )) =
∫
Rn

r(x, Ψ, f )μ f (dx, dΨ). (22)

with μ f as in (10). Now, observe that JT defined in (20) can be expressed as:

JT(x, Ψ, f ) = TJ( f ) +
∫ T

0
[Ex,Ψ, f r(x(t), Ψ(t), f )− J( f )]dt, (23)
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therefore, multiplying (23) by 1
T and letting T → ∞ we obtain, by (19):

J(x, Ψ, f ) = lim
T→∞

1
T

JT(x, Ψ, f ) = J( f ) for all (x, Ψ) ∈ Rn × SN . (24)

Moreover, by the definition (22) of J( f ), the Assumption 3b, and (10):

|J( f )| ≤
∫
Rn
| r(x(t), Ψ(t), f ) | μ f (dx, dΨ) ≤ M · μ f (w) < ∞ for all f ∈ F.

Therefore, by Lemma 1c:

sup
f∈F

|J( f )| ≤ M · μ f (w) ≤ M · p
q

, (25)

thus, the reward J( f ) is uniformly bounded on F. From (24) and (25) we obtain that the
following:

J∗ := sup
f∈F

J( f ) = sup
f∈F

J(x, Φ, f ) = J∗(x, Φ) for all (x, Φ) ∈ Rn × SN (26)

has a finite value.
Thus, under the Assumptions 1, 2, and 4, it follows from (19) (w-exponential ergodicity)

and (22) that the long-run expected average reward (21) coincides with the constant J( f )
for every f ∈ F. Indeed, note that JT defined in (20) can be expressed as:

JT(x, Ψ, f ) = TJ( f ) +
∫ T

0
[Ex,Ψ, f r(x(t), Ψ(t), f )− J( f )]dt.

Definition 6. (a) A pair (J, v) consisting of a constant J ∈ R and a function v ∈ C2(Rn × SN) ∩
Bw(Rn × SN) is said to be a solution of the average reward HJB-equation if:

J = max
u∈U

[r(x, Ψ, u) +Lu,Ψv(x, Ψ)] for all (x, Ψ) ∈ Rn × SN . (27)

(b) If a stationary policy f ∈ F attains the maximum in (27), that is:

J = r(x, Ψ, f ) +L f ,Ψv(x, Ψ)] for all (x, Ψ) ∈ Rn × SN , (28)

then f is called a canonical policy.

The following theorem shows that if a policy satisfies the average reward HJB-equation,
then it is an optimal average policy.

Theorem 1. If Assumptions 1, 2, and 3 hold, then:

(i) The average reward HJB Equation (27) admits a unique solution (J, v), with v ∈ C2(Rn ×
SN) ∩ Bw(Rn × SN) satisfying v(0, Ψ0) = 0 for some Ψ0 ∈ SN fixed.

(ii) There exists a canonical policy.
(iii) The constant J in (27) equals J∗ in (26).
(iv) There exists a stationary average optimal policy.

Proof. (i) The steps for the proof of this incise are essentially the same given in proof of
Theorem 6.4 in [24]; thus, we omit the proof.

(ii) Since u → r(·, ·, u) and u → b(·, ·, u) are continuous functions on the compact
set U , we obtain that u → r(·, ·, u) + Lu,Ψv(·, ·) is a continuous function on U ; thus, the
existence of a canonical policy f ∈ F follows from standard measurable selection theorems;
see [25] (Theorem 12.2).

90



Mathematics 2022, 10, 2073

(iii) Observe that, by (27):

J ≥ r(x, Ψ, u) +Lu,Ψv(x, Ψ) for all (x, Ψ) ∈ Rn × SN and u ∈ U. (29)

Therefore, for any f ∈ F, using Dynkin’s formula and (29) we obtain:

Ex,Ψ, f v(x(t), Ψ(t)) = v(x, Ψ) +Ex,Ψ, f
( ∫ t

0
L f ,Ψh(x(s), Ψ(s))ds

)
≤ v(x, Ψ) + Jt−Ex,Ψ, f

( ∫ t

0
r(x(s), Ψ(s))ds

)
. (30)

Thus, multiplying by t−1 in (30) we have:

t−1 Jt(x, Ψ, f ) ≤ J + t−1v(x, Ψ)− t−1Ex,Ψ, f v(x(t), Ψ(t)). (31)

Consequently, letting t → ∞ in (31), and using Lemma 1b and (24), we obtain:

J ≥ J( f ) for all f ∈ F.

To obtain the reverse inequality, similar arguments show that if:

J ≤ r(x, Ψ, u) +Lu,Ψv(x, Ψ) for all (x, Ψ) ∈ Rn × SN and u ∈ U,

then J ≤ J( f ) for all f ∈ F. This last inequality together with (29) yields that if f ∈ F is a
canonical policy, which satisfies (28), then we obtain that J( f ) = J, and by (26):

J = J( f ) = J∗ = J∗(x, Ψ) for all (x, Ψ) ∈ Rn × SN . (32)

(iv) Similar arguments to those given in (iii) lead us to that if f ∈ F is a canonical
policy, then it is an average optimal.

Theorem 1 indicates that if a policy satisfies the HJB Equation (27), then this policy is
an optimal policy for the optimal control problem associated with the HJB equation. The
difficulty with this approach is how to get a solution (J∗, v, f ) of the HJB equation. The
most common form of the solve the HJB equation is based on variants on the vanishing
discount approach (see [11,24,26] for details).

Remark 5 ([1]). In the optimality criteria known as bias optimality, overtaking optimality, sensitive
discount optimality, and Blackwell optimality, the early returns and the asymptotic returns are both
relevant; thus, to study them, we need first to analyze the discounted and average optimality criteria.
These optimality criteria will be studied in future work.

Remark 6.

• On Assumption 1, ([7], Theorems 3.17 and 3.18). The uniform Lipschitz and linear growth
conditions of b and σ ensure the existence and uniqueness of the global solution of the SDE
with Markovian switching (1). The uniform Lipschitz condition (max(i,u)∈E×U ‖b(x, i, u)−
b(y, i, u)‖ ≤ C1‖x− y‖, ‖σ(x, i)− σ(y, i)‖ ≤ C2‖x− y‖ ) imply that the change rates of
the functions b(x, i, u) and σ(x, i) are minor or equal to the change rate of a linear function of
x. This gives, in particular, the continuity of b and σ in x for all [t0, ∞). Thus, the uniform
Lipschitz condition excludes the functions b and σ that are discontinuous concerning x. It is
important to note that although a function let continuous, it does not guarantee that it satisfies
the uniform Lipschitz condition; for example, the continuous function sin(x2) does not satisfy
this condition. Uniform Lipschitz condition can be replaced by the local Lipschitz condition.
In fact, the local Lipschitz condition allows us to include a great variety of functions, such as
functions v ∈ C2(Rn × E). However, the linear growth condition (Assumption 1 (d)) also
excludes some important functions, such as b(x, i) = −|x|2x + i . Assumption 1 (d) is quite

91



Mathematics 2022, 10, 2073

standard but may be restrictive for some applications. As far as the results of this paper are
concerned, the uniform Lipschitz condition may be replaced by the weaker condition:

xTb(x, i, u) +
1
2
||σ(x, i)||2 ≤ K(1 + ||x||2), for all (x, i) ∈ Rn × E, (33)

where K is a positive constant. This last condition allows us to include many functions as the
coefficients b and σ. For example:

b(x, i, u) = a(i)[x(t)− x3(t)] + xg(u) σ(x, i) = b(i)x2(t)

with a(i), b(i) > 0 such that b2(i) ≤ 2a(i) and for some continuous function g : U → R

given. It is possible to check that a diffusion process with the parameters given above satisfies
the local Lipschitz condition but the linear growth condition is not satisfied. On the other hand,
note that:

a(i)x[x− x3] + x2g(u) +
1
2

b2(i)x4 ≤ a(i)x2 + x2g(u) ≤ K(1 + x2)

with K = max(i,u)∈E×U{a(i)+ g(u)} and a compact control set U. That is, the condition (33)
is fulfilled. Thus, ([7], Theorem 3.18) guarantees that the SDE with Markovian switching
with these coefficients has a unique global solution on [t0, ∞).

• On Assumption 2, ([7], Theorem 5.2). This assumption guarantees the positive recur-
rence and the existence of an invariant measure μ f (dx, Ψ) for the Markov–Feller process
(x(t), Ψ(t)). Moreover, if this assumption holds together with the inequality k(|x|p) ≤ w(x, i)
for positive numbers k, p, H, then, the diffusion process (1) satisfies:

limsupt→∞E|x(t)|p ≤ H,

that is, x(t) is asymptotically bounded in pth moment. Some Lyapunov functions are, for
example:

w(x, i) = k(i)|x|p, k(i) > 0, p ≥ 2, ∀ (x, i) ∈ Rn × E, (34)

considering that the coefficients b and σ in (1) satisfy the Lipschitz condition and:

xTb(x, i, u) +
p− 1

2
||σ(x, i)||2 ≤ B(i)||x||2 + a, (35)

with a > 0, and B(i) be constants. In fact, using the inequality acb1−c ≤ ac + b(1 −
c) ∀ a, b ≥ 0, c ∈ [0, 1] and (35), we get:
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Lu,ψw(x, i) = k(i)p||x||p−1b(x, i, u) +
1
2

k(i)p(p− 1)||σ(x, i)||2|x|p−2 +
N

∑
j=i

qijk(j)||x||p

= pk(i)||x||p−2
{

xTb(x, i, u) +
p− 1

2
||σ(x, i)||2

}
+

N

∑
j=i

qijk(j)||x||p

≤ pk(i)||x||p−2{B(i)||x||2 + a}+
N

∑
j=i

qijk(j)||x||p

≤ (pB(i)k(i) +
N

∑
j=i

qijk(j))||x||p + apk(i)||x||p−2

= (pB(i)k(i) +
N

∑
j=i

qijk(j))||x||p (36)

+
[
(apk(i))p/2

( 2
λ(i)

)(p−2)/2]2/p[λ(i)
2
||x||p

](p−2)/p

≤ (pB(i)k(i) +
N

∑
j=i

qijk(j))||x||p + 2
p
(apk(i))p/2

( 2
λ(i)

)(p−2)/2

+
λ(i)(p− 2)

2p
||x||p

≤ −λ(i)(p + 2)
2p

||x||p + 2
p
(apk(i))p/2

( 2
λ(i)

)(p−2)/2

where λ(i) = (pB(i)k(i) + ∑N
j=i qijk(j)).

If we set:

q := min
i∈E

[λ(i)(p + 2)
2p

]
p := max

i∈E

[ 2
p
(apk(i))p/2

( 2
λ(i)

)(p−2)/2]
,

then

Lu,ψw(x, i) ≤ −q||x||p + p ≤ −qw(x, i) + p.

Now, taking the Lyapunov function (34) we define:

w(x, Ψ) =
N

∑
i=1

Ψiw(x, i) =
N

∑
i=1

Ψik(i)||x||p.

Considering that wx(x, Ψ) = ∑N
i=1 Ψik(i)p||x||p−1, wxx(x, i) = ∑N

i=1 Ψik(i)p(p − 1)
||x||p−2, ∇wΨ(x, i) = [k(i), k(2), . . . , k(n)]||x||p and wΨΨ(x, Ψ) = 0; a similar procedure
to that given in (37) allows us to obtain that W is also a Lyapunov function. That is:

Lu,Ψw(x, Ψ) ≤ −q||x||p + p ≤ −qw(x, Ψ) + p.

• On Assumption 3. This assumption allows us that the reward rate (or cost rate) can be
unbounded from above and below. For the Lyapunov function w(x, i) = k(i)|x|p, a reward
rate of the form:

r(x, i, u) = k(i)|x|p + h(u)

for some continuous function h : U → R satisfies the Assumption 3. In fact:

|r(x, i, u)| ≤ k(i)|x|p + max
u∈U

h(u) ≤ (k(i) + max
u∈U

h(u))|x|p = Mw(x, i)
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with M = maxi∈E{k(i) + maxu∈U} and U a compact set.
• On Assumption 4. This assumption indicates asymptotic behavior of x(t) when t goes to

infinite. Sufficient conditions for the w-exponentially ergodicity of the process (x(t), ψ(t))
can be seen in ([1], Theorem 2.8). In fact, in the proof of this theorem, Assumptions 1 and 2 are
required. Note that, for the optimal control problem with discounted optimality criterion, the
w-exponentially ergodicity of the process (x(t), ψ(t)) is not required. This assumption is only
necessary to study the average reward optimality criterion.

Remark 7. In the following sections, our theoretical results are implemented in three applications.
The dynamic system in the three applications evolves according to linear stochastic differential equa-
tions dx(t) = (A(i)x(t) + Bu(t))dt + σdW(t), namely, Assumption 1. The state numbers of the
Markov chain is 2, that is, E = {1, 2}. The payoff rate is of the form r(x, i, u) = xT R(i)x + uTSu
with x ∈ R2 and u ∈ U := [0, a1]× [0, a2], a1, a2 > 0. Taking w(x, i) = xT R(i)x + 1 we get:

|r(x, i, u)| = |xT R(i)x|+ |uTSu|
≤ |xT R(i)x|+ |uTSu||xT R(i)x + 1|
= maxu∈U (|uTSu|+ 1)|xT R(i)x + 1|
= M2w(x, i)

with M2 = maxu∈U (|uTSu|+ 1); thus, Assumption 3 also holds. A few calculations allow us to
obtain the Assumption 2 with w(x, Ψ) = ∑2

i=1 Ψi(t)w(x, ψ(t)) = ∑2
i=1 Ψi(t)(xT R(ψ(t))x + 1).

In fact:

Lu,Ψw(x, Ψ) = x2[2A(i)[Ψ1R(1) + Ψ2R(2)] + R(1)
2

∑
i=1

qi1Ψi + R(2)
2

∑
i=1

qi2Ψi]

+ x[R(1)
2

∑
i=1

qi1Ψi + R(2)
2

∑
i=1

qi2Ψi] (37)

+ σ2[Ψ1R(1) + Ψ2R(2)].

Let 0 < q < −[2A(i)[Ψ1R(1) + Ψ2R(2)] + R(1)∑2
i=1 qi1Ψi + R(2)∑2

i=1 qi2Ψi], and
rewrite Lu,Ψw(x, Ψ) as:

Lu,Ψw(x, Ψ) = −qw(x, Ψ) + l(x, i, u).

where

l(x, i, u) := qw(x, Ψ) + x2[2A(i)[Ψ1R(1) + Ψ2R(2)] + R(1)
2

∑
i=1

qi1Ψi + R(2)
2

∑
i=1

qi2Ψi]

+ x[R(1)
2

∑
i=1

qi1Ψi + R(2)
2

∑
i=1

qi2Ψi] (38)

+ σ2[Ψ1R(1) + Ψ2R(2)]

≤ p,

where the last inequality is obtained from fact that the function l(x.i.u) is continuous on the
compact set U for all x ∈ R and that the term q+ [2A(i)[Ψ1R(1) +Ψ2R(2)] + R(1)∑2

i=1 qi1Ψi +
R(2)∑2

i=1 qi2Ψi] is negative. Thus, Lu,Ψw(x, Ψ) = −qw(x, Ψ) + p and Assumption 2b follows.
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5. Application 1: Discounted Linear Quadratic Regulator (LQR)

In this subsection, we consider the α-discounted linear quadratic regulator. To this end,
we suppose that the dynamic system evolves according to the linear stochastic differential
equations:

dx(t) = (A(Ψ(t))x(t) + Bu(t))dt + σdW(t). (39)

with A(Ψ(t)) := ∑N
i=1 A(i)Ψi(t), A : E → Rn×n, B ∈ Rn×m, W(·) is a m-dimensional

Brownian motion, and σ is a positive constant. The expected cost is:

Vα(x, Ψ, u) := Eu
x,Ψ

[∫ ∞

0
e−αs{xT(s)D(Ψ(s))x(s) + uT R(Ψ(s))u(s)}ds

]
.

where D(Ψ(t)) := ∑N
i=1 D(i)Ψi(t), D : E → Rn×n, R(Ψ(t)) := ∑N

i=1 R(i)Ψi(t) and
R : E → Rn×n. The optimality equation or HJB-equation for the α-discounted partially
observed LQR-optimal control problem is:

αv(x, Ψ) = min
u∈U

{xD(Ψ(t))xT + uT R(Ψ(t))u + Luvs.(x, Ψ)}, (40)

where the infinitesimal generator for the process (x(t), Ψ(t)) applied to v(x, Ψ) ∈ C2,2

(Rn × SN) is:

Luvs.(x, Ψ) = (A(Ψ)x + Bu)vx(x, Ψ) +
1
2
[Tr(σσT)]vxx(x, ψ)

+QTΨvΨ(x, Ψ, ) +
1
2

vΨΨ(x, Ψ, )Tr[A2] (41)

where

A2 = [σ−1
0

(
diag(h)− hT(Ψ(t))IN

)
Ψ(t)][σ−1

0

(
diag(h)− hT(Ψ(t))IN

)
Ψ(t)]T . (42)

Note that, by minimizing (40) with respect to u, we find that the optimal control is the
form:

f ∗(x, Ψ) = −R−1
(Ψ)

2
BTvx. (43)

By Proposition 2, if there exist a function v ∈ C2,2(Rn × SN) ∪ Bw(Rn × SN) and
a policy f ∗ ∈ F such that (14) and (15) hold, then v coincides with the value function
v∗(x, Ψ) := minu∈U Vα(x, Ψ, u) and u(t) = f ∗(x) is the α-discount optimal policy. Thus,
we propose that the function v ∈ C2,2(Rn × SN) ∪ Bw(Rn × SN) that solves the HJB-
Equation (40) has the form:

v(x, Ψ) = xTKx + n(Ψ) + c, (44)

where n : SN → R is a twice differentiable continuous function, c is a constant, and K is
a positive definite matrix. Inserting the derivative of v(x, Ψ) in (43) we get the optimal
control:

f ∗(x, Ψ) = −R−1
(Ψ)BTKTx, (45)

where the equality (40) holds if the matrix K satisfies the algebraic Riccati equation:

AT
(Ψ(t))K + KA(Ψ(t))− KBR(Ψ(t))−1BTK

+D(Ψ(t))− αK = 0,

c = Tr[b(w(t))bT(w(t))K]/α

and n(·) ∈ C2(SN) satisfies the partial differential equation:
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QTΨ(t)n′(Ψ(t)) +
1
2

Tr[A2]n′′(Ψ(t))− αn(Ψ(t)))In = 0, ∀ Ψ(t) ∈ SN ,

where A2 is as in (42), IN is the identity matrix of N × N, and n
′

and n
′′

are the gradient
and the Hessian of the n, respectively.

Simulation results. In the following figures, we assume that the Markov chain ψ(t)
has two states, namely, E = {1, 2} and the dynamic system x(t) ∈ R2. We have computed
the Wonham filter, the states of the dynamic system (39) x(t) = [x1(t), x2(t)]T with initial
condition x(0) = [10, 15]T , the value function (44), and the optimal control (45) for the
following data: σ = 1, σ0 = 1, α = 0.01, h(1) = 1, h(2) = 2, Ψ1(0) = 0.5, Ψ2(0) = 0.5,
R1 = 1, R2 = 2:

A(1) =
[−5 1

0 −10

]
, A(2) =

[−10 1
0 −10

]
,

D(1) =
[

1 0
0 1

]
, D(2) =

[
2 0
0 3

]
,

and the transition matrix:

Q =

[−0.2 0.2
0.7 −0.7

]
.

To solve the Wonhan filter, we use the numerical method given in ([18], Section 8.4),
considering that the Markov chain can only be observed through dy(t) = h(ψ(t))+ σ0dB(t).

Figure 1 shows the solution of the filter Wonham equation and the states of the
hidden Markov chain ψ(t). As can be noted, in t = 0.05 s Ψ2(0.05) = P(ψ(t) = 2 | y(s),
0 ≤ s ≤ 0.05) ≥ Ψ1(0.05), implying that the Markov chain with a higher probability to
0.5 is in state 2 in t = 0.3 (ψ(0.3) = 2). The evolution of the dynamic system (39) is given
in Figure 2 (top); in this figure, we can note that the optimal control (45) moves the initial
point x(0) = [10, 15]T to the point [0, 0]T in t = 0.8 s, indicating the good performance of
the optimal control (45). The asymptotic behavior of the optimal control (45) is given in
Figure 2 (bottom); this control stabilizes at zero around t = 0.8 s, since x(t) also stabilizes
at zero around t = 0.8 s.
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Figure 1. Wonham filter for the α-discounted LQR.
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Figure 2. Asymptotic behavior of the state of dynamic system (top) and optimal control α-discount
LQR (bottom).

6. Application 2: Average LQR: Modeling of a Quarter-Car Suspension

In this section, the basic quarter-car suspension model analyzed in [27] is considered,
see Figure 3. The parameters are: the sprung mass (ms), the unsprung mass (mu), the
suspension spring constant (ks), and the tire spring constant (k). Let zs, zu, and zr be
the vertical displacements of the sprung mass, the unsprung mass, and the road profile,
respectively. The equations of motion for this model are given by:

msz
′′
s (t) = −ks(zs(t)− zu(t))− u(t), (46)

muz
′′
u(t) = ks(zs(t)− zu(t))− k(zu(t)− zr(t)) + u(t). (47)
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ms
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u

kt
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Figure 3. Schematic of a quarter-car suspension.

Now, defining x1(t) = z
′
s(t), x2(t) = z

′
u(t), x3(t) = zs(t)− zu(t), and x4(t) = zu(t)− zr,

the equations of motion (46) and (47) can be expressed in matrix form as:

dx(t) = (Ax(t) + Bu(t))dt + C1dzr(t) (48)

where dx(t) =

⎡⎢⎢⎣
dx1(t)
dx2(t)
dx3(t)
dx4(t)

⎤⎥⎥⎦, A =

⎡⎢⎢⎢⎣
0 0 ks

ms
0

0 0 ks
mu

k
mu

1 −1 0 0
0 1 0 0

⎤⎥⎥⎥⎦, B =

⎡⎢⎢⎢⎣
1

ms
1

ms
0
0

⎤⎥⎥⎥⎦, C1 =

⎡⎢⎢⎣
0
0
0
−1

⎤⎥⎥⎦, and in the

time domain, the road profile, zr(t), can be represented as the output of a linear first-order
filter to white noise as follows:

dzr(t) = −a(ψ(t))Vzr(t)dt + σ2dW1(t),

where V is the vehicle speed (assumed constant), σ2 is a positive constant, and a is the road
roughness coefficient depending on the type of road. Here, we assume that a depends on a
hidden Markov chain, that is, a(ψ(t)) with ψ(t) ∈ {1, 2}. In our case, we consider that the
dynamic system (48) evolves with additional white noise, that is:

dx(t) = (Ax(t) + Bu(t))dt + σ1dW(t) + C1dzr(t) (49)

The experts introduced the following performance index in order to trade off be-
tween the ride comfort and the handling while maintaining the constraint on suspension
deflection:

J(x, Ψ, u) = lim
T→∞

1
T
Ex,Ψ,u

[ ∫ T

0

[
c1

d2zs

d2t

2

+ c2[z1(t)− zu(t)]2

+ c3[zu(t)− zr(t)]2 + c4u(t)2
]
dt
]

(50)

Defining y :=
[

d2zs
d2t

2
, [z1(t) − zu(t)]2, [zu(t) − zr(t)]2

]
, C := diag(c1, c2, c3), and

R := [c4], we can rewrite (50) as:

J(x, Ψ, u) = lim
T→∞

1
T
Ex,Ψ,u

[ ∫ T

0
yCyT + uT(t)Ru(t)dt

]
(51)
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Now, from the equations of motion in (46) and (47), note that y = Mx + Nu with

M =

⎡⎣0 0 ks
ms

0
0 0 1 0
0 0 0 1

⎤⎦, and N =

⎡⎣− 1
ms
0
0

⎤⎦. Thus, replacing this matrix form of y in (51) we

can rewrite (50) again as:

J(x, Ψ, u) = lim
T→∞

1
T
Ex,Ψ,u

[ ∫ T

0
(xTQ1x + 2xTQ2u + uT R1u)dt

]
(52)

where Q1 = MTCM, Q2 = MTCN, R1 = NTCN + R.
The optimal control problem (OCP). The OCP in this application consists of finding

u∗ ∈ U such that it minimizes the performance index (52) considering that the dynamic
system evolves according to the stochastic differential Equation (49).

In the dynamic programming technique, we need the infinitesimal generator Lu of
the process (x(t), Ψ(t)) applied to v(x, Ψ, zr) ∈ C2,2,2(Rn × SN × R); in this case, this
generator is:

Luvs.(x, Ψ, zr) = −a(Ψ(t))vzr (x, Ψ, zr)

+(Ax + Bu)vx(x, Ψ, zr)

+QTΨvΨ(x, Ψ, zr)

+
1
2

Tr[σ1σT
1 ]vxx(x, Ψ, zr).

+
1
2

Tr[σ2σT
2 ]vzrzr (x, Ψ, zr)

+
1
2

vΨΨ(x, Ψ, zr)Tr[A2] (53)

where A2(Ψ(t)) = [σ−1
0
(
diag(h)− hT(Ψ(t))IN

)
Ψ(t)][σ−1

0
(
diag(h)− hT(Ψ(t))IN

)
Ψ(t)]T ,

whereas the Hamilton–Jacobi–Bellman Equation (or dynamic programming equation)
associated with this problem is:

J = max
u∈U

[xTQ1x + 2xTQ2u + uT R1u + Luvs.(x, Ψ, zr)] for all (x, Ψ) ∈ Rn × SN , (54)

see [28] for more details.

Proposition 3. Assume that (x(t), zr(t), Ψ(t)) evolves according to (49). Then, the control that
minimizes the long-run cost (52) is:

f ∗(x, Ψ, zr) = −R−1
1 (QT

2 + BTK)Tx(t), (55)

whereas the corresponding function v that solves the HJB Equation (54) is given by:

v(x, Ψ, zr) = xTKx + g(zr) + n(Ψ)

where K is a positive semi-definite matrix that satisfies the Ricatti differential equation

K(A− BR−1
1 QT

2 ) + (A− BR−1
1 QT

2 )K− KBR1BT P

(Q1 −Q2R−1
1 QT

2 ) = 0, (56)

and g(·) ∈ C2(R) satisfies the differential equation:

a(Ψ)g′(zr) +
1
2

σ2
2 g′′(zr) = 0, (57)
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and n(·) ∈ C2(SN) satisfies the partial differential equation:

QTΨn′(Ψ(t)) +
1
2

Tr[A2]n′′(Ψ) = 0, (58)

where A2 is as in (41) and n′ and n′′ denote the gradient and the Hessian of the n, respectively. The
optimal cost is given by:

J = Tr[σ1σT
1 ]K = J∗(x, Ψ) = min

u∈U
J(x, Ψ, u).

Proof. The HJB-equation for the partially observed LQR optimal control problem with
(x(t), Ψ(t)) evolves according to (49) and finite cost (52) is (54), where Luv(t, x, w, Ψ)
is the infinitesimal generator given in (53). We are looking for a candidate solution
h ∈ C2,2,2(Rn × SN ×R) to (54) in the form:

v(x, Ψ, zr) = xTKx + g(zr) + n(Ψ), (59)

for some continuous functions g(·) ∈ C2(R), h(·) ∈ C2(SN) and K a positive semi-definite
matrix. We assume that g′′(zr) > 0 for all zr ∈ R and n′′(Ψ) is positive definite, so that the
function (x, Ψ, zr)→ v(x, Ψ, zr) is convex.

Now, the function u ∈ U → 2xTQ2u+ uT R1u+ Buvx is strictly convex on the compact
set U, and thus, attains its minimum at:

f ∗(x, Ψ, zr) = −1
2

R−1[−2xTQ2 − Bhx] = −R−1
1 (QT

2 + BTK)Tx(t). (60)

Inserting f ∗(x, Ψ, zr) and the partial derivatives of v with respect to x, zr, and Ψ in the
HJB-Equation (54), we obtain:

J = xTQ1x + 2xTQ2(−R−1
1 (QT

2 + BTK)Tx)

+ (−R−1
1 (QT

2 + BTK)Tx)T R1(−R−1
1 (QT

2 + BTK)Tx)

− a(Ψ(t))g′(zr) + (Ax + B(−R−1
1 (QT

2 + BTK)Tx))2Kx +QTΨh
′
(Ψ) + +Tr[σ1σT

1 ]K

+
1
2

Tr[σ2σT
2 ]g

′′
(zr) +

1
2

h
′′
(Ψ)Tr[A2]. (61)

For equality (61) to hold, it is necessary that the functions g and h satisfy (57) and
(58), respectively, and the matrix K satisfies the Ricatti differential Equation (56), whereas
the constant J = Tr[σ1σT

1 ]K. Finally, from the Theorem 1, it follows that f ∗ is an optimal
Markovian control and the value function J∗T(t, x, w, Ψ) is equal to (59). That is:

J∗(x, Ψ) = min
u∈U

J(x, Ψ, u) = J = Tr[σ1σT
1 ]K.

Simulation results. To solve the Wonhan filter, we use the numerical method given
in ([18], Section 8.4), considering that the Markov chain ψ(t) has two states that can only be
observed through dy(t) = h(ψ(t)) + σ0dB(t). The following data were used: σ1 = 1, σ2 = 1,
σ0 = 1, α = 0.01, a(1) = 0.03, a(2) = 0.015, Ψ1(0) = 0.5, Ψ2(0) = 0.5, R = 1.0239 × 10−5,
h(1) = −1, h(2) = 0.5, ms = 329 kg, mu = 51 kg, ks = 4300 N/m, k = 210, 000 N/m,
V = 20 m/s, c1 = 1, c2 = c3 = 1× 105, c4 = 1× 10−6 and:

Q =

[−0.3 0.3
0.5 −0.5

]
.

The solution of the Wonham filter equation and the states of the hidden Markov chain
ψ(t) are shown in Figure 4. As can be noted, in t = 1 s, Ψ1(1) = P(ψ(t) = 1 | y(s),
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0 ≤ s ≤ 1) ≥ Ψ2(1), implying that the Markov Chain with a probability greater than 0.5 is
in state 1 at t = 1.

0 1 2 3 4 5 6 7 8 9 10

time (s)

0.5

1

0 1 2 3 4 5 6 7 8 9 10

time (s)

0

0.5

0 1 2 3 4 5 6 7 8 9 10

time (s)

1

1.5

2

Figure 4. Wonham filter and hidden Markov chain (in t = 1 s).

The asymptotic behavior of the optimal control (55) is given in Figure 5 (bottom).
It is interesting to note that this control minimizes the magnitude of the sprung mass
velocity, x1 = z

′
s and unsprung mass velocity, x2 = z

′
u after t = 9 s, see Figure 5 (top).

This behavior implies that the magnitude of the sprung mass acceleration, x1 = z
′′
s and

unsprung mass acceleration x2 = z
′
u are also minimized, considering that the stochastic

differential equation that models the road profile depends on a hidden Markov chain.
These results agree with the obtained by authors in [27]. These authors mentioned that two
important objectives of a suspension system are ride comfort and handling performance.
The ride comfort requires that the car body be isolated from road disturbances as much as
possible to provide a good feeling for passengers. In practice, we are looking to minimize
the acceleration of the sprung mass.
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Figure 5. Asymptotic behavior of the state of dynamic system (top) and optimal control (bottom).

7. Application 3: Optimal Control of a Vehicle Active Suspension System with Damp

The model analyzed in this subsection is given in [29]. In this application, a damp bs
is added to the quarter-car suspension given in Section 6, see Figure 6. The parameters in
Figure 6 are: the sprung mass (ms ), the unsprung mass (mu), the suspension spring constant
(ks ), and the tire spring constant (k). Let zs, zu, and r be the vertical displacements of the
sprung mass, the unsprung mass, and the road disturbance, respectively. The equations of
motion are given by:

msz
′′
s (t) = −ks(zs(t)− zu(t)) + bs(z′u − z′s) + u(t), (62)

muz
′′
u(t) = ks(zs(t)− zu(t))− k(r(t)− zu(t))− bs(z′u − z′s)− u(t). (63)
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ms

mu

ks

u

kt

zs

zu

zr

bs

Figure 6. Quarter vehicle model of active suspension system.

Now, defining x1(t) = zs(t), x2(t) = zu(t), x3(t) = z′s(t), and x4(t) = z′u(t), the
equations of motion in (62) and (63) can be expressed in matrix form as:

dx(t) = (Ax(t) + Bu(t))dt + Fr(t) (64)

where dx(t) =

⎡⎢⎢⎣
dx1(t)
dx2(t)
dx3(t)
dx4(t)

⎤⎥⎥⎦, A =

⎡⎢⎢⎢⎣
0 0 1 0
0 0 0 1

− ks
ms

ks
ms

− ks
ms

ks
ms

ks
mu

− (ks+k)
mu

bs
mu

− bs
mu

⎤⎥⎥⎥⎦, B =

⎡⎢⎢⎢⎣
0
0
1

ms
− 1

mu

⎤⎥⎥⎥⎦, F =

⎡⎢⎢⎣
0
0
0
k

mu

⎤⎥⎥⎦,

and we assume that the road profile r(t) is represented by a function with hidden Marko-
vian switchings:

r(t) =
{

a(ψ(t)){1− cos(8πt)}, τp ≤ t ≤ τp+1
0 otherwise

(65)

where a(1) = 0.05 (road bump height is 10 cm), a(2) = 0.025 (road bump height is 16 cm),
and τp, p = 1, 2, . . . are the random jump times of ψ(t). In our case, we consider that the
dynamic system (64) evolves with additional white noise, that is:

dx(t) = (Ax(t) + Bu(t) + Fr(t))dt + σdW(t) (66)

and we wish to minimize the discounted expected cost:

Vα(x, Ψ, u) := Eu
x,Ψ

[∫ ∞

0
e−αs{xT(s)Dx(s) + uT(s)Ru(s)}ds

]
,

subject to (66) and (65). Considering the infinitesimal generator given in (53) with
zr(t) ≡ r(t) and the Hamilton–Jacobi–Bellman equation associated as the following prob-
lem:

αv(x, Ψ) = max
u∈U

[xT Dx + uT R1u + Luvs.(x, Ψ, r)] for all (x, Ψ) ∈ Rn × SN ,

similar arguments to these given in Sections 5 and 6 allow us to find the optimal control f ∗

and the value function v∗ for this setting. In fact:

v∗(x, Ψ) = xTKx + n(Ψ) + g(r) + c,
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where n : SN → R is a twice differentiable continuous function, c is a constant, g : R→ R

is a twice differentiable continuous function, and K is a positive definite matrix. Inserting
the derivative of v(x, Ψ) in (43), we get the optimal control:

f ∗(x, Ψ) = −R−1
(Ψ)BTKTx, (67)

where the matrix K satisfies the algebraic Riccati equation:

ATK + KA− KBR−1BTK + D− αK = 0,

c = Tr[σσTK]/α,

the function g ∈ C2(R) satisfies the differential equation:

a(Ψ(t))g′(r) + αg(r) = 0,

and n(·) ∈ C2(SN) satisfies the partial differential equation:

QTΨ(t)n′(Ψ(t)) +
1
2

Tr[A2]n′′(Ψ(t))− αn(Ψ(t)))I4 = 0, ∀ Ψ(t) ∈ SN ,

where A2 is as in (42), I4 is the identity matrix of 4× 4, and n
′

and n
′′

are the gradient and
the Hessian of the n, respectively.

Simulation results. To solve the Wonhan filter, we use the numerical method given
in ([18], Section 8.4) considering that the Markov chain ψ(t) has two states and that can be
only observed through dy(t) = h(ψ(t)) + σ0dB(t). The following data were used: σ = 1,
σ0 = 1, α = 0.01, a(1) = 0.05, a(2) = 0.08, Ψ1(0) = 0.4, Ψ2(0) = 0.6, h(1) = 1, h(2) = 2,
R = 1.0239 × 10−5, ms = 300 kg, mu = 60 kg, ks = 1600 N/m, k = 190, 000 N/m,
bs = 1000 N/m, and:

Q =

[−0.2 0.2
0.4 −0.4

]
.

Figure 7 shows the solution of the Wonham filter equation and the states of the hidden
Markov chain ψ(t). As can be seen, in the time interval [2, 4], Ψ1(1) = P(ψ(t) = 1 | y(s), 0 ≤
s ≤ 1) ≥ Ψ2(1), implying that the Markov chain with a probability greater than 0.5 is in
state 1.
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Figure 7. Wonham filter and hidden Markov chain (time interval [2, 4]).
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The asymptotic behavior of the optimal control (67) is given in Figure 8 (bottom). It is
interesting to note that this control minimizes the magnitude of the sprung mass, x1 = zs,
and unsprung mass, x2 = zu, al well as their velocities, x3 = z

′
s and x4 = z

′
u, after t = 12 s,

see Figure 8 (top).
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Figure 8. Asymptotic behavior of the state of the dynamic system (top) and optimal control (bottom).

8. Application 4: Optimal Pollution Control with Average Payoff

The application studies the pollution accumulation incurred by the consumption of a
certain product, such as gas or petroleum, see [30]. The stock of pollution x(·) is governed
by the controlled diffusion process:

dx(t) = [u(t)− η(ψ(t))x(t)]dt + kdW(t), x(0) = x > 0, (68)

where u(t) represents the pollution flow generated by an entity due to the consumption of
the product, η(ψ(t)) represents the decay rate of pollution, chosen at each time by nature,
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and k is a positive constant. We shall assume that u(t) ∈ U = [0, γ] is bounded and the
parameter γ represents the consumption/production restriction. Let ψ(t) be a Markov
chain with two states E = {1, 2} and a generator Q given by:(

q11 q12
q21 q22

)
=

( −λ0 λ0
λ1 −λ1

)
.

The reward rate r : [0, ∞)× E×U → R in this example represents the social welfare
and is defined as:

r(x, i, u) := F(u)− a(i)x, ∀ (x, i, u) ∈ [0, ∞)× E×U, (69)

where F ∈ C2(0, ∞) ∩ C(0, ∞) and D = a(i)x ∈ C([0, ∞)× E) is the social utility of the
consumption u and the social disutility of the pollution (x, i), respectively. We assume that
the function F in (69) satisfies:{

F′(u) > 0, F′′(u) < 0,
F′(∞) = F(0) = 0, F′(0+) = F(∞) = ∞,

Clearly, (68) is a liner stochastic differential equation, and satisfies Assumption 1.
Now, we define the Banach space Bw(R× E) and use w(x, i) := x + i, w(x, Ψ) =

∑2
i=1 Ψiw(x.i) = Ψ1(x + 1) + Ψ2(x + 2) = x + (1− Ψ1). Hence, limx→+∞ w(x, Ψ) = +∞

and Assumption 2i holds. On the other hand, since the utility function F(·) is continuous
on the compact interval U = [0, γ], then:

|r(x, i, u)| = |F(u)− a(i)x| ≤ ( max
u∈[0,γ]

F(u) + max
i∈{1,2}

a(i))(x + i) = Mw(x, i)

where M := maxu∈[0,γ] F(u) + maxi∈{1,2} a(i); thus, Assumption 3 holds. Note that:

Lu,Ψw(x, Ψ) = u− η(i)x− λ0Ψ1 + λ1(1−Ψ1), for all x > 0.

Thus, taking q := maxi∈E η(i) and p := maxu∈[0,γ] u− (λ0 − λ1)Ψ1 we obtain:

Luw(x, Ψ) ≤ −pw(x, Ψ) + q for all x > 0.

Therefore, Assumption 2(ii) holds. It can be proven that the process (68) satisfies
Assumption 2.6 in [1]; thus, by ([1], Theorem 2.8), x(t) is exponentially ergodic (Assump-
tion 4). In this application, we seek a policy u that maximizes the long-run average welfare
J(x, i, f ):

J(x, i, u) := lim inf
T→∞

1
T
Eu

x,i

[∫ T

0
[F(u)− a(i)x]dt

]
.

We propose v(x, Ψ) = v(x) + h(Ψ), where v ∈ C2(R × E) ∩ Bw(R × E) and
h ∈ C2(SN) as a solution that verify the HJB Equation (27) associated with this pollution
control problem. Simple calculations allow us to conclude that the policy on consump-
tion/pollution takes the form:

u := f (x, Ψ) =

{
I(−v′(x)) if F′(γ) < −v′(x),

γ if F′(γ) ≥ −v′(x).

where I(−v′(x)) is the inverse function of derivative F′, f ∈ F.
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9. Concluding Remarks

Under hypotheses such as uniform ellipticity in Assumption 1c, the Lyapunov-like
conditions in Assumption 2, and the w-exponential ergodicity in (4) for the average criterion,
this work shows the existence of optimal controls for the control problems with discounted
and average payoffs, where the dynamic system evolves according to switching diffusion
with hidden states. To conclude, we conjecture that the results obtained in this work
still hold (with obvious changes) if the hidden Markov chain (ψ) in (1) is replaced with
any other diffusion process. Furthermore, these results can be extended to constrained
and unconstrained nonzero-sum stochastic differential games with additive structures,
which will allow us to model a larger class of practical systems. This will be a topic in
future works.
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Abstract: The spatio-temporal variogram is an important factor in spatio-temporal prediction through
kriging, especially in fields such as environmental sustainability or climate change, where spatio-
temporal data analysis is based on this concept. However, the traditional spatio-temporal variogram
estimator, which is commonly employed for these purposes, is extremely sensitive to outliers. We
approach this problem in two ways in the paper. First, new robust spatio-temporal variogram
estimators are introduced, which are defined as M-estimators of an original data transformation.
Second, we compare the classical estimate against a robust one, identifying spatio-temporal outliers
in this way. To accomplish this, we use a multivariate scale-contaminated normal model to produce
reliable approximations for the sample distribution of these new estimators. In addition, we define
and study a new class of M-estimators in this paper, including real-world applications, in order to
determine whether there are any significant differences in the spatio-temporal variogram between
two temporal lags and, if so, whether we can reduce the number of lags considered in the spatio-
temporal analysis.

Keywords: robust statistics; spatio-temporal outliers; von Mises expansions; saddlepoint approximations

MSC: 62F35; 62H11; 62E17

1. Introduction

There exist several approaches for the treatment of spatio-temporal data. The most
common approach is to assume that the data are a partial realization of a spatio-temporal
random field Z(s, t), (s, t) ∈ D× T (see, e.g., [1,2]). In this superpopulation model ([3], p. 8),
we also assume that D is a fixed subset of Rd, d ≥ 1 and T ⊂ R; that is, we assume
that a random variable Z, such as precipitation, temperature or atmospheric pollutant
concentrations, is observed at some known fixed locations s and different time moments t,
considering a geostatistical framework where the spatial observations are expected to be
correlated with a decreasing correlation as the distance between locations increases.

We can conduct exploratory data analysis with spatio-temporal data, mainly through
their visualization. However, it is more interesting to model the random field, allowing
for inference of the model parameters and closed-form expressions (see [4]). As it is
usually assumed that the data come from a joint Gaussian (i.e., normal) distribution, we are
interested in estimating the parameters; that is, summaries of the first- and second-order
characteristics. To make this feasible, we suppose that Z(s, t) is intrinsically stationary in
space and time; that is, its increments in space and time have a zero mean (possibly after a
temporal trend has been removed) and have a variance that depends only on displacements
in space and differences in time. With these assumptions, the parameter of interest is the
spatio-temporal variogram of Z, defined as

2 γz(h; τ) = var(Z(s + h; t + τ)− Z(s; t)),

where var is the variance of Z, h is a spatial lag, and τ is a temporal lag.
We also assume that Z is spatially isotropic; that is, the variogram depends on the

spatial lag h only through the Euclidean norm ‖h‖.
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Furthermore, one of the most important problems in geostatistics is kriging prediction
at new locations, for which the spatio-temporal variogram is required. Hence, the spatio-
temporal variogram is the crucial parameter in geostatistics. However, the traditional
spatio-temporal variogram estimator, which is commonly employed for these purposes,
is extremely sensitive to outliers. Moreover, in a wide range of fields, such as geology,
the environment, sustainability or climate change, detecting atypical observations is of
special interest.

Considering these aims, we first define new robust estimators of the spatio-temporal
variogram. Then, we obtain very accurate approximations for the sample distribution of
these new estimators, and, with these, we finally identify spatio-temporal outliers.

The spatio-temporal variogram of Z can also be written as

2 γz(h; τ) = E[(Z(s + h; t + τ)− Z(s; t))2],

where E denotes the mathematical expectation of Z.
To analyze Z, we consider observations of the random field Z(s, t) at spatial locations

{si : i = 1, ..., m} and times {tj : j = 1, ..., T}, where n = m · T is the sample size.
In this situation, the spatio-temporal variogram is estimated using the classical method-

of-moments estimator, also called the empirical spatio-temporal variogram (see [3,5,6]),

2 γ̂z(h; τ) =
1

|Ns(h)|
1

|Nt(τ)| ∑
si ,sk∈Ns(h)

∑
tj ,tl∈Nt(τ)

(Z(si; tj)− Z(sk; tl))
2,

where Ns(h) refers to the set containing all pairs of spatial locations with spatial lag h, and
Nt(τ) refers to the set containing all pairs of time points with time lag τ. Furthermore,
|N(·)| denotes the number of elements in the set N(·).

If we denote, by n(h, τ) = |Ns(h)| · |Nt(τ)|, the sample size considered in the estimator
2 γ̂z(h; τ)—that is, the number of pairs with spatio-temporal lag (h, τ)—this estimator is a
sample mean of n(h, τ) terms and, hence, sensitive to outliers in the terms.

In [7], robust estimators of the spatial variogram and accurate approximations for their
distributions were obtained. In [8], these results were extended to the multivariate case,
with robust estimators for the cross-variogram. In the first part of this paper, we extend
these results by introducing a temporal component into the problem. This is achieved by
defining new robust M-estimators of the spatio-temporal variogram and obtaining accurate
approximations for their distributions, as well as for the classical one, 2 γ̂z(h; τ). In the
last part of this paper, we propose a method for identifying spatio-temporal outliers, also
obtaining interesting properties of a new class of M-estimators.

The remainder of this paper is organized as follows: A spatio-temporal variogram
M-estimator is proposed in Section 2, and an approximation to its distribution is obtained at
the end of Section 3.2. The problem of independence of the transformed observations is ad-
dressed in Section 4. These results are applied in Section 5 to the empirical spatio-temporal
variogram estimator. In Section 6, we introduce Huber’s spatio-temporal variogram estima-
tor and obtain an approximation to its distribution. An example is developed in Section 7.
The question of whether some temporal lags can be dropped in the analysis is considered
in Section 8. The problem of identifying spatio-temporal outliers is addressed in Section 9,
where a new class of M-estimators is defined. The conclusions of the paper are presented
in Section 10.

2. M-Estimators of the Spatio-Temporal Variogram

2.1. Underlying Model for Z

The common model assumption for spatio-temporal data Z is a normal distribution.
Nevertheless, this is a very strong assumption as, although most of the data will come from
this model, it is very likely that some will not. For this reason, it is more realistic to assume
a scale-contaminated normal distribution for the model (see, e.g., [9], p. 2):
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(1− ε)N(μ, σ2) + εN(μ, g2σ2),

where ε ∈ (0, 1) and g > 1, with ε representing the proportion of outliers in the sample
and g denoting the quantity that contaminates them. For ε = 0 or g = 1, this model
is the normal distribution and, if ε > 0 and g > 1, it is the N(μ, σ2) in the central part
but with heavier tails. In this way, we consider that the model for Z is inside the class
of scale contamination neighborhoods of the normal distribution, Pε(N) = {Fε|Fε =
(1− ε)N(μ, σ2) + εN(μ, g2σ2)}, one of the usual model classes considered in robustness
studies ([9] p. 12 , [10,11] or [12] p. 870).

Although the main role in the question of the underlying model is played by the
marginal distributions of Z, in order to complete the mathematical framework, we shall as-
sume that these marginal distributions are obtained from the multivariate scale-contaminated
normal distribution (see, e.g., [13], pp. 2, 220).

2.2. M-Estimators of the Spatio-Temporal Variogram

Let us consider the transformation

Xij = (Z(si + h; tj + τ)− Z(si; tj))
2 ∀si, tj. (1)

These new variables will be shortened, in some cases, by Xu, u = 1, . . .n, considering
them as a sample of a new variable X = (Z(s + h; t + τ) − Z(s; t))2 defined from the
lags of Z in space and time. As the parameter of interest is now 2 γz(h; τ) = E[X] , the
problem of estimating the spatio-temporal variogram described in the previous section
can be considered as the problem of estimating the expectation of the random variable X,
obtained from the original Z through this transformation.

This framework is especially suitable and useful in situations related to spatial or
temporal data, where the initially dependent observations are separated by a spatial
and/or temporal lag and where direct robust estimators, if they exist, are difficult to apply.
Considering this mean (the spatio-temporal variogram) as a functional T of the underlying
distribution F,

T(F) =
∫

xdF(x),

where F is the cumulative distribution function of X, and its classical method-of-moments
estimator is the sample mean

T(F∗n(h,τ)) =
∫

xdF∗n(h,τ)(x) =
1

n(h, τ)

n(h,τ)

∑
u=1

Xu

of the transformed variables Xu, where F∗n(h,τ) is the empirical cumulative distribution
function. This approach—that is, expressing estimators as functionals of the empirical
distribution function—is common and useful in robustness studies ([9,14]).

An important question here is how to choose the transformation (1) such that the new
variables Xu are independent in the new sample mean. We shall deal with this problem
later. If we achieve this independence, obtaining robust estimators for the parameter T(F)
is an easy task with M-estimators and α-trimmed means of the transformed variables Xu.
With respect to the former, we can define a spatio-temporal M-estimator ([11]) Tn for the
parameter T(F) (the spatio-temporal variogram) based on the transformed observations
Xu as a solution to the equation

n

∑
u=1

ψ(Xu, Tn) = 0, (2)

assuming that ψ(x, θ) is monotonic decreasing in θ for all x. In fact, as Tn is an estimator
for a location problem, ψ(x, θ) is of the form ψ(x− θ), with ψ(v) monotonically increasing
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in v. Now, we should control the local robustness of these M-estimators, through choosing
different bounded score functions ψ (see, e.g., refs. [9,15] for a background on robust
methods and standard M-estimators.)

Hence, the idea that we propose in the paper is that, instead of considering a weird
estimator for a strange parameter of the initial Z distribution, we transform the original
(and usually dependent) observations Zu into new data Xu (independent under some
conditions), obtaining, in this way, a natural parameter of the new variable (e.g., its mean),
for which a manageable estimator (the sample mean) should be feasible. Then, standard
techniques of robustification can be applied. The comparison between the traditional
estimator (the empirical spatio-temporal variogram) and one of these robust M-estimators
here introduced, both based on the observations Xu, is the well-known comparison between
the sample mean and a robust M-estimator (see, e.g., [9,14]).

This idea was first successfully applied in [16] and has also been utilized in [7,8].
Furthermore, in the paper [17], this idea was used for the periodogram ordinates in the
context of a time-series.

2.3. Distribution of Variables Xu

An important problem is to determine the distribution of this new variable X, from
the original normal (or contaminated normal) distribution of Z, in order to later obtain the
distribution of the robust estimators based on X.

If we consider a scale-contaminated normal model for the original observations Z,
as the variable Z(si + h; tj + τ)− Z(si; tj) follows a normal distribution with 0 mean and
variance 2γz(h; τ). For each si, tj, the distribution of the transformed variables

Xij = (Z(si + h; tj + τ)− Z(si; tj))
2

is the mixture

F = (1− ε) 2 γz(h; τ) χ2
1 + ε g2 2 γz(h; τ) χ2

1 = (1− ε)G + εH,

where G = 2γz(h; τ)χ2
1 and H = g22γz(h; τ)χ2

1, where χ2
1 is a chi-square distribution with

one degree of freedom, following a similar development to that followed in [7], Section 2.1.

3. Approximation to the Distribution of M-Estimators of the Spatio-Temporal
Variogram

The distribution of these new robust M-estimators Tn, defined by (2), depends on the
distribution of the new variables Xu after the transformation. We obtain an approximation
to the distribution of the robust estimators Tn(X1, . . ., Xn) in two steps: in the first step, we
consider a von Mises expansion (VOM) of the tail probability functional, which depends on
another functional, for which we obtain a saddlepoint approximation (SAD) in the second
step. The independence of the Xu is now required.

3.1. von Mises Approximation

If Tn(X1, . . ., Xn) is an estimator with associated functional T, and F is the underlying
model distribution of the observations Xu, we usually cannot express T(F) explicitly;
however, we can utilize a linearization based on the von Mises expansion, [18], at G (called
the pivotal distribution) as follows:

T(F) = T(G) +
∫

IF(x; T, G)dF(x) + O(||F− G||2),

where IF(·; T, G) is the Hampel Influence Function; that is, the Gâteaux derivative of T at
G in direction Δx, the Dirac measure at x (see [15,19,20]).

If we consider T as the tail probability functional, T(F) = PXi≡F{Tn > a}, the Hampel
Influence Function is now the Tail Area Influence Function TAIF ([21]), and the previous
von Mises expansion is equal to
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PF{Tn > a} = PG{Tn > a}+
∫

TAIF(x; a; Tn, G) dF(x) + O
(
||F− G||2

)
,

from which we define the von Mises approximation (VOM)

PF{Tn > a} � PG{Tn > a}+
∫

TAIF(x; a; Tn, G) dF(x), (3)

which will be accurate if the distributions F and G are close. In this case, we can use this
approximation to compute the distribution of Tn under the underlying model F using a
model G in the class Pε(N).

In particular, if F is the mixture F = (1− ε)G + εH , the von Mises approximation
will be

PF{Tn > a} � PG{Tn > a}+ ε
∫

TAIF(x; a; Tn, G) dH(x), (4)

because ∫
TAIF(x; a; Tn, G) dF(x) = (1− ε)

∫
TAIF(x; a; Tn, G) dG(x)

+ε
∫

TAIF(x; a; Tn, G) dH(x) = (1− ε) · 0 + ε
∫

TAIF(x; a; Tn, G) dH(x).

3.2. Saddlepoint Approximation of the TAIF

The von Mises approximations (3) or (4) depend on the TAIF, which is the influence
function of the tail probability functional. Daniels ([22], p. 94), using the Lugannani
and Rice formula ([23]), gave the following saddlepoint approximation (SAD) for the tail
probability of an M-estimator Tn(X1, . . ., Xn) with score function ψ, assuming that G is the
underlying model for the Xu,

PG{Tn > a} = 1−Φ(s) + φ(s)
[

1
r
− 1

s
+ O(n−3/2)

]
, (5)

where Φ and φ are the cumulative and density functions of the standard normal distribution,
and s and r are the functionals

s =
√
−2nK(z0, a) , r1 = z0

√
K′′(z0, a) , r =

√
n r1,

where

K(λ, a) = log
∫ ∞

−∞
eλψ(y,a) dG(y)

is the cumulant generating function of the distribution G; K′′(λ, a) and K′(λ, a) are the sec-
ond and first partial derivatives of K(λ, a) with respect to the first argument λ, respectively,
and z0 is the saddlepoint; that is, the functional solution of the saddlepoint equation

K′(z0, a) =
∫ ∞

−∞
ez0ψ(y,a) ψ(y, a) dG(y) = 0.

If, in approximation (5), we replace the model G by the contaminated model Gε;x =
(1− ε)G + εΔx and obtain the derivative at ε = 0, in all of the functionals involved in
it, we obtain a saddlepoint approximation of the TAIF(x; a; Tn, G), (for details, see [24]
pp. 402–404, [25] p. 77 or [9] p. 314), as

TAIF(x; a; Tn, G) =
φ(s)

r1
n1/2

(
ez0ψ(x,a)∫

ez0ψ(y,a)dG(y)
− 1

)
+ O(n−1/2). (6)

113



Mathematics 2022, 10, 1785

Replacing the SAD approximation (6) in the VOM approximation (3), we obtain the
VOM + SAD approximation for the distribution of an M-estimator Tn(X1, . . ., Xn) with
score function ψ, at the model F, which is on the order of O(n−1/2),

PF{Tn > a} � PG{Tn > a}+ φ(s)
r1

√
n

( ∫
ez0ψ(x,a)dF(x)∫
ez0ψ(y,a)dG(y)

− 1

)
. (7)

In the particular case that the transformed observations Xu follow a mixture model
F = (1− ε)G + εH, the VOM+SAD approximation is

PF{Tn > a} � PG{Tn > a}+ ε
φ(s)

r1

√
n

(∫
ez0ψ(x,a)dH(x)∫
ez0ψ(y,a)dG(y)

− 1

)
. (8)

Remark 1. If the sample size is large and Tn is asymptotically normal under F, we can approximate
its distribution using the Central Limit Theorem, thereby, obtaining

PF{Tn > a} � PF{(Tn − E[Tn])/σTn > (a− E[Tn])/σTn}
= 1−Φ((a− E[Tn])/σTn).

Alternatively, if Tn is only asymptotically normal under G, we can approximate the leading
terms of (7) and (8).

Remark 2. Approximations (7) and (8) are valid for any M-estimator with score function ψ based
on Xu data, solution of (2). For spatio-temporal data, these Xu, which are transformations of the
initial Zi observations, have different distributions than the Ys used in [7] for the estimation of the
spatial variogram and also different from those used in [8] in the estimation of the cross-variogram.

In addition to the differences in the observations are the differences in the score functions. Here,
for the spatio-temporal problem, ψ will include the temporal dimension, which was not considered
in the other two mentioned papers. However, the main difference is that, in [7], we obtained M-
estimators for the spatial variogram, while here we obtained it for the spatio-temporal variogram.
However, if the temporal dimension is removed (see Section 8), both estimators will agree. Hence, the
estimators obtained here generalize those of the variogram (without temporal dimension) obtained
there, as it should be.

This remark can be clearly observed in the example considered in Section 7, where we obtain
seven different spatial variogram estimators (see Figure 6 for the classical and Figure 7 for the robust)
at the seven different temporal lags considered—all of them obtained from the only one classical
(Figure 4) or robust (Figure 5) three-dimensional spatio-temporal variogram estimator.

4. Independence of the Transformed Variables Xu

As the locations si are fixed in advance, they can be considered as being equally
spaced on a transect, as in [3], p. 32. Hence, we can match two contiguous si (for which
the dependence of the Zi is supposed to be the strongest), such that si + h = si+1. Under
these conditions, with the same arguments as in [7], Section 2, it can be proved that, at
each time tj and time lag τ, the correlation between

√
Xij = Z(si + h; tj + τ)− Z(si; tj) and√

Xkj = Z(sk + h; tj + τ)− Z(sk; tj) is 0 if a linear semivariogram model can be accepted

for all the initial Zu variables.
Moreover, following the ideas provided in [8] for the cross-variogram, if we can also

accept a linear cross-variogram for each pair (Zi, Zk) at any pair of time moments, assuming
that all moments are equally spaced, the variables

√
Xij = Z(si + h; tj + τ)− Z(si; tj) and√

Xkl = Z(sk + h; tl + τ)− Z(sk; tl) will also be independent; then, so will all of the Xu,
u = 1, . . ., n, assuming that the vector Z of the observations is distributed as a multivariate
(or contaminated) normal distribution.

Hence, to obtain the independence of the Xu, we must check that a linear semivari-
ogram can be accepted for the Zu and a linear cross-variogram for each pair (Zi, Zk).
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This can easily be checked in a visual way with R and formally with the global test
proposed in [7], Section 10.1. Furthermore, these linearity requirements should not be a
serious problem, as we can move the spatial lag h and/or the time lag τ until linearized
versions ([7], Section 9) of the variograms and cross-variograms can be accepted.

5. VOM + SAD Approximation of the Distribution of the Empirical
Spatio-Temporal Estimator

As the classical method-of-moments estimator

2 γ̂z(h; τ) =
1

n(h, τ)

n(h,τ)

∑
u=1

Xu

is an M-estimator and a solution of the equation

n(h,τ)

∑
u=1

ψ(Xu, Tn) = 0

with the score function ψ(v) = v, we can use the results of Section 3 to obtain a VOM +
SAD approximation for its distribution.

In the unrealistic case of no contamination—namely, if Z ≡ N(μ, σ2) and so, Xu ≡
2 γz(h; τ) χ2

1—the exact distribution of 2 γ̂z(h; τ) is the tail of a χ2 distribution with n(h, τ)
degrees of freedom,

P{2 γ̂z(h; τ) > a} = P
{

χ2
n(h,τ) >

a · n(h, τ)

2γz(h; τ)

}
.

Hence, using G = 2 γz(h; τ) χ2
1 as a pivotal distribution, the von Mises approxima-

tion (8) becomes

PF{2 γ̂z(h; τ) > a} � P
{

χ2
n(h,τ) >

a · n(h, τ)

2γz(h; τ)

}
+ε

φ(s)
r1

√
n(h, τ)

(∫
ez0ψ(x,a)dH(x)∫
ez0ψ(y,a)dG(y)

− 1

)
, (9)

considering a scale-contaminated normal distribution for the original observations Z, i.e.,
the following model for the Xu

F = (1− ε) 2 γz(h; τ) χ2
1 + ε g2 2 γz(h; τ) χ2

1 = (1− ε)G + εH,

where G = 2γz(h; τ)χ2
1 and H = g22γz(h; τ)χ2

1 ; that is, where G is a gamma distribution
with parameters (1/2, 1/(4γz(h; τ))), and H is a gamma distribution with parameters
(1/2, 1/(4g2γz(h; τ))).

In (9), the saddlepoint is

z0 =
1

4γz(h; τ)
− 1

2a
,

and approximation (9) becomes
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PF{2 γ̂z(h; τ) > a} � P
{

χ2
n(h,τ) >

a n(h, τ)

2γz(h; τ)

}
+ε
√

n(h, τ)
2γz(h; τ)√

π(a− 2γz(h; τ))

· exp
{
−n(h, τ)

2

(
a

2γz(h; τ)
− 1− log

a
2γz(h; τ)

)}
·
( √

2γz(h; τ)√
a− ag2 + 2g2γz(h; τ)

− 1

)
. (10)

This approximation has the same accuracy as the VOM + SAD approximation obtained
in [7] for Matheron’s estimator because, in fact, the classical spatio-temporal estimator is a
generalization of Matheron’s estimator. For this reason, the lack of robustness of Matheron’s
estimator is also inherited in the empirical spatio-temporal estimator.

Accuracy of the Approximation

Let us observe that, if ε = 0 or g = 1, the sum of the right-hand side of approxima-
tion (10) is zero. Moreover, we can observe the accuracy of this approximation with a
simulation, as explained in the Supplementary Material.

With this simulation, we can see the quality of approximation (10) in Table 1 for
several values of a, considering a sample size as small as n(h, τ) = 3, g = 1.1 (i.e., 10%
contamination in scale), 2γz(h; τ) = 1.4 and ε = 0.01. The exact values were obtained with
a simulation considering 100, 000 samples.

Table 1. Tail probabilities for several values of a and sample size n(h, τ) = 3.

a Exact Approximation

2.5 0.14714 0.148299
3.0 0.09308 0.093233
3.5 0.05577 0.058124
4.0 0.03548 0.036006
4.5 0.02089 0.022196
5.0 0.01313 0.013633

This VOM + SAD approximation is shown in Figure 1, as the dotted line, where the
solid line shows the exact distribution.

0.0 0.5 1.0 1.5 2.0

0.
2

0.
4

0.
6

0.
8

1.
0

a

Figure 1. Exact and approximate tail probabilities for the empirical spatio-temporal estimator with
n(h, τ) = 3.

In Figure 2, we plot the VOM + SAD approximation with different contaminations:
ε = 0.01, ε = 0.05, ε = 0.1 and ε = 0.2. We can see that, as the contamination percentage
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(i.e., the value of ε) increases, the p-values and critical values are greatly affected, graphically
indicating the lack of robustness of the classical spatio-temporal estimator.

3.0 3.5 4.0 4.5 5.0 5.5

0.
02
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08
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epsilon=0.01

epsilon=0.05
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Figure 2. Exact and approximate tail probabilities of the empirical spatio-temporal estimator with
contamination ε = 0.01, ε = 0.05, ε = 0.1 and ε = 0.2, with sample size n(h, τ) = 3.

The details of this and other computations, as well as the R functions ([26]) used in
the paper, are available on the website https://www2.uned.es/pea-metodos-estadisticos-
aplicados/spa-temp-variogram.htm as Supplementary Material (accessed on 18 April
2022).

6. Huber’s Spatio-Temporal Variogram Estimator

We define the Huber spatio-temporal variogram estimator 2 γ̂H(h; τ) as the M-estimator
obtained from Equation (2) using, as the score function ψ, the Huber function ψb(u) =
min{b, max{u,−b}}, where b is the tuning constant.

This estimator is a generalization of the spatial Huber estimator for the spatial vari-
ogram defined in [7]. Here, the score function ψ incorporates the time component, some-
times as spatial variograms at different time moments.

In the approximation proposed for the tail probability of Huber’s spatio-temporal
variogram estimator, we approximate the leading term using the Lugannani and Rice
formula, [23], given in (5), and the second term using the integral of the saddlepoint
approximation of the TAIF obtained in Section 3.2, assuming again a scale-contaminated
normal model. The VOM + SAD approximation obtained in this way is

PXi≡F{2 γ̂H(h; τ) > a} � 1−Φ(s) + φ(s)
[

1
r
− 1

s

]
+ε

φ(s)
r1

√
n(h, τ)

(∫
ez0ψb(x−a)dH(x)∫
ez0ψb(y−a)dG(y)

− 1

)
,

where the saddlepoint z0 is obtained from the saddlepoint equation∫
ez0ψb(y−a) ψb(y− a) dG(y) = 0.

Some applications of this estimator are given in the following example.

7. Example

For this example, we obtain the Huber spatio-temporal variogram estimator for the
NOAA data set. This data set was introduced in [5] and refers to the daily weather data
obtained by the US National Oceanic and Atmospheric Administration (NOAA) National
Climatic Data Center.

In this data set, we considered the variable Tmax—the daily maximum temperature in
degrees Fahrenheit. The classical spatio-temporal semivariogram for this variable is shown
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in Figure 2.17 of [5], p. 39. In Figure 3, we show the Huber spatio-temporal semivariogram
estimator defined in this paper, considering the tuning constant b = 1.345.
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Figure 3. Huber’s spatio-temporal semivariogram estimator (with tuning constant equal to 1.345)
of daily Tmax from the NOAA data set for July 2003, computed using the estimator introduced in
Section 6.

Three-dimensional representations of these classical and robust Huber’s spatio-temporal
semivariogram estimators are shown, respectively, in Figures 4 and 5.

Details of these computations are provided in the Supplementary Material.
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Figure 4. Three-dimensional picture of the classical spatio-temporal semivariogram estimator of the
daily Tmax from the NOAA data for July 2003.
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Huber’s  spatio−temporal semivariogram estimator
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Figure 5. Three-dimensional picture of the Huber spatio-temporal semivariogram estimator (with a
tuning constant equal to 1.345) of the daily Tmax from the NOAA data for July 2003 computed using
the estimator introduced in Section 6.

8. Significant Time Dimension

We can see differences with respect to the selected temporal lags in Figures 6 and 7 for
the classical and robust semivariogram estimators, respectively, obtained from the three-
dimensional spatio-temporal variogram estimators by fixing the lags. These differences
became smaller as we increased the time lag. If there were no significant differences between
two of these semivariograms, we could group these two lags into one, thus, reducing the
number of time lags considered.

Let us denote by γz(h, τ0) and γz(h, τ) the semivariograms at lags τ0 and τ for a fixed
spatial lag h, having corresponding distributions Fτ0 and Fτ . If we use approximation (7),
considering the distributions F = Fτ and G = Fτ0 , the VOM + SAD approximation of the
distribution of the classical spatio-temporal estimator Tn = 2γ̂z(h, τ) at lag τ is

PFτ{Tn > a} � PFτ0
{Tn > a}+ φ(s)

r1

√
n(h, τ0)

( ∫
ez0ψ(x,a)dFτ(x)∫
ez0ψ(y,t)dFτ0(y)

− 1

)

= P
{

χ2
n(h,τ0)

>
a · n(h, τ0)

2γz(h; τ0)

}

+
√

n(h, τ0)
2γz(h; τ0)√

π(a− 2γz(h; τ0))

· exp
{
−n(h, τ0)

2

(
a

2γz(h; τ0)
− 1− log

a
2γz(h; τ0)

)}
·
(

exp
{
−a
(

1
4γz(h; τ0)

− 1
4γz(h; τ)

)} √
2γz(h; τ)√
2γz(h; τ0)

− 1

)
,

where n(h, τ0) is the sample size used by Tn at spatial lag h and temporal lag τ0.
In the same way as in a general testing problem, we test the null hypothesis θ = θ0

against the alternative θ > θ0 using a test statistic Sn, computing the tail probability
Pθ0{Sn > sn}, where sn is the observed value of Sn, and if this probability is small (large),
we reject (accept) the null hypothesis. Here, we can test, for a fixed spatial lag h, the null
hypothesis of no significant change between two temporal lags τ0 and τ—that is, H0 :
γz(h, τ) = γz(h, τ0), against H1 : γz(h, τ) > γz(h, τ0)—by computing the tail probability

P2γz(h,τ0)
{2γ̂z(h, τ) > 2γ̂z(h, τ)obs.}.

A small value of this probability will discredit the null hypothesis and lead us to reject it,
concluding that there exists a significant difference between the semivariograms at the lags
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τ0 and τ, suggesting that we must compute the (classical or robust) estimators in a separate
way at these two lags. On the other hand, if we accept the null hypothesis, we shall group
these two lags, thus, considering one less lag.
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Figure 6. Classical semivariograms of the daily Tmax from the NOAA data with respect to the seven
time lags considered.
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Figure 7. Huber’s semivariograms (with tuning constant equal to 1.345) of the daily Tmax from the
NOAA data with respect to the seven time lags considered.

For instance, in the previous example, considering the spatial lag h between 240 and
320, the previous probability between the starting moment and the first time lag or that
between the first and second temporal lag, are both equal to 0, suggesting highly significant
differences between these two pairs of lags (as can be appreciated in Figures 6 and 7).

On the other hand, the probability between time lags four and five is 0.9427521 and
between the last two is 0.9737844, (for the spatial lag 240 < h < 320), leading us to accept
the null hypothesis and suggesting that we can consider all of these observations in a single
group for the computation of the spatio-temporal variogram estimator.

9. Identification of Spatio-Temporal Outliers

The second objective of this work is to identify spatio-temporal outliers. For this
purpose, we calculated the VOM + SAD approximation of the distribution of the Difference
M-estimator, an M-estimator that is essentially the difference between the classical method-
of-moments estimator and the Huber estimator defined in Section 6. We chose this pair
of estimators, as Huber’s estimator minimizes the maximum asymptotic variance inside
the class of contamination neighborhoods of the normal distribution—the class of models
considered in the paper—and the mean is an extreme particular case of it (i.e., they are
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nested estimators). When this difference is significant at some pair of lags, we qualify this
pair of lags as spatio-temporal outliers.

This M-estimator is completely defined in (12) below; however, we can also say that the
Difference M-estimator is one of the estimators inside the class defined in the next section.

9.1. Average M-Estimators

M-estimators ([11]) are likely the most widely used robust estimators. Nevertheless,
they are somewhat unpleasant to handle as they are defined in an implicit way, as a solution
of an equation; in particular, the spatio-temporal M-estimator is a solution of Equation (2).
Next, we define a new class of M-estimators, which is considered in this paper only for the
case of location estimation.

Definition 1. If Tn is an M-estimator with score function ψ and, thus, with M-functional T(F)
defined by ∫

ψ(x, T(F)) dF(x) = 0,

the Average M-estimator associated with Tn is defined as

Ta
n =

1
n

n

∑
i=1

ψ(Xi)

with the associated functional

Ta(F) =
∫

ψ(x) dF(x).

The Average M-estimator associated with the mean is exactly the mean and
∑n

i=1 ψb(Xi)/n is the associated with the Huber estimator, ψb being the Huber score function
considered in Section 6.

An Average M-estimator is an M-estimator with score function ψ(x, θ) = ψ(x)− θ
because it is a solution of

n

∑
i=1

ψ(xi, θ) = 0;

that is,
n

∑
i=1

ψ(xi)− nθ = 0

or

Ta
n =

n

∑
i=1

ψ(xi)/n.

We summarize some of the main properties of this class of M-estimators in the follow-
ing proposition.

Proposition 1. (a) The Influence Function of a linear combination of estimators is the linear
combination of their Influence Functions:

If T = ∑
q
j=1 wj Tj is a linear combination of q estimators with Influence Functions IFj, the

Hampel Influence Function of T is ∑
q
j=1 wj IFj .

(b) The linear combination of Average M-estimators is an M-estimator:
If T = ∑

q
j=1 wj Ta

j is a linear combination of q Average M-estimators with score functions
ψj(xi)− θ, then T is an M-estimator with score function

ψ(xi, θ) =

(
q

∑
j=1

wj ψj(xi)

)
− θ.

(c) The Hampel Influence Function of an Average M-functional Ta(F) is
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IF(x; Ta, F) = ψ(x)− Ta(F). (11)

(d) The robustness properties of an Average M-estimator are the same as those of the M-estimator
from which it is defined.
(e) Any Average M-functional is a linear functional and is weakly continuous on the class of
probability distributions on the Borel σ-algebra if ψ is bounded.
(f) The asymptotic distribution of an Average M-estimator is normal with the mean being the
associated functional and asymptotic variance

(ψ(x)− Ta(F))2/n.

Proof. The proof of (a) is straightforward due to the linearity properties of the limits (or
derivatives) and because the Hampel Influence Function is defined as a limit.

To prove (b), we set up the equation

n

∑
i=1

ψ(Xi, T) = 0;

that is,

n

∑
i=1

(
q

∑
j=1

wj ψj(xi)

)
− n T = 0

or

T =

(
q

∑
j=1

wj

n

∑
i=1

ψj(xi)/n

)
=

(
q

∑
j=1

wjTa
j

)
.

(c) The Hampel Influence Function of an Average M-functional Ta(F)

Ta(F) =
∫

ψ(y) dF(y)

is obtained first by contaminating the distribution

Ta(Fε) = (1− ε)
∫

ψ(y) dF(y) + ε ψ(x)

and then obtaining the derivative at ε = 0,

IF(x; Ta, F) = ψ(x)− Ta(F).

(d) The infinitesimal robustness properties of an estimator, such as the gross-error
sensitivity (B-robustness), local-shift sensitivity and rejection point, are based on its Influ-
ence Function which, in the case of M-estimators, depends on the behavior of their score
functions. As the Influence Function of an Average M-estimator is the score function ψ
(shifted by Ta(F)) of the M-estimator from which it is defined, as obtained in (11), the
robustness properties of both will be the same.

The same occurs with the global reliability (breakdown point) or with the qualitative
robustness and its weak continuity, as highlighted in (e), which is true because of Lemma 2.1
in [9], p. 24.

