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David Villaseñor, Saúl Pilatowsky-Cameo, Miguel A. Bastarrachea-Magnani, Sergio

Lerma-Hernández, Lea F. Santos and Jorge G. Hirsch

Chaos and Thermalization in the Spin-Boson Dicke Model
Reprinted from: Entropy 2023, 25, 8, doi:10.3390/e25010008 . . . . . . . . . . . . . . . . . . . . . . 211

Vinitha Balachandran and Dario Poletti

Relaxation Exponents of OTOCs and Overlap with Local Hamiltonians
Reprinted from: Entropy 2023, 25, 59, doi:10.3390/e25010059 . . . . . . . . . . . . . . . . . . . . . 233

Kazuo Takatsuka

Quantum Chaos in the Dynamics of Molecules
Reprinted from: Entropy 2023, 25, 63, doi:10.3390/e25010063 . . . . . . . . . . . . . . . . . . . . . 245

Yan V. Fyodorov, Boris A. Khoruzhenko and Mihail Poplavskyi

Extreme Eigenvalues and the Emerging Outlier in Rank-One Non-Hermitian Deformations of
the Gaussian Unitary Ensemble
Reprinted from: Entropy 2023, 25, 74, doi:10.3390/e25010074 . . . . . . . . . . . . . . . . . . . . . 297

Lukas Seemann and Martina Hentschel

Universality and beyond in Optical Microcavity Billiards with Source-Induced Dynamics
Reprinted from: Entropy 2023, 25, 95, doi:10.3390/e25010095 . . . . . . . . . . . . . . . . . . . . . 329

Jiaozi Wang, Barbara Dietz, Dario Rosa and Giuliano Benenti

Entanglement Dynamics and Classical Complexity
Reprinted from: Entropy 2023, 25, 97, doi:10.3390/e25010097 . . . . . . . . . . . . . . . . . . . . . 339

Junjie Lu, Tobias Hofmann, Ulrich Kuhl and Hans-Jürgen Stöckmann
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Preface

This Special Issue of Entropy will cover quantum chaos in its broadest sense and address the

general physicists as well as experts in the field. Several papers, 36 original research papers as well as

2 review papers, offer an extensive introduction to the specific topic in quantum chaos and present the

most recent results. Therefore, I have written the Editorial in this spirit, in order to attract the attention

of researchers from various disciplines who are interested in quantum chaos. This Special Issue is

expected to be a valuable source of scientific information for newcomers in quantum chaos, including

Ph.D. students, but also for experts. It encompasses a broad range of topics from various few-body

and many-body dynamical systems to nano and mesoscopic systems, condensed matter physics,

molecular and atomic physics, quantum field theories, high-energy physics, string theories and even

cosmology. We are thus witnessing fundamental progress in understanding quantum few-body as

well as many-body systems, from the dynamical aspects to statistical aspects, which also involves

issues in the statistical physics of quantum systems, both in equilibrium as well as in nonequilibrium

states. Similar aspects occur in many other wave systems, namely electromagnetic waves, acoustic

waves, elastic waves, water surface waves, seismic waves and gravitational waves.

The motivation for this Special Issue lies in the fact that there has recently been a considerable

revival in quantum chaos in the above sense. It is very much appropriate to dedicate this Special

Issue to Professor Giulio Casati on the occasion of his 80th birthday. This collection of 38 papers

underlines the importance of his plentiful fundamental contributions to the scientific thought and

results in quantum chaos and much more.

Marko Robnik, CAMTP, Maribor, Slovenia, 1 September 2023

Marko Robnik

Editor
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Editorial

Quantum Chaos—Dedicated to Professor Giulio Casati on the
Occasion of His 80th Birthday

Marko Robnik

Center for Applied Mathematics and Theoretical Physics, University of Maribor, SI-2000 Maribor, Slovenia;
robnik@uni-mb.si; Tel.: +38-62-235-5350 (ext. 5351)

Quantum chaos is the study of phenomena in the quantum domain which correspond
to classical chaos. More generally, we speak of wave chaos (see below). In classically
chaotic systems, we observe the sensitive dependence on initial conditions manifested in
the asymptotically (for infinite times) exponential divergence of nearby orbits, with the rate
being the largest positive Lyapunov exponent. This is a consequence of the nonlinearity
of the underlying classical equations of motion. In quantum mechanics, we study the
properties of the solutions of the time-dependent Schrödinger equation of motion, which
is linear. Here, we observe, firstly, that the concept of orbits does not exist due to the
Heisenberg uncertainty principle, and secondly, that the time-evolution of solutions (in
the case of bound systems with a discrete energy spectrum) is always almost periodic
due to the linearity. Consequently, an attempt to define asymptotic quantum Lyapunov
exponents (for infinite times) results in the conclusion that they must be zero. Nevertheless,
under certain conditions for finite times, the behavior of certain dynamical quantities,
such as an out-of-time-ordered correlator (OTOC), can follow an exponential law, thereby
mimicking classical behavior, but typically only up to the Heisenberg time (i.e., the ratio
of the Planck constant and the mean energy spacing). In this sense, the dynamical chaos
in quantum mechanics does not exist. However, there exist stationary aspects of classical
chaos, namely the structure of the phase portrait which, in the general case of generic
systems, consists of coexisting regular regions of ordered and stable motions and chaotic
regions with positive Lyapunov exponents. It turns out that these structures are clearly
revealed in precise correspondence with the classical counterpart if we study the properties
of quantal eigenstates in the quantum phase space, such as those defined by the Wigner
or Husimi functions. Moreover, the statistical properties of the energy spectra (and of
other observables) behave in the semiclassical limit (of sufficiently short wavelengths), in
correspondence with their classical counterparts. For classically integrable and regular
systems, the statistics are Poissonian, while in the fully chaotic systems, the statistics of
random matrix theories apply. These are universality classes, which do not involve any
free parameters. In the mixed, (or generic) case, things naturally become more complicated,
but we have theories to describe them. Furthermore, the statistical properties of the
eigenfunctions (wave functions) are connected with the properties of the corresponding
classical system.

In the strict semiclassical limit of a sufficiently small Planck constant, the Wigner or
Husimi functions condense uniformly on the classical invariant regions, being either regular
or chaotic, according to the Principle of Uniform Semiclassical Condensation (PUSC). For
this, we have recently obtained quantitative phenomenological evidence, showing that
the fraction of mixed states decays as a power law in the semiclassical limit, leaving
behind only purely regular and purely chaotic eigenstates. However, before reaching the
ultimate semiclassical limit, the chaotic Wigner functions may be localized in the quantum
phase space, rather than occupying the entire classically available chaotic region. This
phenomenon is the stationary aspect of dynamical or quantum localization, which is one of
the most prominent phenomena in quantum chaos, and was discovered by Giulio Casati,
Boris Chirikov, and Felix Izrailev in the late 1970s. The localization appears if the classical

Entropy 2023, 25, 1279. https://doi.org/10.3390/e25091279 https://www.mdpi.com/journal/entropy
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transport time is longer than the Heisenberg time. In the time-dependent domain, one
observes the quantum diffusion typically only up to the Heisenberg time, which then
stops due to the destructive interference. This phenomenon was originally studied in
the quantum kicked rotator, both theoretically and numerically, which was introduced
by Casati, Chirikov, and Izrailev as the main paradigm of quantum chaos, followed by
analogous analyses in many other model and real physical systems, and stays an important
subject of research to the present.

The Schrödinger equation for the wave function is just one of the many wave equations
in the sense of mathematical physics that are linear and describe the propagation of waves.
In the short wavelength approximation, the rays of the waves provide the leading order
approximation of the wave dynamics. For example, Gaussian ray optics is the leading order
approximation to the solutions of the Maxwell equations. The classical dynamics of orbits
are the dynamics of rays of the quantum waves. It is clear that all observations of quantum
chaos apply equally well to other wave equations in a variety of wave systems. These
include electromagnetic, acoustic, elastic, surface water, seismic, gravitational, and other
waves. Therefore, it would be more appropriate to talk about wave chaos than quantum chaos.
However, the terminology of quantum chaos has been well established so far, but one must
be aware of the broad subject of wave chaos that is encompassed by this research field.

Quantum chaos has experienced a noticeable decline in general interest and attention
during a period of approximately several years around 2010, but became one of the top
subjects in physics during the past few years once again, as it finds applications in solid
state physics, fluid dynamics, molecular and atomic physics, quantum field theories,
high energy physics, string theories, and even in cosmology. In addition to the theoretical
investigations, there have been numerous experimental studies in many branches of physics,
most notably the microwave experiments performed the more than three decades by Hans-
Jürgen Stöckmann in Marburg, and also by Achim Richter in Darmstadt. There is hardly
any important phenomenon or effect in quantum chaos which has not been experimentally
studied by Stöckmann’s group. Furthermore, it should be noted for the new researchers in
quantum chaos that the books by Stöckmann and by Haake offer the best introduction and
deeper studies of quantum chaos.

Thus, the reason and motivation for organizing and editing this Special Issue of
Entropy, titled “Quantum Chaos”, has a very solid background. As the reader can see, we
have collated 36 original papers and two review papers, totaling 626 pages. Among the
authors, we have many pioneers and leaders in quantum chaos, as well as some excellent
researchers in the younger generation. They cover almost all important issues and aspects
of quantum chaos and its developments in the last few years, covering the wide range of
wave chaos in the sense described above.

Finally, I would like to stress the important reason to mark the 80th birthday of
Professor Giulio Casati on this occasion, one of the most important pioneers of quantum
chaos. Professor Giulio Casati has had an admirable impact on physics in a very broad
sense, especially in classical and quantum chaos, where his work over more than five
decades has laid down the foundations, but also in many other areas of theoretical physics
and applications. Moreover, he has been, and still is, an active organizer of science, both in
creating and leading elite academic and research institutions, as well as in organizing many
world-top level conferences, workshops, and schools. In particular, he has been supporting
young researchers all over the world in an important way. In recognition of his creative
and influential life opus, and of his plentiful contributions for the good of our scientific
community, this Special Issue is dedicated to him on the occasion of his 80th birthday (9
December 2022).

Conflicts of Interest: The author declares no conflict of interest.
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Article

Level Compressibility of Certain Random Unitary Matrices

Eugene Bogomolny

Université Paris-Saclay, CNRS, LPTMS, 91405 Orsay, France; eugene.bogomolny@lptms.u-psud.fr

Abstract: The value of spectral form factor at the origin, called level compressibility, is an important
characteristic of random spectra. The paper is devoted to analytical calculations of this quantity
for different random unitary matrices describing models with intermediate spectral statistics. The
computations are based on the approach developed by G. Tanner for chaotic systems. The main
ingredient of the method is the determination of eigenvalues of a transition matrix whose matrix
elements equal the squared moduli of matrix elements of the initial unitary matrix. The principal
result of the paper is the proof that the level compressibility of random unitary matrices derived from
the exact quantisation of barrier billiards and consequently of barrier billiards themselves is equal to
1/2 irrespective of the height and the position of the barrier.

Keywords: level compressibility; barrier billiards

1. Introduction

The leading idea behind statistical descriptions of complex deterministic quantum
problems is that quantum characteristics (e.g., eigenenergies) of a large variety of such
problems are so erratic and irregular that their precise values are irrelevant (such as the
position of a molecule in the air), and only their statistical properties are of importance.
As matrices are inherent in quantum mechanics, random matrices occupy a predominant
place in the application of statistics to quantum problems [1]. In a typical setting, one tries
to find a random matrix ensemble whose eigenvalues have the same statistical distribu-
tions as (high-excited) eigenenergies of a given deterministic quantum problem. Until
now, this query has been figured out only for two limiting classes of quantum problems:
(i) models whose classical limit is integrable [2] and (ii) models whose classical limit is
chaotic [3]. For generic integrable models, quantum eigenenergies are distributed as eigen-
values of diagonal matrices with independent identically distributed (i.i.d.) elements which
means that their correlation functions after unfolding coincide with the ones of the Poisson
distribution [2]. For generic chaotic systems, it was conjectured in [3] that their eigenener-
gies are distributed as eigenvalues of standard random matrix ensembles (GOE, GUE, GSE)
depending only on system symmetries whose correlation functions are known explicitly [4].
The difference between these two cases is clearly seen from the limiting behaviour of their
nearest-neighbour distribution P0(s), which is the probability density that two eigenvalues
are separated by a distance s and there are no other eigenvalues in between. For the
Poisson statistics, there is no level repulsion that means that lims→0 P0(s) �= 0 and for large
argument P0(s) decreases exponentially with s. Standard random matrix ensembles levels
repel each other, lims→0 P0(s) = 0, and P0(s) ∼ exp(−as2) when s → ∞.

These two big conjectures form a cornerstone of quantum chaos and have been suc-
cessfully applied to various problems from nuclear physics to number theory. Nevertheless,
they do not cover all possible types of models. Especially intriguing is the class of pseudo-
integrable billiards (see, e.g., [5]) which are two-dimensional polygonal billiards whose
angles θj are rational multiples of π

θj =
mj

nj
π

Entropy 2022, 24, 795. https://doi.org/10.3390/e24060795 https://www.mdpi.com/journal/entropy
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with co-prime integers mj and nj. A peculiarity of such billiards is seen in the fact that their
classical trajectories belong to a two-dimensional surface of genus g related with angles as
follows [6]

g = 1 +
Nn

2 ∑
j

mj − 1
nj

where Nn is the least common multiple of all denominators nj. Consequently, any such
model with at least one numerator mj > 1 is neither integrable (which would imply that
trajectories belong to a two-dimensional torus with g = 1) nor fully chaotic (in which case
trajectories should cover a three-dimensional surface of constant energy), and the aforemen-
tioned conjectures cannot be applied to such systems. Numerical calculations show that
for many pseudo-integrable billiards, the spectral statistical properties of corresponding
quantum problems differ from both the Poisson statistics and the random matrix statistics
mentioned above (see, e.g., [7,8] and references therein). In particular, for these models,
(i) lims→0 P0(s) = 0 as for standard random matrix ensembles but (ii) P0(s) ∼ exp(−bs) for
large s as for the Poisson statistics. Such hybrid statistics, labeled intermediate statistics,
had been first observed in the Anderson model at the metal–insulate transition [9,10], and
they constitute a special, interesting but poorly investigated class of spectral statistics.

Probably the simplest example of pseudo-integrable systems is the so-called barrier
billiard, which is a rectangular billiard with a barrier inside sketched in Figure 1a. The
quantum problem for this model consists of solving the Helmholtz equation

(Δ + Eα)Ψα(x, y) = 0

imposing that eigenfunction Ψα(x, y) obeys (e.g.,) the Dirichlet conditions on the boundary
of the rectangle as well as on the barrier

Ψα(x, y)|boundary = 0, Ψα(x, y)|barrier = 0.

x

y

d

h

a

b

(a)

(1)

y

x

(3)

(2)

(b)

Figure 1. (a) Barrier billiard. (b) An infinite slab with a half-plane inside. Numbers indicate 3 possible
channels.

Calculating the exact S-matrix for the scattering inside the infinite slab with a barrier
depicted in Figure 1b, it has been demonstrated in [7,8] that spectral statistics of this model
is the same as the statistics of eigenvalues of the following N × N random unitary matrix

Bm,n = eiΦm
LmLn

xm + xn
, m, n = 1, . . . , N (1)

where Φm are i.i.d. random variables uniformly distributed on interval [0, 2π) and

Lm =

√
2xm ∏

k �=m

xm + xk
xm − xk

(2)

4
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where coordinates xm depend on the position of the barrier.
Define the following quantities (momenta) of propagating modes in each of three

channels indicated in Figure 1b.

p(1)m =

√
k2 − π2m2

b2 , p(2)m =

√
k2 − π2m2

(b − h)2 , p(3)m =

√
k2 − π2m2

h2 .

If the ratio h/b is an irrational number, coordinates xm have the following form

�x = b
(

p(1)1 , . . . , p(1)N1︸ ︷︷ ︸
N1

, −p(2)1 , . . . , −p(2)N2︸ ︷︷ ︸
N2

, −p(3)1 , . . . , −p(3)N3︸ ︷︷ ︸
N3

)
. (3)

Here, Nj with j = 1, 2, 3 are the numbers of propagating modes in each channel

N1 =

[
kb
π

]
, N2 =

[
k(b − h)

π

]
, N3 =

[
kh
π

]
(4)

where [x] is the largest integer ≤ x and the total dimension of the B-matrix is
N = N1 + N2 + N3.

When the ratio h/b is a rational number, h/b = p/q with co-prime integers p and q
(p < q), there exist exact plane wave solutions of barrier billiard equal to zero at the whole
line passing through the barrier. It is natural to disregard them and take into account only
non-trivial eigenvalues. In such case, coordinates xm have to be chosen as indicated below

�x = b
(

p(1)1 , . . . , p(1)k , . . . , p(1)N1︸ ︷︷ ︸
k �= 0 mod q

, −p(2)1 , . . . , −p(2)N2︸ ︷︷ ︸
N2

, −p(3)1 , . . . , −p(3)k , . . . , −p(3)N3︸ ︷︷ ︸
k �= 0 mod p

)
. (5)

The dimension of this vector is

N(r) = N1 + N2 + N3 − 2N0, N0 =

[
kb
πq

]
. (6)

The matrix B can be generalised for arbitrary vector xm provided the following inter-
lacing conditions are fulfilled

|x1| > |x2| > . . . > |xN |, xm = (−1)m+1|xm|.

Exact correlation functions for the B-matrix are unknown at present. In [7,8], it was
argued that an approximate Wigner-type surmise for this matrix corresponds to the so-
called semi-Poisson distribution [11]. In particular, it implies that the probability density
Pn(s) that two levels are separated by a distance s and there are exactly n levels in between
(after the standard unfolding) is given by the following expression

Pn(s) =
22n+2

(2n + 1)!
s2n+1e−2s, n ≥ 0 .

Numerical calculations presented in [7,8] agree with these simple formulas.
Despite the simplicity of the semi-Poisson distribution, it has been observed (mostly

numerically) in various models ranging from certain pseudo-integrable models and quan-
tum maps (see references in [7,8]) to the entanglement spectra of two-bits random many
body quantum circuits [12].

This paper is devoted to the calculation of another important characteristic of spectral
statistics, namely the level (or spectral) compressibility, which is a long-range characteristic
of the spectral two-point correlation function. In particular, this quantity determines the
limiting behaviour of the variance of the number of levels inside a given interval. More
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precisely, let N(L) be the number of eigenvalues in an interval L unfolded to the unit mean
density, which means that the mean number of levels in interval L equals L, 〈N(L)〉 = L.
By definition, the number variance is Σ(2)(L) ≡ 〈(N(L)− L)2〉. If for large L

Σ(2)(L) −→
L→∞

χL (7)

constant χ is called the level compressibility. The importance of this quantity follows from
the fact that for integrable systems with the Poisson statistics, χ = 1, but for standard
random matrix statistics typical for chaotic models, χ = 0. For all examples of intermediate
statistics, it was observed that 0 < χ < 1.

The conventional way of determining the level compressibility for dynamical systems
is the summation over all periodic orbits in the diagonal approximation initiated in [13]. For
the symmetric barrier billiard with h/b = 1/2 and d/a = 1/2, it has been demonstrated
in [14] that χ = 1/2. The same value had been obtained in [15] for the case h/b = 1/2
and arbitrary barrier height d/a. Finally, for h/b = p/q with co-prime integers p, q and
irrational values of d/a, it has been proven in [16] that

χ =
1
2
+

1
q

but in the calculations, exact eigenvalues whose eigenfunctions are zero on the whole line
y = h (see Figure 1a) have not been excluded. When these trivial eigenvalues are removed,
the answer is χ = 1/2 [17]. Therefore, direct (and quite tedious) calculations suggest that
for (almost) all positions and heights of the barrier, the level compressibility is the same as
for the semi-Poisson statistics [11]

χ =
1
2

(8)

but the reason of this universality remains obscure.
The purpose of the paper is to find analytically the spectral compressibility for barrier

billiards and for a few other models directly from the corresponding random unitary matri-
ces. To achieve the goal, it is convenient to slightly generalise the method developed in [18]
for random unitary matrices that appeared in the quantisation of quantum graphs [19].
The method is briefly explained in Section 2. In Section 3, this method is applied to ran-
dom unitary matrices derived in [20] by the quantisation of a simple interval-exchange
map. In this case, the transition matrix is a circulant matrix whose eigenvalues are known
explicitly. The results coincide with the exact level compressibility for these models ob-
tained in [21–24]. This example gives credit to the method and permits explaining its main
features without unnecessary complications. In particular, it clarifies the situation (not
covered by Refs. [21–24]) when a parameter that entered the matrix takes an irrational
value. Numerically, it has been observed [22] that in such case, the spectral statistics are
well described by the ones of chaotic systems (GOE or GUE), although the Lyapunov
exponent of the underlying classical map is always zero.

The main part of the paper is devoted to the derivation of the level compressibility
for random matrices associated with barrier billiards (1). The calculations are more com-
plicated, as no eigenvalues (except one) are known analytically. The simplest case of the
symmetric barrier billiard with h/b = 1/2 is investigated in Section 4. To obtain tractable
expressions, a kind of paraxial approximation is developed, which permits controlling the
largest terms. By using such approximation, the transition matrix is transformed into a
Toeplitz matrix with a quickly decreasing symbol, which allows us to find its eigenvalues
for large matrix dimension. The result of this section is that the level compressibility equals
1/2 in accordance with periodic orbit calculations in [14,15].

In Section 5, random unitary matrices corresponding to barrier billiards with irrational
ratio h/b (with coordinates given by (3)) are considered. In this case, the transition matrix in
paraxial approximation contains quickly oscillating terms and, consequently, has forbidden
zones in the spectrum. In spite of that, one can argue that largest moduli eigenvalues are

6
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insensitive to fast oscillations and are determined solely by a matrix averaged over such
oscillations. The final matrix is also a Toeplitz type, which allows analytical calculations,
proving that the level compressibility is again equal to 1/2.

Section 6 addresses the calculation of level compressibility in the most complicated case
of barrier billiards with rational ratio h/b = p/q �= 1/2. The computation is cumbersome,
but in the end, one comes to the conclusion that the level compressibility remains equal 1/2.
In other words, the level compressibility of barrier billiards is universal (i.e., independent
of the barrier position and its height) and coincides with the semi-Poisson prediction [11].

Section 7 gives a brief summary of the results. A few technical points are discussed in
Appendices A–C.

2. Generalities

It is well known that the level compressibility (7) is related with the two-point correla-
tion form factor K(τ) as follows

χ = lim
τ→0

K(τ) . (9)

For N × N random unitary matrices U, the form factor can, conveniently, be written
in the following concise form (see, e.g., [18])

K(τ) =
〈 1

N
|Tr Un|2

〉
, τ =

n
N

(10)

where the average is taken either on different realisations of random parameters, or over a
small window of τ, or both.

Unitary matrices considered in the paper all have the product form

Uj,k = eiΦj wj,k (11)

where Φj are i.i.d. random phases uniformly distributed between 0 and 2π, and matrix wj,k
is a fixed unitary matrix.

In [18] (see [19] for more detailed discussion), it was shown that for such unitary
matrices, the averaging over random phases leads in the diagonal approximation to the
following formula

K(diag)
( n

N

)
= g

n
N

Tr (Tn) (12)

where matrix elements of matrix T, called below the transition matrix, are squared moduli
of matrix elements of matrix U

Tj,k = |Uj,k|2 = |wj,k|2 . (13)

For systems without time-reversal invariance, g = 1, and for models with time-reversal
invariance, g = 2 (here, only cases of g = 1 are considered). Due to the unitarily of matrix
U, the T-matrix is a double stochastic matrix, ∑j Tj,k = 1 and ∑k Tj,k = 1, thus having the
meaning of classical transition matrix.

Let Λβ be eigenvalues of the T-matrix

Tj,kuk(β) = Λβuj(β) , β = 0, . . . , N − 1 .

From (12), it follows that

K(diag)
( n

N

)
=

n
N

N−1

∑
β=0

Λn
β . (14)

The unitarity imposes that one eigenvalue Λ0 = 1. Perron–Frobenius theorem states
that all other eigenvalues |Λβ| ≤ 1.

7
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Let the set of eigenvalues be ordered 1 = Λ0 ≥ Λ1 ≥ . . . ≥ ΛN−1. One has

K(diag)(τ) = τ(Tr (Tn)) = τ + τ
N−1

∑
β=1

ΛNτ
β ,

N−1

∑
β=1

ΛNτ
β ≤ (N − 1)|Λ1|Nτ . (15)

It has been noted in [18] that if

lim
N→∞

|Λ1|N = 0 (16)

then the second term in (15) goes to zero for all finite τ and K(diag)(τ) = τ for small τ.
Consequently, it is reasonable to conjecture (as it has been done in [18]) that the whole
spectral statistics of such matrices will be well described by standard random matrix
formulas.

For the matrices discussed below, criterium (16) is not fulfilled. Instead, in all consid-
ered cases, the largest moduli eigenvalues of transition matrices have the form 1 −O(1/N).
To calculate the level compressibility from (14), the summation over all such eigenvalues is
performed analytically, and then, the limit τ → 0 is taken.

It is well known that the form factor is not a self-average quantity. It has strong
fluctuations and necessarily requires a smoothing. There exist two different sources of
fluctuations. The first is related with random phases in matrices (11). Equation (12)
corresponds to the averaging over these random phases in the diagonal approximation.
The second has its roots in non-smoothness of K(diag)(n/N) for different n and could be
removed by a smoothing over a small interval of τ. (A trivial example is (−1)n).

3. Interval-Exchange Matrices

This section is devoted to the calculation of the level compressibility for special unitary
matrices derived in [20] by quantisation of a simple two-dimensional parabolic map.
Slightly generalising their result [21], one can write these matrices in the following form

Mn,m = eiΦn
1 − e2πiαN

N
(
1 − e2πi(n−m+αN)/N

) , n, m = 1, . . . , N . (17)

Here, α is a real parameter and Φn are i.i.d. random variables uniformly distributed
between 0 and 2π (the case with ‘time-reversal symmetry’ when ΦN−n+1 = Φn requires
only multiplication of the formulas below by factor g = 2, as indicated in (12)).

When α is a rational number α = p/q with co-prime integers p and q, the original
classical map is an interval-exchange map and, as it was shown in detail in [21–24], spectral
statistics of matrices (17) in the limit of N → ∞ are unusual and peculiar. It appears that
the limiting results depend on the residue of pN mod q (when pN ≡ 0 mod q matrix
(17) have explicit eigenvalues not interesting for our purposes). For example, if α = 1/5,
there are two possibilities: N ≡ ±1 mod 5 and N ≡ ±2 mod 5. In the first case, the
nearest-neighbour distribution is

P0(s) =
55

4!
s4e−5s

but for the second one, the exact result is different

P0(s) = (a2s2 + a3s3 + a4s4 + a5s5 + a6s6)e−5s

where a2 = 625/2 − 275
√

5/2, a3 = 3125/2 − 1375
√

5/2, a4 = 71875/48 + 33125
√

5/48,
a5 = −15625/3 + 9375

√
5/4, and a6 = 1015625/288 − 453125

√
5/288.

8
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Although the spectral correlation functions for α = p/q are different for different
residues pN mod q, the calculations show that the spectral compressibility for all residues
remains the same [21,22]

χ =
1
q

. (18)

Matrices (17) with irrational α were investigated numerically in [22], and it was ob-
served that their spectral statistics are well described by standard random matrix ensembles
(GOE or GUE). In particular, it implies that in such case

χ = 0 . (19)

Below, it is shown that values (18) and (19) can easily be recovered by the discussed method.
The transition matrix (13) for the discussed case has the form

Tn,m ≡ |Mn,m|2 =
sin2(παN)

N2 sin2 (π(n − m + αN)/N
) . (20)

This is a circulant matrix, and its eigenvalues are simply the Fourier transforms of its
matrix elements

Λβ =
sin2(παN)

N2

N−1

∑
s=0

e−2πiβs/N

sin2 (π(s + αN)/N
) . (21)

Differentiating both sides of the identity with integer s on z

N−1

∑
m=0

e2πim(s+z)/N =
1 − e2πiz

1 − e2πi(s+z)/N
,

after straightforward transformations, one proves that

sin2(πz)
sin2 (π(s + z)/N

) = −2i sin(πz)e−πiz
N−1

∑
m=0

(
m − N

eπiz

2i sin(πz)

)
e2πim(s+z)/N

from which it follows that eigenvalues (21) are

Λβ =

(
1 − β

N

(
1 − e−2πiαN

))
e2πiβα , β = 0, 1 . . . , N − 1 . (22)

Notice that Λ0 = 1, ΛN−β = Λ∗
β for β = 1, . . . , N − 1.

Consider first the case of rational α = p/q. Assume that N �= 0 mod q and calculate
the form factor from (14) separately for n ≡ r mod q with r = 0, 1, . . . , q − 1 (i.e., n = qt + r
with integer t)

K
(

qt + r
N

)
=

qt + r
N

[
1 + 2Re

N/2

∑
β=1

(
1 − β

N

(
1 − e−2πiαN

))qt+r
e2πiβpr/q

]
.

Here, we do not take into account that when N is even the term with β = N/2 is real and
has an additional factor 1/2.

Notice that the phase depends only on r. For large N, one can put the first factor in
the exponent and sum the geometric progression from 1 to infinity. The answer is

Kr(τ) = τ + 2τRe

(
e−ξτ+2πipr/q

1 − e−ξτ+2πipr/q

)
, τ =

qt + r
N

(23)

where ξ = 1 − e−2πipN/q = 1 − e−2πik/q with k = pN mod q.

9
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When τ → 0, all terms except the one with r = 0 tend to zero, as they do not have a
pole at τ = 0. The remaining term equals

lim
τ→0

K0(τ) = 2 Re
(

1
ξ

)
=

2 Re (1 − e2πiz)

2 − 2 cos(2πz)
= 1 .

It means that after the averaging over random phases, the limiting value of the form factor
Kr(τ) strongly depends on small changes of τ = (qt + r)/N. For r = 0, K0(τ) tends to 1
for small τ � 1 but for all other terms with r = 1, . . . , q − 1 Kr(τ) tends to 0. The difference
between these different values of τ is very small, of the order of 1/N. Therefore, after the
averaging over any small (but finite) interval of τ, one gets

lim
τ→0

〈K(τ)〉 = 1
q

which agrees with (18) obtained in [22] by a different method.
For illustration, the results of the direct calculation of the form factor for α = 1/5

and N = 399 and N = 398 are presented in Figure 2. First, eigenvalues of the matrix (17)
were calculated numerically, and then using (10), the form factor for different n values was
computed. The result is averaged over 1000 realisations of random phases. It is clear that,
indeed, for different residues of n modulo 5, the results are different, and when n ≡ 0 mod
5, the form factor at small argument is close to 1, but for all other residues, it starts at 0. The
average over all 5 residues begins at 1/5, as expected.

0 1 2 3
τ

0

1

2

3

K
(τ

)

n ≡ 0

n ≡ 1

n ≡ 2

n ≡ 3
n ≡ 4

(a)

0 1 2 3
τ

0

0.5

1

1.5

K
(τ

)

n ≡ 0

n ≡ 1

n ≡ 2

n ≡ 3 n ≡ 4

(b)

Figure 2. Form factor for the matrix (17) with α = 1/5 and (a) N = 399 ≡ −1 mod 5 and
(b) N = 398 ≡ −2 mod 5 averaged over 1000 realisations. Points are values of K

(
n/N

)
for in-

tegers n with indicated residues modulo 5. Thin solid lines are a guide for the eye. Thick solid lines
indicate the average over all 5 residues: 1

5 ∑4
r=0 K

(
(qt + r)/n

)
.

Such a clear picture appears when the form factor is calculated at special values of τ,
τ = n/N with integer n. Computing it at arbitrary arguments leads to an irregular plot
but, of course, the average curve remains unchanged.

Exactly the same formulas can be applied for an irrational value of parameter α. In
this case, one has

K(τ) = τ + 2 τ Re
(

e−ζτ

1 − e−ζτ

)
, ζ = 1 − e−2πiαN − 2πiαN . (24)

The exponent ζ = 2 sin2(παN) + i
[

sin(2παN)− 2παN
]

has a large imaginary part
when N → ∞. It means that the above expression is a strongly oscillated function of τ.
When averaged over a small interval of τ, one obtains K(τ) = τ as it should be for the
ensemble of usual random matrices (GUE). This result follows without calculations from
the fact that the average of all eigenvalues ΛτN

β except β = 0 equals zero as a consequence

10
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of rapidly changing phases. (For even N, the term with β = N/2 is real, but as it tends to
zero at large N, its contribution is negligible).

Notice that criterion (16) for matrix (17) with irrational α is not fulfilled. Nevertheless,
the spectral statistics of such a matrix is close to GUE statistics. This example illustrates a
new mechanism for the appearance of random matrix statistics. The contribution of higher
eigenvalues of the transition matrix (13) decreases not because of a gap between the first
and the second eigenvalues as has been proposed in (16) but due to rapid oscillations for
large matrix dimensions.

4. Symmetric Barrier Billiard with h/b = 1/2

The central problem of the paper is the determination of level compressibility for the
B-matrices given by (1) and (2) by employing the method proposed in [18] and used in
the previous section for matrices derived from the quantisation of an interval-exchange
map. The simplicity of treatment of interval-exchange matrices comes from the fact that
their transition matrices are circulant matrices whose eigenvalues are known exactly. For
the B-matrices, calculations are more complicated, as there are no explicit formulas for
eigenvalues of the corresponding transition matrix.

Tm,n = |Bm,n|2 =
L2

m L2
n

(xm + xn)2 , m, n = 1, . . . , N . (25)

This section is devoted to the investigation of the B-matrix corresponding to the
symmetric barrier billiard with ratio h/b = 1/2. In this case, q = 2, b − h = h, and the
second part of the vector �x in (5) coincides with the third one. Now, trivial eigenfunctions
can be removed by considering a desymmetrised rectangular billiard with height h = b/2
and imposing the Neumann boundary conditions for negative x and y = h. It is the
equivalent of dropping the second part of vector (5) and taking coordinates xm as follows [7]

xm = (−1)m+1b

√
k2 − π2m2

b2 , m = 1, . . . , N , N =

[
kb
π

]
. (26)

Odd (resp., even) indices describe the first (resp., the third) part of vector (5).
The numerically calculated spectrum of the transition matrix in this case is presented

in Figure 3a.

0 0.2 0.4 0.6 0.8 1

β/Ν
-1

-0.5

0

0.5

1

Λ
β

0 0.2 0.4 0.6 0.8 1

-0.002

0

(a)

0 1 2 3
τ

0

0.5

1

1.5

K
(τ

)

(b)

Figure 3. (a) Transition matrix spectrum for symmetric barrier billiard with h/b = 1/2, b = π,
k = 1000.5, and N = 1000. Insert shows the difference between true eigenvalues Λβ and the straight
line 2β/N − 1. (b) Form factor for symmetric barrier billiard with h/b = 1/2, b = π, k = 400.5,
and N = 400. Data are averaged over 1000 realisations of random phases. The upper dots are

K
(
2n/N

)
, the lower dots are K

(
(2n − 1)/N

)
, and the middle dots correspond to

(
K
(
2n/N

)
+

K
(
(2n− 1)/N

))
/2. The solid line is the semi-Poisson prediction K(τ) = (2 + π2τ2)/(4 + π2τ2) [11].
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To calculate this spectrum (or, at least, the behaviour of largest-moduli eigenvalues)
analytically, a kind of paraxial approximation has been developed. It is based on the fact
that the main ingredient of matrices with intermediate statistics is a linear fall-off of matrix
elements from the diagonal [25,26]. In the simplest setting, it means that

Mm,n ∼ Rm,n

m − n + const.
, m, n  1 , m − n = O(1) .

Therefore, it is natural to assume that the most important contributions come from the
pole terms with Rm,n ≈ Rm,m. This type of approximation can be done directly from the
definition (2), as it is demonstrated in Appendix A. According to these results, the T-matrix
in the paraxial approximation is a block matrix

T =

(
0o,o to,e
tT
o,e 0e,e

)
, to,e ≡ t2m−1,2n =

1
π2(n − m + 1/2)2 . (27)

Here, subscripts ‘o’ and ‘e’ indicate odd and even indices, respectively.
It is instructive to obtain this answer without the knowledge of the exact B-matrix.

One can achieve it by using the instantaneous approximation used in quantum mechanics
when the interaction changes suddenly. In optics, such an approximation is analogous to
the Fraunhofer diffraction. In the barrier billiard, it corresponds to the situation when a
wave with large momentum quickly moving in a channel enters into another channel (cf.,
Figure 1b). In the instantaneous approximation, eigenfunctions in the new channel are
just a re-expansion of the initial eigenfunctions into a complete set of eigenfunctions with
correct boundary conditions inside the final channel.

Consider a normalised wave with the Neumann boundary conditions at y = h = b/2
and the Dirichlet ones at y = 0

ψ
(1)
2m−1(x, y) =

2√
b

sin
( (2m − 1)π

b
y
)

exp
(
ip(1)2m−1x

)
, x < 0, 0 ≤ y ≤ b/2

propagating in the desymmetrised barrier billiard at negative x. When it penetrates into the
region of positive x, it has to be expanded into correct waves propagating inside that region

ψ
(1)
2m−1(x, y) =

∞

∑
n=1

S2m−1,2nψ
(3)
2n (x, y)

where ψ
(3)
2n (x, y) are waves obeying the Dirichlet boundary conditions at y = 0 and

y = h = b/2

ψ
(3)
2n (x, y) =

2√
b

sin
(2πn

b
y
)

exp
(
ip(3)n x

)
, x > 0, 0 ≤ y ≤ b/2 .

Coefficients S2m−1,2n are the S-matrix for this process. In the paraxial approximation,

they are calculated as follows (notice that in the paraxial approximation, p(1)2m−1 ≈ p(3)n )

S(p.a.)
2m−1,2n =

4
b

∫ b/2

0
sin
(π(2m − 1)

b

)
sin
(2πn

b
y
)

dy =

=
(−1)m+n

π2(n − m + 1/2)
+

(−1)m+n

π2(n + m − 1/2)
.

Taking into account only the pole term (and symmetry of the S-matrix), one obtains for the
T-matrix exactly the same expression as (A1).
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Thus, the transition matrix (27) is a block Toeplitz matrix. It is plain that its eigenvalues
Λ = ±

√
λβ where λβ are eigenvalues of a N1 × N1 matrix (with N1 = [N/2]).

Pm,n =
N1

∑
k=1

tm,ktn,k, tm,k =
1

π2(k − m + 1/2)2 .

Dominant contributions to the sum come from regions k ∼ m and k ∼ n. Due to a
quick decrease of the summands, the finite summation over k can safely be substituted in
the limit N1 → ∞ by the sum over all integer k

Pm,n ≈
∞

∑
k=−∞

tm,ktn,k .

Using (A6), the necessary sum is easily calculated, and the result is

Pm,n = tm−n , t0 =
1
3

, tr �=0 =
2

π2r2 . (28)

This formula is valid when m, n  1 and m − n = O(1).
Matrix (28) is a Toeplitz matrix with quickly decreasing matrix elements. It is well

known that eigenvalues of the N × N Toeplitz matrix can be asymptotically calculated as
follows (see, e.g., [27–31] and references therein)

λβ = f
(

β

2N
+O

(
1
N

))
, β = 1, . . . , N (29)

where function f (x) called the symbol is the Fourier series of tr.

f (x) =
∞

∑
r=−∞

tre2πirx .

(More precise formulas can be found in the above references).
Using (A4) and (A5) one finds that the symbol of matrix (28) is

f (x) =
1
3
+

2
π2

∞

∑′

r=−∞

e2πirx

r2 =
1
3
+ 4B2(x) = (1 − 2x)2 .

Therefore, eigenvalues of the P-matrix for large N1 are

λβ ≈
(

1 − β

N1

)2
, β = 1, . . . , N1 .

Eigenvalues of block matrix (27) Λ = ±
√

λβ. Taking into account that the dimension
of matrix (27) is N ≈ 2N1, one concludes that approximately its eigenvalues are

Λ = ±
(

1 − 2β

N

)
, β = 1, . . . , 1

2 N . (30)

With the corresponding redefinition of index β, these eigenvalues can be rewritten in
the form

Λβ ≈ 2β

N
− 1, β = 1, . . . , N

which agrees well with numerical calculations (see Figure 3a).

13



Entropy 2022, 24, 795

The form factor in the diagonal approximation is related with transition matrix eigen-
values by (14)

K(diag)
( n

N

)
=

n
N ∑

β

Λn
β .

As ΛN−β = −Λβ for β = 1, . . . , N − 1 (which is a consequence of the block structure
of the transition matrix (27)), the form factor Kdiag(n/N) with odd n in the diagonal
approximation tends to zero when τ = n/N → 0

K(diag)(τ) −→
τ→0

0 . (31)

However, for even n, one obtains a different answer. Equation (30) may not be accurate
for extreme eigenvalues with small β. For τ = 2n/N, one can separate the contribution of
small β < β0 and the rest for which (30) is a good approximation

K(diag)(τ) = τ

(
const + 2

N/2

∑
β=β0

(
1 − 2β

N

)τN
)

−→
N→∞

τ

(
const +

2e−2j0τ

1 − e−2τ

)
−→
τ→0

1 . (32)

As has been discussed in the previous section, it means that the spectral compressibility of
the B-matrix for symmetric barrier billiard coincides with the semi-Poisson value

χ ≡ K(0) =
1
2

. (33)

For illustration, the form factor for the symmetric billiard calculated numerically by
the direct diagonalisation of 400 × 400 matrices (1) with coordinates given by (26) and
averaged over 1000 realisations is shown in Figure 3b. Two branches corresponding to odd
and even n are clearly seen. The average over odd and even values agrees well with the
semi-Poisson expression for the form factor [11] and, in fortiori, the level compressibility is
1/2, as in (33).

5. Barrier Billiard with Irrational Ratio h/b

The transition matrices for a general barrier billiard with an off-centre barrier remain
the same as in (25), but coordinates xm should have the form (3) for irrational ratio h/b
and (5) for rational h/b = m/q. The direct calculations of eigenvalues of these matrices
reveal that they are more complicated that the ones for symmetric billiard with h/b = 1/2
discussed in the previous section. As an example, in Figure 4, the spectra of the transition
matrices with h/b = 1/

√
5 and h/b = 2/5 are presented. It is clearly seen that although

eigenvalues with small moduli are quite irregular and have gaps, the largest moduli
eigenvalues are well described by a straight line Λβ = 2β/N − 1.

14
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Figure 4. Spectra of the transition matrix for barrier billiard with (a) h/b = 1/
√

5, b = π, k = 500.5,
and N = 999 (cf. (4)) (b) h/b = 2/5, b = π, k = 650.5, and N = 1040 (cf. (6)). The straight dashed
line in the both figures is Λβ = 2β/N − 1.

This section is concentrated on the analytical treatment of billiards with irrational
ratio h/b. As in the previous section, the first step consists of the calculation of a paraxial
S-matrix for the scattering inside the slab with a barrier, as shown in Figure 1b. It can
easily be completed in the instantaneous approximation exactly as above. In such an
approximation, only transitions from channel 1 to 2 and to 3 and their inverse are non-zero.
One has

S1→3
m,n =

2√
bh

∫ h

0
sin
(πm

b
y
)

sin
(πn

h
y
)

dy =

=
(−1)n sin(πhm/b)

π
√

bh

(
(m/b − n/h)−1 − (m/b + n/h)−1

)
.

Similarly,

S1→2
m,n =

2√
b(b − h)

∫ b

h
sin
(πm

b
y
)

sin
( πn

b − h
(b − y)

)
dy =

=
(−1)n sin(πmh/b)

π
√

b(b − h)

(
(m/b − n/(b − h))−1 − (m/b + n/(b − h))−1

)
.

The transition matrix T = |S|2 also has the same block structure. Retaining only the
pole (the first) terms (and slightly changing the notations), one obtains

T =

⎛⎝ 01,1 t1→2
n1,n2

t1→3
n1,n3

t1→2
n1,n2

02,2 02,3
t1→3
n1,n3

03,2 03,3

⎞⎠ (34)

where ni = 1, . . . , Ni with Ni given by (4) and

t1→2
n1,n2

=
z2 sin2(πn1h/b)

π2
(
z2n1 − n2

)2 , t1→3
n1,n3

=
z sin2(πn1h/b)

π2
(
zn1 − n3

)2 , z2 = 1 − z, z =
h
b

. (35)

Due to the block structure of the transition matrix (34), it follows that its eigenvalues
Λ are determined by the relation Λ2 = λβ where λβ are eigenvalues of N1 × N1 matrix

Pm,n =
N2

∑
k=1

t1→2
m,k t1→2

n,k +
N3

∑
k=1

t1→3
m,k t1→3

n,k .

15
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For large matrix dimensions, the summation can be extended over all integer k, and the
sums can be calculated explicitly by using (A7) from Appendix C. The results are

Pm,m =
z2 + (1 − z)2

3
(3 − 2 sin2(πmz)) , (36)

and for m �= n

Pm,n =
2
(

sin2(πzm) + sin2(πnz)
)

π2(m − n)2 − 2(1 − 2z) sin(πmz) sin(πnz) sin(π(m − n)z)
π3z(1 − z)(m − n)3 . (37)

This matrix is a combination of Toeplitz terms dependent on the difference m − n and
oscillating terms (which explains the existence of forbidden zones in its spectrum; see
Figure 4a).

Due to the unitarity of the B-matrix, the exact transition matrix T = |B|2 has the
largest eigenvalue equal to 1, whose corresponding eigenvector is (1, 1, . . . , 1). It is natural
(and is confirmed by calculations) that eigenvectors of the P-matrix corresponding to large
moduli eigenvalues are slowly varying functions. Consequently, all oscillating terms in (36)
and (37) for large m and n could be ignored. These arguments lead to the following recipe
of the next step of approximation. Put m = n + r and average all matrix elements of the
P-matrix over quickly changing phase πnz. The calculations are straightforward and

〈Pm,n〉 ≡ lim
N→∞

1
N

N

∑
n=1

Pn+r,n = fm−n (38)

where

f0 =
2(z2 + (1 − z)2)

3
, fr �=0 =

2
π2r2 − (1 − 2z) sin(2πrz)

2π3z(1 − z)r3 .

Eigenvalues of such a matrix for large N are calculated by the Fourier transform of
this symbol

λβ =
∞

∑
r=−∞

fre2πirx, x =
β

2N1
.

The necessary sums are expressed through the Bernoulli polynomials (A4), (A5), and
the result is

λβ =
2
3
(z2 + (1 − z)2) + 4B2(x)− 1 − 2z

3z(1 − z)

(
B3({x + z})− B3({x − z})

)
.

From the beginning, one can assume that h < h − b, i.e., z = h/b < 1/2 (the case
h/b = 1/2 was discussed in Section 4). Then

λβ =

⎧⎪⎪⎨⎪⎪⎩
1 − 4x +

x2

z(1 − z)
, 0 ≤ x ≤ z

1 − 2z + 2z2

1 − z
− 2x(1 − x)

1 − z
, z ≤ x ≤ 1

2

, x =
β

2N1
. (39)

As eigenvalues of the block matrix (34) Λ = ±
√

λβ, it follows that close to maximum value
(i.e., with small β),

Λ ≈ ±
(

1 − β

N1
+O

(
1

N1

))
≈ ±

(
1 − 2β

N

)
.

As in the calculation of the form factor (14) small moduli eigenvalues are irrelevant,
one can ignore higher-order terms in the above expression, which gives the same expression
as in (30). It means that the level compressibility of barrier billiards with irrational ratio
h/b has the same value as in the preceding sections χ = 1

2 .
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In Figure 5a, the above formulas are compared with the results of direct calculations for
the P-matrix with h/b = 1/

√
5. As has been demonstrated, the approximate expression (39)

is tangent to the exact spectrum close to 1. The form factor computed numerically for
the same ratio h/b is presented in Figure 5b. The agreement with the above result is
clearly seen.
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Figure 5. (a) Eigenvalues of the P-matrix (36), (37) for for h/b = 1/
√

5 for the same parameters as in
Figure 3a. Solid line indicates approximate expressions (39). (b) Form factor for h/b = 1/

√
5, b = π,

k = 200.5, N = 399 averaged over 1000 realisations. Other notations are as in Figure 3b.

6. Barrier Billiard with Rational Ratio h/b = p/q

The calculation of transition matrix eigenvalues when the ratio h/b is a rational
number can be completed by a similar method. An additional difficulty in such case is
that one has to select special combinations of states in the second and the third channels
to remove trivial eigenvalues equal to zero on the whole line passing through the barrier.
It has been discussed in detail in [8] and briefly reviewed in Appendix B. Combining all
terms together, one concludes that the transition matrix when h/b = p/q with p and q
being co-prime integers has the block form similar to (34) but with one more block

T =

⎛⎜⎜⎝
01,1 t1→2

n1,n2
t1→3
n1,n3

t1→4
n1,n4

t1→2
n1,n2

02,2 02,3 02,4
t1→3
n1,n3

03,2 03,3 03,4
t1→4
n1,n4

04,2 04,3 04,4

⎞⎟⎟⎠. (40)

Here, indices nj = 1, . . . N(r)
j have the following restrictions

n1 �≡ 0 mod q , n2 �≡ 0 mod q − p , n3 �≡ 0 mod p

and

N(r)
1 = N1 − N0 , N(r)

2 = N2 − N0 , N(r)
3 = N3 − N0 , N(r)

4 = N0 (41)

with N1, N2, N3 given by (4) and N0 is determined by (A2) or (6). The total matrix dimension
is N(r) = ∑4

j=1 N(r)
j = N1 + N2 + N3 − 2N0 as in (6).

Matrices t1→2 and t1→3 are the same as in (35) and t1→4 given by (A3) from Appendix B

t1→4
n1,n4

=
sin2(πmh/b)

π2 p(q − p)(n1/q − n4)2 .
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The eigenvalues of block matrix (40) Λ are Λ = λ2
β where λβ with β = 1, . . . , N1 are

eigenvalues of matrix (superscript (res), indicating that the matrix describes the resonance
case h/b = p/q)

P(res)
m,n = ∑

k �=0 mod (q−p)
t1→2
m,k t1→2

n,k + ∑
k �=0 mod p

t1→3
m,k t1→3

n,k + ∑
k

t1→4
m,k t1→4

n,k .

Using an evident relation

∑
k �=0 mod r

f (k) = ∑
k

f (k)− ∑
k

f (rk)

and (A7), the above sums can be explicitly calculated.
The results are

P(res)
m,m =

1
3q2

(
p2 + (q − p)2)(3 − 2 sin2(πpm/q)

)
+

2 sin4(πpm/q)
(
3 − 2 sin2(πm/q)

)
3p(q − p)q2 sin4(πm/q)

(42)

and when m �= n

P(res)
m,n =

bm,n

(m − n)2 − cm,n sin(πp(m − n)/q)
(m − n)3 − dm,n sin(π(m − n)/q)

(m − n)3 (43)

where
bm,n =

2
π2

(
sin2(πpm/q) + sin2(πpn/q)

)
+

2 sin2(πpm/q) sin2(πpn/q)
p(q − p)π2

( 1
sin2(πm/q)

+
1

sin2(πn/q)

)
, (44)

cm,n =
2q(q − 2p)
π3 p(q − p)

sin(πpm/q) sin(πpn/q) ,

dm,n =
4q sin2(πpm/q) sin2(πpn/q)

π3 p(q − p) sin(πm/q) sin(πn/q)
.

Although these expressions are indexed by integers m and n, this notation is symbolic.
The point is that by construction, these integers cannot be arbitrary but have to be not
divisible by q. Let us order such numbers and let ν(k) with k = 1, 2, . . . , be the kth integer
�≡ 0 mod q. Then, indices of matrix P(res)

m,n have to be considered as follows: m = ν(j),
n = ν(k) with j, k = 1, 2, . . . , N(r)

1 with N(r)
1 defined in (41). In such notation, matrix P(res)

is N(r)
1 × N(r)

1 matrix

P(res)
m,n ≡ P(res)

ν(j),ν(k), j, k = 1, . . . , N(r)
1 .

The next step, as in the previous section (cf., (38)), consists in the substitution instead
of the above exact expressions, their mean values with fixed difference between the indices

〈P(res)
m,n 〉(r) = lim

N→∞

1
N

N

∑
n=1

P(res)
n+r,n

where both integers n and n + r have to be not divisible by q.
According to (42) and (43), the P(res) matrix is a mixture of functions depending ex-

plicitly on the differences of indices and certain coefficients depending on indices modulus
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q. Only the latter requires the explicit averaging. Using (A8)–(A11) from Appendix C, one
obtains that

q−1

∑
m=1

Pm,m =
(p2 + (q − p)2)(2q − 3)

3q2 +
2p2(2q − 3p)

3(q − p)q2 ,

q−1

∑′

m=1
bm,m+r =

2q(q − p + 1 − 2 sin2(πpr/q))
π2(q − p)

,

q−1

∑′

m=1
cm,m+r =

q2(q − 2p) cos(πpr/q)
π3 p(q − p)

,
q−1

∑′

m=1
dm,m+r =

q2 sin(2πpr/q)
π3 p(q − p) sin(πr/q)

.

Here, it is taken into account that p/q < 1/2. The superscript ′ in these sums indicates that
the term with m + r ≡ 0 mod q is omitted. The latter condition implies that the number of
independent terms equal q − 1 if r ≡ 0 mod q or q − 2 otherwise. Finally, one obtains

〈P(res)
m,n 〉 = α1δm,n + fm−n (45)

with

fm−n =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
α2

(m − n)2 , (m − n) ≡ 0 mod q

α3

(m − n)2 +
α4 cos(2πpr/q)

(m − n)2 +
α5 sin(2πpr/q)

(m − n)3 , (m − n) ≡ r �= 0 mod q

where constants αj are

α1 =
(p2 + (q − p)2)(2q − 3)

3q2(q − 1)
+

2p2(2q − 3p)
3(q − p)q2(q − 1)

α2 =
2q(q − p + 1)

π2(q − p)(q − 1)
,

α3 =
2q

π2(q − 2)
, α4 =

2q
π2(q − p)(q − 2)

, α5 =
q2(2p − q − 2)

2π3 p(q − p)(q − 2))
.

Although this matrix depends only on the difference of indices m − n, it is not a
Toeplitz matrix as m and n are not arbitrary numbers but only integers not divisible by q.
Nevertheless, one can argue that the largest eigenvalues for large matrix dimension can be
calculated by a formula similar to Toeplitz matrices (which is a kind of variational method)

λβ =
1

N(r)
1

N(r)
1

∑
j,k=1

〈P(res)
ν(j),ν(k)〉e2πix(j−k), x =

β

2N(r)
1

. (46)

Here, as above, ν(k) is the kth integer �≡ 0 mod q.
In Appendix C (see (A13)), it is shown that such a sum can be written as follows

λβ = α1 + α2

∞

∑
u=−∞

e2πix(q−1)u

(qu)2 + 2Re
q−1

∑
t=1

(
1 − t

q − 1

)
×

×
∞

∑
u=−∞

e2πix((q−1)u+t)
(

α3

(uq + t)2 +
α4 cos(2πpt/q)

(uq + t)2 +
α5 sin(2πpr/q)

(uq + t)3

)
.

The first sum is calculated through the Bernoulli polynomial B2(x) (see (A4)). The last
sums are expressed through two functions

G(x, r) =
∞

∑
k=−∞

e2πix(kq+r)

(kq + r)2 , F(x, r) =
∞

∑
k=−∞

e2πix(kq+r)

(kq + r)3 .
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The explicit expressions of these function can be obtained as follows.
Define one more function

g(x, r) =
∞

∑
k=−∞

e2πix(kq+r)

kq + r
.

By the differentiation over x, one has G′(x, r) = 2πig(x, r) and F′(x, r) = 2πiG(x, r). As
the differentiation of g(x, r) over x gives the sum of δ-function, it is plain that g(x, r) is the
piece-wise constant function in interval [j/q, (j + 1)/q]. Using (A6), one gets

g(j/q + x, r) =
π

q sin(πr/q)
eiπr(2j+1)/q .

Correspondingly, function G(x, r) is a piece-wise linear function in the same intervals

G(j/q + x, r) =
π2

q2 sin2(πr/q)
e2πirj/q +

2π2ix
q sin(πr/q)

eiπr(2j+1)/q . (47)

In the same way, one proves that function F(x, r) is a piece-wise quadratic function

F(j/q + x, r) =
π3 cos(πr/q)
q3 sin3(πr/q)

e2πirj/q +
2π3ix

q2 sin2(πr/q)
e2πirj/q −

− 2π3x2

q sin(πr/q)
eiπr(2j+1)/q . (48)

In all these formulas, j = 0, . . . , q − 1 and 0 ≤ x ≤ 1/q.
Combining all terms together, one finds

λβ = α1 +
2π2α2

q2 B2
({

x(q − 1)
})

+ 2Re
q−1

∑
t=1

(
1 − t

q − 1

)
×

× eixt/q
[(

α3 + α4 cos(2πpt/q)
)
G
( x(q − 1)

q
, t
)
+ α5 sin(2πpt/q)F

( x(q − 1)
q

, t
)]

.

The main interest for the calculation of the form factor is the behaviour of the largest
eigenvalues for x close to zero. Using (47) and (48), one concludes that

λβ = C0 + C1
β

N(r)
1

, 0 ≤ β � N(r)
1 .

Here

C0 = α1 +
π2α2

3q2 +

+
2π2

q2

q−1

∑
t=1

(
1 − t

q − 1

)(α3 + α4 cos(2πpt/q)
sin2(πt/q)

+
πα5 sin(2πpr/q) cos(πt/q)

q sin3(πt/q)

)
and

C1 = −2π2α2(q − 1)
2q2 − 2π2(q − 1)

q2

q−1

∑
t=1

(
1 − t

q − 1

)(
α3 + α4 cos(2πpt/q)

)
.

The sum over residues is of the form

q−1

∑
t=1

(
1 − t

q − 1

)
h(t)
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and (as it is easy to check) in the considered case h(q − t) = h(t). Therefore

q−1

∑
t=1

t h(t) =
q−1

∑
t=1

(q − t) h(q − t) =
q−1

∑
t=1

(q − t) h(t) −→
q−1

∑
t=1

t h(t) =
q
2

q−1

∑
t=1

h(t) .

Consequently

C0 = α1 +
π2α2

3q2 +

+
2π2(q − 2)
q2(q − 1)

q−1

∑
t=1

(α3 + α4 cos(2πpt/q)
sin2(πt/q)

+
πα5 sin(2πpr/q) cos(πt/q)

q sin3(πt/q)

)
and

C1 = −2π2α2(q − 1)
2q2 − 2π2(q − 2)

q2

q−1

∑
t=1

(
α3 + α4 cos(2πpt/q)

)
.

Using sums indicated in Appendix C and collecting all terms in the end, one finds that

C0 = 1, C1 = −2.

This result signifies that the largest moduli eigenvalues of the transition matrix for
the barrier billiard with rational ratio h/b = p/q are (i) independent of values of integers
p and q and (ii) have the same asymptotic expression as in (30) (taking into account that
N(r) ≈ 2N(r)

1 )

Λ = ±
(

1 − β

N(r)
1

+O
(

1

N(r)
1

))
≈ ±

(
1 − 2β

N(r)

)
.

As it has been explained above, it implies that (i) the form factor for barrier billiards is
different for odd and even n and (ii) the spectral compressibility is exactly equal 1/2 for all
positions of the barrier

χ ≡ K(0) =
1
2

.

The numerical calculations exemplified in Figure 6 confirm well these results.
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Figure 6. (a) Eigenvalues of the P-matrix (42), (43) for h/b = 2/5 with N1 = 520. Solid line is the
spectrum (49) of the asymptotic matrix. (b) Form factor for h/b = 2/5, b = π, k = 250.5, and N = 400
averaged over 1000 realisations. Other notations are as in Figure 3b.

7. Summary

It is demonstrated that the method of calculation of the level of compressibility pro-
posed by G. Tanner in [18] for chaotic systems can successfully be applied for intermediate
statistics models. The criterium discussed in [18] states that if the difference between the
dominant eigenvalue of the transition matrix Λ = 1 and the second in magnitude eigen-
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value is big enough, then only the dominant eigenvalues contributes to the form factor, and
one obtains the usual value of the form factor corresponding to standard random matrix
ensembles. Notably, the level compressibility is zero.

For models considered in the paper, no individual transition matrix eigenvalues
dominate, and one has to sum over many of them with moduli close to 1. Two types of
random unitary matrices were investigated. The first corresponding to a quantisation
of an interval-exchange map [20] has been discussed in detail in [21–24]. In particular,
the values of the level compressibility were derived. The application of the transition
matrix approach for this case serves first of all to check the validity of Tanner’s method for
intermediate statistics models. It appears that interval-exchange matrices lead to circulant
transition matrices whose eigenvalues are explicitly known and all necessary sums are
easily estimated. In the end, one obtains the same values of the level compressibility as
obtained in [21–24] but with much simpler and transparent calculations. An example is
of a special interest. It corresponds to interval-exchange matrices with an irrational value
of a parameter (which strictly speaking describes not an interval-exchange map but only
a parabolic one). Numerically, it has observed in [22] that in such case, spectral statistics
is of usual random matrix type (GOE or GUE depending on a symmetry) as for chaotic
systems, which looks strange as the Lyapunov exponent of any parabolic map is zero. The
transition matrix approach clearly indicates that although there is no dominant eigenvalue
as has been discussed in [18], all eigenvalues except Λ = 1 for large matrix dimensions
are so quickly oscillating that averaging over a small interval of the argument effectively
removes their contributions, producing the standard random matrix result.

The main part of the paper contains the calculation of the level compressibility for
random unitary matrices derived from the exact quantisation of barrier billiards in [7,8].
The importance of such matrices comes from the fact that they have the same spectral
statistics as high-excited states of barrier billiards, which are the simplest examples of
pseudo-integrable models for which very little is known analytically.

The barrier billiard transition matrices are more complicated than the ones for interval-
exchange matrices. Their spectra contain forbidden zones, and their exact eigenvalues
seems not to be accessible in closed form. Nevertheless, as the level compressibility requires
the control only of largest moduli eigenvalues of the transition matrix, it is possible to
find such eigenvalues for large matrix dimensions precisely. The main simplification
comes from the fact that eigenvectors corresponding to largest moduli eigenvalues are
slow oscillating functions. Therefore, quickly oscillating terms in matrix elements will
give negligible contributions on these eigenvectors, and one can substitute instead of exact
matrix elements their average over fast oscillations. The resulting matrices are simpler and
permit finding their large moduli eigenvalues analytically. In the end, one proves that the
level compressibility of barrier billiards for all positions and heights of the barrier is the
same and equals 1/2. This result strongly indicates that spectral statistics of the B-matrices
associated with barrier billiards is universal (i.e., independent on the barrier position) and
well described by the semi-Poisson distribution.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A. Approximate Expression for the B-Matrix for the Symmetric Billiard

The purpose of this appendix is the determination of the transition matrix for the
symmetric case (i.e., xm = (−1)m+1ym, ym = b

√
k2 − π2m2/b2) in the paraxial approxima-

tion by taking into account only the pole terms in the definition (1). From (2) with odd
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m = 2j − 1, it follows (for simplicity, it is assumed N is even N = 2n and the products is
taken from q = 1 until q = n)

2y2j−1L2
2j−1 = (2y2j−1)

2 ∏
q �=j

y2j−1 + y2q−1

y2j−1 − y2q−1
∏

q

y2j−1 − y2q

y2j−1 + y2q

= ∏
q

(y2j−1 + y2q−1

y2j−1 + y2q

)2 π2 ∏q[q2 − (j − 1/2)2]

∏q �=j[(q − 1/2)2 − (j − 1/2)2]
= gj F2(y2j−1)

where

gj = lim
v→j−1/2

π2((j − 1/2)2 − v2)∏q[1 − (j − 1/2)2/q2]

∏q[1 − v2/(q − 1/2)2]
,

F(z) = ∏
q

q(z + y2q−1)

(q − 1/2)(z + y2q)
.

Exactly in the same way, one gets

2y2jL2
2j = −(2y2j)

2 ∏
q �=j

y2j + y2q

y2j − y2q
∏

q

y2j − y2q−1

y2j + y2q−1

= −∏
q

( y2j + y2q

y2j + y2q−1

)2 π2 ∏q[(q − 1/2)2 − j2]

∏q �=j[q2 − j2]
=

f j

F2(y2j)

with

f j = − lim
v→j

π2(j2 − v2)∏q[1 − j2/(q − 1/2)2]

∏q[1 − v2/q2]
.

All products in the above expressions should be taken from 1 to n. If j is not too close
to kb/π (i.e., the momentum is not close to the threshold of new propagating modes), the
products in gj and f j can be extended to infinity, and these functions can easily be calculated
from standard expressions

sin πx = πx
∞

∏
q=1

(
1 − x2

q2

)
, cos πx =

∞

∏
q=1

(
1 − x2

(q − 1/2)2

)
.

In this way, one finds that gj = 2 and f j = 2π2 j2. Finally

L2j−1 =
F(y2j−1)√y2j−1

, L2j =
π j

F(y2j)
√y2j

.

The T-matrix elements are

Tm,n =
L2

mL2
n

(xm + xn)2 .

In the paraxial approximation, one should take into account only the terms with xm of
different signs. For symmetric billiard, it means that T2n,2m ≈ 0, T2n−1,2m−1 = 0 and

T2m−1,2n =
L2

2m−1L2
2n

(y2m−1 − y2n)2 ≈ F2(y2m−1)

F2(y2n)

π2n2

y2m−1y2n(y2m−1 − y2n)2 .

As only the pole terms are important, one can put y2n ≈ y2m−1 and F2(y2m−1) ≈ F2(y2n)
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T2m−1,2n ≈ π2n2

y2m−1y2n(y2m−1 − y2n)2 =
n2

π2(n2 − (m − 1/2)2)2
(y2m−1 + y2n)

2

y2m−1y2n
≈

≈ 4n2

π2(n2 − (m − 1/2)2)2 =
1

π2(n − m + 1/2)2 +
1

π2(n + m − 1/2)2 .

Appendix B. Instantaneous Approximation for the Resonance Case

When the ratio h/b is a rational number h/b = p/q with co-prime integer p and q, it
is plain that for the barrier billiard as in Figure 1a, the following three transverse momenta

with integer t (and the corresponding longitudinal momenta pt =
√

k2 − π2w2
t ) are equal

wt =
πqt

b
=

π((q − p)t
b − h

=
πpt

h
. (A1)

Introduce the elementary solutions with these momenta in each of three regions
indicated in Figure 1b

φ
(1)
qt (x, y) =

√
2
b

sin
(πqt

b
y
)

exp
(
iptx
)

, 0 ≤ y ≤ b, x < 0 ,

φ
(2)
(q−p)t(x, y) =

√
2

b − h
sin
(π(q − p)t

b − h
(b − y)

)
exp
(
iptx
)

, b − h ≤ y ≤ b, x > 0,

φ
(3)
pt (x, y) =

√
2
h

sin
(πpt

h
y
)

exp
(
iptx
)

, 0 ≤ y ≤ h, x > 0 .

Due to the resonant conditions (A1), all these solutions represent exact solutions for
the scattering inside the slab in Figure 1b. The number of such solutions is

N0 =

[
kb
πq

]
. (A2)

When spectral statistics of non-trivial eigenvalues is considered, these solutions should
be removed. This has been completed in detail in [8]. Below, the derivation of the paraxial
approximation for the T-matrix in such case is briefly discussed.

The paraxial approximation for the T-matrix for the scattering inside the slab in
Figure 1b for non-resonant waves when in the first region n1 �= 0 mod q, in the second
region n2 �= 0 mod q − p, and in the third one n3 �= 0 mod p are given by the same ex-
pression as in (35). The first step consists in removing all waves from region 1 proportional
to q. However, it is not enough, as waves from the second and the third regions can diffract
into waves in the first region with n1 ≡ 0 mod q. To remove them, notice that

φ
(1)
qt (x, y) =

⎧⎪⎪⎨⎪⎪⎩
−(−1)qt

√
b

b − h
φ
(2)
(q−p)t(x, y) , h ≤ y ≤ b√

b
h

φ
(3)
pt (x, y) , 0 ≤ y ≤ b

.

Therefore, the following linear combination [8]

φ
(4)
t (x, y) =

√
h
b

φ
(2)
(q−p)t(x, y) + (−1)qt

√
b − h

b
φ
(3)
(q−p)t(x, y)

is orthogonal to φ
(1)
qt (x, y) and cancels undesirable waves with n1 ≡ 0 mod q.
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The calculation of the scattering into such state can be performed as above

S1→4
m,t = 2

√
h

b2(b − h)

∫ b

h
sin
(πmy

b

)
sin
(π(q − p)t(b − y)

b − h

)
dy +

+ 2(−1)qt

√
b − h
b2h

∫ h

0
sin
(πmy

b

)
sin
(πpty

h

)
dy =

=
(−1)(p+q)t sin

(
πmh/b

)
b√

h(b − h)

( 1
m − qt

− 1
m + qt

)
.

The paraxial approximation of the corresponding transition matrix elements is given by the
pole term

t1→4
m,t =

sin2(πmh/b)
π2 p(q − p)(m/q − t)2 , m �≡ 0 mod q . (A3)

Appendix C. Divers Relations

In this appendix, a few formulas used in the text are briefly reviewed.
The known identity (see e.g., [32])

∞

∑′

r=−∞

1
rn e2πirx = − (2πi)n

n!
Bn({x}) (A4)

where {x} is the fractional part of x and Bn(x) are Bernoulli polynomials. For example,

B2(x) = x2 − x +
1
6

, B3(x) = x3 − 3
2

x2 +
1
2

x . (A5)

The following identities are standard and presented for completeness.

∞

∑
n=−∞

1
n + x

= π cot(πx) ,
∞

∑
n=−∞

1
(n + x)(n + y)

=
π
(

cot(πx)− cot(πy)
)

y − x
. (A6)

The first formula is simply the expansion of the right-hand side over poles. The second is a
consequence of the first. Differentiating the above expressions by x and y shows that

∞

∑
n=−∞

1
(n + x)2 =

π2

sin2(πx)
,

∞

∑
n=−∞

1
(n + x)4 =

π4(3 − 2 sin2(πx))
3 sin4(πx)

, (A7)

∞

∑
n=−∞

1
(n + x)2(n + y)2 =

π2

(x − y)2

( 1
sin2(πx)

+
1

sin2(πy)

)
+

+
2π(cot(πx)− cot(πy))

(x − y)3 .

In different places of the paper, one needs to calculate finite sums ∑
q−1
t=1 f (t) over

residues mod q. A characteristic feature of such sums is that their summands f (t) can be
rewritten as a ratio of two polynomials in variable z = e2πit/q. The summation over t from
1 to q − 1 corresponds to the calculation of the integral

q−1

∑
t=1

f (t) =
1

2πi

∮
C

qzq−1

zq − 1
f (z)dz

where contour C encircled all roots of zq − 1 = 0 except the one with z = 1. By deforming
the contour and calculating the necessary residues, one can obtain the necessary sums in
closed form.
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Below, a few formulas obtained by this manner are listed

q−1

∑
t=1

1
sin2(πt/q)

=
q2 − 1

3
,

q−1

∑
t=1

cos(2πpt/q)
sin2(πt/q)

=
q2 + 6p2 − 1

3
− 2qp , (A8)

q−1

∑
t=1

sin(2πpt/q) cos(πt/q)
sin3(πt/q)

=
2p(q2 + 2p2)

3
− 2qp2 , (A9)

q−1

∑
m=1

sin2(πpm/q) sin2(πp(m + r)/q)
sin2(πm/q)

=
pq
2

− p2 sin2(πpr/q) , (A10)

q−1

∑
m=1

sin4(πpm/q)
sin4(πm/q)

=
pq(2p2 + 1)

3
− p4 . (A11)

Here, it is assumed that p/q < 1/2.
In Section 6, one has to calculate the following sum where ν(k) is the kth integer not

divisible by q

S =
1
N

N

∑
j,k=1

f (ν(j)− ν(k))eix(j−k)

in the limit N → ∞ with a certain quickly decreasing function f (x), f (x) −→
|x|→∞

x−2.

To obtain an explicit expression of that sum, notice that the number of integers from
1 to n divisible by q is [n/q] where [x] is the largest integer less of equal n. Therefore, if
n = ql + r with r = 1, . . . , q − 1 then k = (q − 1)l + r. It means that

ν((q − 1)l + r) = ql + r , r = 1, . . . , q − 1 . (A12)

As integer ν(k) �= 0 mod q, the residue r �= 0.
Writing j = (q − 1)m + s and k = (q − 1)n + r with integer m, n and r, s = 1, . . . , q − 1,

one gets that

j − k = (q − 1)u + t, ν(j)− ν(k) = qu + t , u = m − n, t = s − r .

The summation over integers j and k is equivalent to the summation over integers m, n and
s, r. Fixing the differences k = m − n and t = s − r, using the fact that integers with fixed
residue mod (q − 1) are uniformly distributed

lim
N→∞

1
N

N

∑
j=1

F(j mod (q − 1)) =
1

q − 1

q−1

∑
s=1

F(s)

and that
q−1

∑
s=1

q−1

∑
r=1

f (s − r) =
q−2

∑
t=−(q−2)

(q − 1 − |t|) f (t)

one finds that

S =
∞

∑
u=−∞

q−2

∑
t=−(q−2)

(
1 − |t|

q − 1

)
f (qu + t)eix((q−1)u+t) .
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Due to a quick decrease of function f (x), the summation over u can be extended to the sum
over all integers. It is convenient to separate term with t = 0, add together terms with t
and −t, and in the last term change u → −u

S =
∞

∑
u=−∞

f (qu)eix(q−1)u +

+
∞

∑
u=−∞

q−1

∑
t=1

(
1 − t

q − 1

)(
f (qu + t)eix((q−1)u+t) + f (−qu − t)e−ix((q−1)u+t)

)
.

The used function f is even f (−x) = f (x), and this expression can be written as follows

S =
∞

∑
u=−∞

f (qu)eix(q−1)u + 2Re
∞

∑
u=−∞

q−1

∑
t=1

(
1 − t

q − 1

)
f (qu + t)eix((q−1)u+t) . (A13)
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Abstract: Quantum circuits have been widely used as a platform to simulate generic quantum many-
body systems. In particular, random quantum circuits provide a means to probe universal features of
many-body quantum chaos and ergodicity. Some such features have already been experimentally
demonstrated in noisy intermediate-scale quantum (NISQ) devices. On the theory side, properties of
random quantum circuits have been studied on a case-by-case basis and for certain specific systems,
and a hallmark of quantum chaos—universal Wigner–Dyson level statistics—has been derived. This
work develops an effective field theory for a large class of random quantum circuits. The theory
has the form of a replica sigma model and is similar to the low-energy approach to diffusion in
disordered systems. The method is used to explicitly derive the universal random matrix behavior of
a large family of random circuits. In particular, we rederive the Wigner–Dyson spectral statistics of
the brickwork circuit model by Chan, De Luca, and Chalker [Phys. Rev. X 8, 041019 (2018)] and show
within the same calculation that its various permutations and higher-dimensional generalizations
preserve the universal level statistics. Finally, we use the replica sigma model framework to rederive
the Weingarten calculus, which is a method of evaluating integrals of polynomials of matrix elements
with respect to the Haar measure over compact groups and has many applications in the study of
quantum circuits. The effective field theory derived here provides both a method to quantitatively
characterize the quantum dynamics of random Floquet systems (e.g., calculating operator and
entanglement spreading) and a path to understanding the general fundamental mechanism behind
quantum chaos and thermalization in these systems.

Keywords: quantum chaos; random quantum circuits; field theory

1. Introduction

Recent years have seen a surge of interest in random quantum circuits, which can be
used to simulate various properties of interacting many-body quantum systems, including
universal ergodic dynamics. Random quantum circuits [1–12] consist of qubits (or qudits)
evolving under successive applications of unitary quantum gates drawn randomly from
ensembles of unitaries. They capture several general properties of many-body quantum
chaotic systems. In particular, the universal random matrix theory (RMT) statistics of the
quasi-energy spectra has been derived for some time-periodic (Floquet) circuits [13–23].
Quantum systems with underlying classical chaotic dynamics are conjectured to exhibit
level statistics identical to that of a suitably chosen random matrix ensemble [24], and the
RMT statistics has been used as one of the indicators for quantum chaos. For decades,
numerous efforts have been made to understand this Bohigas–Giannoni–Schmit (BGS)
quantum chaos conjecture theoretically [25–36]. Random quantum circuits, due to their
fine-tuned structure, allow exact analysis of the spectral statistics, which sheds light on
the underlying mechanism responsible for the emergence of RMT structure. In addition
to the RMT spectral statistics, random quantum circuits also exhibit other fundamen-
tal properties of many-body quantum chaotic systems, such as the decay of correlation
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functions of local observables [37,38], ballistic spreading of the local operators [13,39–44],
ballistic growth of the entanglement [13,38,40,45–51], and Gaussian distribution of the
matrix elements of observables in the energy eigenbasis (as expected from the eigenstate
thermalization hypothesis [52–54]) [55,56]. Experimentally, random quantum circuits can
be simulated in noisy intermediate-scale quantum (NISQ) devices [57] built with super-
conducting qubits [58,59], trapped ions [60,61], and Rydberg atoms [62], and some of these
generic features for quantum chaotic systems have been observed [63]. Due to their high
controllability, random quantum circuits provide a useful tool for exploring fundamental
principles underlying chaos and thermalization.

At a high level, the approaches to studying the conventional interacting many-body
systems can be broadly categorized as either (i) the microscopic approach, where the
specific Hamiltonian of a particular system is studied in an ab initio or bottom-up way
and where all microscopic details enter the calculation or (ii) the low-energy (usually field-
theory-based) approach, where only the universal low-energy features enter the theory
(e.g., gapless collective modes). In the context of the quantum circuits used to simulate
many-body systems, it was mostly the former type of approach that has been used to date.
In particular, theoretical studies of random quantum circuits relied heavily on fine-tuned
features of specific models. Here, we construct a field-theory approach, where universal
features of ergodic dynamics of a large family of random quantum circuits can be studied
in a unified way.

This field-theory method generalizes a supersymmetric sigma model developed
by Zirnbauer [64–66], Altland [67], and others, making use of a generalized Hubbard–
Stratonovich transformation, i.e., the color–flavor transformation [64–66,68]. This model is
similar to the sigma model for disordered electron systems [69,70] but is formulated for
systems modeled by an evolution operator or a scattering matrix rather than a Hamilto-
nian. In particular, it has been used to investigate the connection between the appearance
of universal RMT statistics and the underlying classical chaotic dynamics (i.e., the BGS
quantum chaos conjecture [24]) in generic quantum chaotic maps [65,66], localization in
quantum kicked rotors [67,71–73], eigenenergy and eigenfunction statistics of quantum
graphs [74–77], and the plateau transition in quantum Hall systems [78,79]. A review of
this model and a more complete list of references can be found in [80,81]. For quantum
circuits, we find it convenient to reformulate this sigma model in the replica formalism
(in contrast to supersymmetry), and use it to derive an ensemble-averaged effective field
theory.

The spectral statistics of the Floquet operator of time-periodic systems can be extracted
from this effective field theory. In contrast to the aforementioned model-specific methods,
the field-theoretical approach is applicable to a wide class of Floquet systems and is
particularly useful for random quantum circuits composed of local random gates. To
demonstrate the usefulness of this method, we apply it to study the spectral statistics of a
family of Floquet random quantum circuits, some of which are shown in Figures 1 and 2.
These Floquet circuits are composed of random unitary matrices which are drawn randomly
and independently from the circular unitary ensemble (CUE) and are applied to all pairs
of neighboring qudits at various time substeps during one period. Among these circuits,
the brickwork circuit depicted in Figure 1a was studied earlier by Chan, De Luca, and
Chalker in [13] (see also the related work in [16]), and the RMT spectral statistics were
derived in the limit of a large on-site Hilbert space dimension q → ∞, using the generalized
diagrammatic approach initially constructed in [82] for the Weingarten calculus [83–89].
Applying the field-theoretical approach, we rederive this result and also show that the
universal RMT statistics is preserved under an arbitrary reordering of the two-qudit gates,
for both periodic and open boundary conditions. In particular, we show that the effective
field theory describing the Floquet quantum circuit of this type is identical to that of the
CUE ensemble. Moreover, we consider higher-dimensional generalizations of this family
of Floquet circuits and find that their quasi-energy spectra all exhibit RMT statistics (see
Figure 2 for some 2D examples).
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Figure 1. Floquet operators of 1D Floquet random quantum circuits with different orderings of the
two-qudit unitary gates: (a) brickwork circuit [13], (c) staircase circuit, and (b) circuit obtained from
rearranging the local gates (blue boxes) in (a) or (b). The horizontal direction represents the space
coordinates, and each qudit is indicated by a black dot. The vertical direction shows the discrete
time evolution within one period, and different layers represent different substeps. Each blue box
represents an independent CUE matrix w(n,n+1) acting on the Hilbert space of two neighboring sites
n and n + 1. The two half-sized blue boxes at the boundaries constitute a random CUE matrix w(L,1)

(identical matrix) acting on the sites L and 1, for periodic (open) boundary condition, where L is
the total number of qudits. For any of these Floquet quantum circuits, which differ only by the
ordering of local gates and are subject to either periodic or open boundary condition, we prove that
the statistical properties of the quasi-energy spectra are identical to those of the CUE ensemble in the
limit of large on-site Hilbert space dimension q → ∞.

Figure 2. Floquet operators of 2D Floquet random quantum circuits with different orderings of the
two-qudit gate [(a–c)]. Within one period, two-qudit unitaries (orange boxes) drawn independently
from the CUE ensemble are applied to all pairs of neighboring qudits (black dots) in a 2D lattice at
various time substeps (layers). Each qudit is coupled to all of its neighbors at different substeps. The
half-sized box at the boundary combines with its neighbor on the opposite side to give a random
unitary (identical matrix) acting on the corresponding pair of qudits, for periodic (open) boundary
condition. We prove that, as in the 1D case (Figure 1), the quasi-energy spectrum for this type of
Floquet random quantum circuit with arbitrary ordering of the quantum gates exhibits universal
statistical properties described by the CUE ensemble in the limit of large on-site Hilbert space
dimension q → ∞, for both periodic and open boundary conditions. This statement extends to
arbitrary dimensions (see Appendix B).

The field-theoretical approach is not only useful in the study of the spectral statistics
of Floquet random quantum circuits but can also be applied to the analysis of more generic
properties of a wide class of random quantum circuits (which are not necessarily time-
periodic). To show this, within the same sigma model framework, we rederive the known
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results for Weingarten calculus, which has extensive applications in studies of quantum
circuits (e.g., in [13,39,40,43,45,90,91]). When considering a quantum circuit where all or
part of the quantum gates are random unitaries drawn from some ensembles with the
Haar probability, one usually encounters polynomial functions of the matrix elements
integrated over the relevant group with the Haar measure (or equivalently averaged
over the relevant ensemble). These types of Haar integrals can be computed using the
Weingarten calculus [82–88]. In the present paper, we rederive the results for the Haar
integrals of products of the matrix elements of a unitary matrix over the unitary group (i.e.,
moments of CUE random matrices) using the field-theoretical approach. The derivation
can be generalized to other compact Lie groups or compact symmetric spaces [86,92–94].

The rest of the paper is organized as follows. In Section 2, we introduce a standard
diagnostic of the statistics of quasi-energies of time-periodic systems and briefly review the
spectral statistical properties of the CUE ensemble. In Section 3, we present an effective
field theory which is formulated as a replica sigma model and can be used to investigate
the spectral statistics of a wide class of Floquet quantum systems. This effective field theory
is applied in Section 4 to study a family of Floquet random quantum circuits related to the
brickwork circuit in [13] by a reordering of the Haar random unitary gates (which couple
the neighboring qudits) and by the higher-dimensional generalization. We show that the
statistical properties of the quasi-energy spectra of the Floquet random quantum circuits
of this type are universally described by the CUE ensemble, for both the periodic and
open boundary conditions. Using the same sigma model method, we rederive the results
for the Weingarten calculus for the unitary group in Section 5. Finally, in Section 6, we
conclude with a discussion of directions for future studies. The appendices are devoted to
technical details. In Appendices A and B, we provide the calculation of the second- and
fourth-order moments of the Floquet operator for the family of Floquet random quantum
circuits studied in the current paper, in 1D and in higher dimensions, respectively. We
prove that, for arbitrary ordering of the two-qudit unitary gates, and in any dimension,
these moments are identical to those of the CUE ensemble. In Appendix C, we study a
non-interacting Floquet model and examine the higher-order fluctuations in the effective
field theory. We show that the quartic-order fluctuations of this non-interacting model
give rise to a larger contribution to the level correlation function compared with their
chaotic counterparts and are therefore no longer negligible. In Appendix D, we rederive
the asymptotic behavior of the Weingarten function for a unitary group of dimension q in
the large q → ∞ limit. Appendix E contains a derivation of the recursion relation for the
Weingarten function.

2. Diagnostic of Spectral Statistics of Time-Periodic Systems

For time-periodic (Floquet) systems, the statistics of the quasi-energy spectra serve
as a diagnostic of quantum chaos. The quasi-energies {θi} are the eigenphases of the time
evolution operator over one period U ( i.e., the Floquet operator): U|n〉 = eiθn |n〉. The
quasi-energy density can be expressed as

ρ(φ) =
N

∑
i=1

δ2π(φ − θi), (1)

where N is the Hilbert space dimension and δ2π(φ) represents the 2π-periodic delta func-
tion defined as δ2π(φ) = ∑∞

n=−∞ e−inφ/2π. For brevity, the subscript 2π will be omitted
from now on.

For an ensemble of random Floquet systems, the two-point correlation function of the
quasi-energy density is usually introduced as:

R2(φ1, φ2) =〈ρ(φ1)ρ(φ2)〉, (2)

where the angular bracket denotes the ensemble averaging. The correlation function,
R2(φ1, φ2) measures the probability of finding two quasi-energies at φ1 and φ2, and is one
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of the widely used probes of the spectral statistics. In the present paper, in addition to the
ensemble averaging, we also perform the averaging over the entire quasi-energy spectrum:

R̄2(Δφ) =
∫ 2π

0

dφ0

2π
R2(φ0 + Δφ/2, φ0 − Δφ/2). (3)

This averaging [80] is similar to the energy integration employed in [95,96] to derive a
ballistic sigma model for individual Hamiltonian systems, and it allows us to extract
information about the correlation function of an arbitrary pair of quasi-energy levels with
the separation Δφ, irrespective of their positions in the quasi-energy spectrum on the
Floquet circle [97].

The Fourier transform of the two-level correlation function is known as the spectral
form factor:

K(t) =
∫ 2π

0
dφ1

∫ 2π

0
dφ2R2(φ1, φ2)e−i(φ1−φ2)t = 2π

∫ 2π

0
d(Δφ) R̄2(Δφ)e−iΔφ t, (4)

which is equivalent to

K(t) =
〈∣∣Tr

(
Ut)∣∣2〉 =

〈
N

∑
i,j=1

e−it(θi−θj)

〉
. (5)

From this definition, one can immediately see that K(t) = K(−t) and K(t = 0) = N2.
Moreover, assuming no degeneracy in the quasi-energy spectrum, in the large time limit t →
∞, the off-diagonal (i �= j) terms in the summation in Equation (5) vanish upon ensemble
averaging, due to the random phases, and the SFF acquires the value of K(t → ∞) = N
(plateau).

Chaotic Floquet systems without time-reversal invariance are expected to exhibit the
same spectral statistics properties as the circular unitary ensemble (CUE) [81,98,99], which
is an ensemble of unitary matrices with the Haar probability measure. For the CUE
ensemble, the spectrum is statistically homogeneous, and the mean level density is given
by ρ̄ = N/2π. The two-level correlation function R2(φ1, φ2) depends only on the level
separation Δφ = φ1 − φ2 and is therefore equal to its energy-averaged value [99]:

R2(φ1, φ2) = R̄2(Δφ) = − 1
4π2

sin2(NΔφ/2)
sin2(Δφ/2)

+
N2

4π2 +
N
2π

δ(Δφ). (6)

At nonzero Δφ, the first term in the equation above corresponds to the connected part of
the two-level correlation function defined as

Rcon
2 (φ1, φ2) = 〈ρ(φ1)ρ(φ2)〉 − 〈ρ(φ1)〉〈ρ(φ2)〉. (7)

In the large N limit, after rescaling the quasi-energy ε = ρ̄Δφ and keeping it finite, the
connected two-level correlation function assumes a form identical to that of the Gaussian
unitary ensemble (GUE) [81,99]:

1
ρ̄2 Rcon

2 (Δφ) = −
(

sin(πε)

πε

)2

. (8)

From Equation (6), one finds that the SFF of the CUE ensemble acquires the form

K(t) = min(|t|, N) + N2δt,0. (9)

It exhibits a linear ramp until a plateau sets in at t = N. This linear ramp reflects the
repulsion between the quasi-energies and is expected to be a universal feature of quantum
chaotic systems with broken time-reversal symmetry.
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3. Replica Sigma Model for Generic Floquet Systems

In this section, we reformulate the sigma model initially constructed in [64–67] using
the replica trick instead of the supersymmetric method, and obtain an ensemble-averaged
effective field theory from which one can extract information about the statistical properties
of the quasi-energy spectra for generic time-periodic quantum systems.

3.1. Generating Function for Level Correlation Function

Consider now an ensemble of Floquet systems whose Floquet operators U are from an
arbitrary ensemble of unitary matrices. Note that, for many-body systems, U represents
the many-body Floquet operator that acts in the many-body Hilbert space. The statistical
properties of the quasi-energies of this ensemble can be obtained from the following
generating function using the replica trick

Z (R)(α, β) =

〈∫ 2π

0

dφ

2π

[
det
(

1 − αeiφU
)

det
(

1 − βe−iφU†
)]R
〉

. (10)

Here, α and β are two complex numbers and R represents the replica number which will
be set to zero (the replica limit) at the end of the calculation. Taking derivatives of the
generating function Z (R)(α, β) with respect to the complex variables α and β, multiplying
the result by αβ/R2, and then taking the replica limit R → 0, we find

C(α, β) ≡ lim
R→0

αβ

R2
∂2Z (R)(α, β)

∂α∂β
=

〈∫ 2π

0

dφ

2π
Tr
(

αeiφU
1 − αeiφU

)
Tr
(

βe−iφU†

1 − βe−iφU†

)〉
=

〈∫ 2π

0

dφ

2π

∞

∑
n,m=1

Tr
(

αeiφU
)n

Tr
(

βe−iφU†
)m
〉

=
∞

∑
n=1

K(n)(αβ)n.

(11)

In this equation, the powers of U and U† (i.e., n and m) need to be identical to have a
non-vanishing contribution to C(α, β) after the integration over φ.

The two-level correlation function R̄2(Δφ) can be obtained from C(α, β), which is
a weighted summation of the SFF K(n) (Equation (5)) at discrete time n, by setting
α = β = eiΔφ/2:

R̄2(Δφ) =
1

(2π)2

[
2 Re C(α = β = eiΔφ/2) + N2

]
. (12)

Here, we have used the fact that K(−n) = K(n) and K(0) = N2, with N being the
dimension of the Hilbert space. We note that the higher-order correlation functions of the
quasi-energy density can be evaluated in an analogous manner, making use of a similar
generating function [64].

3.2. Replica Sigma Model for Level Correlation Function

The generating function defined in Equation (10) can be expressed as a Grassmann
path integral:

Z (R)(α, β) =

〈∫ 2π

0

dφ

2π

∫
D(ψ̄, ψ) exp

{
−ψ̄+,u

i

(
δij − αeiφUij

)
ψ+,u

j

−ψ̄−,u
i

(
δij − βe−iφU†

ij

)
ψ−,u

j

}〉
.

(13)

The Grassmann field ψs,u
i carries three different indices: u = 1, 2, ..., R is the replica index,

i = 1, 2, ..., N labels the Hilbert space, and s = +/− distinguishes the contributions from

34



Entropy 2022, 24, 823

the forward (U) and backward (U†) evolution operators. Throughout the paper, we employ
the convention that repeated indices imply the summation.

Using the color–flavor transformation [64–66,68], the integration over the center phase
φ in Equation (13) can be converted into an integration over the RN × RN complex matrix
field Z (we call matrix Z a ‘field’ but note that it does not have time-dependence and carries
indices in the Hilbert and replica spaces only):

Z (R)(α, β) = c0

〈∫
D(ψ̄, ψ) exp

{
−ψ̄+,u

i ψ+,u
i − ψ̄−,u

i ψ−,u
i

}
×
∫

D(Z, Z†)det(1 + Z†Z)−2RN−1 exp
{

αψ̄+,u
i Zuv

ij U†
jj′ ψ

−,v
j′ − βψ̄−,u

i (Z†)uv
ij Ujj′ ψ

+,v
j′

}〉
= c0

〈∫
D(Z, Z†)det(1 + Z†Z)−2RN−1

×
∫

D(ψ̄, ψ) exp
{
−
[
ψ̄+ ψ̄−][ 1 −αZU†

βZ†U 1

][
ψ+

ψ−

]}〉
.

(14)

Here, Zuv
ij is a complex matrix which carries indices in both the replica space (labeled by u, v) and the

Hilbert space (labeled by i, j), and c0 is an indefinite unessential normalization factor, which can be
determined in the R → 0 limit.

Performing the Gaussian integration over ψ, we arrive at a sigma model representation of the
generating function

Z (R)(α, β) = c0

〈∫
D(Z, Z†)e−S[Z†,Z]

〉
,

S[Z†, Z] = (2RN + 1)Tr ln
(

1 + Z†Z
)
− Tr ln

(
1 + αβZU†Z†U

)
.

(15)

It is sometimes convenient to make the transformation

Q = TΛT−1, T =

[
1 −Z

Z† 1

]
, Λ =

[
1 0
0 −1

]
, (16)

after which the action becomes

S[Q] = −2RN Tr ln
(

QΛ + 1
2

)
− Tr ln

[
1
2

(
1 −
[

αU 0
0 βU†

])
QΛ +

1
2

(
1 +
[

αU 0
0 βU†

])]
. (17)

Similarly to the sigma model for a disordered system [69,70,100], the matrix field Q stays on the
manifold with the constraints Tr Q = 0 and Q2 = 1. Equation (15) (or equivalently Equation (17)) is a
replica version of the supersymmetric sigma model derived earlier to study the spectral statistics of
the circular ensembles and quantum chaotic maps [64–66,80].

3.3. Ensemble-Averaged Effective Theory
Starting from Equation (15), we then perform the ensemble averaging and derive an effective

field theory for the matrix field Z for any ensemble of Floquet systems. Note that Equation (15) can
be rewritten as

Z (R)(α, β) = c0

∫
D(Z, Z†)e−Seff[Z†,Z],

Seff[Z
†, Z] ≡ (2RN + 1)Tr ln

(
1 + Z†Z

)
− ln

〈
exp
[
Tr ln

(
1 + αβZU†Z†U

)]〉
.

(18)

Until now, no approximations have been made, and the expression above is exact. However, it
is difficult to perform the ensemble averaging in the second term in the action Seff, especially for
many-body systems whose Floquet operator has a complicated structure in the many-body Hilbert
space. To proceed, we expand Seff around the saddle point Z = 0 in powers of the fluctuation Z
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and carry out the ensemble averaging term by term. Up to the quartic order in Z, the action Seff is
given by

Seff[Z
†, Z] = S(2)

eff [Z
†, Z] + S(4)

eff [Z
†, Z] + O(Z6), (19a)

S(2)
eff [Z

†, Z] = ∑
i1,...,i4

tr
(

Z†
i1i2

Zi3i4

)[
(2RN + 1)δi2,i3 δi4,i1 − αβ

〈
Ui2i3 U†

i4i1

〉]
, (19b)

S(4)
eff [Z

†, Z] =− (αβ)2

2 ∑
i1,...,i8

tr
(

Z†
i1i2

Zi3i4

)
tr
(

Z†
i5i6

Zi7i8

)
×
[〈

Ui2i3 U†
i4i1

Ui6i7 U†
i8i5

〉
−
〈

Ui2i3 U†
i4i1

〉〈
Ui6i7 U†

i8i5

〉]
+

1
2 ∑

i1,...,i8

tr
(

Z†
i1i2

Zi3i4 Z†
i5i6

Zi7i8

)
×
[
−(2RN + 1)δi2,i3 δi4,i5 δi6,i7 δi8,i1 + (αβ)2

〈
Ui2i3 U†

i4i5
Ui6i7 U†

i8i1

〉]
.

(19c)

In the present paper, we use ‘tr’ to denote the trace operation that acts on the replica space only and

‘Tr’ to trace over both the replica and Hilbert spaces. We note that the last term in S(4)
eff (Equation (19c))

gives rise to a contribution of higher order in the replica number R compared with the remaining

term in S(4)
eff and is not important in the replica limit R → 0.

The specific forms of the moments of the Floquet operator in the effective theory are model
dependent. Once they are known, one can insert them into the expression for the effective action in
Equation (19) to obtain an effective field theory which encodes the information about the statistical
properties of the quasi-energy spectrum. This field-theoretical approach is therefore applicable to
a wide class of Floquet systems, including many-body and single-particle systems. One advantage
of this method, compared with other model-specific methods, is that it can be used to investigate
why or when universal statistical behaviors emerge. For Floquet random quantum circuits consisting
of independent local unitary gates, the moments of the many-body Floquet operator are given by
products of moments of the local unitaries, and therefore are usually not difficult to evaluate. This
makes the current field-theoretical approach especially useful for random quantum circuits with
local gates.

4. Application to Floquet Random Quantum Circuits

4.1. Floquet Random Quantum Circuits
As an example, we apply the effective field theory (Equation (19)) derived in the previous

section to study the spectral statistics of a family of Floquet quantum circuits composed of random
local unitary gates. Figures 1 and 2 show the Floquet operators of some of these Floquet random
quantum circuits, including the brickwork circuit (Figure 1a) studied earlier in [13]. The other two
circuits depicted in panels (b) and (c) of Figure 1 can be obtained from the brickwork circuit by
reordering the local gates. Some examples of the 2D generalization of such Floquet circuits are
depicted in Figure 2. We prove that Floquet random quantum circuits of this type, subject to either
periodic or open boundary condition, are all described by the same effective field theory as the CUE
ensemble in the limit of large on-site Hilbert space dimension, irrespective of the ordering of the local
gates and the dimensionality of the lattice of qudits.

We first consider the Floquet quantum circuits consisting of a 1D lattice chain of L qudits, each
of which contains q → ∞ internal states. The dimension of the many-body Hilbert space is N = qL.
The time evolutions of these Floquet circuits are discrete and time-periodic, and the evolutions over
one period contain 2 ≤ M ≤ L substeps (where M is model specific). For all these Floquet quantum
circuits, each qudit (labeled by an integer n = 1, 2, ..., L) is coupled to its neighbors on the left hand
side (at site n − 1) and the right hand side (at site n + 1) at two different substeps (labeled by integers
s(n−1,n) and s(n,n+1), respectively). We consider both the periodic and open boundary conditions, and
the qudit label n is defined modulo L for the periodic boundary condition. The local gate that couples
a pair of neighboring qudits at sites n and n + 1 is given by a q2 × q2 random CUE matrix w(n,n+1)

and is represented diagrammatically by a blue box in Figure 1. Unitary gates acting on different pairs
of neighboring qudits are independent and uncorrelated. We consider all possible orderings of these

quantum gates represented by different configurations of
{

1 ≤ s(n,n+1) ≤ M|n = 1, 2, ..., L′
}

with

constraint s(n,n+1) �= s(n−1,n). Here, L′ is defined as L′ = L for the periodic boundary condition and
L′ = L − 1 for the open boundary condition. The total number of substeps M is given by the total
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number of different integers in the set
{

s(n,n+1)
}

, and we consider all possible values of 2 ≤ M ≤ L′.

For the staircase circuit in Figure 1c, M = L′ and s(n,n+1) = n, while for the brickwork circuit in
Figure 1a, M = 2 and s(n,n+1) = 2 − (n mod 2) (for the open boundary condition or the periodic
boundary condition with even L).

For any of the Floquet random quantum circuits described above, the Floquet operator can be
expressed as

U = W(σ(1),σ(1)+1)W(σ(2),σ(2)+1)...W(σ(L′−1),σ(L′−1)+1)W(σ(L′),σ(L′)+1), (20)

where σ ∈ SL′ represents a permutation of numbers 1, 2, ..., L′. W is defined as

W(n,n+1) = w(n,n+1) ⊗ 1(n,n+1). (21)

Here, 1(n,n+1) represents an identical matrix operating in the Hilbert space of all sites except for
n and n + 1. As mentioned earlier, w(n,n+1) acts on the qudits at sites n and n + 1 and is drawn
randomly and independently from the CUE ensemble of dimension q2. We consider all possible
quantum circuits whose Floquet operator can be expressed in the form of Equation (20) for arbitrary
permutations σ ∈ SL′ . For example, σ is the identical permutation for the staircase circuit in Figure 1c,
while for the brickwork circuit in Figure 1a with the periodic boundary condition and even L, σ is
given by

σ(2k − 1) = k, σ(2k) = L/2 + k, 1 ≤ k ≤ L/2. (22)

In Appendix A, we prove that the Floquet operator U given by Equation (20) with arbitrary
permutation σ ∈ SL′ obeys the conditions:〈

UijU†
j′i′

〉
=

1
N

δii′ δjj′ , (23a)〈
Ui1j1

Ui2j2
U†

j′1i′1
U†

j′2i′2

〉
=

1
N2

(
δi1i′1

δj1j′1
δi2i′2

δj2j′2
+ δi1i′2

δj1j′2
δi2i′1

δj2j′1

)
. (23b)

Here, the L-dimensional vector i = (i(1), i(2), ..., i(L)) labels the many-body state of the circuits, and
its n-th component i(n) = 1, 2, ..., q indexes the single-particle state of the n-th qudit. We note that
Equation (23a) holds for arbitrary q, while Equation (23b) is derived in the limit of q → ∞.

The above discussion can be straightforwardly generalized to higher-dimensional Floquet
quantum circuits with similar configurations. In particular, let us consider now a D-dimensional
cubic lattice of qudits, with L sites in each direction. The single-particle (many-body) Hilbert space
dimension is q → ∞ (N = qLD

). The time evolution is again discrete and periodic, and is composed
of local two-qudit gates that couple separately all pairs of neighboring qudits. During one period,
each qudit is coupled to all of its neighboring qudits at different substeps by different local unitary
gates drawn randomly and independently from the CUE ensemble of dimension q2. For this type of
D-dimensional Floquet circuit, with any possible ordering of these local gates and with either periodic
or open boundary condition, we prove that the Floquet operator U still satisfies Equation (23). In
this case, i can be considered as an LD-dimensional vector whose component i(n) = 1, 2, ..., q labels
the single-particle state of the qudit n in the D-dimensional lattice. The derivation is relegated to
Appendix B.

Equations (23a) and (23b) are also obeyed if U is drawn randomly from a CUE ensemble of
dimension N → ∞. As a result, the effective field theory (Equation (19)) for the Floquet quantum
circuits under consideration is equivalent to that of the CUE ensemble of dimension N, and the
two-level correlation functions for the current models are given by the CUE level correlation function
in Equation (6).

4.2. Quadratic Fluctuations
In the following, we present the detailed derivation of the two-level correlation function R̄2(Δφ)

for the quasi-energies of the Floquet random quantum circuits described above (or equivalently the
CUE ensemble of the same dimension N), using the effective field theory (Equation (19)) and the
moments of the Floquet operator (Equation (23)).
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Substituting Equation (23a) into the quadratic-order effective action S(2)
eff in Equation (19b), we

obtain

S(2)
eff =(2RN + 1) ∑

i1,i2

tr
(

Z†
i1i2

Zi2i1

)
− αβ

N ∑
i1,i2

tr
(

Z†
i1i1

Zi2i2

)
. (24)

We now divide Z into the diagonal component Xii ≡ Zii and the off-diagonal component Yij ≡ Zij

(for i �= j) in the Hilbert space and Fourier transform the diagonal component Xjj with respect to j:

X(k) = ∑
j

Xjje−i2πk·j/q. (25)

Here, k is an LD dimensional vector and the summation over each component runs over k(n) =

0, 1, ..., q − 1. In terms of X(k) and Yij, the effective action S(2)
eff can be rewritten as

S(2)
eff = (2RN + 1)

1
N ∑

k

tr
(

X†(k)X(k)
)
− αβ

N
tr
(

X†(0)X(0)
)

+ (2RN + 1) ∑
i1 �=i2

tr
(

Y†
i1i2

Yi2i1

)
.

(26)

From the equation above, one finds that the bare propagator for X(k = 0) acquires the form〈
Xuv(0)(X†)v′u′

(0)
〉

0
= δuu′ δvv′

N
(2RN + 1)− αβ

. (27)

Here, the angular bracket with subscript 0 represents the averaging over the Gaussian fluctuation

of matrix Z governed by the action S(2)
eff (Equation (26)). Taking the replica limit R → 0 and setting

α = β to eiΔφ/2, the bare propagator for X(0) becomes〈
Xuv(0)(X†)v′u′

(0)
〉

0
= δuu′ δvv′

N
1 − eiΔφ

, (28)

which diverges when Δφ → 0. The corresponding mode is massless.
By contrast, the propagators for X(k �= 0) and Yij are given by, respectively,〈

Xuv(k)(X†)v′u′
(k′)
〉

0
= δuu′ δvv′ δk,k′

N
2RN + 1

,〈
Yuv

ij (Y†)v′u′

j′i′

〉
0
= δuu′ δvv′ δii′ δjj′

1
2RN + 1

.
(29)

X(k �= 0) and Yij are therefore massive, and give rise to an α-, β-independent contribution to the
generating function Z (R) at the quadratic order.

In summary, the Z fluctuations can be divided into two categories: the massless fluctuation
X(0) and the massive fluctuations X(k �= 0) and Yij. The massive modes X(k �= 0) and Yij contribute
a nonessential constant to the generating function, while the soft mode X(0) governs the spectral
statistics [36,101].

4.3. Quartic Fluctuations
We now investigate the contribution to the self-energy from the quartic-order fluctuations

(Equation (19c)). Note that the last term in S(4)
eff (Equation (19c)) does not contribute in the replica

limit R → 0 due to its special structure in the replica space. We can therefore focus on the first term in

S(4)
eff , which can be expressed in terms of X(k) and Y as

S(4−1)
eff = − (αβ)2

2N4 ∑
k1,k2

tr
(

X†(k1)X(k2)
)

tr
(

X†(−k1)X(−k2)
)

− (αβ)2

2N2 ∑
i1 �=i2,i3 �=i4

tr
(

Y†
i1i2

Yi3i4

)
tr
(

Y†
i2i1

Yi4i3

)
− (αβ)2

2N3 ∑
i1 �=i2

∑
k,k′

[
tr
(

Y†
i1i2

X(k)
)

tr
(

Y†
i2i1

X(−k)
)
+ tr
(

X†(−k)Yi1i2

)
tr
(

X†(k)Yi2i1

)]
.

(30)
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Here, we have used Equation (23b). Comparing with the quadratic action S(2)
eff in Equation (26),

one can see that the quartic action S(4−1)
eff is of higher order in 1/N. Note that this counting does not

hold for nonergodic circuits, and the higher-order fluctuations become important (see Appendix C).
The self-energies for the X and Y components from the quartic interactions are given by,

respectively,

(ΣX)
ab,ba(k, k) =

(αβ)2

N4

〈
Xab(−k)(X†)ba(−k)

〉
0
=

(αβ)2

N3
1

1 − αβδk,0
,

(ΣY)
ab,ba
i1i2,i2i1

=
(αβ)2

N2

〈
Yab

i2i1
(Y†)ba

i1i2

〉
0
=

(αβ)2

N2 .