The proof of (f) is obtained from the Central Limit Theorem, with the asymptotic
variance of M-estimators equal to the square of the Influence Function ([9], p. 47).

9.2. Identification of Spatio-Temporal Outliers

As the classical method-of-moments estimator 2 γ̂z(h; τ) is the M-estimator associated
with the score function ψ(x) = x and the Huber spatio-temporal variogram estimator,
2 γ̂H(h; τ) is the M-estimator associated with the score function ψb(u) = min{b, max{u,−b}},
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where b is the tuning constant, to evaluate the effect of contamination, we define the
Difference M-estimator as a solution Tdi

n of the equation

n

∑
u=1

ψdi(Xu, Tdi
n ) = 0, (12)

where the score function in (12) is defined as ψdi = ψ− ψb , which is plotted in Figure 8.
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Figure 8. Score function defining the Difference M-estimator with tuning constant b.

The Difference M-estimator, completely defined from (12) as a general M-estimator,
can be also considered as the difference of the Average M-estimators associated with the
mean and the Huber estimator.

As it is an M-estimator, we can use the VOM + SAD approximation (8) for its distribu-
tion obtained above, PF{Tdi

n > a}, with ψdi being the score function.
As 2 γ̂z(h; τ) and 2 γ̂H(h; τ) are sums of squares, and the latter is softer than the former,

we should check for large positive values of the Difference M-estimator as spatio-temporal
outliers. Hence, if the probability PF{Tdi

n > tdi
n } for a pair of lags (h, τ) (where tdi

n is the
observed value of the Difference M-estimator), is significantly small, we conclude that
(h, τ) is a spatio-temporal outlier.

Example 1. Continuing with the example of Section 7, some of the differences between the classical
spatio-temporal estimator and the Huber spatio-temporal estimator are small (e.g., 0.0000 and
0.0299), while others are large (e.g., 6.4689 and 6.6959). With the approximation of the Difference
M-estimator, we obtain a table of tail probabilities (i.e., p-values for the test of significant differences),
thus, allowing for the detection of spatio-temporal outliers.

The full table for the 91 pairs of lags considered in this paper is provided in the Supplementary
Material. All 91 lags are shown in Figure 9 together with the highly significant spatio-temporal
outliers (in red) and the doubtfully significant outliers (in blue).

From the figure, if we discard the doubtful outliers (in blue), we can conclude that some of
spatio-temporal lag outliers are essentially only spatial outliers (at h = 40, h = 200 from the second
temporal lag), while two of them are essentially only temporal outliers (τ = 2, τ = 6, from the
distance lags h = 40 to h = 200; maybe h = 280). The truly spatio-temporal outliers, in both
components, are the intersection lags (h, τ) = (40, 2), (40, 6), (200, 2), (200, 6).

We remark that these spatio-temporal outliers are lag outliers (i.e., not observation coordinates);
that is, they are outliers with respect to the variogram, where the observations are not the initial Zi
but the transformed Xi. Nevertheless, they must be checked before kriging.
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Figure 9. Highly significant spatio-temporal atypical lags (in red) and doubtfully significant (in blue)
of the daily Tmax from the NOAA data.

10. Conclusions

In this paper, we proposed some robust estimators of the spatio-temporal variogram.
We also obtained accurate approximations for their distributions. These were based on a
von Mises expansion of the tail probability functional plus a saddlepoint approximation
of the Tail Area Influence Function involved in the von Mises expansion. One of the
advantages of these approximations is that they have a closed form, thus, allowing for easy
interpretation of the elements that they involve, such as the sample size, contamination
fraction, score function, temporal and spatial lags and so on.

These approximations are computed under a scale-contaminated normal model for the
observations. One of the key points in obtaining these approximations is the transformation
of the original variables into new independent variables. With the approximations obtained
in this way, we can check, for instance, whether the common use of all the observations
without temporal distinctions is valid or if the estimators must be computed for significantly
different times. We also used these approximations to identify spatio-temporal outliers in
the second part of the paper, defining a new class of M-estimators in the process.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/math10101785/s1.
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Abstract: In this paper the Cramer-Rao information bound for ARMAX (Auto-Regression-Moving-
Average-Models-with-Exogenuos-inputs) under non-Gaussian noise is derived. It is shown that the
direct application of the Least Squares Method (LSM) leads to incorrect (shifted) parameter estimates.
This inconsistency can be corrected by the implementation of the parallel usage of the MLMW
(Maximum Likelihood Method with Whitening) procedure, applied to all measurable variables of the
model, and a nonlinear residual transformation using the information on the distribution density of a
non-Gaussian noise, participating in Moving Average structure. The design of the corresponding
parameter-estimator, realizing the suggested MLMW-procedure is discussed in details. It is shown
that this method is asymptotically optimal, that is, reaches this information bound. If the noise
distribution belongs to some given class, then the Huber approach (min-max version of MLM) may
be effectively applied. A numerical example illustrates the suggested approach.

Keywords: parameter estimation; least squares method; whitening filter; Fisher information; maximum
likelihood method; nonlinear residual transformation

MSC: 93E03; 93E10; 93E11; 93E24

1. Introduction

1.1. Road Map of This Survey

The topic of parameter identification in a large class of linear models with external
noise acting on-line and perturbing the dynamics of an investigated system is addressed in
this overview. The considered models are classified as ARMAX (auto-regression-moving
average with exogenous inputs) and are commonly expressed in discrete-time format
by recurrent linear stochastic difference equations. The class of distribution functions is
supposed to be known a priori but not its exact analytical expression: such models contain
“uncertainties” in their descriptions, which are associated with unknown parameters and
probabilistic characteristics of external noise (perturbations): only a class of distribution
functions is supposed to be known a priori but not its exact analytical expression. As a
result, any identification technique that may be used in such a circumstance should be
robust (resilient) with respect to existing uncertainty. The focus of this work is on a
critical examination of robust parametric identification techniques, highlighting a gap
in the current literature in which the vast majority of publications adopt the traditional
assumption that external stochastic perturbations are independent and Gaussian (have a
“normal distribution”). Only a few papers deal with a different non-standard assumption
about the available stochastic characteristics of external noisy disturbances. Here, we expose
readers to the underlying difficulties (mathematical and computational) and discuss a few
distinct ways that have shown to be successful in the absence of available probabilistic data.

The structure of the paper is as follows:
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− Review of publications:

● It contains the descriptions of the important survey published in the 1970’s–1990’s
(Åström, Becky, Ljung and Gunnarson, Billings among others).● Nongaussian noises have been studied by Huber, Tsypkin and Polyak.

− Problem formulation and model description:

● The ARMAX model with correlated non-Gaussian noise, generated by a stable
and non-minimal phase filter, is introduced.

− Some classes P3be of noise p.d.f.:

● In a rigorous mathematical manner several classes of random stationary se-
quences with different p.d.f. as an input of a forming filter are considered (all
symmetric distributions non-singular in origin, all symmetric distributions with
a bounded variance, all symmetric “approximately normal” distributions and
“approximately uniform” distributions).

− Main assumptions:

● These concern the martingale difference property with conditional bounder sec-
ond moment for stochastic sequences in the input of the forming filter, stability
and minimal-phase property for this filter, independent of this sequence with
other measurable inputs).

− Regression representation format:

● The extended regression form of the considered model is introduced.

− Main contribution of the paper:

● The exact presentation of the main contribution of the paper.

− Why LSM does not work for the identification of ARMAX models with correlated noise:

● A simple example exhibiting the lack of workability of this technique in the case
of dynamic (autoregression) models is described in detail for a reader who is not
actively involved in the least-squares method.

− Some other identification techniques:

● Identification of non-stationary parameters and the Bayesian method, matrix
forgetting factor and its adaptive version are reviewed.

− Regular observations and information inequality for observations with coloured noise:

● the Cramér–Rao bound (CRB) and the Fisher information, characterising the
maximal possible rate of estimation under the given information resource, are
presented.

− Robust version of the maximum likelihood method with whitening (MLMW procedure):

● This approach is demonstrated to reach the CRB bound, indicating that it is
asymptotically the best among all identification procedures.

− Recurrent identification procedures with nonlinear residual transformations: static
(regression) and dynamic (autoregression) models:

● Within a specified noise p.d.f. class, it is proven that such a strategy with particu-
lar selection of nonlinear residual transformation is resilient (robust) optimum in
achieving min–max error variance in CRB inequality.

− Instrumental variables ethod (IVM):

● IV or total least-squares estimators is the method which also recommends to
estimate parameters in the presence of coloured noises with a finite correlation.

− Joint parametric identification of ARMAX model and the forming filter:

● The “generalised residual sequence” is introduced, which is shown to be asymp-
totically closed to the independent sequence acting in the input of the forming filter,
which helps to resolve the identification problem in an extended parametric space.
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● Numerical example.● Discussion and conclusions.

− Appendix A and abbreviations:

● This part offers proofs of some of the article’s claims that appear to be significant from
the authors’ perspective, as well as a list of acronyms used throughout the work.

1.2. Review of the System Identification Literature

A mathematical model is a simplified mathematical structure connected to a com-
ponent of reality and produced for a specific purpose of system analysis [1]. Differential
equations, state space models and transfer functions are all examples of mathematical mod-
els of dynamic systems that are useful in a variety of fields [2]. System identification, which
can be applied to nearly any system and give models that explain the system behaviour, is
an alternative to modelling.

1.3. Classical Surveys on Identification

The least-squares method (LSM), as well as some of its variants, have been exten-
sively researched in the past, according to the survey given by Åström [3]. The least
squares, maximum likelihood, instrumental variables and tally principle are examples of
these variety. Several approaches for the identification of dynamic systems using com-
puter techniques, such as spectral analysis, certain gradient methods, quasi-linearization
and stochastic approximations, were provided by Becky [4]. In the case of a time-varying
situation, Ljung and Gunnarson investigated several methods for developing identification
algorithms that could take into account the time-varying dynamics of systems as well as
signals [5]. Some mean square expressions were examined in this study. In [6] by Billings,
several methods for the nonlinear case were described; these algorithms were based on
the functional expansion of Wiener and Volterra, block-oriented and bi-linear systems,
structure detection and some catastrophe theory. System identification is a vast field of
study, with a variety of methods based on the models to be estimated: linear, nonlinear,
continuous, discrete, time-varying and so on. Ljung’s survey [7] demonstrates that, despite
the wide range of techniques, the field can be defined by a few key principles, such as data
information, validation and model complexity and offers some basic principles and results,
as well as a method for solving real-world problems. As it is mentioned by Ljung in [8],
system identification is a well established research area, whose paradigms are most of the
time based on classical statistical methods. Some recent techniques are based on kernel
regularisation methods. The paper presented by Ljung presents some of the main ideas
and results of kernel-based regularisation methods for system identification.

1.4. Identification under Correlated Noise Perturbations

In the measurements and modelling of dynamic systems [9], the unpredictability
inherent in physical processes always creates inaccuracy. Stochastic processes make it
possible to model these random events and create more realistic models [10]. It is commonly
assumed that only white noise is presented in stochastic systems, however, there are also
cases where the noise is correlated or “coloured”. Coloured noise is prevalent in linear and
pseudo-linear regression identification models, where one of the challenges is the presence
of unknown inner variables and immeasurable noise components [11]. The stochastic
gradient algorithm proved to be a useful technique for those cases. In situations where
there are a lot of noisy sources, noise suppression is crucial. In many practical circumstances,
coloured noise may be converted to white noise [12] by passing it through an invertible
time-invariant linear (“whitening”) filter. The existence of coloured noise typically leads to
robust identification theory, which was first proposed by P. Huber [13] and Ya. Z. Tsypkin-B.
Polyak [14] over fifty years ago. In [15], the basic principles of robust identification were
presented, as well as the identification methods for auto regression with exogenous input
(ARX) models. The suggested approach used a whitening procedure and a variant of
the maximum likelihood method in parallel to conduct asymptotically the estimation of
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unknown parameters. The need of system identification has grown in some areas, such
as robotics, due to the increasing interest in showing movement accuracy in the industry.
The application of system identification in DC servomotors is widely used in robotics;
in [16], a study on identifying two model structures, ARX and ARMAX, of the system to
test and compare their performance on validation criterion is presented.

1.5. Identification of ARMAX and NARMAX Models

For many years, the parameter estimation for autoregressive moving average exoge-
nous input (ARMAX) models has been investigated [17,18]. The importance of parameter-
bounding methods in the identification process is highlighted in [19] and stands for such
models. These methods offer a radical alternative to compute parameter point estimates
and covariances. They require constraints in an effectively deterministic model formulation
instead of p.d.f. or mean and covariance for the noise and previous parameter estimations.

In the context of parameter-bounding identification, this study offers a preliminary
assessment of certain typical tasks, such as experiment design, testing for outliers, tolerance
prediction and worst-case control design. In [20], the parametrisation of ARMAX models
was also discussed. The results reported in this work were aimed at developing a technique
for modelling and fitting multivariable time-series data based on spatial approach and
parametrisation, with tolerance for missing or incomplete data.

ARMAX models are widely used in industrial modelling nowadays [21–23]. For exam-
ple, functional time series are the realisation of a stochastic process where each observation
is a continuous function defined on a finite interval. These processes are commonly used in
electricity markets and are gaining more importance as more market data become available
and markets head toward continuous time-marginal pricing approaches. In [24], the au-
thors propose a new functional forecasting method that attempts to generalise the standard
seasonal ARMAX time-series model to the L2 Hilbert space; the proposed approach is
tested by forecasting the daily price profile of the Spanish and German electricity markets,
and it is compared with other functional reference models. A physic-based ARMAX model
of room temperature in office buildings was presented in [25], where thermodynamic equa-
tions are used to determine the structure and order of the model. In this study, extensive
measurements over 109 days are used to develop and validate the model. This model
can be used to predict the variations of the room temperature accurately in short-term,
and long-term periods and has shown to be suitable for real-time fault detection and
control applications.

Traditional stochastic information gradient methods for ARMAX identification have a
lower computational cost, but its convergence speed is still low, in [26], a two-step algorithm
based on gradient acceleration strategies is proposed to deal with this problem. When in
the ARMAX process, the noises presented are additive; it is possible to introduce additional
information to the estimation problem using nuisances variables to model the output noises
(see [27]). Then, a regularised estimator suppresses the adverse effects of the noises and
provides minimum variance estimates.

In [18], a technique for concurrently picking the order and identifying the parameters
of an ARMAX model was explored, and it was also assessed by computational experiments.
The technique presented in that work was based on reformulating the issue for a standard
state space, then implementing a bank of Kalman filters, identifying the true model and uti-
lizing multi-model partitioning theory to solve it. In the study presented by Correa and
Poznyak in 2001 (see [28]), the problem of simultaneous robust state and parameter estima-
tion for some class of MIMO non-linear systems under mixed uncertainties (unmodeled
dynamics as well as observation noises) is presented. A switching gain robust “observer-
identifier” is introduced to obtain the estimation. This is achieved by applying an observer
to the so-called nominal extended system, obtained from the original system without any
uncertainties and considering the parameters as additional constant states. As it was shown
in general the extended systems, these can lose the global observability property, supposed
to be valid for the original non-extended system, and a special procedure is needed to
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provide a good estimation process in this situation [29]. The suggested adaptive observer
has the Luenberger-type observer structure with switching matrix gain that guarantees a
good enough upper bound for the identification error performance index [30]. The Van der
Monde generalised transformation is introduced to derive this bound which turns out to
be “tight” (it is equal to zero in the absence of both noises and unmodeled dynamics). One
approach for dealing with coloured noises is to utilise parameter estimate algorithms based
on Kalman filters. The Kalman filter is frequently used for control and estimate (see [31]),
and this technique may be thought of as Hammerstein–Wiener ARMAX models. An ex-
tended Kalman filter, or the unscented Kalman filter, can be implemented to extend this
approach to the nonlinear situation. For the nonlinear autoregressive moving average with
exogenous inputs (NARMAX) models, Kalman filters are a commonly used identification
method. The off-line observer/Kalman filter presented in [32] was implemented as an
identification method, since it has shown a good initial guess of the NARMAX model to
reduce the on-line system identification process time, this method showed to be effective in
the case of system faults and input failures. In the case of Hammerstein nonlinear systems
with coloured noises, a maximum likelihood-based stochastic gradient algorithm was
implemented in [33], where the unknown noises were replaced in the information vector
by their estimates and through these, one can obtain the parameters. For multivariable
Hammerstein controlled autoregressive moving average systems, an interactive maximum
likelihood estimation method was implemented in [34]. In that paper, the logarithmic
likelihood function over multiple parameter vectors is maximised; the proposed method
overcomes the limit on an autoregressive model form with one parameter vector.

In this survey, we present a compendium of some of the existing literature regarding
identification in ARMAX models and some of the techniques used in these type of models.
We also obtain the Cramer–Rao information bound for ARMAX models with non-Gaussian
noises and show that the maximum likelihood method with whitening procedure (MLMW)
reaches this low bound, or in other words, is asymptotically optimal.

2. Problem Formulation

2.1. Robust Parametric Identification Model Description

Consider the following ARMAX (autoregression moving average exogenous input)
model given by

yn = L∑
l=1

alyn−l + K∑
k=0

bkwn−k + ηn, n ≥ 0, (1)

where

• {yn} ∈ R1 is scalar sequence of available on-line state variables.
• {wn} is a measurable input sequence (deterministic or, in general, stochastic).
• {ηn} ∈ R1 is a noise sequence (not available during the process) generated by the

exogenous system

ηn + K2∑
s=1

d2,sηn−s = ξn + K1∑
s=1

d1,sξn−s, (2)

which can be symbolically represented as the forming filter

ηn = H(q−1)ξn (3)

with the transition function

H(q−1) = H1(q−1)/H2(q−1),

H1(q−1) = 1+ K1∑
s=1

d2,sq−s, H2(q−1) = 1+ K2∑
s=1

d2,sq−s

q−1is the one-step delay operator acting as yk−1 = q−1yk,

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(4)
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• {ξn} as an independent zero mean stationary sequence with the probability density
function (p.d.f.) pξ(x) which may be unknown but belonging to some given class Pξ

of p.d.f., that is,
pξ(x) ∈ Pξ .

2.2. Some Classes Pξ of p.d.f.

All possible classes Pξ of p.d.f., considered in practical applications, are related with a
priori information on stationary generating sequence {ξn}. Here we present some of them
which look natural from practical point of views.

• Class P1
ξ (of all symmetric distributions non singular in the point x = 0):

P1
ξ = {pξ ∶ pξ(0) ≥ 1

2a
> 0}. (5)

We deal with this class if there is not any a priori information on a noise distribution pξ .
• Class P2

ξ (of all symmetric distributions with a bounded variance):

P2
ξ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
pξ ∶ ∫

R

x2 pξ(x)ds ≤ σ2 < ∞
⎫⎪⎪⎪⎬⎪⎪⎪⎭

. (6)

• Class P3
ξ (of all symmetric “approximately normal” distributions):

P3
ξ = {pξ ∶ pξ(x) = (1− α)pN(0,σ2)(x) + αq(x)}, (7)

where pN(0,σ)(x) is the centred Gaussian distribution density with the variance de-
fined by σ2 and q(x) is another distribution density. The parameter α ∈ [0, 1] char-
acterises the level of the effect of a “dirty” distribution q(x) to the basic Gaussian
distribution pN(0,σ2)(x).

• Class P4
ξ (of all symmetric “approximately uniform” distributions):

P4
ξ = {pξ ∶ pξ(x) = (1− α)pU(0,a)(x) + αq(x)} (8)

where
pU(0,a)(x) ∶= 1

2a
χ(∣x∣ ≤ a)

χ(∣x∣ ≤ a) = { 1 if ∣x∣ ≤ a
0 if ∣x∣ > a

is the centred uniform distribution and q(x) is one process with a different distribution
density. The parameter α ∈ [0, 1] characterises the level of the effect of a “dirty”
distribution q(x) to the basic one pU(0,a)(x).

2.3. Main Assumptions

1. All random variables {wn, ξn} are defined on the probability space (Ω,F , P) with the
σ-algebras flow Fn ⊆ Fn+1

Fn−1 = σ(y−l , . . . , y−1, . . . , yn−1; w0, . . . , wn; η−K2,...,ηn−1; ξ−K1,...,ξn−1). (9)

2. For all n
E{ξn ∣ Fn−1} a.s.= 0, E{ξ2

n ∣ Fn−1} a.s.= σ2
ξ < ∞. (10)

3. The measurable input sequence {wn}n≥0 is of bounded power:

E{w2
n ∣ Fn−1} a.s.= σ2

w,n < ∞, (11)
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and is independent of {ξn}, i.e.,

E{wnξn ∣ Fn−1} a.s.= wnE{ξn ∣ Fn−1} a.s.= 0. (12)

4. It is assumed that the forming filter is stable and “minimal-phase”, that is, both
polynomials H1(q−1) and H2(q−1) are Hurwitz, i.e., have all roots inside of the unite
circle in the complex plain.

5. The ARMAX plant (1) is stable: the polynomial

A(q−1) = 1− L∑
l=1

alq
−l (13)

is Hurwitz.

Remark 1. As it follows from the assumptions above, the noise sequence admits to be non-Gaussian
and correlated (coloured).

2.4. Regression Format Representation

The system (1) can be represented in the, regression format as

yn = z⊺nc + ηn, (14)

where the extended vector

c = (a1, . . . , aL; b0, . . . , bK)⊺ ∈ RL+K+1, (15)

represents the collection of unknown parameters to be estimated, and the vector

zn = (yn−1, . . . , yn−L; wn, . . . , wn−K)⊺ ∈ RL+K+1, (16)

is referred to as the generalised regression measurable (available on-line) input.

2.5. Robust Parametric Identification Problem Formulation

Problem 1. We need to estimate the vector c of unknown parameters based on available data {zn}
and a priory knowledge of the p.d.f. class Pξ of the stationary noise sequence {ξn} in the input of
the forming filter. Two possible cases may be considered:

− the parameters (d1,s, d2,s) of the forming filter H(q−1) are known.
− The parameters (d1,s, d2,s) of the forming filter H(q−1) are also unknown.

2.6. Main Contribution of the Paper

• The Cramer–Rao information bound for ARMAX (autoregression moving average
models with exogenous inputs) under non-Gaussian noises is derived.

• It is shown that the direct implementation of the least-squares method (LSM) leads to
an incorrect (shifted) parameter estimation.

• This inconsistency can be corrected by the implementation of the parallel use of the
MLMW (maximum likelihood method with whitening) procedure, applied to all
measurable variables of the model, and a nonlinear residual transformation using
the information on the distribution density of a non-Gaussian noise, participating in
moving average structure.

• The design of the corresponding parameter estimator, realising the suggested MLMW
procedure, containing a parallel on-line “whitening” process as well as a nonlinear
residual transformation, is presented in detail.

• It is shown that the MLMW procedure attains the obtained information bound,
and hence, is asymptotically optimal.
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3. Why LSM Does Not Work for the Identification of ARMAX Models with
Correlated Noise

The problem of LSM estimation and identification in ARMAX models has been widely
studied in the past. The estimation of the noise-induced bias was presented, for example,
in [35], where a unique structure of the ARMAX model was proposed, utilising extra
outputs delay. Let us show in this section that for dynamic models (in particular for ARMA-
models) the least-squares method (LSM) does not work properly, this means, it leads to
biased estimates!

Consider the simplest stable ARMA model with the 1-step correlated noise given by

yn+1 = ayn + ξn + dξn−1, y0 ∈ R is given,∣a∣ < 1, d ∈ R, E{ξn} = 0, E{ξ2
n} = σ2 > 0

} (17)

where {ξn} is a sequence of independent random variables. Then, the LSM estimate, realising

an = arg min
a∈R

n∑
t=1

(yt+1 − ayt)2,

is

an = [ n∑
t=1

ytyt+1][ n∑
t=1

y2
t ]
−1

(18)

and under by the strong version of large number law (LNL) [36] it becomes

an
a.s.=

1
n

n∑
t=1

E{ytyt+1}
1
n

n∑
t=1

E{y2
t }

+ oω(1),

oω(1) →
n→∞ 0 (with Prob.1)

or, equivalently,

an
a.s.=

1
n

n∑
t=1

E{yt(ayt + ξt + dξt−1)}
1
n

n∑
t=1

E{y2
t }

+ oω(1) =

a

1
n

n∑
t=1

E{yt(ξt + dξt−1)}
1
n

n∑
t=1

E{y2
t }

+ oω(1) = a + d

1
n

n∑
t=1

E{ytξt−1}
1
n

n∑
t=1

E{y2
t }

+ oω(1).

So, the corresponding identification error comes to be as

an − a a.s.= d

1
n

n∑
t=1

E{ytξt−1}
1
n

n∑
t=1

E{y2
t }

+ oω(1)

For stable models with ∣a∣ < 1 there exist limits

lim
n→∞E{ynξn−1} and lim

n→∞E{y2
n}

and hence, by the Kronecker lemma

an − a a.s.= d
lim

n→∞E{ynξn−1}
lim

n→∞E{y2
n} + oω(1) (19)
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Let us calculate these limits. From (17), it follows

E{yn+1ξn} = aE{ynξn} +E{ξ2
n} + dE{ξn−1ξn} = σ2 (20)

E{y2
n+1} = a2E{y2

n} +E{ξ2
n} + d2E{ξ2

n−1}+
2aE{ynξn} + 2adE{ynξn−1} + 2dE{ξn−1ξn} =

a2E{y2
n} + (1+ d2)σ2 + 2adE{ynξn−1} =

a2E{y2
n} + (1+ d2)σ2 + 2adσ2

(21)

Since, for the stable linear recursion

zn+1 = āzn + c, ∣ā∣ < 1

we have
zn+1 = āzn + c = ā(āzn−1 + c) + c =

ā2zn−1 + c + āc = ⋅ ⋅ ⋅ = ānz1 + c + āc + ā2c + ⋅ ⋅ ⋅ + ānc =
ānz1 + c(1− ān+1

1− ā
) →

n→∞
c

1− ā
.

Then, for (21), we get

E{y2
n} → (1+ d2) + 2ad

1− a2 σ2 =
(1− a2) + (a2 + 2ad + d2)

1− a2 σ2 = ⎡⎢⎢⎢⎣1+ (a + d)2

1− a2

⎤⎥⎥⎥⎦σ2
(22)

Substitute the obtained limits (20) and (22) into (19) leads to

an − a a.s.= d
σ2

⎡⎢⎢⎢⎣1+ (a + d)2

1− a2

⎤⎥⎥⎥⎦σ2

+ oω(1) =

d
1

1+ (a + d)2

1− a2

+ oω(1) a.s.→
n→∞ d

1

1+ (a + d)2

1− a2

.

The derivative calculation of the limit value with respect to d then gives

⎛⎜⎜⎜⎜⎝
d

1

1+ (a + d)2

1− a2

⎞⎟⎟⎟⎟⎠

′

= (a2 − 1) d2 − 1

(d2 + 2ad + 1)2

So, the extremal points are d = ±1, and hence,

⎛⎜⎝d
1

1+ (a+d)2
1−a2

⎞⎟⎠
d=1

= 1
2
− 1

2
a,

⎛⎜⎝d
1

1+ (a+d)2
1−a2

⎞⎟⎠
d=−1

= −1
2

a − 1
2

These relations imply the following conclusion: the maximum bias of the LSM estimate is

max
d

lim
n→∞∣an − a∣ = 1

2
max{∣1− a∣; ∣1+ a∣}

The illustrative graphic (x ∶= d, y ∶= ∣an − a∣ for a = 0.5) is shown in Figure 1.
Conclusion: Be careful! The LS method does not work for identification of parameters

of dynamic models with correlated noises!
As a result, certain unique approaches, distinct from LSM, must be developed.
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Figure 1. The bias dependence on the correlation coefficient d.

4. Some Other Identification Techniques

Identification of Non-Stationary Parameters and Bayesian Method

Some other parameter estimation/identification methods have been proposed for
more complex situations. In [37], a combination of recursive version of the IV method with
the matrix forgetting factor was presented for identification of time-varying parameters for
ARMAX models, showing that the identification error in average has a bound dependent
on the rate of the parameter variation, as well as on the variance of the noise. The version
of IV method with adaptive matrix forgetting factor was studied in [38]. In some cases
equation-error and output-error approaches have been used to deal with the problem where
all the observed variables are corrupted by noise. The parameter bounding by the bounded
equation error and the bounded errors in variables based on these approaches was studied
in [39]. Bayesian parameter estimation and prediction of lineal-in-parameters models
under the presence of coloured noise is addressed in [40], and it is based on a model called
ARMAX. This model is a finite mixture of ARMAX elements with a common ARX part. This
ARX part described a fixed deterministic input–output relationship: this model is estimated
using a recursive quasi-Bayes algorithm that relies on a classical Bayesian solution without
restriction on the MA component. The proposed model provides flexibility with respect
to varying characteristics of the model noise. The measurement errors that affect data
entries make the estimation problem more complicated. A solution to this problem was
proposed in [41] by enhancing the ARMAX models by including some additive error
terms on the output, and then developing a moving horizon estimator for the extended
ARMAX model. The proposed method then models the measurement errors as nuisance
variables and these are estimated simultaneously with the states, and the identifiability
was achieved by regularising the LS cost with the �2 norm of the nuisance variables,
leading to an optimisation problem with an analytical solution. The nuisance variables
have been recently used to model the output noise, as well as the potentially existing
outliers (see [27]). These outliers are regularised with the �2 norm for the estimation,
and the regularised estimator suppresses the influence of the output noise and provides a
minimum-variance estimate.

For the continuous-time case, the LSM with forgetting factor has been implemented
for estimating constant and time-varying parameters ([42–44]). The proposed algorithms
in [45] showed a good performance, but the bias, as in the discrete-time case, affects the
estimation. The estimation algorithm was implemented for additive and multiplicative
noises (see [46]), and in both scenarios, LSM is affected by the noise level, showing that is
not the best method for stochastic systems, either in discrete or continuous time. To deal
with the bias problem, a method combining the equivalent control with LSM was proposed,
these two algorithms working in parallel reduce the bias in the estimation even in the
presence of coloured noises (see [47]).
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5. Regular Observations and Information Inequality for Observations with
Coloured Noise

In estimation theory and statistics [48,49], the Cramér–Rao bound (CRB) expresses a
lower bound on the variance of unbiased estimators cn of a deterministic (fixed, though un-
known) parameter c, stating that the variance of any such estimator is at least as high as
the inverse of the Fisher information (FIM) I−1

F (c, n). Namely, for every unbiased estimator
cn (n is the number of available regular observations), an inequality of the type

Varc(cn) ≥ I−1
F (c, n) (23)

for every c in the parameter space C, it is called an information inequality, which plays
a very important role in parameter estimation. The early works of Cramér (1946) [50]
and Rao (1945) [51] introduced the Cramer–Rao inequality for regular density functions.
Later, Vincze (1979) [52] and Khatri (1980) (see [53]) introduced information inequalities
by imposing the regularity assumptions on a priori distribution rather than on the model.
An unbiased estimator which achieves this lower bound is usually said to be (fully) efficient.
This is a solution that achieves the lowest possible mean squared error among all unbiased
methods, and therefore is the minimum variance unbiased (MVU) estimator. However,
in some cases, there are no unbiased techniques that achieve this bound. This may occur
either if for any unbiased estimator there exists another estimator with a strictly smaller
variance, or if an MVU estimator exists but its variance is strictly greater than the inverse of
the Fisher information. The Cramér–Rao bound (37) can also be used to bound the variance
of biased estimators of given bias. In some cases, a biased approach can result in both a
variance and a mean squared error that are below the unbiased Cramér–Rao lower bound.

Recall some important definitions.

5.1. Main Definitions and the Cramer–Rao Information Inequality

In a general case, the observable output sequence yn ∶= {y1, y2, . . . , yn} may be of a
vector type (yt ∈ RL) containing the information on the parameter c ∈ RN . The function
p(yn ∣ c), c ∈ C ⊆ RN is called the joint density of the distribution of the vector yn. Any
Borel function cn = cn(yn) ∈ RN can be considered as an estimate of the parameter c.

Definition 1. The vector-function

mn(c) = E{cn} = ∫
Yn

cn(yn)p(yn ∣ c)dyn ∈ RN ,

Yn = {yn ∣ p(yn ∣ c) > 0, c ∈ C},

is referred to as the averaged value of the estimate cn, based on available observations yn;− If mn(c) = c, then the estimate cn is called unbiased and asymptotically unbiased if
limn→∞mn(c) = c.− The observations yn are referred to be as regular on the class C of parameters if

sup
c∈C

E{∥ln p(yn ∣ c)∥2} = sup
c∈C

∫
Yn

∥ln p(yn ∣ c)∥2 p(yn ∣ c)dyn < ∞, (24)

and for any c ∈ C

IF(c, n) = E{∇c ln p(yn ∣ c)∇⊺c ln p(yn ∣ c)} =
∫

Yn

[∇c ln p(yn ∣ c)∇⊺c ln p(yn ∣ c)]p(yn ∣ c)dyn > 0. (25)

− The matrix IF(c, n) is called the Fisher information matrix for the set of available observations yn.

As it was mentioned in [54], when the Fisher information takes into account the
stochastic complexity and the associated universal processes are derived for a class of para-
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metric processes. The main condition required is that the maximum likelihood estimates
satisfy the central limit theorems.

In some cases, the Fisher information matrix (FIM) is required to be non-singular (25)
to guarantee the observability of the system (see [55]). The algebraic properties of FIM
for stationary processes have been widely studied, for example there is a survey paper
written by André Klein where this study is presented [56]. The FIM is necessary for the
Cramer–Rao inequality; it is a basic tool for estimation theory in mathematical statistics,
and in stationary processes is related to the solution of Stein equations. A procedure to
compute the theoretical periodic autocovariance function in terms of the parameters of the
periodic model for periodic autoregressive moving average models was presented in [57],
where the necessary and sufficient condition for non-singular FIM of a periodic ARMA
model was calculated. So, the Fisher information matrix for the Gaussian case in ARMAX
processes has been previously studied. In [58], an algorithm composed by Chandrasekhar
recursion equations at a vector-matrix level was proposed, where the recursions consist
of derivatives based on appropriate differential rules that are applied to a state space
model for a vector process. The recursions obtained were given in terms of expectations of
derivatives of innovations.

Theorem 1. Cramer–Rao information inequality. For any set Yn of regular observations, and for
any estimate cn with differentiable averaged value function mn(c) the following inequality holds

E{(cn − c)(cn − c)⊺} ≥[mn(c) − c][mn(c) − c]⊺ +∇mn(c)I−1
F (c, n)∇⊺mn(c).

(26)

Corollary 1. For unbiased estimates satisfying mn(c) = c, ∇mn(c) = In×n, the Cramer–Rao
inequality becomes

E{(cn − c)(cn − c)⊺} ≥ I−1
F (c, n). (27)

This inequality is widely used in discrete-time systems for various purposes. The pos-
terior Cramer–Rao bound on the mean square error in tracking the bearing, bearing rate
and power level of a narrowband source is developed in [59]. Their formulation used a
lineal process model with additive noise and a general nonlinear measurement model,
where the measurements are the sensor array data. This bound can be applied to multi-
dimensional nonlinear and possibly non-Gaussian systems. In [60], the case of a singular
conditional distribution of the one-step-ahead state vector given the present state was
considered. The bound was evaluated for recursive estimation of slowly varying param-
eters of AR processes, tracking a slowly varying single cisoid in noise and tracking the
parameters of a sinusoidal frequency with a sinusoidal phase modulation. A variation of
the Cramer–Rao inequality is the Cramer–Rao–Frechet inequality, which has been applied
for discrete-time nonlinear filtering. In [61], this inequality was reviewed and extended
to track fitting, where it is shown that the inequality does not cause the limitations of the
resolution of the track fits with a certain number of observations, and that the inequality
remains valid even in irregular models supporting the similar improvement of resolution
for realistic models.

5.2. Fisher Information Matrix Calculation

Using the Bayes formula

p(yn ∣ c) = p(yn ∣ yn−1; c)p(yn−1 ∣ c) =
⋅ ⋅ ⋅ = ⎡⎢⎢⎢⎣

n∏
k=1

p(yk ∣ yk−1; c)⎤⎥⎥⎥⎦p(y0 ∣ c),
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for the likelihood function Ln(yn ∣ c) = − ln p(yn ∣ c) we have the following representation:

Ln(yn ∣ c) = − ln p(yn ∣ c) = − n∑
k=1

ln p(yk ∣ yk−1; c) − ln p(y0 ∣ c). (28)

Define also
ut(c) = ∇cLt(yt ∣ c)−∇cLt−1(yt−1 ∣ c) =

−∇c p(yt ∣ yt−1; c)
p(yt ∣ yt−1; c) = −∇c ln p(yt ∣ yt−1; c),

which is a martingale difference, since E{ut(c) ∣ Ft−1} a.s.= 0, and satisfies the property

∇cut(c) = −∇2
c p(yt ∣ yt−1; c)
p(yt ∣ yt−1; c) + ∇c p(yt ∣ yt−1; c)∇⊺c p(yt ∣ yt−1; c)

p2(yt ∣ yt−1; c) . (29)

For regular unbiased observations, the Fisher information matrix IF(c, n) can be
calculated as

IF(c, n) = n∑
k=1

E{uku⊺k } = n∑
k=1

E{∇cuk(c)} =
E
⎧⎪⎪⎨⎪⎪⎩

n∑
k=1

∇c p(yk ∣ yk−1; c)∇⊺c p(yk ∣ yk−1; c)
p2(yk ∣ yk−1; c)

⎫⎪⎪⎬⎪⎪⎭ =
E
⎧⎪⎪⎨⎪⎪⎩

n∑
k=1

∇c ln p(yk ∣ yk−1; c)∇⊺c ln p(yk ∣ yk−1; c)⎫⎪⎪⎬⎪⎪⎭.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(30)

5.3. Asymptotic Cramer–Rao Inequality

Multiplying both sides of (27) by n we get

nE{(cn − c)(cn − c)⊺} ≥ ( 1
n
IF(c, n))−1

.

Taking n → ∞ we get

lim inf
n→∞ nE{(cn − c)(cn − c)⊺} ≥ I−1

F (c), (31)

where

IF(c) ∶= lim sup
n→∞

1
n
IF(c, n) = lim sup

n→∞
E
⎧⎪⎪⎨⎪⎪⎩

1
n

n∑
k=1

uk(c)u⊺k (c)⎫⎪⎪⎬⎪⎪⎭ > 0.

Remark 2. In view of (29) it follows

IF(c) = lim sup
n→∞

1
n

E{∇2
c Ln(yt ∣ c)}. (32)

5.4. Whitening Process for Stable and Minimal-Phase Forming Filters

Although additive Gaussian white noise is widely used, in many research areas the
present noises are non-Gaussian. In some cases, detectors are used to whiten the data and
then the estimation/identification is performed (see for example [62]). In the presence
of non-white noises, one of the most common methods to deal with this perturbation
is a whitening filter. A transfer function of an estimated noise can be used to filter the
input–output data of the system and presents a filtering-based recursive analogue of the
LSM algorithm for the ARMAX model. In [63], it is shown that through data filtering one
can obtain two identification models, the first one including the parameter of the system
model and the second including the parameter of the noise model; this can lead to a more
accurate parameter estimation. A whitening filter can be applied in coloured Gaussian
noises when there is a residual white noise component present. The existence of a realisable
whitening filter is demonstrated in [64].
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The model (14) can be symbolically represented as

yn = z⊺nc + ηn = z⊺nc + H1(q)
H2(q)ξn. (33)

In view of the Assumption 4, the polynomials H1(q) and H2(q) are stable and, hence,

we are able to apply the inverse operator
H2(q)
H1(q) to both sides of the model (33), obtaining

ỹn = H2(q)
H1(q)yn, ỹ−s ∶= 0, s = 0, 1, . . . , K1,

z̃n = H2(q)
H1(q)zn, z̃−s ∶= 0, s = 0, 1, . . . , K1,

ξ̃n ∶= H2(q)
H1(q)

H1(q)
H2(q)ξn

a.s.= ξn +Oω(λn), ∣λ∣ < 1,

(34)

where λ is one of the eigenvalues of the polynomials H1(q) and H2(q) which is most close
to the unitary circle. The function Oω(λn) is a random process, defined on (Ω,F , P) and
such that

0
a.s.< lim inf

n
Oω(λn)/λn ≤ lim sup

n
Oω(λn)/λn ≤ const(ω) a.s.< ∞.

So, finally, after the “whitening process” (inverse operator) application we get

ỹn = z̃⊺nc + ξ̃n. (35)

Remark 3. This means that on-line application of the “whitening process” to the initial model (33)
permits considering the corresponding transformed model (34) which deals with “quasi” white noise
ξ̃n exponentially quickly, tending to the exact white noise ξn, fulfilling

∥ξ̃n − ξn∥ = Oω(λn) a.s.→ 0

when n → ∞. This permits to represent (35) as

ỹn = z̃⊺nc + ξn +Oω(λn). (36)

5.5. Cramer–Rao Inequality for ARMAX Models with a Generating Noise from the Class Pξ

of p.d.f.

Theorem 2. The Cramer–Rao inequality (see [15]) in the form (31) is

lim inf
n→∞ nE{(cn − c)(cn − c)⊺} ≥ sup

pξ∈Pξ

I−1
F (c) =

sup
pξ∈Pξ

(IF,ξ(pξ)R(pξ))−1

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(37)

where

R(pξ) ∶= lim sup
n→∞

1
n

n∑
k=1

E{z̃k z̃⊺k },

IF,ξ(pξ) = E
⎧⎪⎪⎨⎪⎪⎩(

∂

∂ξ
ln pξ(ξ(ω)))2⎫⎪⎪⎬⎪⎪⎭ = ∫

x∈R1

( ∂
∂x pξ(x))2

pξ(x) dx.

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(38)

Remark 4. In the regression case (al = 0, l = 1, . . . , L) the matrix R (38) does not depend on pξ .

Conclusion. According to the information inequality (37), the “best” (asymptotically
optimum or efficient) estimate c∗n of the parameter c ∈ C is the one that achieves equality
in the (37). The inequality given by (37) implies that after n regular observations yn the
covariance matrix of the estimation error (cn − c), which defines the quality of the estimation
process, can not be less than the corresponding Fisher information matrix (25). In other
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words, the Fisher information matrix (25) will define the maximal possible quality of the
identification process, which can not be improved by any other identification algorithm.

6. Robust Version of Maximum Likelihood Method with Whitening:
MLMW Procedure

For parameter estimation and system modelling, the maximum likelihood technique
is critical. The maximum of the likelihood function in Gaussian case is equivalent to min-
imising the least-squares cost function [65]. In this paper, a recursive maximum likelihood
least-squares identification algorithm for systems with autoregressive moving average
noises was derived. The maximum likelihood has been widely implemented under Gaus-
sian perturbations, for example in [66], the Gaussian likelihood function was studied when
data are generated by a high-order continuous-time ARMAX mode, and these data are
observed as stocks and flows at different frequencies. The maximum likelihood method can
be modified using the stochastic gradient; this modification was presented in [67], where
this modification was proposed for ARMAX models. In this case, the modified algorithm
can estimate unknown parameters and the unknown noise simultaneously, with less com-
putational cost and better accuracy. Non-asymptotic deviations bounds for least-squared
estimation in Gaussian AR processes have been recently studied (see [68]). The study
relies on martingale concentration inequalities and tail bound for χ2-distributed variables;
in the end, they provided a concentration bound for the sample covariance matrix of the
process output.

6.1. Whitening Method and Its Application

The whitening method is commonly used to prevent the bias problem [69]. A modified
version of direct whitening method, which is called MDWM, was proposed as an ARMA
model parameter estimation technique in [70]. The proposed direct whitening method
(DWM) provides the parameter estimates which make the prediction errors uncorrelated,
in some cases this algorithms might fall at local minima and give parameter estimates.
To deal with this problem, an MDWM which chooses the consistent estimates among a
large number of DWM estimates can be implemented. Pre-whitening can be performed
with first order differentiation of signals and/or the implementation of an inverse filter
based on linear prediction, as it is shown in [71], where the whitening was the previous
step in a cross-correlation method for identifying aircraft noise, showing that whitening
can be successfully developed for real-time operation in the detection of correlation peaks.
An iterative procedure for minimising and whitening the residual of the ARMAX model
was presented in [72], since usually when the system is identified from input–output data
in the time domain, it is assumed that the data is enough and the ARX model order is large
enough. The results show that in the residual whitening method we can use an ARMAX
model that includes the noise dynamics, instead of an ARX model, and the properties of the
residual sequence, such as the orthogonal conditions, can convert to the optimal properties
of the Kalman filter. The influence function is an analysis tool in robust statistics we used
to formulate a recursive solution for ARMAX processes filtering in [73], in particular for a
t-distribution noise. The filter was formulated as a maximum likelihood problem, where
an influence function approximation was used to obtain a recursive solution to reduce
computational load and facilitate the implementation.

Whitening techniques have also been implemented for noise cancellation, in [74] is
the base for an approach to adaptive white noise cancellation based on adaptive control
principles. In this case, the goal was to create a physical noise-reduced environment at the
vicinity of noisy machinery for a stochastic machine noise. Another method implemented
for filtering is signal smoothing when the data are generated (or represented) by an autore-
gressive moving average with exogenous inputs (ARMAX) model. In the case presented
in [75], the original ARMAX recurrence relation is used and combined with a constrained
LS optimisation to filter the system as well as the measurement noise components and
estimate the desired signal in the form of a block-wise matrix formulation.
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Whitening processes are a very useful pre-processing technique to deal with the
presence of non-white noises, and the improve the estimation results regardless of the
estimation algorithm used [76]. In [77], a residual whitening method enforces the proper-
ties of the Kalman filter for a finite set of data. This technique has been implemented in
ARMAX models for the identification of inductor motor systems. The importance of the
study and development of estimation/identification algorithms for ARMAX models with
coloured noises relies on the importance of this model in various areas of study and its
many applications. The identification of the ARMAX models allows the implementation of
control techniques, such as the predictive control presented in [78], which is applied for the
control of a pneumatic actuator based on an ARX model built by a neural network. There,
the control showed a quick response and an accurate tracking. The estimation has been
implemented for electromechanical modes and mode shapes for multiple synchrophasors
(see [79]). Their approach was based on identifying the transfer function of the state space
model of a linearised power system through the estimation of a multichannel ARMAX
mode, and it was simulated using data from a reduced-order model of the Western Electric-
ity Coordinating Council (WECC) system. The ARMAX model has been used to model
an outlet temperature of the first-stage cyclone pre-heater in the cement firing system
(see [80]). In that case, a Butterworth low-pas filter and normalized processing are used to
process a cement firing system data, and the input variables modelled are selected by the
Pearson correlation analysis. The parameters of the model were identified using a recursive
maximum likelihood algorithm, and the results validated with a residual analysis method.

Econometrics is an area where the estimation/identification of ARMAX models (the
integral version of the ARMAX model) has great importance (see [66,81,82]). The integration
of macroeconomic indicators in the accuracy of throughput time-series forecasting model
can be addressed using ARMAX models, as it is shown in [83]. There, the dynamic factors
are extracted from external macroeconomic indicators influencing the observed throughput,
and then a family of ARMAX models is generated based on derived factors. This model
can be used to produce future forecasts. Some variations of the ARMAX model, such as the
autoregressive moving average explanatory input model of the Koyck kind (KARMAX) are
also used in econometrics. Another interesting application in econometrics is presented
in [84], where it is shown how the recent deregulation of the electricity industry and
reliance on competitive wholesale markets has generated significant volatility in wholesale
electricity prices. Due to the importance of short-term price forecasts, an estimation and
evaluation of the forecasting performance of four ARMAX–GARCH models for five MISO
pricing hubs (Cinergy, First Energy, Illinois, Michigan and Minnesota) using hourly data
from 1 June 2006 to 6 October 2007 is given. In this study, the importance of the patterns
of the electricity price volatility is shown, as well as the volatility dynamics regulated by
the states.

In [85], an identification algorithm is presented, where the debt management in
indebted poor countries is studied, using data from the World Bank database from 1970
to 2018 based on the maximum likelihood method, and then comparing the results with
prediction error and the instrumental variable methods.

6.2. Recurrent Robust Identification Procedures with Whitening and a Nonlinear
Residual Transformation

Consider the following class of recurrent identification procedures [15] which may be
applied to the transformed model (36):

cn = cn−1 + Γnz̃n ϕ(ỹn − z̃⊺ncn−1)
c0—any given value

Γn = ( n∑
t=0

z̃t z̃⊺t )
−1

, n ≥ n0 ∶= {min
k

k∑
t=0

z̃t z̃⊺t } > 0.

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(39)
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Remark 5. Notice that Γn in (39) can be calculated recursively (as in the least-square method)

Γn = Γn−1 − Γn−1z̃nz̃⊺nΓn−1

1+ z̃⊺nΓn−1z̃n
, n ≥ n0, (40)

and possesses (in the accepted assumptions) the following property

Γn
a.s.≃ 1

n
R−1

R = lim
n→∞

1
n

n∑
k=1

E{z̃⊺k z̃k} > 0.
(41)

Theorem 3 ([15]). If

1. ξn is i.i.d. sequence with

E{ξn} = 0, E{ξ2
n} = σ2 > 0, E{ξ4

n} = E{ξ4
1} < ∞.

2. The nonlinear transformation ϕ ∶ R→ R satisfies the conditions

xψ(x) ≥ δx2, δ > 0, ψ(0) = 0, S(x) ≤ k0 + k1x2,

with
ψ(x) = E{ϕ(x + ξn)}, S(x) ∶= E{ϕ2(x + ξn)},

then
Δn = cn − c

a.s.→
n→∞ 0. (42)

Following to Lemma 13.7 in [36] and defining a new process {Δ̃n}n≥0 as

Δ̃n = [1− ψ′(0)
n

]Δ̃n−1 + 1
n
R−1z̃n(oω(1) + ζn), Δ̃0 = Δ0, (43)

we may formulate the following auxiliary result.

Theorem 4 (on
√

n-equivalency). Under the assumptions of Theorem 3, the process (42) is√
n-equivalent to the process (43), that is,

√
n(Δn − Δ̃n) a.s.→

n→∞ 0. (44)

The property of the asymptotic normality of the process {√nΔn}n≥0 helps us to esti-
mate the exact rate of convergence (not only the order of convergence, but also its constant)
of the identification procedure (39).

Theorem 5 (on asymptotic normality). Suppose that the conditions of Theorem 3 are fulfilled
and, additionally,

ψ(0) = 0, S(0) > 0, ψ′(0) > 1/2 . (45)

Then, the process {√nΔn}n≥0 is asymptotically normal

√
nΔn

d→
n→∞N(0, V), (46)

with the covariation matrix V, equal to

V = S(0)
2ψ′(0) − 1

R−1. (47)
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It results directly from Theorem 13.6 in [36].

Remark 6. The matrix V defines the rate of the convergence of the procedure (39), that is

Δn
d→

n→∞N(0, n−1V).

As it follows from (47), V depends on a real noise density distribution pξ (since S(0),
ψ′(0) and R may be dependent on pξ) and on a nonlinear function ϕ (through S(0) and
ψ′(0)). That’s why, to emphasise this dependence, we use the notation

V = V(pξ , ϕ).

Following [13,14], let us introduce the main definition of this section.

Definition 2. The pair of functions given by (p∗ξ , ϕ∗∗) define the estimating procedure (54) with
the nonlinear residual transformation ϕ∗, which is robust with respect to a distribution pξ , belonging
to a class Pξ , if for any admissible ϕ, satisfying the assumptions of Theorem 5, and any generating
noise distribution pξ ∈ Pξ the following “saddle-point” inequalities hold:

V(pξ , ϕ∗∗) ≤ V(p∗ξ , ϕ∗∗) ≤ V(ϕ, p∗ξ ). (48)

Here, both inequalities should be treated in a “matrix sense”, that is,

A = A⊺ ≤ B = B⊺ if B − A ≥ 0.

In other words:

− The distribution p∗ξ is the “worst” within the class Pξ .
− The nonlinear transformation ϕ∗∗ is “the best one” oriented on the “worst” noise with

the distribution p∗ξ .

This can be expressed mathematically as follows:

ϕ∗∗ = arg inf
ϕ

sup
pξ∈Pξ

V(pξ , ϕ),

p∗ξ = arg sup
pξ∈Pξ

inf
ϕ

V(pξ , ϕ),

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(49)

so that
inf

ϕ
sup

pξ∈Pξ

V(pξ , ϕ) = sup
pξ∈Pξ

inf
ϕ

V(pξ , ϕ) ∶= V∗. (50)

According to (37), for any fixed pξ ∈ Pξ

inf
ϕ

V(pξ , ϕ) = inf
ϕ
( S(0)

2ψ′(0) − 1
R−1) ≥ sup

pξ∈Pξ

[IF,ξ(pξ)R(pξ)]−1
(51)

Lemma 1 ([15]). The low bound in (51) coincides with the Cramer–Rao bound (37) and is achieved
when the nonlinear function in (39) is

ϕ∗∗(v) = −I−1
F,ξ(p∗ξ ) d

dv
ln p∗ξ (v) (52)

with
p∗ξ = arg sup

pξ∈Pξ

[IF,ξ(pξ)R(pξ)]−1
(53)
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In other words, this lemma states that the nonlinear residual transformation ϕ∗∗ (52)
is robust with respect to distributions pξ ∈ Pξ .

So, the asymptotically optimal recurrent robust identification procedure (39) for
coloured noise perturbations in (33) is

cn = cn−1 − Γnz̃n I−1
F,ξ(p∗ξ ) d

dv
ln p∗ξ (v) ∣v=ỹn−z̃⊺n cn−1

Γn = Γn−1 − Γn−1z̃nz̃⊺nΓn−1

1+ z̃⊺nΓn−1z̃n
, n ≥ n0,

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(54)

which in fact is the maximum likelihood recurrent procedure with the worst p.d.f. p∗ξ (v)
on the given class Pξ .

Remark 7. Notice that for the class of ARMAX models with coloured noises and regular obser-
vations, there does not exist any other algorithm providing, asymptotically, a rate of convergence
better than the suggested procedure (54).

As we can see, whitening is a pre-processing step in the estimation process which can
be applied simultaneously with the identification procedure (54). In [86], this step was im-
plemented in the blind source separation process, where a robust whitening is based on the
eigenvalue decomposition of a positive definite linear combination of correlation matrices.

This problem can be addressed analysing the noise power spectra density. This
has been implemented by identifying the noise power spectral density of interferometric
detectors using parametric techniques (see [87]). This is an adaptive technique used to
identify and to whiten data provided my the interferometric detectors. The least-squares
lattice filter proved to be the best among the analysed filters. One of the applications for
this technique was presented in [88] where it was implemented for gravitational data wave
analysis. There, it is shown how it is possible to estimate the noise power spectral density
of gravitational wave detectors using parametric techniques, and it also shows how is it
possible to whiten the noise data before they pass the detection algorithms.

6.3. Particular Cases for Static (Regression) Models

Recall that for regression models (al = 0, l = 1, . . . , L) the matrix R does not depend on
p.d.f. pξ , and the relation (53) becomes

p∗ξ (v) = arg sup
pξ∈Pξ

[IF,ξ(pξ)]−1 = arg inf
pξ∈Pξ

IF,ξ(pξ).

Lemma 2. In the class P1
ξ ∶= {pξ ∶ pξ(0) ≥ 1

2a
> 0} (5) the worth distribution density p∗ξ (x) is

the Laplace p.d.f. given by

p∗ξ (x) = arg inf
pξ∈P1

ξ

IF,ξ(pξ) = 1
2a

exp{−∣x∣
a
}. (55)

See Figure 2.

Corollary 2. The robust on P1
ξ version of the procedure (54) contains

ϕ∗∗(x) = −I−1
F,ξ(p∗ξ ) d

dv
ln p∗ξ (v) = a sign(x) (56)

Lemma 3. In the class P2
ξ ∶= {pξ ∶ ∫

R

x2 pξ(x)ds ≤ σ2 < ∞} (6), the worth distribution density

p∗ξ (x) is the Laplace p.d.f. given by
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p∗ξ (x) = arg inf
pξ∈P2

IF(pξ) = 1√
2πσ

exp{− x2

2σ2 }, (57)

that is, the worth on P2
ξ distribution density is the Gaussian p.d.f. (57).

Corollary 3. The robust on P2
ξ version of the procedure (54) contains

ϕ∗(x) = −I−1
F (p∗ξ ) d

dv
ln p∗ξ (v) = x (58)

which means that the standard LSM algorithm with linear residual transformation is robust within
the class P2.

Figure 2. The nonlinear transformation ϕ∗∗ for the class P1
ξ .

Lemma 4. In the class P3
ξ ∶= {pξ ∶ pξ(x) = (1− α)pN(0,σ2)(x) + αq(x)} (7) (of all symmetric

“approximately normal” p.d.f.), the worth distribution density p∗ξ (x) is Gaussian p.d.f. within some
zone Δ and the Laplace p.d.f. out of this zone:

p∗ξ (x) = arg inf
pξ∈P3

ξ

IF,ξ(pξ) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1−α√
2πσ

exp{− x2

2σ2 } for ∣x∣ ≤ Δ
1−α√
2πσ

exp{−Δ∣x∣
σ2 + Δ2

2σ2 } for ∣x∣ > Δ
.

(59)

The parameter α ∈ [0, 1] characterises the level of the effect of a “dirty” distribution q(x) to
the basic one pN(0,σ)(x), and Δ is a solution of the transcendent equation

1
1− α

=
Δ

∫
−Δ

pN(0,σ)(x)dx + 2pN(0,σ)(Δ)σ2

Δ
(60)

that is, the worth on P3
ξ distribution density is the Gaussian one for ∣x∣ ≤ Δ and the Laplace type for

∣x∣ > Δ, (see Figure 3).
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Corollary 4. The robust on P3
ξ version of the procedure (54) contains

ϕ∗∗(x) = −I−1
F (p∗ξ ) d

dv
ln p∗ξ (v) = { x for ∣x∣ ≤ Δ

Δ sign(x) for ∣x∣ > Δ
(61)

Figure 3. The nonlinear transformation ϕ∗∗ for the class P3
ξ .

Lemma 5. In the class

P4
ξ = {pξ ∶ pξ(x) = (1− α)pU(0,a)(x) + αq(x)},

pU(0,a)(x) ∶= 1
2a χ(∣x∣ ≤ a)

(7) (of all symmetric “approximately uniform” distributions) the worth distribution density p∗ξ (x) is

p∗ξ (x) = arg inf
pξ∈P4

ξ

IF,ξ(pξ) =
⎧⎪⎪⎨⎪⎪⎩

1−α
2a for ∣x∣ ≤ a

1−α
2a exp{−(1− α) ∣x∣−a

αa } for ∣x∣ > a > 0
,

(62)

that is, the worth on P4
ξ distribution density is the uniform p.d.f. for ∣x∣ ≤ a and the Laplace type for

∣x∣ > a.

Corollary 5. The robust on P4
ξ version of the procedure (54) contains

ϕ∗∗(x)= − I−1
F (p∗ξ ) d

dv
ln p∗ξ (v)=⎧⎪⎪⎨⎪⎪⎩

0 for ∣x∣ ≤ a
1− α

αa
sign(x) for ∣x∣ > a

(63)

See Figure 4.
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Figure 4. The nonlinear dead-zone transformation ϕ∗∗ for the class P4
ξ .

6.4. Robust Identification of Dynamic ARX Models

In the case of dynamic autoregression models (ARX model) where the generalised
inputs are dependent on the state of the system, the matrix R depends on pξ , too, and there-
fore, we deal with the complete problem, namely, we need to calculate

sup
pξ∈P

[IF,(pξ)R(pξ)]−1
(64)

For the ARX model (65) (for simplicity we put here bk = 0, (k = 0, . . . , K), so cl = al(l = 1, . . . , L)) the relation (36) becomes

ỹn = a⊺ṽn + ξn +Oω(λn)
a⊺ = (a1, . . . , aL), ṽ⊺n = (yn−1, . . . , yn−L) } (65)

Here we have
1
n

n∑
t=0

E{ṽtṽ⊺t } → R(pξ)
where R(pξ) satisfies

R(pξ) = AR(pξ)A⊺ + σ2Ξ0 (66)

with

A =
DDDDDDDDDDDDDDDDDDDDDDDD

a0 a1 ⋯ ⋯ aLa

1 0 ⋯ ⋯ 0
0 1 0 ⋯ 0
0 ⋯ ⋱ 0 0
0 ⋯ 0 1 0

DDDDDDDDDDDDDDDDDDDDDDDD
, Ξ0 ∶=

DDDDDDDDDDDDDDDDDDDDDDDD

1 0 ⋯ ⋯ 0
0 0 ⋯ ⋯ 0
0 0 0 ⋯ 0
0 ⋯ ⋱ 0 0
0 ⋯ 0 0 0

DDDDDDDDDDDDDDDDDDDDDDDD
Obviously, R(pξ) can be represented as R(pξ) = σ2R0(pξ), where R0 is the solution

of R0(pξ) = AR0(pξ)A⊺ + Ξ0. (67)

In this case, the problem (64) is reduced to

sup
pξ∈Pξ

[σ2(pξ)IF(pξ)]−1
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or equivalently, to
inf

pξ∈Pξ

[σ2(pξ)IF(pξ)] (68)

Consider now some classes Pξ of a priory informative generating noise distributions
and solutions of the problem (68) within these classes.

(1) Class PARX−1
ξ (containing among others the Gaussian distribution pN(0,σ2

0)(x)).

Lemma 6. For the class PARX−1
ξ

p∗ξ (x) = arg inf
pξ∈PAR

1

[σ2(pξ)IF(pξ)] = pN(0,σ2
0)(x) (69)

that is, the worth on PARX−1
ξ p.d.f. is exactly that the Gaussian distribution pN(0,σ2

0)(x).

Proof. Taking in (A1)

f (x) = x, ϕ(x) = p′ξ(x)/pξ(x)
we get

σ2 IF(pξ) ≥ ⎛⎜⎝∫
R

xp′ξ(x)dx
⎞⎟⎠

2

= ⎛⎜⎝∫
R

pξ(x)dx
⎞⎟⎠

2

= 1

such that the equality is attained when p′ξ(x)/pξ(x) = λx, which leads to

pξ(x) = 1√
2π/λ exp{−λx2

2
}

But since IF(pN(0,σ2
0)) = σ−2

0 from the inequality above we get

σ2(pξ)IF(pξ) ≥ 1 = σ2
0 IF(pN(0,σ2

0))
which means that p∗ξ (x) = pN(0,σ2

0)(x).

Corollary 6. The robust on PARX−1
ξ version of the procedure (54) contains

ϕ∗∗(x) = −I−1
F (p∗ξ ) d

dv
ln p∗ξ (v) = x.

(2) Class PARX−2
ξ (containing all centred distributions with a variance not less than a

given value):

PARX−2
ξ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
pξ ∶ ∫

R

x2 pξ(x)dx ≥ σ2
0

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(70)

Lemma 7. For the class PARX−2
ξ

p∗ξ (x) = arg inf
pξ∈PARX−2

ξ

IF(pξ) (71)
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that is, the worth on PARX−2
ξ distribution density p∗ξ (x) coincides with the worth p.d.f. on the

classes P i
ξ (i = 1, . . . , 4) characterising distribution uncertainties (if additional information is

available) for static regression models provided that

σ2(p∗ξ (x)) = σ2
0 (72)

Proof. It follows directly from the inequality σ2(pξ)IF(pξ) ≥ σ2
0 IF(pξ).

Remark 8. Notice that all of the preceding analysis is based on the assumption that the transfer
function (4) of the forming filter (3) is known a priory, allowing the parallel whitening process (34) to
be applied and the information Cramer–Rao bound (37) to be reached, resulting in the asymptotically
effective (the “best” ones) procedure, which is robust on given p.d.f. classes Pξ of generating noises.

Below, we look at a considerably more challenging scenario where the forming filter (3)
is unknown a prior. In this situation, nobody can definitely achieve the information Cramer–
Rao bound (37) and build an asymptotically successful parametric estimate technique in
this circumstance. However, the problem can be handled utilising alternative techniques
of identification.

7. Instrumental Variables Method for ARMAX Model with Finite Noise Correlation

7.1. About IVM

Instrumental variables (IV) or total least-squares estimators is the method which also
recommends to estimate parameters in the presence of white or coloured noises [89–91].
Even if the accuracy of the estimator for errors-in-variables models cannot be handled
with a conventional analysis, the results produced by any of these estimators in practice
demonstrate that their response can be well theoretically anticipated. The instrumental
variables algorithms have been implemented for multivariable model forms, such as AR-
MAX models, dynamic adjustments with autoregressive errors and multivariable transfer
functions (see [92]), where the IV algorithm provides asymptotically efficient estimation
results and a low variance. The IV method can be adapted to work with the maximum
likelihood method [93]. An analysis of the refined instrumental variable-approximate
maximum likelihood (IVAML) method was presented. The proposed technique proved to
be asymptotically efficient and to approach minimum variance estimation of the model
parameters, even with a low sample size and low signal noise rations. An unified refined
instrumental variable (RIV) approach was proposed in [94] for the estimation of discrete
and continuous-time transfer functions. The estimator was based on the formulation of
a pseudo-linear regression involving an optimal prefiltering process derived from a Box–
Jenkins transfer function model. This method showed a reliable solution to the maximum
likelihood optimisation equations, and the estimates are optimal in the maximum likeli-
hood sense. The optimal refined instrumental variables for Box–Jenkins models has been
studied on various occasions, for example in [95]. There, in contrast to the most common
forms of the algorithm used in ARMAX models, a modification that facilitates the repre-
sentation of the more general noise component of the Box–Jenkins model was proposed,
and that could also be used as an adaptive filter and as a state variable feedback control.
For the nonlinear case, the instrumental variable method has been used in particular for
nonlinear Hammerstein models. The nonlinear recursive instrumental variables method
has been used to deal with these models due to its simplicity in practical applications
(see [96]). The recursive IV method also proves to be superior to the recursive LSM in terms
of accuracy and convergence under the presence of coloured noises, and this is valid either
for discrete or continuous-time [97].
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Consider now the system (1) in the regression format

yn = z⊺nc + ηn,
c = (a1, . . . , aL; b0, . . . , bK)⊺ ∈ RL+K+1,

zn = (yn−1, . . . , yn−L; wn, . . . , wn−K)⊺ ∈ RL+K+1

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(73)

where the exogenous noise input ηn has a finite correlation, that is, the transfer matrix of
the forming filter has only the nominator:

H(q−1) = H1(q−1) = 1+ K1∑
s=1

d2,sq−s, H2(q−1) = 1 (74)

It is acknowledged that the parameters d2,s (s = 1, . . . , K1) may be unknown a priory.

7.2. Instrumental Variables and the System of Normal Equations

Let vn ∈ RL+K+1 be an auxiliary vector variable (an instrumental variable) depending on
information available up to time n. Considering the moments t = 1, . . . , n and multiplying
both sides of (73) by vt we get the so-called system of “normal equations”:

v1y1 = v1z⊺1 c + v1η1,
v2y2 = v2z⊺2 c + v2η2,⋮
vnyn = vnz⊺nc + vnηn

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(75)

Summing these relations, after multiplying by n−1, we obtain

n−1
n∑

t=1
vtyt = (n−1

n∑
t=1

vtz⊺t )c + n−1
n∑

t=1
vtηt (76)

Define the instrumental variable estimate cIV
n of the vector c as a vector which in each

time n satisfies the relation
n∑

t=1
vtyt = ( n∑

t=1
vtz⊺t )cIV

n . (77)

If the matrix ( n∑
t=1

vtz⊺t ) is invertible, that is, the matrix ΓIV
n ∶= ( n∑

t=1
vtz⊺t )

−1

exists (for all

n ≥ n0), then cIV
n can be expressed as

cIV
n = ΓIV

n

n∑
t=1

vtyt, (78)

or in the recurrent form

cIV
n = cIV

n−1 + ΓIV
n vt(yn − z⊺ncIV

n−1),

ΓIV
n = ΓIV

n−1 − ΓIV
n−1vnz⊺nΓIV

n−1

1+ z⊺nΓIV
n−1vn

, z⊺nΓIV
n−1vn ≠ −1

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(79)

Remark 9. Notice that if vn = zn the estimates cIV
n (77)–(79) coincide with LSM estimates.

As it follows from (76) and (77), the estimation error δn = cIV
n − c satisfies

− n−1
n∑

t=1
vtηt = (n−1

n∑
t=1

vtz⊺t )δn (80)
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Under the main assumptions accepted above, in view of the strong large number law
(see Theorem 8.10 in [36]), we have

n−1
n∑

t=1
vtyt

a.s.= n−1
n∑

t=1
E{vtyt} + oω(1),

n−1
n∑

t=1
vtzt

a.s.= n−1
n∑

t=1
E{vtzt} + oω(1),

n−1
n∑

t=1
vtηt

a.s.= n−1
n∑

t=1
E{vtηt} + oω(1)

a.s. means almost sure or with probability 1.

and the relation (80) becomes

−n−1
n∑

t=1
E{vtηt} a.s.= (n−1

n∑
t=1

E{vtzt})δn + oω(1)
from which one may conclude that if

(1)

n−1
n∑

t=1
E{vtzt} → RIV , detRIV ≠ 0; (81)

(2)

n−1
n∑

t=1
E{vtηt} → 0, (82)

then the estimate cIV
n is asymptotically consistent with probability 1, namely, δn

a.s.→ 0.

Corollary 7. Evidently, the condition (82) holds if the instrumental variable vt and the external
noise ηt are not correlated:

E{vtηt} = 0 for all t = 1, . . .

So, in the example (17), instead of the LSM estimate (18) we need to use (see [98]) the IV
estimate cIV

n (78) with vt = yt−k (k ≥ 1) ∶
an = [ n∑

t=1
yt−kyt+1][ n∑

t=1
ytyt−k]

−1
a.s.→ a

In general cases for the model (73) and (74) with a finite correlation (E{ηtηt−k} = 0, k > K1)
we may use the following IV estimate cIV

n with vt = zt−k (k ≥ K1) ∶
cIV

n = cIV
n−1 + ΓIV

n zt−k(yn − z⊺ncIV
n−1),

ΓIV
n = ΓIV

n−1 − ΓIV
n−1zn−kz⊺nΓIV

n−1

1+ z⊺nΓIV
n−1zn−k

, z⊺nΓIV
n−1zn−k ≠ −1.

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(83)

8. Joint Parametric Identification of ARMAX Model and the Forming Filter

Unfortunately, IVM identification algorithms cannot be applied in the situation when
the correlation function of a coloured noise is not finite. Below, we treat exactly this case
considering that the transfer function of a finite-dimensional forming filter is completely un-
known, including both numerator and denominator parameters in (4). So, here our problem
under the consideration is as follows: based on the available data (16) we need to construct
an identification procedure, generating some parameter estimates ân,i (i = 1, . . . , L), b̂n,i(i = 0, . . . , K) ,ĥn,1i (i = 0, . . . , K1) and ĥn,2i (i = 1, . . . , K2) which asymptotically convergence
with probability 1 (or almost sure) to the real values, namely,

ân,i
a.s.→ ai, b̂n,i

a.s.→ bi, ĥn,1i
a.s.→ h1,i, ĥn,2i

a.s.→ h2,i when n → ∞. (84)
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8.1. An Equivalent ARMAX Representation

Multiplying (1) by H2(q) = 1+ K2
Σ

i=1
h2,iqi we obtain the corresponding ARMAX (autore-

gression with moving average noise term model)

(1+ K2
Σ

i=1
h2,iqi)(1+ L∑

i=1
aiqi)yn =

(1+ K2
Σ

i=1
h2,iqi)( K∑

i=0
biqi)un +(h1,0 + K1

Σ
i=1

h1,iqi)ξn

or, equivalently, in the “open format” (with mA ∶= max{K2, L} and mB ∶= max{K2, K})

(1+ mA∑
i=1

qi[aiχ(i ≤ nA) + h2,iχ(i ≤ nD2)
+⎛⎝h2,iχ(i ≤ nD2)mA∑

j=1
ajχ(j ≤ nA)qj⎞⎠

⎤⎥⎥⎥⎥⎦
⎞
⎠yn =

⎛
⎝b0 + MB∑

i=1
qi
⎡⎢⎢⎢⎣biχ(i ≤ MB) + h2,iχ(i ≤ nD2)MB∑

j=0
bjχ(j ≤ nB)qj

⎤⎥⎥⎥⎦
⎞
⎠un

+(1+ nD1∑
i=1

h1,iqi)ξn,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(85)

where

χ(A) = { 1 if the event A is valid
0 if not

.

Remark 10. Notice that since the polynomial H2(q) is stable, the reactions {yτ}τ=1,n of both
difference Equations (4) and (85) on the same inputs {uτ}τ=−2mB ,n and {ξτ}0=−K1,n are asymp-
totically closed, namely, the difference between these reactions tends to zero exponentially quickly
with probability one. That is why to obtain the desired property (84), designing the identification
procedure using the data of the model (4) can be realised based on data but generated by the ARMAX
model (85) (see [99]).

The ARMAX model (85) can be represented in the standard regression format (different
from (14)) as

yn = x⊺nc + h1,0ξn (86)

with
xn = (−yn−1,⋯,−yn−2mA ; un,⋯, un−2mB ; ξn−1,⋯, ξn−nK1

)⊺ ∈ RN

N ∶= 2mA + 2mB + 1+ K1
(87)

and
c = (ã1,⋯, ã2mA , b̃0,⋯, b̃2mB , h1,1, . . . , h1,K1)⊺ ∈ RN , (88)

containing the components

ã1 = a1 + h2,1,
ãi = aiχ(i ≤ nL) + h2,iχ(i ≤ nK2)+

mA∑
k=1

h2,kχ(k ≤ nK2)ai−kχ(i − k ≤ L), i = 2, . . . , 2mA,

b̃0 = b0, b̃i = biχ(i ≤ mB)+
mB∑
k=1

h2,kχ(k ≤ nK2)bi−kχ(i − k ≤ K), i = 1, . . . , 2mB.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(89)

Remark 11. Notice that the extended input vector xn is not completely available since it contains
immeasurable components ξn−1, ⋯, ξn−nK1

. This property is the main difference with the standard
ARMAX model identification problem where the vector xn does not contain these immeasurable term.
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8.2. Auxiliary Residual Sequence

Now, let us define the “generalised residual sequence” given by the recursion relation

εn = yn − x̂⊺ncn−1 (90)

where the “extended vector” x̂n ∈ R2mA+2mB+1+K1 is defined as

x̂n = (−yn−1,⋯,−yn−2mA ; un,⋯, un−2mB ; εn−1,⋯, εn−nK1
)⊺ (91)

with ε−1 = ⋯ = ε−nD1
= 0. Notice that the “extended vector” x̂n is measurable on-line.

Lemma 8 ([99]). For n → ∞
Δn = εn − ξn = O(∣λH1 ∣n) a.s.→ 0, (92)

where λH1 is the eigenvalue of the polynomial H1 with minimal module ∣λH1 ∣ < 1.

From (A5) we get

yn = x̂⊺nc − nD1∑
i=1

h1,iΔn−i + h1,0ξn = x̂⊺nc + h1,0ξn +O(∣λH1 ∣n). (93)

8.3. Identification Procedure

To estimate the extended vector c from the relation (93) let us apply the least-squares
method (LSM), defining the current estimate ĉn as

ĉn = ( n∑
t=0

x̂t x̂⊺t )
−1 n∑

t=0
x̂tyt, n ≥ n0 = {inf n:

n∑
t=t

x̂t x̂⊺t > 0} (94)

In the recurrent form, this estimate can be represented as in (39):

ĉn = ĉn−1 + Γnx̂n ϕ(yn − x̂⊺n ĉn−1),

Γn = Γn−1 − Γn−1 x̂n x̂⊺nΓn−1

1+ x̂⊺nΓn−1 x̂n
, n ≥ n0 + 1,

Γ−1
n0

∶= n0∑
t=t

x̂t x̂⊺t

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(95)

Notice that taking Γ−1
n0

as

Γ−1
n0

= ρIN×N + n0∑
t=t

x̂t x̂⊺t , 0 < ρ ≪ 1, (96)

we can select n0 = 0, and the procedure (95) can be applied from the beginning of the process.

Theorem 6 ([100]). If

(1) the following “persistent excitation condition” (PEC) holds:

lim inf
n

( 1
n

n∑
t=0

xtx⊺t ) a.s.≥ νIM×M
a.s.> 0,

M ∶= 2mA + 2mB + 1+ D1.

(2) {ξn} is a martingale difference sequence satisfying (10),

then, the LSM procedure (95) and (96) generates the sequence of the estimates {ĉn}n≥0, which
is asymptotically consistent with probability 1, that is, ĉn

a.s→
n→∞ c.
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8.4. Recuperation of the Model Parameters from the Obtained Current Estimates
8.4.1. Special Case When the Recuperation Process Can Be Realised Directly

When K = 0 and the gain parameter b0 ≠ 0 are a priori known, the system of algebraic
Equations (89) becomes linear with respect to the unknown parameters ai(i = 0, . . . , L) and
h2,i(i = 0, . . . , nK2), and may be resolved analytically without application of any numeri-
cal procedure.

8.4.2. General Case Requiring the Application of Gradient Descent Method (GDM)

In view of (89), we can recuperate the parameters ai(i = 0, L), bi (i = 0, K) and h2,i(i = 0, . . . , nK2) for this purpose using the command Fsolve in Matlab or some numerical
method such as GDM.

For example, if we consider the case when K = L = nK2 = mA = mB = 2, the component
relations from (89) become

ã1 = a1 + h2,1, ã2 = a2 + h2,2 + h2,1a1,
ã3 = h2,1a2 + h2,2a1, ã4 = h2,2a2,

b̃0 = b0, b̃1 = b1 + h2,1b0,
b̃2 = b2 + h2,1b1 + h2,2b0,

b̃3 = h2,1b2 + h2,2b1, b̃4 = h2,2b2.

Since this system is formed by nonlinear equations, and in some particular cases
it is actually possible to solve the equations analytically, the gradient descent method
(GDM) is implemented to estimate the values from the original system, taking the best
average value from the estimated parameters. For this purpose, we define the following
objective function:

F(a1, a2, b1, h21) = (a1 + h21 − c1)2+(a1h21 + a2 − c2)2 + (a2h21 − c3)2+(b1 + h21b0 − c5)2 + (b1h21 − c6)2 → min

The original parameter can be recovered using some of the existing optimisation com-
mands in Matlab, suc as Fsolve or optimvar, or some algorithms such as GDM mentioned
previously, although some other optimisation techniques could be implemented (see [99]).
The performance of Fsolve is good in second or third order systems; in these cases, the com-
mand can recover all the original parameters from the nonlinear system. In higher order
systems, this method presents problems at recovering the original values, while gradient
descent has a good performance with low- and high-order systems. In some cases, such as
the example presented before, it is possible to recover the original values by a mathematical
simplification. The main condition for a good estimation is that in the objective function
one should have at least as many terms as variables to estimate, otherwise it is not possible
to recover all the original values.

9. Numerical Example

The algorithms presented in the previous sections are illustrated with a numerical example.

Raised Cosine Distribution

Consider the following system

y(k) = 0.85y(k − 1) + 2u(k) + η(k),
η(k) = −0.3η(k − 1) + ξ(k) + 0.8ξ(k − 1),

with ξ having the raised cosine distribution

pξ(v) = 1
2s

[1+ cos(v − μ

s
π)], μ > 0, s > 0,
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which is a continuously differentiable function supported on the interval [μ − s, μ + s]. The
system can be rewritten as follows

y(k) = z(k)⊺c + η(k),

with

z(k) = ( y(k − 1)
u(k) ), c ∶= ( 0.85

2
).

The whitening process is then given by

ỹ(k) = H(q−1)y(k), z̃(k) = H(q−1)z(k),

or in the extended form,

ỹ(k) + 0.3 ỹ(k − 1) = y(k) + 0.8y(k − 1), ỹ(0) = y(0),
z̃(k) + 0.3 z̃(k − 1) = z(k) + 0.8z(k − 1), z̃(0) = z(0),

where the “inverse filter” has the transfer function

H(q−1) = 1+ 0.8q−1

1+ 0.3q−1 .

The recursive WLSM algorithm with the residual nonlinear transformation is given by

cn = cn−1 − I−1
F,ξΓnz̃n

p′ξ(v)
pξ(v) ∣v=ỹn−z̃⊺n cn−1

=

cn−1 + 2π I−1
F,ξΓnz̃n

sin(v − μ

s
π)

1+ cos(v − μ

s
π) ∣v=ỹn−z̃⊺n cn−1

=

cn−1 + s
π

Γnz̃n

sin(π

s
[ỹn − z̃⊺ncn−1 − μ])

1+ cos(π

s
[ỹn − z̃⊺ncn−1 − μ]) .

(97)

Here, we have used that for the raised cosine distribution

IF,ξ = 2
π2

s
. (98)

The initial conditions are c(0) = 2, y(0) = 3, Γ(0) = 105. The Figures 5 and 6 show
the estimated parameters a and b using LSM and MLLM+ whitening with a nonlinear
residual transformation.

In the Figures 5 and 6, one can see that in the LSM case the noise has a strong
influence in the estimation results, while in the MLLM+ whitening, the noise influence
is minimised in the estimated parameter, reducing the bias, which is the most common
problem in parameter estimation using LSM under the presence of the correlated noises.
The performance index of the estimated algorithm is illustrated in Figure 7; here, one can
see that the MLLM+ whitening is a better option for parameter estimation in systems with
coloured noises.
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Figure 5. Parameter a and its estimated using LSM and LSM+ whitening (raised cosine distribution case).g g g (

Figure 6. Parameter b and its estimated using LSM and LSM+ whitening (raised cosine distribution case).

In this case, the filter structure is known; a numerical example where the filter structure
is unknown is presented in [99].

157



Mathematics 2022, 10, 1291

Figure 7. Performance indexes of the estimation algorithms implemented in a system with a raised
cosine distribution.

10. Discussion

In this paper, we demonstrated that the traditional LSM algorithm failed to accurately
estimate the parameters of ARX (dynamic) models when subjected to a coloured perturba-
tion, and because of this, it is necessary to implement a different estimation strategy. For the
identification issue under non-Gaussian and coloured noises, the Cramer–Rao inequality
and the related Fisher information limits were explored, when the forming filter (the noise
spectral function) is known a priori.

It was shown that a recurrent process, which employs both the whitening technique
and the nonlinear residual transformation (operating in parallel), is the asymptotically
effective (the “best”) identification algorithm.

The main limitation of the proposed method is that in the case of having a partially
unknown filter, the method cannot be implemented. In this case, there are two different
identification methods that might be used:

− Instrumental variables method (IVM) for ARMAX models with a finite noise-correlation.− The nonlinear residual transformation method for simultaneous parametric identifica-
tion of the ARMAX model and the forming filter.
Both techniques are not asymptotically effective, as they do not achieve the Cramer–
Rao information limits.

In a future work, we plan to analyse the case in which the filter is partially known,
or even unknown, and if it is possible to achieve the information limits that were previ-
ously mentioned.

11. Conclusions

In the present work, the limits for the Cramer–Rao inequality and the related Fisher
information were explored under coloured noise perturbations, and we demonstrated that
the whitening technique and the nonlinear residual transformation working in parallel
generate an estimation sequence with the asymptotic convergence rate that proves to
be the best identification algorithm for the case studied in this manuscript, reaching the
Fisher information bound, which cannot be improved by any other estimation algorithm.
The effectiveness of the suggested approach is illustrated by a numerical example with a
non-Gaussian noise, having a raised cosine distribution.
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ARX Autoregressive model with exogenous variables
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IVM Instrumental variables method
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DWM Direct whitening method
WECC Western Electricity Coordinating Council
KARMAX Autoregressive moving average explanatory input model of the Koyck kind
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Appendix A

Appendix A.1. Proof of Lemma 2

• By the Cauchy–Schwarz inequality

⎛⎜⎝∫
R1

f ϕpξ dx
⎞⎟⎠

2

≤⎛⎜⎝∫
R1

f 2 pξdx
⎞⎟⎠
⎛⎜⎝∫
R1

ϕ2 pξdx
⎞⎟⎠ (A1)

valid for any p.d.f. f , ϕ, and any noise density distribution pξ (for which the integrals
have a sense), for f ∶= p′ξ(x)/pξ(x), after integrating by parts it follows

IF,ξ(pξ) ≥ ⎛⎜⎝∫
R1

pξ(x)dϕ(x)⎞⎟⎠
2

/∫
R1

ϕ2(x)pξ(x)dx, (A2)

where the equality is attained when p′ξ(x)/pξ(x) = λϕ(x), λ is any constant. Taking
ϕ(x) ∶= sign(x) in (A2) and using the identity [sign(x)]′ = 2δ(x)pξ(0) leads to

IF,ξ(pξ) ≥ 4p2
ξ(0) ≥ 1

a2 for any pξ ∈ P1, (A3)

where the equality is attained when p′ξ(x)/pξ(x) = λsign(x), or equivalently, for

pξ(x) = λ
2 exp{−∣x∣/λ}. With λ = a we have
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pξ(x) = a
2

exp{−∣x∣/a} = p∗ξ (x). (A4)

So, IF,ξ(p∗ξ ) = 1
a2 and the worst noise distribution within P1

ξ is p∗ξ (x) (55).

Appendix A.2. Proof of Lemma 3

From (4), we have

yn = x⊺nc + h1,0ξn = x̂⊺nc + c⊺(xn − x̂n) + h1,0ξn

= x̂⊺nc + nK1∑
i=1

h1,i(ξn−i − εn−i) + h1,0ξn,

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(A5)

which implies the following recurrence

h2,0Δn + nK1∑
i=1

h1,iΔn−i = H1(q)Δn = 0. (A6)

Taking into account that the polynomial H1(q) is stable, we get (92).

Appendix A.3. Proof of Lemma 4

• Taking in (A2) ϕ(x) = x for all pξ ∈ P2
ξ , we get

IF,ξ(pξ) ≥ 1/∫
R

x2 pξ(x)dx ≥ 1/σ2, (A7)

where the equality is attained when

p′ξ(x)/pξ(x) = λx, λ is any constant (A8)

or, equivalently, for

pξ(x) = 1√
2π/λ exp{−λx2

2
} (A9)

For λ = σ−2 we have

pξ(x) = 1√
2πσ

exp{− x2

2σ2 } = p∗ξ (x) (A10)

implying

IF,ξ(pξ) ≥ 1/∫
R1

x2 pξ(x)dx ≥ 1/σ2 = IF(p∗ξ ) (A11)

So, the worst noise distribution within P2
ξ is p∗ξ (x).

Appendix A.4. Proof of Lemma 5

• (without details). From (7) it follows

pξ(x) ≥ (1− α)pN(0,σ2)(x) (A12)

So, we need to solve the following variational problem:

inf
pξ ∶pξ≥(1−α)p

N(0,σ2)
IF,ξ(pξ) (A13)

As it is shown in [14], its solution is (59).
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1. Introduction

In a statistical context, since the expression the probability of an event A (usually denoted
Pθ(A)) depends on the unknown parameter, it is really a misuse of language. Before
performing the experiment, this expression can be assigned a natural meaning from a
Bayesian perspective as the prior predictive probability of A since it is the prior mean
of the probabilities Pθ(A). However, in accordance with Bayesian philosophy, once the
experiment has been carried out and the value ω has been observed, a more appropriate
estimate of Pθ(A) is the posterior predictive probability given ω of A. The author has
recently proved ([1]) that not only is this the Bayes estimator of Pθ(A) but that the posterior
predictive distribution (resp. the posterior predictive density) is the Bayes estimator of the
sampling distribution Pθ (resp. the density pθ) for the squared variation total (resp. the
squared L1) loss function in the Bayesian experiment corresponding to an n-sized sample
of the unknown distribution. It should be noted that the loss functions considered derive
in a natural way from the commonly used squared error loss function when estimating a
real function of the parameter.

The posterior predictive distribution is the cornerstone of Predictive Inference, which
seeks to make inferences about a new unknown observation from a preceding random
sample (see [2,3]). With that idea in mind, it has also been used in other areas such as model
selection, testing for discordancy, goodness of fit, perturbation analysis, and classification
(see additional fields of application in [1–5]). Furthermore, in [1], it has been presented as a
solution for the Bayesian density estimation problem, giving several examples to illustrate
the results and, in particular, to calculate a posterior predictive density. [3] provide many
other examples of determining the posterior predictive distribution. But in practice, explicit
evaluation of the posterior predictive distribution may be cumbersome, and its simulation
may become preferable. The aforementioned work of [3] also constitutes a good reference
for such simulation methods, and hence for the computation of the Bayes estimators of the
density and the sampling distribution.

We would refer to the references cited in [1] for other statistical uses of the posterior
predictive distribution and some useful ways to calculate it.

In this communication, we shall explore the asymptotic behaviour of the posterior
predictive density as the Bayes estimator of the density, showing its strong consistency and
that the Bayes risk goes to 0 as n goes to ∞.
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2. The Framework

Let
(Ω,A, {Pθ : θ ∈ (Θ, T , Q)})

be a Bayesian experiment (where Q denotes de prior distribution on the parameter space
(Θ, T )), and consider the infinite product Bayesian experiment

(ΩN,AN, {PN
θ : θ ∈ (Θ, T , Q)})

corresponding to an infinite sample of the unknown distribution Pθ . Let us write

I(ω, θ) := ω, J(ω, θ) := θ, In(ω, θ) := ωn and I(n)(ω) := ω(n) := (ω1, . . . , ωn)

for integer n.
We suppose that PN(θ, A) := PN

θ (A) is a Markov kernel. Let

ΠN := PN ⊗Q

be the joint distribution of the parameter and the observations, i.e.,

ΠN(A× T) =
∫

T
PN

θ (A)dQ(θ), A ∈ AN, T ∈ T .

As Q := ΠJ
N

(i.e., the probability distribution of J with respect to ΠN), PN
θ is a version

of the conditional distribution (regular conditional probability) ΠI|J=θ
N

. Analogously, Pn
θ is

a version of the conditional distribution Π
I(n) |J=θ

N
.

Let β∗Q,N := ΠI
N, the prior predictive distribution in ΩN (so that β∗Q,N(A) is the prior

mean of the probabilities PN
θ (A)). Similarly, write β∗Q,n := Π

I(n)
N

for the prior predictive

distribution in Ωn. So, the posterior distribution P∗ω,N := ΠJ|I=ω
N

given ω ∈ ΩN satisfies

ΠN(A× T) =
∫

T
PN

θ (A)dQ(θ) =
∫

A
P∗ω,N(T)dβ∗Q,N(ω), A ∈ AN, T ∈ T .

Denote by P∗ω(n) ,n := Π
J|I(n)=ω(n)
N

for ω(n) ∈ Ωn the posterior distribution given ω(n) ∈ Ωn.

Write P∗ω(n) ,n
P for the posterior predictive distribution given ω(n) ∈ Ωn defined for

A ∈ A as
P∗ω(n) ,n

P (A) =
∫

Θ
Pθ(A)dP∗ω(n) ,n(θ).

So P∗ω(n) ,n
P (A) is nothing but the posterior mean given ω(n) ∈ Ωn of the probabilities

Pθ(A).
In the dominated case, we can assume without loss of generality that the dominating

measure μ is a probability measure (because of (1) below). We write pθ = dPθ/dμ. The
likelihood function L(ω, θ) := pθ(ω) is assumed to be A× T -measurable.

We have that, for all n and every event A ∈ A,

P∗ω(n) ,n
P (A) =

∫
Θ

Pθ(A)dP∗ω(n) ,n(θ) =
∫

Θ

∫
A

pθ(ω
′)dμ(ω′)dP∗ω(n) ,n(θ)

=
∫

A

∫
Θ

pθ(ω
′)dP∗ω(n) ,n(θ)dμ(ω′),

which proves that

p∗ω(n) ,n
P (ω′) :=

∫
Θ

pθ(ω
′)dP∗ω(n) ,n(θ)
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is a μ-density of P∗ω(n) ,n
P that we recognize as the posterior predictive density on Ω given

ω(n).
In the same way,

p∗ω,N
P(ω′) :=

∫
Θ

pθ(ω
′)dP∗ω,N(θ)

is a μ-density of P∗ω,N
P, the posterior predictive density on Ω given ω ∈ ΩN.

In the following, we will assume the following additional regularity conditions:

(i) (Ω,A) is a standard Borel space;
(ii) Θ is a Borel subset of a Polish space and T is its Borel σ-field;
(iii) {Pθ : θ ∈ Θ} is identifiable.

According to [1], the posterior predictive distribution P∗ω(n) ,n
P (resp. the posterior

predictive density p∗ω(n) ,n
P ) is the Bayes estimator of the sampling distribution Pθ (resp.

the density pθ) for the squared variation total (resp. the squared L1) loss function in the
product experiment (Ωn,An, {Pn

θ : θ ∈ (Θ, T , Q)}). Analogously, the posterior predictive
distribution P∗ω,N

P (resp. the posterior predictive density p∗ω,N
P) is the Bayes estimator of the

sampling distribution Pθ (resp. the density pθ) for the squared variation total (resp. the
squared L1) loss function in the product experiment (ΩN,AN, {PN

θ : θ ∈ (Θ, T , Q)}).
As a particular case of a well known result about the total variation distance between

two probability measures and the L1-distance between their densities, we have that

sup
A∈A

∣∣∣P∗ω(n) ,n
P (A)− Pθ(A)

∣∣∣ = 1
2

∫
Ω

∣∣∣p∗ω(n) ,n
P − pθ

∣∣∣dμ. (1)

3. The Main Result

We ask whether the Bayes risk of the Bayes estimator P∗ω(n) ,n
P of the sampling distribu-

tion Pθ goes to zero when n → ∞, i.e., whether

lim
n

∫
ΩN×Θ

sup
A∈A

∣∣∣P∗ω(n) ,n
P (A)− Pθ(A)

∣∣∣2dΠN(ω, θ) = 0.

In terms of densities, the question is whether the Bayes risk of the Bayes estimator
p∗ω(n) ,n

P of the density pθ goes to zero when n → ∞, i.e., whether

lim
n

∫
ΩN×Θ

(∫
Ω

∣∣∣p∗ω(n) ,n
P (ω′)− pθ(ω

′)
∣∣∣dμ(ω′)

)2
dΠN(ω, θ) = 0.

Let us consider the auxiliary Bayesian experiment

(Ω×ΩN,A×AN, {μ× PN
θ : θ ∈ (Θ, T , Q)}).

For ω′ ∈ Ω, ω ∈ Ωn and θ ∈ Θ, we will continue to write I(ω′, ω, θ) = ω and
J(ω′, ω, θ) = θ, and now we write I′(ω′, ω, θ) = ω′.

The new prior predictive distribution is μ× β∗Q,n since

(μ×ΠN)
(I′ ,I(n))(A′ × A(n)) = μ(A′) · β∗Q,n(A(n)) = (μ× β∗Q,n)(A′ × A(n)).

To compute the new posterior distributions, notice that

(μ×ΠN)(A′ × I−1
(n)(A(n))× T) =∫

A′×I−1
(n)(A(n))

(μ×ΠN)
J|(I′ ,I(n))=(ω′ ,ω(n))(T)d(μ×ΠN)

(I′ ,I(n))(ω′, ω(n)).
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On the other hand,

(μ×ΠN)(A′ × I−1
(n)(A(n))× T) = μ(A′) ·ΠN(I−1

(n)(A(n))× T) =

μ(A′) ·
∫

A(n)

P∗ω(n) ,n(T)dβ∗Q,n(ω(n)) =
∫

A′×A(n)

P∗ω(n) ,n(T)d(μ× β∗Q,n)(ω
′, ω(n)).

So,
P∗ω(n) ,n = (μ×ΠN)

J|(I′ ,I(n))=(ω′ ,ω(n)).

It follows that if f ∈ L1(Q) then

EP∗ω(n) ,n( f ) = Eμ×ΠN
[ f | (I′, I(n)) = (ω′, ω(n))].

whenA′
(n) := (I′, I(n))−1(A×An), we have that (A′

(n))n is an increasing sequence of sub-σ-

fields of A×AN such that A×AN = σ(∪nA′
(n)). According to the martingale convergence

theorem of Lévy, if Y is (A×AN × T )-measurable and μ×ΠN-integrable then

Eμ×ΠN
(Y|A′

(n))

converges (μ×ΠN)-a.e. and in L1(μ×ΠN) to Y = Eμ×ΠN
(Y|A′ × AN).

Let us consider the μ×ΠN-integrable function

Y(ω′, ω, θ) := pθ(ω
′).

We shall see that

p∗ω,N
P(ω′) = Eμ×ΠN

(Y | (I′, I) = (ω′, ω)). (2)

Indeed, given A′ ∈ A and A ∈ AN, we have that

∫
(I′ ,I)−1(A′×A)

pθ(ω
′)d(μ×ΠN)(ω

′, ω, θ) =
∫

A

∫
Θ

∫
A′

pθ(ω
′)dμ(ω′)dP∗ω,N(θ)dβ∗Q,N(ω)

=
∫

A

∫
Θ

Pθ(A′)dP∗ω,N(θ)dβQ,N(ω) =
∫

A
P∗ω,N

P(A′)dβ∗Q,N(ω)

=
∫

A′

∫
A

p∗ω,N
P(ω′)dμ(ω′)dβ∗Q,N(ω) =

∫
A′×A

p∗ω,N
P(ω′)d(μ×ΠN)

(I′ ,I)(ω′, ω),

which proves (2).
Analogously, it can be shown that

p∗ω(n) ,n
P (ω′) = Eμ×ΠN

(Y | (I′, I(n)) = (ω′, ω(n))). (3)

Hence, it follows from the aforementioned theorem of Lévy that

lim
n

p∗ω(n) ,n
P (ω′) = p∗ω,N

P(ω′), (μ×ΠN)− a.e. (4)

and
lim

n

∫
Ω×ΩN×Θ

∣∣∣p∗ω(n) ,n
P (ω′)− p∗ω,N

P(ω′)
∣∣∣d(μ×ΠN)(ω

′, ω, θ) = 0,

i.e.,
lim

n

∫
ΩN×Θ

∫
Ω

∣∣∣p∗ω(n) ,n
P (ω′)− p∗ω,N

P(ω′)
∣∣∣dμ(ω′)dΠN(ω, θ) = 0. (5)
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On the other hand, as a consequence of a known theorem of Doob (see Theorem 6.9
and Proposition 6.10 of [4], pp. 129, 130, we have that, for every ω′ ∈ Ω,

lim
n

∫
Θ

pθ′(ω
′)dP∗ω(n) ,n(θ

′) = pθ(ω
′), PN

θ − a.e.

for Q-almost every θ. Hence

lim
n

p∗ω(n) ,n
P (ω′) = pθ(ω

′), PN
θ − a.e.

for Q-almost every θ, i.e., given ω′ ∈ Ω there exists Tω′ ∈ T such that Q(Tω′) = 0 and,
∀θ /∈ Tω′ ,

lim
n

p∗ω(n) ,n
P (ω′) = pθ(ω

′), PN
θ − a.e.

So, for θ /∈ Tω′ , there exists Nθ,ω′ ∈ AN such that PN
θ (Nθ,ω′) = 0 and

lim
n

p∗ω(n) ,n
P (ω′) = pθ(ω

′), ∀ω /∈ Nθ,ω′ , ∀θ /∈ Tω′ , ∀ω′ ∈ Ω.

In particular,
lim

n
p∗ω(n) ,n

P (ω′) = pθ(ω
′), μ× PN

θ − a.e. (6)

From (4) and (6), it follows that pθ(ω
′) = p∗ω,N

P (ω′), μ× PN
θ − a.e.

From this and (5), it follows that

lim
n

∫
ΩN×Θ

∫
Ω

∣∣∣p∗ω(n) ,n
P (ω′)− pθ(ω

′)
∣∣∣dμ(ω′)dΠN(ω, θ) = 0,

i.e., the risk of the Bayes estimator of the density for the L1 loss function goes to 0 when
n → ∞.

It follows from this and (1) that

lim
n

∫
ΩN×Θ

sup
A∈A

∣∣∣P∗ω(n) ,n
P (A)− Pθ(A)

∣∣∣dΠN(ω, θ) = 0,

i.e., the risk of the Bayes estimator of the sampling distribution Pθ for the variation total
loss function goes to 0 when n → ∞.

We ask whether these results remain true for the squared versions of the loss functions.
The answer is affirmative because of the following general result: Let (Xn) be a sequence of
r.r.v. on a probability space (Ω,A, P) such that limn

∫
|Xn|dP = 0. If there exists a > 0 such

that |Xn| ≤ a, for all n, then limn
∫
|Xn|2dP = 0 because

0 ≤
∫
|Xn|2dP ≤ a

∫
|Xn|dP →n 0.

In our case a = 2, P := ΠN and

Xn :=
∫

Ω

∣∣∣p∗ω(n) ,n
P (ω′)− p∗ω,N

P(ω′)
∣∣∣dμ(ω′), or Xn := sup

A∈A

∣∣∣P∗ω(n) ,n
P (A)− Pθ(A)

∣∣∣.
So, we have proved the following result.

Theorem 1. Let (Ω,A, {Pθ : θ ∈ (Θ, T , Q)}) be a Bayesian experiment dominated by a σ-
finite measure μ. Let us assume that (Ω,A) is a standard Borel space, and that Θ is a Borel
subset of a Polish space and T is its Borel σ-field. Assume also that the likelihood function
L(ω, θ) := pθ(ω) = dPθ

dμ (ω) is A× T -measurable and the family {Pθ : θ ∈ Θ} is identifiable.
Then:
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(a) The posterior predictive density p∗ω(n) ,n
P is the Bayes estimator of the density pθ in the product

experiment (Ωn,An, {Pn
θ : θ ∈ (Θ, T , Q)}) for the squared L1 loss function. Moreover the

risk function converges to 0 for both the L1 loss function and the squared L1 loss function.
(b) The posterior predictive distribution P∗ω(n) ,n

P is the Bayes estimator of the sampling distribution
Pθ in the product experiment (Ωn,An, {Pn

θ : θ ∈ (Θ, T , Q)}) for the squared variation total
loss function. Moreover the risk function converges to 0 for both the variation total loss
function and the squared variation total loss function.

(c) The posterior predictive density is a strongly consistent estimator of the density pθ , i.e.,

lim
n

p∗ω(n) ,n
P (ω′) = pθ(ω

′), μ× PN
θ − a.e.

for Q-almost every θ ∈ Θ.
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Abstract: We present an analysis on variability Bitcoin characteristics that help to quantitatively
differentiate Bitcoin from the state-owned traditional currencies and the asset Gold. We provide a
detailed study on returns of exchange rates—against the Swiss Franc—of several traditional currencies
together with Bitcoin and Gold; for that purpose, we define a distance between currencies by means
of the spectral densities of the ARMA models of the returns of the exchange rates, and we present the
computed matrix of the distances between the chosen currencies. A statistical analysis of these matrix
distances is further proposed, which shows that the distance between Bitcoin and any other currency
or Gold is not comparable to any of the distances between currencies or between currencies and Gold
and not involving Bitcoin. This result shows that Bitcoin is essentially different from the traditional
currencies and from Gold, at least in what concerns the structure of its variance and auto-covariances.

Keywords: ARMA modelling; distance between power spectral densities; simulation-based testing;
state-backed currencies; gold; exchange rate; bitcoin

MSC: 37M10

1. Introduction

Money, in general, is a transmitter of value through time and space (see [1] I.1.19). Money
is also a reference for the expression of the exchange value of every commodity (see [1]
I.2.22). There are some characteristics of classical forms of money that we must now recall.
The usual forms of money are under the control of central banks. These usual forms
of money, currencies, have a close relationship with the economies to which the central
banks are in charge; Swiss, United States of America, Russian Federation and European
Monetary Union, are, respectively, examples of a country, a federation of states, a federation
of republics and an economic zone composed of several countries. Thus, the exchange
rates of one of these currencies versus the others, tend to vary, in a kind of first-order
perturbation, according to the variation of regional economic variables.

The exchange rates also vary as a kind of second-order perturbation attributed to
noticeable events—for instance, military instabilities. For these currencies, the monetary
mass circulating must be both an equivalent of goods that circulate in the regional economy
(to which the currency is connected) and a representation of the value of all the credits that
achieve maturity at a given date. In all these credits, one should count even those credits
that balance out each other (see [2] p. 135).

Considering a constant intrinsic value of the precious metals—such as silver or gold—
and all other goods, we have that, for a usual form of money, the intrinsic value of bank
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171



Mathematics 2023, 11, 1775

notes decreases if the nominal value increases; this happens in light of the fact that the
nominal value of bank notes does not represent the intrinsic value of some precious
reference metal, and this may occur, for instance, by means of an increase in the quantity of
these bank notes (see [2] pp. 142–143).

The hard connection between a usual form of money and the real economy has been
recognized in many important classic economic works. For instance, in the third section
of the third chapter of the first part of Capital, Karl Marx writes that: Just as the currency of
money, generally considered, is but a reflex of the circulation of commodities, or of the antithetical
metamorphoses they undergo, so, too, the velocity of that currency reflects the rapidity with which
commodities change their forms. . .

In addition, concerning the relation between the quantity of money and the speed
of the circulation of goods, the author we are quoting says The total quantity of money
functioning during a given period as the circulating medium, is determined, on the one hand, by
the sum of the prices of the circulating commodities and, on the other hand, by the rapidity with
which the antithetical phases of the metamorphoses follow one another (see [3]). In more recent
times, in the monetarist current of economy, Milton Friedman wrote that . . .the real quantity
of money—the quantity of goods and services that the nominal quantity of money can purchase, or
the number of weeks’ income to which the nominal quantity of money is equal (see [4] p. 1).

Bitcoin is a digital currency with many specific characteristics that distinguish it from
usual currencies. In order to have a reasonable model for the exchange rate evolution
of Bitcoin, some particular attributes should be considered. One of the most relevant
characteristics of Bitcoin evolution is volatility (see Figure 1).

Figure 1. Price in US Dollars and the rate of change evolution from 2017 to the present.

According to David Yermack, Bitcoin faces a number of obstacles in becoming a useful unit
of account. One problem arises from its extreme volatility,. . . (see [5] p. 38). A first glimpse
into the behaviour of the exchange rate and its variability—in this case, against the US
Dollar—is captured in Figure 1 (graphic taken from the bitcoin.org site). Several features of
this figure deserve a mention: the significant variability in the period from the middle of
2020 to February 2022 and, on the same period, the reduction in volume and in the rate of
change (the lower graphic in blue).
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These features certainly have an influence on the variance values that we will recover
in the present work since one of our purposes is to study the variability of Bitcoin prices by
comparing to the variability of state-owned currencies and a reference asset—Gold. Accord-
ing to Satoshi Nakamoto, the author that is credited for the creation of Bitcoin, . . .We have
proposed a system for electronic transactions without relying on trust. . . . (see Nakamoto [6] p. 8).
Given that it is common sense that the first and most important ingredient of any business
is the building of mutual trust, the reality of present day existence of Bitcoin is another
aspect that should deserve some analysis.

The market behaviour of Bitcoin has been studied under the perspective of its vari-
ability by several authors. In the following, we review some of the contributions that seem
more relevant under the perspective of our approach both for the specific theme and for a
broad context.

The book chapter [7] is an important review work that reports on the pairwise com-
parison of cryptocurrency characteristics with those of fiat currency and hard commodities, and
it . . .synthesises methods and results from empirical research that investigate the nexus. One of
the remarkable conclusions from the quoted work [8] is that . . .returns to cryptocurrencies
are isolated from returns to currency and commodities, a result that we also find in our work
with great significance. Another conclusion taken from a work using data in the period
2010–2017 (see [9]) is that Gold is found to be the second most important determinant for the full
sample. . .; this also justifies the choice of Gold in our comparative study.

Comparative behaviours of crypto-currencies have also been studied recently. In
[10], the authors compared the long term memory properties of seven cryptocurrencies—
Bitcoin, Ethereum, Litecoin, Monero, Stellar, Tron and the EOS token—during and before
the COVID-19 period, using high-frequency returns data, to find that the null hypothesis
of true long memory is rejected for all series, implying that the persistence in the high-frequency
cryptocurrency returns is not real and might be a spurious one, associated with some regime change
during the sample period. Furthermore, the analysis is complemented with the estimation
of the long-run correlation matrix of returns to find that, with the exception of Stellar, the
remaining six crypto returns exhibit significant long-run correlations among each other, thus,
justifying our consideration of only Bitcoin in this work.

The work [11] investigated . . .the contagious nature of tail events among cryptocurrencies
and the mechanism by which tail risk permeates the cryptocurrency markets. . ., and this was
achieved by constructing a network of tail risk spillovers among the most popular cryptocurrencies
and identifying the most important shock-driving and shock-sensitive currencies in the network.

The work [12] analysed Bitcoin price volatility from the perspectives of Bitcoin’s own and
external factors. . . by means of the structural vector autoregression (SVAR) model, the
results showing that Bitcoin’s own factors play fundamental roles in Bitcoin price volatility, and
the speculation factors have significant impacts on Bitcoin price volatility.

Comparative studies on the variances of the US Dollar, Bitcoin and Gold were per-
formed in [13] using both an asymmetric GARCH model with explanatory variables and an
exponential GARCH model. The author found that, in the perspective of explaining return,
there is . . .volatility clustering and high volatility persistence similar to gold and concluded
that . . .bitcoin and gold have similarities when it comes to the volatility of the return. . .. In the
conclusions, it is said that both Bitcoin and Gold seem to react symmetrically to good and
bad news but, . . .the frequency may be higher for bitcoin. . .

A detailed analysis of the importance of price jumps for Bitcoin is given in [14]
showing—by GARCH modelling—that . . .the role of large movements is found to be stronger in
the Bitcoin market than in the markets for crude oil and gold. A remarkable finding relates the
evolution of variance to the occurrence of jumps also showing that the influence of jumps
is larger in Bitcoin than in crude or Gold.

The work [15] provides an analysis of the main determinants of Bitcoin prices in a
period of roughly 6 years ending in February 2019 using Auto Regressive Distributed Lag
time-series model. The findings are on price variation, on one hand, that . . .macroeconomic
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and financial determinants. . . do not have a significant effect in short and long terms and, on the
other hand, that . . .price variation is determined by demand variation.

Modelling the volatility of currencies and of Bitcoin has been the subject of recent
works. In [16], the authors introduced, for a heterogeneous autoregressive model, a new
model averaging coefficient estimator with the mean squared error of the coefficient to be
minimised, and they provided inference by a double bootstrap since the relevant probability
laws are unknown. This inference approach is similar to ours where, instead of bootstrap,
we use a Monte Carlo simulation.

The source of any asset value variability is certainly multifactorial. In [17], the authors
claim to not take a stand on the controversial question of what the fundamentals are behind
Bitcoin, and they proceed to show that . . .the bitcoin market is largely like the stock market, with
more investors who are more centrally placed on average earning higher returns than others. . .

We may conclude that there is a place for the study we now present towards a compar-
ative study of the differences in variability between traditional state supported currencies,
the crypto-currency Bitcoin and the asset Gold by means of power spectral distances. Let
us briefly describe content and the main contributions of this work.

(i) In Section 2, we present the rationale for the choice of the reference currency against
which all other currencies, Bitcoin and Gold are priced, and the choice of the state-
backed currencies studied.

(ii) Next, in Section 3, we detail the ARMA process modelling of the returns of the
exchange rates.

(iii) Section 4 introduces the distance between currencies and assets as the L2 distance
between Power Spectral Densities (PSD) (associated with currencies by means of
ARMA modelling of the returns of the exchange rates against a fixed currency) and
computes this distance between all pairs of currencies, Bitcoin and Gold. Next, we
introduce a statistical test—based on the observed probability distribution of the
returns of exchange rates—that allows, in the particular case chosen, to more precisely
and firmly analyse the differences between currencies, Bitcoin and Gold.

(iv) In Section 5, we develop a result on the probability law of the distances of PSDs that
justifies the empirical results presented in Section 4. These results encompass the case
of asymptotically Gaussian-distributed PSD estimators. This result shows that, when
considering observed spectral distances as random variables, the law of the distance
of these spectral distances has, under assumptions that are verified in our study, a
generalised Gamma distribution.

(v) Finally, in Appendix B, we study a variation of the assumption on the normality
of returns of exchange rates of currencies that shows that this assumption may be
acceptable in a preliminary study of differences between our chosen currencies.

The following are the main contributions of the study:

1. The introduction of the L2 distance between Power Spectral Densities to differentiate
the variance and auto-covariance behaviours of currencies, Bitcoin and the asset Gold.

2. The confirmation that an initial grouping of currencies, Bitcoin and Gold, by broad
macro-economic criteria, reflects in the grouping driven by the L2 distance between
Power Spectral Densities (PSD).

3. The proposal of a statistical test to ascertain the difference of distances between the
PSD associated with currencies, Bitcoin and Gold and of a mathematical result that
justifies the modelling approaches followed.

4. Theorem 1 giving the probability law of the L2 distance of observed spectral densities
under assumptions that are general in the sense that these are assumptions verified
with the data analysed in this work.
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2. Foreign Exchange Markets and the Choice of Currencies and Assets to Study

Foreign Exchange is a form of currency exchange, consisting on the trading of one
currency for another (see [18]). A price is associated with each currency pair. This price is
the so-called exchange rate and it represents the value of a currency with respect to another.

In order to work with exchange rates, a reference currency has to be chosen as well
as the currency objects of our analysis. In this section, the choice of these currencies is
presented and explained.

2.1. On the Choice of the Reference Currency

Although there are hundreds of currencies, only a small number of them make up the
vast majority of forex transactions. The most traded in the world are called the Majors, and
they represent the largest share of the foreign exchange market (around 85%). These are:

• United States dollar (Dollar), USD (United States).
• Euro, EUR (Eurozone).
• Pound Sterling, GBP (United Kingdom).
• Australian dollar, AUD (Australia).
• Canadian dollar, CAD (Canada).
• Swiss franc, CHF (Switzerland).
• Japanese yen, JPY (Japan).

It is reasonable to focus only on this group in order to select our reference currency. The
most obvious choice would be the USD or EUR, since they are currently the most active
currencies. However, the Global Crisis in 2008 and the COVID-19 crisis have led central
banks around the world to roll out quantitative easing (QE) measures. These policies have
had large and persistent effects on the Dollar/Euro exchange rate. As a result, investors
began to flee to the Swiss franc, which is considered a safe-haven, since it offers protection
from market shocks.

The dramatic surge of the CHF occurred in 2015, when the Swiss National Bank (SNB)
removed the peg of 1.20 francs per euro, since it was no longer sustainable. The Swiss franc
has emerged as one of the best alternatives to the US dollar and Euro. The strongpoint of
the Swiss franc lies in the size of its related nation, Switzerland. Being a small country has
enabled its economic system to become one of the world’s most advanced.

Moreover, Switzerland has no deficit, and this makes it self-reliant and stabilizes its
currency. The Swiss franc is not backed by gold, meaning that the Swiss National Bank
(SNB) can print any amount of currency without any need for a reserve. For all the above
reasons, the reference currency chosen for our analysis was the Swiss franc.

2.2. On the Choice of Other Currencies and the Asset Gold

A further step was the selection of the other currencies to study with respect to the
reference one. The USD is the home denomination of the world’s largest economy, the
United States, and therefore it must be included among the currencies that we want to
analyse. Similarly, all the remaining Majors must be considered.

On the other hand, the group of the greatest emerging economies of the world require
special consideration. This group is composed of five countries, namely Brazil, Russia,
India, China, South Africa, and it is known by the acronym BRICS. The notion behind the
coinage of this acronym was that the BRICS cluster would grow to a size larger than the
Majors by 2050, shifting the economic balance of power. That is, the largest global economic
powers would no longer belong to the richest countries according to the income per capita.
Therefore, the Brazilian real (BRL), the Russian Ruble (RUB), the Indian rupee (INR), the
Chinese renminbi (CNY) and the South African rand (ZAR) are included in our analysis.

Likewise, the Israeli new shekel (ILS) has been gaining in strength against major
currencies, such as the US dollar and the Euro, due, in large part, to high levels of foreign
direct investment and to the strength of the tech sector. For this reason, this currency is
also taken into consideration. In addition, the Swedish krona (SEK) and the Norwegian
krone (NOK) is examined, as their corresponding countries benefit from a strong economy.
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Lastly, it is worthwhile to include the Polish zloty (PLN) to investigate possible ties with
USD and EUR.

Finally, the asset gold (Gold) (XAU) is analysed, since it has been considered a highly
valuable commodity for millennia acting as a reserve of value. As can be seen in Figure 2,
the price evolution of Gold has similarities with the price evolution of Bitcoin—particularly
for the most recent dates—leading to the natural question: how do Bitcoin and Gold
compare using spectral densities?

Figure 2. Price of Gold from 2017 to the present (left) and ratio of normalised prices of Gold
and Bitcoin (right).

Below, a summary of all the currencies considered for this study is shown receded by
the indication of the distinctive class of the currency or asset that, by the arguments called
in Sections 2.1 and 2.2, justify their inclusion in this study.

• The Majors: DOL, EUR, GBP, AUD, CAD and JPY.
• The BRICS: BRL, RUB, INR, CNY and ZAR.
• Independent Currencies: ILS, NOK, SEK and PLN.
• Others: BTC and XAU.

3. Time-Series Analysis of the Data

Daily exchange rates against the Swiss franc (CHF) for all the currencies listed above
were downloaded from Wolfram Financial Data Services. The study period goes from
1 January 2016 until 20 May 2022 when the effects of the Russian–Ukrainian conflict were
not yet large enough to possibly disrupt stationarity. With those data, logarithmic returns
were derived as follows:

rt = 100 ∗ log10

(
ex_ratet

ex_ratet−1

)
, t = 1, . . . , #observations− 1 (1)

Through (1), the time series of logarithmic returns was obtained for each currency. It is
advisable to use returns for several reasons: first, to be able to compare different currencies
and secondly to analyse dimensionless quantities. In the following Section 3.1, a preliminary
analysis of those time series is proposed—keeping in mind the ARMA model application.
For further information about the implemented techniques, see [19].

3.1. Stationarity Inspection

In order to correctly build the time-series model, it is necessary to first check the sta-
tionarity of our data. Here, this is achieved in two ways: statistically, using the augmented
Dickey–Fuller test, and visually, looking at the autocorrelation plot of the data.

In the case of DOL/CHF time-series data, for example, the autocorrelation plot
(Figure 3) shows that all lags are within the highlighted area in blue. Hence, we may
assume stationarity, an assumption confirmed also by the Dickey–Fuller test result (rejec-
tion of the null hypothesis that the series is a unit root process). Similarly, stationarity was
assessed for all the other currencies.
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Figure 3. Autocorrelation plot of the DOL/CHF time-series data.

3.2. ARMA Modelling of the Returns of the Exchange Rates of Currencies against CHF

Since we assume our time-series data to be stationary, it is possible to model them
as ARMA processes. We recall that, given a stationary process X, it is an ARMA(p,q)
process if there exist a white noise W, a constant c and parameters a1,. . . , ap, b1,. . . , bq such
that ([19] Ch8):

p

∑
k=0

akXn−k = c +
q

∑
l=0

blWn−l , n ∈ Z, a0, b0 = 1. (2)

Each time series was modelled as ARMA process with varying orders of p and q, from 1 to
4, and then the best fit was selected according to the Akaike information criterion (AIC).
The results are shown in Table 1. It can be noticed that the variance of almost all the BRICS
currencies and of Gold is one order of magnitude greater than the others (10–25% against
1–5%). On top of that, Bitcoin stands out from all the currencies reaching a variance of
279.7%. A more complete analysis of this behaviour is further developed in Section 4 with
the use of the spectral density.

Table 1. Best-fit ARMA processes for each currency.

DOL EUR GBP AUD CAD JPY

p 3 3 3 3 4 2
q 3 4 3 3 3 3
σ2 0.0277 0.0140 0.0409 0.0450 0.0343 0.0333

BRL RUB INR CNY ZAR

p 2 4 2 3 3
q 2 4 4 2 4
σ2 0.1435 0.2514 0.0327 0.0391 0.1339

ILS NOK SEK PLN

p 3 4 1 4
q 4 4 1 4
σ2 0.0340 0.0490 0.0290 0.0370

BTC XAU

p 4 4
q 4 3
σ2 2.7970 0.1085
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The main conclusion that we can draw from this ARMA analysis is that, with the
exception of Ruble, Bitcoin and Gold, the assets have variances of the same order of
magnitude. Gold and Ruble both have variances one order of magnitude larger than
the others assets, and Bitcoin has a variance two orders of magnitude larger than the
other assets.

4. Comparing Currencies and Assets via the PSDs of Returns of Exchange Rates

In order to further investigate the variance of our time series, an application of spectral
properties of ARMA processes is developed in this section (see [20,21] for the basic definitions).

If X is a wide sense stationary process with a summable covariance function, then
there exists a function fX such that the auto-covariance function for the process is given by
the formula:

R(k) = Cov(Xn, Xn+k) =
∫
[−π,π]

fX(ω)eikωdω, n ∈ Z (3)

and fX is called the power spectral density (PSD) of the process X (see [20] p. 185). Moreover,
if k = 0, it is possible to obtain the variance function of the process, which is:

R(0) = V(Xn) =
∫
[−π,π]

fX(ω)dω. (4)

4.1. Power Spectral Density for the ARMA Process

In the case of an ARMA process and under the regularity hypothesis (see [20] p. 202),
the PSD function is defined as:

fX(ω) =
σ2

2π

|Q(e−iω)|2
|P(e−iω)|2 , (5)

where Q(z) =
q

∑
k=0

bkzk and P(z) =
p

∑
k=0

akzk, with ak and bk defined in (2). If z = e−iω =

cos(ω)− i sin(ω), the squared moduli of Q(z) and P(z) become:

|Q(z)|2 =
q

∑
k=0

b2
k + 2

q

∑
l=1

l−1

∑
j=0

blbjcos((l − j)ω)

|P(z)|2 =
p

∑
k=0

a2
k + 2

p

∑
l=1

l−1

∑
j=0

alajcos((l − j)ω).

(6)

Through (5) and (6), it is possible to derive the PSD functions of our currencies, using the
parameters obtained from the ARMA modelling. The plots of the computed functions,
multiplied by 2π, are shown in Appendix A.

4.2. Distance between Power Spectral Densities

For the purpose of comparing the obtained PSD functions, the L2([−π, π]) distance d
is introduced. It is defined as ([20] p. 58):

d( f , g) =
(∫

[−π,π]
| f (ω)− g(ω)|2dω

) 1
2
, (7)

with f , g ∈ L2([−π, π]).
From (7), the distances between our PSD functions are computed, and the results are

summarised in the symmetric matrix in Figure 4. The table in Figure 4 shows that the
currencies can be divided into three groups:
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• A group of currencies for which distances among the elements of the group has order
of magnitude equal to −2 (the Majors, the independent ones, INR and CNY).

• Another group of currencies—disjoint from the first group—for which distances among
the elements of the group has order of magnitude of −1 (the remaining BRICS and the
asset Gold).

• Bitcoin, which has a distance from the other currencies of around 7.

Figure 4. Matrix of distances.

This result confirms, in a more precise way, what was previously observed in Section 3.2.

4.3. A Statistical Test for Distances between PSDs Associated with Currencies and Assets

To show that the distances between PSD functions are meaningful, we introduce
a statistical test procedure illustrated in a particular case. This is a Monte Carlo test
procedure as it relies on Monte Carlo simulation of a test statistic in order to obtain its
empirical distribution (see [22] or [23]). For the example studied, two currencies the US
Dollar and the Euro, are taken. The test is performed in three different ways.

(a) If normality of returns—derived from the exchange rates against the reference cur-
rency CHF—is assumed a priori (see Appendix B), the sample means μ̂1, μ̂2 and the
sample variances σ̂2

1 , σ̂2
2 of the returns of Dollar and Euro, respectively, are computed.

With these values, a simulation of a sample of the returns of the two currencies is
implemented, using Monte Carlo method. More precisely, an array of 2000 random
numbers is generated from the normal distribution N (μ̂1, σ̂2

1 ) and from N (μ̂2, σ̂2
2 ) for

Dollar and Euro, respectively. Then, ARMA modelling is executed and spectral density
function is calculated for both the simulated returns. Finally, the distance between
the computed PSDs is evaluated. This procedure—from the simulation—is repeated
1000 times, obtaining 1000 values of distances. The results are summarised in Figure 5.
The red line represents the distance between Dollar and Euro computed using the real
returns d∗ = 0.0361 (row 2, column 1 of the matrix in Figure 4).

Figure 5. Case (a): probability distribution of the distance between Dollar and Euro (left) and rejection
areas for α = 0.995 (green) and α = 0.95 (yellow) (right).
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With those data, it is possible to produce a statistical test with the null hypothesis:

H0: The spectral density of a given currency is either Dollars or Euros.

Significance levels α = 0.995, 0.95 are used. The corresponding empirical quantiles are:

q0.5% = 0.0287 q99.5% = 0.0419

q5% = 0.0311 q95% = 0.0394.

The steps for the test are the following:

(i) Consider the distances of a currency dDol , dEur from Dollar and Euro, respectively,
taken from the matrix in Figure 4.

(ii) If (dDol ≤ q1−α or dDol ≥ qα) and (dEur ≤ q1−α or dEur ≥ qα), then the null
hypothesis is rejected (see Figure 5).

(b) In order to avoid making assumptions about the distribution of the returns, the empiri-
cal cumulative distribution function is considered. This function is computed for both
Dollar and Euro returns and 2000 random numbers are generated from it, for the two
currencies. Then, the same steps as in Case (a) are repeated. The resulting histogram is
shown below in Figure 6.

Figure 6. Case (b): probability distribution of the distance between Dollar and Euro (left) and
rejection areas for α = 0.995 (green) and α = 0.95 (yellow) (right).

The new quantiles are given in Formulas (8) and (9), and the new rejection areas are
shown in Figure 6.

q0.5% = 0.0260 q99.5% = 0.0448 (8)

q5% = 0.0297 q95% = 0.0413. (9)

(c) Another nonparametric representation of the probability density function of Dollar
and Euro returns can be used, namely the kernel distribution. From this, a simulation
is performed, and all the calculations are repeated. The new quantiles are given in
Formulas (10) and (11), and the new rejection areas are shown in Figure 7.
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Figure 7. Case (c): probability distribution of the distance between Dollar and Euro (left) and rejection
areas for α = 0.995 (green) and α = 0.95 (yellow) (right).

q0.5% = 0.0285 q99.5% = 0.0462 (10)

q5% = 0.0313 q95% = 0.0427. (11)

4.4. A Discussion of the Results of the Statistical Tests

From Table 2, it is possible to conclude that it is better to use the ones of case (b) on
the left-hand side and case (c) on the right-hand side as rejection areas. This is because the
probability distribution of the distance is skewed. The normal approach in case (a) is a
direct and quick method for the construction of the probability distribution of the distance.

The so-obtained left quantiles (q0.5% and q5%) were found to be similar to those of the
kernel approach in case (c). Thus, the left tails of case (c) are close to the ones generated
in case (a). The reason behind this lies, possibly, in the fact that a default kernel function—
which is theoretically optimal for estimating densities for the normal distribution—was
used in our computations.

Contrarily, the right quantiles (q99.5% and q99%) of the normal approach are substan-
tially different from the values obtained using both (b) and (c) approaches. This means that
empirical and kernel functions are able to more accurately capture the tail behaviour of the
real data returns. The resulting quantiles of the distance distribution might be evidence of
this: more extreme values for the real data returns entail more extreme simulated distances.
However, the above observations are only possible interpretations of the results and contain
questions for further research.

Table 2. Quantiles of cases (a), (b) and (c). The values for which it is harder to reject are coloured (the
smaller values are on the left of the histogram, and the larger are on the right).

q0.5% q5% q95% q99.5%

(a) Normal 0.0287 0.0311 0.0394 0.0419
(b) Empirical 0.0260 0.0297 0.0413 0.0448

(c) Kernel 0.0285 0.0313 0.0427 0.0462

Taking into account the quantile values highlighted in Table 2, it is now possible to
evaluate, for each currency, whether or not the null hypothesis can be rejected. The table
in Figure 8 below displays the results of the test. The distances from Dollar and Euro
of the majority of the currencies are in the rejection regions, even for very high levels
of significance, meaning that there is a significant statistical separation between these
currencies and both USD and EUR, based on the L2-distance. A remarkable observation
is that the GBP seems to be close to USD and that SEK seems to be close to EUR; this fact
should be the object of further investigation.
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Figure 8. Results of the statistical tests.

4.5. An Alternative to ARMA Modelling for Comparing Currencies and Assets: The Periodogram

Instead of computing a PSD function from the ARMA modelling, it is possible to
consider an estimation of this function. In particular, in the following, we analyse the peri-
odogram, which is a nonparametric estimate of the power spectral density of a stationary
process under regularity assumptions. Its main advantage is that it does not need model
fitting as was seen in Section 3. The periodogram is defined as ([20] Ch4.1.2):

P(ω) =
1

2πN

∣∣∣∣∣N−1

∑
n=0

xne−iωn

∣∣∣∣∣
2

, −π ≤ ω ≤ π, (12)

where xn are the observations and N is the total number of observations. As in (6), it is
possible to rewrite the squared modulus of the sum in the following way:∣∣∣∣∣N−1

∑
n=0

xne−iωn

∣∣∣∣∣
2

=
N−1

∑
n=0

x2
n + 2

N−1

∑
l=1

l−1

∑
j=0

xl xjcos((l − j)ω) (13)

Formulas (12) and (13) were used to compute the periodogram of all the currencies. Once
all the periodogram functions are obtained, Formula (7) is applied, in order to find the
new matrix of distances (Figure 9). Although the values in Figure 9 are slightly larger
than those in Figure 4, it is still possible to divide the currencies in the same three groups
previously presented.

Figure 9. New matrix of distances.
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5. On the Law of the Distance of Two Spectral Densities

In Section 4.3, we introduced a test for which it was necessary to have the probability
distribution of the distance between two spectral densities. In order to consider such a
distance as a random variable, we have several options. A first option is to consider the
distance computed from the periodogram, such as in Section 4.5. In the case where the
returns of the exchange rates may be assumed to be a stationary Gaussian process with zero
mean and continuous spectra, the periodogram is known to have the chi-square distribution
multiplied by some constant—essentially, a Gamma-distributed random variable (see [21]
pp. 264, 270 or [24] p. 485).

In the present case, this option is not advisable since, as seen in Appendix B, the
returns of the exchange rates do not satisfy normality assumptions. The results known for
the law of the periodogram, not assuming normality of the returns of the exchange rates
and in the form proposed in ([25] p. 194) does not seem of utility in our context.

A second option is to assume an ARMA model for the returns of the exchange rates and
to inquire about the distribution of the coefficients of the ARMA model. Under regularity
assumptions on the noise process, it is known that the coefficients of an ARMA process
are asymptotically normal with zero mean and variances given by the spectral density
(see [24] p. 482). It is also known that the Whittle-like estimators of the spectral density of a
sufficiently regular ARMA process—since such a process is a wide sense stationary time
series with an almost everywhere positive density (see [20] p. 226)—are consistent (see [26]
p. 351) and asymptotically normal (see [24] p. 539, 540).

We observe that a connection between Gaussian and Whittle’s likelihoods is relevant
for finite sample estimation; see [27]. From the results just quoted, it may be possible to
deduce an asymptotic distribution for the distance of spectral densities. Nevertheless, since
we observed good fittings of the actual data to Gamma distributions, we opted to formulate
our results, ahead in Theorem 1, by stating directly the natural hypothesis needed instead
of resorting to an asymptotic result.

In Section 4, we obtained samples of spectral densities for currencies Dollar US and
Euro, let these be, respectively, f1(·, ω) and f2(·, ω) where, Ω being the probability space,
the dot means that, for every ω ∈ Ω we have two functions given by t ∈ [−π,+π] �→
f1(t, ω) and also by t ∈ [−π,+π] �→ f2(t, ω), which are spectral densities; we recall that
these spectral densities are positive, continuous and even functions defined on [−π,+π].

We suppose that, for each t ∈ [−π,+π] fixed, the random variables f1(t, ·) and f2(t, ·)
are independent; this hypothesis is implicit in the Monte Carlo simulation procedure used
in Section 4. We present, in the following, a result that justifies the computational results
found. As a consequence of the construction method given above for the random processes
f1, f2 we have that the map defined by the L2 distance, given by:

ω ∈ Ω �→ d( f1(·, ω), f2(·, ω))2 =
∫ +π

−π
| f1(t, ω)− f2(t, ω)|2dt =

= 2
∫ +π

0
| f1(t, ω)− f2(t, ω)|2dt ,

is a random variable. The next result provides a justification for the computational results
found. In the following, we will use the parametrisation for X � Γ(α, β, γ, μ), a generalised
Gamma-distributed random variable, with parametrisation given for its density fX by:

f α,β,γ,μ
X (x) =

⎧⎪⎨⎪⎩
γe
−
(

x−μ
β

)γ(
x−μ

β

)αγ−1

βΓ(α) x > μ

0 x ≤ μ ,
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depending on parameters α, β, γ, μ (see [28] p. 388). As a consequence, we use a parametri-
sation for G � Γ(α, β), a Gamma-distributed random variable with parameters α, β, and
the following expression for the density fG,

f α,β
G (x) =

⎧⎨⎩ β−αxα−1e
− x

β

Γ(α) x > 0

0 x ≤ 0 .

We observe that f α,β,1,0
X ≡ f α,β

G .

Theorem 1 (On the probability law of L2 distances of spectral densities). Consider the
following assumptions which are justified by observed computational experiences.

1. Assumption A: a Gamma distribution provides a good fit for the random variable Qn given
by:

Qk,n(ω) :=
∣∣∣∣( f1(π

k
2n , ω)− f2(π

k
2n , ω)

)∣∣∣∣2 � Γ(αk,n, βk,n) ,

with the βk,n parameter of the Gamma distribution verifying 0 < βk,n � 1.
2. Assumption B: for arbitrarily values close to one another t �= t′ in [−π,+π], the random

variables given by:

| f1(t, ω)− f2(t, ω)| ,
∣∣ f1(t′, ω)− f2(t′, ω)

∣∣
are independent.

3. Assumption C: for n ≥ 1, we have that, for some constants α∞ , 0 < β∞ � 1,

π

2n

2n

∑
k=0

αk,nβk,n ≈ α∞β∞ . (14)

Then, d( f1(·, ω), f2(·, ω)) � Γ(α∞,
√

2β∞), 2, 0), that is, the the random variable d( f1(·, ω),
f2(·, ω)) admits a fitting by a generalised Gamma-distributed random variable.

Proof. Consider a standard discretisation numerical procedure that gives an approximation
of the integral for large n:

∫ +π

0
| f1(t, ω)− f2(t, ω)|2dt ≈

2n

∑
k=0

π

2n

∣∣∣∣ f1(π
k

2n , ω)− f2(π
k

2n , ω)

∣∣∣∣2 .

By Assumption A: , we are bound to find the distribution of the limit of a sum of Gamma-
distributed random variables. We use the moment generating function and we determine
the limit distribution of:

In :=
2n

∑
k=0

π

2n

∣∣∣∣( f1(π
k

2n , ω)− f2(π
k

2n , ω)

)∣∣∣∣2 =
2n

∑
k=0

π

2n Qk,n .

We resort to the moment generating function of a Gamma-distributed random variable
Γ(αn, βn) that is, in this case:

ϕQk,n(t) = E
[
etQk,n

]
=

1
(1− βk,nt)αk,n

.

As a consequence, under Assumption B, we have:

ϕIn(t) = E
[
e∑2n

k=0
tπ
2n Qk,n

]
=

2n

∏
k=0

E
[
e

tπ
2n Qk,n

]
=

2n

∏
k=0

ϕQ(
tπ
2n ) =

2n

∏
k=0

1(
1− βk,n

tπ
2n

)αk,n
.
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Under Assumption C, we obtain using 0 < βk,n � 1 and 0 < β∞ � 1,

2n

∑
k=0

αk,n log
(

1− βk,n
tpi
2n

)
≈

2n

∑
k=0

αk,nβk,n
tπ
2n ≈ α∞β∞t ≈ α∞ log(1− β∞t) ,

which , in turn, gives, in the limit:

lim
n→+∞

ϕIn(t) = lim
n→+∞

2n

∏
k=0

1(
1− βk,n

tπ
2n

)αk,n
=

1
(1− β∞t)α∞

.

This shows that d( f1(·, ω)− f2(·, ω)) =
√

2G(ω) with G(ω) � Γ(α∞, β∞), finally showing
that d( f1(·, ω)− f2(·, ω)) admits a fitting by a generalised Gamma-distributed random
variable. In fact, we have that, given fG the density of G, the density of

√
2G(ω), let it be

denoted by f√2G(ω)
, is given by f√2G(ω)

(x) = x fG(x2/2). This equality, with a simple

calculation using densities, shows that if G � Γ(α, β) then
√

2G(ω) � Γ(α,
√

2β), 2, 0),
that is,

√
2G(ω) admits a fitting by a generalised Gamma distribution as announced.

Remark 1 (On the interpretation of Assumption C). Formula (14) of Assumption C means
that, for all orders n ≥ 1 of the resolution in the discretisation of the integral, the average of the
Gamma distribution parameters for all the discretisation points should be constant. This assumption
although with a straightforward interpretation is impossible to be fully verified; nevertheless, it can
be verified for values n ≤ n0 of the resolution order in the discretisation procedure of the integral,
for n0 ≥ 1 sufficiently large.

Remark 2 (Testing equality of spectral distribution functions in the normal case). If we could
assume the normality of the returns of the exchange rates it would be possible to test the equality of
two spectral distribution functions with a simple computation (see [25] p. 198). As already noted
this assumption is not valid in our case.

6. Conclusions

The returns of the exchange rates between various currencies and Swiss franc were
calculated and modelled as ARMA processes. From this modelling, Power Spectral Densi-
ties were computed, and the L2-distance between them was introduced as a measure to
compare the volatility behaviour of the returns. The resulting matrix of distances (see the
table in Figure 4) clearly shows that there are three main different groups:

• The Majors, the independent ones, INR and CNY.
• The remaining BRICS and gold.
• Bitcoin.

This grouping is similar to the grouping based in macro-economic criteria presented
in Section 2, thus, showing that the variance and auto-covariance structure of returns of
exchange rates of currencies is tied to the macro-economic properties of the owners of the
currencies. Moreover, Bitcoin exhibits an extremely different quantitative behaviour when
compared to one of the other currencies, revealing unique volatility properties.

An informed investor aware of the basic principles of Modern Portfolio Theory, such
as those exposed in [29], has to take into consideration the extreme volatility properties of
Bitcoin further revealed in this study. The study of the covariance structure for a portfolio,
with similar methods to the one used in this work, can take advantage of modelling with
vectorial ARMA processes (see [30]) and in cases where there is the possibility of regime
switching VARMA models (see [31]).

An alternative approach presented is to directly estimate the Power Spectral Density
with the periodogram, thus, avoiding ARMA modelling. These results add credibility to
the ARMA modelling approach as the qualitative conclusions are identical, although the
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quantitative results in the matrix of distances (see the Table in Figure 9) are less precise.
Figure 10 shows a comparison of the two approaches.

Figure 10. Matrices of distances with scaled colours. On the left is the matrix obtained from PSD, and
on the right is the matrix obtained from the periodogram.

In both cases, three different groups are clearly detectable, as they exhibit three
different shades of colour. Once again, it is noticeable that Bitcoin has standout values
(yellow colour). It is also clear that the shades of colour in the graphic corresponding to
the use of the PSD in the lefthand side are much more salient that those in the graphic
corresponding to the use of the periodogram in the righthand side—also showing a loss of
precision attached to the use of the periodogram already noticed in Section 4.5.

Furthermore, a statistical study was introduced. The empirical probability distribution
of the L2-distance between the Power Spectral Densities of Dollar and Euro was constructed
through performing a Monte Carlo simulation. The results were used to test and validate
significant statistical separation between currencies basing on the L2-distance. Furthermore,
a formal result was proven, which substantiates the probability distribution assumptions
in this work.

As a stationary stochastic process can be characterised by its spectral density, the
determination of the distance between the spectral distances introduced in this work
is, in fact, a determination of a quantitative distance between (the ARMA models of)
the returns of currencies. Furthermore, the statistical test introduced allows for a well-
founded discussion of the separation in terms of the distance introduced between currencies
and assets.

A natural question for further study is consider ways to obtain information on the
joint variation of the returns of two currencies and or assets. A naive starting point may be
the fact that, under some regularity assumptions, we can consider the product of ARMA
processes (see [32]).
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Appendix A. Power Spectral Densities

Figure A1. Power spectral density functions of the Majors.

Figure A2. Power spectral density functions of the BRICS.
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Figure A3. Power spectral density functions of the independent currencies.

Figure A4. Power spectral density functions of Bitcoin and gold.

Remark A1. It is clear that there is very significant information to be drawn from the spectral
densities requiring a more sensible tool than the L2 distance used in this work. One of the most
remarkable features is the similar location of extrema, particularly in the case of Bitcoin and Gold,
which should be placed in parallel with the graphic similarities observed in Figures 1 and 2. We
intend to pursue this analysis in future work.

Appendix B. Normality of Returns

The Dollar and Euro returns do not satisfy the normality assumptions that result from
usual statistical tests. In this section, we present an attempt to transform data in a way so
that a normality test is passed.

For both Dollar and Euro, returns r are grouped into sets of 12 elements. The mean
of each set is saved in a vector R, and then the normality of R is tested and confirmed
using the one-sample Kolmogorov–Smirnov test. Its sample mean μ̂R and variance σ̂2

R are
calculated, and the estimated mean and variance of the returns r correspond to μ̂r = μ̂R
and σ̂2

r = 12σ̂2
R supposing normality and independence of the elements of r.

The new estimated means μ̂1, μ̂2 and variances σ̂2
1 , σ̂2

2 of Dollar and Euro are obtained
as specified above, and computations for the construction of the histogram are performed.
The results are summarised in Figure A5. The average of the simulation data is not close to
the value d∗ (red line), contrarily to the case in Figure 5.
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Figure A5. New empirical probability distribution of the distance between Dollar and Euro (left) and
new rejection areas for α = 0.995 (green) and α = 0.95 (yellow).

The quantiles for this approach are given in Formulas (A1) and (A2), and the new
rejection areas are shown in Figure A5.

q0.5% = 0.0240 q99.5% = 0.0360 (A1)

q5% = 0.0261 q95% = 0.0335 (A2)

However, it can be demonstrated that there is no advantage in transforming the data.
Indeed, it is possible to produce a statistical test to verify whether or not the mean values
of the two histograms in Figures 5 and A5 are the value d∗.

The test is performed as follows. Once the mean μ and the variance σ2 of the data
visualised in the histogram, are obtained, the value z = (μ − d∗)/σ is computed and
compared with the standard normal quantiles:

q0.5% = −2.5758 q99.5% = 2.5758

q5% = −1.6449 q95% = 1.6449.

The null hypothesis can be written as:

H0: μ = z.

Figure A6 shows that H0 is not rejected when normality is assumed a priori. This
suggests that, despite Dollar and Euro returns not satisfying normality assumptions, it is
possible to derive some results assuming normality.

Figure A6. Quantiles of the standard normal distribution and the value z (in red). On the (left), the
case in which normality is assumed a priori. On the (right), the case in which data are transformed.
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Abstract: This paper addresses the deregulated electricity market arising in a distribution system
with an electricity transaction. Under such an environment, the distribution system operator (DSO)
with a distributed generator faces the challenge of electricity price uncertainty in a spot market.
In this context, a credibility theory-based robust optimization model with multiple transactions is
established to hedge the uncertain spot price of the DSO. Firstly, on the basis of credibility theory,
the spot price is taken as a fuzzy variable and a risk aversion-based fuzzy opportunity constraint
is proposed. Then, to exploit the resiliency of multiple transactions on hedging against uncertain
spot price, the spot market, option contract and bilateral contract integrating power flow constraints
are studied, because it is imperative for DSO to consider the operational constraints of the local
network in the electricity market. Finally, the clear equivalence class is adopted to transform the risk
aversion constraint into a deterministic robust optimization one. Under the premise of considering
the expected cost of the DSO, the optimal electricity transaction strategy that maximizes resistance to
uncertain spot price is pursued. The rationality and effectiveness of the model are verified with a
modified 15-node network. The results show that the introduction of option contracts and bilateral
contracts reduces the electricity transaction cost of DSO by USD 28.5. In addition, under the same
risk aversion factor, the cost of the proposed model is reduced by USD 195.18 compared with robust
optimization, which avoids the over-conservatism of traditional robust optimization.

Keywords: price uncertainty; DSO; credibility theory; fuzzy chance constraint; robust optimization

MSC: 90-10

1. Introduction

The distribution system operator (DSO) is responsible for maintaining the security
of supply and power quality through investment, construction and reconfiguration of the
existing distribution system [1–3]. With the deepening reform of the electricity market
environment, as a stakeholder, DSO with distributed generator (DG) plays an important role
in the electricity transaction of the distribution system. That is, DSO purchases electricity
in the upper wholesale market to meet customer demand as well as maximization of its
utility [4–6]. However, the price in the spot market is characterized by uncertainty due
to fluctuations in electricity demand, fuel price and renewable power generation [7,8].
Moreover, the forecast error of the spot price is inevitable [9]. Thus, in order to obtain
the optimal electricity transaction and expected utility, DSO has to capture the uncertain
spot price from the perspective of risk aversion [10]. In view of this, two main questions
need to be answered: how to use a portfolio of electricity purchase transactions to hedge
against risk brought by uncertain spot price and how to assess the risk when formulating
an optimal electricity transaction strategy under the premise of the expected cost?

1.1. Literature Review

For risk decision problems with uncertain electricity price, researchers mainly use
three kinds of optimization, including robust optimization [11–15], stochastic optimiza-
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tion [16–20] and fuzzy optimization [21–26]. For instance, in [11], the uncertainty of
selling/purchasing price in an electricity market is handled by robust optimization with
a polyhedral uncertain set. Accordingly, an economical optimal solution is obtained in
consideration of the undesired deviation of the market electricity price from the forecasted
one. In [12], an adaptive robust optimization is developed to study the uncertain price in a
real-time market. In [13], a maximum–minimum–maximum robust optimization model
considering the price deviation in the electricity market is proposed, which improves the ro-
bustness of system operation against forecast uncertainty. In [14], the uncertainty of market
price is dealt with by the upper deviation of forecast price and the robust electricity trading
strategies of risk neutrality and risk aversion are compared. In [15], the uncertainty of the
electricity market price is modeled based on robust optimization. In this model, instead
of the predicted electricity price, the maximum and minimum amounts of the electricity
price are considered. However, robust optimization mainly focuses on the worst-case of
an uncertain problem and does not fully investigate the risk preference characteristic of a
decision maker [27]. Stochastic optimization is one of the most commonly used methods
for managing uncertain price. In [16], by assuming that the uncertain price follows the
normal distribution, a scenario generation-based stochastic framework is developed. In
this framework, the risk associated with uncertain electricity price is considered through
downside risk constraints. In [17], uncertain electricity price is regarded as a random
variable and a stochastic optimization model based on the Monte Carlo sampling method
is established in microgrid (MG) optimal operation. In [18], a multi-stage stochastic pro-
gramming method is developed. The bidding strategy in the spot market is described
as a Markov decision problem and solved by approximate dual dynamic programming.
In [19], the decision-making problem of a retailer under uncertainty is discussed based on
stochastic optimization. In [20], the random scenario method is derived to simulate the
uncertain spot price and the conditional value at risk is proposed to evaluate the risk of the
electricity trading strategy. However, stochastic optimization requires repeated sampling
and the solution efficiency is reduced [28].

In addition, the work in [29] states that besides the random feature, the uncertainty
also includes the fuzzy feature. Thus, fuzzy optimization, including fuzzy rough set [21],
image fuzzy set [22], neutral particle set [23] and so on, has been studied in the operation
of a power system over the past few years. In [24], the authors consider the fuzzy feature of
uncertain electricity price, in which the fuzzy feature is approximated with a fuzzy number.
In [25], a fuzzy set theory-based MG energy management model is established for price
uncertainty. In this model, the uncertain electricity price is characterized by triangular
fuzzy numbers. In [26], a risk measurement method based on credibility theory is proposed
to evaluate the fuzziness of uncertain wind power. However, few studies have addressed
the robust power trading model based on credibility theory in view of the uncertainty of
spot price in the electricity market.

On the other hand, the existing research on electricity transaction mainly focuses on
the discussion of a return model and the formulation of transaction strategy. For example,
In [30], the transaction strategy of the power retailer in the spot market is analyzed and the
profit model of the retailer under the background of new power reform is discussed. In [31],
a deterministic multi-objective optimization model with the goal of profit maximization and
peak demand minimization is established to study the short-term decision-making problem
of the retailer. In [32], the optimal bidding strategy of an energy hub in the power market
is studied under the protection of energy network information privacy. These studies do
not take into account the risk assessment of retailers in electricity trading. In [33], a risk
decision-making model of electricity transaction with the goal of profit maximization is
established. The model analyzes the impact of different electricity transaction combinations
on profits from the retailer’s point of view. In [34], a risk management model for DSO
portfolio with multiple electricity purchase markets is constructed. The impact of different
risk appetites on transaction strategy is studied. In [35], the retailer tries to hedge against
uncertainty through three trading platforms. The electricity price uncertainty is modeled
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with the auto regressive integrated moving average method and the retailer’s electricity
transaction strategy is determined. In [36], based on the portfolio optimization theory, the
optimization model of electricity purchase and sale portfolio is constructed to explore the
influence of different factors on the purchase and sale risk in the multi-level electricity
market. However, in most cases, DSO is not only responsible for trading electricity but
also should consider the operational constraints of the distribution system. Therefore, it is
necessary to consider network topology as well as power flow constraints of the distribution
system when selecting electricity purchase transactions.