(31)

Here, we have taken the replica limit and ignored the self-energy corrections that vanish in the limit
R → 0. From the equation above, we can see that the self-energy from the quartic-order fluctuations
is negligible in the large N limit for the massive modes X(k �= 0) and Y. For the massless mode
X(0), the self-energy from the quartic interactions can be ignored if we consider an energy separation
Δφ  1/N that is not too small. To recover the fine structure of the nearby quasi-energy levels,
higher-order fluctuations of X(0) are needed.

We note that, for integrable systems, fluctuations beyond the quadratic order are no longer
negligible, even when the quasi-energy separation Δφ being probed is much larger than the mean
level spacing. In Appendix C, we consider a non-interacting Floquet model whose single-particle
dynamics within one period is generated by random CUE matrices. In particular, the single-particle
Floquet operator for each particle is independently drawn from the CUE ensemble. We find that the
action for the quadratic fluctuations of this non-interacting model is identical to that of the Floquet
random quantum circuits considered in this section (or equivalently the CUE ensemble), and is
given by Equation (26). However, the quartic fluctuations are governed by a different action which,
compared with its chaotic counterpart in Equation (30), leads to a much larger contribution to the
self-energy of the Z matrix field. Unlike the chaotic model, the higher-order fluctuations become
important for this non-interacting model.

4.4. Two-Level Correlation Function
For the chaotic Floquet random quantum circuits under consideration here, we can focus on

the quadratic fluctuations’ contribution and neglect the higher-order corrections. C(α, β), defined in
Equation (11), is then approximately given by

C(α, β) = lim
R→0

αβ

R2 c1

〈
1
N

tr
(

X†(0)X(0)
)
+

αβ

N2 tr2
(

X†(0)X(0)
)〉

0
=

αβ

(1 − αβ)2 . (32)

Here, the overall coefficient c1 contains the unessential contribution from the massive modes and its
value in the replica limit is determined from the fact that limR→0 Z(R)(α, β) = 1. Using Equation (12),
we obtain the result for the two-level correlation function

R̄2(Δφ) = − 1
8π2

1
sin2(Δφ/2)

+
N2

4π2 . (33)

It is easy to see that 〈Tr U〉 = 0 for the Floquet circuits under consideration. Therefore, the average
quasi-energy density for any of these circuits is homogeneous and given by ρ̄ = N/2π. This
also means that the first term in Equation (33) corresponds to the connected part of the two-level
correlation function Rcon

2 (Δφ �= 0) defined in Equation (7). We emphasize that this equation applies
to all the Floquet quantum circuits under consideration.

Comparing Equation (33) with the exact CUE result in Equation (6), one can see that the smooth
part of R̄2(Δφ) is recovered, while an oscillatory term proportional to cos(NΔφ) is missing. To recover
the oscillatory term or to extract the behavior of R̄2(Δφ) at small energy separations Δφ � 1/N,
nonperturbative information about higher-order fluctuations is needed. This may be obtained by
consideration of non-standard saddle points (see [80]), similar to the calculation of the level correlation
function for the Hamiltonian systems described by the Gaussian ensembles [102–105].

5. Weingarten Calculus

To show that the field-theoretical approach described above provides access not only to the
spectral statistics but also to other generic properties of quantum circuits, in this section we rederive
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the known results for the Weingarten calculus, which has been employed extensively in studies of
quantum circuits. Let us now consider a Haar integral of a product of the matrix elements of a unitary
matrix U over the unitary group in q dimensions U (q):

I =
∫
U (q)

dUUi1 j1 Ui2 j2 ...Uip jp U†
j′1i′1

U†
j′2i′2

...U†
j′p′ i

′
p′

=

〈
Ui1 j1 Ui2 j2 ...Uip jp U†

j′1i′1
U†

j′2i′2
...U†

j′p′ i
′
p′

〉
CUE

,
(34)

where dU denotes the normalized (
∫
U (q) dU = 1) Haar measure. This integral can be interpreted as

the product of the unitary matrix elements averaged over the CUE ensemble, denoted by the angular
bracket with subscript CUE. In this section and in Appendices D and E, we use U to denote a random
CUE matrix (i.e., a Haar distributed random unitary matrix).

It has been found that this integral I can be expressed in terms of the Weingarten function [82–88]:

I = δp,p′ ∑
τ,σ∈Sp

Wg(τ−1σ)
p

∏
k=1

δik ,i′
σ(k)

δjk ,j′
τ(k)

. (35)

Here, the double summation runs over all permutations τ, σ ∈ Sp of the integers 1, 2, ..., p, and the
Weingarten function Wg(τ−1σ) depends only on the cycle structure of the product τ−1σ. More
specifically, the permutation τ−1σ can be divided into m disjoint cycles:(

P(1)
1 → P(1)

2 → ... → P(1)
c1

)(
P(2)

1 → P(2)
2 → ... → P(2)

c2

)
...
(

P(m)
1 → P(m)

2 → ... → P(m)
cm

)
. (36)

Here,
{

P(l)
k

}
are different integers from the set of integers under the permutation {1, 2, ..., p}, and

they satisfy P(l)
k = (τ−1σ)k−1(P(l)

1 ) (for k ≤ cl) and P(l)
1 = (τ−1σ)P(l)

cl . The Weingarten function
Wg(τ−1σ) depends only on the lengths of these disjoint cycles {ck|k = 1, 2, ..., m}, which obey the
constraint ∑m

k=1 ck = p, irrespective of their order. In the following, we will denote the Weingarten

function of the permutation τ−1σ given by Equation (36) as Wg(τ−1σ) = V(p)
c1,c2,...,cm .

The Weingarten function can be uniquely determined by the recursions relation [82,83]:

qV(p+1)
c1,...,cm ,1 +

m

∑
s=1

csV(p+1)
c1,...,cs−1,cs+1,cs+1,...,cm

= V(p)
c1,...,cm , (37a)

qV(p)
c1,...,cm +

c1−1

∑
c=1

V(p)
c1−c,c,c2,...,cm

+
m

∑
s=2

csV(p)
c1+cs ,c2,...,cs−1,cs+1,...,cm

= 0. (37b)

Here, {ci} represent an arbitrary set of m positive integers that satisfy ∑m
k=1 ck = p in Equation (37a),

and in Equation (37b) an additional constraint c1 ≥ 2 is imposed.
In the large q → ∞ limit [82], the Weingarten function of the identical permutation id is given by

Wg(id) = V(p)
1,1,...,1 = q−p + O(q−p−2). For all the remaining permutations, the Weingarten function

V(p)
c1,c2,...,cm = O(qm−2p) is of higher order in 1/q (since the number of disjoint cycles m < p). Using

these results, one can easily see that Equation (23) is obeyed by the CUE random matrix U of
dimension N in the large N limit.

These results for the Weingarten calculus have been obtained previously, using various meth-
ods [82,83,85,86,88,89]. In the following, we rederive these results using a field-theoretical method
similar to the one employed earlier in the analysis of the statistics of quasi-energy spectra. We believe
that this field-theoretical approach can be straightforwardly generalized and can serve as a general
framework for studying quantum circuits.
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5.1. Sigma Model Derivation for the Weingarten Calculus
To begin with, we rewrite the integral I in Equation (34) as a fermionic path integral

I =
∫
U (q)

dU
∫

D(ψ̄, ψ)e−SU [ψ̄,ψ]F[ψ̄, ψ],

SU [ψ̄, ψ] =
R′

∑
u=1

q

∑
l,k=1

(
ψ̄+,u

k Uklψ
+,u
l + ψ̄−,u

k U†
klψ

−,u
l

)
,

F[ψ̄, ψ] =
p

∏
k=1

(
ψ−,k

ik
ψ̄−,k

jk

) p′

∏
l=1

(
ψ+,l

j′l
ψ̄+,l

i′l

)
.

(38)

Here, the fermionic field ψs,u
k carries three indices that label, respectively, the component associated

with U/U† (s = +/−), the replica space (u = 1, 2, ..., R′), and the Hilbert space in which the
unitary matrix U acts (k = 1, 2, ..., q). Note that here, the replica number R′ is an integer given by
R′ = max(p, p′) and, unlike in the earlier calculation of the level correlation function, it does not
need to be set to zero at the end.

In Equation (38), we have made use of Wick’s theorem and the following identities〈
ψ−,u

iu
ψ̄−,v

jv

〉
SU

= δuvUiu ju ,
〈

ψ+,u
j′u

ψ̄+,v
i′v

〉
SU

= δuvU†
j′ui′u

,〈
ψ−ψ̄+〉

SU
=
〈
ψ+ψ̄−〉

SU
= 0.

(39)

The angular bracket with the subscript SU represents the functional averaging over the fermionic
field ψ with the weight e−SU [ψ̄,ψ]. Note that in Equation (38), fermions with different replica indices
(u) or U/U† indices (s = ±) are uncoupled. In fact, the replica space is introduced here such that,
when computing the expectation value of 〈F[ψ̄, ψ]〉SU

using the Wick contraction, the fermionic field
ψ∓ with index ik (j′k) has to pair with ψ̄∓ with index jk (i′k), as they share the same replica index k,
leading to the factor Uik jk (U†

j′k i′k
) in the integrand of I.

Applying the color–flavor transformation [64–66,68], the Haar integral over the unitary matrix
U in Equation (38) can be converted into an integral over a complex R′ × R′ matrix field Z:

I =z1

∫
D(Z, Z†)det(1 + Z†Z)−(2R′+q)

∫
D(ψ̄, ψ)e−SZ [ψ̄,ψ]F[ψ̄, ψ],

=z1

∫
D(Z, Z†)det(1 + Z†Z)−(2R′+q) det(−ZZ†)q〈F[ψ̄, ψ]〉SZ

,
(40)

where

SZ[ψ̄, ψ] =
R′

∑
u,v=1

q

∑
l=1

(
−ψ̄+,u

l Zuvψ−,v
l + ψ̄−,u

l Z†
uvψ+,v

l

)
,

z−1
1 =

∫
D(Z, Z†)det(1 + Z†Z)−(2R′+q) det(−ZZ†)q.

(41)

Note that here the matrix field Z acts in the replica space only. In the second equality of Equation (40),
we have integrated out the fermions governed by the new action SZ[ψ̄, ψ], and the angular bracket
with the subscript SZ represents the functional averaging with the weight exp(−SZ[ψ̄, ψ]). The
normalization constant z1 is determined from the fact that I = 1 if we set F = 1.

After the color–flavor transformation, fermions with different replica indices interact through
the matrix field Z, while those with different Hilbert space indices become uncoupled. The fermionic
propagator now acquires the form〈

ψ−,u
iu

ψ̄+,v
i′v

〉
SZ

= −δiui′v Z−1
uv ,

〈
ψ+,u

j′u
ψ̄−,v

jv

〉
SZ

= δj′u jv (Z†)−1
uv ,〈

ψ−ψ̄−〉
SZ

=
〈
ψ+ψ̄+〉

SZ
= 0.

(42)

Making use of these results, we obtain

〈F[ψ̄, ψ]〉SZ
=δp,p′ ∑

τ,σ∈Sp

sgn(τ−1σ)
p

∏
k=1

δik ,i′
σ(k)

δjk ,j′
τ(k)

Z−1
kσ(k)(Z†)−1

τ(k)k. (43)
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Inserting Equation (43) into Equation (40), and applying the transformation

W = Z−1, (44)

whose Jacobian leads to a contribution of 2R′ tr ln(WW†) to the action, we find

I = δp,p′ ∑
τ,σ∈Sp

g(σ, τ)
p

∏
k=1

δik ,i′
σ(k)

δjk ,j′
τ(k)

. (45)

Here, g(σ, τ) is given by

g(σ, τ) =
〈

G[W, W†; σ, τ]
〉

W
≡
∫
D(W, W†)e−Sw [W,W† ]G[W, W†; σ, τ]∫

D(W, W†)e−Sw [W,W† ]
,

Sw[W, W†] = (2R′ + q) tr ln
(

1 + WW†
)

,

G[W, W†; σ, τ] = sgn(τ−1σ)
p

∏
k=1

Wkσ(k)W
†
τ(k)k.

(46)

The angular bracket with subscript W represents the averaging over W with the action Sw[W, W†].
Using this field-theoretical approach, the Haar integral over the unitary matrix U, whose matrix

elements are highly correlated due to the constraint UU† = 1, has been transformed to an integration
over the complex matrix W governed by the action Sw. Note that Equation (45) is equivalent to
the known result Equation (35) if g(σ, τ) = Wg(τ−1σ). In the following, we will show that g(σ, τ),
defined by Equation (46), depends only on the cycle structure of τ−1σ and is indeed the Weingarten
function Wg(τ−1σ).

5.2. General Properties of the Weingarten Function
If we apply the following transformation in Equation (46)

Wij → Wiχ(j), W†
ij → W†

χ(i)j, (47)

where χ ∈ Sp represents an arbitrary permutation of p numbers, the action Sw[W, W†] remains
invariant, while G[W, W†; σ, τ] transforms to G[W, W†; χσ, χτ]. This proves that g(σ, τ) obeys the
condition

g(σ, τ) = g(χσ, χτ), (48)

for an arbitrary permutation χ ∈ Sp. Setting χ to τ−1, one can immediately see that g is a function of
τ−1σ only.

In an analogous way, one can also prove that g(σ, τ) depends only on the cycle structure of
τ−1σ:

g(τ, σ) = V(p)
c1,c2,...,cm , (49)

where m is the total number of disjoint cycles in τ−1σ and ci is the length of the i-th cycle. Rearranging
the W and W† terms in G[W, W†; σ, τ], we can rewrite g(σ, τ) as

g(σ, τ) = sgn(τ−1σ)

〈
m

∏
k=1

(
ck

∏
l=1

W
P(k)

l σ(P(k)
l )

W†
σ(P(k)

l )P(k)
l+1

)〉
W

= g(τ−1σ, id) =(−1)p−m

〈
m

∏
k=1

(
ck

∏
l=1

W
P(k)

l P(k)
l+1

W†
P(k)

l+1P(k)
l+1

)〉
W

.

(50)

Here, the integers
{

P(k)
l

}
denote the cycle structure of τ−1σ (Equation (36)), and they satisfy P(k)

l =

(τ−1σ)l−1(P(k)
1 ). We introduced here the notation that P(k)

l = P(k)
(l mod ck)

. In the second equality, we

have used sgn(τ−1σ) = (−1)p−m as well as Equation (48).
Note that the action Sw[W, W†] is invariant under the transformation

Wij → Wχ(i)χ(j), W†
ij → W†

χ(i)χ(j), (51)
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for arbitrary χ ∈ Sp. We now apply this transformation and choose the permutation χ, defined by

χ(P(k)
l ) = bk + l, (52)

where bk = ∑k−1
h=1 ch for k ≥ 2 and b1 = 0. After this transformation, g(σ, τ) becomes

g(σ, τ) =(−1)p−m

〈
m

∏
k=1

(
ck

∏
l=1

Wbk+l,bk+(l+1 mod ck)W
†
bk+(l+1 mod ck),bk+(l+1 mod ck)

)〉
W

. (53)

This equation shows that g(σ, τ) depends only on the lengths {ci|i = 1, ..., m} of the disjoint cycles of
τ−1σ.

Using these results, we prove in Appendix E that the function g(σ, τ) defined in Equation (46)
satisfies the recursion relation (Equation (37)) and therefore is given by the Weingarten function
g(σ, τ) = Wg(τ−1σ) for p ≤ q. See [83] for a discussion about extrapolating the results for the case
of p ≤ q to p > q. In Appendix D, we also provide the derivation for the asymptotic behavior of the
Weingarten function g(σ, τ) in the large q → ∞ limit.

6. Conclusions

In summary, we derived an effective field theory which can be employed to investigate the
spectral statistics of the Floquet operator for a large class of Floquet quantum systems. We applied it
to a family of Floquet random quantum circuits whose Floquet operators are composed of two-qudit
random unitaries acting on pairs of neighboring qudits in a D-dimensional lattice. Universal RMT
statistics was found in the limit of infinite local Hilbert space dimensions, irrespective of the ordering
of local gates, the dimensionality of the qudit lattice, and the choice of the boundary condition (open
or periodic). This field-theoretical approach was also used to rederive the known results for the
Weingarten calculus, which is a method of computing Haar integrals of polynomial functions of the
matrix elements.

The wide applicability of the Weingarten calculus in quantum circuit studies suggests that this
field-theoretical approach may be generalized to investigate other fundamental features of quantum
many-body systems, which is a direction for future work. In particular, the field theory may be useful
for the investigation of phase transitions in quantum circuits, such as the measurement-induced
phase transition [106–109], which arises from the competition between the unitary dynamics and
the projective measurements. A renormalization group analysis of the field theory may be available
to carefully examine this phase transition. Moreover, a mapping has been found between the
entanglement growth (or the operator spreading in the high-dimensional case) in random quantum
circuits and the classical statistical mechanics problem of the surface growth in the Kardar–Parisi–
Zhang universality class [39,45]. The field-theoretical approach may provide some insight into this
mapping in a more generic setting.

In the present paper, we focus on the Weingarten calculus for the unitary group, having in mind
random quantum circuits whose local gates are given by the CUE random matrices. The derivation
can be immediately generalized to other compact groups [86,92–94], making use of the color–flavor
transformation for the corresponding group [68]. This generalization may have direct applications in
random quantum circuits with different symmetry classes [43]. Moreover, as a simple example, the
effective field theory given by Equation (19) was employed to study the spectral statistics of Floquet
quantum circuits whose local gates are drawn from the CUE ensemble. In fact, it is applicable to
quantum circuits with random gates drawn from various ensembles of unitary matrices. It is a useful
analytical tool to study the Thouless energy—the energy separation below which the RMT statistics
appears—and also to look for the putative transitions between the ergodic phase and many-body
localization phase in various Floquet random quantum circuit models [14,17,18,90,110,111].

The replica trick is used in the present paper to derive the sigma model for generic Floquet
quantum systems, which was originally constructed in the supersymmetric formalism [64–67]. One
advantage of using the replica method is that many terms in the action for higher-order fluctuations
are irrelevant in the replica limit and therefore can be omitted. However, unlike the supersymmetric
calculation, which allows for a nonperturbative analysis [64,70], the current replica calculation is
perturbative and cannot recover the oscillating term in the level correlation function. Consideration
of non-standard saddle points [80,102–104] may recover the missing oscillating term and is left for a
future study.
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Appendix A. Derivation of the Moments of Floquet Operator

In this appendix, we prove that the Floquet operator U given by Equation (20) with arbitrary
permutation σ ∈ SL′ follows the conditions given by Equations (23a) and (23b), in the limit q → ∞.
In other words, the moments of the Floquet operator U for any Floquet random quantum circuit that
is related to the brickwork circuit studied in [13] by reordering the local quantum gates within one
period are given by Equation (23). We make use of the fact that the moments of the Floquet operator
U are given by the product of the moments of the independent random CUE matrices w(n,n+1), which
also take the form of Equation (23) after the replacement N → q2 and i → (i(n), i(n+1)). Here, q2 and
(i(n), i(n+1)) are, respectively, the dimension and label of the two-qudit Hilbert space in which the
CUE matrix w(n,n+1) operates.

For any Floquet operator U that takes the form of Equation (20), we can express its second-order

moment
〈

UijU†
j′i′

〉
as

〈
UijU†

j′i′

〉
= ∑

k,k′

L′

∏
n=1

〈
w(n,n+1)

a(n) ,b(n+1) ;c(n) ,d(n+1) (w
(n,n+1))†

c′(n) ,d′(n+1) ;a′(n) ,b′(n+1)

〉

= ∑
k,k′

L′

∏
n=1

1
q2 δa(n) ,a′(n)δb(n+1) ,b′(n+1)δc(n) ,c′(n)δd(n+1) ,d′(n+1) .

(A1)

As earlier, vector i labels the many-body state of all the qudits in the circuit and its n-th element i(n)

indexes the single-particle state of the n-th qudit. In addition, k = (k(1), ..., k(L)) (k = (k(2), ..., k(L−1)))
is an L-dimensional ((L − 2)-dimensional) vector for the periodic (open) boundary condition. k(n)

labels the single-particle state at site n at an intermediate substep, and one has to sum over all possible
states k(n) = 1, ..., q. Furthermore, a(n) (b(n+1)) and c(n) (d(n+1)) are, respectively, the row and column

indices labeling the Hilbert space of the site n (n + 1) for the CUE random matrix w(n,n+1)
a(n) ,b(n+1) ;c(n) ,d(n+1) ,

and they are defined as follows. Note first that only the unitaries w(n,n+1) and w(n−1,n) act on the

qudit at site n, and
{

a(n), b(n), c(n), d(n)
}

depend on the ordering of these two unitaries. In particular,

if σ−1(n) < σ−1(n − 1) (i.e., unitary w(n,n+1) is applied before w(n−1,n)), we have

a(n) = i(n), c(n) = k(n), b(n) = k(n), d(n) = j(n), (A2)

and otherwise,

a(n) = k(n), c(n) = j(n), b(n) = i(n), d(n) = k(n). (A3)

For the periodic boundary condition, Equations (A2) and (A3) apply to arbitrary site n, which is
defined modulo L. By contrast, for the open boundary condition, these two equations hold for
1 < n < L. At the boundaries n = 1, L, we instead have

a(1) = i(1), c(1) = j(1), b(L) = i(L), d(L) = j(L). (A4)

The row and column indices for (w(n,n+1))† are defined in the same way, and {a′(n), b′(n), c′(n),
d′(n)} are related to

{
i′(n), j′(n), k′(n)

}
in exactly the same way as

{
a(n), b(n), c(n), d(n)

}
are related to{

i(n), j(n), k(n)
}

.

For both the cases of σ−1(n) < σ−1(n − 1) and σ−1(n) > σ−1(n − 1), {a(n), b(n), c(n), d(n)} are
related with

{
i(n), j(n), k(n), k(n)

}
by a permutation, and the identity

δa(n) ,a′(n)δb(n) ,b′(n)δc(n) ,c′(n)δd(n) ,d′(n) = δi(n) ,i′(n)δj(n) ,j′(n) (δk(n) ,k′(n) )
2, (A5)
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is always true for the periodic boundary condition (and for open boundary condition when 1 <
n < L). Making use of this property in Equation (A1), we find that the second-order moment of the
Floquet operator for the periodic boundary condition is given by

〈
UijU†

j′i′

〉
=

1
q2L ∑

k,k′

L

∏
n=1

δi(n) ,i′(n)δj(n) ,j′(n) (δk(n) ,k′(n) )
2 =

1
qL

L

∏
n=1

δi(n) ,i′(n)δj(n) ,j′(n) . (A6)

The second-order moment of U for the open boundary condition can be evaluated in a similar way:

〈
UijU†

j′i′

〉
=

1
q2(L−1)

δi(1) ,i′(1)δj(1) ,j′(1)δi(L) ,i′(L)δj(L) ,j′(L) ∑
k,k′

L−1

∏
n=2

δi(n) ,i′(n)δj(n) ,j′(n) (δk(n) ,k′(n) )
2

=
1
qL

L

∏
n=1

δi(n) ,i′(n)δj(n) ,j′(n) .

(A7)

As a concrete example, consider the staircase circuit depicted in Figure 1c with the periodic

boundary condition. In this case,
{

a(n), b(n), c(n), d(n)
}

are given by Equation (A3), and the second-
order moment for the Floquet operator U is given by〈

UijU†
j′i′

〉
= ∑

k,k′

〈
w(1,2)

i(1) ,i(2) ;k(1) ,k(2) (w
(1,2))†

k′(1) ,k′(2) ;i′(1) ,i′(2)

〉

×
L−1

∏
n=2

〈
w(n,n+1)

k(n) ,i(n+1) ;j(n) ,k(n+1) (w
(n,n+1))†

j′(n) ,k′(n+1) ;k′(n) ,i′(n+1)

〉
×
〈

w(L,1)
k(L) ,k(1) ;j(L) ,j(1) (w

(L,1))†
j′(L) ,j′(1) ;k′(L) ,k′(1)

〉
=

1
qL δi,i′δj,j′ .

(A8)

Reordering the two-qudit quantum gates changes the row and column labels of w(n,n+1) and
(w(n,n+1))† in the equation above but does not affect the final result. Note that this result for the

second-order moment
〈

UijU†
j′i′

〉
is valid for arbitrary q.

We now evaluate the fourth-order moment of U and consider the q → ∞ limit for simplicity.
This can be expressed as

〈
Ui1j1

Ui2j2
U†

j′1i′1
U†

j′2i′2

〉
= ∑

k1,k′
1,k2,k′

2

L′

∏
n=1

〈
w(n,n+1)

a(n)1 ,b(n+1)
1 ;c(n)1 ,d(n+1)

1

w(n,n+1)

a(n)2 ,b(n+1)
2 ;c(n)2 ,d(n+1)

2

× (w(n,n+1))†
c′(n)1 ,d′(n+1)

1 ;a′(n)1 ,b′(n+1)
1

(w(n,n+1))†
c′(n)2 ,d′(n+1)

2 ;a′(n)2 ,b′(n+1)
2

〉

= ∑
k1,k′

1,k2,k′
2

L′

∏
n=1

1
q4

2

∑
s(n)=1

⎛⎜⎜⎜⎜⎜⎜⎜⎝

δs(n) ,1δ
a(n)1 ,a′(n)1

δ
b(n+1)

1 ,b′(n+1)
1

δ
c(n)1 ,c′(n)1

δ
d(n+1)

1 ,d′(n+1)
1

× δ
a(n)2 ,a′(n)2

δ
b(n+1)

2 ,b′(n+1)
2

δ
c(n)2 ,c′(n)2

δ
d(n+1)

2 ,d′(n+1)
2

+δs(n) ,2δ
a(n)1 ,a′(n)2

δ
b(n+1)

1 ,b′(n+1)
2

δ
c(n)1 ,c′(n)2

δ
d(n+1)

1 ,d′(n+1)
2

× δ
a(n)2 ,a′(n)1

δ
b(n+1)

2 ,b′(n+1)
1

δ
c(n)2 ,c′(n)1

δ
d(n+1)

2 ,d′(n+1)
1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

(A9)

Here, k1,2 and k′
1,2, like k and k′, are L-dimensional ((L − 2)-dimensional) vectors whose components

label the intermediate single-particle states for all sites (sites in the bulk of the lattice 1 < n < L) for the

periodic (open) boundary condition. In addition,
{

a(n)1/2, b(n)1/2, c(n)1/2, d(n)1/2

}
are related to

{
i(n)1/2, j(n)1/2, k(n)1/2

}
in the same way as

{
a(n), b(n), c(n), d(n)

}
are related to

{
i(n), j(n), k(n)

}
(see Equations (A2)–(A4)), and

similarly for
{

a′(n)1/2 , b′(n)1/2 , c′(n)1/2 , d′(n)1/2

}
. The summation over s(n) = 1, 2 is simply introduced here to

distinguish the two terms within the bracket.
In the second equality in Equation (A9), terms involving δ

k(n)1 ,k′(n)1
δ

k(n)2 ,k′(n)2
δ

k(n)1 ,k′(n)2
δ

k(n)2 ,k′(n)1
, com-

pared with those involving
(

δ
k(n)1 ,k′(n)1

δ
k(n)2 ,k′(n)2

)2
or
(

δ
k(n)1 ,k′(n)2

δ
k(n)2 ,k′(n)1

)2
, are of higher order in 1/q,

since the number of free summations is reduced. For this reason, terms with s(n) �= s(n+1) for at least
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one n, compared with those with all s(n) identical, are of higher order in the large q expansion and
can be ignored. As a result, we obtain

〈
Ui1j1

Ui2j2
U†

j′1i′1
U†

j′2i′2

〉
= ∑
k1,k′

1,k2,k′
2

1
q4L′

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

L′

∏
n=1

δ
a(n)1 ,a′(n)1

δ
b(n+1)

1 ,b′(n+1)
1

δ
c(n)1 ,c′(n)1

δ
d(n+1)

1 ,d′(n+1)
1

× δ
a(n)2 ,a′(n)2

δ
b(n+1)

2 ,b′(n+1)
2

δ
c(n)2 ,c′(n)2

δ
d(n+1)

2 ,d′(n+1)
2

+
L′

∏
n=1

δ
a(n)1 ,a′(n)2

δ
b(n+1)

1 ,b′(n+1)
2

δ
c(n)1 ,c′(n)2

δ
d(n+1)

1 ,d′(n+1)
2

× δ
a(n)2 ,a′(n)1

δ
b(n+1)

2 ,b′(n+1)
1

δ
c(n)2 ,c′(n)1

δ
d(n+1)

2 ,d′(n+1)
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

1
q2L

(
L

∏
n=1

δ
i(n)1 ,i′(n)1

δ
i(n)2 ,i′(n)2

δ
j(n)1 ,j′(n)1

δ
j(n)2 ,j′(n)2

+
L

∏
n=1

δ
i(n)1 ,i′(n)2

δ
i(n)2 ,i′(n)1

δ
j(n)1 ,j′(n)2

δ
j(n)2 ,j′(n)1

)
.

(A10)

In the second equality, we used the fact that Equation (A1) reduces to Equation (A6) (Equation (A7))
upon substituting Equations (A2) and (A3) (Equations (A2)–(A4)). This proves Equation (23) for any
Floquet operator described by Equation (20) with arbitrary permutation σ ∈ SL′ .

Appendix B. Generalization to Higher-Dimensional Floquet Quantum Circuits

In this appendix, we generalize the calculation in Appendix A to an arbitrary high dimension
D. More specifically, we consider now a D-dimensional Floquet random quantum circuit which
consists of a D-dimensional cubic lattice of qudits. During one period, each qudit is coupled to all its
neighboring qudits at different time substeps by different two-qudit unitary gates. All these unitary
gates are drawn randomly and independently from the CUE ensemble. We will prove that, for any
Floquet quantum circuit of this type with an arbitrary ordering of the two-qudit unitary gates, and for
both periodic and open boundary conditions, the second- and fourth-order moments of the Floquet
operator U take the form Equation (23), same as the CUE ensemble of dimension N = qLD

, where q is
the Hilbert space dimension of each qudit and L is the number of lattice sites in each direction. For
simplicity, we consider the large q → ∞ limit for the calculation of the fourth-order moment.

In the following, we employ the notation that each qudit is labeled by a D-dimensional vector
n whose α-th component nα represents the coordinate in the lattice in dimension α = 1, ..., D. The
neighbors of qudit n are denoted by n ± eα, with eα being the unit vector in dimension α. nα is
defined modulo L for the periodic boundary condition. The many-body state is indexed by i and the
single-particle state at site n is labeled by i(n).

As in the 1D case, the second-order moment
〈

UijU†
j′i′

〉
can be expressed as

〈
UijU†

j′i′

〉
= ∑

k,k′

′
∏
n

D

∏
α=1

〈
w(n,n+eα)

a(n,α) ,b(n+eα ,α) ;c(n,α) ,d(n+eα ,α) (w
(n,n+eα))†

c′(n,α) ,d′(n+eα ,α) ;a′(n,α) ,b′(n+eα ,α)

〉

= ∑
k,k′

′
∏
n

D

∏
α=1

1
q2 δa(n,α) ,a′(n,α)δb(n+eα ,α) ,b′(n+eα ,α)δc(n,α) ,c′(n,α)δd(n+eα ,α) ,d′(n+eα ,α) .

(A11)

Here, w(n,n+eα) represents the random CUE matrix that couples the qudits at sites n and n + eα.
∏′

n stands for ∏L′
n1=1 ... ∏L′

nD=1, where L′ is defined as L (L − 1) for the periodic (open) boundary
condition. We use k(n,m) to denote the single-particle state for qudit n at a intermediate substep, and
it needs to be summed over (∑

q
k(n,m)=1

). ∑k denotes the product ∏n ∏Mn

m=1 ∑
q
k(n,m)=1

, where m runs
over m = 1, 2, ..., Mn and n runs over all sites in the lattice. Mn + 1 is the number of neighbors for
site n. For the periodic boundary condition, Mn = 2D − 1, while for the open boundary condition,

Mn = 2D − Dn − 1, (A12)

where Dn denotes the number of components of vector n satisfying nα = 1 or L. ∑k′ is defined in the

same manner. The row and column indices
{

a(n,α), b(n,α), c(n,α), d(n,α)
}

and
{

a′(n,α), b′(n,α), c′(n,α), d′(n,α)
}

label the single-particle state at site n at a certain time substep and depend on the ordering of the quantum
gates that couple site n with all its neighbors.

Consider first the periodic boundary condition. For arbitrary ordering of the two-qudit

unitary gates, the 4D numbers in the set S(1)
n =

{
a(n,α), b(n,α), c(n,α), d(n,α)|α = 1, 2, ..., D

}
are al-
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ways related to those in the set S(2)
n =

{
i(n), j(n), k(n,m), k(n,m)|m = 1, 2, ..., 2D − 1

}
by a permuta-

tion. Row and column indices for w† are defined in an analogous way. In particular, the num-

bers in the set S′(1)
n =

{
a′(n,α), b′(n,α), c′(n,α), d′(n,α)|α = 1, 2, ..., D

}
are related to those in the set

S′(2)
n =

{
i′(n), j′(n), k′(n,m), k′(n,m)|m = 1, 2, ..., 2D − 1

}
by the same permutation that connects S(1)

n to

S(2)
n . This means that, for arbitrary ordering of the two-qudit gates, the following identity is always

satisfied

D

∏
α=1

δa(n,α) ,a′(n,α)δb(n,α) ,b′(n,α)δc(n,α) ,c′(n,α)δd(n,α) ,d′(n,α) = δi(n) ,i′(n)δj(n) ,j′(n)

(
2D−1

∏
m=1

δk(n,m) ,k′(n,m)

)2

. (A13)

Inserting this equation into the second equality of Equation (A11), we obtain the second-order
moment for the Floquet operator

〈
UijU†

j′i′

〉
= ∑

k,k′
∏
n

1
q2D δi(n) ,i′(n)δj(n) ,j′(n)

(
2D−1

∏
m=1

δk(n,m) ,k′(n,m)

)2

=
1

qLD ∏
n

δi(n) ,i′(n)δj(n) ,j′(n) .

(A14)

For the open boundary condition, extra care must be taken for the sites n at the boundaries.
For any site n that sits in the bulk of the lattice, as in the case of the periodic boundary condi-

tion, the sets S(1)
n and S(2)

n (S′(1)
n and S′(2)

n ) defined above are always related by a 4D-number
permutation for any ordering of the quantum gates. Moreover, the permutation that connects

S(1)
n and S(2)

n is identical to the one that connects S′(1)
n and S′(2)

n . By contrast, at the boundary,
for any component of the vector n that satisfies nα = 1 (nα = L), b(n,α) and d(n,α) (a(n,α) and

c(n,α)) must be removed from the set S(1)
n =

{
a(n,β), b(n,β), c(n,β), d(n,β)|β = 1, 2, ..., D

}
. After ap-

plying this procedure, all the 2Mn + 2 numbers left in the new set S(1)
n are related to those in the

set S(2)
n =

{
i(n), j(n), k(n,m), k(n,m)|m = 1, 2, ..., Mn

}
by a permutation.

{
a′(n,α), b′(n,α), c′(n,α), d′(n,α)

}
are defined in the same way. They are related to

{
i′(n), j′(n), k′(n,m)

}
in exactly the same way as{

a(n,α), b(n,α), c(n,α), d(n,α)
}

are related to
{

i(n), j(n), k(n,m)
}

. This leads to

∏
α|nα �=L

δa(n,α) ,a′(n,α)δc(n,α) ,c′(n,α) ∏
β|nβ �=1

δb(n,β) ,b′(n,β)δd(n,β) ,d′(n,β)

= δi(n) ,i′(n)δj(n) ,j′(n)

(
Mn

∏
m=1

δk(n,m) ,k′(n,m)

)2

.

(A15)

Here, the first (second) product ∏α|nα �=L (∏β|nβ �=1) runs over all directions α (β) that obey nα �= L
(nβ �= 1).

Using this result, we find that Equation (A11) reduces to

〈
UijU†

j′i′

〉
= ∑

k,k′
∏
n

⎛⎝ 1
qMn+1 ∏

α|nα �=L
δa(n,α) ,a′(n,α)δc(n,α) ,c′(n,α) ∏

β|nβ �=1
δb(n,β) ,b′(n,β)δd(n,β) ,d′(n,β)

⎞⎠
=∏

n

⎡⎣ 1
qMn+1 δi(n) ,i′(n)δj(n) ,j′(n)

Mn

∏
m=1

⎛⎝ ∑
k(n,m) ,k′(n,m)

δ2
k(n,m) ,k′(n,m)

⎞⎠⎤⎦
=

1
qLD ∏

n

δi(n) ,i′(n)δj(n) ,j′(n) .

(A16)

We have therefore proved Equation (23) for the D-dimensional Floquet random quantum circuit
which has an arbitrary ordering of the two-qudit random unitary gates and is subject to either periodic
or open boundary condition.

The fourth-order moment
〈

Ui1j1
Ui2j2

U†
j′1i′1

U†
j′2i′2

〉
, in the limit of q → ∞, can be expressed in a

form similar to the 1D expression in Equation (A9):
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〈
Ui1j1

Ui2j2
U†

j′1i′1
U†

j′2i′2

〉
= ∑
k1,k′

1,k2,k′
2

′
∏
n

D

∏
α=1

〈
w(n,n+eα)

a(n,α)
1 ,b(n+eα ,α)

1 ;c(n,α)
1 ,d(n+eα ,α)

1

w(n,n+eα)

a(n,α)
2 ,b(n+eα ,α)

2 ;c(n,α)
2 ,d(n+eα ,α)

2

× (w(n,n+eα))†
c′(n)1 ,d′(n+eα )

1 ;a′(n)1 ,b′(n+eα )
1

(w(n,n+eα))†
c′(n)2 ,d′(n+eα )

2 ;a′(n)2 ,b′(n+eα )
2

〉

= ∑
k1,k′

1,k2,k′
2

′
∏
n

D

∏
α=1

1
q4

2

∑
s(n,α)=1

⎛⎜⎜⎜⎜⎜⎜⎜⎝

δs(n,α) ,1δ
a(n,α)

1 ,a′(n,,α)
1

δ
b(n+eα ,α)

1 ,b′(n+eα ,α)
1

δ
c(n,α)

1 ,c′(n,α)
1

δ
d(n+eα ,α)

1 ,d′(n+eα ,α)
1

× δ
a(n,α)

2 ,a′(n,α)
2

δ
b(n+eα ,α)

2 ,b′(n+eα ,α)
2

δ
c(n,α)

2 ,c′(n,α)
2

δ
d(n+eα ,α)

2 ,d′(n+eα ,α)
2

+δs(n,α) ,2δ
a(n,α)

1 ,a′(n,α)
2

δ
b(n+eα ,α)

1 ,b′(n+eα ,α)
2

δ
c(n,α)

1 ,c′(n,α)
2

δ
d(n+eα ,α)

1 ,d′(n+eα ,α)
2

× δ
a(n,α)

2 ,a′(n,α)
1

δ
b(n+eα ,α)

2 ,b′(n+eα ,α)
1

δ
c(n,α)

2 ,c′(n,α)
1

δ
d(n+eα ,α)

2 ,d′(n+eα ,α)
1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

(A17)

Here, the indices
{

a(n,α)
1/2 , b(n,α)

1/2 , c(n,α)
1/2 , d(n)1/2

}
are related to

{
i(n)1/2, j(n)1/2, k(n,m)

1/2

}
in the same way as{

a(n,α), b(n,α), c(n,α), d(n)
}

are related to
{

i(n), j(n), k(n,m)
}

(and similarly for the indices of w†). As

before, s(n,α) is introduced to distinguish the two terms in the bracket.
Similarly to the 1D case, in the second equality in the equation above, terms that contain the factor

δ
k(n,m)

1 ,k′(n,m)
1

δ
k(n,m)

2 ,k′(n,m)
2

δ
k(n,m)

1 ,k′(n,m)
2

δ
k(n,m)

2 ,k′(n,m)
1

are of higher order in the large q expansion compared with

those with the factor (δ
k(n,m)

1 ,k′(n,m)
1

δ
k(n,m)

2 ,k′(n,m)
2

)2 or (δ
k(n,m)

1 ,k′(n,m)
2

δ
k(n,m)

2 ,k′(n,m)
1

)2, due to the reduced number of

free summations. For this reason, we only need to keep terms for which all s(n,α) are identical in the
leading order of the large q expansion. This leads to〈

Ui1j1
Ui2j2

U†
j′1i′1

U†
j′2i′2

〉

= ∑
k1,k′

1,k2,k′
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

′
∏
n

D

∏
α=1

1
q4 δ

a(n,α)
1 ,a′(n,α)

1
δ

b(n+eα ,α)
1 ,b′(n+eα ,α)

1
δ

c(n,α)
1 ,c′(n,α)

1
δ

d(n+eα ,α)
1 ,d′(n+eα ,α)

1

× δ
a(n,α)

2 ,a′(n,α)
2

δ
b(n+eα ,α)

2 ,b′(n+eα ,α)
2

δ
c(n,α)

2 ,c′(n,α)
2

δ
d(n+eα ,α)

2 ,d′(n+eα ,α)
2

+
′

∏
n

D

∏
α=1

1
q4 δ

a(n,α)
1 ,a′(n,α)

2
δ

b(n+eα ,α)
1 ,b′(n+eα ,α)

2
δ

c(n,α)
1 ,c′(n,α)

2
δ

d(n+eα ,α)
1 ,d′(n+eα ,α)

2

× δ
a(n,α)

2 ,a′(n,α)
1

δ
b(n+eα ,α)

2 ,b′(n+eα ,α)
1

δ
c(n,α)

2 ,c′(n,α)
1

δ
d(n+eα ,α)

2 ,d′(n+eα ,α)
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

1
q2LD

(
∏
n

δ
i(n)1 ,i′(n)1

δ
i(n)2 ,i′(n)2

δ
j(n)1 ,j′(n)1

δ
j(n)2 ,j′(n)2

+ ∏
n

δ
i(n)1 ,i′(n)2

δ
i(n)2 ,i′(n)1

δ
j(n)1 ,j′(n)2

δ
j(n)2 ,j′(n)1

)
.

(A18)

In the second equality here, we made use of the intermediate results in the derivation of the second-
order moment (i.e., the fact that Equation (A11) is identical to Equations (A14) and (A16) for the
periodic and open boundary conditions, respectively).

Appendix C. Effective Field Theory of a Non-interacting Floquet Model

In this appendix, we compare the effective field theory of the Floquet random quantum circuits
studied earlier (or equivalently the CUE ensemble) with that of a non-interacting Floquet model and
show that the quartic fluctuations become important in the non-interacting case. We consider now
a time-periodic non-interacting system whose many-body Floquet operator is simply given by the
tensor product of all single-particle Floquet operators w(n):

U = w(1) ⊗ w(2) ⊗ ... ⊗ w(L). (A19)

All
{

w(n)|n = 1, ..., L
}

are q × q unitary matrices drawn randomly and independently from the CUE
ensemble. As before, we consider the limit of large single-particle Hilbert space dimension q → ∞ for
simplicity.

Since all single-particle Floquet operators w(n) are independent, the many-body SFF K(t) is
given by the product of all single-particle SFFs k(n)(t):

K(t) =
L

∏
n=1

k(n)(t), k(n)(t) =
〈
| Tr(w(n))t|2

〉
. (A20)
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Here, k(n)(t) is simply the SFF for the CUE ensemble of dimension q (Equation (9) after the replace-
ment N → q). Therefore, one can easily see that the many-body SFF now exhibits a fast-growing
ramp K(t) = tL, which plateaus at time t = q. The many-body quasi-energies are uncorrelated at
an energy separation of the order of the many-body level spacing Δφ ∼ 1/N, where N = qL is the
dimension of the many-body Hilbert space [36].

The many-body Floquet operator U given by Equation (A19) satisfies Equation (23a) but not
Equation (23b). Its fourth-order moment in the large q limit takes the form

〈
Ui1j1

Ui2j2
U†

j′1i′1
U†

j′2i′2

〉
=

L

∏
n=1

〈
w(n)

i(n)1 ,j(n)1

w(n)
i(n)2 ,j(n)2

(w(n))†
j′(n)1 ,i′(n)1

(w(n))†
j′(n)2 ,i′(n)2

〉

=
1

q2L

L

∏
n=1

(
δ

i(n)1 ,i′(n)1
δ

j(n)1 ,j′(n)1
δ

i(n)2 ,i′(n)2
δ

j(n)2 ,j′(n)2
+ δ

i(n)1 ,i′(n)2
δ

j(n)1 ,j′(n)2
δ

i(n)2 ,i′(n)1
δ

j(n)2 ,j′(n)1

)
.

(A21)

Note that for the chaotic Floquet circuits described by Equation (20), to have nonzero moments〈
Ui1j1

Ui2j2
U†

j′1i′1
U†

j′2i′2

〉
, if i(n)1 = i′(n)1/2 is obeyed by one of the sites, it must hold for all other sites as well.

Otherwise, the fourth-order moment can be ignored in the leading order of the large q expansion.
However, this is no longer the case for the non-interacting model. It is this difference that leads to the
contrasting behavior of the many-body level statistics for the two models.

Since the second-order moment of the Floquet operator
〈

UijU†
j′i′

〉
for the current non-interacting

model is identical to that of the chaotic Floquet circuits discussed in Section 4, the quadratic fluctua-
tions in the effective theory (Equation (19)) are therefore also governed by the action in Equation (24).
On the other hand, the quartic-order effective action of the non-interacting model is different from
that of the chaotic model (Equation (30)) and assumes the form

S(4−1)
eff = − (αβ)2

2 ∑
i1,...,i8

tr
(

Z†
i1i2

Zi3i4

)
tr
(

Z†
i5i6

Zi7i8

)

× 1
q2L

⎡⎢⎢⎢⎢⎣
L

∏
n=1

(
δ

i(n)2 ,i(n)1
δ

i(n)6 ,i(n)5
δ

i(n)3 ,i(n)4
δ

i(n)7 ,i(n)8
+ δ

i(n)2 ,i(n)5
δ

i(n)6 ,i(n)1
δ

i(n)3 ,i(n)8
δ

i(n)7 ,i(n)4

)

−
L

∏
n=1

δ
i(n)2 ,i(n)1

δ
i(n)6 ,i(n)5

δ
i(n)3 ,i(n)4

δ
i(n)7 ,i(n)8

⎤⎥⎥⎥⎥⎦.

(A22)

Here, we have inserted Equation (A21) into S(4)
eff in Equation (19c) and, as before, ignored the last

term in S(4)
eff , which is not important in the replica limit R → 0.

Rewriting Equation (A22) in terms of X and Y, which denote, respectively, the diagonal and
off-diagonal components of the matrix Z in the Hilbert space, we obtain

S(4−1)
eff = − (αβ)2

2N2 ∑
k1,...,k4

tr
(

X†(k1)X(k2)
)

tr
(

X†(k3)X(k4)
)

×
[

L

∏
n=1

(
δ

k(n)1 ,0
δ

k(n)2 ,0
δ

k(n)3 ,0
δ

k(n)4 ,0
+

1
q2 δ

k(n)1 ,−k(n)3
δ

k(n)2 ,−k(n)4

)
−

L

∏
n=1

(
δ

k(n)1 ,0
δ

k(n)2 ,0
δ

k(n)3 ,0
δ

k(n)4 ,0

)]

− (αβ)2

2N2 ∑
i1 �=i2,i3 �=i4,i5 �=i6,i7 �=i8

tr
(

Y†
i1i2

Yi3i4

)
tr
(

Y†
i5i6

Yi7i8

)

×
L

∏
n=1

(
δ

i(n)2 ,i(n)1
δ

i(n)6 ,i(n)5
δ

i(n)3 ,i(n)4
δ

i(n)7 ,i(n)8
+ δ

i(n)2 ,i(n)5
δ

i(n)6 ,i(n)1
δ

i(n)3 ,i(n)8
δ

i(n)7 ,i(n)4

)

− (αβ)2

2N2 ∑
i1 �=i2,i5 �=i6

∑
k3,k4

[
tr
(

Y†
i1i2

X(k3)
)

tr
(

Y†
i5i6

X(k4)
)
+ tr
(

X†(−k3)Yi1i2

)
tr
(

X†(−k4)Yi5i6

)]

×
L

∏
n=1

(
δ

i(n)2 ,i(n)1
δ

i(n)6 ,i(n)5
δ

k(n)3 ,0
δ

k(n)4 ,0
+

1
q

δ
i(n)2 ,i(n)5

δ
i(n)6 ,i(n)1

δ
k(n)3 ,−k(n)4

)
.

(A23)

Here, X(k) represents the Fourier transform of the diagonal component Xii with respect to i (Equation (25)), and
the n-th component of momentum k is denoted by k(n).
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From Equation (A23), we obtain the self-energy for X(k) and Y from the quartic interactions in the replica
limit R → 0,

(ΣX)
ab;ba(k, k) =

(αβ)2

N2

〈
Xab(−k)(X†)ba(−k)

〉
0

[
L

∏
n=1

(
δk(n) ,0 +

1
q2

)
− δk,0

]

=
(αβ)2

N
1

1 − αβδk,0

[(
1 +

1
q2

)r0 1
q2(L−r0)

− δk,0

]
,

(ΣY)
ab;ba
i1i2;i′2i′1

=
(αβ)2

N2 ∑
i3 �=i4

〈
Yab

i3i4
(Y†)ba

i4i3

〉
0

×
L

∏
n=1

(
δ

i(n)2 ,i(n)1
δ

i(n)3 ,i(n)4
δ

i′(n)1 ,i′(n)2
+ δ

i(n)2 ,i(n)3
δ

i(n)1 ,i(n)4
δ

i′(n)2 ,i(n)3
δ

i′(n)1 ,i(n)4

)

=
(αβ)2

N

L

∏
n=1

(
δ

i(n)2 ,i(n)1
δ

i′(n)1 ,i′(n)2
+

1
q

δ
i(n)2 ,i′(n)2

δ
i(n)1 ,i′(n)1

)

− (αβ)2

N

L

∏
n=1

(
δ

i(n)2 ,i(n)1
δ

i′(n)1 ,i′(n)2
+

1
q

δ
i(n)2 ,i′(n)2

δ
i(n)1 ,i′(n)1

δ
i(n)1 ,i(n)2

)
.

(A24)

Here, we have used the expressions for the bare propagators (Equations (27) and (29)). r0 represents the number
of zero components in the L-dimensional vector k. We can therefore see that the self-energy for X(0) is of the
order of L/q2 N(1 − exp(iΔφ)), and the self-energy for X(k) with r0 < L zero components in k is of the order
of 1/q2(L−r0)N. Furthermore, the self-energy (ΣY)

ab;ba
i1i2;i′2i′1

is of the order of 1/(NqL−r′ ), where r′ represents the

number of components satisfying i(n)2 = i(n)1 and i′(n)2 = i′(n)1 . Comparing Equation (A24) with Equation (31),

we find that the self-energies for X(k) (with at least one zero component in k) and Yi1i2 (when i(n)1 = i(n)2 is
satisfied for as least one site n) of the current non-interacting model are much larger than their counterparts for
the chaotic Floquet circuits. Therefore, in contrast to the chaotic case, the quartic-order fluctuations for the current
non-interacting model are essential.

Appendix D. Large q Expansion of the Weingarten Function

In this appendix, we study the asymptotic behavior of the Weingarten function g(σ, τ) (Equation (46)) for
the unitary group U(q) in the large q → ∞ limit. Expanding the action Sw[W, W†] in powers of W, we obtain

Sw[W, W†] = q
∞

∑
n=1

(−1)n−1

n
tr
(

WW†
)n

, (A25)

where we have approximated the overall coefficient as q + 2R′ ≈ q. One can see from rescaling W by W → W/
√

q
that the higher-order terms in the expansion above are also of higher order in 1/q.

At the leading order in the large q expansion, we can therefore apply the Gaussian approximation and keep
only the quadratic term in Sw[W, W†]:

S(2)
w [W, W†] = q tr

(
WW†

)
. (A26)

The bare W propagator is given by 〈
WuvW†

v′u′
〉

0
= δuu′ δvv′

1
q

, (A27)

where the angular bracket with subscript 0 denotes the functional averaging with the Gaussian action S(2)
w .

Applying the Wick theorem to evaluate the expectation value of
〈

G[W, W†; σ, τ]
〉

0 (Equation (46)), we find that, in
the Gaussian approximation, g(σ, τ) is non-vanishing only when σ = τ:

g(σ, σ) =
p

∏
k=1

〈
Wkσ(k)W

†
σ(k)k

〉
0
=

1
qp , (A28)

which is consistent with the known result for the Gaussian approximation to the Weingarten function Wg(id) =
g(σ, σ) [82]. The Weingarten functions for all the remaining permutations τ−1σ �= id are of higher order in 1/q.
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To deduce the leading-order term in the large q expansion of g(σ �= τ), we should go beyond the Gaussian
approximation and keep the higher-order terms in Sw[W, W†]. Using Equation (53), we find

g(σ, τ) ∝
m

∏
k=1

〈(
ck

∏
l=1

Wbk+l,bk+(l+1 mod ck)
W†

bk+(l+1 mod ck),bk+(l+1 mod ck)

)[
q tr
(

WW†
)ck
]〉

0

∝
m

∏
k=1

(
q

ck

∏
l=1

〈
Wbk+l,bk+(l+1 mod ck)

W†
bk+(l+1 mod ck),bk+l

〉
0

×
〈

W†
bk+(l+1 mod ck),bk+(l+1 mod ck)

Wbk+(l+1 mod ck),bk+(l+1 mod ck)

〉
0

)
∝

m

∏
k=1

q1−2ck ,

(A29)

which leads to the known result g(σ, τ) ∝ qm−2p [82]. The extra factor of q Tr
(
WW†)ck in the first line of the

equation above represents the interaction vertex arising from the ck-th-order term in the expansion of Sw[W, W†]
(Equation (A25)).

Appendix E. Recursion Relation for the Weingarten Function

In this appendix, we will show that the function g(σ, τ) given by Equation (46) satisfies the recursion
relations for the Weingarten function, i.e., Equation (37). To derive the first recursion relation Equation (37a), we
make use of the identity UU† = 1, which leads to∫

U (q)
dUUi1 j1 Ui2 j2 ...Uip jp U†

j′1 i′1
U†

j′2 i′2
...U†

j′pi′p

=
q

∑
ip+1,i′p+1,jp+1=1

δip+1,i′p+1
δjp+1,j′p+1

×
∫
U (q)

dUUi1 j1 Ui2 j2 ...Uip jp Uip+1 jp+1 U†
j′1 i′1

U†
j′2 i′2

...U†
j′pi′p

U†
j′p+1 i′p+1

.

(A30)

Using Equation (45), the left hand side (L.H.S.) of the equation above can be expressed as

L.H.S. = ∑
τ′ ,σ′∈Sp

(
p

∏
k=1

δik ,i′
σ′ (k)

δjk ,j′
τ′ (k)

)
g(σ′, τ′), (A31)

while the right hand side (R.H.S.) acquires the form

R.H.S. =
q

∑
ip+1,i′p+1,jp+1=1

∑
τ′′ ,σ′′∈Sp+1

δip+1,i′p+1
δjp+1,j′p+1

(
p+1

∏
k=1

δik ,i′
σ′′ (k)

δjk ,j′
τ′′ (k)

)
g(σ′′, τ′′). (A32)

We then choose an arbitrary pair of permutations σ, τ ∈ Sp and set ik = i′
σ(k), jk = j′

τ(k), for k = 1, 2, ..., p. For

simplicity, we consider the case where p < q and all integers in the set
{

i′k |k = 1, ..., p
}

(
{

j′k |k = 1, ..., p + 1
}

) are
different from each other. In this case, the L.H.S. then becomes

L.H.S. = g(σ, τ) = V(p)
c1,c2,...,cm , (A33)

where {ck |k = 1, 2, ..., m} represent the lengths of disjoint cycles for the permutation τ−1σ and obey the constraint

∑m
k=1 ck = p. Here, we made use of the result that g(σ, τ) depends only on {ck} and expressed it as V(p)

c1,c2,...,cm (see
Section 5.2). On the other hand, the R.H.S. becomes

R.H.S. = ∑
τ′′ ,σ′′∈Sp+1

q

∑
i′p+1=1

(
p

∏
k=1

δi′
σ(k) ,i′

σ′′ (k)
δj′

τ(k) ,j′
τ′′ (k)

)
δi′p+1,i′

σ′′ (p+1)
δj′p+1,j′

τ′′ (p+1)
g(σ′′, τ′′). (A34)

Let us now examine all terms in the summation in Equation (A34). The contribution is nonzero for arbitrary
i′p+1 if σ′′ = σp and τ′′ = τp, where σp and τp are defined as

σp(k) =

{
σ(k), k = 1, 2, ..., p,
p + 1, k = p + 1,

τp(k) =

{
τ(k), k = 1, 2, ..., p,
p + 1, k = p + 1.

(A35)

The permutation τ−1
p σp, compared with τ−1σ, contains an extra disjoint cycle of length 1. More specifically, from

the earlier result (Equation (50)), we find that g(σp, τp) is given by

g(σp, τp) = (−1)p−m

〈(
Wp+1,p+1W†

p+1,p+1

) m

∏
k=1

(
ck

∏
l=1

W
P(k)

l ,σ(P(k)
l )

W†
σ(P(k)

l ),P(k)
l+1

)〉
W

=V(p+1)
c1,c2,...cm ,1.

(A36)
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Compared with g(σ, τ) = V(p)
c1,c2,...cm , it contains an extra factor Wp+1,p+1W†

p+1,p+1. Here, the integers
{

P(k)
l

}
denote the cycle structure of τ−1σ as in Equation (36). The total contribution from this pair of permutations (σp, τp)
to Equation (A34) is

q

∑
i′p+1=1

g(σp, τp) = qV(p+1)
c1,c2,...,cm ,1, (A37)

where the factor q comes from the summation over i′p+1.
Another non-vanishing contribution comes from the case when i′p+1 = i′

σ(l) for an arbitrary positive integer
l ≤ p. In this case, the contribution is non-vanishing if the permutations σ′′ = σl and τ′′ = τp, where τp is defined
in Equation (A35) and σl is given by

σl(k) =

⎧⎪⎨⎪⎩
σ(k), k �= l, p + 1,
p + 1, k = l,
σ(l), k = p + 1.

(A38)

In this case, it is easy to see that δi′p+1,i′
σl (p+1)

= δi′
σ(l) ,i′

σl (l)
= δi′p+1,i′

σ(l)
= 1.

g(σl , τp) can be obtained from g(σ, τ) by replacing the factor Wl,σ(l)W†
σ(l),τ−1σ(l) in Equation (50) with

Wl,p+1W†
p+1,p+1Wp+1,σ(l)W†

σ(l),τ−1σ(l). This results in adding a number to the disjoint cycle to which number l
belongs (labeled by j):

g(σ, τ) =
〈

Wl,σ(l)W
†
σ(l),τ−1σ(l)...

〉
W

= V(p)
c1,...,cj ,...,cm ,

g(σl , τp) =

〈
Wl,σl (l)W

†
σl (l),τ

−1
p σl (l)

W
τ−1

p σl (l),σl τ
−1
p σl (l)

W†
σl τ

−1
p σl (l),τ

−1
p σl τ

−1
p σl (l)

...
〉

W
,

=
〈

Wl,p+1W†
p+1,p+1Wp+1,σ(l)W

†
σ(l),τ−1σ(l)...

〉
W

= V(p+1)
c1,...,cj+1,...,cm

.

(A39)

Here, “...” represents all remaining terms that stay the same in g(σl , τp) and g(σ, τ). Summing over all possibilities
of l, we find the total contribution of this type is

∑
l

g(σl , τp) =
m

∑
s=1

csV(p+1)
c1,...,cs−1,cs+1,cs+1,...,cm

. (A40)

Combining everything (Equations (A37) and (A40)), we find the R.H.S. of Equation (A30).

R.H.S. = qV(p+1)
c1,...,cm ,1 +

m

∑
s=1

csV(p+1)
c1,...,cs−1,cs+1,cs+1,...,cm

. (A41)

Equating this to the L.H.S. (Equation (A33)), we arrive at the recursion relation
Equation (37a), which holds for an arbitrary pair of σ, τ ∈ Sp (or equivalently, an arbitrary configuration of{

cj
}

that satisfies ∑m
j=1 cj = p) when p < q.

The recursion relation Equation (37b) can be proved in a similar way using the identity:

q

∑
jp ,j′p=1

δjp ,j′p

∫
U (q)

dUUi1 j1 Ui2 j2 ...Uip−1 jp−1 Uip jp U†
j′1 i′1

U†
j′2 i′2

...U†
j′p−1 i′p−1

U†
j′pi′p

= 0, (A42)

for ip �= i′p. Using Equation (45), one can rewrite this equation as

q

∑
jp ,j′p=1

∑
τ′ ,σ′∈Sp

δjp ,j′p

(
p

∏
k=1

δik ,i′
σ′ (k)

δjk ,j′
τ′ (k)

)
g(σ′, τ′) = 0. (A43)

We now set jk = j′k and ik = i′
χ(k) for 1 ≤ k ≤ p. χ ∈ Sp represents an arbitrary nonidentical permutation

of numbers 1, 2, ..., p that satisfies χ(p) �= p. It contains m disjoint cycles with lengths {ck |k = 1, 2, ..., m}. Since
χ �= id and χ(p) �= p, p stays in a cycle (labeled by 1) of length c1 ≥ 2. We consider the case p ≤ q and choose
the set

{
i′k |k = 1, ..., p

}
(
{

j′k |k = 1, ..., p − 1
}

), whose elements are all different from each other, for simplicity.
Equation (A43) can be rewritten as

q

∑
j′p=1

∑
τ′ ,σ′∈Sp

(
p

∏
k=1

δi′
χ(k) ,i′

σ′ (k)
δj′k ,j′

τ′ (k)

)
g(σ′, τ′) = 0. (A44)

Let us now examine all terms in the summation on the L.H.S. of Equation (A44). For arbitrary j′p, the
contribution is non-vanishing when σ′ = χ and τ′ = id. The total contribution of this type is

q

∑
j′p=1

g(χ, id) = qg(χ, id) = qV(p)
c1,c2,...,cm . (A45)
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Another type of non-vanishing contribution comes from the case where j′p = j′l and l also stays within the
same cycle to which p belongs (cycle 1). In this case, the contribution is non-vanishing if σ′ = χ and τ = τl , where
τl is defined as

τl(k) =

⎧⎪⎨⎪⎩
k, k �= p, l,
l, k = p,
p, k = l.

(A46)

g(χ, τl) can be obtained from g(χ, id) by replacing W†
ll and W†

pp in G[W, W†; χ, id]
(Equation (46)) with W†

lp and W†
pl . This breaks cycle 1 of length c1 into two disjoint cycles of lengths c1 − c

and c (c obeys 0 < c < c1 and depends on l):

g(χ, id) = V(p)
c1,c2,...,cm

=

〈(
Wp,χ(p)W

†
χ(p),χ(p)...Wχ−1(l),lW

†
l,lWl,χ(l)W

†
χ(l),χ(l)...Wχ−1(p),pW†

p,p

) m

∏
k �=1

(...)

〉
W

,

g(χ, τl) = V(p)
c1−c,c,c2,...,cm

=

〈(
Wp,χ(p)W

†
χ(p),χ(p)...Wχ−1(l),lW

†
l,p

)(
Wl,χ(l)W

†
χ(l),χ(l)...Wχ−1(p),pW†

p,l

) m

∏
k �=1

(...)

〉
W

.

(A47)

Here, ∏m
k �=1(...) represents the contribution from all remaining cycles other than 1 and stays the same for both

g(χ, id) and g(χ, τl). Taking into account all possible l belonging to cycle 1, we find that the total contribution
from such terms is

∑
l∈cycle 1

g(χ, τl) =
c1−1

∑
c=1

V(p)
c1−c,c,c2,...,cm . (A48)

The last type of non-vanishing contribution arises from the case when j′p = j′l and l does not belong to
cycle 1 (we label the cycle which l belongs by 2). In this case, the contribution is non-vanishing if σ′ = χ and
τ′ = τl (Equation (A46)). As mentioned earlier, g(χ, τl) can be obtained from g(χ, id) by replacing W†

ll and W†
pp in

G[W, W†; χ, id] with W†
lp and W†

pl , respectively. However, since now l, p belong to different cycles, this replacement
combines cycle 1 and cycle 2 into one cycle of length c1 + c2:

g(χ, id) = V(p)
c1,c2,c3,...,cm

=

〈(
Wp,χ(p)W

†
χ(p),χ(p)...Wχ−1(p),pW†

p,p

)(
Wl,χ(l)W

†
χ(l),χ(l)...Wχ−1(l),lW

†
l,l

) m

∏
k>2

(...)

〉
,

g(χ, τ0) = V(p)
c1+c2,c3,...,cm

=

〈(
Wp,χ(p)W

†
χ(p),χ(p)...Wχ−1(p),pW†

p,lWl,χ(l)W
†
χ(l),χ(l)...Wχ−1(l),lW

†
l,p

) m

∏
k>2

(...)

〉
.

(A49)

Here, ∏m
k>2(...) represents the contribution from all remaining cycles k �= 1, 2, which remains the same for both

cases. Summing over all possible l that do not stay in cycle 1, we find the total contribution of this type is

∑
l /∈cycle 1

g(χ, τl) =
m

∑
s=2

csV(p)
c1+cs ,c2,...,cs−1,cs+1,...,cm . (A50)

From Equation (A42), one can see that, for an arbitrary choice of χ ∈ Sp that satisfies χ(p) �= p (for
arbitrary {ck} with at least one cycle length c1 > 1), the sum of all three types of non-vanishing contributions
(Equations (A45), (A48), and (A50)) should equal 0, which proves Equation (37b) for p ≤ q.
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Abstract: The Pauli master equation describes the statistical equilibration of a closed quantum system.
Simplifying and generalizing an approach developed in two previous papers, we present a derivation
of that equation using concepts developed in quantum chaos and random-matrix theory. We assume
that the system consists of subsystems with strong internal mixing. We can then model the system
as an ensemble of random matrices. Equilibration results from averaging over the ensemble. The
direction of the arrow of time is determined by an (ever-so-small) coupling to the outside world. The
master equation holds for sufficiently large times if the average level densities in all subsystems are
sufficiently smooth. These conditions are quantified in the text, and leading-order correction terms
are given.

Keywords: master equation; equilibration; Markov approximation

1. Introduction

We investigate the connection between the irreversible statistical equilibration of
closed quantum systems, quantum chaos [1], and random-matrix theory [2]. We do so by
expanding and generalizing ideas formulated in Refs. [3,4].

To begin, we recall the standard theoretical description of statistical equilibration. The
interaction between the constituents of an isolated (or closed) many-body quantum system
drives the system toward statistical equilibrium. The process is theoretically most simply
described in terms of the Pauli master equation. Given a division of the system into a
finite number K of subsystems, the master equation for the time-dependent occupation
probability PE,α(t) of subsystem α at excitation energy E reads

ṖE,α(t) = ∑
β

(
Rβ→αPE,β(t)− Rα→βPE,α(t)

)
. (1)

The dot indicates the time derivative, and the indices α, β range from 1 to K. Equation (1) con-
serves probability, ∑α ṖE,α = 0. The interaction between states in subsystems α and β gives
rise to the time-independent transition rates Rα→β and Rβ→α. These obey detailed balance,

ρE,βRβ→α = ρE,αRα→β. (2)

Here, ρE,α is the average level density of the states in subsystem α at excitation energy

E. Equation (2) implies that P(0)
E,α = CρE,α with C a constant independent of α is a time-

independent solution of Equation (1). That solution describes statistical equilibrium. For
large times, the solutions PE,α(t) of Equation (1) tend generically toward the equilibrium

solution P(0)
E,α , irrespective of the initial conditions at time t = 0. Thus, Equation (1) describes

the irreversible development in time of the system toward statistical equilibrium.
Equation (1) goes back to the early days of quantum theory. The master equation is

a standard topic in textbooks on quantum statistical mechanics, and it is widely used to
describe statistical equilibration in atomic, molecular, and nuclear systems. At the same
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time, equilibration in isolated quantum systems poses a theoretical problem that continues
to cause intense discussion and research. The time-reversal-invariant Schrödinger equation
furnishes a universal framework for the theoretical description of closed nonrelativistic
quantum systems. How can that description be reconciled with the manifestly irreversible
tendency toward statistical equilibrium encapsulated in Equation (1)? The literature on the
subject is vast. For references, we confine ourselves to two review articles [5,6] summarizing
a total of about 500 research papers.

The derivation of the master Equation (1) in Refs. [3,4] uses arguments that differ
from the ones summarized in Refs. [5,6]. It is based upon a random-matrix approach. It is
assumed that within each subsystem or class α of states, the interaction mixes the states so
strongly that the resulting eigenvalues and eigenfunctions follow the statistical distribution
predicted by random-matrix theory. Under that assumption, the matrix elements of the in-
teraction connecting states in different classes α �= β become Gaussian-distributed random
variables. Averaging the differential equations in time for the occupation probabilities of
states in classes α = 1, . . . , K over that distribution, and using the Markov approximation,
yields master Equation (1).

In the present paper, we address two issues that have remained unexplored in Refs. [3,4].
First, we address the connection between the basic statistical assumption used in Refs. [3,4]
and quantum chaos (Section 2). Second, we ask for the cause of irreversibility displayed by
Equation (1). Which approximation used in the derivation causes the transition from the
time-reversal-invariant Schrödinger equation to the manifestly time-reversal-noninvariant
master Equation (1)? Is irreversibility due to the Markov approximation, is it due to our
averaging over the statistical distribution of matrix elements of the interaction, or is there
another cause? To answer that question, in Section 3, we use the results of Section 2 to define
the basic random-matrix ensemble. In Section 4, we use the results of Ref. [3] to work out
the time evolution of average occupation probabilities in the various classes. In Section 5,
we apply the Markov approximation and introduce the central element which is responsible
for the violation of the time-reversal invariance. Corrections to the Markov approximation
are worked out in Section 6. Time-dependent oscillatory terms are addressed in Section 7.
We summarize the results and the answers to the questions raised above in Section 8.

We focus attention on the time evolution of average occupation probabilities, i.e., on
the diagonal elements of the density matrix of the system as described by Equation (1). Our
derivation can be extended to the equation describing the time evolution of the full density
matrix, including the off-diagonal elements. That equation is often referred to as the master
equation, while Equation (1) is then called a rate equation. We do not follow that custom
here. It is easily seen that upon averaging and in Markov approximation, the off-diagonal
elements of the density matrix decrease exponentially in time. The decrease is governed by
the same rates that determine the loss term in Equation (1).

2. Quantum Chaos and Random-Matrix Theory

The connection between quantum chaos and random-matrix theory (RMT) was un-
covered in the late 1970s and early 1980s. In the search for “quantum signatures of classical
chaos” [1], several authors turned their attention to random-matrix theory. That theory
had been introduced by Wigner [7], in 1955, in an attempt to characterize the eigenval-
ues of the nuclear Hamiltonian that appeared as parameters in his R-matrix theory of
nuclear reactions [8]. McDonald and Kaufman [9], Casati, Valz-Gris, and Guarneri [10],
and Berry [11] investigated numerically the energy spectra of two-degrees-of-freedom
quantum systems (the stadium billiard and the Sinai billiard) that are chaotic in the classical
limit. Their results suggested that the distribution of spacings of neighboring eigenvalues
coincides with the Wigner surmise. That surmise furnishes an excellent approximation
to the distribution of nearest-neighbor spacings of eigenvalues of the Gaussian orthog-
onal ensemble (GOE) [12] of random matrices. Following these investigations, Bohigas,
Giannoni, and Schmit [13] generated numerically a considerably larger set of eigenvalues
for the Sinai billiard than had been used by the earlier authors. When combined with a
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refined statistical analysis, the spacings of these eigenvalues showed good agreement with
the GOE fluctuation measures. The agreement caused the authors to formulate the “BGS
conjecture”: The spectral fluctuation measures of a classically chaotic quantum system
coincide with those of the canonical random-matrix ensemble in the same symmetry class
(unitary, orthogonal, or symplectic).

The BGS conjecture has since been thoroughly tested numerically in several few-
degrees-of-freedom systems (see the review in [2]). With the help of Gutzwiller’s periodic-
orbit sum for the level density, Sieber and Richter [14] and Heusler, Müller, Altland, Braun,
and Haake [15] gave a formal demonstration of the validity of the conjecture for general
dynamical systems, summarized in the article by Müller and Sieber [16]. The demonstration
is not a mathematical proof but shows physically convincingly why the BGS conjecture
holds for classically chaotic quantum systems that possess a periodic-orbit sum for the
level density.

These results strongly suggest that the BGS conjecture holds quite generally for
strongly interacting many-body quantum systems that are chaotic in the classical limit.
Ergodic theory [17] has shown that classical deterministic chaos is ubiquitous. It is charac-
terized by positive Lyapunov exponents. These guarantee that long periodic orbits do have
the properties used in Ref. [15]. However, that connection between RMT and classical chaos
is too narrow in the present context. Bosonic and Fermionic systems possess symmetries
that are not part of the classical ergodic theory. Ongoing research addresses the RMT
fluctuation properties in such systems (see, for example, Refs. [18,19]). Moreover, there
exist strongly interacting many-body systems that do not possess a well-defined classical
limit. Locally interacting spin chains are an example. And yet, the spectral form factor (the
Fourier transform of the spectral pair correlation function) of these systems agrees with
the RMT prediction [20]. Likewise, it is not clear that very dense quantum systems like
atomic nuclei do possess a classical limit. And yet, measures of spectral fluctuations evalu-
ated for light nuclei with a Hamiltonian containing a mean-field potential and a residual
two-body interaction do show agreement with RMT predictions [21]. Thermalization and
random-matrix properties in many-body systems governed by a mean field and a residual
interaction are analyzed more generally in Ref. [22].

It thus seems that the BGS conjecture, while generically valid, does not cover all cases
of interest. In that situation, it is useful to recall the physical reason for agreement with
RMT predictions in systems such as spin chains [20] or atomic nuclei [21]. It is the strong
mixing of the unperturbed states of the system by the interaction. A suitable generalization
of the BGS conjecture would say: For many-body systems with a sufficiently strong generic
interaction, the spectral fluctuation measures agree with RMT predictions. That formulation
is unspecific as it does not say how strong the interaction has to be. It is quite specific in
saying that RMT spectral fluctuation properties are attained.

In conclusion, RMT spectral fluctuation properties are generic and are expected to
occur universally in strongly interacting many-body systems. Therefore, the assumption
formulated in Section 1 is on firm grounds. Nevertheless, for a specific system, it is advisable
to make sure that RMT spectral fluctuation properties prevail, either by demonstrating that
the system is classically chaotic or by a numerical test. Attention must be paid, in particular,
to one-body and many-body localization [23–25]. Either phenomenon is not compatible
with RMT spectral fluctuation properties.

3. Ensemble of Random Matrices

Before we address the second issue raised in the Introduction, we give a brief summary
of the assumptions and developments in Ref. [4]. We define the basic random-matrix ensemble.

It is assumed that in Hilbert space, the states of the system can be grouped into a finite
number K of classes, such that within each class, the states interact strongly. The example
considered in Ref. [4] is a system of Fermions with a mean-field average potential and a
closed-shell ground state. Excited states are defined as particle-hole excitations out of the
ground state. Classes of such states carry the same number of particle-hole states. Our
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theoretical development is more general, however, and is not restricted to that example.
We confine ourselves, however, to the case of orthogonal symmetry.

In every class α, we use a basis of orthonormal states labeled |αm〉 with m = 1, 2, . . . , Nα

and Nα  1. On that basis, the Hamiltonian is written as

Hαm,βn = δαβH(α)
mn + 〈αm|V|βn〉. (3)

In Ref. [4], it is assumed that within each class α, the Hamiltonian H(α) is a member of
the GOE. That is in line with the arguments of Section 2. The non-statistical real matrix
elements 〈αm|V|βn〉 connect different classes and vanish for α = β. They also vanish
unless the states in both classes carry the same conserved quantum numbers. In Ref. [4],
it was assumed that V is a two-body interaction. That interaction changes the particle-
hole number by one unit. It does not connect classes of particle-hole states differing in
particle-hole number by two or more units. In the present context, it is likewise admissible
that V does not connect every class with every other one. For definiteness, we exclude,
however, the possibility that the classes form subgroups that are not connected to each
other at all by matrix elements of V. The mixing of the states in different classes due to V
yields eigenfunctions that are spread over several or all classes. As we shall see, that fact
ultimately causes statistical equilibration as described by Equation (1).

The diagonalization of each of the GOE Hamiltonians H(α) in Equation (3) yields for
the total Hamiltonian in Equation (3) the expression

Hαμ,βν = Eαμδαβδμν + 〈αμ|V|βν〉. (4)

The eigenvalues Eαμ follow Wigner–Dyson statistics. The projections of the eigenfunctions
|αμ〉 onto some fixed vector |αm〉 have a Gaussian distribution. It follows that the matrix
elements 〈αμ|V|βν〉 have a Gaussian distribution with respect to their dependence on both
μ and ν.

The central step taken in Ref. [4] consists of replacing in each class α the Hamiltonian
H(α) by an ensemble of GOE Hamiltonians. That implies that the Eαμ in Equation (4)
form an ensemble of Wigner–Dyson-distributed eigenvalues and that the matrix elements
〈αμ|V|βν〉 form an ensemble of Gaussian-distributed zero-centered random variables with
second moments 〈

〈αμ|V|βν〉〈α′μ′|V|β′ν′〉
〉

= V2
αβ

(
δαα′δμμ′δββ′δνν′ + δαβ′δμν′δβα′δνμ′

)
. (5)

The big angular brackets denote the ensemble average. For α �= β, the states |αν〉 and |βν〉
are statistically uncorrelated. That gives rise to the Kronecker deltas involving class labels
in Equation (5). The mean square matrix elements V2

αβ vanish for α = β. They measure
the strength of the coupling of classes (α, β). Within each class α, we eventually take the
GOE limit of infinite matrix dimension Nα. Then, the spectrum of H(α) extends from −2λ
to +2λ, the average level spacing dα ∝ 1/Nα tends to zero, and the average level density
ρE,α versus energy E is given by

ρE,α =
N

πλ

√
1 − (E/(2λ))2. (6)

In the following sections, we display the assumptions under which Equation (1)
follows from that central step. We show that Equation (1) describes the time evolution of
ensemble-averaged occupation probabilities defined for each class. Therefore, statistical
equilibration does not necessarily occur for each member of the ensemble. It is an average
property, characteristic of most members of the ensemble.
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4. Time Evolution of Average Occupation Probabilities

To implement the approach, we use the time-dependent Schrödinger equation in
the interaction representation. The wave function is expanded on the basis of states
|αμ〉, |βν〉, . . . with time-dependent occupation amplitudes cαμ(t), cβν(t), . . .. That yields

ih̄ċαμ(t) = ∑
βν

〈αμ|Ṽ(t)|βν〉cβν(t). (7)

The dot indicates the time derivative, and the time-dependent matrix element

〈αμ|Ṽ(t)|βν〉 = 〈αμ|V|βν〉 exp{i(Eαμ − Eβν)t/h̄} (8)

is Hermitean, 〈αμ|Ṽ(t)|βν〉∗ = 〈βν|Ṽ(t)|αμ〉.
Time-dependent average occupation probabilities PE,α(t) of the states in class α are

defined as

PE,α(t) =
〈

∑
μ

|cαμ(t)|2
〉

. (9)

In the GOE limit, the sum over μ encompasses states |αμ〉 with energies Eαμ located within
a very small energy interval centered on the energy E defined by the initial condition
cαμ(0) = δαα0 δμμ0 at time t = 0 for the coefficients cαμ(t). The time derivative of PE,α(t) is

ṖE,α(t) =

〈
∑
μ

(
c∗αμ ċαμ + ċ∗αμcαμ

)〉
. (10)

In Ref. [4], the average in Equation (10) is calculated by expanding each of the factors
cαμ(t), c∗αμ(t), ċαμ(t), ċ∗αμ(t) on the right-hand side perturbatively in powers of Ṽ. That
results in a multiple sum over products of Gaussian-distributed matrix elements. The
average is calculated for each such product separately. In each product, the average equals
the sum over all ways of averaging pairs of matrix elements using Equation (5). The
number of such pairwise “contractions” of matrix elements proliferates with increasing
order of the perturbation expansion. Terms of leading order are obtained by suppressing
all contributions that contain derivatives of the average level density ρE,α with respect to
energy E in any class α. Such suppression allows resummation of the series, is tantamount
to the Markov approximation, and yields Equation (1) for the time evolution of PE,α(t).
Leading-order contraction patterns are displayed in Section 5 of Ref. [3].

Here, we present an alternative derivation of Equation (1) which is simpler, more
transparent, and more general than the one used in Ref. [4]. That allows us to answer the
second question raised in Section 1.

We consider the first term on the right-hand side of Equation (10). The contraction
rules given in Ref. [3] imply that the first factor V in the perturbative expansion of ċαμ

is contracted either with the factor V immediately following it (case (i)), or with the first
such factor in the perturbative expansion of c∗αμ (case (ii)). For case (i), we integrate
Equation (7) with respect to time and reinsert the result on the right-hand side of that
equation. That gives

ċαμ(t) =
1
ih̄ ∑

βν

〈αμ|Ṽ(t)|βν〉cβν(0)

+
1

(ih̄)2 ∑
βν

〈αμ|Ṽ(t)|βν〉 (11)

×
∫ t

0
dt1 ∑

γρ

〈βν|Ṽ(t1)|γρ〉cγρ(t1).
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The first term on the right-hand side does not contribute because Ṽ is not followed by a
second such factor. We insert the second term into ∑μ〈c∗αμ ċαμ〉 and contract the two factors
V displayed explicitly. We obtain

1
(ih̄)2 ∑

β

V2
αβ ∑

μν

∫ t

0
dt1 exp{i(Eαμ − Eβν)(t − t1)/h̄}

×
〈

c∗αμ(t)cαμ(t1)

〉
. (12)

Writing t1 = t + (t1 − t), we expand 〈cαμ(t1)〉 in a Taylor series in (t1 − t) and keep the first
two terms. The leading-order term yields the Markov approximation, and the next-order
term, the correction of subleading order. We define Δν = (Eαμ − Eβν)/h̄, carry out the time
integrations, and find

1
(ih̄)2 ∑

β

V2
αβ ∑

μν

{
i

Δν

(
1 − exp{iΔνt}

)〈
c∗αμ(t)cαμ(t)

〉

+
1

Δ2
ν

(
1 + (itΔν − 1) exp{iΔνt}

)〈
c∗αμ(t)ċαμ(t)

〉}
. (13)

For case (ii) we proceed analogously. In the first term, on the right-hand side of Equation (10),
we use Equation (7) for ċαμ. For c∗αμ, we integrate the complex conjugate of Equation (7)
over time and obtain

c∗αμ(t) =
i
h̄ ∑

βν

∫ t

0
dt1 〈αμ|Ṽ(t1)|βν〉∗c∗βν(t1). (14)

The term analogous to expression (12) is

1
(h̄)2 ∑

β

V2
αβ ∑

μν

∫ t

0
dt1 exp{i(Eαμ − Eβν)(t − t1)/h̄}

×
〈

c∗βν(t1)cβν(t)
〉

. (15)

We expand c∗βν(t1) in a Taylor series in t1 − t and keep the first two terms. We define
Δμ = (Eαμ − Eβν/h̄, carry out the time integrations, and obtain

1
(h̄)2 ∑

β

V2
αβ ∑

μν

{
i

Δμ

(
1 − exp{iΔμt}

)〈
c∗βν(t)cβν(t)

〉

+
1

Δ2
μ

(
1 + (itΔμ − 1) exp{iΔμt}

)〈
ċ∗βν(t)cβν(t)

〉}
. (16)

In evaluating expressions (13) and (16), we take the GOE limit defined on top of
Equation (6). We omit the terms carrying the factor exp{iΔνt} in expression (13) and
the terms carrying the factor exp{iΔμt} in expression (16). These terms are addressed in
Section 7.
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5. Markov Approximation

We focus attention on the remaining terms in the first lines of expressions (13) and (16).
These are given by

− 1
h̄2 ∑

β

V2
αβ ∑

μν

(
i

Δν
〈c∗αμ(t)cαμ(t)〉+ c.c.

)
,

1
h̄2 ∑

β

V2
αβ ∑

μν

(
i

Δμ
〈c∗βν(t)cβν(t)〉+ c.c.

)
. (17)

In the summation over ν in the first line, we assume that Δν carries an infinitesimal positive
imaginary increment iε with ε > 0. In the GOE limit, that gives

1
Δν

= P h̄
Eαμ − Eβν

− iπh̄δ(Eαμ − Eβν). (18)

The summation over ν is replaced by an integral over E′ = Eβν. The weight factor is ρE′ ,β,
the average level density in class β defined in Equation (6). The symbol P denotes the
principal-value integral. In the first expression (17), that integral gives a purely imaginary
contribution which cancels against the principal-value integral in the complex conjugate
term. We are left with the contribution due to the delta function which links only states in
classes α and β that pertain to the same energy. As a consequence, the process is entirely
on shell. The integration over E′ yields −iπh̄ρEαμ ,β. We recall that the summation over μ
encompasses a set of energies Eαμ narrowly centered at E, the energy defined by the initial
value for cαμ. Within that interval, we may replace ρEαμ ,β with ρE,β. We use definition (9) to
perform the remaining summation over μ and obtain for the first of expressions (17)

−2π

h̄
PE,α(t)∑

β

V2
αβρE,β. (19)

That is the loss term in Equation (1), with an explicit expression for the rate Rα→β. Proceed-
ing analogously for the second term in expression (17), we obtain

+
2π

h̄
ρE,α ∑

β

V2
αβPE,β(t). (20)

That is the gain term in Equation (1), again with an explicit expression for the rate Rβ→α.
Our treatment has been very explicit because gain term plus loss term together yield
Equation (1) which violates time-reversal invariance. The origin of that violation and of
the resulting tendency toward equilibration is in the choice of the sign of the infinitesimal
increment iε in Δν and Δμ. That choice determines the sign of the last term in Equation (18).
Choosing the opposite sign would change the signs of gain term and loss term and would
result in an equation where the occupation probabilities PE,α grow indefinitely with time.
That is physically unacceptable.

Use of an imaginary increment iε in Δν and in Δμ is a formal necessity. Without it, our
approach would involve the matrix elements 〈αm|(E − H(α))−1|αm′〉 of the propagators of
the GOE Hamiltonians H(α) with real energy E for α = 1, . . . , K. Each of these quantities
is a random variable that does not possess a well-defined distribution. All moments
higher than the first diverge. That can easily be checked by direct calculation. Use of an
imaginary increment iε in Δν and in Δμ is also a physical necessity. It breaks time-reversal
invariance. Without it, the terms in expressions (19) and (20) would vanish, and the Markov
approximation would say that the time derivatives of all average occupation probabilities
are equal to zero. We see that a consistent and singularity-free derivation of Equation (1)
cannot be given in the present framework for ε = 0. These difficulties are removed by
adding the increment iε. Purely formally, either sign of ε is admissible. Choosing a positive
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value for ε reflects physical necessity and has distinct physical significance. The sign of
ε determines the signs of gain and loss term and, thereby, the direction of the arrow of
time. A positive value of ε causes an ever-so-small exponential decrease with time of
all time-dependent exponentials in the time evolution of cαμ(t) and c∗αμ(t). The resulting
small but continuous loss of occupation probability corresponds to a leakage of the system,
physically caused by the evaporation of particles, by gamma emission, or by another such
mechanism. That leakage determines physically the direction of time and is ultimately
responsible for the loss of time-reversal invariance in Equation (1).

In summary: In the present framework, master Equation (1) cannot be derived for a
strictly isolated system, i.e., for ε = 0. The direction of the arrow of time is determined by
the sign of ε. A positive value of ε accounts for an (ever-so-small) coupling to the outside
world that causes a loss of probability.

6. Corrections to the Markov Approximation

Subleading-order corrections to the Markov approximation are due to the terms in
the second lines of expressions (13) and (16) and to certain contraction patterns of pairs
of matrix elements of V that violate the rules laid down in Ref. [3] to leading order. We
consider these in turn.

In the second lines of expressions (13) and (16), we neglect the strongly oscillating
terms. The remaining expressions are proportional, respectively, to ∑ν 1/Δ2

ν and to ∑μ 1/Δ2
μ.

Either term can be written as a derivative with respect to energy. It follows that the said
terms are proportional, respectively, to ṖE,α ∑β V2

αβdρE,β/dE and to dρE,α/dE ∑β V2
αβ ṖE,β.

That result has two consequences. First, it contains the time derivatives of the occupation
probabilities PE,α and PE,β. When statistical equilibrium is reached, all time derivatives

vanish. The equilibrium solution P(0)
E,α = CρE,α is determined by the interplay of gain

term and loss term on the right-hand side of Equation (1). It has the same value without
and with non-Markovian corrections. We conclude that the corrections to the Markov
approximation in expressions (13) and (16) change the form of master Equation (1), may
affect the time within which statistical equilibrium is approximately attained, but do
not affect the tendency of the system to attain equilibrium or change the form of the
equilibrium solution. Second, the result allows us to sharpen the criterion for the validity
of the Markov approximation. The corrections to the Markov approximation are negligible
if the characteristic energy interval Eβ = ρE,β/(dρE,β/dE), within which the level density
ρE,β changes significantly, is large compared to the spreading width 2πV2

αβρE,β for all classes
α coupled to class β.

We turn to the subleading contributions due to contraction patterns that violate the
rules laid down in Ref. [3]. We confine ourselves to a single example. In Equation (11), we
carry the perturbation expansion of ċαμ(t) up to the term of fourth order in Ṽ. That term
involves a time-ordered integral over times t1, t2, t3. The integrand is the product of three
matrix elements of Ṽ and of cγρ(t3). In the average over the four matrix elements of V
displayed explicitly, the contribution of subleading order is obtained by contracting the
outer pair and the inner pair. In the resulting expression, we replace cαμ(t3) by cαμ(t) and
carry out the three time integrations. As done at the end of Section 4, we suppress terms
that carry rapidly oscillating exponential factors. These are addressed in the next section.
That leaves us with a single term given by

1
(ih̄)4 ∑

βγ

V2
αβV2

βγ ∑
μν

h̄2

i2(Eαμ − Eβν)2

×∑
ρ

h̄
i(Eγρ − Eαμ)

〈c∗αμ(t)cαμ(t)〉. (21)

The sum over ν can be written as a derivative with respect to energy. We use Equation (18)
and suppress the principal-value contributions. The result is proportional to
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iPE,α(t)∑β V2
αβdρE,β/dE ∑γ V2

βγρE,γ. It is purely imaginary and, thus, does not contribute
to Equation (1). We note, however, that the form of the result shows that the criterion for
the validity of the Markov approximation stated in the previous paragraph applies here
as well. A term similar to expression (21) is obtained from the subleading contraction
connecting a factor V in ċαμ(t) and three factors V in c∗αμ(t). Actually, neither of these two
terms modifies Equation (1). The form of the equilibrium solution remains unchanged.

These results confirm that the Markov approximation is not the cause of violation of
time-reversal invariance in Equation (1).

7. Oscillatory Terms

As done in Ref. [4], we have consistently omitted terms of the form

∑
ν

exp i(E − Eβν)t/h̄}
E − Eβν + iε

. (22)

Such terms are not peculiar to the Markov approximation. They arise, in general, whenever
the time evolution of a quantum system is studied perturbatively. Actually, the contents
of the big round brackets in Equations (13) and (16) vanish for t = 0. That shows that the
neglect of the oscillatory terms, intuitively justified because of the rapid oscillation of the
exponential, is valid only beyond some finite time t0. At that time, the contribution of the
oscillating terms becomes small compared to that of the first term in big round brackets
in Equations (13) and (16). To determine t0, we replace the infinitesimal increment ε in
expression (22) by a finite width γ. That gives

∑
ν

exp i(E − Eβν)t/h̄}
(E − Eβν)2 + γ2

(
E − Eβν − iγ

)
. (23)

Upon summation, the real part of the big round bracket vanishes or is very small. That is
true even for t = 0. The term proportional to iγ involves the summation over a Lorentzian
with width γ. If the remaining terms in the sum were sufficiently smooth functions of Eβν,
the limit γ → 0 may be taken. That yields the delta function on the right-hand side of
Equation (18). In the present case, we cannot use that step because of the oscillation of the
exponential. We assume that γ  dβ, the mean level spacing in class β. Then, the sum over
the Lorentzian effectively involves a large number of terms. Because of the exponential, the
sum becomes negligible for t � 2πh̄/γ. We compare that with the characteristic time scale
of Equation (1) which is given by the inverse rate h̄/(2πV2

αβρE,β). The two time scales are
approximately equal, and oscillating terms may be suppressed in master Equation (1) after
some initial time t0 = 2πh̄/γ, if γ is of order (2π)2V2

αβρE,β.
While an infinitesimal increment ε is sufficient to guarantee violation of time-reversal

invariance in Equation (1), a finite width γ is needed to validate omission of the exponential
terms for times t � t0 = 2πh̄/γ. The width γ, caused by decay into open channels, leads to
a decay in time of all exponentials in the time evolution of amplitudes, see Equation (7). To
be consistent, such decay may have to be accounted for explicitly in terms of an additional
loss term in Equation (1). That was done, for instance, in Ref. [26], where γ accounts for
neutron evaporation in a laser-induced nuclear reaction.

8. Summary and Conclusions

We have considered a system composed of classes of states, each of which is strongly
mixed internally. By recalling central results of quantum chaos and its connection to
random-matrix theory, we have justified the use of a random-matrix approach to that
system. Within each class, the dynamics are governed by an ensemble of GOE Hamil-
tonians. States in different classes are coupled by an ensemble of Gaussian-distributed
matrix elements. We have simplified the derivation of Ref. [4] for the time evolution of
average occupation probabilities for each class. That has enabled us to precisely define the
conditions of validity of master Equation (1) and to identify the central element that causes
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the violation of time-reversal invariance. Irreversibility is due to an ever-so-small loss of
probability (due to particle evaporation, gamma emission, or another such mechanism).
The loss term defines the direction of the arrow of time. In combination with ensemble
averaging and the Markov approximation, it leads to the irreversible master Equation (1).

Corrections of the subleading order to the Markov approximation may modify the
speed at which the system equilibrates. They do not affect the irreversible tendency toward
statistical equilibrium. The corrections are negligible, and the Markov approximation is
valid, if in each class α the average level density ρE,α is sufficiently smooth. Quantitatively,
that requires that the energy interval Eα = ρE,α/(dρE,α/dE), within which ρE,α changes
significantly, is large in comparison with every one of the spreading widths 2πV2

βαρE,α that
feed states in class α from states in any other class β. For the terms that strongly oscillate
in time, we have derived a lower bound t0 on time beyond which such oscillating terms
are negligible.

We have answered the questions raised in Section 1. In doing so, we have formulated
precise conditions on level densities and time scales within which Equation (1) can be used
with confidence.

After completion of the manuscript, I became aware of Ref. [27]. I am grateful to A.
Volya and to V. Zelevinsky for drawing my attention to that paper. Investigating a number
of examples, the authors demonstrate the limitations in specific cases of the universal
random-matrix approach adopted in the present paper.
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Abstract: Detecting many-body localization (MBL) typically requires the calculation of high-energy
eigenstates using numerical approaches. This study investigates methods that assume the use of a
quantum device to detect disorder-induced localization. Numerical simulations for small systems
demonstrate how the magnetization and twist overlap, which can be easily obtained from the
measurement of qubits in a quantum device, changing from the thermal phase to the localized
phase. The twist overlap evaluated using the wave function at the end of the time evolution behaves
similarly to the one evaluated with eigenstates in the middle of the energy spectrum under a specific
condition. The twist overlap evaluated using the wave function after time evolution for many
disorder realizations is a promising probe for detecting MBL in quantum computing approaches.

Keywords: many-body localization; twist overlap; quantum computing

1. Introduction

Many-body localization (MBL) has recently attracted significant interest [1–5]. MBL
is a generalization of Anderson localization for disordered quantum many-body systems
with interactions. When the disorder is strong enough, MBL prevents the system from
thermalizing. The transition from the thermal to localized phase, i.e., MBL transition, is rec-
ognized as an eigenstate phase transition from the ergodic phase to non-ergodic phase [6–8].
The MBL transition is typically detected by quantities evaluated using eigenstates, such as
entanglement, inverse participation ratio, one-particle density matrix [9–22], and spectral
properties, such as level statistics [6,15–19,23] as well as local observables [6,14–16]. The
random matrix theory and quantum chaos conjecture support the relationship between
spectral properties and quantum chaos [24,25] as well as provide a framework for charac-
terizing the MBL transition [26,27]. Experimental studies have also captured the signature
of the MBL transition in disordered quantum systems with different architectures [28–41].
In experiments, MBL is often explored by the investigation of quantum dynamics. For
example, the imbalance between the populations of even and odd sites in an atomic system
is a measurable quantity for localization detection. The initial state has populations only on
even sites, while odd sites are empty. Then, the imbalance is close to 1 initially and relaxes
to zero as the system thermalizes. However, the imbalance maintains a finite value in the
localized phase due to the initial state memory.

Recently, new approaches using quantum annealers were studied to simulate the
properties of disordered quantum systems [42–49]. Probing MBL is also within the scope of
quantum annealers and quantum computers. Although current quantum devices are still
noisy and cannot compute exact eigenstates, some dynamical characteristics of MBL are
robust against noise. In the localized phase, local quantities are conserved to some extent.
For example, if the initial state is the all-spin-up state, then the magnetization maintains a
large value because of the initial state memory. The magnetization, in this case, is similar
to the imbalance in an atomic system in the sense that the memory effect characterizes
localization. A recent experiment using a quantum annealer detected by the localization
transition through magnetization measurements at the end of the time evolution [49].
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This study investigated the localization detection based on quantum dynamics in
a disordered quantum spin chain. Magnetization is a simple quantity that can be easily
measured in quantum devices. We also employed another measurable quantity, the twist
overlap. The twist overlap is a quantity proposed to detect the MBL transition and measure
the extent to which an eigenstate overlaps with its twisted state [50]. A twisted state
is obtained by applying a twist operator that rotates spins over the chain at gradually
increasing angles. The twist overlap almost vanishes for thermal eigenstates, whereas it
has a finite value for localized ones [50]. The twist overlap can also be evaluated using the
state after time evolution. Using the twist overlap is convenient for localization detection
in quantum devices because it can be easily obtained from the measurement of each spin.

The numerical simulations of small system sizes in this study demonstrate how the
magnetization and twist overlap change from the thermal phase to the localized phase.
These quantities were obtained at the end of the time evolution and averaged over different
disorder realizations. They often oscillate at different frequencies for each disorder realiza-
tion. Thus, we also examined the time dependence of these quantities to understand their
dynamics. The time dependence, whose observation in experiments may require enormous
time and effort, is also helpful in understanding the characteristics of these quantities.
Although the difference between the thermal and localized phases in those quantities is
evident, we cannot decide the existence of a phase transition from the limited numerical
simulations. This work aims to demonstrate the effectiveness of experimentally measurable
quantities, specifically twist overlap, as a localization probe.

2. Model and Methods

2.1. Model

The model used in this study is a one-dimensional transverse Ising model with local
random fields, which is applied to a quantum annealer. The Hamiltonian is given by

H =
L−1

∑
j=1

Jjσ
z
j σz

j+1 +
L

∑
j=1

hjσ
z
j −

L

∑
j=1

Γjσ
x
j , (1)

where L is the system size and σx
j and σz

j are the Pauli operators of components x and z,
respectively, at site j. The local field hj consists of random numbers with a uniform distri-
bution in the interval [−w, w], wherein w denotes the disorder strength. The interactions
Jj and transverse fields Γj are given by 1 + rj, where rj is a uniform random number in
the interval [−σ, σ]. Here, we refer to weak disorders in Jj and Γj as static noises. They
are introduced to mimic the static noises of couplings between qubits and local fields in a
quantum device.

2.2. Entanglement Entropy and Twist Overlap

The MBL transition is typically detected using quantities calculated using eigenstates.
Moreover, the quantum dynamics reflects the properties of eigenstates. Before examin-
ing the quantum dynamics, we examine several quantities calculated using eigenstates.
Here, we employ the half-chain entanglement entropy and twist overlap evaluated with
eigenstates in the middle of the energy spectrum.

The half-chain entanglement entropy is defined by

SE = −TrρA log ρA, (2)

where ρA is the reduced density matrix for subsystem A. Subsystem A corresponds to the
first half of the spin chain. Eigenstates obey the volume and area laws of entanglement
in the thermal and localized phases, respectively. In other words, SE decreases when the
thermal-to-MBL transition occurs. The transition point is characterized by the variance
peak of the half-chain entanglement entropy [14,18].
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The twist operator is defined by

Utwist = exp

[
i
2

L

∑
j=1

θjσ
z
j

]
. (3)

It generates a spin-wave-like excitation by rotating the spins around the z axis at angles
θj = 2π j/L [50,51]. The factor 1/2 originates from spin 1

2 . The overlap between a state |ψ〉
and its twisted state Utwist|ψ〉 is the twist overlap, which is represented as

z = 〈ψ|Utwist|ψ〉, (4)

where |ψ〉 denotes the eigenstate of the Hamiltonian in the original definition [50]. In the
thermal phase, the twist overlap is expected to vanish because the twisted state with a spin-
wave-like excitation is orthogonal to the original state. In contrast, the long-wavelength
perturbation given by the twist operator has little effect on the eigenstates in the localized
phase, which implies a finite twist overlap.

In quantum devices, the twist overlap is easily obtained by measuring each qubit.
Writing |ψ〉 as a linear combination |ψ〉 = ∑s αs|s〉 of the computational basis {|s〉} yields

z = ∑
s,s′

αsα∗
s′ exp

[
i
2

L

∑
j=1

θjsz
j

]
〈s′|s〉 = ∑

s
|αs|2 exp

[
i
2

L

∑
j=1

θjsz
j

]
, (5)

where σz
j |s〉 = sz

j |s〉. Since each measurement provides the configuration of sz
j (j = 1, . . . , L)

with probability |αs|2, many measurements provide the expected value of the twist overlap.

2.3. Time Evolution

The solution of the Schrödinger equation,

i
d
dt

|ψ(t)〉 = H|ψ〉, (6)

is represented as
|ψ(t)〉 = exp(−iHt)|ψ0〉, (7)

where |ψ0〉 denotes the initial state. In the numerical simulations below, the initial state
is the all-spin-up state. The exact diagonalization of the Hamiltonian provides the time
dependence of |ψ(t)〉. We observe the magnetization and twist overlap at the end of the
time evolution, which is at the final time t = Tfin.

When the initial state is expressed as |ψ0〉 = ∑k ck|φk〉 with eigenstates |φk〉 of the
Hamiltonian, Equation (7) becomes

|ψ(t)〉 =
2L

∑
k=1

ck exp(−iEkt)|φk〉, (8)

where Ek denotes the eigenenergy corresponding to |φk〉. The z component of the magneti-
zation defined by Mz ≡ 〈ψ| ∑j σz

j |ψ〉 evolves as

Mz(t) =
2L

∑
k,l=1

ckc∗l 〈φl |
L

∑
j=1

σz
j |φk〉e−i(Ek−El)t. (9)

Similarly, the twist overlap evolves as

z(t) =
2L

∑
k,l=1

ckc∗l 〈φl |Utwist|φk〉e−i(Ek−El)t. (10)
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Equations (9) and (10) suggest the oscillatory behavior of Mz(t) and z(t). Therefore, the
observed quantities depend on both the eigenstates and the final time. Since the frequency
and amplitude of the oscillation differ from sample to sample, the average over disorder
realizations characterizes the observed quantities if the final time is sufficiently large.

3. Results

3.1. Quantities Calculated from Eigenstates

Before investigating quantum dynamics, we confirm the localization properties char-
acterized by eigenstates of the Hamiltonian. They help understand the quantities obtained
from quantum dynamics. The exact diagonalization of the Hamiltonian without noise
(σ = 0) was performed for each pair of the system size L and disorder strength w. The
number of disorder realizations was 104 for L = 8 and 103 for L = 10 and 12. For each
realization, the half-chain entanglement entropy and twist overlap were calculated and
averaged over 20 eigenstates around the center of the energy spectrum.

Figure 1 shows the dependence on the disorder strength w of the half-chain entangle-
ment entropy SE and the absolute square of the twist overlap |z|2 averaged over the disorder
realizations. The averages of SE and |z|2 are plotted with error bars in Figure 1a and 1c,
respectively, where the error bar represents the standard deviation. Figure 1b and 1d show
the standard deviations of SE and |z|2, respectively.

Figure 1. Disorder strength dependence of the entanglement entropy (a,b) and the twist overlap (c,d),
calculated using eigenstates for different system sizes in the noiseless case (σ = 0). (a,b) plot the
half-chain entanglement entropy SE and its standard deviation δSE as functions of disorder strength
w, respectively. Similarly, (c,d) plot the absolute square of the twist overlap |z|2 and its standard
deviation δ|z|2, respectively. The error bars in (a,c) represent standard deviation.

The disorder strength dependence of the half-chain entanglement entropy shown in
Figure 1a,b shows a behavior similar to that of Ref. [49], although the values were different
because of the differences in the models. For each L, the variance (standard deviation)
peaks around w � 1–5, where the transition or crossover between the thermal and localized
phases occurs.

As expected, the twist overlap, whose absolute square is shown in Figure 1c, increases
with the disorder strength. The variance is almost zero in the weak-disorder region and
becomes finite in the strong-disorder region. These results indicate that both the average
and variance of the twist overlap are almost zero in the thermal phase, but large in the
localized phase. The disorder-strength dependence of the variance was not observed in
Ref. [50], which used the random-field Heisenberg chain. The difference in the variance
behavior is likely due to differences in the models.

Whereas the peaks of δSE appear in the middle of changes in SE, those of δ|z|2 occur
as |z|2 is large enough. The peaks of δ|z|2 appear probably due to the saturation of |z|2.
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Thus, the peak position of δ|z|2 is not related to the transition or crossover between the
thermal and localized phases.

3.2. Properties Based on Quantum Dynamics

In this subsection, we investigate the magnetization and twist overlap evaluated
using the wave function at the end of time evolution. The wave function |ψ(t)〉 at the
final time t = Tfin was calculated from the exact diagonalization of the Hamiltonian. The
final time was Tfin = 10, which is sufficient to capture the difference between the thermal
and localized phases, as shown in the following subsection. The initial state is taken as
the all-spin-up state. Mz = 〈ψ(Tfin)| ∑j σz

j |ψ(Tfin)〉 and z = 〈ψ(Tfin)|Utwist|ψ(Tfin)〉 were
calculated for each disorder realization. The number of disorder realizations was the same
as that in the previous subsection: 104 for L = 8 and 103 for L = 10 and 12.

Figure 2 shows the dependence on the disorder strength w of the z component of
the magnetization Mz and the absolute square of the twist overlap |z|2 averaged over
the disorder realizations. Here, the noise strength is σ = 0. The averages of Mz and
|z|2 are plotted with error bars in Figure 2a and 2c, respectively, where the error bar
represents standard deviation. Figure 2b and 2d show the standard deviations of Mz and
|z|2, respectively.