Table 1 reports the majority of the studies presented within the last decade; however,
most of the existing electricity purchase strategies do not take into account the topological
constraints of the network. In addition, to the best of the authors’ knowledge of this paper,
there are no studies in the literature addressing the robust electricity trading model based
on credibility theory in view of the uncertainty of spot price in the electricity market.

Table 1. Taxonomy of recent research works.

Literature Network Deterministic Risk Robust Stochastic Fuzzy
Topology Optimization Assessment Optimization Optimization Optimization

Constraint Model Model

11–15 � � � � � �

16–20 � � � � � �

21–26 � � � � � �
30–32 � � � � � �

33–36 � � � � � �

The proposed method � � � � � �

1.2. Our Contributions

To address the above issues, this paper develops a risk aversion DSO electricity
transaction model based on the credibility theory. The proposed model can help decision
makers determine the optimal combination of electricity purchase transactions under an
acceptable risk level, considering the uncertain electricity price and power flow constraints
when formulating electricity transaction strategy. The main contributions of this paper are
as follows:

• Based on credibility theory, a risk aversion-based fuzzy chance constraint model is
proposed. In the model, the uncertain spot price is designed as a fuzzy variable
and its credibility distribution is derived to assess the uncertain risk. The proposed
model optimizes the credibility that the expected objective is met, from which decision
makers can assess the risk of transaction strategy.

• Multiple transactions, including the spot market, option contract and bilateral contract,
are considered to hedge the risk caused by uncertain price, and the impact of different
electricity transaction combinations on DSO cost is analyzed while considering power
flow constraints.

• A clear equivalence class method with fuzzy chance constraint is used to transform
the proposed model into a deterministic robust optimization model. The effectiveness
of the model is verified with a modified 15-node network.

1.3. Organization of the Research

The rest of this paper is organized as follows. The credibility function associated with
forecast error percentage of spot price is derived in Section 2. The multiple electricity trans-
actions model is established in Section 3. A credibility theory-based robust optimization
model to hedge uncertain spot price of DSO with multiple transactions is proposed in
Section 4. Case studies and related analysis are introduced in Section 5. Finally, this paper
concludes in Section 6.
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2. Problem Formulation

Fuzzy decision-making is a kind of method to solve problems with fuzzy nature, but
the traditional fuzzy decision-making has not established a complete axiomatic system.
This leads to unconvincing decision-making conclusions until the credibility theory-based
uncertainty measurement is established. It makes up for the disadvantage that possibility
measure does not have self-duality [37] and provides a new tool for scholars to study
fuzzy decision-making problems. In credibility theory, the credibility measure is developed
to describe the credibility of fuzzy events [38]. It holds that events with credibility 1
must occur and events with credibility 0 do not occur, which avoids the decision-making
confusion that may be caused by the traditional calculation of membership degree.

The credibility measure can be expressed by the minimum supremum of variable in
a fuzzy event set. For any set A ∈ R, the credibility measure of fuzzy variable ξ ∈ A is
defined as [39]:

Cr{ξ ∈ A} = 1
2

(
sup
x∈A

μ(x) + 1− sup
x∈Ac

μ(x)

)
(1)

where sup
x∈A

μ(x) and 1− sup
x∈Ac

μ(x) denote the possibility measure and necessity measure

of A, respectively. Ac represents the complement of the set A, and μ is the membership
function of the fuzzy variable. The average value of the possibility measure and the
necessity measure in Equation (1) is used to ensure the establishment of duality. In addition,
the credibility measure satisfies the following four axioms:

Axiom 1. for a non-empty set Θ ∈ R, Cr{Θ} = 1.
Axiom 2. Cr{A} ≤ Cr{B} whenever A ⊆ B ⊆ Θ.
Axiom 3. Cr{A}+ Cr{Ac} = 1 for any event A ⊆ Θ.
Axiom 4. Cr{∪i Ai} = supi Cr{Ai} for any collection of events {Ai}with supi Cr{Ai} <
0.5.

In this paper, the uncertain spot price is designed as a fuzzy variable and the credibility
distribution function including possibility measure and necessity measure is derived to
evaluate the uncertain risk. The uncertain risk measurement model based on credibility
theory also satisfies these four axioms.

Credibility Distribution Function Associated with Forecast Error Percentage of Spot Price

In electricity transactions, there are inevitable errors in the forecast of spot price [40].
Assume that the forecast error percentage of spot price is ε and the mathematical expression
is as follows:

ε =
(

λsm
t − λsm

t
′
)

/λsm
t
′ (2)

where λsm
t and λsm

t
′ are the actual spot price and the forecast spot price, respectively.

The membership function μ associated with forecast error percentage of spot price can
be expressed as the Cauchy distribution [24]. The uncertain spot price is taken as the fuzzy
variable and its mathematical expression can be described as:

μ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

1 + ω(ε/E+)
2 , ε > 0

1

1 + ω(ε/E−)
2 , ε ≤ 0

(3)

where E+ and E−, respectively, represent the statistical average of positive and negative
error percentages and ω is the weighting factor.
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After derivation, we can obtain the credibility function of ε:

Cr(ξ � ε) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1− 1

2
[
1 + ω(ε/E+)

2
] , ε > 0

1

2
[
1 + ω(ε/E−)

2
] , ε � 0

(4)

Proof. According to Equation (1), for ε ∈ R, the mathematical expression of the credibility
measure is

Cr{ε} = 1
2

(
sup
y≤ε

μ(x) + 1− sup
y>ε

μ(x)

)
(5)

If ε > 0, we have

sup
y≤ε

μ(y) = max

{
sup

0<y≤ε

μ(y), sup
y≤0

μ(y)

}
= max{μ(0), μ(0)} = 1

(6)

and

sup
y>ε

μ(y) = sup
y>ε>0

1

1 + ω(y/E+)
2 =

1

1 + ω(ε/E+)
2 (7)

Combining Equations (6) and (7), if ε > 0, we have

Cr(ε) = 1− 1

2
[
1 + ω(ε/E+)

2
] . (8)

If ε ≤ 0, we have

sup
y≤ε

μ(y) = sup
y≤ε≤0

1

1 + ω
(

y/(E−)
2
) =

1

1 + ω
(

ε/(E−)
2
) (9)

and

sup
y>ε

μ(y) = max

{
sup

y�ε�0
μ(y), sup

y>0
μ(y)

}

= max

⎧⎨⎩ sup
y�ε�0

1

1 + ω
(

y/(E−)
2
) , sup

y>0

1

1 + ω(y/E−)
2

}

= μ(0) = 1.

(10)

Combining Equations (9) and (10), if ε ≤ 0, we have

Cr(ε) =
1

2
[
1 + ω

(
ε/(E−)

2
)] . (11)

This completes the proof.

The credibility and membership functions associated with forecast error percentage
of spot price are shown in Figure 1, where E+ = 10%, E− = −10%, ω = 0.33 and
ε ∈ [−0.5, 0.5]. From the figure, we can see that the credibility function Cr(ξ � ε) is a
monotone increasing function. The value of the credibility distribution function refers to
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the credibility of the fuzzy variable ξ whose value is less than or equal to ε, which can be
compared to the probability distribution function of probability theory.

Figure 1. Credibility and membership functions associated with forecast error percentage of spot
price.

3. Multiple Electricity Transaction Model under the Deterministic Spot Price

3.1. Objective Function

DSO conducts electricity transaction through the spot market, bilateral contract and
option contract. Consider T hour periods and T1 and T2 to be, respectively, the peak and
non-peak period sets of power demand, satisfying T1 + T2 = T. Call option contract is only
for T1 and trading volume does not change over time. In addition, suppose there are N
bilateral contracts for DSO to choose and the details of the electricity transaction cost are as
follows.

(1). The mathematical expression of DSO’s cost function Csm in spot market is as
follows:

Csm = ∑
t∈T

∑
b∈B

[
λsm

t psm
t,b

]
(12)

where b ∈ B is the range of network node. λsm
t and psm

t,b are the electricity price and trading
volume of DSO in spot market during time t, respectively.

(2). The cost function Cbc of DSO in the bilateral contract electricity transaction can be
expressed as:

Cbc = ∑
t∈T1

∑
b∈B

∑
n∈N

[
λbc

n pbc
t,b,n

]
(13)

where λbc
n is the electricity price with respect to bilateral contract n and pbc

t,b,n is the trading
volume of nth bilateral contract selected by node b during time t.

(3). The cost function Coc of DSO from the option contract electricity transaction can
be calculated as:

Coc = ∑
t∈T2

∑
b∈B

[
min{λck, λsm

t }poc
t,b + λ0 poc

t,b

]
(14)

where poc
t,b is the call option contract trading volume of node b during time t, λck and λ0 are

the strike price and premium of the call option, respectively. If λsm
t > λck, DSO executes the

option contract and its option contract purchases electricity at the fixed price; if λsm
t < λck,

DSO abandons the exercise option and its option contract purchases electricity at the spot
market price.

(4). The power generation cost function Cdg of DSO can be expressed as:

Cdg = ∑
t∈T

∑
b∈B

[
λdg pt,b

]
(15)
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where pt,b is the active power output of DG at node b during time t and λdg is the power
generation cost price of DG.

The mathematical expression of the cost C of the DSO with the spot market, option
contract and bilateral contract in an electricity transaction is as follows:

C = Csm + Cbc + Coc + Cdg (16)

3.2. Constraints

In order to ensure that the system operates in a safe and reliable environment, the
electricity transaction must meet the following constraints.

(1). Active power output constraint of DG:

0 ≤ pt,b ≤ Pmax
t,b (17)

where Pmax
t,b is the maximum active power output of DG at node b during time t.

(2). Node voltage constraint:

vmin
t,b ≤ vt,b ≤ vmax

t,b (18)

where vt,b is the square of the voltage at node b during time t. vmin
t,b and vmax

t,b are the
maximum and minimum values of node voltage at node b during time t, respectively.

(3). Contract volume constraint for bilateral contract:

pbc,min
n sb,n ≤ pbc

t,b,n ≤ pbc,max
n sb,n (19)

where sb,n is a binary variable. If node b selects contract n, then sb,n = 1; otherwise, sb,n = 0.
pbc,min

n , pbc,max
n are the minimum and maximum contract volumes of bilateral contract n,

respectively.
(4). During time t, the total amount of electricity purchased in spot market, bilateral

contract and option contract of DSO equals the amount of active power injected from the
power grid. Its mathematical expression can be described as:

psm
t,b + ∑

n∈N
pbc

t,b,n = Pgrid
t,b , ∀t ∈ T1 (20)

psm
t,b + ∑

n∈N
pbc

t,b,n + poc
t,b = Pgrid

t,b , ∀t ∈ T2 (21)

where Pgrid
t,b is the amount of active power injected from the power grid at node b during

time t.
(5). The power flow constraints of the distribution network are as follows:

f p
t,l|s(l)=b − Pgrid

t,b − ∑
l|r(l)=b

(
f p
t,l − at,l Rl

)
− pt,b + Dp

t,b + Gbvt,b = 0 (22)

f q
t,l|s(l)=b −Qgrid

t,b − ∑
l|r(l)=b

(
f q
t,l − at,lXl

)
− qt,b + Dq

t,b − Bbvt,b = 0 (23)

vt,b − 2
(

Rl f p
t,l + Xl f q

t,l

)
+ at,l

(
R2

l + X2
l

)
= vt,b (24)(

f p
t,l − at,l Rt,l

)2
+
(

f q
t,l − at,lXt,l

)2
≤ S2

t,l (25)((
f p
t,l

)2
+
(

f q
t,l

)2
)

/at,l ≤ vt,b (26)(
f p
t,l

)2
+
(

f q
t,l

)2
≤ S2

t,l (27)

199



Mathematics 2022, 10, 4420

where l ∈ L is the range of network line. f p
t,l , f q

t,l are the active and reactive power flow of
line l during time t, respectively. Dp

t,b and Dq
t,b are the active load and reactive load of node

b during time t, respectively. at,l is the square of the current of line l during time t. Qgrid
t,b is

the reactive power injected from the power grid at node b during time t. S2
t,l is the upper

limit of the apparent power of line l during time t, and Rl , Xl , Gb and Bb are the parameters
of resistance, reactance, admittance and conductance of distribution network, respectively.
s(l) is the power outflow end of line l and r(l) is the power inflow end of line l. The balance
constraints of active and reactive power are shown in Equations (22) and (23). Equation (24)
relates the line flow to the node voltage. Equation (25) represents the apparent power flow
limitation of each line transmitting node and Equation (26) is a quadratic curve constraint,
which convexes the original non-convex AC OPF problem [41]. Under quite unrestricted
assumptions, the rationality of this convexity is proved in [42]. Equation (27) represents the
apparent power flow limitation of each line receiving node.

4. Robust Optimization Model for DSO Based on Credibility Theory

The forecast error of spot price is inevitable [43]. DSO with different risk preferences
needs to hedge the risk caused by forecast error while considering operational cost as
well as power flow constraints. Given a certain electricity purchase cost, DSO pursues an
electricity transaction strategy that maximizes resistance to the uncertain spot price. In
view of this, this paper establishes a credibility theory-based robust optimization model to
hedge price uncertainty of DSO with multiple transactions.

max |ε| (28a)

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cr(max C(λsm
t , q) ≤ Ce) ≥ α (28b)

Ce = (1 + σ)C0 (28c)

λsm
t = (1 + ε)λsm

t
′ (28d)

0 ≤ σ ≤ 1 (28e)

0 ≤ α ≤ 1 (28f)

(17)− (27) (28g)

where C0 is the minimum cost of DSO when the spot price equals the forecasted spot price.
σ is the risk aversion factor, which indicates the DSO’s aversion to the risk due to the
uncertain spot price. α is the credibility index and the physical meaning is equivalent to
the probability confidence. Equation (28b) is expressed as the credibility that the actual
cost of DSO less than the expected cost is not less than α. Equation (28c) represents the
expected cost of DSO. When σ is larger, expected cost Ce is higher, indicating that DSO has
a greater degree of risk aversion. q is the decision variable, which represents the amount of
electricity traded by DSO in each market.

Generally, when the actual spot price takes the maximum, the DSO’s cost is the highest,
so Equation (28b) can be expressed as

Cr
(

C(λsm
t , q)|λsm

t =(1+ε)λsm
t

′ ≤ Ce

)
≥ α, ε ≥ 0 (29)

In view of the fact that the above formula belongs to the fuzzy chance constraint and
it is difficult to solve directly, one way to solve the fuzzy chance constraint is to convert it
into a clear equivalence class and then use the traditional solving process to calculate the
clear equivalence model. According to [44], we can obtain the following theorem:
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Theorem 1. Suppose ξ is degenerated into a one-dimensional fuzzy variable and its membership
function is μ. If the function g(x, ξ) has the form g(x, ξ) = h(x)− ξ, then Cr{g(x, ξ) ≤ 0} ≥ α, if
and only if h(x) ≤ Kα, where x and g are the decision vector and constraint, respectively. Moreover,

Kα =

⎧⎪⎨⎪⎩
sup
{

K | K = μ−1(2α)
}

, α < 1/2

inf
{

K | K = μ−1(2(1− α))
}

, α ≥ 1/2
(30)

When ε ≥ 0, α ≥ 1/2, according to the credibility measure function and the above
theorem, the robust optimization model shown in Equation (28) can be expressed as

max Kα (31a)

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C(λsm
t , q)|λsm

t =(1+Kα)λsm
t

′ ≤ Ce (31b)

Ce = (1 + σ)C0 (31c)

0 ≤ σ ≤ 1 (31d)

Kα = μ−1(2(1− α)) ≥ 0 (31e)

1/2 ≤ α ≤ 1 (31f)

(17)− (27) (31g)

The model considers that the actual spot price fluctuates within a certain range of the
predicted spot price. The obtained electricity transaction strategy can ensure that the cost
of DSO is less than the expected cost and the credibility is not less than α. The solution
process of the proposed method is given by Algorithm 1.

Algorithm 1 Solution process

1: Given system data and forecasted spot price;

2: Considering constraints (17)–(27), calculate (16) to obtain the minimum cost C0 of DSO

with predicted spot price;

3: Give DSO risk aversion factor σ or expected cost Ce;

4: Obtain the membership function associated with forecast error percentage of spot price

according to the credibility theory and derive its credibility distribution;

5: By maximizing (28a) and considering constraints (28b)–(28g), a risk measurement

model under fuzzy chance constraints is established;

6: Use the clear equivalence class method to transform the above model into a determinis-

tic robust optimization model;

7: Solve the robust optimization model through the SCIP solver and obtain ε, α,

psm
t,b , poc

t,b, pbc
t,b,n.

5. Case Analysis

To prove the validity of the proposed model, a modified 15-node distribution network
system is selected for numerical study in this paper and the structure of the distribution
network system is shown in Figure 2 (the specific parameters are in [45]). Two DGs are
set at nodes 1 and 12, respectively. The capacity of each DG is set to 0.15 MW and their
power generation cost is USD 30/MWh. The forecast spot price and distribution system
load are shown in Figure 3. Suppose that the peak period of electricity consumption is
8 : 00 ∼ 24 : 00 and the rest of the period is non-peak period. The call option strike price
λck = USD 64.3/MWh and the option premium λ0 = USD 2.3/MWh. In addition, set the
weighting factor ω = 0.33 in the credibility function.

201



Mathematics 2022, 10, 4420

Figure 2. The 15-node network structure diagram.

In the competitive power market, the cost of DSO depends on its own power genera-
tion and power purchase plan. DSO can purchase electricity through different combinations
of spot market, option contract and bilateral contract. Assume that DSO has five bilateral
contracts to choose from non-peak and peak periods, respectively. The detailed parameters
of the bilateral contract are shown in Table 2. In order to verify the effectiveness of the
credibility theory-based robust optimization model to hedge price uncertainty, this paper
selects different electricity transaction scenarios. Scenario 1, DSO only purchases electricity
through the spot market; scenario 2, DSO purchases electricity through the spot market and
option contract; scenario 3, DSO purchases electricity through the spot market, bilateral
contract and option contract.
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Figure 3. Forecast spot price and distribution system load.

Table 2. Bilateral contract parameters.

Contract Period Min Max Contract Price
Number (h) (MW) (MW) (USD/MWh)

1 Non-peak period 0.006 0.015 43.0
2 Non-peak period 0.008 0.020 42.0
3 Non-peak period 0.010 0.025 38.0
4 Non-peak period 0.010 0.030 35.5
5 Non-peak period 0.012 0.040 33.0
6 Peak period 0.006 0.015 63.5
7 Peak period 0.008 0.020 62.0
8 Peak period 0.010 0.025 59.5
9 Peak period 0.010 0.030 58.5
10 Peak period 0.012 0.040 56.0
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5.1. Comparison of Transaction Cost under Deterministic Spot Electricity Price

First of all, it is assumed that the actual spot price equals the predicted value. The
minimum cost of DSO is obtained by solving the deterministic electricity transaction model.
The optimal DSO electricity transactions in different scenarios are shown in Figure 4. In
scenario 1, DG output is 7.20 WMh, the spot market purchase is 26.48 MWh and the cost
of DSO is USD 1684.0. In scenario 2, DG output is 7.20 WMh, the spot market and option
contract purchase are 13.70 MWh and 12.78 MWh, respectively, and the cost of DSO is
USD 1682.5. In scenario 3, the option contract purchase is 8.09 MWh, the bilateral contract
purchase is 6.42 MWh, the DG output is 7.20 MWh, the spot market purchase is 11.96 MWh
and the cost of DSO is USD 1655.6. It can be seen that with the increase of transaction form,
the electricity purchase cost of DSO gradually decreases.

For scenario 3, DSO’s DG output and electricity transaction in spot market, bilateral
contract and option contract are shown in Figure 5. As can be seen from the figure, the non-
peak period electricity transaction market is mainly in the spot market and bilateral contract
and peak period electricity transaction market is mainly in the spot market and option
contract. Overall, DG output, bilateral contract, spot market and option contract accounted
for 21.4%, 19.1%, 35.5% and 24.0% of the total electricity consumption, respectively. The
bilateral contract trading volume of each node is shown in Table 3.We can see that bilateral
contract transaction is mainly in nodes 2 and 13. Nodes 2 and 13 choose contracts 3, 4, 5, 7,
8, 9, 10 to trade electricity. This is because these two nodes have a high load demand and
multiple bilateral contracts can be selected to meet their own demand. The other nodes
with low load demand only choose a bilateral contract to trade electricity during peak and
non-peak periods. In addition, since the load demand of node 14 is too small, there is no
suitable bilateral contract for it to choose, so it meets its own demand through the spot
market and option contract.

Table 3. Bilateral contract trading volume of each node.

Nodes
Contract Number

1 2 3 4 5 6 7 8 9 10

1 - - - - - - - - - -
2 0 0 0.115 0.150 0.252 0 0.184 0.230 0.250 0.428
3 0 0 0 0 0 0 0 0 0 0.273
4 0 0 0 0 0 0 0 0 0 0.273
5 0 0 0 0 0 0 0 0 0.207 0
6 0 0 0 0 0.112 0 0 0 0 0.347
7 0 0 0 0 0 0 0 0 0 0.288
8 0 0 0 0 0 0 0 0 0 0.288
9 0 0 0 0.081 0 0 0 0 0 0.301
10 0 0 0 0.080 0 0 0 0 0 0.296
11 0 0 0 0 0 0 0 0 0 0.286
12 0 0 0 0 0 0 0 0 0 0
13 0 0 0.115 0.150 0.252 0 0.184 0.230 0.250 0.428
14 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0.079 0 0 0 0 0 0.292
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Figure 4. DSO electricity transaction strategy in different scenarios.

Figure 5. DSO electricity trading volume in each market.
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5.2. Robust Optimization Model to Hedge Price Uncertainty of DSO with Multiple Transactions

Assuming that the risk aversion factor σ is 0.1 in scenario 3, the calculated resistible
percentage of prediction error is 24.6% and the credibility is 0.83. In this case, if the forecast
error percentage of spot price is within the range [0, 24.6%], the cost of DSO is less than or
equal to USD 1821.16. If the forecast error percentage of spot price exceeds this range, the
actual cost cannot be guaranteed. The electricity transaction strategy of DSO is shown in
Figure 6. The credibility associated with the actual cost lower than the expected cost is 0.83,
from which the decision maker can assess the risk of the trading strategy.

Figure 6. Electricity transaction strategy when the risk aversion factor is 0.1.

As can be seen in Figure 6, the load demand of DSO at non-peak period is mainly
satisfied through DG output and electricity purchase in spot market, while at peak period
it is mainly satisfied through option contract and power purchase in spot market. In 24 h,
the option contract purchase is 13.77 MWh, accounting for 40.90%; the bilateral contract
purchase is 9.99 MWh, accounting for 29.67%; the DG output is 6.76 MWh, accounting for
20.08%; and the spot market purchase is 3.15 MWh, accounting for 9.35%. Comparing with
Figure 5, it can be seen that considering the uncertainty of spot price, the trading volume
of the bilateral contract and the option contract increase, the spot market trading volume
decreases and the output of DG decreases slightly.

The bilateral contract trading volume of each node under the uncertainty of spot price
is shown in Table 4. We can see that the bilateral contract transaction is still mainly in nodes
2 and 13, but they choose contracts 1–10 to trade electricity and other nodes have also
increased the trading volume of bilateral contract. Comparing with the electricity purchase
strategy in the deterministic environment, it can be found that in order to reduce the risk
caused by the uncertainty of the spot price, DSO increases the trading volume of bilateral
contract and option contract.
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Table 4. The bilateral contract transaction value of each node under the uncertainty of spot price.

Nodes
Contract Number

1 2 3 4 5 6 7 8 9 10

1 - - - - - - - - - -
2 0.078 0.128 0.175 0.210 0.280 0.192 0.265 0.363 0.430 0.596
3 0 0.077 0 0 0 0 0 0 0 0.324
4 0 0.077 0 0 0 0 0 0 0 0.324
5 0.056 0 0 0 0 0 0 0 0.273 0
6 0 0 0 0 0.115 0 0 0 0 0.440
7 0 0.083 0 0 0 0 0 0 0 0.349
8 0 0.083 0 0 0 0 0 0 0 0.343
9 0 0 0 0.093 0 0 0 0 0 0.372

10 0 0 0 0.090 0 0 0 0 0 0.356
11 0 0.083 0 0 0 0 0 0 0 0.347
12 0.047 0 0 0 0 0 0.197 0 0 0
13 0.078 0.128 0.175 0.210 0.280 0.192 0.268 0.350 0.430 0.596
14 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0.088 0 0 0 0 0 0.349

5.3. The Influence of Different Risk Aversion Coefficients of DSO on Electricity Transaction

The curve of electricity transaction strategy with risk aversion factor σ is shown in
Figure 7. As the value of σ increases, the purchase volumes of bilateral contract and option
contract increase, the purchase volume in the spot market decreases and DG’s output
remains basically unchanged. The results show that as the expected cost increases, DSO
increases the trading volumes of option contract and fixed-price bilateral contract, while
reducing volume in spot market with uncertain price. In this way, the robustness of the
electricity transaction strategy is increased.

The changes of robustness and credibility with risk aversion factor in different scenar-
ios are shown in Table 5. It can be seen that the credibility increases as the risk aversion
factor increases. This shows that the stronger the risk aversion awareness of DSO, the
higher the credibility of the expected goal realization. This is because the greater the risk
aversion factor, the higher the expected cost. The robustness factor increases with the
increasing of expected cost. This shows that the greater the expected cost of the DSO, the
lower the acceptance of risk. The more conservative the electricity purchase strategy, the
stronger the ability of the resulting electricity transaction strategy to resist risk.

Table 5. The changes of robustness coefficient and credibility with risk aversion factors in differ-
ent scenarios.

σ
Scenario 1 Scenario 2 Scenario 3

ε Credibility ε Credibility ε Credibility

0 0 0.50 0 0.50 0 0.50
0.05 6% 0.55 7% 0.57 10% 0.61
0.1 11% 0.65 14% 0.70 25% 0.83

In scenario 1, DSO only trades electricity from the spot market. In the event of a bad
price that is not conducive to the transaction, there is no electricity purchase plan that can
replace or avoid market transactions and it has to accept the market risk caused by price
uncertainty. Therefore, the system robustness of scenario 1 is lower than those of other
scenarios.

In scenario 2, DSO purchases electricity through bilateral contract and the spot market.
The use of fixed-price bilateral contract to purchase electricity avoids to a certain extent the
market risk caused by the uncertainty of spot price.

In scenario 3, DSO conducts electricity transaction through spot market, option con-
tract and bilateral contract. It has more means to actively control electricity purchase
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cost and possible risk losses through reasonable selection of transaction combination and
allocation of electricity purchase ratio.

σ σ σ

Figure 7. The change curve of electric energy trading volume with σ.

In addition, in order to fully demonstrate the effectiveness of the proposed model in
dealing with an uncertain problem, this paper compares the proposed robust optimization
model with the robust optimization model (RO) [46] and the stochastic optimization model
(SO) [47]. The optimization results obtained by different optimization methods are shown
in Table 6.

Table 6. Optimization results under different methods.

RO SO The Proposed Model

- - σ = 0.04 σ = 0.05, σ = 0.06

Operation cost USD 1933.58 USD 1735.7 USD 1721.8 USD 1738.4 USD 1754.9
Optimization time 303.3 s 2310.8 s 527.5 s 461.1 s 694.3 s

It can be seen from the table that when the risk aversion factor is 0.05, the cost of the
proposed model is reduced by 11.2% compared with robust optimization. This is due to the
fact that RO is the worst-case cost of uncertain variables and the resulting electricity trading
strategy is too conservative. Compared with random optimization, the solution speed is
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increased by 80.0%. In addition, compared with RO and SO, the proposed model considers
the degree of risk aversion of the decision maker and the decision maker can choose the
appropriate risk aversion factor according to their ability to bear the risk. In addition, in
order for readers to better understand the proposed model, the credibility theory-based
robust optimization model for a user is provided in Appendix A.

6. Conclusions

Based on the credibility theory, this paper establishes a robust optimization model to
hedge price uncertainty of DSO with multiple transactions. This proposed model provides
the electricity transaction strategy under different expected cost and the risk-averse DSO
achieves the expected goal by rationally allocating the proportion of electricity purchases in
different transaction markets. The results of calculation examples show that: (1) Increasing
option contract and bilateral contract trading volumes can reduce the electricity transaction
cost of DSO by USD 28.5. (2) As the expected cost increases (the degree of risk aversion of
DSO increases), DSO will increase the purchase of electricity in option contract and bilateral
contract, reduce the trading volume in spot market with uncertain price and increase the
robustness of electricity transaction strategy. (3) The proposed robust model takes into
account the risk aversion of decision maker and obtains the credibility of the expected goal
realization. Compared with random optimization, the solution speed is increased by 80.0%.
In addition, under the same risk aversion factor, the cost of the proposed model is reduced
by USD 195.18 compared with robust optimization and avoids the over-conservatism of
traditional robust optimization. This method provides new tools and ideas for electricity
transaction decision maker and risk assessment.

This research work only considers the uncertainty of spot electricity price in electricity
transaction. In fact, DSO also faces multiple uncertainties brought by renewable energy
and demand. In future research work, we will study how to extend the proposed model
to measure the multivariate uncertainty and uncertainty coupling. In order to achieve the
goal of energy conservation and emission reduction, the impact of green certificates and
carbon emissions trading on electricity trading strategy will be studied in the future.
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Nomenclature

Variables :
ε forecast error percentage of spot price
α credibility index
λsm

t actual spot price, USD/MWh
Csm spot market power purchase cost, USD
Cbc bilateral contract power purchase cost, USD
Coc option contract power purchase cost, USD
Cdg power generation cost, USD
psm

t,b trading volume in the spot market, MW
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pbc
t,b,n trading volume of nth bilateral contract, MW

poc
t,b call option contract trading volume, MW

pt,b active power output of DG, MW
sb,n binary variable
Indexes :
b ∈ B range of network node
l ∈ L range of network line
t ∈ T range of time
λsm

t
′ forecast spot price, USD/MWh

ω weighting factor
E+, E− statistical average of positive and negative error percentages
λbc

n electricity price with respect to bilateral contract, USD/MWh
λck, λ0 strike price and premium of the call option, USD/MWh
λdg power generation cost price of DG, USD/MWh
Pmax

t,b maximum active power output of DG, MW

Pgrid
t,b active power injected from the power grid, MW

Qgrid
t,b reactive power injected from the power grid, MW

at,l square of the current of line l
St,l upper limit of the apparent power of line l
s(l) power outflow end of line l
r(l) power inflow end of line l
σ risk aversion factor
Ce expected cost of DSO, USD
Rl , Xl resistance and reactance of distribution network
Gb, Bb admittance and conductance of distribution network
pbc,min

n minimum contract volume of bilateral contract, MW
pbc,max

n maximum contract volume of bilateral contract, MW
f p
t,l , f q

t,l active and reactive power flow
Dp

t,b, Dq
t,b active load and reactive load, MW

vmin
t,b , vmax

t,b maximum and minimum values of node voltage

Appendix A

In this example, we assume that a user needs to buy electricity from the spot market,
bilateral contracts, options contracts. The model is as follows:

Determine the optimization model

C = ∑
t∈T

[
λsm

t psm
t,b

]
+ ∑

t∈T1

∑
n∈N

[
λbc

n pbc
t,b,n

]
+ ∑

t∈T2

[
min{λck, λsm

t }poc
t,b + λ0 poc

t,b

]
(A1)

pbc,min
n sn ≤ pbc

t,n ≤ pbc,max
n sn (A2)

psm
t, + ∑

n∈N
pbc

t,n = Pgrid
t , ∀t ∈ T1 (A3)

psm
t + ∑

n∈N
pbc

t,n + poc
t = Pgrid

t , ∀t ∈ T2 (A4)

where λsm
t and psm

t are the electricity price and trading volume of user in spot market
during time t, respectively. λbc

n is the electricity price with respect to bilateral contract n,
pbc

t,,n is the trading volume of nth bilateral contract selected during time t. poc
t is the call

option contract trading volume during time t, λck and λ0 are the strike price and premium
of the call option, respectively. sn is a binary variable. If user selects contract n, then
sn = 1, otherwise, sn = 0. Equation (A1) represents the power purchase cost of the user,
Equations (A2)–(A4) is the constraint on the user.
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The proposed robust optimization model

max |ε| (A5a)

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cr(max C(λsm
t , q) ≤ Ce) ≥ α (A5b)

Ce = (1 + σ)C0 (A5c)

λsm
t = (1 + ε)λsm

t
′ (A5d)

0 ≤ σ ≤ 1 (A5e)

0 ≤ α ≤ 1 (A5f)

(A2)− (A4) (A5g)

where C0 is the minimum cost of user when the spot price equals the forecasted spot price,
σ is the risk aversion factor, which indicates the user’s aversion to the risk due to the
uncertain spot price, α is the credibility index and the physical meaning is equivalent to the
probability confidence. Equation (A5b) is expressed as the credibility that the actual cost of
user less than the expected cost is not less than α. Equation (A5c) represents the expected
cost of user. When σ is larger, expected cost Ce is higher, indicating that user has a greater
degree of risk aversion. q is the decision variable, which represents the amount of electricity
traded by user in each market. When ε ≥ 0, α ≥ 1/2, according to the credibility measure
function and above theorem, the robust optimization model shown in Equation (A5) can be
expressed as

max Kα (A6a)

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C(λsm
t , q)|λsm

t =(1+Kα)λsm
t

′ ≤ Ce (A6b)

Ce = (1 + σ)C0 (A6c)

0 ≤ σ ≤ 1 (A6d)

Kα = μ−1(2(1− α)) ≥ 0 (A6e)

1/2 ≤ α ≤ 1 (A6f)

(A2)− (A4) (A6g)
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Abstract: The interest in studies aimed at understanding the integration of the stock market with
the economic performance of countries has been growing in recent years, perhaps driven by the
recent economic crises faced by the world. Although several studies on the topic have been carried
out, the results are still far from a meaningful conclusion. In this sense, this paper considered the
dual objective of investigating whether there is significant variance in the economic performance
of developed and emerging markets’ countries and whether the global risk factors are statistically
significant in explaining the variations in their future economic performance over time. From a
sample of (i) gross domestic products from BRICS and G7 countries (total of twelve countries), and
(ii) returns of the risk factors of developed and emerging stock markets for the period 1993 to 2019,
we applied longitudinal regression modeling for five distinct percentiles, and random coefficients
modeling (RCM) with repeated measures. We found that risk factors explain the future economic
performance, there is significant variation in economic performance over time among countries, and
the temporal variation in the random effects of intercepts can be explained by RCM. The results of
this study confirm that stock markets follow an integration process and that moderately integrated
markets may have the same risk factors. Furthermore, considering that risk factors are related to
future GDP growth, they act as proxies for unidentified state variables.

Keywords: GDP growth; BRICS and G7; five-factor asset pricing model; panel data; quantile models;
random coefficient models

MSC: 60-11

1. Introduction

Emerging markets have long been a challenge to finance [1], and there has been exten-
sive debate about the relationship between the real economy and stock market performance,
especially in the context of emerging markets [2]. As a result of recent global economic
crises such as the COVID-19 pandemic, research interest in the field of market integration
has increased considerably in the last decade [3]. According to [4], financial integration
intensifies during sovereign debt crises, being mainly driven by macroeconomic variables,
market capitalization, political uncertainty and technological developments. In view of
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the process of integrating stock markets at the regional and global levels, an increasing
number of studies on asset pricing have been carried out in developed markets [5–8] and
emerging markets [9–12]. Many studies use multifactor models such as those of [13,14],
in which diversified portfolios of stocks are formed based on characteristics such as size
(SMB, small minus big), book-to-market index (HML, high minus low), operating profit
(RMW, robust minus weak) and investment (CMA, conservative minus aggressive). These
portfolios produce risk and return different, from market beta risk (MKT), and reflect
unidentified state variables consistent with Merton’s intertemporal capital asset pricing
model (ICAPM) [15], such as [13,14,16]. In general, empirical evidence indicates that multi-
factor models present positive risk premiums and better explain the variation of expected
returns than the single-factor model, capital asset pricing model (CAPM) and there is
segmentation between developed and emerging stock markets.

Fama [17] and Aylward and Glen [18] verified a positive and statistically significant
relationship between returns on stock market portfolios and the future economic growth
of the United States and of twenty-three countries with developed and emerging stock
markets, respectively. Liew and Vassalou [19], motivated by [17,18], using data from
ten developed stock market countries (Australia, Canada, France, Germany, Italy, Japan,
Netherlands, Switzerland, United Kingdom and United States), demonstrated returns on
the SMB and HML risk factors considered in [13] contain information about future GDP
growth. SMB and HML are related to changes in the set of investment opportunities, and
act as substitutes for two sources of the real economy’s risk, consistent with the ICAPM
state variables.

Although empirical evidence suggests that variations in expected returns reflect busi-
ness cycle exposures [19–22], and that a considerable part of the risk and return of domestic
stock markets can be attributed to the co-movement and interdependence of regional and
global stock markets [6,7,23,24], given the integration process of stock markets and the real
economy, few studies have analyzed the relationship between future domestic economic
growth and risk factors of a global nature from a temporal perspective that allows us to
investigate whether there is variability in economic performance between different coun-
tries and whether risk factors of a global nature help to explain the variations in economic
performance between different countries.

The size risk factor (SMB) of [14] represents the average of three elementary risk factors
formed from diversified portfolios of stocks grouped in (i) size and book-to-market (B/M)
(SMBB/M, difference between returns of diversified portfolios of stocks of small and large
companies with high and low B/M ratio), (ii) size and operating income (SMBOP, difference
between returns of diversified portfolios of stocks of small and large companies with high
and low operating income) and (iii) size and investment (SMBINV, difference between the
returns of diversified portfolios of stocks of small and large companies with low and high
investment). The decomposition of the SMB risk factor into three elementary risk factors
makes it possible to explore the three dimensions of systematic risk of size effect, through
the magnitude and sign of the respective risk premiums and offers a new understanding
of the behavior of each return parcel in the average SMB premium, and, in our study, its
relationship to future economic growth.

Although many studies have been carried out in different regions and countries that
analyzed the influence of bank financing or the stock market on economic growth, the
findings are still far from meaningful conclusions [25]. Our study seeks to fill this gap in the
literature by proposing a new model in terms of variables, aggregating the elementary risk
factors of SMB (SMBB/M, SMBOP and SMBINV) in explaining the future economic growth
in addition to methodological differences to consider (i) the asymmetric distribution of the
GDP growth rate and (ii) the heterogeneity of GDP growth rates between developed and
emerging countries.

The present study has the dual objective of investigating whether the global risk
factors considered in [14] are statistically significant to explain the variations in countries’
future economic performance over time, measured by the growth rate of the gross domestic
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product (GDP), and whether there is significant variance in the economic performance
of developed and emerging markets’ countries. To achieve these objectives, we applied
panel data and random-coefficient models to a sample of developed (G7: Germany, Canada,
United States, France, Italy, Japan, United Kingdom) and emerging (BRICS: South Africa,
Brazil, China, India, and Russia) countries, considering their GDP data and the return of
global risk factors in the period from 1993 to 2019.

The first objective is to analyze whether the global risk factors of developed and
emerging stock markets considered in [14], including the decomposed SMB factor in its
elementary risk factors (SMBB/M, SMBOP and SMBINV), capture information that helps to
explain the variation in future economic performance, represented by GDP of 12 analyzed
countries (G7 and BRICS). We estimate longitudinal regression models for panel data,
using the quantile regression technique for the percentiles 0.05; 0.25; 0.50; 0.75; and 0.95 to
accomplish this objective.

The second objective is to analyze whether there is significant variance in the economic
performance of BRICS and G7 countries over time, and across countries over time, and
whether the global, developed and emerging stock market risk factors from [14] help to
explain variation in future economic performance over time. We estimate a two-level model
with repeated measures to accomplish this objective.

The present study is structured in six sections. Section 2 presents the literature review;
Section 3 presents the methodologies and the hypothesis; Section 4 presents the description
of the data, followed by the analysis and discussion of the results in Section 5, and finally,
the conclusion is drawn in Section 6.

2. Literature Review

Research on financial development and economic growth has been growing com-
prehensively for a long time in the theoretical and empirical literature [25]. Fama and
French [5–7] observed that moderately integrated stock markets may have the same risk
factors that reflect important dimensions of systematic risk in returns not priced by market
beta risk, which condition future investment opportunities.

Positive and statistically significant relationships between the return of the stocks of the
market portfolio and the future economic growth of the United States, and of twenty-three
countries of developed and emerging stock markets were verified by [17,18], respectively.
Motivated by them, Liew and Vassalou [19] were pioneers in demonstrating that the returns
of the SMB and HML risk factors considered in [13] are related to changes in the set of
investment opportunities and act as substitutes for two sources of the real economy’s risk,
consistent with the ICAPM state variables. The authors estimated simple and multiple
regression models, with data on the returns of domestic risk factors and the GDP growth
rate from 1978 to 1996 for ten developed countries (Germany, Australia, Canada, United
States, France, Netherlands, Italy, Japan, United Kingdom and Switzerland). They found
that the risk factors SMB and HML independently present positive and statistically signifi-
cant relationships with the future GDP growth rate. Additionally, each risk factor, SMB
and HML, in the presence of the MKT risk factor, maintains the positive relationship and
magnitude of the regression coefficient.

Several studies followed [19], such as:

(1) Neves and Leal [26] verified a positive relationship between the SMB and HML risk
factors and the future economic growth of Brazil for the period from 1986 to 2001.

(2) Font-Belaire and Grau-Grau [27] provided evidence on the positive and statistically
significant relationship between future GDP growth and the SMB risk factor of the
Spanish market during the period from 1995 to 2000.

(3) Hanhardt and Ansotegui [28] used data from 1990 to 2008 and found that the SMB risk
factor has an explanatory capacity for the future economic growth of the Euro Zone.

(4) Fajardo and Fialho [29], using Brazilian market data from 1995 to 2008, observed
that the risk factor SMB and HML are positively related to economic growth and
negatively related to inflation.
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(5) Liu and Di Iorio [30] provided evidence of the explanatory power of SMB and HML
risk factors in predicting future Australian economic growth for the period 1993
to 2010.

(6) Boamah [31] confirmed the ability of [13] in predicting the economic growth of South
Africa for the period 1996 to 2016.

(7) Ali, He and Jiang [32] reported that the MKT and SMB risk factors help to predict the
future economic growth of Pakistan in the period 2002 to 2016.

Although the empirical evidence is supports [13] in relation to the CAPM, in capturing
the expected return, Fama and French [14] extended the model from three to five risk factors
that outperform the model of three factors in describing average returns. For this purpose,
the authors added the (i) operating profit factor (RMW) that results from the difference
between the returns on diversified portfolios of stocks of companies with high and low
operating profits and (ii) the investment factor (CMA) that results from the difference
between the returns of diversified portfolios of stocks of companies with low and high
investment. In this context, Lalwani and Chakraborty [33], using data from the period 1992
to 2017, analyzed the ability of [14] to explain the future economic growth of five developed
countries (Australia, United States, Canada, Japan and the United Kingdom) and four
emerging countries (China, South Korea, India and Taiwan). The authors observed that in
the presence of MKT, the additional risk factors (SMB, HML, RMW and CMA) remained
positive and statistically significant for Canada, the United Kingdom, South Korea, and
India, respectively.

In view of the process of integrating the stock markets, Ferreira and Gama [34], using
data from the period from 1991 to 2018, confirmed the evidence that the risk factors of
a regional nature considered in [14] help to predict the future economic growth of six
developed markets namely, Germany, Canada, the United States, France, Hong Kong and
Singapore. Ferreira et al. [35] reported that global risk factors capture information that
helps explain the future economic performance of each emerging BRICS country (South
Africa, Brazil, China, India and Russia).

Economic Performance and Stock Market’s Integration

Regarding the integration between stock market and economic performance, the
academic literature has several studies. Bekaert and Harvey [1] explored the financial
effects of market integration as well as the impact on the real economy and presented
results on political risk and liberalization, the volatility of capital flows and the performance
of investments in emerging markets.

Tripathi and Seth [2] examined causal relationships between stock market performance
and macroeconomic variables in India. The authors used various statistical approaches
to data analysis and found that there is a significant correlation between stock market
variables and macroeconomic factors, with the exception of the exchange rate.

Sehgal et al. [36] studied the dynamic nature of stock market integration in some Asian
countries. The authors used the Copula GARCH models to study the intertemporal process
of stock market integration and found that fiscal position, stock market performance,
external position, governance and trade linkages appear to be the fundamental drivers of
the integration of the stock market in that region.

Saji [3] analyzed the dynamics of price integration among Asian financial markets
during the post-2008 financial crisis period. The authors analyzed monthly stock index data
from five Asian economies from April 2009 to March 2020. The results did not yield any
conclusive evidence of long-term relationships between stock markets. According to the
authors, the asymmetric pattern of price behavior of Asian markets has important implica-
tions for the price efficiency of domestic markets and offers arbitrage potential for global
investors to optimize returns through market diversification in a long-term perspective.

Olubiyi [37] assessed the relationship between economic integration and stock market
performance in Nigeria alongside its main trading partners. The author found a negative
relationship between US stock price and trade integration with Nigeria. The study made it
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possible to verify sectors that positively drive the Nigerian stock market, which could be
prioritized by the country’s trade policies.

Chukwuma et al. [38] carried out a study to demonstrate how forensic accounting can
be used to predict future financial performance. The authors used OLS data analysis, unit
root test and cointegration analysis. The results obtained revealed that forensic accounting
indicators are statistically significant and have a significant positive impact on the growth
of financial performance.

Jamil et al. [39] examined the impact of corporate social responsibility, leverage on
assets and company age on the performance of organizations. The study considered the
OLS model to estimate the impact and the use of the robustness factor so that the result
was reliable. The results showed that sustainable corporate social responsibility is the main
factor that enhances the company’s performance.

Abdelkafi et al. [40] investigated the dynamic relationship between pandemics and
government actions, such as government response rates and economic support packages.
The authors used a panel dataset to analyze the effect of government actions on stock market
returns. The empirical results showed the harmful effect of the COVID-19 pandemic on
stock prices, hence the risk-adverse behavior of investors.

According to [25], several studies have been carried out in different regions and
countries, analyzing the influence of banking or stock market finance on economic growth.
However, the results are still far from a meaningful conclusion. Therefore, our study
proposes a deeper and more detailed analysis of the topic. The methodology proposed in
this article presents a new model in terms of variables, adding the elementary risk factors
of SMB (SMBB/M, SMBOP and SMBINV) in explaining the future economic growth; besides
methodological differences to consider (i) the asymmetric distribution of the GDP growth rate
and (ii) the heterogeneity of GDP growth rates between developed and emerging countries.

3. Methodology

Given the process of integration of stock markets, this study analyzes, based on a
longitudinal quantile regression model and a two-level model with repeated measures,
whether the risk factors MKT, SMB, HML, RMW and CMA considered in [14], as well as
the three elementary risk factors (SMBB/M, SMBOP and SMBINV) of the SMB risk, capture
information that helps to explain the differences in GDP growth rates for a total of twelve
countries composed of G7 developed countries (Germany, Canada, United States, France,
Italy, Japan and United Kingdom) and BRICS emerging countries (South Africa, Brazil,
China, India and Russia) and whether these differences occur over time.

Thus, the longitudinal regression models for long panel data are estimated using
the quantile regression technique for the percentiles 0.05; 0.25; 0.50; 0.75; and 0.95. The
percentiles 0.05 and 0.25 represent the lowest growth rates, the percentile 0.50 denotes
median growth rate; and the percentiles 0.75 and 0.95 represent the highest growth rates. For
the purpose of comparing the magnitudes and signs of the coefficients, regression models
are estimated by Pooled Ordinary Least Squares (POLS). Two-level model with repeated
measures is estimated to verify whether there is variance in the economic performance over
time, and between countries over time, explained by the risk factors of [14] model.

We chose a sample that includes countries from different continents and sub-regions
that, in the set of all developed and emerging stock market countries, according to the
Morgan Stanley Capital International (MSCI) classification, represent the countries with
high economic development (G7) and high potential for economic development (BRICS).
We chose methodologies that considers: (i) that the statistical distribution of the dependent
variable—GDP growth rate presents an asymmetric distribution, in addition, the error terms
of the regression models do not show adherence to normality, which allows exploring
the different behaviors for the different percentiles of the conditional distribution, not
observable in the regression models to the mean estimated by the ordinary least squares
(OLS) method, and (ii) the technological development focused on computer science and
analysis software of data offers new approaches to panel data that allows estimating not
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only parameters by fixed effects, but also investigating the interaction between individual
explanatory variables and the random effects of intercept and slope [41] whose models
estimate parameters that present the best fit between actual and predicted values.

Hypothesis

Following the proposed objectives, using panel data, this study:

(1) First explores the relationship between the global risk factors MKT, SMB, HML, RMW
and CMA, as well as the three elementary risk factors (SMBB/M, SMBOP and SMBINV)
of the SMB, considered in the five-factor model by Fama and French (2015) and the
future economic performance of the BRICS and G7 countries.

(2) In the second moment, this study analyses (i) if there are significant differences, over
the years, in the economic performance of the G7 and BRICS countries, as well as (ii) if
these differences can be explained by the global risk factors of the model developed
by [14].

The studies that analyzed the relationship between future economic growth and the
risk factors of the models [13,14], such as [28,34,35], attested that such risk factors, of
regional and global nature, individually or in association with each other, help to predict
future domestic economic growth. The risk factors of a global nature of the developed and
emerging stock markets will be used to test the following investigation hypotheses:

Hypothesis 1. The global risk factors of [14] asset pricing model, individually or in association
with each other, explain the variability in future economic growth in BRICS and G7 countries.

Hypothesis 2. There is significant variability in the economic growth rates of BRICS and G7
countries over time.

Hypothesis 3. There is significant variability in the economic growth rates of BRICS and G7
countries over time across countries.

Hypothesis 4. The economic growth rates of BRICS and G7 countries follow a linear trend over
time, and there are differences in this trend between countries.

Hypothesis 5. The global risk factors of [14] asset pricing model help to explain the variability in
the future economic growth rate over time.

Hypothesis 6. Elementary size-effect risk factors associated with market beta risk help to explain
the variability in the rate of future economic growth over time.

In order to answer the first objective, simple and multiple quantile regression models
are estimated [35]. The analysis was carried out in three stages. The first stage consists
of the estimation of eight simple regression models, having each of the risk factors as
an explanatory variable, to assess whether the return in period t − 1 of each of the risk
factors individually explains the variability between the percentiles of the annual economic
performance, measured by the logarithmic growth rate of GDP for the twelve countries
under analysis. Equation (1) represents this first stage.

GDPi,t = αi + βijFactorij,t−1 + εi,t, j = 1, 2, . . . , 8. (1)

where, GDPi,t denotes the growth rate of the Gross Domestic Product of each observation
in the sample for period t, calculated logarithmically; Factor represents the returns of each
of the five (MKT, SMB, HML, RMW and CMA) and three elementary risk factors (SMBB/M,
SMBOP and SMBINV) in the previous period (t − 1) of each observation; and εi,t represents
the error terms.
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The second stage consists of estimating three multiple regression models, with two
explanatory variables represented by the Equation (2), which includes the MKT risk factor
and each elementary risk factor of the size effect (SMB).

GDPi,t = αi + β1MKTi,t−1 + β2Factori,t−1 + εi,t (2)

Factori,t−1 ∈ {SMBB/M,i,t−1, SMBOP,i,t−1, SMBINV,i,t−1}.
where, MKTit−1 represents the market returns in the previous period (t − 1) of each

observation; and Factor represents the global market returns of each of the three elementary
risk factors, SMBB/M, SMBOP and SMBINV in the previous period (t− 1) of each observation.

The third stage consists of estimating a multiple regression model represented by the
Equation (3), which includes the five risk factors of [14] model.

GDPi,t = αi + β1MKTi,t−1 + β2SMBi,t−1 + β3HMLi,t−1 + β4RMWi,t−1 + β5CMAi,t−1 + εi,t (3)

The estimates of the regression models by OLS are made using the statistical software
Gretl version 2021d. The estimates of the simple and multiple quantile regression models
offer results that allow us to reject or not the investigation hypothesis (H1), thus concluding
the first objective.

The second objective is to verify whether there is variability in the economic per-
formance of the countries under analysis over time, and between countries over time,
explained by risk factors. Thus, random coefficients models are estimated for two-level
data with repeated measures, in which the nesting of the data will be characterized by the
presence of repeated measures, that is, the existence of temporal evolution in the behavior
of GDP growth rates, following the procedures by [41–43].

Random coefficients models represent a generalization of regression methods, which
allow estimating the parameters of the fixed effects component (intercept and slopes) and,
simultaneously, estimating parameters of random effects of intercepts and slopes of differ-
ent subgroups of the sample, given certain individual and group characteristics [41–43].

In this study, a two-level model with repeated measures is applied, where the same
observation is evaluated in more than one period. The two levels of analysis are formulated
in two sub-models that represent, respectively, individual variability in the economic
performance of countries over time (level 1) and variability in economic performance
(represented by the GDP growth rate) between countries (level 2).

Based on [41–43], the models to be estimated follow the step-up strategy procedure,
which consists, at first, of analyzing the variance decomposition from the definition of a
null model with repeated measures (to access the existence of temporal evolution of the
distribution of the dependent variable) which is characterized by the absence of explanatory
variables and presents estimates of the parameters of fixed and random effects, of which
the variance component between the two levels (variance in time and between countries)
provides an intraclass correlation index that measures the proportion of total variance that
is due to levels 1 and 2, and serves as a comparison for the estimates of conditional models
(models with explanatory variables).

In this sequence, models with random intercepts and a model with intercepts and
random slopes are estimated. The comparison of the performance of the estimations is
based on the restricted likelihood ratio test—Log restricted-likelihood, obtained by the
difference of the logarithms of the two restricted likelihood functions. Finally, from the
identification of the random character of the error terms (intercept or intercept and slope)
the complete model is formulated with the inclusion of explanatory variables of level 2. The
final model must be estimated according to the statistical significance of the explanatory
variables that result of the complete model. For this study, given the absence of level 2
data, the analysis of the complete model focuses only on the interaction between level 1
risk factors and level 2 random effects, to capture any contextual heterogeneities. Thus, in
order to obtain the best estimator, random coefficients models will be estimated without
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the explanatory variables in the fixed effects component, however, with random slopes
precisely in the temporal evolution.

Thus, the null model to be estimated is expressed in the Equation (6).
Level 1 (Repeated Measure) of the null model is expressed in Equation (4):

GDPt,i = β0i + rt,i, rt,i ∼ N(0, σ2
i ) (4)

where, t = 1, 2, . . . , Ti (years) and i = 1, 2, . . . , n (countries); β0i denotes the expected
(average) GDP growth rate of country i in year 1; and σ2 is the variance “within” the country.

Level 2 (Country) of the null model is expressed in Equation (5):

β0i = γ00 + u0i u0i ∼ N(0, τ0i) (5)

where, γ00 is the general average of GDP growth rates; τ0i is the variance between expected
GDP growth rates of each country.

Thus, the null model (combining Equations (4) and (5)) is expressed in Equation (6):

GDPt,i = γ00 + u0i + rt,i (6)

Given the existence of two proportions of variance (σ2 and τ00), the level 2 intraclass
correlation index (ρ), which measures the relationship between the idiosyncratic and group
error terms, is calculated according to Equation (7).

ρ =
τ00

τ00 + σ2 (7)

The intraclass correlation coefficient (ρ) varies between 0 and 1. A null value means
that there was no variance of individuals between the level 2 groups (country), so estimates
from random coefficients models are not appropriate; and a positive value indicates the
presence of at least one statistically significant error term of level 2, therefore the estimations
of regression parameters by OLS are not adequate [41,43], and a random coefficients model
should be adopted. To this end, the likelihood ratio test (LR test) is analyzed in order
to verify whether the error terms of the variance components of the random effects of
intercepts (τ00) are statistically different from zero.

The null model allows that hypotheses 2 and 3 to be tested. If the investigation
hypotheses (H2) and (H3) are statistically supported, for the verification of the hypothesis
(H4), two random coefficients models are estimated that include a trend component,
variation over time at level 1.

The first model, represented by Equation (10) considers only random intercept effects.
Level 1 (Repeated Measure) is expressed in Equation (8):

GDPt,i = β0i + β1iYEARt,i + rt,i rt,i ∼ N(0, σ2
i ) (8)

where, β1i is the country i GDP growth rate; e YEARti is the explanatory variable of level 1,
which represents the repeated measure of the temporal variable. A repeated measure is
defined by the temporal evolution within the multilevel panel.

Level 2 (Country) is expressed in Equation (9):

β0i = γ00 + u0i β1i = γ10 u0i ∼ N(0, τ0i) (9)

where, γ10 is the overall average of expected GDP growth rates.
Thus, the random intercept model (combining Equations (8) and (9)) is expressed in

Equation (10):
GDPt,i = γ00 + γ10iYEARt,i + u0i + rt,i (10)

The second model, represented by the Equation (13), includes the random effects of
the slopes, therefore, considering the random effects of intercepts and slopes.

Level 1 (Repeated Measure) is expressed in Equation (11):
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GDPt,i = β0i + β1iYEARt,i + rt,i, rt,i ∼ N
(

0, σ2
i

)
(11)

Level 2 (Country) is expressed in Equation (12):

β0i = γ00 + u0i β1i = γ10 + u1i u0i ∼ N(0, τ00) u1i ∼ N(0, τ11) (12)

where, τ11, variance between expected growth rates across countries.
Thus, the random intercept and slope model (combining Equations (11) and (12)) is

expressed in Equation (13a):

GDPt,i = γ00 + γ10iYEARt,i + u0i + u1iYEARt,i + rt,i (13a)

Given the existence of three proportions of variance (σ2, τ00 and τ11), the level 2
intraclass correlation index (ρ) is calculated according to Equation (13b).

ρ =
τ00 + τ11

τ00 + τ11 + σ2 (13b)

The best fit between the estimates of the models with random intercepts and with
random intercepts and slopes is given by the result of the restricted-likelihood ratio test
(Log restricted-likelihood), obtained by the difference of the logarithms of the two restricted
likelihood functions.

Once the randomness of the error terms has been identified, that is, a model with
only random intercepts, or a model with random intercepts and slopes is selected, which
supports the research hypothesis (H4), a complete model is proposed that includes the
interaction between the risk factors and the random effects of intercepts and slopes at
level 2, for the verification of the investigation hypothesis (H5), as represented in the
Equations (14) and (15).

Level 1 (Repeated Measure) is expressed in Equation (14):

GDPt,i = β0i + β1iYEARt,i + β2iMKTt,i−1 + β3iSMBt,i−1 + β4iHMLt,i−1 + β5iRMWt,i−1 + β6iCMAt,i−1 + rt,i (14)

Level 2 (Country) is expressed in Equation (15):

β0i = γ00 + u0i β1i = γ10 + u1i β2i = γ20 + u2i β3i = γ30 + u3i β4i = γ40 + u4i
β5i = γ50 + u5i β6i = γ60 + u6i

(15)

To answer the research hypothesis (H6), a complete model will be estimated, repre-
sented by the (i) Equations (16) and (19), (ii) Equations (17) and (19) and (iii) Equations (18)
and (19), respectively, (i) considering the elementary risk factor B/M of the size risk factor:
size B/M (SMBB/M), (ii) considering the elementary risk factor operating profit of the size
risk factor: size operating profit (SMBOP) and (iii) considering the elementary risk factor
investment of the size risk factor: size investment (SMBINV). This formulation is discussed
by [24,38]. Level 1 (Repeated Measure) are expressed in Equations (16)–(18):

Considering size B/M (Equation (16)):

GDPt,i=β0i+β1iYEARt,i +β2iMKTt,i−1+β3iSMBB/M,t,i−1+rt,i (16)

Considering size operating profit (Equation (17)):

GDPt,i = β0i + β1iYEARt,i + β2iMKTt,i−1 + β3iSMBOP,t,i−1 + rt,i (17)

Considering size investment (Equation (18)):

GDPt,i = β0i + β1iYEARt,i + β2iMKTt,i−1 + β3iSMBINV,t,i−1 + rt,i (18)

Level 2 (Country) is expressed in Equation (19):

β0i = γ00 + u0i β1i = γ10 + u1i β2i = γ20 + u2i β3i = γ30 + u3i (19)
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The composition of the final complete model will be done through the stepwise
procedure, which consists of the step-by-step inclusion of each explanatory variable, in
which a statistical significance of 10% is assumed [41]. This formulation is discussed
by [24,38].

The fixed effects parameters and the error terms variances of the random effects
component of the random coefficients model are estimated by the maximum likelihood
method that produces the z test, to measure statistical significance of the fixed effect
component and, Wald’s z test, to measure the variance component of random effects.
Model estimations are obtained using SPSS 22 and Stata 14 statistical software.

Table 1 presents the research hypotheses as well as the methods to be used for their
validation.

Table 1. Research hypotheses and methodologies for their validation.

Research Hypotheses Methodology

H1: The global risk factors of [14] asset pricing model,
individually or in association with each other, explain the
variability in future economic growth in BRICS and
G7 countries.

Quantile regression modeling for longitudinal repeated
measures data
Longitudinal models of simple and multiple regression, with
five explanatory variables, the risk factors of [14] model

H2: There is significant variability in the economic growth rates
of BRICS and G7 countries over time. Random coefficients modeling

Null ModelH3: There is significant variability in the economic growth rates
of BRICS and G7 countries over time across countries.

H4: The economic growth rates of BRICS and G7 countries
follow a linear trend over time, and there are differences in this
trend between countries.

Random coefficients modeling
Linear trend model with random intercept effects
Linear trend model with random intercept and slope effects

H5: The global risk factors of [14] asset pricing model help to
explain the variability in the future economic growth rate
over time.

Random coefficients modeling
Full model—Linear trend model with random effects and
interaction of explanatory variables at level 1, risk factors, from
[14] model and the random effects of slope at level 2 in order to
capture differences in rates of economic growth of each country

H6: Elementary size-effect risk factors associated with market
beta risk help to explain the variability in the rate of future
economic growth over time.

Table 2 summarizes the variables definitions and the expected relationships to the
output variable according to the literature review.

The confirmation of a positive relationship between future economic growth and risk
factors supports the arguments of [13,14,16] that risk factors obtained from company char-
acteristics reflect proxies of variables of unidentified states that produce non-diversifiable
risks in returns not estimated by the CAPM and represent innovations that affect the set of
future investment opportunities, in the context of the ICAPM, and have three implications:
(1) in the face of the risk-based explanation, there is a dual function of the asset pricing
models, that is, they act as (1.i) instruments for analyzing the company’s cost of capital
and the investment portfolio management, and (1.ii) auxiliary indicator for forecasting
economic growth, which, according to [19], in periods of expected economic growth the
shares of small companies, with high B/M ratios and operating profit and with low in-
vestment index are better able to prosper than the stocks of large companies, with low
B/M ratios and operating income and with high investment ratio, so when the market
signals that the business cycle is unfavorable, investors seek to hold stock portfolios with
good growth opportunities and a low debt ratio, (2) they act as substitutes for sources of
risk in the real economy and (3) in view of the integrating process, moderately integrated
markets [5,6,14], selectively offers complementary information to investors for decision
making on the selection and formation of the investment portfolio.

222



Mathematics 2022, 10, 4013

Table 2. Variables definition and the expected relationship according to the literature review.

Variables Variable Definition Expected Signal Reference

Dependent Variable

Economic performance (GDP) GDP growth rate [19,26–35]

Independent Variables—Stock market risk factor

Market beta risk factor (MKT) Difference between the market portfolio rate of
return and the risk-free rate Positive [19,26–35]

Size B/M (SMBB/M) [13]
Difference between the returns of diversified

portfolios of stocks of small and large companies
with high and low B/M ratio

Positive [19,26–34]

Size operating profit (SMBOP) [14]
Difference between returns of diversified portfolios

of stocks of small and large companies with high
and low operating income

Positive N.A.

Size investment (SMBINV) [14]
Difference between the returns of diversified

portfolios of stocks of small and large companies
with low and high investment

Positive N.A.

Size (SMB) [14] Difference between the returns of diversified
portfolios of stocks of small and large companies Positive [33–35]

B/M ratio (HML) Difference between the returns of diversified
portfolios of high and low B/M ratio stocks Positive [19,26–35]

Operating profitability (RMW)
Difference between returns on diversified portfolios

of stocks of companies with high and low
operating income

Positive [33–35]

Investment (CMA) Difference between returns on diversified portfolios
of stocks of low and high investment companies Positive [33–35]

4. Data

4.1. Sample

For the present study, historical series of annual data valued in US dollars were
collected for the period between January 1993 and December 2019 referring to the Gross
Domestic Product (GDP), at constant prices and base year 2010, from a total of twelve
countries among developed (Germany, Canada, United States, France, Italy, Japan and
United Kingdom) and emerging (South Africa, Brazil, China, India and Russia), according
to Morgan Stanley Capital International (MSCI) classification, extracted from the World
Bank database; and global risk factor returns for developed and emerging stock markets,
obtained from the Kenneth French database.

4.2. Univariate Analysis

Table 3 presents the descriptive statistics of the variance decomposition of the variables,
dependent (GDP growth rate) and explanatory (risk factors of developed and emerging
countries), for a data structure in a balanced longitudinal panel with 26 periods, year (from
1994 to 2019, GDP; 1993 to 2018, risk factors), and for each of the 12 countries under analysis,
totaling 312 observations.

Given the panel data structure of the sample under analysis, overall (general), within
(variation over time for a given individual) and between (variation between individuals)
variances are reported.
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Table 3. Descriptive statistics—Decomposition of variance.

Variable Mean Std Deviation Minimum Maximum Observations

GDP
Overall 0.02827 0.03243 −0.13433 0.13305 N.T = 312
Between 0.02350 0.00734 0.08780 N = 12
Within 0.02332 −0.12599 0.10365 T = 26

MKT
Overall 0.08472 0.26108 −0.55360 0.86370 N.T = 312
Between 0.01842 0.06982 0.10560 N = 12
Within 0.26048 −0.57447 0.84283 T = 26

SMB
Overall 0.02072 0.09402 −0.17240 0.44850 N.T = 312
Between 0.00573 0.01608 0.02721 N = 12
Within 0.09386 −0.16777 0.44201 T = 26

SMBB/M

Overall 0.00741 0.09019 −0.17730 0.34440 N.T = 312
Between 0.00077 0.00679 0.00828 N = 12
Within 0.09019 −0.17668 0.34353 T = 26

SMBOP

Overall 0.03244 0.09265 −0.16873 0.43013 N.T = 312
Between 0.00734 0.02651 0.04075 N = 12
Within 0.09238 −0.16280 0.42182 T = 26

SMBINV

Overall 0.02230 0.10512 −0.18020 0.57103 N.T = 312
Between 0.00907 0.01497 0.03258 N = 12
Within 0.10476 −0.17286 0.56076 T = 26

HML
Overall 0.06319 0.14011 −0.30320 0.50870 N.T = 312

Between 0.03347 0.03611 0.10111 N = 12
Within 0.13638 −0.27612 0.47078 T = 26

RMW
Overall 0.02801 0.09050 −0.51730 0.12860 N.T = 312
Between 0.01633 0.00951 0.04122 N = 12
Within 0.08914 −0.49881 0.13839 T = 26

CMA
Overall 0.03167 0.09953 −0.26800 0.30940 N.T = 312
Between 0.01144 0.02242 0.04463 N = 12
Within 0.09892 −0.25874 0.29644 T = 26

Obs.: N.T: total observations; N: number of countries; T: number of periods.

For the dependent variable, GDP growth rate, the variation between countries (be-
tween effect) is slightly higher than the variation over time for a given country (within
effect), which indicates the existence of variation in economic performance between the
countries. With respect to the explanatory variables, the risk factors showed greater vari-
ation over time (within effect) than between individuals (between effect). The minimum
and maximum values, respectively, indicate that the economic performance (GDP) of the
between effect was in the range from 0.734% to 8.78%, and in relation to the performance of
the within effect, the it was in the range from −12.599% to 10.365%.

5. Multivariate Analysis

5.1. Quantile Regression Analysis

This section analyzes the relationship between risk factors and GDP in twelve devel-
oped and emerging countries that are part of G7 (Germany, Canada, the United States,
France, Italy, Japan and the United Kingdom) and BRICS (South Africa, Brazil, China, India
and Russia), through the estimation of linear longitudinal regression models for long panel
data, using the quantile regression technique for the percentiles 0.05; 0.25; 0.50; 0.75; and
0.95. For the purpose of comparing the magnitudes and signs of the parameters, the POLS
regression model is also used. Thereafter, beginning at Table 4, the existence of variation in
economic performance is analyzed, through the decomposition of the variance, based on
random coefficients modeling.
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Table 4. Simple and multiple regression estimates.

Model Pooled OLS
Quantile Regression

0.05 0.25 0.50 0.75 0.95

Panel A: GDPi,t = α+ βFatori,t−1 + εi,t

1 MKT
Coef 0.036 *** 0.079 *** 0.045 *** 0.038 *** 0.037 *** 0.019 **
SE 0.006 0.011 0.003 0.004 0.011 0.008

2 SMB
Coef 0.020 0.124 * 0.042 ** 0.036 ** 0.015 0.089 **
SE 0.019 0.067 0.016 0.016 0.024 0.039

3 HML
Coef 0.032 0.079 ** 0.020 * 0.036 *** 0.045 *** 0.088 ***
SE 0.013 0.035 0.010 0.010 0.016 0.018

4 RMW
Coef −0.037 0.190 ** −0.035 ** −0.052 *** −0.098 *** −0.071
SE 0.020 0.082 0.015 0.014 0.031 0.045

5 CMA
Coef −0.019 −0.168 *** −0.029 ** −0.016 0.004 0.035
SE 0.018 0.028 0.014 0.014 0.021 0.049

6 SMBB/M
Coef 0.013 0.122 0.033 * 0.030 ** −0.010 0.048 *
SE 0.020 0.084 0.019 0.015 0.021 0.026

7 SMBOP
Coef 0.027 0.133 ** 0.044 *** 0.034 ** 0.026 0.099 ***
SE 0.019 0.064 0.016 0.017 0.023 0.021

8 SMBINV
Coef 0.018 −0.095 0.034 ** 0.033 ** 0.018 0.074 ***
SE 0.017 0.062 0.012 0.015 0.021 0.021

Panel B: GDPi,t = αi + β1MKTi,t−1 + β2Fatori,t−1 + εi,t

9
MKT

Coef 0.039 *** 0.081 *** 0.045 *** 0.040 *** 0.043 *** 0.017 *
SE 0.007 0.011 0.004 0.005 0.011 0.009

SMBB/M
Coef −0.025 −0.045 −0.010 −0.009 −0.029 0.014
SE 0.020 0.033 0.010 0.015 0.032 0.025

10
MKT

Coef 0.037 *** 0.08 1 *** 0.045 *** 0.037 *** 0.036 *** 0.005
SE 0.007 0.014 0.004 0.005 0.012 0.008

SMBOP
Coef −0.010 −0.039 0.000 0.016 −0.012 0.089 ***
SE 0.020 0.039 0.011 0.014 0.033 0.023

Model Pooled OLS
Quantile regression

0.05 0.25 0.50 0.75 0.95

11
MKT

Coef 0.039 *** 0.083 *** 0.044 *** 0.038 *** 0.039 *** 0.009
SE 0.007 0.011 0.004 0.006 0.011 0.018

SMBINV
Coef −0.019 −0.033 −0.005 0.008 −0.013 0.056
SE 0.018 0.027 0.009 0.014 0.026 0.044

Panel C: GDPi,t = αi + β1MKTi,t−1 + β2SMBi,t−1 + β3HMLi,t−1 + β4RMWi,t−1 + β5CMAi,t−1 + εi,t

12

MKT
Coef 0.039 *** 0.089 *** 0.049 *** 0.046 *** 0.025 *** 0.007 ***
SE 0.008 0.015 0.004 0.008 0.010 0.002

SMB
Coef −0.017 0.035 −0.016 −0.001 −0.025 0.107 ***
SE 0.023 0.041 0.012 0.023 0.026 0.005

HML
Coef 0.038 *** 0.019 0.026 *** 0.039 ** 0.055 *** 0.050 ***
SE 0.017 0.029 0.009 0.016 0.019 0.003

RMW
Coef 0.037 0.235 *** 0.016 0.028 −0.044 0.020 ***
SE 0.028 0.048 0.014 0.027 0.031 0.006

CMA
Coef −0.017 0.039 0.004 −0.025 −0.028 0.067 ***
SE 0.023 0.040 0.012 0.022 0.025 0.005

Obs.: Coef: coefficient; SE, standard error; ***, **, *, p < 1%, 5% and 10%.

Through Panel A of Table 4, it is observed that the estimates obtained by the simple
quantile regression, represented by the Equation 1, indicate that all models presented a posi-
tive and statistically significant relationship, at least in one of the five percentiles under anal-
ysis, except model 5, estimated with the explanatory variable CMA. The magnitude of the
coefficients varied between 1.9% (MKT—0.95 percentile) and 7.9% (MKT—0.05 percentile);
3.6% (SMB—0.50 percentile) and 12.4% (SMB—0.05 percentile); 2% (HML—0.25 percentile) and
8.8% (HML—0.95 percentile);−9.8% (RMW—0.75 percentile) and 19% (RMW—0.05 percentile);
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3% (SMBB/M—0.50 percentile) and 4.8% (SMBB/M—0.95 percentile); 3.4% (SMBOP—0.50 per-
centile) and 13.3% (SMBOP—0.05 percentile); and between 3.3% (SMBINV—0.50th percentile)
and 7.4% (SMBINV—0.95 percentile), compared to the mean value of 3.6% (MKT), the only
statistical significant coefficient (at the 5% level) of the POLS estimation.

Regarding the results of multiple quantile regression, with two explanatory variables
composed of (i) each elemental risk factor of size effect associated with the (ii) beta market
risk, represented by the Equation 2 (Panel B of Table 4), it can be seen that differently from
the negative mean values of POLS estimation, in the presence of the MKT risk factor, the
coefficients estimated by the risk factors SMBB/M, SMBOP and S SMBINV present them-
selves positive at least in one percentile of the entire conditional distribution of economic
performance. Within the five percentiles under analysis, SMBOP presented a positive and
statistically significant coefficient with a magnitude of 8.9% (SMBOP—0.95 percentile). The
risk factor SMBINV showed positive and statistically significant coefficients between the
0.86 (6.83%) and 0.99 (9.85%) percentiles, as illustrated in Figure 1.