Figure 2. Disorder strength dependence based on quantum dynamics for different system sizes in
the noiseless case (σ = 0). (a,b) plot the z component of the magnetization Mz and its standard
deviation δMz as functions of disorder strength w, respectively. (c,d) plot the absolute square of
the twist overlap |z|2 and its standard deviation δ|z|2, respectively. The error bars in (a,c) represent
standard deviation.

The average magnetization is Mz � 0 in the weak-disorder region, indicating thermal-
ization. When the disorder is strong enough, Mz � L, which is a signature of the memory
effect because Mz = L in the initial state. The memory effect is characteristic of the localized
phase, which was also observed in Ref. [49]. The variance (standard deviation) of the
magnetization peaks at a disorder strength slightly weaker than that of the entanglement
entropy. Since magnetization fluctuates with time and can have negative values, δMz is
relatively large in the weak-disorder region. Thus, the variance peak of the magnetization
in this situation cannot apply to determining the transition or overlap point.

The twist overlap also increases with the disorder strength. However, the memory
effect is not the leading cause for the large value of |z|2 in the strong disorder region. If
the memory effect dominates the twist overlap behavior, |z|2 should be close to 1, and its
variance should be small. Considering the fact that the twist overlap shown in Figure 2c
is similar to that in Figure 1c, we expect that the behavior of the twist overlap reflects the
properties of eigenstates. The variance (standard deviation) in Figure 2d is relatively large
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compared with that in Figure 1d. The large variance in Figure 2d is due to the difference in
the eigenstates of different disorder realizations and the oscillatory behavior of z(t).

Similar results to the noiseless case (σ = 0) also appear in the presence of static
noise. While several types of noises exist in quantum devices, we here consider static
noises in the interaction between spins and the transverse field. As shown in Figure 3, the
disorder strength of Mz and |z|2 has little dependence on noise strength σ. However, the
time evolution is affected by the static noises, as shown in the following subsection. The
details of the time evolution are averaged out in the results in Figure 3, making the noise
dependence negligible.

Figure 3. Disorder strength dependence of (a) the z component of the magnetization and (b) the
absolute square of the twist overlap |z|2 for different noise strengths. The error bars represent the
standard deviation. The system size is L = 12.

3.3. Time Dependence

The time dependence of the magnetization and twist overlap helps us understand the
characteristics of quantum dynamics in the system. Figure 4 illustrates Mz(t) (in the upper
row) and |z(t)|2 (in the lower row) for several combinations of disorder strength w and
noise strength σ. Each graph plots ten samples of the time series calculated at different
disorder realizations. The graphs in the same column, for example, (a) and (e), share the
same wave-function samples. That is, the curves of Mz(t) and |z(t)|2 with the same color
in the same column are evaluated using the same wave functions.

Figure 4. Time dependence of (a–d) the magnetization and (e–h) the absolute square of the twist
overlap. Each graph plots ten different samples of the time series. (a,e) share the same wave-function
samples, and the same applies to (b,f), (c,g), and (d,h). The system size is L = 12.

Figure 4a–c and 4e–g demonstrate how the behaviors of Mz(t) and |z(t)|2 change with
disorder strength w, respectively, in the noiseless case (σ = 0). Initially, Mz = L = 12,
which then decreases to Mz � 0 when the disorder is weak. As the disorder strengthens,
Mz(t) fluctuates around positive values. Finally, Mz(t) fluctuates around the initial value
in the localized phase. However, |z|2 = 1 at the initial time decreases rapidly to |z|2 � 0
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when the disorder is weak. As the disorder strengthens, the fluctuations in |z|2 become
noticeable. In contrast to Mz(t), some samples of |z(t)|2 oscillate with large amplitudes
around relatively low values.

Figure 4d,h show the time dependence of Mz(t) and |z(t)|2, respectively, for the noisy
(σ = 0.3) and weak-disorder (w = 0.1) cases. A comparison with Figure 4a,d suggests that
the time average of Mz(t) is larger in the noisy case than that in the noiseless case in general.
The difference in time dependence indicates that the static noise in the interaction strength
and transverse field affects the quantum dynamics, which is not reflected in Figure 3.

4. Discussion

The absolute square of the twist overlap |z|2 exhibits a slight variance in the weak-
disorder region, as shown in Figures 2 and 3. However, the z component of the magnetiza-
tion Mz has a relatively large variance in the same region. The time dependences of Mz(t)
and |z(t)|2 also support this behavior, which seems curious. Figure 1c,d illustrates that
|z|2 � 0 in the small-disorder region, implying that 〈φl |Utwist|φ〉 in Equation (10) nearly
vanishes in the middle of the energy spectrum. Since the eigenstates in the high and low
regions of the energy spectrum also contribute to the time-dependent |z(t)|2, the variance
of |z|2 has a small finite value in Figures 2 and 3. However, Mz(t) fluctuates around zero
because of thermalization, which causes a relatively large variance.

As shown in Figure 4, |z(t)|2 oscillates with a large amplitude in some strong-disorder
cases, even though Mz(t) remains around the initial value. Large-amplitude oscillations
arise from the combination of 〈φl |Utwist|φk〉 with different eigenstates |φl〉 and |φk〉. As
shown in Figure 1c,d, the average and variance of |z|2 are significant in the strong-disorder
region, which supports the variation in the combination of 〈φl |Utwist|φk〉.

5. Conclusions

We investigated a method that assumes the use of a quantum device to detect disorder-
induced localization. Localization in a disordered spin chain is detected by evaluating
the magnetization and twist overlap at the end of the time evolution for many disorder
realizations. Numerical simulations demonstrated how the magnetization and twist over-
lap characteristics change between the thermal and localized phases. We found evident
differences between them, although the existence of a phase transition was not decided.
The disorder-strength dependence of the magnetization and twist overlap is robust against
static noises in the interaction between spins and the local field.

Under the condition in this work, the twist overlap evaluated using the wave function
at the end of the time evolution behaved similarly to that calculated using eigenstates in the
middle of the energy spectrum. In other words, the twist overlap after time evolution can
provide information on the properties of eigenstates beyond the memory effect. The twist
overlap is easily obtained from the measurement of qubits in a quantum device. Although
this work assumes an ideal quantum device, the results suggest that the twist overlap is a
promising probe for detecting MBL in quantum computing approaches.
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Abbreviation

The following abbreviation is used in this manuscript:

MBL Many-body localization
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Abstract: The kicked rotor and the kicked top are two paradigms of quantum chaos. The notions
of quantum resonance and the pseudoclassical limit, developed in the study of the kicked rotor,
have revealed an intriguing and unconventional aspect of classical–quantum correspondence. Here,
we show that, by extending these notions to the kicked top, its rich dynamical behavior can be
appreciated more thoroughly; of special interest is the entanglement entropy. In particular, the
periodic synchronization between systems subject to different kicking strength can be conveniently
understood and elaborated from the pseudoclassical perspective. The applicability of the suggested
general pseudoclassical theory to the kicked rotor is also discussed.

Keywords: kicked top model; quantum resonance; pseudoclassical limit; dynamical entanglement

1. Introduction

The study of quantum chaos, or quantum chaology [1], focuses on whether, how, and
to what extent classical chaos may manifest itself in the quantum realm. In essence, it
boils down to the general classical–quantum correspondence issue, as insightfully pointed
out by Einstein at the very early development stage of quantum theory [2]. The quantum
kicked rotor, presumably the best known paradigm of quantum chaos, was first introduced
by Casati et al. in their seminal study that opened this field [3]. After four decades of
investigation, the richness of this paradigmatic model appears to be surprising. Far beyond
quantum chaos, it has also been realized that this model may play a unique role in other
fundamental problems, such as Anderson localization (transition) [4–7] and the quantum
Hall effect [8–10]. Centering around the kicked rotor, an expanded overlapping field
encompassing all these relevant problems is emerging [11].

In contrast to its richness, another advantage of the kicked rotor lies in its simplic-
ity, featuring only a single point particle on a circle subject to the stroboscopic external
interaction, which makes the study of this model much more convenient than most oth-
ers. An exception is the kicked top model [12], which has a finite Hilbert space, so that
it is even more favorable for research. Interestingly and importantly, these two models
usually demonstrate different aspects of quantum chaos in a complementary way. With
all these advantages, they are often the first ideal candidates for probing new notions.
In recent years, interesting notions having been intensively investigated range widely,
from the out-of-time-order correlations [13–15], to the dynamical entanglement [15–20], the
non-Hermitian properties [21,22], and so on.

The dynamical entanglement is devised to capture the decoherence process of a
quantum system when being coupled to the environment. It has distinct characteristics if
the system’s classical counterpart is chaotic. The kicked top has the spin algebra symmetry
and, as such, it can be regarded as a composite of identical qubits. An additional advantage
due to such a multiqubit interpretation is that, for studying the dynamical entanglement,
there is no need to introduce the environment. It has been shown both theoretically and
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experimentally that, indeed, the dynamical entanglement may serve as a diagnosis of
quantum chaos in the kicked top model [20,23].

However, as far as we know, in most previous studies of the kicked top, only a
narrower range of comparatively weak kicking strength has been investigated, leaving
its properties unexplored yet in a wider range of stronger kicking strength. The reason
might be that, for the classical kicked top, the transition from regular to globally chaotic
motion occurs at a rather weak kicking strength. When the system is already globally
chaotic, further increasing the kicking strength would not result in any qualitatively new
properties. Accordingly, due to quantum–classical correspondence, it is reasonable to
conjecture that this would also be the case in the quantum kicked top in the semi-classical
limit. Nevertheless, as illustrated in a recent study where measures of quantum correlations
were studied [18], the quantum kicked tops at certain different kicking strengths may
synchronize, in clear contrast to their classical counterparts.

In fact, it is worth noting that in the kicked rotor, the similar classical–quantum non-
correspondence phenomenon, termed quantum resonance [24], has been recognized and
studied ever since the beginning of the quantum chaos field. Later, it has also been real-
ized that the properties of the system when being detuned from the quantum resonance
condition can even be understood in a classical way through the so-called pseudoclas-
sical limit [25,26], rather than the conventional semi-classical limit. This reminds us to
consider whether the synchronization observed in the quantum kicked top may have any
underlying connections to quantum resonance and the pseudoclassical limit. In this work,
we will provide a positive answer to this question. In particular, we will suggest a more
general scheme of the pseudoclassical limit that involves more information of the quantum
dynamics, which allows us to successfully apply it not only to the kicked top, but also
to the kicked rotor. When being applied to the kicked rotor, the previously developed
pseudoclassical scheme is found to be a special case of the suggested one.

In the following, we will briefly describe the kicked top model in Section 2 first. Next,
in Section 3, we will discuss the quantum resonance condition for the quantum kicked
top and develop the pseudoclassical theory. The properties of the system adjacent to the
quantum resonance condition will be discussed in detail with two illustrating cases in
Section 4. In particular, the numerical studies and the comparison with the pseudoclassical
theory will be presented. In Section 5, the properties of dynamical entanglement will be
investigated from the perspective of the pseudoclassical limit. Finally, we will summarize
our work and discuss its extension to the kicked rotor in Section 6.

2. The Kicked Top Model

The Hamiltonian of the kicked top model is [12]

H = αJx +
β

2j
J2
z

∞

∑
n=−∞

δ(t − n),

where Jx, Jy, and Jz are the angular momentum operators respecting the commutations[
Jλ, Jμ

]
= iελμν Jν (the Planck constant h̄ is set to be unity throughout) and j is an integer

or half-integer related to the dimension of the Hilbert space N as N = 2j + 1. The first
term in H describes the procession around the x axis with angular frequency α, while the
second term accounts for a periodic sequence of kicks with an overall kicking strength
β (the period of kicking is set to be the unit of time). In the following, we will restrict
ourselves to the case of integer j, but the discussions can be extended straightforwardly to
that of half-integer j. Since the Hamiltonian is time-periodic, the evolution of the system
for a unit time, or one step of evolution, can be fulfilled by applying the Floquet operator

U = exp
(
−i

β

2j
J2
z

)
exp(−iαJx) (1)
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to the present state. Obviously, U does not change under the transformation β → β + 4jπ,
implying that the properties of the quantum kicked top have a periodic dependence on the
kicking strength β of period 4jπ. Thus, a better understanding of the quantum kicked top
calls for investigations covering such a period.

In the semi-classical limit j → ∞, following the Heisenberg equations, the one-step
evolution of the system reduces to the following map [27]:

X′ =X cos[β(Y sin α + Z cos α)]− (Y cos α

− Z sin α) · sin[β(Y sin α + Z cos α)],

Y′ =X sin[β(Y sin α + Z cos α)] + (Y cos α

− Z sin α) · cos[β(Y sin α + Z cos α)],

Z′ =Y sin α + Z cos α,

(2)

with the normalized variables X = Jx/j, Y = Jy/j, and Z = Jz/j. This map defines the
classical kicked top. Physically, this map describes the process of rotating the top along the
x axis for an angle of α first to reach the intermediate state (X̃, Ỹ, Z̃), followed by further
rotating it around Z̃ by βZ̃, which is the same as the quantum Floquet operator.

Note that the state (X, Y, Z) can be viewed as a point on the surface of a unit sphere.
Therefore, it can be represented equivalently by two angles, denoted as Θ and Φ, via
the coordinate transformation (X, Y, Z) = (sin Θ cos Φ, sin Θ sin Φ, cos Θ). For the sake of
convenience, we denote map (2) in terms of Θ and Φ as

(Θ′, Φ′) = F (Θ, Φ; α, β), (3)

where (Θ′, Φ′) is the state equivalent to (X′, Y′, Z′).
In order to make a close comparison between the quantum and the classical dynamics,

we invoke the spin coherent state in the former, which has the minimum uncertainty in a
spin system. A spin coherent state centered at (Θ, Φ), denoted as |Θ, Φ〉, can be generated
from the angular momentum eigenstate |j, j〉 as

|Θ, Φ〉 = exp
(
iΘ[Jx sin Φ − Jy cos Φ]

)
|j, j〉.

Here, |j, j〉 satisfies that (J2
x + J2

y + J2
z )|j, j〉 = j(j + 1)|j, j〉 and Jz|j, j〉 = j|j, j〉. The

classical counterpart of |Θ, Φ〉 is the point (Θ, Φ) on the unit sphere.

3. The Pseudoclassical Theory

3.1. Quantum Resonance in the Kicked Top

The concept of quantum resonance was first introduced in the kicked rotor model.
The Floquet operator for the kicked rotor is

UR = exp
(
−i

p2

2
T
)

exp(−iK cos θ),

where T and K are two parameters, θ is the angular displacement of the rotor, and p is the
corresponding conjugate angular momentum. If T = 4πr/s with r and s as two coprime
integers, except for the cases of an odd r and s = 2, the asymptotic growth in energy is
quadratic in time, corresponding to a linear spreading of the wavepacket in the angular
momentum space. This phenomenon is referred to as “quantum resonance” [24], since
it is caused by the pure quantum effect, with no connections to the classical dynamics.
Otherwise, the energy would undergo a linear growth stage, corresponding to the diffusive
spread of the wavepacket in the angular momentum space, before it saturates due to
quantum interference, which is known as the so-called dynamical localization [28]. For the
special case of an odd r and s = 2, it follows that U2

R = 1. Namely, the quantum dynamics
is periodic of period two, which is referred to as “quantum antiresonance”.
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There is an implicit connection between the kicked rotor and the kicked top. By
assuming the scaling

T = β/j and K = αj,

it has been shown that the kicked rotor emerges as a limit case of the kicked top [27]. Given
this, the notion of quantum resonance can be extended to the kicked top by assigning the
quantum resonance condition that

β = 4jπ
r
s

with coprime r and s. Indeed, under this condition, the kicked top has similar properties
to the kicked rotor in quantum resonance. For example, for β = 4jπ, the Floquet operator
reduces to U = exp(−iαJx), implying that the top keeps rotating at a constant rate; however,
when r is odd and s = 2, we have U2 = 1, suggesting that the motion is periodic of period
two as well.

3.2. The Pseudoclassical Limit of the Kicked Top

For the kicked rotor, a pseudoclassical theory has been developed to address the
quantum dynamics via a classical map, the so-called pseudoclassical limit, when the sys-
tem parameter is close to the resonance condition that T is an integer multiple of 2π
(i.e., s = 2) [25,26]. In the following, we attempt to extend this theory to the kicked top and
study its behavior for β = 4jπr/s + δ, where δ (incommensurate to π) is a weak perturba-
tion to the resonance condition that is unnecessarily limited to the case of s = 2. Suppose
that the current state is |Θ, Φ〉 and its classical counterpart is (Θ, Φ); our task is to figure
out the one-step evolution result for the latter by analogy based on the quantum evolution.

For β = 4jπr/s + δ, the Floquet operator (1) can be rewritten as

U = exp
(
−i

4jπ r
s + δ

2j
J2
z

)
exp(−iαJx)

= exp
(
−i2π

r
s

J2
z

)
exp
(
−i

δ

2j
J2
z

)
exp(−iαJx).

(4)

Remarkably, the last two terms are exactly the Floquet operator of the kicked top but
with the kicking strength δ instead. As shown in previous studies, when δ is small, the
quantum dynamics that the last two operators represent can be well mapped to the classical
kicked top (with the kicking strength δ) in the semi-classical limit. As a consequence, the
classical counterpart of the last two operators is to map (Θ, Φ) into the intermediate state

(Θ̃δ, Φ̃δ) = F (Θ, Φ; α, δ), (5)

where the subscript δ at the l.h.s. indicates the kicking strength for the sake of clearness.
Vice versa, for the corresponding quantum evolution, due to the solid quantum–

classical correspondence in the semi–classical limit, we assume that these two operators
map the coherent state |Θ, Φ〉 into that of |Θ̃δ, Φ̃δ〉. Then, the remaining problem is to find
out the classical counterpart of the result when the first operator at the r.h.s. of Equation (4)
applies to this intermediate state |Θ̃δ, Φ̃δ〉. The result is (see the derivation in Appendix A)

exp
(
−i2π

r
s

J2
z

)
|Θ̃δ, Φ̃δ〉 =

s−1

∑
l=0

Gl

∣∣∣∣Θ̃δ, Φ̃δ +
2πr

s
l
〉

, (6)

where Gl is the Gaussian sum

Gl =
1
s

s−1

∑
k=0

exp
(
−i

2πr
s

k(k − l)
)

.
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The physical meaning of Equation (6) is clear: the intermediate coherent state |Θ̃δ, Φ̃δ〉
is mapped into s coherent states located along the line of Θ = Θ̃δ, each of which has an
amplitude given by a Gaussian sum. Note that these s coherent states are not necessarily
independent; some of them may correspond to the same coherent state, if their l values
lead to the same angle of Δ = 2πrl/s mod 2π. Suppose that there are N different such
angles in total and denote them as Δk, k = 1, · · · , N ; then, Equation (6) can be rewritten as

exp
(
−i2π

r
s

J2
z

)
|Θ̃δ, Φ̃δ〉 =

N
∑
k=1

Ak
∣∣Θ̃δ, Φ̃δ + Δk

〉
. (7)

Here, for the kth component coherent state, its amplitude Ak is the sum of all Gl whose
subscript l satisfying Δk = 2πrl/s mod 2π.

In the semi-classical limit j → ∞, a coherent state reduces to a point in the phase
space. Given this, we can give Equation (7) a classical interpretation as the following: the
point (Θ, Φ) is mapped into a set of N points and meanwhile each point is associated
with a complex “amplitude”. These two features make the situation here distinct from
the previous pseudoclassical theory for the kicked rotor, where a point is mapped only to
another point and no complex amplitude is involved. Thus, formally, the pseudoclassical
map that we seek can be expressed as

M : (Θ, Φ) → {[(Θ̃δ, Φ̃δ + Δk); Ak], k = 1, · · · , N}. (8)

This is the key result of the present work. As illustrated in the next section, it does allow
us to predict the quantum dynamics in such a pseudoclassical way. Here, we emphasize
that the amplitudes {Ak} are crucial to this end. Specifically, |Ak|2 has to be taken as the
weight of the kth point to evaluate the expected value of a given observable. Moreover,
the phases encoded in these amplitudes have to be considered simultaneously to correctly
trace the quantum evolution.

4. Applications of the Pseudoclassical Theory

In this section, we check the effectiveness of the pseudoclassical map by comparing its
predictions with that obtained directly with the quantum Floquet operator. In general, if a
point is mapped into N > 1 points at each step, then the number of points that we have to
deal with would increase exponentially. Therefore, in practice, it would be prohibitively
difficult to apply it for any arbitrarily given parameters. However, fortunately, for some
quantum resonance parameters, N could be small, and, under certain conditions, e.g., if
α is an integer multiple of π/2, coherent cancellation may suppress the increase in the
number of points (see the second subsection below). In such cases, the application of the
pseudoclassical theory can be greatly simplified. Here, we consider two such cases as
illustrating examples, i.e., β = 2jπ + δ and β = jπ + δ, respectively.

4.1. Case I: β = 2jπ + δ

For this case, we can show (see Appendix B) that N = 1, i.e., the pseudoclassical
dynamics evolves the point (Θ, Φ) into another single point as

M : (Θ, Φ) → (Θ̃δ, Φ̃δ + π), (9)

with the corresponding amplitude A1 = 1.
With Equation (9) in hand, we are ready to predict the quantum properties. The most

relevant quantities could be the expected values of angular momentums. In Figure 1, their
dependence on time is shown for a randomly chosen initial condition. The corresponding
quantum results for three different values of j are plotted together for comparison. It can
be seen that the pseudoclassical results agree very well with the quantum ones, and, as
expected, as j increases, the agreement improves progressively. It shows that, indeed, the
pseudoclassical limit captures the quantum motion successfully.
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Figure 1. The time dependence of the expected value of angular momentum Jx (a), Jy (b), and Jz (c),
respectively, for α = 1 and β = 2jπ + 2. The black crosses are for the results by the pseudoclassical
map (Equation (9)). The green triangles, the red circles, and the blue squares are for the quantum
results with j = 100, 200, and 400, respectively. For the initial state (Θ, Φ) and |Θ, Φ〉, Θ = 0.8π and
Φ = 0.3π.

The agreement illustrated in Figure 1 does not depend on α. However, if α is an
integer multiple of π/2, the system would have an additional interesting property. Namely,
its quantum entanglement entropy would remain synchronized with that of the system
that has a kicking strength of β = δ instead [18]. Since, for such an α value, the good
agreement between the pseudoclassical and the quantum evolution remains equally, we
can probe this interesting phenomenon from the pseudoclassical perspective. In fact, by
following Equation (9) and taking into account the extra symmetry introduced by such
an α value, we can show that this synchronization in the entanglement entropy roots in
the synchronization of their dynamics (see the following and the next section). The latter
has a period of four (two) when α is an odd (even) multiple of π/2. In Appendix B, the
pseudoclassical dynamics is detailed for the representative example where α = π/2. For
this case, in terms of the expected value of angular momentums, denoted as Jx, Jy, and Jz
as well, without confusion, the connection between these two systems at a given time n can
be made explicitly as follows:

Jx(n; β) =

{
Jx(n; δ), mod (n, 4) = 0 or 2;
−Jx(n; δ), mod (n, 4) = 1 or 3,

Jy(n; β) =

{
Jy(n; δ), mod (n, 4) = 0 or 3;
−Jy(n; δ), mod (n, 4) = 1 or 2,

(10)

Jz(n; β) =

{
Jz(n; δ), mod (n, 4) = 0 or 1;
−Jz(n; δ), mod (n, 4) = 2 or 3.

Note that the angular momentum values at the l.h.s. and the r.h.s. are for the system
with kicking strength β = 2jπ + δ and δ, respectively.

To check this prediction, we compare the numerical results of the quantum evolution
of the two systems. The results are presented in Figure 2, where not only the four-step syn-
chronization but also the details of the intermediate states can be recognized immediately.
We can also make a close comparison of these two systems by visualizing their quantum
evolution in the phase space with the Husimi distribution [29]. At a given point (Θ, Φ) in
the phase space, the Husimi distribution P(Θ, Φ) is defined as the expectation value of the
density matrix ρ with respect to the corresponding spin coherent state, i.e.,

P(Θ, Φ) =
2j + 1

4π
〈Θ, Φ|ρ|Θ, Φ〉.

The results for β = 2 and β = 2jπ + 2 at four different times are shown in Figures 3
and 4, respectively. It can be seen that, when n = 1, the centers of the two wavepackets
only differ by an angle of π in Φ, while, when n = 2, they become symmetric with respect
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to (Θ, Φ) = (π/2, π). When n = 4 and 8, the two wavepackets are indistinguishable, which
is a sign that the two systems are synchronized.

Obviously, all these numerical checks have well corroborated the effectiveness of our
pseudoclassical analysis.
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Figure 2. The time dependence of the expected value of angular momentum Jx (a), Jy (b), and Jz (c),
respectively. The same as Figure 1 but for the quantum kicked top with kicking strength β = 2jπ + 2
(red squares), β = jπ + 2 (blue circles), and β = 2 (black crosses), respectively. Here, α = π/2,
j = 400, and the initial state is |Θ, Φ〉 = |0.7π, 0.3π〉.
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Figure 3. The Husimi distribution for β = 2 at the time n = 1 (a), n = 2 (b), n = 4 (c), and n = 8 (d),
respectively. Here, α = π/2, j = 100, and the initial state is |Θ, Φ〉 = |π/2, π/3〉.

4.2. Case II: β = jπ + δ

Now, let us consider a more complex case, i.e., β = jπ + δ. For this case, N = 2 and
the pseudoclassical map is (see Appendix C)

M : (Θ, Φ) →
{
(Θ̃δ, Φ̃δ + π); A1,
(Θ̃δ, Φ̃δ); A2,

(11)

with A1 = (1 + i)/2 and A2 = (1 − i)/2. It implies that, after each step, a point will
be mapped into two points at the same probability but with different phases. This map
looks simple, but as N = 2, if we use it to predict the quantum evolution, the points will
proliferate in time so that, in practice, we can trace the quantum motion for a few steps
only. Interestingly, this fact might explain why the quantum motion would be complicated
from a new perspective.
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Figure 4. The Husimi distribution for β = 2 at the time n = 1 (a), n = 2 (b), n = 4 (c), and n = 8 (d),
respectively. The same as Figure 3 but for β = 2jπ + 2 instead (other parameters remain unchanged).

Nevertheless, for some special values of α, due to the coherent effect, the newly
generated points after a step of iteration may overlap and cancel each other out, making
the number of points increase more slowly. An intriguing example is that discussed in the
previous subsection, i.e., where α is an integer multiple of π/2. Again, for such an α value,
the system is brought to synchronization with the system of kicking strength β = δ as well,
but with instead a period of eight (four) if α is an odd (even) multiple of π/2. To be explicit,
for α = π/2, the connections between the two systems are presented in Appendix C. In
terms of the expected value of angular momentums, we have

Jx(n; β) =

{
Jx(n; δ), mod (n, 8) = 0 or 4;
0, else,

Jy(n; β) =

⎧⎪⎨⎪⎩
Jy(n; δ), mod (n, 8) = 0 or 7;
−Jy(n; δ), mod (n, 8) = 3 or 4;
0, else,

(12)

Jz(n; β) =

⎧⎪⎨⎪⎩
Jz(n; δ), mod (n, 8) = 0 or 1;
−Jz(n; δ), mod (n, 8) = 4 or 5;
0, else.

The simulation results of the quantum angular momentums for β = jπ + δ are shown
in Figure 2 as well; they support this derivation convincingly.

Based on the pseudoclassical dynamics, we find that the initial point will be mapped into
two and then four points after the first and the second iteration, respectively. However, after
the third iteration, the points do not become eight as expected; rather, these eight points can be
divided into four pairs and the two points in each pair overlap with each other. Moreover, two
of these four points disappear in effect as the resultant total amplitude for each of them turns
out to be zero (see Appendix C). Thus, only two points remain, and after the fourth iteration,
these two points further merge into one. As a consequence, the number of points varies in time
with a period of four. The results for the Husimi distribution given in Figure 5 are in good
agreement with this analysis. Comparing this with the results for β = δ in Figure 3, we can see
that after the fourth iteration, there is only one wavepacket of the same shape in both cases, but
their positions are different. Only after the eighth iteration, the two wavepackets are identical,
which explains why the synchronization period should be eight.
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Figure 5. The Husimi distribution for β = 2 at the time n = 1 (a), n = 2 (b), n = 4 (c), and n = 8 (d),
respectively. The same as Figures 3 and 4 but for β = jπ + 2. All other parameters are the same as in
the former two figures.

5. The Dynamical Entanglement

The dynamical entanglement of the quantum kicked top has been studied carefully in
recent years. We discuss this issue in this section by taking advantage of the pseudoclassical
results obtained in the previous section.

For the quantum kicked top, its momentum can be represented by 2j qubits, or a
collection of 2j spin-1/2 identical particles. If the initial state of the system is symmetric
under permutations for identical qubits, this permutation symmetry will be preserved, as it
is respected by the action of the Floquet operator of the kicked top. As a consequence, the
expected spin value for any single qubit of these 2j identical qubits is sγ = Jγ/(2j), where
Jγ is the expected momentum value of the top and γ = x, y, and z [30].

On the other hand, though various bipartite entanglement measures have been sug-
gested, it has been shown that they are qualitatively equivalent. Thus, we adopt the
measure considered the most frequently, i.e., the bipartite entanglement between any qubit
and the subsystem made up of the remaining 2j − 1 qubits. This entanglement is usu-
ally quantified by computing the linear entropy S = 1 − Tr(ρ2

1), where ρ1 denotes the
reduced density operator for a single qubit. As ρ1 is a 2 × 2 operator, it can be expressed as
ρ1 = 1/2 + ∑γ sγσγ, given the expected spin value sγ. Here, σγ is the Pauli operator. By
substituting sγ = Jγ/(2j), we have ρ1 = 1/2 + ∑γ Jγσγ/(2j) in terms of Jγ instead [30]. It
follows that

S =
1
2

(
1 − [Jx]2 + [Jy]2 + [Jz]2

j2

)
, (13)

which has a well-defined classical counterpart and is easy to compute numerically. Here,
[Jγ]2 represents the square of the expected value of angular momentum Jγ.

For the two cases close to the quantum resonance condition discussed in the previous
section, we can see immediately how their linear entropy is related to that of the case β = δ
based on the pseudoclassical analysis. First, for β = 2jπ + δ, from Equation (10), we have
that [Jγ(n; β)]2 = [Jγ(n; δ)]2 at any time n; hence, S(n) must coincide with that for the
system of β = δ throughout. However, for β = jπ + δ, from Equation (12), we know that
∑γ[Jγ(n; β)]2 = ∑γ[Jγ(n; δ)]2 only when mod (n, 8) = 0 or 4. Therefore, we may expect a
synchronization of period four in the linear entropy. In addition, from Equation (12), we
also know that ∑γ[Jγ(n; β)]2 = 0 when mod (n, 8) = 2 or 6, suggesting that the linear
entropy should reach its maximal value repeatedly in a period of four as well. As for the

87



Entropy 2022, 24, 1092

case β = δ itself, because the quantum motion can be approximated by the semi-classical
limit if δ is small, the time dependence of the linear entropy can be predicted based on
the classical dynamics [15]. In a chaotic region of the phase space, S(n) should increase
linearly before saturation; otherwise, it proceeds in a logarithmic law that features the
regular motion. The numerical results of the linear entropy for these three cases and two
representative initial states are presented in Figure 6, which meet all these expectations.
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n)

n

(a)

n

(b)

Figure 6. The linear entropy as a function of time for the initial condition |Θ, Φ〉 = |0.7π, 0.3π〉
(a) and |0.7π, 0.6π〉 (b), respectively. The classical counterparts of these two states are in the chaotic
and regular region of the phase space, respectively, for the classical kicked top of β = 2. In both
panels, the red squares, the blue circles, and the black crosses are for, respectively, β = 2jπ + 2,
β = jπ + 2, and β = 2. For all the cases, α = π/2 and j = 400.

Another interesting and related quantity that has been intensively investigated is
the time-averaged entanglement entropy. If the semi-classical limit exists, it is used to
estimate the equilibrium value that the corresponding classical system tends to. For the
linear entropy, it is defined as

Sτ =
1
τ

τ

∑
n=1

S(n), (14)

where τ is a sufficiently long time. Interestingly, it was found that the contour plot of Sτ can
well capture the characteristics of the phase space portrait of the corresponding classical
system [19,20]. The reason is that, given the semi-classical limit, for all initial coherent states
centered on the same classical trajectory, by definition, Sτ should be the same in the long
average time limit. As such, Sτ can be used to distinguish the trajectories. As an illustration,
in Figure 7a, the contour plot of Sτ for the case β = 2, where the semi-classical limit holds
well, is shown. The corresponding phase space portrait of its classical counterpart is shown
in Figure 8. The similarity between them is easy to recognize.
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Figure 7. The contour plot of the time-averaged entanglement entropy, Sτ for kicking strength β = 2
(a), β = 2jπ + 2 (b), and β = jπ + 2 (c), respectively. Here, α = π/2, j = 400, τ = 300, and a grid of
201 × 201 initial coherent states is simulated for each case.
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Figure 8. The phase space portrait of the classical kicked top with α = π/2 and β = 2.

For the two cases close to the quantum resonance condition, the semi-classical limit
breaks. However, as the pseudoclassical limit exists, it allows us to use Sτ to probe the
corresponding pseudoclassical systems. In Figure 7b, the contour plot for β = 2jπ + 2 is
shown. It is identical to that for β = 2, because the two cases share the same linear entropy
at every step. However, it is worth noting that, although, from Equation (9), we know
that any trajectory of the pseudoclassical system for β = 2jπ + δ is related to one of the
semi-classical system for β = δ, they are not located at the same positions in their respective
phase spaces (see Figures 3 and 4, for example). This suggests that Sτ is still equally helpful
for obtaining an overall sense of the pseudoclassical dynamics, but some details could be
missed inevitably by definition.

More interesting is the case for β = jπ + δ. For the pseudoclassical dynamics, the
concept of the conventional trajectory does not apply any longer, because, at a given time,
the number of points in the phase space can be multiple, and they have their respective
complex amplitudes. Regardless of this fact, as Figure 7c shows, Sτ works well again for
schematizing the pseudoclassical dynamics. For example, due to the periodic synchro-
nization with the case of β = δ, we may expect that the chaotic and regular regions of the
former are exactly those of the latter, respectively. This is indeed the case, which can be
seen by comparing Figure 7a,c. Alternatively, if we compute Sτ by taking the average of
S(n) once every four steps (the period of synchronization), the results should be the same
exactly for both cases.

6. Summary and Discussion

In summary, we have introduced the quantum resonance condition into the kicked
top model. In order to study the behavior of the quantum kicked top detuned from the
quantum resonance condition, we have established the corresponding pseudoclassical
theory. By analytical and numerical studies, we have shown that this theory is effective. In
particular, when being applied to discuss the dynamical entanglement, the properties of
the quantum kicked top are successfully predicted based on the pseudoclassical dynamics.
Our results also suggested that the time-averaged entanglement entropy is still a powerful
tool for grasping the pseudoclassical dynamics.

The suggested pseudoclassical scheme is distinct from the one originally introduced in
the kicked rotor that works only near the special quantum resonance condition that T is an
integer multiple of 2π. To make this explicit, let us extend our scheme to the kicked rotor
and compare it with the original pseudoclassical limit. The result is similar to Equation (8):

M : (p, θ) → {[( p̃δ, θ̃δ + Δk); Ak], k = 1, · · · , N}, (15)
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but, here, (p, θ) is the classical counterpart and the center of the coherent state |p, θ〉 for the
kicked rotor, and ( p̃δ, θ̃δ) is that (p, θ) is mapped to by the classical kicked rotor dynamics
with the kicking strength δK. For T = 2kπ + δ (k is an integer), it gives exactly the original
pseudoclassical result. However, this scheme also applies when the system is close to other
quantum resonances, making it more general than the original one.

In practice, the main challenge for applying this scheme is the same as that encountered
in the kicked top, i.e., the rapid proliferation of phase space points. However, if we
introduce an additional symmetry into the system, i.e., the translation invariance for
θ → θ + 2π/w, where w = s/2 for an even s and w = s for an odd s, respectively, it is
found that the coherent cancellation mechanism works efficiently so that the proliferation
can be greatly suppressed. The translation invariance can be fulfilled by replacing the
potential cos θ in the Floquet operator UR with cos(wθ). Such a favorable property makes
the kicked rotor even more advantageous than the kicked top for demonstrating the
pseudoclassical dynamics. A detailed discussion will be published elsewhere [31].

With the pseudoclassical theory in hand, some interesting problems could be inves-
tigated further. For example, it may be applied to study the entanglement in the kicked
top with weak measurements of one or several qubits [32] to identify the measurement
effect from a different perspective. Moreover, the proliferation of the phase space points
is in clear contrast with the conventional classical dynamics. As it is inherited from the
quantum evolution, log N might be taken as a complexity measure of the quantum dy-
namics. For some previously studied problems in the double kicked rotor and top, such
as Hofstadter’s butterfly spectrum [33–35] and exponential and superballistic wavepacket
spreading [36,37], it may help us to gain a deeper understanding. For some frontier topics
mentioned in the Introduction, this theory may find applications as well.
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Appendix A. Derivation of Equation (6)

First, we expand the coherent state |Θ̃δ, Φ̃δ〉 over the eigenstates {|m〉} of Jz, i.e.,
|Θ̃δ, Φ̃δ〉 = ∑

j
m=−j cm|m〉. Applying the operator exp

(
−i 2πr

s J2
z
)

to both sides, it results in

exp
(
−i

2πr
s

J2
z

)
|Θ̃δ, Φ̃δ〉 =

s−1

∑
k=0

exp
(
−i

2πr
s

k2
)

∑
mod (m,s)=k

cm|m〉. (A1)

Note that by the translation operator exp(−i Jzφ), coherent state |Θ̃δ, Φ̃δ〉 is shifted into
|Θ̃δ, Φ̃δ + φ〉, and we thus have∣∣∣∣Θ̃δ, Φ̃δ +

2πr
s

l
〉

= exp
(
−i Jz

2πr
s

l
)
|Θ̃δ, Φ̃δ〉

=
s−1

∑
k=0

exp
(
−i

2πkr
s

l
)

∑
mod (m,s)=k

cm|m〉
(A2)
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by setting φ = 2πlr/s, where l is an integer. Next, multiplying both sides with exp(i2πλlr/s),
where λ is an integer, 0 ≤ λ ≤ s − 1, and taking summation over l from l = 0 to s − 1, we
can obtain that

s−1

∑
l=0

1
s

exp
(

i
2πr

s
λl
)∣∣∣∣Θ̃δ, Φ̃δ +

2πr
s

l
〉

= ∑
mod (m,s)=λ

cm|m〉. (A3)

Finally, by replacing λ in Equation (A3) with k and substituting this equation into Equa-
tion (A1), we have the result of Equation (6).

Appendix B. Pseudoclassical Dynamics for β = 2jπ + δ

For this case, r = 1 and s = 2; we have G0 = 0, G1 = 1, A1 = 1, and N = 1, so that
the pseudoclassical map Equation (8) reduces to

M : (Θ, Φ) → (Θ̃δ, Φ̃δ + π). (A4)

Namely, a point is mapped into another with unity amplitude.
On the other hand, note that for the particular case that α = π

2 , the classical map given
by Equation (3) has the following properties:

(π − Θ′, π − Φ′) =F (Θ, Φ + π,
π

2
, β),

(Θ′, Φ′ + π) =F (π − Θ, π − Φ,
π

2
, β),

(π − Θ′, 2π − Φ′) =F (π − Θ, 2π − Φ,
π

2
, β).

(A5)

If we use (Θ(0), Φ(0)) to denote the initial state and (Θ̃δ(n), Φ̃δ(n)) the state after n
kicks following the classical map with kicking strength δ, i.e.,

(Θ̃δ(n), Φ̃δ(n)) = Fn(Θδ(0), Φδ(0),
π

2
, δ), (A6)

we can write the results of the pseudoclassical map step by step as follows:
n = 0 → n = 1 :

(Θ(0), Φ(0)) → (Θ̃δ(1), Φ̃δ(1) + π);

n = 1 → n = 2 :

(Θ̃δ(1), Φ̃δ(1) + π) → (π − Θ̃δ(2), 2π − Φ̃δ(2));

n = 2 → n = 3 :

(π − Θ̃δ(2), 2π − Φ̃δ(2)) → (π − Θ̃δ(3), π − Φ̃δ(3));

n = 3 → n = 4 :
(π − Θ̃δ(3), π − Φ̃δ(3)) → (Θ̃δ(4), Φ̃δ(4)).

At each step, the amplitude is unity. It shows that, after every four steps, the pseudo-
classical dynamics coincides with the classical dynamics of kicking strength δ. Based on
these results, we can write the results given in Equation (10) straightforwardly.

Appendix C. Pseudoclassical Dynamics for β = jπ + δ

For this case, r = 1 and s = 4; we have G1 = 0, G2 =
√

2
2 exp(i π

4 ), G3 = 0, and G4 =√
2

2 exp(−i π
4 ). As a result, N = 2; A1 = G2 =

√
2

2 exp(i π
4 ) and A2 = G4 =

√
2

2 exp(−i π
4 ),

respectively.
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The pseudoclassical map Equation (8) can be written as

M : (Θ, Φ) →
{
(Θ̃δ, Φ̃δ + π);

√
2

2 exp(i π
4 ),

(Θ̃δ, Φ̃δ);
√

2
2 exp(−i π

4 ).
(A7)

For the particular case that α = π
2 , by taking into account the properties of (A5), we

can write the pseudoclassical map step by step as follows. Note that the notation is the
same as in Appendix B and the constant factor

√
2

2 of A1 and A2 is dropped for the sake of
clearness and convenience.
n = 0 → n = 1 :

(Θ(0), Φ(0)) →
{
(Θ̃δ(1), Φ̃δ(1)); exp(−i π

4 ),
(Θ̃δ(1), Φ̃δ(1) + π); exp(i π

4 );

n = 1 → n = 2 :

(Θ̃δ(1), Φ̃δ(1)); exp(−i
π

4
) →

{
(Θ̃δ(2), Φ̃δ(2)); − i,
(Θ̃δ(2), Φ̃δ(2) + π); 1;

(Θ̃δ(1), Φ̃δ(1) + π); exp(i
π

4
) →

{
(π − Θ̃δ(2), π − Φ̃δ(2)); 1,
(π − Θ̃δ(2), 2π − Φ̃δ(2)); i;

n = 2 → n = 3 :

(Θ̃δ(2), Φ̃δ(2)); − i →
{
(Θ̃δ(3), Φ̃δ(3)); exp(−i 3π

4 ),
(Θ̃δ(3), Φ̃δ(3) + π); exp(−i π

4 );

(Θ̃δ(2), Φ̃δ(2) + π); 1 →
{
(π − Θ̃δ(3), π − Φ̃δ(3)); exp(−i π

4 ),
(π − Θ̃δ(3), 2π − Φ̃δ(3)); exp(i π

4 );

(π − Θ̃δ(2), π − Φ̃δ(2)); 1 →
{
(Θ̃δ(3), Φ̃δ(3)); exp(i π

4 ),
(Θ̃δ(3), Φ̃δ(3) + π); exp(−i π

4 );

(π − Θ̃δ(2), 2π − Φ̃δ(2)); i →
{
(π − Θ̃δ(3), π − Φ̃δ(3)); exp(i3 π

4 ),
(π − Θ̃δ(3), 2π − Φ̃δ(3)); exp(i π

4 );

Note that at n = 3, the total amplitude of the point (Θ̃δ(3), Φ̃δ(3)) vanishes and so
does that of (π − Θ̃δ(3), π − Φ̃δ(3)) as a consequence of coherence cancellation, while the
other two points (Θ̃δ(3), Φ̃δ(3) + π) and (π − Θ̃δ(3), 2π − Φ̃δ(3)) remain.
n = 3 → n = 4 :

(Θ(3), Φ(3) + π); exp(−i
π

4
) →

{
(π − Θ̃δ(4), 2π − Φ̃δ(4)); 1,
(π − Θ̃δ(4), π − Φ̃δ(4)); − i;

(π − Θ̃(3), 2π − Φ̃(3)); exp(i
π

4
) →

{
(π − Θ̃δ(4), π − Φ̃δ(4)); i,
(π − Θ̃δ(4), 2π − Φ̃δ(4)); 1;
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Note that at n = 4, the total amplitude of (π − Θ̃δ(4), π − Φ̃δ(4)) turns out to be zero,
but the other point (π − Θ̃δ(4), 2π − Φ̃δ(4)) survives.
n = 4 → n = 5 :

(π − Θ̃δ(4), 2π − Φ̃δ(4)); 1 →
{
(π − Θ̃δ(5), π − Φ̃δ(5)); exp(i π

4 ),
(π − Θ̃δ(5), 2π − Φ̃δ(5)); exp(−i π

4 );

n = 5 → n = 6 :

(π − Θ̃δ(5), π − Φ̃δ(5)); exp(i
π

4
) →

{
(Θ̃δ(6), Φ̃δ(6)); i,
(Θ̃δ(6), Φ̃δ(6) + π); 1;

(π̃ − Θδ(5), 2π − Φ̃δ(5)); exp(−i
π

4
) →

{
(π − Θ̃δ(6), π − Φ̃δ(6)); 1
(π − Θ̃δ(6), 2π − Φ̃δ(6)); − i;

n = 6 → n = 7 :

(Θ̃δ(6), Φ̃δ(6)); i →
{
(Θ̃δ(7), Φ̃δ(7)); exp(i π

4 ),
(Θ̃δ(7), Φ̃δ(7) + π); exp(i3 π

4 );

(Θ̃δ(6), Φ̃δ(6) + π); 1 →
{
(π − Θ̃δ(7), π − Φ̃δ(7)); exp(−i π

4 ),
(π − Θ̃δ(7), 2π − Φ̃δ(7)); exp(i π

4 );

(π − Θ̃δ(6), π − Φ̃δ(6)); 1 →
{
(Θ̃δ(7), Φ̃δ(7)); exp(i π

4 ),
(Θ̃δ(7), Φ̃δ(7) + π); exp(−i π

4 );

(π − Θ̃δ(6), 2π − Φ̃δ(6)); − i →
{
(π − Θ̃δ(7), π − Φ̃δ(7)); exp(−i π

4 ),
(π − Θ̃δ(7), 2π − Φ̃δ(7)); exp(−i 3π

4 );

Similar to that at n = 3, at n = 7, the points eventually emerge are (Θ̃δ(7), Φ̃δ(7)) and
(π − Θ̃δ(7), π − Φ̃δ(7)). The other two vanish.
n = 7 → n = 8 :

(Θ(7), Φ(7)); exp(i
π

4
) →

{
(Θ̃δ(8), Φ̃δ(8)); 1,
(Θ̃δ(8), Φ̃δ(8) + π); i;

(π − Θ̃(7), π − Φ̃(7)); exp(−i
π

4
) →

{
(Θ̃δ(8), Φ̃δ(8) + π); 1,
(Θ̃δ(8), Φ̃δ(8) + π); − i.

Finally, after eight kicks, the pseudoclassical dynamics brings the initial condition to
(Θ̃δ(8), Φ̃δ(8)), the same as the classical map does. We thus have Equation (12) immediately.
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Abstract: We construct examples of billiards where two chaotic flows are moving in opposite direc-
tions around a non-chaotic core or vice versa; the dynamics in the core are chaotic but flows that
are moving in opposite directions around it are non-chaotic. These examples belong to a new class
of dynamical systems called elliptic flowers billiards. Such systems demonstrate a variety of new
behaviors which have never been observed or predicted to exist. Elliptic flowers billiards, where a
chaotic (non-chaotic) core coexists with the same (chaotic/non-chaotic) type of dynamics in flows
were recently constructed. Therefore, all four possible types of coexisting dynamics in the core and
tracks are detected. However, it is just the beginning of studies of elliptic flowers billiards, which
have already extended the imagination of what may happen in phase spaces of nonlinear systems.
We outline some further directions of investigation of elliptic flowers billiards, which may bring new
insights into our understanding of classical and quantum dynamics in nonlinear systems.

Keywords: elliptic flowers billiards; chaotic and non-chaotic core; chaotic and non-chaotic tracks

1. Introduction

The chaos theory, as well as nonlinear dynamics as a whole, was essentially built from
some “simple” basic examples. The simplicity of these examples is often questionable,
especially from the point of mathematicians, who still failed to investigate a fundamental
Chirikov standard map, as well as some other basic examples of chaotic systems. That is
why it is important, especially for physicists, to have a decent collection of completely (rig-
orously) studied examples that demonstrate the enormous richness of nonlinear dynamics.

Recently found elliptic flowers billiards [1] provide yet another type of behavior
that not only had not been observed but even never imagined before. Indeed, there are
essentially very (extremely) few nontrivial well-understood, and rigorously investigated
examples with the coexistence of several ergodic components in the phase space of a system
under study. In elliptic flowers (EF) billiards, there are three ergodic components. One of
them is called a core. The two other ergodic components consist of orbits that move around
the core clockwise and counter-clockwise, respectively. Therefore, EF billiards have much
richer and more interesting dynamics than track billiards [2], where the entire phase space
consists of two tracks, and orbits move in opposite directions to each other.

A large class of EF billiards was constructed in [1], and it was shown that in some sim-
ple sub-classes of EF, the dynamics in the core and tracks are chaotic, or the dynamics in all
these three parts of the phase space can also be non-chaotic. By chaotic, we mean dynamics
with an exponential divergence of nearby orbits and mixing (i.e., decay of correlations).

In the present paper, we give examples of EF billiards with opposite types of dynamics
in tracks and the core. In other words, in these examples, a chaotic core coexists with non-
chaotic tracks and vice versa. Therefore, all four possible types of coexistence of dynamics
in the core and tracks are possible.

Entropy 2022, 24, 1223. https://doi.org/10.3390/e24091223 https://www.mdpi.com/journal/entropy
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It is worth mentioning that EF billiards can have even more rich behavior. Particularly,
EF billiards demonstrate a complicated evolution of the wavefronts (for example, see the
videos by Nils Berglund on YouTube (https://www.youtube.com/c/nilsberglund) 7 June,
9 June, 11 June and 25 June 2021) and certainly could be used for studies of various types of
the evolution of such waves (and wavefronts) with time in a lesson of dynamics. Another
natural direction of studies is the analysis of global bifurcations that occur under a change
of parameters as well as of local bifurcations of wavefronts. In addition, it turned out that
track billiards are useful for some problems in quantum chaos, for example, in the studies
of the Schnirelman’s peak [3]. Further, a class of billiards that is more general and abstract
than tracks was considered in [4,5] to study quantum ergodicity. Thus, it seems reasonable
to assume that EF billiards will help to understand something new about quantum chaos,
especially in relation to the Berry–Robnik theory.

2. Construction/Definition of Elliptic Flowers Billiards

The general construction of a (multilayered) elliptic flower billiard (EF-billiard) starts
with a choice of any convex (base) polygon A on the Euclidean plane. Let A1, A2, . . . , An
be the vertices of A. The first elliptic layer over A is formed by all arcs of ellipses, which do
not intersect A and have focuses at the points Ai and Ai+1, where i varies between 1 and n,
and i + 1 is taken as the modulus n. In other words, the first layer of ellipses over polygon
A consists of all ellipses with focuses at the ends of one and the same side of A. The second
layer of ellipses over A is a union of all ellipses that have focuses at the points Ai and
Ai+2, where again i + 2 is taken mod n. Thus the second layer of ellipses over polygon A
consists of all ellipses with focuses at the ends of the small diagonals of A, which connect
the ends of two neighboring sides of A.

Analogously, the mth layer of ellipses, where m < n+1
2 , over a given polygon is

defined in the same way, where instead of (i + 2) mod n, one should take (i + m) mod n.
Therefore, all ellipses in all layers have a focus at some vertex of A. It is easy to see that a
convex polygon with n vertices has n

2 layers if n is an even number, and n−1
2 layers if n is

odd. If a base polygon A is a triangle, then the sides also play the role of small diagonals.
Therefore, in this case, there is only one layer.

Definition 1 ([1]). A simply connected billiard table Q(A) is called an elliptic flower over a convex
base polygon A if the following conditions are satisfied:

1. A is a subset of the billiard table, which does not intersect the boundary ∂Q(A).
2. the boundary ∂Q(A) consists of pieces of ellipses that belong to the layers of ellipses over A.

We say that an invariant subset of an EF billiard is a track if it consists of all orbits that
move clockwise or counter-clockwise in a billiard table of the corresponding EF billiard.
Clearly, if there is a clockwise track, then also exists a counter-clockwise track. The orbits
in tracks move around some subset Co of the EF billiard table, and they never intersect it.
A core consists of all orbits that intersect Co between any two consecutive reflections off
the boundary of an EF billiard table. Clearly, if A is a triangle or a rectangle, then the lines
passing through the sides of A never intersect outside this polygon. It is easy to see [1] that
interesting dynamics of elliptic flowers billiards appear when they are built over convex
polygons with at least five sides. The following definition singles out a special subclass of
EF billiards.

Definition 2 ([1]). Consider a base polygon A with the vertices A1, A2, . . . , An. A simply
connected billiard table Q is called a structural elliptic flower (SEF) over A if all regular components
of the boundary ∂Q are the arcs of the ellipses from the layers over A, which are not allowed to cross
the lines passing through the sides of A, but they may have their endpoints on these lines.

Clearly, not all boundary components of general EF billiards may have their endpoints
on the straight lines passing through the sides of A. However, here for the sake of simplicity,
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we are considering much more narrow classes of EF, for which, particularly, the construction
of elliptic flowers over a base polygon A becomes trivial. A natural difficulty in the
construction of general-type elliptic flowers is how to finish (close) the boundary by the last
elliptic arc when all other regular components of the boundary were already built. Such an
ellipse, which passes through two fixed points of the boundary, and has focuses at some
vertices of A, may just not exist.

Although we expect that general elliptic flowers billiards may well demonstrate a
large variety of dynamics, our concern here is to present the (hopefully) simplest examples
of EF billiards with interesting nontrivial dynamics, which, to the best of our knowledge,
have never been seen before.

We will start with considering an even simpler class of EF billiards, which are called
the special one-layer (SOL) elliptic flowers [1]. It was proven in [1] that in some classes of
SOL EF billiards a chaotic core coexists with chaotic tracks, and in some other classes of
such billiards, a non-chaotic core coexists with non-chaotic tracks.

To construct EF billiards, where the coexisting core and tracks demonstrate not similar
but different types of dynamics, which is a goal of the present paper, we need to move
beyond SOL elliptic flowers billiards. However, our examples will be obtained as some
kinds of perturbations of the SOL EF billiards.

Construction of special one-layer elliptic flowers: Let A be a regular convex polygon
with n vertices. Consider the straight semi-lines, which have the ends at the centers of the
sides of A, are orthogonal to the corresponding sides and do not intersect A. Then a special
one-layer elliptic flower over A is a billiard table with n identical boundary components,
which are the arcs of ellipses with the focuses located at the ends of the small diagonals of
A. Moreover, the endpoints of each elliptic arc lie on two semi-lines orthogonal to a pair of
neighboring sides of A, i.e., the sides of A that have a common vertex (See Figure 1).

Figure 1. Demonstration of an SOL EF on a pentagon. The boundary component AB is a piece of an
ellipse with focuses at F1 and F2, where they are endpoints of a small diagonal of the pentagon. Note
that, in the SOL EF structure, line segments C1 A and C2B are perpendicular bisectors of the sides F1F
and FF2, respectively.

3. Non-Chaotic Core and Chaotic Tracks

In this section, we construct examples of elliptic flowers billiards, such that the dy-
namics in the core are non-chaotic while the dynamics in the tracks are chaotic.

Consider a special one-layer (SOL) elliptic flower built over a regular hexagon. Let a,
b, and c denote the lengths of the semi-major axis, semi-minor axis, and linear eccentricity
of the ellipses, containing the boundary components, respectively. In this EF structure, if
we assume that the lengths of the hexagon’s sides equal 2, then c =

√
3. If b = 3, then the

centers of all maximal osculating circles of the boundary components coincide with the
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center of the hexagon. Recall that an osculating circle to a curve γ at a point x is the circle
tangent to γ at x and, the radius of this circle is 1/|κ(x)|, where κ(x) is the curvature of γ
at point x. Clearly, the maximal osculating circles of an ellipse are tangent to the boundary
at the endpoints of the minor axis. Let b be (slightly) greater than 3. This assumption
guarantees that the core and tracks are chaotic (see Theorem 3.9 in [1]).

To get a non-chaotic core, we change one of the boundary components of the EF billiard
by moving its major axis toward the center O of the hexagon. In Figure 2, component AB
has focal points F1 and F2 instead of endpoints of its corresponding short diagonal in the
usual SOL EF structure.

Figure 2. Deformed SOL EF on a hexagon (left), and its core (right).

Let a1 and b1 be the lengths of a semi-major and a semi-minor axis of AB, respectively.
Note that the linear eccentricity of AB remains equal to c =

√
3. Now, we fix parameter b,

and check for which range of parameter b1 the 2-periodic orbit R1R2 is stable (Figure 2),
while all periodic orbits in the tracks are unstable.

Consider a Cartesian coordinate with the center at O. Then

F1 = (−
√

3, y0), and F2 = (
√

3, y0),

where 0 ≤ y0 < 1. By fixing b = 4, we also fix the points A and B in our coordinate system.
Therefore, we can express a1 (also, b1) as a function of y0, where

2a1 = |AF1|+ |AF2|. (1)

Under these assumptions, the distance between R1 and R2 is given by

|R1R2| = (b + 1) + (b1 + y0) = 5 + b1 + y0. (2)

Let r1 and r2 be the radii of osculating circles at R1 and R2, respectively. Then,

r1 =
a2

1
b1

= b1 +
c2

b1
= b1 +

3
b1

, r2 =
a2

b
= b +

c2

b
= 4.75 . (3)

Let y0 = 1 in (1). Then we have a1 = a. Further, it is a direct consequence of the geometry
of the deformed SOL EF that a1 > a, when 0 ≤ y0 < 1. Therefore, b1 > b = 4 if 0 ≤ y0 < 1.
Hence, (2) and (3) imply that

|R1R2| > r1, |R1R2| > r2. (4)
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The Jacobians of the billiard maps TR1R2 and TR2R1 , corresponding to the trajectories from
R1 to R2 and vice versa, are equal to [6]:

dTR1R2 =

[ |R1R2|/r1 − 1 −|R1R2|
−|R1R2|/(r1r2) + 1/r1 + 1/r2 |R1R2|/r2 − 1

]
,

and

dTR2R1 =

[ |R1R2|/r2 − 1 −|R1R2|
−|R1R2|/(r1r2) + 1/r1 + 1/r2 |R1R2|/r1 − 1

]
.

Therefore,

trace(dTR1R2 dTR2R1) = 2 − 4
( |R1R2|

r1
+

|R1R2|
r2

− |R1R2|2
r1r2

)
.

For all values of y0 ∈ [0, 0.414569), we obtain

|trace(dTR1R2 dTR2R1)| < 2, (5)

and
r1 + r2 > |R1R2|. (6)

Inequality (5) shows that the 2-periodic orbit between R1 and R2 is linearly stable. In order
to demonstrate that this 2-periodic orbit is, in fact, elliptic (nonlinearly stable), we must
check that the first Birkhoff coefficient is nonzero.

In the ellipse E = {(a cos θ, b sin θ) | 0 ≤ θ < 2π}, the radius of curvature r(θ) can be
expressed as

r(θ) =
(
√

a2 sin2 θ + b2 cos2 θ)3

ab
.

Let s be the arc length parameter of the ellipse E. Then

dr
ds

(θ) =
3(a2 − b2) sin θ cos θ

ab
, (7)

and
d2r
ds2 (θ) =

3(a2 − b2)(cos2 θ − sin2 θ)

ab
√

a2 sin2 θ + b2 cos2 θ
. (8)

Let r′1 and r1” (also, r′2 and r2”) be the first and second derivatives of the radius of curvature
at the point R1 (also, R2), respectively. From Equations (7) and (8), we have

r′1 = r′2 = 0, r1” =
−3(a2

1 − b2
1)

a2
1b1

, r2” =
−3(a2 − b2)

a2b
. (9)

Denote by τ1 the first Birkhoff coefficient (see [7] for the explicit formula for τ1 correspond-
ing to an elliptic 2-periodic orbit) of the 2-periodic orbit between R1 and R2. Then, by
making use of (3) and (9), we obtain that

τ1 = −1
8

r1 + r2

r1r2
− 1

8
|R1R2|

|R1R2| − r1 − r2

( |R1R2| − r1

|R1R2| − r2
r2” +

|R1R2| − r2

|R1R2| − r1
r1”
)

. (10)

It follows from (3), (4), (6), and (9) that τ1 is nonzero because both terms on the right-hand
side of (10) are strictly negative. Therefore, the 2-periodic orbit R1R2 is elliptic (nonlinearly
stable). Hence, the global dynamics in the core are non-chaotic if y0 ∈ [0, 0.414569) because
an elliptic island with a positive measure exists. One should expect, though, that there are
some subsets of the core where dynamics are chaotic.

We will check for what subrange of parameter y0, with the same choice of other
parameters, the dynamics in tracks is chaotic. First, we check that all boundary components
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are absolutely focusing curves. The boundary consists of six pieces of ellipses. Five of them
have the parameters b = 4, c =

√
3, and a =

√
19. Let the projections of these five pieces to

the corresponding major axis of the ellipses have the length L. Then

L < 2(b + 1) tan
π

6
=

10√
3

.

It implies that

L <
10√

3
<

√
38 = a

√
2. (11)

It was proven in [8] that a piece of an ellipse (symmetric with respect to its minor axis) is
absolutely focusing if its projection to the major axis has a length less than a

√
2. Thus, (11)

shows that the similar five pieces of ellipses are absolutely focusing. The projection of the
boundary component AB to the major axis of the corresponding ellipse also has the length
L. Indeed, it immediately follows from our construction, since A and B are endpoints of
the boundary components in a SOL EF. Because a1 >

√
19 = a, the boundary component

AB is also absolutely focusing (i.e., L < a1
√

2). Thus, all six boundary components are
absolutely focusing in this deformed SOL EF. Moreover, the angles between adjacent
(focusing) boundary components are greater than π. Because of these facts, we only need
to show that the boundary components are sufficiently far apart from each other, which
will imply that the dynamics in the tracks are chaotic.

On the other hand, if y0 ∈ [0.40357, 0.414569), then

r1 cos φ1 + r2 cos φ2 < |R1P|, (12)

and
r1 cos φ3 + r2 cos φ4 < |R1Q|, (13)

where P and Q are points at the end of minor axes of components BC and CD, respectively, and

• φ1: the angle between the normal line at R1 and the line segment R1P,
• φ2: the angle between the normal line at P and the line segment R1P,
• φ3: the angle between the normal line at R1 and the line segment R1Q,
• φ4: the angle between the normal line at Q and the line segment R1Q.

Inequalities (12) and (13) imply that the tangent circles of radius r1
2 and r2

2 at R1 and P
(or Q), respectively, do not cover the entire segment R1P (or R1Q). Therefore, the boundary
components are sufficiently far apart from each other to have hyperbolicity (generated by
the defocusing mechanism) of trajectories traveling between them [8–10]. We also showed
before that boundary components are absolutely focusing. Therefore, it follows from the
general theory of billiards [6,9,10] that the dynamics in tracks are hyperbolic and chaotic
thanks to the mechanism of defocusing.

4. Chaotic Core and Non-Chaotic Tracks

In this section, we construct examples of elliptical flowers with a chaotic core and
non-chaotic tracks.

Consider a SOL EF billiard table built over a regular pentagon. Let a, b, and c denote
the semi-major axis, semi-minor axis, and linear eccentricity of the elliptical components
of the boundary, respectively. Let the lengths of the sides of the pentagon equal 2. Then
c = cos π

5 . Moreover, if we choose

b = c tan
2π

5
= cos

π

5
tan

2π

5
� 2.489898,
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then the centers of the osculating circles with the maximum radius of all regular components
of the boundary coincide with the center of the pentagon. Choose now b to be slightly
smaller than c tan 2π

5 � 2.489898. More precisely, we assume that

2.484 < b < 2.489898. (14)

Under this assumption, we will show that the (pentagon shape) 5-periodic orbit
ABCDE (Figure 3) is a linearly stable orbit in a track. Clearly, then the 5-periodic orbit,
which traces the same points in the opposite direction, is also linearly stable. We have

τ := |AB| = |BC| = |CD| = |DE| = |EA| = 2
(

b + cos
π

5
tan

π

10

)
cos

3π

10
.

Moreover, the angles of reflection ϕ and the curvatures κ of the boundary at points A, B, C,
D, and E are equal to 3π

10 and b
a2 , respectively.

Figure 3. A SOL EF on a pentagon, and its actual core is a decagon.

The jacobians of the billiard map corresponding to consecutive reflections along this
periodic orbit are equal to

dT =

[
X Y
Z X

]
=

−1
cos ϕ

[ −τκ + cos ϕ τ
τκ2 − 2κ cos ϕ −τκ + cos ϕ

]
,

and
trace((dT)5) = 2X5 + 10XY2Z2 + 20X3YZ.

Under the assumption (14), we obtain that

|trace((dT)5)| < 2.

Hence, if b is slightly smaller than c tan 2π
5 , then there are linearly stable periodic orbits

in the tracks. Therefore, the dynamics in the tracks are not globally chaotic, although
generically, some subset(s) with chaotic dynamics (chaotic seas) should be present there.
However, at this stage of analysis of EF billiards, we are only concerned with global chaos
(or with the absence of global chaos) in the tracks and in the core.

We will show now that the dynamics in the core (which is a decagon in this EF billiard)
are chaotic. The way how a decagon core appears from a EF billiard table, with a pentagon
as a base polygon, is demonstrated in Figure 4 (this process is described in detail in [1]).
The reason is that the lines connecting the ends of the boundary components to the corner
points of the pentagon (as point K is connected to point L in Figure 4) cut out pieces of the
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base pentagon. The remaining subset of the pentagon, which forms a core of the EF billiard,
is a decagon.

Figure 4. Continuation of all segments similar to KL cuts out from the pentagon a smaller polygon,
which becomes a core.

Let point A, see Figure 4, be the endpoint of the minor axis of a boundary component
of this billiard table. All straight lines, which start at point A and pass through the core
(decagon) form a cone with vertex A, where AH belongs to the boundary of this cone
(Figure 4). A simple computation for any point such as P on the boundary between H and
K shows that

rA cos φA + rP cos φP < |AP|, (15)

where rA and rP are radii of curvature at the points A and P, respectively, and

• φA: the angle between the normal line at A and the line segment AP,
• φP: the angle between the normal line at P and the line segment AP.

Inequality (15) implies that the (osculating) tangent circles with the radii rA
2 and rP

2 at
A and P, respectively, do not cover segment AP. This observation, together with the fact
that trajectories passing through the core cannot have two consecutive reflections off one
and the same boundary component, prove that all orbits in the core are hyperbolic (due to
the defocusing mechanism). Therefore, the dynamics in the core are hyperbolic and chaotic.

5. Concluding Remarks

This paper, together with [1], shows that all four possible types of coexistence of
dynamics in the core and in tracks are realized in the elliptic flowers billiards. Therefore,
dynamics could be chaotic in the core and tracks, it could be chaotic in the core and non-
chaotic in tracks, it could be non-chaotic in the core and chaotic in tracks, and, finally, the
dynamics could be non-chaotic both in the core and in tracks.

However, these results just scratch the surface of this new area. General multilayered
elliptic flowers billiards, especially the ones built over non-regular polygons, would likely
demonstrate a more rich variety of behaviors. The analysis of standard (without a core)
track billiards allowed some results in classical and quantum chaos to be obtained [3,11].
There is little doubt that studies of general EF billiards will bring something new, interesting,
and surprising. A great challenge is to construct such billiards (or other dynamical systems
similar to EF billiards dynamics) in dimensions greater than two. It has actually been
performed for track billiards [2]. However, the construction of high-dimensional elliptic
flowers seems to be a real challenge.
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Abstract: We systematically study the chaotic signatures in a quantum many-body system consisting
of an ensemble of interacting two-level atoms coupled to a single-mode bosonic field, the so-called
extended Dicke model. The presence of the atom–atom interaction also leads us to explore how
the atomic interaction affects the chaotic characters of the model. By analyzing the energy spectral
statistics and the structure of eigenstates, we reveal the quantum signatures of chaos in the model and
discuss the effect of the atomic interaction. We also investigate the dependence of the boundary of
chaos extracted from both eigenvalue-based and eigenstate-based indicators on the atomic interaction.
We show that the impact of the atomic interaction on the spectral statistics is stronger than on the
structure of eigenstates. Qualitatively, the integrablity-to-chaos transition found in the Dicke model
is amplified when the interatomic interaction in the extended Dicke model is switched on.

Keywords: quantum chaos; extended Dicke model; spectral statistics; eigenstate structure

1. Introduction

In recent years, the study of quantum chaos in many-body systems has attracted much
attention, both theoretically and experimentally in different fields of physics, such as statis-
tical physics [1–5], condensed matter physics [6–13], and high-energy physics [14–19], as
well as quantum information science [20–26]. To some extent, this great interest in quantum
many-body chaos is due to the close connections of chaos to several fundamental questions
that arise in current theoretical and experimental studies. Although a full understanding of
quantum many-body chaos is still lacking, much progress has been achieved. It is known
that chaos in interacting quantum many-body systems can lead to thermalization [1–3], the
fast scrambling of quantum information [14,27–29], and an exponential growth of quantum
complexities [18,30–35], and diffusive transport [36].

The notion of chaos in the classical regime is usually defined by the so-called but-
terfly effect, namely the exponential separation of infinitesimally nearby trajectories for
initial perturbations [37,38]. However, as the concept of trajectory is ill-defined in quan-
tum mechanics, the definition of quantum chaos remains an open question. Therefore,
probing the signatures of chaos in quantum many-body systems becomes a central task
in the studies of quantum many-body chaos. To date, many complementary detectors of
quantum chaos and the limits of their usefulness have been widely investigated in the
literature [28,31–33,39–54]. Important model systems in this context are billiards [40,55].
Another task, which has recently also drawn great interest, is to unveil different factors
that affect the chaotic properties of quantum many-body systems. While the impacts of
the strength of disorder and the choice of initial states on the development of quantum
chaos in various many-body systems have been extensively explored [4,56–61], more works
are required in order to obtain deeper insights into the universal aspects of quantum
many-body chaos.

In the present work, we analyze the emergence of chaos in the extended Dicke model.
There are several different versions of the extended Dicke model [62–65]. Here, we focus
on the one that has been discussed in ref. [63]. Different from the original Dicke model [66],
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which consists of an ensemble of noninteracting two-level atoms interacting with a single
bosonic mode, the atoms in our considered extended Dicke model are permitted to interact.
This allows us to analyze the effects of the atomic interaction on the degree of chaos of the
model. Previously, the role of the atom–field coupling in the Dicke model for the emergence
of quantum chaos has been investigated [67–70], while here we explore how this transition
is affected by additional atomic interaction. By performing a detailed analysis of the energy
spectral statistics and the structure of eigenstates, we systematically study both the chaotic
signatures of the extended Dicke model and examine the effect of the atomic interaction on
the chaotic features in the model. We show how the atomic interaction affects the spectral
statistics and the structure of eigenstates, respectively.

The article is structured as follows. The model is introduced in Section 2. The influences
of the atomic interaction on the energy spectral statistics is discussed in Section 3. A detailed
investigation of the consequence of the atomic interaction on the structure of eigenstates
is presented in Section 4. Finally, we conclude in Section 5 with a brief summary of our
results and outlook.

2. Extended Dicke Model

As an extension of the original Dicke model [66–68], the extended Dicke model studied
here consists of N mutual interacting two-level atoms with energy gap ω0 coupled to a
single cavity mode with frequency ω. By employing the collective spin operators Jx,y,z =

∑N
i=1 σ̂

(i)
x,y,z (σ̂x,y,z are the Pauli matrices), the Hamiltonian of the extended Dicke model can

be written as (hereafter, we set h̄ = 1) [63,71]

H = ωa†a + ω0 Jz +
2λ√

N
Jx(a + a†) +

κ

N
J2
z , (1)

where a(a†) denotes the bosonic annihilation (creation) operator, λ is the coupling strength
between atom and field, and κ represents the strength of the atomic interaction.

The conservation of total spin operator J2 = J2
x + J2

y + J2
z for the Hamiltonian (1) leads

to the Hamiltonian matrix being block diagonal in J2 representation. In this work, we focus
on the maximum spin sector j = N/2, which involves the experimental realizations and
includes the ground state. Moreover, the commutation between Hamiltonian (1) and the
parity operator Π = eiπ(j+Jz+a†a) enables us to further separate the Hamiltonian matrix into
even- and odd-parity subspaces. Here, we restrict our study to the even-parity subspace.

To numerically diagonalize the Hamiltonian (1), we work in the usual Fock–Dicke
basis {|n, m〉} = {|n〉 ⊗ |j, m〉}. Here, |n〉 are the Fock states of bosonic mode with
n = 0, 1, 2, . . . , ∞, and |j, m〉 represent the so-called Dicke states with m = −j, −j + 1, . . . , j.
Then, the elements of the Hamiltonian matrix are given by

〈n′, m′ |H|n, m〉 =(nω + mω0)δn′ ,nδm′ ,m +
κ

N
m2δm′ ,m +

λ√
N

[√
nδn′ ,n−1 +

√
n + 1δn′ ,n+1

]
×
[√

j(j + 1)− m(m + 1)δm′ ,m+1 +
√

j(j + 1)− m(m − 1)δm′ ,m−1

]
. (2)

We remark that the value of n is unbounded from above, the actual dimension of the Hilbert
space is infinite, regardless of the value of j. In practice, we need to cut off the bosonic
number states at a larger but finite value Nc. Moreover, the dependence of the chaoticity
in the Dicke model on the energy [63,72,73] further implies that it is also necessary to cut
off the energy in order to obtain the finite number of considered states. In our numerical
simulations, we set Nc = 320 and restrict our analysis to the eigenstates with energies
E/N ∈ [0.4, 4]; the convergence of our results is carefully examined. For our selected
energy interval, we checked that our main results still hold for other choices of Nc, as long
as N ≥ 16 and the convergence of the Fock–Dicke basis is fulfilled.

The extended Dicke model exhibits both ground-state and excited-state quantum phase
transitions and displays a transition from integrable to chaotic behavior with increasing
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system energy, such as in the original Dicke model. The features of these transitions have
been extensively investigated in the semiclassical regime [63]. It is worth mentioning that
several possible experimental realizations of the extended Dicke model have been pointed
out in [63,71,74].

3. Energy Spectrum Statistics

In this section, we explore the transition from integrability to chaos in the extended
Dicke model by analyzing its energy-level spacing distribution. In our study, we focus on
the energy levels with energies changing from E/N = 0.4 to E/N = 4. We compare our
results to the level distributions of fully integrable and chaotic cases, respectively. We are
aiming to characterize the quantum signatures of chaos in the model and unveil the impact
of the atomic interaction on its chaotic properties.

3.1. Level Spacing Statistics

As the most frequently used probe of quantum chaos, the distribution P(s) of the
spacings s of the consecutive unfolded energy levels quantifies the degree of correlations
between levels. For integrable systems, where the energy levels are allowed to cross, the
distribution P(s) is given by the Poissonian distribution [75],

PP(s) = exp(−s). (3)

On the other hand, the energy levels in chaotic systems exhibit level repulsion, and the
distribution P(s) follows the Wigner–Dyson distribution [39–41]. For the systems with
symmetric and real Hamiltonian matrices, as in the extended Dicke model, the Wigner–
Dyson distribution has the following expression:

PWD(s) =
πs
2

exp
(
−π

4
s2
)

. (4)

In Figure 1, we show P(s) of the extended Dicke model with ω = ω0 = 1 and
j = N/2 = 16 for different values of λ and κ. Here, the level spacings s are obtained
from the unfolded eigenlevels Ẽμ = Eμ/ΔE, with 1/ΔE being the local density of states.
One can clearly see that P(s) undergoes a transition to Wigner–Dyson distribution as λ
increases, regardless of the value of κ. The case κ = 0 is the original Dicke model as in our
previous work [68]. However, we find that, with increasing κ, the Poissonian distribution
at λ = 0.1, and κ = 0 in Figure 1a turns into an intermediate case, as observed in Figure 1g.
This suggests that the degree of chaos in the extended Dicke model can be tuned by the
atomic interaction.

To quantitatively characterize the effect of the atomic interaction on the degree of chaos,
we consider the proximity of P(s) to Wigner–Dyson or to Poissonian distributions. There
are several ways to measure the distance between two distributions, here, the difference
between P(s) and PWD(s)[PP(s)] is quantified by the chaos indicators η and β. The indicator
η is defined as [7,67,76]

η =

∣∣∣∣∣
∫ s0

0 [P(s)− PWD(s)]ds∫ s0
0 [PP(s)− PWD(s)]ds

∣∣∣∣∣, (5)

where s0 = 0.4729 . . . is the first intersection point of PWD(s) and PP(s). For P(s) = PWD,
we have η = 0, while P(s) = PP(s) leads to η = 1. The indicator β is the level repulsion
exponent and can be obtained by fitting P(s) to the Brody distribution [77]

PB(s) = bβ(β + 1)sβ exp[−bβsβ+1], (6)

where the factor bβ is given by

bβ =

[
Γ
(

β + 2
β + 1

)]β+1
, (7)
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with Γ(x) being the gamma function. The value of β varies in the interval β ∈ [0, 1]. When
β = 0, it means the level spacing distribution P(s) is Poisson. On the other hand, for chaotic
systems, we would expect P(s) = PWD(s), and therefore β = 1.

Figure 1. Level spacing distribution of the extended Dicke model for several combinations of λ

and κ, see the legends in panels (a–i). The considered energy levels are the ones that have energies
E/N ∈ [0.4, 4]. The total atom number is N = 2j = 32, and the cut off in bosinic Hilbert space is
Nc = 320. The Poissonian (blue solid lines) and Wigner–Dyson distributions (red dashed lines) are,
respectively, plotted in each panel for comparison. Other parameters are: ω = ω0 = 1. All quantities
are dimensionless.

In Figure 2a, we plot η as a function of λ for various values κ. It can be seen that
irrespective of the strength of the atomic interaction, the extended Dicke model undergoes a
transition from integrability to chaos as the coupling strength λ increases. However, as the
strength of the atomic interaction increases, the onset of chaos happens for smaller values
of coupling strength λ. This is more evident from Figure 2b, where we show how η evolves
as a function κ and λ. Clearly, the width of the region with larger values of η decreases with
increasing κ, suggesting that the location of the crossover to quantum chaos moves towards
the lower values of λ with increasing κ. The statement above is further confirmed by the
boundary of chaotic region, which is plotted as the black curve in Figure 2b. Here, we
determine the boundary of chaos by the condition η ≤ ηd = 0.3 [76]. We set the threshold
ηd = 0.3 as it implies that the model has already departed from the integrablity and is
tending to the chaotic regime.

Figure 2c shows β as a function of λ with increasing κ. As observed in Figure 2a, while
the chaotic behavior at higher values λ is independent of κ, the coupling strength λ that
needs to be for the transition to chaos decreases with increasing κ. Figure 2d illustrates β as
a function of κ and λ. One can see that with increasing κ, the region with β ≈ 1 extends
to smaller values of λ. By identifying the chaotic region as β ≥ 0.7, we show that the
boundary of chaos strongly depends on the strength of the atomic interaction, see the black
curve in Figure 2d. Notice that the boundary extracted from η behaves in a similar way to
the one extracted from β.

3.2. Level Spacing Ratio

The study of level spacing distribution requires the so-called unfolding procedure [78].
It proceeds by rescaling the original eigenlevels to ensure that the local density of states
of the resulting spectrum is 1. It is usually a nontrivial task, in particular for quantum
many-body systems. To circumvent this disadvantage, one can resort to another chaotic
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probe based on the ratio of adjacent level spacings [79], which is free from the unfold-
ing procedure.

Figure 2. (a) Chaos indicator η as a function of λ for several values of κ. (b) η as a function of κ

and λ. (c) Chaos indicator β as a function of λ for different values of κ. (d) β as a function of κ and
λ. These results are obtained from the energy levels with energies E/N ∈ [0.4, 4]. In panels (b,d),
the boundaries of the chaotic region are marked by the black curves, which are defined as η ≤ 0.3
and β ≥ 0.7, respectively. Other parameters are: ω = ω0 = 1 and N = 2j = 32. All quantities
are dimensionless.

For a given set of level spacings {sμ = Eμ+1 − Eμ}, the ratio of adjacent level spacings
is defined as [79,80]

rμ = min
(

δμ,
1
δμ

)
, (8)

where δμ = sμ+1/sμ is the ratio between two adjacent level spacings. Obviously, rμ is
defined in the interval rμ ∈ [0, 1]. The distribution of rμ for both integrable and chaotic
systems has been analytically investigated [80–82]. It is known that for the chaotic systems
with Hamitonian from the Gaussian orthogonal ensemble (GOE), the level spacing ratio
distribution is given by

PGOE(r) =
1

Z1

2(r + r2)

(1 + r + r2)5/2 , (9)

where Z1 = 8/27 is the normalization constant. On the other hand, as the eigenlevels in
the integrable systems are uncorrelated (independent Poisson levels), one can simply find
that the ratio distribution is

PPoi(r) =
2

(r + 1)2 . (10)

Due to rμ ∈ [0, 1], the ratio distribution PGOE/Poi(r) vanishes outside the range [0, 1].
Figure 3a–f show how the level spacing ratio distribution P(r) evolves for different

combinations of atomic interaction strength κ and coupling strength λ. Similarly to what
we observe for the level spacing distribution P(s) in Figure 1, the spacing ratio distribution
P(r) tends to PGOE with increasing coupling strength λ, independent of κ value. However,
as evident from Figure 3a,d, increasing κ leads to the enhancement in degree of chaos of
the model at smaller values of λ. Therefore, as mentioned above, the atomic interaction
can be used to tune the level of chaoticity in the model. By switching on the interatomic
interaction κ > 0, the regularity-to-chaos transition of the original Dicke model [68,70]
is amplified.
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Figure 3. Level spacing ratio distributions P(r) for various combinations of κ and λ: (a) κ = 0, λ = 0,
(b) κ = 0, λ = 0.5, (c) κ = 0, λ = 1, (d) κ = 0.7, λ = 0, (e) κ = 0.7, λ = 0.5, and (f) κ = 0.7, λ = 1. In
each panel, the Poisson distribution PPoi(r) is plotted as a blue solid curve, while the red dashed
line denotes PGOE(r). (g) Averaged level spacing ratio 〈r〉 as a function of λ for several values of κ.
(h) 〈r〉 as a function of κ and λ. The green line indicates the chaotic boundary, which is determined by
〈r〉 ≥ 0.48. The energy levels used in our numerical calculation have energies E/N ∈ [0.4, 4]. Other
parameters: ω = ω0 = 1 and N = 2j = 40. All quantities are dimensionless.

A more stringent analysis of the effect of the atomic interaction is made with the
average level spacing ratio, defined as

〈r〉 =
∫ 1

0
rP(r)dr. (11)

It takes the value 〈r〉Poi = 2 ln 2 − 1 ≈ 0.386 for integrable systems with P(r) = PPoi(r),
while for chaotic systems with P(r) = PGOE(r), one has 〈r〉GOE = 4 − 2

√
3 ≈ 0.536. Hence,

〈r〉 acts as a detector to diagnose whether the studied system is in the integrable or chaotic
regime and has been widely used to track the crossover from integrability to chaos.

Figure 3g demonstrates 〈r〉 as a function of λ for three different values κ. We see that,
regardless of the value of κ, the transition from integrability to chaos is well captured by the
behavior of 〈r〉, which varies from 〈r〉Poi to 〈r〉GOE with increasing λ. We further observe
that the chaotic phase is robust with respect to the variation of κ, but the integrable phase
exhibits a strong dependence on κ. For the integrable phase with smaller values of λ, we
find that increasing κ gives rise to an increase in 〈r〉. As a consequence, the location of
transition to chaos can be varied by the atomic intraction. This effect is more clearly observed
in Figure 3h, where the evolution of 〈r〉 as a function of κ and λ is illustrated. Again, we
define the boundary of chaotic region by the condition 〈r〉 ≥ 〈r〉c = 0.48, meaning that
the region with value 〈r〉 ≥ 0.48 is considered as chaos. We checked that our main result
still holds for other choices of 〈r〉c, as long as 〈r〉c ∈ (0.45, 0.5). The green line in Figure 3h
denotes the obtained boundary of chaos. As expected, the behavior of the boundary line
confirms the extension of the chaotic region to lower values of λ as κ increases.

4. Structure of Eigenstates

The onset of chaos also bears a remarkable change in the structure of eigenstates.
In this section, we explore the impact of atomic interaction on the transition to chaos by
investigating the variation in the structure of eigenstates.

It is known that the eigenstates of chaotic systems are uncorrelated and are well de-
scribed by random matrix theory (RMT) [3,83–85]. For the model studied in this work,
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one can expect that in the chaotic phase the eigenstates of the model will have the same
structure as those of random GOE matrices. The GOE eigenstates are fully delocalized ran-
dom vectors with real components consisting of independent Gaussian random numbers.
Hence, the deviation of the eigenvector structure from Gaussian behavior is an alternative
benchmark to certify quantum chaos [42,86–89].

The analysis of the structure of eigenstates requires expansion of the eigenstates in
a chosen basis. The choice of basis is usually decided by the physical problem and the
system under consideration. Here, we use the Fock–Dicke bases, {|n, m〉}, which are the
eigenstates of a†a and Jz, as mentioned in Section 2. The decomposition of the kth eigenstate,
|k〉, of the Hamiltonian (1) in the selected basis is given by

|k〉 =
D
∑
ν=1

cν
k |ν〉, (12)

where |ν〉 = |n, m〉, D is the dimension of the Hilbert space, and cν
k = 〈ν|k〉 are the kth eigen-

state components in the basis {|ν〉}, satisfying the normalization condition ∑ν |cν
k |2 = 1.

The characterizations of the eigenstate structure are provided by the statistical properties
of eigenstate coefficients {cν

k}.
To analyze the fingerprint of chaos in the properties of the eigenstates of H in

Equation (1), as well as to examine whether the atomic interaction has an effect on the
eigenstate structure, we explore the coefficients’ distribution in comparison with the corre-
sponding GOE result. As mentioned above, the eigenstates for the chaotic systems with real
and symmetric D-dimensional Hamiltonian matrices are consistent with the GOE eigen-
states. The components of a GOE eigenstate, {cν}, are random numbers that are uniformly
distributed on a unit sphere with dimension D − 1. In the limit D  1, the dependence
between components vanishes, and the distribution of components can be well described
by a Gaussian distribution with zero mean and variance 1/D [77,90–92],

PGOE(c) =

√
D
2π

e−Dc2/2. (13)

In the chaotic systems, it has been known that the coefficients of the mid-spectrum eigen-
states are distributed as a near-Gaussian distribution [77,78,93–95], while the coefficients’
distribution for the eigenstates of nonchaotic systems and the edge eigenstates of chaotic
systems is significantly different from Gaussian distribution [95–97]. As increasing λ leads
to the onset of chaos in the model; one would expect that the distribution of mid-spectrum
eigenstates coefficients should be turned from non-Gaussian into near-Gaussian.

Figure 4a–f show the evolution of the eigenstate coefficient distributions, denoted by
P(c), for several (κ, λ) combinations in comparsion with the Gaussian distribution provided
by Equation (13). We see that, regardless of the value of κ, the eigenstate coefficients’
distribution tends to Gaussian as λ increases. The larger the value of λ is, the higher the
degree of chaos in the model, and, therefore, the closer the coefficients’ distribution to
Gaussian, as expected. Another prominent feature, that is also independent of κ, observed
in the behaviors of P(c) is the larger peak around cν

k ∼ 0. Even in the most chaotic regime,
P(c) still exhibits a high peak near zero, as shown in Figure 4c,f. This excessive number of
zero coefficients is mainly due to the mixed feature of the model. This means the regular
and chaotic behavior coexist in the model for the considered parameters. Detailed analysis
of the mixture of regular and chaotic behaviors in the extended Dicke model is beyond the
scope of the present work; we leave this investigation for a future work.

Let us now turn to discuss how the atomic interaction κ affects the eigenstate co-
efficients’ distribution. As evident from Figure 4a–f, the presence of atomic interaction
has almost no effect on the behavior of the eigenstate coefficients’ distribution, but just a
reduction in the height of peak in the regular phase [compare Figure 4a to Figure 4d]. This
implies that the impact of the atomic interaction on the structure of eigenstates is not as
strong as on the eigenlevels.
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Figure 4. Panels (a–f): Histogramas of the coefficients cν
k of eigenstates with energy Ek/N ∈ [1.75, 2.25],

in the Fock–Dicke basis. Each panel corresponds to different (κ, λ) combinations: (a) κ = 0, λ = 0,
(b) κ = 0, λ = 0.5, (c) κ = 0, λ = 1, (d) κ = 0.7, λ = 0, (e) κ = 0.7, λ = 0.5, and (f) κ = 0.7, λ = 1.
The red solid line in each panel denotes the Gaussian distribution in Equation (13). Panels (g–i):
Kullback–Leibler divergence DKL [cf. Equation (14)] as a function of rescaled energy Ek/N and λ for
κ = 0 (g), κ = 0.5 (h), and κ = 1 (i). Other parameters: ω = ω0 = 1 and N = 2j = 40. All quantities
are dimensionless.

To measure the difference between P(c) and Gaussian distribution (13), we consider
Kullback–Leibler (KL) divergence [98], which is commonly used to measure how close
an observed distribution is to a predicted distribution. In our study, P(c) and PGOE(c)
are, respectively, identified as the observed and predicted distributions. Then, the KL
divergence between them is given by

DKL =
∫ cmax

cmin

P(c) ln
[

P(c)
PGOE(c)

]
dc, (14)

where cmin and cmax denote, respectively, the minimum and maximum values in {cν
k}. The

KL divergence is non-negative, so that DKL ≥ 0, and it vanishes only when P(c) = PGOE(c).
Qualitatively, a larger DKL value indicates a larger difference between P(c) and PGOE(c).

In Figure 4g–i, we plot the KL divergence for the extended Dicke model as a function
of Ek/N and λ with κ = {0, 0.5, 1}. We see that the behaviors of DKL versus Ek/N and
λ for different κ values are very similar. As expected, the eigenstates in the non-chaotic
phase (λ � 0.45) and the eigenstates at the spectrum edge in the chaotic phase (λ � 0.5)
have larger values of DKL, suggesting that the corresponding coefficients’ distributions
strongly deviate from Gaussian, as illustrated in Figure 4a,d for the integrable case. Here,
it is worth pointing out that the infinite dimension of the Hilbert space for the extended
Dicke model leads to its spectrum has only one edge, namely the ground state. On the
other hand, the lower values of DKL for mid-spectrum eigenstates in the chaotic phase
imply that their coefficients’ distributions are closer to Gaussian, as shown in Figure 4c,f.
The similarity between behaviors of DKL observed in the bottom row of Figure 4 prompts
a more detailed investigation of the impact of the atomic interaction on the eigenstate
coefficient distribution.

To determine whether the eigenstate coefficients’ distribution is robust with respect to
the variation of the atomic interaction κ, we calculate DKL for the mid-spectrum eigenstates
with energies Ek/N ∈ [1.75, 2.25]. The final result for various cases is shown in Figure 5.
The evolution of DKL as a function of λ for different values of κ is plotted in Figure 5a.

112



Entropy 2022, 24, 1415

One can see that the behavior of DKL for different κ is very similar. The KL divergence
varies slowly for smaller λ until λ ≈ 0.25, after which it rapidly decreases to small values
as the coupling strength is increased beyond λc ≈ 0.5. The change in DKL behavior
is a manifestation of the transition to chaos resulting from the reduction in eigenstates
correlation with increasing λ. We also observe that the dependence of DKL on κ in the
integrable phase is very different from that of the chaotic phase. The explicit dependence of
DKL on κ for several values of λ is shown in Figure 5b. As expected from Figure 5a, in the
chaotic regime with λ � 0.5, DKL is independent of κ, whereas the KL divergence strongly
depends on the atomic interaction for the cases of smaller λ. Overall, the KL divergence
decreases with increasing κ in the integrable regime. This indicates that the proximity of
the eigenstate coefficients’ distribution to the Gaussian distribution can be improved by the
atomic interaction. Therefore, the atomic interaction can vary the degree of chaos in the
extended Dicke model, in agreement with the results obtained from eigenvalue statistics.
An overall evolution of DKL as a function of κ and λ is depicted in Figure 5c. We see that
the chaotic region remains almost unchanged as κ increases, in contrast to the extension
behavior revealed by the eigenvalue-based detectors of quantum chaos [see Figure 2b,d,h].
This suggests that the level repulsion is more sensitive to the effect of atomic interaction
than the structure of eigenstates.

Figure 5. (a) KL divergence DKL (14) as a function of λ for several κ values. (b) DKL as a function
of κ for several coupling strengths λ. (c) Color-scaled plot of DKL in the κ − λ plane. In all panels,
the coefficients distribution P(c) is obtained from the eigenstates with energies Ek/N ∈ [1.75, 2.25].
Other parameters: ω = ω0 = 1 and N = 2j = 40. All quantities are dimensionless.

5. Conclusions

In this article, we performed a detailed analysis of quantum chaotic characters of the
extended Dicke model through the statistical properties of eigenvalues and eigenstates.
The presence of interaction between atoms in the model further allows us to explore the
dependence of chaotic properties of the model on the atomic interaction. It was shown
that the integrability-to-chaos transition of the original Dicke model as a function of the
atom–field coupling is amplified by the interatomic interaction.

We demonstrated that as the model moves from regular phase to chaotic phase, both
the level spacing and level spacing ratio distributions undergo a crossover from Poisson to
Wigner distribution, regardless of the strength of atomic interaction. However, the presence
of atomic interaction can lead to a notable deviation of level spacing and spacing ratio
distributions from Poisson distribution. To quantify this deviation and to measure the
degree of chaos in the model, we consider three different chaos indictors to probe the
transition from integrablity to chaos. All of these indicators are complementary to each
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other and are able to capture the crossover from Poisson to Wigner for both level spacing
and level spacing ratio distributions. We have also shown that the behaviors of these
indicators as a function of control parameters are very similar. In particular, we found
that the degree of chaos of the model can be controlled by tuning the strength of atomic
interaction. This result highlights the role of interaction in the development of chaos in
quantum many-body systems and opens up the possibility to tune the degree of chaos in
the extended Dicke model.

Additional quantum chaotic signatures showing how the atomic interaction affects the
degree of chaos in the extended Dicke model are unveiled in the structure of the eigenstates.
To analyze the eigenstate structure, we expand each eigenstate in the Fock–Dicke basis
and focus on the expansion coefficients’ distribution for mid-spectrum eigenstates. For
fully chaotic systems with Hamitonian from GOE, such distribution is well described by
Gaussian distribution. We showed that the transition to chaos can be detected by the
deviation of coefficients’ distribution from Gaussian distribution. However, we note that
even within the chaotic phase, the coefficients’ distribution is still different from Gaussian,
indicating the existence of correlations between them. By using the KL divergence to
measure the distance between the coefficients’ distribution and Gaussian distribution, we
illustrated that the onset of chaos corresponds to the rapid decrease in the behavior of KL
divergence as a function of coupling strength. Although the atomic interaction leads to
the decrease in KL divergence in the regular phase, the transition to chaos revealed by KL
divergence is almost independent of atomic interaction. This is different from the results
obtained by the eigenvalue-based chaos indicators and implies that unlike the eigenlevels,
the eigenstate structure is robust with respect to the change in atomic interaction.

A natural extension of the present work is to investigate the dynamical role played
by the atomic interaction in the development of chaos. It would also be interesting to
analyze the effect of atomic interaction on the level of chaoticity through long-range
spectral correlations, which can be detected by the spectral form factor [41]. In addition,
understanding the emergence of chaos and the impact of atomic interaction from the
dynamics of the classical counterpart of the model would be another interesting topic.
Very recently, the critical phenomena in the extended Dicke model have been thoroughly
analyzed in this direction [65]. Finally, we would like to mention that a direct demonstration
of level spacing distribution in an ultracold-atom system has been realized in a recent
experiment [99]. Hence, we expect that the spectral statistics of our studied extended Dicke
model can be verified by state-of-the-art experimental platforms.
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Mather β-Function for Ellipses and Rigidity
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Abstract: The goal of the first part of this note is to get an explicit formula for rotation number and
Mather β-function for ellipse. This is done here with the help of non-standard generating function
of billiard problem. In this way the derivation is especially simple. In the second part we discuss
application of Mather β-function to rigidity problem.

Keywords: Birkhoff billiard; invariant curve; action minimizers: rigidity, integrable billiards

1. Introduction

Consider the confocal family of ellipses

Eλ =

{
x2

a2 − λ
+

y2

b2 − λ
= 1
}

, 0 < λ < b2 < a2.

The initial ellipse is E = E0. Polygonal lines with the vertices on E circumscribed
about confocal caustic Eλ correspond to billiard trajectories of the billiard in E. A caustic
Eλ is called rational [1], of rotation number ρ = m/n, if a billiard trajectory circumscribing
Eλ closes after n reflections making m rotations. These closed billiard trajectories are called
Poncelet polygons. By famous Poncelet theorem if one billiard trajectory tangent to Eλ

is closed with ρ = m/n, then all of them are closed with the same ρ. Given a caustic Eλ,
all Poncelet polygons have the same perimeter. Mather β-function assigns to the rotation
number ρ of Eλ the value of this perimeter divided by the number of vertices. Let me
remark that traditionally Mather β-function is negative of ours. However we prefer, for
convenience, sign + for generating function and hence for Mather β-function as well.

Example 1. It is not difficult to compute the perimeter and the corresponding λ for 4-gons. Namely
the perimeter equals 4

√
a2 + b2 and hence β(1/4) =

√
a2 + b2,

√
λ = ab/

√
a2 + b2. The

perimeter of Poncelet triangles and the corresponding λ can be geometrically found, but this requires
solution of cubic equation. We leave this as an exercise.

In this note we show how to compute the perimeter of the Poncelet polygons for
a given caustic Eλ. By a different method a similar formula was discovered in a recent
paper [2]. Notice that the straightforward computation of the lengths of the edges seems
to be difficult. The main idea of this paper is to use non-standard generating function of the
billiard. This function was found in [3] for ellipsoids, and in [4,5] for general convex billiard
tables. Using this idea we replace the straightforward computation of the action functional
by expressing this functional via the non-standard generating function. This approach
leads immediately to a formula containing pseudo-elliptic integral, which can be further
reduced to elliptic integrals, using [6]. The question of existence of such a formula was
explicitly addressed by S. Zelditch in [7,8]. We also get by our method the known formulas
for rotation number and the invariant measure [1,9] in a very direct way. In addition, we
derive in Section 6 a simple formula for the so-called Lazutkin parameter of the caustic Eλ.

There is an extensive literature on Poncelet porism, formulas for invariant measure
and the rotation number. I refer to the incomplete list of papers on the subject [1,9–13].
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The non-standard generating function for convex billiards has been already used in
our paper [14], explaining conservation laws for elliptical billiards discovered recently by
Dan Reznik [15,16] et al., see also [11,12,17]. Additionally, the non-standard generating
function is a key ingredient in the recent proof of a part of Birkhoff conjecture for centrally
symmetric billiard tables [18].

Mather β-function is very important function related both to classical dynamics inside
the domain as well as to the spectral problems. In this paper, we shall discuss in Section 8
the relation of Mather β-function to the rigidity questions. The idea to use Mather β-
function for rigidity in billiards belongs to K.F. Siburg [19]. We refer [1,8,20–22] for further
developments and other approaches.

2. Results

In this section, we formulate our main contributions. Other results are placed in the
corresponding sections.

Theorem 1. Consider the invariant curve of rotation number ρ corresponding to the caustic Eλ.
Mather β-function corresponding to the caustic Eλ is given by the following formula:

β(ρ) =
2ce
√

e2 − f 2

e2 − 1
− 2c f

K(k)
[K(k)E(φ, k)− E(k)F(φ, k)], k = 1/ f , φ = arcsin

√
λ

b
,

where E(φ, k) is elliptic integral of the second kind, K(k), E(k) are complete elliptic integrals of first
and second kind, and e, f are eccentricities of the ellipses E, Eλ.

Corollary 1. The following formula holds

β(ρ) =
2a

√
λ

b
− 2
√

a2 − λE(φ, k) + ρ|Eλ|,

φ = arcsin

√
λ

b
, k = 1/ f ,

where |Eλ| denotes the circumference of the ellipse Eλ.

We give a proof of these formulas Section 1.

Example 2. (1) One can see from this formula that for ρ = 0, that is when f → e (confocal ellipse
coincides with the boundary, i.e., λ = 0), it follows that φ → 0 and hence β → 0.

(2) When f → 1 (corresponding to the confocal ellipse shrinking to the segment between the
focii), β → 2a—the diameter (only the first summand of the formula remains, the second one tends
to zero).

We shall discuss now the relation of Mather β-function to the rigidity questions. The
following problem is important. Let Ω1, Ω2 be two strictly convex domains having the same
Mather β-functions β1 = β2, can one state that the domains are isometric. It is especially
important in view of its applications to spectral rigidity.

Remarkably, if Ω1 is an ellipse then there are many approaches leading to the affirma-
tive answer. In this paper, we do not consider infinitesimal behavior of Mather β-function at
0 (cf. [21,22]), but rather study this function on a finite neighborhood of 0. Our contribution
is based on the recent paper with a partial resolution of Birkhoff conjecture for centrally
symmetric convex billiards [18]. The result of [18] can be formulated in terms of Mather
β-function as follows:
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Theorem 2. Let Ω1, Ω2 be two strictly convex C2-smooth centrally symmetric planar domains
such that Ω1 is an ellipse. Suppose that Mather β-functions β1, β2 of the domains satisfy

β1(ρ) = β2(ρ), ∀ρ ∈ (0,
1
4
].

Then Ω2 is an ellipse isometric to Ω1.

In Section 8, we shall give the proof of this result and discuss further application of
Mather β-function to rigidity problems.

3. Preliminaries and Methods

3.1. Non-Standard Generating Function

Consider the space of oriented lines in the plane R2(x, y). A line can be written as

cos ϕ · x + sin ϕ · y = p,

where ϕ is the direction of the right normal to the oriented line, and p is the signed distance
to the line from the origin. Thus, (p, ϕ) are coordinates in the space of oriented lines, see
Figure 1. The 2-form ρ = dp ∧ dϕ is the area (symplectic) form on the space of oriented
lines used in geometrical optics and integral geometry.

Figure 1. Coordinates in the space of oriented lines.

Consider a smooth strictly convex billiard curve γ, and let h(ϕ) be its support function,
that is, the distance from the origin (supposed to be inside γ) to the tangent line to γ
at the point where the outer normal has direction ϕ. The sub-space A of the oriented
lines intersecting the curve γ is the phase space cylinder of the billiard map. The billiard
transformation acts on A as an exact symplectic map.

T : (p1, ϕ1) �→ (p2, ϕ2)

sends the incoming trajectory to the outgoing one. Let

ψ =
ϕ1 + ϕ2

2
, δ =

ϕ2 − ϕ1

2
,

where ψ is the direction of the outer normal at the reflection point and δ is the reflection
angle.

Proposition 1. The function

S(ϕ1, ϕ2) = 2h
(

ϕ1 + ϕ2

2

)
sin
(

ϕ2 − ϕ1

2

)
= 2h(ψ) sin δ

is a generating function of the billiard transformation, that is, T(p1, ϕ1) = (p2, ϕ2) if and only if

−∂S1(ϕ1, ϕ2)

∂ϕ1
= p1,

∂S2(ϕ1, ϕ2)

∂ϕ2
= p2.

121



Entropy 2022, 24, 1600

Proof. We refer to Figure 2.
One has

−∂S1(ϕ1, ϕ2)

∂ϕ1
= −h′(ψ) sin δ + h(ψ) cos δ.

The position vector of the point of the curve γ with the outer normal having direction ψ is

γ(ψ) = h(ψ)(cos ψ, sin ψ) + h′(ψ)(− sin ψ, cos ψ)

(this formula is well known in convex geometry). Then, using some trigonometry,

p1 = γ(ψ) · (cos ϕ1, sin ϕ1) = h(ψ) cos δ − h′(ψ) sin δ,

as needed. The argument for p2 is similar.

Figure 2. To Proposition 1.

In order to use the function S for ellipse let me remind the computation of the support
function, with respect to the center of the ellipse, as a function of ψ which is the angle made
by the outer normal with the positive x-axes.

Lemma 1. Let E be the ellipse { x2

a2 + y2

b2 = 1}. One has:

h(ψ) =
√

a2 cos2 ψ + b2 sin2 ψ.

Proof. Consider a point (ξ, η) of the ellipse. A normal vector is given by

N =

(
ξ

a2 ,
η

b2

)
= �(cos ψ, sin ψ), � = |N|.

and the tangent line at this point has the equation

ξx
a2 +

ηy
b2 = 1.

The distance from the origin to this line is

1√
ξ2

a4 + η2

b4

=
1
�

.

On the other hand,
ξ = a2� cos ψ, η = b2� sin ψ,
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and the equation of the ellipse implies that

�2 =
1

a2 cos2 ψ + b2 sin2 ψ
.

Therefore h(ψ) = 1/� =
√

a2 cos2 ψ + b2 sin2 ψ, as claimed.

3.2. Integral for Elliptic Billiard in Various Forms

Billiard in ellipse is integrable. The integral can be understood at least in three ways.
1. Jacobi-Chasles integral λ.
Given an oriented line not intersecting the segment between the focii. Consider the

confocal ellipse

Eλ =

{
x2

a2 − λ
+

y2

b2 − λ
= 1
}

tangent to this line then λ is an integral of the billiard, i.e., it remains constant under
the reflections.

2. Joachimsthal integral J := sin δ
h .

This corresponds to the conservation of < v,∇q >, where v the unit vector of the
line, and q is the quadratic form q(x) = <Qx,x>

2 , with the diagonal matrix Q = diag( 1
a2 , 1

b2 ),
see Figure 3.

v, |v| = 1

x

x
′

v
′

v

δ

δ
′

Figure 3. Joachimsthal integral.

Indeed, the conservation follows from the following implications:

< Q(x + x′), x′ − x >= 0 ⇒ < Qx, v >= − < Qx′, v > .

Additionally,

< Qx′, v + v′ >= 0 ⇒ < Qx′, v′ >= − < Qx′, v >⇒ < Qx, v >=< Qx′, v′ >.

One can express this conservation law in terms of h, δ as follows:

− < v, ∇ f >= −|∇ f | sin δ = |Qx| sin δ =
sin δ

h
= J.

Here we used that |Qx| = 1
h as we explained in the proof of Lemma 1.

3. Product of two momenta F.
Let us consider a segment of the billiard trajectory tangent to a confocal ellipse Eλ with

the semi-axes
√

b2 − λ <
√

a2 − λ. Let d1, d2 be the distances from the foci to the line and
α be the direction of its normal. Then we define F := d1d2 (This definition of the integral
we learned from Michael Berry). It then follows from the next theorem that F is indeed
an integral.
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3.3. The Relations between Conserved Quantities

Theorem 3. The following relations hold true:

1. J =
√

λ/ab
2. F =

√
b2 − λ

3. In terms of the eccentricities e = a
c , f =

√
a2−λ

c of E, Eλ we have the formulas:

λ = c2(e2 − f 2), J =
√

e2 − f 2

c e
√

e2 − 1
, where c =

√
a2 − b2.