 
Figure 1. Performance of the SMBINV risk factor on the percentiles and conditional average of the
GDP growth rate of the BRICS and G7 countries.

Figure 1 illustrates the individual performance of the risk factor SMBINV, on the
conditional quantile distribution, as well as the estimation by OLS, of the GDP growth rate
of BRICS and G7 countries. The vertical and horizontal lines show, respectively, the risk
factor coefficients and the percentiles (tau) from 0 to 1. The solid blue line represents the
estimated mean coefficient obtained through OLS, and the dotted blue lines the respective
confidence intervals at 95%. The shaded area represents the confidence intervals of the
parameters obtained through the estimation of the quantile regression models, with the
black line being the average estimation of the parameters for each of the percentiles under
analysis. Thus, through Figure 1, it can be seen that for the conditional performance to
the risk factors MKT and SMBINV, ceteris paribus, the positive coefficients were observed
between the percentiles 0.43 and 0.58, 0.63 and 0.66, and between 0.84 and 0.99, however,
statistically significant values were estimated between the 0.86 and 0.99 percentiles, as
illustrated in Figure 1.

Regarding the multiple quantile regression model, with five explanatory variables
being the global risk factors of developed and emerging countries considered in the asset
pricing model of [14], represented by the Equation (3), it can be noted in Panel C of Table 4,
with statistical significance at the 5% level, that risk factors help to explain the variation
in the future economic performance of BRICS and G7 countries, at least in one percentile
of the conditional distribution of GDP growth rates. Ceteris paribus, the MKT risk factor
remained the central element of the explanation for the variability of economic growth in
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the five percentiles under analysis, with the magnitude of the coefficients varying between
2.5% (MKT—0.75 percentile) and 8.9% (MKT—0.05 percentile), compared to the mean
value of 3.9% (MKT) of statistical significance, at the 5% level, obtained through the POLS
estimation.

The SMB and CMA factors, respectively, showed positive and statistically signifi-
cant coefficients, in one percentile, with magnitudes of 10.7% (SMB—0.95 percentile) and
6.7% (CMA—0.95 percentile), and the risk factors, respectively, RMW and HML, showed
positive coefficients of statistical significance at two and four percentiles, respectively,
ranging between 2% (RMW—0.95 percentile) and 23.7% (RMW—0.05 percentile), and
between 2.6% (HML—0.25 percentile) and 5.5% (HML—0.50 percentile), compared to the
mean value of 3.8% for HML, of statistical significance at the 5% level. As a consequence,
the results presented here support the observations of [19] on the ability of risk factors
to predict future economic growth, and in line with the study by [35] sheds light on the
performance of global risk factors of developed and emerging equity markets in forecasting
domestic economic performance, given the process of integration of stock markets. Based
on the above, the research hypothesis (H1) is supported.

As noted by [41,44,45], the main utility of longitudinal data modeling is the fact that
it allows the analysis of possible differences in the performance behaviors of individuals
over time. However, without the effect of the panel structure on the data, the parameter
estimators can be analyzed through OLS estimation, considering individual time series
regression models. Thus, for the purpose of comparing the magnitudes and signs of
the coefficients of the explanatory variables, Table A1 in Appendix A presents, for each
country under analysis, the parameter estimates of six linear models of simple and multiple
regression, with two explanatory variables being (i) each elemental risk factor of size effect
associated with (ii) market beta risk, for time series data, using the quantile regression
technique for the percentiles 0.05; 0.25; 0.50; 0.75; and 0.95.

For the purpose of comparing the magnitudes and signs of the parameters, the OLS
regression model is also used. For the models estimated by OLS that showed autocorrelation
and heteroscedasticity of residuals, the robust estimators of [46,47] were applied, which,
although they do not correct the standard error, adjust the significance bands for the
estimation, eventually, of more parsimonious models. Through Panel A of Table A1 in
Appendix A, it is observed that for the estimates obtained by the simple quantile regression,
the three models presented a positive and statistically significant relationship, at least in
one of the five percentiles under analysis, of all countries, except for South Africa (SMBOP),
Brazil (SMBB/M and SMBOP) and Russia (SMBB/M, SMBOP and SMBINV).

For the three models, the asymmetry of the GDP growth rate vis-à-vis the explana-
tory variable varied between 2.9% (India, SMBINV—0.75 percentile) and 29.6% (Canada,
SMBB/M—0.05 percentile), compared to the mean value of 7.8% (Japan, SMBB/M) of statisti-
cal significance, at the 5% level of estimation by OLS. However, beyond the five percentiles
under analysis, the risk factors SMBB/M and SMBOP, showed a positive and statistically
significant relationship to explain future economic performance, at least in one quantile for
South Africa, 10.1% (SMBOP—percentile 0.01) and for Brazil, 10.4% (SMBB/M—percentile 0.30)
and 16.8% (SMBOP—percentile 0.80), as illustrated in Figures A1–A3 in Appendix A. In gen-
eral, within the five percentiles under analysis, for the three risk factors, the positive
coefficients of statistical significance and with high magnitude were in the percentiles
below the median, with a variation between 3.3% (India, SMBB/M,—0.75th percentile)
and 29.6% (Canada, SMBB/M—0.05 percentile), 3% (India, SMBOP—0.75th percentile) and
29.4% (Canada, SMBOP—0.05 percentile), and 2.9% (India, SMBINV—0.05 percentile) and
27.5% (Canada, SMBINV—0.05 percentile), for SMBB/M, SMBOP and SMBINV, respectively.

Regarding the results of three multiple quantile regression models (Panel B of Ta-
ble A1 in Appendix A), with two explanatory variables, as expected, it can be seen
that within the five percentiles under analysis, in the presence of the MKT risk factor,
the elementary risk factors SMBB/M, SMBOP and SMBINV remained positive at least in
percentile of the conditional distribution of economic performance of all countries un-
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der analysis, except for South Africa, Brazil, United Kingdom and Russia (SMBB/M and
SMBINV). Thus, ceteris paribus, the magnitude of the positive and statistically significant
coefficients of the risk factors, respectively, SMBB/M, SMBOP and SMBINV, varied be-
tween 2.4% (India, SMBB/M—0.95 percentile) and 9.4% (China, SMBB/M—0.25 percentile),
3.1% (India, SMBOP—0.95 percentile) and 9% (Italy, SMBOP—0.05 percentile), and 3% (In-
dia, SMBINV—0.95 percentile) and 8.2% (Italy, SMBINV—0.05 percentile), compared to the
mean values of 4.8% (SMBOP, Japan) and 4.5% (SMBINV, China) of statistical significance at
the 10% level, obtained through the estimation by OLS.

However, beyond the five percentiles under analysis, the risk factors SMBB/M, SMBOP
and SMBINV, respectively, showed a positive and statistically significant relationship to explain
future economic performance, in a South African percentile, 2.1% (SMBB/M—0.01 percentile)
and 2% (SMBOP—0.01 percentile), Brazil, 3.9% (SMBOP—0.12 percentile) and 3.1% (SMBINV—
0.13 percentile), and United Kingdom, 2% (SMBOP—0.01 percentile).

Thereafter, Table A2 in Appendix B, presents the results of each of the seven linear
longitudinal regression models for long panel data, through the estimation of fixed effects,
random effects, POLS, fixed effects with AR(1) error terms, random effects with AR(1)
error terms, POLS with AR(1) error terms, and model with GLS (General Least Squares)
estimation method with AR(1) error terms. It can be noted that the estimated parameters
vary between models.

In general, it is observed that the fixed effects, random effects and POLS models
present slightly higher standard errors compared to those obtained by the respective AR(1)
error term models. The estimations with the GLS method are the most adequate, the
parameters have slightly lower standard errors compared to those obtained by the other
models. All risk factors showed positive coefficients in at least four models, except for
CMA. The MKT risk factor was statistically significant in all models. With the exception
of SMB and CMA risk factors, all risk factors showed statistical significance (in positive
coefficients) in at least three models. The Hausman test applied to fixed and random effects
models with AR(1) error terms support the null hypothesis that regression models with
random effects provide consistent estimators of the parameters.

All these complementary analyses based on tables and figures in Appendices A and B,
also support hypothesis (H1).

5.2. Random Coefficients Modeling

The existence of heterogeneity of within and between effects on economic performance
between BRICS and G7 countries, according to the results presented in Table 3 on the
variance decomposition, offers an opportunity through random coefficients modeling to
investigate whether in fact there is significant variability, over time, in the economic growth
rates of BRICS and G7 countries and whether this variability occurs between countries as
a function of risk factors, considering the random variability of intercepts and slopes. As
a consequence, the research hypotheses (H2, H3, H4, H5 and H6) stated will be verified.
Table 5 presents the estimates of the two-level random coefficients models (Level 1: time
or repeated measure and Level 2: country) with repeated measures, for a balanced panel
data structure with 26 annual periods (from 1994 to 2019) for each of the countries under
analysis, totaling 312 observations.

Table 5 presents the estimated results for the null model, without any explanatory
variable, represented by the Equation 6. This estimate aims to analyze the existence or
not of variability of error terms and the decomposition of variance between levels. If the
intraclass correlation is different from zero, OLS estimates do not offer the best estimator of
statistical significance other than zero, which justifies the application of random coefficients
modeling [41–43].
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Table 5. Variance Decomposition—Null Model.

Fixed Effect Coefficient Std Error z

Global Mean—GDP 0.028 *** 0.007 4.17

Random Effect Variance Components (%) Std Error (%) z

Level 1 (time)
Temporal Variation (rti) 0.056 *** 0.005 12.25

Level 2 (country)
Country Variation—Intercept (u0i) 0.053 ** 0.024 2.25

Variance Decomposition % per Level

Level 1 (time) 51.512
Level 2 (country) 48.488
LR test vs. OLS 158.32 ***

Log restricted-likelihood 701.36
Obs.: ***; ** p < 1% and 5%.

Through the analysis of the results presented in Table 5, there are significant differences
in economic performance (GDP growth rates) between BRICS and G7 countries and these
differences also occur over time, that is, in the period of 1994 to 2019. The parameter of
the fixed effects component (global mean of expected economic performances, γ00) and
the estimates of the variance component of the error terms (rti and u0i) different from
zero, at a significance level of 5%, which is why random coefficients modeling is justified.
Regarding the coefficients of random effects, the variance decomposition indicates that
51.512% (z = 12.25; p < 0.01) of the variability in economic performance was due to the
temporal evolution in each country, however, 48.488% (z = 2.25; p < 0.05) of the total
variance of economic performance is due to differences between countries.

The result of the likelihood ratio test (LR test; LR test = 158.32; p X2 = 0.00 < 0.01),
which compares the robustness of the estimate (in terms of values expected) of random
coefficients model in relation to linear regression by OLS (LR test vs. OLS), indicates that at
the significance level of 5%, the random intercepts are not equal to zero, thus proving that
for the repeated measures data for the analyzed period, estimation of a linear regression
model by OLS, which produces only fixed effects coefficients, is not the most indicated.
The null model results support the research hypotheses (H2) and (H3).

With the verification of the existence of significant variances in economic performance
(i) over time, and (ii) over time, between countries, a temporal explanatory variable, YEAR
at level 1, is included according to the proposed model, represented by the Equation (10).
This model seeks to analyze whether the variable corresponding to time (linear trend) is
statistically significant to explain the temporal variability in performance.

Table 6 presents the results of the linear trend model with random intercept effects.
Through the analysis of Table 6, it can be seen that with the inclusion of the explanatory

variable of linear trend, YEAR at level 1, the parameters of intercept fixed effects, global
mean of GDP (z = 4.88, p < 0.01) and the global means of the rates of change of GDP
growth (parameter of the linear trend variable, YEAR; z = −2.85; p < 0.05) are statistically
different from zero, at the significance level of 5%. The random intercept coefficients
(σ2 = 0.055%; z = 12.23; p < 0.01; τ00 = 0.053%; z = 2.26, p < 0.05) are statistical significant,
at 5% significance level. Indeed, the intraclass correlation (ρ) indicates that 50.9% of the
variance is due to the time evolution in each country and 49.1% of the total variance in
economic performance is due to differences between countries.

There is a slight increase in the proportion of the variance component of the level 2
intercept in relation to the null model (ρ = 48.488%).The result of the likelihood ratio test
(LR test = 161.46; p X2 = 0.00 < 0.01) at a significance level of 5%, indicates the rejection of
the null hypothesis that the intercepts of random effects are equal to zero, so the random
coefficients model with repeated measures offers better estimates than the linear fit model
by OLS.
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Table 6. Variance Decomposition—Linear Trend Model with Random Intercepts Effects.

Fixed Effect Coefficient Std Error z

Global Mean—GDP 0.035 *** 0.007 4.88
YEAR −0.001 *** 1.77 × 10−4 −2.85

Random Effect Variance Component (%) Std Error (%) z

Level 1 (time)
Temporal Variation (rti) 0.055 *** 0.005 12.23

Level 2 (country)
Country Variation—Intercept (u0i) 0.053 ** 0.024 2.26

Variance Decomposition % per Level

Level 1 (time) 50.900
Level 2 (country) 49.100
LR test vs. OLS 161.46 ***

Log restricted-likelihood 697.67
Obs.: ***, ** p < 1% and 5%.

Table 7 presents the expected values of the random effects temporal intercept terms
for the economic performance (GDP) of the twelve countries under analysis. These results
are illustrated in Figure 2.

Table 7. Expected Values of Intercepts of Random Effects by Country Estimated by the Linear Trend
Model of Explanatory Variable Level 1—YEAR.

Country Random Intercept Country Random Intercept

Brazil −0.00412 Italy −0.02012
Canada −0.00366 Japan −0.01827
China 0.05725 Russia −0.00802
France −0.01126 South Africa −0.00216

Germany −0.01361 UK −0.00654
India 0.03371 United States −0.00319

Figure 2. Expected values of intercepts of random effects by country estimated by the linear trend
model of explanatory variable level 1—YEAR.

The expected error terms of random intercepts for the GDP of the same country do
not vary over time, however, they vary between the GDP of each country, so, according
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to [41–43], it establishes the existence of an intercept for each country. Through the analysis
of Table 7 and Figure 2, it can be seen that, on average, the initial economic performance
dependent on the explanatory variable YEAR was of in the range from −2.012% (Italy)
to 5.725% (China). Two countries, China and India, presented positive random temporal
intercept terms, with a minimum magnitude of 3.371% (India).

Table 8 presents the results of the linear trend model with random effects of intercepts
and slopes, represented by the Equation (13a).

Table 8. Variance Decomposition—Linear Trend Model with Random Intercepts and Slopes Effects.

Fixed Effect Coefficient Std Error z

Global Mean—GDP 0.035 *** 0.007 4.86

YEAR −0.001 *** 1.941 × 10−4 −2.60

Random Effect Variance Component (%) Std Error (%) z

Level 1 (time)
Temporal variance (rti) 0.055 *** 0.005 11.96

Level 2 (country)
Country Variance—Intercept (u0i) 0.054 ** 0.024 2.20

Country Variance—Slope (u1i) 7.9 × 10−8 1.78 × 10−7 0.44

Variance Decomposition % per Level

Level 1 (time) 50.411
Level 2 (country) 49.589
LR test vs. OLS 161.71 ***

Log restricted-likelihood 697.79 X2 p
LR test—Random Intercept Model vs. Random Intercept and

Slope Model 0.26 0.61

Obs.: ***, ** p < 1% and 5%.

The statistical results support that for the analyzed period, there were no significant
variances of slopes in economic performance over time between different countries. It is
observed that the estimates of the fixed effects parameters (global means of the intercept,
γ00 = 0.035), the global mean of the GDP growth rate (γ10 = −0.001) and of the residual
variance (σ2 = 0.055) in the model with intercept and random slopes do not differ from
those obtained in the model with only random intercepts (see Table 6), because the variance
component of the random slope terms (u1i) has statistical significance (z = 0.44; p > 0.05)
equal to zero. In fact, the result of the likelihood ratio test, applied to compare the estimates
of linear trend models with random intercepts (Log restricted-likelihood = 697.67) and with
random intercepts and slopes (Log restricted-likelihood = 697.79), indicates that the values
obtained by the difference of the logarithms of the two restricted likelihood functions (LR
test = −0.26; p X2 = 0.61 > 0.05) of the models are statistically equal, so that a linear trend
model with only random intercepts is the most suitable.

From the analysis made through Tables 6 and 8, it is concluded that the investigation
hypothesis (H4) is supported.

With the identification of the random character of the error terms (linear trend of
random intercept), a final complete model of linear trend will be built, with the inclusion of
explanatory variables at level 1, the risk factors considered in [14], where the interaction
between level 1 and the random effects of slopes, at level 2, allows to capture the differences
in GDP growth rates of each country, and offers the best fit model.

Of the five risk factors in [14], only the MKT and RMW risk factors showed statistical
significance, at the 10% level, to explain the variation in GDP growth rates in BRICS and
G7 countries. Thus, Table 9 presents the results of the final complete linear trend model
with the inclusion of two risk factors MKT and RMW in the fixed effects component that
capture the intercept random effects at level 2, represented by the Equation (20).

GDPt,i = γ00 + γ10iYEARt,i + γ11iMKTt,i−1 + γ12iRMWt,i−1 + u0i + rt,i (20)
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Table 9. Decomposition of variance—Linear Trend Model with Random Intercepts and MKT and
RMW Explanatory Variables, Which Captures the Level 2 Random Effects—Final Complete Model.

Fixed Effect Coefficient Std Error z

Global Mean—GDP 0.030 *** 0.007 4.24
YEAR −0.001 *** 1.627 × 10−4 −3.40
MKT 0.043 *** 0.005 7.98
RMW 0.059 *** 0.016 3.69

Random Effect Variance Component (%) Std Error (%) z

Level 1 (time)
Temporal variance (rti) 0.046 *** 0.004 12.19

Level 2 (country)
Country variance—Intercept (u0i) 0.054 ** 0.024 2.27

Variance Decomposition % per Level

Level 1 (time) 45.807
Level 2 (country) 54.193
LR test vs. OLS 188.51 ***

Log restricted-likelihood 719.15
Obs.: ***, ** p < 1% and 5%.

However, a random coefficients model without the MKT and RMW risk factors in
the fixed effects component, yet, with level 2 random slopes in the temporal evolution,
presents the best estimators. The estimates of this model, represented by the Equation (21),
are presented in Table 10.

GDPt,i = γ00 + γ10iYEARt,i + u0i + u1iMKTt,i−1 + u2iRMWt,i−1 + rt,i (21)

Table 10. Decomposition of Variance—Linear Trend Model with Random Intercepts Without the
Risk Factors MKT and RMW in the Fixed Effects Component, yet, with Random Slopes in the
Temporal Evolution.

Fixed Effect Coefficient Std Error z

Global Mean—GDP 0.032 *** 0.008 4.21
Global mean GDP growth rate (γ10) −0.001 *** 1.465 × 10−4 −3.79

Random Effect Variance Component (%) Std Error (%) z

Level 1
Temporal variance (rti) 0.037 *** 0.003 11.71

Level 2
Country Variance—Intercept (u0i) 0.062 ** 0.027 2.28

Country Variance—Slope MKT (u1i) 0.243 ** 0.115 2.11
Country Variance—Slope RMW (u1i) 1.018 ** 0.487 2.09

Variance Decomposition % per Level

Level 1 (time) 2.699
Level 2 (country) 97.301
LR test vs. OLS 234.60 ***

Log restricted-likelihood 734.24
Obs.: ***, ** p < 1% and 5%.

From the analysis of Tables 9 and 10, it can be seen that the parameters of fixed effects
and of the random coefficients of intercepts, present statistical significance different from
zero, at a significance level of 5%. The global mean of economic performance (GDP) was
adjusted to 3%. The explanatory variables of level 1, MKT (z = 7.98, p < 0.01) and RMW
(z = 3.69, p < 0.01), showed positive coefficients and predicted an increase in performance
economic growth between countries of 4.3% and 5.9%.

The variance decomposition between levels indicates that 45.807% (z = 12.19, p < 0.01),
against 2.695% (z = 11.71, p < 0.01), of the model without the risk factors MKT and RMW
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in the fixed effects component of the variability of economic performance is due to the
temporal evolution in each country, however, a significant portion of variance in the order
of 54.193% (z = 2.27, p < 0.05), against 97.301% (z = 2.09, p < 0.05) of the model without
the MKT and RMW risk factors in the fixed effects component, is due to differences in
economic performance between countries.

The result of the likelihood ratio test (LR test = 188.51, p X2 = 0.00 < 0.01 against
LR test = 234.60, p X2 = 0.00 < 0.01) indicates statistical significance, at the level of 5%,
suggesting that the intercepts of random effects are in fact different from zero, so that the
estimates of a linear regression model by OLS are discarded, however, a model without the
explanatory variables MKT and RMW in the fixed effects, but in the random effects of slopes
produces estimates with less distortions, as illustrated in Figure 3, which complements the
result of the LR test, and illustrates the superiority of the random coefficients model with
repeated measures in relation to the regression model estimated by OLS.

Figure 3. Values predicted by OLS and random coefficients vs. observed values of economic performance.

Indeed, it compares the predicted values of future economic performance estimated
by the random coefficients modeling with the predicted values estimated by OLS, using
the same explanatory variables in the fixed effects components (YEAR, MKT and RMW)
and with observed real values of economic performance, represented by the sample GDP
growth rates.

As shown in Figure 3, the yellow line at 45◦ indicates the observed values of the
economic performance of each of the countries in the sample, in each of the analyzed
periods. The red line indicates the values estimated by the random coefficients model,
considering the explanatory variables YEAR, MKT and RMW in the fixed effects component,
the green line indicates the values estimated by the random coefficients model without the
explanatory variables MKT and RMW in the component of fixed effects, however, with
random slopes of MKT and RMW precisely in the temporal evolution. Finally, the blue line
denotes the fixed effects estimates of the multiple regression model by OLS.

It is found that, in relation to the OLS regression model, the random coefficients model,
with a linear trend with explanatory variables YEAR, MKT and RMW and with random
intercepts at level 2, presents a better adjustment in capturing random contexts of intercepts,
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however, it does not outperforms the random coefficients model with random slopes that
presents less distortions in the adjustments of the expected values.

Table 11 presents the expected values of the random effects intercept terms, consid-
ering the linear trend models with explanatory variables YEAR, MKT and RMW in the
fixed effects component, and without the explanatory variables, MKT and RMW in the
fixed effects component, however, on the random effects of level 2 slopes on temporal
evolution. The magnitudes and signs of the expected values of intercepts and random
slopes, respectively, are illustrated in Figures 4 and 5.

Table 11. Expected Values of Intercepts of Random Effects by Country Estimated by Linear Trend
Models of Explanatory Variables YEAR, MKT and RMW in the Fixed Effects Component and without
MKT and RMW in the Fixed Effects Component, but rather in the Random Effects of the Slopes.

Country

Random Intercept Random Slope

YEAR MKT RMW as
Fixed Effect Components

YEAR as Fixed Effect
Components

MKT RMW

Brazil −0.00397 −0.00557 0.04922 0.01287
Canada −0.00382 −0.00105 0.04290 −0.04448
China 0.05784 0.06062 0.01705 −0.03760
France −0.01147 −0.01059 0.03852 0.00791

Germany −0.01384 −0.01564 0.06489 0.02938
India 0.03413 0.03878 −0.00447 −0.02460
Italy −0.02040 −0.01977 0.04492 0.00136

Japan −0.01853 −0.01873 0.04975 0.01434
Russia −0.00790 −0.01492 0.07647 0.28924

South Africa −0.00200 −0.00177 0.02975 0.03371
UK −0.00671 −0.00730 0.04081 0.04156

USA −0.00334 −0.00405 0.04767 0.03408

Figure 4. Expected values of random effects intercepts by country estimated by the linear trend
model with and without the explanatory variables MKT and RMW in the fixed effects component.

Through the analysis of Table 11 and of Figure 4, it is found that considering the
variables YEAR, MKT and RMW in the fixed effects component, the expected average of
economic performance between countries varied between −2.040% and −1.977 (Italy), and
5.784% and 6.062% (China). Two countries, China and India preserved the terms of positive
temporal intercepts, however, the minimum magnitude was adjusted to 3.413% (India), as
illustrated in Figure 4.
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Figure 5. Expected values of random effects slopes by country estimated by the risk factors MKT and
RMW for the linear trend model only with the explanatory variable YEAR in the fixed effects component.

Regarding the random slopes, through the analysis of Table 11 and of Figure 5, it is
found that the expected average of economic performance between countries, considering
the explanatory variables, respectively, MKT and RMW in the random effects component
was of the order of −0.447% and −2.46% (India) to 7.647% and 28.924% (Russia). For
the MKT risk factor, eleven countries, South Africa, Germany, Brazil, Canada, China, the
United States, France, Italy, Japan, the United Kingdom and Russia presented positive slope
terms, with a minimum magnitude of 1.705% (China). Regarding the RMW risk factor, nine
countries, South Africa, Germany, Brazil, the United States, France, Italy, Japan, the United
Kingdom and Russia, presented positive slope terms, with a minimum magnitude adjusted
to 0.136% (Italy), as illustrated in Figure 5.

From the analysis made through Tables 10 and 11, it is concluded that the investigation
hypothesis (H5) is supported.

Table 12 presents the decomposition of the variance between levels of three random
coefficients models with three explanatory variables, YEAR, MKT and one of the three
elementary risk factor (SMBB/M, SMBOP and SMBINV). Panel A, B and C, respectively,
correspond to the final complete model YEAR, MKT and SMBB/M, YEAR, MKT and SMBOP
and YEAR, MKT and SMBB/M, represented by the Equations (22)–(24).

GDPt,i = γ00 + γ10iANOt,i + γ11iMKTt,i−1 + γ12iSMBB/M, t,i−1 + u0i + rt,i (22)

GDPt,i = γ00 + γ10iANOt,i + γ11iMKTt,i−1 + γ12iSMBOP,t,i−1 + u0i + rt,i (23)

GDPt,i = γ00 + γ10iANOt,i + γ11iMKTt,i−1 + γ12iSMBINV,t,i−1 + u0i + rt,i (24)

From the analysis of Table 12, which presents the results of the linear trend model with
random intercept effects, it can be seen that the fixed effect parameters and the random
intercept coefficients have a statistical significance different from zero. Although the pa-
rameters of the variables SMBB/M, SMBOP and SMBINV showed a negative sign due to the
presence of the other explanatory variables (YEAR and MKT), the correlation between eco-
nomic performance and each elemental risk factor is positive, as seen in Table 4. The global
mean (intercept) of economic performance was adjusted to 3.2% (Panel A), 3.3% (Panel B)
and 3.3% (Panel C). The market beta risk factor of the three models, respectively, MKT
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(z = 7.22; p < 0.01, panel A), MKT (z = 7.16; p < 0.05, panel B) and MKT (z = 7.54; p < 0.01,
panel C), showed positive coefficients and predicted an increase in economic performance
of 3.6%, 3.6% and 3.8%, ceteris paribus.

Table 12. Decomposition of variance—Linear Trend Model with Random Intercepts and Explanatory
Variables that Capture Level 2 Random Effects—Final Complete Model.

Panel A Panel B Panel C

Fixed Effect Coef SE z Fixed
Effect

Coef SE z Fixed
Effect

Coef SE z

Global Mean (Gm)—GDP 0.032 *** 0.007 4.57 Gm GDP 0.033 *** 0.007 4.65 Gm GDP 0.033 *** 0.007 4.68
YEAR −0.001

***
1.64 ×
10−4 −3.07 YEAR −0.001 *** 1.66 ×

10−4 −3.13 YEAR −0.001 *** 1.65 ×
10−4 −3.33

MKT 0.036 *** 0.005 7.22 MKT 0.036 *** 0.005 7.16 MKT 0.038 *** 0.005 7.54
SMBB/M −0.028 * 0.015 1.92 SMBOP −0.026 * 0.014 −1.79 SMBINV −0.035 ** 0.013 2.73

Random Effect VC (%) SE (%) z VC (%) SE (%) z VC (%) SE (%) z

Level 1 (time)
Temporal Variance (rti) 0.047 *** 0.004 12.19 0.047 *** 0.004 12.20 0.047 *** 0.004 12.19

Level 2 (country)
Country Variance—Intercept (u0i) 0.052 *** 0.025 2.27 0.052 *** 0.023 2.27 0.052 *** 0.023 2.27

Variance Decomposition % per
Level % per Level per Level

Level 1 (time) 47.738 47.551 47.066
Level 2 (country) 52.262 52.449 52.934

LR test vs. OLS 178.57 *** 179.51 *** 182.29 ***
Log restricted-likelihood 714.24 713.99 715.97

Obs.: Gm: global mean; Coef: coefficient; VC: variance component; SE: standard error; ***, **, * p < 1%, 5%
and 10%.

The decomposition of the variance between levels indicates that 47.738% (z = 12.19;
p < 0.01), 47.551% (z = 12.2; p < 0.01) and 47.066% (z = 12.19; p < 0.01) of the variability
of economic performance is due to the temporal evolution in each country, however, a
significant portion of variance of 52.262% (z = 2.27; p < 0.01), 52.449% (z = 2.27; p < 0.01)
and 52.934% (z = 2.78; p < 0.01) is due to the difference in economic performance between
countries. It is observed that the coefficients of the three models present equal performance
to explain the differences in random intercepts in economic growth. The result of the
likelihood ratio test (LR test = 178.57; p < 0.01), for Panel A, (LR test = 179.51; p < 0.01),
for Panel B, and for Panel C (LR test = 182.29; p < 0.01) indicates statistical significance, at
the 5% level, and supports the evidence that the intercepts of random effects are in fact
different from zero, therefore discarding the estimates of a linear regression model by OLS.

Table 13 presents the expected values of the intercept terms of random effects of the
economic performance of each of the twelve countries, estimated by the final complete
model. Panels A, B and C, respectively, present the expected values of the intercept terms
estimated with the explanatory variables YEAR, MKT and SMBB/M, YEAR, MKT and
SMBOP, and YEAR, MKT and SMBINV.

Through the analysis of Table 13, it can be seen that the variation of the expected
average of economic performance between countries was of the order of −1.971% (Italy) to
5.681% (China), Panel A, −1.985% (Italy) to 5.701% (China), Panel B and −1.993% (Italy) to
5.714% (China), Panel C. Two countries, India and China kept positive temporal intercepts,
however, the minimum magnitude was adjusted to 3.315% (India), Panel A, 3.335% (India),
Panel B and 3.347% (India), Panel C.

As expected, the results presented in Tables 12 and 13 attest that, for the analyzed
period, the economic performance of BRICS and G7 countries follows a linear trend over
time and there are significant differences in random intercepts between countries. Size
effect elementary risk factors SMBB/M, SMBOP and SMBINV help to explain the variability
in the future economic growth rate over time, so the research hypothesis (H6) is supported.
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Table 13. Expected Values of Intercepts of Random Effects by Country Estimated by the Linear Trend
Model with Explanatory Variables Regional Risk Factors Associated with the Final Complete Model.

Country
Panel A

Independent Variable
YEAR MKT SMBB/M

Panel B
Independent Variable
YEAR MKT SMBOP

Panel C
Independent Variable
YEAR MKT SMBINV

Brazil −0.00484 −0.00466 −0.00457
Canada −0.00318 −0.00331 −0.00338
China 0.05681 0.05701 0.05714
France −0.01081 −0.01094 −0.01102

Germany −0.01317 −0.01330 −0.01338
India 0.03315 0.03335 0.03347
Italy −0.01971 −0.01985 −0.01993

Japan −0.01785 −0.01798 −0.01807
Russia −0.00876 −0.00858 −0.00849

South Africa −0.00288 −0.00270 −0.00260
UK −0.00606 −0.00620 −0.00627

USA −0.00270 −0.00283 −0.00290

6. Conclusions

In this study, in view of the integrating process of stock markets at the regional
and global level, we explore the existence of variability in GDP growth rates, and the
explanatory power of global risk factors of developed and emerging stock markets of [14]
model as an indicator of the change in economic growth of a total of twelve countries,
developed G7 countries and emerging BRICS countries, using GDP data and risk factor
returns for a 26-year period, from 1993 to 2019.

The results show that global risk factors, from developed and emerging markets,
considered in [14] help to explain the differences in GDP growth rates of the analyzed
countries (developed from G7 and emerging from the BRICS). They also show that the
temporal variation of the random effects of the intercepts can be explained by random
coefficients models formed by a set of two risk factors: (i) MKT and RMW, (ii) MKT and
SMBB/M; (iii) MKT and SMBOP, and (iv) MKT and SMBINV.

The univariate analysis of the descriptive statistics of the decomposition of the variance
of the return of the risk factors allowed to verify that all the risk factors presented positive
average returns. The three elementary risk factors of the size effect (SMBB/M, SMBOP and
SMBINV) contributed positively to the average size risk premium; SMBB/M and SMBOP,
respectively, presented the lowest and highest average value of premiums. Risk factors
showed greater variation over time than between countries. The variation in the GDP
growth rate between countries was slightly greater than the variation over time. This result
was confirmed through multivariate analysis, considering longitudinal quantile regression
modeling for panel data that evaluated the existence of differences in future economic
performance explained by global risk factors, as well as random coefficients modeling with
repeated measures, which sought to investigate the existence of differences in economic
performance across countries and over time, and the reasons for such differences.

The results obtained support that for the analyzed period, there are significant dif-
ferences in the behavior of the conditional asymmetric distribution of the GDP growth
rate, explained by the returns of the global risk factors of [14]. Like [19], we report that the
market risk factors, SMBB/M, SMBOP e SMBINV, SMB, HML, RMW and CMA individually,
contain information about the future GDP growth variability, and jointly, the predictive
capacity of these risk factors is independent of the information contained in the market risk
factor beta.

By decomposing the variance through the estimation of a null model, it was possible
to attest that economic performance follows a linear trend over analyzed period, there is
significant variability in economic performance, over time, and between countries, 48% of
the total variability of the GDP growth rate is due to the existence of differences between
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countries. For the analyzed period, the temporal variation of random effects of intercepts
can be explained by four random coefficients models formed by a set of two explanatory
variables, the fundamental risk factors, respectively, (i) MKT e RMW, (ii) MKT e SMBB/M;
(iii) MKT e SMBOP, and (iv) MKT and SMBINV, which explain approximately 54%, 52%, 52%
and 53% of the total variability in the future GDP growth rate of BRICS and G7 countries.

The results of this study confirm that stock markets follow an integration process, and
support the arguments of [5–7] that moderately integrated markets may have the same risk
factors, and just like [13,14,16,19], since risk factors are related to future GDP growth, they
act as proxies for unidentified state variables, consistent with the ICAPM pricing model
of [15].

Given that the total country-effect GDP growth rate variability was considerable and
variations in expected returns reflect business cycle exposures [20–22], a study that includes
macroeconomic factors of each country provides a new understanding of the performance
of economic growth in the face of elementary risk factors of the size effect, SMBB/M, SMBOP
and SMBINV.

Future studies may address the influence of other types of market besides stocks
on the economic performance of countries. In addition, these studies can estimate such
relationships by other statistical techniques to enable the comparison of results between
different models.
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Appendix A

Table A1 presents the estimates of three simple and multiple quantile regression
models for the percentiles 0.05; 0.25; 0.50; 0.75; and 0.95, having as explanatory variables
the market beta risk factors, MKT and the elementary size effects SMBB/M, SMBOP and
SMBINV, represented by the Equations (1) (Panel A) and (2) (Panel B).

Table A1. Simple and Multiple Regression Estimates with Two Explanatory Variables Risk Factors
MKT, SMBB/M, SMBOP and SMBINV.

Model OLS
Quantile Regression

0.05 0.25 0.50 0.75 0.95

Panel A: GDPit = α+ βFactorit−1 + εi,t

Brazil

1 SMBB/M
Coef 0.045 −0.215 ** −0.044 *** 0.084 0.040 0.061

SE 0.048 0.075 0.015 0.058 0.062 0.046

2 SMBOP
Coef 0.071 ** −0.269 *** 0.071 0.082 0.033 0.073
SE 0.034 0.018 0.066 0.050 0.058 0.055

3 SMBINV
Coef 0.057 ** −0.274 *** 0.076 0.047 0.025 0.069 **
SE 0.021 0.020 0.050 0.050 0.049 0.032
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Table A1. Cont.

Model OLS
Quantile Regression

0.05 0.25 0.50 0.75 0.95

Canada

1 SMBB/M
Coef 0.075 0.296 ** 0.099 *** 0.065 0.056 −0.111 ***
SE 0.049 0.104 0.023 0.043 0.067 0.010

2 SMBOP
Coef 0.062 0.294 ** 0.096 *** 0.066 ** 0.037 −0.114 **
SE 0.049 0.142 0.027 0.027 0.030 0.049

3 SMBINV
Coef 0.064 0.275 * 0.089 ** 0.110 *** 0.040 −0.081 *
SE 0.049 0.163 0.031 0.027 0.050 0.044

China

1 SMBB/M
Coef 0.060 * 0.054 *** 0.044 0.107 ** 0.072 0.009
SE 0.032 0.013 0.033 0.038 0.045 0.113

2 SMBOP
Coef 0.075 *** 0.060 *** 0.113 ** 0.098 *** 0.058 0.007
SE 0.019 0.014 0.050 0.031 0.042 0.108

3 SMBINV
Coef 0.066 *** 0.059 *** 0.086 *** 0.066 ** 0.050 0.005
SE 0.011 0.019 0.027 0.028 0.036 0.069

France

1 SMBB/M
Coef 0.016 0.122 *** 0.089 *** 0.041 * 0.002 0.011
SE 0.035 0.015 0.006 0.023 0.014 0.043

2 SMBOP
Coef 0.048 0.213 *** 0.064 ** 0.030 −0.016 −0.021
SE 0.036 0.051 0.026 0.022 0.022 0.052

3 SMBINV
Coef 0.005 0.034 *** 0.073 *** 0.041 ** −0.015 −0.019
SE 0.035 0.004 0.014 0.015 0.018 0.054

Germany

1 SMBB/M
Coef 0.043 0.116 *** 0.023 0.060 * 0.034 0.076 ***
SE 0.044 0.039 0.032 0.033 0.029 0.004

2 SMBOP
Coef 0.026 0.202 *** −0.005 −0.018 0.031 0.077 ***
SE 0.043 0.057 0.042 0.040 0.041 0.007

3 SMBINV
Coef 0.039 0.057 0.029 0.023 0.025 0.078 ***
SE 0.029 0.036 0.021 0.017 0.024 0.019

India

1 SMBB/M
Coef 0.018 0.014 0.039 0.031 0.033 *** 0.039 **
SE 0.034 0.061 0.063 0.025 0.005 0.016

2 SMBOP
Coef 0.010 0.030 0.038 −0.017 0.030 *** 0.076 ***
SE 0.033 0.060 0.085 0.019 0.008 0.013

3 SMBINV
Coef 0.016 0.023 0.026 −0.013 0.029 *** 0.077 ***
SE 0.026 0.048 0.056 0.014 0.005 0.005

Italy

1 SMBB/M
Coef 0.045 0.167 *** 0.073 *** 0.007 −0.001 0.064 **
SE 0.034 0.054 0.019 0.035 0.018 0.025

2 SMBOP
Coef 0.034 0.175 *** 0.071 ** 0.007 −0.001 −0.066 ***
SE 0.035 0.031 0.026 0.038 0.013 0.013

3 SMBINV
Coef 0.033 0.150 *** 0.064 * 0.006 −0.001 0.064 **
SE 0.033 0.045 0.036 0.032 0.018 0.028
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Table A1. Cont.

Model OLS
Quantile Regression

0.05 0.25 0.50 0.75 0.95

Japan

1 SMBB/M
Coef 0.078 * 0.049 * 0.079 ** 0.062 ** 0.070 ** 0.088 **
SE 0.039 0.025 0.034 0.024 0.027 0.031

2 SMBOP
Coef 0.066 0.224 *** 0.085 *** 0.059 * 0.022 0.074 ***
SE 0.039 0.047 0.015 0.034 0.027 0.026

3 SMBINV
Coef 0.064 0.053 0.081 *** 0.054 0.057 0.088 ***
SE 0.039 0.035 0.016 0.033 0.059 0.025

Russia

1 SMBB/M
Coef −0.234 ** −0.185 −0.360 ** −0.316 * −0.094 −0.284 ***
SE 0.104 0.193 0.134 0.160 0.109 0.012

2 SMBOP
Coef −0.179 −0.169 −0.320 *** −0.145 −0.102 −0.225 ***
SE 0.105 0.163 0.132 0.137 0.102 0.026

3 SMBINV
Coef −0.191 ** −0.133 −0.240 ** −0.137 −0.106 −0.152 ***
SE 0.078 0.124 0.084 0.095 0.066 0.026

South Africa

1 SMBB/M
Coef 0.010 0.105 * 0.053 0.012 −0.026 0.019
SE 0.026 0.063 0.046 0.032 0.035 0.023

2 SMBOP
Coef 0.026 0.080 0.047 0.011 −0.022 −0.050
SE 0.023 0.071 0.062 0.033 0.040 0.051

3 SMBINV
Coef 0.016 0.056 ** 0.036 0.008 −0.015 0.082 ***
SE 0.015 0.021 0.053 0.026 0.030 0.010

United Kingdom

1 SMBB/M
Coef 0.012 0.090 *** 0.030 −0.002 −0.009 −0.001
SE 0.032 0.027 0.040 0.026 0.046 0.013

2 SMBOP
Coef 0.022 0.089 *** 0.031** −0.002 −0.008 0.008
SE 0.035 0.018 0.011 0.019 0.038 0.010

3 SMBINV
Coef 0.015 0.082 ** 0.029 −0.002 −0.020 0.007
SE 0.033 0.034 0.023 0.027 0.028 0.024

United States

1 SMBB/M
Coef 0.012 0.084 *** 0.056 ** 0.051 *** −0.022 −0.021 ***
SE 0.043 0.015 0.024 0.016 0.018 0.005

2 SMBOP
Coef 0.001 0.214 *** −0.009 0.031 −0.035 −0.024 **
SE 0.045 0.023 0.022 0.033 0.045 0.011

3 SMBINV
Coef −0.001 0.089 ** −0.011 0.041 −0.035 −0.022 ***
SE 0.044 0.035 0.040 0.030 0.043 0.006

Panel B: GDPi,t = α+ β1MKTi,t−1 + β2Fatorit−1 + εi,t

Brazil

4
MKT

Coef 0.052 *** 0.121 *** 0.050 *** 0.048 *** 0.051 *** 0.033 ***
SE 0.010 0.018 0.010 0.010 0.005 0.004

SMBB/M
Coef −0.021 −0.053 −0.011 −0.038 0.010 −0.023
SE 0.034 0.064 0.037 0.036 0.017 0.027

5
MKT

Coef 0.053 *** 0.124 *** 0.050 *** 0.048 *** 0.050 *** 0.036 **
SE 0.011 0.022 0.009 0.011 0.005 0.013

SMBOP
Coef −0.021 −0.050 −0.010 −0.031 0.013 −0.029
SE 0.032 0.076 0.032 0.031 0.018 0.046
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Table A1. Cont.

Model OLS
Quantile Regression

0.05 0.25 0.50 0.75 0.95

6
MKT

Coef 0.052 *** 0.095 *** 0.049 *** 0.047 *** 0.050 *** 0.035 **
SE 0.010 0.013 0.009 0.009 0.008 0.012

SMBINV
Coef −0.011 −0.015 −0.006 −0.023 0.013 −0.030
SE 0.020 0.036 0.025 0.026 0.021 0.034

Canada

4
MKT

Coef 0.051 ** 0.072 *** 0.063 *** 0.020 0.021 ** 0.049 ***
SE 0.024 0.010 0.011 0.021 0.009 0.003

SMBB/M
Coef 0.037 0.050 ** 0.031 0.052 0.056 ** −0.133 ***
SE 0.049 0.021 0.023 0.044 0.019 0.005

5

MKT
Coef 0.054 ** 0.073 *** 0.061 *** 0.018 0.031 0.033 **
SE 0.023 0.009 0.007 0.015 0.024 0.011

SMBOP
Coef 0.045 0.046 ** 0.034 ** 0.054 * 0.058 −0.115 ***
SE 0.046 0.018 0.014 0.031 0.049 0.023

6 MKT
Coef 0.054 ** 0.075 *** 0.057 *** 0.017 0.029 0.040 ***
SE 0.046 0.008 0.019 0.018 0.027 0.009

SMBINV
Coef 0.043 0.039 ** 0.033 0.058 0.059 −0.124 ***
SE 0.046 0.017 0.039 0.037 0.056 0.019

China

4
MKT

Coef 0.021 ** 0.032 *** 0.021 *** 0.026 0.010 0.052 ***
SE 0.009 0.003 0.007 0.018 0.019 0.013

SMBB/M
Coef 0.034 0.085 *** 0.094 *** 0.026 0.048 −0.111 **
SE 0.031 0.010 0.024 0.063 0.067 0.046

5
MKT

Coef 0.018 * 0.027 *** 0.021 ** 0.005 0.012 0.057 ***
SE 0.010 0.001 0.009 0.010 0.024 0.013

SMBOP
Coef 0.044 0.087 *** 0.086 *** 0.089 ** 0.033 −0.104 **
SE 0.032 0.003 0.030 0.034 0.083 0.045

6
MKT

Coef 0.016 * 0.023 *** 0.026 *** 0.012 0.006 0.057 ***
SE 0.009 0.003 0.005 0.008 0.017 0.006

SMBINV
Coef 0.045 ** 0.068 *** 0.054 *** 0.055 ** 0.039 −0.079 ***
SE 0.018 0.007 0.013 0.022 0.047 0.017

France

4
MKT

Coef 0.049 ** 0.051 *** 0.015 0.035 *** 0.041 *** 0.050 ***
SE 0.018 0.014 0.010 0.011 0.008 0.011

SMBB/M
Coef −0.020 0.074 ** 0.066 *** −0.012 −0.038 ** −0.016
SE 0.026 0.028 0.020 0.023 0.017 0.023

5
MKT

Coef 0.046 *** 0.051 *** 0.023 * 0.035 *** 0.036 *** 0.042 ***
SE 0.016 0.003 0.012 0.011 0.005 0.004

SMBOP
Coef −0.010 0.072 *** 0.049 * −0.013 −0.034 *** −0.021 **
SE 0.027 0.006 0.024 0.022 0.011 0.009

6
MKT

Coef 0.047 *** 0.053 *** 0.024 * 0.035 *** 0.038 *** 0.043 ***
SE 0.017 0.011 0.013 0.012 0.007 0.004

SMBINV
Coef −0.014 0.064 *** 0.048 * −0.012 −0.033 ** −0.021 **
SE 0.026 0.021 0.026 0.024 0.014 0.009
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Table A1. Cont.

Model OLS
Quantile Regression

0.05 0.25 0.50 0.75 0.95

Germany

4
MKT

Coef 0.076 *** 0.106 *** 0.047 *** 0.068 *** 0.056 ** 0.044 ***
SE 0.026 0.008 0.014 0.006 0.024 0.013

SMBB/M
Coef −0.013 −0.057 *** −0.044 −0.012 0.030 0.074 **
SE 0.029 0.017 0.029 0.013 0.049 0.026

5
MKT

Coef 0.070 *** 0.107 *** 0.041 *** 0.066 *** 0.046 *** 0.069 ***
SE 0.024 0.010 0.008 0.012 0.007 0.008

SMBOP
Coef 0.033 −0.058 *** −0.040 ** −0.009 0.052 *** 0.077 ***
SE 0.023 0.019 0.017 0.023 0.015 0.015

6
MKT

Coef 0.075 *** 0.106 *** 0.043 *** 0.067 *** 0.050 *** 0.066 ***
SE 0.025 0.012 0.011 0.016 0.012 0.003

SMBINV
Coef −0.008 −0.053 ** −0.035 −0.010 0.039 0.077 ***
SE 0.029 0.024 0.022 0.033 0.024 0.007

India

4
MKT

Coef −0.003 −0.016 *** −0.002 −0.011 0.001 −0.004
SE 0.010 0.004 0.031 0.008 0.001 0.004

SMBB/M
Coef 0.022 0.024 0.049 0.021 0.031 *** 0.024 *
SE 0.037 0.015 0.113 0.031 0.009 0.013

5 MKT
Coef −0.002 −0.018 *** 0.013 −0.012 0.001 −0.006 *
SE 0.011 0.005 0.016 0.012 0.005 0.003

SMBOP
Coef 0.014 −0.020 −0.046 0.011 0.028 0.031 **
SE 0.039 0.016 0.057 0.043 0.018 0.011

6
MKT

Coef −0.004 −0.014 −0.016 −0.012 −0.001 −0.007 *
SE 0.011 0.011 0.026 0.012 0.002 0.003

SMBINV
Coef 0.022 0.037 0.046 0.009 0.031 *** 0.030 ***
SE 0.029 0.031 0.072 0.033 0.006 0.009

Italy

4
MKT

Coef 0.053 ** 0.062 *** 0.030 ** 0.031 ** 0.045 *** 0.002
SE 0.027 0.019 0.011 0.014 0.014 0.018

SMBB/M
Coef 0.006 0.087 ** 0.005 −0.019 −0.005 0.063 *
SE 0.027 0.038 0.023 0.029 0.029 0.037

5
MKT

Coef 0.053 * 0.061 *** 0.019 0.031 ** 0.035 ** 0.040 *
SE 0.025 0.018 0.012 0.012 0.013 0.021

SMBOP
Coef 0.017 0.090 ** 0.056 ** −0.014 −0.001 −0.013
SE 0.027 0.036 0.024 0.024 0.026 0.042

6
MKT

Coef 0.053 ** 0.061 *** 0.029 ** 0.031 ** 0.035 *** 0.041 *
SE 0.025 0.020 0.010 0.012 0.012 0.020

SMBINV
Coef 0.011 0.082 * 0.004 −0.015 −0.001 −0.027
SE 0.026 0.040 0.021 0.024 0.023 0.041

Japan

4
MKT

Coef 0.051 * 0.081 *** 0.013 0.021 0.029 * 0.050 ***
SE 0.028 0.018 0.022 0.015 0.014 0.008

SMBB/M
Coef 0.040 0.060 0.074 0.033 0.074 ** 0.010
SE 0.031 0.038 0.045 0.031 0.029 0.016
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Table A1. Cont.

Model OLS
Quantile Regression

0.05 0.25 0.50 0.75 0.95

5
MKT

Coef 0.054 ** 0.081 *** 0.023 * 0.036 *** 0.040 0.052 ***
SE 0.025 0.004 0.013 0.016 0.025 0.014

SMBOP
Coef 0.048 * 0.059 *** 0.075 ** 0.001 0.059 0.007
SE 0.026 0.008 0.026 0.032 0.051 0.028

6
MKT

Coef 0.054 ** 0.082 *** 0.017 *** 0.035 *** 0.034 *** 0.041 ***
SE 0.026 0.007 0.003 0.006 0.005 0.011

SMBINV
Coef 0.042 0.052 *** 0.072 *** 0.001 0.067 *** 0.024
SE 0.028 0.014 0.006 0.012 0.011 0.022

Russia

4
MKT

Coef 0.057 * 0.129 *** 0.110 *** 0.055 ** 0.035 0.037 ***
SE 0.031 0.038 0.026 0.026 0.025 0.003

SMBB/M
Coef −0.306 ** −0.504 *** −0.204 ** −0.148 −0.250 ** −0.017
SE 0.141 0.139 0.092 0.092 0.089 0.012

5
MKT

Coef 0.070 ** 0.125 *** 0.137 ** 0.079 * 0.023 0.046 **
SE 0.031 0.003 0.054 0.045 0.017 0.017

SMBOP
Coef −0.302 * −0.449 *** −0.277 −0.129 −0.171 *** 0.100 *
SE 0.152 0.009 0.189 0.159 0.058 0.059

6
MKT

Coef 0.078 ** 0.127 *** 0.125 *** 0.072 *** 0.039 ** 0.027
SE 0.029 0.013 0.042 0.025 0.016 0.021

SMBINV
Coef −0.294 *** −0.338 *** −0.404 *** −0.209 *** −0.231 *** −0.120 *
SE 0.079 0.037 0.115 0.068 0.045 0.059

South Africa

4
MKT

Coef 0.028 *** 0.027 *** 0.035 ** 0.018 * 0.024 * 0.040 ***
SE 0.009 0.004 0.016 0.009 0.015 0.003

SMBB/M
Coef −0.025 0.021 −0.025 −0.038 −0.075 −0.106 ***
SE 0.029 0.016 0.059 0.032 0.052 0.012

5
MKT

Coef 0.029 *** 0.027 *** 0.030 *** 0.019 * 0.038 *** 0.042 ***
SE 0.010 0.005 0.007 0.011 0.005 0.004

SMBOP
Coef −0.024 0.020 −0.011 −0.035 −0.098 *** −0.065 ***
SE 0.034 0.019 0.024 0.038 0.018 0.013

6
MKT

Coef 0.029 *** 0.027 *** 0.044 *** 0.019 * 0.035 *** 0.049 ***
SE 0.009 0.006 0.010 0.010 0.012 0.002

SMBINV
Coef −0.023 0.015 −0.033 −0.023 −0.065 * −0.082 ***
SE 0.021 0.016 0.029 0.029 0.032 0.006

United Kingdom

4
MKT

Coef 0.047 0.085 *** 0.040 ** 0.011 0.010 0.016 *
SE 0.031 0.001 0.014 0.014 0.020 0.009

MBB/M
Coef −0.022 −0.002 −0.043 −0.016 −0.009 −0.017
SE 0.027 0.001 0.029 0.029 0.042 0.018

5
MKT

Coef 0.042 0.085 *** 0.029 *** 0.007 0.007 0.014 **
SE 0.029 0.000 0.005 0.016 0.013 0.006

SMBOP
Coef 0.008 −0.001 −0.014 0.008 −0.008 0.002
SE 0.031 0.001 0.009 0.033 0.027 0.012

6
MKT

Coef 0.043 0.085 *** 0.030 *** 0.002 0.008 0.014
SE 0.030 0.002 0.005 0.014 0.013 0.009

SMBINV
Coef −0.003 −0.002 −0.014 −0.003 −0.008 0.002
SE 0.029 0.005 0.009 0.028 0.027 0.018
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Table A1. Cont.

Model OLS
Quantile Regression

0.05 0.25 0.50 0.75 0.95

United States

4

MKT
Coef 0.057 *** 0.058 *** 0.031 0.052 *** 0.055 *** 0.040 ***
SE 0.018 0.017 0.025 0.021 0.014 0.002

MBB/M
Coef −0.030 0.058 * 0.008 −0.033 −0.047 −0.069 ***
SE 0.035 0.035 0.052 0.044 0.029 0.005

5
MKT

Coef 0.053 *** 0.059 *** 0.035 *** 0.053 *** 0.044 *** 0.029 ***
SE 0.017 0.010 0.006 0.011 0.014 0.006

SMBOP
Coef −0.017 0.058 *** 0.041 *** −0.034 −0.047 −0.029 **
SE 0.036 0.019 0.011 0.022 0.028 0.013

6
MKT

Coef 0.054 *** 0.061 *** 0.033 0.052 *** 0.048 *** 0.031 ***
SE 0.017 0.015 0.020 0.018 0.006 0.007

SMBINV
Coef −0.023 0.061 * 0.044 −0.028 −0.045 *** −0.029 **
SE 0.034 0.031 0.041 0.036 0.012 0.013

Obs.: Coef, coefficient; SE, standard error; ***, **, *, p < 1%, 5% and 10%.

Figures A1–A3 respectively, illustrate the individual performance of the risk factors
SMBOP, SMBB/M and SMBOP on the conditional quantile distribution, as well as the
estimation by OLS, of the GDP growth rate of South Africa, Brazil and Brazil.

 
Figure A1. Performance of the SMBOP risk factor on the percentiles and conditional average of South
Africa’s GDP growth rate.
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Figure A2. Performance of the SMBB/M risk factor on the percentiles and conditional average of
Brazil’s GDP growth rate.

 
Figure A3. Performance of the SMBOP risk factor on the percentiles and conditional average of
Brazil’s GDP growth rate.

Appendix B

In order to compare the parameters, Table A2 presents the results of the estimations of
seven longitudinal long-panel multiple regression models, with five explanatory variables,
the risk factors considered in the Fama and French (2015) model, estimated by: (1) fixed
effects, (2) random effects, (3) Pooled by OLS, and considering the existence of first order se-
rial correlation in terms of AR(1) error (4) fixed effect, (5) random effects models, (6) Pooled
by OLS and (7) GLS (General Least Squares) method.
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Table A2. Long-Panel Data Model Multiple Regression Estimates.

Model
Fixed
Effect

Random
Effect

Pooled
OLS

Fixed Effect
AR(1)

Random
Effect AR(1)

Pooled
OLS AR(1)

GLS AR(1)

GDPit = αi + β1MKTi,t−1 + β2SMBi,t−1 + β3HMLi,t−1 + β4RMWi,t−1 + β5CMAi,t−1 + εi,t

6

MKT
Coef 0.04051 *** 0.04048 *** 0.03990 *** 0.03094 *** 0.03137 *** 0.03029 *** 0.02637 ***
SE 0.00597 0.00602 0.00849 0.00413 0.00451 0.00676 0.00393

SMB
Coef −0.00548 −0.00605 −0.01693 0.01129 0.00311 0.00427 0.00358
SE 0.01642 0.01654 0.02328 0.01546 0.01637 0.02512 0.01441

HML
Coef 0.02024 * 0.02115 * 0.03849 ** 0.00587 0.00429 0.00501 −0.00154
SE 0.01183 0.01191 0.01662 0.00925 0.01003 0.01518 0.00927

RMW
Coef 0.05789 *** 0.05683 *** 0.03655 0.02665 0.04323 ** 0.03629 0.02464 *
SE 0.01946 0.01960 0.02750 0.01726 0.01697 0.02547 0.01484

CMA
Coef −0.01730 −0.01728 −0.01691 −0.02660 *** −0.02651 ** −0.02744 −0.02289 **
SE 0.01586 0.01597 0.02254 0.01164 0.01274 0.01878 0.01036

Cons
Coef 0.02260 *** 0.02259 *** 0.02232 *** 0.02558 *** 0.02479 *** 0.02488 *** 0.02597 ***
SE 0.00178 0.00588 0.00253 0.00119 0.00666 0.00434 0.00295

Obs.: Cons: constant; Coef: coefficient; SE, standard error; ***, **, *, p < 1%, 5% and 10%.
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Abstract: We define a new quantile regression model based on a reparameterized exponentiated
odd log-logistic Weibull distribution, and obtain some of its structural properties. It includes as sub-
models some known regression models that can be utilized in many areas. The maximum likelihood
method is adopted to estimate the parameters, and several simulations are performed to study the
finite sample properties of the maximum likelihood estimators. The applicability of the proposed
regression model is well justified by means of a gastric carcinoma dataset.
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1. Introduction

For survival data, the outcome variable is usually the time until the occurrence of an
event of interest. A common characteristic of this type of data is the presence of censoring,
that is, when the event of interest is not observed for some subjects before the study
is finished. Furthermore, this variable depends on one or more explanatory variables
(covariables), which have characteristics of the sample under study. Cox’s proportional
hazards and accelerated failure time (AFT) models are two common tools in time-to-event
modeling. The first class of models has the strong assumption of proportional risks, which
is often invalid, so the effects of the covariables on the risk function are examined which
can lead to difficult interpretations. The second class assumes that an association exists
between the predictors and the survival time, permitting a direct interpretation of the
effects of the covariables on lifetimes.

Nevertheless, these methods can fail to capture the heterogeneity of the effects of the
covariables. In this respect, the quantile regression (QR) (Koenker and Bassett [1]) can
be an alternative to these models, enabling evaluation of the heterogeneous effects of the
predictors via analysis of different quantiles. This method involves modeling the quantiles
of the survival time and links them to the covariables, providing some advantages, such as:

• Possible identification and inference under the heterogeneous effects of the covari-
ables for different quantiles, thus supplying more complete information about the
covariables and more flexibly controlling for the heterogeneity caused by them;

• Flexibility regarding the assumption of proportional risks;
• Provision of a direct interpretation of the results, that is, between the survival time

and the covariables of interest;
• Possible analysis of different quantiles, allowing identification of the different effects

of the covariables on individuals with different risks; and
• Robustness with respect to outliers in the regression models.
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Originally, the QR methods are based on minimizing weighted absolute residuals [1]
without any probability distribution, and the estimation of the parameters occurs by means
of linear programming algorithms.

Although this approach is very flexible, some challenges such as: (i) the quantile
crossing, that is, when two or more estimated quantile curves cross or overlap, causing
difficulty in interpretability; and (ii) the drawback of the inability to apply parametric
inference tools led to the search for other methods. Regarding the quantile crossing problem,
we can verify alternative methods, such as: semiparametric models [2], the support vector
(SV) regression approach [3], and a joint quantile estimation approach [4,5]. The weighted
absolute residuals estimators coincide with the maximum likelihood estimators (MLEs),
when the response follows a skewed Laplace distribution, so the initial association of a
continuous distribution to the QR models was based on it (Koenker and Machado [6]).

In the context of censored data, an extensive bibliography can be mentioned, for exam-
ple: Peng and Huang [7] developed a QR approach for survival data subject to conditionally
independent censoring, Wang and Wang [8] proposed a locally weighted censored QR ap-
proach following the redistribution-of-mass idea and employed a local reweighing scheme.
Zarean et al. [9] used the censored QR for determining overall survival and risk factors in
esophageal cancer. Yang [10] presented a new approach for censored QR estimation, and
Du et al. [11] developed estimation procedures for partially linear QR models, where some of
the responses were censored by another random variable. Further, Xue et al. [12] addressed
these limitations by using both simulated examples and data from National Wilms Tumor
clinical trials to illustrate proper interpretation of the censored QR model and the differences
and advantages of the model compared to the Cox proportional hazard model. Hong et al. [13]
provided a practical guide for using QR for right-censored outcome data with covariates of low
or high dimensionality, and De Backer et al. [14] studied a novel approach for the estimation of
quantiles when facing potential right-censoring of the responses. Recently, De Backer et al. [15]
investigated a new procedure for estimating a linear QR with possibly right-censored responses;
Qiu et al. [16] considered the QR model for survival data with missing censoring indicators;
Yazdani et al. [17] introduced the QR approach for modelling failure time and investigated the
covariate effects for different quantiles; Peng [18] provided a comprehensive review of statis-
tical methods for performing QR with different types of survival data; Hsu et al. [19] studied
regression models for interval censored data using quantile coefficient functions via a set of
parametric basis functions; He et al. [20] provided a unified analysis of the smoothed sequential
estimator and its penalized counterpart for increasing dimensions in censored QR; and Wei [21]
introduced a discussion about QR for censored data in haematopoietic cell transplant research.
Note that all these articles cited in the QR with censored data did not use parametric models or
use the skewed Laplace distribution (see [17]), whose estimators coincide.

Subsequently, other distributions were proposed by re-parameterizing them in terms of
the quantile function (qf). Recent papers involving models for non-censored data based on
other distributions can be mentioned: log-extended exponential-geometric [22]; Birnbaum–
Saunders [23,24]; discrete generalized half-normal [25]; transmuted unit-Rayleigh [26];
unit-Burr-XII [27]; unit-Chen [28]; log-symmetric [29]; arcsecant hyperbolic Weibull [30];
and Dagum and Singh–Maddala [31] distributions. However, there is a relative lack in the
literature of models for censored data in the parametric context: generalized Gompertz [32]
and skew-t [33].

It is well known that the hazard rate function can assume different forms, which has
led to the proposal of a large number of new distributions with the purpose of obtaining
greater flexibility of data modeling, for example, Ref. [34]. In this sense, we introduce a
QR regression model based on a reparameterized, exponentiated, odd log-logistic Weibull
(EOLLW) distribution. It has two extra shape parameters, thus enabling the modeling of
different forms of hazard rate functions, as well as data with positive or negative symmetric
or asymmetric bimodal shapes, making it an alternative to the mixture models commonly
used in the presence of bimodality. Another important feature of the new QR model is
that it has as special cases: the exponentiated Weibull and odd log-logistic Weibull QR
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models. A detailed discussion of the theoretical foundations is given in analysis of survival
data with concrete applications. The maximum likelihood method is adopted, and several
simulations evaluate the behavior of these estimators under some scenarios. Additionally,
we show that the model can establish functional relations of the covariables with other
parameters, including scale and kurtosis, besides the quantile parameter.

The paper is structured as follows. Section 2 introduces a reparametrization of the
EOLLW distribution based on quantiles. Section 3 addresses some mathematical proper-
ties. The proposed QR regression model, and some classic inference methods to estimate
the parameters are addressed in Section 4. Some simulations are reported in Section 5.
Section 6 provides a real application for the new regression model. Section 7 ends with a
brief conclusion.

2. The Reparameterized EOLLW Distribution

Let G(x; η) be a parent cumulative distribution function (cdf) and g(x; η) = dG(x; η)/dx
be its associated probability density function (pdf), both functions of a parameter vector η. The
cdf of the exponentiated odd log-logistic (EOLL-G) family is given by (Alizadeh et al. [35])
(for x ∈ R)

F(x; ν, λ, η) =
G(x; η)νλ

{G(x; η)ν + [1− G(x; η)]ν}λ
, (1)

where ν > 0 and λ > 0 are two extra shape parameters.
The pdf corresponding to Equation (1) has the form

f (x; ν, λ, η) =
ν λ g(x; η) G(x; η)νλ−1[1− G(x; η)]ν−1

{G(x; η)ν + [1− G(x; η)]ν}λ+1 . (2)

Henceforth, let X ∼ EOLL-G(ν, λ, η) be a random variable with density function (2).
The EOLL-G family reduces to the OLL-G class when λ = 1 (Gleaton and Lynch [36]),

and to the exponentiated (Exp-G) family (Mudholkar et al., [37]) when ν = 1. Clearly, it
becomes the parent G(x; η) when ν = λ = 1.

The EOLLW distribution is defined from (2) by taking the parent Weibull

G(x; γ, σ) = 1− exp
[
−
( x

γ

)σ]
and g(x; γ, σ) =

σ

γσ
xσ−1 exp

[
−
( x

γ

)σ]
, x > 0, (3)

respectively, where η = (γ, σ), γ > 0 is a scale parameter, and σ > 0 is a shape parameter.
The cdf of the random variable X ∼ EOLLW(ν, λ, γ, σ) follows from Equations (1) and (3)

F(x; ν, λ, γ, σ) =

{
1− exp

[
− ( x

γ )
σ
]}νλ[{

1− exp
[
− ( x

γ )
σ
]}ν

+
{

exp
[
− ( x

γ )
σ
]}ν]λ , x > 0. (4)

Based on Equations (2) and (3), the pdf of X becomes

f (x; ν, λ, γ, σ) =
ν λ σ xσ−1 { exp

[
− ( x

γ )
σ
]}ν {1− exp

[
− ( x

γ )
σ
]}νλ−1

γσ
[{

1− exp
[
− ( x

γ )
σ
]}ν

+
{

exp
[
− ( x

γ )
σ
]}ν]λ+1 , x > 0. (5)

The hazard rate function corresponding to (5) is h(x; ν, λ, γ, σ) = f (x; ν, λ, γ, σ)/[1−
F(x; ν, λ, γ, σ)].

By inverting (1), the qf of X reduces to

x = Q(q) = QW

{
q1/(νλ)

q1/(νλ) + (1− q1/λ)1/ν

}
, 0 < q < 1, (6)
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where QW(q) = G−1(p; γ, σ) (p ∈ (0, 1)) is the qf of the Weibull distribution, namely

G−1(p; γ, σ) = γ[− log(1− p)]1/σ. (7)

Thus, we rewrite the τth quantile (6) as

x = Q(q) = γ

{
− log

[
(1− q1/λ)1/ν

q1/(νλ) + (1− q1/λ)1/ν

]}1/σ

. (8)

We can easily obtain the quartiles: first quartile (Q(0.25)), median (Q(0.5)), and third
quartile (Q(0.75)).

We define a reparametrization of the pdf (5) as a function of the τth quantile (6), where
the scale γ becomes

γ = μ

{
− log

[
(1− τ1/λ)1/ν

τ1/(νλ) + (1− τ
1
λ )1/ν

]}−1/σ

, (9)

μ > 0 is the location, and τ ∈ (0, 1)th is the quantile of X (assumed known).
By substituting (9) into Equation (4), the reparameterized cdf of X reduces to

F(x; ν, λ, μ, σ) =

[
1− exp

{
− w( x

μ )
σ
}]νλ{[

1− exp
{
− w( x

μ )
σ
}]ν

+
[

exp
{
− w( x

μ )
σ
}]ν}λ

, (10)

where w(τ, λ, ν) = − log
{
(1− τ

1
λ )1/ν/[τ1/(νλ) + (1− τ1/λ)1/ν]

}
.

By simple differentiation, the reparameterized pdf of X has the form

f (x; ν, λ, μ, σ) =
ν λ σ xσ−1 w exp

{
− w( x

μ )
σ
}ν[1− exp

{
− w( x

μ )
σ
}]νλ−1

μσ
{[

1− exp
{
− w( x

μ )
σ
}]ν

+
[

exp
{
− w( x

μ )
σ
}]ν}λ+1 . (11)

Henceforth, we redefine X ∼ EOLLW(ν, λ, μ, σ, τ) as a random variable with pdf (11),
where τ ∈ (0, 1) is fixed. Figure 1 displays plots of the pdf of X for some τ values, thus
showing its asymmetry and bimodality.
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Figure 1. Plots of the pdf of X for some τ values: (a) ν = 2, λ = 0.4, μ = 5, σ = 4, (b) ν = 0.4, λ = 0.90,
μ = 1.2, σ = 3, (c) ν = 0.4, λ = 1.5, μ = 1.2, σ = 2.9.

The qf of X is obtained by replacing (9) in Equation (8)

x = Q(q) = μ

[
log
(

(1−q1/λ)1/ν

q1/(νλ)+(1−q1/λ)1/ν

)/
log
(

(1−τ1/λ)1/ν

τ1/(νλ)+(1−τ1/λ)1/ν

)]1/σ

, 0 < q < 1. (12)
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3. Structural Properties

Some known properties of the reparameterized EOLLW distribution are given below:

(A) Equation (11) gives limx→∞ f (x; ν, λ, γ, σ) = 0. Furthermore (Rodrigues et al. [38]),

lim
x→0+

f (x; ν, λ, γ, σ) =

⎧⎪⎪⎨⎪⎪⎩
∞, νλ < 1/σ,

w/μσ, νλ = 1/σ,

0, νλ > 1/σ,

where w(τ, λ, ν) is defined in Section 2.
(B) The point (x, f (x)) is called a critical point of f if x is in the domain of f , and either

f ′(x) = 0 or f ′(x) do not exist. Since f in (11) is differentiable, f ′(x) always exists in
its domain. Differentiating f (x) in (11) and setting it equal to zero, its critical points
are the roots of (Rodrigues et al. [38])

T′′(x)
[T′(x)]2

=
(ν + 1)Tν(x) + (1− νλ)

T(x)[1 + Tν(x)]
, (13)

where T(x) = G(x) [1 − G(x)]−1, T′(x) = g(x) [1 − G(x)]−2, T′′(x) = g′(x) [1 −
G(x)]−2 + 2g2(x) [1 − G(x)]−3, and g(x) and G(x) are given in (3). Every critical
point where f reaches a maximum (resp., minimum) value is called the mode (resp.,
minimum point). Using the intermediate value theorem, it is simple to verify that, for
νλ > 1/σ, Equation (13) has at least one root in (0, ∞) (see Appendix A).

(C) If σ = 1 and ν > 0 is an integer, the pdf of X is (Rodrigues et al. [38])

1. decreasing or decreasing–increasing–decreasing for νλ < 1;

2. unimodal for νλ � 1.

Note that Figure 1a (ν = 2, λ = 0.4) shows the unimodality of the OELLW pdf when
νλ < 1 and σ = 4 > 1. We emphasize that the values of the parameters in Figure 1a
do not satisfy the hypothesis of the result C(2), so it does not contradict this one.

(D) For 0 < ν � 1, the pdf of X is (Rodrigues et al. [38])

1. decreasing or decreasing–increasing–decreasing for νλ < σ−1;

2. decreasing or uni/bimodal or decreasing–increasing–decreasing for νλ = σ−1.

(E) If X ∼ EOLLW(ν, λ, γ, σ) and 0 < ν � 1, the pdf of X is uni- or bimodal for νλ > σ−1

(Rodrigues et al. [38]).
Note that Figure 1b (ν = 0.4, λ = 0.90) and Figure 1c (ν = 0.4, λ = 1.5) are consistent
with this result, because bimodality is obtained and νλ > σ−1 is satisfied for both cases.

(F) If D has the Type I Dagum distribution (Dagum [39]), say D ∼ DAGUM(ν, 1, λ),
the cdf of X ∼ EOLL-G(ν, λ, γ, σ) in (10) can be written as

F(x; ν, λ, μ, σ) = �[D � T(x)] = �
[

G−1
(

D
1 + D

; η

)
� x
]

. (14)

Consequently,

X = G−1
(

D
1 + D

)
is a stochastic representation for X.

(G) The cdf (10) satisfies the identity

F(x) = �
[

G−1
(

1
1 + B

)
� x
]

,

where B = 1/D, D ∼ DAGUM(ν, 1, λ) and G(x) is as given in Item (B).
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(H) We write A = {(ν, λ) ∈ (0, ∞)2 : (1 + ν)t2ν + ν2(1 + λ)tν+1 + [ν2(1 + λ) + ν(1− λ) +
2]tν + (1− νλ) > 0, ∀t > 0} (see Rodrigues et al. [38]).

1. If (ν, λ) ∈ A and σ = 1, the hrf of X is increasing.

2. Let ν2(1 + λ) + ν(1− λ) + 2 � 0, νλ > 1, and ν > 0 be an integer. For example,
take the ν � 1 integer and λ > ν−1.

(a) If there exists 0 < x∗ < ν/γ such that h′(x∗) = 0, the hrf of X has a bathtub
(BT) shape.

(b) If there does not exist 0 < x∗ < ν/γ such that h′(x∗) = 0, the hrf of X
is increasing.

3. Let ν2 + 3ν − 1 > 0, νλ = 1, and ν > 0 be an integer. For example, take
0 < ν < (

√
13− 3)/2 and λ > nu−1. Under the conditions of Item (a) [Item (b)],

the hrf of X has a BT (increasing) shape.

(I) The EOLLW density transitions from heavy-tailed to light-tailed (Rodrigues et al. [38]).