Proof. (1) Consider an oriented line passing through the point (a, 0) with right normal
having angle δ (see Figure 4). Then for p of this line we have

p =
√
(a2 − λ) cos2 δ + (b2 − λ sin2 δ),

and hence
p = a cos δ,

see Figure 4. Therefore these two give

b sin δ =
√

λ.

a

p

δ δ

Figure 4. Relation of J and λ.

On the other hand from the definition of J we have:

J =
sin δ

a
.

Thus,

J =
√

λ

ab
.

(2) Given a line with coordinates (p, ϕ), we have

d1 = p − c cos φ, d2 = p + c cos ϕ,

where c2 = a2 − b2 (see Figure 5).
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E

pd1
d2α α α

cc

Figure 5. Integral F = d1d2.

F := d1d2 = p2 − c2 cos2 ϕ. (1)

If the line is tangent to Eλ, then p = hλ(ϕ), where hλ is the support function of Eλ. Hence,
using Lemma 1 we rewrite (1)

F = (a2 − λ) cos2 ϕ + (b2 − λ) sin2 ϕ − c2 cos2 ϕ = b2 − λ.

(3) Follows from item (1) and the definition of eccentricities.

4. Invariant Measure on an Invariant Curve

Suppose we have a curve on the phase cylinder A which is invariant under the billiard
map T. Suppose this curve is a graph and lies in the level set of the integral F(p, ϕ) = const.
Then there is a natural measure dμ on the curve which is invariant under T. According
to V.I. Arnold this is called Gelfand-Leray form, which by another Arnold’ principle was
probably discovered earlier. Next we compute this measure explicitly.

Theorem 4. The invariant measure on the invariant curve corresponding to the value J of Joachim-
sthal integral and other related quantities given by Theorem 3 is given by the formula:

dμ =
dψ√

a2 − c2 sin2 ψ
√
(1 − J2a2) + J2c2 sin2 ψ

.

Therefore the measure of the arc [0, ψ] equals

μ([0, ψ]) =
1
c f

F
(

ϕ,
1
f

)
, ϕ = arcsin

√
(d + 1) tan2 ψ

(d + 1) tan2 ψ + d
,

d =
1 − J2a2

J2c2 =
(b2 − λ)e2

λ
=

f 2 − 1
e2 − f 2 e2 > 0

The measure of the whole invariant curve equals

U =
4
c f

F
(

π

2
,

1
f

)
.

Here and below e, f are the eccentricities of E, Eλ and F(ϕ, k) =
∫ ϕ

0
dt√

1−k2 sin2 t
is the elliptic

integral of the first kind.

Proof. The invariant measure on the curve {F = const} can be written as:

dμ =
1
Fp

dϕ.
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Due to explicit form of F in (p, ϕ) coordinates (Theorem 3) we have:

dμ =
1
p

dϕ

We compute using the change of variable on the invariant curve ϕ → ψ (see Figure 6):

ϕ = ψ + δ(ψ).

E

Eλ

ψ

δ(ψ)

Figure 6. Change of variable on the invariant curve ϕ → ψ ϕ = ψ + δ(ψ).

Using the formula
p = h(ψ) cos δ(ψ) + h′(ψ) sin δ(ψ)

We have

dμ =
1
p

dϕ =
(1 + δ′(ψ))dψ

h(ψ) cos δ(ψ) + h′(ψ) sin δ(ψ)
(2)

Next we use the explicit form of Joachimsthal integral:

Jh(ψ) = sin δ(ψ)

and hence also
Jh′(ψ) = cos δ(ψ)δ′(ψ).

Substituting into (2) we get

dμ =
1
p

dϕ =
J(1 + δ′(ψ))dψ

sin δ(ψ) cos δ(ψ)(1 + δ′(ψ))
=

Jdψ

sin δ(ψ) cos δ(ψ)
=

dψ

h
√

1 − h2
. (3)

thus we compute using Lemma 1:

dμ =
dψ√

a2 cos2 ψ + b2 sin2 ψ
√

1 − J2(a2 cos2 ψ + b2 sin2 ψ)
=

dψ√
a2 − (a2 − b2) sin2 ψ

√
(1 − J2a2) + J2(a2 − b2) sin2 ψ

=

dψ√
a2 − c2 sin2 ψ

√
(1 − J2a2) + J2c2 sin2 ψ

.

Therefore the measure of the segment [0, ψ]

μ([0, ψ]) =
∫ ψ

0

dψ√
a2 − c2 sin2 ψ

√
(1 − J2a2) + J2c2 sin2 ψ

.
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Changing to x = sin2 ψ we get

μ([0, ψ]) =
1
2

∫ sin2 ψ

0

dx√
x(1 − x)

√
a2 − c2x

√
(1 − J2a2) + J2c2x

=

1
2Jc2

∫ sin2 ψ

0

dx√
x(1 − x)

√
e2 − x

√
d + x

=
g

2Jc2 F(ϕ, k),

where in the last step we used the reduction of the pseudo-elliptic integral to the elliptic
integral of the first kind [6] (p. 112; integral 254.00). In the last formula e = a/c is the

eccentricity of the ellipse, c =
√

a2 − b2, d = 1−J2a2

J2c2 . Now we need to compute parameters
of the elliptic integral given in [6] (p. 112). In order to compute d we use Theorem 3

d =
1 − J2a2

J2c2 =
(b2 − λ)e2

λ
=

f 2 − 1
e2 − f 2 e2 > 0, (4)

J =
√

e2 − f 2

ce
√

e2 − 1
, λ = c2(e2 − f 2),

where f is the eccentricity of Eλ. Moreover, we compute the parameters k, ϕ, g for the
elliptic integral.

k =

√
e2 + d

e2(1 + d)
= 1/ f , g =

2√
e2(1 + d)

=
2
√

e2 − f 2

f e
√

e2 − 1
.

The angle ϕ is computed by the formula:

sin2 ϕ =
(d + 1)(sin2 ψ)

sin2 ψ + d
=

(d + 1) tan2 ψ

(d + 1) tan2 ψ + d
, (5)

where d is given in (4). Next we see that the coefficient

g
2Jc2 =

1
c f

.

Thus, finally we have

μ([0, ψ]) =
1
c f

F
(

ϕ,
1
f

)
, U =

4
c f

F
(

π

2
,

1
f

)
,

where U is the measure of the whole curve.

5. Mather β-Function

Now we are in position to find Mather β-function for ellipse stated in Theorem 1 and
Corollary 1. We shall use the invariant measure and non-standard generating function S.
Consider the invariant curve of the rotation number ρ = m

n corresponding to the rational
caustic Eλ and to the value J of Joachimsthal integral. We shall give a proof of the formula
for rational rotation number ρ, but it is easy to see that it remains valid for irrational ρ.

Proof of Theorem 1. Let ρ = m/n and (pi, ϕi), i = 1, . . . , n denote the coordinates of the
edges li of a Poncelet polygon. Set

ψi =
ϕi−1 + ϕi

2
, δi =

ϕi − ϕi−1

2
.
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The perimeter of the Poncelet polygon can be computed by means of the generating
function S given in Proposition 1 as follows (see [14]):

β
(m

n

)
=

1
n

n

∑
i=1

S(ϕi−1, ϕi) =
2
n

n

∑
i=1

h(ψi) sin δi, (6)

Next we integrate both sides of (6) with respect to the measure dμ and using the
invariance of the measure we get:

β
(m

n

)
U = 2

∫
h(ψ) sin δ(ψ)dμ,

where U is the measure of the whole curve. Thus, we have using the explicit expression of
the measure (3):

β(ρ) =
2
U

∫ 2π

0

Jh sin δ

sin δ cos δ
dψ =

2J
U

∫ 2π

0

h√
1 − J2h2

dψ.

Substitute the explicit formula for h we obtain:

β(ρ) =
8J
U

∫ π/2

0

√
a2 cos2 ψ + b2 sin2 ψ√

1 − J2(a2 cos2 ψ + b2 sin2 ψ)
dψ =

8J
U

∫ π/2

0

√
a2 − c2 sin2 ψ√

1 − J2a2 + J2c2 sin2 ψ
dψ =

8Jc
UJc

∫ π/2

0

√
e2 − sin2 ψ√
d + sin2 ψ

dψ =
8
U

∫ π/2

0

√
e2 − sin2 ψ√
d + sin2 ψ

d sin2 ψ

2 sin ψ cos ψ
=

4
U

∫ 1

0

√
e2 − x√

d + x
√

x(1 − x)
dx =

4e2g
U

(
k2

α2 F(π/2, k)−
(

k2

α2 − 1
)

Π(π/2, α2, k)
)

.

where we used the values α2 = 1
1+d , k = 1

f and g, ϕ as above. This reduction to the
complete elliptic integral of the third kind is given in [6] (p.112 integral 254.13 then 339.01).
Next we use [6] (integral 414.01) for the complete integral Π(π/2, α2, k) =: Π(α2, k) and
finally obtain:

β(ρ) =
4e2g

U

(
k2

α2 K(k)−
(

k2 − α2

α2

)(
K(k) +

α[K(k)E(φ, k)− E(k)F(φ, k)]√
(1 − α2)(k2 − α2)

))
,

where φ = arcsin(α/k). Simplifying we get:

β(ρ) =
4e2g

U

(
K(k)−

(√
k2 − α2

α
√

1 − α2

)
[K(k)E(φ, k)− E(k)F(φ, k)]

)
.

Substituting the values of parameters

g =
2
√

e2 − f 2

f e
√

e2 − 1
, U =

4
c f

K(k), k = 1/ f , α2 =
e2 − f 2

f 2(e2 − 1)
, k2 − α2 =

f 2 − 1
f 2(e2 − 1)

we get:

β(ρ) =
2ce
√

e2 − f 2

e2 − 1
− 2c f

K(k)
[K(k)E(φ, k)− E(k)F(φ, k)],
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φ = arcsin

√
e2 − f 2

e2 − 1
= arcsin

√
λ

b
.

Proof of the Corollary 1. This follows immediately from Theorem 1 using the following
relations. The first is on the perimeter of the ellipse |Eλ|, and the second for the rotation
number ρ which we shall prove in Theorem 2 in Section 7.

|Eλ| = 4
∫ π/2

0

√
(a2 − λ)− c2 sin2 t dt = 4

√
a2 − λ E(k), k = 1/ f , c f =

√
a2 − λ,

where f is the eccentricity of Eλ as above.

ρ =
F(φ, k)
2K(k)

.

6. Mather β-Function and the Lazutkin Parameter

Let me remind the notion of the Lazutkin parameter. Given a convex caustic C of
convex billiard curve γ (not necessarily ellipse), one has a conservation law stating that for
any point P ∈ γ the Lazutkin parameter

L := |PX|+ |PY| − |
�

XY|

does not depend on the point P (see [23]). Here X, Y ∈ C are the tangency points of tangent
lines to C from P and overarc denotes the arc between the indicated points.

Suppose Pi, i = 1, . . . , n are the vertices of billiard n-periodic trajectory P making m
turns. For any vertex Pi we write the Lazutkin parameter:

L = |PiXi|+ |PiYi| − |
�

XiYi|, i = 1, . . . , n.

Summing these identities we get

nL = |P| − m|C|.

Dividing by n, we obtain the general formula (see [19]), valid for any billiard with convex
caustic C:

β(ρ) = L + ρ|C|,
where L is Lazutkin parameter, ρ = m

n is the rotation number and | · | is the perimeter.
Comparing the last formula with one of Corollary 1 we get the following:

Corollary 2. For the Lazutkin parameter L of the caustic Eλ of the elliptic billiard E we have the
following formula:

L(Eλ) =
2a

√
λ

b
− 2
√

a2 − λ E(φ, k).

7. Rotation Number ρ

In this section, we give another derivation of the formula for the rotation number ρ
corresponding to caustic Eλ [1,9].

Theorem 5. For the invariant curve corresponding to caustic Eλ having eccentricity f the rotation
number is:

ρ =
F(φ, k)
2K(k)

, k =
1
f

, φ = arcsin

√
e2 − f 2

e2 − 1
= arcsin

√
λ

b
,
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where K(k) = F(π/2, k) is the complete elliptic integral.

Example 3. We see from this Theorem that for λ → 0 the φ → 0 and hence ρ → 0. On the other
hand if λ → b that is f → 1 we have φ → π/2 and hence ρ → 1/2.

Remark 1. This formula is given in [1,9]. A beautiful method to get formula for rotation number
is given in [24]. Unfortunately there is a computational mistake for the integrals at the end of page
298. Another formula for the rotation number is given without proof in [13]. However, in that
formula f → 1 does not imply to ρ → 1/2.

Proof of Theorem 5. We shall use the formula for rotation number:

ρ = μ[ψ, T(ψ)]/U,

where ψ is a point on the curve and T(ψ) its image. This is independent on the choice of ψ
since measure μ is invariant. Here and below we use ψ as a coordinate on the invariant
curve related to the angle ϕ by the formula ϕ = ψ + δ(ψ) as before. Now we shall choose
ψ in this formula in such a way that the segment [ψ, T(ψ)] is vertical and tangent to Eλ

(see Figure 7):
ψ = −θ and T(ψ) = θ.

T (−θ) = θ

ψ = −θ

N

θ

E

Eλ

Figure 7. For computation of ρ.

We can easily compute θ using the normal vector N =
(

x
a2 , y

b2

)
, where by the definition

of θ, we have

x =
√

a2 − λ, y =

√
λb
a

.

Hence we get:

tan θ =
a2

b2

√
λb

a
√

a2 − λ
=

a
b

√
λ√

a2 − λ
=

e
√

e2 − f 2

f
√

e2 − 1
. (7)

It then follows from Theorem 4 that

μ[−θ, θ] = 2μ[0, θ] =
2
c f

F
(

φ,
1
f

)
,

where

sin2 φ =
(d + 1) tan2 θ

(d + 1) tan2 θ + d
.

Substituting d, d + 1 from (1) and tan θ from (7) we obtain:

sin φ =

√
e2 − f 2

e2 − 1
=

√
λ

b
.
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Thus, we have for the rotation number:

ρ =
2
U

μ[0, θ] =
2

c f U
F
(

φ,
1
f

)
=

1

2F
(

π
2 , 1

f

) F
(

φ,
1
f

)
,

φ = arcsin

√
e2 − f 2

e2 − 1
= arcsin

√
λ

b
.

Remark 2. Analogously to the proof of Theorem 1 the following relation can be derived:

ρ =
4

πU

∫ π/2

0

arcsin (J
√

a2 cos2 ψ + b2 sin2 ψ) dψ√
a2 cos2 ψ + b2 sin2 ψ

√
1 − J2(a2 cos2 ψ + b2 sin2 ψ)

. (8)

Indeed, by the the following formula holds for (m, n)-periodic:

2πm =
n

∑
i=1

2δi,

because 2δi is the angle between the edges li−1 and the li. Integrating this with respect to the
invariant measure dμ we get:

2πm U = 2n
∫

δdμ.

Thus, we have

ρ =
1

πU

∫
δdμ =

1
πU

∫ 2π

0

Jδ

sin δ cos δ
dψ.

The last integral gives formula (8). Notice, that unlike Theorem (5), integral (8), cannot be reduced
to elliptic integrals.

8. Mather β-Function and Rigidity

We start this section with the proof of Theorem 2.

Proof. The first step is based on a combination of several powerful results. By a Theorem
of John Mather [25] the function β is differentiable at a rational point ρ if and only if there
is an invariant curve consisting of periodic orbits with rotation number ρ. Moreover, all
the orbits lying on these invariant curves are action minimizing. It then follows from
Aubry-Mather theory and theorem of Mather on differentiability of β-function that there
exist invariant curves of all rotation numbers ρ ∈ (0, 1

4 ], and these curves foliate the domain
between the curve for ρ = 1/4 and the boundary of the phase cylinder A (see [19] for the
argument in the case of circular billiard).

Therefore, billiard in Ω2 meets the assumptions of [18] and hence must be an ellipse.
The last step is to show that this ellipse is an isometric copy of Ω1. Indeed let ai > bi,

i = 1, 2 are semi-axes of the two ellipses. First, take the value of the rotation number 1
4 and

use the equality of the β-functions at the value 1/4. This yields

a2
1 + b2

1 = a2
2 + b2

2. (9)

Second, mention that by the definition β(0) = 0 holds true for any domain. However,
the derivative β′(0) gives the circumference of the domain. Therefore, by the assumption
of Theorem 2, we have β′

1(0) = β′
2(0) and hence |Ω1| = |Ω2|, where |Ω| is the circum-

ference of Ω. Next we use classical formula for |Ω| of arbitrary convex domain via the
support function:

|Ω| =
∫ 2π

0
h(ψ)dψ.
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Therefore for the ellipses Ω1,2 we write

|Ωi| = 4
∫ π/2

0

√
a2

i + b2
i

2
+

a2
i − b2

i
2

cos 2ψ dψ =

2
√

2
∫ π

0

√
(a2

i + b2
i ) + (a2

i − b2
i ) cos t dt = 2

√
2
∫ π

0

√
A + c2

i cos t dt,

where we introduced A := a2
1 + b2

1 = a2
2 + b2

2. Consider now the last integral as a function
of the parameter C := c2 = a2 − b2, while A is fixed.

f (C) := 2
√

2
∫ π

0

√
A + C cos t dt

Differentiating f with respect to C we obtain:

f ′ =
√

2
∫ π

0

cos t√
A + C cos t

dt =
√

2
∫ π/2

0

[
cos t√

A + C cos t
− cos t√

A − C cos t

]
dt.

It is easy to see that the for t ∈ (0, π/2) the integrand is negative, hence f is strictly
monotone decreasing in C. Therefore, the equality |Ω1| = |Ω2| is possible only when
C1 = C2. This together with (9) implies that the ellipses are isometric.

The second part of the given proof leads naturally to the following.
Question. How many values of β-function determine the ellipse in the class of ellipses.

More precisely we ask if ellipse is determined by any two values of β-function β(ρ1), β(ρ2)
for the rotation numbers ρ1,2 ∈ (0, 1

2 ].
In order to prove this one needs more analysis of the formula of minimal action of

Theorem 1. Notice that in [22] the reconstruction of ellipse is given by means of infinitesimal
data of the β-function near 0.

A partial result in the direction of this question is the following

Theorem 6. Ellipse can be determined by two values of β(ρ1), β(ρ2) where ρ1 = 1
2 and ρ2 = m

n is
any rational in (0, 1

2 ).

Proof. Notice first that β( 1
2 ) = 2a is the diameter of ellipse. We argue by contradiction.

Suppose Ω1, Ω2 are two ellipses with the same diameter 2a, satisfying β1(
m
n ) = β2(

m
n ),

but b1 < b2, see Figure 8. In this case we can introduce a linear map A which is the
expansion map along the y-axes transforming Ω1 to Ω2. Notice that A increases perimeter
of any polygon.

Ω1

Ω2

Figure 8. Ellipses with the same diameter.

Denote by P1, P2 two Poncelet polygons of the rotation number m
n for Ω1 and Ω2,

respectively. Obviously, the polygons A(P1) and P2 have the same rotation number. The
condition β1(

m
n ) = β2(

m
n ) implies that the perimeters of P1,2 are equal:

|P1| = |P2|.
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Hence we have the inequality
|A(P1)| > |P2|,

since A is expanding. However, this contradicts the fact P2 is a Poncelet polygon is a length
maximizer in its homotopy class.

Remark. It is plausible that the result of Theorem 6 remains valid when the rotation
number ρ2 is irrational.

9. Discussion

Let me pose here most natural problems related the results of this paper:

1. Is it possible to relax symmetry assumption in the main Theorem 1? Our method of
proof of Theorem 1 relies on the approach related to the so-called E.Hopf type rigidity
phenomenon from [18]. This method is very robust and it is not clear at the moment
how it can be generalized.

2. Another problem is to adopt our approach to a smaller neighborhood of the boundary
of the phase cylinder.

3. All known approaches to rigidity in billiards, are based on the properties of orbits
near the boundary. We believe there are rigidity results based on the behavior far
from the boundary.

4. It would be interesting to prove that ellipse is determined by any two values of Mather
β function β(ρ1), β(ρ2) where ρ1, ρ2 are any two rotation numbers in (0, 1

2 ).
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Abstract: In a previous work published by the authors in 2020, a novel concept of light confinement
in a microcavity was introduced which is based on successive perfect transmissions at Brewster’s
angle. Hence, a new class of open billiards was designed with star-shaped microcavities where rays
propagate on orbits that leave and re-enter the cavity. In this article, we investigate the ray–wave cor-
respondence in microstar cavities. An unintuitive difference between clockwise and counterclockwise
propagation is revealed which is traced back to nonlinear resonance chains in phase space.

Keywords: microcavities; quantum chaos; ray–wave correspondence

1. Introduction

Optical microcavities are fascinating systems to confine light on a very small scale [1,2].
Traditional whispering-gallery cavities rely on successive total internal reflections at the
cavity’s dielectric interface which prevent a ray from leaving the cavity. Correspond-
ingly, long-lived whispering-gallery modes exist as solutions of Maxwell’s equations.
Such whispering-gallery cavities appear, e.g., as microdisks [3–6], microtoroid [7–9], mi-
crospheres [10], or microjet cavities [11]. They have attracted an immense amount of
research interest, e.g., for quantum chaos [12–15] or exceptional points in non-Hermitian
systems [16–20] and, additionally, offer a lot of applications, e.g., the generation of optical
frequency combs [21], as microlasers with directional emission [22–25], optical sensors for
nanoparticles [26–28] or rotating motion [29], or orbital angular momentum lasers [30].

In a former article [31], an alternative concept for light confinement was introduced
which is completely different from the traditional whispering-gallery design. The perfect
transmissions at Brewster’s angle are utilized such that a ray can leave (and reenter) the
cavity without partial back reflection. Thus, via successive transmissions through the
dielectric interface of the cavity, rays are guided along a periodic orbit without loss of
intensity. This idea can be implemented in a star-shaped cavity as shown in Figure 1a or in
Brewster-notched cavities [32].

In this article, we further investigate the ray–wave correspondence in the microstar
cavity. In particular we look at (asymmetric) deformed microstar cavities where the
formation of the modes is governed by the regular dynamics around an elliptical fixed
point in phase space. In the semiclassical regime, we observe modes localizing along the
regular structures in phase space, while this localization might be expected from quantum-
chaos theory ,we can also identify an unexpected difference between clockwise (CW) and
counterclockwise (CCW) propagation in the star cavity. In the previous literature, a general
imbalance of CW and CCW propagation due to asymmetric backscattering was discussed
for microcavities [19,33–35]. However, in this article, we study the difference pattern
between CW and CCW propagation that is due to a nonuniform loss across a resonance
chain. Therefore, the revealed mechanism is a general feature of open systems and not
restricted to asymmetric boundary deformations. In addition, a Frobenius–Perron operator
(FPO) formalism is used as a connection between ray dynamics and optical modes.

The paper is organized as follows. In Section 2, the ray dynamics of the microstar
cavity are issued with a special focus on the dynamics of CW and CCW propagation in
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135



Entropy 2022, 24, 1614

phase space. The corresponding impacts on the wave dynamics are discussed in Section 3.
A conclusion is given in Section 4.

2. Ray Dynamics and Phase-Space Description for Microstar Cavities

A microstar is a quasi-two-dimensional cavity with homogeneous refractive index
n [31]. It is characterized by the number of spikes ν. In order to guide a ray via successive
transmissions at Brewster’s angle χB = arctan(1/n) along a closed orbit, both the refractive
index and the opening angle α of the spikes need to be adjusted as

n =
1 + sin(π/ν)

cos(π/ν)
(1)

α =
ν − 2

2ν
π. (2)

In the following, a microstar with ν = 9 spikes is considered with a refractive index
of n ≈ 1.43 and spike opening angle α = 70◦. The microstar with such a polygonal
shape supports a family of periodic orbits propagating without loss of intensity. However,
these periodic orbits are only marginally stable. A slight boundary deformation of the
microstar can be used to stabilize the dynamics around one central orbit as shown in
Figure 1a. In polar coordinates (r, φ), the boundary of the most right deformed spike can
be expressed as

r(φ) =
1

n sin(φ) + cos(φ)
− ε1φ

(
φ − π

ν

)
for φ ∈ [0, π/ν] (3)

r(φ) =
1

n sin(φ) + cos(φ)
+ ε2φ

(
φ + π

ν

)
for φ ∈ [−π/ν, 0] (4)

with ε1 (ε2) being the deformation parameter of the upper (lower) segment of the spike.
Thus, the boundary of the deformed microstar is given by periodic continuation. Choosing
ε1 �= ε2 allows for an asymmetric boundary deformation without a mirror reflection
symmetry of the cavity.

The ray dynamics in the microstar are conveniently expressed in a Poincaré phase-
space section, in the following phase space for short, which is introduced in Figure 1.
Whenever a ray propagating along the spikes is passing the abscissa, its position x > 0
and the transversal momentum p = sin θ are recorded. For a microstar cavity without
deformed boundary, i.e., ε1 = ε2 = 0, a family of marginally stable orbits exists at p = 0,
whereas in the deformed case, an elliptical fixed point with a region of regular dynamics
can be achieved. For a boundary deformation with a mirror-reflection symmetry (ε1 = ε2),
the fixed point is either at p = 0 or occurs pairwise at ±|p|. Contrary, for an asymmetric
deformation (ε1 �= ε2), a single elliptical fixed point can occur at a finite nonzero momentum,
as in Figure 1c with (ε1, ε2) = (0.76, 1.2). For this deformation, a 5:1 resonance chain exists
in the regular region, which is of further interest below. In comparison, the deformation
parameters (ε1, ε2) = (0.78, 1.212) lead to an island of regular dynamics with a similar
shape but without a (macroscopic) resonance chain, see Figure 1d.

Note that the phase space represents CCW propagating rays. The corresponding rays
propagating in CW direction are given by time reversal of the (geometrical) dynamics.
For the phase-space variable p describing the momentum along the x-axis, this relates to
a change in the sign, cf. Figure 1b. A mirror reflection, however, would not change the
sign of p. Therefore, even in a cavity with a mirror-reflection symmetry, CW and CCW
dynamics can have differences, namely in the direction along the symmetry line.
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Figure 1. In (a), a microstar cavity with ν = 9 asymmetric spikes is shown as a black curve. The simple
periodic orbit is shown by the green curve. In (b), a magnification of one spike is shown. Propagation
in CCW (CW) direction is illustrated by red (blue) arrows. Figure (c) shows a phase-space portrait
of the microstar with deformation parameters (ε1, ε2) = (0.76, 1.2), as in (a,b). The simple periodic
orbit is shown as a green dot. A period-5 orbit is shown as magenta dots. (d) Phase-space portrait for
deformation parameters (ε1, ε2) = (0.78, 1.212).

In the following, we analyze the difference between CW and CCW propagation.
Therefore, initial conditions (x0, p0) on a uniform grid in phase space with unit intensity
I0 = 1 are iterated Nturns turns in CW and in CCW direction. The remaining fractions of
the intensity ICCW in CCW direction are shown in Figure 2a–d for Nturns = 1, 15, 50, 100,
respectively. As can be seen, the loss introduced by partial back-reflections from Fresnel
formulas is not uniform in the regular region, while the central fixed point suffers almost
no loss due to Brewster-angle transmissions, the border of the regular region has more loss,
which results in a loss gradient over the resonance chain. A consequence is a distortion
of the intensity pattern, which can be seen in Figure 2b,c. This distortion is different for
both propagation directions, resulting in a remarkable difference ICCW − ICW around the
resonance chain; see Figure 2e–h. Note that the effect becomes considerably weaker for
long times where the only remaining intensity is centered around the central fixed point.
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Figure 2. The intensity distribution (x0, p0, ICCW) of rays with initial conditions (x0, p0, I0 = 1) after
1, 15, 50, 100 turns in CCW direction is shown in (a–d). Correspondingly, (e–h) show the distribution
(x0, p0, ICCW − ICW) of the difference between propagation in CCW and CW direction. Note the
adjusted scale in the colormap for (e–h).
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Intuitively, the difference between both propagation directions can be understood by
analyzing the dynamics around the resonance chain, as shown in Figure 3. Focusing on
one unstable orbit of the resonance chain (see red dot in Figure 3), the dynamics on the left
side push the orbits closer to the center of the regular region, whereas on the right side, the
orbits are pushed away from the regular region’s center. Hence, orbits on the left side of
the unstable orbit will suffer less loss then orbits on the right side in the next iterations.
This behavior is inverted when the dynamics are reversed from CCW to CW, which leads
to the characteristic pattern of the intensity difference in Figure 2f–h.

0.75 0.89
−0.06

0.00

0.07

x/R

p

0 50 25

Figure 3. Magnification of the phase-space portrait from Figure 1c around the 5:1 resonance chain.
Iterations for selected (nonperiodic) orbits are shown as dots colored from black to orange. The un-
stable period-5 orbit is represented by dots with a cyclic colormap. The arrows illustrate the dy-
namics around one of the unstable fixed points. The deformation parameters of the microstar are
(ε1, ε2) = (0.76, 1.2).

For comparison, in Figure 4, the system without (macroscopic) resonance chain is
investigated. Note that here the difference between intensities ICCW and ICW is much
weaker and not structured in phase space.
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Figure 4. Similar as in Figure 2, (a–d) show the intensity distributions (x0, p0, ICCW) and (e–h) show
the distributions (x0, p0, ICCW − ICW), but for deformation parameters (ε1, ε2) = (0.78, 1.212), where no
macroscopic resonance chain occurs in the phase space. Note the adjusted scale in the colormap for (e–h).

Frobenius–Perron Operator

The Frobenius–Perron operator (FPO) describes the evolution of density (intensity)
distributions in phase space [36]. It has been used for, e.g., maps [37–41], billiard sys-
tems [37], and the asymmetric backscattering in deformed microcavities [42]. Here, the aim
is to construct classical intensity eigenstates for CCW and CW propagation in the de-
formed microstar via the FPO. For this purpose, Ulam’s method [43] is used to construct
a matrix approximation F of the FPO as follows. The part of the phase space between
x ∈ [r(φ/ν), r(0)] and p ∈ [−0.2, 0.2] covering the regular island is divided into a lattice of
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N × N uniform rectangular cells. In the cell i, random initial conditions with total intensity
Ii are iterated once in (C)CW direction. The transferred intensity I f to the phase-space cell f

is then recorded. Thus, the two N2 × N2 matrices with the elements F (C)CW
f i = I f /Ii are an

approximation for the intensity transport in CW and CCW direction, respectively. As such,
the eigenvalues are inside the unit circle, as shown in Figure 5a,b. Of special interest are the
eigenstates of the FPO with the eigenvalue of largest magnitude, as they represent states
with a long lifetime. For the system with a resonance chain, these long-lived eigenstates for
(C)CW propagation are shown in Figure 5c–k, in addition to their differences. As it can
be seen, the localization of the eigenstates around the central fixed point depends on the
fineness of the discretization given by N. This is consistent with the previous literature on
FPO eigenstates of maps with a mixed phase space [39,44]. For an infinite discretization,
the intensity is localized on the stable periodic orbit, which is a single point in phase space.
However, for a more rough discretization, i.e., N � 200, the eigenstates extend over the
resonance chain leading to a local intensity distortion, which is different for CW and CCW
eigenstates. Consequently, the difference between CW and CCW eigenstates is significant
around the resonance chain and consistent with the ray dynamics shown in Figure 2f,g.
In particular, the pattern with alternating preference of CW or CCW propagation along the
stable and unstable points of the resonance chain is visible.
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Figure 5. (a) The 10,000 largest-magnitude eigenvalues λ of the FPO with N = 200 are shown in the
complex plane. Orange squares (blue crosses) represent the eigenvalues of the CCW (CW) FPO. Note
that they are often on top of each other. (b) Shows a magnification of (a) around unity. (c–e) show the
eigenstates corresponding to the eigenvalue of the largest modulus for CCW direction, CW direction,
and the difference between both eigenstates for N = 100. The same sequence is shown in (f–h) for
N = 200 and in (i–k) for N = 400.
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Note that the shown difference pattern between CW and CCW propagation is not due
to an asymmetry of the cavity’s boundary. In fact, for deformation parameters ε1 = ε2 =
0.98, the microstar has a mirror-reflection symmetry, a similar 5:1 resonance chain in the
phase space, and a similar alternating pattern of the eigenstate difference (not shown).

In Figure 6, the eigenstates corresponding to the second, third, and fourth eigenvalues
next to unity are shown. As such an eigenstate has positive and negative parts, it does
not represent a proper intensity distribution by itself. However, for the dynamics of an
arbitrary (positive) phase-space intensity on intermediate timescales, these eigenstates still
provide useful information. Especially, for the second (Figure 6a,b) and fourth (Figure 6e,f)
eigenstates, the chirality around the resonance chain as well as the difference between CW
and CCW propagation can be seen clearly.
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(e) CCW 4

0.7 1.0x/R

(f) CW 4

Figure 6. Eigenstates of the FPO (N = 200) with (a,b) second, (c,d) third, and (e,f) fourth eigenvalues
next to unity. The left (right) panel shows the eigenstates for CCW (CW) propagation.

For a comparison, the eigenvalues and eigenstates of the FPO for the system without
a resonance chain are shown in Figure 7. The eigenstates also localize at the center of
the regular region, but they do not show a significant chiral behavior, i.e., the intensity
distribution along the regular orbits is uniform.
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Figure 7. (a) Eigenvalues close to unity of the FPO (N = 200) for the system without a resonance
chain characterized by (ε1, ε2) = (0.78, 1.212) (cf. Figure 4). (b) Eigenstate of the FPO for the
CCW dynamics with largest-modulus eigenvalue. (c) Difference between CCW and CW eigenstate.
(d–f) Next eigenstates of the FPO in CCW direction with eigenvalues close to unity.

Note that in contrast to ref. [42], here, the true-time mapping is not included in the
FPO. However, this incorporation of different time scales for the iteration is not relevant
here, as the rays propagating through the spikes of the microstar have almost the same
optical path length regardless of whether they propagate with a large or small radius.

3. Wave Dynamics

In this section, the wave dynamics of the microstar are analyzed with a focus on the
semiclassical regime and the difference between CW and CCW propagation. For quasi-two-
dimensional microcavities, Maxwell’s equations reduce to the scalar mode Equation [45][

Δ + n2k2
]
ψ = 0 (5)

where k = ω/c is the complex frequency which determines the Q-factor (lifetime) of
a mode via Q = −Re k/(2Im k). To utilize Brewster’s angle, here, transverse electrical
polarization is chosen such that the wave function ψ represents the magnetic field as
�H = (0, 0, Re [ψe−iωt]). Hence, along the cavities interface ψ, and its scaled normal deriva-
tive n−2∂�vψ are continuous. In addition, ψ is required to fulfill Sommerfeld’s outgoing
wave condition. For the numerical calculation of the long-lived modes in the microstar,
the boundary element method [46] and FEM software COMSOL [47] are used. In Figure 8,
the long-lived modes in the complex frequency plane in the semiclassical regime with
350 ≤ Re kR ≤ 600 are shown. As in the wave regime discussed in ref. [31], the most
long-lived mode localizes along the stable periodic orbit passing through the spikes of the
microstar; see Figure 9d. However, additional long-lived modes exist in the semiclassical
regime that also pass through the spikes but have more intensity maxima in radial direc-
tion; see Figure 9a–c. Thus, a classification of these modes with a radial mode number l
is suitable.
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Figure 8. Dimensionless frequencies kR of the long-lived modes in the microstar cavity that can be
classified by their mode number in radial direction by (blue) l = 1, (red) l = 2, (green) l = 3, (black)
l = 4, (yellow) l = 5, and (cyan) l = 6. The gray line indicates the frequency of the modes shown in
Figure 9.
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Figure 9. (a–d) shows the intensity pattern of the modes with radial mode number l = 4 to l = 1 and
Re kR ≈ 404 (see gray line in Figure 8). (e–h) represents the Husimi projection of the correspond-
ing mode.
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To compare the wave and ray dynamics in phase space, the Husimi function
H(x, p; ψ, ∂νψ) of a mode ψ is used. Here, we adapt the boundary Husimi function [48] to
the phase space taken along the x-axis (see Figure 1). Thus, for x ∈ [0.5R, 1.1R], the Husimi
function (for CCW propagation) is constructed via

H(x, p; ψ, ∂νψ) =
1
N

∣∣∣∣kFhψ(x, p) +
i
F

h∂νψ(x, p)
∣∣∣∣2 (6)

where F =
√

n
√

1 − p2 and σ =
√

R/(nk). The functions hψ and h∂νψ are defined via an
overlap with a Gaussian wave packet with

h f (x, p) =
∫ xmax

xmin

ζ(t; x, p) f (t) dt (7)

ζ(t; x, p) = exp
(
(x − t)2

2σ2 − ipt
)

. (8)

The normalization constant N in Equation (6) is chosen such that maxx,p H = 1. Note
that for the magnetic field, the normal derivative along the x-axis can be computed via
∂νψ = ∂yHz = −iωε0εrEx.

In Figure 9e–h, the Husimi functions of the corresponding modes are shown in the
right panel. As an expected result, the Husimi function of the most long-lived mode
localizes in the center of the regular island, see Figure 9h, with a maximum at the finite
momentum p ≈ 0.01, which nicely reflects the stable periodic orbit. Furthermore, as an
expected result, the modes with higher radial mode numbers l have their Husimi functions
localized on outer tori of the regular island. Hence, these states can be seen as higher-order
quantized states on the regular region. However, in this regime of Re kR ≈ 404, the modes
cannot localize on the smaller sub-islands of the resonance chain itself. Consequently,
the Husimi functions of the related modes interpolate through the resonance chain.

To verify the different intensity distortion for CCW and CW propagation, a few
individual modes with a larger dimensionless frequency Re kR > 1200 are calculated.
Then, for a mode, the Husimi function for CCW propagation H(x, p; ψ, ∂νψ) and the
corresponding Husimi function for CW propagation H(x,−p; ψ, −∂νψ) are calculated to
obtain the difference.

I(x, p; ψ) = H(x, p; ψ, ∂νψ)−H(x, −p; ψ, −∂νψ). (9)

Note that in Equation (9), each Husimi function is normalized as discussed above. Hence,
a preferred sense of rotation in the mode ψ does not impact the difference I(x, p; ψ).
In Figure 10a–i, the Husimi function and the difference I(x, p; ψ) are shown for the long-
lived modes in the microstar with a resonance chain. It is remarkable that over the range
of kR ≈ 1200, kR ≈ 1280 and kR ≈ 1360, each mode and its partner mode with a quasi-
degenerate frequency show almost the same pattern in I(x, p; ψ). This pattern is organized
around the stable and unstable fixed point of the resonance chain and in a very good
agreement with the pattern of the FPO eigenstates, e.g., in Figure 5e.

To highlight the importance of the resonance chain for this phenomenon, a mode pair
in the microstar without macroscopic resonance chain is shown in Figure 10j–l. Already
within the mode pair, the pattern I(x, p; ψ) is different and not organized around an
obvious phase-space structure.

A simplified model system that explains the effect in an open wave (quantum) system
is discussed in the Appendix A.
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Figure 10. (a) Husimi function for CCW propagation, (b) difference I(x, p; ψ) between Husimi
functions for CCW and CW propagation, see Equation (9). (c) Same as (b) but for a partner mode
with almost the same frequency kR as in (b). The panels (d–i) follow the same sequence as (a,b)
but for modes with different frequency kR in the same system given by deformation parameters
(ε1, ε2) = (0.76, 1.2). Modes for the microstar given by (ε1, ε2) = (0.78, 1.212) are shown in (j–l).

4. Conclusions

In this article, we discussed the ray–wave correspondence in microstar cavities.
From the ray dynamics, a (asymmetric) boundary deformation is used to manipulate
the light around a periodic orbit with a regular island in phase space. Correspondingly,
in the semiclassical regime, optical modes localize hierarchically on the regular island.
Depending on the deformation of the microstar resonance, chains might appear in the
regular island. Since the intensity loss is not uniform in the regular region, those resonance
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chains have an unusual effect on the dynamics. The propagation in CW and CCW direction
shows an intensity distortion with a pattern that organizes along the resonance chain. This
distortion is explained by the ray dynamics, and therefore manifests in the eigenstates of
the FPO. Furthermore, the difference between CW and CCW propagation is revealed in the
Husimi functions of the optical modes in the semiclassical regime.

Such an interplay between nonuniform loss and nonlinear dynamics is a rather general
effect, as it can also be observed in a simple quantum model system. Hence, the effect
is not restricted to microstar cavities. However, microstar cavities are ideal systems to
study such dynamics, as a nontrivial connection between forward and backward dynamics
in time manifests naturally in terms of CW and CCW propagation. Therefore, we be-
lieve our studies highlight microstar cavities as an interesting class of systems to unveil
novel phenomena.
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Appendix A. Difference in Forward and Backward Dynamics in a Generalized

Pendulum Model

In this appendix, a simple model system is constructed to illustrate the interplay
between a resonance chain and a loss gradient to cause a difference between two directions
of dynamical propagation. In the microstar cavity, such two directions are given naturally
by CW and CCW propagation. In the simplified one-dimensional model, the two directions
are given by forward and backward propagation in time under Hamiltonian dynamics.
The Hamiltonian is given by a generalized pendulum or normal form ansatz for a r:s
resonance chain as [49–51]

Hr:s(θ, I) = H0(I) + 2Vr:s

(
I

Ir:s

) r
2

cos(rθ). (A1)

Here, I ≥ 0 and θ ∈ [0, 2π] are action-angle variables of the unperturbed part
H0(I) = (I − Ir:s)2/(2Mr:s). The parameters are fixed to (Ir:s, Mr:s, Vr:s) = (0.8, 1, 0.005)
and r = 3. Using a canonical transformation

M : (θ, I) �→ (Q, P) = (
√

2I cos θ, −
√

2I sin θ), (A2)

the Hamiltonian given in the coordinates (θ, I) can be related to a regular island in the
phase space (Q, P) with an elliptical fixed point at the origin and a resonance chain around
it; see Figure A1a,b.

Next, the Hamiltonian (A1) is quantized. Since the angle coordinate θ is 2π-periodic,
the action eigenstates |In〉 are a discrete basis of the Hilbert space with In = h̄(n + 1/2).
Thus, the Hamiltonian (A1) has the matrix elements [52,53]

〈Im|Hr:s|In〉 =
(In − Ir:s)2

2Mr:s
δnm + Vr:s

(
h̄

Ir:s

) r
2
(√

n!
(n − r)!

δm,n−r +

√
(n + r)!

n!
δm,n+r

)
(A3)
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and is therefore represented as an infinite matrix. In the numerical simulations, the reduced
Planck’s constant is set to h̄ = 0.3, and a cutoff for the action indices at Nmax = 90 is used.
Hence, the (forward) time evolution operator Ufor over one unit time step is given as a
finite matrix

Ufor = exp
(
− i

h̄
Hr:s

)
. (A4)

Correspondingly, the operator for the dynamic one unit time step backward in time yields

Uback = exp
(

i
h̄

Hr:s

)
. (A5)

Next, a nonuniform loss is introduced which has a gradient across the resonance chain
and therefore mimics the situation in the microstar cavity. In the basis of action eigenstates,
the loss is described by a reflection operator R with matrix elements

R(In) = exp(−In/Ir:s) (A6)

in the diagonal, cf. Figure A1c. Hence, states with small In suffer less loss than the states
with large In. The dynamics of the open system is therefore described by the sub-unitary
time-evolution operator

U(open)
back, for = RUback, for. (A7)

Note that U(open)
back is not the time-reversed operator of U(open)

for as loss is not turned into
gain. This is consistent with the microstar cavity, where CCW is the time-reversed CW
propagation, but both directions of the dynamics suffer loss from radiation and partial

reflections. The eigenstates Ψ(open)
back, for of U(open)

back, for are calculated numerically. In particular,
we are interested in the eigenstates with eigenvalues of the largest magnitude. Due to the
loss profile, these eigenstates localize near I = 0. Their Husimi function can be calculated as

Hback, for(θ, I) =

∣∣∣∣∣Nmax

∑
n=0

〈α(θ, I)|In〉〈In|Ψ(open)
back, for〉

∣∣∣∣∣
2

(A8)

with α(θ, I) being a minimal uncertainty wave packet at the phase-space point (θ, I)
given by

〈α(θ, I)|In〉 = N (I) exp
(
− (In − I)2

4σ2 +
i
h̄
(In − I)θ

)
. (A9)

Here, σ =
√

h̄/2 is a parameter and N (I) is a normalization factor ensuring
‖α(θ, I)‖2 = ∑Nmax

n=0 |〈α(θ, I)|In〉|2 = 1. The Husimi function for the long-lived eigenstates
corresponding to the forward/backward dynamics are shown in Figure A1d,e. As it can be
seen in the magnifications, the Husimi function’s contour lines are curved sinusoidally with
a phase shift between forward and backward dynamics. Exactly this phase shift leads to the
oscillatory pattern for the difference between both Husimi functions, which is organized
along the stable and unstable fixed point of the resonance chain; see Figure A1f.
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Figure A1. (a,b) Contour lines of the generalized pendulum Hamiltonian in the phase-space (Q, P)
and (θ, I) are shown as black curves. The separatrix of the resonance chain is highlighted via a red
curve. (c) The reflectivity function which defines the loss profile is shown via a thick black curve.
Thin horizontal lines indicate the position of action eigenstates at In. (d,e) The Husimi function for

eigenstates of U(open)
for (U(open)

back ) localizing predominantly at I0 are shown via the red color gradient.
Contour lines of the Husimi function are shown as red curves in the magnification plots. (f) Difference
between the Husimi function for forward and backward propagation.
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Abstract: By numerical simulations and experiments of fully chaotic billiard lasers, we show that
single-mode lasing states are stable, whereas multi-mode lasing states are unstable when the size of
the billiard is much larger than the wavelength and the external pumping power is sufficiently large.
On the other hand, for integrable billiard lasers, it is shown that multi-mode lasing states are stable,
whereas single-mode lasing states are unstable. These phenomena arise from the combination of two
different nonlinear effects of mode-interaction due to the active lasing medium and deformation of
the billiard shape. Investigations of billiard lasers with various shapes revealed that single-mode
lasing is a universal phenomenon for fully chaotic billiard lasers.

Keywords: quantum chaos; billiard lasers; microcavity lasers

1. Introduction

Two-dimensional (2D) billiard lasers have been widely investigated over the past
decades with various billiard shapes [1–39]. From the viewpoint of the property of ray
dynamics which is equivalent to the motion of a point particle on a billiard table, 2D
billiard lasers can be classified into three categories: integrable, partially chaotic, and fully
chaotic billiard lasers [40]. On the basis of this classification of dynamical systems, the uni-
versality of energy level statistics was discovered by Casati et al. for the first time for
a quantum billiard, which is a quantum particle on a billiard table where the motion of
the corresponding classical point particle is fully chaotic [41]. This discovery led to the
Bohigas–Gianonni–Schmidt (BGS) conjecture [42], and made significant contributions to
the establishment of the research field of quantum chaos [43,44].

Although optical billiards can be viewed as a realization of quantum billiards, there is
a noticeable difference between them. The light field inside an optical billiard is confined
by the refractive index difference between inside and outside the optical billiard, and the
corresponding rays obey Fresnel’s law at the billiard boundary. Meanwhile, quantum parti-
cles are completely confined inside the billiard table by the 2D rigid wall potential, and the
corresponding classical point particles obey full reflection at the billiard boundary. As a
result, eigenstates of a quantum billiard are bound states with real eigenenergies, whereas
those of an optical billiard are quasibound states, or resonances, with complex eigenfrequen-
cies because of non-Hermitian boundary conditions [1,2], where their real parts represent
oscillation frequencies and their imaginary parts decay or loss rates of modes. In spite of the
difference mentioned above, low-loss (i.e., well-confined) resonance wave functions in an
optical billiard have properties similar to those of the eigenfunctions of the corresponding

Entropy 2022, 24, 1648. https://doi.org/10.3390/e24111648 https://www.mdpi.com/journal/entropy
153



Entropy 2022, 24, 1648

quantum billiard. Hence, these phenomena which were found for chaotic quantum billiards
have been also observed in chaotic billiard lasers [3,4,7,10–12,17,20,21,26]. In this sense,
chaotic billiard lasers have provided a valuable platform where the phenomena theoretically
predicted in the research field of quantum chaos can be experimentally investigated.

When optical billiards are used as laser cavities (billiard lasers, in short), they exhibit
essentially different properties from those of quantum billiards. That is, the resonance
modes interact with each other through the active lasing medium in billiard lasers, which
causes nonlinear dynamics of the light field [1,6,8,9,14,16]. In the spirit of the quantum chaos
theory pioneered by Casati, it is important to turn our attention to universal properties
of chaotic billiard lasers that resulted from the synergistic effect of the deformation of the
billiard shape and nonlinear dynamics of resonance modes such as mode competition.

As an example of such a universal phenomenon for fully chaotic billiard lasers, it has
been reported for the experiments of semiconductor billiard lasers with high pumping
conditions that only single-mode lasing was observed for fully chaotic billiard lasers with
stadium shapes with various aspect ratios, whereas only multi-mode lasing for integrable
billiard lasers with elliptic shapes of different aspect ratios [28,32]. In addition, by assuming
the similarity of wave functions for fully chaotic billiard lasers, it has been theoretically
shown that single-mode lasing states are stable, whereas multi-mode lasing states are
unstable when the billiard size is much larger than the wavelength and the external
pumping power is sufficiently large [33]. Accordingly, in analogy with the universality
that Casati found for quantum billiards [41], it can be expected that single-mode lasing is a
universal phenomenon for fully chaotic billiard lasers which does not depend on the details
of the billiard lasers. Although lasing characteristics of 2D billiard lasers with various
2D shapes have been intensively studied, universality has not been much pursued so far.
Therefore, it is important to verify this universality by numerically studying fully chaotic
billiard lasers with different shapes in the same way as the BGS conjecture was numerically
examined for various systems [42].

In this paper, we numerically investigate the laser dynamics of three different shapes
of fully chaotic billiard lasers; cardioid, D-shaped, and stadium billiard lasers shown in
Figure 1, whose ray-dynamical trajectories have been exactly proven to be fully chaotic [45,46].
These billiards have already been studied in the research fields of quantum chaos and
chaotic billiard lasers [8,9,13,15,17,19,28,30,32,37,41,42]. It is numerically shown that the
single-mode lasing states are stable in all these three billiards in high pumping regimes,
which verifies the universal single-mode lasing in fully chaotic billiard lasers [28,33]. We
explain the detailed transition mechanism from multi to single-mode lasing, revealing the
mode-pulling and the mode-pushing interaction among lasing modes. We also experimen-
tally show that the numbers of lasing modes of the semiconductor cardioid, D-shaped,
and stadium lasers are clearly different from those of semiconductor microdisk lasers,
which also experimentally verifies the universality of single-mode lasing in fully chaotic
billiard lasers.

The subsequent sections of this paper are organized as follows. In Section 2, we review
the theoretical model to describe the dynamics of the light field and the lasing medium in
billiard lasers and show numerical results of the resonances and wave functions for the
cardioid billiard. In Section 3, the single-mode lasing is achieved in the course of time
evolution of a numerically calculated light field in the cardioid billiard laser, whereas
multi-mode lasing in the elliptic billiard laser when the pumping power is much larger
than the lasing threshold. In Section 4, it is shown that the properties of the resonance
wave functions of the cardioid and elliptic billiards are different from each other. We
numerically obtain phase diagrams for the cardioid, D-shaped, and stadium billiard lasers,
which verify the universal single-mode lasing. In Section 5, we provide experimental data
for semiconductor billiard lasers with the cardioid, D-shaped, stadium, and circular shapes,
which also validate the universal single mode lasing for fully chaotic billiard lasers. In
Section 6, we numerically demonstrate that the occasional appearance of a couple of peaks
experimentally observed in the spectra of the semiconductor fully-chaotic billiard lasers
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is attributed to the fluctuation of the temperature. Summary and discussion are given in
Section 7.

Figure 1. Fully chaotic billiards. From left to right: cardioid, D-shaped, and stadium.

2. The Schrödinger–Bloch Model and the Resonances of the Cardioid Billiard Laser

We assume that the billiard laser is wide in the xy-directions and thin in the z-direction.
As a result, the electromagnetic fields are separated into transverse magnetic (TM) and
transverse electric (TE) modes. Here, we focus only on TM modes, whose electric field
vector is expressed as E = (0, 0, Ez). The atoms in the lasing medium are assumed to
have spherical symmetry and two energy levels. The relaxation due to the interaction
with the reservoir can be described phenomenologically with decay constants γ⊥ for the
microscopic polarization ρ and γ‖ for the population inversion W. The effect of the external
energy injected into the lasing medium is introduced phenomenologically and represented
by the pumping power W∞.

The slowly varying envelope approximation reduces the Maxwell equations as follows:

∂Ẽ
∂t

=
i
2

(
∇2

xy +
n2

n2
in

)
Ẽ − αL(x, y)Ẽ +

2πNκh̄
ε

ρ̃, (1)

where Ẽ and ρ̃ are, respectively, the slowly varying envelopes of the z-component of the
electric field and the microscopic polarization, and N is the number density of the atoms,
κ is the coupling strength, ε is the permittivity, and αL represents the losses describing
absorption inside the billiard and it equals to zero outside the billiard. The refractive index
n(x, y) equals to nin when the position (x, y) is inside the billiard and nout outside the
billiard. In the above, space and time are made dimensionless by the scale transforma-
tion ((ninωs/c)x, (ninωs/c)y)→ (x, y), tωs → t, respectively, where ωs is the oscillation
frequency of the fast oscillation part of the electric field.

The optical Bloch equations describing the active gain medium in interaction with the
light field are written as

∂

∂t
ρ̃ = −γ̃⊥ρ̃ − iΔ0ρ̃ + κ̃WẼ, (2)

and
∂

∂t
W = −γ̃‖(W − W∞)− 2κ̃

(
Ẽρ̃∗ + Ẽ∗ρ̃

)
, (3)

where γ̃⊥ ≡ γ⊥/ωs and γ̃‖ ≡ γ‖/ωs respectively represent the dimensionless transversal
and longitudinal relaxation rates, and Δ0 ≡ [ω0 − ωs]/ωs represents the gain center,
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and ω0 is the transition frequency of the two-level atoms, and κ̃ ≡ κ/ωs represents the
dimensionless couple strength. W∞ represents the external pumping power. The set of
Equations (1)–(3) is called the Schrödinger–Bloch (SB) model [1,6,8,9,14]. The SB model
can be numerically solved by the split-operator method (or so-called symplectic-integrator
method). Therefore, it is more convenient for numerical simulations than the Maxwell–
Bloch model.

By assuming the stationary oscillation of the electric and polarization field, respectively,
Ẽ = Ẽse−iΔst, ρ̃ = ρ̃se−iΔst, and the constant population inversion, we obtain the time-
independent SB equation,[

∇2
xy +

(
2Δs +

n2

n2
in

)]
Ẽs = 2iα(Δs)

W∞

1 + η(Δs)|Ẽs|2
Ẽs − 2iαLẼs, (4)

where the complex Lorentzian gain α(Δs) and the strength of the nonlinearity η(Δs) are
defined as follows:

α(Δs) ≡ α0
1

γ̃2
⊥ + (Δs − Δ0)2 (γ̃⊥ + i(Δs − Δ0)), (5)

and

η(Δs) ≡
4κ̃2

γ̃//γ̃⊥

γ̃2
⊥

γ̃2
⊥ + (Δ0 − Δs)2

, (6)

where α0 ≡ 2πNκκ̃h̄/ε. The right-hand side of Equation (4) represents the effect of the
lasing medium and vanishes outside the billiard.

The resonance wave function corresponding to the resonance (i.e., complex eigenfre-
quency) Δj is the solution of Equation (4) with W∞ = 0 and αL = 0. When the pumping
power W∞ is sufficiently increased from zero, the low-loss resonance closest to the gain
center Δ0 changes into a stationary lasing state of the SB model. By linearizing the SB
model equations, the lasing condition for the resonance Δj is obtained from the energy
balance condition that the gain due to the pumping exceeds the losses [14]. Its mathematical
expression is given by

α0
γ̃⊥W∞

γ̃2
⊥ + (Δ0 − Re Δj)2

> − Im Δj + αL, (7)

where the left-hand side represents the gain, and the right-hand side the losses. The
frequency of the lasing mode is given by

Δ′
j =

γ̃⊥ Re Δj + (− Im Δj + αL)Δ0

− Im Δj + αL + γ̃⊥
, (8)

which is generally shifted from the frequency of the resonance Re Δj.
Figure 2 shows the distribution of the resonances of the cardioid optical billiard numer-

ically obtained by the boundary element method [47] and the gain function for the SB model
defined by g(Δ) = α0γ̃⊥/

{
γ̃2
⊥ + (Δ0 − Re Δ)2}. The shape of a cardioid optical billiard is

defined as r = R(1 + cos θ) in the 2D polar coordinates with R = 30 in our numerical sim-
ulations as shown in Figure 1. Due to the symmetry of the cardioid billiard, the resonances
are classified into two different classes of even and odd parities. The refractive index nin
is 3.3 inside the billiard and nout = 1 outside the billiard. The other parameters are set as
follows: Δ0 = 0.04, γ̃⊥ = 0.02, αL = 0.004, κ̃ = 0.5, ε = 3.3, and Nκh̄ = 0.5. From Figure 2,
one can see that there exist a number of resonances with low decay rates (i.e., |ImΔ| < 0.01).
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Figure 2. Gain and resonances in a cardioid billiard. Circles (◦) denote the resonances with odd parity
while crosses (×) those with even parity.

It has been theoretically shown that in a fully chaotic billiard laser, at least one single-
mode lasing state is stable, whereas all multi-mode lasing states are unstable, when the
external pumping power is sufficiently large and the billiard size is much larger than
the wavelength so that γ̃‖  |Δij| holds, where Δij is the difference between adjacent
lasing frequencies [33]. This result provides a theoretical ground for recent experimental
observations of universal single-mode lasing in fully chaotic billiard lasers [28,32]. We
emphasize that the cardioid billiard laser numerically studied in this paper is much larger
than those billiard lasers which have been studied so far. In addition, the gain band is
much wider than those of previous studies. Therefore, the simulation condition shown in
Figure 2 is more appropriate to numerically verify the universal single-mode lasing of fully
chaotic billiard lasers. Figure 3 shows the spatial patterns of the resonance wave functions
corresponding to the resonances labeled in Figure 2. All of these low-loss wave functions are
distributed over the billiard domain and significantly overlap with one another reflecting
fully chaotic ray-dynamical trajectories in the cardioid billiard [31–33,48].

Figure 3. Spatial intensity patterns of eighteen low-loss resonances labeled in Figure 2.

3. Dynamical Simulation of Large Fully Chaotic and Integrable Billiard Lasers

Typical examples of the time evolution of the total light intensity inside the cardioid
billiard laser are shown in Figure 4a,d,g. The longitudinal relaxation rate γ̃‖ is set to 0.01,
which is much larger than the frequency differences of adjacent resonances, i.e., γ̃‖  |Δij|
(see also Figure 2). The lasing threshold Wth is found to be 0.000866. When the pumping

157



Entropy 2022, 24, 1648

power W∞ is 0.001 just above the threshold, the intensity converges to a certain constant
after initial transient behavior as shown in Figure 4a. The power spectrum is obtained by
the Fourier transformation of the time series in the stationary lasing regime in Figure 4a
and has a single peak as shown in Figure 4b, which means that the stationary lasing state
includes only one lasing mode. The spatial intensity pattern of this stationary single-mode
lasing state is shown in Figure 4c. One can see that this intensity pattern is almost the same
as that of the resonance wave function labeled by 8© in Figure 3.

Figure 4. Dynamics of a cardioid billiard laser numerically simulated by the SB model. Time evo-
lution of the total intensity inside the billiard with the pumping power W∞ = (a) 0.001, (d) 0.005,
and (g) 0.010. (b,e,h) The spectrum obtained from the stationary oscillation regime with the corre-
sponding pumping powers. (c,f,i) The intensity patterns of the final lasing states with the correspond-
ing pumping powers.

As the pumping power W∞ is increased, the other resonances become the stationary
lasing modes which interact with one another due to the nonlinear effect of the lasing
medium and the time evolution of the light intensity becomes oscillatory around a certain
constant value as shown in Figure 4d where W∞ = 0.005. In this multi-mode lasing regime,
the spectrum has several peaks as shown in Figure 4e and the final lasing state is not a
stationary state but a limit-cycle or chaotic oscillation. Figure 4f shows a snapshot of the
intensity pattern of the multi-mode lasing state.

When the pumping power W∞ is increased further, the intensities of the lasing modes
increase much more, and hence, they strongly interact with one another, and finally, only
one lasing mode wins the mode competition. The light intensity takes a constant value
and the spectrum has a single peak as shown in Figure 4g,h as in the case of just above
the threshold. However, typically, the stationary lasing state in this high pumping power
regime is not a simple lasing mode corresponding to one resonance as in the case of just
above the threshold but a locked state of a couple of resonances as shown in Figure 4i. One
can see that the spatial pattern of this final stationary lasing state is asymmetric, violating
the symmetry of the cardioid shape due to the spontaneous symmetry breaking caused by
locking of resonance wave functions with different parities [9]. To summarize, the spectral
peak in Figure 4b is attributed to a single resonance, but that in Figure 4h corresponds to a
locked state of resonances.
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The intensity pattern in Figure 4i is almost the same as that in Figure 5 which is
obtained by superposing the resonance wave functions corresponding to the two resonances
denoted by 8© and 9© in Figure 3. Accordingly, one can see that the final lasing state in
the highly pumping regime is composed of two different resonance wave functions whose
frequencies are originally different from each other. The frequency difference of these
two modes vanishes because they are locked due to the mode pulling effect of the lasing
medium. Consequently, the spectrum has a single peak and the light intensity takes a
constant value instead of beating oscillatory behavior with two peaks in the spectrum.
This is a typical transition process from multi-mode to single-mode lasing as the pumping
power is increased in fully chaotic billiard lasers.

Figure 5. The spatial intensity pattern obtained by the superposition of the two resonances denoted
by 8© and 9© in Figure 3, which have even and odd parity, respectively. The superposition of
different-parity wave functions yields an asymmetric intensity pattern (see Ref. [9] for a detailed
explanation).

Next, we show laser dynamics of an elliptic billiard laser. The elliptic billiard shape for
our numerical simulation is defined by x2 + y2/0.72 = R2

0, where R0 = 43.9155, so that this
elliptic billiard has the same area as the cardioid billiard. Hence, the numbers of resonances
are almost the same because of the Weyl formula. The longitudinal relaxation rate γ̃‖ is
set to 0.01, which is much larger than the frequency differences of adjacent resonances,
i.e., γ̃‖  |Δij|, that is, the same condition as that of the SB model simulation for the
cardioid billiard lasers.

The wave functions corresponding to the bouncing ball trajectories have much larger
decay rates than the whispering gallery modes which become stationary lasing states.
Therefore, the resonance wave functions of an elliptic billiard which comprise the stationary
lasing states are regularly localized inside the billiard according to the quantum numbers
in the radial and rotational directions, which systematically determine the high-intensity
positions in the spatial patterns of the resonance wave functions. Consequently, many
lasing modes coexist without interacting with one another by avoiding the overlap of
high-intensity regions of the wave functions, and hence, many peaks are observed in
the spectrum as shown in Figure 6e. For the elliptic billiard laser, single-mode lasing is
only observed just above the threshold Wth = 0.000666. Figures 6a–c show data for such
single-mode lasing at W∞ = 0.001.

When the pumping power is increased further, those resonance wave functions which
do not overlap with the dominant lasing modes become new stationary lasing modes
and the number of the stationary lasing modes increases as shown in Figure 6g–i. Conse-
quently, multi-mode lasing is always observed in the high pumping regime in integrable
billiard lasers.
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Figure 6. Dynamics of an elliptic billiard laser numerically simulated by the SB model. Time evo-
lution of the total intensity inside the billiard with the pumping power W∞ = (a) 0.001, (d) 0.005,
and (g) 0.010. (b,e,h) The spectrum obtained from the stationary oscillation regime with the corre-
sponding pumping powers. (c,f,i) The intensity patterns of the final lasing states with the correspond-
ing pumping powers.

4. Spatial Overlap between Two Modes and Phase Diagram

Long-lived eigenstates in open chaotic mapping systems have been shown to be
localized on the forward trapped set of the corresponding classical dynamics in the short-
wavelength limit [49–53]. This localization is a manifestation of quantum ergodicity in open
quantized classically fully-chaotic systems. Similar phenomena have also been observed
in fully chaotic 2D optical billiards numerically [32], where resonance wave functions of
low-loss modes are localized around the forward trapped set of the corresponding ray-
dynamics with Fresnel’s law in the short wavelength limit as shown in Figure 7 [31,48,54].
In addition, assuming that all of the spatial patterns of the wave functions for low-loss
modes in a fully chaotic billiard lasers are similar to one another, one can analytically prove
the stability of a single-mode lasing state and instability of a multi-mode lasing state [33].
The overlap is an important quantity to measure the wave function similarity. It is defined
by the following cross-correlation of the amplitude distributions between an arbitrary pair
of resonance wave functions,

C =

∫
|φ(r)||ψ(r)|)dr√

(
∫
|φ(r)|2dr)(

∫
|ψ(r)|2dr)

, (9)

where φ and ψ are the resonance wave functions and the integrals are taken over the 2D
billiard [32].
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Figure 7. Numerically computed light intensity distributions inside the stadium optical billiard with
refractive index 3.3 (because of the C2v symmetry of the stadium shape, only a quarter domain is
shown). (a) Conditionally invariant measure obtained by ray simulation incorporating Fresnel’s law
with 25 million initial conditions (See Ref. [48] for a detailed explanation). (b) Average of 30 low-loss
resonance wave functions.

Figure 8 shows the histogram of the overlap C for the cardioid billiard, where most of
the overlap values are found between 0.6 and 0.8. The functional form of the histogram is
found to be universal for fully chaotic billiards [32,48]. For the elliptic billiard, the overlap
C can take a smaller value and is distributed over a wider range. These results indicate that
almost all resonance wave functions of the cardioid billiard lasers are similarly distributed
inside the billiard, whereas the resonance wave functions of the elliptic billiard lasers
exhibit various spatial patterns inside the billiard [31,33,48]. On the basis of quantum-
classical correspondence in the semiclassical regimes, it is expected that the shorter the
wavelength, the more distinct the histograms between fully chaotic and integrable billiards.
This means that the effects caused by the spatial distributional difference of the resonances
between fully chaotic and integrable billiards are expected to be more prominent for larger
billiard lasers.

Figure 8. The histogram of the overlap C for the cardioid billiard (red solid line) and the elliptic billiard
(blue dotted line) calculated by using 30 and 19 low-loss resonance wave functions, respectively.

In addition, as the size of the billiard laser becomes larger, the frequency difference Δij
between adjacent resonances is decreased and becomes much smaller than the longitudinal
relaxation rate γ̃‖. Therefore, large billiards satisfy the condition γ̃‖  |Δij|. In order to
verify the importance of this condition, we change the value of the longitudinal relaxation
rate γ̃‖ with fixing the size and pumping power of the cardioid billiard laser. As we have
already shown in Figure 4g–i, single-mode lasing is observed with γ̃‖= 0.01 and W∞ = 0.01.
Here, we decrease the value of γ̃‖ without changing the remaining parameter values. When
its value is decreased to 0.009, the other two peaks appear in the spectrum as shown in
Figure 9a, where the left and right peaks respectively correspond to the locked state of
the resonances 4© and 5© and the locked state of the resonances 13© and 14© (resonances
are labeled in Figure 3). As the value of γ̃‖ is decreased gradually to 0.007, more and
more peaks appear as shown in Figure 9b,c. All of these peaks can also be assigned to the
resonances in Figure 3 and some of them are the locked states of adjacent different parity
resonance pairs. We confirmed that even with these smaller values of γ̃‖, those peaks in
the spectrum disappear and change into a single peak when the pumping power W∞ is
increased. This way, we obtain the phase diagram of the lasing state in the γ̃‖-W∞ plane
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shown in Figure 10a for the cardioid billiard laser. One can see that only single-mode lasing
is always observed as far as γ̃‖ and W∞ are sufficiently large.

Figure 9. Power spectra obtained from the lasing states for the cardioid billiard laser with the fixed
pumping power W∞ = 9.1Wth and the values of the longitudinal relaxation rate γ̃ = (a) 0.009 (b) 0.008
(c) 0.007.

Figure 10. Phase diagrams of lasing states with various longitudinal relaxation rates γ̃‖ and pumping
powersW∞/Wth for (a) the cardioid billiard laser, (b) the D-shaped billiard laser, and (c) the stadium
billiard laser. The white and black circles correspond to single-mode and multi-mode lasing states,
respectively.

Our simulations of the cardioid billiard laser revealed the existence of two types of
single-mode lasing regimes in the γ̃‖-W∞ plane. One regime appears just above the lasing
threshold, where the lasing mode corresponds to a single resonance with the largest net
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gain. Another regime appears for large W∞ values, where the lasing mode corresponds to
a locked mode of different symmetry-class resonances. We confirmed that these two types
of single-mode lasing regimes were observed in the SB model simulations of the D-shaped
billiard (R = 30 and d = 15) and the stadium billiard (R = 30), as shown in Figure 10b,c.
Figure 10 is our main result of this paper, showing that single-mode lasing of a locked
mode is commonly observed for the three different fully chaotic billiard lasers when the
pumping power is sufficiently large.

We note that although the SB model simulations reported in this paper are performed
for larger sizes of billiards than those previously numerically studied, they are still not so
large as the typical semiconductor lasers used in experiments. The sizes of billiards for
the SB model simulation in this paper are estimated less than 10 μm if the wavelength is
assumed 1 μm, which is typical for conventional semiconductor lasers while their typical
sizes are much larger than 10 μm.

Therefore, in relatively large billiard lasers with linear dimensions more than 100 μm,
the frequency differences Δij between adjacent resonances are significantly smaller than
those in the simulation of this paper, which implies that the transition threshold from
multi-mode to single-mode lasing is much smaller than those in Figure 10. Consequently, it
is expected that the universal single-mode lasing can be observed in the experiments of
semiconductor fully-chaotic billiard lasers with typical sizes.

5. Experiments of Semiconductor Billiard Lasers

By applying a reactive-ion-etching technique to a graded index separate-confinement-
heterostructure single quantum well GaAs/AlxGa1−xAs structure, we fabricated semicon-
ductor cardioid, D-shaped, and stadium billiard lasers of which microscope images are
shown in Figure 11a–c. We also fabricated the circular billiard laser, that is, the microdisk
laser as the representative example of integrable billiard lasers shown in Figure 11d.

Figure 11. Optical microscope images of the fabricated lasers of (a) the cardioid billiard (R = 35 μm),
(b) the D-shaped billiard (R = 40 μm, d = 20 μm), (c) the stadium billiard (R = 50 μm), and (d) the
circular billiard, i.e., microdisk (R = 40 μm).

The lasers were soldered on aluminum nitride submounts, and electrically driven with
current injection under continuous-wave (cw) operation. The temperature was kept at room
temperature. The difference between cw and pulse operations is crucial for observing the
universal single-mode lasing, because relaxation from initial transient multi-mode lasing
to single-mode lasing needs a constant pumping with a certain duration. Thus, for pulse
operations with pulse widths smaller than the above duration, one cannot observe the
universal single-mode lasing [13,28,55].

To measure the optical spectra of the semiconductor billiard lasers, the emitted light
was collected with anti-reflection-coated lenses and coupled to a multimode optical fiber
via a 30 dB optical isolator. The multimode optical fiber was coupled to a spectrum analyzer
(Advantest Q8347). Figure 12 shows the measured spectra of the semiconductor billiard
lasers. Every spectrum of three different fully chaotic billiard lasers has a single peak with
the injection currents much larger than their thresholds as shown in Figure 12a–c, whereas
the spectrum of the integrable billiard (microdisk) laser has more than 10 peaks as shown in
Figure 12d. The appearance of a single lasing peak in the spectra of the semiconductor fully-
chaotic billiard lasers can be more convincingly confirmed with the high-resolution mode
of the spectrum analyzer with wavelength interval of 0.002 nm. As shown in Figure 13,
a narrow linewidth peak was measured in the semiconductor D-shaped billiard lasers.
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Figure 12. Spectra observed in the experiments of (a) the cardioid laser with the injection current
160 mA, (b) the D-shaped laser with the injection current 200 mA, (c) the stadium laser with the
injection current 200 mA, and (d) the microdisk laser with the injection current 120 mA. The thresholds
of these lasers are around 30 mA, 45 mA, 40 mA, and 20 mA, respectively.

Figure 13. A spectrum obtained by using the spectrum analyzer in high-resolution mode with
wavelength interval of 0.002 nm in the experiment of the semiconductor D-shaped billiard laser with
the injection current 200 mA.

To gain further insight in the spectral characteristics, we counted the number of the
peaks whose intensities were larger than −35 dB of the maximum peak intensity in each
spectrum. Figure 14 shows the injection–current dependence of the numbers of peaks in
the spectra. From Figure 14, one can see that the number of the lasing modes in a fully
chaotic billiard laser is distinctly different from that of the integrable one when the injection
currents are much larger than their thresholds. Similar experimental results were reported
for the semiconductor stadium and elliptic billiard lasers with various aspect ratios [32].
Accordingly, we conclude that this phenomenon is universal and independent of the details
of billiard lasers. Thus, the universal single-mode lasing in fully chaotic billiard lasers is
verified experimentally.

The spectra observed in the experiments of fully chaotic billiard lasers occasionally
contain a couple of peaks instead of one single peak even when the injection current is
much larger than the threshold as one can see in Figure 14. In the next section, we show
by the SB model simulation that this phenomenon can be explained by the temperature
fluctuation of the billiard lasers.

In the experiments, we always try to keep the temperature of the billiard lasers to
a fixed value by the Peltier cooler with the thermostat. However, even if we set the
temperature of the temperature control device to a fixed value, it is impossible to make
the actual temperature of the laser strictly kept to be this value, and the fluctuation of
temperature is practically unavoidable during the experiments. Temperature fluctuations
affect the states of the lasing medium and change the gain profile. Since the sizes of
the semiconductor fully-chaotic billiard lasers are large and the gain band contains a
number of resonances, a slight change of the gain profile can change the stationary lasing
states significantly.

164



Entropy 2022, 24, 1648

Figure 14. Injection current dependence of the number of the spectral peaks of fully chaotic and
integrable billiard lasers.

In order to elucidate the temperature dependence of the stationary lasing states of
the semiconductor stadium billiard laser, we investigate the change of spectral peaks by
increasing the temperature from 20.1 ◦C to 21.0 ◦C by 0.1 ◦C. The result is shown in
Figure 15, where we find that the gradual temperature increase from 20.4 ◦C to 20.8 ◦C
results in a drastic change of the lasing state (i.e., the appearance of a peak at 862 nm in
addition to a peak at around 857 nm), whereas the other temperature changes do not cause
significant spectral changes. The temperature increase shifts the gain center to the right,
i.e., longer wavelengths, which explains the appearance of the peak at around 862 nm.
What is interesting here is that only this peak is observed, despite there are a number of
resonances between the two peaks, and the gain center is gradually moved from left to right.
In the following section, we show that this experimental result can be reproduced by the
SB model simulations. Namely, we numerically demonstrate that low-loss resonances very
close to the gain center do not necessarily contribute to the formation of a final lasing state
obtained for a high pumping power, and that there is a selected set of low-loss resonances
that can contribute to the final lasing state.

Figure 15. Spectra of the semiconductor stadium billiard laser with the injection current 80 mA at
various temperatures between 20.1 ◦C and 21.0 ◦C.
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6. Effect of Temperature Fluctuation

We investigate the dynamics of the D-shaped billiard laser by changing the gain center
Δ0 in the SB model simulation with the fixed pumping power W∞. The size and deformation
parameters of this billiard are R = 30 and d = 15, respectively, and the distribution of the
resonances in the complex frequency plane is shown in Figure 16. When the gain centers
are 0.181 and 0.22, the power spectra have single peaks, respectively corresponding to the
locked state of the resonances A and B and the locked state of the resonances C and D as
shown in Figure 17a,c. When the gain center is 0.206, the two locked states simultaneously
appear in the power spectrum as shown in Figure 17b. This is explained by the fact
that the net gains of two locked states are larger than those of the resonances around
0.206. Consequently, two distinct peaks are simultaneously observed in the spectra, which
correspond to the experimental results shown in Figure 15.

Figure 16. The resonance distribution for the D-shaped billiard.

Figure 17. Power spectra of the lasing states with different gain centers Δ0 (γ̃‖ = 0.008). (a) Δ0 = 0.181.
(b) Δ0 = 0.206. (c) Δ0 = 0.220.

Finally, the pumping power W∞ as well as the gain center Δ0 are increased. Even if
the position of the gain center is located between the real parts of the resonances B and C,
one of the two locked states corresponding to the two peaks in Figure 17b wins the mode
competition and becomes a single-mode lasing state with large pumping power. We define
this transition threshold Wt as the value of the pumping power where the lasing state
changes from the multi-mode to the single-mode lasing state. The gain center dependence
of Wt is shown in Figure 18. Wt is small when the gain center is near the low-loss resonances
such as 0.181 and 0.22. However, it becomes extremely large when the gain center is the
midpoint between these two values, and we could not obtain the single-mode lasing state by
the SB model simulation because the net gains of the locked state of A and B and the locked
state of C and D are equally large. If the size of the billiard is much larger, the resonance
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distribution is much more dense. Therefore, the two-mode lasing regime in the pumping
power is expected to be small in large fully-chaotic billiard lasers. However, when the
injection current is large, the temperature of the upper contact layer might be very high due
to the resistance there, and hence, the lower Peltier device might operate to cool the laser
from the bottom and the whole situation might become a highly non-equilibrium state,
which could result in the fluctuation of the gain center. Therefore, it might be inevitable to
observe a couple of peaks occasionally in the spectra of the semiconductor fully-chaotic
billiard lasers, which is the effect of the combination of the universal single-mode lasing
and the fluctuation of the gain center.

Figure 18. The gain center dependence of the transition threshold Wt from multi-mode to single-
mode lasing.

7. Summary and Discussion

By the SB model simulation of the cardioid, D-shaped, and stadium billiard lasers,
we verified the universal single mode lasing in fully chaotic billiard lasers: at least one
single-mode lasing state is stable, whereas all multi-mode lasing states are unstable, when
the external pumping power is sufficiently large and the billiard size is much larger than
the wavelength so that γ̃‖  |Δij| is satisfied, where Δij is the difference between adjacent
lasing frequencies. The stability of multi-mode lasing states in integrable billiard lasers is
also demonstrated by the SB model simulation of the elliptic billiard laser.

We also verified the universal single-mode lasing by the experiments of the semicon-
ductor cardioid, D-shaped, stadium, and circular billiard lasers. The occasional observation
of a couple of peaks instead of a single peak in the spectra of the semiconductor fully-
chaotic billiard lasers was attributed to the fluctuation of the temperature on the basis of
the SB model simulation. We expect that the occasional appearance of a couple of peaks in
the spectra would vanish and only a single peak would be observed if the semiconductor
fully-chaotic billiard lasers have much lower resistances and the control of the temperature
is more accurate.
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Abstract: One key issue of the foundation of statistical mechanics is the emergence of equilibrium
ensembles in isolated and closed quantum systems. Recently, it was predicted that in the thermo-
dynamic (N → ∞) limit of large quantum many-body systems, canonical density matrices emerge
for small subsystems from almost all pure states. This notion of canonical typicality is assumed to
originate from the entanglement between subsystem and environment and the resulting intrinsic
quantum complexity of the many-body state. For individual eigenstates, it has been shown that local
observables show thermal properties provided the eigenstate thermalization hypothesis holds, which
requires the system to be quantum-chaotic. In the present paper, we study the emergence of thermal
states in the regime of a quantum analog of a mixed phase space. Specifically, we study the emergence
of the canonical density matrix of an impurity upon reduction from isolated energy eigenstates of a
large but finite quantum system the impurity is embedded in. Our system can be tuned by means of
a single parameter from quantum integrability to quantum chaos and corresponds in between to a
system with mixed quantum phase space. We show that the probability for finding a canonical density
matrix when reducing the ensemble of energy eigenstates of the finite many-body system can be
quantitatively controlled and tuned by the degree of quantum chaos present. For the transition from
quantum integrability to quantum chaos, we find a continuous and universal (i.e., size-independent)
relation between the fraction of canonical eigenstates and the degree of chaoticity as measured by the
Brody parameter or the Shannon entropy.

Keywords: thermal state; isolated many-body system; quantum chaos; quantum integrability;
canonical density matrix

1. Introduction

As first recognized by Ludwig Boltzmann [1,2] “molecular” chaos lies at the core
of the foundation of classical statistical mechanics. Only when the phase space of an
isolated mechanical system is structureless can the motion be safely assumed to be ergodic
and the equal a priori probability for phase space points on the energy hypersurface, the
basic tenet of the microcanonical ensemble, is realized. Moreover, chaotic dynamics is
“mixing”, thereby enforcing the approach to the thermal equilibrium state from “almost
all” out-of-equilibrium initial conditions. While any large isolated system is expected to be
described by a microcanonical ensemble, any well-defined small subsystem thereof that is
only allowed to exchange energy with the remainder of the large system (referred to as
bath or environment in the following) is described by the canonical ensemble. The phase-
space density of the subsystem is weighted by the Boltzmann factor e−βHs , where Hs is the
Hamilton function of the subsystem, β = 1/kBT with T the temperature imprinted by the
environment and kB the Boltzmann constant. However, when the phase space of the system
is not chaotic but rather dominated by regular motion on KAM tori [3,4], neither ergodicity
nor mixing is a priori assured, and thermalization of an initial non-equilibrium state may
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be elusive. The implicit assumption of classical equilibrium statistical mechanics is that
in the limit of a large number of degrees of freedom, chaos is generic for any interacting
many-particle system.

How those concepts translate into quantum physics has remained a topic of great
conceptual interest and lively debate [5–21]. Renewed interest is stimulated by the ex-
perimental accessibility of ultracold quantum gases [22–28], trapped ions [29], and nano-
systems [30,31], where many of the underlying concepts became quantitatively accessible
in large but finite quantum systems in unprecedented detail. The foundation of thermaliza-
tion of quantum systems has been pioneered by von Neumann in terms of the quantum
ergodic theorem [32–37]. Accordingly, the entropy is an increasing function of time and
expectation values of generic macroscopic observables for pure states formed by coherent
superposition of states within microscopic energy shells converge to that of the microcanon-
ical ensemble provided that the energy spectrum of the system is strictly non-degenerate.
Recently, this description of thermal equilibrium states was extended to the notion of
canonical typicality [37–40]. Accordingly, starting from almost any pure state formed by a
coherent superposition of energy eigenstates of a large isolated many-body system with
eigenenergies within a given energy shell [E, E + ΔE] of macroscopically small thickness
ΔE, the reduction to a small subsystem by tracing out the degrees of freedom of the bath
will yield the same reduced density matrix one would obtain from the reduction of the
microcanonical density matrix for the entire system. If the bath is sufficiently large and the
interactions between the bath and the subsystem sufficiently weak, the reduced density
matrix corresponds to the standard canonical density matrix ρ̂s = e−βĤs /Tr[e−βĤs ] with Ĥs
the Hamilton operator of the subsystem. The proof of this canonical typicality invokes the
intrinsic randomness of the expansion coefficients of the pure state in terms of entangled
subsystem–bath states. The latter assumption goes back to the notion of intrinsic quantum
complexity of entangled states in large systems put forward already by Schrödinger [41].

An alternative approach to thermalization is tied to the eigenstate thermalization
hypothesis (ETH) [5–8] first put forward by Landau and Lifshitz [42], stating that basic
properties of statistical mechanics can emerge not only from ensemble averages but from
typical single wavefunctions. However, the condition under which such an equivalence
may emerge has remained open. The more recent formulation of the ETH [5–8] invokes
the notion of quantum chaos and Berry’s conjecture. Characteristics of quantum chaos
were originally identified in few-degrees of freedom systems whose classical limit exhibits
chaos [43–49]. Nowadays, the notion of quantum chaos is invoked more generally for
systems that display the same signatures such as energy level distributions predicted by ran-
dom matrix theory (RMT) [43,48,50,51] or randomness of wavefunction amplitudes [5,52]
even when a well-defined classically chaotic counterpart is not known. The ETH conjec-
tures that for chaotic systems, the diagonal matrix elements of any generic local observable
taken in the energy eigenstate basis are smooth functions of the total energy while the
off-diagonal elements are exponentially decreasing randomly fluctuating variables with
zero mean [6–8]. If the ETH is valid for a specific system, individual eigenstates show
thermal properties upon reduction to a small subsystem. The ETH has been shown to
hold for a large variety of systems without a classical analogue [24,53–64]. Deviations from
the ETH have been observed for local observables in finite systems of hard-core bosons
and spin-less fermions [57,58,65] when the energy level distribution deviates from the
Wigner–Dyson level statistics of RMT characteristic for chaotic systems.

In the present paper, we explore the quantitative relationship between thermal prop-
erties of reduced density matrices (RDMs) emerging from single isolated eigenstates of
the entire system and quantum chaos. More specifically, we want to address the question:
Is for large but finite systems quantum chaos a conditio sine qua non for the emergence
of the Gibbs ensemble, i.e., the canonical ensemble of the subsystem, from eigenstates of
the entire system? Or is quantum entanglement and complexity in these systems itself
sufficient to render the reduced density matrix of a small subsystem canonical? To this end,
we determine the fraction of canonical density matrices emerging upon reduction from the
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entire set of eigenstates. We explore the existence of a quantitative relationship between
the fraction of eigenstates that upon reduction lead to canonical eigenstates, also termed
fraction of canonical eigenstates, and the degree of quantum chaos of the entire system. We
unravel the connection between this eigenstate canonicity and quantum chaos by exact
diagonalization of a large yet finite mesoscopic quantum system. We emphasize that this
measure addresses isolated energy eigenstates of the many-body system, in contrast to
coherent superpositions of energy eigenstates from a given energy shell of finite width
with random expansion coefficients as invoked in the well-established notion of canonical
typicality [37–40].

As a prototypical case in point, we consider an itinerant impurity embedded in a spin-
polarized Fermi–Hubbard system. Unlike impurity models for disordered systems [66], our
model is fully deterministic. All key ingredients for the realization of the present system,
i.e., discrete lattice, tunable interactions, and impurity can be experimentally realized with
ultracold fermionic atoms (see, e.g., [67–72]). In the present scenario, the impurity serves
as a probe or “thermometer” in the isolated many-body quantum system providing an
unambiguous subsystem–bath decomposition with tunable coupling strength between
subsystem and bath. Moreover, our system features a tunable transition from quantum
chaos to quantum integrability without invoking any extrinsic stochasticity or disorder [66].
The fact that the subsystem consists of a distinguishable particle has a number of distinct
advantages: The reduced density matrix of the probe is uniquely defined and its properties
are basis-independent. No choice of a specific basis for the probe such as the independent-
particle basis is involved. Moreover, its canonical RDM approaches a Maxwell–Boltzmann
rather than a Fermi–Dirac distribution for indistinguishable fermions. Its thermal state is
thus characterized by a single equilibrium parameter, the temperature T, without the need
for introducing a chemical potential μ, thereby improving the numerical accuracy of the test
of canonicity. We measure the proximity of the reduced density matrix of the impurity to
the canonical density matrix and identify a direct and size-independent correlation between
the fraction of canonical eigenstates and quantum chaos.

The paper is structured as follows. In Section 2, we introduce our impurity-Fermi–
Hubbard model which serves as a prototypical (sub)system–environment model system.
Quantitative measures for quantum chaos are introduced in Section 3. The mapping of
spectral properties of this isolated many-body system onto thermal states of the impurity
within the framework of the microcanonical and canonical ensembles are discussed in
Section 4. The distance in Liouville space between the reduced density matrix of the
impurity and a generic canonical density matrix is analyzed and the relation between the
fraction of canonical eigenstates and quantum chaos is established in Section 5. Concluding
remarks are given in Section 6.

2. The Fermi–Hubbard Model with Impurity

We investigate a variant of the single-band one-dimensional Fermi–Hubbard model
which is particularly well suited to study entanglement and quantum correlations between
subsystem and its environment or bath. The bath is represented by spin-polarized fermions
enforcing single occupancy of sites by bath particles while the distinguishable impurity
can occupy any site. Accordingly, the Hamiltonian of the total system is given by

Ĥ = ĤI + ĤB + ĤIB, (1)

where the Hamiltonian of the subsystem, i.e., the impurity (I), is

ĤI = −JI ∑Ms−1
j=1

[
â†

j+1 âj + c.c.
]
+ ∑Ms

j=1 V(j)n̂j, (2)

while the Hamiltonian of the bath is

ĤB = −JB

Ms−1

∑
j=1

[
b̂†

j+1b̂j + c.c.
]
+ WBB

Ms−1

∑
j=1

N̂j+1N̂j +
Ms

∑
j=1

V(j)N̂j. (3)
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The interaction between the subsystem and the bath is given by

ĤIB = WIB

Ms

∑
j=1

n̂j N̂j. (4)

The operators âj and â†
j (b̂j and b̂†

j ) are the creation and annihilation operators of the

impurity (bath particles) on site j with the anticommutation relations {ai, aj} = 0, {a†
i , a†

j } =

0, {ai, a†
j } = δij, and {a(†)i , b(†)} = 0. The operators n̂j = â†

j âj and N̂j = b̂†
j b̂j correspond to

the number operators of impurity and bath n̂j|j〉 = nj|j〉 and N̂j|j〉 = Nj|j〉 with occupation
numbers nj and Nj of site j, respectively. JI (JB) describes the hopping matrix elements
of the impurity (bath particles). The bath particles interact with each other by a nearest-
neighbor interaction with strength WBB while the impurity interacts with the bath particles
via an on-site interaction with strength WIB. The Hubbard chain has Ms sites with Dirichlet
boundary conditions imposed at the edges. An additional very weak external background
potential (V � JI, JB) with on-site matrix element V(j) (j = 1, . . . , Ms) is applied,

V(j) = 0.01
[
−0.5 +

(j − 1)n

(Ms − 1)n

]
, (5)

for which we use a linear (n = 1) or quadratic (n = 2) function in order to remove residual
geometric symmetries such that the irreducible state space coincides with the entire state
space and symmetry related degeneracies are lifted. Alternative impurity models were
recently suggested for the investigation of the ETH [64].

We solve the system via exact diagonalization to determine all eigenstates and eigenen-
ergies of the entire system. The dimension of the Hilbert space of the system is dH = Ms(

Ms
NB
),

where NB is the number of bath particles. We consider typical half-filling configurations
with NB ≈ Ms/2. The largest Ms considered is Ms = 15 resulting in a Hilbert space
dimension of dH = 96,525 for NB = 7. We set JI = JB = J which also defines the unit of
energy (J = 1) in the following. The key advantage of the present model is that it allows to
control and tune the properties of the bath separately by varying WBB while keeping fixed
the properties of the subsystem whose reduced density matrix we probe. This clear-cut
subsystem–bath decomposition allows for the unambiguous probing of the emergence of
canonical density matrices, thereby avoiding any ad hoc separation by “cutting out” of the
subsystem which then requires the grand canonical density matrix for an open quantum
system since both energy and particles can be exchanged [65]. Moreover, its thermal state is
unambiguously characterized by T rather than by T and μ as for indistinguishable fermions,
thereby improving the numerical reliability of the performed tests.

The present system should be realizable for ultracold fermionic atoms trapped in
optical lattices [28,69–74]. All key ingredients required for its realization including tunable
interactions and impurity–bath mixtures are available in the toolbox of ultracold atomic
physics. We note that tuning the nearest-neighbor interaction WBB between the atoms in
optical lattices to large values in the regime of strong correlations, WBB/JB � 1, still poses
an experimental challenge which might be overcome in the near future.

3. Measures of Quantum Chaos

The present single-band Fermi–Hubbard model does not possess an obvious classical
counterpart whose phase space consists of regions of regular and/or chaotic motion. Lack-
ing such direct quantum–classical correspondence, quantum integrability and quantum
chaos in the present system is identified by signatures of the quantum system that have
been shown to probe chaotic and regular motion in systems where quantum–classical
correspondence does prevail. Several measures of quantum chaos have been proposed
that are based on either properties of eigenstates or of the spectrum [14,49,58,75–79]. As
will be shown below, by tuning WBB, we can continuously tune the entire system from the
limit of quantum integrability to the limit of quantum chaos across the transition region
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of a mixed quantum system in which integrable and chaotic motion coexist and explore
its impact on the fraction of eigenstates which upon reduction lead to canonical density
matrices. The influence of the continuous transition from quantum integrability to quantum
chaos on the thermal state of the subsystem will be explored with the help of the present
prototypical system.

3.1. Spectral Measures

Starting point for analyzing and quantifying quantum chaos by means of spectral
statistics is the cumulative spectral function also called the staircase function

N(E) = ∑
α

Θ(E − Eα), (6)

where Eα are the energy eigenvalues of the entire system, and Θ is the Heaviside step
function. Its spectral derivative is the density of states (DOS)

Ω(E) =
d

dE
N(E). (7)

Examples for N(E) and Ω(E) of the present system are shown in Figure 1.
The smoothed “average” spectral staircase function N̄(E) fitted to a polynomial of

order 10, also shown in Figure 1, provides the reference for spectral unfolding required
for certain measures of quantum fluctuations about the (classical) mean. Accordingly,
the unfolded energy spectrum is given by eα = N̄(Eα). For systems for which quantum–
classical correspondence holds, N̄(E) corresponds to the classical phase space volume in
units of Planck’s constant h and Ω(E) to the microcanonical energy shell. We note that the
saturation of N(E) observed with increasing E (Figure 1a) or, likewise, the bell-shaped curve
for the DOS (Figure 1b) decreasing at large E is in the present case a consequence of the
single-band approximation of the Fermi–Hubbard model (Equation (1)) and, more generally,
appears for systems with a spectrum bounded from above. For realistic macroscopic
systems, N(E) and Ω(E) should generically increase monotonically with E. As discussed
in more detail below, this non-generic decrease of the density of states observed for the
present as well as for other finite and mesoscopic systems has implications for the ensuing
thermal properties.

The probability density P(s) of the nearest-neighbor level spacings (NNLS), s =
eα+1 − eα, features distinctively different shapes for quantum integrable and quantum
chaotic systems. While for integrable systems, the NNLS have been predicted by Berry
and Tabor [50] to feature an exponential (or Poissonian) distribution PP(s) = exp (−s), for
chaotic systems it closely follows random matrix theory [43]. In our case of a time-reversal
symmetric system, the corresponding random-matrix ensemble is the Gaussian orthogonal
ensemble (GOE) which has been shown (see e.g., [46]) to closely follow the Wigner–Dyson
distribution (or Wigner surmise) given by

PWD(s) =
πs
2

e−πs2/4. (8)

A complementary spectral measure first proposed by Gurevich and Pevzner [80] and
applied to quantum chaos [81,82] has the advantage that it does not require spectral
unfolding but can be applied to the spectral raw data, i.e., the restricted gap ratios rα

rα = min
(

rα,
1
rα

)
, (9)
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where rα = (Eα+1 − Eα)/(Eα − Eα−1). The distribution of restricted gap ratios has been
shown to obey for 3 × 3 GOE matrices the analytical prediction

WGOE(r) =
27
4

r + r2

(1 + r + r2)5/2 . (10)

For chaotic systems, this prediction remains very accurate even for large systems [82]. In
the limit of quantum integrable systems, the distribution of restricted gap ratios is given by
(see [81])

WP(r) =
2

(1 + r)2 . (11)

The search for generic spectral measures for the transition regime between the quantum
integrable and quantum chaotic limit has remained an open problem. For systems pos-
sessing a classical counterpart with a mixed phase space in which integrable and chaotic
motion coexist, several models for the NNLS have been proposed [83–87]. Empirically, one
of the best fits to spectral data for mixed systems has been provided by a heuristic ansatz
suggested by Brody [88] which allows for a one-parameter smooth interpolation of the
NNLS distribution in the transition region between the quantum integrable and quantum
chaotic limit,

PB(s) = (γ + 1)bsγe−bsγ+1
, (12)

where the Brody parameter γ characterizes the transition from the integrable (γ = 0) to the
chaotic limit (γ = 1) and b follows from the normalization as

b =

[
Γ
(

γ + 2
γ + 1

)]γ+1
. (13)

The Brody parameter can be viewed as a measure of the strength of level repulsion between
neighboring levels of the quantum system. For mixed few-degrees of freedom systems with
a classical analogue, γ could be identified as a measure for the chaotic fraction of classical
phase space [86,89]. Moreover, γ has also been found to be directly proportional to the
degree of phase-space (de)localization of eigenstates as measured by their Husimi distribu-
tion [77]. The parameterization of the transition from quantum integrability to quantum
chaos in terms of a variable exponent γ has the salient feature that even for very small
but finite γ, 0 < γ � 1, PB(0) = 0, reflecting the fact that any perturbation of quantum
integrability immediately causes level repulsion and suppresses the probability density
for any exact degeneracy. We recall that non-degeneracy is one of the key prerequisites
of von Neumann’s quantum ergodic theorem [32]. We further note that the Hasegawa
distribution [84] sometimes provides an even more accurate fit to the NNLS distribution
(see, e.g., [90]), however, at the price of a second adjustable parameter.

To determine γ, we fit Equation (12) to the data for P(s) (Figure 2). The quality of the
fit is evaluated through the χ2-function

χ2 = ∑
i
[P(si)− PB(si)]

2Δs, (14)

which measures the deviation of the distribution of nearest-neighbor spacings P(s) from
the Brody distribution PB(s) using a bin size of Δs. As an additional measure for the
uncertainty of γ, we use the fact that the Brody parameter can be alternatively determined
from a fit to the integral

∫
ds′P(s′) rather than to P(s) itself. The small differences found

between the two fits can be used as a measure for the numerical error.
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Figure 1. (a) The spectral staircase function N(E) for the Fermi–Hubbard model with impurity
with WBB = 1 and a total number of states dH = 96,525 (Ms = 15, NB = 7). The inset shows a
magnification of N(E) with a fit for the smoothed “average” staircase function N̄(E) entering the
spectral unfolding. (b) The normalized density of states (DOS), Ω(E), using a bin size of ΔE = 0.4 for
different interaction strengths of the bath particles. The impurity–bath interaction in (a,b) is WIB = 1.

For WBB = 0 and for the linear tilt of the external potential V(j) (Equation (5)),
we observe an excess of (near-) degenerate states as compared to the prediction of the
exponential (Poisson) distribution in the first bin at s = 0 with Δs = 0.01. This hints at the
presence of an only weakly broken symmetry which disappears when using a quadratic tilt.
For reasons of consistency, we employ for all WBB a linear tilt in the following. Neglecting
the first bin in the fitting procedure for WBB = 0, we obtain γ = 0.005 and, overall, a very
good agreement with the Poisson distribution (Figure 2a). As the intra-bath interaction
is varied from WBB = 0 to WBB = 1, we observe a continuous transition from a near
Poissonian to an approximate Wigner–Dyson NNLS distribution (Figure 2a–c). The Brody
parameter monotonically increases from γ � 0.005 at WBB = 0 to γ � 0.9 at WBB = 1.
We note that after reaching a plateau at γ � 0.93 near WBB = 3, the Brody parameter
decreases again for WBB > 5 and vanishes in the strongly correlated limit of WBB  1.
The decrease of the Brody parameter for large WBB results from clustering of the energy
spectrum in the strongly interacting regime. The bath fragments into clusters of particles
with the interactions between separate clusters suppressed. Thus, a partially ordered
system emerges reducing the degree of quantum chaoticity. We will focus in the following
on the parameter range WBB ≤ 1 within which the transition from a nearly quantum
integrable to a nearly fully quantum chaotic system occurs.

For the two limiting cases of quantum integrability (WBB → 0) and quantum chaos
(WBB → 1) of the present Fermi–Hubbard system, we can also apply the predictions for the
restricted gap ratio distribution (Equations (10) and (11)) . We find for these two limiting
cases very good agreement between the prediction and the data (Figure 3), confirming
that the identification of quantum integrability and quantum chaos is independent of the
particular choice of the spectral measure.
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For the first moment of the restricted gap ratio distribution, we find 〈r〉 = 0.5284
for WBB = 1 agreeing to within 0.5% with the GOE expectation value for asymptotically
large matrices 〈r〉GOE = 0.5307 [82]. Conversely, for WBB = 0, we find 〈r〉 = 0.3811 in very
good agreement with the prediction for a Poisson distribution 〈r〉P = 0.3863. As there is
presently no interpolation function W(r) available for the transition between the quantum
integrable limit (Equation (11)) and the quantum chaotic limit (Equation (10)), we will
focus in the following on the Brody distribution for the NNLS as spectral measure for the
transition regime.

3.2. Measures for Wavefunctions

As an alternative to spectral measures, on can also explore and quantify chaos through
the complexity of the eigenstates. According to Berry’s conjecture, the eigenstates of a
chaotic system feature randomly distributed amplitudes over an appropriate basis, e.g., in
quantum billiards, they correspond to randomly distributed plane waves [75]. Follow-
ing this conjecture, a large number of such measures have been proposed. They include
the statistical distribution of eigenvectors [9,12,46,91], the configuration-space probability
distribution [92], the configuration-space self-avoiding path correlation function [52], the
Wigner function-based wavefunction autocorrelation function [75], the inverse participa-
tion ratio [93], the Shannon entropy [94], and the phase space localization measured in
terms of the information entropy encoded in the Husimi distribution [77]. One limitation
for the quantitative significance of most of these measures (with the possible exception
of [77]) is their dependence on the chosen basis of representation. For systems that can be
continuously tuned from integrable to chaotic, the eigenstates of the integrable limit suggest
themselves as a convenient basis to monitor the transition to chaos [9,12,58]. For many-
body systems, the eigenstates of the mean-field Hamiltonian often provide the reference
basis for measuring quantum chaoticity [14]. In the following, we use the eigenstates |ψ0

α〉
of the integrable system with WBB = 0 as a basis for determining the statistical distribution
of eigenvectors. From the amplitudes cα′

α = 〈ψ0
α′ |ψα〉 and probabilities |cα′

α |2, we calculate
the Shannon entropy [94] for each eigenstate |ψα〉

Sα = −
dH

∑
α′=1

|cα′
α |2 ln |cα′

α |2. (15)

We observe that for WBB = 1, the Shannon entropy as a function of Eα forms an in-
verted parabola-like function with remarkably small eigenstate-to-eigenstate fluctuations
(Figure 4). At the apex near the center of the spectrum, Sα reaches a maximum Smax close to
the GOE limit SGOE ≈ ln 0.48dH [58] with dH the dimension of the Hilbert space (Figure 4a).
States in the tails of the spectrum show strong deviations from this limit as the eigenstates
in this region are less complex and do not fulfill the ETH [58]. Best agreement with GOE
predictions can therefore be expected near the center of the spectrum at α ≈ dH/2 with the
highest density of states.

For smaller WBB (Figure 4b–d), the Shanon entropy reveals a significantly diminished
complexity of the eigenstates indicated by a reduced Smax and, at the same time, drastically
increased state-to-state fluctuations. Probing the generic features of the wavefunctions, we
will use the dependence of the scaled Shannon entropy

S̄ = Smax(WBB)/SGOE (16)

as an alternative wavefunction-based measure of quantum chaoticity complementing the
Brody parameter γ as spectral measure. Numerically, we determine Smax by averaging
over small intervals of energy and calculating the maximum of the resulting smooth curve.
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Figure 4. Distribution of Shannon entropies (Equation (15)) as a measure of the complexity of
eigenstates of the system for different WBB, (a) WBB = 1, (b) WBB = 0.3, (c) WBB = 0.1, and
(d) WBB = 0.05. The horizontal lines mark the value SGOE ≈ ln 0.48dH expected for the GOE
ensemble. All other parameters as in Figure 2.

Empirically, we find that the dependence of the Brody parameter γ, i.e., the degree of
quantum chaoticity on the interaction parameter of the bath particles, γ(WBB) (Figure 5)
can be accurately approximated by

γ(WBB) ≈ γ0 tanh(WBB/W0
BB) (17)

with γ0 = 0.88 and W0
BB = 0.15. While a monotonic increase is intuitively expected, the

origin of this particularly simple functional form remains to be understood. Remarkably, the
evolutions of γ and S̄ as a function of WBB closely mirror each other, thereby representing
two independent measures of the degree of quantum chaoticity during the transition from
integrability to chaos. Overall, the agreement between γ and S̄ is very good. Residual
differences can be viewed as a measure for the residual uncertainty in the quantitative
determination of the degree of the eigenstate quantum chaoticity.
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Figure 5. The Brody parameter γ (Equation (12)) or scaled Shannon entropy S̄ (Equation (16), left
y-axis) as a function of WBB. The error bars for γ correspond to the standard deviation by comparison
between the fits to P(s) with fits to

∫ s
0 ds′P(s′), and the black line corresponds to a fit to a tanh

function γ(WBB) ≈ γ0 tanh(WBB/W0
BB) with the parameters γ0 = 0.88 and W0

BB = 0.15. The error
bars in S̄ reflect the width of S in Figure 4 and correspond to the scaled standard deviation around
Smax. Error of the fit to the Brody distribution as measured by the square root of the χ2 function
(Equation (14)) (gray line and right y-axis).

4. The Reduced Density Matrix of the Impurity

The impurity embedded in the Fermi–Hubbard system serves as a “thermometer”,
i.e., as a sensitive probe of the thermal state of the interacting many-body system. We
aim at exploring the emergence of thermal properties of the impurity when the entire
(subsystem and bath) system is in a given pure and stationary eigenstate of Ĥ with energy
Eα and vanishing state entropy (or von Neumann entropy SvN = 0). Such an isolated
large quantum system can be viewed as the limiting case of the quantum microcanonical
ensemble where the width of the energy shell ΔE vanishes, i.e., ΔE → 0. Unlike other
approaches, it does not invoke any coarse-graining over a macroscopically small but finite
width of the energy shell nor any random interactions. For such a quantum system without
any a priori built-in statistical randomness, we pose the following question: Starting
from a given isolated eigenstate of the entire system, under which conditions will the
reduced density matrix of the impurity correspond to a canonical density matrix, i.e., the
thermometer will be accurately represented by a Gibbs ensemble or, for short, be in a
Gibbs state? If such a thermal state emerges, what will be its temperature T, or its inverse
temperature β = 1/kBT? We refer to this process as emergence of a thermal equilibrium
state rather than the frequently used term “thermalization” as the latter (implicitly) implies
a time-dependent approach to an equilibrium state starting from an out-of-equilibrium
(statistical or pure) initial state that represents a coherent superposition of different energy
eigenstates. We neither invoke any ensemble average over states from the microcanonical
energy shell of finite thickness ΔE nor do we invoke wave packet dynamics of a non-
stationary state of the entire system.

For finite isolated systems, in particular, systems with a bounded spectrum such as the
present Fermi–Hubbard model, the extraction of proper thermodynamic (or thermostatic)
variables from the microcanonical ensemble requires special care. As has been recently
demonstrated [95,96], the alternative definitions of the entropy used as the fundamental
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thermodynamic potential for the microcanonical ensemble yield, in general, inequivalent
results. The standard definition [97] attributed to Boltzmann

SBoltzmann = kB ln Ω(E) = kB ln N′(E), (18)

with Ω(E) the DOS of the entire closed system, implies an inverse temperature

βBoltzmann(E) =
1
kB

∂SBoltzmann(E)
∂E

=
∂ ln Ω(E)

∂E
=

Ω′(E)
Ω(E)

=
N′′(E)
N′(E)

, (19)

that may violate certain thermodynamic relations for mesoscopic systems with a bounded
spectrum [95,96]. As shown more than 100 years ago [97,98], the Gibbs entropy defined by

SGibbs = kB ln N(E) (20)

results in an inverse temperature

βGibbs(E) =
∂ ln N(E)

∂E
=

N′(E)
N(E)

=
Ω(E)
N(E)

(21)

that is free of such inconsistencies. From Equations (19) and (21), it follows that the two
inverse temperature definitions are interrelated through the specific heat C [95]

βBoltzmann = (1 − kB/C)βGibbs (22)

with C = (∂TGibbs/∂E)−1 and TGibbs = β−1
Gibbs/kB. Only for systems with a small spe-

cific heat of the order of kB or smaller, differences between βBoltzmann and βGibbs become
noticeable. This is in particular the case for systems with a bounded spectrum. While
βBoltzmann(E) features negative values as soon as the density of states Ω(E) = N′(E) de-
creases (Equation (19)), βGibbs(E) remains always positive semi-definite (Equation (21)).
Figure 6 presents a comparison between βGibbs and βBoltzmann for the present Fermi–Hubbard
model with an impurity where we have applied the microcanonical thermodynamic re-
lations for βBoltzmann and βGibbs (Equations (19) and (21)) to the numerically determined
spectral data (Figure 1) of the entire system over a wide range of energies E. The two
inverse temperatures closely follow each other in parallel with βGibbs shifted upwards
relative to βBoltzmann as long as Ω′(E) > 0. For larger E when βBoltzmann turns negative, the
discrepancies increase as βGibbs remains positive for all E.

Alternatively, the entire system can be assigned an inverse temperature βc by treating
the system as a canonical ensemble. Accordingly, the energy E can be expressed in terms of
the canonical expectation value

E =
Tr
[

Ĥe−βc Ĥ
]

Tr
[
e−βc Ĥ

] =
∂ ln Zc

∂βc
, (23)

where Zc = Tr
[
exp (−βc Ĥ)

]
is the canonical partition function and Ĥ is the Hamiltonian

of the entire system (see Equation (1)). For a given E, Equation (23) yields an implicit
relation for βc also shown in Figure 6. Obviously, for this finite system, βc is close to
βBoltzmann. In the thermodynamic limit, we would expect βc = βBoltzmann. In spite of
the fact that the size of our system is still far from the thermodynamic limit (N → ∞),
the agreement between different thermodynamic ensembles is already remarkably close.
Deviations appear primarily near the tails of the density of states and are larger in the
region of negative βBoltzmann where the DOS decreases rather than increases with E.
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Figure 6. The inverse temperature as a function of the energy of the entire system predicted by the
microcanonical Boltzmann entropy (Equation (18), solid black) and the Gibbs entropy (Equation (20),
blue) as well as the canonical expectation value (Equation (23), dashed black). The energy is restricted
to the interval [Emin, Epeak + EFWHM/2, ] with Emin the lower bound where the DOS of the entire
system is ≥15% of its peak value at Epeak, and EFWHM the full-width-at-half-maximum of the DOS.
Bath–bath interaction strength WBB = 1 and impurity–bath interaction WIB = 1 (see Figure 1b).

The conceptually interesting question now arises which of these temperatures, if
any, will be imprinted on the impurity upon an exact calculation of its reduced density
matrix by tracing out all bath degrees of freedom from a given single exact eigenstate of
a the isolated many-body system, and without invoking any a priori assumption of the
microcanonical ensemble.

To address this question, we start from the density operator for any pure energy
eigenstate |ψα〉 of the entire system given by the projector |ψα〉〈ψα|. Consequently, the
reduced density matrix (RDM) of the impurity follows from tracing out all bath degrees
of freedom,

D(I)
α = TrNB [|ψα〉〈ψα|], (24)

which will, in general, depend on the parent state |ψα〉 it is derived from. We explore now
the generic properties of D(I)

α independent of the particular parent state. Specifically, we
investigate whether a given D(I)

α emerging from an individual eigenstate |ψα〉 approaches a
canonical density matrix. To this end, we diagonalize the RDM

D(I)
α =

Ms

∑
m=1

nm,α|ηm,α〉〈ηm,α|, (25)

yielding natural orbitals |ηm,α〉 with natural occupation numbers nm,α [99]. We emphasize
that within the present approach, the RDMs D(I)

α and their eigenvalues, the occupation
numbers nm,α, which characterize the thermal state, are a priori uniquely determined
and not influenced by the choice of any (approximate) basis. Compared to previous
investigations, this is one distinguishing feature of the present study of the thermal state
emerging from an isolated deterministic many-body system. RDMs have been previously
employed in studies of disordered fermionic systems [100–102].

Canonicity is reached when nm,α is given by the Boltzmann factor e−βε
(I)
m,α with ε

(I)
m,α

the expectation value of the Hamilton operator HI of the impurity alone evaluated in
the basis of natural orbitals, ε

(I)
m,α = 〈ηm,α|ĤI|ηm,α〉, which, in turn, should be close to
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the eigenstates of ĤI. Moreover, the resulting value for β extracted from the fit to the
exponential distribution allows the identification of the inverse temperature uniquely
characterizing the thermal distribution.

For a finite-size system with an impurity and a bath with an order of magnitude of
10 particles and finite impurity–bath coupling, the residual interaction of the impurity
with the bath is not negligible and should therefore be included to improve the numerical
accuracy. We account for the residual impurity–bath interaction on the level of the mean-
field (MF) or Hartree approximation [14]. Accordingly, the energies ε(I) of the impurity
appearing in the Boltzmann factor include a correction term

ε̄
(I)
m,α = 〈ηm,α|ĤI + Ŵ(IB)

MF,α|ηm,α〉, (26)

where the MF interaction operator in site-representation reads

W(IB)
MF,α(j) = WIB ρB,α(j) (27)

with
ρB,α(j) = 〈j|TrNB−1,I[|Ψα〉〈Ψα|]|j〉 (28)

the reduced one-body density of residual bath particles at the site j when the entire system
is in state |ψα〉. In Equation (28), the partial trace over all but one (NB − 1) bath particles
and the impurity (I) is denoted by TrNB−1,I. The energy fluctuations

Δε̄
(I)
m,α =

√
〈ηm,α|(ĤI + Ŵ(IB)

MF,α)
2|ηm,α〉 − ε̄

(I)2
m,α (29)

provide a measure for the proximity of the natural orbitals of the RDM to the eigenstates of
the (perturbed) single-particle Hamilton operator of the subsystem, ĤI,eff = ĤI + Ŵ(IB)

MF,α.
The energy fluctuations (Equation (29)) vanish only when the natural orbitals |ηm,α〉 with
which the matrix elements in Equation (29) are evaluated do coincide with the eigenstates
of ĤI,eff. Therefore, the variance Δε̄(I)

m,α can serve as a distance measure of the natural
orbitals from eigenstates of the impurity Hamiltonian operator. The MF correction in
Equation (27) follows from the Liouville–von Neumann equation for the reduced system
where the interaction with the bath consists of the MF term and a collision operator. The
collision operator describes the correlations between the impurity and the bath particles
and contains the so-called two-particle (subsystem–bath) cumulant Δ12. We numerically
monitor the validity of the MF approximation through the magnitude of the two-particle
correlation energy determined by Δ12. Consistently, we find that for all many-particle
states |ψα〉 which reduce to a near-canonical RDM for the impurity, the correlation energy
is negligible compared to the MF energy thereby justifying Equation (26). Of course, in the
limit of weak impurity–bath coupling, the MF correction (Equation (27)) becomes negligible
as well.

A representative example for the spectrum of the impurity RDM, i.e., the occupation
number distribution of natural orbitals of the impurity RDM emerging from a single energy
eigenstate of the entire system with state index α = 4364 (with α sorted by energy) and
energy eigenvalue Eα = −2.396 lying on the tail of the DOS with positive β for WBB = 1, is
shown in Figure 7.

Indeed, a Boltzmann distribution ∝ e−βε̄
(I)
m,α characterizing the canonical density matrix

is observed. Moreover, the fit to an exponential yields β ≈ 0.58 in close agreement
with βBoltzmann = 0.58 predicted by Equation (19) for the inverse temperature within the
microcanonical ensemble (see also Figure 6) and reproduces the distribution of occupation
numbers very well. It also agrees with βc predicted by Equation (23) where the entire
system is treated as a canonical ensemble. We note that the Boltzmann-like decay of
the diagonal elements would remain qualitatively unchanged when neglecting the MF
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correction in Equation (26) but the fit to β would deteriorate. Thus, from the reduction of
state α = 4364, we have verified that a canonical density matrix emerges.
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Figure 7. The occupation numbers nm,α of the natural orbitals as a function of their energies ε̄m,α

(Equation (26)) for the eigenstate number α = 4364 of the total system with energy Eα ≈ −2.396
and WBB = 1 (Ms = 15, NB = 7). The impurity–bath coupling strength is WIB = 1. The horizontal
error bars indicate the fluctuations Δε̄m,α (Equation (29)). The blue solid line corresponds to the best
exponential fit yielding the exponent β ≈ 0.58 in agreement with βBoltzmann deduced for this state
from Equation (19). The inset shows the same plot on a logarithmic scale.

On a conceptual level, the present results confirm the analysis by Dunkel and Hilbert [95]
who showed that the recently observed experimental single-particle population distribution
in an isolated finite cold-atom system [22] is governed by βBoltzmann. Thus, the canonical
density matrix of a small system emerging from tracing out bath variables is characterized
by the inverse Boltzmann temperature βBoltzmann rather than by βGibbs. Consequently,
level inversion in a small system in thermal contact with a bath, in particular, spin sys-
tems [103,104], can be properly characterized by negative βBoltzmann. The point to be noted
is that while βBoltzmann describes the canonical density matrix, the use of βGibbs is required
for consistency in thermodynamic relations such as the Carnot efficiency [95,96]. In the
following, we present the numerical results for the canonical density matrix of the impurity
in terms of βBoltzmann which we denote, from now on, for notational simplicity by β. We
point out that β can be straightforwardly transformed into βGibbs using Equation (22) and
that none of the conclusions to be drawn in the following are altered by this transformation.

5. Eigenstate Canonicity and Degree of Quantum Chaoticity

The demonstration of the emergence of a canonical density matrix from a particular
eigenstate |ψα〉 (α = 4364) of the entire system invites now the following questions: Is
the reduction to a canonical density matrix generic, i.e., will it emerge for almost all |ψα〉?
Is this appearance related to the quantum chaos present in the underlying many-body
system? On a more quantitative footing: For how many of the eigenstates will a canonical
density matrix emerge and does this number depend on the degree of quantum chaos of
the system?

We explore these questions by determining the fraction of many-body eigenstates
reducing to a canonical density matrix of the impurity, referred to in the following as
eigenstate canonicity, as a function of the exact total energy Eα for the complete set of
eigenstates α of the entire system and for varying bath–bath interaction WBB. The cor-
responding degree of quantum chaoticity of the entire system is measured by either the
Brody parameter (Equation (12)) or the Shannon entropy (Equation (16)). Striking dif-
ferences in the approach to the thermal state with inverse temperature β appear which
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are controlled by the Brody parameter γ (or Shannon entropy S̄): At WBB = 1, when the
system is chaotic as indicated by a Brody parameter γ ≈ 0.9 (or scaled Shannon entropy
S̄ = 0.9), a thermal distribution with a well-defined inverse temperature β, consistent
with the (micro)canonical ensemble prediction (Equations (19) and (23)), emerges for an
overwhelming fraction of states with the exception of states in the tails of the spectrum
where the DOS is strongly suppressed (Figure 8a). The large deviations in the tails are
consistent with the corresponding deviations of S̄ in the same spectral region (Figure 4a).
With decreasing WBB and, correspondingly, decreasing γ or S̄, an increasing fraction of
states yields values of β that are far from the thermal ensemble prediction. Moreover, the
quality of the fit to a canonical density matrix measured by the variance of Δβ and indicated
by the color coding of Figure 8 drastically deteriorates. In other words, for a significant
fraction of states, the emerging RDMs do not conform with the constraints of a canonical
density matrix.

In order to quantify the decomposition of the Hilbert space into the subspace of states
|ψα〉 whose reduction to the subsystem yields a canonical density matrix and into the
complement whose reduction fails to yield such a thermal state, we introduce a threshold
for the variance of the inverse temperature Δβth above which we consider the eigenstate
canonicity to be failing. We then calculate for all states |ψα〉 the fraction of emerging
canonical density matrices satisfying Δβ ≤ Δβth. Of course, the resulting fraction of states
will depend on the precise value of Δβth chosen. We have determined these fractions for
thresholds ranging from Δβth = 5 × 10−3 to 1.5 × 10−2. Changes of the fractions due to
variation of Δβth are indicated by the vertical error bars in Figure 9. An unambiguous
trend of a monotonic increase of the fraction of canonical density matrices with chaoticity
is emerging, obviously unaffected by the choice of Δβth. This fraction representing Gibbs
states, denoted in the following by G, monotonically increases with quantum chaoticity
as parameterized by either the Brody parameter γ, G(γ), or alternatively by the scaled
Shannon entropy, G(S̄) (Figure 9). Since γ and S̄ both increase monotonically with the
bath interaction WBB (see Figure 5), this implies also a monotonic relationship G(WBB). The
conceptually important observation emerging from Figure 9 is that the degree of canonicity
of the RDM, G(γ), undergoes a continuous transition from the quantum-integrable (γ → 0)
to the quantum-chaotic limit (γ → 1). The strength of level repulsion in the NNLS
parameterized by γ directly determines the probability of finding the RDM of the impurity
represented by a Gibbs ensemble.

The approach of the RDM of the impurity to the Gibbs ensemble

DGibbs
α =

1
Zc,α

e−βα

(
ĤI+Ŵ(IB)

MF,α

)
, (30)

with Zc,α = Tr[e−βα

(
ĤI+W(IB)

MF,α

)
] can be also directly observed in the spatial site representa-

tion (j1, j2) of the RDM of the impurity (Figure 10b).
We illustrate the RDM in the site representation for two energetically nearest-neighbor

states (α = 13,637 and α = 13,638) when the system is in the transition regime between
integrable and non-integrable (in the present case, WBB = 0.1). We quantify the approach
to DGibbs

α through the density matrix site correlation function

Cα(Δj) =
Ms−Δj

∑
j=1

〈j|D(I)
α |j + Δj〉, (31)

where 〈j|D(I)
α |j′〉 is the RDM of the impurity (Equation (24)) in the site basis. While the

state α = 13,638 results in a nearly diagonal RDM in the site basis (Figure 10a) with
rapidly decaying site correlations closely following the prediction for a Gibbs ensemble
(Equation (30)), the adjacent state α = 13,637 yields a RDM with significant off-diagonal
entries, extended site correlations, and strong deviations from Equation (30). Thus, the
emergence of a thermal density matrix in the transition regime between quantum integra-
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bility and quantum chaos displays strong state-to-state fluctuations and is not a smooth
function of the energy Eα.

Figure 8. The inverse Boltzmann temperature βα of the impurity as a function of energy Eα for
the eigenstates of the entire system as obtained from fits to the RDM of the impurity for varying
interaction strengths WBB, (a) WBB = 1 with γ ≈ 0.9, (b) WBB = 0.3 with γ ≈ 0.8, (c) WBB = 0.1 with
γ ≈ 0.5 and (d) WBB = 0.05 with γ ≈ 0.3. The color bar on the right-hand side represents the variance
of βα, Δβα, obtained from the fit. Variances above Δβ > 0.05 are shown in red. The lines correspond
to β(E) obtained from the microcanonical ensemble Equation (19) (solid) and the canonical ensemble
Equation (23) (dashed), respectively. Other parameters are Ms = 15, NB = 7, WIB = 1.
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Figure 9. The fraction of canonical density matrices G obtained for the RDM of the impurity as a
function of the Brody parameter γ (lower horizontal axis, dots) or as a function of the scaled Shannon
entropy S̄ (upper horizontal axis, triangles). The dots are color-coded by the interaction strength WBB

between the bath particles. Horizontal error bars for γ indicate the uncertainty in the extraction of the
Brody parameter, horizontal error bars in S̄ indicate the standard deviation of the Shannon entropy
(see Figure 5). The vertical error bars give the variation of G under variation of the threshold Δβ.
Other parameters are Ms = 15, NB = 7, and WIB = 1.
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Figure 10. Site representation of the impurity RDM, 〈j2|D(I)
α |j1〉, resulting from the reduction of two

adjacent states (a) α = 13,638 and (b) α = 13,637 of the entire system. In (c), we compare the site
correlation function Cα(Δj) (Equation (31)) for these two states with the prediction for the ideal Gibbs
state (Equation (30)) (black open circles). The system is in the transition regime between quantum
integrable and quantum chaotic (WBB = 0.1). Other parameters are Ms = 15, NB = 7, WIB = 1.

As quantitative measure for the distance of a given RDM from the Gibbs ensemble,
we use the trace-class norm

ΔDα = ||D(I)
α − DGibbs

α ||1 (32)

with ||M||1 = Tr
√

M† M the largest of the Schatten p-norms (p = 1). For hermitian positive-
semidefinite matrices of unit trace, the Schatten 1-norm is bounded by 0 ≤ ||M1 − M2||1 ≤ 2.
We observe for RDMs derived from all eigenstates of the entire system (Figure 11) an
overall reduction of distances ΔDα from a canonical density matrix with increasing WBB.
For WBB = 1 (Figure 11a) in the (near) quantum chaotic limit, the vast majority of impurity
RDMs have a distance of �0.15 from an ideal Gibbs ensemble (apart from those reduced
from many-body states in the tail regions of the spectrum with low DOS). The distribution
of ΔDα mirrors the distribution of Shannon entropies (Figure 4). We note that for the
present finite quantum system, we find that the distance measured by the Schatten 1-norm
has a lower bound of ΔDα � 0.05. As the Schatten 1-norm is sensitive to small deviations in
both diagonal and off-diagonal elements, these deviations are due to residual fluctuations
(Equation (29), Figure 7) of the natural orbitals of the impurity which are expected to
vanish in the thermodynamic limit N → ∞. Indeed, plotting the value of the smallest
distance (ΔDα)min as a function of the dimension of the Hilbert space of the system dH
for three numerically feasible system sizes indicates that the minimal distance vanishes in
the thermodynamic limit as d−1/3

H (inset Figure 11a). With decreasing WBB, e.g., WBB = 0.1
in Figure 11b, the mean distance of RDMs from a Gibbs state significantly increases and,
moreover, the spread becomes much larger reflecting, again, the behavior of the Shannon
entropy (Figure 4c).
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Figure 11. Distribution of distances ΔDα (Equation (32)) from the (ideal) Gibbs state of the impurity
density matrices reduced from the eigenstates |ψα〉 of the large system with energy Eα. Shown are
only those states with variance Δβα < 0.01. The points are color-coded by the Shannon entropy of
their parent state |ψα〉. (a) Near the quantum chaotic limit (WBB = 1); (b) in the transition regime
between quantum integrability and quantum chaos (WBB = 0.1). The dashed horizontal line in (a)
marks the minimal distance (ΔDα)min plotted in the inset of (a) as a function of the dimension of the
Hilbert space dH for WBB = 1. Other parameters are Ms = 15, NB = 7, WIB = 1.

The emergence of canonical density matrices, i.e., of Gibbs states for almost all |ψα〉 in
the quantum chaotic limit (γ � 1 or S̄ � 1) can be viewed as a rather specific manifestation
and extension of the ETH [5–8]. The local observable in this case is the RDM of the impurity,
D(I)

α , itself. Its diagonal elements are, indeed, a smooth function of the total energy Eα

as predicted by ETH but now, more specifically, Boltzmann-distributed ∝ e−βαε̄
(I)
m,α over

impurity states with the inverse temperature imprinted by Eα. The present analysis covers,
in addition, also the transition regime between quantum integrability and quantum chaos
(0 < γ < 1) where, in general, the ETH does not apply. A canonical density matrix may
still emerge but now only for a decreasing fraction of eigenstates of the finite large system.
The size of this fraction G is predicted by the degree of quantum chaoticity as measured by
the Brody parameter γ or Shannon entropy S̄ (Figure 9).

The direct relation between the emergence of the canonical density matrix for a small
subsystem from eigenstate reduction and the quantum chaoticity of the large system
it is embedded in, established here for a finite quantum system, raises the conceptual
question as to the extension of this connection to the thermodynamic (N → ∞) limit.
Clearly, this question cannot be conclusively addressed by the present method of exact
diagonalization. Nevertheless, we can provide evidence to this effect by exploring the
scaling with system size still within computational reach. We first establish that the degree
of quantum chaoticity as measured by the Brody parameter γ (or the Shannon entropy
S̄) indeed increases with system size at fixed strength of the interaction WBB that breaks
quantum integrability (Figure 12).
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Figure 12. Variation of the Brody parameter γ characterizing the transition from quantum integrability
to quantum chaos as a function of the bath–bath interaction WBB breaking quantum integrability
shown for different system sizes. The impurity–bath interaction is WIB = 1.

We vary the system size by increasing the total number of sites while keeping the
system at (approximate) half-filling of bath particles. The corresponding Hilbert space
increases from dH = 22,308 (Ms = 13, NB = 6) to dH = 96,525 (Ms = 15, NB = 7). The
observed increase of quantum chaoticity with system size is qualitatively in line with
properties of classical chaos: In a mixed phase space with surviving local regular structures
such as tori, their influence on phase space dynamics is rapidly diminishing with increasing
phase space dimension a prominent example of which is Arnold diffusion [3,4]. This
increase of quantum chaoticity with system size at fixed interaction strength turns out to be
key for the emergence of a universal, i.e., (nearly) system-size-independent, interrelation
between the fraction of canonical eigenstates and the degree of quantum chaoticity. Both
the Brody parameter γ as well as the fraction of density matrices complying with the Gibbs
ensemble increase with system size at fixed bath interaction strength. As a consequence, a
near universal, i.e., size-independent, relation G(γ) between the fraction of (approximate)
Gibbs states and the degree of quantum chaos as measured by γ emerges (Figure 13).

The data for different combinations of values of WBB and Ms fall on the same curve. A
very similar relation would emerge for G(S̄) as a function of the scaled Shannon entropy.
We have thus established the remarkable feature that the fraction of canonical eigenstates,
i.e., the likelihood that a subsystem is in a Gibbs state when the large but finite system is in
a pure energy eigenstate with zero von Neumann entropy is controlled and can be tuned
by γ (or S̄) and, in turn, by the degree of level repulsion in the quantum many-body system
which is controlled by γ.
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Figure 13. Universal relation between the fraction G of RDMs of the impurity converging to a Gibbs
state and the Brody parameter γ for different combinations of system sizes (Ms and NB) and bath
interaction strengths WBB. Impurity–bath interaction in all systems considered is WIB = 1. Dashed
line to guide the eye.

6. Conclusions and Outlook

In this work, we have explored the emergence of a thermal state (or Gibbs ensemble) of
a small (sub)system in contact with a bath when the combined large but finite deterministic
quantum system is isolated and in a well-defined energy eigenstate. As prototypical
case, we have considered an impurity embedded in an interacting spin-polarized Fermi–
Hubbard many-body bath which facilitates a clear-cut subsystem–bath decomposition and
a tunable transition of the entire system from quantum integrability to quantum chaos. By
tracing out the bath degrees of freedom, we have investigated how many of the resulting
reduced density matrices of the subsystem represent a canonical density matrix. We have
shown that the probability for finding a canonical density matrix monotonically increases
with the degree of quantum chaos. The degree of quantum chaos is identified here by both
the energy-level statistics as well as by the randomness of the eigenstates as measured by
the Shannon entropy. The likelihood for the emergence of thermal states is thus found to be
controlled by the degree of quantum chaoticity as parameterized by the Brody parameter
or the Shannon entropy. Even though our simulations are limited to finite-size systems,
the present results for varying system sizes suggest that the relation between the fraction
of eigenstates of the isolated many-body system whose reduction to a small subsystem
yields a reduced canonical density matrix and the degree of quantum chaoticity is universal,
i.e., size-independent.

Each many-body eigenstate represents the fine-grained version of the energy shell
of the microcanonical ensemble of the entire impurity–bath system. This connection
between the fraction of canonical eigenstates and quantum chaoticity thus offers a direct
quantum analogue to the role of classical chaos which Boltzmann invoked in deducing
the classical (micro-)canonical ensemble. One can view this as an example of classical–
quantum correspondence to this cornerstone of the foundation of statistical mechanics. The
statistical ensemble properties can already emerge for isolated energy eigenstates without
invoking any randomness, e.g., coarse-graining over a macroscopically thin energy shell or
superposition of many eigenstates of the isolated large system as frequently employed. The
emergence of statistical ensemble properties from the reduction of pure states was already
early anticipated by Landau and Lifshitz [42] and later related to quantum chaos [14]. The
present study establishes a direct quantitative relationship between the degree of canonicity
and the degree of quantum chaos, in particular, also covering the transition regime from
quantum integrability to quantum chaos.

The present results are also expected to have implications for the topical issue of ther-
malization in finite quantum systems [24,26,27,30]. In this paper, we intentionally avoided
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this notion and, instead, focused on thermal equilibrium states as we deduce the canonical
density matrix from stationary energy eigenstates bypassing any explicit time dependence
of the dynamics. Thermalization of an initial non-equilibrium state is, by contrast, a fun-
damental probe of the time evolution of quantum many-body systems. Up to now, one
primary focus has been on quantum quenches, the relaxation of out-off equilibrium initial
states. Their time evolution has typically shown a transition from an exponential decay
for weakly perturbed many-body systems to a Gaussian decay in the strongly coupled
limit, however, without an unambiguous correlation to quantum chaos [105,106]. The
Shannon entropy was found to linearly increase with time before reaching saturation [107].
For disordered systems, an initial rapid decay followed by a slow power-law relaxation
of occupation numbers has been observed [66,102]. The extension of the present study
to a non-equilibrium initial state of a deterministic many-body system would yield the
time evolution of the entire one-body RDM, and its eigenvalues and eigenvectors, the time
dependence of which remains to be explored. Moreover, the dependence of the relaxation
dynamics of the RDM on the choice of the initial state for systems in the transition regime
between quantum integrability and quantum chaos (i.e., for intermediate values of the
Brody parameter γ) is of particular interest. Most importantly, will quantum chaos play an
analogous role for the process of mixing as classical chaos does for classical non-equilibrium
dynamics and the relaxation to equilibrium? The origin and properties of such “quantum
mixing” remain a widely open question.

Author Contributions: Data curation, M.K. and I.B.; Formal analysis, J.B. and I.B.; Funding acquisition,
J.B. and I.B.; Investigation, M.K., J.B. and I.B.; Methodology, I.B.; Software, M.K., S.D., F.L. and I.B.;
Supervision, I.B.; Validation, I.B.; Visualization, I.B.; Writing—original draft, I.B.; Writing—review and
editing, S.D., F.L., J.B. and I.B. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the WWTF grant MA-14002, the Austrian Science Fund (FWF)
grant P 35539-N, the FWF doctoral college Project No. FWF- W1243 (Solids4Fun), as well as the
International Max Planck Research School of Advanced Photon Science (IMPRS-APS). Calculations
were performed on the Vienna Scientific Cluster (VSC3 and VSC4).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The presented data can be obtained from the corresponding author
upon a reasonable request.

Acknowledgments: We thank Sebastian Bichelmaier for helpful discussions.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

DOS Density of states
ETH Eigenstate thermalization hypothesis
GOE Gaussian orthogonal ensemble
MF Mean field
NNLS Nearest-neighbor level spacing
RDM Reduced density matrix

References

1. Boltzmann, L. Vorlesungen über Gastheorie; Verlag Johann Ambrosius Barth: Leipzig, Germany, 1896.
2. Huang, K. Statistical Mechanics; Wiley: New York, NY, USA, 1988.
3. Arnold, V.I. Mathematical Methods of Classical Mechanics; Springer: New York, NY, USA, 1979.
4. Lichtenberg, A.J.; Lieberman, M.A. Regular and Chaotic Dynamics; Springer: New York, NY, USA, 1991.
5. Deutsch, J.M. Quantum statistical mechanics in a closed system. Phys. Rev. A 1991, 43, 2046–2049. [CrossRef]
6. Srednicki, M. Chaos and quantum thermalization. Phys. Rev. E 1994, 50, 888–901. [CrossRef] [PubMed]

192



Entropy 2022, 24, 1740

7. Srednicki, M. Thermal fluctuations in quantized chaotic systems. J. Phys. A Math. Gen. 1996, 29, L75–L79. [CrossRef]
8. Srednicki, M. The approach to thermal equilibrium in quantized chaotic systems. J. Phys. A Math. Gen. 1999, 32, 1163–1175.

[CrossRef]
9. Zelevinsky, V.; Brown, B.A.; Frazier, N.; Horoi, M. The nuclear shell model as a testing ground for many-body quantum chaos.

Phys. Rep. 1996, 276, 85–176. [CrossRef]
10. Flambaum, V.V.; Izrailev, F.M.; Casati, G. Towards a statistical theory of finite Fermi systems and compound states: Random

two-body interaction approach. Phys. Rev. E 1996, 54, 2136–2139. [CrossRef]
11. Flambaum, V.V.; Izrailev, F.M. Statistical theory of finite Fermi systems based on the structure of chaotic eigenstates. Phys. Rev. E

1997, 56, 5144–5159. [CrossRef]
12. Borgonovi, F.; Guarneri, I.; Izrailev, F.; Casati, G. Chaos and thermalization in a dynamical model of two interacting particles.

Phys. Lett. A 1998, 247, 140–144. [CrossRef]
13. Borgonovi, F.; Celardo, G.; Izrailev, F.M.; Casati, G. Semiquantal Approach to Finite Systems of Interacting Particles. Phys. Rev.

Lett. 2002, 88, 054101. [CrossRef]
14. Borgonovi, F.; Izrailev, F.; Santos, L.; Zelevinsky, V. Quantum chaos and thermalization in isolated systems of interacting particles.

Phys. Rep. 2016, 626, 1–58. [CrossRef]
15. Müller, M.P.; Adlam, E.; Masanes, L.; Wiebe, N. Thermalization and Canonical Typicality in Translation-Invariant Quantum

Lattice Systems. Commun. Math. Phys. 2015, 340, 499–561. [CrossRef]
16. Reimann, P.; Gemmer, J. Why are macroscopic experiments reproducible? Imitating the behavior of an ensemble by single pure

states. Phys. A Stat. Mech. Its Appl. 2020, 552, 121840. [CrossRef]
17. Brenes, M.; Pappalardi, S.; Goold, J.; Silva, A. Multipartite Entanglement Structure in the Eigenstate Thermalization Hypothesis.

Phys. Rev. Lett. 2020, 124, 040605. [CrossRef] [PubMed]
18. Brenes, M.; Pappalardi, S.; Mitchison, M.T.; Goold, J.; Silva, A. Out-of-time-order correlations and the fine structure of eigenstate

thermalization. Phys. Rev. E 2021, 104, 034120. [CrossRef] [PubMed]
19. Sugimoto, S.; Hamazaki, R.; Ueda, M. Eigenstate Thermalization in Long-Range Interacting Systems. Phys. Rev. Lett. 2022,

129, 030602. [CrossRef]
20. Wang, J.; Benenti, G.; Casati, G.; Wang, W.G. Complexity of quantum motion and quantum-classical correspondence: A

phase-space approach. Phys. Rev. Res. 2020, 2, 043178. [CrossRef]
21. Wang, J.; Benenti, G.; Casati, G.; Wang, W.g. Quantum chaos and the correspondence principle. Phys. Rev. E 2021, 103, L030201.

[CrossRef]
22. Braun, S.; Ronzheimer, J.P.; Schreiber, M.; Hodgman, S.S.; Rom, T.; Bloch, I.; Schneider, U. Negative Absolute Temperature for

Motional Degrees of Freedom. Science 2013, 339, 52–55. [CrossRef]
23. Kaufman, A.M.; Tai, M.E.; Lukin, A.; Rispoli, M.; Schittko, R.; Preiss, P.M.; Greiner, M. Quantum thermalization through

entanglement in an isolated many-body system. Science 2016, 353, 794–800. [CrossRef]
24. Jansen, D.; Stolpp, J.; Vidmar, L.; Heidrich-Meisner, F. Eigenstate thermalization and quantum chaos in the Holstein polaron

model. Phys. Rev. B 2019, 99, 155130. [CrossRef]
25. Abanin, D.A.; Altman, E.; Bloch, I.; Serbyn, M. Colloquium: Many-body localization, thermalization, and entanglement. Rev. Mod.

Phys. 2019, 91, 021001. [CrossRef]
26. Prüfer, M.; Kunkel, P.; Strobel, H.; Lannig, S.; Linnemann, D.; Schmied, C.M.; Berges, J.; Gasenzer, T.; Oberthaler, M.K. Observation

of universal dynamics in a spinor Bose gas far from equilibrium. Nature 2018, 563, 217–220. [CrossRef] [PubMed]
27. Erne, S.; Bücker, R.; Gasenzer, T.; Berges, J.; Schmiedmayer, J. Universal dynamics in an isolated one-dimensional Bose gas far

from equilibrium. Nature 2018, 563, 225–229. [CrossRef] [PubMed]
28. Scherg, S.; Kohlert, T.; Sala, P.; Pollmann, F.; Hebbe Madhusudhana, B.; Bloch, I.; Aidelsburger, M. Observing non-ergodicity due

to kinetic constraints in tilted Fermi-Hubbard chains. Nat. Commun. 2021, 12, 4490. [CrossRef]
29. Neyenhuis, B.; Zhang, J.; Hess, P.W.; Smith, J.; Lee, A.C.; Richerme, P.; Gong, Z.X.; Gorshkov, A.V.; Monroe, C. Observation of

prethermalization in long-range interacting spin chains. Sci. Adv. 2017, 3, e1700672. [CrossRef]
30. Neill, C.; Roushan, P.; Fang, M.; Chen, Y.; Kolodrubetz, M.; Chen, Z.; Megrant, A.; Barends, R.; Campbell, B.; Chiaro, B.; et al.

Ergodic dynamics and thermalization in an isolated quantum system. Nat. Phys. 2016, 12, 1037–1041. [CrossRef]
31. Trotzky, S.; Chen, Y.A.; Flesch, A.; McCulloch, I.P.; Schollwöck, U.; Eisert, J.; Bloch, I. Probing the relaxation towards equilibrium

in an isolated strongly correlated one-dimensional Bose gas. Nat. Phys. 2012, 8, 325–330. [CrossRef]
32. Neumann, J.V. Beweis des Ergodensatzes und desH-Theorems in der neuen Mechanik. Z. Phys. 1929, 57, 30–70. [CrossRef]
33. Goldstein, S.; Lebowitz, J.L.; Tumulka, R.; Zanghì, N. Long-time behavior of macroscopic quantum systems: Commentary

accompanying the English translation of John von Neumann’s 1929 article on the quantum ergodic theorem. Eur. Phys. J. H 2010,
35, 173–200. [CrossRef]

34. D’Alessio, L.; Kafri, Y.; Polkovnikov, A.; Rigol, M. From quantum chaos and eigenstate thermalization to statistical mechanics
and thermodynamics. Adv. Phys. 2016, 65, 239–362. [CrossRef]

35. Siskens, T.J.; Bongaarts, P.J.M. Ergodicity of operators in finite quantum systems. Physica 1973, 68, 315–341. [CrossRef]
36. Bongaarts, P.J.M.; Siskens, T.J. Observables, constants of the motion and ergodicity in quantum-statistical mechanics of finite

systems. Physica 1974, 71, 529–559. [CrossRef]

193



Entropy 2022, 24, 1740

37. Mori, T.; Ikeda, T.N.; Kaminishi, E.; Ueda, M. Thermalization and prethermalization in isolated quantum systems: A theoretical
overview. J. Phys. At. Mol. Opt. Phys. 2018, 51, 112001. [CrossRef]

38. Popescu, S.; Short, A.J.; Winter, A. Entanglement and the foundations of statistical mechanics. Nat. Phys. 2006, 2, 754–758.
[CrossRef]

39. Goldstein, S.; Lebowitz, J.L.; Tumulka, R.; Zanghì, N. Canonical Typicality. Phys. Rev. Lett. 2006, 96, 050403. [CrossRef] [PubMed]
40. Reimann, P. Typicality for Generalized Microcanonical Ensembles. Phys. Rev. Lett. 2007, 99, 160404. [CrossRef]
41. Schrödinger, E. Statistical Thermodynamics; Cambridge University Press: Cambridge, UK, 1952.
42. Landau, L.D.; Lifshitz, E.M. Statistical Physics; Pergamon Press: Oxford, UK, 1958.
43. Bohigas, O.; Giannoni, M.J.; Schmit, C. Characterization of Chaotic Quantum Spectra and Universality of Level Fluctuation Laws.

Phys. Rev. Lett. 1984, 52, 1–4. [CrossRef]
44. Casati, G.; Chirikov, B.V.; Izraelev, F.M.; Ford, J. Stochastic behavior of a quantum pendulum under a periodic perturbation. In

Stochastic Behavior in Classical and Quantum Hamiltonian Systems; Series Title: Lecture Notes in Physics; Casati, G., Ford, J., Eds.;
Springer: Berlin/Heidelberg, Germany, 1979; Volume 93, pp. 334–352. [CrossRef]

45. Casati, G. Relevance of classical chaos in quantum mechanics: The hydrogen atom in a monochromatic field. Phys. Rep. 1987,
154, 77–123. [CrossRef]

46. Haake, F. Quantum Signatures of Chaos; Springer: Berlin/Heidelberg, Germany, 2001.
47. Gutzwiller, M. Chaos in Classical and Quantum Mechanics; Springer: New York, NY, USA, 1990.
48. Berry, M. Quantum chaology, not quantum chaos. Phys. Scr. 1989, 40, 335–336. [CrossRef]
49. Prosen, T.; Robnik, M. Energy level statistics in the transition region between integrability and chaos. J. Phys. A Math. Gen. 1993,

26, 2371–2387. [CrossRef]
50. Berry, M.V.; Tabor, M. Level Clustering in the Regular Spectrum. Proc. R. Soc. A Math. Phys. Eng. Sci. 1977, 356, 375–394.

[CrossRef]
51. Mehta, M.L. Random Matrices; Elsevier Academic Press: Amsterdam, The Netherlands, 2004.
52. Shapiro, M.; Goelman, G. Onset of Chaos in an Isolated Energy Eigenstate. Phys. Rev. Lett. 1984, 53, 1714–1717. [CrossRef]
53. Rigol, M.; Dunjko, V.; Olshanii, M. Thermalization and its mechanism for generic isolated quantum systems. Nature 2008,

452, 854–858. [CrossRef] [PubMed]
54. Rigol, M. Breakdown of Thermalization in Finite One-Dimensional Systems. Phys. Rev. Lett. 2009, 103, 100403. [CrossRef]
55. Rigol, M. Quantum quenches and thermalization in one-dimensional fermionic systems. Phys. Rev. A 2009, 80, 053607. [CrossRef]
56. Rigol, M.; Srednicki, M. Alternatives to Eigenstate Thermalization. Phys. Rev. Lett. 2012, 108, 110601. [CrossRef]
57. Santos, L.F.; Rigol, M. Localization and the effects of symmetries in the thermalization properties of one-dimensional quantum

systems. Phys. Rev. E 2010, 82, 031130. [CrossRef]
58. Santos, L.F.; Rigol, M. Onset of quantum chaos in one-dimensional bosonic and fermionic systems and its relation to thermalization.

Phys. Rev. E 2010, 81, 036206. [CrossRef]
59. Genway, S.; Ho, A.F.; Lee, D.K.K. Dynamics of Thermalization in Small Hubbard-Model Systems. Phys. Rev. Lett. 2010,

105, 260402. [CrossRef]
60. Genway, S.; Ho, A.F.; Lee, D.K.K. Thermalization of local observables in small Hubbard lattices. Phys. Rev. A 2012, 86, 023609.

[CrossRef]
61. Kim, H.; Ikeda, T.N.; Huse, D.A. Testing whether all eigenstates obey the eigenstate thermalization hypothesis. Phys. Rev. E 2014,

90, 052105. [CrossRef]
62. Garrison, J.R.; Grover, T. Does a Single Eigenstate Encode the Full Hamiltonian? Phys. Rev. X 2018, 8, 021026. [CrossRef]
63. Schlagheck, P.; Shepelyansky, D.L. Dynamical thermalization in Bose-Hubbard systems. Phys. Rev. E 2016, 93, 012126. [CrossRef]
64. Brenes, M.; LeBlond, T.; Goold, J.; Rigol, M. Eigenstate Thermalization in a Locally Perturbed Integrable System. Phys. Rev. Lett.

2020, 125, 070605. [CrossRef]
65. Santos, L.F.; Polkovnikov, A.; Rigol, M. Weak and strong typicality in quantum systems. Phys. Rev. E 2012, 86, 010102. [CrossRef]

[PubMed]
66. Krause, U.; Pellegrin, T.; Brouwer, P.W.; Abanin, D.A.; Filippone, M. Nucleation of Ergodicity by a Single Mobile Impurity in

Supercooled Insulators. Phys. Rev. Lett. 2021, 126, 030603. [CrossRef]
67. Gaunt, A.L.; Schmidutz, T.F.; Gotlibovych, I.; Smith, R.P.; Hadzibabic, Z. Bose-Einstein Condensation of Atoms in a Uniform

Potential. Phys. Rev. Lett. 2013, 110, 200406. [CrossRef] [PubMed]
68. Fukuhara, T.; Kantian, A.; Endres, M.; Cheneau, M.; Schauß, P.; Hild, S.; Bellem, D.; Schollwöck, U.; Giamarchi, T.; Gross, C.; et al.

Quantum dynamics of a mobile spin impurity. Nat. Phys. 2013, 9, 235–241. [CrossRef]
69. Haller, E.; Hudson, J.; Kelly, A.; Cotta, D.A.; Peaudecerf, B.; Bruce, G.D.; Kuhr, S. Single-atom imaging of fermions in a

quantum-gas microscope. Nat. Phys. 2015, 11, 738–742. [CrossRef]
70. Parsons, M.F.; Huber, F.; Mazurenko, A.; Chiu, C.S.; Setiawan, W.; Wooley-Brown, K.; Blatt, S.; Greiner, M. Site-Resolved Imaging

of Fermionic Li 6 in an Optical Lattice. Phys. Rev. Lett. 2015, 114, 213002. [CrossRef]
71. Cheuk, L.W.; Nichols, M.A.; Okan, M.; Gersdorf, T.; Ramasesh, V.V.; Bakr, W.S.; Lompe, T.; Zwierlein, M.W. Quantum-Gas

Microscope for Fermionic Atoms. Phys. Rev. Lett. 2015, 114, 193001. [CrossRef] [PubMed]
72. Greif, D.; Parsons, M.F.; Mazurenko, A.; Chiu, C.S.; Blatt, S.; Huber, F.; Ji, G.; Greiner, M. Site-resolved imaging of a fermionic

Mott insulator. Science 2016, 351, 953–957. [CrossRef] [PubMed]

194



Entropy 2022, 24, 1740

73. Schreiber, M.; Hodgman, S.S.; Bordia, P.; Lüschen, H.P.; Fischer, M.H.; Vosk, R.; Altman, E.; Schneider, U.; Bloch, I. Observation of
many-body localization of interacting fermions in a quasirandom optical lattice. Science 2015, 349, 842–845. [CrossRef] [PubMed]

74. Boll, M.; Hilker, T.A.; Salomon, G.; Omran, A.; Nespolo, J.; Pollet, L.; Bloch, I.; Gross, C. Spin- and density-resolved microscopy of
antiferromagnetic correlations in Fermi-Hubbard chains. Science 2016, 353, 1257–1260. [CrossRef]

75. Berry, M.V. Regular and irregular semiclassical wavefunctions. J. Phys. A Math. Gen. 1977, 10, 2083–2091. [CrossRef]
76. Pandey, M.; Claeys, P.W.; Campbell, D.K.; Polkovnikov, A.; Sels, D. Adiabatic Eigenstate Deformations as a Sensitive Probe for

Quantum Chaos. Phys. Rev. X 2020, 10, 041017. [CrossRef]
77. Wang, Q.; Robnik, M. Statistical properties of the localization measure of chaotic eigenstates in the Dicke model. Phys. Rev. E

2020, 102, 032212. [CrossRef]
78. Lozej, C.; Casati, G.; Prosen, T. Quantum chaos in triangular billiards. Phys. Rev. Res. 2022, 4, 013138. [CrossRef]
79. Li, B.; Robnik, M. Statistical properties of high-lying chaotic eigenstates. J. Phys. A Math. Gen. 1994, 27, 5509–5523. [CrossRef]
80. Gurevich, I.I.; Pevzner, M.I. “Repulsion” of Nuclear Levels. J. Exp. Theor. Phys. 1957, 4, 278.
81. Oganesyan, V.; Huse, D.A. Localization of interacting fermions at high temperature. Phys. Rev. B 2007, 75, 155111. [CrossRef]
82. Atas, Y.Y.; Bogomolny, E.; Giraud, O.; Roux, G. Distribution of the Ratio of Consecutive Level Spacings in Random Matrix

Ensembles. Phys. Rev. Lett. 2013, 110, 084101. [CrossRef] [PubMed]
83. Berry, M.V.; Robnik, M. Semiclassical level spacings when regular and chaotic orbits coexist. J. Phys. A Math. Gen. 1984,

17, 2413–2421. [CrossRef]
84. Hasegawa, H.; Mikeska, H.J.; Frahm, H. Stochastic formulation of energy-level statistics. Phys. Rev. A 1988, 38, 395–399.

[CrossRef]
85. Caurier, E.; Grammaticos, B.; Ramani, A. Level repulsion near integrability: A random matrix analogy. J. Phys. A Math. Gen. 1990,

23, 4903–4909. [CrossRef]
86. Lenz, G.; Haake, F. Reliability of small matrices for large spectra with nonuniversal fluctuations. Phys. Rev. Lett. 1991, 67, 1–4.

[CrossRef]
87. Izrailev, F.M. Quantum localization and statistics of quasienergy spectrum in a classically chaotic system. Phys. Lett. A 1988,

134, 13–18. [CrossRef]
88. Brody, T.A.; Flores, J.; French, J.B.; Mello, P.A.; Pandey, A.; Wong, S.S.M. Random-matrix physics: Spectrum and strength

fluctuations. Rev. Mod. Phys. 1981, 53, 385–479. [CrossRef]
89. Yang, X.; Burgdörfer, J. Molecular-dynamics approach to the statistical properties of energy levels. Phys. Rev. Lett. 1991,

66, 982–985. [CrossRef]
90. Libisch, F.; Stampfer, C.; Burgdörfer, J. Graphene quantum dots: Beyond a Dirac billiard. Phys. Rev. B 2009, 79, 115423. [CrossRef]
91. Izrailev, F.M. Simple models of quantum chaos: Spectrum and eigenfunctions. Phys. Rep. 1990, 196, 299–392. [CrossRef]
92. McDonald, S.W.; Kaufman, A.N. Wave chaos in the stadium: Statistical properties of short-wave solutions of the Helmholtz

equation. Phys. Rev. A 1988, 37, 3067–3086. [CrossRef] [PubMed]
93. Bell, R.J.; Dean, P. Atomic vibrations in vitreous silica. Discuss. Faraday Soc. 1970, 50, 55. [CrossRef]
94. Blümel, R.; Smilansky, U. Suppression of classical stochasticity by quantum-mechanical effects in the dynamics of periodically

perturbed surface-state electrons. Phys. Rev. A 1984, 30, 1040–1051. [CrossRef]
95. Dunkel, J.; Hilbert, S. Consistent thermostatistics forbids negative absolute temperatures. Nat. Phys. 2014, 10, 67–72. [CrossRef]
96. Hilbert, S.; Hänggi, P.; Dunkel, J. Thermodynamic laws in isolated systems. Phys. Rev. E 2014, 90, 062116. [CrossRef]
97. Hertz, P. Über die mechanischen Grundlange der Thermodynamik. Ann. Phys. (Leipz.) 1910, 338, 225–274. [CrossRef]
98. Gibbs, J.W. Elementary Principles in Statistical Mechanics; Reprint of the 1902 edition; Dover: Mineola, NY, USA, 2014.
99. Löwdin, P.O.; Shull, H. Natural Orbitals in the Quantum Theory of Two-Electron Systems. Phys. Rev. 1956, 101, 1730–1739.

[CrossRef]
100. Bera, S.; Schomerus, H.; Heidrich-Meisner, F.; Bardarson, J.H. Many-Body Localization Characterized from a One-Particle

Perspective. Phys. Rev. Lett. 2015, 115, 046603. [CrossRef]
101. Bera, S.; Martynec, T.; Schomerus, H.; Heidrich-Meisner, F.; Bardarson, J.H. One-particle density matrix characterization of

many-body localization. Ann. Phys. 2017, 529, 1600356. [CrossRef]
102. Lezama, T.L.M.; Bera, S.; Schomerus, H.; Heidrich-Meisner, F.; Bardarson, J.H. One-particle density matrix occupation spectrum

of many-body localized states after a global quench. Phys. Rev. B 2017, 96, 060202. [CrossRef]
103. Purcell, E.M.; Pound, R.V. A Nuclear Spin System at Negative Temperature. Phys. Rev. 1951, 81, 279–280. [CrossRef]
104. Ramsey, N.F. Thermodynamics and Statistical Mechanics at Negative Absolute Temperatures. Phys. Rev. 1956, 103, 20–28.

[CrossRef]
105. Torres-Herrera, E.J.; Santos, L.F. Local quenches with global effects in interacting quantum systems. Phys. Rev. E 2014, 89, 062110.

[CrossRef] [PubMed]
106. Torres-Herrera, E.J.; Kollmar, D.; Santos, L.F. Relaxation and thermalization of isolated many-body quantum systems. Phys. Scr.

2015, T165, 014018. [CrossRef]
107. Santos, L.F.; Borgonovi, F.; Izrailev, F.M. Onset of chaos and relaxation in isolated systems of interacting spins: Energy shell

approach. Phys. Rev. E 2012, 85, 036209. [CrossRef]

195





Citation: Liu, X.; Wang, Q.-H.; Gong,

J. On the Quantization of AB Phase in

Nonlinear Systems. Entropy 2022, 24,

1835. https://doi.org/10.3390/

e24121835

Academic Editor: Marko Robnik

Received: 30 November 2022

Accepted: 12 December 2022

Published: 16 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

On the Quantization of AB Phase in Nonlinear Systems

Xi Liu 1, Qing-Hai Wang 2 and Jiangbin Gong 2,3,*

1 NUS Graduate School—Integrative Sciences and Engineering Programme (ISEP),
National University of Singapore, Singapore 119077, Singapore

2 Department of Physics, National University of Singapore, Singapore 117551, Singapore
3 Center for Quantum Technologies, National University of Singapore, Singapore 117543, Singapore
* Correspondence: phygj@nus.edu.sg

Abstract: Self-intersecting energy band structures in momentum space can be induced by nonlinearity
at the mean-field level, with the so-called nonlinear Dirac cones as one intriguing consequence. Using
the Qi-Wu-Zhang model plus power law nonlinearity, we systematically study in this paper the
Aharonov–Bohm (AB) phase associated with an adiabatic process in the momentum space, with
two adiabatic paths circling around one nonlinear Dirac cone. Interestingly, for and only for Kerr
nonlinearity, the AB phase experiences a jump of π at the critical nonlinearity at which the Dirac cone
appears and disappears (thus yielding π-quantization of the AB phase so long as the nonlinear Dirac
cone exists), whereas for all other powers of nonlinearity, the AB phase always changes continuously
with the nonlinear strength. Our results may be useful for experimental measurement of power-law
nonlinearity and shall motivate further fundamental interest in aspects of geometric phase and
adiabatic following in nonlinear systems.

Keywords: AB phase; Berry phase; power-law nonlinearity; Dirac cone; adiabatic dynamics; quantization

1. Introduction

The dynamics depicted by a nonlinear discretized Schödinger equation (NDSE) can
be extremely rich, including the emergence of many-dimensional chaos, solitons, and
breathers, etc. The problem can be much reduced by assuming the translational invariance
of a wave under consideration. With this assumption, the main physics is about the
features of Bloch waves, the associated energy bands, and how they respond to changes in
the parameters of a nonlinear system. Interestingly, the nonlinear Bloch bands of NDSE
can induce gapless band structures absent in linear systems, such as 2-dimensional (2D)
nonlinear Dirac cones [1] induced by Kerr nonlinearity [2]. Even more peculiarly, such
nonlinear Dirac cones are formed by exotic nonlinear energy bands in a subregime of the
Brillouin zone [1,3–8].

As a close analog to a setting in real space to measure the Aharonov–Bohm (AB)
phase around a singularity point with magnetic flux, let us now imagine two adiabatic
paths, in the momentum space, circling around a band-crossing point. If we adiabatically
change the Bloch momentum, so as to guide the Bloch wave to evolve along the two
adiabatic paths, the final phase difference thus generated between the two adiabatic paths
is termed the nonlinear AB phase [1]. One may naïvely think of the following: provided
that the dynamical phases between the two adiabatic paths are identical and hence have
zero contribution to the phase difference of interest, the obtained AB phase would be
just the Berry phase associated with the band degeneracy point. The actual physics turns
out to be more interesting than just a Berry phase. As a result of nonlinearity, any small
deviation of the adiabatically following state from the instantaneous Bloch wave causes
a tiny correction to the dynamical phase, and accumulation of such tiny corrections over
the entire adiabatic protocol yields an unfamiliar geometrical phase on top of the expected
Berry phase. Remarkably, as a possible means of topological characterization of nonlinear
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Dirac cones, it is found in Ref. [1] that the nonlinear AB phase around nonlinear Dirac cones
induced by Kerr nonlinearity added to the so-called Qi-Wu-Zhang (QWZ) model [9] is
quantized in π, whereas the Berry phase is not quantized (thus in sharp contrast to a variety
of linear systems, where the Berry phase around a Dirac cone is quantized in π [10–13]).
Echoing with the finding in [1], Ref. [3] found π-quantization of a nonlinear Zak phase
and Ref. [14] further confirmed the π-quantization of the nonlinear AB phase around a
nodal line induced by Kerr nonlinearity.

The goal of this work is entirely focused on aspects of the nonlinear AB phase around
Dirac cones induced by general power law nonlinearity [15–23]. In this way, it becomes
possible to answer whether the previously obtained AB phase quantization is unique to
Kerr nonlinearity and if so, why there is such uniqueness. Using the QWZ model [9] as
the linear limit, we are able to analytically show that Kerr nonlinearity happens to be a
critical case among all kinds of power law nonlinearity. Specifically, for any nonlinearity
other than the cubic order, the π-quantization of nonlinear AB phase does not exist. Our
analytical results are further confirmed by direct numerical simulations.

2. Hamiltonian and Energy Spectrum

The momentum-space Hamiltonian is composed of a QWZ model with power law
nonlinearity characterized by a parameter p:

Ĥ(ψ) = J1 sin k1σ1 + J2 sin k2σ2 + β(k1, k2)σ3 + g
[|ψ1|2p 0

0 |ψ2|2p

]
, (1)

where σi are Pauli matrices and ψa are two components of the wavefunction, ψ =

[
ψ1
ψ2

]
.

The normalization of the wavefunction means that |ψ1|2 + |ψ2|2 = 1. The nonlinearity
parameter p is a non-negative real number. The Kerr nonlinearity corresponds to p = 1.
The parameters k1 and k2 are two quasimomenta, whose values will be adiabatically tuned
in order to implement an actual adiabatic protocol to generate the nonlinear AB phase.

To solve the nonlinear eigenvalue problem,

Ĥ(ψ) |ψ〉 = E |ψ〉 , (2)

we introduce a real parameter x as

ψ1 =

√
1 + x

2
, ψ2 =

√
1 − x

2
eiϕ. (3)

We will see later that the angular variable ϕ is the same as in the Figure 1. It turns out that x
is the central quantity for expressing energy, dynamical phase, Berry phase, and nonlinear
AB phase. It can be shown that the instantaneous eigenenergy is

E =
β

x
+

g
x

[(
1 + x

2

)p+1
−
(

1 − x
2

)p+1
]

, (4)

where x satisfies the following algebraic equation,

1 − x2

x2

{
β +

g
2

[(
1 + x

2

)p
−
(

1 − x
2

)p]}2

= |γ|2, (5)

with γ := J1 sin k1 − i J2 sin k2.
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Figure 1. Dynamical paths in the momentum space. Path SWN and path SEN are symmetric halves
of the perimeter of the circle. The system starts its adiabatic following at point S, and ends at point N.
The two paths are parameterized by ϕ in the main text.

In order to have a Dirac point in the energy spectrum, the energy must be doubly
degenerate at k1 = k2 = 0. Since γ = 0 at this point, x must satisfy

β(0, 0) +
g
2

[(
1 + x

2

)p
−
(

1 − x
2

)p]
= 0. (6)

For simplicity, we choose

J1 = J2 := B, (7)

β(k1, k2) = B(−1 + cos k1 + cos k2). (8)

Hence, β(0, 0) = B. It is clear that the nonlinearity strength g and energy E can be scaled in
terms of B. Energy spectra with p = 1, 1.5, 2 and g = 2.5B are shown in Figure 2, where the
Dirac cone is clearly visible around the origin. A perturbative analysis of energy spectrum
near the Dirac cone can be found in Appendix A.1.

Figure 2. Cont.
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Figure 2. Nonlinear band structure for small momenta in the vicinity of the origin, i.e., for small
values of |k1| and |k2|, with the nonlinear strength parameter g = 2.5B, and with the power-law
nonlinearity parameter (a) p = 1, (b) p = 1.5, (c) p = 2. See the main text for details of the system
parameters. The Dirac cone emerges from the lower energy band.

3. Dynamics of Adiabatic Following

To obtain the nonlinear AB phase, let us consider two adiabatic paths along a small
circle around the origin k1 = k2 = 0. As shown in Figure 1, starting at the same point S,
along each path, the system is guided to move along one half of the perimeter of the circle
using the same amount of time. The two adiabatic paths are “recombined” at the end of
the evolution at point N. As introduced in Section 1, the phase difference acquired by the
system between two adiabatic paths is called the nonlinear AB phase. Clearly, the nonlinear
AB phase here is the sum of the dynamical phase difference and the Berry phase associated
with the closed loop around the band-degeneracy point. We shall study below the possible
AB phase quantization for a varying nonlinearity strength g and for different nonlinear
parameters p. The quasimomenta k1 and k2 associated with two spatial dimensions are
parameterized by ϕ and will be made to adiabatically change.
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At the starting point S, the system is assumed to be prepared in the Bloch eigenstate at
momentum space location S. As the system adiabatically evolves along the path SEN or
SWN, the time-evolving state deviates from the instantaneous eigenstate along the path,
with the tiny deviation at the order of the adiabatic parameter ε. The slower the rate of
adiabatic change is, the smaller ε is, and the smaller the deviation. Here, nonlinearity plays
a key role. That is, the dynamical phase also obtains a correction at the order of ε. Since the
total evolution time is of order O(ε−1), the O(ε) term in this phase correction will contribute
an ε-independent term through accumulation, yielding a geometric phase term out of the
dynamical phase. This will not occur in linear terms because such correction accumulated
over the entire adiabatic process is at most of the order of ε, which vanishes for sufficiently
slow adiabatic protocols.

The dynamics of the states is governed by the time-dependent Schrödinger equation,

i |Ψ̇〉 = Ĥ(Ψ) |Ψ〉 , (9)

where the Hamiltonian is given by Equation (1) with ψ being replaced by Ψ. Here, the
overhead dot denotes the time derivative. We will solve this equation up to the order of ε
as described above. Through the lengthy computation, as illustrated in Appendix A.2, we
obtain the instantaneous change rate of the overall phase of a time-evolving state as

θ̇ ∼ −E − 1 − x
2

ϕ̇ + gp
x(1 − x2)

4Δ

[(
1 + x

2

)p
−
(

1 − x
2

)p]
ϕ̇, (10)

with

Δ := β +
g
2

[
(1 − px + px2)

(
1 + x

2

)p
− (1 + px + px2)

(
1 − x

2

)p]
. (11)

We recognize that the circular integration of the second term in Equation (10) is nothing but
the Berry phase θB, because it assumes the same form as in the linear limit. The rest of the
phase is from the dynamical phase θD, which contains two parts: the first part comes from
the instantaneous eigenenergy E and the second part from the third term in Equation (10)
as a new contribution from the nonlinearity. Specifically,

θB := −
∮ 1 − x

2
dϕ, (12)

θD := −
∫

Edt + gp
∫ x(1 − x2)

4Δ

[(
1 + x

2

)p
−
(

1 − x
2

)p]
dϕ. (13)

In the event that the Dirac cone does exist at the point k1 = k2 = 0, the obtained phase
difference between the two adiabatic paths described in Figure 1 then becomes the nonlinear
AB phase θAB. Since the two adiabatic paths are symmetric by construction and they take
the same amount of time, the leading term in Equation (13) contributes the same in each of
the two paths. Thus, the difference of the dynamical phases between two paths comes from
the second term of Equation (13) only. Thus, the total nonlinear AB phase is

θAB := θB + δθD

∼ −π(1 − x) + πgp
x(1 − x2)

2Δ

[(
1 + x

2

)p
−
(

1 − x
2

)p]
. (14)

Note that we take into account that the paths are chosen to be close to the Dirac cone
(so that the cones indeed have linear dispersion relations), namely, |k1| and |k2| are small at
all times. The leading behavior of the dynamical phase difference term is then found to be

δθD ∼ πgp
x0(1 − x2

0)

2Δ0

[(
1 + x0

2

)p
−
(

1 − x0

2

)p]
, (15)
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where Δ0 is Δ evaluated at x = x0 and k1 = k2 = 0, x0 is the solution of Equation (6), and

Δ0 = − gpx0

2

[
(1 − x0)

(
1 + x0

2

)p
+ (1 + x0)

(
1 − x0

2

)p]
. (16)

For the Berry phase, the leading behavior is

θB ∼ −π(1 − x) ∼ −π(1 − x0). (17)

As detailed in Appendix A.1, For |g| > 2B, a nonlinear Dirac cone is located at the
origin. For |g| < 2B, the only possible solutions to Equation (5) are x = ±1 and there is
no Dirac cone. For g ∈ (0, 2B), we can hence assign x0 = −1, and for g ∈ (−2B, 0), we
may assign x0 = 1. With this convention, it is clear to see that θB is constantly 0 (mod 2π)
for g ∈ (−2B, 2B). The Berry phase θB becomes nonzero and changes continuously for
|g| > 2B. For each p, as we continuously tune g, x0 can be easily solved numerically using
Equation (6), thus obtaining the theoretical values of the leading terms of the dynamical
phase, Berry phase and AB phase around the origin. We also numerically solve the
evolution using the Schrödinger equation Equation (9) along the two paths, and compute
the dynamical phase, AB phase and Berry phase using numerical solutions of the evolution.
The evolution is computed using an operator-splitting algorithm. The results are presented
in Figure 3.

Figure 3. Cont.
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Figure 3. Dynamical, Berry and the nonlinear AB phase plotted against nonlinearity strength g for
different values of power-law nonlinearity parameter p. The solid lines are theoretical values, and the
dots are numerical verifications. (a) For p > 1, the jump of dynamical phase at g = ±2B is ±2π; for
p = 1, the jump of dynamical phase at g = ±2B is ±π; and for p < 1, the dynamical phase changes
continuously. (b) The Berry phases change continuously for any p. (c) Only for Kerr nonlinearity
p = 1, the AB phase has a quantized jump of π at the critical value g = ±2B and stays at π for
|g| > 2B.

In each plot, solid lines are theoretical values, while dots on the solid lines are com-
puted from numerical evolutions. In Figure 3a, for any p = 0.5, 1, 1.5, 2, 2.5, 3, the dynamical
phase around the origin is 0 for g ∈ (−2B, 2B). At the critical value g = ±2B where the
Dirac cone appears, for p = 0.5, the Dirac cone changes continuously with respect to g.
For p = 1, there is a quantized jump of ±π at g = ±2B. For p = 1.5, 2, 2.5, 3, there is a
quantized jump of ±2π at the critical value g = ±2B (so this is equivalent to no change).
In Figure 3b, the Berry phase (modulo 2π) is identically 0 for g ∈ (−2B, 2B), and changes
continuously with respect to g. In Figure 3c, the AB phase (modulo 2π) is the sum of the
dynamical phase in Figure 3a and the Berry phase in Figure 3b. Only for p = 1, the AB
phase has a quantized jump of π at the critical value g = ±2B and stays at π for |g| > 2B,
as discovered by Ref. [1]. For all other values of p, the AB phase changes continuously with
respect to g. The special behavior of p = 1 is a result of the fact that p = 1 is a critical value
for the limit limg→±2B± δθD, as will be explained in the next section.

4. Mechanism of the Jump of AB Phase at g = ±2B for Kerr Nonlinearity

For p > 1, we can factor out a factor (1 − x2
0) from Δ0 which cancels the same factor in

the numerator of δθD,

δθD(p > 1) ∼ −π
(1 + x0)

p − (1 − x0)
p

(1 + x0)p−1 + (1 − x0)p−1 , (18)

which equals ∓2π or equivalently zero since x0 = ±1, for |g| = 2B or when the Dirac cone
starts to appear.

Likewise, for p = 1, we have

δθD(p = 1) ∼ −x0π, (19)

which equals ∓π since x0 = ±1, for |g| = 2B.
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Finally, for 0 < p < 1,

δθD(0 < p < 1) ∼ −π(1 − x2
0)

1−p (1 + x0)
p − (1 − x0)

p

(1 + x0)1−p + (1 − x0)1−p , (20)

which vanishes for x0 = ±1, for |g| = 2B.
The calculations above make it clear that the nonlinear AB phase associated with

Kerr nonlinearity (p = 1) is most special as the extra nonlinearity-induced correction to
dynamical phase experiences a π jump when the Dirac cone appears. What is intriguing
for Kerr nonlinearity is that the nonlinear AB phase stays quantized at π for |g| > 2B, as θB
and δθD happen to be complementary to each other, as shown in Equations (17) and (19).
For all other forms of power-law nonlinearity, there is no such jump, π-quantization is
thus absent, and consequently, the nonlinear AB phase only changes continuously with
respect to g. This finally explains why in Figure 3 only the nonlinear AB phase for Kerr
nonlinearity (p = 1) displays a quantization plateau for |g| > 2B.

5. Conclusions

In this paper, we analytically and computationally examined the so-called nonlinear
AB phase around Dirac cones induced by power-law nonlinearity added to the QWZ model
often used for studies of topological band structures. With our analytical results, we are able
to explain why the nonlinear AB phase has a quantized jump of π when Dirac cone starts
to appear or disappear, for and only for Kerr nonlinearity. In the context of nonlinear AB
phase that can be in principle measured in experiments, Kerr nonlinearity is thus identified
as a critical form of nonlinearity. As seen from our theoretical considerations above, our
result will not be restricted to the QWZ model alone since it is based only on the asymptotic
dispersion relation in the vicinity of the nonlinear Dirac cone. It is thus of considerable
interest to investigate the generality of our results in other models with nonlinearity.
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Appendix A

Appendix A.1. Eigenvalue Problem

The instantaneous eigenenergy and eigenstate satisfy the Schrödinger equation,[
β(k1, k2) + g|ψ1|2p γ(k1, k2)

γ∗(k1, k2) −β(k1, k2) + g|ψ2|2p

][
ψ1
ψ2

]
= E
[

ψ1
ψ2

]
. (A1)

In terms of the two components of the state, we have

γψ2 = (E − β − g|ψ1|2p)ψ1, (A2)

γ∗ψ1 = (E + β − g|ψ2|2p)ψ2. (A3)
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Plugging the expressions in Equation (3), we see that

γeiϕ =

[
E − β − g

(
1 + x

2

)p]√1 + x
1 − x

. (A4)

Since the right-hand side of the above equation is real, we recognize that the phase variable
ϕ is simply the opposite of the phase of γ,

ϕ = −arg(γ). (A5)

Recall that γ = B(sin k1 − i sin k2) in our choice, this means that ϕ is the same angle illustrated
in Figure 1 for sufficiently small |k1| and |k2|.

Multiplying ψ∗
1 on both sides of Equation (A2), multiplying ψ∗

2 on Equation (A3) and
taking complex conjugate, then subtracting the two equations, one obtains

β + g(|ψ1|2p+2 − |ψ2|2p+2) = E(|ψ1|2 − |ψ2|2). (A6)

In terms of the parameter x defined in Equation (3), we obtain the instantaneous eigenen-
ergy as in Equation (4).

One can then multiply the two equations in (A2) and (A3) together. Eliminating the
common factor ψ1ψ2, we arrive at

|γ|2 = E2 − gE(|ψ1|2p + |ψ2|2p)− β2 − βg(|ψ1|2p − |ψ2|2p) + g2|ψ1|2p|ψ2|2p. (A7)

Further using Equation (3), we obtain the equation satisfied by the variable x in Equation (5).
Apparently, if the Dirac cone exists, at the Dirac point k1 = k2 = 0, the energy is doubly

degenerate. As a result, x is also doubly degenerate. Namely, it must satisfy Equation (6)
with β(0, 0) = B. That is,

2p+1B + g[(1 + x)p − (1 − x)p] = 0. (A8)

We denote the solution of the above equation as x0, i.e.,(
1 + x0

2

)p
−
(

1 − x0

2

)p
= −2B

g
. (A9)

Note that the left hand side of the above equation is a monotonically increasing function of
x0 as x0 ∈ [−1, 1], with a minimum of −1 and a maximum of +1. Therefore,

−1 ≤ −2B
g

≤ 1. (A10)

This means that

|g| ≥ 2B. (A11)

This is the necessary condition for a Dirac cone to exist.
It is also of interest to use the perturbation theory to solve the eigenenergies near the

Dirac cone. For sufficiently small |k1| and |k2|, we let

x ∼ x0 + χ, (A12)

β ∼ B + ρ, (A13)

|γ|2 ∼ 0 + η, (A14)
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where χ is at least in the first order in k1 and k2, and ρ and η are at least in the second order
in k1 and k2. Plugging Equations (A12)–(A14) into Equation (5), we have

g2 p2

22p+2
1 − x2

0
x2

0

[
(1 + x0)

p−1 + (1 − x0)
p−1
]2

χ2 ∼ η. (A15)

To this order, we obtain the correction to the parameter x,

χ ∼ ±2p+1

gp
x0

(1 + x0)p−1 + (1 − x0)p−1

√
J2
1 k2

1 + J2
2 k2

2√
1 − x2

0

. (A16)

Plugging this into Equation (4), we find the expression for the eigenenergy,

E ∼ E0

(
1 + p

χ

x0

)
, (A17)

where the nonperturbed eigenenergy is

E0 =
g
2

[(
1 + x0

2

)p
+

(
1 − x0

2

)p]
. (A18)

We can see clearly from the expansion of E that there is a Dirac cone structure at the
origin, provided |x0| < 1, which corresponds to |g| > 2B. For |g| < 2B, the system contains
two smooth energy bands. At the critical value g = 2B (g = −2B), a kink will develop
on the lower (upper) band at k1 = k2 = 0. Once g > 2B (g < −2B), a 2D self-intersection
structure, i.e., a nonlinear Dirac cone, will appear from the lower (upper) band, whose
vertex is at k1 = k2 = 0. This is true for any p > 0. We show five plots with different
values of nonlinearity in Figure A1, along section k1 = 0 and with −0.1π ≤ k2 ≤ 0.1π. In
each plot, the red dots are perturbative eigenenergies around the Dirac point (or at the
origin for |g| ≤ 2B), while the blue lines are numerical solutions by solving Equation (5)
exactly. We can see that the perturbative solutions perfectly match the numerical solutions
for sufficiently small |k2|.

Figure A1. Cont.
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Figure A1. Numerical and perturbative solutions of E for p = 2 with g/B = −2.5, −2, 1, 2, 2.5, B = 2
along section k1 = 0. In these plots, the red dots are perturbative eigenenergies near the Dirac cone
and the blue lines are numerical solutions.

Appendix A.2. Dynamics around the Dirac Cone

We solve the following Schrödinger equation perturbatively in terms of adiabatic
parameter ε [1],

i∂t

[
Ψ1
Ψ2

]
=

[
β γ

γ∗ −β

][
Ψ1
Ψ2

]
+ g
[|Ψ1|2pΨ1
|Ψ2|2pΨ2

]
. (A19)

During the adiabatic following process, the quasimomenta are tuned adiabatically,

k1 = k1(εt), k2 = k2(εt), (A20)

with 0 < ε � 1. Let

|Ψ〉 =
[

Ψ1
Ψ2

]
= eiθ(|ψ〉+ ε |φ〉) = eiθ

[
ψ1
ψ2

]
+ εeiθ

[
φ1
φ2

]
, (A21)

with

θ̇ ∼ −E + εα, (A22)

where ψa are the solutions to the eigenvalue problem in Equation (2), and εφa are the
first-order corrections. As we shall see, the dynamical phase comes from both E and εα,
and geometric phase comes from only εα.

The solution to the adiabatic process deviates from the instantaneous eigensolution by
the order of ε, multiplied by a phase term. Note that the increment of phase θ over a small
duration of time dt may deviate from the contribution of dynamical phase by O(ε), but the
accumulation of the O(ε) term over the total time O(ε−1) has a contribution of O(1).

The Hamiltonian can be expand in the power of ε accordingly,

Ĥ(Ψ) ∼ Ĥ(ψ) + εĥ(ψ, φ), (A23)

where Ĥ(ψ) is given in Equation (1) and ĥ depends on both ψ and φ with a diagonal form,

ĥ(ψ, φ) = gp
[|ψ1|2p−2(ψ∗

1 φ1 + ψ1φ∗
1 ) 0

0 |ψ2|2p−2(ψ∗
2 φ2 + ψ2φ∗

2 )

]
. (A24)

To compute ĥ, we need to expand |Ψ|2p. To the first order in ε, we have

|ψa + εφa|2p ∼ |ψa|2p
[

1 + 2εp Re
(

φa

ψa

)]
= |ψa|2p + εp|ψa|2p−2(ψ∗

a φa + ψaφ∗
a ). (A25)
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Plugging Equations (A21), (A22) and (A25) into the time-dependent Schrödinger equation
in Equation (A19), up to the first order in ε, we obtain

E |ψ〉 − εα |ψ〉+ εE |φ〉+ i |ψ̇〉+ iε |φ̇〉 ∼ Ĥ(ψ) |ψ〉+ εĥ |ψ〉+ εĤ(ψ) |φ〉 . (A26)

Note that the time derivative brings a factor of ε because we are in the adiabatic regime, thus,
the term ε |φ̇〉 is actually in the order of ε2 and it can be discarded. Apply the instantaneous
eigenvalue equation in Equation (2), we obtain the equation for |φ〉,[

E − Ĥ(ψ)
]
|φ〉 ∼ α |ψ〉 − i

ε
|ψ̇〉+ ĥ |ψ〉 . (A27)

Multiplying 〈ψ| from the left to Equation (A27), we obtain

εα = i 〈ψ|ψ̇〉 − ε 〈ψ| ĥ |ψ〉 . (A28)

After a lengthy calculation, we find the solution to the correction of wavefunction as

εφ1 = − x(1 − x)
√

1 + x
4
√

2
ϕ̇

Δ
− i

x
4
√

2(1 + x)
ẋ
Δ′ , (A29)

εφ2 =
x(1 + x)

√
1 − x

4
√

2
ϕ̇

Δ
eiϕ + i

x
4
√

2(1 − x)
ẋ
Δ′ eiϕ, (A30)

where we introduce two quantities, Δ in Equation (11) and Δ′ is defined as

Δ′ := β +
g
2

[(
1 + x

2

)p
−
(

1 − x
2

)p]
. (A31)

It turns out that the ẋ/Δ′ terms do not contribute to ĥ,

ĥ = gp
x(1 − x2)

4Δ
ϕ̇

ε

⎡⎢⎣−
(

1+x
2

)p−1
0

0
(

1−x
2

)p−1

⎤⎥⎦. (A32)

Putting all together, the change rate of the overall phase is given in Equation (10).
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Abstract: We present a detailed analysis of the connection between chaos and the onset of thermaliza-
tion in the spin-boson Dicke model. This system has a well-defined classical limit with two degrees of
freedom, and it presents both regular and chaotic regions. Our studies of the eigenstate expectation
values and the distributions of the off-diagonal elements of the number of photons and the number
of excited atoms validate the diagonal and off-diagonal eigenstate thermalization hypothesis (ETH)
in the chaotic region, thus ensuring thermalization. The validity of the ETH reflects the chaotic
structure of the eigenstates, which we corroborate using the von Neumann entanglement entropy
and the Shannon entropy. Our results for the Shannon entropy also make evident the advantages
of the so-called “efficient basis” over the widespread employed Fock basis when investigating the
unbounded spectrum of the Dicke model. The efficient basis gives us access to a larger number of
converged states than what can be reached with the Fock basis.

Keywords: quantum chaos; eigenstate thermalization hypothesis; quantum entanglement

1. Introduction

The onset of thermalization in isolated quantum systems, which evolve unitarily and
are described by pure states, was discussed in von Neumann’s 1929 paper on the quantum
ergodic theorem [1–4]. In Pechukas’s 1984 paper “Remarks on Quantum Chaos” [5], one
finds a brief summary of von Neumann’s work and the subsequent developments against
it, particularly by Bocchieri and Loinger [6], which, Pechukas claims, actually make von
Neumann’s results sharper [7]. In Pechukas’s words,

if one selects a state “at random” from an energy shell and determines, as a
function of time, the probability that it lies in a “typical” subspace of the shell,
the time average of this probability is liable to be much closer to the statistical
expectation than is its instantaneous value, the more so the less degenerate the
spectrum of the Hamiltonian.

The ideas in this quotation are connected with the notion of “typicality” [3,4], which
has been one of the directions in studies of thermalization.

In retrospect, one can identify in the 1985 work by Jensen and Shakar [8] the seeds
for what later became known as the eigenstate thermalization hypothesis (ETH) [9,10].
There, the authors study the infinite-time average and the eigenstate expectation value of
the magnetization of a finite spin-1/2 chain for different initial states and different energy
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eigenstates, and show that both exhibit very good agreement with the microcanonical aver-
age when the system is chaotic. They state that in the chaotic system, “the magnetization is
a fairly smooth and monotonic function of energy”, and in this case,

even an initial energy eigenstate will exhibit a constant value for the observable
which is very close to that predicted by the statistical theory,

while for the integrable Hamiltonian, the “deviations from equilibrium tend to be large”.
This means that an observable O should thermalize when its expectation value 〈Ek|Ô|Ek〉
is a smooth function of energy, since in this situation, its infinite-time average, O, will be
very close to the microcanonical average, Omic; that is [11]

O = ∑
k
|ck|2Ok,k � Omic =

1
WE,ΔE

∑
k

Ok,k , (1)

where |Ek〉 are the eigenstates of the system’s Hamiltonian, Ok,k = 〈Ek|Ô|Ek〉 are the
diagonal elements of the operator Ô, ck = 〈Ek|Ψ(0)〉 are the coefficients of the initial state
|Ψ(0)〉 = ∑k ck|Ek〉, and WE,ΔE is the number of eigenstates |Ek〉 contained in the energy
window Ek ∈ [E − ΔE, E + ΔE] with |E − Ek| < ΔE. Under the assumption of the smooth
behavior in energy, even a single eigenstate inside the microcanonical window should give
Ok,k very close to the microcanonical average; therefore, the term “eigenstate thermalization
hypothesis” (ETH) was coined by Srednicki in his 1994 paper [12]. Notions of quantum
chaos [8], random matrices [13], and Berry’s conjecture [12] have been invoked to justify
the validity of Equation (1). Starting with Rigol et al’s 2008 paper [11], several numerical
studies have confirmed Equation (1) for chaotic systems. Since then, various studies further
elaborated the framework of the ETH to take into account the convergence of O and Omic as
the system size increases [9,14], the analysis of the off-diagonal elements Ok,k′ = 〈Ek|Ô|Ek′ 〉,
known as off-diagonal ETH [9,15], the dependence on the energy of the initial state [16,17],
and the structure of the eigenstates in realistic many-body quantum systems [18–20].

The analysis in Ref. [18] was inspired by the 1990s papers from previous members
of the Novosibirsk school, including Casati [21], Flambaum [22,23], Izrailev [24,25], Shep-
elyansky [26], and Zelevinsky [27,28], who focused on the structure of the eigenstates to
define quantum chaos and explain the onset of thermalization [29]. In realistic interacting
many-body quantum systems, the energy eigenstates can be rather complicated, but they
are not random vectors, as the eigenstates of Gaussian random matrices or the random
superpositions of plane waves with random phases and Gaussian random amplitude stated
by the Berry’s conjecture [30]. For such random vectors, Equation (1) is trivially satisfied,
but they are associated with unphysical models. In the above mentioned 1990s papers,
chaotic eigenstates are those that, when written in the mean field basis, exhibit coefficients
that are random variables following a Gaussian distribution around the envelope defined
by the energy shell. They emerge away from the edges of the spectrum of quantum systems
with many strongly interacting particles and ensure the validity of the Fermi–Dirac [24]
and Bose–Einstein [31] distributions. These ideas were employed in Ref. [18] to corroborate
the validity of the ETH for few-body observables when the eigenstates are chaotic.

The present article is dedicated to Professor Giulio Casati on the occasion of his
80th birthday in 2022 and to Professor Felix Izrailev’s 80th birthday in 2021. Not only
their past, but also their recent works [31–38] continue to have an enormous impact in
the developments of quantum chaos and its connections with thermalization, quantum
statistical mechanics, and the quantum-classical correspondence.

Here, we investigate the validity of the diagonal and off-diagonal ETH, in connection
with the structure of the eigenstates, for the spin-boson Dicke model [39–41]. This system
has a well-defined classical limit and two-degrees of freedom, so it does not quite fall within
the requirement for thermalization of a large number of coupled degrees of freedom [13].

Depending on the parameters and energy region, the Dicke model may be regular
or chaotic. Since its introduction in the 1950s to explain superradiance in spontaneous
radiation processes [39], it has been employed in a variety of theoretical studies that
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include quantum phase transitions [42–44], classical and quantum chaos [45–49], non-
equilibrium quantum dynamics [41,50–54], the evolution of out-of-time-ordered correlators
(OTOCs) [55–57], quantum scarring [58–62], and quantum localization measures in phase
space [61,63]. Experimentally, the model can be realized with superconducting circuits [64],
cavity assisted Raman transitions [65,66], trapped ions [67,68], and other systems [69]. In
the particular context of the relationship between chaos and thermalization, the Dicke
model was studied in Ref. [70] with emphasis on the behavior of the fidelity OTOC and
the agreement between the long-time average of the collective spin observable and the
microcanonical ensemble. The chaos–thermalization connection was also explored for the
kicked Dicke model in Ref. [71].

We analyze the diagonal and off-diagonal ETH for the number of photons and the
number of excited atoms in the regular and chaotic regions of the Dicke model, and compare
the results with the structure of the eigenstates analyzed with the entanglement entropy
and the Shannon entropy. The latter is a delocalization measure that depends on the basis in
which the eigenstates are written. The Hilbert space of the Dicke model is infinite, because
its number of bosons is unbounded. Our results show that the values of the Shannon
entropy grows rapidly with the eigenvalues when the eigenstates are written in the Fock
basis, but are more restricted when the “efficient basis” is used, which makes evident the
advantages of the latter when one wants to study large systems and high energies.

The paper is organized as follows. We introduce the Dicke model in Section 2 and
briefly review the onset of classical and quantum chaos in Section 3. In Section 4, we
study the diagonal and off-diagonal ETH and analyze the eigenstates in Section 5. Our
conclusions are summarized in Section 6.

2. Dicke Model

The Dicke model [39] describes a system of N two-level atoms coupled with a single
mode of a quantized radiation field. Setting h̄ = 1, the Hamiltonian is given by

ĤD = ĤF + ĤA + ĤI, (2)

ĤF = ωâ† â, (3)

ĤA = ω0 Ĵz, (4)

ĤI =
γ√
N

(â† + â)( Ĵ+ + Ĵ−), (5)

where ĤF defines the field’s energy, ĤA the energy of the two-level atoms, and ĤI the atom–
field interaction energy. In the equations above, â† (â) is the bosonic creation (annihilation)
operator of the single field mode and Ĵ+ ( Ĵ−) is the raising (lowering) collective pseudo-
spin operator, where Ĵ± = Ĵx ± i Ĵy and Ĵx,y,z = (1/2)∑N

k=1 σ̂k
x,y,z for the Pauli matrices

σ̂k
x,y,z acting on the kth two-level atom. Since the squared total pseudo-spin operator

Ĵ
2
= Ĵ2

x + Ĵ2
y + Ĵ2

z commutes with the Hamiltonian, [ĤD, Ĵ
2
] = 0, the eigenvalues of Ĵ

2,
given by j(j + 1), label the invariant subspaces in the Hilbert space. We work within the
totally symmetric subspace, which includes the collective ground state and is defined by
the maximum pseudo-spin value j = N/2.

The Dicke Hamiltonian ĤD commutes with the parity operator

Π̂ = exp(iπΛ̂), (6)

where
Λ̂ = â† â + Ĵz + j1̂ = n̂ + n̂ex, (7)

the number of photons is n̂ = â† â, and the number of excited atoms is n̂ex = Ĵz + j1̂. Because
of this symmetry, the eigenstates have one of two different parities, Π̂|Ek〉 = ±|Ek〉.

The three parameters of the Dicke Hamiltonian, ω, ω0, and γ, determine the energy
scales of the system and the onset of chaos. The radiation frequency of the single-mode
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electromagnetic field (the boson) is given by ω, the energy splitting of each two-level
atom is ω0, and γ is the coupling strength modulating the atom–field interaction. In the
thermodynamic limit, N → ∞, the light-matter coupling divides the parameter space in
the normal phase, when the strength γ in smaller than the critical value γc =

√
ωω0/2, and

the superradiant phase, when γ > γc [42,72–74]. The Dicke model also presents regular
and chaotic regions depending on the parameters and excitation energies [47]. We fix the
coupling strength in the superradiant phase, γ = 2γc = 1, and the resonant frequencies
at ω = ω0 = 1, so that we ensure that both the classical dynamics and the quantum
eigenspectrum are chaotic at excitation energies ε ≥ −0.8 [47], where ε = E/j denotes the
energy scaled to the system size j.

The Hilbert space of the Dicke model is infinite. In Appendix A, we provide details
on how to diagonalize the system’s Hamiltonian on an efficient basis. We consider three
system sizes, j = 30, 60, 100, whose associated Hilbert space dimensions in the efficient basis
are given by dEB

D = 8 601, 30 371, 80 601, ensuring the convergence of the set of eigenstates
from the ground-state energy εGS = −2.125 until a truncated value εT.

3. Chaos in the Dicke Model

The classical Hamiltonian of the Dicke model is presented in Appendix B. The gen-
eration of Poincaré sections and the computation of Lyapunov exponents for trajectories
in phase space [47,75] reveal the onset of chaos for high energies and strong couplings. In
Figure 1a, we show a classical map of the percentage of chaos as a function of excitation
energies and coupling strengths. The percentage of chaos is defined as the ratio of the
number of chaotic initial conditions over the total number of initial conditions used in the
sample and is illustrated with a color gradient, where dark indicates that the majority of
the initial conditions are regular and light indicates that most initial conditions are chaotic.

0 20 40 60 80 100

0 1 2 3

-2
-1
0

1

2

0.39 0.43 0.46 0.50 0.53

1 2 3

Figure 1. Panel (a): Map of the percentage of chaos for the classical trajectories as a function of the
excitation energy ε and the coupling strength γ. Panel (b): Map of the average values of the ratio
of consecutive energy levels 〈r̃〉 (see Equation (8)) obtained for moving windows of eigenenergies,
which contain approximately 1000 energy levels. The low energy regions contain few energy levels
and were averaged using windows of eigenenergies with the available energy levels. Because of
this, the fluctuations of 〈r̃〉 are more pronounced in these regions. In both panels (a) and (b), the red
dot represents the critical point for the transition from the normal to the superradiant phase for the
ground state. The system size in panel (b) is j = 100.

Signatures of the onset of chaos in classical systems are found in the quantum domain,
as suggested by Casati et al’s 1980 paper [76] and Bohigas et al’s 1984 work [77], and became
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known as “quantum chaos”. The eigenvalues of a quantum system become correlated
when its classical counterpart is chaotic. The degree of correlations between neighboring
levels can be detected with the level spacing distribution [78] or the ratio of consecutive
energy levels [79,80],

r̃k = min(rk, r−1
k ) =

min(sk, sk−1)

max(sk, sk−1)
, (8)

where sk = Ek+1 − Ek is the nearest-neighbor spacing between energy levels and
rk = sk/sk−1; while both short- and long-range correlations are measured with quan-
tities such as the level number variance [81] or the spectral form factor [78]. In the case of
the Dicke model, level spacing distributions [75,82,83] and spectral form factors [53,54] in
agreement with random matrix theory (RMT) were verified for the energies and parameters
associated with the onset of chaos in the classical limit.

Other tests of quantum chaos include Peres lattices [84] and the evolution of OTOCs [85–87].
The Peres lattice is a plot of the eigenstate expectation values of an observable as a function of the
eigenvalues. It has been widely employed (not always under this name) in studies of ETH
and provides visual evidence of the loss of integrability [75,88]. As for the OTOCs, their
exponential growth rates are seen as quantum analogs of the classical Lyapunov exponents.
This was indeed confirmed for the Dicke model in the chaotic region [55], although its
exponential growth happens also in regular regions due to instability [57].

In Figure 1, we compare the onset of classical chaos, investigated in Figure 1a, with
the degree of correlations between neighboring energy levels, as captured by the ratio of
consecutive energies in Figure 1b. To smooth spectral fluctuations, an average is performed
and denoted by 〈r̃〉. In the regular regime, where the eigenvalues are uncorrelated and the
level spacing distribution is Poissonian, 〈r̃〉P ≈ 0.39, while in the chaotic region, where
the eigenvalues are correlated as in RMT and the level spacing distribution follows the
Wigner–Dyson distribution, 〈r̃〉WD ≈ 0.53. Our results in Figure 1 exhibit an evident
classical-quantum correspondence. There is a visible relationship between the classical
map of Figure 1a and the quantum map of Figure 1b, when the percentage of chaos is large
(small) in Figure 1a; 〈r̃〉 approaches 0.53 (0.39) in Figure 1b.

4. Thermalization in the Dicke Model

For an isolated quantum system initially in a pure state, the evolution is governed by
the unitary time operator as

|Ψ(t)〉 = e−iĤt|Ψ(0)〉 = ∑
k

cke−iEkt|Ek〉, (9)

where Ĥ|Ek〉 = Ek|Ek〉 and ck = 〈Ek|Ψ(0)〉. Thus, the expectation value of a given operator
Ô under states evolved in time can be calculated as follows

O(t) = 〈Ψ(t)|Ô|Ψ(t)〉 = ∑
k �=k′

c∗k ck′ e
i(Ek−Ek′ )tOk,k′ + ∑

k
|ck|2Ok,k , (10)

where Ok,k′ = 〈Ek|Ô|Ek′ 〉 are the matrix elements of the operator expressed in the en-
ergy eigenbasis.

The onset of thermalization according to the ETH happens for local observables if two
assumptions are satisfied:

(i) The infinite-time average,

O = lim
t→+∞

1
t

∫ t

0
dt′O(t′) = ∑

k
|ck|2Ok,k, (11)
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coincides with the microcanonical average,

Omic =
1

WE,ΔE
∑
k

Ok,k ≈ O, (12)

or more precisely, O approaches the thermodynamic average as the system size grows.
This is sometimes referred to as “diagonal ETH”. In the equation above, WE,ΔE is the
number of eigenstates |Ek〉 contained in the energy window Ek ∈ [E − ΔE, E + ΔE] with
|E − Ek| < ΔE.

As explained above, the ETH should be valid when the eigenstates are chaotic (er-
godic), filling the energy shell. In this case, one obtains Gaussian distributions for few-body
observables in many-body quantum systems, which can be understood as follows. Assume
that the few-body observable Ô has N nonzero eigenvalues On in Ô|On〉 = On|On〉, where
N is large. We can project the energy eigenstates in the basis |On〉 as |Ek〉 = ∑n Ck

On
|On〉,

and write

Okk = 〈Ek|Ô|Ek〉 =
N

∑
n=1

|Ck
On

|2〈On|Ô|On〉 = O1,1|Ck
O1

|2 + . . . + ON,N |Ck
ON

|2. (13)

If the eigenstates are fully chaotic (ergodic), then Ck
On

’s are independent Gaussian random
numbers. According to the central limit theorem, a large sum of independent random
numbers On,n|Ck

On
|2 will also follow a Gaussian distribution. Therefore, in the region where

the eigenstates are chaotic, the distribution of Ok,k should be Gaussian.
(ii) The fluctuations around O, which are determined by the phases ei(Ek−Ek′ )t, the

coefficients ck, and the off-diagonal elements Ok,k′ in Equation (10), decrease with system
size and cancel out on average. This is sometimes referred to as “off-diagonal ETH”.
A Gaussian distribution of Ok,k′ indicates that the eigenstates are strongly chaotic (ergodic),
so condition (ii) should be satisfied if the energy of the initial state (of a system perturbed
far from equilibrium) is in the chaotic region.

The relationship between the Gaussian distribution of the off-diagonal elements of a
few-body observable and ergodicity can be understood as above, using Ô|On〉 = On|On〉
and |Ek〉 = ∑n Ck

On
|On〉 in

Okk′ = 〈Ek|Ô|Ek′ 〉 =
N

∑
n=1

(Ck
On

)∗Ck′
On

〈On|Ô|On〉 = O1,1(Ck
O1
)∗Ck′

O1
+ . . . + ON,N(Ck

ON
)∗Ck′

ON
. (14)

For chaotic eigenstates, Ck
On

’s are independent Gaussian random numbers, and the product

of two independent Gaussian random numbers, (Ck
On

)∗Ck′
On

, which appears in each term
of Equation (14), is also an independent random number. According to the central limit
theorem, a large sum of independent random numbers follows a Gaussian distribution,
so in the region where the eigenstates are chaotic, the distribution of Ok,k′ should be
Gaussian. This has been confirmed for different chaotic systems with many degrees of
freedom [15,89,90], but not in chaotic systems with one [91] or few particles [92], few
degrees of freedom [93] or in many-body systems when Ô is not few-body [94].

4.1. Diagonal ETH

To test the validity of the diagonal ETH, we compute the deviation of the eigenstate
expectation values with respect to the microcanonical value [19,20]

Δmic[O] =
∑k |Ok,k − Omic|

∑k Ok,k
, (15)
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and also use a stronger test that takes into account the normalized extremal fluctuations
and is given by [19]

Δmic
e [O] =

∣∣∣∣max(O)− min(O)

Omic

∣∣∣∣, (16)

where max(O) and min(O) are taken from the same energy window Ek ∈ [E − ΔE, E + ΔE]
used in Equation (12). We consider as observables the number of excited atoms, n̂ex =
Ĵz + j1̂, and the number of photons, n̂ = â† â, of the Dicke model.

In Figure 2, we show the Peres lattices for the expectation values of the number of
photons, nk,k = 〈Ek|n̂|Ek〉 (Figure 2a), and of the number of excited atoms, (nex)k,k =
〈Ek|n̂ex|Ek〉 (Figure 2b), for all eigenstates of the Dicke model with positive parity that
range from the ground state energy, εGS = −2.125, up to a maximal converged eigenstate
with eigenenergy εT = 1.755. In the regular region of low energies, the Peres lattices present
a clear pattern related with the quasi-conserved quantities. Above ε ≈ −0.8, where the
system becomes chaotic, the lattices become smoother in energy. It is visible that the spread
of the expectation values in the chaotic region decreases as the system size increases; that
is, for high excitation energies, the fluctuations are larger for j = 30 than for j = 100. It is
also noticeable that the number of excited atoms fluctuate less than the number of photons.

Figure 2. Panels (a) and (b): Peres lattice of the eigenstate expectation values of the number of
photons nk,k (a) and the number of excited atoms (nex)k,k (b) scaled to the system size j for eigenstates
|Ek〉 with positive parity of the Dicke model. Panels (c) and (d): Deviations of the expectation
values of the same observables nk,k (c) and (nex)k,k (d) with respect to their microcanonical value (see
Equation (15)). The insets in (c) and (d) show the extremal deviations of the respective quantities in
the chaotic energy regime (see Equation (16)). The color scales contained within the panels (c) and (d)
correspond to the values of the percentage of classical chaos shown at the bottom in the numbered
color scale. The system size in all panels (a–d) is indicated with a given color for three values
j = 30, 60, 100.

The reduction of the fluctuations with the increase of system size, which is a necessary
condition for the validity of the ETH, is better quantified in Figure 2c,d, where we show
Δmic[n] and Δmic[nex], respectively. To compute these quantities, we used moving windows
of eigenenergies for each system size j = 30, 60, 100, which contain 100, 350, 900 energy
levels. In the chaotic region, both deviations clearly decrease as j increases, while at low
energies (ε < −0.8), where chaos and regularity coexist, the fluctuations decrease very
slowly or do not decrease at all.

The insets of Figure 2c,d contain the results for the normalized extremal fluctuation in
Equation (16). Only the chaotic energy interval defined by ε ∈ [−0.5, 1.755] is shown. The
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reduction of the extremal fluctuations as j increases is also perceptible in these insets, thus
confirming the validity of the diagonal ETH in the chaotic region of the Dicke model.

In Figure 3, we consider the energy interval ε ∈ [0.5, 1], where hard chaos manifests
itself classically, and use only the positive parity sector of eigenstates. In Figure 3a,b, we
show, respectively, the distribution of the diagonal elements of the number of photons and
the number of excited atom, which are presented in a semi-logarithmic scale. The figures
confirm that the distribution shape is Gaussian, as explained in Equation (13).

4.2. Off-Diagonal ETH

We now analyze the off-diagonal elements of the number of photons in Figure 3c
and the number of excited atoms in Figure 3d. As discussed in Equation (14), a Gaussian
distribution validates the off-diagonal ETH. This is indeed the case of Figure 3c,d.
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Figure 3. Panels (a) and (b): Statistical distribution (red solid dots) in semi-logarithmic scale of the
diagonal matrix elements of number of photons nk,k (a) and excited atoms (nex)k,k (b) scaled to the
system size j for eigenstates |Ek〉 with positive parity of the Dicke model contained in the chaotic
energy interval εk ∈ (0.5, 1.0). The term Ok,k represents the average of the expectation value Ok,k in
the same energy region for each operator n̂ and n̂ex. The black dashed line depicts a Gaussian fit.
Panels (c) and (d): The same as panels (a) and (b) for the off-diagonal matrix elements of the same
observables nk,k′ (c) and (nex)k,k′ (d). The system size in all panels (a–d) is j = 30.

5. Entropies of the Eigenstates of the Dicke Model

In the last section, we verified numerically the validity of the ETH in the chaotic region
of the Dicke model using the matrix elements of the number of photons and the number
of excited atoms. In this section, we use the von Neumann entanglement entropy and
the Shannon entropy to analyze the structure of the eigenstates of the model. The von
Neumann entanglement entropy can be regarded as the limit of higher-order observables
in a replicated Hilbert space, and one may generalize the ETH to include higher-order
statistical moments [95] arising from these replicated spaces, which allows one to explain
the so-called Page correction [96] to the volume law. The von Neumann entanglement
entropy has been linked to the onset of chaos in quantum systems [97–101]. The Shannon
entropy is a basis-dependent quantity. We study this entropy with respect to both the Fock
and an efficient basis.

The Dicke model is a bipartite system, whose Hilbert space is a tensor product of
the atomic HA and bosonic HB sectors, HD = HA ⊗ HB. The bosonic sector is infinite-
dimensional, while the atomic one has dimension dA = 2j + 1. For a pure state expanded
in the Fock basis |n; j, mz〉,
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|Ψ〉 =
∞

∑
n=0

j

∑
mz=−j

cn,mz |n; j, mz〉, (17)

the density matrix is the projector operator ρ̂ = |Ψ〉〈Ψ|, and the reduced density matrix in
the atomic sector is calculated as,

ρ̂A = TrB[ρ̂] =
j

∑
mz=−j

j

∑
m′

z=−j

(
∞

∑
n=0

cn,mz c∗n,m′
z

)
|j, mz〉〈j, m′

z|. (18)

The von Neumann entanglement entropy is given by

SEn =− Tr[ρ̂A ln(ρ̂A)]. (19)

For numerical convenience, we trace out the infinite bosonic sector first, but from the
Schmidt decomposition [102], the result for SEn is the same if we would instead trace out
the atomic sector first. (See Appendix C for a generalization of quantum entanglement to
multipartite systems.)

The standard basis to compute the entanglement entropy is the Fock basis, which
is defined as a decoupled basis between photons and atoms |n; j, mz〉 = |n〉 ⊗ |j, mz〉 (see
Appendix A.1). Nevertheless, alternative bases can be used to calculate this entropy by
selecting the correct partition of the system. In this work, in addition to the Fock basis, we
use an efficient basis (see Appendix A.2 for a full description) that allows us to reach larger
system sizes (j > 30) than we can reach with the Fock basis [103,104]. The efficient basis
is defined as the tensor product |N; j, mx〉 = |N〉mx ⊗ |j, mx〉, where |j, mx〉 are the atomic
pseudo-spin states rotated by an angle −π/2 around the y axis and |N〉mx are displaced
Fock states, whose displacing depends explicitly on the atomic pseudo-spin eigenvalue mx.
In the following general notation for a pure state,

|Ψ〉 =
∞

∑
x=0

j

∑
y=−j

cx,y|x; j, y〉, (20)

(x, y) = (n, mz) stands for the Fock basis and (x, y) = (N, mx) for the efficient basis.
To select the correct atomic sector starting with the efficient basis, we need to perform

an adequate trace over the modified bosonic sector related with this basis, such that it is
equivalent to the trace over the bosonic sector of the Fock basis. This can be accomplished
by mapping one basis into the other (see Appendix A.3). As the Hilbert space associated
with the atomic pseudo-spin states |j, mz〉 is the same as the Hilbert space of the rotated
ones |j, mx〉, the atomic sector for both subspaces is the same and the entanglement entropy
can be computed properly. The Shannon entropy of the pure state in Equation (20) is
given by

SSh = −
∞

∑
x=0

j

∑
y=−j

|cx,y|2 ln(|cx,y|2). (21)

5.1. Results for the Entanglement Entropy

We start by comparing the von Neumann entanglement entropy for the Dicke model,
which is nonintegrable, with the results for one of the integrable limits of the model,
namely the Tavis–Cummings model (see Appendix D for the derivation of this model).
This comparison was also made in Ref. [105].

In Figure 4, we plot the Peres lattice of the exponential of the von Neumann entan-
glement entropy in Equation (19) for the integrable Tavis–Cummings model (Figure 4a)
and the nonintegrable Dicke model (Figure 4b). Results for all states from both parity
sectors, from the ground-state of the Tavis–Cummings model up to a maximal converged
eigenstate with eigenenergies εk ∈ [εGS = −2.136, εT = 2.5], are shown. As evident in
Figure 4a, the values of the entropy for the integrable case show large fluctuations and
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patterns associated with regularity are visible. The fluctuations indicate that even states
very close in energy may have very different structures, so ETH should not be satisfied.
In contrast, SEn becomes a smoother function of energy in the chaotic region of the Dicke
model (ε > −0.8), as seen in Figure 4b, which indicates the states close in energy are very
similar. In the case of the Dicke model, regular patterns are restricted to the low energies,
where the model is not chaotic.

We stress, however, that some isolated eigenstates located in the chaotic regime of
the Dicke model present low entanglement. They should be related with strongly scarred
states, which are known to exist in this model [61,62,106].

Figure 4. Panels (a) and (b): Peres lattice of the exponential of the von Neumann entanglement en-
tropy Sk

En (see Equation (19)) scaled to the atomic Hilbert-space dimension dA = 2j + 1 for eigenstates
|Ek〉 from both parity sectors of the integrable Tavis–Cummings model (a) (see Equation (A23)) and
the nonintegrable Dicke model (b) (see Equation (2)). The system size in both panels (a) and (b) is
j = 30.

In Figure 5a, we analyze the von Neumann entanglement entropy for the eigenstates of
the Dicke model, ranging from the ground state until a maximal converged eigenstate with
eigenenergies εk ∈ [εGS = −2.125, εT = 1.841], for three values of the system size j = 30, 60,
100. As discussed in Section 4 and in Figure 2, thermalization requires the convergence of
the infinite-time average of a few-body observable towards the microcanonical average in
the thermodynamic limit, so scaling analysis needs to be performed. As seen in Figure 5a,
the patterns at the low energies of the regular region of the Dicke model do not disappear
as the system size increases, but in the chaotic region, the fluctuations clearly shrink as
the system size increases. This behavior is quantified in Figure 5b, where we present the
deviation of the entanglement entropy from the microcanonical average, as computed
in Equation (15) for the three system sizes j = 30, 60, 100. The fluctuations decay to
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values close to zero for energies above ε ≈ −1.2, indicating the transition to a region
where the majority of the eigenstates are chaotic. In the inset of Figure 5b, we present the
extremal fluctuations calculated with Equation (16) for the chaotic energy interval only,
ε ∈ [−0.5, 1.841]. We avoid the regular region, where the changes in the extremal values
are abrupt. The inset confirms the decrease in fluctuations with the increase in system size.

By comparing Figure 5b with Figure 3c,d, we observe that the deviation from the
microcanonical average of the von Neumann entanglement entropy decreases to zero more
abruptly as compared to the the number of photons and excited atoms. This different
behavior between entropies and expectation values of observables is not well understood
yet and motivates future work.

Figure 5. Panel (a): Peres lattice of the von Neumann entanglement entropy Sk
En scaled to the atomic

Hilbert-space dimension dA = 2j + 1 for eigenstates |Ek〉 from both parity sectors of the Dicke model.
Panel (b): Deviations of the von Neumann entanglement entropy with respect to its microcanonical
value, computed with Equation (15). The inset shows the extremal deviations in the chaotic energy
regime computed with Equation (16). The system size in both panels (a) and (b) is indicated with a
given color for three values j = 30, 60, 100.

5.2. Results for the Shannon Entropy

We proceed with the analysis of the structure of the eigenstates of the Dicke model
making use now of the basis-dependent Shannon entropy. In Figure 6a, we plot the Peres
lattice of the Shannon entropy for the eigenstates of the Dicke model in the Fock and efficient
bases. The eigenstates range from the ground state until a maximal converged eigenstate
with eigenenergies εk ∈ [εGS = −2.125, εT = 2.356]. The inset in Figure 6a contains the
same data, but shows the exponential of the entropy. The values of the Shannon entropy
computed in the Fock basis are larger than in the efficient basis. For the Fock basis, the
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entropy grows unboundedly with energy, while for the efficient basis, SSh saturates at high
energies. These features make evident the advantages of using the efficient basis, since
it requires fewer basis states to build a given eigenstate than what is needed by the Fock
basis. While in Figure 6, our system size was restricted to j = 30, when we employ the
efficient basis, the same computational resources allow us to go up to j = 100, as used in
Figures 2, 5 and 7 below.