3.1. Other Properties
3.1.1. Existence of Moments

The tail of the density of X follows from (14),

�(X � x) = �[D � T(x)], D ∼ DAGUM(ν, 1, λ),

where T(x) = exp[(x/γ)σ]− 1. Markov’s inequality gives

�[D � T(x)] � �(D)

T(x)
=

λΓ(1− 1
ν )Γ(1 +

1
ν )

T(x)
, ν > 1.

Hence,

�(X � x) � λΓ(1− 1
ν )Γ(1 +

1
ν )

T(x)
, ν > 1. (15)

Having an upper bound on the tail of the distribution, we proceed to bound the
moments of X. This will prove its existence.

Based on the known formula �(Xp) = p
∫ ∞

0 xp−1
�(X � x)dx (for X � 0 and p > 0),

the inequality holds:

�(Xp)
(15)
� pλΓ

(
1− 1

ν

)
Γ
(

1 +
1
ν

) ∫ ∞

0

xp−1

T(x)
dx, p > 0, ν > 1,

= pλΓ
(

1− 1
ν

)
Γ
(

1 +
1
ν

)γp

σ

∫ ∞

0

y(p/σ)−1

exp(y)− 1
dy,

where y = exp[(x/γ)σ].
From the Riemann zeta function ζ(s) = ∑∞

n=1 n−s = [Γ(s)]−1
∫ ∞

0 zs−1[exp(z)− 1]−1dz,
Re(s) > 1, where Γ(s) =

∫ ∞
0 xs−1 e−xdx is the gamma function, we obtain

�(Xp) � pλγp

σ
Γ
(

1− 1
ν

)
Γ
(

1 +
1
ν

)
Γ
( p

σ

)
ζ
( p

σ

)
< ∞, p > σ.

Thus, for ν > 1 and p > σ, the existence of the pth moment of X (for any p > 0)
is guaranteed.
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3.1.2. Gini’s Mean Difference

Given the random variables X1, · · · , Xn, the Gini mean difference (GMD) is defined as

GMDn =
1(
n
2

) ∑
1�i<j�n

E(|Xi − Xj|), (16)

provided the involved expectations exist. The GMD is a very useful measure of variability
in the presence of non-normality.

(a) If X1, · · · , Xn is a sequence of independent and identically distributed (iid) random
variables, the classical GMD (La Haye and Zizler [40]) is GMD = E(|X1 − X2|).
From Proposition 3 of Vila et al. [41], the GMD for a random sample X1, · · · , Xn of the
EOLLW model is

GMD =
∫ 1

0
(2u− 1)F−1

X1
(u)du, (17)

where

F−1
X1

(u) = μ

[
ln
(

(1−u1/λ)1/ν

u1/(νλ)+(1−u1/λ)1/ν

)/
ln
(

(1−τ1/λ)1/ν

τ1/(νλ)+(1−τ1/λ)1/ν

)]1/σ

.

Note that analytically, the GMD (17) for the OELLW model is difficult to obtain.
Vila et al. [41] provided the following upper bound (2/

√
3)
√

Var(X1) for the GMD.
(b) If X ∼ EOLLW(νi, λi, γi, σi), and X1, · · · , Xn is a sample not necessarily independent

nor identically distributed, the following inequality for the GMD (16) follows from
Vila et al. [41]

GMDn � 1(
n
2

) ∑
1�i<j�n

[√
(
√

Var(Xi)−
√

Var(Xj)ρi,j)2 + Var(Xj)(1− ρ2
i,j) + |ς|

]
,

where ς = E(Xi)−E(Xj) and ρi,j = Corr(Xi, Xj), for i, j = 1, . . . , n.

Under constraints νi > 1 and σi < 1, the moments of Xi ∼ EOLLW(νi, λi, γi, σi)
(i = 1, . . . , n) always exist (see Section 3.1.1). Then, the mean E(Xi), variance Var(Xi),
and correlations ρi,j = Corr(Xi, Xj) (for i, j = 1, . . . , n) also exist. Hence, for both cases (a)
and (b), we can deduce non-trivial upper bounds (then its existence) of the GMD for the
EOLLW model.

4. The EOLLW QR Model for Censored Data

A new regression model is defined from the reparametrized EOLLW density (11), and
two systematic components for the parameters μi and σi (for i = 1, . . . , n)

μi(τ) = exp
{

v�i β1(τ)
}

and σi(τ) = exp
{

v�i β2(τ)
}

, (18)

where β1(τ) = (β10, β11, · · · , β1p)
� and β2(τ) = (β20, β21, · · · , β2p)

� are unknown pa-
rameter vectors, and v�i = (vi1, · · · , vip) is the explanatory variable vector. Thus, the
heteroscedasticity is modeled via σ.

The EOLLW QR model is defined by Equations (11) and (18), where ν and λ are
unknown constants, and it has as special models:

• Rhe exponentiated Weibull (EW) QR model for ν = 1;
• the odd log-logistic Weibull (OLLW) QR model for λ = 1;
• and the Weibull QR model for ν = λ = 1.

Consider a sample (x1, δ1, v1), · · · , (xn, δn, vn) of independent observations, where
each random response is defined by xi = min{Xi, Ci}, δi = IXi≤Ci (censoring indicator),
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where I(·) denotes the indicator function. We consider non-informative censoring and the
observed lifetimes and censoring times are independent given vi. Let F and C be the sets
of individuals for which xi is the lifetime or censoring time, respectively. Conventional
likelihood estimation techniques can be applied here. The log-likelihood function for the
vector θ = (β�1 (τ), β�2 (τ), ν, λ)� from model (18) has the form

�(θ) = ∑
i∈F

�i(θ) + ∑
i∈C

�
(c)
i (θ),

where �i(θ) = log[ f (xi)], �
(c)
i (θ) = log[S(xi)], f (xi) is the density (11), S(xi) = 1− F(xi)

is the survival function, and F(xi) is the cdf (10) of Xi. The total log-likelihood function for
θ can be expressed as

�(θ) = r† log(ν λ w) + ∑
i∈F

log[σi(τ)] + ∑
i∈F

[σi(τ)− 1] log(xi) + ν ∑
i∈F

log(ui) +

(ν λ− 1) ∑
i∈F

log(1− ui)− ∑
i∈F

σi(τ) log[μi(τ)]− (19)

(λ + 1) ∑
i∈F

log[(1− ui)
ν + uν

i ] + ∑
i∈C

log

[
1− (1− ui)

ν λ

[(1− ui)ν + uν
i ]

λ

]
,

where

w(ν, λ, τ) = − log

(
(1− τ

1
λ )

1
ν

τ
1

νλ + (1− τ
1
λ )

1
ν

)
, ui = exp

{
−w(ν, λ, τ)

[
xi

μi(τ)

]σi(τ)
}

,

and r† is the number of uncensored observations (failures).
The gamlss package in R [42] is used to find the maximum likelihood estimate θ̂ of θ.

This package comes from the general class of generalized additive models for location, scale
and shape (GAMLSS) (Rigby and Stasinopoulos [43]). These models allow all parameters of
a distribution to be modeled as a function of covariates, such as non-parametric, parametric
and/or additive smooth functions. Furthermore, they do not have the restriction that the
response distribution belongs to a given family such as the exponential family. The package
basically has two algorithms: CG (Cole and Green [44]) and RS (Rigby and Stasinopou-
los [43]), whose acronyms come from the names of the authors. These algorithms are stable
and do not require precise initial values to guarantee convergence. For this reason, we
work with the RS algorithm with initial values for β1(τ) and β2(τ) obtained from the fitted
Weibull QR model (ν = λ = 2). Compared to the CG algorithm, RS is faster for larger
datasets and does not use the expected value of cross derivatives, which can be useful
when these values are equal to zero. For more details of the algorithms, see [43].

The codes for the reparametric EOLLW distribution in the GAMLSS framework are
available at https://github.com/gabrielamrodrigues/EOLLW_quantiles (accessed on 10
February 2023). Following this approach, different regression models can be constructed by
incorporating non-parametric smoothing functions, random effects, or other additive terms to
the predictors.

Under conditions that are fulfilled for the parameter vector θ in the interior of the
parameter space but not on the boundary, the asymptotic distribution of

√
n(θ̂− θ) is

multivariate normal N2p+2(0, K(θ)−1), where K(θ) is the information matrix. The asymp-
totic covariance matrix K(θ)−1 of θ̂ can be approximated by the inverse of the (2p + 2)×
(2p + 2) observed information matrix −L̈(θ). The approximate multivariate normal distri-
bution N2p+2(0,−L̈(θ)−1) for θ̂ can be used in the classical way to construct approximate
confidence regions for some parameters in θ.

We can use the likelihood ratio (LR) statistic for comparing some sub-models with
the EOLLW QR model. We consider the partition θ = (θT

1 , θT
2 )

T , where θ1 is the subset of
parameters of interest and θ2 is the subset of remaining parameters. The LR statistic for
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testing the null hypothesis H0 : θ1 = θ
(0)
1 versus the alternative hypothesis H1 : θ1 �= θ

(0)
1

is given by w∗ = 2{�(θ̂) − �(θ̃)}, where θ̃ and θ̂ are the estimates under the null and
alternative hypotheses, respectively. The statistic w is asymptotically (as n → ∞) distributed
as χ2

k , where k is the dimension of the subset of parameters θ1 of interest.
The standard maximum likelihood techniques can be adopted for the proposed regres-

sion, such as the quantile residuals (qri) (Dunn and Smyth [45]), namely

qri = Φ−1

{
(1− ûi)

ν̂ λ̂

[(1− ûi)ν̂ + ûν̂
i ]

λ̂

}
, (20)

where

ûi = exp

{
−ŵ(ν̂, λ̂, τ)

[
xi

μ̂i(τ)

]σ̂i(τ)
}

, ŵ(ν̂, λ̂, τ̂) = − log

(
(1− τ̂

1
λ̂ )

1
ν̂

τ̂
1

ν̂λ̂ + (1− τ̂
1
λ̂ )

1
ν̂

)
,

μ̂i(τ) = exp
{

v�i β̂1(τ)
}

, σ̂i(τ) = exp
{

v�i β̂2(τ)
}

,

and Φ(·)−1 is the inverse cumulative standard normal distribution.

5. Simulation Study

A simulation study is carried out to verify the accuracy of the MLEs in the EOLLW QR
model for the quartiles τ = 0.25, 0.50 and 0.75, and approximate censoring percentages 0%, 10%
and 50%. Just one covariate v1 ∼Binomial (1, 0.5) is included in the systematic components:

μi = exp(β10 + β11v1i), σi = exp(β20 + β21v1i), νi = exp(β30), and λi = exp(β40),

For each combination, N = 1000 replicas of sizes n = 100, 300 and 500 are generated.
The true values used are: β10 = 1.5, β11 = −1.32, β20 = 0.5, β21 = 0.2, β30 = 1.1 and
β40 = 1.4.

The inverse transformation method is used to generate the lifetimes x1, · · · , xn from
the EOLLW(μi, σi, ν, λ, τ) distribution, and the censoring times c1, · · · , cn are determined
from a uniform distribution (0, k), where k controls the censoring percentages. For each
scenario, the Average Estimates (AEs), Biases and Mean Square Errors (MSEs) of the MLEs
are calculated from:

AE(θ̂) =
1
N

N

∑
i=1

θ̂i, Bias(θ̂) =
1
N

N

∑
i=1

(θ̂i − θi), MSE(θ̂) =
1
N

N

∑
i=1

(θ̂i − θi)
2, (21)

where θ̂
�
= (β̂10, β̂11, β̂20, β̂21, β̂30, β̂40). The software R is used and Algorithm 1 presents

the simulation steps.
Tables 1–3 report the findings. For all scenarios, the AEs converge to the true parameter

values, and the biases and MSEs decrease when n increases. These facts indicate that
the consistency of the estimators hold. In addition, this behavior is verified even for
high censoring percentages. We also found the empirical coverage probabilities (CPs)
corresponding to the 95% confidence intervals calculated from the simulations. Table 4
reports CPs values which approach to the nominal level.
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Algorithm 1: Simulation study
Input : τ: quantile

n: sample size
β10, β11, β20, β21, β30, β40: parameter initial values
k: controls censoring percentage
n.par: number of parameters
r: number of replicates

theta = matrix(0, r, n.par)
i = 1
while i ≤ r do

v1i ∼ Binomial (n, 1, 0.5)
μi = exp(β10 + β11v1i)
σi = exp(β20 + β21v1i)
νi = exp(β30)
λi = exp(β40)
x∗i ∼ EOLLW (n, μi, σi, νi, λi, τ) from Equation (12)
ci ∼ Uniform (n, 0, k)
δ= vector of zeros
x= vector of zeros
if ci ≤ x∗i then

xi = ci
δi = 0

else
xi = x∗i
δi = 1

end

Fit the model
if Model converges then

theta[i, ] = Parameter estimates
i = i + 1

else
i = i

end

end

Calculate AEs, BIASES and MSEs from Equation (21).

Table 1. Simulation results from the fitted EOLLW QR model for τ = 0.25.

% θ True Value
n = 100 n = 300 n = 500

AEs Biases MSEs AEs Biases MSEs AEs Biases MSEs

0%

β10 1.50 1.5017 0.0017 0.0006 1.5010 0.0010 0.0002 1.5015 0.0015 0.0001
β11 −1.32 −1.3208 −0.0008 0.0009 −1.3195 0.0005 0.0003 −1.3204 −0.0004 0.0002
β20 0.50 0.4713 −0.0287 0.3744 0.4689 −0.0311 0.0811 0.4661 −0.0339 0.0647
β21 0.20 0.2026 0.0026 0.0232 0.1983 −0.0017 0.0072 0.1996 −0.0004 0.0043
β30 1.10 0.9322 −0.1678 0.6286 1.1410 0.0410 0.1523 1.1606 0.0606 0.1208
β40 1.40 2.1725 0.7725 2.2507 1.3820 −0.0180 0.2594 1.3228 −0.0772 0.1726

10%

β10 1.50 1.5019 0.0019 0.0006 1.5007 0.0007 0.0002 1.5012 0.0012 0.0001
β11 −1.32 −1.3213 −0.0013 0.0010 −1.3199 0.0001 0.0003 −1.3205 -0.0005 0.0002
β20 0.50 0.5107 0.0107 0.3516 0.4687 −0.0313 0.0775 0.4664 −0.0336 0.0663
β21 0.20 0.1998 −0.0002 0.0251 0.1992 −0.0008 0.0080 0.1955 −0.0045 0.0046
β30 1.10 0.8796 −0.2204 0.6288 1.1319 0.0319 0.1517 1.1640 0.0640 0.1210
β40 1.40 2.1030 0.7030 1.7695 1.4245 0.0245 0.3137 1.3198 −0.0802 0.1713
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Table 1. Cont.

% θ True Value
n = 100 n = 300 n = 500

AEs Biases MSEs AEs Biases MSEs AEs Biases MSEs

50%

β10 1.50 1.5083 0.0083 0.0024 1.5015 0.0015 0.0006 1.5005 0.0005 0.0003
β11 −1.32 −1.3262 −0.0062 0.0029 −1.3208 −0.0008 0.0007 −1.3202 −0.0002 0.0004
β20 0.50 0.7797 0.2797 0.3705 0.5016 0.0016 0.1765 0.4869 −0.0131 0.0922
β21 0.20 0.1276 −0.0724 0.0767 0.1830 −0.0170 0.0197 0.1865 −0.0135 0.0127
β30 1.10 0.5845 −0.5155 0.6681 1.0430 −0.0570 0.3344 1.1165 0.0165 0.1563
β40 1.40 2.1757 0.7757 1.6396 1.6131 0.2131 0.6815 1.4305 0.0305 0.2805

Table 2. Simulation results from the fitted EOLLW QR model for τ = 0.50.

% θ True Value
n = 100 n = 300 n = 500

AEs Biases MSEs AEs Biases MSEs AEs Biases MSEs

0%

β10 1.50 1.5018 0.0018 0.0005 1.5007 0.0007 0.0002 1.5010 0.0010 0.0001
β11 −1.32 −1.3213 −0.0013 0.0008 −1.3197 0.0003 0.0003 −1.3205 −0.0005 0.0002
β20 0.50 0.5026 0.0026 0.3890 0.4834 −0.0166 0.0697 0.4664 −0.0336 0.0700
β21 0.20 0.2076 0.0076 0.0202 0.2042 0.0042 0.0066 0.2006 0.0006 0.0039
β30 1.10 0.9111 −0.1889 0.6434 1.1457 0.0457 0.1317 1.1694 0.0694 0.1291
β40 1.40 2.1463 0.7463 2.2571 1.3320 −0.0680 0.2332 1.3050 −0.0950 0.1874

10%

β10 1.50 1.5016 0.0016 0.0007 1.5004 0.0004 0.0002 1.5005 0.0005 0.0001
β11 −1.32 −1.3203 −0.0003 0.0010 −1.3197 0.0003 0.0004 −1.3200 −0.0000 0.0002
β20 0.50 0.5788 0.0788 0.2982 0.4814 −0.0186 0.0787 0.4676 −0.0324 0.0666
β21 0.20 0.2037 0.0037 0.0236 0.2032 0.0032 0.0082 0.1994 −0.0006 0.0046
β30 1.10 0.8421 −0.2579 0.5646 1.1418 0.0418 0.1473 1.1686 0.0686 0.1223
β40 1.40 1.9985 0.5985 1.5804 1.3647 −0.0353 0.2598 1.3109 −0.0891 0.1954

50%

β10 1.50 1.5040 0.0040 0.0033 1.4995 −0.0005 0.0007 1.4996 −0.0004 0.0004
β11 −1.32 −1.3213 −0.0013 0.0036 −1.3185 0.0015 0.0008 −1.3191 0.0009 0.0005
β20 0.50 0.8284 0.3284 0.4059 0.5002 0.0002 0.2775 0.4885 −0.0115 0.1185
β21 0.20 0.1409 −0.0591 0.0730 0.1852 −0.0148 0.0195 0.1931 −0.0069 0.0127
β30 1.10 0.5795 −0.5205 0.6660 1.0593 −0.0407 0.4554 1.1395 0.0395 0.1775
β40 1.40 2.0447 0.6447 1.4838 1.5840 0.1840 0.6743 1.3576 −0.0424 0.2460

Table 3. Simulation results from the fitted EOLLW QR model for τ = 0.75.

% θ True Value
n = 100 n = 300 n = 500

AEs Biases MSEs AEs Biases MSEs AEs Biases MSEs

0%

β10 1.50 1.4978 −0.0022 0.0006 1.4974 −0.0026 0.0002 1.4982 −0.0018 0.0001
β11 −1.32 −1.3202 −0.0002 0.0011 −1.3189 0.0011 0.0004 −1.3200 −0.0000 0.0002
β20 0.50 0.4999 −0.0001 0.4778 0.5031 0.0031 0.0630 0.4692 −0.0308 0.0629
β21 0.20 0.2057 0.0057 0.0187 0.1994 −0.0006 0.0064 0.2003 0.0003 0.0038
β30 1.10 0.9645 −0.1355 0.7290 1.1483 0.0483 0.1149 1.1851 0.0851 0.1136
β40 1.40 2.0572 0.6572 2.0673 1.3201 −0.0799 0.2256 1.2860 −0.1140 0.1613

10%

β10 1.50 1.4968 −0.0032 0.0008 1.4973 −0.0027 0.0003 1.4981 −0.0019 0.0002
β11 −1.32 −1.3207 −0.0007 0.0011 −1.3192 0.0008 0.0004 −1.3200 −0.0000 0.0003
β20 0.50 0.5707 0.0707 0.3092 0.5012 0.0012 0.0666 0.4817 −0.0183 0.0553
β21 0.20 0.2045 0.0045 0.0233 0.2046 0.0046 0.0069 0.2004 0.0004 0.0043
β30 1.10 0.9004 −0.1996 0.5399 1.1452 0.0452 0.1179 1.1760 0.0760 0.0991
β40 1.40 1.9765 0.5765 1.7309 1.3391 −0.0609 0.2326 1.2787 −0.1213 0.1641
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Table 3. Cont.

% θ True Value
n = 100 n = 300 n = 500

AEs Biases MSEs AEs Biases MSEs AEs Biases MSEs

50%

β10 1.50 1.4909 −0.0091 0.0037 1.4949 −0.0051 0.0010 1.4953 −0.0047 0.0007
β11 −1.32 −1.3134 0.0066 0.0043 −1.3177 0.0023 0.0011 −1.3172 0.0028 0.0007
β20 0.50 0.8283 0.3283 0.5621 0.5214 0.0214 0.2210 0.5234 0.0234 0.0790
β21 0.20 0.1300 −0.0700 0.0778 0.1920 −0.0080 0.0184 0.1904 −0.0096 0.0120
β30 1.10 0.6175 −0.4825 0.8154 1.0842 −0.0158 0.3476 1.1419 0.0419 0.1129
β40 1.40 2.0680 0.6680 1.6198 1.5014 0.1014 0.6340 1.3051 −0.0949 0.1893

Table 4. CPs for the 95% nominal level from the fitted EOLLW QR regression model when τ = 0.25,
0.50 and 0.75 and approximate censoring percentages 0%, 10% and 50%.

τ θ
0% (n) 10% (n) 50% (n)

(100) (300) (500) (100) (300) (500) (100) (300) (500)

0.25

β10 0.939 0.946 0.957 0.948 0.951 0.947 0.922 0.949 0.953
β11 0.954 0.949 0.959 0.946 0.942 0.966 0.937 0.951 0.946
β20 0.973 0.974 0.965 0.972 0.981 0.969 0.962 0.975 0.981
β21 0.948 0.955 0.956 0.946 0.957 0.954 0.937 0.961 0.954
β30 0.980 1.000 1.000 0.978 0.998 1.000 0.954 0.981 0.993
β40 0.990 0.999 0.991 0.993 0.999 0.993 0.996 0.998 1.000

0.50

β10 0.950 0.947 0.952 0.940 0.935 0.951 0.907 0.939 0.968
β11 0.950 0.939 0.956 0.947 0.937 0.950 0.913 0.933 0.996
β20 0.969 0.972 0.959 0.955 0.977 0.962 0.959 0.975 0.973
β21 0.959 0.967 0.964 0.953 0.948 0.957 0.945 0.956 0.998
β30 0.986 0.999 1.000 0.970 0.999 1.000 0.941 0.976 0.995
β40 0.986 0.999 0.987 0.995 0.999 0.995 0.995 0.996 0.989

0.75

β10 0.950 0.956 0.963 0.941 0.959 0.958 0.895 0.955 0.938
β11 0.946 0.956 0.959 0.954 0.958 0.963 0.914 0.964 0.949
β20 0.952 0.968 0.966 0.952 0.974 0.969 0.939 0.972 0.991
β21 0.968 0.969 0.965 0.962 0.968 0.968 0.936 0.970 0.959
β30 0.980 0.999 1.000 0.979 1.000 1.000 0.952 0.987 0.996
β40 0.980 0.999 0.989 0.991 0.998 0.996 0.986 0.993 0.999

6. Application to Gastric Cancer Data

Gastric cancer is the 5th most common cancer worldwide. There are more than one
million new cases of this cancer every year, and it ranked as the 2nd leading cause of mor-
tality from cancer in the world. We consider a survival dataset of patients suffering from
gastric adenocarcinoma treated by surgery at Helsinki University Hospital in Finland [46]
(available at https://doi.org/10.5061/dryad.hb62394, accessed on 29 November 2022 [47]),
which contains 301 individuals with approximate censoring of 60%. Here we consider
two covariables. The first corresponds to the classification of Lauren (Figure 2a). Various
pathological classifications of the disease exist, but that of Lauren is the most common.
Originally developed in the 1960s, the classification system adopted cell structural com-
ponents to separate the patients in three types: well differentiated (non-cardia/intestinal),
poorly differentiated (cardia/diffuse), and mixed disease [48]. Based on histology, the two
leading types of gastric cancer are diffuse and intestinal [49]. These two types are reflected
in the dataset. The second covariable corresponds to the presence of distant metastasis (M1
disease) (Figure 2b). Many patients diagnosed with gastric cancer present distant metasta-
sis, implying a very poor prognosis, generally indicating prophylactic rather than curative
treatment ([50,51]). The objective here is to verify the effects of the covariables in different
quantiles, so as to obtain a more complete view of this dataset. Table 5 gives a descriptive
summary, which includes the mean times, median times and times for the first and third
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quartiles. We can observe differences for the Lauren classification covariate: between the
quantiles, the average time, and the Lauren 1 and Lauren 2 levels. However, we note subtle
differences for the presence of distant metastases covariate. Then, the variables considered
are (i = 1, . . . , 301):

• xi survival time (in years);
• censi: censoring indicator (0 = censored, 1 = observed);
• v1i: Lauren classification (1 = intestinal, 2 = diffuse), defined by a dummy variable

(0 = intestinal, 1 = diffuse);
• v2i: Presence of distant metastases (pm) (1 = yes, 0 = no)

(a) (b)
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Figure 2. Kaplan-Meier survival curves for gastric cancer data: (a) Lauren classification; (b) Presence
of distant metastases.

Table 5. Descriptive analysis of gastric cancer data.

0.25 0.50 0.75 Mean

Lauren 1 4.33 8.57 10.18 7.73
Lauren 2 8.32 11.08 13.30 10.39

Pm 0 7.15 9.66 11.90 9.24
Pm 1 10.06 10.06 10.06 8.48

Regression Model

We compare the EOLLW QR model with the nested OLLW, Exp-W and Weibull models
under three systematic components:

M0 =

{
μ(τ) = exp[β10(τ)]

σi(τ) = exp[β20(τ)];

M1 =

{
μ(τ) = μ(τ) = exp[β10(τ) + β11(τ)v1i + β12(τ)v2i]

σi(τ) = exp[β20(τ)];

M2 =

{
μ(τ) = exp[β10(τ) + β11(τ)v1i + β12(τ)v2i]

σi(τ) = exp[β20(τ) + β21(τ)v1i + β22(τ)v2i].

We consider the following quantiles: τ = 0.10, 0.25, 0.50, 0.75 and 0.90. Table 6 reports
the Akaike information criterion (AIC) values for the fitted QR regression models. The
EOLLW QR model under structure M2 gives the lowest values for these quantiles.
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Table 6. AIC values for some fitted QR models to gastric cancer data.

Model
τ

0.10 0.25 0.50 0.75 0.90

M0

EOLLW 755.3104 760.6965 755.1712 755.1715 755.1759
OLLW 773.1060 773.1021 773.1010 773.1017 773.1011
Exp-W 759.9144 759.0376 758.4132 757.2295 757.9724
Weibull 813.5743 813.5743 813.5744 813.5744 813.5746

M1

EOLLW 755.2259 755.1844 755.1742 755.1753 755.1778
OLLW 774.2566 774.2433 774.2239 774.2288 774.2294
Exp-W 762.3150 761.8464 761.2808 760.9295 938.5430
Weibull 811.0754 811.0752 811.0754 811.0755 811.0756

M2

EOLLW 750.3085 750.1898 750.1712 750.1812 750.1930
OLLW 769.1151 769.1514 769.2313 769.2891 769.3191
Exp-W 755.8550 755.7825 755.7881 755.8164 768.3938
Weibull 797.4298 797.4352 797.4666 797.5064 797.5421

Table 7 gives three likelihood ratio (LR) statistics (p-values in parentheses), thus
indicating that the EOLLW QR model under structure M2 is better than the others. Thus,
we can consider this model as the predictive model.

Table 7. LR statistics for the ELLOW QR model under structure M2 and some τ values for the gastric
cancer data.

τ

Models Hypotheses 0.10 0.25 0.50 0.75 0.90

EOLLW vs. OLLW H0 : λ = 1 vs. H1 : H0 is false 20.80(<0.001) 20.95(<0.001) 21.06(<0.001) 21.10(<0.001) 21.12(<0.001)
EOLLW vs. Exp-W H0 : ν = 1 vs. H1 : H0 is false 7.54(0.006) 7.58(0.005) 7.61(0.005) 7.63(0.005) 20.20(<0.001)
EOLLW vs. Weibull H0 : λ = ν = 1 vs. H1 : H0 is false 51.12(<0.001) 51.24(<0.001) 51.29(<0.001) 51.28(<0.001) 51.34(<0.001)

Figure 3 displays the MLEs and the corresponding confidence intervals along with
the interval [0.01, 0.99], and Table 8 gives the MLEs and their standard errors (SEs) for the
quantiles τ = 0.10, 0.25, 0.50, 0.75 and 0.90 at the significance level of 5%. The following
facts can be mentioned:

• The effect of the Lauren classification 2 in comparison with 1 is decreasing along
the quantiles and its confidence interval shows significant estimates for all quantiles.
These results corroborate with those point quantiles reported in Table 8.

• The effect of the presence of distant metastasis is rising along the quantiles. Its
confidence interval includes zero in the interval [0.25, 0.75), thus indicating that the
covariable is not significant for these quantiles. These results can be noted by the
non-significant p-values for τ = 0.25 and 0.50.

• For the parameters β21 and β22, the estimates are significant for both quantiles, thus
indicating that those covariables influence the variability of the survival times.

• The estimates corresponding to the shape parameters β30 and β40 are also significant
for all quantiles.
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Figure 3. Point estimates and 95% confidence intervals for the parameters versus τ from the fitted
ELLOW QR model under structure M2 for the gastric cancer data.

Table 8. Estimation findings from the ELLOW QR model under structure M2 and τ = 0.10, 0.25, 0.50,
0.75 and 0.90 for the current data.

τ θ MLEs SEs p-Values

0.10

β10 0.372 0.050 <0.01
β11 0.691 0.066 <0.01
β12 −1.100 0.206 <0.01
β20 −0.165 0.022 <0.01
β21 0.269 0.036 <0.01
β22 −0.652 0.113 <0.01
β30 2.092 0.016 <0.01
β40 −2.043 0.017 <0.01

0.25

β10 1.322 0.050 <0.01
β11 0.468 0.066 <0.01
β12 −0.350 0.210 0.096
β20 −0.226 0.037 <0.01
β21 0.271 0.057 <0.01
β22 −0.670 0.176 <0.01
β30 2.159 0.026 <0.01
β40 −2.054 0.028 <0.01

0.50

β10 1.990 0.050 <0.01
β11 0.308 0.066 <0.01
β12 0.211 0.212 0.320
β20 −0.245 0.061 <0.01
β21 0.269 0.078 <0.01
β22 −0.679 0.131 <0.01
β30 2.178 0.034 <0.01
β40 −2.056 0.037 <0.01

0.75

β10 2.362 0.050 <0.01
β11 0.220 0.066 <0.01
β12 0.533 0.213 0.013
β20 −0.239 0.077 <0.01
β21 0.266 0.088 <0.01
β22 −0.682 0.105 <0.01
β30 2.172 0.034 <0.01
β40 −2.054 0.036 <0.01

0.90

β10 2.565 0.050 <0.010
β11 0.172 0.066 0.010
β12 0.710 0.213 <0.01
β20 −0.231 0.077 <0.01
β21 0.264 0.087 <0.01
β22 −0.684 0.094 <0.01
β30 2.165 0.033 <0.01
β40 −2.053 0.034 <0.01
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Residual Analysis

Figures 4–8 provide the normal probability plots of the qri’s in Equation (20) under
structure M2 for some quantiles. They reveal that the EOLLW QR model is the best among
the fitted models. Further, they approximately follow a standard normal distribution, thus
indicating adequate fits. Figure 9 shows the index plot of the qri’s for the EOLLW QR model
under structure M2. There are few points outside the interval [−3, 3] for both quantiles,
and a random pattern around zero which show that these models are very adequate to the
current data.
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Figure 4. QQ plots for qri’s from some fitted regression models under structure M2 and τ = 0.10.
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Figure 5. QQ plots for the qri’s from some fitted regression models under structure M2 and τ = 0.25.
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Figure 6. QQ plots for the qri’s from some fitted regression models under structure M2 and τ = 0.50.
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Figure 7. QQ plots for the qri’s from some regression models under structure M2 and τ = 0.75.
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Figure 8. QQ plots for the qri’s from some regression models under structure M2 and τ = 0.90.

(a) (b) (c) (d) (e)

Figure 9. Index plots for the qri’s from some regression models under structure M2: (a) τ = 0.10;
(b) τ = 0.25; (c) τ = 0.50; (d) τ = 0.75; (e) τ = 0.90.

7. Concluding Remarks

We introduced a new quantile regression model for censored data based on the
reparametrization of the exponentiated log-logistic odd Weibull (EOLLW) distribution
in terms of quantiles with two systematic components. We presented some mathematical
properties of the reparametrized EOLLW distribution. The proposed quantile regression
model is an important extension of other regression models and can be a valuable addition
to the survival analysis area. The new regression model also serves as a good alternative for
the analysis of lifetime data and may be more flexible than the exponentiated Weibull, odd
log-logistic Weibull and Weibull models. Several simulations were performed for different
parameter settings, sample sizes and censoring percentages, to assess the accuracy of the
maximum likelihood estimators. The usefulness of the new model was also proved by
means of a gastric cancer dataset.
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Appendix A

Here, for the EOLLW model, we verify (11), Equation (13) has at least one zero under
the restriction νλ > 1/σ.

Indeed, if G(x; γ, σ) and g(x; γ, σ) are as in (3), Equation (13) can be written as

L(z) ≡
(

2− 1
σ

)[
1− exp(−z)

z

]
− ν

[exp(z)− 1]ν − λ

[exp(z)− 1]ν + 1
− 1 = 0, where z =

(
x
γ

)σ

.

L’Hospital’s rule gives

lim
z→0+

L(z) =
(

2− 1
σ

)
− ν(−λ)− 1 = 1 + νλ− 1

σ
> 0

and

lim
z→∞

L(z) = −(ν + 1) < 0,

since νλ > 1/σ. Further, L is continuous in (0, ∞), and by the intermediate value theorem,
there is a c ∈ (0, ∞) such that L(c) = 0. In other words, Equation (13) has at least one zero
if νλ > 1/σ.
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Abstract: In this paper we study the aging characteristics in mixtures of distributions, providing
characterizations for their derivatives that explain the smooth behavior of the mixture. The classical
preservation results for the reversed hazard rate, mean residual life and mean inactivity time are
derived under a different approach than in previous studies. We focus on the variance of both
the residual life and inactivity time in mixtures, obtaining some preservation properties. We also
state conditions for weak and strong bending properties for the variance of the residual life and the
inactivity time in mixtures.

Keywords: mixture; residual life variance; inactivity time variance; aging class; bending property
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1. Introduction

Systems fail due to age, and the way this process occurs is described by the aging
characteristics. The failure rate, indicating the proneness to failure, and the residual life
measuring the remaining time span of a system that has not yet failed, are traditionally used
as indicators of the system state. Therefore they can be used to assess the appropriateness
of carrying out some types of preventive maintenance. It can be observed that both the
failure rate and the residual life are calculated at a given time x for individuals or units that
have survived up to x, and thus we can define them as “forward age characteristics” since
they reflect, respectively, the probability of failure in the imminent future and the random
time from x until it occurs.

Sometimes the research subject of interest emerges when the failure has already
occurred. For example, when a failure is unrevealed, that is, it is detected only by inspection,
the maintainer would like to estimate the probability that it occurred sometime between
two consecutive inspections if, for example, he suspects that failures are induced by
inspections [1], or he may wish to estimate the losses incurred up to a given moment
due to the downtime. This aspect is also particularly relevant in epidemiological studies
when people are diagnosed as being infected by a virus and a retrospective analysis is
required [2].

Given a non-negative random variable X, the reversed hazard rate qX(x) and the
inactivity time νX(x) provide information for this type of analysis. Both can be interpreted
as “backward age characteristics” since they are defined conditionally for a failure that
has occurred in [0, x]. Thus, qX(x)dx is interpreted in [3] as the conditional probability of
failure for an object in (x− dx, x], whereas the inactivity time represents the time elapsed
from the failure until x. Both concepts are relevant for maintenance models if a downtime
cost is assumed. When dealing with people diagnosed with a disease, they represent the
probability of having been infected just before the infection is detected and the period
from infection to detection, respectively. The connection between the two characteristics is
studied in [4]. In this study, we aim at shedding light on both the expectation and variance
of the residual life and inactivity time.
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Often the time to failure of a system is described by a mixture of distributions. This
is so, for example, when there is a subpopulation of “bad” units mixed with the normal
ones. Studies of aging characteristics in mixtures lead to actual applications in maintenance
modeling. The work in [5] uses a mixture to model the case of progressive wear in metal
cutting tools when a proportion of the supply is affected by hidden defects. The mixing
random variable is usually an unobserved random variable (frailty) representing, for
example, users with different levels of expertise or the changing environmental conditions
under which the system operates. The frailty is used to introduce random effects to account
for such heterogeneities caused by distinct risks when there are no observable covariates.

An amazing outcome is that the aging characteristics are observed to improve in
mixed populations compared to those corresponding to the distributions in the mixture.
The best known preservation property is that mixtures of DFR (decreasing failure rate)
populations are also DFR. In addition, a bending behavior is observed for some mixtures of
IFR populations, which are first increasing and then asymptotically DFR [6]. This means
that mixtures tend to transform a positive aging of the failure rate into a negative one. The
research in [7] illustrates this property with a number of actual examples ranging from
social issues (divorce) to entomology (mortality in fruit flies) and health (mortality due to
cancer). In doing so, the author develops a nice intuition regarding the meaning of frailty
and its effects.

Regarding the reversed hazard rate, mean residual life and mean inactivity time, the
following properties are preserved by mixtures: increasing reversed hazard [8], increasing
mean residual life [9] and decreasing mean inactivity time [8]. All these properties imply
that the system reliability increases with time and therefore preventive maintenance at the
beginning of the useful life may be profitable, to prevent early failures [10]. The bending
properties imply that the aging characteristics in a mixture of populations take greater
values than the mean value of the corresponding aging characteristics of the subpopulations
in the mixture. Therefore, the study of bending properties provides additional insight into
condition-based maintenance.

The residual life variance and inactivity time variance are useful in many areas of
statistics, including biometry, actuarial science and reliability theory. In addition, there is an
increasing interest in the study of the corresponding stochastic orders and their associated
aging classes at a fixed time. A number of papers [11–22] contain relevant results on this
issue. Recent research concerning stochastic orders of discrete random variables can be
found in [23].

The preservation of the increasing residual life variance under mixtures was addressed
in [24]. As far as we know, a similar study for the decreasing inactivity time variance has
not yet been undertaken. In this paper, the corresponding preservation properties are
derived, generalizing the property in [24], since we relax the assumptions.

Our description of the residual life variance and inactivity time variance follows the
approach in [25] for the failure rate and that in [26] for the reversed hazard rate in mixtures.
Both studies present a Bayesian perspective, based on the conditional distribution of the
frailty given the data, which is different from that in [2–4,6–8,11–24]. Hence, the frailty
cannot be observed but it can be updated. Highlighting the differences between this work
and previous research, we must also point out that the authors in [2,7] provide data-driven
properties, whereas this paper focuses on theoretical results with pending applicability in
empirical studies.

The bending properties of the failure rate in mixtures were originally studied in [25].
The authors in [27] extended this analysis to the reversed hazard rate, mean residual life
and mean inactivity time. The properties of mixtures under the proportional reversed
hazard rate were considered in [28]. Recently, the discrete case of the reversed hazard rate
was studied in [29].

This paper is organized as follows. Notation, basic results and the representation
assumed for mixtures are presented in Section 2. Section 3 is devoted to the preservation of
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aging characteristics under mixtures, whereas the bending properties are the central topic
of Section 4. Section 5 contains the main conclusions of this paper.

2. Preliminaries

In what follows, we present the basics of aging properties, mixtures and stochastic
orders. Almost all of these have been obtained in previous research, and therefore the
corresponding proofs can be found in the cited references. For the readability of the results
without extending the section with known results, some of them are developed in more
detail in Appendix A. The following notation is used throughout the paper.

A random variable X (X > 0) can be specified in different ways. The more popular
ways are the density function fX , the cumulative distribution function FX(x) = P(X ≤ x),
the reliability or survival function FX(x) = P(X > x) and the hazard rate rX(x), defined as
follows:

rX(x) = lim
Δx→0

P(x ≤ X < x + Δ|X > x)
Δx

=
f (x)

FX(x)
.

Observe that rX(x)Δx = f (x)Δx
FX(x)

can be interpreted as the probability of imminent

failure in [x, x + Δx).
The reversed hazard rate qX(x), defined below, is another aging characteristic:

qX(x) = lim
Δx→0

P(x− Δx < X ≤ x|X ≤ x)
Δx

=
fX(x)
FX(x)

.

It follows that qX(x)Δx = fX(x)Δx
FX(x) is the probability that the failure has just occurred

when time x arrives. Consider, for example, that a tumor is diagnosed at x, then qX(x)Δx
is the probability that tumor appeared during the time (x − Δx, x]. An important result
states that there exists no non-negative random variable with support in (0, ∞) having an
increasing reversed hazard rate function [3]. From a practical point of view, this makes
perfect sense. Observe that if such a variable were possible, then under the previous
context a tumor diagnosed at time x1 would be less likely to be formed in (x1 − Δx1, x1]
than in (x2 − Δx2, x2] in the case where the diagnosis time is x2 with x2 > x1 . In other
words, the longer the time until the tumor is detected, the greater the probability that it
had just occurred and, thus, the lower the time elapsed since then. This contradicts actual
knowledge of this disease, which points to early detection as one of the keys for cure. The
importance of the reversed hazard rate in the estimation of the survival function under
left-censored observations was highlighted in [2,3].

The residual life and inactivity time are random variables closely related to the hazard
rate and reversed hazard rate, respectively. Thus, the residual life of a unit that has survived
up to x is the remaining life until the unit fails, that is, X − x|X > x. P(X − x > t|X > x)
is the probability that such a unit survives t additional units of time. This is important
for maintenance scheduling since the larger the previous probability for a given t, the less
urgent the replacement of the system.

The inactivity time refers to the elapsed time from failure on condition that it occurred
before a given time x, x−X|X ≤ x. The importance of this variable appears, for example, if
we wish to obtain information about the time since a tumor appeared when it is diagnosed
at x. Now, P(x − X > t|X ≤ x) determines the probability that the tumor was formed
more than t units ago. Therefore a high probability is an adverse result, since the more
likely it has remained hidden, the lower the chance of recovery. Both the expectation and
the variance of the random variables are always relevant, and so we focus on the the mean
residual life mX(x) = E[X − x|X > x], the mean inactivity time νX(x) = E[x− X|X ≤ x],
the residual life variance σ2

X(x) = Var[X − x|X > x] and the inactivity time variance
σ2

X(x) = Var[x− X|X ≤ x]. The hazard rate and the mean residual life are dual functions;
when the former increases, the latter decreases. The reversed hazard rate and the mean
inactivity time are coupled in the same way.
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Z denotes the frailty random variable, and we assume without loss of generality that it
is a continuous non-negative random variable with probability density function (pdf) π(z).
In addition, X∗ represents the mixture of random variables and X∗|Z = z is the distribution
of the mixture given that the conditions take a particular value z, that is, if Z = z.

At this point, we must highlight a crucial difference in Z when the reversed hazard
rate and inactivity time are under study. The analysis in [7] concerning the heterogeneity
of individuals sheds light on the effect of non-susceptible subgroups, that is, those people
either immune to or cured of an illness. The time to failure of long-term survivors is
represented by a defective distribution [30]. In [31], the concept of resilience is used as
an alternative to frailty when the survival function increases with the mixing random
variable. Therefore, and for estimation purposes, the possibility of immune persons in
that particular problem cannot be neglected. However, in the case of the reversed hazard
rate and inactivity time, this situation no longer applies. Observe that both are “backward
age characteristics” and hence are defined once the event has occurred. It follows that
non-susceptible (immune) individuals make no sense when both measures are involved,
and hence the distributions for the frailty cannot include defective distributions.

The aging characteristics of the population in the mixture conditional to a given value
of the frailty Z = z are represented by F(x, z) (distribution function), F(x, z) (reliability
function), f (x, z) (density function), r(x, z) (failure rate), q(x, z) (reversed hazard rate),
m(x, z) (mean residual time), ν(x, z) (mean inactivity time), σ2(x, z) (residual life variance)
and σ2(x, z) (inactivity time variance). The corresponding aging characteristics of the
mixture are, respectively, denoted by F∗(x), F∗(x), f ∗(x), r∗(x), q∗(x), m∗(x), ν∗(x), σ∗2(x)
and σ∗2(x).

The comparison between random variables emerges naturally in reliability or survival
analysis. For example, does the disease-free time increase under a new treatment? Are two
vaccines equally effective? Does the interval between failures in a machine depend on the
working conditions? Stochastic orders answer questions like these.

X is less or equal than Y (X ≤ Y) under a specific stochastic order if the corresponding
properties given in the following hold:

• Usual stochastic order (st):
FX(x) ≤ FY(x). Equivalently, E[h(X)] ≤ E[h(Y)] for an increasing function h;

• Hazard rate order (hr): rX(x) ≥ rY(x);
• Reversed hazard rate order (rhr): qX(x) ≤ qY(x);
• Likelihood ratio order (lr): fX(y) fY(x) ≤ fX(x) fY(y), x ≤ y;
• Mean residual life order (mrl): mX(x) ≤ mY(x);
• Residual life variance order (rlv): σ2

X(x) ≤ σ2
Y(x);

• Mean inactivity time order (mit): νX(x) ≥ νY(x);
• Inactivity time variance order (itv): σ2

X(x) ≥ σ2
Y(x);

given that x, y are in the support set of X and Y.
Note that X ≤ Y under all the previous stochastic orders except for the rlv, indicates

that X is worse than Y in different senses: a greater hazard rate or a smaller mean residual
life. A lower reversed hazard rate, and therefore a larger mean inactivity time, also represent
worse conditions.

Some of the previous properties are stronger than others. A thorough study of this
subject can be found in [32–34]. The chain of implications between orders is well known,
and these results are shown in Appendix A.

Since the frailty is used to reflect different operating conditions in a system or biological
heterogeneity between individuals [7], then it is relevant to analyze its effect on the aging
characteristics. As an alternative to models with covariates, the following definitions aim
at describing the effect of these unobservable variations.

Remark 1. X∗|Z = z is increasing in z under a particular order if, for all z1 < z2, the correspond-
ing properties below hold:
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• Usual stochastic order: F(x, z1) ≤ F(x, z2);
• Hazard rate order: r(x, z1) ≥ r(x, z2);
• Reversed hazard rate order: q(x, z1) ≤ q(x, z2);
• Mean residual life order: m(x, z1) ≤ m(x, z2);
• Mean inactivity time order: ν(x, z1) ≥ ν(x, z2);
• Residual life variance order: σ2(x, z1) ≤ σ2(x, z2);
• Inactivity variance time order: σ2(x, z1) ≥ σ2(x, z2).

Therefore, an increasing z implies a beneficial effect of the frailty, since all the aging character-
istics reveal an improvement in the system with the exception of the residual life variance.

Given the chain of implications in Appendix A, if the failure rate r(x, z) is decreasing in z,
then F(x, z), m(x, z) and σ2(x, z) are increasing in z, and if q(x, z) is increasing in z, then F(x, z),
ν(x, z) and σ2(x, z) are decreasing in z.

The following property is relevant for the forthcoming results. Its proof can be found
in [35,36].

Lemma 1. Let X be a random variable and h(x), g(x) two real functions.

(a) If both h(x) and g(x) are simultaneously increasing or decreasing, then

Cov(h(X), g(X)) ≥ 0,

(b) If h(x) is increasing and g(x) is decreasing, then

Cov(h(X), g(X)) ≤ 0.

The conditions for Lemma 1 to hold are relaxed in the next result in Remark 2.

Remark 2. Case (a) [(b)] follows, provided that (h(x)− h(y))(g(x)− g(y)) ≥ [≤]0 for all x and
y in the support of X.

Observe that

(h(x)− h(y))(g(x)− g(y)) ≥ [≤] 0 ⇔
(h(x)− h(y))(g(x)− g(y)) fX(x) fX(y) ≥ [≤] 0

where fX is the density function of X. Therefore, the condition in Lemma 1 is verified:∫ ∞

0

∫ ∞

0
(h(x)− h(y))(g(x)− g(y)) fX(x) fX(y)dxdy = 2Cov(h(X), g(X)).

Hence, h(x) and g(x) having the same monotonicity behavior is a sufficient but not a necessary
condition for Lemma 1 to hold.

Models with covariates are basically concerned with estimating risks or predicting
new values under different observable conditions. Hence, there is no uncertainty about the
latter. In contrast, frailty models allow the variation caused by unobserved environments
to be taken into account, and therefore a Bayesian analysis emerges as a natural way to
study the frailty distribution once the data are observed [37]. Thus, right-censored and
left-censored data can provide relevant information about the frailty. This is considered
next.

The pdfs of the conditional distributions Z|X∗ > x and Z|X∗ ≤ x are given as follows:

fZ|X∗>x(z) =
F(x, z)π(z)∫ ∞

0 F(x, z)π(z)dz
, z ≥ 0 (1)
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and

fZ|X∗≤x(z) =
F(x, z)π(z)∫ ∞

0 F(x, z)π(z)dz
, z ≥ 0 (2)

Similar formulae for the the conditional reliability and the cumulative failure rate can
also be obtained. The corresponding expressions are derived in Appendix B.

The expressions below for the mixture failure rate and reversed hazard rate can be
found, respectively, in [25,26].

r∗(x) = E[r(x, Z)|X∗ > x], q∗(x) = E[q(x, Z)|X∗ ≤ x]. (3)

By using the same techniques as in [25,26], the following identities for the mean
residual life and mean inactivity time in mixtures can be derived:

m∗(x) = E[m(x, Z)|X∗ > x], ν∗(x) = E[ν(x, Z)|X∗ ≤ x]. (4)

The expressions in (3) and (4) not only provide nice representations of the aging
characteristics of the mixture but will also be useful in forthcoming results.

Given a random variable X with a distribution function FX(x) and x such that
FX(x) > 0 and FX(x) > 0, the following definitions apply:

The mean residual life is

mX(x) = E[X − x|X > x] =

∫ ∞
x FX(y)dy

FX(x)
. (5)

The residual life variance is

σ2
X(x) = Var[X − x|X > x] = 2

∫ ∞
x

∫ ∞
y FX(u)dudy

FX(x)
−m2

X(x). (6)

The mean inactivity time is

νX(x) = E[x− X|X ≤ x] =

∫ x
0 FX(y)dy

FX(x)
. (7)

The inactivity time variance is

σ2
X(x) = Var[x− X|X ≤ x] = 2

∫ x
0

∫ y
0 FX(u)dudy

FX(x)
− ν2

X(x). (8)

These representations are repeatedly used in this paper and, although they are well
known, we derive them for the mean residual life and residual life variance in Appendix C,
aiming at producing a self-contained text. We omit the proofs corresponding to the mean
inactivity time and inactivity time variance since they are similar.

The main properties of the mean residual lifetime (inactivity time) and the residual
life (inactivity time) variance can be found in the references mentioned in the Introduction.
Next, we focus on their monotonicity properties, which are determinant in maintenance
decision-making.

A random variable X shows increasing (decreasing) residual life variance if σ2
X(x) is

increasing (decreasing) in x. Similar definitions regarding σ2
X(x) lead to the class increasing

(decreasing) inactivity time variance.
Next, well-known relations between the aging characteristics are recalled:

rX(x) =
dmX(x)

dx + 1
mX(x)

. (9)

274



Mathematics 2022, 10, 2795

qX(x) =
1− dνX(x)

dx
νX(x)

. (10)

dσ2
X(x)
dx

= rX(x)(σ2
X(x)−m2

X(x)). (11)

dσ2
X(x)
dx

= qX(x)(ν2
X(x)− σ2

X(x)). (12)

In the next remark, conditions for the monotonicity of the aging characteristics are
stated.

Remark 3. From (11), increasing (decreasing) residual life variance is equivalent to

σ2
X(x) ≥ (≤)m2

X(x)

for all x.
From (12), decreasing (increasing) residual life variance is equivalent to

σ2
X(x) ≥ (≤)ν2

X(x)

for all x.

The following lemma contains the key representations for the residual life variance
and inactivity time variance of the mixture.

Lemma 2.

σ∗2(x) = E[σ2(x, Z)|X∗ > x] + Var[m(x, Z)|X∗ > x]; (13)

σ∗2(x) = E[σ2(x, Z)|X∗ ≤ x] + Var[ν(x, Z)|X∗ ≤ x]. (14)

Proof of Lemma 2. From (6), it follows that

σ∗2(x) = 2

∫ ∞
x

∫ ∞
y F∗(u)dudy

F∗(x)
−m∗2(x)

=
∫ ∞

0

2
∫ ∞

x

∫ ∞
y F(u, z)dudyπ(z)dz∫ ∞
0 F(x, z)π(z)dz

−m∗2(x)

=
∫ ∞

0

(
2
∫ ∞

x

∫ ∞
y F(u, z)dudy

F(x, z)
−m2(x, z)

)
fZ|X∗>x(z)dz

+
∫ ∞

0
m2(x, z) fZ|X∗>x(z)dz−

(∫ ∞

0
m(x, z) fZ|X∗>x(z)dz

)2

=
∫ ∞

0
σ2(x, z) fZ|X∗>x(z)dz +

∫ ∞

0
m2(x, z) fZ|X∗>x(z)dz−

(∫ ∞

0
m(x, z) fZ|X∗>x(z)dz

)2
.

From (8), we have

σ∗2(x) = 2

∫ x
0

∫ y
0 F∗(u)dudy

F∗(x)
− ν∗2(x)

=
∫ ∞

0

2
∫ x

0

∫ y
0 F(u, z)dudyπ(z)dz∫ ∞
0 F(x, z)π(z)dz

− ν∗2(x)

=
∫ ∞

0
σ2(x, z) fZ|X∗≤x(z)dz +

∫ ∞

0
ν2(x, z) fZ|X∗≤x(z)dz−

(∫ ∞

0
ν(x, z) fZ|X≤x(z)dz

)2
.
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3. Preservation of Aging Classes under Mixtures

When defining a maintenance policy, the monotonicity of the failure rate plays a
central role. If it is an increasing function, preventive replacement can be carried out,
avoiding the cost derived from failure, which is usually higher than that incurred due to
the replacement itself. However, it is well known that the optimum replacement time is
infinite in the case of non-increasing failure rates as the exponential. This is so, either for
revealed failures [38] or unrevealed failures, when inspections to detect them are free from
false-negative outcomes [39]. The recent work carried out in [40] introduces a more general
concept, i.e., the deviation cost per unit time between replacement and failure, so that age
replacement policies can be valid for the exponential distribution. The forthcoming results
aim at studying the aging in frailty models.

The analysis in [8] provides bounds for dq∗(x)
dx and dν∗(x)

dx , whereas the corresponding

ones for dr∗(x)
dx and dm∗(x)

dx can be found in [41]. These results indicate that the change in
the aging characteristic in the mixture is not completely arbitrary but is under control of
both the distributions in the mixture and the frailty. Theorem 1 contains more precise
expressions, since they are new representations of the derivatives of the aging characteristic
in the mixture. Moreover, these results provide the exact difference between the derivative
of the aging characteristics of the mixture and the conditional expectation of the derivatives
of the aging characteristic corresponding to the distributions in the mixture given the
updated frailty. Hence, they constitute a formal approach to the improvement observed in
mixtures of populations compared with individuals.

Theorem 1. The following properties hold, provided the derivatives exist and can be interchanged
with the corresponding integrals.

(a)
dr∗(x)

dx
= E
[

dr(x, Z)
dx

|X∗ > x
]
−Var(r(x, Z)|X∗ > x)

(b)
dq∗(x)

dx
= E
[

dq(x, Z)
dx

|X∗ ≤ x
]
+ Var(q(x, Z)|X∗ ≤ x)

(c)
dm∗(x)

dx
= E
[

dm(x, Z)
dx

|X∗ > x
]
− Cov(r(x, Z), m(x, Z)|X∗ > x)

(d)
dν∗(x)

dx
= E
[

dν(x, Z)
dx

|X∗ ≤ x
]
+ Cov(ν(x, z), q(x, z)|X∗ ≤ x)

Proof of Theorem 1. The result in (a) has been proven in [42].
(b) Straightforward derivatives in (1) and (2) lead, respectively, to

d fZ|X∗>x(z)
dx

= fZ|X∗>x(z)(−r(x, z) + r∗(x)) (15)

d fZ|X∗≤x(z)
dx

= fZ|X∗≤x(z)(q(x, z)− q∗(x)) (16)

Taking the derivative in the expression of the reversed hazard rate in (3), and given
the assumption of possible exchange between the derivative and the integral, it follows that

dq∗(x)
dx

=
∫ ∞

0

dq(x, z)
dx

fZ|X∗≤x(z)dz +
∫ ∞

0
q(x, z)

d fZ|X∗≤x(z)
dx

dz,

and then, based on (16), (b) is proven.
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Consider now the derivatives in (4), again with the corresponding assumption of
possible exchange with the integrals. Then,

dm∗(x)
dx

=
∫ ∞

0

dm(x, z)
dx

fZ|X∗>x(z)dz +
∫ ∞

0
m(x, z)

d fZ|X∗>x(z)
dx

dz (17)

dν∗(x)
dx

=
∫ ∞

0

dν(x, z)
dx

fZ|X∗≤x(z)dz +
∫ ∞

0
ν(x, z)

d fZ|X∗≤x(z)
dx

dz (18)

The results in (c) and (d) follow from (15) and (16), respectively.

In the case that the individuals in the mixture present a deteriorating state with time
expressed as rX(x) increases, qX(x) decreases, mX(x) decreases or νX(x) increases, then the
second term on the right-hand side in (a)–(d) is, respectively, negative, positive, positive or
negative. Therefore, the mixture presents a smoother behavior than the distributions that
compound the mixture. When individuals with increasing failure rate are mixed, the effect
is that the derivative of the failure rate of the mixture is below the mean of the derivatives,
and therefore a decreasing behavior could even be observed given the negative term on
the right-hand side of the equality in (a). Similar comments apply for individuals with
a decreasing reversed hazard rate, decreasing mean residual life or increasing inactivity
time. In all the cases, the derivative in the mixture is below the mean of the derivatives,
and reversed behaviors can also occur. This explains the noticeable improvement in the
mixture compared with the distributions therein.

The preservation under mixtures of the classes decreasing hazard rate, increasing
reversed hazard rate, increasing mean residual life and decreasing mean inactivity time are
known properties. The next corollary presents them as a straightforward consequence of
Theorem 1.

Corollary 1.

(a) Preservation, under mixtures of both the decreasing failure rate and the increasing reversed
hazard rate [8], follows from Theorem 1 (a) and (b), respectively.

(b) Preservation of the increasing mean residual life holds, provided that the term on the right-hand
side of Theorem 1 (c) is positive. Consider z1 ≤ z2 in the support of the frailty Z and the
roots of the equation r(y, z1)− r(y, z2) = 0. Then, for a given x, there exist two roots y0
and y1 (y0 ≤ y1) of the previous equation such that x ∈ [y0, y1] and r(y, z1)− r(y, z2) are
non-negative or non-positive in [y0, y1].
Let us assume that r(y, z1)− r(y, z2) ≤ 0. We define the failure rates λ1(x), λ2(x) as follows:

λ1(y) =
{

r(y, z1), y0 ≤ y ≤ y1
r(y1, z1), y > y1

λ2(y) =
{

r(y, z2), y0 ≤ y ≤ y1
r(y1, z2), y > y1

Observe that the assumption r(y, z1)− r(y, z2) ≤ 0 leads to λ1(y) ≤ λ2(y). In addition,
λ1(y) and λ2(y) are constant values for y ≥ y1, with λ1(y) = λ2(y). Denoting by X1 and
X2 the random variables with failure rates λ1(y) and λ2(y), respectively, then, X1 ≥hr X2.

Consider next the mean residual lives m1(y) and m2(y) such that m1(y) = m(y, z1) and
m2(y) = m(y, z2) for y ∈ [y0, y1], and taking the constant values indicated below, otherwise:{

m1(y) = m2(y) = 1
r(y0,z1)

, y ≤ y0

m1(y) = m2(y) = 1
r(y1,z1)

, y ≥ y1
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From (9), it follows that the mean residual life of Xi is mi(x), i = 1, 2, and Remark 1
implies X1 ≥mrl X2. Therefore, (r(x, z1)− r(x, z2))(m(x, z1)−m(x, z2)) ≤ 0, and then
Cov(r(x, Z), m(x, Z)) ≤ 0 follows from both Lemma 1 and Remark 2.
A similar proof applies when r(y, z1)− r(y, z2) ≥ 0. If so, X1 ≤hr X2 and X1 ≤mrl X2.

(c) The preservation of decreasing mean inactivity time under mixtures [8] can also be derived
from Theorem 1 (d), once the second term on the right side of (d) is proven to be negative, using
a similar strategy to the previous one in (b). Now, when defining the mean inactivity times,
ν1(y) and ν2(y), we assume ν1(y) = ν2(y) for y ≤ y0. The remaining details are omitted for
brevity.

The preservation results under mixtures are considered to be important properties,
given their practical relevance, for example in maintenance modeling. The next theorem
generalizes the preservation results, since the assumption of non-crossing distributions in
the mixture appearing in previous research has been dropped.

Theorem 2. Distributions with increasing (decreasing) residual life (inactivity time) variance
distributions are preserved under mixtures.

Proof of Theorem 2. The result is proved for the residual life variance. Since the variance
is non-negative, by Equation (13) we have that

σ∗2(x) ≥ E[σ2(x, Z)|X∗ > x] ≥ E[m2(x, Z)|X∗ > x] ≥ E2[m(x, Z)|X∗ > x] = m∗(x)2

where the second inequality follows given that σ2(x, z) is increasing in x (see Remark 3)
and the third inequality is derived from Jensen’s inequality applied to the convex function
x2. Therefore, the claim is proven by Remark 3. The details for the inactivity time variance
are omitted, since the result is obtained by using a similar series of inequalities as in (14)
and Remark 3.

4. Bending Properties

When dealing with a random variable, its expectation and variance are usually consid-
ered to be key values. This is so because it is enlightening to know its average behavior and
whether an observation lies far from the mean, becoming an outlier. In addition, in order
to obtain good estimators of both the mean and the variance, only a large enough sample
is required. This idea also applies for mixtures. Let X be a random variable with L = (rX,
qX, mX, σ2

X, νX, σ2
X) being an specific aging characteristic of X. A bending property for a

mixture of distributions ({F(x, z)}) with frailty Z is a comparison between the mixture
aging characteristic L∗(x) and its mean value LE(x) = E[L(x, Z)]. Previous studies state
that LE(x) retains the monotonicity conditions of the mixture L∗(x) ([25]). In [27], bending
properties for the mean residual life and mean inactivity time are studied. In what follows,
we extend this analysis to the residual lifetime variance and inactivity time variance.

Regarding the residual life (inactivity time) variance, the following properties are
defined:

• The weak bending up property if σ∗2(x) ≥ σ2
E(x) (σ∗2(x) ≥ σ2

E(x)).
• The strong bending up property if σ∗2(x)− σ2

E(x) (σ∗2(x)− σ2
E(x)) is increasing (de-

creasing) in x.

Observe that under both definitions, the variability of the residual life and inactivity
time of the mixture is larger than in the individuals. Large residual lives are associated
with long-term survivors and small ones with those corresponding to high failure rates.
Regarding the inactivity time in failed units, a proportion of them will have just entered
the failed state at the moment it is detected, whereas the failure will have remained
undiscovered for longer periods in other cases. Thus, the previous definitions follow the
idea that when considering the overall data, strong individuals are mixed with weak ones.
They also give a theoretical support for the interpretation in [43] regarding the reversal
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of increasing failure rates under mixtures. The authors in [43] state that the long-term
survivors, although they represent a small proportion of the pooled data, determine the
behavior of the failure rate in the long run, resembling outliers in a regression analysis.

Theorem 3. In the case of a mixture of distributions {F(x, z)} with frailty Z, the following
properties apply:

(a) If F(x, z) is increasing (decreasing) in z and σ2(x, z) is increasing (decreasing) in z, then the
weak bending up property holds for the residual lifetime variance.

(b) If F(x, z) is increasing (decreasing) in z and σ2(x, z) is decreasing (increasing) in z, then the
weak bending up property holds for the inactivity time variance.

Proof of Theorem 3.

(a) The following inequalities apply:

σ∗2(x) ≥ E[σ2(x, Z)|X∗ > x] ≥ E[σ2(x, Z)]

where the first inequality is derived by (13). The following steps lead to the second
inequality:

1. From (1), we have that F(x,z)∫ ∞
0 F(x,z)π(z)dz

=
fZ|X∗>x(z)

π(z) . Since the left-hand side of

this equality is assumed to be increasing (decreasing) in z, so is the term on the
right-hand side.

2. From the previous point and z1 ≤ z2, it follows that

fZ|X∗>x(z1)π(z2) ≤ (≥) fZ|X∗>x(z2)π(z2)

and thus, Z|X∗ > x ≥lr (≤lr)Z.
3. The implications in Remark 1 (which follow the chain in Appendix A) imply

that Z|X∗ > x ≥st (≤st)Z.
4. The equivalent definition for the usual stochastic order when the expectation for

an increasing function is considered, leads to the second inequality, since σ2(x, z)
is assumed to be increasing (decreasing) in z.

(b) The following inequalities hold:

σ∗2(x) ≥ E[σ2(x, Z)|X∗ ≤ x] ≥ E[σ2(x, Z)]

The result in (14) leads to the first inequality. The steps to prove the second one are as
follows:

1. From (2), we have that F(x,z)∫ ∞
0 F(x,z)π(z)dz

=
fZ|X∗≤x(z)

π(z) . Since the left-hand side of

this equality is assumed to be decreasing (increasing) in z, so is the term on the
right-hand side.

2. From the previous point and z1 ≤ z2, it follows that

fZ|X∗≤x(z1)π(z2) ≥ (≤) fZ|X∗≤x(z2)π(z2)

and thus Z|X∗ ≤ x ≤lr (≥lr)Z.
3. The implications in Remark 1 (which follow the chain in Appendix A) imply

that Z|X∗ ≤ x ≤st (≥st)Z.
4. The assumption that σ2(x, z) is decreasing (increasing) leads to the second

inequality.

The results in Theorem 3 are consistent with the negative aging that mixtures tend
to show. In case (a), if F(x, z) is increasing in z, then the larger Z is, the better the effect

279



Mathematics 2022, 10, 2795

on the survival function. The situation is just the opposite if F(x, z) is decreasing in z.
In both cases, the distributions for which the random effect Z is good correspond to a
long-term survivor. According to [7], Z represents a biological advantage or an individual
propensity, and with the assumptions in Theorem 3, these individuals also present the
greatest variance. Therefore it makes perfect sense that the variance of the residual life of
the mixture is greater than the mean of the variances.

In case (b), if the values of Z corresponding to the shortest survival times are also
those with larger inactivity time variances, then the variance of the inactivity time of the
mixture is greater than the mean of the variances. Following the interpretation in [43], the
mixture shows the effect of outliers.

In the last result, we revisit the proportional mean residual life model [44]. This is
an alternative to Cox’s proportional hazard model for describing the effect of the frailty.
A mixture of distributions {F(x, z)} with the frailty random variable Z follows the pro-
portional mean residual life if the mean residual life of the mixture when Z = z, m(x, z)
verifies:

m(x, z) = zmX(x), 0 < z ≤ 1

where mX(x) is a baseline mean residual life.
If we assume that mX(x) accounts for the mean residual life when the system operates

under “normal” conditions, the proportional mean residual life is useful for representing
more adverse environments that accelerate the failure. The function m(x, z) is increasing
with z, and so a higher value of the frailty implies a better operating condition for the
system.

The failure rate of the mixture conditional to Z = z is derived from (9) as

r(x, z) = rX(x) +
1− z

z
1

mX(x)
(19)

where r(x, z) is decreasing with z.
The mean residual life of the mixture is

m∗(x) = E[Z|X∗ > x]mX(x) (20)

The next theorem states the conditions where there is an increasing difference between
the variance of the residual life of the mixture and the average variance of the residual lives
of the subpopulations. In other words, the effect of the frailty is stronger with time. The
outlier subpopulations tend to appear more different from the rest of the distributions as
the time increases.

Theorem 4. Consider a mixture of distributions {F(x, z)} satisfying the proportional mean resid-
ual life. If mX(x) is an increasing function, then the strong bending up property holds for the
residual lifetime variance.

Proof of Theorem 4. By Equation (13) we have

σ∗2(x)− E[σ2(x, Z)] =
∫ ∞

0
σ2(x, z) fZ|X∗>x(z)dz− E[σ2(x, Z)]

+
∫ ∞

0
m2(x, z) fZ|X∗>x(z)dz−

(∫ ∞

0
m(x, z) fZ|X∗>x(z)dz

)2
.
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The derivative with respect to x in the foregoing expression can be written as follows
after exchanging the derivative and integral and taking into account the result in (15):

∫ ∞

0

dσ2(x, z)
dx

fZ|X∗>x(z)dz− E
[

dσ2(x, Z)
dx

]
+
∫ ∞

0
σ2(x, z)

d fZ|X∗>x(z)
dx

dz

+ 2
∫ ∞

0
m(x, z)

dm(x, z)
dx

fZ|X∗>x(z)dz +
∫ ∞

0
m2(x, z)

d fZ|X∗>x(z)dz
dx

− 2
∫ ∞

0
m(x, z) fZ|X∗>x(z)dz

(∫ ∞

0

dm(x, z)
dx

fZ|X∗>x(z)dz +
∫ ∞

0
m(x, z)

d fZ|X∗>x(z)
dx

dz

)

=
∫ ∞

0

dσ2(x, z)
dx

fZ|X∗>x(z)dz− E
[

dσ2(x, Z)
dx

]
+

∫ ∞

0
(σ2(x, z) + m2(x, z))(r∗(x)− r(x, z)) fZ|X∗>x(z)dz

+ 2
∫ ∞

0
m(x, z)

dm(x, z)
dx

fZ|X∗>x(z)dz

− 2m∗(x)
∫ ∞

0

(
dm(x, z)

dx
+ m(x, z)(r∗(x)− r(x, z))

)
fZ|X∗>x(z)dz

= E
[

dσ2(x, Z)
dx

|X∗ > x
]
− E
[

dσ2(x, Z)
dx

]
(21)

− Cov
(

r(x, Z), σ2(x, Z) + m2(x, Z)|X∗ > x
)

(22)

+ 2Cov
(

m(x, Z),
dm(x, Z)

dx
|X∗ > x

)
(23)

+ 2m∗(x)Cov(r(x, Z), m(x, Z)|X∗ > x). (24)

The following steps aim at checking that all the previous terms are positive.

We must take into account the fact that that dσ2(x,z)
dx is increasing in z. The proof is in

Remark A2 in Appendix C.
Equation (21) is non-negative.
According to the assumptions, r(x, z) is decreasing in z. Then, from Remark 1, it

follows that F(x, z) is increasing in z and so is
fZ|X∗>x(z)

π(z) , following the same algebra as that

in step 1 of Theorem 3 (a). Hence, Z|X∗ > x ≥st Z, which in addition to dσ2(x,z)
dx being

increasing in z implies the positiveness of the term.
With the assumption that mX(x) is increasing, Equation (23) is also non-negative:

2Cov
(

m(x, Z),
dm(x, Z)

dx
|X∗ > x

)
= 2mX(x)

dmX(x)
dx

Cov(Z, Z) =

2mX(x)
dmX(x)

dx
Var[Z|X∗ > x].

The expressions in (22) and (24) can be alternatively expressed as:

−Cov
(

r(x, Z), σ2(x, Z)−m2(x, Z)|X∗ > x
)
− 2Cov

(
r(x, Z), m2(x, Z)|X∗ > x

)
+2m∗(x)Cov(r(x, Z), m(x, Z)|X∗ > x).

Next, we focus on the right-hand side of the first term, A(z) = σ2(x, Z)−m2(x, Z),
which is increasing in z. The proof is in Remark A3 in Appendix C. Since r(x, z) is decreasing
with z, Lemma 1 implies that

−Cov
(

r(x, Z), σ2(x, Z)−m2(x, Z)|X∗ > x
)
> 0.
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The remaining two terms verify

−2Cov(r(x, Z), m2(x, Z)|X∗ > x) + 2m∗(x)Cov(r(x, Z), m(x, Z)|X∗ > x)

= −2Cov
(

r(x) +
1− Z

Z
1

mX(x)
, Z2m2

X(x)|X∗ > x
)

+2mX(x)E[Z|X∗ > x]Cov
(

r(x) +
1− Z

Z
1

mX(x)
, Zm(x)|X∗ > x

)
= −2mX(x)Cov

(
1− Z

Z
, Z2|X∗ > x

)
+ 2mX(x)E[Z|X∗ > x]Cov

(
1− Z

Z
, Z
)

= 2mX(x)
(

E
[

1− Z
Z

|X∗ > x
]

E[Z2|X∗ > x]− E[Z(1− Z)|X∗ > x]
)

+ 2mX(x)
(

E[Z|X∗ > x]E[1− Z|X∗ > x]− E2[Z|X∗ > x]E
[

1− Z
Z

|X∗ > x
])

= 2
(

E
[

1− Z
Z

|X∗ > x
]

Var[Z|X∗ > x]− Cov(Z, 1− Z|X∗ > x])
)

.

E
[

1−Z
Z |X∗ > x

]
is positive since it is the expectation of a positive random variable. Accord-

ing to Lemma 1, Cov(Z, 1− Z|X∗ > x) < 0. Given the positiveness of all the terms, then
σ∗2(x)− σ2

E(x) is increasing and the strong bending up property holds.

Example 1. Consider the proportional mean residual life m(x, z) = zmX(x), where mX(x) is a
baseline mean residual life and 0 < z ≤ 1. The relation in (19) implies that r(x, z) is decreasing in
z and F(x, z) and σ2(x, z) are also increasing (Remark 1). Therefore, the assumptions in Theorem 3
(a) hold and so does the weak bending up property for the residual life variance, when the assumption
that mX(x) is increasing is dropped.

Example 2.

m(x, z) = z(1 + x), 0 < z ≤ 1, x ≥ 0.

In this case
F(x, z) = (1 + x)−(

1
z +1), 0 < z ≤ 1, x ≥ 0.

Straightforward algebra yields

σ2(x, z) = (x + 1)2z2 1 + z
1− z

, 0 < z < 1, x ≥ 0.

As the baseline mean residual life (1 + x) is increasing, conditions for both the weak and strong
bending up property in the case of the residual life variance are fulfilled. We assume now that the
frailty Z follows a beta distribution with parameters a, b > 0. The corresponding density function is

fZ(z) =
1

B(a, b)
za−1(1− z)b−1, 0 < z < 1

where B(a, b) is the standard beta function. Thus,

fZ|X∗>x(z) =
(1 + x)−(

1
z +1)za−1(1− z)b−1∫ 1

0 (1 + x)−(
1
v +1)va−1(1− v)b−1dv

.