Figure 6. Panel (a): Peres lattices of the Shannon entropy Sk
Sn (see Equation (21)) scaled to the system-

size dependence of the density of states, ν(ε) ∝ 2j2 (see Appendix B), for eigenstates |Ek〉 from both
parity sectors of the Dicke model written in the efficient basis (red dots) and the Fock basis (purple
dots). The inset shows the exponential values of the Shannon entropy for both bases. Panel (b):
Deviation of Shannon entropy with respect to its microcanonical value (see Equation (15)). The inset
shows the extremal deviation of the same quantity in the chaotic energy regime (see Equation (16)).
The system size in both panels (a) and (b) is j = 30.

The analysis of the fluctuations of the Shannon entropy in Figure 6b and its inset
shows that, similarly to what we observed for the entanglement entropy in Figure 5, they
approach zero in the chaotic region. The results are comparable for both the Fock and
efficient bases. In what follows, we examine the fluctuations of the Shannon entropy for
different system sizes obtained for eigenstates written in the efficient basis only.

In Figure 7a, we plot the Peres lattice of the Shannon entropy for the eigenstates of the
Dicke model written in the efficient basis. These eigenstates are contained in the energy
interval εk ∈ [εGS = −2.125, εT = 1.841] for the same values of the system size which were
considered previously, j = 30, 60, 100. Similarly to what we observe for the entanglement
entropy in Figure 5a, the regular patterns and large fluctuations are visible at low energies,
where we do not expect the validity of ETH. The fluctuations decrease as we move to high
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energies and as the system size is increased. This behavior is quantified with the deviations
from the microcanonical average shown in Figure 7b and its inset. The decay of Δmic[SEn]
to values close to zero for the entanglement in Figure 5b is more abrupt than what we see
for Δmic[SSh] in Figure 7b, but both cases signal the transition to chaos.

Figure 7. Panel (a): Peres lattice of Shannon entropy Sk
Sh scaled to the system-size dependence of the

density of states ν(ε) ∝ 2j2 for eigenstates |Ek〉 from both parity sectors of the Dicke model. The Shan-
non entropy for these eigenstates was built in the efficient basis (see Appendix A.2). Panel (b): Devia-
tions of the Shannon entropy with respect to its microcanonical value, computed with Equation (15).
The inset shows the extremal deviations in the chaotic energy regime computed with Equation (16).
The system size in both panels (a) and (b) is indicated with a given color for three values j = 30, 60, 100.

We close this section mentioning that the regular patterns seen at low energies in
Figures 2 and 5–7 reflect the existence of families of periodic orbits, which were studied in
previous works [61,62,106]. We also note that for high energies, the behavior of the Shannon
entropy computed in the efficient basis and of the von Neumann entanglement entropy are
similar in the sense that both measures nearly saturate. In contrast, the Shannon entropy in
the Fock basis grows rapidly with energy, because of the infinite bosonic Hilbert subspace
of the Dicke model. The modified bosonic sector of the efficient basis is responsible for the
smaller values of the Shannon entropy when compared to the values for the Fock basis.

6. Conclusions

In this work, we confirmed the validity of the ETH in the chaotic region of the Dicke
model. This was done by analyzing the diagonal and off-diagonal elements of the number
of photons and the number of excited atoms for different system sizes. We corroborated
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that the validity of the ETH stems from the presence of chaotic eigenstates, which we
showed by analyzing their components and measures of entanglement and delocalization.

The Shannon entropy, used to quantify the level of delocalization of the eigenstates
in a given basis, made evident the advantages of using the efficient basis over the Fock
basis. For high energies, the first leads to a slower growth of the entropy than the Fock
basis, allowing us to reach converged states for larger system sizes than accessible with the
Fock basis.
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Appendix A. Diagonalization Bases

Appendix A.1. Fock Basis

The Fock basis is the natural choice to diagonalize the Dicke Hamiltonian, since it is
composed by the tensor product between bosonic Fock states |n〉 and atomic pseudo-spin
states |j, mz〉, |n; j, mz〉 = |n〉 ⊗ |j, mz〉. On the one hand, the eigenvalues n = 0, 1, 2, . . . of
the number operator n̂ = â† â (with eigenvalue equation n̂|n〉 = n|n〉) provide an infinite
bosonic Hilbert subspace. On the other hand, the eigenvalues mz = −j, −j + 1, . . . , j − 1, j
of the pseudo-spin operator Ĵz (with eigenvalue equation Ĵz|j, mz〉 = mz|j, mz〉) provide
a finite atomic Hilbert subspace with dimension dFB

A = 2j + 1. In order to diagonalize
the Dicke Hamiltonian a truncation value nmax of the bosonic Hilbert subspace has to be
chosen, which allows to define a finite bosonic dimension dFB

B = nmax + 1. In this way, the
global Hilbert-space dimension of the Dicke model is given by the product dFB

D = dFB
A × dFB

B .

Appendix A.2. Efficient Basis

The truncation required by the Fock basis for the convergence of the high-energy
eigenstates rapidly increases with the system size j. This can be circumvented by using
the so-called efficient basis, which was originally obtained by studying the integrable limit
ω0 → 0 [107,108]. This basis can be written in terms of a displaced bosonic annihilation
operator Â = â + GĴx with G = 2γ/(ω

√
N ) and the eigenstates |j, mx〉 of Ĵx ( Ĵx|j, mx〉 =

mx|j, mx〉). The efficient basis states are defined by

|N; j, mx〉 =
(Â†)N
√

N!
|αmx 〉 ⊗ |j, mx〉, (A1)

224



Entropy 2023, 25, 8

where |αmx 〉 = D(αmx )|0〉 is a coherent state centered at αmx = α∗
mx = −Gmx, and D̂(αmx ) =

exp(αmx â† − α∗
mx â) is the displacement operator. By commuting Â† with the displacement

operator and using that GĴx|j, mx〉 = −αmx |j, mx〉, one may further write

|N; j, mx〉 =
(â† − αmx )

N
√

N!
|αmx 〉 ⊗ |j, mx〉

= D̂(αmx )|N〉 ⊗ |j, mx〉 (A2)

= |N〉mx ⊗ |j, mx〉

where |N〉mx = D̂(αmx )|N〉 are displaced Fock states, also called generalized coher-
ent states.

The eigenvalues N = 0, 1, 2, . . . of the displaced number operator N̂ = Â† Â (with
eigenvalue equation N̂|N〉mx = N|N〉mx ) label a modified bosonic Hilbert subspace. The
eigenvalues mx = −j,−j + 1, . . . , j − 1, j of the pseudo-spin operator Ĵx label the same
finite atomic Hilbert sector with dimension dEB

A = 2j + 1. As for the Fock basis, the
modified bosonic sector must be truncated to some Nmax for diagonalization. This yields a
finite modified bosonic dimension dEB

B = Nmax + 1 and a global Hilbert-space dimension
dEB

D = dEB
A × dEB

B .
In contrast to the Fock basis, where convergence of high-energy eigenstates is infeasible

for large system sizes (usually j > 30), the efficient basis allows to get thousands of
converged eigenstates in high-energy regimes, even beyond j = 100 [103,104].

Appendix A.3. Mapping from Efficient Basis to Fock Basis

To compute the entanglement entropies shown in Figures 6 and 7, we perform a partial
trace over the usual atomic sector of the Fock basis, but we diagonalize in the efficient basis.
Thus, we need to map the wave function of the eigenstates from the efficient basis to the
Fock basis. This is done as follows.

A general pure quantum state |Ψ〉 can be expanded in the efficient basis and the
rotated Fock basis (|n; j, mx〉), respectively

|Ψ〉 =
xmax

∑
x=0

j

∑
mx=−j

Cx,mx |x; j, mx〉, (A3)

where x = N defines the efficient basis and x = n the Fock basis. Moreover, Cx,mx =
〈x; j, mx|Ψ〉 are the coefficients of the arbitrary state in each basis, which must satisfy the
normalization condition ∑x,mx |Cx,mx |2 = 1̂.

Note that
Cn,mx = 〈n; j, mx|Ψ〉

=
Nmax

∑
N=0

j

∑
m′

x=−j
CN,m′

x
〈n; j, mx|N; j, m′

x〉

=
Nmax

∑
N=0

j

∑
m′

x=−j
CN,m′

x
〈n|N〉m′

x
⊗ 〈j, mx|j, m′

x〉r

=
Nmax

∑
N=0

CN,mx 〈n|D̂(αmx )|N〉,

(A4)

using that 〈j, mx|j, m′
x〉 = δmx ,m′

x
. The term 〈n|D̂(αmx )|N〉 for n > N is given by [109–111]

〈n|D̂(αmx )|N〉 =
√

N!
n!

αn−N
mx e−|αmx |2/2Ln−N

N (|αmx |2), (A5)
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where Ln1
n0(x) is an associated Laguerre polynomial given by the Rodrigues formula

Ln1
n0(x) =

x−n1 ex

n0!
dn0

dxn0
(e−xxn0+n1). (A6)

We numerically found that, in order to ensure a correct convergence of the coefficients
Cn,mx given by Equation (A4), the truncation value must be chosen as nmax ≈ 3Nmax. The
associated Laguerre polynomials can be efficiently calculated to arbitrary precision with a
package included in the Wolfram Mathematica software [112].

Appendix B. Classical Limit of the Dicke Model

The classical limit of the Dicke model can be obtained taking the expectation value
of the quantum Hamiltonian ĤD under the tensor product of Glauber and Bloch coherent
states |x〉 = |q, p〉 ⊗ |Q, P〉, and dividing it by the system size j [47,54,58,75,82,113,114]

hD(x) =
〈x|ĤD|x〉

j
= hF(x) + hA(x) + hI(x), (A7)

hF(x) =
ω

2
(
q2 + p2), (A8)

hA(x) =
ω0

2
(
Q2 + P2)− ω0, (A9)

hI(x) = 2γqQ

√
1 − Q2 + P2

4
, (A10)

where hF(x) and hA(x) represent the Hamiltonians of two classical harmonic oscillators,
and hI(x) the coupling between them. The bosonic Glauber and the atomic Bloch coherent
states, represented by the canonical variables (q, p) and (Q, P) respectively, are given
explicitly by

|q, p〉 = e−(j/4)(q2+p2)e
[√

j/2(q+ip)
]

â†
|0〉, (A11)

|Q, P〉 =
(

1 − Q2 + P2

4

)j
e
[
(Q+iP)/

√
4−Q2−P2

]
Ĵ+ |j, −j〉, (A12)

where |0〉 is the photon vacuum and |j, −j〉 is the state with all the atoms in the ground state.
The classical Dicke Hamiltonian hD(x), obtained with the latter method, has an infinite

four-dimensional phase space M in the canonical variables x = (q, p; Q, P), where the
atomic variables are bounded (Q2 + P2 ≤ 4). A useful property of this phase space is that
it can be partitioned into a family of classical energy shells with finite volume V(ε) < ∞,
given by

M(ε) = {x ∈ M | hD(x) = ε}, (A13)

where ε = E/j is the classical energy of the shell scaled to the system size j, which defines
an effective Planck constant h̄eff = 1/j [115]. The finite volume V(ε) of the classical energy
shells M(ε) is obtained with a semiclassical approximation to the quantum density of
states ν(ε), using the Gutzwiller trace formula [114,116,117]. The explicit expression is
given by

V(ε) =
∫
M

dx δ(hD(x)− ε) = (2πh̄eff)
2ν(ε), (A14)

where the density of states is proportional to the system size ν(ε) ∝ 2j2, and can be derived
explicitly following Ref. [114].
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Appendix C. Quantum Entanglement

An arbitrary pure state |Ψ〉 of a multipartite system composed of S subsystems, whose
Hilbert space is given by the tensor product H = H1 ⊗H2 ⊗ . . . ⊗HS , can be expanded
due to the superposition principle in a tensor-product basis {|ψ1

k1
〉 ⊗ |ψ2

k2
〉 ⊗ . . . ⊗ |ψS

kS
〉} as

|Ψ〉 =
d1,d2,...,dS

∑
k1,k2,...,kS

ck1,k2,...,kS |ψ1
k1
〉 ⊗ |ψ2

k2
〉 ⊗ . . . ⊗ |ψS

kS 〉, (A15)

where d1, d2, . . . , dS are the dimensions of each subspace and the coefficients ck1,k2,...,kS
satisfy the normalization condition

d1,d2,...,dS

∑
k1,k2,...,kS

|ck1,k2,...,kS |2 = 1̂. (A16)

Thus, the state |Ψ〉 is called separable (entangled) if it can (cannot) be written as a
tensor product of states corresponding to each subspace

|Ψ〉 = |Ψ1〉 ⊗ |Ψ2〉 ⊗ . . . ⊗ |ΨS〉. (A17)

For a mixed state ρ̂ the definition of entanglement is no longer equivalent to that of a
pure state. In this way, the mixed state ρ̂ is called separable (entangled) if it can (cannot)
be written as a convex combination of tensor-product states [102,118], corresponding to
each subspace

ρ̂ =
d1,d2,...,dS

∑
k1,k2,...,kS

pk1,k2,...,kS ρ̂1
k1

⊗ ρ̂2
k2

⊗ . . . ⊗ ρ̂S
kS , (A18)

where d1, d2, . . . , dS are the dimensions of each subspace and the probabilities pk1,k2,...,kS
satisfy the normalization condition

d1,d2,...,dS

∑
k1,k2,...,kS

pk1,k2,...,kS = 1̂. (A19)

When multipartite systems are studied, a useful tool to work with is the reduced
density matrix corresponding to a given subspace, which is obtained by taking the partial
trace of the whole density matrix ρ̂. For example, the reduced density matrix of the i-th
subspace is given by

ρ̂i = Tr(1,2,...,S) �=i[ρ̂] =
di

∑
ki=1

Pki
ρ̂i

ki
, (A20)

where ∑di
ki=1 Pki

= 1̂ and

Pki
=

(d1,d2,...,dS ) �=di

∑
(k1,k2,...,kS ) �=ki

pk1,k2,...,kS . (A21)

Appendix D. Integrable Dicke Model: Tavis–Cummings Model

The integrable limit of the Dicke model is known as the Tavis–Cummings model [119],
and can be obtained by applying the rotating wave approximation (RWA) to the Dicke
Hamiltonian (2). The RWA consists of ignoring the interacting terms in ĤI (see Equation (5))
that oscillates very fast, that is, â† Ĵ+ and â Ĵ−. The last results in a modified interacting
Hamiltonian given by

ĤRWA
I =

γ√
N

(â† Ĵ− + â Ĵ+), (A22)
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such that, the complete Tavis–Cummings Hamiltonian is given by

ĤTC = ĤF + ĤA + ĤRWA
I , (A23)

where the Hamiltonians ĤF and ĤA are the same terms given in Equations (3) and (4). The
particularity of the Tavis–Cummings Hamiltonian is that it commutes with the operator
Λ̂ (see Equation (7)), which is a conserved quantity that defines the number of excitations.
The last feature allows to diagonalize the Tavis–Cummings Hamiltonian in finite subspaces
of such operator [119].
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Abstract: OTOC has been used to characterize the information scrambling in quantum systems.
Recent studies have shown that local conserved quantities play a crucial role in governing the
relaxation dynamics of OTOC in non-integrable systems. In particular, the slow scrambling of OTOC
is seen for observables that have an overlap with local conserved quantities. However, an observable
may not overlap with the Hamiltonian but instead with the Hamiltonian elevated to an exponent
larger than one. Here, we show that higher exponents correspond to faster relaxation, although
still algebraic, and such exponents can increase indefinitely. Our analytical results are supported by
numerical experiments.

Keywords: OTOC; information scrambling; relaxation dynamics

1. Introduction

For generic many-body quantum systems, information initially encoded in a few local
degrees of freedom can spread in time over the entire accessible space. This process is
called information scrambling and can be characterized by out-of-time ordered correlators
(OTOCs) [1–21]. For quantum systems with a classical limit, OTOCs can be mapped to
Lyapunov exponents [22–33]. Because of this, OTOCs have been applied to understand
the thermalization in many-body quantum systems [3–13].

Recent studies have pointed out the relevance of local conserved quantities in the
relaxation dynamics of OTOCs [34,34–40]. In particular, in [39] it was shown that the
emergence of algebraic relaxation can stem from the locality of the Hamiltonian, i.e.,
the ensuing presence of a Lieb–Robinson bound [41], and the eigestate thermalization
hypothesis (ETH) [42,43]. Importantly, with the approach developed in [39] it was also
possible to show that the algebraic relaxation of the OTOC is typical.

In the scenarios considered until now, the operators in the OTOC had non-zero overlap
with the Hamiltonian or a local conserved quantity (i.e., total magnetization). Here, we
investigate how the relaxation dynamics would be affected if the operators in the OTOC,
e.g., A, do not overlap with the Hamiltonian H but only with one of its powers, i.e.,
tr(AH) = 0, but tr(AHm) �= 0 for m, being an integer larger than one. We show that
depending on the exponent m at which the overlap becomes non-zero, we expect an
algebraic relaxation of the OTOC in time with an exponent proportional to m. To obtain
this result, we also show the relation between the first non-zero derivative of the diagonals
of an operator in the energy basis, with the exponent m at which tr(AHm) �= 0.

The paper is organized as follows. In Section 2, we introduce the definition of OTOCs
and explain the relaxation dynamics of OTOCs from the knowledge of the matrix elements
of the observables in the eigenenergy basis. In Section 3, we show analytically our main
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result, i.e., that any different exponents can emerge in the relaxation of the OTOC, depend-
ing on the order at which the operators in the OTOC overlap with the Hamiltonian. Our
numerical results are presented in Section 4. We draw our conclusions in Section 5.

2. Emergence of Slow Scrambling

2.1. Definition

Consider the infinite-temperature out-of-time-ordered correlator (OTOC) between
two local observables A and B defined as

OAB(t) =
1
2
〈[A(t), B][A(t), B]†〉 (1)

where A(t) = U† AU is the time evolved operator A due to the unitary evolution U =

T e−i
∫ t

0 H(τ)dτ from the time-ordered integration of the (generically) time-dependent Hamil-
tonian H(t). Expanding the commutators, we can rewrite Equation (1) as

1
2
〈[A(t), B][A(t), B]†〉 = 〈B2 A(t)2〉 − 〈A(t)BA(t)B〉

= GAB(t)− FAB(t),

(2)

where GAB(t) = 〈B2 A(t)2〉 is the time-ordered part of OTOC and FAB(t) = 〈A(t)BA(t)B〉
is the not-time-ordered part. We consider only unitary and Hermitian observables for
which G(t) = 1, and hence we restrict ourselves to F(t) in the remaining part. Taking
energy eigenstates as the basis of the Hilbert space, the time evolution of OTOC can be
written in the eigenenergy basis |p〉 as

FAB(t) =
1
V ∑

p,q,k,l
ei(Ep−Eq+Ek−El)t ApqBqk Akl Blp (3)

where Ep is the eigenenergy, Apq = 〈p|A|q〉, and Bqk = 〈q|B|k〉. We work in units for which
h̄ = 1.

As t → ∞, dominant terms in the above expression are those for which Ep − Eq + Ek −
El = 0. Hence, for generic systems [44,45], the infinite-time value of FAB(t) is given by

FAB(∞) =
1
V

(
∑
p

A2
ppB2

pp + ∑
p,q �=p

(
AppBpq AqqBqp

+ApqBqq AqpBpp
))

. (4)

Equation (4) highlights the importance of diagonal elements of A and B in the eigenenergy
basis in the infinite-time value of OTOC. Indeed, a non-zero diagonal element in A or B is
necessary to guarantee a non-zero value of FAB(∞).

2.2. Conditions for Algebraic Relaxation of OTOC

Two sufficient conditions for the emergence of algebraic relaxation of OTOC [39,40]
are

• A Lieb–Robinson bound (or even an algebraic spreading of correlation that occurs in
systems with power-law interactions),

• The algebraic scaling of the infinite-time value of the OTOC with the system size.

In local and bounded Hamiltonians, the speed of propagation of the correlations is
limited by Lieb–Robinson bound [41,46]. Hence, an accurate description of the evolution of
OTOC of a thermodynamically large system can be obtained simply considering a finite
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portion of it. Assuming that the system is maximally scrambled within the region of size L,
the decay of FAB

L=∞(t) is bounded by the Lieb–Robinson velocity vLR as

FAB
L=∞(t) ≈ FAB

L=s vLR t(∞), (5)

where s is a real number larger than 1. Hence, L increases with time and is a time-dependent
quantity. Therefore, the scaling of FAB

L (∞) is crucial to predict the bound for the relaxation
of OTOC. In particular, when FAB

L (∞) decays algebraically with the system size, e.g.,
FAB

L (∞) ∝ L−α, then the OTOC of the thermodynamic size system cannot decay faster than
algebraically in time, or more precisely from Equation (5) one can write that it cannot be
faster than

FAB
L=∞(t) ∝

1
tα

(6)

because L = s vLR t.
The actual decay of the OTOC may even be slower, for example, considering cases in

which the system goes through prethermalization [47] or in which the system is many-body
localized [48]. However, the relaxation cannot be faster; hence, the OTOC will have a slow,
non-exponential relaxation. A comprehensive analysis of this is presented in [39].

3. Generic Algebraic Relaxation in Short-Ranged Systems

3.1. Estimate of the Infinite Time Value of OTOC

In this section, we show how to obtain the approximate value of the infinite-time,
finite-size, OTOC FAB

L (∞)

FAB
L (∞) =

1
V ∑

p
A2

ppB2
pp +

1
V ∑

p,q �=p
App Aqq|Bpq|2

+
1
V ∑

p,q �=p
BppBqq|Apq|2

≈ 1
V ∑

p
A2

ppB2
pp +

1
V ∑

p
App App

[
(BB†)pp − B2

pp

]
+

1
V ∑

p
BppBpp

[
(AA†)pp − A2

pp

]
≈ 1

V ∑
p

A2
ppB2

pp +
1
V ∑

p

[
tr(BB†)− B2

pp

]
A2

pp

+
1
V ∑

p

[
tr(AA†)− A2

pp

]
B2

pp

≈ 1
V ∑

p
A2

ppB2
pp +

1
V ∑

p

[
1 − B2

pp

]
A2

pp

+
1
V ∑

p

[
1 − A2

pp

]
B2

pp

≈ 1
V ∑

p

[
A2

pp + B2
pp − A2

ppB2
pp

]
≈ 1

V ∑
p

[
A2

pp + B2
pp

]
, (7)

where we have used steps similar to [39,45], and a similar discussion can be found in [40].
Thus, the main contribution of the infinite-time finite-size OTOC comes from the A2

pp and
B2

pp terms, which we will be discussing in the following.
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3.2. Structure of the Diagonal Elements

In short, the diagonal element App can be approximated by a function of eigenen-
ergy Ep

|App − fA(Ep/L)| ≤ e−(Ω(L)), (8)

where fA(Ep/L) can be expanded as

fA(Ep/L) = fA(0) + f (1)A (0)Ep/L +
1
2

f (2)A (0)E2
p/L2 + ...

= ∑
q

f (q)A
q!

(
Ep

L

)q
(9)

with f (q)A being the q-th derivative of fA. We also note that, using Lemma 1 in [45], one can
write

1
V ∑

p
Eq

p = 〈Hq〉 = O(Lq/2). (10)

In [45] it was shown that, for traceless operators fA(0) = 0, and if f (1)A (0) �= 0, then we can
write

tr(AH) =
1
V ∑

p
AppEp

≈ 1
VL ∑

p
E2

p f (1)A (0)

≈ 〈H2〉
L

f (1)A (0) (11)

and thus

f (1)A (0) ≈ tr(AH)L
〈H2〉 . (12)

Hence, the first derivative of a local observable A is independent of the system size. From
Equation (12), we obtain

FAB
L (∞) ≈ 1

V ∑
p
(A2

pp + B2
pp)

≈ 1
V ∑

p

E2
p

L2

[(
f (1)A (0)

)2
+
(

f (1)B (0)
)2
]

≈ 1
V ∑

p

E2
p

L2

[
tr(AH)2 + tr(BH)2

]
L2

〈H2〉2

≈ tr(AH)2 + tr(BH)2

〈H2〉

∝
1
L

. (13)

The last step stems from the fact that tr(AH) and tr(BH) are independent of the system
size, while 〈H2〉 ∝ L from Equation (10).
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If tr(AH) = 0 but, for instance, tr(AHp) �= 0 only for p ≥ pc then one can generalize
the previous result. Considering f (q)A (0) as the smalles non-zero derivative of fA at zero
energy (with the same parity as pc), then we can write

tr(AHpc) = ∑
n

f (q)A
q!

Eq+pc
n
Lq (14)

which implies that

f (q)A =
q!tr(AHpc)Lq

〈Hpc+q〉 . (15)

Now, if q < pc then f (q)A would decay as L−(pc−q)/2, which implies that they are 0, and

the non-size dependent f (q)A (0) would occur exactly at q = pc. This implies that the first
non-zero derivative of fA(0) is the pc-th one. Thus, when tr(AHp) �= 0 only for p ≥ pc we
can write

FAB
L (∞) ≈ 1

V ∑
n

(
En

L

)2pc[(
f (pc)
A (0)

)2
+
(

f (pc)
B (0)

)2
]

≈ 1
V ∑

n

(
En

L

)2pc

[
tr(AHpc)2 + tr(BHpc)2

]
L2pc

〈H2pc〉2

≈ tr(AHpc)2 + tr(BHpc)2

〈H2pc〉

∝
1

Lpc
. (16)

Building on Equation (16), and combining it with the Lieb–Robinson bound L = s vLR t,
we can thus guarantee that FAB cannot relax faster than t−pc . Furthermore, for systems in
which correlations mostly spread diffusively, i.e., proportional to t1/2, we can can expect
FAB to relax as t−pc/2. Hence, the structure of the diagonal elements of the observables,
which is the first non-zero derivative at 0 energy, i.e., which is the first exponent of the
Hamiltonian that has non-zero overlap with the operators A and B considered, plays an
important role in the relaxation dynamics of the OTOC in the system. This is numerically
verified in detail in the following section.

4. Results

4.1. Model

We consider a prototypical non-integrable model, the tilted Ising chain with Hamiltonian

H =
L−1

∑
l=1

Jzσz
l σz

l+1 +
L

∑
l=1

(hxσx
l + hzσz

l ), (17)

where Jz is the coupling constant in the z direction, while hx and hz are the transverse
and the longitudinal field strengths. The model is integrable when either hx = 0 or
hz = 0. This can be verified by studying the level spacing statistics, which typically
follows a Poisson distribution for integrable systems and a Wigner–Dyson distribution
for non-integrable ones [49,50]. In particular, δn = En+1 − En, the level spacing between
two consecutive energy levels En and En+1 within a single symmetry sector, define the
ratio rn = max(δn, δn+1)/min(δn, δn+1) and take an average r = ∑n rn/N, where N is
the number of energy level differences considered. For a Poisson distribution, r can be
computed analytically, and it gives r = 2 ln 2 − 1 ≈ 0.386, while for a Wigner–Dyson
distribution r can be evaluated numerically to be r ≈ 0.529 [51]. In the current work, we
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use parameters Jz = 1, hz = 0.809, and hx = 0.9, which result in r ≈ 0.53 already for a
system size of L = 12 spins.

4.2. Observables and Structure of Their Diagonal Elements

To span over a variety of different structures, and to have operators A, which have
tr(AHp) �= 0 only for p ≤ pc with pc, which can be different from 1, we analyze both
single-site and multi-site observables in our study. In particular, we consider the following
four types of observables:

single − site → σα
l (18)

double − site → σα
l σα

l+1 (19)

triple − site → σα
l−1σα

l σα
l+1 (20)

quadruple − site → σα
l−2σα

l−1σα
l σα

l+1 (21)

where α = x, y or z. The diagonal elements of these operators in the eigenbasis of Hamilto-
nian Equation (17) are shown in Figure 1. The left column is for α = x, the center column
is for α = y, and the right column is for α = z. The rows are for increasing the range of
operators from top to bottom, with the top row for single-site operators and the fourth row
for four-site operators. In all of the panels, the dashed lines represent the expected algebraic
energy dependence of fA near energy zero from Section 3.2. We note that these fits are
evaluated directly from calculating f (n)A (0) with Equation (15) along with eigenenergies En
for the system Hamiltonian in Equation (17) with no fitting parameters.

For single-site observables A = σx
l and σz

l , and for the non-integrable Ising chain

tr(AH) �= 0 and so f (1)A (0) �= 0. However, with A = σ
y
l , tr(AHn) = 0 for any n. Hence,

we expect a linear variation of the diagonal elements of σx
l and σz

l with energy density
En/L and a flat profile for σ

y
l . This can be seen in Figure 1a–c. To conform our analytical

predictions, we plot f (1)A (0)En/L where f (1)A (0) is calculated explicity form Equation (12).
The two-site observables A = σα

L/2σα
L/2+1, are shown in the panels (d–f). For A =

σx
L/2σx

L/2+1, tr(AH2) �= 0, whereas tr(AH) = 0 and, as predicted in Section 3.2, we thus

observe that fA can be fitted by a parabola f (2)A (0)E2
n/(2!L2) indicated by the dashed black

lines. Since tr(AH) �= 0 for A = σz
L/2σz

L/2+1, we see a linear scaling of Ann with En/L. For
the A = σ

y
L/2σ

y
L/2+1 observable, tr(AHm) �= 0 for m ≥ 3. Hence, we see a cubic structure of

the diagonal elements with a fitting of the form f (3)A (0)E3
n/(3!L3).

We also consider triple-site observables A = σα
L/2−1σα

L/2σα
L/2+1. These are depicted in

the panels (g–i). Here, tr(AHm) �= 0 for m ≥ 3 for σx
l observables, and we clearly see a cubic

structure for the diagonal elements that can be fitted with lines of the form f (3)A (0)E3
n/(3!L3).

Since there are no diagonal elements for any power of H for the σy observable, a flat profile
is seen. With the σz observable, a parabolic structure is seen since tr(AH2) �= 0, whereas
tr(AH) = 0. This is also nicely fitted by f (2)A (0)E2

n/(2!L2) in panel (i).
For the four site observable, we study A = σα

L/2−2σα
L/2−1σα

L/2σα
L/2+1. For A =

σx
L/2−2σx

L/2−1σx
L/2σx

L/2+1, a quartic structure can be seen as tr(AHm) �= 0 only for m ≥ 4.

This is fitted by f (4)A (0)E4
n/(4!L4) (black dashed lines). With σ

y
l observables, the expected

structure is hexic (polynomial of sixth degree) because tr(AHm) �= 0 only for m ≥ 6.
Though it is less clear, we fit it with the expected scaling f (6)A (0)E6

n/(6!L6) using the black
dashed lines. For the σz observable, we find a parabolic structure in accordance with
our prediction as tr(AH2) �= 0, whereas tr(AH) = 0. Since we consider systems of size
L = 14, the results in Figure 1j–l are partially affected by finite-size effects. Despite this, the
numerics are aligned with our theoretical predictions.
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Figure 1. Diagonal elements of the observable in the energyeigen basis for single-site observ-
ables A = σα

L/2 panel (a–c), double-site observables A = σα
L/2σα

L/2+1 (d–f), triple-site observables
A = σα

L/2−1σα
L/2σα

L/2+1 (g–i), and quadruple-site observables A = σα
L/2−2σα

L/2−1σα
L/2σα

L/2+1 (j–l). Left
panels are for σx

l (α = x) observables, middle panels are for σ
y
l (α = y) observables, and right panels

are for σz
l (α = z) observables. Dashed lines are the lowest order fits in the Taylor expansion of the

observable in Equation (9). Here, L = 14, Jz = 1, hx = 0.9, and hz = 0.809.

To summarize this section, we observe clearly that the diagonal elements of operators
can have a very different dependence as a function of energy near zero. In particular, we
have numerically verified the prediction that Ann ∼ 1/Lp, where p is the lowest positive
integer such that tr(AHp) �= 0.

4.3. Scaling of the Infinite Time Value of OTOC

In Figure 2, we show numerical confirmation that, given the minimum positive integer
pc such that tr(AHpc) �= 0 or tr(BHpc) �= 0, then FAB

L=∞(t) ∝ 1/Lpc . In each of the panels,
we show how the infinite time value of the OTOC FAB

L (t = ∞) varies as a function of the
system size L. In the different panels, we will focus on single-site, panel (a); two-site, panel
(b), three-site, panel (c); and four-site, panel (d), observables. In each panel, the red line
with circles corresponds to α = x, blue with stars to α = y, and green with diamonds
to α = z. In panel Figure 2a, we plot the infinite time values of OTOC with single-site
observables A, B = σα

l , where l = L/2 for observable B and l = L/2 − 1 for observable A.
We see that these observables have pc = 1, and hence they follow 1/L scaling, as shown
by dashed line. σ

y
l has no overlap with any local conserved quantities, and hence the

diagonal elements as well as the infinite time values of OTOC are zero. Figure 2b is for
double-site observables Equation (19), where l = L/2 for observable B and l = L/2 − 2
for observable A. We compare the numerical results with fitted lines, in particular with
1/L2 (dotted), 1/L3 (dashed dotted lines), and 1/L (dashed), respectively, corresponding
to operators with pc = 2, 3 and 1. We note that due to the small value of the overlap of
σ

y
j σ

y
j+1 with the Hamiltonian, the expected scaling is followed only at larger system sizes.

In panel (c), we plot the triple-site observables Equation (20), where j = L/2 − 3 for A and
j = L/2 for B. Fitted lines are for 1/L2 and 1/L3 scalings, as expected, since α = 2 and 3,
respectively. Since the diagonal elements of σ

y
j σ

y
j+1σ

y
j+2 are zero, the infinite time value of
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the OTOC FAB
L (t = ∞) is zero. Panel (d) is for quadruple-site observables Equation (21),

where j = L/2 − 4 for A and j = L/2 for B. The expected scalings are pc = 4, 6, 2. However,
due to the fact that the observables have a large support at initial time, we see that the
correct scaling of 1/L4, 1/L6, 1/L2 is followed only at large system sizes.
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Figure 2. Infinite time values of OTOC corresponding to the single-site observables with A = σα
L/2−1,

B = σα
L/2 panel (a), double-site observables with A = σα

L/2−2σα
L/2−1, B = σα

L/2σα
L/2+1 (b), triple-

site observables with A = σα
L/2−3σα

L/2−2σα
L/2−1, B = σα

L/2σα
L/2+1σα

L/2+2 (c), and quadruple-site
observables with A = σα

L/2−4σα
L/2−3σα

L/2−2σα
L/2−1, B = σα

L/2σα
L/2+1σα

L/2+2σα
L/2+3 (d). Green lines

with diamonds are for observables involving only σz
l (α = z) operators, red lines with circles are

for σx
l (α = x), and blue lines with stars are for σ

y
l (α = y) operators, respectively. Black-dashed,

brown-dotted, and grey-dashed dotted lines are the fits for σz
l , σx

l , and σ
y
l observables. Here, Jz = 1,

hx = 0.9, and hz = 0.809.

4.4. Dynamics of OTOCs

We study the dynamics of OTOC in Figure 3, where each panel reflects the same case
analyzed in the corresponding panel of Figure 2. Green lines are for observables involving
only σz

l operators, red lines are for σx
l , and blue lines are for σ

y
l operators, respectively. In

these plots, we need to study the long-time evolution. We thus need to disregard initial
transients. At the same time, though, our results are affected by finite size, so we would
need to concentrate on long yet intermediate times to evaluate the relaxation of the OTOC
over time. Light shades are for L = 14, and dark shades for L = 12. Black-dashed, brown-
dotted, and grey-dashed dotted lines are the fits for σz

l , σx
l , and σ

y
l observables. Figure 3a is

for single-site observables, as in Equation (18). We have already seen that since tr(OH) �= 0,
for (O = A, B), then the infinite time value of OTOC FAB

L (t = ∞) scales as 1/L. From our
discussion at the end of Section 3.2, we thus expect that FAB(t) ∝ 1/t1/2, and the numerical
result of the dynamics, is well fitted by the black dashed line proportional to t1/2.

In Figure 3b, we study the two-site observables of Equation (19) with l = L/2 for
observable B and l = L/2 − 2 for observable A. As already discussed, the lowest order
terms that have non zero values in the Taylor expansion for these observables are 1, 2 and
3, respectively, for the σz

l , σx
l , σ

y
l observables. In Figure 2b, we showed the scaling of the

infinite-time OTOC for these observables as 1/L, 1/L2, 1/L3. Here, we would thus expect
a scaling with times of 1/t1/2, 1/t, and 1/t3/2, as shown in the plots by dotted, dashed
dotted, and dashed lines, respectively. We study the evolution of three-site observables
of Equation (20) in Figure 3c. Here, l = L/2 − 3 for A and l = L/2 for B. Fitted lines are
for 1/t and 1/t3/2 scaling as expected since tr(OH) �= 0 for σz

l and tr(OH2) �= 0 for the
σx

l observable. Panel (d) shows the dynamics for four site observables with l = L/2 − 4
for A and l = L/2 for B. The expected scaling is 1/t, 1/t2, and 1/t3 for α = z, x and y,
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respectively, whose operators for the corresponding critical exponent pc that gives non-zero
overlap are 2, 4, and 6 .
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(c)
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Figure 3. Time evolution of OTOC corresponding to the single-site observables with A = σα
L/2−1,

B = σα
L/2 panel (a), double-site observables with A = σα

L/2−2σα
L/2−1, B = σα

L/2σα
L/2+1 (b), triple-site

observables A = σα
L/2−3σα

L/2−2σα
L/2−1, B = σα

L/2σα
L/2+1σα

L/2+2 (c), and quadruple-site observables
A = σα

L/2−4σα
L/2−3σα

L/2−2σα
L/2−1, B = σα

L/2σα
L/2+1σα

L/2+2σα
L/2+3 (d). Green lines are for observables

involving only σz
l (α = z) operators, red lines are for σx

l (α = x), and blue lines are for σ
y
l (α = y)

operators respectively. Black-dashed, brown-dotted, and grey-dashed dotted lines are the fits for σz
l ,

σx
l , and σ

y
l observables discussed in the text. Here, L = 14 for lighter shades and L = 12 for darker

shades and Jz = 1, hx = 0.9, and hz = 0.809.

5. Conclusions

OTOCs have been studied as a probe for quantum information scrambling. Slow, alge-
braic scrambling has been reported in systems with local conserved quantities [34,38–40].

In this paper, we showed that the higher the exponent at which ones elevates the
Hamiltonian in order to have a non-zero overlap with the operators in the OTOC, the faster
is the relaxation of the OTOC over time. Furthermore, if there is an exponent such that the
overlap is non-zero, then the relaxation, even if it appears to be fast, is bounded to be, at
the fastest, algebraic, and only if there is no overlap with any power of the Hamiltonian (or
other conserved quantities), then the relaxation can be exponential.

From our results, it follows that considering single-site operators in the OTOC, and
a local Hamiltonian with only a single site and nearest neighbours term, relaxation can
only take a limited set of exponents. It is thus necessary to consider operators with larger
support, such as two-site, three-site, and four-site operators, to observe a larger variety and
magnitude of relaxation exponents. This, however, leads to the difficulty of studying the
relaxation numerically due to more pronounced finite-size effects when studying operators
with larger support. Future developments in numerical methods could help to test our
results for larger systems.

In order to derive these results, we also found a relation between the first non-zero
derivative of the function representing the diagonals of an operator in the energy basis
and the first non-zero exponent of the Hamiltonian (which has non-zero overlap with
the operators of the OTOC). Future works could extend these results to time-dependent
systems with other types of conserved quantities.
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Abstract: Quantum chaos is reviewed from the viewpoint of “what is molecule?”, particularly placing
emphasis on their dynamics. Molecules are composed of heavy nuclei and light electrons, and thereby
the very basic molecular theory due to Born and Oppenheimer gives a view that quantum electronic
states provide potential functions working on nuclei, which in turn are often treated classically or
semiclassically. Therefore, the classic study of chaos in molecular science began with those nuclear
dynamics particularly about the vibrational energy randomization within a molecule. Statistical
laws in probabilities and rates of chemical reactions even for small molecules of several atoms are
among the chemical phenomena requiring the notion of chaos. Particularly the dynamics behind
unimolecular decomposition are referred to as Intra-molecular Vibrational energy Redistribution
(IVR). Semiclassical mechanics is also one of the main research fields of quantum chaos. We herein
demonstrate chaos that appears only in semiclassical and full quantum dynamics. A fundamental
phenomenon possibly giving birth to quantum chaos is “bifurcation and merging” of quantum
wavepackets, rather than “stretching and folding” of the baker’s transformation and the horseshoe
map as a geometrical foundation of classical chaos. Such wavepacket bifurcation and merging are
indeed experimentally measurable as we showed before in the series of studies on real-time probing
of nonadiabatic chemical reactions. After tracking these aspects of molecular chaos, we will explore
quantum chaos found in nonadiabatic electron wavepacket dynamics, which emerges in the realm
far beyond the Born-Oppenheimer paradigm. In this class of chaos, we propose a notion of Intra-
molecular Nonadiabatic Electronic Energy Redistribution (INEER), which is a consequence of the
chaotic fluxes of electrons and energy within a molecule.

Keywords: quantum chaos; electronic-state chaos; electron dynamics; nonadiabatic dynamics;
chemical dynamics; semiclassical mechanics; quantum tunneling; stochasticity and determinicity

1. Introductory Remarks: What Makes Molecules Special in Quantum Science
and Chaos

Molecules consist of heavy nuclei and light electrons, which give rise to quite inter-
esting and characteristic properties. All of the living bodies and biological systems on the
globe are made up with molecules and are subject to the beautiful chemical laws. In the
biological activities most of those molecular dynamics and properties should appear to
be deterministic in the molecular levels, whereas the general dynamics of molecules often
work in stochastic and statistical manners. The origin of such statistical properties arising
even from small molecular systems are widely ascribed to classical [1] and quantum [2–12]
chaos. This in turn suggests that one may find novel chaos in the dynamics of molecules.

Light electrons in a molecule move very fast and yet are accompanied with long
wavelength in their matter waves, while the nuclear motion is much slower, but the
relevant wavelengths are relatively far shorter due to the heavy masses. Thus, the two
intrinsic hierarchical structures emerge in time-scale and length-scale within the dynamics
of a molecule. Consequently the general picture of a molecule are: (i) Nuclei move on
mean-field potential functions that are generate by the electrons. (ii) The nuclear motion
can bear classical and semiclassical nature due to the short wavelength, while electrons
are utterly quantum. Therefore, in contrast to classical chaos of the nuclear motion, it
is often claimed that there is no chaos in electronic states because of discreteness in the
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energy levels with large gaps among them. Physics of the mapping of classical chaos onto
quantum systems is often referred to as quantum chaology [13]. As a matter of fact most of
the chaos studies in molecular science have been focused on the vibrational spectroscopy
and nonlinear mixing of the vibrational modes and the theoretical foundation of statistical
laws in chemical reaction dynamics. All these are about the chaoticity arising from the
nuclear motion alone.

However, the theoretical separation of the electronic and nuclear motions due to the
fast and slow modes, which is known as the Born-Oppenheimer separation, can sometimes
break down through large kinematic interaction between them, which cause a mixing of
the relevant electronic states. This interaction is generally and vaguely referred to as nona-
diabatic interaction [14–20]. This interaction is extremely important in molecular science,
since the electronic states and the relevant molecular properties can change instantaneously
and drastically when a molecule passes through those nonadiabatic interaction regions.
Moreover, we will show that nonadiabatic mixing among many electronic states involved
in the manifold of densely quasi-degenerate electronic states can result in strong chaos,
which can manifest as a diffusion motion of electronic states in the Hilbert space. This
article will hence discuss chaos in what we call nonadiabatic electron dynamics [21–27].

Chaos theory for Hamilton mechanics was initiated (resumed from the view point of
Poincaré) around 1950s [28]. Many beautiful theoretical models, elegant mathematics of
geometry along with sophisticated numerical studies on ordinary differential equations
have been studied since [1]. As for molecular chaos, there are very many pieces of the-
oretical studies in the literature, yet, due to the complexity of molecular nature most of
the theoretical developments and applications are limited to small dimensional systems,
typically two-dimensional in the early days. On the other side, the present author and
his group have long been studying the chemical dynamics ranging from nuclear classical
and semiclassical dynamics (see ref. [29,30] and more cited there) to full quantum electron
dynamics [25–27]. Such molecular studies on chemical dynamics often guide us to chaotic
phenomena that appear only in molecules. Conversely, tracking the path of our chaos
studies, along with some data added herewith, would give partly an idea about what
the dynamics of molecule are. We therefore apologize in advance that this review article
covers only a very biased aspect of chaos studies. We hence do not cover the topics of the
main-stream theories and well-established materials for quantum chaos such as level statis-
tics, the random matrix theory, chaos in external fields and dissipative systems, and so on.
Extensive reviews about general quantum chaos theory [11,12] are now widely available in
numerous monographs [2–10] and review articles published elsewhere. The special issue
of this journal Entropy, “Quantum Chaos—Dedicated to Professor Giulio Casati on the
Occasion of His 80th Birthday”, is certainly among the newest ones.

We begin this review with the very basic structure of molecular science in Section 2,
along with the so-called Born-Oppenheimer approximation, which separates nuclear and
electronic dynamics in molecules [31].

In Section 3, we briefly touch upon the aims and implications of chaos studies in
molecular science, particularly for chemical dynamics. For this purpose only, we take a
couple of examples from previous studies on classical chaos.

Section 4 resumes with the full quantum chaos using the modified Hénon-Heiles
potential as a model system of two-dimensional vibrational motions. We track the quantum
wavepackets running within the quasi-separatrix and construct some of the associated
eigenfunctions. A class of dynamical tunneling that exists only in the quasi-separatrix will
be presented. The long-time energy spectra and the dependence of the chaotic spectra on
the magnitude of the Planck constant are briefly examined.

Multidimensional semiclassical mechanics is indispensable in the treatment of the
dynamics of heavy nuclei in molecules. We review our developed semiclassics [29,30] in
Section 5, which we call the method of Action Decomposed Function (ADF) [32,33]. With
ADF we analyze the mechanism of quantization not only of forming the energy peaks
but of nullification of the off-resonance components. As a consequence of our theoretical
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and numerical studies, we proceed to the idea of amplitude free quantization without
use of the annoying amplitude factors such as the van Vleck determinant [34] and those
inherent to the semiclassical kernels (Greens functions) [35–37]. Semiclassical tunneling is
also touched upon.

Then we study the characteristic molecular science, in which the nuclear dynamics
kinematically couples with the electronic states, where the electronic-nuclear separation
is broken down. In Section 6, we first concentrate on the nonadiabatic nuclear dynamics,
which are subject to coupled equations of motion on multiple potential energy surfaces.
The electronic states are still represented in time-independent wavefunctions. We show
that the phenomenon of “bifurcation and merging (remixing) of quantum wavepackets”,
a fundamental mechanism of quantum chaos, is indeed observable experimentally.

The final part of this review is devoted to the nonadiabatic electron dynamics in
Section 7. Electronic wavepacket description is particularly useful in the stage where the
adiabatic electronic states behind are embedded in a quasi-degenerate manifold and thereby
nonadiabatic mixing among them is very intense and continual. Those strong and enduring
electronic state mixing result in quantum chaos for the molecular electronic states.

This review concludes with some remarks in Section 8, stressing that the theory of
quantum chaos and philosophy behind is indeed fundamental and useful also in practical
science like chemistry.

2. Brief Introduction to the Theoretical Framework of Molecules: Born-Oppenheimer
Approximation to Separate Electronic and Nuclear Motions

We first outline briefly the very basic frame of quantum description of molecules
suggesting how chaos studies of molecules proceed.

2.1. The Born-Oppenheimer (BO) Approximation

The nonrelativistic molecular Hamiltonian is given as

H(r, R) = TN + Hel(r; R)

=
1
2 ∑

k

P̂2
k

Mk
+ H(el)(r; R), (1)

and
ih̄

∂

∂t
Ψ(r, R, t) = H(r, R), (2)

where H(el)(r; R) is the electronic Hamiltonian defined as

H(el)(r; R) = Te + Vc(r; R)

=
1

2m ∑
j

p̂2
j + Vc(r; R) (3)

with r and R representing the electronic and nuclear coordinates, respectively, while p̂j

and P̂k denote the operators for their conjugate momenta of the jth and kth component of r

(specifically written as rj) and R (Rk), respectively. We here consider only the Coulombic
interactions Vc(r; R) among electrons and nuclei, that is

Vc(r; R) = ∑
a<b

e2

|ra − rb|
− ∑

a
∑
A

ZAe2

|ra − RA|
+ ∑

A<B

ZAZBe2

|RA − RB|
, (4)

where ra and RA are the ath electron and Ath nuclei, respectively, and ZA indicate the
nuclear charge on the Ath nuclei.
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Due to the great difference in the time scales between electrons and nuclei, their
motion is assumed to be separated at each time, as the so-called the Born-Oppenheimer
(BO) approximation represents the total wavefunction Ψ(r, R, t) to be

Ψ(r, R, t) � χI(R, t)ΦI(r; R), (5)

where ΦI(r; R) and χI(R, t) are the electronic and nuclear wavefunctions, respectively. Note
that electrons are assumed to move so fast that it can adjust themselves as a stationary wave
at any nuclear position R, and thereby the electronic wavefunction ΦI(r; R) is assumed to
be free of time coordinate t. This in turn requires that ΦI(r; R) is to be attained at each R

such that
Hel(r; R)ΦI(r; R) = VI(R)ΦI(r; R). (6)

Notice that R in ΦI(r; R) and in Equation (6) is thereby treated as a parameter. The electronic
energy VI(R) as a function of nuclear coordinates serves as a potential energy function
(I = 1, 2, . . .) for the nuclear wavefunction in such a manner that

ih̄
∂

∂t
χI(R, t) =

[
∑
k

P̂2
k

2Mk
χ + VI(R)

]
χI(R, t). (7)

The time independent figure VI(R) is often called the potential energy hyper-surface (PES)
in the chemical literature [31].

The lowest-order correction to the Born–Oppenheimer energy is found to be in the
order of

(m/M)6/4. (8)

This analysis [38] clearly demonstrates that the Born–Oppenheimer approximation is far
better than would be expected from a simple mass ratio m/M. For example, if m/M ∼ 10−4,
which is typical in molecular systems, the error term is (m/M)1.5 ∼ 10−6.

2.2. The Born-Huang Expansion

To approach the exact solution of Equation (2) from the BO approximation, we need
to expand Ψ(r, R, t) in the stationary electronic basis functions {ΦI(r; R)} at each nuclear
position R as

Ψ(r, R, t) = ∑
I

χI(R, t)ΦI(r; R), (9)

where unknown time-dependent coefficients χI(R, t) are supposed to describe the nuclear
wavepackets. This is referred to as the Born-Huang expansion [39]. The electronic basis
functions {|ΦI〉} are assumed to be orthonormal at each nuclear configuration as

〈ΦI(R)|ΦJ(R)〉 = δI J . (10)

The nuclear wavefunctions are subject to the following coupled equations

ih̄
∂

∂t
χI =

1
2 ∑

k

P̂2
k

Mk
χI + ∑

J
Hel

I JχJ − ih̄ ∑
k

∑
J

Xk
I J

Mk
P̂kχJ −

h̄2

2 ∑
k

∑
J

Yk
I J

Mk
χJ , (11)

where

Xk
I J =

〈
ΦI |

∂ΦJ

∂Rk

〉
, Yk

I J =

〈
ΦI |

∂2ΦJ

∂Rk
2

〉
, (12)

and
Hel

I J(R) =
〈

ΦI

∣∣∣Hel
∣∣∣ΦJ

〉
. (13)

Since Xk
I J and Yk

I J serve as the mixing elements among the adiabatic electronic states, they
are collectively called nonadiabatic interactions. Tough difficulties in an attempt to solve the
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coupled equations of motion (11) are due to the many dimensionality of R, the oscillatory
nature (due to the short wavelength) of {χI}, and many channels to be taken into account.
Besides, some of {χI} can extend to asymptotic regions in reaction (scattering) dynamics.

Note that the above Born-Huang expansion can be performed with use of other basis
functions that do not satisfy Equation (6). In such a case Hel

I J(R) in Equation (13), have
significant amount of nonzero off-diagonal elements. {ΦI(r; R)} satisfying Equation (6)
are referred to as the adiabatic wavefunctions, while others are to diabatic wavefunctions
collectively. There are many ways to determine the diabatic functions [16–18,20], a typical
set being those that minimize

∣∣∣Xk
I J

∣∣∣. We will use the adiabatic representation in what follow
unless otherwise noted.

3. Implication of Chaos in Chemical Dynamics

3.1. Determinicity versus Stochasticity in Molecules

It was Arrhenius who established the well-known thermodynamical reaction rate k
from initial molecules to products in the form

k ∝ exp(−Ea/RT). (14)

This formula is indeed revolutionary in that the rate or speed has been derived based on
the Maxwell-Boltzmann distribution for equilibrium states. The physical insight of this rate
expression was uncovered by Eyring [40–42]. He studied a potential energy surface for
simple atomic exchange reaction

A + BC → [ABC]‡ → AB + C (15)

where [ABC]‡ is a transient state, called the transition state, at the bottleneck area on the
way of reaction. He assumed a statistical distribution for the vibrational modes transversal
to the translational one and associated the partition functions with them. He thus clarified
the quantum mechanical meaning of the barrier height Ea along with the preexponential
factors to k (Polanyi and Wigner also stressed the geometrical roles of the potential energy
surface VI(R) of Equation (6)) [40–42]. It is now known that the transition state theory is
approximately valid even in binary collisions in vacuum. Even a quantum mechanical
extension is one of the important subjects [43,44]. On the other hand, rather simple reactions
for small systems can now well be treated in full quantum mechanics in a completely
deterministic manner. (I do never mean that the full quantum scattering calculation for
chemical reactions is an easy task. See refs. [45,46] for examples.) Yet the fundamental
question is aimed at the theoretical ground of the statistical assumption made in the
transition state.

While being subject to statistical laws on one hand, the dynamics of molecular motions
are generally deterministic on the other hand. Let us see such a rather intricate example.
See Figure 1, which is an ab initio (first principle) dynamics of 5-methyltropolone (5MTR).
Ushiyama found that the proton shift from on O2 in the panel (a) to the position next to
O1 (panel (c)) induces the rotation of the methyl group -C8HaHbHc at the bottom. The re-
ciprocal motion of proton turns to rotational motion of the methyl group through such a
long distance. Careful inspection at the panel (a) and (c) shows that this determinicity is
supported by the shift of double bonds (see ref. [47] for the electronic state mechanism).
This example denies the simple minded view that a molecule can be always regarded as a
set of points of nuclear point masses connected by “springs” among them. We therefore
need a careful thought when we study the chaos of molecular vibrational motions.
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Figure 1. (a) Stable structure of 5-methyltropolone (5MTR). Hydrogen atoms attached on C3, C4,
C6, and C7 are not shown. (b) The transition state on the way. (c) Proton has ben shifted from O2

to O1 inducing the internal rotation of the methyl group at the bottom. [Taken from Ushiyama, H.;
Takatsuka, K. Angew. Chem. Int. Ed. 2005, 44, 2 with permission].

Another example of statistical reaction rate theory was given by Marcus [48], which
augmented the successors’ formalism due to Rice, Ramsperger, and Kassel, thereby now
called the RRKM theory for unimolecular dissociation, which predicts the rate of slow
unimolecular dissociation of a molecule energized high enough to surmount the potential
barrier. This process is schematically represented as

[MA]∗ → M + A, (16)

where an energized molecule [MA]∗ may have been produced by collision and/or photo-
excitation, and so on. From the view point of quantum scattering theory, [MA]∗ can be
regarded as a core (temporally) excited resonance, and the unimolecular dissociation may
be viewed as a half-collision process of the Feshbach resonance [49,50]. In case where those
decaying vibrational energy levels are densely packed having high density of states, a state
in the vibrational-state manifold wanders among many nonlinearly coupled vibrational
states with a long life-time. It is intuitively clear that statistical prediction should work
well in such a situation, since the corresponding microcanonical ensemble is expected
to be highly mixing. The years of 1970s have been devoted to prove that the ergodicity
and mixing in the relevant classical phase space of [MA]∗ is indeed realized by classical
chaos. Such stochastic energy redistribution within a molecule is now generally termed
Intramolecular Vibrational energy Redistribution (IVR), which represents one of the most
important concepts in chemical dynamics and will be briefly touched upon below. In short,
statistical mechanics works surprisingly well even in such small molecules composed only
of several atoms, not of the Avogadro number. Those dynamics deviating from the RRKM
theory are now placed under special focus for their possible peculiar phase-space structures,
which are often termed as non-RRKM dynamics.

The key quantity that brings about stochastic and statistical nature into small molecular
dynamical systems is the density of state (DOS), not the number of particles (atoms and
molecules). In case where the DOS is low, the quantum dynamics should be subject
to the Schrödinger equation and naturally deterministic. The higher is DOS, the harder
become the relevant coupled equations to solve, and statistical treatments turn out to be
more feasible. Due to the heavy masses of nuclei, the vibrational and rotational degrees of
freedom of a molecule tend to have very high DOS, which can readily amount to the order
1010 eV−1 even for several atomic systems. This is not as large as the Avogadro number
but sufficiently large to allow for statistical treatment. On the other hand, the DOS for the
typical low-lying electronic states is less than 1.0 eV−1, and quantum mechanics is almost
only one faithful approach. For this reason, the theory of stationary molecular electronic
states is widely called quantum chemistry. For these low DOS and discrete states, it is a
natural assertion that there is no chaos. Yet, in the end of this review, we will penetrate the
electronic state manifold of densely quasi-degenerate states, ending up with finding chaos.
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3.2. Intramolecular Vibrational Energy Redistribution (IVR)

Given the statistical assumption of molecular vibrational energy distribution, the
RRKM theory actually estimates the rate of unimolecular dissociation based on statistical
inference at the bottle neck position on the way to products in phase space [48], using the
transition state [40–42]. Yet, chemical dynamics has made a further step to the physical
processes of intramolecular vibrational (along with rotational) energy flow (redistribution)
within a molecule.

Such experimental studies were made possible by the advent of short pulse laser,
which has unified two then separated subfields in molecular science, namely, spectroscopy
of molecular structures and chemical reaction dynamics. As such the so-called stimulated
emission pumping (SEP) spectroscopy applied to acetylene molecule H-C≡C-H (linear in
shape having a triple bond) has given a huge impact [51–54]. Just briefly is outlined the
essence of the experiment below. Preparing beforehand an electronically excited state of
H-Ċ=Ċ-H (bent structure and longer C-C distances, double bond), they de-excited it to the
high vibrational excited state on the electronic ground state by induced emission. Varying
the time-width of the pumping laser, they observed very interesting vibrational emission
spectra in the various hierarchical levels of resolution. Reflecting the highly vibrational
excited states of polyatomic molecule, the attained spectra were extremely complicated,
manifesting the chaotic feature behind. Surprisingly nevertheless, Yamanouchi succeeded
to assign the spectral origins of most of the relevant peaks [52]. Among others, the most
striking spectral feature is the so-called nested clump structure: Each of clump-like spectral
peaks of a rather broad width is found to be composed of finer peaks attained when a longer
width pulse is applied. Each of these fine peaks in turn shows another clump structure
and is observed to consist of the even finer peaks with the pulse of further long width.
They ascribed the nested structures to the stepwise intramolecular energy redistribution
triggered by the mode change from the vibrational structure of H-Ċ=Ċ-H to that H-C≡C-H.
For example, the elongated Ċ=Ċ bond releases much vibrational energy to the shorter
C≡C in the first stage, which are transferred to the C-H stretching modes, which in turn
coupled with the bending motion of ∠HCC in due time ordering. More complicated
energy redistribution can follow such as a very large amplitude motion of the hydrogen
atoms, but we do not pursue them here. Since the spectra of the longer time-width can
track the long physical process of energy redistribution. The related experiments and
precise analyses have vividly shown the real-time and actual energy flow within a molecule.
The notion of chaos has thus physical reality in chemical dynamics.

The energy transfer among the different vibrational modes are induced by high an-
harmonicity of the relevant potential functions, leading to nonlinear canonical equations,
and are also due to the overlap among the Fermi resonances [55] or the Feshbach reso-
nance [50]. (see ref. [5] for the overlap criterion of chaos.) Therefore, the relevant dynamics
can readily result in chaos leading to ergodicity [56]. Many classical mechanical stud-
ies have been devoted to IVR. Yet, only recently become available extensive reviews on
quantum ergodicity and intramolecular energy flow due to Leitner [57] and quantum
ergodicity transition in relation to IVR in a phase space perspective by Karmakar and
Keshavemurthy [58].

Incidentally, energy transfer, relaxation, and redistribution of intra- and inter-molecular
systems in condensed molecular systems [55,59] and biological molecules [60,61] are also
among the basic processes of many of chemical phenomena, irrespective of the extent of
possible contribution by quantum chaos. Currently, molecular dynamics studies are among
the main streams in these fields, but those are beyond the scope of this review.

3.3. Onset of Statistical Properties: Liquid-Like Clusters

Beck and Steve Berry are the first, to the best of out knowledge, who found the
critical roles of classical chaos in the statistical behavior of “melting and phase transition”
appearing in structural isomerization dynamics of small atomic clusters [62]. Berry and
their coworkers have achieved many fundamental works about cluster dynamics. See
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ref. [63] as a representative paper. We also refer to the work by Chandler et al. [64] as a
pioneering study on stochastic dynamics of molecular isomerization.

Chaos not only makes the relevant phase space ergodic and mixing but also gives
interesting qualitative features to the dynamics of molecules. Such properties can be
typically seen in the structural isomerization dynamics of atomic clusters. Take an example
from Ar7 cluster on the Lennard-Jones potential, which has 4 isomers as depicted in Figure 2.
(Permutation symmetry counts more than 5000 isomers.) Each isomer is supported by
its own potential energy basin. In a low energy, each isomer can stay within its potential
basin keeping its structure as a solid, while at some high energy the isomerization begins
to take place by surmounting the potential barriers, and further in considerably high
energy frequent isomerization keeps taking place, which can be viewed as extensive large
scale vibrational motions over the entire molecule or as a liquid-phase analog [63]. Even
higher energy induces evaporation of one atom and two atomic molecule [65,66]. This
entire process is hence regarded as a molecular level prototype of the first-order phase
transition [62,63,67].

Figure 2. Four isomers on the single Lennard-Jones potential energy surface. The names and the
bottom energy of each potential basins are presented. [Drawn by Dr. C. Seko].

In the liquid-like phase, chaotic dynamics manifest themselves in the following phe-
nomena. (1) Each classical path wanders among the potential basins for individual isomers
in a random fashion (see Figure 2). The time-series with respect to the names of the isomers
such as {PBP→COCT→IST→COCT→PBOP→SKEW→ . . .} is stochastic in the Newtonian
dynamics, yet a path stays for somewhat long time in each basin [68,69]. (2) Memory
loss of the classical paths occurs. Despite mutually different potential barriers among the
individual potential basins, they behave as though they forget which basin they came from
and to which basin they are going to visit next. They seem not to care about the presence of
the so-called transition state, which is the lowest energy saddle between two basins [68,69].
(3) The time scale for a trajectory to penetrate into a mixing area after getting into a potential
basin is so short that trajectories readily lose the memory in the mixing area in phase space.
We call this situation inter-basin mixing [70]. (4) Microcanonical temperature can be defined
with which the lifetimes of the isomers are subject to an Arrhenius relation. This in turn
suggests the existence of the free energy despite the nonequilibrium dynamics [71].
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Behind the above chaotic dynamics we can imagine geometrical structures in phase
space, referred to as the reaction tubes. Suppose that a trajectory enters a PBP basin from
the neighboring COCT by passing through a divided surface (many dimensional). Then
there should exist a large bundle of similar trajectories flowing from the COCT to this PBP
that includes this particular trajectory. See Figure 3, which illustrates a part of the unit
piece of reaction tube. Into this PBP basin schematically represented as a circle, for instance,
many other reaction tubes come in from other neighboring potential basins such as those
of SKEW and IST. Soon after the tubes come in, each branches frequently as schematically
shown in the figure. The successive branching actually reduces the diameter exponentially
as time. Indeed one can measure the exponent of the decay in the form exp(−βt) [70,72].
This is a geometrical background for classical paths to lose their memory from which
basin they came in. Those extremely thin tubes entangle with other tubes of different
histories, and they repeatedly merge with one another to thicker tubes and each eventually
gets out of this basin to the neighboring ones (take the time reversal dynamics of the
branching). This is how they lose the future “memory” of which basin they are going to
visit next [70,72]. By construction it is obvious that the initial fat trunk of the reaction tube
depicted in Figure 3 is already a mixture of finer tubes of different histories, each of those
finer tubes being composed of even finer ones. Thus, the cross-section of the tube should
exhibit very complicated fractal structures, along with globally periodic orbits of many
different symbolic dynamics and different periods. In summary, repeated branching and
remerging of the reaction tubes exist behind the memory loss.

Figure 3. Schematic presentation of a unit of reaction tube in a potential basin and its bifuraction
structure. The circle schematically models a potential basin, each of which supports one isomer. Only
one of tubes is depicted and truncated at some points. The reaction tubes lie behind classical chaos in
structural isomerization dynamics, which is one of the so-called many-valey problems. The similar
tube units are extended from every neighboring potential basins, and one basin is filled with many
tubes. Time-revesal symmetry gives an idea of how the reaction tubes are reconnected with one
another to form thicker tubes and get out of the basin to next ones. [Drawn by Dr. C. Seko].

The original idea of reaction tube is due to De Leon and their colleague, which
they called the cylindrical manifold in the study of two dimensional two potential basin
dynamics [73,74]. “Bifurcation and remerging (reconnection)” of the reaction tubes can be
regarded as a basic mechanism of complex isomerization dynamics besides the baker’s
transformation. There are interesting studies about the fine structure of the reaction tubes
relevant to the stochastic dynamics. However we skip this aspect to quantum chaos.
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4. Quantum Dynamics in the Quasi-Separatrix of Two Dimensional
Molecular Vibration

In the early 1980s the studies of quantum chaos in terms of quantum wavepacket
propagation were made rather extensively in the community of chemical physics [75–78].
In particular, Feit and Fleck [78] are among the first, to the best of our knowledge, who
numerically integrated the Schrödinger equation for wavepackets on the Hénon-Heiles
Hamiltonian [28]. The scientific insights attained thus far with the accurate and the efficient
methodologies developed for those studies are indispensable to date.

We herein study pure quantum chaos in terms of wavepackets and eigenfunctions
confined in the separatrix on the modified Hénon-Heiles potential. This potential function
is regarded as a two dimensional potential energy surface (PES) on which for molecular
vibrational motion to develop.

4.1. Quantum Wavepackets Embedded in the Quasi-Separatrix

The Hamiltonian we adopt is

H =
1

2mx
p2

x +
1

2my
p2

y +
1
2
(x2 + y2) + x2

(
ay2 + y

)
+

1
3

y3(by − 1), (17)

where the masses are chosen as mx = 1.0087 and my = 1.0 and a = 0.6, b = 0.2 with the
Planck constant h̄ = 0.005. The parameters have been set so as to close the dissociation
channel inherent to the original Hénon-Heiles potential. The potential functions are drawn
in the upper panels of Figure 4, while the Poincaré surface of section at x = 0 with px > 0
for a selected energy is drawn at the left of the lower panel. One of the regular vibrational
modes lying in a torus, marked with “lib”, is drawn in the (x, y)-space right to the Poincaré
surface of section. An appropriate energy is chosen so that the quasi-separatrix has a small
to medium size so as to coexist with the set of tori of significant scales. These altogether
represent weak chaos.

Figure 4. Panels in the top row for the potential functions used (the left one for a perspective view and
the right for the contour plot). The bottom row, left panel indicates the classical Poincaré surface of
section at x = 0 and px > 0. The dark area with many dotts displays the quasi separatorix separating
the major tori. The symbols “lib” and “rot” characterize the vibrational modes of the individual tori.
The bottom right panel exemplifies one of the torus modes, a libratation. [Taken from Hashimoto, N.;
Takatsuka, K. J. Chem. Phys. 1998, 108, 1893 with permission].
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We first track a wavepacket propagating in time within the major quasi-separatrix.
To do so, we extended the Poincaré surface of section to a quantum version as follows [79,80].
Given a two-dimensional wavefunction ψ(x, y, t), we first take a momentum representation
only in the x-coordinate such that

ψ̃(px, y, t) =
∫ ∞

−∞
dx exp

(
− i

h̄
pxx
)

ψ(x, y, t). (18)

Then Fourier back it using only the positive px such that

ψ+(x, y, t) =
∫ ∞

0
dpx exp

(
i
h̄

pxx
)

ψ̃(px, y, t) (19)

and put x = 0 there for making a cross section at x = 0. Bring it then into the Husimi
representation in such a way

ρH
(
qy, py, t

)
= (2πh̄)−1(πh̄)−1/4

×
∣∣∣∣∫ ∞

−∞
dy exp

(
− 1

2h̄
(y − py)

2 +
i
h̄

pyy
)

ψ+(0, y, t)
∣∣∣∣2. (20)

We then plot ρH
(
qy, py, t

)
in the

(
qy, py

)
-plane corresponding to the classical counterpart.

This is rather a faithful extension of the classical Poincaré section.
An example of the quantum Poincaré section is exhibited in Figure 5, the upper

row indicates |ψ(x, y, t)|2 at selected times, while the lower row shows the corresponding
quantum Poincaré section. It is clear in the quantum Poincaré section that the present packet
is running on the quasi-separatrix. It is noteworthy that in upper panels of Figure 5a,c,
the wavepacket stays around the unstable fixed points for a longer time, thereby leaving
two significant strips in the wavefunction in the corresponding (x, y) space. These dense
strips are an example of the so-called quantum scar first found by Heller [81] (see also E. J.
Heller, page 547 in ref. [4]).

Figure 5. Time propagation of a quantum wavepacket in the quasi-separatrix. Time passes from
panel (a–d). The upperrow indicates |ψ(x, y, t)|2 at selected times, while the lower row shows the
corresponding quantum Poincaré section, in which the wavepacket is seen to be running on the
classical quasi-separatrix. [Taken from Hashimoto, N.; Takatsuka, K. J. Chem. Phys. 1998, 108, 1893
with permission].
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4.2. Energy Spectra and Eigenfunctions in the Quasi-Sparatrix

The next question is whether the eigenfunctions can be built in the quasi-separatrix
without decaying to the stable tori. We next explore this aspect.

4.2.1. Energy Screening of Quantum Wavepackets

Prior to the numerical presentation we need to show how only (or at least mostly)
the separatrix eigenfunctions are extracted from the very many eigenfunctions. This
is a difficult task if we resort to the straightforward method of diagonalization of the
Hamiltonian matrix, which may be expanded in arbitrary basis functions. Fortunately,
those wavepackets we have shown above in Figure 5 are certainly running on the quasi-
separatrix, and it would be an appropriate idea to quantize those packets. Our way to do
so was as follows [82].

As a standard way to obtain eigenfunctions at any chosen energy E from a wave
packet, one may want to calculate the time-energy Fourier transform [83,84]

ψ(x, E) = (2πh̄)−1
∫ +∞

−∞
e+

i
h̄ Etψ(x, t) dt . (21)

However, this approach needs to pick extremely accurate E′s beforehand, usually by means
of the Fast Fourier Transform of a correlation functions. (Incidentally see ref. [85] to extract
very accurate spectrum from the FFT beyond a given grid size.) This is because the integral
in Equation (21) simply vanishes in use of an inaccurate E. Moreover one may need to know
in advance whether E should indeed belong to one of the quasi-separatrix eigenfunctions.

An efficient alternative to calculate eigenfunctions directly without the prior knowl-
edge on the energy spectrum is the screening method [82]. Suppose we seek for an
eigenfunction in an arbitrary narrow energy range [ε1, ε2]. A wavepacket residing in the
interval can be generated as

|Φ[ε1, ε2]〉 =
∫ ε2

ε1

dE δ(E −H)|φ(0)〉

=
1

2π

∫ ∞

−∞
dt

eiε2t − eiε1t

it
|φ(t)〉, (22)

with the help of

δ(E − Ĥ) = (2πh̄)−1
∫ +∞

−∞
dt e

i
h̄ (E−Ĥ)t , (23)

where |φ(t)〉 = e−iHt|φ(0)〉, and |φ(0)〉 is an initial wavepacket supposed to run on the
quasi-separatrix in the present purpose. If there is only one eigenstate in [ε1, ε2], this
wavefunction |Φ[ε1, ε2]〉 should converge to to the exact one, aside from the norm. Its
energy, if needed, is to be readily estimated as an expectation value. If the target energy
range does not contain any eigenfunction, |Φ[ε1, ε2]〉 converges to the null. When several
eigenstates are included in the range, one can step to a further elaboration, which is not
difficult at all [82,86]. Incidentally, notice the faster convergence in Equation (22) than in
Equation (21) due to the presence of t in the denominator.

4.2.2. Chaotic Eigenfunctions and Spectra

Figure 6 represents an almost degenerate pair of eigenfunctions belonging to the
quasi-separatrix wavefunctions. The left (right) panel represents an odd (even) function
with respect to the mirror line at the x = 0, with energy E = 0.152094 (E = 0.152500).
The two energies are close to the one for the classical Poincaré section of Figure 4. As seen
in the nodal structures, these are actually highly excited states. The classical motions at the
two major unstable fixed pints are separated by symmetry as a left-handed (right-handed)
librating motions (suggested by panel (a) and (c) in the upper row of Figure 5). However,
the quantum wavepackets mix together by floating from and into those fixed point areas.
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Looking back at the structure of the quasi-separatrix in Figure 4, it is noticed that two wide
areas around the fixed points (chaotic seas) are connected through thin canals, thus forming
constrictions (see at py = 0 in the section for instance). Therefore the wavepackets must
pass through those thin channels to move from one wide chaotic sea to the other to become
a global eigenfunction. In other words, those canals serve as “dynamical barriers”, which
suppress the mobility of the wavepackets. The above pair of eigenfunctions in Figure 6 are
generated through such dynamical barriers, and the slight difference in their energies and
the odd-even symmetry separation are all the consequences of that kind of blockade or
quasi-tunneling.

Davis and Heller found a quantum mechanical tunneling between two (or more) tori,
which are separated by separatrix(es). This phenomenon is referred to as the dynamical
tunneling through dynamical barrier [87–89]. In contrast, the pair of eigenstates observed
in Figure 6 are not literally dynamical tunneling, since the canal-passing is allowed both
quantum- and classical-mechanically. However, the view of the Poincaré section in Figure 5
suggests that the chaotic seas around the major fixed points reserve two major wavepackets
to stay long, which are weakly separated by the thin canals thereby serving as dynamical
barriers effectively. We therefore referred to this tunneling-like motion as dynamical
tunneling of the second kind [80]. This phenomenon seems to be peculiar to quantum
chaos, and yet we are not aware whether it has been found in actual molecular spectra.

Figure 6. A pair of almost degenerate eigenfunctions lying in the quasi-separatrix. In the left panel
is an odd function with respect to the symmetry axis x = 0 [energy E = 0.152094], while the right
being even [E = 0.152500]. The slight energy difference and the separation of the symmetry are due
to what we call dynamical tunneling of the second kind. See the text. [Taken from Hashimoto, N.;
Takatsuka, K. J. Chem. Phys. 1998, 108, 1893 with permission].

4.2.3. Dependence on the Magnitude of the Planck Constant

We are curious about the possible effects of the magnitude of the Planck constant on
quantum chaos. To save the space, we refer this aspect to our original paper [79]. Yet we
hereby briefly touch upon the smoothing of chaos in the larger value of h̄ as demonstrated
in terms of the Poincaré section. The above two panels in Figure 7 come from a separatrix
eigenfunction with h̄ = 0.005 ([E1, E2] = [0.150.0.153]), while the lower panel displays
the section h̄ = 0.010 ([E1, E2] = [0.150.0.156]). Such quantum smoothing is not at all
surprising, but the corresponding energy spectra are found not as simple (not shown here)
chematic [79]. As a chemist, I suspect that the biological worlds on the globe may not be
robust against a small change of the Planck constant.

4.3. Time-Dependent Spectrum of Very Long-Time Dynamics

The classical trajectories within the thin quasi-separatrix are generally not periodic
nor quasi-periodic by definition (meaning a zero measure for the exception), and moreover
they wander around circulating near one tori to another one from time to time, each torus
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of which represents different mode of vibration (see Figure 4). Therefore those trajecto-
ries seem to continue to undergo different vibrational motions mostly in an intermittent
way [90]. Therefore it can take extremely long time to extract the associated vibrational
quantum spectra from the correlation functions based on those trajectories. The resultant
spectrum can be time dependent, meaning that it is dependent on which timing we begin
to calculate the correlation function and on when we finish. Such an example of time-
dependent spectra are seen in [79,80] This is a serious issue in vibrational spectroscopy
for complicated molecules of chaotic behavior. (Recall the nested clump structure in the
SEP spectrum, mentioned in Section 3.2) The structural isomerization dynamics in the
liquid-like phase discussed in the previous section (Section 3.3) is actually a large amplitude
vibrational motion of the extremely long time-scale associated with chaos. It is still left
unresolved how to take vibrational spectra for such wandering motions from one potential
basin to another, spending some long time at each basin. Proteins in molten globule state
must have the similar nature to the liquid-like clusters.

Figure 7. Quantum Poincaré surface of section. Panels at the top row reprsent an quasi-separatorix
eigenfunction given by h̄ = 0.005 ([E1, E2] = [0.150.0.153]). The bottom panels are the eigenfunction
at h̄ = 0.010 ([E1, E2] = [0.150.0.156]). Left column (a) for the perspective views and the right
(b) for contour plots. [Taken from Hashimoto, N.; Takatsuka, K. J. Chem. Phys. 1995, 103, 6914
with permission].

5. Quantization of Chaos with Semiclassical Wavepackets

The mechanism of energy quantization is a landmark lying in between classical and
quantum mechanics. It is therefore quite natural for semiclassical mechanics to play
a major role there. Besides, the chemical dynamics quite often demands semiclassical
treatment for the nuclear motion apart from chaos. There are many beautiful studies in
the literature on the EBK semiclassical quantization for regular systems (see ref. [91,92] for
representative examples). As for quantization of chaotic dynamics the periodic orbit theory,
or the trace formula, due to Gutzwiller [35–37] is the central work [2,4–10,12]. One of the
most intriguing aspects of the trace formula is its relation to the Riemann and Selberg zeta
functions. However, reviewing it is by far beyond the scope of this article [93].
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5.1. The Gutzwiller Periodic Orbit Theory

The periodic orbit theory [35–37] treats the semiclassical estimate of the density of
states with the Feynman kernel K as

D(E) =
∫

dq
∫

dtK(q, q, t) exp
(

i
h̄

Et
)

. (24)

The theory applies the (first-order) semiclassical approximation to the Feynman kernel
or its energy representation (the energy Green function) to the density of states, thereby
extracting the essential roles of phase-space periodic orbits [94]. The successive applications
of the stationary phase approximations give rise to the famous expression

D(E) � 1

(2πh̄)N

∫ ∫
dqdpδ(E − Hcl(q, p)) +

1
πh̄ ∑

γ

∞

∑
k=1

Tγ cos
(

k
(

Wγ

h̄ − π
2 λγ

))
√∣∣∣Det

(
Mk

γ − I
)∣∣∣ , (25)

where the first term of the right hand side is the Thomas–Fermi (classical) density of states
with the classical Hamiltonian Hcl(q, p) arising from the periodic orbits of zero length and
the second oscillatory terms represent the quantum interference among the finite periodic
orbits (specified by γ) in terms of the period Tγ, the action integral Wγ, and the Monodromy
matrix Mk

γ in the transversal direction of phase-space periodic motion. These terms should
be summed up with respect to the number of circulations k over all the possible periodic
orbits. However, it is very difficult particularly in many-dimensional systems to find
the necessary periodic orbits (see ref. [95] for instance) and count up their contributions
accurately. Moreover, it is well known that the periodic orbits proliferate exponentially as
the length of the period Tγ. Another intrinsic difficulty in the path summation appears
in the denominator in the second term of D(E). This is a direct reflection that most of the
semiclassical expressions bear the serious theoretical difficulty related to divergence of the
monodromy matrix, which explodes at the caustics or the turning points. The divergence is
particularly prominent in chaotic systems. It is therefore often claimed that the series of
periodic orbit sum in Equation (25) may not be absolutely convergent, which sometimes
leaves the trace formula to be obscure in practice. Furthermore, a naive question may be cast
at whether the oscillatory terms in the trace formula can indeed cancel the Thomas–Fermi
density at any energy of not-to-be quantized (off-resonant energy).

It seems that there are two major opposite directions to cope with the fundamental
difficulty of the trace formula. One is an attempt to recount the periodic orbit contributions
in Equation (25) in such a way to attain a conditional convergence [96]. Furthermore,
the convergence of the trace formula can be better considered in the complex energy
plane [97]. Semiclassical mechanics of higher order h̄ is obviously a canonical candidate to
improve the trace formula [98]. Deep mathematics are involved in these approaches.

The other one is to take an easier, simpler and more tractable approach, mainly based
on the semiclassical propagation of wavepackets. Our approach below is along this line.
Besides, semiclassical wavepacket theory is one of the main methodologies in chemical
reaction dynamics. As such, we here present our own approach, which is intended to
step further beyond semiclassical approximation to the exact one. We then attain some
insights about the mechanism of energy quantization, that is, the explicit roles of not only
constructive but destructive interferences in forming discrete energy levels. We also see
that the energy levels in chaos can be determined without the tedious pre-exponential
factor (or the Monodromy matrix) of the semiclassical kernel.

5.2. Wavepacket Semiclassics with Action Decomposed Function

Many semiclassical theories have been proposed in the literature [7,14,15,34,94,99–104],
either starting from the Feynman kernel, WKB theory or others. Yet, we consider the following

259



Entropy 2023, 25, 63

theory to clarify the dynamical hierarchical structure in the range extending from classical and
semiclassical to full-quantum dynamics.

5.2.1. Short Time Dynamics of the Maslov Type Wavefunction

We represent a wavefunction Ψ(q, t) in the so-called Maslov type [102], such that

Ψ(q, t) = F(q, t) exp
(

i
h̄

Scl(q, t)
)

, (26)

for a short time interval [t, t + Δt] on a multidimensional coordinate q in configuration
space, where Scl is assumed to satisfy the classical Hamilton–Jacobi (HJ) equation

∂Scl
∂t

+
1

2m
(∇Scl)

2 + V = 0, (27)

which defines relevant classical paths during the interval, with m being the mass. The clas-
sical factors are thus factored out for this short interval and thereby the purely quantum
factors are thus supposed to be included only in the function F(q, t) [32,33]. F(q, t) is
thus referred to as Action Decomposed Function (ADF) [29,30]. Then in this interval,
the Schrödinger equation for Ψ(q, t) is transformed to a linear equation of motion for the
complex valued amplitude function F(q, t) as

∂F(q, t)
∂t

=

(
−p · ∇ − 1

2
(∇ · p)

)
F(q, t) +

ih̄
2
∇2F(q, t), (28)

where p is a momentum at (q, t), which is q(t), as

p = ∇Scl(q, t). (29)

We use the mass weighted coordinates so that all the masses (m) are scaled to unity
m = 1, and thereby p is set to be numerically equivalent to the corresponding velocity v.
In transforming the Euler picture to the Lagrange by defining

D
Dt

=
∂

∂t
+ v · ∇ (30)

Equation (28) reads
D
Dt

F(q, t) =
[
−1

2
(∇ · p) +

ih̄
2
∇2
]

F(q, t). (31)

F(q − qcl(t), t) is hence carried along a classical path qcl(t) in this interval. Then the Trotter
decomposition [94] valid for a very short time–interval Δt gives

F(q − qcl(t + Δt), t + Δt)

� exp
[

ih̄
2

Δt∇2
]

exp
[
−1

2
(∇ · p)Δt

]
F(q − qcl(t), t)

� exp
[
−1

2
(∇ · p)Δt

]
exp
[

ih̄
2

Δt∇2
]

F(q − qcl(t), t) (32)

and represents the quantum effects in a product between the momentum gradient
(exp

[
− 1

2 (∇ · p)Δt
]
) and the pure quantum diffusion (exp

[
ih̄
2 Δt∇2

]
). The theory is ex-

act except for the Trotter decomposition, provided that the classical action Scl(q, t) exists.
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5.2.2. Semiclassical Approximation

Equation (32) is first reduced to a semiclassical level of approximation by considering
the momentum gradient part only, which results in

F(q − qcl(t + Δt), t + Δt)

� exp
[
−1

2
(∇ · p)Δt

]
F(q − qcl(t), t). (33)

Notice that the Planck constant does not yet appear in this level. The time evolution of it is
approximately given by estimating the momentum gradient term as follows [29]

F(q − q(t + Δt), t + Δt)|q=qcl(t+Δt)

= exp

[
−1

2

∫ t+Δt

t
dt ∑

k

∂pk
∂qk

]
F(q − qcl(t), t)

∣∣∣∣∣
q=qcl(t)

=

(
σ(t)

σ(t + Δt)

)1/2
F(q − qcl(t), t)

∣∣∣∣∣
q=qcl(t)

, (34)

or

σ(t + Δt)1/2F(q − qcl(t + Δt), t + Δt)
∣∣∣
q=qcl(t+Δt)

= σ(t)1/2F(q − qcl(t), t)
∣∣∣
q=qcl(t)

, (35)

where the deviation determinant σ(t) is expressed as

σ(t) =
N

∏
i=1

∧
(

qi
cl(t)− qcl(t)

)
, (36)

which is an N-dimensional orientable tiny volume surrounding the point qcl(t) in configu-
ration space, with qi

cl(t) (i = 1, . . . , N) being the configuration space point of an ith classical
trajectories nearby the reference path qcl(t). See Figure 8 for geometrical definition of σ(t).
Since σ(t) arises from the orientable volume, the square root of it gives rise to the part of
the so-called Maslov phase [105]. (see ref. [106] for another geometrical meaning of the
Maslov phase.)

Figure 8. An illustration for geometrical implication of σ(t) defined in Equation (36). A deviation
determinant σ(t), which is an orientable volume, withrespect to the main path is formed with the
help of nearby classical paths. Time passes from panel (a–d). [Taken from Takahashi, S.; Takatsuka, K.
Phys. Rev. A 2004, 69, 022110 with permission].
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The above results can be represented in a symmetric manner by defining “square
root” of the volume element [107]. Suppose that an arbitrary function f (qt), where qt is the
coordinate system in configuration space, is mapped from the original point q0 at time 0 by
the classical flow q0 → qt. An integral also mapped is represented as

I =
∫

f (qt, t)dqt =
∫

f (qt, t)dq1/2
t dq1/2∗

t (37)

with

dq1/2
t ≡ exp

[
iπM(q0, qt)

2

]
|dqt|1/2, (38)

where dq1/2∗
t is intended to be the complex conjugate to dq1/2

t , and M(q0, qt) is the Maslov
index counting the number of the change of sign of σ(t) of Equation (36). The semiclassical
conservation rule is then written up to the phase as [107]

F(qt, t)dq1/2
t = F(q0, 0)dq1/2

0 . (39)

This is rather similar to the law of the Poincaré-Cartan absolute invariance in
phase space [108].

The momentum gradient ∑k ∂pk/∂qk can diverge, when it happens to hold σ(t) = 0
in Equation (35), where a classical path come to a focal point either in configuration or
momentum space. This is the origin of the difficulty of the theories of semiclassical level.
Yet, such a singularity can be removed by the quantum diffusion below [30].

5.2.3. Gaussian Wavepacket Approximation

We next proceed to take account of the quantum diffusion term. In doing so, we here
survey the dynamics of a Gaussian wavepacket among other possible choices of F(q, t).
Heller introduced the dynamics of a Gaussian function as early as in 1975 by assuming that
the potential function at the Gaussian center is truncated up to the quadratic terms [109].

We insert a Gaussian of the following form into the general scheme of
ADF Equation [30],

G(q − qcl(t), t) = g(t) exp
[
− 1

c(t) + id(t)
(q − qcl(t))2

]
, (40)

with both c(t) and d(t) being real-valued. Then some (rigorous) manipulations give

c(t + Δt) = c(t)
(

σ(t + Δt)
σ(t)

)2
(41)

and

d(t + Δt) = d(t)
(

σ(t + Δt)
σ(t)

)2
+

2h̄Δt
m

. (42)

or shows they satisfy the following differential equation, respectively,

ċ(t) = 2
σ̇(t)
σ(t)

c(t). (43)

and

ḋ(t) = 2
σ̇(t)
σ(t)

d(t) +
2h̄
m

. (44)

Note that the Planck constant appears only in this level of dynamical hierarchy. This
normalized Gaussian form are propagated in time quite accurately, under the dynamical
circumstances where the Gaussian may remain Gaussian. Yet, the theory needs additional
procedures when the dynamics under study faces difficult situations like wavepacket
bifurcation [110].
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Further, one can find an interesting internal structure in the Gaussian packet. Define
ζ(t) then such that

d(t) = ζ(t)σ(t), (45)

and insert this back into Equation (44) to obtain

σ(t)ζ̇(t)− σ̇(t)ζ(t) =
2h̄
m

, (46)

which is a Wronskian relation between σ(t) and ζ(t). This suggests that something is rotating
to maintain the packet in the quantum realm [30]. However, we step aside from this subject
to be back to the energy quantization problem [110].

5.3. On the Quantization Condition: Creation and Elimination of the Spectral Peaks by the Phases

It is quite often that only the to-be-quantized (resonant) energy peaks are under focus
without paying much attention to to-be-nullified part of D(E) at off-resonant energy areas.
We therefore reconsider here the basic mechanisms of evolution of the resonant peaks and
those of suppression of the off-resonant counterparts.

5.3.1. Prior Quantization Conditions Based on the Periodic Orbits

To reconsider the mechanism of quantization from the view point of wavepacket
dynamics, we get back to a little more elementary stage of the theory. Consider a spectral
density function

P(E) =
∫

PO

dq0dp0

h̄N Ptr(Ecl(q0, p0); E), (47)

for an N-dimensional system, where the pre-spectral density is defined as

Ptr(Ecl(q0, p0); E)

= lim
L→∞

1
L

∫ L

0
dtR(qt, q0, t) exp

[
i
h̄

S(qt, q0, t)− i
π

2
M(q0, qt)

]
exp
(

i
h̄

Et
)

, (48)

which is a correlation function starting from a classical point (q0, p0) on a manifold of energy
Ecl . M(q0, qt) is the Maslov index. R(qt, q0, t) represents an overlap integral between a
wavepacket at t = 0 and that of later time t. We implicitly assume that the wavepacket
adopted here has been taken from the above ADF framework, Equation (26), yet we do
not specify the functional form of it in this stage and it does not have to be a Gaussian.
The Fourier transform in Ptr eventually gives rise to the energy spectrum in Equation (47).
In the following analysis, we assume that (1) only the periodic orbits are to be considered
in Ptr(Ecl(q0, p0); E) as the symbol

∫
PO indicates, which is a natural consequence of the

stationary-phase condition, (2) the phases in Equation (47) are just made up with the
standard action integral and the associated Maslov phases alone, and (3) the amplitude
factor R(qt, q0, t) is always finite and smooth along the trajectories [111,112].

5.3.2. Peaks Arising from Individual Orbits and an Extended Quantization Condition

In the time-integration of P(E) in Equation (48), one can apply the stationary phase
approximation (SPA) to obtain

∂

∂t
[S(q, q0; t) + Et] = −Ecl + E = 0, (49)

which indicates that classical trajectories with Ecl should make a major contribution to
Ptr(Ecl(q0, p0); E), which is already well-known [35–37,113,114]. And Ptr(Ecl(q0, p0); E)
can be viewed as a function of both E and Ecl(q0, p0).
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We first survey the oscillatory property of the integrand of Ptr(Ecl(q0, p0); E). With the
classical action integral

S(qt, q0, t) =
∫ qt

q0

p(q; Ecl(q0, p0))dq − Ecl(q0, p0)t, (50)

we define

Λ(t; q0, p0) = R(qt, q0, t)exp
[

i
h̄

∫ qt

q0

p(q; Ecl(q0, p0))dq
∣∣∣∣
PO

−i
π

2
M(q0, qt)

]
, (51)

to rewrite Ptr(Ecl(q0, p0); E) in a simplified fashion as

Ptr(Ecl(q0, p0); E) =
∫

dtΛ(t; q0, p0) exp
[

i
h̄
(E − Ecl(q0, p0))t

]
. (52)

Note that both
∫ qt

q0
p(q; Ecl(q0, p0))dq and π

2 M(q0, qt) have the following time dependence
on the periodic orbits

(constant)× t + (oscillatory part). (53)

Here the constant part is calculated out as an average of
∫ qt

q0
p(q; Ecl(q0, p0))dq and π

2 M(q0, qt)

in Λ(t; q0, p0) of Equation (51) for the interval of, say, [q0, qT ]. Let the period of the periodic
orbit under consideration be T(q0, p0). Then we define a quantity X(q0, p0) such that

1
T(q0, p0)

⎡⎣1
h̄

qT∮
q0

p(q; Ecl(q0, p0))dq − π

2
M(q0, qT)

⎤⎦= X(q0, p0), (54)

and extract X(q0, p0)× t from the phase part of (51) (that is Equation (53)) in such a way that

1
h̄

∫ qt

q0

p(q; Ecl(q0, p0))dq−π

2
M(q0, qt)− X(q0, p0)t. (55)

Then this function should appears to be an exactly periodic function. Furthermore, since
the preexponential factor R(qt, q0, t) is also assumed to be periodic of T(q0, p0),

Λ(t; q0, p0) exp[−iX(q0, p0)t] (56)

is periodic with the period T(q0, p0) as a whole. Then one can expand the function
Λ(t; q0, p0) in a Fourier series such that

Λ(t; q0, p0) =
∞

∑
n=−∞

cn exp
(
−i

2nπ

T(q0, p0)
t + iX(q0, p0)t

)
, (57)

where

cn =
1

T(q0, p0)

∫ T

0
dtΛ(t; q0, p0) exp

[
i

2nπ

T(q0, p0)
t − iX(q0, p0)t

]
. (58)

Here we take a limit in the time integral for Ptr(Ecl(q0, p0); E) in Equation (48) up to
sufficiently long time L and rewrite it with the help of Equation (57) as

Ptr(Ecl(q0, p0); E)

≡ 1
L

∫ L

0
dtΛ(t; q0, p0) exp

[
i
h̄
(E − Ecl(q0, p0))t

]
=

1
L

∞

∑
−∞

cn
−ih̄T(q0, p0)

−2nπh̄ + (E − Ecl(q0, p0) + Xh̄)T(q0, p0)

×
(

exp
[

iL
h̄T(q0, p0)

(−2nπh̄ + (E − Ecl(q0, p0) + Xh̄)T(q0, p0))

]
− 1
)

. (59)
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The correlation function R(qt, q0, t) is assumed to be so smoothly varying (or much less
oscillatory than the phase factor) that it can be practically factored out from the Fourier
expansion with respect to the phases.

It is now clear from Equation (59) that only the denominator in this expression satisfy-
ing the condition

(E − Ecl(q0, p0) + Xh̄)T(q0, p0) = 2nπh̄ (60)

will lead to a peak in Ptr(Ecl(q0, p0); E) of the height of cn. The substitution of X(q0, p0)
with that of Equation (54) gives rise to a condition

(E − Ecl(q0, p0))T(q0, p0) +

[∫ qt

q0

p(q; Ecl(q0, p0))dq
∣∣∣∣
PO

− π

2
M(q0, qT)h̄

]
= 2nπh̄. (61)

This is a quantization (resonance) condition for Ptr(Ecl(q0, p0); E) (but not for P(E)), which
we call the prior quantization condition [111,115]. Not only E but (q0, p0) has to fulfill this
condition to make a peak in Ptr(Ecl(q0, p0); E). Although Ptr(Ecl(q0, p0); E) has far more
peaks than P(E) itself, many of these peaks are to be eliminated by destructive interference
upon integration over the trajectory space, which will be discussed below.

Yet, the true peaks should be contained in the set of peaks fulfilling Equation (61).
Note also that the additional condition of Equation (49) nullifies

(E − Ecl(q0, p0))T(q0, p0) (62)

in Equation (61), thereby reducing it directly to the EBK-like condition.

5.3.3. Destructive Interference Suppressing the Spurious Energy Peaks: Another Essential
Role of the Phases for Quantization

The off-resonant trajectories should suppress the values of P(E) to the order of O(h̄) due
to the Riemann-Lebesgue lemma. However, there can exist many quasi-resonant trajectories,
which would form spurious peaks in Ptr(Ecl(q0, p0); E). These peaks are anticipated to be
cancelled away by destructive interference with many other anonymous trajectories. As such
there are two basic case in which to suppress virtual peaks as follows. (We refer to the original
papers, ref. [111,112], for more details along with numerical presentations.)

Case in which E is Slightly Shifted from a True Eigenvalue (Near-Resonance Peaks)

Suppose there is a peak satisfying[∫ qt

q0

p(q; Ecl(q0, p0))dq − π

2
M(q0, qT)h̄

]
= 2nπh̄ (63)

at an energy Ecl(q0, p0) = Ex. It is expected theoretically that the contribution from nearby
orbits having E′

cl(q
′
0, p′

0) should make Ptr
(
E′

cl(q
′
0, p′

0); Ex
)

very small to the order of O(h̄).
However, if E′

cl(q
′
0, p′

0) happens to be sufficiently close to the Ex = Ecl(q0, p0), the peak is
split into “a pair of very high spurious peaks” that contain the peak of Ptr

(
E′

cl(q
′
0, p′

0); Ex
)

in
between. These peaks constitute a continuous width near the true peak. (For numerical
and graphical examples, see [111].)

Case of Generation of Harmonics in E

There is yet another mechanism to generate spurious peaks. A trajectory with
Ecl(q0, p0) happens to satisfy the resonance condition of Equation (63) with some “quantum
number” n and the energy Ex. Then, it is possible that the prior quantization condition
of Equation (61) may be satisfied by another set of (n′, E′

x). They must be simply the
harmonics of the correct peak of (n, Ex) [111]. These harmonics also should be eliminated
by off-resonant trajectories in terms of the appropriate destructive interference.

Having presented the specific roles of off-resonant trajectories to suppress the spurious
peaks, we are concerned whether the trace formula implements such a function in it.
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5.4. Amplitude-Free Energy Quantization of Classical Chaos

One of the theoretical and numerical difficulties of the trace formula manifests itself
explicitly in the denominator of Equation (25) of the second term, which comes from
the amplitude factor of the energy Greens function. In the above analysis of the energy
spectrum, from Equations (48)–(61), no significant role was found for the amplitude factor
R(qt, q0, t) to play. We hence try to pursue a possible energy quantization disregarding the
absolute value of the amplitude factor, but taking the Maslov phase into account.

To explicitly monitor the sensitivity of the amplitude factor to the variation of the
preexponential factor, we first make the following preliminary calculations [116], in which
the amplitude factor is rescaled intentionally as follows.

CADF
s (t) =

∫
dq0F∗(qt, 0)F(q0, 0)

∣∣∣∣ ∂qt

∂q0

∣∣∣∣1−s

× exp
[

i
h̄

S1(qt, q0, t) +
i
h̄

p0 · (q0 − qt)−
iπM

2

]
, (64)

where CADF
s (t) is a correlation function using a primitive Gaussian function, and an artificial

scaling parameter s has been introduced. The value s = 0.5 reduces CADF
s to the original

semiclassical correlation function, while there is no physical justification to choose other
values. Yet, it numerically turns out that values up to at least s = 1.5 give correct energy
positions in the resultant spectra [116]. In particular the choice of s = 1.0 implies that one

can abandon the semiclassical amplitude factor as
∣∣∣ ∂qt

∂q0

∣∣∣0, aside from the Maslov phase,
to obtain the spectral positions.

After somewhat extensive analysis and numerical studies, we have confirmed that
the spectrum positions are accurately reproduced through an amplitude correlation func-
tion [117,118], of the form

CIII
p0

≡
∫

dq0F∗(qt)F(q0) exp
(
− i

h̄
p0qt

)
exp
[

i
h̄

S2(qt, p0, t)− iπM
2

]
, (65)

where p0 is an initial momentum to be scanned to cover the entire spectrum, and F(qt) is
a (frozen) Gaussian function to be carried from the initial position q0 [115,116]. We only
need the way of calculation of the Maslov index as exemplified in Figure 8. It turns out
that the amplitude-free correlation function CIII

p0
works quite well even in chaotic regime,

provided that the semiclassical dynamics under study is essentially dominated by the
phases. An example of chaotic spectrum in chaotic region for the Hamiltonian

H =
1

2mx
p2

x +
1

2my
p2

y +
1
2
(x2 + y2) + x2

(
0.6y2 + y

)
+

1
3

y3(0.2y − 1) + 0.1x (66)

with mx = 1.0087 and my = 1.0 is shown in Figure 9, where we have adopted h̄ = 0.005 and
Ecl � 0.157. (Note that for a large h̄, the quality of semiclassical quantization is accordingly
deteriorated and should not be used.)

The partial success of the amplitude-free quantization without paying full attention
to the semiclassical amplitude factors, except for the Maslov phase, suggests that one
does not necessarily have to faithfully track the every fine complexity of the Lagrange
manifold behind classical chaos in order to perform semiclassical mechanics, partly due to
the quantum smoothing.
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Figure 9. (a) Classical Poincaré surface of section at x = 0, px = 0 for an ensemble of trajectories with
the total energy Ecl = 0.157. h̄ = 0.005. (b) The nearest neighbor level spacing of the full quantum
spectrum in this energy region, which is subject to the Wigner distribution, an indication of quantum
chaos. The right panel shows the spectrum taken from the amplitude free correlation function (green
solid) and full quantum counterpart (red). Only the spectral positions should be compared. [Taken
from Takahashi, S.; Takatsuka, K. J. Chem. Phys. 2007, 127, 084112 with permission].

5.5. Chaos Mediated by Dynamical Tunneling

Tunneling effect is one of the key phenomena to characterize chemical reactions not
only in very low temperature circumstances but even in excited states. It is now widely
accepted that complex semiclassical theory is very effective in the study of quantum
tunneling [119]. However, classical chaos generally makes the structures of the Lagrange
manifold and associated caustics very complicated in multidimensional complex space.
Besides, the choice of the stationary paths there is not necessarily achieved as in the
Feynman kernel over the real paths. Shudo and Ikeda have developed a pioneering
work to lay out and cope with the intricate yet beautiful tunneling paths in the complex
domain [120,121]. We here present a simple-minded idea on semiclassical tunneling by
introducing the parity of motion, which splits phase space into many mutually exclusive
nonclassical sub-spaces [122,123].

5.5.1. Semiclassical Tunneling Theory

We first need to formulate a tunneling theory in a semiclassical context [122,123]. Let
us begin with Feynman’s path integral representation of the kernel

K(x, Δt; y) =
( m

2πih̄Δt

)N/2
exp
(

iΔt
h̄

[
m
2
(

x − y
Δt

)2 − V(
x + y

2
)

])
(67)

or in a more limited alternative

K(q + Δq, Δt; q) =
( m

2πih̄Δt

)N/2
exp

(
iΔt
h̄

[
∑
k

mk
2
(

Δqk
Δt

)2 − V(q)

])
, (68)
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where Δq is not necessarily as short as Δt, and V(q) is an arbitrary potential function. In the
path integration, the Euler variational principle

d
dt

(
∂L
∂q̇k

)
− ∂L

∂qk
= 0, (69)

with the Lagrangian

L = ∑
k

mk
2
(

Δqk
Δt

)2 − V(q)

= ∑
k

mk
2
(q̇k)

2 − V(q) as Δq → 0 with Δt → 0 (70)

brings about the stationarity in the integral [94]. It is seen though that the kernel of
Equation (68) is invariant to a set of parameters (constant) σk that are introduced in a
manner that

K(q + Δq, Δt; q) =
( m

2πih̄Δt

)N/2
exp

(
iΔt
h̄

[
∑
k

mk
2
(σk

Δqk
Δt

)2 − V(q)

])
(71)

as long as
σ2

k = 1. (72)

Define accordingly the corresponding Lagrangian L(σ) as

L(σ) = ∑
k

mk
2
(σkq̇k)

2 − V(q) (73)

which should satisfy the stationary condition

d
dt

(
∂L(σ)

∂q̇k

)
− ∂L(σ)

∂qk
= 0. (74)

An additional set of the Newtonian equations then results

mkq̈k = −σk
∂V(q)

∂qk
. (75)

Nothing happens when all σk = 1. If all the σk is −1, the paths emerged from Equation (75)
are equivalent to the so-called instanton path [94]. We refer to σk as the parity of motion.
A variety of the set {σk} gives the various combinations of non-tunneling and tunneling
paths in the real time. Thus, the sets of {σk} defines the individual phase spaces, which we
call sheets. No communication exists among them as long as the parity sets are frozen.

We can move to the Hamiltonian framework by defining

pk =
√

σkq̇k, (76)

where pk is pure imaginary for the negative parity. The corresponding canonical equations
of motion

σk ˙̄pk = −∂H(σ)

∂qk
and σkq̇k =

∂H(σ)

∂ p̄k
, (77)

is defined with the modified Hamiltonian

H(σ) = ∑
k

σk
2mk

p̄k
2 + V(q). (78)

Setting σk = −1 is effectively equivalent to flipping the mass mk from positive to nega-
tive value.
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To see the invariance property inherent to the Hamilton system, the following coordi-
nates are convenient, that is

Qk =
√

σkqk and Pk =
√

σk p̄k, (79)

in which the new coordinates Qk’s in configuration space are also pure imaginary when
their parities are negative. Then Equation (77) are transformed to

Ṗk = −∂H(σ)

∂Qk
and Q̇k =

∂H(σ)

∂Pk
. (80)

Due to the Poincaré-Cartan theorem of absolute invariance [108], the symplectic structure
the 2-form

ω2 = ∑
k

dPk ∧ dQk (81)

is conserved and the Stokes theorem allows to define the path-action Scl , that is,

Scl =
∫

∑
k

PkdQk − H(Q, P)dt. (82)

In order to adopt these paths in semiclassical mechanics, the Q-coordinates should be
rotated back to q-coordinates keeping P in such a way that

(Q, P) → (q, P). (83)

Then we have an action integral

Scl(Q, P) → Stnl(q, P) =
∫

∑
k

Pdqk − H(σ)dt

= ∑
k

∫ √
σk p̄kdqk − H(σ)dt, (84)

and a semiclassical wavefunction for tunneling is formally written as

ψ = A exp
(

i
h̄

Stnl

)
, (85)

where the pre-exponential factor A represents an amplitude. Since Stnl in Equation (84), is
generally complex-valued, we rewrite Stnl in the standard form as

Stnl = SR + iSI . (86)

Insertion of Equation (86) into Equation (85) gives

ψ = A exp
(
−1

h̄
|SI |
)

exp
(

i
h̄

SR

)
, (87)

where the phase convention to Stnl is taken so that SI becomes positive. Thus, the damping
of the norm due to tunneling is estimated as

exp
(
−2

|Im Stnl|
h̄

)
, (88)

which gives a natural definition of the relevant tunneling probability.
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The tunneling paths induce additional phases when they are incorporated into the
semiclassical Feynman kernel such that [124]

K(qt, t; qs, s : σ) = ∑
α

(
1

−2πih̄

) N
2 1√∣∣∣ ∂qt

∂ p̄s

∣∣∣ exp
(

i
h̄

Stnl + iφ
)

, (89)

where N is the number of dimensions and the additional phase φ is given by

φ = −π

2
Nf +

π

4
Np (90)

at an entrance of a tunneling path and

φ = −π

2
Nf −

π

4
Np (91)

at an exit of a tunneling path. Here Np is the number of the negative parities while Nf is
the sum of the multiplicities of the zeros of ∂q f /∂ p̄i = 0 along the trajectory, which gives
the Maslov index.

Connection Problem

Tunneling paths can arise only upon transferring from {σk = 1} to another, typically
only one of σk is negative. This is because as the number of negative parities increases
the damping probability in Equation (88) also become large. Those paths on the different
sheets should be connected smoothly. To ensure smoothness, we change the sign of one of
the parities at a caustic in the direction normal to the caustic line. The caustics, at which
the density of the paths becomes very high (actually infinite in the primitive semiclassical
approximation), are defined with the so-called Jacobi field [94] in such a way that

det|
∂�q f

∂�pi
| = 0, (92)

where �pi is a real-valued (quasi-)momentum vector for a given parity set {σk = ±1} at the
initial point on each sheet and �q f is the final points of a trajectory on the same sheet. The tun-
neling path can get back to the Newtonian sheet of {σk = 1} in a similar manner [125].

The stationary phase condition in the semiclassical approximation to the Feynman
kernel requires that the quantum phase SHJ in Equation (89) should be connected smoothly
at the connection point. This requirement is expressed as

∂SHJ

∂q
(in classical region) =

∂Stnl
∂q

(in tunnel region), (93)

which simply implies
p̄k = − p̄k (94)

at the connection point. Obviously,
p̄k = 0 (95)

is the unique solution [126]. Therefore, to connect the wavefunctions smoothly at the
turning points in the relevant direction k, we may change the parity there (or parities
depending on the degeneracy of turning points) to the direction of zero momentum.

Tunneling phenomena are quite important in many chemical reaction dynamics, and
some applications of the present treatment are found in Refs. [124,126–128].
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5.5.2. Statistical Redistribution of Tunneling Paths

In view of the nature of this review article, we briefly show an example of chaos that
is induced by tunneling dynamics, just for curiosity. The Hamiltonian is

H =
1

2mx
p2

x +
1

2my
p2

y +
1
2
(x2 + y2) + x2y − 1

3
y3, (96)

where the masses are chosen as mx = 1.0087 and my = 1.0 so as to break the symmetry of
C3. The vibrational modes and the corresponding tori in the Poincaré surface of section
are depicted in Figure 10. The bottom panel displays a long time Poincaré section arising
from a single trajectory, which repeats dynamical tunneling from time to time among tori,
thus giving rise to chaos effectively. Here, however, we have intensionally disregarded the
damping of the amplitude induced by tunneling. Careful inspection will find the faint trace
of a couple of tori [125]. See ref. [125] for details about the present tunneling dynamics.

Figure 10. The right panel of the upper row shows the Poincaré section (x = 0 and px > 0) along
with the vibrational modes (left) belonging to the tori. E = 0.09. The botton row shows a long time
plot at the Poincaré section, which wanders from one torus to another through tunneling. Statistical
distribution through tunneling is recognized. [Taken from Ushiyama, H.; Takatsuka, K. Phys. Rev. E
1996, 53, 115 with permission].

6. Chaos Arising from Repeated Bifurcation and Merge of the Quantum Wavepackets
on Nonadiabatically Coupled Potential Basins

One of the characteristic features of quantum chaos is reflected on the energy level
statistics such as the patterns in the nearest neighbor level spacing distribution
(NNLSD) [114,129]. The extensive level repulsions among the states are widely recog-
nized to be the origin of the Wigner distribution in NNLSD. It is therefore natural to pay
attention to the nonadiabatic interactions as one of the key factors to modulate the structure
of the energy levels. As such, the theory of level dynamics [9,130–132] sets a focus on
nonadiabatic interactions as a factor that can modulate the energy levels in an anomalous
fashion. Shudo [133,134] explicitly clarified the effects of an avoided crossing on the level
distributions, the avoided crossing of which is induced by a variation of a part (s) of inter-
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action potential but not by those interactions presented in Equation (12). The nonadiabatic
interactions of Equation (12) are basically about electronic-state mixing due to the nuclear
kinematic coupling on the occasion of the variation of nuclear configuration (molecular
geometry) and are one of the most critical interactions in chemical dynamics [14,16–20].
Therefore, the beautiful methods in the level dynamics does not seem to apply to the
dynamics of molecules.

Besides, we are quite often concerned with the wavepacket dynamics of electrons
rather than the electronic energy levels at a given nuclear configuration. In other words,
the essential characteristics of molecular nonadiabatic dynamics is seen when the relevant
quantum wavepackets bifurcate and coherently merge (remix) many times at the molecular
geometry of significant nonadiabatic interactions. It is quite natural therefore to suspect that
the wavepacket bifurcation and merging should be the dynamical origin of purely quantum
chaos in place of “stretching and folding” in the baker’s transformation for classical chaos.
We hence survey the nuclear wavepacket dynamics of bifurcation and remixing in this
section first and then proceed to the nonadiabatic electron wavepacket dynamics in the
next section.

6.1. Experimental Observation of Bifurcation and Merge of the Quantum Wavepackets

We here show that “bifurcation and merging” of quantum wavepackets can be ob-
served with the modern real-time experiments. Among the cutting-age experimental
methodologies to track the femtosecond-scale nuclear motions in chemical dynamics,
the time- and angle-resolved photoelectron spectroscopy (TRPES) has been very well es-
tablished since 1999 [135–137], when the group of this author happened to start the first
complete ab initio full quantum mechanical simulation to track nuclear wavepackets in
TRPES [138–140]. Among others, we showed for the first time that the instance of bifurca-
tion and merging of nuclear wavepackets in passing across the nonadiabatic regions can be
directly observed [141,142]. That is, such bifurcation and merging are of physical reality.
Now other novel experimental methodologies are available.

For readers who might be interested in the recent experimental progress since then,
which are related to observation nonadiabatic dynamics, we refer to the following works
(we apologize for not a complete list). T. Suzuki is the first who used photoelectron
imaging technique to observe the dynamics passing through an intersystem crossing
of pyradine [143,144]. Wörner and his group observed the passage of NO2 molecule
across the conical intersection by means of the high harmonic spectroscopy [145] and time-
resolve photoelectron spectroscopy [146]. Further novel methods have been introduced,
such as attosecond stimulated X-ray Raman spectroscopy [147], time-resolved fluorescent
spectroscopy [148], ultrafast electron diffraction technique [149], and so on. We also found
that the wavepacket bifurcation can be directly observed not only by pump-probe technique
by means of pulse lasers but with induced photoemission spectroscopy from molecules
placed under a CW laser [150].

The basic experimental setting for the time-resolved photoelectron spectroscopy is as
follows: (1) First excite a ground state wavepacket to an electronically excited state by a
pump pulse-laser. This laser is of a sufficiently short width so that the nuclear wavepacket
thus excited begins to run spontaneously, which eventually passes across the nonadiabatic
region(s). Then, (2) shine another laser (probe laser) to ionize the excited state. (3) Measure
the energy and angular distributions of photoelectrons as a function of the time delay
(the time lag between the probe and pump), and thereby retrieve the information of the
dynamics of the nuclear (chemical) dynamics. This TRPES technique is quite successful in
that there is no closed channel to be probed.

The theoretical framework of TRPES is outlined below [138–140]. Briefly, the total
wavefunction is expanded in terms of the three relevant electronic states: Φ1 (with a
potential function V1), Φ2 (with V2), and Φ(−)

k (ion state), as

Ψ(r, R, t) = χ1(R, t)Φ1(r; R) + χ2(R, t)Φ2(r; R) +
∫

dkχk(R, t)Φ(−)
k (r; R), (97)
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where Φ(−)
k (r; R) is a scattering state having the in-going boundary condition [50] with k

labeling the wave vector of the photoelectron. The time-dependent coupled Schrödinger
equations for the vibrational wavepackets χ1, χ2, and χk are to be solved in a coupled
Schrödinger equations (note that χk is continuous with respect to k) under all the matrix
elements being evaluated in full quantum mechanics [138–140]. For instance, we need the
matrix elements with respect to the electronic continuum representing the electronic ioniza-
tion process. This is not an easy task. Once they are all solved through, the photoelectron
spectra are calculated from the vibrational wavepackets after the probe interaction as

P(εk) = k
∫

dRdk̂|χk(R)|2. (98)

Figure 11 shows the photoelectron spectra of NaI molecule exhibiting the wavepacket
bifurcation and merging, taken for the pump-probe delays of 675, 700, 725, and 750 fs.
Snapshots of the absolute square of the wavepackets on the diabatic potentials are shown

in the upper column. The red and blue ones represent
∣∣∣χ(dia)

1 (R, t)
∣∣∣2 on V(dia)

1 (R) and∣∣∣χ(dia)
2 (R, t)

∣∣∣2 on V(dia)
2 (R), respectively. These wavepackets are passing across the crossing

point (nonadiabatic region) from the right to the left. The photoelectron signals, the kinetic
energy distribution of photoelectrons, at each time are correspondingly draw in the lower
column. It is clearly seen that the peaks of photoelectron signals are modulated in real
time from one to two and three peaks, highlighting the wavepacket bifurcation to those
components. These dynamics can be comprehended primarily with the Condon principle:
The wavepackets running on the lower potential energy make the higher photoelectron
kinetic energy signals. The wavepacket bifurcation and merging and can thus be physically
observed in real time.

Figure 11. Photoelectron kinetic energy spectrum as the wavepackets bifurcate and merge at the
avoided crossing. (The potential curves in this figure are graphcally represented in the diabatic
representation.) The polarization vector of the probe laser light is perpendicular to that of the
pump, while the latter is set parallel to the line between Na and I. In the upper row are shown the
absolute square of the wavepackets at selected times (red (blue) one on the red (blue) potential curve).
The bottom row represents the corresponding energy-resolved photelectron signals. Figure drawn by
Dr. Y. Arasaki. [Taken from Takatsuka, K. Bull. Chem. Soc. Jpn. 2021, 94, 1421 with permission].

6.2. Chaotic Eigenfunctions in Nonadiabatically Coupled Potential Functions

We next survey how the infinite repetition of bifurcation and merge of the quantum
wavepackets results in the specific signature in eigenfunctions. Fujisaki systematically
investigated this aspect by placing a focus on the transition from regular to chaotic states
of the wavefunctions as functions of energy and the magnitude of nonadiabatic coupling
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elements [151,152]. The system used was the so-called Heller model, which was defined in
their pioneering work [153]. It is defined as (see also Figure 12)

H =

(
T + VA J

J T + VB

)
,

T =
1
2
(p2

x + p2
y), VA =

1
2
(ω2

xx2 + ω2
yy2) + εA, VB =

1
2
(ω2

xξ2 + ω2
yη2) + εB (99)

with ξ = (x + 2a sin θ) cos 2θ + (y − 2a cos θ) sin 2θ and η = −(x + 2a sin θ) sin 2θ + (y −
2a cos θ) cos 2θ, where T is a nuclear kinetic energy (nuclear masses are assumed to be
unity), Vi (i = A, B) two-dimensional diabatic harmonic potentials of each electronic state
i, J the nonadiabatic coupling constant between the electronic states induces an interaction
between the two otherwise uncoupled harmonic potentials. εi (i = A, B) indicates the
bottoms of each harmonic potential. The geometrical meanings of a and θ are shown in
Figure 12. The angle 2θ referred to as the Duschinsky angle cause a coupling between x
and y. Unlike the original Heller model, we chose the frame for VA to be ‘diagonalized’ (no
crossing terms like xy in VA). The location of the crossing manifold (usually called crossing
seam) should be presented in the original paper [152].

Figure 12. A schematic representation of Heller’s model system. The distance between the centers of
the potentials is 2a, and the angle between the relevant crossing seam (dotted line) and the primary
axis of each potential (dashed line) is θ. Inset: The perspective view of the present system. The energy
difference of the potential bottoms is Δε = εB − εA. [Taken from Fujisaki, H.; Takatsuka, K. J. Chem.
Phys. 2001, 114, 3497 with permission].

Since the Heller model is simply an uncoupled pair of harmonic potentials at J = 0,
it can have merely regular states depending on the values on J and θ. Yet, the intense
mixing induced by these coupling elements lead the wavefunctions and energy spectra to
exhibit chaotic patterns. As an example, Figure 13 demonstrates the spatial distribution of
some (selected) very chaotic wavefunctions. The chaoticity was quantified in terms of a
transition from the Poisson to Wigner distributions in the nearest neighbor level spacing
distribution (NNLSD), Δ3 statistics, and so on [151]. Here in the graph of Figure 13, only
the so-called amplitude distributions of the eigenfunctions, proposed by Berry [154], on
one of the surfaces (A) are shown. The definition of the amplitude distributions is

P(φ) =
1√

2πσ2
exp
(
− φ2

2σ2

)
, (100)

where P(φ) is the frequency distribution of the amplitude of the eigenfunction that is
randomly sampled at points that are energetically accessible in configuration space on each
potential. About 6000 points are randomly sampled in Figure 13, and it turns out that P(φ)
is found to be fitted with a large σ, reflecting the spatially wide distribution due to chaos.
Although not shown here, we found that the regular wavefunctions give much smaller σ
(far narrower distributions) [151,152]. Thus, we have seen a regular to chaotic transition
of eigenfunctions (and eigenvalues as well, not shown here) in nonadiabatically coupled
quantum system.
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Figure 13. First row from the top: Eigenfunctions squared (from left to right, 800th, 810th, and 820th)
of Heller’s model system on surface A (see Figure 12) with J = 1.5 (intermediate coupling) and
θ = π/6. Second row: The corresponding eigenfunctions (squared) on surface B. Third row: The
corresponding amplitude distributions of the eigenfunctions onsurface A. The dashed envelope
curves represent Gaussian functions. [Taken from Fujisaki, H.; Takatsuka, K. Phys. Rev. E 2001, 63,
066221 with permission].

6.3. Need for Measures of Chaoticity in Quantum Wavepackets

One of the most interesting issues in quantum chaos is how to measure the extent of
chaoticity. This would depend on the definition of quantum chaos [2–12]. Characterization
of chaoticity embedded in discrete quantum energy levels has been extensively studied (see
Refs. [5,9,11] for instance). For example, the measures such as NNLSD, Δ3 statistics, and
so on, work well to capture chaos. On the other hand, we need to characterize chaoticity
in the dynamics of wavefunctions of molecules. Berry’s amplitude distributions of the
eigenfunctions P(φ) in Equation (100) can be used as one of such measures by applying at
each time of the time-propagation of a packet. However, this measure seems to be based
on a rather intuitive expectation that the chaotic wavefunction should be always widely
distributed in space. Another concern is whether it can distinguish well between regular
systems and those of quantum localization and the quantum scar.

The studies on classical chaos have already established such measures like the Lya-
punov exponent [155], the real-complex valuedness of the eigenvalues of the stability
matrix, KS entropy, and so on [1]. In practical studies on chemical dynamics we often need
a crisp measure to detect and/or characterize chaoticity in the propagation of wavefunc-
tions. However, it is known that quantum coherence working in quantum wavepackets
particularly make a significant difference from the classical one. Suppose we have two
wavepackets φμ(t) and φμ′(t), which are slightly different from each other in their initial
conditions μ and μ′, the initial condition of two wavepackets for instance. In marked
contrast to the exponential deviation of two classical trajectories of slightly different initial
conditions, the following overlap between the two packet

Oμμ′(t) =
∣∣∣〈φμ(t)

∣∣φμ′(t)
〉∣∣∣2 (101)
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is kept constant as long as they are subject to the same Hamiltonian. For the same reason,
quantities like the Shannon entropy

S(t) = −
∫

dq
∣∣φμ(q, t)

∣∣2 log
∣∣φμ(q, t)

∣∣2 (102)

is conserved as well. Then, a primitive idea to break the coherence is as follows [156].
Prepare a projection operator

Pi =
∫

Ai

dr|r〉〈r| (103)

where Ai is a subset (local area) of the entire space and satisfies Ai ∩ Aj = ∅ for i �= j.
In place of the overlap integral Oμμ′(t)

Oμμ′(t) =

∣∣∣∣∣
〈

φμ(t)

∣∣∣∣∣∑i
Pi

∣∣∣∣∣φμ(t)

〉∣∣∣∣∣
2

(104)

we consider the following modulation

Dμμ′(t) = ∑
i

∣∣∣〈φμ(t)|Pi|φμ′(t)
〉∣∣∣2, (105)

which obviously destroys the coherence among the different regions. In chaos φμ(t) and
φμ′(t) deviate from each other in configuration space, and Dμμ′(t) is anticipated to exhibit
a quick damp from a slight difference in the initial condition [156]. A good compromise to
balance the number of Ai and size is necessary to sensitive yet economical detection of chaos.
It has been shown numerically that the method works very well even for the nonadiabatic
dynamics as in the above Heller model system [156]. However, this decoherence method
costs much labor in many dimensional systems. We hence need general and tractable
alternatives. We will be back to this aspect in the next section.

7. Chaos in Nonadiabatic Electron Dynamics of Molecules

In this section, we review chaotic dynamics in electronic state manifolds, those states
involved in which are mixed frequently and extensively by the nuclear kinematic couplings,
or as vaguely termed, nonadiabatic interactions [21,23–27]. (We do not review the tradi-
tional and canonical theories of nonadiabatic transitions for nuclear wavefunctions, essen-
tially originating from the spirit of the Landau-Zener-Stuekelberg theory [14,16,17,19,20]).

7.1. The Hamiltonian Studied for Electron Dynamics
7.1.1. Electron Dynamics

The coupled Equations (11) based on the Born-Huang expansion, Equation (9), set
the theoretical foundation of molecular science. Yet, various drawbacks arise coming from
the time-independent representation of the electronic wavefunctions {ΦI(r; R)}. First of
all, it is technically hard to prepare a set of potential functions {VI(R)}, on which the
nuclear wavepackets {χI(R, t)} propagate in time. In particular, the most serious situation
appears when the electronic states are densely quasi-degenerate and are strongly coupled
to one another through the nonadiabatic interactions. In such a case a huge time-dependent
fluctuation over the electronic states can appear. To cope with those difficulties, we resume
the dynamics with time-dependent electronic wavefunctions from the beginning.

We hereby restart our basic framework from the following representation of the total
Hamiltonian operator [21,157]

H(R, elec)

≡ 1
2 ∑

k

(
P̂k − ih̄ ∑

I J
|ΦI〉Xk

I J〈ΦJ |
)2

+ ∑
I J

|ΦI〉H(el)
I J 〈ΦJ |, (106)
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where P̂k is the nuclear momentum operator. R indicates the nuclear coordinates, and we
represent the electronic states in the Hilbert space, not in the configuration space r. Note that
P̂k are to be operated only on the nuclear wavefunctions, not on the electronic wavefunctions
ΦI(r; R) , since such kinematic interactions have already been taken into account in Xk

I J
of Equation (106). The sum over the electronic states suffixed with I and J may include
continuum states.

No approximation has been made so far, and, we here introduce an approximation
that the nuclear momentum operators P̂k are replaced with their classical counterparts Pk as

H̃(R, P, elec)

≡ 1
2 ∑

k

(
Pk − ih̄ ∑

I J
|ΦI〉Xk

I J〈ΦJ |
)2

+ ∑
I J

|ΦI〉H(el)
I J 〈ΦJ |. (107)

Then the total wavefunction subject to the Hamiltonian of Equation (106) is to be reduced
to an electron wavepacket state running on paths R(t) (but not necessarily Newtonian
trajectories). More explicitly, we expand it as

|Φelec(t; R(t))〉 = ∑
I

CI(t)|ΦI(r; R)〉
∣∣∣∣
R=R(t)

, (108)

along each R(t), where {ΦI(r; R)} is a basis functions taken at each nuclear coordi-
nate R, and ΦI(r; R) do not have to be the eigenfunctions of the electronic Hamiltonian.
Equations (107) and (108) are widely referred to as mixed quantum-classical representation.
The time-dependent coefficients CI(t) are to be evaluated with the coupled equations of
motion for electron wavepackets in such a way that

ih̄
dCI
dt

= ∑
J

[
H(el)

I J − ih̄ ∑
k

ṘkXk
I J −

h̄2

4 ∑
k
(Yk

I J + Yk∗
J I )

]
CJ , (109)

where H(el)
I J , Xk

I J , and Yk
I J have been defined in Equations (12) and (13), respectively. Again,

the electronic basis {ΦI(r; R)} are not demanded to be adiabatic ones. The bra-ket nota-
tion used here indicates integration over the electronic coordinates r only. Furthermore,
the second order derivative terms Yk

I J in Equation (109) are quite often neglected in practice

because they are always accompanied by the small quantity h̄2 [25,26], although it is not
always negligible in general.

7.1.2. Nuclear Dynamics: Path Branching

The nuclear paths R(t) are driven by the force field provided by the electronic states,
more explicitly in terms of the force matrix Fk

I J (see ref. [21]) defined as

Fk
I J = −

∂H(el)
I J

∂Rk
− ∑

K

(
Xk

IK H(el)
KJ − H(el)

IK Xk
KJ

)
+ ih̄ ∑

l
Ṙl

[
∂Xl

I J

∂Rk
−

∂Xk
I J

∂Rl

]
, (110)

which arises from the variational principle or the Hamilton canonical equations of motion
for (R, P) [21].

The non-zero off-diagonal elements of Fk
I J can induce branching of the nuclear paths

R(t) [22]. If, on the other hand, the force matrix is diagonal, that is, Fk
I J = 0 for I �= J, each

of Fk
II gives a Newtonian force on each potential function I, which gives the theoretical

foundation for the so-called ab initio dynamics, molecular dynamics, the first principle
dynamics, and so on.
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7.1.3. Nuclear Dynamics: Mean-Field Approximation (Semiclassical Ehrenfest Theory)

To save the work needed for the path branching calculations [22], we often adopt a
mean-field approximation, the so-called semiclassical Ehrenfest theory (SET), in which the
force matrix of Equation (110) is to be averaged over the electron wavepacket as

〈Fk〉 = ∑
I J

C∗
I Fk

I JCJ

= −∑
I J

C∗
I

∂H(el)
I J

∂Rk
CJ − ∑

I J
∑
K

C∗
I

(
Xk

IK H(el)
KJ − H(el)

IK Xk
KJ

)
CJ , (111)

which gives rise to a single force for a single path. If the basis set {ΦI(r; R)} happens to be
complete, Equation (111) is reduced to the form of Hellmann–Feynman force

〈Fk〉 = −
〈

Ψelec

∣∣∣∣∣∂Ĥ(el)

∂Rk

∣∣∣∣∣Ψelec

〉
. (112)

The use of the mean-field approximation is justified for short-time propagation, typically
shorter than 100 fs. Indeed, it has been numerically shown [22] that the electronic-state
mixing is very well (accurately) reproduced by SET for a short time, provided that the
nonadiabatic coupling elements Xk

IK and electronic matrix elements H(el)
IK are both correctly

evaluated. As the nuclear positions proceed to some extent, the Ehrenfest paths should be
modified accordingly [22].

7.2. Longuet–Higgins (Berry) Phase and Lorentz-like Force

Before proceeding to the electronic-state chaos, we make a detour to a specific force
working on the nuclei, which can cause breaking the mirror symmetry of molecular shape,
namely molecular chirality.

Let us review the molecular Hamiltonian of Equation (107) now in classical electro-
magnetic field

H̃(R, P, elec, A) ≡

1
2 ∑

k

(
Pk −

Zke
c

Ak − ih̄ ∑
I J

|ΦI〉Xk
I J〈ΦJ |

)2

+ ∑
I J

|ΦI〉H(el)
I J (Aele)〈ΦJ |, (113)

where Ak(R) are the (classical) electromagnetic vector potentials on nuclei. The electronic
Hamiltonian also includes the vector potential Aele. In this expression we notice that the
nonadiabatic couplings mechanically stand parallel with the vector field A, which suggests
the qualitative roles of the nonadiabatic couplings working on the nuclear momentum may
be akin to those of the vector potentials.

Indeed it is well-known that there is a mathematical similarity between the Aharonov–
Bohm phase [158] and the Longuet–Higgins phase [159], the latter being well known
in chemical dynamics relevant to the so-called conical intersection, which is a special
case of nonadiabatic interaction. (see ref. [18] for the interesting properties of conical
intersection.) These two phases have been unified as the so-called geometrical phase, often
called Berry’s phase [160,161]. In light of the above parallelism in Equation (113), we
suspect another similarity to exist between them: As the electromagnetic Lorentz force
works on a charged particle running in a magnetic field, a novel force, which we call the
Lorentz-like nonadiabatic force, appears to work on nuclei running in a field created by the
nonadiabatic interaction field [21,162].

To be more specific, let us imagine a molecular system as illustrated in Figure 14.
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Figure 14. A symmetry breaking by pyramidalization of a coplanar molecular system, leading to
molecular chirality. (a) Atom A is approaching the planar molecule on the same plane. (b) The
Lorentz-like nonadiabatic force triggers to guide the incident atom to the direction out of the plane.
(c) The Hellmann-Feynman force follows to make the pyramidalization complete. [Taken from K.
Takatsuka, J. Chem. Phys. 146, 084312 (2017) with permission].

At the center we have an atom C, say carbon atom, and around it lie three atomic
or molecular elements A1, A2, A3. All the elements A1, A2, A3 in the molecule CA1A2A3
are mutually different and sit stably on a common plane. Suppose an external atom A is
coming in on the same plane of an x − y coordinates. (A1, A2, A3, and A should be all
different species from each other.) The z-direction is set to be perpendicular to this plane
and the plus or minus of this direction determines the right or left with respect to the
plane. Let (xa, ya, za) be a point of the incident atom A. Then the force matrix in za-direction
(perpendicular to the plane) [162] is given such that

Fza
I J =−

(
∂H(el)

∂Rza

)
I J

− ih̄

(
Ṙxa

[
∂Xxa

I J

∂Rza

−
∂Xza

I J

∂Rxa

]
+ Ṙya

[
∂Xya

I J

∂Rza

−
∂Xza

I J

∂Rya

])

− ih̄
A1,A2,A3

∑
b �=a

x,y,z

∑
jb

Ṙjb

⎡⎣∂Xjb
I J

∂Rza

−
∂Xza

I J

∂Rjb

⎤⎦, (114)

where the suffix b specifies A1, A2, and A3, and jb indicates the (x, y, z)-coordinate of each
element. This is a force while the state undergoes nonadiabatic transition from an Ith to the
Jth one. Just for simplicity, we assume that all the atoms other than the incident atom A
stay still, thus neglecting the possible vibrational motion. For the sake of clear presentation,
we simply set to

Ṙjb = 0 (j = x, y, z and b �= a). (115)

Hence only the atom A is supposed to be moving on the plane with a nonzero value of(
Ṙxa , Ṙya

)
and Ṙza = 0. Fza

I J is then reduced to

Fza
I J = −

(
∂H(el)

∂Rza

)
I J

− ih̄

(
Ṙxa

[
∂Xxa

I J

∂Rza

−
∂Xza

I J

∂Rxa

]
+ Ṙya

[
∂Xya

I J

∂Rza

−
∂Xza

I J

∂Rya

])
. (116)

We here define the Lorentz-like nonadiabatic force with the second term of the right hand
side of this equation as [162]

f za
I J ≡ −ih̄

(
Ṙxa

[
∂Xxa

I J

∂Rza

−
∂Xza

I J

∂Rxa

]
+ Ṙya

[
∂Xya

I J

∂Rza

−
∂Xza

I J

∂Rya

])
(117)

and simply write as
Fza

I J = −
(

∂za H(el)
)

I J
+ f za

I J , (118)

where −
(

∂za H(el)
)

I J
is the short-hand notation of the off-diagonal Hellmann-Feynman

term. (Note that the diagonal elements of the nonadiabatic interaction XII are zero if the
function used as the basis functions are real. However, this is not the case for complex-
valued wavefunctions.)
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The expression in Equation (117) can be reexpressed in a more familiar manner: Let us
consider a vector of the force matrix elements as

�f a
I J =

(
f xa
I J , f ya

I J , f za
I J

)
. (119)

In terms of the vector �Xa
I J(R) of the nonadiabatic interaction fields

�Xa
I J(R) =

(
Xxa

I J (R), Xya
I J (R), Xza

I J (R)
)

(120)

we define a vector field
�Za

I J(R) = −ih̄�∇a × �Xa
I J(R), (121)

in which the dependence on the nuclear coordinates R is explicitly denoted. Then �f a
I J is

expressed as
�f a

I J(R) = �va × �Za
I J(R), (122)

where�va is the velocity vector of the atom A, and �∇a× indicates the curl on the coordinates
for the atom A only [162].

It is immediately noticed that this expression is essentially of the same mathemat-
ical form as that behind the Fleming left-handed rule in classical electromagnetic theory.
The Lorentz force distinguishes the front and back sides of a plane made up by an electron
current and a magnetic field. See Figure 15. Thus, a simple relationship is found between
the electromagnetic Lorentz force and the Lorentz-like nonadiabatic force in such a way that

�Aa ↔ �Xa
I J , �Ba ↔ �Za

I J , Ṙa × qaeBa ↔ �va × �Za
I J , (123)

where B is a magnetic field.
We thus recognize that the nonadiabatic force can distinguish right and left with

respect to the plane of the vector field of nonadiabatic interactions, which can serve as one
of the fundamental mechanisms of the origin of molecular chirality. Yet, further study is
needed to quantify the actual magnitude of anisotropic force.

v
ZIJ

fIJ

Figure 15. A particle coming in with a velocity vector v into the ZI J field feels a force fI J , which is
orthogonal to both v and ZI J , according to �f a

I J(R) = �va × �Za
I J(R). See the text for the definition of ZI J .

7.3. Chaotic Electron Dynamics in Densely Quasi-Degenerate Electronic-State Manifold; B12
Cluster as an Example

As a candidate among molecules possibly having electronic-state chaos, we study some
of the highly excited states of a cluster consisting of 12 boron atoms, B12. The nonadiabatic
interactions working among the excited states of this cluster cause very frequent transitions
among adiabatic states [163–165], resulting in frequent and continual state-mixing as
represented as (recall Equation (108))

adiabatic

∑
I

CI(t)Φad
I (r; R(t)). (124)

In contrast to classical chaos, there is no crisp criterion with which to define or identify
chaos in quantum dynamics, to the best of our knowledge. Below we only quantify the
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extent of chaoticity of the relevant electron dynamics represented as in Equation (124).
A special attention is paid to the random mixing among the deterministic electronic states
in the state space. We then discuss the possible manifestation of those strong chaoticity in
chemical and physical properties of the clusters.

7.3.1. Nearest Neighbor Level Spacing Distribution (NNLSD)

At any selected time t, or at any molecular shape R, one can diagonalize the electronic
Hamiltonian matrix H(el)

I J in Equation (109). The energy levels are therefore geometry depen-
dent. We have surveyed the NNLSD for the B12 cluster (see ref. [164] and its supplemental
material stored in J. Chem. Phys.). It turns out that whereas the NNLSD shows a clear
Wigner distribution in case of low symmetry of molecular shape, level clustering occurs
to some extent when the molecule is of higher symmetry, actually C3v symmetry. This is
natural because the systems of higher symmetry tend to bear accidental degeneracy more
often. On the other hand, the possibility (measure) for this system to take C3v symmetry
is actually zero in the dynamical studies of variable R(t). Thus, we can judge that the
present system has a chaotic structure in its energy level. However, our goal is to clarify and
characterize the chaotic feature possibly hidden in the individual electronic wavepackets.

7.3.2. Diffusive Dynamics in the State Space: Fractional Brown Motion

It is experimentally hard to pick and prepare a pure adiabatic excited state out of the
densely quasi-degenerate electronic state. Even if one could successfully pump the ground
state to one of the highly adiabatic states, the resultant state would quickly begin to undergo
continual nonadiabatic mixing with other states, each of which in turn further mixes with
other states. These enduring state-mixings look like a diffusion as a whole in the electronic
Hilbert space. Figure 16 shows the magnitude of |CI(t)|2 of Equation (124) in a color code
in the (I, t) space. The brighter color indicates the larger |CI(t)|2. It visibly demonstrates
that diffusive dynamics has been certainly realized in the electronic-state space.

To quantify the extent of the diffusive motion of the wavepackets in the electronic state-
space explicitly, we survey the scaling property of the dynamics in terms of the fractional
Brownian motion (fBm) of Mandelbrot [166]. Consider

∑
J=1

(J − I(0))2∣∣CJ(t)
∣∣2 = DI(0)t

α, (125)

where I(0) indicates the state number of the initial state (that is CI(0)), and CJ(t) is the
mixing coefficient at time t starting from this initial I(0) state. Again CJ(t) have been
evaluated with the SET electron wavepackets. Recall that the exponent α = 1.0 implies
the ordinary diffusion and DI(0) is just the ordinary diffusion constant. States of the initial
adiabatic state I(0) = 3, 40, 100, 300, and 500 have been numerically examined [164].
Furthermore, it turns out that the nonadiabatic electron dynamics of I(0) ≥ 40 are indeed
the fractional Brownian motion (fBm) in the sense of Equation (125). The exponent of the
present fBm is found to be about α = 0.15, which suggests a milder stochastic motion
than ordinary diffusion. Interestingly, the values of the exponent is mostly independent of
the initial states chosen, whereas the diffusion constants DI(0) significantly depend on the
initial states, with the higher states having the larger diffusion constant.

Thus, Figure 16 convinces enough that the concept of adiabatic state in the Born-
Oppenheimer approximation and the associated the energy level (potential energy hyper-
surface) all lose sense in the present situation. Besides, the dynamical aspect of chaos is
far more directly relevant to the present huge electronic-state fluctuation than the static
signatures of chaos like the level statistics.
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Figure 16. Diffusion–like redistribution of the electronic states in the excited electronic state manifold
of B12 cluster. It is actually a fractional Brownian motion [164] in the state space. The dynamics of the
log|CI(t)|2 of Equation (108) is tracked with the SET and is charted in color code. An initial state has
been prepared at the 300th adiabatic state. The extensive diffusive state is realized well before 10 fs.
[Figure drawn by Dr. Y. Arasaki. Taken from Takatsuka, K. Bull. Chem. Soc. Jpn. 2021, 94, 1421 with
permission].

7.3.3. Shannon Entropy

We next calculate the Shannon entropy in terms of |CI(t)|2 taken from Equation (124),
which is the probability for the electronic wavepacket to occupy the Ith adiabatic state at
time t. Hence,

S = −∑
I
|CI(t)|2 log|CI(t)|2 (126)

quantifies the information about randomness in the electronic Hilbert space. Note this
entropy is different from Equation (102). Incidentally, the present system is too large
to apply the spirit of decoherence as in Equation (105). Figure 17 shows S for the three
wavepackets, those starting from the adiabatic state #100, #200, and #300. A very quick
rise from S = 0 is observed for all the wavepackets up to about 5 fs, and much slower
uprises follow since then. The absolute magnitude of the entropy is found to be larger
for the higher state, which seems natural. In case of the adiabatic dynamics, where no
electronic-state mixing is induced, the entropy is kept zero since |CI(t)|2 = 1.0. We thus
see that the present electron dynamics keep distributing a large amount of the population
over the extensive range in the Hilbert space.
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Figure 17. Time evolution of the Shannon entropy with respect to the adiabatic state population
|CI(t)|2 involved in the wavepackets, each starting from the adiabatic state #100, #200, and #300,
respectively. [Provided by Dr. Yasuki Arasaki].
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7.3.4. Lyapunov Exponents for the Loss of Electronic State Memory

In the present nonadiabatic electron wavepacket dynamics, the main origin of chaotic-
ity is not nonlinearity in the nuclear path dynamics but the nonadiabatic electronic state-
mixing. To quantify the chaoticity due to the nonadiabatic interactions directly, we compare
two dynamics that start from the same initial condition and one running on an adiabatic
potential and the other to run on the nonadiabatic averaged potential. Suppose we have the
Ith pure adiabatic state Φad

I (r; R(t)) at the nuclear position R(t) at time t. Let a classical
path run on this potential surface VI(R) for a short time Δt with an arbitrary momen-
tum P(t), reaching a point at Rad(t + Δt) with the electronic state Φad

I (r; Rad(t + Δt)).
Likewise we propagate a nonadiabatic electronic state starting from the same set of(

Φad
I (r; R(t)), R(t), P(t)

)
but the nonadiabatic interactions are taken account this time.

The nuclear path then arrives at RSET(t + Δt), which is slightly different from Rad(t + Δt),
but a significant different electronic wavepacket ΦSET

(I) (r; RSET(t + Δt)) is to be attained.
The process is summarized as{

Φad
I (r; R(t)) → Φad

I (r; Rad(t + Δt)) by adiabatic path
Φad

I (r; R(t)) → ΦSET
(I) (r; RSET(t + Δt)) by nonadiabatic path. (127)

The deviation of ΦSET
(I) (r; RSET(t + Δt)) from Φad

I (r; Rad(t + Δt)) should reflect a mem-
ory loss of the initial state, and we quantify this the process by regarding it as an exponential
decay of ∣∣∣〈Φad

I (r; Rad(t + Δt))
∣∣∣ΦSET

(I) (r; RSET(t + Δt))
〉∣∣∣2

=
∣∣∣〈Φad

I (r; R(t))
∣∣∣Φad

I (r; R(t))
〉∣∣∣2 exp(−ξ IΔt), (128)

where t is chosen arbitrary. Unfortunately the integral in the left hand side of Equation (128)
is not easy to estimate. However, for a sufficiently short Δt, the following approximation
holds very accurately

RSET(t + Δt) � Rad(t + Δt), (129)

since their deviation is far slower and smaller. In fact, the deviation is numerically found to
be about 0.005 Å in 1.0 fs (not shown graphically). Thus, we may define

ξ I(t; Δt) = − 1
Δt

log
∣∣∣〈Φad

I (r; RSET(t + Δt))
∣∣∣ΦSET

(I) (r; RSET(t + Δt))
〉∣∣∣2, (130)

and with use of Equation (124) it is estimated by

ξ I = − 1
Δt

log|CI(t + Δt)|2. (131)

Figure 18 represents the process of the above memory-loss process as observed in
the selected states. Panel (a) shows that the nonadiabatic electronic state starting from
the adiabatic #300 one quickly loses its memory about which adiabatic state it emerged
from [167]. Actually it takes only 0.5 fs for the nonadiabatic state to lose most of the
memory in |CI(t)|2. The relevant exponents defined in Equation (128) is shown in panel
(b). In this calculation, Δt was set to 0.5 fs and the time t was scanned. Panel (b) displays
two exponents ξ I of Equation (131) for the nonadiabatic states starting from the #100 and
#300 adiabatic states, respectively. They fluctuate from time to time with the average value
around 5.0 fs−1. This implies that the adiabatic path can immediately lose its memory
as soon as the nonadiabatic interactions are switched on, no matter where the paths run.
In other words, the adiabatic states are entirely embedded in a wide chaotic sea.
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Figure 18. Loss of memory of nonadiabatic states in the Hilbert space. (a) Quick decay of |CI(t)|2
from 1.0 to CI(t + Δt) with Δt = 0.5 fs at selcted points of t for B12 cluster SET dynamics starting
from the 300th adiabatic state. Dynamics starting at t = 0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, and 3.5 fs.
(b) Exponent of memory loss, defined in Equation (128), for the initial adiabatic component weight,
ξ(t, Δt), starting from either the 300th (red) or the 100th (black) adiabatic state. Δt = 0.5 fs. Lines
connect calculated points only for visualization. [Provided by Dr. Yasuki Arasaki].

7.3.5. Turbulent Electron Flow in the Cluster

To observe one of the physical consequences from the present stochastic electron dy-
namics, we next survey the internal electron current driven by the nonadiabatic interactions.
The probability current density of electrons�j(r, t), which is also termed electron flux, quan-
tifies and visualizes the flow pattern. �j(r, t) is supposed to satisfy the continuity equation

∂ρ(r, t)
∂t

+∇�j(r, t) = 0, (132)

and in quantum mechanics�j(r, t) is defined as

�j(r, t) =
h̄

2ime
[ψ∗∇ψ − ψ∇ψ∗], (133)

where me and ψ are the mass and wave function of the involved particles [168]. For
many-electron systems it is reduced to

�j(r, t) =
h̄

2ime
[∇rρ(r′, r)−∇r′ρ(r

′, r)]

∣∣∣∣
r′→r

=
h̄

2ime

NO

∑
i

ni
[
λ∗

i (r
′)∇rλi(r)−∇r′λ

∗
i (r

′)λi(r)
]∣∣∣∣∣

r′→r

, (134)

where ∇r and ∇r′ are the nabla with respect to r and r′, respectively, and {λi} are the
natural orbitals that are eigenfunction of the density operator ρ̂(t) (ρ(r′, r) = 〈r′|ρ̂|r〉) with
occupation numbers ni. Note that only the complex-valued natural orbitals can make
contributions to Equation (134). Stationary-state electronic wavefunctions like most of the
eigenfunctions of the electronic Hamiltonian Ĥ(el) are real-valued (with exceptions with
respect to angular momentum eigenfunctions) and thereby give zero flux only (see [169,170]
for the general electronic and nuclear flux in general molecules, refs. [171–174] for the early
applications of electron flux in chemical dynamics, ref. [175] for an extensive review,
and ref. [176] for one of the latest).

Figure 19 shows the electron flux induced by the electron wavepacket dynamics
starting from the 74th and 75th states, individually, with no nuclear kinetic energy but
released spontaneously from the initial geometry. The snapshots have been taken at two
very short times at 0.6 fs and 1.0 fs. These flux vectors are viewed from the top. The packet
starting from the 74th state happens to exhibit the electron current in the counterclockwise
direction at 0.6 fs, while the 75th counterpart shows the current mostly in the direction
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clockwise. Although the cluster seems to be in C3v symmetry, it is relaxed to the lower
one, and consequently, these circular patters are not conserved and shortly transformed
to a more complicated flow. Indeed, only shortly after 1.0 fs both fluxes begin to fall into
very complicated in spatial patterns. After all, those electron currents become turbulent or
random flow (not shown graphically). The most exciting chemical study is then to identify
the consequences of electronic turbulence in chemical reactivity and molecular properties.

Figure 19. Spontaneous electron flux arising from the wavepackets in the SET dynamics starting
from the 74th adiabatic state at (a) 0.6 fs and (b) 1.0 fs, and from the 75th adiabatic states at (c)
0.6 fs and (d) 1.0 fs. dynamics. The flux vectors are systematically multiplied by 2.0 × 104 for
visualization. These fluxes are driven by nonadiabatic interactions. Soon after 1.0 fs, the regular-
looking fluxes become turbulent. [Taken from Yonehara,T; Takatsuka, K. J. Chem. Phys. 2016, 144,
164304 with permission].

Incidentally, one can define the flux of electronic energy [177], which is of course
different from the above electron flux. It is quite interesting to track real-time energy flow
in molecules. We have observed the turbulent flux of the electronic energy too in the above
excited-state cluster dynamics [177].

We have thus observed the clear signatures of quantum chaos in molecular nonadia-
batic electron dynamics.

7.4. The Long Life-Time of Dynamical Chemical Bonding: Hyper Resonance

The above diffusive and chaotic phenomena due to the very frequent nonadiabatic
interactions prevent molecular dissociation and bring about a notion of quantum resonance
we have not seen before. As resonance phenomena the Pauling resonance in the theory of
chemical electronic structure [178] and the Feshbach resonance [49] in quantum scattering
theory [50] are most relevant to the present study. The Pauling resonance in the so-called
valence bond theory is regarded as a configuration mixing (interaction) among the so-
called resonance structures, each of which corresponds intuitively to a valence bonding.
The Feshbach resonance, or core-excited resonance, is schematically represented as

M + A → (MA)∗

→ dissociations eventually with a long lifetime,
(135)

where a state of a target nuclei, atom, or molecule (denoted as M) is pumped to the
higher levels by borrowing the kinetic energy of an incident particle A. The Feshbach
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resonances and their overlapping set the foundation of Intramolecular Vibrational energy
Redistribution (IVR) in the unimolecular dissociation dynamics, as discussed in Section 3.2.
Thus, the dissociation channels are temporarily closed by a temporal compound state
(MA)∗ surviving a long life-time. Both the Pauling and Feshbach resonances can be
regarded basically as events on a single adiabatic potential surface.

During the continual state-mixing in the diffusive motion in B12, the electronic and
nuclear energies are mutually exchanged through the nonadiabatic interactions. This phe-
nomenon can be regarded as another kind of quantum mechanical resonance. The present
dynamics found in B12 may be termed as hyper-resonance (resonance among the resonant
states), since each adiabatic state is already in a Feshbach and/or Pauling resonance state.
We refer to such a very long life-time tentative chemical bonding as dynamical bonding [165].

7.5. Intra-Molecular Nonadiabatic Electronic Energy Redistribution
7.5.1. Huge Inflation of Phase-Space Volume

Despite the very high energy of those excited-state boron clusters, they do not readily
break apart, since the dissociation channels of them tend to be closed by very frequent
nonadiabatic transitions. This is a natural consequence of hyper-resonance. We then survey
a possible mathematical ground of the long life-time in terms of a drastically simplified
statistical theory based on the phase space theory, originally proposed by J. C. Light [179].
This theory has been extensively applied to and modified before in the context of cluster
dynamics [180–182], Calvo [183–187], and Fujii [65,66].

We consider only the simplest dissociation of B12 cluster in which only one atom is
evaporated from N-body cluster (N = 12). The phase space theory under no external field
predicts the dissociation rate k as

k =
WN−1(E)

ΩN(E)
, (136)

where ΩN(E) is the density of the states of the N-particle cluster at the total energy E,
and WN−1(E) denotes the total flux induced by the dissociation of a single atom [179].
As for a single adiabatic potential energy surface, say VI(R) at a nuclear configuration R,
ΩN(E) is approximately estimated with the expression

Ω(I)
N (E) = h̄−3N

∫
dRdP δ(E − HI(R, P)), (137)

where
HI(R, P) =

P · P
2

+ VI(R), (138)

with the obvious notation of the total nuclear momentum P. We assume that the total
energy is high above the potential barrier of the dissociation channels and that there are not
significant centrifugal barriers for the present non-rotating clusters. In such systems, the so-
called bottle-neck volume, say ∂Ω(I)

N , of the phase-space volume Ω(I)
N to the dissociation

channel cannot be appropriately defined. In place of resorting to ∂Ω(I)
N therefore, we use the

phase space volume of the daughter cluster of N − 1 particles, denoted as Ω(I)
N−1(E − ΔE),

where ΔE is the energy for the dissociating particle to take away with the relative velocity
�v. The flux is approximately expressed as

W(I)
N−1(E) =

∫
Ω(I)

N−1(E − ΔE)�v(ΔE) · d�v. (139)

(The reduced mass is set to be unity for simplicity.) Thus, the critical quantity for the
statistical rate of the dissociation probability turns out to be the ratio

Ω(I)
N−1(E − ΔE)

Ω(I)
N (E)

(140)
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for a given ΔE.
We further suppose that the phase space of a system under study has the mixing

property and is completely statistical due to chaos. Then we may regard the quantity

Ω(I)
N (E)− Ω(I)

N−1(E − ΔE) (141)

as a phase space volume for trajectories to “tentatively” remain bound as N-body cluster.
Then the related entropy s(I)(E, ΔE) can then be defined as

s(I)(E, ΔE) = − log

⎛⎝Ω(I)
N (E)− Ω(I)

N−1(E − ΔE)
ΔΩ

⎞⎠, (142)

where ΔΩ represents the size of a unit cell of the phase space volume, such as h̄3N , which
is used to count the number of cells in the volume

[
Ω(I)

N (E)− Ω(I)
N−1(E − ΔE)

]
.

Although the state mixing is caused by the interaction

− ih̄
3N

∑
k=1

Ṙk(t)Xk
I J(R(t)) (143)

and/or H(el)
I J (R(t)) as in Equation (109), we herein assume for simplicity that the transition

among the electronic states occur freely. Then the entropy confined in the individual state
s(I)(E, ΔE) should be represented by the sum of them as

s(max)(E, ΔE) = ∑
I

s(I)(E, ΔE)

= −∑
I

log

⎛⎝Ω(I)
N (E)− Ω(I)

N−1(E − ΔE)
ΔΩ

⎞⎠. (144)

In such an extreme case the connected phase-space volume within ΔE is effectively extended
and can be approximated as

∏
I

[
Ω(I)

N (E)− Ω(I)
N−1(E − ΔE)

]
. (145)

On the other hand, the phase space volume directly connected to the dissociation channel
should be represented as the simple sum of each as

∑
I

Ω(I)
N−1(E − ΔE). (146)

Hence the the dissociation probability can be dramatically lowered from the order of
Equation (140) to

∑
I

Ω(I)
N−1(E − ΔE)

∏
J

[
Ω(J)

N (E)− Ω(J)
N−1(E − ΔE)

] , (147)

indicating that the relative phase-space volume towards the dissociation is by far smaller
than the phase space volume of the original N-body cluster, and the probability for the
cluster to come across the dissociation channel is extremely small. Consequently, the life-
time of the clusters is expected to be far longer than in case of no nonadiabatic transitions.
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7.5.2. Intra-Molecular Nonadiabatic Electronic Energy Redistribution (INEER):
Nonadiabatic Interaction to Close Dissociation Channels

Nonadiabatic electronic-state chaos thus inflates the volume of phase-space of nuclear
motion of clusters to a very large extent. Due to this inflation, the molecular states lose
chances to reach one of their dissociation channels. That is, a dissociating molecule can
be brought back to the bound state by nonadiabatic interactions, which would dissociate
otherwise. Here is an example of such an event [165]. In Figure 20, a B12 of initial
hindered geometry is prepared, which is close to a dissociation channel. (Such dissociation
channels can be readily found by colliding a B11 cluster and a B atom) In panel (a) is
shown a trajectory for the 47th adiabatic state at this geometry to run on its adiabatic
potential surface (no nonadiabatic interaction). After 110 fs of running, one of the atoms
leaves the cluster leaving B11 cluster behind. Likewise, the same 47th adiabatic state in
panel (b) begins to run from the same geometry with the same momentum but with the
nonadiabatic interactions explicitly included in the electron dynamics. The trajectory clearly
demonstrates that an atom being about to leave the cluster is brought back again to the
B12, thus evidencing that the dissociation channel is closed. This phenomenon is what we
call intra-molecular nonadiabatic electronic energy redistribution (INEER) due to hyper-
resonance [188]. This makes a contrast to intramolecular vibrational energy redistribution
(IVR) caused by classical chaos on a single potential basin. INEER is a crucial consequence
of the intense chaos due to the continual nonadiabatic electronic-state mixing.

Figure 20. B12 bonding structures along a trajectory under (a) adiabatic dynamics, and (b) nonadia-
batic dynamics, starting from the same initial conditions (initial adiabatic state 47). Time t in fs is
indicated beside each structure. At t = 110 fs, atom 1 is in the dissociation channel in the adiabatic
dynamics, while this atom is pulled back to the cluster site in the nonadiabatic dynamics. [Taken
from Arasaki, Y.; Takatsuka, K. J. Chem. Phys. 2019, 150, 114101 with permission].

8. Concluding Remarks

To review “quantum chaos” in the scope of chemical dynamics, we herein have
tracked the following subjects. We began with full quantum dynamics, wavepackets and
eigenfunctions localized in the quasi-separatrix in two-dimensional potential function.
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This study was made in search for a novel molecular vibrational mode. Indeed, in this
small dimensional system lie several vibrational modes, which give birth to very long-time
wandering motions in the quasi-separatrix. A pair of the eigenstates of the dynamical
tunneling of the second kind have been identified.

Semiclassical theory and energy quantization thereof, which is indispensable in the
study of molecular vibration were next reviewed. We took a wavepacket approach in study-
ing semiclassical dynamics rather than the direct semiclassical reduction of the Feynman
kernel. With this approach, we discussed the mechanism of energy quantization for not
only making the peaks but suppressing the off-resonant components. One of the most
annoying parts in semiclassical kernel and related quantities is the divergence at caustics
and/or turning points, which casts an inherent difficulty to the Gutzwiller trace formula.
To avoid the difficulty, we have shown that the amplitude-free energy quantization actually
works quite well. Chaotic paths that appear only through quantum tunneling have been
shown along with a semiclassical tunneling formalism based on the notion of the parity
of motion.

One of the main aims of the present review has been to guide the readers to chaos in
molecular nonadiabatic dynamics, which is induced by the kinematic couplings between
nuclei and electrons. The entanglement between electrons and nuclei is one of the most
important subjects in general chemical science. We have emphasized the critical roles of
“bifurcation and merging” of quantum wavefunctions. The most characteristic molecular
chaos is found in nonadiabatic electron dynamics in the densely quasi-degenerate electronic-
state manifold, every state of which mixes together with other members of the manifold.
We have shown that the dynamical properties of electronic-state chaos can be measured in
terms of the quantities related to diffusion and memory loss in the Hilbert space, turbulent
flow of electron current, and so on. The chaos of the electronic excited state should become
more and more vital in future molecular science, which will proceed far beyond the Born-
Oppenheimer paradigm of the current theoretical framework of chemistry.

Some of the characteristics found for molecular quantum chaos are summarized below:
The basic mechanism of chaos in nonadiabatic wavepacket dynamics is “bifurcation

and merging”, which is a quantum mechanical synonym of “stretching and folding” in the
classical baker’s (or the Smale horse-shoe) transformation. Indeed repeated occurrences of
“bifurcation and merging” of quantum wavepackets result in genuine chaos in quantum
mechanics not only in energy spectra but more importantly in the dynamics of wavepack-
ets. We would like to particularly emphasize again that the bifurcation and merging of
wavepackets are indeed physically observable. Interestingly, “bifurcation (branching) and
merging of the reaction tubes” sets also a geometrical foundation of classical chaos in
structural isomerization dynamics. Extension of the tube geometry to quantum mechanics
has not yet been explored.

“Loss of memory” is one of the central concepts to characterize chaos in general.
The positive Lyapunov exponent in classical systems indicates an exponential separation of
nearby orbits, leading to the loss of the memory of their initial stage. In our quantum chaos,
the exponential decay of the memory of an electronic state in the time-propagation against
the nonadiabatic (kinematic) interactions can take place in the Hilbert space. Again, we
have observed that classical chaos in the structural isomerization dynamics of liquid-like
clusters is associated with a characteristic feature of memory loss, which leads to a random
yet statistical appearance of the isomers in the time series.

The advent of the ultrafast pulse laser has revolutionized molecular science since the
1970s. The femtosecond laser chemistry [189] to date has made it possible to real-time track
the molecular deformation and reactions, an example of which can be seen in Figure 11 of
this review. We are now in the age of technical development and applications of attosecond
pulse lasers, the width of which is compatible with the time scales of electronic motions
in molecules. This situation has been driving us in nonadiabatic electron wavepacket
dynamics in Section 7. Nevertheless, we also call for attention for the study of extremely
long-time spectroscopy. As we noted in this article, the structural isomerization of not
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only clusters but also large molecules like proteins can wander from one shape (potential
valley, potential basin) to another taking a very long time at each local structure. These
many-dimensional dynamics are often accompanied by large dimensional chaotic spaces,
which makes the entire dynamics even longer and more complicated. It is extremely
challenging therefore to figure out spectroscopic means to capture the essential feature
of the long-time dynamics. The time-dependent spectroscopy, which was proposed in
Section 4 and discussed briefly in the section of semiclassical mechanics Section 5, is just
one primitive idea in an attempt to cope with this matter. A parallel computation scheme
with many different initial conditions should be a good candidate to overcome long-time
quantum dynamics in ergodic phase space, if a method to appropriately connect the pieces
of spectra taken individually is devised.

A final remark before closing. The essential nature of classical and quantum chaos
may lie in mathematical beauty and intricate geometry behind the complicated-looking
phenomena. However, the complexity of molecules often makes such elegant mathematical
structures obscure and even less mighty. Moreover, We are afraid that sticking to the
too rigorous definitions of quantum chaos would isolate itself from other natural science.
Therefore, I would like to conclude this review by stressing that more studies on quantum
chaos made mathematically easy and conceptually useful are demanded than ever, since
there are so many unknowns left (not only) in the molecular phenomena, notions, and laws
that need an understanding of quantum chaos.
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Abstract: Complex eigenvalues of random matrices J = GUE + iγ diag(1, 0, . . . , 0) provide the
simplest model for studying resonances in wave scattering from a quantum chaotic system via a
single open channel. It is known that in the limit of large matrix dimensions N  1 the eigenvalue
density of J undergoes an abrupt restructuring at γ = 1, the critical threshold beyond which a
single eigenvalue outlier (“broad resonance”) appears. We provide a detailed description of this
restructuring transition, including the scaling with N of the width of the critical region about the
outlier threshold γ = 1 and the associated scaling for the real parts (“resonance positions”) and
imaginary parts (“resonance widths”) of the eigenvalues which are farthest away from the real axis.
In the critical regime we determine the density of such extreme eigenvalues, and show how the
outlier gradually separates itself from the rest of the extreme eigenvalues. Finally, we describe the
fluctuations in the height of the eigenvalue outlier for large but finite N in terms of the associated
large deviation function.

Keywords: non-Hermitian random matrices; complex eigenvalues; extreme eigenvalues; eigenvalue
outlier; resonances; resonance trapping

1. Introduction

Rank-one non-normal deformations of the Gaussian and Circular Unitary Ensembles
are a useful analytic tool for studying statistics of resonances in quantum scattering from
a chaotic domain via a single channel [1,2]. As surveyed in [2,3], these random matrix
ensembles are integrable in the sense that the joint probability density of their complex
eigenvalues and, in some spectral scaling limits of interest, the eigenvalue correlation
functions can be determined in a closed form. Such integrability, which also proves to be
useful in other physics contexts, see, e.g., [4], extends to a certain degree to the deformed
β−Gaussian and β−circular ensembles [5,6], especially to the classical values β = 1, 4 [7,8],
but is lost if the underlying normal random matrix ensemble (Hermitian or unitary) is
not integrable, as is the case with, e.g., finite rank non-Hermitian deformations of Wigner
matrices [9–11] or band matrices [12]. Still, the latter matrices are found to share, in
appropriate parameter ranges, some statistical characteristics of their complex eigenvalues
and eigenvectors with their integrable counterparts.

In this paper, we aim to investigate complex eigenvalues with extreme imaginary
parts for the rank-one non-Hermitian deformations of the Gaussian Unitary Ensemble
(GUE) by exploiting the above-mentioned integrability. The latter feature gives access to the
asymptotics of the eigenvalue density in the complex plane on mesoscopic scales and allows
us to carry out a quantitative analysis of the separation of the eigenvalue outlier (which is
known to exist in this model [9,10]) from the rest of the eigenvalues. Eigenvalue outliers
in the complex plane have recently attracted renewed interest [11,13–15]. Our analysis
refines and complements the existing knowledge about the outliers of nearly Hermitian
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matrices [9–11] albeit for arguably the simplest model of its type. As we will demonstrate,
despite the simplicity of the model, its extreme eigenvalues exhibit an interesting transition
at a certain value of the deformation parameter, with rich critical behaviour which deserves
to be studied in more detail.

The non-Hermitian matrices that we consider are of the form

J = H + iΓ, (1)

where H is a GUE matrix and Γ is a diagonal matrix with all diagonal entries being zero
except the first one,

Γ = γ diag(1, 0, . . . , 0). (2)

Denoting the matrix dimension by N, we fix the global spectral scale by the condition that
the expected value of Tr H2 is N. Then the joint probability density function (JDPF) of
matrix elements of the GUE matrix H is

fN(H) = const × exp
{
− N

2
Tr H2

}
. (3)

With this normalisation, the limiting eigenvalue distribution of H, as the matrix dimension
is approaching infinity, is supported on the interval [−2, 2], and, inside this interval, the
eigenvalue density is ν(X) = 1

2π

√
4 − X2.

Note that due to the invariance of the JPDF (3) with respect to unitary rotations
H → UHU−1 one may equivalently replace Γ in (2) with any other rank-one Hermitian
matrix. Without loss of generality we may also assume γ to be positive. Then the eigen-
values Xj + iYj of matrices J (1)–(3) are all in the upper half of the complex plane and for
N large they all, except possibly one outlier, lie just above the interval [−2, 2] of the real
line. Whether such an outlier is present or not is determined by the value of γ. For fixed
values of γ < 1, almost surely, for N sufficiently large, all N eigenvalues lie within distance
cN N−1 from the real line, with cN = o(Nε) for every ε > 0 [9]. Furthermore, if γ > 1 then
the same is true of all but one eigenvalue. This outlier lies much higher in the complex
plane: to leading order in N, its imaginary part (the “height”) is γ − γ−1 [9,10,14]. For
precise statements and proofs we refer the reader to [9,10] where these and similar facts
were established for finite rank non-Hermitian deformations of real symmetric matrices
with independent matrix entries.

For finite but large matrix dimensions, one would expect to find a transition region of
infinitesimal width Ω about the outlier threshold value γ = 1 which captures the emergence
of the outlier from the sea of low lying eigenvalues. Questions about the scaling of Ω with
N and the corresponding characteristic height and distribution of the eigenvalues that lie
farthest away from the real line are natural and interesting in this context. These are open
questions in the mathematics and mathematical physics literature on the subject.

Apart from the mathematical curiosity, there is also motivation coming from physics.
In the physics literature, the eigenvalues of J are associated with the zeroes of a scattering
matrix in the complex energy plane, and their complex conjugates with the poles of the
same scattering matrix, known as “resonances”. The latter are obviously the eigenvalues
of matrices (1)–(2) with γ replaced by −γ. In that context the absolute value of the eigen-
value’s imaginary part is associated with the “resonance width”. The eigenvalues close to
real axis are called “narrow resonances” and the outlier is called the “broad resonance”.
The use of the Gaussian Unitary Ensemble for H is justified by invoking the so-called
Bohigas-Giannoni-Schmidt conjecture [16] describing spectral statistics of highly excited
energy levels of some classes of systems whose classical counterparts are chaotic. The re-
sulting ensemble J is then an important ingredient in characterising statistical properties of
scattering matrices in systems with quantum chaos and no time-reversal invariance, see [1]
for description of the associated framework going back to the pioneering paper [17] . In
that framework, the phenomenon of the outlier separation and the simultaneous movement
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of the rest of the eigenvalues towards the real axis was first discussed, albeit at a heuristic
level, already in early theoretical works [18,19], the latter work even establishing the correct
asymptotic position of the outlier. Later on, this phenomenon got considerable attention
under the name “resonance trapping” and eventually was observed in experiments [20].

Very recently, Dubach and Erdős [11] performed a detailed analysis of the eigenvalue
trajectories, with respect to changing the parameter γ, in the random matrix ensemble
H + iγvs.v∗ in the settings when H is assumed to be a Wigner matrix and v a column vector
of unit length. It turned out that the evolution of the eigenvalues is governed by a system
of deterministic first-order differential equations subject to random initial conditions, with
the initial positions and velocities expressed in terms of the eigenvalues and eigenvectors
of H. In addition, under suitable conditions on the distribution of matrix entries of H
ensuring the validity of the uniform isotropic local law (Theorem 5 in [11]), Dubach and
Erdős proved that with high probability the eigenvalue outlier is distinctly separated from
the rest of the eigenvalues for all

γ > 1 +
Nε

3
√

N
, ε > 0. (4)

Moreover, if ε < 1/3, i.e., if N−1/3+ε is asymptotically small, the outlier’s height is 2N−1/3+ε

and its real part is in the window of width N−1/3−ε/4 around the origin, whereas all other
eigenvalues are no higher than N−1/3−ε. In addition, with high probability, for all

γ < 1 − Nε

3
√

N
, ε > 0, (5)

no eigenvalue reaches the heights

Y =
m

3
√

N
, m > 0. (6)

These findings suggest that the width Ω of the transition region around γ = 1 scales with
as N−1/3 for N large. Naturally, for γ inside this region one would expect to find several
eigenvalues, including the emerging “atypical” outlier, with imaginary parts on the critical
scale (6) much exceeding the height O(N−1) of low lying eigenvalues, as illustrated in
Figure 1. One might call such eigenvalues “typical extremes” to emphasise atypicality of
the emerging outlier.
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Figure 1. γ-trajectories of eigenvalues of matrices (1)–(3) of dimension N = 1000 near the origin.
Each plot represents a different sample of H from the GUE (3). The parameter γ is varying in the
interval [0, 0.5] in the increments of 0.05 (blue dots), in the interval [0.5, 1] in the increments of 0.1 (red
dots), and in the interval [1, 1.5] in the increments of 0.1 (green dots).

To a large extent our paper is motivated by [11] and aims to provide quantitative
insights into this picture of the outlier emerging from the cloud of extreme eigenvalues.
Whilst the approach of Dubach and Erdős is dynamical (fix matrix H and study eigenvalue
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trajectories as the magnitude γ of the deformation increases), our approach is statistical (fix
a scale for γ and count the number of eigenvalues on characterisitc spectral scales in the
complex plane averaged over the distribution of H which, for technical reasons, we assume
to be GUE). Our present approach is limited to the expected values; analysing higher order
moments is left as an interesting problem for future investigations. However, even with
such a basic tool we are able to develop rather detailed quantitative understanding of the
outlier separation and the associated restructuring transition in the spectra of matrices J.

As such, the two approaches complement each other very well. For example, we prove
that for

γ = 1 +
α

3
√

N
, α ∈ R, (7)

the expected number of eigenvalues whose height exceeds the level (6) is asymptotically
given by the integral

∫ ∞
m p(Im)

α (m′)dm′ with density

p̃(Im)
α (m) =

1
2
√

π

3
2m +

( 3m
2 − α

)2

m3/2 e−m(α− m
2 )

2
, m > 0.

This density is the average density of the extreme eigenvalues at height (6). Together with
findings in [11] this result establishes that the width Ω of the transition region around
γ = 1 indeed scales with N−1/3. Similarly, we are able to determine the average density of
extreme eigenvalues Zj = Xj + iYj of J near the origin in the complex plane in the critical
scaling regime when when q + im = 3

√
NZ = O(1). As a function of coordinates q and m,

this density, when appropriately rescaled, is given by

p̃α(q, m) =
1

4πm

[
1
m

+
q2

4
+

(
3m
2

− α

)2
]

e
−m
[

q2
4 +(α− m

2 )
2
]

, q ∈ R, m > 0.

It can be verified that
∫ +∞
−∞ p̃α(q, m)dq = p̃(Im)

α (m), implying that the population of extreme
eigenvalues at the critical height (6) which generates the eventual outlier (as α is approach-
ing infinity) is constrained to a narrow vertical strip of width O(N−1/3) about the origin
(the centre of the eigenvalue band of H). Thus, our results both confirm and complement
the analysis in [11], and show that it indeed touched the optimal scales in γ (7), both along
the real and imaginary axes.

We would like to conclude this section with a short description of the structure of our
paper. In Section 2 we develop quantitative heuristic analysis of the outlier separation. This
analysis elucidates the emerging critical scaling in γ and the critical spectral scalings in the
complex plane and provides a useful background for rigorous calculations later on. This
section also offers our outlook on the universality of the exponent −1/3 in (7). Section 3
contains the statement of our main results and discussion. In Section 4 we express the
expected density of eigenvalues of J and the density of their imaginary parts at finite matrix
dimensions in terms of, respectively, Hermite and Laguerre polynomials. These expressions
are then used in Sections 5 and 6 for asymptotic analysis of eigenvalue densities in various
scaling limits. The two appendices contain derivations of technical auxiliary results.

2. Low Lying Eigenvalues and Their Extremes: A Heuristic Outlook

Before presenting our main results in the next Section, we would like to offer our
quantitative heuristic insights into the outlier separation elucidating the emerging scalings
and mechanisms behind them and providing a useful background for rigorous calculations
later on.

With zj = Xj + iYj standing for the eigenvalues of matrices J = H + iΓ, the angular
brackets 〈. . .〉 standing for averaging over the GUE matrix H (3), and δ(X) for the Dirac
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delta-function, the expected number of eigenvalues of J in domain D can be computed by
integrating the mean eigenvalue density

ρN(X, Y) =
〈 1

N

N

∑
j=1

δ(X − Xj)δ(Y − Yj)
〉

(8)

over D and multiplying the result by N. For example, the expected number Nγ(Y) of
the eigenvalues of J which lie above the line Im z = Y in the complex plane is given by
the integral

Nγ(Y) = N
∫ ∞

−∞

∫ ∞

Y
ρN(X, Y′) dXdY′ = N

∫ ∞

Y
ρ
(Im)
N (Y′) dY′ , (9)

where ρ
(Im)
N (Y) is the mean density of the imaginary parts irrespective of the value of the

real part,

ρ
(Im)
N (Y) =

〈 1
N

N

∑
j=1

δ(Y − Yj)
〉

. (10)

Guided by the eigenvalue perturbation theory one can expect that the typical height Y
of the eigenvalues whose real part is close to a point X ∈ (−2, 2) in the spectral bulk scales
with the mean separation Δ = (Nν(X))−1 between neighbouring real eigenvalues of the
GUE matrix H in the limit N → ∞. On a more formal level, introducing the scaled version
of ρN(X, Y) [21]

ρ̃N(X, y) :=
1

ν(X)

〈 1
N

N

∑
j=1

δ
(
X − Xj

)
δ
(
y − 2πν(X)NYj

)〉
, −2<X< 2 , (11)

one finds that such scaled density is well-defined in the limit of large matrix
dimensions [1,2,21,22]: for every y > 0

ρ̃(X, y) := lim
N→∞

ρ̃N(X, y) = − d
dy

[
e−yg(X) sinh y

y

]
, g(X) =

γ + 1
γ

2πν(X)
, (12)

confirming that locally the typical height of low lying eigenvalues scales with Δ =
(Nν(X))−1.

Globally, the typical height of low lying eigenvalues scales with N−1. Intuitively, this
can be understood from the exact sum rule

N

∑
j=1

Yj = γ (13)

which follows from the obvious relation Tr J = iγ + Tr H. On a more formal level, consider
the expected fraction of the eigenvalues of J which lie above the level Im z = Y, and set
y = NY. In the limit N → ∞,

1
N

Nγ

( y
N

)
∼
∫ 2

−2
dX ν(X)

∫ ∞

2πν(X)y
dy′ ρ̃(X, y′) (14)

=
e−y

(
γ+ 1

γ

)
y

∫ 2

−2

dX
4π

(
ey

√
4−X2 − e−y

√
4−X2

)
. (15)
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The integral in (15) is the modified Bessel function I1(2y). Therefore,

lim
N→∞

1
N

Nγ

( y
N

)
=

e−y
(

γ+ 1
γ

)
y

I1(2y) . (16)

From this,

ρ̃(Im)(y):= lim
N→∞

1
N

ρ
(Im z)
N

( y
N

)
= − d

dy

⎡⎣ e−y
(

γ+ 1
γ

)
y

I1(2y)

⎤⎦ (17)

=
e−y

(
γ+ 1

γ

)
y

[(
γ +

1
γ

− 2
)

I1(2y)− I0(2y)− I2(2y)
]

. (18)

The density ρ̃(Im)(y) is the mean density of the scaled imaginary parts yj = NYj in the limit
of large matrix dimensions. Even though it describes low lying eigenvalues it contains
some useful information about eigenvalues higher up in the complex plane.

As an example, consider the expected value of the sum of the imaginary parts of low
lying eigenvalues. Using definition (10), the sum rule (13) implies that

N
∫ γ

0
Yρ

(Im)
N (Y)dY = γ . (19)

Upon rescaling y = NY, one could naively jump to the conclusion that
∫ ∞

0 y ρ̃(Im)(y) dy = γ.
However, by making use of (17) and integral 6.623(3) in [23], one actually finds that

∫ ∞

0
y ρ̃(Im)(y) dy =

∫ ∞

0

e−y
(

γ+ 1
γ

)
y

I1(2y) dy =
γ + 1

γ −
√(

γ + 1
γ

)2
− 4

2
=

⎧⎪⎨⎪⎩
γ, if γ < 1,

1
γ , if γ > 1.

Thus, if γ < 1 then the imaginary parts of low lying eigenvalues indeed add up to γ, in full
agreement with the sum rule (19), whereas if γ > 1 they add up only to 1

γ < γ. The sum

rule deficit γ − 1
γ is exactly the imaginary part of the outlier, and suggests that the rescaled

limiting density of low lying eigenvalues, ρ̃(Im)(y), precisely misses the delta-functional
mass 1

N δ
(

y −
(

γ − 1
γ

))
.

As another example, consider the asymptotic form of ρ̃(Im)(y) when y  1. It is
markedly different depending on whether γ = 1 or not. In the later case, using in (17)
the asymptotic expansion for the modified Bessel function of large argument, Ip(x) ∼

ex√
2πx

(1 − 4p2−1
8x + . . .) one finds an exponential decay, whilst in the former case the decay

is algebraic:

ρ̃(Im)(y) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
e−y (1−γ)2

γ

2
√

π y3/2

[
(1 − γ)2

γ
+

30 − 3(γ + γ−1)

16y
+ O

(
1
y2

)]
if γ �= 1,

3
4
√

π

1
y5/2 + O

(
1

y7/2

)
if γ = 1 .

(20)

It is instructive to return to the unscaled imaginary part Y and take a closer look at the
expected number of the eigenvalues of J exceeding the level Im z = Y in the limit N → ∞.
It is evident from (16) that

Nγ(Y) ∼
e−NY

(
γ+ 1

γ

)
Y

I1(2NY) , (21)
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provided NY = O(1). Extending this asymptotic relation to large values of NY allows one
to get insights, even if only heuristically, about the characteristic scale of the highest placed
among the low lying eigenvalues. Along these lines, we define the characteristic scale of the
height of typical extreme eigenvalues as such level Ye that the expected number of eigenvalues
with imaginary part exceeding Ye is of order of unity:

Nγ(Ye) = O(1). (22)

We add the word typical to exclude the atypical eigenvalue (the outlier) which is known
to exist when γ > 1. Now, assuming NYe to be large (but still anticipating Ye � 1)
one can replace the Bessel function in (21) by its corresponding asymptotic expression
and approximate:

Nγ(Ye) ≈
e−NYe

(1−γ)2
γ

2
√

πN Y3/2
e

, 1 � NYe � N . (23)

The condition in (22) then leads to two essentially different scenarios depending on the
value of γ. Namely, for every fixed positive γ �= 1 the characteristic scale of the typical
extreme values is, to leading order in N, O(N−1 ln N). On the other hand, if γ = 1 then the
typical extreme values raise from the sea of low lying eigenvalues to a much higher height
of O(N−1/3). This change of scale for extreme values is easy to trace back to the emerging
power-law decay in the vicinity of γ = 1 which is evident in (20).

In fact, as evident from (23), the typical extreme values scale as Ye = O(N−1/3) not
only at γ = 1, but also as long as |1 − γ| ∝ N−1/3. Actually, by setting simultaneously
γ = 1 + αN−1/3 and Ye = mN−1/3 the asymptotic relation (23) is converted into

N1+ α
3√N

(
m

3
√

N

)
≈ e−mα2

2
√

π m3/2 , (24)

an expression that is indeed of order of unity for all fixed values of α and m > 0. Thus,
the width of the transition region about γ = 1 must scale with N−1/3. Combined with
the existence of a distinct outlier at height γ − γ−1  Ye one may indeed see that our
heuristic argument perfectly agrees with the conjecture of Dubach and Erdős about the
critical scaling γ = 1 + O(N−1/3) where the separation of typical and atypical extreme
values happens.

Before continuing our exposition of the heuristics behind the restructuring of the
density of complex eigenvalues we would like to make two remarks.

Remark 1. To make further contact with the standard subject of extreme value statistics, it is
useful to recourse to the classical theory of extreme values for i.i.d. sequences of random variables
y1, . . . , yN, a succinct albeit informal summary of which can be found in, e.g., [24]. In that case the
probability law of extreme values is characterised by the tail behaviour of the “parent” probability
density function (pdf) p(y) of yj and is essentially universal in the limit N → ∞. In our context,
the pertinent case for comparison is that of non-negative continuous i.i.d. random variables with
the parent distribution supported on the entire semi-axis [0, ∞). Then only two possibilities may
arise. Those sequences which are characterised by the power-law decaying pdf p(y) ∼ Ay−(1+α),
α > 0, as y → ∞ have their extreme values scaling with (AN/α)1/αand the distribution of their
maximum, ymax = max(y1, . . . , yN), after rescaling converges to the so-called Fréchet law in the
limit N → ∞. In contrast, if the parent pdf decays faster than any power, e.g., if ln p(y) ∼ −yδ,
δ > 0, then, to leading order, extreme values scale with (ln N)1/δ, and the distribution of the largest
value ymax, converges, after a shift and further rescaling, to the so-called Gumbel law. Although,
the imaginary parts of complex eigenvalues in the random matrix ensemble (1)–(3) are not at all
independent (as is evident from their JPDF (51) resulting in a non-trivial determinantal two-point
and higher order correlation functions at the scale N−1, see [22]), our scaling predictions for the
typical extreme eigenvalues are in formal correspondence with the i.i.d. picture: a Gumbel-like
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scaling (with δ = 1) if γ �= 1 and a Fréchet-like scaling (with α = 3/2) if γ = 1. This is exactly as
would have been implied in the i.i.d. picture by the tail behaviour of the mean eigenvalue densities
in the two cases in (20). This fact naturally suggests to conjecture Gumbel statistics for the typical
largest imaginary part (excluding possible outlier) for any γ �= 1, changing to a Fréchet-like law for
γ = 1, with a possible family of α− dependent nontrivial extreme value statistics in the crossover
critical regime γ = 1 + αN−1/3. Although we are not able to shed light on the distribution of
typical extreme eigenvalues in the random matrix ensemble (1)–(3), we will discuss some results in
that direction for a somewhat related model at the end of the next section.

Remark 2. The phenomenon of resonance width restructuring with increasing the coupling to
continuum (controlled in the present model by the parameter γ) and the emergence of the broad
resonance has many features in common with the so-called super-radiant phenomena in optics. This
is well known in the physics literature, see [25] and references therein. Here, we would like to
point to a similarity of the spectral restructure in the random matrix ensemble (1)–(3) to a process
in a different physics context, the so-called “condensation transition” which occurs in models of
mass transport when the globally conserved mass M exceeds a critical value, see, e.g., [26] for a
review. In such a regime, the excess mass forms a localised in space condensate coexisting with
a background fluid in which the remaining mass is evenly distributed over the rest of the system.
A particularly simple case for analysing the condensation phenomenon is when the system has
a stationary state such that probability of observing a configuration of masses mi factorises into
the form ∏i f (mi)δ(∑i mi − M). In that context again the tail behaviour of the “parent” mass
density f (m) plays important role. Although we would like to stress again that in our model the
imaginary parts of the complex eigenvalues are not independent, the analogy with the condensation
phenomenon is quite evident.

Essentially the same heuristic analysis as in the above helps to clarify the numerically
observed fact of the outlier emerging mostly close to the origin of the spectrum Re z = 0.
From this angle it is instructive to ask what should be the scale of extreme values for
eigenvalues satisfying | Re z| < W, that are sampled in a window of a small widths
W � 1 around the origin (still assuming typically many eigenvalues in the window, so
that W  Δ ∼ 1/N). The total mean number of eigenvalues in the window W whose
imaginary parts exceed the level Y (but still formally remain of the order of 1/N) is now
given by

Nγ,W(Y) =
e−NY

(
γ+ 1

γ

)
4πY

[TW(NY)− TW(−NY)], TW(NY) = 2
∫ W

0
eNY

√
4−X2

dX. (25)

For NY  1 the term TW(−NY) is exponentially suppressed, while the integral in TW(NY)
is dominated by X � 1 and with required accuracy yields the leading-order expression in
the form:

Nγ,W(Y  1/N) ≈ e
−NY

(
(1−γ)2

γ

)
2πY3/2

√
2
N

∫ W
√

NY/2

0
e−

t2
2 dt. (26)

Now, let us assume that both the width W of the window and the parameter γ scale with
N in this non-trivial way as

W ∼ N−1+κ , 0 < κ ≤ 1, and γ = 1 − αN−δ, 0 < δ ≤ ∞, α ∈ R, (27)

and again apply the same heuristic procedure to determine the scale of extreme values
Ye(κ, δ) in the window as N → ∞ for given values of exponents κ and δ. A straightforward
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computation shows that the arising scale of extreme values very essentially depends on
whether the parameter δ satisfies 0 < δ < 1/3 or 1/3 ≤ δ < 1. In the former case we find

Ye(κ, 0 < δ < 1/3) ≈

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

N−1+κ , if 0 < κ < 2δ ,

κ − 2δ

α
N−1+2δ ln N, if 2δ < κ < 1 − δ ,

1 − 3δ

α
N−1+2δ ln N, if 1 − δ < κ < 1 .

(28)

whereas in the latter case

Ye(κ, 1/3 ≤ δ < 1) ≈

⎧⎨⎩N−1+κ , if 0 < κ < 2/3,

N−1/3, if 2/3 < κ < 1.
(29)

One may say that as long as δ < 1/3 the system is not fully in the well-developed “critical
regime”, and the extreme value scale is growing with the window width, saturating at
the Gumbel-like scale N−1+2δ ln N. At the same time, as long as δ exceeds the threshold
value δ = 1/3, the typical extreme values reach the scale Ye = O

(
N−1/3

)
as long as they

are sampled in a window of width exceeding the scale Wc = O
(

N−1/3
)

, thus containing

O(N2/3) eigenvalues. This heuristics suggests that only eigenvalues satisfying |X| < Wc
typically have a nonvanishing probability to reach to the maximum height in the complex
plane, and eventually to generate an outlier as α increases. It would be also natural to
expect the corresponding extreme eigenvalues to follow the Fréchet-type statistics for their
imaginary parts, as opposed to the Gumbel statistics in the former case.

We would like to end our heuristic considerations with a brief heuristic outlook on
the universality of the scaling factor N−1/3 which is key to the correct description of
the transition in question. As is evident from (23) the exponent −1/3 is implied by the
scaling law

Nγ=1(Y) ∝
1

N1/2Y3/2 (30)

in the limit NY  1 for the expected number of eigenvalues exceeding the level line
Im z = Y. Thus, to investigate the extent of universality of this exponent one needs to trace
the origin of the scaling law (30). This can be readily done by returning to the asymptotic
relation (14) and (15) which was used to obtain (30). On evaluating the integral in (15)
for large values of y = Y/N by the Laplace method it becomes immediately apparent
that the power Y−3/2 on the right-hand side in (30) and, hence, the exponent in ques-
tion stems from the quadratic shape of the limiting GUE eigenvalue density function
ν(X) = (2π)−1

√
4 − X2 in the vicinity of its maximum. It is natural to conjecture that had

one started from a random Hermitian matrix H taken from the broad class of invariant
ensembles characterised by joint probability density function ∝ exp{−N Tr V(H)} with a
suitable potential V(H) (or from the class of Wigner matrices with suitable conditions on
the iid entries), the asymptotic expression (12) for the scaled eigenvalue density ρ̃N(X, y)
would retain its validity after replacing ν(X) in (11) and (12) by the corresponding limiting
eigenvalue density of H. For example, as was shown albeit not fully rigorously in [27],
such universality of the scaled eigenvalue density near the real line is exhibited by almost
Hermitian random matrices which are morally similar to finite rank non-Hermitian devia-
tions as in (1) and (2). Since asymptotic relation (14) and (15) is the immediate corollary of
(12), one then concludes that as long as the limiting eigenvalue density of H has a single
global parabolic-shaped maximum, an additive rank-one non-Hermitian deformation will
demonstrate the same type of critical scaling for its extreme complex eigenvalues, and,
most probably, after appropriate rescaling, the same type of critical behaviour of the density
of imaginary parts as described in the next section. One can however imagine invariant
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ensembles where the mean eigenvalue density would have a non-parabolic behaviour close
to the maximum point.

From this point of view, the noticed in [11] resemblance of the N−1/3 critical scaling in
the present model and the edge scaling of extreme real eigenvalues of GUE, which, e.g.,
manifests itself in the so-called BBP [28] transition under additive rank-one Hermitian
perturbation of the GUE, looks to us purely coincidental. Indeed, the latter is known to
have its origin in the square root behaviour of the mean density ν(X) at the spectral edges
where ν(X) vanishes, and as such seems to have nothing to do with the behaviour of the
same density close to its maximal point.

3. Main Results and Discussion

Our first result concerns the mean density of imaginary parts ρ
(Im)
N (Y) (10) in the large

deviation regime Y  N−1. We note that no eigenvalue of J has imaginary part equal or
greater than γ. This is a consequence of the sum rule (13). Therefore we only consider the
range of values Y ∈ [0, γ).

Theorem 1. Consider the random matrix ensemble (1)–(3) in the scaling regime

N1−εY = y > 0, 0 < ε ≤ 1, N → ∞ . (31)

Then for every fixed γ > 0 and ε ∈ (0, 1]

ρ
(Im)
N (Y) ∼ 1√

N
Ψγ(Y) exp{−NΦγ(Y)}, (32)

with

Φγ(Y) = Y(γ − Y)− ln
γ − Y

γ
− Yr∗(Y) + 2 ln r∗(Y), (33)

Ψγ(Y) =
1√
2π

γ

(γ − Y)2
[1 − r∗(Y)(γ − Y)]2

Y3/2(Y2 + 4)1/4 , (34)

and

r∗(Y) =

√
Y2 + 4 − Y

2
. (35)

The rate function Φγ(Y) is a smooth non-negative function of Y on the interval [0, γ) vanishing at
Y = 0. The rate function is monotone increasing on this interval if γ ≤ 1, whereas if γ > 1 then it
has two local extrema: a local minimum at Y∗ = γ − γ−1 where it vanishes, and a local maximum
at Y∗∗ = 2(γ−γ−1)

3+
√

1+8 γ−2
< Y∗.

By the way of discussion of the above Theorem a few remarks are in order.

Remark 3. The two distinct profiles of the rate function are illustrated in Figure 2. If γ > 1, the
point Y∗ = γ − γ−1 where the Large Deviation Rate function Φγ(Y) vanishes can be identified
as the most probable value of the imaginary part in the region Y  N−1, converging in the limit
N → ∞ to (the height of) the outlier, see next comment. At the same time, the other extremal
point, Y∗∗, can be interpreted as the true boundary, along the imaginary axis in the complex plane,
between the bulk of eigenvalues and the spectral outlier. This is because the pre-exponential factor
Ψγ(Y) in (32) vanishes at Y = Y∗∗ too. Hence, ρ

(Im)
N (Y∗∗) → 0 in the scaling limit (31).
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Figure 2. Plots of the rate function Φγ(Y) for γ = 2 (plot on the left) and γ = 0.2 (plot on the right).

Remark 4. The Large Deviation approximation (32) for γ > 1 describes fluctuations of the
imaginary part of the outlier around its most probable value Y∗ = γ − γ−1. The law of these
fluctuations in the limit N → ∞ can be easily determined from (32). To this end, we first note that
for N large the magnitude of fluctuations about Y∗ scales with 1/(

√
N|Φ′′

γ(Y∗)|). Calculating

the second derivative and rescaling the density ρ
(Im)
N (Y) correspondingly, one finds (in the limit

N → ∞) that

N ρ
(Im)
N

(
Y∗ +

σu√
N

)
∼ 1√

2π
e−

u2
2 , σ2 =

1
γ2

γ2 + 1
γ2 − 1

. (36)

The integral of the rescaled density on the left-hand side over the entire range of values of u counts
the expected number of eigenvalues in the σ√

N
-neighbourhood of Y∗. Evidently, this integral is

approaching unity as N → ∞, confirming that the rescaled density on the left-hand side in (36)
describes the law of fluctuations of a single eigenvalue - the outlier. Thus, we recover one of the
results of [10] where laws of outlier fluctuations were established in greater generality than our
assumptions (2) and (3). We note that for finite but large values of N the function

pN(Y) :=
√

N Ψγ(Y) exp{−NΦγ(Y)} (37)

provides an approximation of the probability density function of the outlier Ymax = max Yj in the
interval 0 < ε < Y < γ, γ > 1.

In Figure 3, we plot histograms of the imaginary parts Yj of the eigenvalues and of their
maximal value Ymax = max Yj in the random matrix ensemble (1)–(3) and make comparison
with the corresponding Large Deviation approximations. Although the value of N = 50 is only
moderately large, one can observe a good agreement. Furthermore, one can observe that the large-N
approximation (37) of the probability density of Ymax captures well the skewness of the distribution of
Ymax for finite matrix dimensions. This skewness disappears in the limit N → ∞, see Equation (36).

Remark 5. Consider now the scales Y = O
(

N−1+ε
)

with ε ∈ (0, 1). The expected number of
eigenvalues with N1−εY ∈ [y1, y2] is given by the integral

N
∫ y2

y1

1
N1−ε

ρ
(Im)
N

( y
N1−ε

)
dy. (38)

The rescaled density in this integral can be found from (32)–(34):

1
N1−ε

ρ
(Im)
N

( y
N1−ε

)
∼ 1

Nε/2
1

2
√

π

(1 − γ)2

γ

1
y3/2 e−Nεy (1−γ)2

γ , ε ∈ (0, 1) . (39)

Evidently, if γ �= 1 then, away from the boundary point y = 0, the integral in (38) vanishes in the
limit N → ∞. Therefore for every fixed γ �= 1 and 0 < ε < 1 there are no eigenvalues of J whose
imaginary part is scaling with N−1+ε. On the other hand, according to the heuristics of Section 2,
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one should expect finite numbers of eigenvalues whose imaginary part is scaling with N−1 ln N.
These would be the extremes of the eigenvalues with the typical imaginary part Y = O(N−1).

By formally letting ε → 0 in (39) one obtains

1
N

ρ
(Im)
N

( y
N

)
∼ 1

2
√

π

(1 − γ)2

γ

1
y3/2 e−y (1−γ)2

γ .

This relation reproduces the leading order of the asymptotic form of the density of the rescaled
imaginary parts y = NY in the region y  1, see the top line in (20). Thus, for a fixed value of
γ �= 1 Theorem 1 describes a crossover of the density of imaginary parts from the characteristic scale
of low lying eigenvalues to larger scales, including Y = O(1) which is the scale of the outlier.
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Figure 3. Histograms of the imaginary parts Yj of the eigenvalues in the random matrix ensemble
(1)–(3) of dimension N = 50 with γ = 2. Plot on the left: Histogram of Yj’s versus the large
deviation approximation of density of the imaginary parts given by (32) (solid line). Plot on the right:
Histogram of the largest imaginary part Ymax = max Yj versus the large deviation approximation
pN(Y) (37) of the p.d.f. of Ymax (solid line). Each plot was produced using 100,000 samples from the
GUE distribution (3).

Whereas the picture described by Theorem 1 is quite complete for a fixed γ, it is not
detailed enough to accurately describe the typical extreme eigenvalues in the situation
when the parameter γ approaches its critical value γ = 1 as N is approaching infinity.
For example, from the heuristics of Section 2 we know that both the width of the tran-
sition region about γ = 1 and the height of the typical extreme eigenvalues scale with
N−1/3. The Large Deviation approximation (32), if applied formally in the transition region
parametrised by γ = 1 + αN−1/3, yields the following approximate expression for the
rescaled density of imaginary parts:

1
N1/3 ρ

(Im)
N

( m
N1/3

)
≈ 1

N
1

2
√

π

( 3m
2 − α

)2

m3/2 e−m(α− m
2 )

2
. (40)

Evidently, in the limit of small values of m which corresponds to approaching the scale
Y = O(N−1) from above, this expression does not reproduce the correct power 5/2 of
algebraic decay (20) characteristic of this scale when γ = 1. In contrast, the heuristics based
on (21), see the approximations in (23) and (24), do reproduce the correct power. Indeed,
by taking the derivative in m of the expression on the right-hand side in (24), one gets

1
N1/3 ρ

(Im)
N

( m
N1/3

)
≈ 1

N
1

2
√

π

3
2m + α2

m3/2 e−mα2
. (41)

In the limit of small values of m the expression on the right-hand side agrees with the bottom
line in (20). One can also arrive at (41) by making the formal substitution γ = 1 + α

N1/3 and
y = NY = mN2/3 in (20).
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Our next Theorem is a refinement of Theorem 1 in that it provides an accurate descrip-
tion of the density of the typical extreme eigenvalues in the transition region between the
sea of low lying eigenvalues and the eigenvalue outlier.

Theorem 2. Consider the random matrix ensemble (1)–(3) in the scaling regime

γ = 1 +
α

N1/3 , Y =
m

N1/3 , N → ∞ . (42)

Then, for every fixed α ∈ R and m > 0,

1
N1/3 ρ

(Im)
N

( m
N1/3

)
∼ 1

N
1

2
√

π

3
2m +

( 3m
2 − α

)2

m3/2 e−m(α− m
2 )

2
. (43)

This theorem confirms that the characteristic scale of the height of the typical extreme
eigenvalues of matrix J is O

(
N−1/3

)
. Indeed, the expected number of eigenvalues with

imaginary part exceeding the level Y = m
N1/3 is given by

N
∫ ∞

m

1
N1/3 ρ

(Im)
N

( m
N1/3

)
dm ,

which is a finite number in the limit N → ∞.

Theorem 2 also describes the density ρ
(Im)
N (Y) in the cross-over from the characteristic

scale of low lying eigenvalues to the Large Deviation regime of Theorem 1. Indeed, for
small values of m the asymptotic expression (43) matches the one in (41), whilst in the limit
of large values of m it matches (40).

The emerging outlier is captured by (43) when both m and α > 0 are large. Intuitively
this is clear from the comparison of (43) and (40). On a more formal level, one can come to
the same conclusion by analysing the limiting density of extreme values

p̃(Im)
α (m) =

1
2
√

π

3
2m +

( 3m
2 − α

)2

m3/2 e−m(α− m
2 )

2
, m > 0 . (44)

Using Wolfram Mathematica one finds

d
dm

p̃(Im)
α (m) =

e−m(α− m
2 )

2

32
√

π m7/2 Q6(α, m) ,

where

Q6(α, m) = −60 − 48α2m + 72αm2 − 16α4m2 + 80α3m3 − 144α2m4 + 108αm5 − 27m6.

Evidently, Q6(α, m) < 0 for all m > 0 if α is negative. Therefore, if α < 0 (subcritical values
of γ) then the limiting density p̃(Im)

α (m) is a monotonically decreasing function of m on the
entire interval m > 0. One can interpret this profile as a population of extreme eigenvalues
without an obvious “leader”. By continuity, this profile persevere for small positive α.
Indeed, at α = 0 the polynomial Q6(0, m) has three pairs of complex conjugated roots, none
are real. Since the roots of polynomials depend continuously on its coefficients, there exists
an α0 > 0 such that for all α ∈ [0, α0] the polynomial Q6(α, m) in m will still have no real
roots and, hence, will take only negative values, implying that p̃(Im)

α (m) is a monotonically
decreasing function of m. By computing the roots of Q6(α, m) in variable m, we can show
that 0.6485 < α0 < 0.649.
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Once α > α0, the polynomial Q6(α, m) in m acquires real roots. In the limit of large
positive α there are two real roots: to leading order these are

m1 = 2α

(
1 +

3
8α3 + o

(
1
α3

))
and m2 =

2
3

α

(
1 +

15
8α3 + o

(
1
α3

))
.

The larger root, m1, is the point of local maximum of p̃(Im)
α (m), where p̃(Im)

α (m1) ∝ α1/2  1,
and the smaller root, m2, is the point of local minimum p̃(Im)

α (m), where p̃(Im)
α (m2) ∝

α−5/2 � 1. In fact, in the limit α → ∞ the larger root is transitioning into Y∗, the most
probable value of imaginary parts, and, hence, it can be interpreted as the emerging spectral
outlier. At the same time, the smaller root is transitioning into the true boundary Y∗∗
between the sea of low lying eigenvalues and the outlier. This cross-over can be validated

by noticing that in the scaling limit (42) Y∗ = γ − γ−1 ∼ 2α and Y∗∗ = 2(γ−γ−1)

3+
√

1+8γ−2
∼ 2

3 α.

Further insights into the restructuring of the spectrum of J can be obtained by looking
at the γ-dependence of the expected number of the eigenvalues of J with imaginary parts
exceeding the level Y = mN−1/3. In the scaling limit (42) this number converges to

Ñα(m) =
∫ ∞

m
p̃(Im)

α (m′)dm′ .

In Figure 4, we plot Ñα(m) as function of α for several values of m. One can observe that
for any fixed m > 0 the population of the extreme eigenvalues of J that exceed the level
Y = mN−1/3 is, on average, growing as γ is approaching the critical value γ = 1 from
below. For γ on the other side of γ = 1, this population peaks a some point and then it
starts to decline as γ increases further, to a single eigenvalue which is the outlier. All the
other extreme eigenvalues are getting closer and closer to the real line with the increase of
γ. One can think of them as being trapped in the sea of low lying eigenvalues. This picture
is consistent with the eigenvalue trajectories of Figure 1 and provides a more quantitative
description of the “resonance trapping” phenomenon [20] in the framework of random
matrix theory.
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Figure 4. Plot of the expected number Ñα(m) of the eigenvalues of J with imaginary parts exceeding
the level Y = mN−1/3 as function of α when m = 0.1 (black solid line), m = 0.2 (blue dashdotted
line), m = 0.3 (red dashed line), and m = 0.4 (magenta dotted line).
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Our final result aims to clarify the length of the central part of the spectrum of J
supporting nontrivial scaling behaviour of the extreme eigenvalues in the vicinity of the
separation transition. To this end, let us consider eigenvalues zj = Xj + iYj of J in the
scaling regime when

γ = 1 +
α

N1/3 , X =
q

N1/3 , Y =
m

N1/3 , N → ∞ . (45)

On average, eigenvalue numbers in this regime can be counted using the rescaled density

p̃N(q, m) :=

〈
N

∑
i=1

δ
(

q − N1/3Xj

)
δ
(

m − N1/3Yj

)〉
=

N
N2/3 ρN

( q
N1/3 ,

m
N1/3

)
,

where, as before, the angle brackets stand for the averaging over the GUE matrix H in (1)
and ρN(X, Y) is the mean eigenvalue density (8).

Theorem 3. Consider the random matrix ensemble (1)–(3) in the scaling regime (45). Then, for
every fixed α ∈ R, q ∈ R and m > 0,

p̃α(q, m) := lim
N→∞

p̃N(q, m) =
1

4πm

[
1
m

+
q2

4
+

(
3m
2

− α

)2
]

e
−m
[

q2
4 +(α− m

2 )
2
]

. (46)

It is easy to see from (46) that
∫ ∞
−∞ p̃(q, m)dq = p̃(Im)

α (m). Thus, Theorem 3 confirms
the heuristics of Section 2 in that the population of extreme eigenvalues which generates
the eventual outlier (as α is approaching infinity) is constrained to a narrow vertical strip of
width O(N−1/3) about the origin.

Our results demonstrate that despite being one of the simplest tools available, the
mean eigenvalue density captures the eigenvalue and parameter scales associated with the
spectral restructuring in the random matrix ensemble (1)–(3). However, it gives no infor-
mation about finer details, such as the probability distribution of the extreme eigenvalues
during the restructure. Calculating all the higher order eigenvalue correlation functions in
the scaling regime (45) would be a significant step towards describing such finer details.
Unfortunately, the eigenvalue point process in the random matrix ensemble (1)–(3) is not
determinantal at finite matrix dimensions and such a calculation is a considerably more
difficult analytic task compared to the mean eigenvalue density.

At this point we want to mention that the probability distribution of extreme eigen-
values can be determined in a related but different random matrix ensemble exhibiting
a spectral restructuring not unlike one in (1)–(3). This ensemble consists of subunitary
matrices of the form

JCUE = U diag(
√

1 − T, 1, . . . , 1) , (47)

where the matrix U is taken from the Circular Unitary Ensemble (CUE) of complex unitary
matrices uniformly distributed over U(N) with the Haar’s measure and T ∈ [0, 1] is a
parameter. The ensemble was originally introduced in [29] and various statistical aspects
of their spectra and eigenvectors were addressed in [2,6,30,31] and most recently in [15].

Obviously, if T = 0 then the matrix JCUE is unitary and all of its eigenvalues lie on the
unit circle |z| = 1. If T > 0 and is fixed in the limit N  1 then, typically, the eigenvalues
of JCUE lie at a distance O(N−1) from the unit circle with the farthest away being at a
distance O

( log N
(1−T)N

)
with probability close to one. On the other hand, for T = 1 one of the

eigenvalues becomes identically zero, and the rest are distributed inside the unit circle in
the same way as eigenvalues of the so-called “truncated” CUE [32].
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The similarity between the random matrix ensembles (47) and (1)–(3) can be exempli-
fied by analysing the mean density of the eigenvalue moduli rj = |zj|

ρN(r) =
〈 1

N

N

∑
j=1

δ(r − rj)
〉

CUE

in the limit of large matrix dimensions N → ∞. One finds [29] that for every fixed T ∈ [0, 1]

lim
N→∞

NρN(r) =

{
δ(r) + 2r

(1−r2)2 , if T = 1,

0, if 0 < T < 1 ,

whereas, on rescaling the radial density near the unit circle [2,32],

ρ̃CUE(y) := lim
N→∞

1
N

ρN

(
1 − y

N

)
= − d

dy

[
e−gy sinh y

y

]
, with g =

2
T

− 1. (48)

Equation (48) is identical, with the obvious correspondence

1
2

(
γ +

1
γ

)
=

2
T

− 1 , (49)

to Equation (12) considered at the centre of the GUE spectrum. In the limit of large values
of y,

ρ̃CUE(y) ∼

⎧⎪⎪⎨⎪⎪⎩
1 − T

T
1
y

e−2y 1−T
T , if 0 < T < 1,

1
y2 if T = 1.

(50)

The rescaled radial density has an exponentially light tail if 0 < T < 1, and it is heavy-tailed
if T = 1 which hints at markedly different behaviour of the extreme eigenvalues in the
two cases. Reflecting on (50), one can convince themselves that this change occurs in an
infinitesimal region near T = 1 of width N−1. Such a scaling regime was earlier identified
and analysed from a somewhat different angle in [15]. The precise relation of our analysis
to one in [15] will be given in a separate paper [33].

On setting T = 1 − t
N , t > 0, one can investigate this transition region in much

detail [33]. For example, the smallest eigenvalue modulus of the subunitary matrices JCUE,

xmin = min
j=1,...,N

|zj|,

converges in the limit N → ∞ to a random variable X whose cumulative probability
distribution function is given by the series

Pr{X ≤ x} =
∞

∑
n=1

(−1)n+1 xn(n−1)

∏n
k=1(1 − x2k)

et
(

1− 1
x2n

)
, 0 < x < 1 .

This family of probability distributions interpolates between the Fréchet and Gumbel
distributions and is different from the standard family of probability distributions that
characterise the extreme values in long sequence of i.i.d. random variables. In the limit of
small values of t

lim
t→0+

Pr
{

X < y
√

t
}
= e−y−2

, y > 0,
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whereas

lim
t→+∞

Pr{2t(1 − X)− log t + log(log t) < y} = e−e−y
, y > 0.

4. Mean Density of Eigenvalues at Finite Matrix Dimensions

Our analysis of various scaling regimes of the random matrix ensemble (1)–(3) is based
on finite-N expressions for the mean eigenvalue density and the mean density of imaginary
parts in terms of orthogonal polynomials, see Equations (56)–(64). These representations
are new and the current Section contains their derivations.

4.1. Joint Eigenvalue Density and Correlation Functions

Our starting point is a closed form expression for the joint density PN(z1, . . . , zn) of
the eigenvalues zk = Xk + iYk of J (1)–(3):

PN(z1, . . . , zN) = (51)

NN2/2

(2π)N/2N!G(N)γN−1
exp

{
− N

2

(
γ2 +

N

∑
k=1

Re
(

z2
k

))}
δ

(
γ −

N

∑
k=1

Im zk

)
N

∏
j<k

∣∣zj − zk
∣∣2 ,

where G(N) is the Barnes G-function. This expression was derived in [22] (see also [5]) and,
for the obvious reason, it holds for (z1, . . . , zN) ∈ CN

+ , where C+ is the upper half of the
complex plane C+ = {z = X + iY : Y ≥ 0}

The first key fact that makes our analysis possible is that the eigenvalue correla-
tion functions

RN,n(z1, . . . , zn) =
N!

(N − n)!

∫
C

N−n
+

PN(z1, . . . , zn, zn+1, . . . , zN)
N

∏
k=n+1

dXkdYk,

can be expressed in terms of averages of products of characteristic polynomials of random
matrices J(γ̃) having the same structure as (1)–(3) but of smaller dimension and with
a different parameter γ. The relevance of this to our investigation is in that the mean
eigenvalue density ρN(X, Y) (8) which is the main object of our interest is

ρN(X, Y) =
1
N

RN,1(X + iY) . (52)

It has been shown in [22] that

RN,n(z1, . . . , zn) =
1

(2π)n/2γn

(
1 − ∑n

k=1 Yk

γ

)N−n−1 N
n2
2 (N − n)Nn−n2

n
∏
j=1

(N − j − 1)!
∏

1≤j<k≤n

∣∣zj − zk
∣∣2×

exp

{
− N

2

n

∑
k=1

X2
k − N

n

∑
k=1

Yk(γ − Yk)

}〈
n

∏
k=1

∣∣∣det
[
ẑk1N−n − Jγ̂−∑n

k=1 Ŷk

]∣∣∣2〉
HN−n

,

where

γ̂ =

(
N

N − n

)1/2
γ, ẑk =

(
N

N − n

)1/2
(Xk + iYk), Ŷk =

(
N

N − n

)1/2
Yk ,
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and Jγ̂−∑n
k=1 Ŷk

are the random matrices (1)–(3) of dimension N − n with N in (3) replaced

by N − n and γ in (2) replaced by γ̂ − ∑n
k=1 Ŷk,

Jγ̂−∑n
k=1 Ŷk

= HN−n + i

(
γ̂ −

n

∑
k=1

Ŷk

)
diag(1, 0, . . . , 0) .

The GUE average 〈. . .〉HN−n
of the product of the characteristic polynomials of Jγ̂−∑n

k=1 Ŷk
can be performed with the help of the following proposition which we prove in Appendix A.

Proposition 1. Let

Fγ(z1, z2, . . . , zn) =

〈
n

∏
j=1

∣∣det
(
zj1N − Jγ

)∣∣2〉 ,

where Jγ are the rank-one deviations from the GUE of dimension N defined by (1)–(3) and the
average is taken over the GUE distribution (3). Then

Fγ(z1, z2, . . . , zn) =

1
2n

(
N
π

)2n2∫
D[S2n] exp

{
− N

2
Tr S2

2n

}
detN−1(Z2n + iS2n) det(Z2n + iS2n − iγL2n),

where the integration is over the space of 2n × 2n Hermitian matrices S2n, D[S2n] is the standard
volume element in this space and

Z2n = diag(z1, z2, . . . , zn, z1, z2, . . . , zn), L2n = diag(1, −1)⊗ 1n.