It follows that

E[σ2(x, Z)] = (x + 1)2
∫ 1

0
z2 1 + z

1− z
1

B(a, b)
za−1(1− z)b−1dz
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and

σ∗2(x) = E[σ2(x, Z)|X∗ > x] + Var[(1 + x)Z|X∗ > x]

= (x + 1)2
∫ 1

0
z2 1 + z

1− z
(1 + x)−(

1
z +1)za−1(1− z)b−1∫ 1

0 (1 + x)−(
1
v +1)va−1(1− v)b−1dv

+ (x + 1)2

(∫ 1

0
z2 fZ|X∗>x(z)dz−

(∫ 1

0
z fZ|X∗>x(z)dz

)2
)

.

Figure 1 represents σ∗2(x)− E[σ2(x, Z)] with Z following a beta random variable under
different values of a and b, with m(x, z) = z(1 + x). The function σ∗2(x)− E[σ2(x, Z)] is non-
negative and therefore the weak bending up property is verified. Furthermore, the strong bending up
property also holds, since σ∗2(x)− E[σ2(x, Z)] is increasing.

Figure 1. The difference against time between the residual life variance of the mixture and the average
variance of the residual lives of the subpopulations, σ∗(x)− E[σ2(x, Z)]. The mixture follows the
mean proportional residual life model with the baseline mX(x) = 1 + x, and Z is a beta random
variable with parameters a and b.

5. Conclusions

The study of the residual lifetime and inactivity time in mixtures is crucial in reliability,
since the behavior of the former has implications in maintenance modeling and the latter
in retrospective analysis. When systems are affected by a changing environment but there
are no observable covariates, the changes are described by a random variable (frailty), and
mixtures emerge to describe the time to failure of the whole population.

This paper focused on the residual life and inactivity time of a non-negative random
variable, representing a time to failure. The former is useful for maintenance purposes,
to decide whether to replace a non-failed system. The latter provides information in
retrospective studies, such as when a disease is detected and the time elapsed since the
person was infected is relevant to understanding the infection process and even determining
contacts with high risks of exposure.
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Aging properties are used to describe and summarize random variables. In this paper,
we analyzed the residual life variance and inactivity time, in contrast to previous papers
dealing with the corresponding expectations. The results were obtained by using the
approach in [25,26], based on the conditional distribution of the frailty. In so doing, we
provided new representations of the residual life variance and inactivity time variance,
extending the preservation of the classes increasing residual life variance and decreasing
inactivity time variance for an arbitrary mixture.

We provided new characterizations for the derivatives of the aging characteristics in
mixtures in terms of the expectations of the corresponding derivatives of the distributions in
the mixture which, in turn, included the information from the data. The results provided in
this paper explain the improvement of the aging characteristics with time in actual systems
affected by random effects. When the distributions present a decreasing reliability, the
mixture shows smoother changes with less adverse aging than the mean of the distributions
in the mixture.

This paper was also concerned with bending properties for comparing the residual
time variance and the inactivity time variance of the mixture with the corresponding means
of the residual time variances and inactivity time variances of the distributions therein. The
former are greater when subpopulations that are more different from the rest due to the
frailty match those with larger variances. This effect of strong components determining the
behavior of the mixture has been reported many times in both theoretical and empirical
studies. Some authors refer to them as outliers.

Regarding forthcoming work, this methodology based on the conditional distribution
of the frailty seems to be a promising way to obtain new bending properties involving, for
example, the inactivity time variance. Once we have data at hand, the verification of these
properties via actual problems would enhance the interest of this research. At present, the
use of simulations seems likely to be more affordable in the near future.
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Appendix A

The chain of implications between stochastic orders is as follows:

mrl −→ rlv

hr
↗
↘

lr
↗
↘ st

rhr
↗
↘
mit −→ itv

In this chain of implications, the stronger the stochastic order, the closer its position
to the left-hand side. Observe that the likelihood ratio order is the strongest condition,
whereas the residual life variance and inactivity time variance are the weakest ones. In
addition, when two orders are connected by an arrow, it means that if two random variables
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present the stochastic order on the left, then they also verify the order indicated by the
arrowhead. The reverse implication does not necessarily hold. When two stochastic orders
are not connected, each of them can hold, independently of the other.

X ≤lr Y implies that given two values, for example two survival times x and y with
x ≤ y, it is more likely that the larger value y belongs to the population Y and the smaller
value x to X than the other way around. Hence, when X and Y represent times to failure,
the latter constitutes the tough group and the other two conditions follow: X ≤hr Y and
X ≤rhr Y. Therefore, X presents a higher failure rate than Y and a lower reversed hazard
rate. Thus, when a failure or a disease is detected, the probability that it has just occurred
is lower in the weaker population X. If X ≤hr Y, then an item from population X has a
lower chance of remaining without failure from a given time x onward than another item
belonging to Y, provided that neither of them had failed at t. Hence, X ≤mrl Y. In a similar
way, X ≤rhr Y implies that when a disease is revealed, it is more likely that group Y was
infected later than X, and thus X ≤mit Y.

Appendix B

Next, some aging properties of the frailty, conditional to data, are provided.
The conditional reliability function is:

F̄Z|X∗>x(z) = P(Z ≥ z|X∗ > x) =
∫ ∞

z
fZ|X∗>x(t)dt =

∫ ∞
z F(x, t)π(t)dt∫ ∞
0 F(x, t)π(t)dt

, z ≥ 0

where the last equality was obtained after (1).
The conditional failure rate is:

rZ|X∗>x(z) =
fZ|X∗>x(z)
F̄Z|X∗>x(z)

=
F(x, z)π(z)∫ ∞

z F(x, t)π(t)dt
.

The conditional cumulative failure rate is:

ΔZ|X∗>x(z) =
∫ z

0
rZ|X∗>x(t)dt =

∫ z

0

F(x, t)π(t)dt∫ ∞
t F(x, u)π(u)du

.

Appendix C

The expectations of the residual residual life and its square are:

E[X − x, X > x] =∫ ∞

x
(t− x) fX(t)dt = −(t− x)F̄X(t)|∞x +

∫ ∞

x
F̄X(t)dt =

∫ ∞

x
F̄X(t)dt.

The previous result is derived by using integration by parts with (t − x) = u and
dv = fX(t)dt. Therefore,

mX(x) =

∫ ∞
x FX(y)dy

FX(x)

E[(X − x)2, X > x] =∫ ∞

x
(t− x)2 fX(t)dt = −(t− x)2 F̄X(t)|∞x + 2

∫ ∞

x
(t− x)F̄X(t)dt = 2

∫ ∞

x
(t− x)F̄X(t)dt

where a new integration by parts with (t− x)2 = u and dv = fX(t)dt has been applied.

2
∫ ∞

x
(t− x)F̄X(t)dt = 2

∫ ∞

x

(∫ t

x
du
)

F̄X(t)dt = 2
∫ ∞

x

∫ ∞

u
F̄X(t)dtdu.

285



Mathematics 2022, 10, 2795

The last integral is obtained using Fubini’s theorem. Hence,

σ2
X(x) = 2

∫ ∞
x

∫ ∞
y FX(u)dudy

FX(x)
−m2

X(x)

The next remarks are used in the proof of Theorem 4.

Remark A1. The failure rate, r(x, z) and the reliability function F̄(x, z) verify

F̄(x, z) = e−
∫ x

0 r(u,z)du

Remark A2. Under the proportional mean residual life m(x, z) = zmX(x), with mX(x) as an

increasing function, then dσ2(x,z)
dx is increasing in z.

Consider the proportional mean residual life m(x, z) = zmX(x), where mX(x) is a
baseline mean residual life and 0 < z ≤ 1. Following (6) we obtain

σ2(x, z) =
2
∫ ∞

x

∫ ∞
y F(u, z)dudy

F(x, z)
−m2(x, z)

=
2
∫ ∞

x F(y, z)m(y, z)dy
F(x, z)

−m2(x, z)

=
2
∫ ∞

x F(y, z)(m(y, z)−m(x, z))dy
F(x, z)

+ m2(x, z)

where the last equality follows from (5).
Combining the previous identity and (11), we obtain

dσ2(x, z)
dx

= r(x, z)(σ2(x, z)−m2(x, z)) =
(

zrX(x) + (1− z)
1

mX(x)

)
× 2

∫ ∞

x
(mX(y)−mX(x))e−

∫ y
x r(u,z)dudy.

Given the formula in (9), the derivative of the foregoing expression with respect to z is

dmX(x)
dx

mX(x)
2
∫ ∞

x
(mX(y)−mX(x))e−

∫ y
x r(u,z)dudy

− (zrX(x) + (1− z)
1

mX(x)
)2
∫ ∞

x
(mX(y)−mX(x))

∫ y

x

(
dr(u, z)

dz
du
)

e−
∫ y

x r(u,z)dudy ≥ 0.

The first term is non-negative since mX(x) is increasing. The second term is also

non-negative because r(x, z) decreasing in z results in dr(u,z)
dz being negative. Hence, dσ2(x,z)

dx
is increasing in z.

Remark A3. Under the proportional mean residual life m(x, z) = zmX(x), where mX(x) is an
increasing function, then A(z) = σ2(x, Z)−m2(x, Z) is an increasing function.

From Remark A2, we can write

A(z) = σ2(x, z)−m2(x, z) =
2
∫ ∞

x F(y, z)(m(y, z)−m(x, z))dy
F(x, z)

= 2z
∫ ∞

x
e−
∫ y

x r(u,z)du(mX(y)−mX(x))dy.
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The last term in the previous formula is obtained by using the expression of the
proportional mean residual life together with the relation between r(x, z) and F̄(x, z) given
in Remark A1. In addition, A(z) is increasing in z, since (mX(y)− mX(x)) is a positive
term and r(x, z) is decreasing in z. Both result in A(z) being increasing in z.
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Abstract: Numerous studies on preventive maintenance of minimally repaired systems with statisti-
cally independent components have been reported in reliability literature. However, in practice, the
repair can be worse-than-minimal and the components of a system can be statistically dependent. The
existing literature does not cover this important in-practice setting. Therefore, our paper is the first to
deal with these issues by modeling dependence in the bivariate set up when a system consists of two
dependent parts. We employ the bivariate generalized Polya process to model the corresponding
failure and repair process. Relevant stochastic properties of this process have been obtained in order
to propose and further discuss the new optimal bivariate preventive maintenance policy with two
decision parameters: age and operational history. Moreover, introducing these two parameters in
the considered context is also a new feature of the study. Under the proposed policy, the long-run
average cost rate is derived and the optimal replacement policies are investigated. Detailed numerical
examples illustrate our findings and show the potential efficiency of the obtained results in practice.

Keywords: dependent failure process; bivariate generalized Polya process; dependent worse-than-
minimal repair process; optimal replacement policy

MSC: 90B25; 60K10

1. Introduction

Preventive maintenance (PM) is usually performed on degrading systems in order to
decrease the probabilities of failures during operation that can result in substantial losses.
As the cost of the PM is smaller than that of a repair upon failure (also taking into account
the additional losses due to failures), the corresponding cost-wise optimization problems
can be formulated and solved. In this way, an optimal PM time can be obtained that
minimizes, e.g., the corresponding cost rate. Thousands of papers devoted to different PM
problems and several books entirely dealing with this important in-practice problem have
been published in recent decades (see, e.g., the following influential monographs: [1–3]).

There have been numerous studies on PM models, where various counting processes
are used to model the corresponding failure/repair process. Until now, most of these
studies were focused on univariate counting processes of failure/repair such as the nonho-
mogeneous Poisson process (NHPP) or the renewal process (see [4–9] to name a few). For
instance, in [4], it was assumed that the failure process follows the NHPP, which means
that the corresponding repair type is a minimal repair. In [5], a system subject to two types
of failures (minor and catastrophic failures) and repairs (minimal and perfect repairs) was
considered for the maintenance optimization. Thus, from the process point of view, it
corresponds to the combination of an NHPP and a renewal process.
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The well-known minimal repair assumption holds when the corresponding system is
composed of a large number of statistically independent components. Hence, its failure
rate (FR) ‘is practically unchanged’ after the replacement of the failed component by a
new one. However, in real life, the remaining non-failed components are often affected
by the failure of a component in a system because it causes additional stress or damage to
them. This eventually results in a worse-than-minimal repair of a system as the states of the
non-failed components after the minimal repair of the failed component can be ‘worse’ than
just before the failure. Some relevant examples of this situation are as follows ([10–12]):

(i) The failure of a still wire cable in a bridge or in an elevator instantaneously increases
the stress on the remaining cables and leads to some damages.

(ii) For a multi-engine airplane, the failure of an engine during flight instantaneously
causes increased stress on the non-failed engines.

(iii) A failure of a pump in a multi-pump hydraulic control system instantly increases the
pressure for each non-failed pump.

Recently, as a generalization of the NHPP, a new counting process (called the gen-
eralized Polya process (GPP)) has been defined and applied for modeling the univariate
failure/repair processes [13]. It is important to note that, under the GPP model, the repair is
worse-than-minimal (GPP repair), which makes this process an effective tool for modeling
the corresponding optimal PM policies in this case. Specifically, in [12], two periodic PM
models were considered and some properties of the optimal policies assuming the GPP
repair process were studied. Furthermore, Ref. [14] proposed a generalized replacement
policy that already considers the operational history of a system.

The forgoing applies to univariate counting processes, whereas stochastically depen-
dent multivariate series of events arise in many contexts. For some examples in reliability
applications, finance, and economics, see [15–18]. Ref. [17] suggested a general theoretical
framework for the multivariate counting process. Recently, new classes of multivariate
counting processes have been developed in the literature (see [19–21]). Specifically, in [20],
the multivariate generalized Polya process (MVGPP) with mathematically tractable proper-
ties was defined.

However, to the best of our knowledge, applications of multivariate processes to
maintenance models has not yet been developed in the literature. Therefore, in this paper,
assuming that the failure process follows the bivariate generalized Polya process (BVGPP)
developed in [20], we propose and discuss a new bivariate preventive maintenance policy
based on two ‘parameters’: age and operational history. As in [14], where the failure process
was univariate, we show the superiority of the proposed policy compared with the original
age-based replacement policy for the BVGPP.

In accordance with the foregoing discussion, we want to concisely emphasize the
motivation and the novelty of our study:

- Motivation: Most systems in real life have dependent components, whereas the
existing literature does not cover this aspect. Moreover, to the best of our knowledge,
until now there have been no studies that consider the PM models with worse-than-
minimal repair in multicomponent systems (that also often occurs in practice).

- Novelty: We employ the bivariate generalized Polya process to model the correspond-
ing failure and repair process. This modeling approach was not considered in the
literature so far. Some new stochastic properties of the process are derived and the
corresponding optimal bivariate preventive maintenance policy with two decision
parameters (age and operational history) is proposed. The latter is another novel
feature of the study. Thus, development and application of the new mathematical
models for modeling PM with the worse-than-minimal repair can be considered as
the main contribution of the paper.

The structure of the paper is as follows: In Section 2, we introduce some preliminary
results on the bivariate generalized Polya process (BVGPP) and the related repair process.
In Section 3, we develop a bivariate preventive replacement policy assuming the BVGPP
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failure process and derive the corresponding long-run expected cost rate. In Section 4,
we discuss the optimal policy for providing results of an illustrative numerical example.
Finally, in Section 5, concluding remarks are given.

2. Preliminaries

In this section, we briefly review the definition of the bivariate generalized Polya
process (BVGPP) and of some of its basic properties to be used in this paper. For this, we
first need to recall the definition of the univariate generalized Polya process (GPP) via
the concept of stochastic intensity. Note that, for an orderly (regular) counting process
{N(t), t ≥ 0} and its past history Ht− ≡ {N(u), 0 ≤ u < t}, the stochastic intensity is
defined as (see, e.g., [13,22]),

λt = limΔt→0
P(N(t, t + Δt) = 1|Ht−)

Δt
= limΔt→0

E[N(t, t + Δt)|Ht−]
Δt

,

where N(t1, t2), t1 < t2, is the number of events in [t1, t2). In the following definitions, λ(t)
is a non-negative deterministic function.

Definition 1 (Generalized Polya Process (GPP) [13]). Let {N(t), t ≥ 0} be an orderly count-
ing process and

(i) N(0) = 0;
(ii) λt = (αN(t−) + β)λ(t),

then it is called the Generalized Polya Process (GPP) with the corresponding parameter set
(λ(t), α, β), α ≥ 0, β > 0.

As stated in [13], the GPP with (λ(t), α = 0, β = 1) reduces to the NHPP, and thus, the
GPP is a generalization of the NHPP. Based on the GPP, and assuming that the repair times
are negligible, Ref. [13] has defined a new type of imperfect repair for a system with the
baseline (prior to the first repair) failure rate βλ(t), which was called the ‘GPP repair’.

Definition 2 (GPP Repair). If {N(t), t ≥ 0}, where N(t) is the number of failures of the
system in (0, t], is the GPP with (λ(t), α, β), then we say that the corresponding repair is the ‘GPP
repair’ with the parameters α, β > 0.

Accordingly, the corresponding stochastic intensity is given by

λt = (αN(t−) + β)λ(t) (1)

Note that according to Definition 2 and Equation (1), the failure rate prior to the first
failure starts from βλ(t), which is called the baseline failure rate. From Equation (1), it is
clear that the failure rate after each failure/repair is larger than that before it. Thus, due to
GPP repair, the reliability performance of the system after failure/repair becomes worse. In
general, in the definition of the GPP repair, the parameter β can be set β = 1 because the
stochastic intensity in Equation (1) can be written as

λt = (
α

β
N(t−) + 1)βλ(t) = (α′N(t−) + 1)ϕ(t),

with α′ = α
β and ϕ(t) = βλ(t). However, for a convenient description of the bivariate

failure process, we follow Definition 2 throughout this paper.
Let {N(t), t ≥ 0}, where N(t) = (N1(t), N2(t)), be a bivariate counting process and

define the corresponding ‘pooled’ point process {M(t), t ≥ 0}, where M(t) = N1(t) +
N2(t). The marginal point processes {Ni(t), t ≥ 0}, for convenience, will be called type
i point process, i = 1, 2, respectively. Furthermore, the events from type i point pro-
cess {Ni(t), t ≥ 0} will also be called type i events. For a regular multivariate process
{N(t), t ≥ 0}, let HPt− ≡ {M(u), 0 ≤ u < t} be the history of the pooled process in [0, t),
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i.e., the set of all point events in [0, t). Observe that HPt− can equivalently be defined in
terms of M(t−) and the sequential arrival points of the events 0 ≤ S1 ≤ S2 ≤ · · · ≤ SM(t−) < t
in [0, t), where M(t−) is the total number of events in [0, t) and Si is the time from 0 until
the arrival of the ith event in [0, t) of the pooled process {M(t), t ≥ 0}. Similarly, define
the marginal histories of the marginal processes Hi,t− ≡ {Ni(u), 0 ≤ u < t}, i = 1, 2.

As with the case of univariate point processes, the most convenient general description
of the multivariate point processes can be achieved through the stochastic intensities
approach. Accord ingly, the ‘regular bivariate process’ can be specified by

λ1t ≡ lim
Δt→0

P(N1(t, t + Δt) = 1|H1,t−; H2,t−)
Δt

,

λ2t = lim
Δt→0

P(N2(t, t + Δt) = 1|H1,t−; H2,t−)
Δt

,

where Ni(t1, t2), t1 < t2, denotes the number of events in [t1, t2), i = 1, 2, respectively
(see [17]). According to [20], the BVGPP denoted further by BVGPP (λ1(t), λ2(t), α, β), is
defined as follows. In the following definition, λi(t), i = 1, 2, are non-negative determinis-
tic functions.

Definition 3 (Bivariate generalized Polya process (BVGPP)). A bivariate counting process
{N(t), t ≥ 0} is called the bivariate generalized Polya process (BVGPP) with the set of parameters
(λ1(t), λ2(t), α, β), λi(t) ≥ 0 for all t ≥ 0, i = 1, 2, α ≥ 0, β > 0, if

(i) N1(0) = 0, N2(0) = 0;
(ii) λ1t = (α(N1(t−) + N2(t−)) + β)λ1(t);
(iii) λ2t = (α(N1(t−) + N2(t−)) + β)λ2(t).

Conditions (ii) and (iii) in Definition 3 specify the dependence structure of the process
in a fully intuitive way. That is, the occurrences of any type of events in the previous
interval increase the occurrence probabilities of both types of events in the next interval.
This type of dependency in a bivariate point process can be frequently observed in practice
(see our examples in the Introduction).

Similar to the univariate counting process, a new type of dependent failure and repair
process is defined based on the BVGPP in Definition 3, which is called ‘dependent worse-
than-minimal repair process (DWMRP)’ [20]. Suppose that a system is composed of two
parts (part 1 and part 2) having respective failure rates βλi(t), i = 1, 2. Under the DWMRP,
the reliability performances of both parts after a repair of any part are worse than before
the failure, which can be observed in reliability practice.

We will define now the concept of ‘thinning’ ([20,23]) for our further discussion and to
provide some important properties of the BVGPP.

Definition 4 (p(t)-thinning). Let {N(t), t ≥ 0} be a univariate point process and denote it by{
Np(·)(t), t ≥ 0

}
the point process obtained by retaining (in the same location) every point of

the process with probability p(t) and deleting it with probability q(t) = 1− p(t), independently
of everything else. Denote by

{
Nq(·)(t), t ≥ 0

}
the point process constructed by the deleted

points. Then the processes
{

Np(·)(t), t ≥ 0
}

and
{

Nq(·)(t), t ≥ 0
}

are the p(t)-thinning of
{N(t), t ≥ 0}.

Denote: λ(t) = λ1(t) + λ2(t), Λ(t) =
∫ t

0 λ(x)dx and pi(t) = λi(t)/λ(t), i = 1, 2.

Proposition 1. Let {N(t), t ≥ 0} be the BVGPP (λ1(t), λ2(t), α, β). Then

(i) {M(t), t ≥ 0} is GPP (λ(t), α, β).
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(ii) The process {N(t), t ≥ 0} is constructed by p1(t)-thinning of {M(t), t ≥ 0}
as
{
(Mp1(·)(t), Mp2(·)(t)), t ≥ 0

}
.

(iii) The marginal processes {Ni(t), t ≥ 0} are GPP (γi(t), α, β), where

γi(t) =
λi(t) exp

{
α
∫ t

0 λ1(x) + λ2(x)dx
}

α
∫ t

0 λi(ν) exp
{

α
∫ ν

0 λ1(x) + λ2(x)dx
}

dν + 1
, i = 1, 2.

See [20] for the proof of Proposition 1. The following proposition presents the joint
distribution of number of events ([20]).

Proposition 2. Let t > 0. It holds that

P(Ni(t) = ni, i = 1, 2)

= Γ(β/α+n1+n2)
Γ(β/α)n1!n2!

(
α
∫ t

0 λ1(x) exp{−α[Λ(t)−Λ(x)]}dx
)n1
(

α
∫ t

0 λ2(x) exp{−α[Λ(t)−Λ(x)]}dx
)n2

×(exp{−αΛ(T)})β/α.

3. Bivariate Preventive Replacement Policy

We will now develop a new preventive replacement policy for a repairable deterio-
rating system which is composed of two statistically dependent parts. It should be noted
that the PM models based on the univariate counting processes were only considered in
the literature previously. Denote by Ni(t), i = 1, 2, the number of failures in part 1 and
part 2 until time t, respectively. Under the BVGPP failure/repair process, we assume that
{N(t), t ≥ 0}, where N(t) = (N1(t), N2(t)), follows BVGPP (λ1(t), λ2(t), α, β). As men-
tioned before, under the BVGPP (or DWMRP), the reliability performances of ‘both parts’
deteriorate on each failure of any of the two parts, as the corresponding stochastic intensi-
ties in Definition 3 ‘count’ the overall number of events, i.e., N1(t−) + N2(t−). Therefore,
it could be reasonable to suggest the preventive replacement policy based on N1(t) + N2(t)
for the BVGPP (λ1(t), λ2(t), α, β) failure/repair process. Recall that SN (N = 1, 2, . . .)
denotes the arrival times in the pooled point process {M(t), t ≥ 0}.

3.1. Bivariate Preventive Replacement Policy

The system is replaced at time T(T > 0) or at SN (N = 1, 2, . . .) after its inception into
operation (or last replacement), whichever occurs first, and it undergoes the BVGPP repairs
at failures between replacements. The times for repairs and replacements are negligible.

Let us denote, by c(N, T), the corresponding long-run expected cost rate function. Let
c(i)GPP be the cost incurred by a BVGPP repair performed on the failure of part i, i = 1, 2,
and cr be the cost of system’s replacement. To derive the cost rate function, we need some
preliminary lemmas. In the following, denote by N (i)

GP, i = 1, 2, the total number of BVGPP
repairs of part i in a renewal cycle (between replacements).

Lemma 1. Conditional expectations E(N(i)
GP|SN ≤ T), i = 1,2, are given by

E(N(i)
GP|SN ≤ T) =

T∫
0

{
(N − 1) α

∫ t
0 λi(x) exp{αΛ(x)}dx

exp{αΛ(t)}−1 + λi(t)
λ(t)

}
× Γ(β/α+N−1)

Γ(β/α)(N−1)! (1− exp{−αΛ(t)})N−1 exp{−βΛ(t)}((N − 1)α + β)λ(t)dt · 1
P(SN≤T) , i = 1, 2.
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Proof. In this proof, we derive just E(N(1)
GP |SN ≤ T), whereas E(N(2)

GP |SN ≤ T) can be
obtained ‘symmetrically’. Observe that

E(N(1)
GP |SN ≤ T) =

∫ T

0
E(N(1)

GP |SN ≤ T, SN = t) f(SN |SN≤T)(t)dt, (2)

where f(SN |SN≤T)(t) is the conditional pdf of (SN |SN ≤ T) given by

f(SN |SN≤T)(t) =
fSN (t)

P(SN≤T)

= Γ(β/α+N−1)
Γ(β/α)(N−1)! (1− exp{−αΛ(t)})N−1 exp{−βΛ(t)}((N − 1)α + β)λ(t) · 1

P(SN≤T) .

Furthermore,

E(N(1)
GP |SN ≤ T, SN = t) = E(N(1)

GP |SN = t, IN = 1)P(IN = 1|SN = t)
+E(N(1)

GP |SN = t, IN = 2)P(IN = 2|SN = t),
(3)

where IN = i, i = 1, 2, if the failure at time SN occurs in part i, respectively. From
Proposition 1-(ii),

P(IN = i|SN = t) = λi(t)/λ(t), i = 1, 2, (4)

and E(N(1)
GP |SN = t, IN = 1) can be represented as

E(N(1)
GP |SN = t, IN = 1) =

N

∑
n1=1

n1P(N(1)
GP = n1|SN = t, IN = 1) =

N

∑
n1=1

n1

f
(N(1)

GP ,SN ,IN)
(n1, t, 1)

f(SN ,IN)(t, 1)

where f(SN ,IN)(t, 1) is the joint distribution of (SN = t, IN = 1) and f
(N(1)

GP ,SN ,IN)
(n1, t, 1) is

that of (N(1)
GP = n1, SN = t, IN = 1), given by

f(SN ,IN)(t, 1)

= Γ(β/α+N−1)
Γ(β/α)(N−1)! (1− exp{−αΛ(t)})N−1 exp{−βΛ(t)}((N − 1)α + β)λ(t) λ1(t)

λ(t) ,

and

f
(N(1)

GP ,SN ,IN)
(n1, t, 1)

= limΔt→0
1

Δt P(N1(t−) = n1 − 1, N2(t−) = N − n1, t ≤ SN < t + Δt, IN = 1)
= P(N1(t−) = n1 − 1, N2(t−) = N − n1)
×limΔt→0

1
Δt P(t ≤ SN < t + Δt, IN = 1|N1(t−) = n1 − 1, N2(t−) = N − n1)

= Γ(β/α+N−1)
Γ(β/α)(n1−1)!(N−n1)!

(
α
∫ t

0 λ1(x) exp{−α[Λ(t)−Λ(x)]}dx
)n1−1

×
(

α
∫ t

0 λ2(x) exp{−α[Λ(t)−Λ(x)]}dx
)N−n1

exp{−αΛ(t)}β/α

×((N − 1)α + β)λ(t) λ1(t)
λ(t) .

Therefore, we have

P(N(1)
GP = n1|SN = t, IN = 1)

= (N−1)!
(n1−1)!(N−n1)!

(
α
∫ t

0 λ1(x) exp{−α[Λ(t)−Λ(x)]}dx
)n1−1(

α
∫ t

0 λ2(x) exp{−α[Λ(t)−Λ(x)]}dx
)N−n1

/(1− exp{−αΛ(t)})N−1

= (N−1)!
(n1−1)!(N−n1)!

(
α
∫ t

0 λ1(x) exp{−α[Λ(t)−Λ(x)]}dx
1−exp{−αΛ(t)}

)n1−1(
α
∫ t

0 λ2(x) exp{−α[Λ(t)−Λ(x)]}dx
1−exp{−αΛ(t)}

)N−n1

= (N−1)!
(n1−1)!(N−n1)!

(
α
∫ t

0 λ1(x) exp{αΛ(x)}dx
exp{αΛ(t)}−1

)n1−1(
α
∫ t

0 λ2(x) exp{αΛ(x)}dx
exp{αΛ(t)}−1

)N−n1

, n1 = 1, 2, . . . , N.
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Let L ≡ N(1)
GP − 1. Then, the conditional distribution of P(L = m|SN = t, IN = 1),

m = 0, 1, 2, . . . , N − 1, is

P(L = m|SN = t, IN = 1) = P(N(1)
GP = m + 1|SN = t, IN = 1)

= (N−1)!
m!(N−1−m)!

(
α
∫ t

0 λ1(x) exp{αΛ(x)}dx
exp{αΛ(t)}−1

)m(
α
∫ t

0 λ2(x) exp{αΛ(x)}dx
exp{αΛ(t)}−1

)N−1−m
,

m = 0, 1, 2, . . . , N − 1, which is the Binomial distribution with parameters N − 1 and
α
∫ t

0 λ1(x) exp{αΛ(x)}dx
exp{αΛ(t)}−1 . Accordingly, E(N(1)

GP |SN = t, IN = 1) is given by

E(N(1)
GP |SN = t, IN = 1) = E(L + 1|SN = t, IN = 1)

= (N − 1) α
∫ t

0 λ1(x) exp{αΛ(x)}dx
exp{αΛ(t)}−1 + 1.

In a similar way,

f(SN ,IN)(t, 2)

= Γ(β/α+N−1)
Γ(β/α)(N−1)! (1− exp{−αΛ(t)})N−1 exp{−βΛ(t)}((N − 1)α + β)λ(t) λ2(t)

λ(t) ,

and

f
(N(1)

GP ,SN ,IN)
(n1, t, 2)

= limΔt→0
1

Δt P(N1(t−) = n1, N2(t−) = N − 1− n1, t ≤ SN < t + Δt, IN = 2)
= P(N1(t−) = n1, N2(t−) = N − 1− n1)
×limΔt→0

1
Δt P(t ≤ SN < t + Δt, IN = 2|N1(t−) = n1, N2(t−) = N − 1− n1)

= Γ(β/α+N−1)
Γ(β/α)n1!(N−1−n1)!

(
α
∫ t

0 λ1(x) exp{−α[Λ(t)−Λ(x)]}dx
)n1

×
(

α
∫ t

0 λ2(x) exp{−α[Λ(t)−Λ(x)]}dx
)N−1−n1

exp{−αΛ(t)}β/α

×((N − 1)α + β)λ(t) λ2(t)
λ(t) .

Thus,

P(N(1)
GP = n1|SN = t, IN = 2)

= (N−1)!
n1!(N−1−n1)!

(
α
∫ t

0 λ1(x) exp{αΛ(x)}dx
exp{αΛ(t)}−1

)n1
(

α
∫ t

0 λ2(x) exp{αΛ(x)}dx
exp{αΛ(t)}−1

)N−1−n1

,

n1 = 0, 1, . . . , N − 1, and

E(N(1)
GP |SN = t, IN = 2) = (N − 1)

α
∫ t

0 λ1(x) exp{αΛ(x)}dx
exp{αΛ(t)} − 1

.

From Equations (3) and (4),

E(N(1)
GP |SN ≤ T, SN = t) =

{
(N − 1) α

∫ t
0 λ1(x) exp{αΛ(x)}dx

exp{αΛ(t)}−1

}(
λ1(t)
λ(t) + λ2(t)

λ(t)

)
+ λ1(t)

λ(t)

= (N − 1) α
∫ t

0 λ1(x) exp{αΛ(x)}dx
exp{αΛ(t)}−1 + λ1(t)

λ(t) ,

and from Equation (2),

E(N(1)
GP |SN ≤ T) =

T∫
0

{
(N − 1) α

∫ t
0 λ1(x) exp{αΛ(x)}dx

exp{αΛ(t)}−1 + λ1(t)
λ(t)

}
× Γ(β/α+N−1)

Γ(β/α)(N−1)! (1− exp{−αΛ(t)})N−1 exp{−βΛ(t)}((N − 1)α + β)λ(t)dt · 1
P(SN≤T) .

�
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Lemma 2. E(N(i)
GP) and i = 1, 2, are given by

E(N(1)
GP) =

T∫
0

{
(N − 1) α

∫ t
0 λ1(x) exp{αΛ(x)}dx

exp{αΛ(t)}−1 + λ1(t)
λ(t)

}
× Γ(β/α+N−1)

Γ(β/α)(N−1)! (1− exp{−αΛ(t)})N−1 exp{−βΛ(t)}((N − 1)α + β)λ(t)dt

+
N−1
∑

j=0

N−1−j
∑

k=0
j · Γ(β/α+j+k)

Γ(β/α)j!k!

(
α
∫ T

0 λ1(x) exp{−α[Λ(T)−Λ(x)]}dx
)j

×
(

α
∫ T

0 λ2(x) exp{−α[Λ(T)−Λ(x)]}dx
)k
(exp{−αΛ(T)})β/α,

(5)

and

E(N(2)
GP) =

T∫
0

{
(N − 1) α

∫ t
0 λ2(x) exp{αΛ(x)}dx

exp{αΛ(t)}−1 + λ2(t)
λ(t)

}
× Γ(β/α+N−1)

Γ(β/α)(N−1)! (1− exp{−αΛ(t)})N−1 exp{−βΛ(t)}((N − 1)α + β)λ(t)dt

+
N−1
∑

j=0

N−1−j
∑

k=0
j · Γ(β/α+j+k)

Γ(β/α)j!k!

(
α
∫ T

0 λ2(x) exp{−α[Λ(T)−Λ(x)]}dx
)j

×
(

α
∫ T

0 λ1(x) exp{−α[Λ(T)−Λ(x)]}dx
)k
(exp{−αΛ(T)})β/α.

(6)

Proof. Observe that, using Proposition 2,

E(N(1)
GP |SN > T) = E(N1(T)|M(T) ≤ N − 1)

=
N−1
∑

j=0
j P(N1(T) = j|M(T) ≤ N − 1) =

N−1
∑

j=0
j P(N1(T)=j,N2(T)≤N−1−j )

P(M(T)≤N−1)

=
N−1
∑

j=0

N−1−j
∑

k=0
j · Γ(β/α+j+k)

Γ(β/α)j!k!

(
α
∫ T

0 λ1(x) exp{−α[Λ(T)−Λ(x)]}dx
)j

×
(

α
∫ T

0 λ2(x) exp{−α[Λ(T)−Λ(x)]}dx
)k
(exp{−αΛ(T)})β/α · 1

P(SN>T) .

Therefore, using the result in Lemma 1, we have

E(N(1)
GP) = E(N(1)

GP |SN ≤ T)P(SN ≤ T) + E(N(1)
GP |SN > T)P(SN > T)

=
T∫
0

{
(N − 1) α

∫ t
0 λ1(x) exp{αΛ(x)}dx

exp{αΛ(t)}−1 + λ1(t)
λ(t)

}
× Γ(β/α+N−1)

Γ(β/α)(N−1)! (1− exp{−αΛ(t)})N−1 exp{−βΛ(t)}((N − 1)α + β)λ(t)dt

+
N−1
∑

j=0

N−1−j
∑

k=0
j · Γ(β/α+j+k)

Γ(β/α)j!k!

(
α
∫ T

0 λ1(x) exp{−α[Λ(T)−Λ(x)]}dx
)j

×
(

α
∫ T

0 λ2(x) exp{−α[Λ(T)−Λ(x)]}dx
)k
(exp{−αΛ(T)})β/α,

and symmetrically, E(N(2)
GP) can be derived as

E(N(2)
GP) = E(N(2)

GP |SN ≤ T)P(SN ≤ T) + E(N(2)
GP |SN > T)P(SN > T)

=
T∫
0

{
(N − 1) α

∫ t
0 λ2(x) exp{αΛ(x)}dx

exp{αΛ(t)}−1 + λ2(t)
λ(t)

}
× Γ(β/α+N−1)

Γ(β/α)(N−1)! (1− exp{−αΛ(t)})N−1 exp{−βΛ(t)}((N − 1)α + β)λ(t)dt

+
N−1
∑

j=0

N−1−j
∑

k=0
j · Γ(β/α+j+k)

Γ(β/α)j!k!

(
α
∫ T

0 λ2(x) exp{−α[Λ(T)−Λ(x)]}dx
)j

×
(

α
∫ T

0 λ1(x) exp{−α[Λ(T)−Λ(x)]}dx
)k
(exp{−αΛ(T)})β/α.

�
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In the following theorem, we derive the corresponding expected cost rate function
c(N, T), which is, as usual, defined as the expected cost on a renewal cycle over the expected
length of this cycle.

Theorem 1. The cost rate function c(N, T) is given by

c(N, T) =

(
c(1)GPPE[N(1)

GP ] + c(2)GPPE[N(2)
GP ] + cr

)
T∫
0

N−1
∑

j=0

Γ(β/α+j)
Γ(β/α)j! (1− exp{−αΛ(t)})j(exp{−αΛ(t)})

β
α dt

, N = 1, 2, . . ., T > 0, (7)

where E[N(i)
GP],i = 1, 2, are given by Equations (5) and (6), respectively.

Proof. Observe that the expected length of one renewal cycle is E[min(SN , T)]. Then, by
the Renewal Reward Theorem ([23]) the long-run expected cost rate function c(N, T) is
defined as

c(N, T) =
c(1)GPPE[N(1)

GP ] + c(2)GPPE[N(2)
GP ] + cr

E[min(SN , T)]
. (8)

From Proposition 1-(i), the expected length of a cycle, E[min(SN , T)], is given as
follows:

E[min(SN , T)] =
T∫
0

P(min(SN , T) > t) dt =
T∫
0

P(SN > t) dt =
T∫
0

P(M(t) ≤ N − 1) dt

=
T∫
0

N−1
∑

j=0

Γ(β/α+j)
Γ(β/α)j! (1− exp{−αΛ(t)})j(exp{−αΛ(t)})

β
α dt.

(9)

Eventually, using Lemma 2, Equations (8) and (9), the long-run expected cost rate
function c(N, T) is given by Equation (7). �

It is important to compare the proposed bivariate policy (age or the occurrence of the
N-th event in the corresponding BVGGP, whichever comes first) with the conventional or-
dinary age-based replacement policy at age TA (TA > 0). Thus, the number of GPP repairs
are not considered as an additional parameter in this simplified policy. The corresponding
expected cost rate (denoted by cA(TA) ) can be obtained as

cA(TA ) =

β
α

{
c(1)GPP

∫ TA
0 αλ1(x) exp(αΛ(x))dx + c(2)GPP

∫ TA
0 αλ2(x) exp(αΛ(x))dx

}
+ cr

TA
. (10)

Observe that Equation (10) can be directly derived from Theorem 1 by setting N = ∞,
i.e., cA(TA) = lim

N→∞
c(N, TA). In addition, we can see that when c(1)GPP = c(2)GPP = cGPP, the

expected cost rate cA(TA) in Equation (10) is equal to that in [13]:

c ∗A (TA ) =
cGPPβ{exp(αΛ(TA))− 1}/α + cr

TA

3.2. Optimal PM

We can now formulate the optimal PM problem for the described setting. Thus, the
optimal vector (N∗, T∗) should be obtained such that

c(N∗, T∗) = minT>0,N=1,2,...c(N, T).

To find (N∗, T∗), the two-stage procedure will be applied. At the first step, for a fixed
N, we find T∗(N) such that

c(N, T∗(N)) = minT>0c(N, T).
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At the second step, we search for N∗ such that

c(N∗, T∗(N∗)) = minN=1,2,...c(N, T∗(N)).

Then, the optimal maintenance policy parameters are given by (N∗, T∗(N∗)).
The expression for c(N, T) obtained in Theorem 1 is extremely cumbersome and its

analytical analysis of the optimal solution is practically impossible. Therefore, in the next
section, we will illustrate our findings numerically. Note that, from general considerations,
it is clear that the optimal policy proposed in this study should result in a smaller (not
larger) optimal expected cost rate than for the case defined by Equation (10). The numerical
study of the next section among other findings illustrates this claim as well.

4. Numerical Illustration and Discussion

Following the optimization procedure stated above, we conduct numerical studies for
illustration. Suppose that two parts of the system has the following baseline intensities:
λ1(t) = 0.25 (t + 2) and λ2(t) = 0.5 (t + 2). Let the repair and replacement costs are given
by c(1)GPP = 5, c(2)GPP = 10, and cr = 100, respectively. Then, for instance, for α = β = 1, the
optimal values are obtained as (N∗, T∗) = (5, 3.9801) and the corresponding minimal cost
rate is c(N∗, T∗) = 130.8159.

In what follows, assume β = 1, which is a natural assumption in defining the BVGGP
that describes the failure/repair process. Then the optimal preventive maintenance policy
(N∗, T∗) and the corresponding cost rate c(N∗, T∗) for different values c(1)GPP, c(2)GPP, and α
are given in Tables 1 and 2 for cr = 80 and cr = 100, respectively. From these tables, we
can observe that as the degree of the GPP repair increases (i.e., α increases) and as each
GPP repair cost incurred by the failure of each part increases (i.e., c(i)GPP increases), the mean
time until replacement, E[min(SN∗ , T∗)], decreases; that is, the system should be replaced
earlier. Moreover, it can be seen that as the replacement cost cr gets larger, the mean time
until replacement, E[min(SN∗ , T∗)], increases.

To compare the cost rates of the two policies, c(N∗, T∗) and cA(TA
∗) (see our discussion

at the end of Section 3), we introduce the following index:

Δ(%) =
cA(T∗A)− c(N∗, T∗)

cA(T∗A)
× 100 %

which indicates the relative difference between the minimum cost rate of the two mainte-
nance policies. A larger Δ (%) means that the proposed policy has priority over the conven-
tional age-based replacement policy from the cost-rate-minimization point of view. The
optimal conventional maintenance policy TA

∗ and the corresponding cost rates cA(TA
∗)

under different combinations of cr, c(1)GPP, c(2)GPP, and α are summarized in Table 3. From

Tables 1–3, we can see that under all combinations cr, c(1)GPP, c(2)GPP, and α, the cost rate for
the proposed policy is relatively smaller than that for the original one having the values
of Δ (%) in a range of (10%, 20%). This means that there exists a meaningful difference
between the two maintenance policies in terms of the expected cost rate. Table 3 shows that
the difference between the two minimum cost rates decreases as α increases.
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Table 1. The optimal (N∗, T∗) and c(N∗, T∗) for different values of α and c(i)GPP, i = 1, 2 (cr = 80).

c(1)GPP c(2)GPP
N* T* E[min(SN* ,T*)] c(N*,T*)

α = 0.1 1 1 43 5.167063 4.839603 24.613510
5 25 3.570791 3.515909 40.370606

10 22 2.917147 2.907530 54.556764
5 1 29 4.090193 3.966627 33.444139

5 23 3.245566 3.217194 46.421183
10 22 2.757668 2.753356 59.567110

10 1 24 3.481198 3.429802 41.947039
5 22 2.963350 2.951428 53.259190

10 22 2.598863 2.597111 65.502361
α = 0.5 1 1 27 3.813358 2.381693 44.905501

5 12 2.643918 1.847879 66.290938
10 10 1.944151 1.622081 84.952145

5 1 16 2.983852 2.046325 57.014955
5 12 2.148094 1.77202 74.384448

10 10 1.771289 1.556203 91.553627
10 1 12 2.480472 1.832928 68.366798

5 10 1.998873 1.638653 83.243218
10 9 1.683485 1.475049 99.086616

α = 1.0 1 1 23 4.458552 1.694946 60.768793
5 10 3.085826 1.365100 85.423285

10 7 2.371505 1.204417 106.546497
5 1 13 3.641256 1.473804 74.858730

5 8 2.904525 1.268782 94.502131
10 6 2.364720 1.134614 114.03389

10 1 9 3.205668 1.320562 87.817809
5 7 2.499525 1.206568 104.632805

10 6 1.960038 1.120323 122.666147

Table 2. The optimal (N∗, T∗) and c(N∗, T∗) for different values of α and c(i)GPP, i = 1, 2 (cr = 100).

c(1)GPP c(2)GPP
N* T* E[min(SN* ,T*)] c(N*,T*)

α = 0.1 1 1 48 5.485968 5.062683 28.648590
5 27 3.817166 3.737695 45.883026

10 23 3.129246 3.111605 61.198240
5 1 32 4.357206 4.196250 38.343312

5 24 3.481181 3.429788 52.433799
10 22 2.963349 2.951427 66.573986

10 1 26 3.722206 3.649914 47.592342
5 23 3.178678 3.156975 59.803276

10 22 2.794272 2.789043 72.923917
α = 0.5 1 1 31 4.078488 2.464836 53.138310

5 14 2.779690 1.953065 76.74202
10 12 2.014106 1.730446 97.289067

5 1 18 3.240933 2.127228 66.583640
5 12 2.480472 1.832928 85.458497

10 10 1.998873 1.638653 104.054023
10 1 13 2.757591 1.905457 79.035012

5 12 2.069472 1.749067 95.393134
10 10 1.808951 1.572418 112.421272
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Table 2. Cont.

c(1)GPP c(2)GPP
N* T* E[min(SN* ,T*)] c(N*,T*)

α = 1.0 1 1 27 4.639853 1.754148 72.399750
5 11 3.501533 1.405433 99.841511

10 8 2.563363 1.266254 122.837466
5 1 15 3.878627 1.530984 88.176667

5 9 3.205668 1.320562 109.772261
10 7 2.499525 1.206568 130.791007

10 1 11 3.176349 1.405078 102.448963
5 8 2.704431 1.267669 120.746421

10 7 2.06428 1.193740 140.30300

Table 3. The optimal TA
∗, c(TA

∗), and Δ(%) for different values of α and c(i)GPP, i = 1, 2 (cr = 80 and
cr = 100).

c(1)GPP c(2)GPP
cr=80 cr=100

TA
* c(TA

*) Δ(%) TA
* c(TA

*) Δ(%)

α = 0.1 1 1 4.792556 24.73827 0.504320 5.022464 28.81093 0.563467
5 3.497507 40.41667 0.113973 3.712159 45.96080 0.169218

10 2.902790 54.56740 0.019491 3.102907 61.22304 0.040508
5 1 3.936392 33.52346 0.236613 4.158405 38.46142 0.307082

5 3.206681 46.44719 0.055993 3.414981 52.48364 0.094965
10 2.750663 59.57278 0.009518 2.946040 66.58946 0.023238

10 1 3.414981 41.98691 0.094961 3.627975 47.66229 0.146758
5 2.946040 53.27157 0.023239 3.147431 59.83133 0.046888

10 2.595846 65.50489 0.003861 2.785933 72.93223 0.011398
α = 0.5 1 1 2.280309 47.06474 4.587806 2.370803 55.65973 4.530062

5 1.75982 69.16807 4.159625 1.847788 80.2483 4.304914
10 1.510966 87.83091 3.277622 1.595671 100.6977 3.385016

5 1 1.938804 59.70407 4.470884 2.028205 69.78078 4.568952
5 1.639218 77.22535 3.678717 1.725783 89.10439 4.09171

10 1.445795 94.25774 2.86885 1.529378 107.693 3.379028
10 1 1.725783 71.28351 4.091706 1.813389 82.57799 4.290463

5 1.529378 86.15439 3.379018 1.614373 98.86931 3.51593
10 1.378737 101.7853 2.651349 1.460969 115.8614 2.969175

α = 1.0 1 1 1.550914 67.21102 9.585075 1.609079 79.86217 9.344124
5 1.215585 95.30571 10.36918 1.272421 111.3726 10.35361

10 1.05409 118.2154 9.870882 1.109187 136.6934 10.13651
5 1 1.33114 83.43543 10.27925 1.388719 98.13309 10.14577

5 1.137439 105.2673 10.22651 1.193554 122.416 10.3285
10 1.011592 125.9852 9.486281 1.06608 145.2245 9.938745

10 1 1.193554 97.93283 10.32853 1.250203 114.2905 10.36091
5 1.06608 116.1796 9.938746 1.121332 134.4538 10.19486

10 0.967724 135.0222 9.151127 1.021496 155.117 9.55021

The graphs for the optimal N∗ and T∗ with respect to the value of α are given in
Figures 1 and 2. As c(1)GPP or c(2)GPP increases, the system should be replaced earlier and thus
the corresponding curves are ordered. As α increases, the mean length of the renewal cycle
E[min(SN∗ , T∗)] should be smaller and thus N∗ and T∗ initially decreases. However, when
α is larger, the replacement should be made mainly based on the number of failures N∗

(this follows from the form of stochastic intensities in Definition 3) and the role of T∗ should
be weaker. Due to this effect, T∗ is increasing when α is increasing.
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Figure 1. Optimal values N∗ and T∗ for different values of α and c(2)GPP when β = 1, cr = 80,

c(1)GPP = 3 (fixed).

 

Figure 2. Optimal values N∗ and T∗ for different values of α and c(1)GPP when β = 1, cr = 80, c(2)GPP = 3
(fixed).

In Figure 3, the minimum expected cost rates of the two policies for different values of
α are presented. The superiority of the proposed replacement policy is clearly seen.
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Figure 3. The minimum cost rates of the two policies for different values of α when c(1)GPP = 1,

c(2)GPP = 3, and cr = 80.

5. Concluding Remarks

In reliability modeling and analysis, the assumption of independence of components
in a system is usually made for simplicity and convenience of stochastic description. How-
ever, most often, the failures in two or more parts in a system are statistically dependent.
Furthermore, in practice, a failure of one part in a system often causes additional stress
or damage to the remaining parts, which results in a worse condition of a system than
it had just prior this failure. Even a minimal repair of the failed component results in a
worse-than-minimal repair of a system in this case.

To model the described practical setting, we employ the bivariate generalized Polya
process, which corresponds to the dependent worse-than-minimal repair process. Under
these assumptions, a new bivariate preventive maintenance policy based on two parameters
(age and operational history) has been proposed and discussed. The corresponding long-
run average cost rate has been derived and the optimal replacement policies are investigated
and illustrated numerically.

Our mathematical study has a clear practical application in the field of the PM mod-
eling. Along with optimal maintenance, in the future research, the proposed concept of
dependent worse-than-minimal repair processes could be used also for describing other re-
liability properties of repairable systems, such as stationary and non-stationary availability.

As far as we know, our study is the first to apply the dependent bivariate or multi-
variate counting processes to modeling the multivariate failure processes for stochastic
description of repairable systems. Some new stochastic properties of these processes have
been derived and the corresponding optimal bivariate preventive maintenance policy with
two decision parameters (age and operational history) has been proposed. The latter is
another novel feature of the study. Thus, development and application of the new mathe-
matical models for modeling PM with the worse-than-minimal repair can be considered as
the main contribution of the paper.

The developed approach and obtained results provide the tools for more adequate
stochastic description of real systems with dependent components and worse-than-minimal
repair. Neglecting these real-life properties can result in substantial discrepancies in relia-
bility estimates and PM schedules of systems, along with higher costs of maintenance.

302



Mathematics 2022, 10, 1833

The implications of some assumptions in the study should be also addressed in future
research. In the multivariate setting, it is also interesting to consider the case when some
components undergo minimal repair, whereas others undergo worse-than-minimal repair.
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Abstract: In survival analysis, applying stress is often used to accelerate an experiment. Stress can
be discontinuous, and the step-stress model is applied widely due to its flexibility. However, in
reality, when new stress is applied, it often does not take effect immediately, but there will be a lagged
effect. Under the lagged-effect step-stress model, the statistical inference of the Chen distribution
is discussed. The Chen distribution is an important life distribution as its risk function is bathtub-
shaped with certain parameters. In this paper, the maximum likelihood estimators are presented and
the Newton–Raphson algorithm is used. According to the form of risk function under this model, the
explicit expressions of least squares estimators are obtained. The calculation methods of asymptotic
confidence intervals and coverage probabilities are proposed by using the observed Fisher matrix.
Finally, to evaluate the performance of the above estimation methods, a Monte Carlo simulation
study is provided.

Keywords: bathtub-shaped; lagged effect; step-stress; maximum likelihood estimators; least squares
estimators; asymptotic confidence intervals; Monte Carlo simulation

1. Introduction

1.1. Chen Distribution

In survival analysis, hazard function plays an important role in studying the life
phenomenon of a product. For many products, their failure rates decrease first, then keep
at a constant level, and increase finally. Such failure rate is like a bathtub, and this life
distribution is widely used in electronic, machinery, and medical fields. For example, some
drugs do not work well for children and the elderly, but they work well for middle-aged
people. In other words, the failure rate of drugs is relatively high in childhood but gradually
decreases with age. Then, the failure rate remains low in middle age for some time and
eventually increases with age. One of the life distributions with such hazard function is
the Chen distribution, which was first proposed by ref.[1]. It is a two-parameter lifetime
distribution with the bathtub-shaped or increasing hazard function and can model the real
data well.

Ref. [1] proposed confidence intervals and joint confidence regions for the Chen
distribution’s parameters under Type-II censoring. Ref. [2] investigated a simple method to
conduct the statistical test and obtain the exact confidence interval of the Chen distribution’s
shape parameter, which can also be applied to models under Type-II right censoring. Based
on Type-II right-censored samples of the Chen distribution, ref. [3] later discussed several
test statistics for an exact hypothesis test concerning the shape parameter. Ref. [4] obtained
the point estimations and interval estimations for the parameters under a Type-II censored
model. Ref. [5] proposed an extended maximum spacing method to estimate parameters of
the Chen distribution. Under hybrid censoring, ref. [6] discussed the maximum likelihood
estimations and several asymptotic confidence intervals. They also used the Lindley
method, and the Tierney and Kadane method, to calculate Bayes estimates. Based on

Mathematics 2022, 10, 674. https://doi.org/10.3390/math10050674 https://www.mdpi.com/journal/mathematics
305



Mathematics 2022, 10, 674

the Chen distribution, ref. [7] analyzed the stress–strength reliability under progressive
Type-II censoring and generalized it to the proportional hazard family. Under progressively
censored samples of the Chen distribution, ref. [8] discussed maximum likelihood estimates,
different Bayes estimates, asymptotic confidence intervals, and prediction intervals. Based
on data from the Chen distribution, ref. [9] developed simplified forms of the single
moments and covariances. The estimates of the shape parameters as well as the prediction
of the records are also proposed.

A Chen (Chen(β,λ)) random variable T with two positive parameters β (≥0) and λ
(≥0) has the following probability density function (pdf):

f (t; β, λ) = λβtβ−1etβ
exp
{

λ
(

1− etβ
)}

, t > 0. (1)

The cumulative distribution function and the survival function are, respectively,
given by:

F(t; β, λ) = 1− exp
{

λ
(

1− etβ
)}

, t > 0. (2)

S(t; β, λ) = 1− F(t; β, λ) = exp
{

λ
(

1− etβ
)}

, t > 0. (3)

Accordingly, the hazard function is:

h(t; β, λ) =
f (t; β, λ)

S(t; β, λ)
= λβtβ−1etβ

, t > 0. (4)

The shape of the pdf varies with the parameters and the characteristics are summarized
as follows: (1) If 0 < β < 1: the pdf will decrease throughout or decrease first and then
increase when 0 < λ < 1; the pdf will decrease throughout when λ ≥ 1. (2) If β = 1: the
pdf will be unimodal when 0 < λ < 1; the pdf will decrease throughout when λ ≥ 1. (3) If
β > 1: the pdf will always be unimodal no matter which value λ takes. Different plots of
pdf are shown in Figures 1–4, respectively.
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Figure 1. pdf of Chen(t; β, λ), 0 < β < 1.
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Figure 2. pdf of Chen(t; β, λ), 0 < β < 1.
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Figure 3. pdf of Chen(t; β, λ), β = 1.
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Take the derivative of h(t; β, λ) with respect to t, then h′(t; β, λ) = λβtβ−2etβ
[(β− 1) +

βtβ]. Thus, the hazard function shows different shapes when β differs and the properties
are as follows: (1) The hazard function is bathtub-shaped when 0 < β < 1. (2) The
hazard function increases throughout when β ≥ 1. The corresponding plots are shown in
Figures 5 and 6, respectively.

0 1 2 3 4 5 6

0
1

2
3

4
5

6

t

ha
za

rd
 fu

nc
tio

n

β = 0.5,λ=0.5

β = 0.5,λ=1.5

β = 0.6,λ=0.5

β = 0.6,λ=1.5

β = 0.7,λ=0.5

β = 0.7,λ=1.5

Figure 5. h(t; β, λ), 0 < β < 1.
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Figure 6. h(t; β, λ), β ≥ 1.

1.2. Step-Stress Model with Lagged Effect

Nowadays, due to the development of science and technology, the life of a product
is getting longer and longer, and waiting for the product to fail will cause a great waste
of time and manpower. Therefore, some measures need to be taken to accelerate product
failure. Applying stress is a common means to accelerate the experiment in life test and
reliability analysis, which can reduce time waste and other related costs. Stress can be
voltage, temperature, oxygen, etc. There are three common stress-application schemes:
constant-stress model, step-stress model, and progressive-stress model. Under the constant-
stress model, the stress remains unchanged until the products fail. The increase in stress in
the progressive-stress model is linear and continuous. In the step-stress model, the stress
can be changed, but it does not have to be changed continuously, and sudden change is
allowed. In this paper, a simple step-stress model is considered: at first, the initial stress
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level lasts for some time, and then at a given time, the stress level increases and remains
unchanged until all products fail.

The cumulative exposure model (CEM) is a commonly used step-stress model, which
assumes that the remaining life of the product is only associated with the cumulative
exposure experienced previously and current stress. Ref. [10] first proposed the concept
of the cumulative exposure model. Ref. [11] used the CEM to analyze step-stress data of
the Weibull distribution and presented the maximum likelihood estimation and interval
estimation under this method. Ref. [12] then presented the optimum scheme of the model,
including the optimum duration of the first stress, the optimum proportion failing, and the
asymptotic variance. Ref. [13] took into account the multiplier effect of stress, calculating
the maximum likelihood estimation of the Weibull family of functions and the Fisher infor-
mation matrix. Under CEM, ref. [14] discussed the maximum likelihood estimation and
interval estimations of the exponential distribution with Type-I hybrid censoring. Ref. [15]
later considered the Type-II censoring and independent competing risks in the model.
Ref. [16] proposed the optimal life tests of the Weibull distribution using the Bayesian
method under the model and used two algorithms to optimize it. Under CEM, Ref. [17]
discussed the maximum likelihood estimation of the Weibull distribution with Type-I
progressive hybrid censoring. Based on Type-II progressive hybrid censoring, Ref. [18]
discussed statistical inference and optimal design on a step-stress partially accelerated life
test for a hybrid system in the presence of masked data.

Although the CEM is widely used, ref. [19] pointed out that the hazard function
is discontinuous when the stress level changes. That is, the impact of stress change is
instantaneous. In reality, when the stress level changes, it often does not take effect
immediately, but there exists a lag period. The CEM is unreasonable and inappropriate
in this case. To solve this problem, the cumulative risk model (CRM) is proposed, which
takes into account the lagged effect. In this model, the risk function is continuous, and
it is supposed that the lagged effect causes a linear risk function in the intermediate
period, which is more consistent with reality. Ref. [19] first proposed the concept of the
cumulative risk model, and discussed the maximum likelihood estimation and least squares
estimation of the model under exponential distribution. Ref. [20] combined the CRM with
the degradation test model for data analysis. Ref. [21] took into account competing risks
under the exponential distribution. In addition to calculating the maximum likelihood
estimation, it also used three methods to calculate the confidence interval and coverage
probabilities. Ref. [22] later extended this model to the Weibull distribution, and took the
competing risks into account. Under masked data, ref. [23] also introduced competing risks
based on the CRM. Ref. [24] applied the CRM to fuzzy lifetime data. Ref. [25] calculated
the maximum likelihood estimation, the least square estimation, and Bayesian estimation
under a Weibull cumulative risk model.

Many studies on the step-stress model consider the CEM, but the CRM is more in
line with reality. In addition, most of the existing research on the CRM only involves the
exponential distribution or Weibull distribution. From the point of view of the hazard
function, although the Weibull distribution is widely used in survival and reliability anal-
ysis, its hazard function can only be monotonic or constant. Compared with the Weibull
distribution, the Chen distribution has a hazard function that can not only be monotonous
but also show the shape of the bathtub, which is important in practical fields. Statistical
analysis based on the Chen distribution can make applications of the CRM deeper and
wider. In this article, the Chen distribution and step-stress with lagged effect model are
both considered, which is of great significance in theory and practice.

It is assumed that lifetime under the initial stress level obeys the Chen distribution.
The stress level changes at τ1, which starts to take effect at τ2 due to the lagged effect, and
the parameters of the Chen distribution change at τ2 as well. From τ1 to τ2, the hazard
functions under these two stress levels are connected by a linear function.

The rest of the paper is arranged as follows. Some basic calculations and derivations
of the model are shown in Section 2. In Section 3, the maximum likelihood estimation and
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least square estimation under the CRM are given. In Section 4, the asymptotic confidence
intervals and coverage probabilities are discussed by using the large sample theory. To
evaluate the performance of the estimators, the simulation results are presented in Section 5.
Section 6 considers a special case where only one parameter changes when stress level
changes. Section 7 is the summary of the article.

2. Model Description

Assume that the lifetime under the initial stress obeys Chen(β1, λ1). The new stress is
applied at τ1, and it starts to take effect at τ2 (τ1 and τ2 are known). The lifetime under the
new stress obeys Chen(β2, λ2). From τ1 to τ2, the hazard function is linear and denoted as
a + bt (here, a and b are parameters).

The Chen hazard functions under the initial stress level and the second level are:

h1(t) = λ1β1tβ1−1etβ1 , t > 0, (5)

h2(t) = λ2β2tβ2−1etβ2 , t > 0. (6)

Under the CRM, the hazard function is given by:

h(t) =

⎧⎪⎪⎨⎪⎪⎩
λ1β1tβ1−1etβ1 , 0 < t < τ1

a + bt , τ1 ≤ t < τ2

λ2β2tβ2−1etβ2 , t ≥ τ2

. (7)

Note that when τ1 = τ2, the hazard function h0(t) can be written as follows, which is
the hazard function of the CEM as well:

h0(t) =

⎧⎨⎩λ1β1tβ1−1etβ1 , 0 < t < τ1

λ2β2tβ2−1etβ2 , t ≥ τ1

(8)

In the CRM, we assume that τ1 �= τ2.
To make sure that the hazard function is continuous at τ1 and τ2, the following

equations must be satisfied: ⎧⎨⎩ λ1β1τ1
β1−1eτ

β1
1 = a + bτ1

λ2β2τ2
β2−1eτ2

β2
2 = a + bτ2

(9)

According to (9), λ1 and λ2 can be solved as:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
λ1 =

(a + bτ1)e−τ
β1
1

β1τ1
β1−1

λ2 =
(a + bτ2)e−τ

β2
2

β2τ2
β2−1

. (10)

The cumulative hazard function H(t) under the model can be obtained by using the
formula H(t) =

∫ t
0 h(x)dx and replacing the parameters λ1 and λ2 according to (10).
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H(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a+bτ1)e
−τ

β1
1

β1τ1
β1−1 (etβ1 − 1), 0 < t < τ1

(a+bτ1)e
−τ

β1
1

β1τ1
β1−1 (eτ

β1
1 − 1) + a(t− τ1) +

b
2 (t

2 − τ2
1 ), τ1 ≤ t < τ2

(a+bτ1)e
−τ

β1
1

β1τ1
β1−1 (eτ

β1
1 − 1) + a(τ2 − τ1) +

b
2 (τ

2
2 − τ2

1 )

+ (a+bτ2)e
−τ

β2
2

β2τ2
β2−1 (etβ2 − eτ

β2
2 ), t ≥ τ2

(11)

The survival function S(t) under the model can be given as follows by the formula
S(t) = e−H(t):

S(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

exp

{
− (a+bτ1)e

−τ
β1
1

β1τ1
β1−1 (etβ1 − 1)

}
, 0 < t < τ1

exp

{
− (a+bτ1)e

−τ
β1
1

β1τ1
β1−1 (eτ

β1
1 − 1)− a(t− τ1)− b

2 (t
2 − τ2

1 )

}
, τ1 ≤ t < τ2

exp

{
− (a+bτ1)e

−τ
β1
1

β1τ1
β1−1 (eτ

β1
1 − 1)− a(τ2 − τ1)− b

2 (τ
2
2 − τ2

1 )

}

× exp

{
− (a+bτ2)e

−τ
β2
2

β2τ2
β2−1 (etβ2 − eτ

β2
2 )

}
, t ≥ τ2

(12)

According to the formula f (t) = h(t)S(t), the probability density function f (t) of the
lifetime under the CRM is as follows:

f (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a+bτ1)e
−τ

β1
1

τ1
β1−1 tβ1−1etβ1 exp

{
− (a+bτ1)e

−τ
β1
1

β1τ1
β1−1 (etβ1 − 1)

}
, 0 < t < τ1

(a + bt) exp

{
− (a+bτ1)e

−τ
β1
1

β1τ1
β1−1 (eτ

β1
1 − 1)− a(t− τ1)− b

2 (t
2 − τ2

1 )

}
, τ1 ≤ t < τ2

(a+bτ2)e
−τ

β2
2

τ2
β2−1 tβ2−1etβ2 exp

{
− (a+bτ1)e

−τ
β1
1

β1τ1
β1−1 (eτ

β1
1 − 1)− a(τ2 − τ1)− b

2 (τ
2
2 − τ2

1 )

}

× exp

{
− (a+bτ2)e

−τ
β2
2

β2τ2
β2−1 (etβ2 − eτ

β2
2 )

}
, t ≥ τ2

(13)

Thus, the corresponding cumulative distribution function F(t) under the CRM is
obtained by:
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F(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1− exp

{
− (a+bτ1)e

−τ
β1
1

β1τ1
β1−1 (etβ1 − 1)

}
, 0 < t < τ1

1− exp

{
− (a+bτ1)e

−τ
β1
1

β1τ1
β1−1 (eτ

β1
1 − 1)− a(t− τ1)− b

2 (t
2 − τ2

1 )

}
, τ1 ≤ t < τ2

1− exp

{
− (a+bτ1)e

−τ
β1
1

β1τ1
β1−1 (eτ

β1
1 − 1)− a(τ2 − τ1)− b

2 (τ
2
2 − τ2

1 )

}

× exp

{
− (a+bτ2)e

−τ
β2
2

β2τ2
β2−1 (etβ2 − eτ

β2
2 )

}
, t ≥ τ2

. (14)

Based on the above analysis, the estimations of the parameters can be given in the
following section.

3. Point Estimation

3.1. Maximum Likelihood Estimation

Assume that t1, t2, · · · , tn are the failure times under the model. Among them, n1
products fail during the first stress application (before τ1), n2 products fail in the lag
period (from τ1 to τ2), n3 products fail during the second stress application (after τ2), and
n1 + n2 + n3 = n.

The maximum likelihood estimation method (MLE) is a classical point estimation
method and is widely used in estimating parameters. According to the theory of maximum
likelihood estimation, the likelihood function can be written as follows. Denote it as
L(β1, β2, a, b).

L(β1, β2, a, b) =
n

∏
i=1

f (ti) (15)

Plug (13) into (15), and the likelihood function can be expressed as:

L(β1, β2, a, b) =
n1

∏
i=1

[
(a + bτ1)e−τ

β1
1

τ1
β1−1 ti

β1−1et
β1
i exp

⎧⎨⎩− (a + bτ1)e−τ
β1
1

β1τ1
β1−1 (et

β1
i − 1)

⎫⎬⎭
]

×
n1+n2

∏
i=n1+1

[
(a + bti) exp

⎧⎨⎩− (a + bτ1)e−τ
β1
1

β1τ1
β1−1 (eτ

β1
1 − 1)− a(ti − τ1)−

b
2
(t2

i − τ2
1 )

⎫⎬⎭
]

×
n

∏
i=n1+n2+1

[
(a + bτ2)e−τ

β2
2

τ2
β2−1 ti

β2−1etβ2 exp
{
−a(τ2 − τ1)−

b
2
(τ2

2 − τ2
1 )

}

× exp

⎧⎨⎩− (a + bτ1)e−τ
β1
1

β1τ1
β1−1 (eτ

β1
1 − 1)− (a + bτ2)e−τ

β2
2

β2τ2
β2−1 (etβ2

i − eτ
β2
2 )

⎫⎬⎭
]

.

(16)

Based on the form of L(β1, β2, a, b), it can be seen that when n2 = 0, n1 = 0 or
n2 = 0, n3 = 0, the maximum likelihood estimates (MLEs) do not exist. In the following, it
is assumed that ni > 0.

The log-likelihood function l(β1, β2, a, b) is given by:
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l(β1, β2, a, b) = ln L(β1, β2, a, b)

=n1
[

ln(a + bτ1)− τ1
β1
]
+ (β1 − 1)

n1

∑
i=1

ln(
ti
τ1
) +

n1

∑
i=1

ti
β1 − (a + bτ1)e−τ

β1
1

β1τ1
β1−1

n1

∑
i=1

(et
β1
i − 1)

+
n1+n2

∑
i=n1+1

ln(a + bti)− (n2 + n3)
(a + bτ1)e−τ

β1
1

β1τ1
β1−1 (eτ1

β1 − 1)− a
n1+n2

∑
i=n1+1

(ti − τ1)

− b
2

n1+n2

∑
i=n1+1

(t2
i − τ2

1 ) + n3
[

ln(a + bτ2)− τ2
β2
]
+ (β2 − 1)

n

∑
i=n1+n2+1

ln(
ti
τ1
) +

n

∑
i=n1+n2+1

ti
β2

− a(τ2 − τ1)n3 −
b
2
(τ2

2 − τ2
1 )n3 −

(a + bτ2)e−τ
β2
2

β2τ2
β2−1

n

∑
i=n1+n2+1

(etβ2
i − eτ

β2
2 ).

(17)

In order to maximize the l(β1, β2, a, b), take partial derivatives in (17) with respect to
β1, β2, a, and b. The results are as follows:

∂l(β1, β2, a, b)
∂β1

=− (a + bτ1)e−τ
β1
1

β1τ1
β1−1

{
−(

1
β1

+ ln τ1 + τ
β1
1 ln τ1)

[ n1

∑
i=1

(et
β1
i − 1) + (n2 + n3)(eτ1

β1 − 1)
]

+(n2 + n3)(eτ1
β1 τ1

β1 ln τ1) +
n1

∑
i=1

et
β1
i tβ1

i ln ti

}
− n1τ

β1
1 ln τ1 +

n1

∑
i=1

ln(
ti
τ1
)

+
n1

∑
i=1

ti
β1 ln ti,

(18)

∂l(β1, β2, a, b)
∂β2

=− (a + bτ2)e−τ
β2
2

β2τ2
β2−1

{
−(

1
β2

+ ln τ2 + τ
β2
2 ln τ2)

[ n

∑
i=n1+n2+1

(etβ2
i − eτ

β2
2 )
]

+
n

∑
i=n1+n2+1

(etβ2
i tβ2

i ln ti − eτ
β2
2 τ

β2
2 ln τ2)

}
− n3τ

β2
2 ln τ2 +

n

∑
i=n1+n2+1

ln(
ti
τ1
)

+
n

∑
i=n1+n2+1

ti
β2 ln ti,

(19)

∂l(β1, β2, a, b)
∂a

=
n1

a + bτ1
− e−τ

β1
1

β1τ1
β1−1

[ n1

∑
i=1

(et
β1
i − 1) + (n2 + n3)(eτ1

β1 − 1)
]
+

n1+n2

∑
i=n1+1

1
a + bti

−
n1+n2

∑
i=n1+1

(ti − t1) +
n3

a + bτ2
− (τ2 − τ1)n3 −

e−τ
β2
2

β2τ2
β2−1

n

∑
i=n1+n2+1

(etβ2
i − eτ

β2
2 ),

(20)

∂l(β1, β2, a, b)
∂b

=
n1τ1

a + bτ1
− e−τ

β1
1

β1τ1
β1−2

[ n1

∑
i=1

(et
β1
i − 1) + (n2 + n3)(eτ1

β1 − 1)
]
+

n1+n2

∑
i=n1+1

ti
a + bti

− 1
2

n1+n2

∑
i=n1+1

(t2
i − t2

1) +
n3τ2

a + bτ2
− 1

2
(τ2

2 − τ2
1 )n3 −

e−τ
β2
2

β2τ2
β2−2

n

∑
i=n1+n2+1

(etβ2
i − eτ

β2
2 ).

(21)

By making the above functions equal to 0 simultaneously, the maximum likelihood
estimates of β1, β2, a, and b can be solved. However, explicit solutions cannot be given
because the forms of the equations are complex and nonlinear. Therefore, some numerical
techniques, such as the Newton–Raphson algorithm, can be used to calculate approximate
estimates of parameters. This can be realized by using the optim function in R software.
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3.2. Least Squares Estimation

Observing the form of cumulative hazard function (11), we notice that it is a linear
function of a and b when assuming other parameters are known. As a result, least squares
estimation (LSE) can be used to estimate a and b.

For a dataset size of n, if we estimate the probability of the i-th failure time by its
relative frequency, using the non-parametric estimation, the fitted cumulative density
function F̂(ti) can be obtained by:

F̂(ti) = P̂(t ≤ ti) =
i− 1

n
. (22)

According to the formula H(t) = − ln(1− F(t)), the fitted cumulative hazard function
Ĥ(ti) is:

Ĥ(ti) = ln(
n

n− i + 1
). (23)

Based on the above analysis, when the parameters β1 and β2 are known, the least
squares estimates of a, b can be obtained by minimizing the least squares distance between
H(t) and Ĥ(t). Denote the least squares distance function as Q(a, b), and it is given by:

Q(a, b) =
n

∑
i=1

(H(ti)− Ĥ(ti))

=
n1

∑
i=1

[(k1a + k2b)(et
β1
i − 1)− ln(

n
n− i + 1

)]2

+
n1+n2

∑
i=n1+1

[(k1a + k2b)(eτ
β1
1 − 1) + a(ti − τ1) +

b
2
(t2

i − τ2
1 )− ln(

n
n− i + 1

)]2

+
n

∑
i=n1+n2+1

[(k1a + k2b)(eτ
β1
1 − 1) + a(τ2 − τ1) +

b
2
(τ2

2 − τ2
1 ) + (k3a + k4b)(etβ2 − eτ

β2
2 )

− ln(
n

n− i + 1
)]2

(24)

where:

k1 =
1

eτ
β1
1 β1τ1

β1−1
, k2 =

1

eτ
β1
1 β1τ1

β1−2
, k3 =

1

eτ
β2
2 β2τ2

β2−1
, k4 =

1

eτ
β2
2 β2τ2

β2−2
. (25)

For the given β1 and β2, the analytic expression of least square estimates â(β1, β2) and
b̂(β1, β2) can be obtained by taking the derivative of Q(a, b). The results are as follows:

â(β1, β2) =
B1C2 − B2C1

A1B2 − B2
1

b̂(β1, β2) =
B1C1 − A1C2

A1B2 − B2
1

(26)

where A1, B1, C1, B2, and C2 are concerned with β1, β2, a, b, τ1, τ2, ti and are shown specifi-
cally in the Appendix A.

Note that if β1 and β2 are assumed to be unknown, we can plug â(β1, β2) and b̂(β1, β2)
into the log-likelihood function l(β1, β2, a, b). Thus, the log-likelihood function is only
concerned with β1 and β2 (denote it as l(β1, β2)), which makes it more conducive to
calculate the maximum likelihood estimates. By maximizing l(β1, β2), the estimates of
β1 and β2 can be obtained. Using (10) and (26), the estimates of λ1, λ2, a, and b can be
calculated as well.

The least squares estimates (LSEs) of the parameters calculated in this section can also
be used as the initial iterative values when calculating the maximum likelihood estimates
in the previous section.
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4. Interval Estimation

4.1. Observed Fisher Information Matrix

Based on the large-sample theory, when the sample size n is large enough, the in-
verse of the Fisher information matrix can be used as the approximation of the variance–
covariance matrix. Denote the Fisher information matrix as I.

I = E

⎛⎜⎜⎜⎜⎜⎝
− ∂2l

∂a2 − ∂2l
∂a∂b − ∂2l

∂a∂β1
− ∂2l

∂a∂β2

− ∂2l
∂b∂a − ∂2l

∂b2 − ∂2l
∂b∂β1

− ∂2l
∂b∂β2

− ∂2l
∂β1∂a − ∂2l

∂β1∂b − ∂2l
∂β2

1
− ∂2l

∂β1∂β2

− ∂2l
∂β2∂a − ∂2l

∂β2∂b − ∂2l
∂β2∂β1

− ∂2l
∂β2

2

⎞⎟⎟⎟⎟⎟⎠ (27)

The specific elements of I are provided in the Appendix A.
Since it is difficult to calculate the above expectations, the observed Fisher information

matrix is often used as a substitute for the Fisher matrix, which does not take expectations
but takes the parameter values as the maximum likelihood estimates. Denote it as O.

O =

⎛⎜⎜⎜⎜⎜⎝
− ∂2l

∂a2 − ∂2l
∂a∂b − ∂2l

∂a∂β1
− ∂2l

∂a∂β2

− ∂2l
∂b∂a − ∂2l

∂b2 − ∂2l
∂b∂β1

− ∂2l
∂b∂β2

− ∂2l
∂β1∂a − ∂2l

∂β1∂b − ∂2l
∂β2

1
− ∂2l

∂β1∂β2

− ∂2l
∂β2∂a − ∂2l

∂β2∂b − ∂2l
∂β2∂β1

− ∂2l
∂β2

2

⎞⎟⎟⎟⎟⎟⎠
|a=â,b=b̂,β1=β̂1,β2=β̂2

(28)

Therefore, the approximated variance–covariance matrix of â, b̂, β̂1, and β̂2 is given by:⎛⎜⎜⎝
ˆVar(â) ˆCov(â, b̂) ˆCov(â, β̂1) ˆCov(â, β̂2)

ˆCov(b̂, â) ˆVar(b̂) ˆCov(b̂, β̂1) ˆCov(b̂, β̂2)
ˆCov(β̂1, â) ˆCov(β̂1, b̂) ˆVar(β̂1) ˆCov(β̂1, β̂2)
ˆCov(β̂2, â) ˆCov(β̂2, b̂) ˆCov(β̂2, β̂1) ˆVar(β̂2)

⎞⎟⎟⎠ = O−1. (29)

As the maximum likelihood estimators have asymptotic normality under regularity
condition, it can be known that (â, b̂, β̂1, β̂2) obeys the quaternion normal distribution
approximately. Its mean vector is (a, b, β2, β2) and the variance–covariance matrix is O−1.
Based on the above analysis, the asymptotic confidence intervals of â, b̂, β̂1, and β̂2 can also
be calculated. In the next section, the specific implementation steps and the calculation
method of coverage probabilities are given.

4.2. Asymptotic Confidence Interval

When given a set of initial parameters β1, β2, λ1, and λ2, the following steps can
generate sample data and compute the confidence intervals and coverage probabilities.

Step 1: Generate n random numbers that are independent and identically distributed
in a Uniform distribution U(0, 1). Then, invert F(t) in (14) to generate the survival time ti.
The corresponding function is as follows:
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ti =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
ln(1− β1τ1

β1−1ln(1− ui)

(a + bτ1)e−τ
β1
1

)
] 1

β1 , 0 < ui < F(τ1)

−a +

√
a2 − 2b[ln(1− ui) +

(a+bτ1)e
−τ

β1
1

β1τ1
β1−1 (eτ1

β1 − 1)− aτ1 − b
2 τ2

1 ]

b
F(τ1) ≤ ui < F(τ2)

[
ln(e−τ

β2
2 −

ln(1− ui) +
(a+bτ1)e

−τ
β1
1

β1τ1
β1−1 (eτ1

β1 − 1) + a(τ2 − τ1) +
b
2 (τ

2
2 − τ2

1 )− ln(1− ui)

(a + bτ2)e−τ
β2
2

β2τ2
β2−1)

] 1
β2

ui ≥ F(τ2)

(30)

Step 2: Use the data ti generated from Step 1 and the log-likelihood function (17) to
calculate the MLEs of a, b, β1, and β2. Denote them as â, b̂, β̂1, and β̂2. Calculate the MLEs
of λ1 and λ2 via the equation (10) and denote them as λ̂1 and λ̂2.

Step 3: Use the data ti generated from Step 1 and the MLEs from Step 2 to calculate
the observed Fisher information matrix O.

Step 4: Invert O matrix to calculate the asymptotic variance–covariance matrix, and
denote it as A. Obtain the asymptotic variance of β1 and β2 as ˆvar(β̂1) and ˆvar(β̂2).

Step 5: Based on the theory of the Delta method ([26]), the asymptotic variance of λ̂1
and λ̂2 can be calculated using the following equations:

ˆvar(λ̂1) = C1 ACT
1

ˆvar(λ̂2) = C2 ACT
2

(31)

where:

C1 = (
∂λ1(a, b, β1)

∂a
,

∂λ1(a, b, β1)

∂b
,

∂λ1(a, b, β1)

∂β1
, 0 )

C2 = (
∂λ2(a, b, β2)

∂a
,

∂λ2(a, b, β2)

∂b
, 0 ,

∂λ2(a, b, β2)

∂β2
)

(32)

CT
1 and CT

2 are the transpose matrices of C1 and C2, respectively. Further, the specific
expressions of C1 and C2 are shown in the Appendix A.

Step 6: The lower and upper bounds of the 100(1 − α)% confidence intervals for
β1, β2, λ1, λ2 are given by:

β̂L
i = min{β̂i − u α

2

√
ˆvar(β̂i), 0} β̂U

i = β̂i + u α
2

√
ˆvar(β̂i), i = 1, 2

λ̂L
i = min{λ̂i − u α

2

√
ˆvar(λ̂i), 0} λ̂U

i = λ̂i + u α
2

√
ˆvar(λ̂i), i = 1, 2

(33)

where uq is the q-quantile of a standardized normal distribution.
Step 7: Repeat the foregoing steps 999 times to obtain the coverage probabilities

as CPrs.

CPr(β1) =
999

∑
j=1

I(β̂L
1j < β1 < β̂U

1j)

999
(34)

where I(β̂L
1j < β1 < β̂U

1j) is the indicator function. β̂L
1j and β̂U

1j are the j-th results of the β1’
lower and upper bounds of the 100(1− α)% confidence intervals.

In the same way, we can obtain the CPrs of β2, λ1, and λ2.
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5. Simulation Results and Analysis

In this section, the simulation results under different sample sizes (n) and differ-
ent parameters are presented using the method given in the previous section with the
R program.

The simulation results of the MLEs, LSEs, 95% and 99% confidence intervals, and
the corresponding coverage probabilities are given by Monte Carlo simulations, which
evaluate the performance of the estimation methods. By comparing the mean, bias, and
mean square error of MLEs and LSEs, the advantages and disadvantages of the two
methods are compared.

Based on the characteristics of the Chen distribution’s hazard function, different pa-
rameters are chosen to generate random numbers, and the results are listed in Tables 1–4.
The results include the mean, bias, mean square error (MSE), lower bounds (LB95%), up-
per bounds (UB95%), and coverage probabilities (CPr95%) of 95% confidence interval and
lower bounds (LB99%), upper bounds (UB99%), and coverage probabilities (CPr99%) of 99%
confidence intervals.

Table 1 shows the simulation results when the hazard functions under the two stresses
are both bathtub-shaped with n = 50, n = 100, n = 200.

Table 1. The results of MLEs, LSEs, interval estimates, and CPrs when β1 = 0.7, β2 = 0.9, λ1 = 0.5016,
λ2 = 1.0015, τ1 = 0.5, τ2 = 1, a = −0.85, b = 3.3.

n Par Method Mean Bias MSE LB95% UB95% CPr95% LB99% UB99% CPr99%

50

λ1
MLE 0.5469 0.0454 0.0247 0.2580 0.8359 0.944 0.1666 0.9273 0.984
LSE 0.5165 0.0149 0.0173

λ2
MLE 1.0326 0.0311 0.1454 0 2.5273 0.964 0 3.0001 0.981
LSE 0.6894 −0.3121 0.0137

β1
MLE 0.7597 0.0597 0.0473 0.3832 1.1362 0.947 0.2641 1.2553 0.988
LSE 0.7294 0.0294 0.0191

β2
MLE 1.1487 0.2487 0.2595 0.2605 2.0368 0.901 -0.0204 2.3178 0.964
LSE 1.1840 0.2840 0.0512

100

λ1
MLE 0.5181 0.0165 0.0102 0.3220 0.7142 0.948 0.2599 0.7762 0.993
LSE 0.5286 0.0270 0.0089

λ2
MLE 1.1001 0.0986 1.6755 0.1456 2.0545 0.953 0 2.3564 0.984
LSE 0.7872 −0.2143 0.0114

β1
MLE 0.7238 0.0238 0.0178 0.4708 0.9768 0.951 0.3907 1.0568 0.988
LSE 0.7327 0.0327 0.0095

β2
MLE 1.0009 0.1009 0.1027 0.4122 1.5896 0.917 0.2259 1.7758 0.970
LSE 1.0530 0.1530 0.0117

200

λ1
MLE 0.5108 0.0092 0.0047 0.3736 0.6480 0.960 0.3302 0.6914 0.992
LSE 0.5171 0.0155 0.0049

λ2
MLE 0.9841 −0.0173 0.1017 0.3514 1.6168 0.969 0.1512 1.8170 0.995
LSE 0.8632 −0.1382 0.0072

β1
MLE 0.7143 0.0143 0.0089 0.5382 0.8904 0.953 0.4825 0.9462 0.988
LSE 0.7210 0.0210 0.0041

β2
MLE 0.9707 0.0707 0.0439 0.5673 1.3740 0.930 0.4397 1.5016 0.977
LSE 0.9881 0.0881 0.0046

Table 2 shows the simulation results when the distributions under the two stress levels
are the same as those in Table 1, but the lag time (τ2 − τ1) is shortened.

Table 3 shows the simulation results when the hazard functions under the two different
stresses both increase monotonically with n = 50, n = 100, n = 200.
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Table 2. The results of MLEs, LSEs, interval estimates, and CPrs when β1 = 0.7, β2 = 0.9, λ1 = 0.5016,
λ2 = 1.0015, τ1 = 0.5, τ2 = 0.7, a = −2.0235, b = 5.6470.

n Par Method Mean Bias MSE LB95% UB95% CPr95% LB99% UB99% CPr99%

50

λ1
MLE 0.5406 0.0390 0.0278 0.2367 0.8444 0.947 0.1406 0.9406 0.981
LSE 0.5392 0.0376 0.0221

λ2
MLE 1.0617 0.0602 0.3453 0.2177 1.9056 0.955 0 2.1726 0.988
LSE 0.8517 −0.1498 0.0387

β1
MLE 0.7529 0.0529 0.0489 0.3675 1.1382 0.944 0.2456 1.2602 0.979
LSE 0.7409 0.0409 0.0194

β2
MLE 1.0346 0.1346 0.1296 0.3951 1.6742 0.930 0.1928 1.8765 0.983
LSE 1.0550 0.1550 0.0041

100

λ1
MLE 0.5205 0.0189 0.0130 0.3122 0.7288 0.931 0.2464 0.7947 0.981
LSE 0.5247 0.0231 0.0124

λ2
MLE 1.0101 0.0086 0.1397 0.4483 1.5719 0.953 0.2706 1.7496 0.984
LSE 0.8970 −0.1044 0.0212

β1
MLE 0.7259 0.0259 0.0189 0.4647 0.9872 0.952 0.3820 1.0698 0.990
LSE 0.7302 0.0302 0.0107

β2
MLE 0.9733 0.0733 0.0555 0.5470 1.3996 0.927 0.4122 1.5345 0.978
LSE 0.9928 0.0928 0.0012

200

λ1
MLE 0.5099 0.0083 0.0058 0.3649 0.6549 0.949 0.3191 0.7007 0.987
LSE 0.5235 0.0219 0.0063

λ2
MLE 1.0059 0.0044 0.0406 0.6175 1.3943 0.953 0.4946 1.5172 0.992
LSE 0.9280 −0.0735 0.0124

β1
MLE 0.7135 0.0135 0.0086 0.5323 0.8947 0.949 0.4750 0.9520 0.988
LSE 0.7201 0.0201 0.0047

β2
MLE 0.9285 0.0285 0.0225 0.6366 1.2204 0.948 0.5442 1.3128 0.992
LSE 0.9569 0.0569 0.0041

Table 4 shows the simulation results when the hazard function under the first stress
level is bathtub-shaped and in the second stress level is monotonically increasing with
n = 50, n = 100, n = 200.

Table 3. The results of MLEs, LSEs, interval estimates, and CPrs when β1 = 1, β2 = 1.2, λ1 = 0.7642,
λ2 = 1.1061, τ1 = 0.4, τ2 = 0.6, a = −0.7, b = 4.6.

n Par Method Mean Bias MSE LB95% UB95% CPr95% LB99% UB99% CPr99%

50

λ1
MLE 0.9009 0.1367 0.2990 0.2552 1.5466 0.940 0.0509 1.7509 0.987
LSE 0.8342 0.0700 0.0793

λ2
MLE 1.1245 0.0185 0.1404 0.4643 1.7848 0.938 0.2554 1.9937 0.978
LSE 1.0138 −0.0923 0.0563

β1
MLE 1.0870 0.0870 0.1224 0.5168 1.6572 0.944 0.3364 1.8376 0.982
LSE 1.0527 0.0527 0.0511

β2
MLE 1.3984 0.1984 0.2188 0.5822 2.2146 0.940 0.324 2.4727 0.989
LSE 1.3959 0.1959 0.0055
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Table 3. Cont.

n Par Method Mean Bias MSE LB95% UB95% CPr95% LB99% UB99% CPr99%

100

λ1
MLE 0.8139 0.0497 0.0504 0.3951 1.2326 0.950 0.2627 1.3651 0.988
LSE 0.8284 0.0643 0.0451

λ2
MLE 1.1094 0.0033 0.0576 0.6578 1.5613 0.942 0.5152 1.7038 0.984
LSE 1.0331 −0.0730 0.0343

β1
MLE 1.0354 0.0354 0.0390 0.6529 1.4179 0.955 0.5319 1.5389 0.988
LSE 1.0504 0.0504 0.0249

β2
MLE 1.2926 0.0926 0.0779 0.7531 1.8323 0.951 0.5823 2.003 0.989
LSE 1.3152 0.1152 0.0015

200

λ1
MLE 0.7859 0.0217 0.0208 0.4976 1.0741 0.957 0.4064 1.1653 0.994
LSE 0.8156 0.0514 0.0219

λ2
MLE 1.1142 0.0082 0.0290 0.7977 1.4307 0.947 0.6976 1.5309 0.987
LSE 1.0520 −0.0541 0.0170

β1
MLE 1.0168 0.0168 0.0184 0.7512 1.2823 0.963 0.6672 1.3664 0.993
LSE 1.0339 0.0339 0.0122

β2
MLE 1.2398 0.0398 0.0382 0.8716 1.6081 0.949 0.7551 1.7246 0.992
LSE 1.2693 0.0693 0.0005

Table 4. The results of MLEs, LSEs, interval estimates, and CPrs when β1 = 0.8, β2 = 1.2, λ1 = 0.3679,
λ2 = 0.0802, τ1 = 1, τ2 = 2, a = 0.5, b = 0.3.

n Par Method Mean Bias MSE LB95% UB95% CPr95% LB99% UB99% CPr99%

50

λ1
MLE 0.3705 0.0027 0.0048 0.2254 0.5157 0.977 0.1795 0.5616 0.996
LSE 0.3761 0.0082 0.0061

λ2
MLE 0.0295 −0.0508 0.5604 0 0.2688 0.981 0 0.3445 0.994
LSE 0.0426 −0.0376 0.0001

β1
MLE 0.8371 0.0371 0.0278 0.5147 1.1595 0.954 0.4127 1.2615 0.990
LSE 0.8159 0.0159 0.0105

β2
MLE 1.3156 0.1156 0.0826 0.7707 1.8606 0.871 0.5984 2.0329 0.936
LSE 1.3586 0.1586 0.0133

100

λ1
MLE 0.3715 0.0036 0.0024 0.2717 0.4714 0.972 0.2401 0.5029 0.991
LSE 0.3737 0.0058 0.0031

λ2
MLE 0.0908 0.0106 0.0077 0 0.2173 0.969 0 0.2573 0.993
LSE 0.0552 −0.0250 0.0001

β1
MLE 0.8204 0.0204 0.0141 0.5984 1.0424 0.943 0.5282 1.1126 0.995
LSE 0.8161 0.0161 0.0052

β2
MLE 1.2495 0.0495 0.0363 0.8793 1.6197 0.923 0.7622 1.7368 0.969
LSE 1.2895 0.0895 0.0035

200

λ1
MLE 0.3711 0.0032 0.0012 0.3016 0.4405 0.965 0.2796 0.4625 0.994
LSE 0.3709 0.0030 0.0015

λ2
MLE 0.0791 −0.0011 0.0019 0 0.1625 0.965 0 0.1889 0.997
LSE 0.0635 −0.0167 0.0001

β1
MLE 0.8058 0.0058 0.0060 0.6519 0.9596 0.956 0.6033 1.0083 0.993
LSE 0.8101 0.0101 0.0026

β2
MLE 1.2360 0.0360 0.0161 0.9859 1.4861 0.915 0.9068 1.5652 0.971
LSE 1.2551 0.0551 0.0014
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Based on Tables 1–4, some conclusions are summarized as follows.

(1) No matter which values the parameters take, the estimated values are close to the
real values, and mostly the bias and mean square errors decrease with the increase in
sample size, which shows that the two estimations are effective.

(2) From the perspective of bias, the results of LSE are generally better than MLE when
n = 50; the results of MLE are generally better than LSE when n = 100 and n = 200.
This means that LSE is preferred when the sample size is small, while MLE is preferred
when the sample size is large.

(3) Under different parameters, the mean square errors of LSEs are generally less than
that of MLEs, and the advantage of LSE in the mean square errors is more obvious
when the sample size n is small.

(4) In terms of the asymptotic confidence intervals, generally, the coverage probabilities
of the 95% are close to 95%, and the coverage probabilities of the 99% are close to 99%,
which verifies the correctness of the methods. The coverage probabilities are closer
to 1-α with the increase in the sample size, which means the asymptotic confidence
intervals will be more precise when the sample size is larger.

(5) In general, the estimations perform better when the hazard function under the first
stress is bathtub-shaped and under the second stress is monotonically increasing. The
coverage probabilities fit better when the risk function is monotonically increasing
under both stress levels.

(6) Comparing Tables 1 and 2, it can be seen that when the lagged-effect time is shortened,
the mean square errors of MLEs and LSEs both increase under the small sample size.

6. A Special Case

Since the parameter β determines whether the shape of the hazard function is a bathtub
shape or not and, in many cases, the stress does not change the shape of the hazard function,
a special case will be discussed below.

When assuming that parameter β1 is equal to parameter β2 and denoting them as β,
the model becomes the following form.

The hazard functions under the two stresses are:

h1(t) = λ1βtβ−1etβ
, t > 0, (35)

h2(t) = λ2βtβ−1etβ
, t > 0. (36)

Under the CRM, the hazard function is obtained by:

h(t) =

⎧⎪⎪⎨⎪⎪⎩
λ1βtβ−1etβ

, 0 < t < τ1

a + bt , τ1 ≤ t < τ2

λ2βtβ−1etβ
, t ≥ τ2

(37)

Replace parameters λ1 and λ2 with a and b, and the cumulative hazard function H(t)
under the model is:

H(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a+bτ1)e
−τ

β
1

βτ1
β−1 (etβ − 1), 0 < t < τ1

(a+bτ1)e
−τ

β
1

βτ1
β−1 (eτ

β
1 − 1) + a(t− τ1) +

b
2 (t

2 − τ2
1 ), τ1 ≤ t < τ2

(a+bτ1)e
−τ

β
1

βτ1
β−1 (eτ

β
1 − 1) + a(τ2 − τ) + b

2 (τ
2
2 − τ2

1 )

+ (a+bτ2)e
−τ

β
2

βτ2
β−1 (etβ − eτ

β
2 ), t ≥ τ2

(38)
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The survival function S(t) under the model is:

S(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

exp

{
− (a+bτ1)e

−τ
β
1

βτ1
β−1 (etβ − 1)

}
, 0 < t < τ1

exp

{
− (a+bτ1)e

−τ
β
1

βτ1
β−1 (eτ

β
1 − 1)− a(t− τ1)− b

2 (t
2 − τ2

1 )

}
, τ1 ≤ t < τ2

exp

{
− (a+bτ1)e

−τ
β
1

βτ1
β1−1 (eτ

β
1 − 1)− a(τ2 − τ1)− b

2 (τ
2
2 − τ2

1 )

}

× exp

{
− (a+bτ2)e

−τ
β
2

βτ2
β−1 (etβ − eτ

β
2 )

}
, t ≥ τ2

(39)

The probability density function f (t) of the lifetime is as follows:

f (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a+bτ1)e
−τ

β
1

τ1
β−1 tβ−1etβ

exp

{
− (a+bτ1)e

−τ
β
1

βτ1
β−1 (etβ − 1)

}
, 0 < t < τ1

(a + bt) exp

{
− (a+bτ1)e

−τ
β
1

βτ1
β−1 (eτ

β
1 − 1)− a(t− τ1)− b

2 (t
2 − τ2

1 )

}
, τ1 ≤ t < τ2

(a+bτ2)e
−τ

β
2

τ2
β−1 tβ−1etβ

exp

{
− (a+bτ1)e

−τ
β
1

β1τ1
β−1 (eτ

β
1 − 1)− a(τ2 − τ1)− b

2 (τ
2
2 − τ2

1 )

}

× exp

{
− (a+bτ2)e

−τ
β
2

βτ2
β−1 (etβ − eτ

β
2 )

}
, t ≥ τ2

(40)

The corresponding cumulative distribution function F(t) is given by:

F(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1− exp

{
− (a+bτ1)e

−τ
β
1

βτ1
β−1 (etβ − 1)

}
, 0 < t < τ1

1− exp

{
− (a+bτ1)e

−τ
β
1

βτ1
β−1 (eτ

β
1 − 1)− a(t− τ1)− b

2 (t
2 − τ2

1 )

}
, τ1 ≤ t < τ2

1− exp

{
− (a+bτ1)e

−τ
β
1

βτ1
β−1 (eτ

β
1 − 1)− a(τ2 − τ1)− b

2 (τ
2
2 − τ2

1 )

}

× exp

{
− (a+bτ2)e

−τ
β
2

βτ2
β−1 (etβ − eτ

β
2 )

}
, t ≥ τ2

(41)

Accordingly, the log-likelihood function l(β, a, b) can be written as:
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l(β, a, b) =n1
[

ln(a + bτ1)− τ1
β
]
+

n1+n2

∑
i=n1+1

ln(a + bti) + n3
[

ln(a + bτ2)− τ2
β
]

+ (β− 1)[
n1

∑
i=1

ln(
ti
τ1
) +

n

∑
i=n1+n2+1

ln(
ti
τ1
)] +

n1

∑
i=1

ti
β +

n

∑
i=n1+n2+1

ti
β

− a[
n1+n2

∑
i=n1+1

(ti − τ1) + (τ2 − τ1)n3]−
b
2
[

n1+n2

∑
i=n1+1

(t2
i − τ2

1 ) + (τ2
2 − τ2

1 )n3]

− (a + bτ1)e−τ
β
1

βτ1
β−1 [

n1

∑
i=1

(etβ
i − 1) + (n2 + n3) + (eτ1

β − 1)]

− (a + bτ2)e−τ
β
2

βτ2
β−1

n

∑
i=n1+n2+1

(etβ
i − eτ

β
2 )

(42)

Other relevant parameter estimations can also be obtained. The corresponding meth-
ods are similar to those of previous sections and the specific steps are omitted.

7. Conclusions

In this paper, the parameter estimations and the statistical inference of the Chen distri-
bution under the step-stress model with lagged effect are studied. Maximum likelihood
estimation is used for point estimation, and the Newton–Raphson algorithm is used when
solving the nonlinear equations. Based on the unique linear form of risk function under
CRM, another point estimation is obtained based on the large sample theory and the least
squares estimation method. Different from maximum likelihood estimation, it gives the
specific expressions of a, b for the given β1, β2. Moreover, using the observed Fisher ma-
trix and the asymptotic normality of the maximum likelihood estimators, a method to
construct the asymptotic confidence interval and coverage probabilities is provided. The
performance of those estimation methods is evaluated by Monte Carlo simulation. It can be
seen from the simulation results that the accuracy of the two point estimations is different
when parameters or sample sizes change, which may be due to distinct forms of the Chen
distribution’s risk functions.

The bathtub-shaped hazard function of the Chen distribution is of great significance in
real life. The step-stress model is practical in survival analysis and the lagged effect makes
it more consistent with reality. This paper can also be further extended by considering
competing risks or a censoring scheme.
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Appendix A

Appendix A.1. The Expressions of â(β1, β2) and b̂(β1, β2)

â(β1, β2) =
B1C2 − B2C1

A1B2 − B2
1

b̂(β1, β2) =
B1C1 − A1C2

A1B2 − B2
1

(A1)

where:

A1 =
n1

∑
i=1

[k1(et
β1
i − 1)]2 +

n1+n2

∑
i=n1+1

[k1(eτ
β1
1 − 1) + (ti − τ1)]

2

+
n

∑
i=n1+n2+1

[k1(eτ
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1 − 1) + (τ2 − τ1) + k3(etβ2 − eτ
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∑
i=1
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n1+n2

∑
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1
2
(t2
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1 − 1) + (τ2 − τ1) + k3(etβ2 − eτ
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(A2)
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Appendix A.2. The Specific Elements of I
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Appendix A.3. The Expression of C1 and C2

C1 = (
∂λ1(a, b, β1)
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(A5)

where:
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Abstract: This work uses classic stochastic dynamic programming techniques to determine the
equivalence premium that each of two extraction agents of a non-renewable natural resource must
pay to an insurer to cover the risk that the extraction pore explodes. We use statistical and geological
methods to calibrate the time-until-failure distribution of extraction status for each agent and couple a
simple approximation scheme with the actuarial standard of Bühlmann’s recommendations to charge
the extracting agents a variance premium, while the insurer earns a return on its investment at risk.
We test our analytical results through Monte Carlo simulations to verify that the probability of ruin
does not exceed a certain predetermined level.

Keywords: extraction game for two agents; time-until-failure; hazard rates; vertical pressure gradient;
Bühlmann recommendations for premium calculation

MSC: 90C39; 91A12; 91B16

1. Introduction

In late 2020, Lloyd’s of London announced plans to stop selling insurance to some
types of fossil fuel companies by 2030. Indeed, several insurance companies are expected
to follow Lloyd’s lead. In addition to the damage that the extraction work causes to the
environment, and the subsequent social and governmental pressure to which the extractive
fossil fuel industry is subject, the decision of the insurance industry is due to the fact that,
during the last thirty years, insurers have lost approximately sixty billion dollars in this
sector alone, while losses in all other sectors amount to only thirty million dollars. See [1].
Despite this, it is not clear that the governments of the world (for example, that of Mexico)
are prepared to stop investing in the fossil fuel industry, nor that the companies in this
field are ready to face it on their own. In any case, the very high value of a single loss
related to oil platforms and the short term that the insurance industry has determined to
stop its exposure to these risks, gives a paramount importance to the problem of valuation
of insurance premia for the members of the actuarial community.

Broadly speaking, what insurance companies generally do is allocate capital using
historical data and other factors to calculate the right mix of aggressive and conservative
risks, and try to balance frequency and severity. However, these risk estimates are not made
based on geological or geophysical technical considerations, and therefore, the calculation
of premia and benefits does not take into account the geological conditions of the area
where a well will be drilled.

The risk we will be studying in this work is that the well explodes during drilling.
Approached correctly, and based on seismic and statistical data, it is possible for insurance
companies to capitalize on the risk—at least—until 2030. Indeed, with the seismic data
from the extraction zone, it is possible to invoke the results presented in [2] to calculate the
pore pressure. This data, together with the statistical information on the behavior of the
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wells in the area, will help us estimate the parameters of the probability distribution of the
time until this event occurs while the well is being drilled.

In the actuarial field, it is well known that if the probability of the loss occurring turns
out to be low, the insurance company could charge a very competitive and differentiable
premium in the market. If, on the other hand, the probability of an explosion turns out
to be too high, the insurer could decline to insure the well, reducing the financial risk
considerably, for its own benefit.

The works [3,4] use the principle of dynamic programming to show that, when
the utility function of an agent extracting a non-renewable resource (for example, oil) is
logarithmic, then a kind of equivalence principle (see p. 2 and Example 6.1.1 in [5]), namely

x− u∗(t, x) · āt = 0, (1)

where x is the resource level available for extraction, u∗(t, x) is the optimal control for the
extraction agent at time t when the resource level is x, and āt is a contingent annuity valued
at zero interest and payable continuously issued in favor of the agent when the resource
has been extracted for t years. In fact, in [6] a detailed analysis is made of the behavior of
the funding reserves for a single agent when the downtime follows the Gamma, Weibull
and Chen distributions.

Moreover, if instead of considering a single agent, we consider two, and for i = 1, 2,
the i-th extractor receives a prize of ci if it continues extracting resources at the time the
other one has stopped, then ([4], Theorem 3) gives us that we can replace (1), by the relation

x− u∗i (t, x) ·
(

ā[t]1:[t]2 + ci Ā[t]i :
1
[t]−i

)
= 0, (2)

where ā[t]1:[t]2 is a joint lives contingent annuity and Ā[t]i :
1
[t]−i

represents a contingent func-
tion that pays a monetary unit to the i-th extractor when the −i-th leaves the system. Note
that here we make use of the standard nomenclatures of selection in actuarial calculus, and
of game theory to refer to the players. Especially when mentioning the −i-th player: that is,
not the i-th.

This research paper presents a statistical and geological calibration of the distribution
of the time-until-failure of the extraction status of each agent, studies the fund that the
insurer must set up to cover the insurance costs of both extractors, and analyzes the
sufficiency of the fund from the point of view of the actuarial standard of the variance
premium (at the down level), and of the standard deviation premium (at the top level)
to pay dividends to insurers. Finally, we test the results obtained analytically through
Monte Carlo simulations to verify that the probability of ruin does not exceed a certain
predetermined level (see [7]).

To guarantee that the relationships (1) and (2) hold, the calculations are performed
with random variables belonging to the exponential family (see [8], Chapter VII.4.4), and
are replicable up to the point where the statistical considerations on the extractors in an
area satisfy this condition. The work [5] is all about the computation of equivalence premia
and their derivations. In this text, all the random variables under study belong to the
exponential family. We aim at following its approach to use (1) and (2) with Gamma,
Weibull and Chen distributions. In this work, we base the geological analysis on the
presentation provided by [9] to estimate the vertical pressure gradient in the oil well.

The rest of the paper is divided as follows. The next section presents the technical
preliminaries of our work, while Section 3 presents the application of [2] to calibrate the
parameters of the distributions used to model the time-until-failure of the extraction status.
Section 4 uses Bülhmann’s recommendations (see [10]) and a simple numerical scheme to
calculate a premium payable by each agent such that the insurer earns dividends for its
foray into the business of insuring the extraction of non-renewable resources. Section 5
shows the use of the Monte Carlo simulation technique used in [7] to test the theory exposed
throughout the document. Finally, Section 6 is devoted to presenting our conclusions.
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2. Mathematical and Actuarial Preliminaries

We begin our study by describing the problem of our interest and presenting the
elementary definitions to which we will refer in the following.

Let us consider the conflict control process in the extraction of a non-renewable
resource in which two participants are involved (to avoid monotony, we will use the terms
participants, players, extracting agents, extractors or agents). We will assume that both
agents are present in the system at the beginning of time (We can study the case in which
the agents decide when they start extracting oil. The paper [3] does it like this.).

We use the model presented in ([11], Chapter 10.3) to describe the dynamics of resource
consumption, according to which,

ẋ(t) = −u1(t)− u2(t), con x(t0) = x0, (3)

where x(t) is the amount of resource available at time t ≥ 0, ui(t) is the extraction rate of
the i-th agent at time t, x0 is the initial amount of the resource, and i = 1, 2.

Let G(x0) be a differential game whose system satisfies the Assumptions 1 and 2
described below.

Assumption 1.

(a) Both players act simultaneously and start the game at some initial time t0 from state x0.
(b) The players’ control variables are their respective rates of extraction at each moment, namely

u1, u2 : [0; ∞]→ U , where U is a compact subset of [0; ∞].
(c) The system dynamics is given by (3).

The system (3) reflects the nonrenewability of the resource because, according to
Assumption 1(b), x(·) does not increase.

In this work, we will assume that the extraction of the i-th agent stops at a random
moment τi for i = 1, 2, and that when this happens, the other player continues to extract
the resource until attaining its own stopping time (which can happen when the resource is
exhausted). We know that τi is a stopping time because the event {τi = t} depends only on
the story of the stock level up to time t (see [12], p. 253).

Assumption 2.

(a) The stopping times of each agent are pairwise independent.
(b) The stopping times belong to the exponential family (cf. [13], Appendices A.2–A.4 and [8],

VII.4.4). That is, if Fτi (·) is the distribution function of the stopping timpe of the i-th player, then

Fτi (t) = 1− exp
(
−
∫ t

0
λi(s)ds

)
, (4)

where λi(·) is the failure (hazard) rate of the i-th agent for i = 1, 2.

Definition 1. The random variable for the time-until-failure of the first extracting agent is defined
as τ := min{τ1, τ2}.

Assumptions 1 and 2 give us a way to characterize the distribution function of τ
using [14], Chapter 16.3 and [5], Chapter 9.3 through the relation:

Fτ(t) = 1− (1− Fτ1(t))(1− Fτ2(t)) = 1− exp
(
−
∫ t

0
(λ1(s) + λ2(s))ds

)
. (5)

Let u1 and u2 be the controllers that the agents can apply. Define the performance
index of the i-th agent as
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Ki(x0, u1, u2) = E
u1,u2
x0

[∫ τi

0
hi(x(t), u1(t), u2(t))dt · χ{τi≤τj}

]
(6)

+E
u1,u2
x0

[∫ τj

0
hi(x(t), u1(t), u2(t))dt · χ{τi>τj}

]
(7)

+E
u1,u2
x0

[
Ψi(x(τ)) · χ{τi>τj}

]
, (8)

for i = 1, 2, where E
u1,u2
x0 [·] represents the conditional expectation of ·, given that (3) starts

at x0, and the players use controllers u1 and u2; χA is the indicator function of the event A;
and hi and Ψi are running and terminal utility functions, respectively.

Remark 1. As is to be expected, the performance index Ki(x0, u1, u2) reflects the total payoff that
the i-th agent will obtain for the duration of the joint extraction tasks. In particular, χ{τi≤τj} in
(6) means that if the i-th agent leaves the system before the j-th (i, j = 1, 2, i �= j) does, then
he will receive—on the average—the total reward E

u1,u2
x0

[∫ τi
0 hi(x(t), u1(t), u2(t))dt

]
. If, on the

other hand, the j-th agent leaves the system before the i-th does, then the i-th participant will
receive the reward E

u1,u2
x0

[∫ τj
0 hi(x(t), u1(t), u2(t))dt

]
specified in (7), plus the terminal reward

E
u1,u2
x0 [Ψi(x(τ))], referred to in (8).

Naturally, we are interested in modelling the situation in which each player wishes to
maximize its own performance index. To this end, we use the traditional definition of a
Nash equilibrium.

Definition 2. For i = 1, 2, let Πi be the set of measurable controllers (in Lebesgue’s sense)
ui : [0; ∞[→ [0; x0]. We say that a pair of strategies (u∗1, u∗2) ∈ Π1 × Π2 is optimal for the
differential game G(x0) if such a pair is a Nash equilibrium. That is,

K1(x0, u∗1, u∗2) ≥ K1(x0, u1, u∗2) for all u1 ∈ Π1 and
K2(x0, u∗1, u∗2) ≥ K2(x0, u∗1, u2) for all u2 ∈ Π2.

Proposition 1 in [4] proves that, if
∫ t

0 hi(x∗(s), u∗1(s), u∗2(s))ds < ∞ for all t > 0 (where
x∗(s) represents the trajectory that (3) follows when the strategies referred by Definition 2
are used) and under our hypotheses, the optimal expected payment for each player is

Ki(x0, u∗1, u∗2)

=
∫ ∞

0
hi(x∗(s), u∗1(s), u∗2(s))(1− Fτ(s)) + Ψi(x∗(s)) fτj(s)(1− Fτi (s))ds,

where fτj(·) is a density function for τj. Moreover, Theorem 1 in [4] uses common stochastic
dynamic programming techniques to see that if a single agent exploits a well of a nonre-
newable resource and its utility function is of logarithmic type, i.e., h(x, u) = ln u, then, the
optimal controller for such agent is of a closed-loop form (In fact, what ([4], Theorem 1)
proves is the particular case where the random variable τ follows Weibull’s or Chen’s law.
However, it is not difficult to extend that exact same proof to the general case where the
distribution meets (4) in Asssumption 2).

u∗(t, x) =
x
āt

. (9)

Here,

āt :=
∫ ∞

0

1− Fτ(t + s)
1− Fτ(t)

ds, (10)

that is, āt represents the classic contingent annuity from actuarial mathematics for life
contingencies (with zero interest rate).

The expression (9) invites us to relate it to the net level premium referred to in any basic
text on actuarial mathematics (such as Chapter 6 in [5]), as well as to establish expressions
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such as (1). Moreover, Theorem 3 in [4] considers the case of two participants that we study
in this work, and proves that if the players’ running utility functions are logarithmic (i.e.,
hi(x, ui) = ln ui for i = 1, 2), and the terminal payoff function of the i-th player is

Ψi(x(t ∧ τ)) = ci ln(x(t ∧ τ)) = ci ln(x) · χ{τ≤t},

where ci is a known non-negative constant, for i = 1, 2, then

u∗i (t, x) =
x

ā[t]1:[t]2 + ci Ā[t]i :
1
[t]−i

. (11)

Here, if i = 1, then −i = 2 and vice versa; ā[t]1:[t]2 =
∫ ∞

0
1−Fτ(t+s)

1−Fτ(t)
ds (with τ as in (5))

and Ā[t]i :
1
[t]−i

=
∫ ∞

0
1−Fτ(t+s)

1−Fτ(t)
λ−i(t + s)ds. From (11), it is possible to establish relationships

as that in (2) to devise a model to insure the extraction tasks of both agents. In both cases,
the utility functions of the extracting agents are logarithmic, the benefit is x, and under a
variant of the classic actuarial equivalence principle, the net level premia will be given by
(9) and (11).

Going down the road to review the feasibility of insuring single-agent extraction and
conducting the corresponding reserve analysis based on the results of [5], Chapter 7, the
conclusion that the reader will eventually achieve will be in the style of Section 3 in [6].
This will lead you to use (9) to define the prospective loss random variable:

tL := x∗(w + τ) · vτ−t − u∗(w, x∗) · ā
τ−t

, (12)

where w is the moment of issue of the policy, x∗ represents the trajectory that solves (3) (for
the case of a single player) when the optimal control (9) is used, vz is the z period discount
factor of compound interest and āz is a certain annuity for z periods.

Remark 2. Although (12) expressly refers to the discount factor and the certain annuity, we
maintain the approach used in our previous calculations, and we will take an interest rate of zero.
The reason we have used these financial symbols is that we want to keep the presentation as close
as possible to the study of the theory of life contingencies from the classic acturial perspective. We
recognize, however, that doing this might look redundant.

Negative Reserves?

We compute the mathematical reserve tV̄(Āx(w)) := E[tL|τ > t] by finding the condi-
tional distribution of the future lifetime t for a “life” selected at (w), given it has survived
until t > t0. With this in mind, we assume—as usual—that T(w+ t) = [T(w)− t|T(w) > t]
and we prove that

tV̄(Āx(w)) = Āx(w+t) −
Āx(w)

x(w)

x(w)

āw
āw+t = Āx(w+t) −

Āx(w)

x(w)
u∗(w, x) āw+t. (13)

(The details that lead from (12) to (13) can be found in Sectionn 3.3 of [6].) To fix
ideas, let us consider only those probability distributions that meet Assumption 2(b) and
whose hazard rate functions are of the form of Figure 1, so that they are a nice fit for the
time-until-failure of the extracting agent (see [15], Chapter 1).

A plausible interpretation of Figure 1 is that, as time goes by, the failure rate goes from
being a decreasing function, to being a more or less constant funtion, and eventually, it
becomes an increasing function. In this section we present our analyses on Gamma, Weibull
and Chen random variables. We start by presenting the corresponding definitions to con-
tribute to the self-containedness of our work. However, the proofs that the corresponding
failure rates look like the one in Figure 1 for certain choices of the parameters should be
looked for in [4] (see the Remark 3 below).
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Figure 1. Observe that the hazard rate μ(t) resembles a bathtub. Source: [4,15].

Definition 3 (Cf. [13], A.3.2.1). We say that a random variable τ with support on ]0; ∞[ follows
the Gamma law with parameters of shape α > 0 and scale θ > 0 if the distribution function of τ is
F(t) =

∫ t
0 f (s)ds, where f is a density function given by

f (t) =
tα−1 exp

(
− t

θ

)
θαΓ(α)

for t > 0 and Γ(α) :=
∫ ∞

0
xα−1e−xdx.

The hazard rate of Gamma distribution is given by

μ(t) =
tα−1e−t

Γ(α)− Γt(α)
for t ≥ 0 and Γt(α) :=

∫ t

0
xα−1e−xdx.

In this case, we will write τ ∼ Γ(α, θ).

Definition 4 (See [13], A.3.2.3). We say that a random variable τ with support on [0; ∞] follows
Weibull’s law with parameters of shape α > 0 and scale θ > 0 if the distribution function of τ is

F(t) = 1− exp
(
−
(

t
θ

)α)
for t > 0.

The corresponding hazard rate is

μ(t) =
α

θ
tα−1 for t > 0.

In this case, we will write τ ∼ Weibull(α, θ).

Definition 5 (Cf. [16]). We say that a random variable τ with support in [0; ∞] follows Chen’s
law with parameters α > 0 and λ > 0, if the distribution function of τ is

F(t) = 1− exp
(

λ ·
(

1− etα
))

for t > 0.

The corresponding hazard rate is

μ(t) = αλtα−1 exp(tα) for t > 0.

In this case, we will write τ ∼ Chen(α, λ).

Remark 3. For the random variables of Definitions 3–5, it is true that if the shape parameter α < 1,
then the lifetime modelled by τ is in prime conditions; if α = 1, then the failure rate μ(t) is more or
less constant; and if α > 1, the machinery is at an aging stage. See the details in [4].

For the case where τ ∼ Γ(α, θ), the mathematical reserve is obtained by substituting
the expressions cited in the Definition 3 in (10), and the resulting ones, in (13) (technical
details can be read in Section 3.3 in [6]). See Figure 2.
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Figure 2. Mathematical reserve tV̄(x(0)), for Gamma distribution with parameters θ = 1, and
α = 0.5, 1.0, 1.5, 2.0.

For the case where τ ∼ Weibull(α, θ), the mathematical reserve is obtained by sub-
stituting the expressions cited in the Definition 4 in (10), and the resulting ones, in (13)
(technical details can be seen in section 3.3 on [6]). See Figure 3.

Figure 3. Mathematical reserve tV̄(x(0)), for Weibull distribution with parameters θ = 1 and
α = 0.5, 1.0, 1.5, 2.0.

For the case where τ ∼ Chen(α, λ), the mathematical reserve is obtained by substitut-
ing the expressions cited in the Definition 5 in (10), and the resulting ones, in (13) (technical
details can be found in Section 4.2 on [6]). See Figure 4.

Figure 4. Mathematical reserve tV̄(x(0)), for Chen distribution with parameters θ = 1 and α = 0.5,
1.0, 1.5, 2.0.

Remark 4. Section 7.3 in [5] mentions that, in most applications, mathematical reserves are
positive. However, there is no theoretical support that guarantees it. In fact, Figures 2–4 would
represent a reliable counterexample to any result that affirms that the reserves must be positive. It is
also important to note that the values that we assign to the shape parameter α in each of the studied
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cases correspond to different periods of operation of the extraction tool (see [15], Chapter 1): from
the period in which the machinery is new (α < 1), passing through the period of normal operation
(α = 1), and until reaching the decay period (α > 1). Two things are noteworthy.

• The scale parameter θ remains unchanged in all calculations. What would happen if we used a
more ad hoc parameter to the extractive industry of non-renewable resources?

• It might be worth reviewing what happens when not charging only the “equivalence premium”
(We enclose these words in quotation marks because, in reality, it is not an equivalence
premium. Recall that this case occurs when the utility function of the policyholder is linear
(see [5], Example 6.1.1). However, we do know that, from Doob’s Submartingale Convergence
Theorem (see Theorem (1) in [12], Chapter 12.3) and the notes in Section D.1.1 in [17],
the bankruptcy is a certain event if the insurer does not charge more than the equivalency
premium.) in exchange for insurance protection. Is it possible to charge an amount that
guarantees a profit for whoever insures all the extractors?

Sections 3 and 4 deal with the first and second points just noted, respectively.

3. A Realistic Scaling Parameter for the Weibull Distribution in the Gulf of Mexico

In this section we use common geological tools to estimate the pressure of the pore in
which drilling is to be carried out, in order to use it as a parameter to calculate an a priori
probability distribution that is suitable for modeling the times until the failure of the agents.
With these data at hand, it would be feasible to complement the observations gathered
from experience with some Bayesian technique to estimate a posteriori distribution for
these variables (for example, the [18] study presents an interesting comparison between
three of these techniques in a forestry context). To the best of our knowledge, this proposal
is new and therefore not applied in the actuarial field.

Geophysicists know that before drilling a deepwater pore to extract oil, it is necessary
to estimate the internal pressure by processing seismic reflection data. Failing to do this
has consequences that can be fatal (not to mention extremely costly). We consider it natural
to use the vertical pressure gradient in deep water to calibrate the distribution of time to
failure of the extracting agent.

Let h be the depth below the ocean floor (measured in meters). Having measured the
seismic velocity with sufficient precision, it is possible to conclude the process of estimating
the pressure gradient p(h) (measured in Pa

m ) by applying some function that transforms it into
the pore pressure of our interest. The most commonly used methods in the industry are:

• That of Bowers (cf. [9]):

p(h) =
d

dh

[
g
∫ h

0
ρ(z)dz− B

√
v(h)− v0

A

]
(14)

where g = 9.8067 m
s2 is the acceleration of gravity on Earth, ρ is the density (measured

in kg
m3 ) of the sediment, v(h) is the velocity (measured in m

s ) of the sediments h meters
below the sea floor and v0 is the velocity of the unconsolidated sediments saturated
with liquid. The parameters A and B are artificial and describe the variation in speed
when the differential voltage increases; and in the Gulf of Mexico they take values of
A = 28.3711 and B = 0.6207 (see [19]). In fact, in the Gulf of Mexico, the normally
pressurized sediment velocity varies linearly, satisfying v(h) = v0 + k · h, where k is
measured in 1

s , represents the vertical velocity gradient and, in that region, satisfies
k ∈ [0.6; 1] (see [2,20,21]). With this simplification, (14) reduces to

p(h) =
d

dh

[
9.8067

∫ h
0 ρ(z)dz− B

√
k · h

A

]
= 9.8067ρ(h)− 1

B
B

√
k
A

h
1−B

B .

(15)
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• And that of Eaton (cf. [22]):

p(h) =
d

dh

[
g
∫ h

0
ρ(z)dz− σN (h)

(
v(h)

vN (h)

)n]
, (16)

where σN (h) is the normal vertical differential stress of the sediment—that is, without
the action of man—at h meters below the seafloor (measured in Pa) and vN (h) is the
normal seismic velocity h meters below the sea floor. The exponent n has no units,
and describes the sensitivity of the seismic velocity to the stress differential, and in the
Gulf of Mexico it is common to take n = 3 (see [19]).

As we have already stated in Section 2, it is proven that if the failure rate of a random
variable is shaped like a bathtub (such as Gamma, Weibull and Chen), then it is adequate
to model the time-until-failure (explosion or exhaustion) of an extracting agent. However,
papers like [4,6] simplify the task of modeling by considering that one of the parameters is
unitary. Our intention is to use (15) or (16) to replace this unrealistic data by the multiplica-
tive inverse of the pore pressure even when data on interval velocities are not available.
In the latter case, geology specialists (cf. [2,19]) propose taking a sample of N pressures in
wells reasonably close to the one whose pressure is to be estimated, and taking an estimator
of the pressure p̃(h) such that the sample mean squared error statistic

1
N

N

∑
i=1

(pi(h)− p̃(h))2

is minimal. This approach is very attractive for those who have been trained in statistical
techniques, but it is also very convenient for use in the insurance industry, since it validates
the investigation of the pressure data in the pores surrounding the one to be insured.

To fix ideas, we will use parameter estimates which are valid for the Gulf of Mexico
in Bowers’ method. According to [23], the average density of the sediment in the Gulf of
Mexico satisfies the empirical relationship

ρ(h) = 1953.1638 + 1.95538406399448h0.6. (17)

Inserting A = 28.3711, B = 0.6207, k = 0.6 and the density (17) in (15), we obtain
Table 1 and Figure 5.

Table 1. Estimated values of the pressure gradient.

h (in m) 0 500 1000 1500 2000 2500 3000

p(h) (in kPa
m ) 19.15 19.95 20.36 20.70 20.99 21.25 21.49

Figure 5. Pressure gradient estimates from depth.
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Observe that, in spite of the fact that relation (15) is clearly non-linear, we can execute
a linear regression with the obtained points:

p̂(h) = 0.0007h + 19.46. (18)

This yields a statistic R2 of 95.15%, and what is more important: it provides us with a
linear estimation method for the pressure in a suboceanic oil extraction well in the Gulf
of Mexico.

With this in mind, we can assume that the time-until-failure (measured in years) of an
extracting agent is modeled by τ ∼ Weibull

(
α, 1

p(h)

)
. In Table 2 we display the probability

that the agent leaves the extractive work before a month has passed by. That is,

P

(
τ ≤ 1

12

)
= 1− exp

(
−
(

p(h)
12

)α)
,

with α = 0.5, 1, 1.5, 2; and h = 0.500, 1000, 1500, 2000, 2500, 3000.

Table 2. Probability that the agent leaves the extractive tasks before a month has passed by.

θ

1
19.15

1
19.95

1
20.36

1
20.69

1
20.98

1
21.25

1
21.49

α

0.5 71.73% 72.46% 72.82% 73.11% 73.35% 73.57% 73.77%

1 79.73% 81.04% 81.68% 82.18% 82.60% 82.98% 83.32%

1.5 86.69% 88.28% 89.04% 89.62% 90.10% 90.53% 90.90%

2 92.17% 93.70% 94.39% 94.89% 95.31% 95.65% 95.96%

Recall Remark 3. Note that as the extraction equipment ages (that is, as the shape
parameter α grows), the chances of explosion increase even over a horizon as short as that of
one month. On the other hand, note that as the depth h, and therefore the vertical pressure
gradient p(h) increases, the probability of an accident occurring also increases. A valid
criticism that the parameterizations we show deserve is that the chances of experiencing
a loss may seem too great. However, to study the cause of the large losses that insurers
have experienced in the past (documented in [1]), we need to get exactly this effect on the
probabilities. In any case, we invite the reader to review the computational tool (available
here: https://keisan.casio.com/exec/system/1180573175 (accessed on 23 May 2022)) to
form their own judgment and reach their own conclusions.

4. A Numeric Approximation to the Bühlmann Model to Insure Two Agents

We borrow the theory presented in, for example [24], Chapter 5.2 to study an insurance
model for the mining activities of two agents that includes charging each agent a (variance)
premium and obtaining a dividend payment on the capital with which the portfolio is insured.

The algorithm to accomplish this has two steps and first appeared in [10]. It assumes
that the decision makers set the probability of ruin at the level ε (for it acceptable to them)
and the percentage that they want to obtain as a dividend q ∈ [0; 1] of the capital w that
they contribute. The first step is for the decision makers to calculate the capital needed to
cover a risk S:

w =
√

var[S]

√
| ln ε|

2q
. (19)

The second step is for the decision maker to calculate the variance premium that each
policyholder must pay in exchange for agreeing to cover the risk Xi:

ri = E[Xi] +
| ln ε|

w
var[Xi]. (20)
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If a single insurer commits to insure the activities of the two extractive agents immersed
in the differential game G(x0) described in Section 2, then, by (2), such company will face
the risk of paying x(τ) to each of the agents.

It is worth noting that although, by its nature, the game G(x0) should pay only the
player who remains extracting oil, it is possible that both players will have to leave the
system due to the same incident.

4.1. Weibull Failure Times

It should be clear that Xi = x(τ), where τ is the random variable from Definition 1;
and that S = 2x(τ). So τ = min{τ1, τ2} and τi ∼ Weibull

(
αi, 1

p

)
, with p ≡ p(h) for

i = 1, 2. The reason for which we take the same pressure for each agent is that we implicitly
assume that they use the same well to extract the resource. Note, however, that the shape
parameters are not necessarily equal to each other. In this way we take into account the
technological differences between the participants.

In order to find the capital w referred to in (19), we must compute var[S] = 4var[x(τ)].
This requires discovering the functional form of x(t). Inserting (11) into (3) and solving the
resulting differential equation gives us the random variable we seek to specify the benefit:

x(τ) = x0exp

(
−
∫ τ

0

1
ā[t]1:[t]2 + c1 Ā[t]1:

1
[t]2

+
1

ā[t]1:[t]2 + c2 Ā1
[t]1: [t]2

dt

)
. (21)

To simplify the work, we will only solve the particular case in which the terminal
reward for both players is null, that is, c1 = 0 = c2. With this in mind, (21) reduces to

x(τ) = x0exp

(
−2
∫ τ

0

1
ā[t]1:[t]2

dt

)
,

and using (5), we turn it into

x(τ) = x0 exp

(
−2
∫ τ

0

(1− Fτ1(t))(1− Fτ2(t))∫ ∞
0 (1− Fτ1(t + s))(1− Fτ2(t + s))ds

dt

)

= x0 exp

(
−2
∫ τ

0

exp
(
−(tp)α1

)
exp
(
−(tp)α2

)∫ ∞
0 exp

(
−[(t + s)p]α1

)
exp
(
−[(t + s)p]α2

)
ds

dt

)

= x0 exp

(
−2
∫ τ

0

exp(−(pα1 tα1 + pα2 tα2))∫ ∞
0 exp(−(pα1(t + s)α1 + pα2(t + s)α2))ds

dt

)

= x0 exp

(
−2
∫ τ

0

1∫ ∞
0 exp(−pα1((t + s)α1 − tα1)− pα2((t + s)α2 − tα2))ds

dt

)
.

(22)

The second equality arose from substituting Weibull’s distribution function specified
in the Definition 4 into (22). On the other hand, the integral in the denominator of the last
expression depends absolutely on the values that we assign to the shape parameters of
each agent.

With the aim of illustrating the result, we consider that the technology of the first
agent is obsolete (that is, α1 = 2) and that the second agent is in the period of normal
operation of its machinery (thus, α2 = 1). Also, we assume that they are drilling at a depth
of 771.4285714 m below the sea floor of the Gulf of Mexico, and we use the regression
line (18) so that p̂ = 20 kPa

m . This gives us that∫ ∞

0
exp(−pα1((t + s)α1 − tα1)− pα2((t + s)α2 − tα2))ds

=
1
20

exp

((
20t +

1
2

)2
)∫ ∞

20t+ 1
2

e−z2
dz
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=
1
40
√

π exp

((
20t +

1
2

)2
)(

2Φ
[√

2
(

20t +
1
2

)]
− 1
)

,

where, as usual, Φ(z) represents the probability that a standard Normal random variable
does not exceed z. This gives us that

x(τ) = x0 exp

⎛⎜⎜⎝− 80√
π

∫ τ

0

exp
(
−
(

20t + 1
2

)2
)

2Φ
[√

2
(

20t + 1
2

)]
− 1

dt

⎞⎟⎟⎠.

Below we show some points of this trajectory, together with the corresponding densities.
Note that, thanks to (5), it is easy to obtain the expression that corresponds to a density for τ:

fτ(t) =
(

α1 pα1 tα1−1 + α2 pα2 tα2−1
)

exp(−pα1 tα1 − pα2 tα2) for t > 0. (23)

We make an equidistant partition of the interval [0; T] with 10,000 subintervals. In
Table 3 we show only a subset of the first 2600 realizations of x, since the significance of the
figures in the third and fourth columns is negligible. However, the resource has not been
depleted at this point, as it largely depends on the initial value assigned to x0, which for
the purpose of illustrating this example will be taken as equal to one.

Table 3. Values of x(t) and f (t).

� t� x(t�) fτ(t�)

1 0 1x0 20
2 0.0001 0.99269x0 20.0398
3 0.0002 0.985421x0 20.0792
4 0.0003 0.978194x0 20.1182
5 0.0004 0.971008x0 20.1568
6 0.0005 0.963862x0 20.1950
7 0.0006 0.956758x0 20.2328
8 0.0007 0.949694x0 20.2702
9 0.0008 0.942671x0 20.3072

10 0.0009 0.935689x0 20.3438
11 0.001 0.928746x0 20.3800
12 0.0011 0.921844x0 20.4158
13 0.0012 0.914982x0 20.4512
14 0.0013 0.90816x0 20.4862
15 0.0014 0.901378x0 20.5207
...

...
...

...
2597 0.2596 2.9958× 10−30x0 2.4845× 10−12

2598 0.2597 2.8605× 10−30x0 2.4294× 10−12

2599 0.2598 2.7312× 10−30x0 2.3756× 10−12

2600 0.2599 2.6078× 10−30x0 2.3228× 10−12

...
...

...
...

Since the random variable x(τ) is a function of τ, we can use the law of the unconscious
statistician and the data in the table to find a discrete approximation of E[x(τ)]. To this end,
define the step size Δ� as the forward difference Δ� := t�+1 − t�. Thus,

E[x(τ)] ≈
2600

∑
�=1

x(t�) · fτ(t�) · Δ� = 0.24161871x0.

Similarly, it is possible to approximate

var[x(τ)] = E
[
(x(τ))2

]
− (E[x(τ)])2 ≈ 0.07379422x2

0.
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According to (19), the capital that the insurer needs to invest to obtain a return of q is

w ≈ 0.54330185x0

√
| ln ε|

2q , and the premium that the i-th agent must pay according to (20),

is ri = 0.24161871x0 + 0.07379422x2
0
| ln ε|

w for i = 1, 2. To illustrate this result, we will take
x0 = 1 in the appropriate units, a 5% probability of ruin, and a 10% dividend. Thus,

w = 2.1027018 and ri = 0.3467538 for i = 1, 2.

It is important to note that, since the initial oil reserve is unitary, our result indicates
that each extractor must make a considerably large payment (compared to the equivalence
premium, since ri is 30.31% larger than E[x(τ)]) to become creditor to the benefit in the
event of an accident. On the other hand, this is the effect achieved by calibrating the
distribution of τ = min{τ1, τ2} with the parameters indicated in our example.

On the other hand, note that the assumption that the terminal rewards are zero implies
that the premia that each of the agents pays are identical. An economic interpretation
of this is that the agents that extract resources on the same platform certainly compete
to maximize their own benefit, but they collaborate with each other for the good of their
own businesses. In our case, the first agent has obsolete technology and the second has
equipment in normal operating conditions, but both pay the same premium.

4.2. Gamma Failure Times

In this section we will carry out the same exercise as in the former, but now consid-
ering that the extraction tasks are of two agents whose respective failure times follow the
Gamma distribution.

To find the capital ω, we will first calculate the functional form of x(τ) according to
(22). For this reason, in order to illustrate our result, we will consider the same parameters
used for the Weibull distribution, that is, that the technology of the first agent is obsolete
(α1 = 2), while that of the second is in normal mode of operation (α2 = 1); plus p̂ = 20 kPa

m .
Thus, the distribution functions for τ1 and τ2 are given by:

Fτ1(t) = 1− (1 + 20t)e−20t,

Fτ2(t) = 1− e−20t.

The distribution function of τ is:

Fτ(t) =
∫ ∞

0
(1− Fτ1(t + s))(1− Fτ2(t + s))ds =

1
80

(3 + 40t)e−20t.

Then

x(τ) = x0
1
9
(3 + 40τ)e−80τ .

With the definition of x(τ) we can find E[x(τ)] and var[x(τ)] and, from (5), obtain the
expression of the density function of τ:

fτ(t) = 40(1 + 20t)e−40t − 20e−40t for t > 0.

So, an analogous procedure to the one given by Table 3 now gives us E[x(τ)] =
0.29218107x0 and var[x(τ)] = 0.081871704x2

0.
Now, if we consider that x0 = 1, a probability of ruin of 5%, and a dividend of 10%;

(19) yields that the initial capital that the insurer needs to invest to obtain this return, and
the premium that the i-th agent must pay, according to (20), are, respectively

ω = 2.214794372 and ri = 0.402920789 for i = 1, 2.

In this case, the result indicates that each extractor must pay 38% more than the
equivalence premium, E[x(τ)]. This premium may be perceived as high, however, when
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compared to the 44% that must be paid when failure times obey the Weibull law, it is not so
high. Furthermore, given that the lifetime of the pore using the Weibull distribution is less
lower than the same statistic using Gamma’s law, it is natural that the premium is cheaper,
since ultimately the time to failure is smaller. The following table shows the calculations of
the initial capital, the Bühlmann premium and the equivalence premium in both cases.

If we compare the initial capital and the premium that each agent must pay for
both distributions under study, we find that assuming a Gamma distribution makes the
insurance more expensive. Therefore, if the company considers that the time until failure of
the extraction of the resource follows this distribution, it should have an initial capital 5%
higher than that required for the Weibull distribution. The same occurs with the premium
that each agent must pay, since it would be 16% higher, while the equivalence premium is
21% higher.

A plausible conclusion from the above is that the choice of extraction pore lifetime
distribution can lead to more expensive insurance. For this reason it is very important to
decide on this with absolute care.

5. Monte Carlo Simulation for the Wealth Process

We dedicate this section to verifying that the Bühlmann model generates a prorated
payoff scheme across the horizon that results in a probability of ruin consistent with the
one used to obtain ri and ω. As the results shown in Table 4 we are given that Weibull
insurance is less onerous, we focus on the assumption that failure times follow Weibull’s
law, for this purpose we will use the approach proposed in [7].

Table 4. Comparison of Bühlmann’s schemas.

ω ri E[x(τ)]

Weibull 2.102701805 0.346753803 0.24161871
Gamma 2.214794372 0.402920789 0.29218107

Gamma
Weibull 1.0533088 1.1619794 1.2092651

According to the results of Section 4, for an insurer to agree to cover the risk of the two
extractive agents whose failure times follow Weibull’s law without falling into insolvency,
it must charge each of them a premium of at least ri = 0.3467538 for i = 1.2, and have an
initial capital of ω = 2.1027018. Under these conditions, the Bühlmann model guarantees
that the insurer’s probability of ruin will not be greater than ε = 5%.

5.1. Simulation

Next, we will see through a Monte Carlo simulation the behavior of wealth, assuming
that both, the premium and the initial capital are fixed.

Define W0 = ω as the initial wealth. Next, let us denote the observed richness in the
following time interval as

Wk = Wk−1 − Δt · 10%W0 + Δt · 2π − 2N0, with k = 1, 2, . . . ,

where π denotes the premium that each of the two agents will have to pay in exchange
for the insurance; (Nk−1 : k = 1, 2, . . .) is a sequence of random variables that indicate the
payment of the claim, or a null amount; and Δt is the step size in our simulation. Note that
we consider that, in the event of a loss, the company will pay both agents. We also assume
that at each moment, the company receives a dividend of Δt · 10%W0.

Let us recall that, in Table 3, the time horizon considered to evaluate the functions
fτ(t�) and x(t�) was 0 ≤ t ≤ 0.2599 (because, for higher values of t, the values of both
functions are of the order 10−12 and lower, and we decided to discard them from our
analysis). Similarly, by (23), the density function for τ is given by

fτ(t) = (2 · 202t + 20)e−(202t2+20t)
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and the distribution function is:

Fτ(t) = 1− e−(202t2+20t).

Let u := Fτ(t). Due to the monotony of Fτ(t), calculate its inverse:

t =

√
− 1

202 ln(1− u) +
(

1
2 · 20

)2
− 1

2 · 20
, (24)

where u ∼ U(0, 1). To apply the inverse transformation method, we take a (pseudo)
random sample of size n from the Uniform distribution on [0; 1]: {u1, . . . , un}. For each uj,
j = 1, . . . , n, we apply the inverse transformation method using the expression (24). With
this, we obtain t1, . . . , tn different, and each one represents the time in which the failure of
one of the agents occurs. For each tj, j = 1, . . . , n, we build a trajectory for the wealth. It is
important to mention that the difference between the various trajectories that we simulate
is the moment of failure. The other elements remain identical in each one because both, the
payment of the premium and that of the dividends, remain invariant over time.

In this way, the trajectory of wealth is given by:

W0 = ω,

W1 = W0 − Δt · 10%W0 + Δt · 2π − 2N0,

W2 = W1 − Δt · 10%W0 + Δt · 2π − 2N1, (25)
...

Wk = Wk−1 − Δt · 10%W0 + Δt · 2π − 2Nk−1,

where Δt = 0.0001, and W0 corresponds to the time t0 = 0; W1, at t1 = t0 + Δt = 0.0001;
W2, at t2 = t1 + Δt = 0.0002; W�, a t� = t�−1 + Δt; and so on, until obtaining the wealth Wk
in the time tk, which represents the moment in which the failure of the agents occurs. Thus,
N� = 0 if t� �= tk, and N� = x(t�) otherwise. That is, when t� ≥ tk, then N� = x(tk), the
path ends and benefits are paid to both agents.

In (25) the coefficient Δt represents the apportionment of dividend and premium
payments over the horizon.

The above process is done for each of the n random numbers.
In Figure 6 five Monte Carlo simulations of wealth and failure are presented, for 100

random numbers each. In this case, the colour of the lines is useful to appreciate each
trajectory, but it does not represent anything in particular.

As can be seen, the greatest losses that can be obtained, derived from an accident, occur
when the start of the extraction of the resource is recent, and the payment that the company
must make to both agents, in the event of an accident, is reduced as time progresses. The
above makes sense because we assume that the benefit obtained is determined by the
extraction dynamics, which is a decreasing function over time.

It is important to note that in the graphs, the wealth obtained is accumulated in the line
that is perceived as almost horizontal, while the “vertical” lines are the values of the benefit
paid to the agents. As we have said, the payoff function is decreasing over the horizon.

Likewise, in these graphs it is observed that none of them crosses zero, which indicates
that the company will never go bankrupt at the time of failure with the premium and initial
capital considered.

The above is easy to see because for t = 0, x(t) = 1, which is the maximum value of the
benefit that can be granted, also, this is when the initial capital W0 = 2.1027 is contributed.
For t = 0.0001, x(t) = 0.9927 and wealth W1 = W0 − Δt · 10%W0 + Δt · 2π − 2N0 =
2.10275− 2 · 0.9927 = 0.11737. As time grows, Wt also grows, however, since x(t) is a
decreasing function, in the event of a claim, the amount to be paid is decreasing.
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Figure 6. Monte Carlo simulations of wealth, for an initial wealth of ω = 2.1027018 and a premium
of π = 0.3467538.

5.2. Probability of Ruin

Next, we will use the procedure described in the previous section to approximate
the company’s probability of ruin, by generating a considerable number of Monte Carlo
simulations. For this purpose, we will use the Law of large numbers. That is, if we have
a sequence of independent and identically distributed random variables φ1, φ2, . . . with
common mean, μ, and if we consider that

φ̄ :=
φ1 + φ2 + . . . + φm

m

then, for very large m and for any positive number ε,

P(|φ̄m − μ| > ε)→ 0.

To perform the Monte Carlo simulations, we will start by taking m = 10,000, which is
the number of times that we will apply the simulation procedure seen in Section 5.1. This
will yield the approximation of the probability of ruin φ̄ we seek.

As a starting point, we will take the initial values obtained in Section 3, that is, an
initial capital of ω = 2.1027018, and a premium of ri = 0.3467538 for i = 1.2. In this
case, the probability of ruin turned out to be equal to zero, φ̄ = 0%. The above makes
sense because the initial capital is W0 = 2.1027, while the maximum value of profit, x(t),
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occurs when t = 0; so if the loss occurred at time zero, the company would have to pay
2 · x(t) = 2 · x0 = 2.

Likewise, we wonder what would happen if we set the value of the initial capital
ω = 2.1027018, and take different values of the premium that each agent has to pay, that is,
ri = 0.3, 0.4, 0.5 for i = 1, 2. In all these cases, something similar to the previous paragraph
was concluded, since it was observed that the probability of ruin obtained was equal to
zero. This is because the premium is prorated over the horizon, so it practically does not
affect the evolution of wealth, Wt.

Now we consider the opposite: we will fix the initial value of the premium,
ri = 0.3467538 for i = 1, 2, to vary the value of the initial capital, we will take the values
ω = 1.5, 1.65, 1.7. In these cases, we obtained considerable differences, since the proba-
bilities of ruin turn out to be non-zero. Furthermore, we note that the probability of ruin
increases as the initial capital decreases, since for ω = 1.7, the probability of ruin was
φ̄ = 4.3%; for ω = 1.65, the probability of ruin was close to φ̄ = 5.2%; and, for ω = 1.5, the
probability of ruin reached a value of φ̄ = 7.8%.

To complete this analysis, we reviewed what happens when we alternate the rest of
the starting capital and premium values, and including ω = 1.95; so we consider the cross
between the values of ω = 1.5, 1.65, 1.7, 1.95 with ri = 0.3, 0.4, 0.5 for i = 1, 2. Table 5 shows
the complete results of these crosses, where the first column indicates the premium; and the
first line, the initial capital. As we have said before, the probability of ruin increases when the
initial capital decreases. However, by varying the value of the premium, we observe that the
probability of ruin is invariant, that is, it has no impact in leading the company to ruin.

Table 5. Probabilities of ruin for several values of ω and π.

π = Premium ω = 1.5 ω = 1.65 ω = 1.7 ω = 1.95 ω = 2.102701805

0.3 7.8% 5.2% 4.3% 0.7% 0.0%
0.346753803 7.8% 5.2% 4.3% 0.7% 0.0%

0.4 7.8% 5.2% 4.3% 0.7% 0.0%
0.5 7.8% 5.2% 4.3% 0.7% 0.0%

It follows from our simulations that, in general, in order for the probability of ruin to
be positive, it suffices that the condition ω0 < 2 · x(t0) = 2 · x0 is satisfied, regardless of
the value of the premium π or of x0, and as the initial capital is smaller, the probability of
ruin for the company will be greater. On the contrary, if we want to prevent the company
from eventually going bankrupt, then ω0 ≥ 2 · x0 must happen, and this guarantees that
the probability of ruin is zero.

6. Conclusions

This work represents an effort to combine techniques from the disciplines of mathe-
matics, geology, stochastic games, and life and non-life actuarial mathematics. We believe
that a multidisciplinary approach such as the one we present can lead to a reinvention of
the way insurers understand the market for risks that are inherent to the extractive industry.

We have managed to pose the problem of competition between two agents to extract oil
in deep waters from the point of view of game theory, and based on the results of [4], present
the analysis of the resulting reserves as if it were of the elementary principle of equivalence
of the classical actuarial calculation. In this work, we have based our developments on
the results presented in [6], and we have verified first-hand the mathematical results that
affirm that the risk is not insurable if only the “equivalence premium” is charged.

Subsequently, we use elementary tools in geology and statistics to propose a method
to calibrate one of the probability distributions typically used to model the time to failure
of extractors. Here, the articles [2,9,19] were a source of inspiration for our results. Finally,
we use all the machinery developed in the body of the work to extend Bühlmann’s model
to calculate premia that allow the insurer to cover the risk, while obtaining a dividend for
its foray into the non-renewable resource extraction market.
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We consider that it is possible to study an extension of the results presented here
using Insurance Optimization Theorems by applying deductibles (as in [5], Theorem 1.5.1
and [24], Theorem 1.4.3) or coinsurance (as in [24], Chapter 5.5) and thus re-estimate premia
at the base and portfolio levels. Another possibility for future work is to test the results
obtained analytically through Monte Carlo simulations to verify that the probability of ruin
does not exceed the value ε cited in the Section 4. To do this, we believe we can build on
the approach presented in [7]. Finally, we believe that we will dedicate further work to
calibrate the other two distributions of the time until the failure of the extractor presented
in the Definitions 3 and 5.
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