Using this Proposition one arrives, after rescaling S2n =
(

N
N−n

)1/2
Ŝ2n in the resulting

matrix integral, at a useful integral representation for the eigenvalue correlation functions
in the random matrix ensemble (1)–(3):

RN,n(z1, . . . , zn) = (53)

cN
γn

(
1 − ∑n

k=1 Yk

γ

)N−n−1

exp

{
− N

2

n

∑
k=1

X2
k − N

n

∑
k=1

Yk(γ − Yk)

}
∏

1≤j<k≤n

∣∣zj − zk
∣∣2×

∫
d[Ŝ2n]exp

{
− N

2
Tr Ŝ 2

2n

}
detN−n−1

[
Z2n + iŜ2n

]
det

[
Z2n + iŜ2n − i

(
γ −

n

∑
k=1

Yk

)
L2n

]

with

cN,n(γ) =
N3n2/2+Nn

(2γ)n (2π)n/2 π2n2
n
∏
j=1

(N − j − 1)!
.

4.2. Mean Density of Complex Eigenvalues

Setting n = 1 and z1 = X + iY in (53) and then shifting the variable of integration by
making the substitution Ŝ2 = S2 − YL2 in the matrix integral, one obtains the following
integral representation for the mean density of eigenvalues (52) in the random matrix
ensemble (1)–(3):
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ρN(X, Y) =
1

2γπ2
√

2π

NN+1/2

(N − 2)!

(
1 − Y

γ

)N−2
exp
{
− N

2
X2 − NYγ

}
× (54)

∫
D[S2] exp

{
− N

2
Tr S2

2 + NY Tr S2L2

}
detN−2(X12 + iS2)det

(
X12 + iS2 − i(γ − Y)L2

)
.

It is convenient to parametrise the hermitian matrix S2 by diagonalising it:

S2 = U2Σ2U∗
2 , Σ2 = diag(σ1, σ2), σ1 ≥ σ2 ∈ R,

where U2 is a 2 × 2 unitary matrix, which can be parametrised as

U2 =

(
cos θ sin θeiφ

− sin θe−iφ cos θ

)
, θ ∈

[
0,

π

2

]
, φ ∈ [0, 2π].

Noting that

D[S2] = (σ1 − σ2)
2 sin(2θ)

2
dσ1 dσ2 dθ dφ.

one arrives, on making the substitution S2 = U2Σ2U∗
2 in (54), at

ρN(X, Y) =
cN
γ

(
1 − Y

γ

)N−2
exp
{
− N

2

(
X2 + 2Yγ

)}
×

∫ π
2

0
dθ
∫ +∞

−∞
dσ1

∫ σ1

−∞
dσ2 (σ1 − σ2)

2 sin(2θ) exp
{
− N

2

(
σ2

1 + σ2
2

)
+ NY(σ1 − σ2) cos(2θ)

}
×

(X + iσ1)
N−2(X + iσ2)

N−2
[
(X + iσ1)(X + iσ2) + (γ − Y)2 − (γ − Y)(σ1 − σ2) cos(2θ)

]
,

where we have introduced

cN =
1

(2π)3/2
NN+1/2

(N − 2)!
∼ N2eN

2π2 (N → ∞). (55)

The integral over θ can be performed by the substitution t = (σ1 − σ2) cos(2θ). This yields

ρN(X, Y) =
cN

2NYγ

(
1 − Y

γ

)N−2
exp
{
− N

2

(
X2 + 2γY − 2Y2

)}
JN(X, Y) , (56)

where

JN(X, Y) =
∫ +∞

−∞
dσ1

∫ +∞

−∞
dσ2 e−

N
2 (σ2

1+σ2
2 )(z + iσ1)

N−2(z + iσ2)
N−2 (z + iσ1)− (z + iσ2)

i
×[

(z + iσ1)(z + iσ2) + (γ − Y)2 +
γ − Y

Ny
− (γ − Y)

(z + iσ1)− (z + iσ2)

i

]
,

with z = X + iY.
Further, introducing functions

πm(z) =
∫ +∞

−∞
dσ e−

N
2 σ2

(z + iσ)N−m , m = 0, 1, . . . , N, (57)
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one can rewrite the integral JN(X, Y) in the following form

JN(X, Y) =− i[π0(Z)π1(z)− π0(z)π1(z)] (58)

− i
(
(γ − Y)2 +

γ − Y
Ny

)
[π1(z)π2(z)− π1(z)π2(z)]

+ (γ − Y)[π0(z)π2(z) + π0(z)π2(z)− 2π1(z)π1(z)] ,

Now one observes that πm(z) are actually a rescaled version of Hermite polynomials. We
have that

πm(z) =
√

π

(
2
N

)N−m+1
2

H̃N−m

(
z

√
N
2

)
=

√
2ππ1/4

√
(N − m)!
NN−m+1 pN−m

(
z

√
N
2

)
, (59)

where H̃k(z) are the monic Hermite polynomials

H̃k(z) =
(
−1

2

)k
e z2 d

dz
e−z2

and pk(z) are the orthonormal Hermite polynomials

pk(z) =

√
2k

k!
√

π
H̃k(z)

satisfying the orthogonality relations∫ +∞

−∞
dz pk(z)pm(z) e−z2

dz = δk,m.

The polynomials pk(z) also satisfy the recurrence relation

pk+1(z) = z
√

2
k + 1

pk(z)−
√

k
k + 1

pk−1(z).

Using the above definitions and the expression for the eigenvalue density ρN(X, Y) in (56)
and with the notation z = X + iY we obtain

ρN(X, Y) =
N − 1√
2NYγ

(
1 − Y

γ

)N−2
exp
{
− N

2
X2 − NY(γ − Y)

}
×

⎧⎨⎩Im pN

(
z

√
N
2

)
pN−1

(
z

√
N
2

)
− (γ − Y)

∣∣∣∣∣pN−1

(
z

√
N
2

)∣∣∣∣∣
2

+

√
N

N − 1

[(
(γ − Y)2 +

γ − Y
NY

)
Im pN−1

(
z

√
N
2

)
pN−2

(
z

√
N
2

)

+(γ − Y)Re pN

(
z

√
N
2

)
pN−2

(
z

√
N
2

)]}
.

which, by using the recurrence relation, can be further rewritten as
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ρN(X, Y) =
1

Yγ

√
N
2

(
1 − Y

γ

)N−2
exp
{
− N

2
X2 − NY(γ − Y)

}
× (60)

{
Im pN

(
z

√
N
2

)
pN−1

(
z

√
N
2

)[
1 − 1

N
+ (γ − Y)

(
γ +

1
NY

)]

−
∣∣∣∣∣pN−1

(
z

√
N
2

)∣∣∣∣∣
2[

Y(γ − Y)2 + (γ − Y)− Y(γ − Y)
]

−
∣∣∣∣∣pN

(
z

√
N
2

)∣∣∣∣∣
2

(γ − Y) + Re pN

(
z

√
N
2

)
pN−1

(
z

√
N
2

)
X(γ − Y)

⎫⎬⎭.

4.3. Density of the Imaginary Parts

In this section, we present the derivation of the density for the imaginary parts of the
eigenvalues, irrespective of their real parts, as defined in (10). We start with an observation,
see integral 7.377 in [23]:

Lemma 1. Let β ≥ α be two non-negative integers and z = X + iY. Then

∞∫
−∞

e−
N
2 X2

pN−α

(
z

√
N
2

)
pN−β

(
z

√
N
2

)
dX =

iβ−α

√
2
N

Nβ−α

(N − α) . . . (N − β + 1)
Yβ−αL(β−α)

N−β

(
−NY2

)
,

where L(α)
M is a standard Laguerre polynomial.

Integrating with respect to X expression for the density ρN(X, Y) in (60) one gets the
probability density of imaginary parts in the form

ρ
(Im)
N (Y) =

1
Yγ

(
1 − Y

γ

)N−2
e−NY(γ−Y)FN(Y) (61)

with

FN(Y) =
N − 1

N
YL(1)

N−1

(
−NY2

)
− N − 1

N
(γ − Y)L(0)

N−1

(
−NY2

)
(62)

+ Y
[
(γ − Y)2 +

γ − Y
NY

]
L(1)

N−2

(
−NY2

)
− (γ − Y)Y2L(2)

N−2

(
−NY2

)
=− 2γL(0)

N−1

(
−NY2

)
+

(
N − 1

N
3Y +

2γ

N

)
L(1)

N−1

(
−NY2

)
(63)

+
[
−2Y + Y(γ − Y)2

]
L(1)

N−2

(
−NY2

)
=

N − 1
N

(3Y − 2γ)L(1)
N−1

(
−NY2

)
+
[
2γ − 2Y + Y(γ − Y)2

]
L(1)

N−2

(
−NY2

)
(64)

where we systematically used the recursion relations:

L(0)
N−1

(
−NY2

)
= L(1)

N−1

(
−NY2

)
− L(1)

N−2

(
−NY2

)
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and

−Y2L(2)
N−2

(
−NY2

)
= L(1)

N−2

(
−NY2

)
− N − 1

N
L(1)

N−1

(
−NY2

)
.

5. Proof of Theorems 1 and 2

In both proofs we use the following integral representation for the Laguerre polynomials
in terms of the modified Bessel functions Iα(x) (see, e.g., Equation 4.19.13 in [34]):

L(α)
N−k

(
−NY2

)
=

2NN−k+1

(N − k)!
e−NY2

|Y|α
∞∫

0

τ2N−2k+α+1e−Nτ2
Iα(2τ|Y|N) dτ (α > −1). (65)

The integral in (65) can be evaluated in the limit N → ∞ in various scaling regimes for Y
using the Laplace method, see Appendix B. The resulting asymptotic expression depends
on the scaling of the variable Y > 0 with N.

Proof of Theorem 1. Consider the scaling regime (31) with γ > 0 being fixed. In this
regime the asymptotic form of the mean density of the imaginary parts can be found using
the leading order form of L(1)

N−k
(
−NY2) which can be read from (A8) as

L(1)
N−k

(
−NY2

)
∼ eNYr∗

√
2πN

r∗(Y)−2(N−k+1)

Y3/2(Y2 + 4)1/4 , r∗(Y) =

√
Y2 + 4 − Y

2
. (66)

On substituting (66) into (64) one gets an asymptotic expression for the density (61)
precisely in the Large Deviation form (32) with the rate function (33) and the pre-exponential
factor in the form

1√
N

Ψγ(Y) =
1√

2πN
γ

(γ − Y)2
3Y − 2γ + r∗(Y)2(γ − Y)(2 + Y(γ − Y))

Y5/2(Y2 + 4)1/4 . (67)

Finally, by exploiting the relation 1 − r∗(Y)2 = Yr∗(Y),

3Y − 2γ + r∗(Y)2(γ − Y)(2 + Y(γ − Y)) =Y − (γ − Y)
[
2(1 − r∗(Y)2)− r∗(Y)2 Y(γ − Y)

]
=Y − (γ − Y)

[
2r∗(Y)Y − r∗(Y)2 Y(γ − Y)

]
=Y[1 − r∗(Y)(γ − Y)(2 − r∗(Y)(γ − Y))].

This brings the function Ψγ(Y) in (67) to the form as given in (34).
To analyse the shape of the rate function Φγ(Y) in (33) it is convenient to parametrise

Y = eθ − e−θ , θ > 0 . (68)

In this parametrisation, the rate function transforms to

Φ̃γ(θ) := Φγ

(
eθ − e−θ

)
= γ
(

eθ − e−θ
)
+ 1 − e2θ − 2θ − ln

(
1 − eθ − e−θ

γ

)
,

and its derivative in θ factorises as follows:

Φ̃′
γ(θ) =γ

(
eθ + e−θ

)
− 2
(

e2θ + 1
)
+

eθ + e−θ

γ −
(
eθ − e−θ

)
=
(

eθ + e−θ
)(

γ − eθ
)[

1 − eθ

γ −
(
eθ − e−θ

)] .
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Therefore, the stationary points of Φ̃γ(θ) solve the equations

eθ = γ (69)

and

eθ = γ −
(

eθ − e−θ
)

. (70)

These equations yields two stationary points eθ∗ = γ and eθ∗∗ =
γ+

√
8+γ2

4 . Correspondingly,
the rate function Φγ(Y) has two stationary points

Y∗ = γ − γ−1 and Y∗∗ =
3γ −

√
8 + γ2

4
=

2
(

γ − 1
γ

)
3 +
√

1 + 8/γ2
.

It is evident that if 0 < γ < 1 both stationary points Y∗ and Y∗∗ are negative. One can
easily check that in this case Φγ(Y) is monotonically increasing on the interval Y > 0 and
is positive on this interval.

If γ > 1 then taking the second derivative in θ one can easily show that

Φ̃′′
γ(θ∗) = (γ2 − 1)(γ2 + 1) > 0, Φ̃′′

γ(θ∗∗) = −
(
e2θ∗∗ − e−2θ∗∗

)(
1 + γeθ∗∗

)[
γ −

(
eθ∗∗ − e−θ∗∗

)]2 < 0,

so that Y∗ is the point of local minimum of the rate function Φγ(Y), and Y∗∗ is the point of
local maximum. It is also easy to verify that the rate function Φγ(Y) vanishes in the limit
Y → 0 and also at Y = Y∗, staying positive at all other Y > 0, so that that the point Y = Y∗
is the point of absolute minimum. Finally, to verify that the pre-exponential factor (34)
vanishes at Y = Y∗∗ it suffices to show that r∗(Y∗∗)(γ − Y∗∗) = 1. On noticing that

r∗(Y) =

√
Y2 + 4 − Y

2
= e−θ .

this relation evidently follows from (68) and (70).

Proof of Theorem 2. In the scaling regime (42) the variable Y scales with N−1/3. As
NY  1 in this case, the required asymptotic expressions for Laguerre polynomials can
be read from (A8). It turns out that in order to calculate the density of imaginary parts to
leading order in this regime, one has to retain the subleading term in the pre-exponential
factor as specified in (A8). On substituting Y = mN−1/3 in (A8) we obtain that with the
required precision

L(1)
N−1

(
−N1/3m2

)
=

eNL0(Y)
√

2πm3 (Y2 + 4)1/4

(
1 − 3

16
1

mN2/3

)
(71)

L(1)
N−2

(
−N1/3m2

)
=

eNL0(Y)
√

2πm3 (Y2 + 4)1/4 r∗(Y)2
(

1 − 3
16

1
mN2/3

)
(72)

L(0)
N−1

(
−N1/3m2

)
=

eNL0(Y)

N1/3
√

2πm3 (Y2 + 4)1/4

(
1 +

1
16

1
mN2/3

)
, (73)

where L0(Y) = Yr∗(Y)− 2 ln r∗(Y) with r∗ (35) and ln r∗ expanded in powers of Y � 1:

r∗(Y) = 1 − Y
2
+

Y2

8
+ O(Y4), ln r∗(Y) = −Y

2
+

Y3

48
+ O(Y4). (74)

319



Entropy 2023, 25, 74

It is easy to see that the overall exponential behaviour of the mean density (61) will still be
given by (33) duly expanded:

Φγ(Y) = Y
(

γ +
1
γ

− 2
)

− Y2

2

(
1 − 1

γ2

)
+

Y3

3

(
1

γ3 − 1
4

)
+ O(Y4) . (75)

Putting in here the scaling form γ = 1 + α
N1/3 and recalling Y = m

N1/3 we find from (75),
assuming that the parameters α ∈ R and m > 0 are fixed, that

NΦ1+ α

N1/3

( m
N1/3

)
= mα2 − m2α +

m3

4
= m

(
α − m

2

)2
:= Φα(m) .

This verifies the exponent in (43). To find the pre-exponential terms we find it most
convenient to use Equation (63). Substituting there (71)–(73) we first get

FN(m) =
eNL0(Y)

√
2πm (Y2 + 4)1/4

{
− 2γ

N1/3 r∗(Y)
(

1 +
1
16

1
mN2/3

)
(76)

+
1
m

(
1 − 3

16
1

mN2/3

)(
3m

N1/3 +
2γ

N
− 3m

N4/3

)
+

[
− 2

N1/3 +
1

N1/3

(
γ2 − 2γ

m
N1/3 +

m2

N2/3

)]
r∗(Y)2

(
1 − 3

16
1

mN2/3

)}
.

After rearranging and collecting the relevant terms in the above expression we arrive at

FN(m) =
eNL0(Y)

√
2πm (Y2 + 4)1/4

{
(r∗(Y)γ − 1)2 + 2(1 − r∗(Y)2)

N1/3 − 2γmr∗(Y)2

N2/3 (77)

+
1
N

[
− 9

16m
+ m2r∗(Y)2 − 3

16
(γ2 − 2)r∗(Y)2

m
+

2γ

m
− γr∗(Y)

8m

]}
.

The expansion (74) together with γ = 1 + α
N1/3 give the relations

(r∗(Y)γ − 1)2 + 2(1 − r∗(Y)2)

N1/3 =
2m

N2/3 +
1
N

[(
α − m

2

)2
− m2

]
(78)

and

−2γmr∗(Y)2

N2/3 =− 2m
N2/3 − 2m(α − m)

N
, (79)

which are exact to the subleading order. We can now see that the leading order terms
inside the curly brackets in (77) cancel. This also implies that at the leading order it is
enough to replace the factor

(
Y2 + 4

)1/4 in (77) with
√

2. Finally, adding the leading order
contribution from

1
N

[
− 9

16m
+ m2r∗(Y)2 − 3

16
(γ2 − 2)r∗(Y)2

m
+

2γ

m
− γr∗(Y)

8m

]
=

1
N

(
m2 +

3
2m

)
to the 1/N terms in (78) and (79) results in

FN(m) =
eNL0(Y)

2
√

πm
1
N

[
3

2m
+
(

α − 3
m
2

)2
]

, (80)

thus verifying the pre-exponential factors in (43).

Let us finally present the derivation of the marginal density of imaginary parts (18)
pertinent to keeping the product y = YN fixed as N → ∞. This task is straightforwardly
achieved by performing the limit N → ∞ in (61) via substituting the corresponding
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asymptotics of Laguerre polynomials (A3) into the Formula (63) and using the identity
d

dy I1(2y) = I0(2y)− I2(2y).

6. Proof of Theorem 3

Proof. We will use Equations (56)–(58) which express the mean density of eigenvalues
ρN(X, Y) in terms of the rescaled Hermite polynomials πk(X + iY) (59).

Using the integral representation in (57) it can be shown that in the scaling limit

z = X + iY, X =
q

N1/3 , Y =
m

N1/3 > 0 (81)

the rescaled Hermite polynomials πk(z) are given by the asymptotic equations

πk(z) ∼
√

2π

N(1 + σ2
+)

(−iσ+)
k e−

N
2 (1+izσ++2 ln (−iσ+)) , (82)

πk(z) ∼
√

2π

N(1 + σ2
−)

(−iσ−)
k e−

N
2 (1+izσ−+2 ln (−iσ−)) , (83)

where we have introduced the notations

σ+ =
iz +

√
4 − z2

2
, σ− =

iz −
√

4 − z2

2
. (84)

This implies for JN(X, Y) (58) that

JN(X, Y) ∼ 2π

N
e−N (σ+ − σ−)√

(1 + σ2
+)(1 + σ2

−)
e−N( i

2 (zσ++zσ−)+ln (−σ+σ−)) (85)

×
[
(1 − σ+(γ − y))(1 + σ−(γ − Y))− σ+σ−

γ − Y
NY

]
. (86)

We are here interested in the limit of small |z| (81), and, hence, can use the expansions

σ+ = 1 +
iz
2

− z2

8
+ . . . , σ− = −1 +

iz
2
+

z2

8
+ . . .

and, consequently,

1 − σ+(γ − Y) =1 − γ + Y +
Y
2

γ − iX
2

γ + O(|z|2) ,

1 − σ−(γ − Y) =1 − γ + Y +
Y
2

γ +
iX
2

γ + O(|z|2) .

Hence,

(1 − σ+(γ − Y))(1 + σ−(γ − Y)) =
[
1 − γ + Y

(
1 +

γ

2

)]2
+

X2

4
γ2 + O

(
X2 + Y2

)
.

Setting here X = q
N1/3 , Y = m

N1/3 and γ = 1 + α
N1/3 one obtains that to leading order in N

(1 − σ+(γ − Y))(1 + σ−(γ − Y)) =
1

N2/3

[(
3
2

m − α

)2
+

q2

4

]
.

With the same precision we have

−σ+σ−
γ − Y

NY
=

1
N2/3

1
m

,
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and, consequently,[
(1 − σ+(γ − Y))(1 + σ−(γ − Y))− σ+σ−

γ − Y
NY

]
=

1
N2/3

[
1
m

+

(
3m
2

− α

)2
+

q2

4

]
. (87)

On inspecting (56) and (85), one concludes that the overall exponential factor in (56) is
given by e−NΦ̃γ , where

Φ̃γ =
i
2
(zσ+ + zσ−) + ln (−σ+σ−) +

X2

2
+ γY − Y2 − ln

(
1 − Y

γ

)
.

The leading order form of Φ̃γ can be found by expanding in powers of X and Y, in a similar
way as before:

i
2
(zσ+ + zσ−) = −Y − X2 − Y2

2
+

Y
8
(3X2 − Y2) + O(|z|4) ,

ln (−σ+σ−) = −Y +
Y3

24
− YX2

8
+ O(|z|4) ,

− ln
(

1 − Y
γ

)
=

Y
γ
+

Y2

2γ2 +
Y3

3γ3 + O(Y4) .

Adding all contributions,

Φ̃γ = Y
(γ − 1)2

γ
+

Y2

2γ2 (1 − γ2) +
Y3

3

(
1

γ3 − 1
4

)
+

YX2

4
+ O(|z|4) .

Setting here X = q
N1/3 , Y = m

N1/3 and γ = 1 + α
N1/3 , one obtains that to leading order

Φ̃γ =
m
N

((m
2

− α
)2

+
q2

4

)
. (88)

Combining (88) with (87), and trivially taking into account asymptotic expressions for the
remaining multiplicative factors in (56) and (86), one arrives at (46).
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Appendix A. Proof of Proposition 1

We prove here a more general version of Proposition 1 which holds for rank-M
deviations J = H + iΓ, Γ = diag{γ1, . . . , γM, 0, . . . , 0} from the GUE (3) with arbitrary real
parameters γj, j = 1, . . . , M < N. The Proposition 1 follows as the special case M = 1.

Proposition A1. Let Γ = diag(γ1, . . . , γM, 0, . . . , 0) be a diagonal matrix of dimension N with
M < N non-zero real entries γj and

FΓ(z1, z2, . . . , zn) =

〈
n

∏
j=1

∣∣det
(
zj1N − H − iΓ

)∣∣2〉
H

,

where the average is taken over the GUE distribution (3). Then

FΓ(z1, z2, . . . , zn) = (A1)

1
2n

(
N
π

)2n2∫
D[S2n] e−

N
2 Tr S2

2n detN−M(Z2n + iS2n)
M

∏
j=1

det(Z2n + iS2n − iγjL2n),

where the integration is over the space of 2n × 2n Hermitian matrices S2n, D[S2n] is the standard
volume element in this space and

Z2n = diag(z1, z2, . . . , zn, z1, z2, . . . , zn), L2n = diag(1, −1)⊗ 1n.

Proof of Proposition A1. The average of the product of the characteristic polynomials
over the GUE in in (A1) can be calculated using Grassmann integration. First we use the
well-known identity ∫ (

d Ψd Ψ
)
entexp

{
−〈Ψ, MΨ〉

}
= det M,

where M is N × N matrix, and Ψ, Ψ are Grassmann variables vectors of length N and(
d Ψd Ψ

)
ent =

N

∏
j=1

d ψjd ψj. We also write each square of determinant in the form

|det(zk − H − iΓ)|2 = det
(

zk − H − iΓ 0
0 zk − H + iΓ

)
.

Combining the above relations,

FΓ(z1, z2, . . . , zn) =〈∫ n

∏
k=1

(
d Ψ(k)d Ψ(k)

)
ent

exp

{
−
〈

Ψ(k),

(
zk − H − iΓ 0

0 zk − H + iΓ

)
Ψ(k)

〉}〉
H

.
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Now we interchange the order of integrations and perform the GUE average first:

FΓ =

〈
n

∏
k=1

exp
{〈

Ψ(k),
(

H 0
0 H

)
Ψ(k)

〉}〉
H

=2−N/2
(

N
π

)N2/2 ∫
exp

{
−N

N

∑
p<q

(
Re hp,q

)2
+
(
Im hp,q

)2 − N
2

N

∑
p=1

h2
p,p

}

× exp

{
N

∑
p<q

Re hp,q

n

∑
k=1

(
ψ
(k)
p ψ

(k)
q + ψ

(k)
N+pψ

(k)
N+q + ψ

(k)
q ψ

(k)
p + ψ

(k)
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.

In the last expression one can see quartic terms in Grassmann variables. To deal with these
terms, we use the so-called Hubbard-Stratonovich transformation. Let

ak,k′ =
N

∑
j=1

ψ
(k)
j ψ

(k′)
j , bk,k′ =

N

∑
j=1

ψ
(k)
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∑
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ψ
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ψ
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j ,

and

A =

( {
ak,k′
}n

k,k′=1

{
ck,k′
}n

k,k′=1{
dk,k′
}n

k,k′=1

{
bk,k′
}n
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)
.

Then

F̂Γ = exp
{
− 1

2N
Tr A2

}
.

The quadratic term in the 2n × 2n matrix A can be linearised at the expense of the additional
integration over 2n × 2n hermitian matrices S2n (the Hubbard-Stratonovich transformation):

F̂Γ = 2−n
(

N
π

)2n2 ∫
D[S2n] exp

{
− N

2
Tr S2

2n − i Tr S2n A
}

.

Now, we can integration over the Grassmann variables. We have
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By manipulating terms in the exponentials,

FΓ(z1, z2, . . . , zn) =
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.

Now, recalling that γj = 0 for j = M + 1, . . . , N we obtain the statement of the Proposition.

Appendix B. Various Asymptotic Regimes for Laguerre Polynomials

Asymptotic behaviour of the Laguerre polynomials L(α)
N−k
(
−NY2) in the limit when

N → ∞ and k and α are fixed depends on the scale of the variable Y > 0 compared to N.
For our investigation we need two scales: (i) YN = y > 0 is fixed and (ii) YN  1. In
both cases the desired approximations can be obtained from the integral representation (65)
which we rewrite as

L(α)
N−k

(
−NY2

)
=

2NN−k+1

(N − k)!
e−NY2

Yα

∞∫
0

τ−2k+α+1e−N(τ2−2 ln τ) Iα(2τYN) dτ, Y > 0.

(A2)

We start with simpler case of YN = y > 0 being fixed in the limit N → ∞. In this case
significant contributions to the integral in (A2) are coming from a neighbourhood of the
point τ = 1 which is the point of minimum the function τ2 − 2 ln τ inside the interval of
integration. Straightforward evaluation of the integral by the Laplace method together
with the Stirling approximation (N − k)! ∼

√
2πe−N NN−k+1/2 yields that

L(α)
N−k

(
−y2

N

)
∼ Nα

yα
Iα(2y) , y > 0. (A3)

In the other regime of interest for us, YN  1, one can use the following asymptotic
expansion for the modified Bessel function Iα(z) (see, e.g., Formula 5.11.10 in [34]):

Iα(z) =
ez

√
2πz

n

∑
p=0

(−1)p

(2z)p A(α)
p + O

(
|z|−n−1

)
, A(α)

p =
Γ(α + p + 1/2)
Γ(α − p + 1/2)

. (A4)
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It reduces the asymptotic analysis of L(α)
N−k
(
−NY2) to analysis of the following expression:

e−NY2

2Yα
√

πYN

∞∫
0

τ−2k+α+1/2e−NL(τ) ∑
p

(−1)p

(4YN)p A(α)
p dτ, L(τ) = τ2 − 2 ln τ − 2τY. (A5)

In this case significant contributions to the integral in (A5) are coming from a neighbour-
hood of the point τ = τ∗(Y) which is the point of minimum the function L(τ) inside the
interval of integration.

τ∗(Y) =
Y +

√
Y2 + 4
2

=
1

r∗(Y)
, r∗(Y) =

√
Y2 + 4 − Y

2
> 0 , (A6)

Using the relations τ∗(Y) = r∗(Y) + Y and 1 + r∗(Y)2 = r∗(Y)
(
Y2 + 4

)1/2 we find that

L(τ∗(Y)) = 1 + 2 ln r∗(Y)− Y(r∗(Y) + Y), L′′(τ∗) = 2r∗(Y)
(

Y2 + 4
)1/2

. (A7)

Expanding the integrand in the standard way around τ = τ∗(Y) and collecting the leading
and subleading order terms we get asymptotic expressions for Laguerre polynomials with
the precision sufficient for our purposes:

L(α)
N−k(−NY2)=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
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(A8)
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32. Życzkowski, K.; Sommers, H.-J. Truncations of random unitary matrices. J. Phys. A Math. Gen. 2000, 33, 2045–2057. [CrossRef]
33. Fyodorov, Y.V.; Khoruzhenko, B.A. Extreme eigenvalues of random sub-unitary matrices: From Fréchet to Gumbel. Manuscript

in preparation.
34. Lebedev, N.N. Special Functions and Their Applications; Dover Publications: New York, NY, USA, 1972.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

327





Citation: Seemann, L.; Hentschel, M.

Universality and beyond in Optical

Microcavity Billiards with

Source-Induced Dynamics. Entropy

2023, 25, 95. https://doi.org/

10.3390/e25010095

Academic Editor: Marko Robnik

Received: 10 December 2022

Revised: 22 December 2022

Accepted: 29 December 2022

Published: 3 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Universality and beyond in Optical Microcavity Billiards with
Source-Induced Dynamics

Lukas Seemann and Martina Hentschel *

Institute of Physics, Technische Universität Chemnitz, D-09107 Chemnitz, Germany
* Correspondence: martina.hentschel@physik.tu-chemnitz.de

Abstract: Optical microcavity billiards are a paradigm of a mesoscopic model system for quantum
chaos. We demonstrate the action and origin of ray-wave correspondence in real and phase space
using far-field emission characteristics and Husimi functions. Whereas universality induced by the
invariant-measure dominated far-field emission is known to be a feature shaping the properties of
many lasing optical microcavities, the situation changes in the presence of sources that we discuss
here. We investigate the source-induced dynamics and the resulting limits of universality while we
find ray-picture results to remain a useful tool in order to understand the wave behaviour of optical
microcavities with sources. We demonstrate the source-induced dynamics in phase space from the
source ignition until a stationary regime is reached comparing results from ray, ray-with-phase, and
wave simulations and explore ray–wave correspondence.

Keywords: microcavity billiards; sources; ray–wave correspondence; phase-space dynamics; Husimi
function; quantum chaos

1. Introduction

Two-dimensional (2D) systems have inspired the field of quantum chaos for many
years [1–3]. The origins of studying the quantum mechanical pendants of classically non-
integrable systems trace back to the 1980s when universality was established as a common
property of very different chaotic systems [4,5], in particular in the energy-level statistics in
the 1980 paper of Casati et al. [4], and a variety of studies have been initiated focusing on
the statistical properties based, e.g., on Random Matrix Theory [6].

The impressive properties of this new class of mesoscopic model systems [7] for both
electrons and photons soon initiated interest in possible applications. Besides the ballistic
quantum dots [3], the optical microcavities [8–14] have received a lot of interest, and lately
also in non-euclidean [15] and Dirac Fermion optics [16]. One practical motivation was
certainly the realization of microcavity lasers with directional emission, and plenty of
solutions were found and investigated [17]. One realization involves deformed microdisk
cavities of various shapes [18], including the Limaçon cavity [19–25]. Besides the experi-
mental verification of the predicted [19] directional and universal, resonance-independent
far-field emission originating from the cavity’s invariant manifold, a remarkable ray–wave
correspondence was seen. While all results were obtained for very different wavelengths
λ—the ray modeling in the λ → 0-limit, the wave simulation for λ larger than the exper-
imentally relevant values—the agreement between all three approaches was convincing
with slight, interference-inspired deviations between the three curves. Shinohara et al. [22]
complemented this interpretation nicely by showing that averaging over a large number
of resonances (42 in Ref. [22]) improves ray–wave correspondence by averaging out the
resonance-specific features.

The reason for the universality of the observed far-field emission properties of
whispering-gallery (WG)-type modes with high Q-factors is that the so-called natural
measure (or Fresnel-weighted unstable manifold or steady probability distribution) [26]
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determines the emission characteristics. Assuming a light ray to be initially captured by
total internal reflection, it will, in a chaotic cavity, undergo a number of reflections where
this condition remains fulfilled. However, at one point it will be violated and the angle of
incidence χ will cross the critical lines sin χc = ±1/n in phase space (n is refractive index
of the cavity and we assume n0 = 1 outside), and ray splitting occurs with the amount of
light remaining in the cavity determined by Fresnel’s reflection coefficient. The crossing
of the critical line will be ruled by the unstable manifold of the system, weighted by the
Fresnel reflection coefficient for our open optical system. Notice that this quantity describes
the expanding directions along which the light will escape the cavity (actually, in the wave
picture, by evanescent or tunneling escape from high-Q modes). This implies that the
unstable manifold, as an important and central, yet abstract quantity of nonlinear dynamics
is directly accessible and visible in experiments and the corresponding simulations. We
point out that, therefore, simulations of the passive, non-lasing cavity can successfully
describe even lasing cavities as long as mode interactions [27] do not play a role. In terms of
ray picture modeling, the initial conditions are homogeneously distributed in phase space
and the far-field characteristics are recorded when an initial transient regime is lapsed.

In this paper, we will explore another situation in optical microcavities that is in-
duced by the presence of sources (or, similarly, relevant in microlasers with non-uniform
pumping conditions [28,29]). This setting can capture situations where not all initial con-
ditions are homogeneously populated, in contrast to the microlaser case discussed above.
Source-induced phenomena can be relevant, for example, due to a specific distribution of
fluorescent particles, a local pumping scheme, or even due to the coupling of two or more
systems that effectively change the initial conditions to be non-uniform in phase space. The
base element of any source can be described as a point-like emitter.

The paper is organized as follows. We will consider point-like sources and study
their impact on the far-field emission in Section 2. We then investigate the source-initiated
dynamics in phase space and introduce a ray picture extended by the phase information in
Section 3 before we end with a conclusion and summary in Section 4.

2. Optical Microcavity Billiards with Sources

We start our investigation for a Limaçon cavity [19] with the shape given in polar co-
ordinates (r, φ) as r(φ) = R0(1 + ε cos φ) where we set R0 = 1 and choose the deformation
parameter ε = 0.43, such that the phase space of the cavity is known to be almost fully
chaotic. We use Birkhoff coordinates, i.e., the arclength s along the boundary starting at
its intersection with the positive x axis, and the sine of the angle of incidence χ of light
traveling inside the cavity to specify the position in phase space. The far-field angle ϕ f f
is measured to be mathematically positive with respect to the positive x axis. We will
consider TM polarized light (electric field transverse to the resonator plane, i.e. along
the z axis, �E = Ez�ez), a refractive index n = 3.3, and vary the position xs of the source
along the x axis. We use simulations with the open-source software package meep [30] and
so-called meep units with the velocity of light set to 1, such that frequency f and (vacuum)
wavelength λ are reciprocal to each other, as is the period T = 1/ f . We use the built-in
continuous source function of meep to describe a point-like coherent source that oscillates
as exp (−2πi f t). Such a point-like source can be considered the basic module of any other
source distribution.

Variation of the source position. For a mode at resonance frequency f = 1.2 (correspond-
ing to nkR ≈ 25), the far-field emission depends critically on the source position xs as
is visible in Figure 1. In general, more central source positions relate to more isotropic
emissions, and the far-field emission characteristics of the uniformly pumped cavity can be
completely lost. Similar results were found in a study of graphene and optical billiards in
Ref. [16], where the importance of lensing effects in particular for single-layer graphene
cavities was discussed.
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Figure 1. (a) Amplitude distribution Ez in real space for a mode at resonant frequency f = 1.2 and
source position xs = 0.1 (marked by arrow), and corresponding far-field emission as polar plot ϕ f f .
(b) Same for xs = 1.3. (c) Far-field emission |Ez|2 for source positions xs varied along the x-axis,
revealing a high sensitivity on xs. The black line on the left marks the far-field emission “without
source”, i.e., the initial conditions uniformly distributed in phase space, and far-field data are taken
when a stationary regime with exponential total internal intensity decay was reached, i.e., omitting
the contribution of short rays.

Despite this deviation from the universality seen in the uniform pumping case, ray–
wave correspondence still holds as illustrated in Figure 2 for xs = 1.3. The far-field wave
intensity I = |Ez|2 and the ray-simulated intensities agree reasonably well. In particular,
we find the wave intensity I to be reproduced by the short rays with trajectory lengths l < 3
corresponding to typically very few reflections at the system boundary. In other words,
in the presence of sources, the far field is mainly determined by refractive escape of rays
leaving the source and dwelling of very few reflections in the cavity. This indicates the
relevance of lensing effects when the cavity acts similar to a thick lens. However, longer
rays are needed to establish a semiquantitative agreement with the wave result for all
far-field angles ϕ f f . These long trajectories carry the information of the cavity geometry as
a whole, namely in terms of the unstable manifold.

Variation of the source frequency. It is worthwhile to characterize the far-field sensitivity
against variations in the source frequency, cf. Figure 3. In Figure 3a,b, mode patterns
(amplitude Ez) are shown for two different frequencies f : resonant ( f = 1.2) in Figure 3a
and off-resonant ( f = 1.6) in Figure 3b. The source position is fixed again on the x axis, here
at xs = −0.42 (marked by arrows). While the intra-cavity patterns deviate a lot—as expected
upon a change in wavelength—the emission characteristics are less affected, cf. Figure 3c.
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Figure 2. Far-field emission for source position xs = 1.3. Wave intensity I = |Ez|2 for the resonance
at frequency f = 1.2 (full green line) and for ray-simulated intensities J including the far-field
contribution of short rays only (full blue line) and of all rays (dashed line). Evidently, short rays with
a trajectory length l < 3 contribute significantly to the far-field emission.

Figure 3. Far field emission depending on the source frequency f, while the source position is fixed
at xs = −0.42 (marked by arrow). (a) At the resonance frequency f = 1.2, the real space amplitude
Ez and the far-field emission (polar plot) are shown. (b) An off-resonant frequency f = 1.6 yields a
different mode pattern and a far field that differs in the details, but preserves the generic emission
characteristics towards ϕ f f = 0 and π. (c) Comparison of different source frequencies f confirms
that the details are frequency-dependent, while the overall far-field emission is rather robust and
dominated by the position of the source.
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This result may seem surprising at first glance. However, it can be straightforwardly
interpreted on the basis of ray-wave correspondence. Our starting point is the ray–wave
correspondence for resonant frequencies, as illustrated in Figure 2 and confirmed in nu-
merous other situations. As the naive ray picture does not know about frequencies or
wavelengths, this would suggest no frequency dependence of the far-field emission at all.
Of course, this cannot be correct as we know that the details of the far-field emission will
be resonance-, or more generally, frequency-dependent [22]. This is precisely what can
be seen in Figure 3c. This interpretation is also consistent with the fact that the far-field
patterns are determined by short ray trajectories, i.e., before the formation of resonances
can be expected.

3. Source-Induced Dynamics: Ray–Wave Correspondence in Phase Space

So far, we have discussed the implications of the presence of sources inside billiards for
light, mainly in real space and in terms of far fields, and for the stationary situation. We will
now complement the discussion in phase space, discussing both the Husimi function [31]
and the ray signature of the source-induced dynamics. To this end, we will discuss the
dynamics initiated when a source is turned on and follow it until a stationary state (with
the source constantly emitting) is reached.

We will consider a Limaçon-shaped cavity with an intermediate deformation parame-
ter ε = 0.25 where a rich, mixed-phase space is present [32,33] (see the gray structure in
Figure 4a). We will compare two source positions on the x axis, namely a rather central
position xs = 0.6 and an outer position xs = 1.0, thereby manipulating the excitability of
WG-type modes and trajectories. We choose a source frequency of f = 0.64 and use meep
units as before, such that the period of the oscillation T = 1/ f ≈ 1.56. We will consider
80 time steps per period T and use the time frame number t as our variable of time. The
time to travel across the cavity, i.e., to travel the optical distance 2nR0, is found to be 6.6
in meep units, so it will take about 4.23 T or approximately t = 338 frames (time steps) to
travel the cavity’s diameter.

Initial dynamics. What is the signature of the light emitted from the source? We start our
study in the wave picture and excite a source placed at xs = 0.6 with a (resonant) frequency
of f = 0.64, cf. Figure 5. The real space evolution of the electromagnetic field amplitude Ez
is shown in Figure 5a for t = 186, just before emitted light from the source reaches the far
cavity interface. The corresponding phase–space representation is shown in Figure 5b, and
we use the incoming Husimi function H1

in inside the cavity [31] to characterize its signature
at the interface boundary where we will also take the Poincaré surface of the section. We
see that H1

in contains the signature of light that has reached the cavity boundary at and
around s ≈ 0.

The snapshots in Figure 5c,d are taken about one period T later when all light emitted
from the cavity at t = 0 has reached the boundary. There is a distinct extra signature that
must characterize light emitted from the source at its first reflection at the cavity interface
where the Husimi function H1

in is recorded (see also the yellow line in Figure 4a and the
discussion there).

This signature is discussed in more detail in Figure 6 for two different source positions
and in the wave- and phase-information extended ray picture, respectively. In addition
to the naive ray model considered before, we now include the ray’s phase φp. This phase
changes along the trajectory path according to φp = 2πl/λ, with l denoting the optical
trajectory length traveled. Upon the reflection at the boundary, an additional phase shift
would have to be taken into account; however, we will limit our study to just the time before
the first reflection. Note that the wavelength enters the ray picture via the phase, and thus
resonance-specific properties can, in principle, become accessible within the ray model.

The Husimi functions shown in Figure 6a,b show comparable signatures and reach
higher | sin χ| for the outer source position xs = 1.0 in (c) as a direct geometrical conse-
quence of xs being placed closer to the boundary. Notice that from frame to frame t, the
location of the intensity maxima varies somewhat (not shown), indicating the importance
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of interference effects. This is straightforwardly confirmed qualitatively in Figure 6c,d
where the phase-modulated ray intensity is shown at the first reflection point (in agreement
with the time frames chosen for the Husimi plots) and clearly seen to possess a rather
similar structure.

Figure 4. Dynamics induced by the source represented in phase space for two different source
positions xs = 0.6 in (a,c,e,g) and xs = 1 in (b,d,f,h). In the ray simulation results (a–d), the
Poincaré surface of section for a Limaçon cavity with ε = 0.25 is indicated as gray background.
(a,b) Characteristiics of a homogeneously emitting source at the first boundary reflection. Shown
is the Fresnel-weighted intensity inside the cavity. (c,d) Same as (a,b) but after 30 reflections when
stationarity is reached. In (e–h), the wave-simulation results are visualized in phase space in terms of
the Husimi function H1

in when a stationary regime was reached. The Husimi patterns are evolving
periodically with period approximately T/2, and typical patterns are shown at time frames (e) t = 16,
(f) t = 9, (g) t = 37, and (h) t = 30.
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Figure 5. Initial temporal evolution of an electromagnetic wave emitted from a source with f = 0.64
at xs = 0.6 (marked by arrow in (a)), ε = 0.25. (a) Real-space Ez and (b) phase–space portrait in terms
of the Husimi function H1

in at time frame t = 186, and similarly one period later at t = 272 in (c,d).
Note the extra signature in the center of (d) that can be attributed to the source signature after the
first reflection at the boundary.

Figure 6. Phase–space representation of light emitted from a source in (a,b) wave and (c,d) ray
simulations where the ray picture is extended by the phase information. (a) Husimi function H1

in for
xs = 0.6 and t = 253. (b) H1

in for xs = 1.0 and t = 314. (c) Ray-with-phase simulation of the intensity
at the first reflection point, 20 sources were randomly placed in a square with side length 0.05 around
xs = 0.6 and 2500 rays were started isotropically from each source. (d) Same as (c) for xs = 1.0.

Stationary dynamics. After having discussed the initial source dynamics, we will now
consider the stationary state reached after the transient regime. The results are presented
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in Figure 4, again for the source positions xs = 0.6 (left column) and for xs = 1.0 (right
column). We start our considerations in the naive ray picture (without phase information)
for which we revisit the initial source dynamics in Figure 4a,b. To this end, 10,000 rays
are started uniformly from the point-like source and traced to the first reflection with the
boundary, yielding the yellow curves. We point out that the time needed for the first
reflection point will depend on the starting direction of the ray, especially for non-central xs.
Although the reflection-number based Poincaré map representation will thus differ from
the time frame t-based study used in the wave simulations, it still provides a useful tool
that can be directly superimposed on the Poincaré surface of section (PSOS). The mixed
structure of the PSOS is indicated as the gray background in Figure 4a–d.

In Figure 4c,d, the source has been followed over several reflections at the boundary
until stationarity (i.e., intensity saturation) was reached. The phase–space distribution
of the Fresnel-weighted intensity emitted by the source is indicated in color scale. The
area between the critical lines sin χ = ±1/n carries a lower intensity due to refractive
escape. It is evident that the spread in the phase space depends on the source position—the
closer to the boundary xs is, the larger | sin χ| can be reached. In addition, we see that
with the source positions chosen here, the three-island orbits cannot be excited within a
ray simulation.

The results of wave simulations in the stationary regime (after 50 T) are displayed in
Figure 4e–h. For both xs, we find the pattern of the Husimi function H1

in to periodically
(with about T/2) vary. For each of the evolutions, we pick two characteristic patterns. For
xs = 0.6, we find a typical pattern that represents the source characteristics, cf. Figure 4e.
Another one, cf. Figure 4g, displays intensity structured by the three-island chains. Al-
though these islands cannot be populated in the ray-based counterpart model, it may
well be possible within wave simulations due to a finite wavelength and when taking
semiclassical corrections to the ray picture into account [34–41].

In particular, semiclassical arguments can explain why the intensity maxima in the
Husimi function H1

in seem to be placed at somewhat larger | sin χ| in comparison to the
ray model expectation. In the wave description, the evanescent wave associated with a
WG-type mode will penetrate a distance of the order λ into the outer space. The corrected
ray picture analogue deploys the Goos–Hänchen shift that causes the reflection to take place
at an effective interface [42,43] such that the cavity appears effectively larger. However,
then, the Husimi function is determined at a radius R0 that is too small, thereby making
the associated angle of incidence (somewhat) too large, as illustrated in Ref. [36], and thus
explaining the deviation.

Eventually, for the other source position xs = 1, we illustrate two typical Husimi
patterns in Figure 4f,h. It is evident that now the H1

in reaches larger values | sin χ|, in
agreement with the ray-model expectation. One may speculate about the population of the
four-island orbit in Figure 4f or a mode beating interaction induced by the source. We will
investigate this in further studies.

4. Conclusions

We have investigated optical microcavities in the presence of sources and discussed
and explained source-related (non-)universalities in the ray and wave pictures, and on the
grounds of ray–wave correspondence. We showed that the position of a localized source
crucially influences the properties of the optical microcavity in comparison to the source-
free or uniform situation. These findings can be useful in the context of non-uniformly
pumped microlasers or when light is coupled into an optical microcavity at certain positions,
for example along the boundary.

We found a good agreement between the ray and wave picture results in terms of far
fields and phase–space representations, and identified the signatures of the source in the ray
and wave dynamics. We illustrated that a ray picture extended by the phase information
can improve the agreement by capturing interference effects and introducing a wavelength
into the ray picture. The phase information can also be used to distinguish regular and
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chaotic orbits as presented in Figure 7: a chaotic trajectory can be associated with an
unpredictable phase value at the reflection points, whereas the phase evolves regularly
for a periodic orbit. However, possible source-induced mode (interaction) dynamics [27]
that might be suggested by Figure 4 in the stationary regime is beyond the scope of ray–
wave correspondence.

Figure 7. Phase evolution in a ray picture with phase information taken into account for (a) a regular
orbit (ε = 0.25) and (b) a chaotic trajectory (ε = 0.43).
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Abstract: We study the dynamical generation of entanglement for a two-body interacting system,
starting from a separable coherent state. We show analytically that in the quasiclassical regime the
entanglement growth rate can be simply computed by means of the underlying classical dynamics.
Furthermore, this rate is given by the Kolmogorov–Sinai entropy, which characterizes the dynamical
complexity of classical motion. Our results, illustrated by numerical simulations on a model of
coupled rotators, establish in the quasiclassical regime a link between the generation of entanglement,
a purely quantum phenomenon, and classical complexity.

Keywords: quantum complexity; quantum to classical transition

1. Introduction

The characterization of complexity in quantum systems is a key problem, not only
for fundamental reasons but also for the development of quantum technologies [1–3].
While for classical dynamical systems a well-established notion of complexity exists, based
on Kolmogorov–Sinai (KS) entropy [4], which in turn is related to the exponential insta-
bility of orbits, in the quantum realm the measure of complexity has proven to be an
elusive problem.

First, we cannot sic et simpliciter use trajectories, due the Heisenberg uncertainty prin-
ciple. To circumvent such problem, phase-space approaches have been proposed [5–20],
based on the evolution of phase space distributions. Second, entanglement, the key re-
source in the quest for quantum advantage, is peculiar to quantum composite systems and
therefore is a source of quantum complexity without a classical analogue. Since for pure
bipartite systems the reduced von Neumann entropy, known as entanglement entropy, is
the well-established measure of entanglement [21], it is interesting to investigate whether
its growth in a dynamical system is related to the KS entropy of the underlying classical
dynamics [22].

For bosonic systems with an unstable quadratic Hamiltonian, entanglement entropy
grows linearly in time, with a rate upper bounded by the KS entropy, the bound being
saturated under suitable conditions on the size of the bipartitions [23]. The question then
arises, whether the entanglement growth of chaotic quantum systems in the quasiclassical
regime is also determined by the KS entropy. This issue was investigated more than two
decades ago, with numerical results suggesting that the entanglement generation rate
is given by the KS entropy [24]. On the other hand, such results were obtained in the
weakly chaotic regime, with coexistence of chaotic seas and tori, while another study
in the strongly chaotic region, where the effect of tori is negligible, showed instead no
increase of the entanglement production rate upon an increase of the maximum Lyapunov
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exponents [25]. This apparent contradiction was explained by a quasiclassical calculation
for the linear entropy, approximating the entanglement entropy, under the condition of
weak coupling between the subsystems in the underlying classical dynamics [26,27]. This
work showed that the entanglement growth rate is determined by the minimal value of the
three rates given by the standard one deduced from the interaction term and the largest
Lyapunov exponents of the two subsystems, respectively.

In this paper, we remove the above restriction on the coupling strength and compare
the quantum evolution starting from separable coherent states with the classical evolution
of initially Gaussian distributions, of a size determined by the effective Planck constant of
the corresponding quantum dynamics. We show that in the quasiclassical regime quantum
and classical linear entropy are in agreement and grow with the rate given by the KS entropy
of classical dynamics. Our analytical results are illustrated by numerical simulations for a
model of kicked-coupled rotators.

This work is dedicated to our friend and colleague Giulio Casati, who has always had
a deep interest in understanding the complexity of quantum motion.

2. Analytical Results

In this section, we connect, for an overall pure bipartite system, the growth rate of
linear entropy to the KS entropy of the classical underlying dynamics. We consider a two
body system, whose Hamiltonian reads

Ĥ = Ĥ1(q̂1, p̂1) + Ĥ2(q̂2, p̂2) + Ĥ12(q̂1, p̂1, q̂2, p̂2). (1)

The corresponding classical Hamiltonian is written as

H(q1, p1, q2, p2) = H1(q1, p1) + H2(q2, p2) + H12(q1, p1, q2, p2). (2)

We compute as entanglement measure the linear entropy (also known as second Rényi
entropy) of a subsystem (for example, system 1), which is defined as

S(ρ̂1) = − ln(Tr(ρ̂2
1)). (3)

Here ρ̂1 is the reduced density matrix of the system 1, ρ̂1 = Tr2(ρ̂), where the partial trace
is taken over system 2 and ρ̂ is the density matrix of the composite system. Note that
equivalently we could have considered system 2, since S(ρ̂2) = S(ρ̂1), with ρ̂2 = Tr1(ρ̂).
The linear entropy is much more convenient for numerical and analytical investigations
than the reduced von Neumann entropy SvN(ρ̂1) = −Tr(ρ̂1 ln ρ̂1). At the same time, it is a
very useful entanglement probe. Indeed, if the linear entropy of a part is larger than the
linear entropy of the overall system, bipartite entanglement exists between that part and
the rest of the system. Moreover, for maximally mixed states of a subsystem of dimension
N, the linear entropy and the reduced von Neumann entropy are both maximized and
equal to ln N.

In order to obtain the classical analog of the linear entropy, we make use of the Husimi
function [28] of the density matrix ρ̂, given by

WH(γ) =
1

(2πh̄)2 〈γ|ρ̂|γ〉, (4)

where γ = (q1, p1, q2, p2), |γ〉 denotes the coherent state of the composite system centered
at γ, and h̄ is the effective Planck constant. In the quasiclassical limit h̄ → 0, the trace of ρ̂2

1
can be carried out by making use of the Husimi function W1

H of ρ̂1 as

Tr(ρ̂2
1) =

∫
dγ1[W1

H(γ1)]
2, (5)
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where γ1 = (q1, p1), |γ1〉 denotes the coherent state of system 1 centered at γ1, and

W1
H(γ1) =

1
2πh̄

〈γ1|ρ̂1|γ1〉. (6)

Furthermore, the reduced density matrix ρ̂1 can also be obtained in terms of the coherent
states of the system 2, denoted by |γ2〉, as

ρ̂1 = Tr2(ρ̂) =
1

2πh̄

∫
dγ2〈γ2|ρ̂|γ2〉. (7)

Substituting Equation (7) into Equation (6), we have

W1
H(γ1) =

∫
dγ2WH(γ), (8)

yielding with Equation (5)

Tr(ρ̂2
1) =

∫
dγ1

∣∣∣∣∫ WH(γ)dγ2

∣∣∣∣2. (9)

Hence, we obtain

S(ρ̂1) = − ln

[∫
dγ1

(∫
dγ2WH(γ)

)2
]

. (10)

After replacing the Husimi function WH(γ) with the classical distribution function
ρ(γ), the classical analog of linear entropy can be written as

Scl(ρ1) = − ln
[∫

dγ1(ρ
1
re(γ1))

2
]

, (11)

where ρ1
re(γ1) indicates the marginal distribution function of γ1,

ρ1
re(γ1) =

∫
dγ2ρ(γ). (12)

It is expected that
S(ρ̂1) ≈ Scl(ρ1) (13)

holds in the quasiclassical limit in which the effective Planck constant h̄ → 0.
An explicit expression can be derived for the classical entropy Scl(ρ1) as follows. We

consider the initial state as the “most classical” state, that is, a coherent state |γ〉, whose
corresponding classical distribution function can be written as

ρ0(γ) =
1

(πh̄c)2 exp
(
− 1

h̄c
|γ − γ0|2

)
, (14)

which has a Gaussian form whose center is denoted by γ0, h̄c = h̄ is chosen to be the same
as the effective Planck constant in the quantum case, and |γ − γ0| indicates the norm of the
vector δγ = γ − γ0. In the quasiclassical limit, one has h̄c → 0, which means that, for times
smaller than the Ehrenfest time scale tE (with tE → ∞ as h̄c → 0), almost all the states in
the ensemble remain close to the center γ0(t). This implies that the distribution of states at
time t, ρt(γ), is significantly different from zero only for small |δγ|. In this case, the time
evolution of δγ is determined by the so-called stability matrix

Mij
t =

∂(δγi(t))
∂(δγj(0))

∣∣∣∣∣
δγ(0)=0

, (15)
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with
δγ(t) = Mtδγ(0). (16)

As the classical linear entropy is independent of the coordinate’s origin, for the convenience
of the following discussion, we choose the position of the center γ0(t) as the origin of
coordinates. In this local coordinate system along γ0(t), we can replace δγ(t) = γ(t)−
γ0(t) by γ(t).

Then making use of Liouville’s theorem, the distribution at time t can be written as

ρt(γ) = ρ0(M−1
t γ), (17)

and therefore

ρt(γ) =
1

(πh̄c)2 exp
(
− 1

h̄c
|M−1

t γ|2
)

. (18)

Using the positive definite symmetric matrix

At ≡ (M−1
t )T M−1

t , (19)

the density distribution at time t can be written as

ρt(x) =
1

(πh̄c)2 exp

(
− 1

h̄c

4

∑
i,j=1

xi A
ij
t (t)xj

)
, (20)

which is a Gaussian distribution, with x corresponding to γ, that is, (x1, x2, x3, x4) =
(q1, p1, q2, p2). In order to calculate the classical linear entropy, we first calculate the
marginal distribution function of ρt(x) for system 1:

ρ1
t (x1, x2) =

∫
ρt(x1, x2, x3, x4)dx3dx4. (21)

Then the classical linear entropy at time t can be written as

Scl(ρt) = − ln
[∫

dx1dx2

(
ρ1

t (x1, x2)
)2
]

. (22)

As outlined in the Appendix A, by writing At in block form,

At =

(
â b̂

b̂
T

d̂

)
, (23)

we obtain our first main result

Scl(ρt) = ln(2πh̄) +
1
2

ln[det(d̂)]. (24)

In the derivation we restrict to the case of a two-particle system, however, the generalization
to N particles is straightforward.

In order to compute det d̂, we sum the eigenvalues of the operator d̂ (denoted by dk,
in order of descending energy), which are in close relation to the eigenvalues of At. We
diagonalize the symmetric matrix At as

At = Vdiag{A1, A2, A3, A4}V T , (25)

where diag indicates a diagonal matrix, Ak is the k-th eigenvalue of At, and V is an
orthogonal matrix. If the system is chaotic, Ak ∝ e2λkt, where λk is the k-th Lyapunov
exponent, with λ1 > λ2 > 0 > λ3 > λ4, and λ3 = −λ2, λ4 = −λ1.
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Hence, in the typical case in which the eigenvectors (denoted by |Ak〉, k = 1, 2) of At
corresponding to the eigenvalues A1 and A2 have non-zero components within the Hilbert
space of system 2, we have

d1 ∝ e2λ1t, d2 ∝ e2λ2t. (26)

As a result,
det d̂ ∝ exp 2(λ1 + λ2)t, (27)

which directly leads to
Scl(ρt)− Scl(ρ0) = (λ1 + λ2)t, (28)

indicating that the growth rate of the linear entropy is given by the Kolmogorov–Sinai
entropy of the overall system, which is the second main result of our work.

3. Numerical Results

In this section, we numerically illustrate the prediction of equivalence between the
classical and quantum growth of linear entropies, Equation (13), as well as the growth as
predicted in Equation (28), by means of a two-body system which has a clearly defined
classical counterpart. More specifically, we consider two coupled rotators (or coupled
tops) [29,30], with respective angular momentum operators Ŝ = (Ŝx, Ŝy, Ŝz)T and L̂ =
(L̂x, L̂y, L̂z)T , and a time-dependent Hamiltonian with kicked interaction:

Ĥ =
a
j
(Ŝz + L̂z) +

c
j2

Ŝx L̂x

∞

∑
n=−∞

δ(t − n), (29)

where j is the (half-integer or integer) total angular momentum quantum number of both
tops. The Hamiltonian possesses constants of motion, Ŝ2

and L̂2. The Hilbert space is
expanded by making use of |s, ms, l, ml〉 ≡ |s, ms〉 ⊗ |l, ml〉, which are the joint eigenvectors
of Ŝ2

, Ŝz, L̂2, L̂z,

Ŝ2|s, ms, l, ml〉 = s(s + 1)|s, ms, l, ml〉,
Ŝz|s, ms, l, ml〉 = ms|s, ms, l, ml〉,

L̂2|s, ms, l, ml〉 = l(l + 1)|s, ms, l, ml〉,
L̂z|s, ms, l, ml〉 = ls|s, ms, l, ml〉. (30)

where ms ∈ {−s, −s + 1, · · · , s − 1, s}, and ls ∈ {−l, −l + 1, · · · , l − 1, l}. Here we choose
s = l = j.

The Floquet operator, that is the unitary evolution operator between consecutive kicks,
can be written as

F̂ = exp[−ia(Ŝz + L̂z)] exp[−i
c
j
Ŝx L̂x]. (31)

The classical counterpart can be obtained by taking the quasiclassical limit h̄ = 1
j → 0.

Introducing the rescaled angular momenta Ŝk = Ŝk
j and L̂k = L̂k

j , and considering the
quasiclassical limit j → ∞, yields the classical analog of the model,

Hc = a(Sz + Lz) + cSxLx

∞

∑
n=−∞

δ(t − n), (32)

where S2
x + S2

y + S2
z = L2

x +L2
y +L2

z = 1. Depending on the coupling strength the classical
motion can be either chaotic or nearly-integrable, as shown by the three-dimensional
Poincaré surfaces of sections of Figure 1.
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Figure 1. Three-dimensional Poincaré surface of section for the chaotic case (a): a = 5, c = 3 and
the near-integrable case (b): a = 5, c = 0.5, where we fix φ2 = 0. Here we only consider a single
trajectory starting from (θ1, φ1, θ2, φ2) = (π

4 , 0, 3π
4 , 0) (see text for the definition of the angles θk and

φK , k = 1, 2).

In the numerical simulations of both the quantum and classical cases, the linear
entropy is averaged over Np different initial states. In the quantum case, we consider the
initial states |θ1, φ1, θ2, φ2〉 ≡ |θ1, φ1〉 ⊗ |θ2, φ2〉, where |θ1, φ1〉 and |θ2, φ2〉 indicate the spin
coherent state of the first rotator,

|θ1, φ1〉 = eiθ1Ŝz eiφ1Ŝy |j, j〉, (33)

and an analogous expression holds for the second rotor. Then, the quantum averaged linear
entropy is calculated as follows,

Sq(t) =
1

Np
∑
p

Tr((ρ̂p
1 (t))

2), (34)

where
ρ̂

p
1 (t) = Tr2(F̂t|θp

1 , φ
p
1 , θ

p
2 , φ

p
2 〉〈θ

p
1 , φ

p
1 , θ

p
2 , φ

p
2 |(F̂†)t), (35)

and (θ
p
1 , φ

p
1 , θ

p
2 , φ

p
2 ) are chosen randomly. In the classical case, we consider an initial ensem-

ble of Gaussian states,

ρ0(θ
′
1, φ′

1, θ′2, φ′
2) = A exp

(
− (θ′1 − θ1)

2

h̄c
− sin2(θ1)(φ

′
1 − φ1)

2

h̄c

)

× exp

(
− (θ′2 − θ2)

2

h̄c
− sin2(θ2)(φ

′
2 − φ2)

2

h̄c

)
, (36)

which in case of h̄c → 0 can be written in terms of canonical variables (q1, p1, q2, p2) =
(φ1, cos θ1, φ2, cos θ2) as

ρ0(q′1, p′
1, q′2, p′

2) = A′ exp

(
− (q′1 − q1)

2

h̄c(1 − p2
1)

− (1 − p2
1)(p′

1 − p1)
2

h̄c

)

× exp

(
− (q′2 − q2)

2

h̄c(1 − p2
2)

− (1 − p2
2)(p′

2 − p2)
2

h̄c

)
. (37)

Here A and A′ are normalization constants. Then the classical averaged linear entropy is
calculated as

Scl(t) =
1

Np
∑
p

Scl(ρ
p
t ), (38)
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where Scl(ρ
p
t ) indicates the classical linear entropy (defined in Equation (11)), starting

from the initial ensemble, centered at (qk
1, pk

1, qk
2, pk

2). In our numerical simulations, we
considered 107 trajectories for each initial ensemble, and the integral in Equation (11) is
calculated by summing over the whole phase space with respect to system 1, which is
divided into 4 × 106 phase cells.

Results for the chaotic regime are shown in Figure 2. Note that λ2 is comparable to λ1,
and the behavior S(t)− S(0) = (λ1 +λ2)t predicted in Equation (28) on the basis of a purely
classical calculation, can be clearly seen both for quantum and classical simulations. The
growth rate, in very good agreement with the KS entropy λ1 + λ2, is clearly distinguished
from the growth rate given by the largest Lyapunov exponent λ1 alone. Note that by
increasing the coupling strength c the entanglement growth rate increases, in accordance
with the increase of the classical KS entropy. Moreover, it can be clearly seen that the
agreement between the classical and quantum linear entropy extends to longer times as
h̄ = h̄c is reduced.
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(t
)

(a)
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h̄ = 0.0005
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S = λ1t

S = (λ1 + λ2)t
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t

0

2

4

6

8

S
(t
)

(b)

Figure 2. Quantum (circles with solid line) and classical (triangles with solid line) averaged linear
entropy for different h̄ and h̄c in the kicked coupled tops model defined in Equation (29), for (a):
a = 5, c = 3 and (b): a = 5, c = 5. The dashed lines indicate the functions S = (λ1 + λ2)t (red) and
S = λ1t (light blue). The initial values of S(t = 0) are subtracted.

In Figure 3, we show data in the regular regime with weaker coupling strength, for
which invariant tori of the integrable model at c = 0 are deformed but survive. The volume
occupied by the tori is the largest portion of the phase space and this affects the growth
of the linear entropy, which is logarithmic rather than linear. Our numerical results show
that, for large enough h̄, the entropy S(t) ∝ log tα, with α ≈ 1, while α slowly increases
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with reducing h̄. Note that the separation between nearby trajectories increases linearly
in time for integrable dynamics. Therefore, the number of cells of area h̄ occupied in the
two-dimensional phase-space for system 1 is proportional to t2, leading to the expected
growth S(t) ∝ log t2. We therefore conjecture that such growth would be achieved in the
limit h̄ → 0.
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h̄ = 0.004

h̄ = 0.002

h̄ = 0.0005

h̄C = 0.0005

h̄C = 2e− 05

S = ln t

S = 2 ln t

Figure 3. Same as in Figure 2, but for weaker coupling strength c = 0.5, for which motion is
quasi-integrable. The lines S(t) ∝ log t and S(t) ∝ log t2 are also drawn.

4. Conclusions

We have shown that in the quasiclassical regime the entanglement growth rate is
given by the Kolmogorov–Sinai entropy of the underlying classical dynamics. Note that we
are considering initial separable coherent states, so that the quantum wave packet closely
follows the underlying classical phase space distribution up to the Ehrenfest time, which
diverges as the effective Planck constant h̄ → 0. In spite of the lack of entanglement in
classical mechanics, our results prove, in the quasiclassical regime, the close connection
between entanglement generation and complexity of classical motion. Moreover, our
derivation based on purely classical grounds provides an intuitive picture that could hardly
be obtained on the basis of purely quantum calculations. Finally, the entanglement growth
is linear in the classically chaotic and logarithmic in the regular regime, thus showing the
entangling power of chaos.
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Appendix A. Derivation of Equation (24)

We write At in block form,

At =

(
â b̂

b̂
T

d̂

)
, (A1)

where â = âT , d̂ = d̂
T

, and b̂ are 2 × 2 matrices. Furthermore, we introduce two-
dimensional vectors qT

1 = (x1, x2) and qT
2 = (x3, x4). The matrix Equation (A1) can

be brought to the form

(
qT

1 , qT
2

)( â b̂

b̂
T

d̂

)(
q1
q̃2

)
=
(

q1
T , q̃T

2

)( ˆ̃a 0̂

0̂ d̂

)(
q1
q̃2

)
, (A2)

with
q̃2 = Ŷq1 + q2, Ŷ = d̂

−1
b̂

T
, (A3)

and
ˆ̃a = â − b̂d̂

−1
b̂

T
. (A4)

Then, Equation (20) becomes

ρ1
t (q1) =

1
(πh̄c)2 exp

(
− 1

h̄c
qT

1
ˆ̃aq1

) ∫
dq̃2 exp

(
− 1

h̄c
q̃T

2 d̂q̃2

)
. (A5)

The integrals can be performed after introducing the integration variable transformation
q̃2 → R̂2q̃2, with

d̂ = R̂T
2 Λ2R̂2, Λ2 =

(
d1 0
0 d2

)
, (A6)

yielding

ρ1
t (q1) =

1
πh̄c

1√
det
(

d̂
) exp

(
− 1

h̄c
qT

1
ˆ̃aq1

)
. (A7)

Using that det(At) = 1 = det
(

d̂
)

det
(

ˆ̃a
)
, one has

∫
dq1

(
ρ1

t (q1)
)2

=
det
(

ˆ̃a
)

(πh̄c)2

∫
dq1 exp

(
− 2

h̄c
qT

1
ˆ̃aq1

)
=

1
2πh̄c

√
det( ˆ̃a) =

1
2πh̄c

1√
det(d̂)

, (A8)

which leads to Equation (24).
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Abstract: Quantum graphs are ideally suited to studying the spectral statistics of chaotic systems.
Depending on the boundary conditions at the vertices, there are Neumann and Dirichlet graphs. The
latter ones correspond to totally disassembled graphs with a spectrum being the superposition of
the spectra of the individual bonds. According to the interlacing theorem, Neumann and Dirichlet
eigenvalues on average alternate as a function of the wave number, with the consequence that the
Neumann spectral statistics deviate from random matrix predictions. There is, e.g., a strict upper
bound for the spacing of neighboring Neumann eigenvalues given by the number of bonds (in units
of the mean level spacing). Here, we present analytic expressions for level spacing distribution
and number variance for ensemble averaged spectra of Dirichlet graphs in dependence of the
bond number, and compare them with numerical results. For a number of small Neumann graphs,
numerical results for the same quantities are shown, and their deviations from random matrix
predictions are discussed.

Keywords: quantum graphs; interlacing theorem; random matrix theory

1. Motivation

Quantum graphs are composed of bonds which are connected with each other at
vertices. Along the bonds wave propagation is governed by the Schrödinger equation
without potential and boundary conditions depending on the details of the coupling at
the vertices. Quantum graphs were first introduced by Pauling [1] in the context of free
electron models of organic molecules. Later, they were studied intensely in physics [2] and
mathematics [3], and experimentally implemented in correspondingly-shaped microwave
networks [4]. They are conceptually simple, but still complex, and there is a straightforward
symbolic alphabet to classify the periodic orbits. Casati and coworkers [5] suggested that
the universal features of the spectra of chaotic systems might be described by random
matrix theory (RMT), which later was expressed by Bohigas, Giannoni, and Schmit [6] in
the form of a conjecture. Using supersymmetry techniques, Gnutzmann and Altland [7]
proved the conjecture for the two-point correlation function for fully connected graphs with
incommensurate bond lengths. Their result was generalized to all correlation functions
by Pluhař and Weidenmüller [8]. Just as for billiard systems [9], there is a one-to-one
correspondence between a quantum graph and the corresponding microwave networks,
which has been used, in particular, by Sirko and coworkers in numerous experiments to
study spectral and scattering properties of microwave graphs (see e.g., Ref. [4]).

In a recent microwave experiment in tetrahedral graphs [10], however, we noticed that
one important aspect is missing in the above scenario. It is hidden in the structure of the
equation system determining the graph spectrum. Using energy and current conservation
(the Kirchhoff rules in experimental networks), one arrives at a secular equation [2]

V

∑
m=1

hnm ϕm = 0 , (1)

Entropy 2023, 25, 109. https://doi.org/10.3390/e25010109 https://www.mdpi.com/journal/entropy
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where the sum runs over all vertices V, and ϕm is the potential at vertex m. In the ex-
periment, the bonds are connected by ordinary T junctions corresponding to Neumann
boundary conditions. For this situation, the elements of the secular matrix h are given by

hnm = −δnm ∑
m′

cot klnm′ +
1

sin klnm
, (2)

where the lnm are the lengths of the bonds connecting vertices n and m, and k is the
wave number. For the homogeneous equation system (1) to have non-trivial solutions,
the determinant of h(k) has to vanish,

|h(k)| = 0 . (3)

The roots kn of the equation generate the spectrum of the graph. It will be called “Neumann”
spectrum in the following since the T junctions at all vertices obey Neumann boundary
conditions. On the other hand, hnm becomes singular, whenever klnm is an integer multiple
of π. This situation corresponds to a totally disassembled graph with a spectrum being the
sum of the spectra of all individual bonds with Dirichlet boundary conditions at both ends,
thus the vertices have no influence any longer. This “Dirichlet” spectrum hence appears
via the poles of |h(k)|, whereas the Neumann spectrum is given by the zeros of |h(k)|. In the
following, all lengths will be assumed to be incommensurable to avoid degeneracies of the
Dirichlet spectrum.

This “spectral duality”, as we termed it in our previous publication [10], has important
consequences for the spectral statistics. The cause is the interlacing theorem (see, e.g., Chap-
ter 3.11 of Ref. [3]): If the boundary conditions at one vertex of a graph are changed from Neumann
to Dirichlet, or somewhere in between, the eigenvalues of the original and the new graph appear
strictly alternating.

To move from the Neumann to the Dirichlet spectrum for a complete graph, the bound-
ary conditions have to be changed one after the other at all vertices, not just at one of them.
Now, there is no longer a strict alternation in the sequence of the respective eigenvalues,
but still a strong correlation remains—the maximum number of Neumann eigenvalues
confined between two successive Dirichlet ones is given by the number of vertices V,
and vice versa.

The mean density of states for a graph of a total length of ltot is given by

ρ̄(k) =
ltot

π
. (4)

For a graph with B bonds and a given total length, the maximum level spacing is found
for the limiting case where all bonds are equal. For this case, the Dirichlet spectrum is
B-fold degenerate, and the maximum distance between neighboring eigenvalues, in units
of the mean level spacing, is just smax = B. Due to the interlacing theorem, the same
must be true for the Neumann resonances. There is hence a cut-off in the level spacing
distribution p(s) at smax = B, at the latest, both for the Dirichlet and the Neumann spectrum.
Consequences of spectral interlacing for the number variance have been discussed already
in our previous paper [10].

Thus, there are clear deviations from the RMT expectation for small graphs. This is
not in contradiction with the proofs mentioned in the beginning that the spectra of graphs
with irrational length ratio do exhibit RMT behavior, since these proofs work in the limit
of infinitely large graphs only. From the practical point of view this is of little help since
numerical, as well as experimental, studies are necessarily restricted to comparatively
small graphs.

Therefore, an understanding of the impact of Dirichlet–Neumann interlacing is manda-
tory for the correct interpretation of the spectral statistics in small graphs. Since, in the
moment, a good idea to approach Neumann spectral statistics is still missing, we start with
a more modest task—the interpretation of Dirichlet spectral statistics. Analytic results are
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given for level spacing distribution and number variance for a random superposition of
lattice fence spectra and compared with numerical results. For the Neumann spectra, we
restrict ourselves to an illustration of the fingerprints of spectral interlacing in level spacing
distribution and number variance, but have to leave the theoretical interpretation to future
papers. We do not discuss experimental results from microwave graphs in the present
paper. This remark may be necessary since probably this is exactly what readers do expect
from our group.

2. Dirichlet Graphs

For Dirichlet graphs, there are Dirichlet boundary conditions at each end of all bonds,
thus the bonds are not coupled at the vertices and the spectrum corresponds to a superposi-
tion of B separated bonds. Here, we present analytical and numerical results of the spectral
statistics for ensemble-averaged Dirichlet graphs. Following the usual practice, the mean
density of states ρ̄(k) = ltot/π was kept constant and normalized to one, meaning a total
length of ltot = π for all graphs entering the average. For the numerics, the lengths had
been created by generating B − 1 random numbers rn between 0 and π, and by taking the
appearing B segments as lengths ln. The procedure yields pB(l1, . . . , lB) =

1
πB−1 δ(∑ ln − π)

for the joint length probability. The ln are hence uniformly distributed on the interval 0 to
π with the constraint ∑ ln = π. Integrating out all ln but one obtains the distribution

pB(l) =
B − 1
πB−1 (π − l)B−2 (5)

for the remaining l, being constant only for B = 2. The derivation and a plot of the length
distributions can be found in Appendix A.

Alternatively, one could think of taking B lengths l′n from an interval between 0 and 1,
and afterward, normalizing each length via ln = πl′n/ ∑B

n=1 l′n to a mean density of one,
i.e., ∑ ln = π. The resulting joint length probability is non-uniform, in contrast to the one
above. For the sake of conciseness, we shall refer in the following to the two respective
ensembles as the uniform and the non-uniform one. The non-uniform approach would be
more in the spirit of the usual unfolding technique used in quantum chaos to make spectra
taken from different systems comparable. For the non-uniform ensemble again, numerical
length distributions are presented in Appendix A. Since it would be hard to obtain analytical
results for the non-uniform ensemble, all analytics and numerics, if not explicitly stated
differently, are for the uniform one.

In the next two subsections, theoretical expressions for nearest neighbor spacing
distribution p(s) and number variance Σ2 are given and compared with numerical data.

2.1. Nearest Neighbor Spacing Distribution for Dirichlet Graphs

To calculate the distribution of nearest neighbors spacings p(s) for the Dirichlet spec-
trum of a graph, we apply a strategy that had been used already by Berry and Robnik [11]
to calculate p(s) for an uncorrelated superposition of two spectra, one associated with the
chaotic part, the other with the regular part of a mixed phase-space system. A key element
in the calculation is the gap probability e(s) describing the probability for a spectral range
of length s to be empty of eigenvalues. The gap probability is related to the level spacing
distribution via

p(s) = e′′(s) , (6)

where a mean level spacing of one has been assumed. Expression (6) is well-known to those
working in the field, but for readers not familiar with the subject, a didactic derivation is
given in Appendix B. For a picket fence spectrum with a mean level spacing of Δs = 1,
the gap probability is given by

e(s) =

{
1 − s, if 0 ≤ s ≤ 1 ,
0, s > 1 .

(7)
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e(s) is, in contrast to p(s), multiplicative for superimposed uncorrelated spectra,

e(s) = ∏
n

en(s) , (8)

whence follows for the Dirichlet spectrum of a graph with B bonds of lengths ln, n = 1, . . . , B

eB(k) =
B

∏
n=1

e
(

ln
π

k
)

. (9)

From Equation (9) for eB(k), the Dirichlet level spacing distribution can now be obtained
by taking the second derivative, see Equation (6). The Dirichlet level spacing distribution
has already been calculated by Barra and Gaspard [12], who did not follow, however,
the approach of Berry and Robnik [11]. Their derivation therefore is much less concise and
considerably longer then the present one, see the appendix of [12].

Expression (9) has to be averaged over all different realizations of ln with the constraint
that the total length ltot is constant

B

∑
n=1

ln = ltot . (10)

with the substitution sn = ln
π k, the constraint becomes

s =
B

∑
n=1

sn =
ltot

π
k . (11)

Thus, s is the wave number in units of the mean level spacing π/ltot. In the following we
shall use the letter s exclusively for spectra with a mean level spacing of Δs = 1. Now the
average can written as

〈eB(s)〉 =
(B − 1)!

sB−1

∫ s

0
ds1e(s1)

∫ s−s1

0
ds2e(s2) · · ·

∫ s−s1−···−sB−2

0
dsB−1e(sB−1)

· e(s − sB−1 − · · · − s1)

=
(B − 1)!

sB−1 wB(s) , (12)

where wB(s) is given by

wB(s) =
∫ s

0
ds1e(s1)

∫ s−s1

0
ds2e(s2) · · ·

=
∫ s

0
ds1e(s1)wB−1(s − s1) , with w1(s) = e(s) . (13)

The factorial in Equation (12) reflects the number of possible l sequences to do the average.
Equation (13) can be used to calculate wB(s) iteratively. For B = 2, e.g., one obtains

w2(s) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

s∫
0

ds1e(s1)e(s − s1) = s − s2 + 1
6 s3 , s < 1 ,

1∫
s−1

ds1e(s1)e(s − s1) =
4
3 − 2s + s2 − 1

6 s3 , 1 < s < 2 ,

0 , s > 2 ,

(14)
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where the limits of integration in the different s windows take care of the cut-off of e(s).
With help of Equations (12) and (6), we now obtain for the level spacing distribution

p2(s) =

⎧⎪⎪⎨⎪⎪⎩
1
3 , 0 < s < 1 ,
8 − x3

3x3 , 1 < s < 2 ,

0 , s > 2 .

(15)

In this way, the pB(s) may be obtained iteratively, resulting in formulas with a com-
plexity increasing step by step.

A more direct approach takes advantage of the fact that the integral in Equation (13) is
nothing but a convolution. In such a situation, Laplace transform techniques are the method
of choice. Applying a Laplace transform to Equation (13), the convolution theorem yields

ŵB(λ) = ê(λ)ŵB−1(λ) , (16)

where
ŵB(λ) = L[wB(s)] =

∫ ∞

0
wB(s)e−λsds (17)

and
ê(λ) = L[e(s)] =

∫ ∞

0
e(x)e−λxdx =

1
λ2

[
e−λ − 1 + λ

]
(18)

are the Laplace transforms of w(s), and e(s), respectively. Iterating Equation (16), one gets

ŵB(λ) = [ê(λ)]B , (19)

whence wB(s) is obtained via an inverse Laplace transform

wB(x) = L−1(ŵB(λ)) . (20)

The inverse Laplace transform can be done with the result

wB(s) =

⎧⎨⎩
0 , s > B ,

�s 
∑

m=0

B
∑

l=m
cB

ml(−1)l−m(s − m)l+B−1 , s < B ,
(21)

where �s denotes the largest integer ≤ s and

cB
ml =

B!
m!(l − m)!(B − l)!(B + l − 1)!

. (22)

Further details can be found in Appendix C.
To verify our results, we compare the analytical results with numerical simulations. In

Figure 1, the histograms for B = 2 to 6 and 100 are shown together with the corresponding
theoretical predictions in a linear, and in Figure 2 in a logarithmic scale. All distributions
show the expected cut-off at smax = B. There is a perfect agreement between numerics and
theory. Note the discontinuity for B = 2 at s = 1, which for larger B is smoothed out and
vanishes for B → ∞, where an an exponential decay is expected, corresponding to a Poisson
distribution. This can be seen in Figures 1f and 2f, showing the results for B = 100. There
are still deviations from the exponential behavior as can be seen in the inset of Figure 2f,
showing the same results over a larger s range. Still the analytic solution matches better. In
Appendix D, numerical findings are presented for the non-uniform ensemble.
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Figure 1. The distribution of nearest neighbor spacings of the Dirichlet graphs for different numbers
of bonds B = 2 (a), 3 (b), 4 (c) , 5 (d), 6 (e) , 100 (f) in linear scale. The solid lines correspond to numer-
ical simulations taking into account 109 realization, each of them containing about 900 spacings. The
blue dotted lines corresponds to the theoretical prediction, Equations (6) and (12). In (f), the orange
dashed line corresponds to a Poisson distribution, i.e., an exponential.

Figure 2. The same as Figure 1 but in logarithm scale. In the inset in (f), the abscissa ranges from 0 to
16, and the ordinate from 10−9 to 5.

2.2. Number Variance for Dirichlet Graphs

The number variance, defined as

Σ2(s) = 〈n2〉 − (〈n〉)2 , (23)
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where n is the number of eigenvalues in an interval of length s, yields for the lattice fence
spectrum of a single bond of length l

Σ2(s) = {s}[1 − {s}] , with s =
kl
π

and {s} = s − �s . (24)

It is convenient to express Σ2(s) in terms of its Fourier transform,

Σ2(s) =
1
6
− 1

π2

∞

∑
m=1

cos(2πms)
m2 . (25)

For B bonds with independent bond lengths ln, the spectrum is just the superposition of
the B spectra with bond lengths l1, l2, . . . , lB. The number variation Σ2(s) is additive for
uncorrelated spectra leading to

〈Σ2(s)〉l = B

{
1
6
− 1

π2

∞

∑
m=1

〈cos(2πmsk)〉l
m2

}
(26)

for the ensemble averaged number variance, where sk =
klk
π , and 〈. . . 〉l means the average

over all ln with the constraint ∑ lk = ltot, i.e.,

〈cos(αlk)〉l =

π∫
0

dl pB(l) cos(αl) , (27)

with α = 2mk and pB(l) given by Equation (5).
In Figure 3, the ensemble averaged number variance for Dirichlet graphs are shown

for a number of different bonds. For a single bond (B = 1), there is just one lattice fence
spectrum with a spacing of one. Hence, one observes a periodic modulation with an
average value of 1/6, as described by Equation (25). With increasing B, these oscillations
are damped out more and more, until Σ2(s) eventually approaches the linear increase
expected for a Poissonian ensemble. A good agreement between the simulations and the
analytical predictions given by Equation (27) is found.

Figure 3. Ensemble averaged number variance Σ2(s) for the Dirichlet graphs with B =

1, 2, 3, 6, 9, 12, 15, 100 bonds. The solid lines correspond to the numerical simulations and the blue
dotted lines to the analytical result given by Equation (26). The horizontal green dashed lines mark
the limit Σ2(s) → B/6 for s → ∞. The straight orange dashed line represents the number variance
for integrable systems given by Σ2(s) = s. Note the change of the abscissa scale at s = 5.
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3. Neumann Graphs

Here, we present the results of the Neumann graphs shown in Table 1. We restricted
ourselves to graphs where bonds are connected at least to two other bonds and where there
are no disconnected parts. In addition the verticity VB, the number of bonds that connect at
a vertex, has been assumed to be the same for all vertices. The smallest graph of interest is
the tetrahedron which has been used repeatedly for RMT studies in numerics [13], as well
as in experiments [4,10].

Table 1. The investigated graphs for Neumann boundary conditions at the vertices. The lower part
of the table shows the results of the numerics: (i) sc is the s value, where p(s) drops below 10−5, i. e.,
p(sc) = 10−5, (ii) sm is the s value, where Σ2(s) takes its maximal value, and (iii) Σ2

sat is the limit of
Σ2(s) for s → ∞, obtained by taking the average of Σ2(s) in the range of s between 10 and 20.

Name Tetrahedron f. c. with V = 5 Octahedron Hexahedron

#Bonds B 6 10 12 12

#Vertices V 4 5 6 8

Valency of vertices 3 4 4 3

Fully connected (f. c.) Yes Yes No No

sc 3.19 3.75 3.96 3.56

sm 1.64 2.56 2.88 2.08

Σ2
sat 0.40 0.48 0.51 0.44

3.1. Nearest Neighbor Spacing Distribution for Neumann Graphs

Figure 4 shows level spacing distributions for the graphs presented in Table 1. In
addition, the exact RMT nearest neighbor distribution is shown [14,15]. Whereas the linear
plot suggests a reasonable agreement with the RMT prediction, in the logarithmic plot
for all four graphs, a suppression for large values becomes obvious, with the strongest
suppression for the tetrahedron having the smallest number of bonds. This is in accordance
with the expectation; due to the interlacing theorem, the largest possible distance is given
by the number of bonds, B = 6 for the tetrahedron, and 10 or 12 for the other graphs. The
decay, however, does not increase monotonously with B—it is faster for the hexahedron
than for the octahedron, though the number of bonds is the same, and the decay for the
fully connected five-vertices graph is as fast as for the octahedron, though the number of
bonds is not the same.

Similar deviations of p(s) from RMT have also been observed by Barra and Gas-
pard [12] but not discussed in detail.

To quantify these findings, we determined sc, the value where p(s) drops below 10−5,
i.e., p(sc) = 10−5, close to the limit of our statistical precision. In Figure 4, this s value
reflects the point where p(s) crosses the abscissa. The extracted values are presented in
Table 1. Regrettably, it is impossible to fix the cut-off point by the numerics, which should
be, e.g., smax = 6 for the tetrahedron. This would need more than 1011 spacings, by far
beyond our computer resources.
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Figure 4. Level spacing distributions for the graphs shown in Table 1 in a logarithmic scale, with the
tetrahedron (blue), the fully connected graph with 5 vertices (orange), the octahedron (green), and the
hexahedron (red). The plots were generated by superimposing the results from 52.2 · 106, 14.6 · 106,
6.7 · 106, 35.0 · 106 spacings. The inset shows the same data in a linear scale. In addition, the exact
RMT distribution is plotted (dashed black).

3.2. Number Variance for Neumann Graphs

In Figure 5, the ensemble-averaged number variances for the graphs shown in Table 1
are plotted, exhibiting a saturation at about s = 2 in contrast to the behavior predicted by
RMT. Similar deviations from RMT predictions for the number variance in graphs have
been reported in Refs. [16,17], and for the spectral rigidity in Ref. [4]. For non-experts, we
mention that the spectral rigidity may be looked upon as a smoothed version of the number
variance (the exact definition is technical and not of relevance here [14]). Already in 1985,
Casati and coworkers [18] discovered a saturation of the spectral rigidity in the spectra of
rectangular billiards, which could be traced back by Berry to the influence of the shortest
periodic orbit [19]. In the present case this can not be the explanation. From the shortest
periodic orbit, there should be a saturation of Σ2(s) at about ssat = π/lmin = ltot/lmin.
Since necessarily lmin ≤ ltot/B, periodic orbit theory predicts a saturation of the number
variance not until ssat ≥ B, whereas actually for all graphs the saturation is observed much
earlier at about s = 2. In the lower part of Table 1, the saturation values are given, as well as
sm corresponding to the s value where Σ2(s) is maximal. sm is a convenient tool to quantify
the point of cross-over from a linear increase of Σ2(s) for small s values to a saturation for
s → ∞. There is a clear correlation between sc, sm, and Σ2

sat, collected in the lower part of
Table 1. From the interlacing theorem one would expect a correlation of these quantities
with the bond number, which is observed for the first three graphs presented in the table,
the tetrahedron, the totally connected graphs with five vertices, and the octahedron, but the
hexahedron does not fit into the sequence. In fact, there is a stronger correlation with the
vertex valency, the number of bonds meeting at a vertex. Obviously, the interlacing theorem
alone is not sufficient to describe all these features.
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Figure 5. Number variance Σ2(s) for the tetrahedron (solid blue), the fully connected graph with
5 vertices (dashed orange), the octahedron (dashed dotted green), and the hexahedron (dotted red).
The solid black line correspond to the RMT prediction, the horizontal thin dashed green lines mark
the limiting values obtained from an average of Σ2(s) over the range s = 10 to 20.

A quantitative explanation, in particular, of the saturation values, has to be postponed
to further studies, but there is a qualitative explanation. Semiclassical theory relates RMT
to periodic orbits [20]. Essential ingredients are correlations between orbits and their time-
reversed partners, in case there is time-reversal symmetry [19], and between various types
of self-intersecting orbits with their non-intersecting partners [21,22]. Apart from this, all
orbit lengths are assumed as uncorrelated. This assumption is severely violated in graphs,
where all orbits are composed from a finite number of elements.

4. Conclusions

The implications of spectral interlacing in quantum graphs have been discussed. For
Dirichlet graphs, explicit analytic expressions have been obtained for level spacing dis-
tribution and number variance, and compared with numerical results. For Neumann
graphs, numerical results for the same quantities have been presented, showing clear devi-
ations from RMT predictions due to spectral interlacing. For Neumann graphs, an analytic
description of these features is still missing and has to be left to future work.
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Appendix A. Length Distributions

In most of our numerical studies, the lengths were created by generating B − 1 random
numbers rn between 0 and π, and taking the appearing B segments as lengths li, resulting
in the uniform ensemble introduced in Section 2. This results in a joint probability

p(l1, . . . , lB) = 〈δ(l1 − r1)δ(l2 − r2 + r1) · · · δ(lB − π + rB−1)〉r (A1)

for the lengths l1, . . . , lB. The brackets denote an average over the ri,

〈. . . 〉r =
B−1

∏
i=0

(
1
π

∫ π

0
dri

)
. . . (A2)

with the constraint 0 ≤ r1 ≤ · · · ≤ rB−1 ≤ π. Due to the delta functions, the integrations
are done easily step-by-step with the result

p(l1, . . . , lB) =
1

πB−1 δ

(
π −

B

∑
i=0

li

)
. (A3)

The ln are thus equally distributed over the interval 0 to π with the constraint ∑ ln = π.
Integrating over all ln but one, the distribution for a single length l is obtained,

pB(l) =
(B − 1)!

πB−1

π−l∫
0

dl1

π−l−l1∫
0

dl2· · ·
π−l−l1···−lB−2∫

0

dlB−1 δ

(
π − l −

B−1

∑
i=0

li

)
, (A4)

where the factorial takes account of the number of possible sequences to do the integra-
tions. The integrations can be performed iteratively, the result is Equation (5). Figure A1
shows numerically obtained length distributions together with the theoretical curves from
Equation (5). A perfect agreement is found.

Figure A2 shows the same for the non-uniform ensemble but without the analytic.
There are clear differences to the uniform ensemble. In particular, for B = 2, there is a
uniform length distribution for the first ensemble, whereas for the second one, there is a
cusp in the distribution for l = π/2. We did not try to calculate analytic expressions for the
length distribution for the latter case, they are not needed in the present context.

Figure A1. Distribution of lengths for the uniform ensemble in a linear (a) and a logarithmic (b)
scale, for B = 1, . . . 10, and 100 numbers of bonds, using 107 realizations, shown as colored solid lines.
The blue dotted lines correspond to the analytic expression (5). With increasing B the distribution
concentrates more and more at l values close to 0.
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Figure A2. The same as in Figure A1, but for the non-uniform ensemble, and without analytical
expression.

Appendix B. Derivation of Equation (6)

The relation between gap probability e(k) and level spacing distribution p(k) is ob-
tained as follows (see, e.g., Section 3.2.2 of Ref. [23]):

The difference (e(k)− e(k + Δk)) may be interpreted as

e(k)− e(k + Δk) = h(k)ρΔk . (A5)

Here, h(k) is the one-sided gap probability, namely the probability for an interval of length
s to be empty of eigenvalue, and an eigenvalue at one end of the interval, let us assume the
lower one. ρΔk is the probability to have an eigenvalue in the interval Δs, where ρ is the
mean density of states. It follows

h(k) = −1
ρ

e′(k) . (A6)

Furthermore, [h(k)− h(k + Δk)] may be interpreted as the probability to have one eigen-
value at the lower end and the next nearest one between k and k + Δk, i.e.,

h(k)− h(k + Δk) = p(k)Δk , (A7)

whence follows
p(k) = −h′(k) , (A8)

where p(k) is the probability density for an interval to be empty of eigenvalues, and an
eigenvalue on each side, i.e., the nearest neighbor spacing distribution.

Combining Equations (A6) and (A8), one obtains the wanted relation between e(k)
and p(k),

p(k) =
1
ρ

e′′(k) , (A9)

reducing to Equation (6) for a spectrum with a mean density ρ = 1. For a graphical
illustration see Figure A3.
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Figure A3. (a) Graphical illustration of e(k), h(k), p(k) (from top to bottom). (b) e(s), h(s), p(s) for a
lattice fence spectrum with spacing Δs = 1.

Appendix C. Calculation of the Inverse Laplace Transform (20)

Using the standard formula for the inverse Laplace transform Equation (20) yields

wB(x) =
1

2πi

i∞+a∫
−i∞+a

dλ
1

λ2B

(
e−λ − 1 + λ

)B
eλx (A10)

=
1

2πi

B

∑
k=0

(
B
k

) i∞+a∫
−i∞+a

dλ

λ2B eλ(x−k)(λ − 1)B−k .

The path of integration has to be performed to the right of all singularities of the
integrand. The only possible singularity is at λ = 0, hence a has to be positive real. The
path of integration can be closed at infinity by a large semi-circle either to the left, for x > k,
or to the right, for x < k.

For x < k, the integration loop encloses no singularities, i.e.,
∮

dλ · · · = 0, for x > k
the integration can be performed by means of the residuum method resulting in

wB(x) =
kmax

∑
k=0

(
B
k

)
1

(2B − 1)!
∂2B−1

∂λ2B−1

[
eλ(x−k)(λ − 1)B−k

]∣∣∣
λ=0

, (A11)

where kmax = Min(B, �x ). For x > B, Equation (A11) yields

wB(x) =
1

(2B − 1)!
∂2B−1

∂λ2B−1

B

∑
k=0

(
B
k

)[
eλ(x−k)(λ − 1)B−k

]∣∣∣∣∣
λ=0

(A12)

=
1

(2B − 1)!
∂2B−1

∂λ2B−1

[(
e−λ − 1 + λ

)B
eλx
]∣∣∣∣

λ=0
= 0 ,

since (e−λ − 1 + λ) = O(λ2). For x < B, the sum in Equation (A11) runs from 0 to �x ,
and after a number of elementary steps one arrives at Equation (21).

Appendix D. Dirichlet Level Spacing Distributions for the Non-Uniform Ensemble

To illustrate the difference between the two ensembles introduced in Section 2, we
present here numerical results for the level spacing distribution for the non-uniform en-
sembles. Figures A4 and A5 show the results in linear and logarithmic scale. In addition,
the analytical curves for the uniform ensemble are plotted. Not surprisingly, there are
deviations in detail, but the qualitative behavior, in particular, the discontinuities for integer
values of s, and the cut-off at s = B is the same in both cases. Note that the non-uniform
ensemble approaches the Poisson limit faster than the uniform one, see inset of Figure A5f.

361



Entropy 2023, 25, 109

Figure A4. Level spacing distribution for the non-uniform ensemble in linear scale for different
number of bonds B = 2 (a), 3 (b), 4 (c) , 5 (d), 6 (e) , 100 (f). The blue dotted lines correspond to the
analytic results for the uniform ensemble.

Figure A5. The same as Figure A4, but in a logarithmic scale. In the inset in (f), the abscissa ranges
from 0 to 16, and the ordinate from 10−9 to 5.
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Abstract: We analyze the classical and quantum dynamics of the driven dissipative Bose–Hubbard
dimer. Under variation of the driving frequency, the classical system is shown to exhibit a bifurcation
to the limit cycle, where its steady-state solution corresponds to periodic oscillation with the frequency
unrelated to the driving frequency. This bifurcation is shown to lead to a peculiarity in the stationary
single-particle density matrix of the quantum system. The case of the Bose–Hubbard trimer, where
the discussed limit cycle bifurcates into a chaotic attractor, is briefly discussed.

Keywords: open quantum system; non-linear dynamics; chaotic attractors

1. Introduction

In the present work, we analyze the dynamics of the two-site driven dissipative Bose–
Hubbard (BH) model. Similar to the conservative two-site BH model, which provides a
model for the Josephson oscillations and the phenomenon of self-trapping [1–4], the driven
dissipative BH systems model a number of phenomena in open quantum systems. For ex-
ample, the one-site system, which is nothing else than the driven dissipative non-linear
oscillators, is the paradigm system for quantum bistability (see Ref. [5] and references
therein). Extending the system to two sites enriches its dynamics and drastically com-
plicates the classical bifurcation diagram [6,7], which poses the problem of a quantum
signature of these bifurcations [8,9]. Finally, the classical three-site BH system can show the
chaotic attractor that brings us to the problem of the dissipative Quantum Chaos [10,11].
We mention that nowadays the few-site open BH model can be and has been realized
experimentally by using different physical platforms, among which the most successful are
exciton–polariton semi-conductor systems [4,12,13] and super-conducting circuits [14–17].
In what follows, we theoretically analyze the two- and three-site driven dissipative BH
model by keeping in mind laboratory experiments on photon transport in the chain of
transmons, which are micro-cavities coupled to Josephson’s junctions. The presence of
Josephson’s junction introduces an effective inter-particle interaction for photons in the cav-
ity and, thus, each transmon can be viewed as a quantum non-linear oscillator, see Figure 1.
We mention that in the present work we do not try to relate the model parameters to the
system parameters used in one or the other laboratory experiment. In this sense, the model
depicted in Figure 1 captures only the general scheme of these experiments, where quan-
tum non-linear oscillators are arranged in the ‘transmission line’ and one measures the
amplitude of the transmitted signal, i.e., the current of the microwave photons.
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365



Entropy 2023, 25, 117

Figure 1. Pictorial presentation of the considered model. The figure shows two coupled non-linear
micro-cavities with three photons in the first cavity and two photons in the second cavity. It is assumed
that the microwave photons are injected into the first cavity by using a generator of the microwave
field, and the transmitted photons are absorbed with some probability by a measurement device.

2. Quantum Dynamics

We consider two coupled transmons where the first transmon is excited by a mi-
crowave generator and the transmitted signal is read from the second transmon. The gov-
erning equation for the system density matrix R̂ reads [13,16]

∂R̂
∂t

= − i
h̄
[Ĥ, R̂]− γ

2

(
â†

2 â2R̂ − 2â2R̂â†
2 + R̂â†

2 â2

)
, (1)

where γ is the decay constant proportional to the absorption rate. Using the rotating wave
approximation, the Hamiltonian Ĥ in Equation (1) has the form

Ĥ = −h̄Δ
2

∑
�=1

n̂� −
h̄J
2

(
â†

2 â1 + h.c.
)
+

h̄2U
2

2

∑
�=1

n̂�(n̂� − 1) +

√
h̄Ω
2

(â†
1 + â1) , (2)

where â† and â are the creation and annihilation operators with the commutation relation
[â, â†] = 1, n̂� is the number operator, Ω is the Rabi frequency, Δ the detuning defined as
the difference between the driving frequency and the cavity eigen-frequency, J the coupling
constant, U the microscopic interaction constant, and h̄ is the dimensionless Planck constant
which determines how close is the system to its classical counterpart. For quantum systems
with the conserved number of particles N, one can define the dimensionless Planck constant
as h̄ = 1/N. In our case, where the number of particles is not conserved, h̄ is just the scaling
parameter that leaves invariant the classical dynamics. We focus on the case h̄ � 1 where
the quantum dynamics shows similarities with the classical dynamics. In the opposite limit
h̄ > 1 the system dynamics is dominated by the multi-photon resonances which have no
classical analog.

Our main object of interest is the single-particle density matrix (SPDM) ρ̂ which is
defined as follows,

ρ�,m(t) = Tr[â†
� âmR̂(t)]. (3)

The diagonal elements of the SPDM obviously determine the populations of the sites,
while off-diagonal elements determine the current of Bose particles (photons) between the
sites. We find the stationary SPDM for different Δ, which will be our control parameter,
by using two methods: (i) by evolving the system for fixed Δ for a long time sufficient to
reach the steady-state regime, and (ii) by sweeping Δ in the negative direction starting from
a large positive Δ. In both cases, the initial condition corresponds to the empty system,
i.e., ρ̂(t = 0) = 0. The obtained results are depicted in Figure 2. It is seen in Figure 2 that
stationary occupations of the chain sites (i.e., the mean number of photons in transmons)
show a kind of plateau in the certain interval of Δ. Notice that this plateau is absent for the
one-site BH model. It is argued in the next section that this peculiarity is a signature of the
attractor bifurcation which one finds in the classical counterpart of the system (2).
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Figure 2. The mean number of bosons in the BH dimer as the function of the detuning Δ. The blue
and red lines correspond to the first and second sites, respectively. (a) Quasi-adiabatic passage with
the sweeping rate dΔ/dt = 0.0012. (b) Steady-state solution for different Δ. The system parameters
are J = 0.5, U = 0.5, Ω = 0.5, h̄ = 1/4, γ = 0.2.

3. Classical Dynamics

The classical (mean-field) dynamics of the system is governed by the equations

iȧ1 = (−Δ + U|a1|2)a1 − J
2

a2 +
Ω
2

iȧ2 = (−Δ + U|a2|2)a2 − J
2

a1 − i
γ

2
a2 (4)

where a� are complex amplitudes of the local oscillators. The numerical simulations were
performed by using the fourth-order Runge–Kutta method. It is found that for non-zero γ
the system (4) relaxes in course of time to some attractor which determines the system’s
stationary response to the external driving. In what follows, we shall be interested only
in attractors whose basin contains the point a = 0. For Δ < 0.48 and Δ > 0.77, we found
these attractors to be simple focuses (in the rotating frame), where the populations |a�(t)|2
approach their stationary values depicted in Figure 3a by the blue and red solid lines.
However, in the interval 0.48 < Δ < 0.77 these simple attractors bifurcate into the limit
cycle, where the steady state solution of Equation (4) corresponds to periodic oscillations of
the oscillator amplitudes with the frequency ν = ν(Δ) not related to the driving frequency,
see Figure 3b. (Bifurcation of a simple attractor into a limit cycle in the driven dissipative
two-site BH system was discussed earlier in Refs. [8,9] where the authors considered a
specific model with non-local driving and dissipation. Additionally, when addressing the
quantum system, the authors focussed on the transient dynamics for particular initial
conditions but not on the stationary regime). In addition to this characteristic frequency, we
also introduce the mean squared amplitudes |a�|2 where the bar denotes the time average.
We depict these quantities in Figure 3a by using the same line styles. Comparing now
Figures 2b and 3a we conclude that bifurcation of the classical attractor is well reflected in
the quantum dynamics of the BH dimer already for h̄ = 1/4.

367



Entropy 2023, 25, 117

-2 -1 0 1 2 3 4
0

2

4

6

0 20 40 60 80 100
0

5

10

15

Figure 3. (a) The mean number of bosons in the BH dimer averaged over time as a function of
detuning Δ. (b) System dynamics for Δ = 0.5. Shown are the squared amplitudes of the local
oscillators as the function of time.

4. Dissipative BH Trimer

We repeated calculations for the BH trimer. The dynamics of the trimer is controlled
by the following set of equations of motion

iȧ1 = (−Δ + U|a1|2)a1 − J
2

a2 +
Ω
2

iȧ2 = (−Δ + U|a2|2)a2 − J
2
(a1 + a3)

iȧ3 = (−Δ + U|a3|2)a2 − J
2

a2 − i
γ

2
a3 (5)

In the trimer, the new feature is that the above-discussed limit cycle bifurcates into a
chaotic attractor, see the upper panel in Figure 4, which shows the Lyapunov exponent
of the steady-state solution as the function of the control parameter Δ. An example of
this ‘stationary’ solution is given in the lower panel in Figure 4 for Δ = 0.406 where the
Lyapunov exponent is maximal.
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-0.2
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0
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2

4

Figure 4. (a) Lyapunov exponent of the ‘stationary’ solution of the driven dissipative BH trimer as a
function of the detuning Δ. (b) System dynamics for Δ = 0.406. Shown are the squared amplitudes of
the local oscillators as the function of time.
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5. Summary

We showed that attractor bifurcations in the driven dissipative BH system can be well
observed already for the value of the effective Planck constant h̄ = 1/4. In the laboratory
experiment, the value of this effective constant is determined by the ratio of the interaction
constant U (non-linearity of the transmon spectrum) to the Rabi frequency Ω, which is
proportional to the amplitude of the microwave field. Clearly, the larger the Rabi frequency
is, the more photons are simultaneously present in the system. The presented in this work
results indicate that the quantum BH dimer reproduces the dynamics of the classical BH
dimer when the mean number of photons is of the order of 10.

To conclude, we would like to briefly comment on the experiments where the detuning
Δ is monotonically swept in time. In the present work, we restricted ourselves by the case
where Δ is swept in the negative direction. If the sweeping direction is inverted, the result
may strongly deviate from that shown in Figure 2a due to quantum hysteresis. Within the
classical approach, the positive sweeping populates the other attractor whose basin excludes
the point a = 0 [18]. In the quantum approach, however, this attractor is a metastable state
with a finite lifetime. Thus, unlike the case of negative sweeping, the result of a quasi-
adiabatic passage in the positive direction strongly depends on the sweeping rate dΔ/dt.
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Abstract: Weak scattering in a random disordered medium and the associated extreme-event statistics
are of great interest in various physical contexts. Here, in the context of non-relativistic particle
motion through a weakly correlated random potential, we show how extreme events in particle
densities are strongly related to the stretching exponents, where the ’hot spots’ in the intensity profile
correspond to minima in the stretching exponents. This strong connection is expected to be valid for
different random potential distributions, as long as the disorder is correlated and weak, and is also
expected to apply to other physical contexts, such as deep ocean waves.

Keywords: random scattering; random potential; extreme event statistics

1. Introduction

1.1. Rogue Waves

In the past few decades, many encounters with extreme oceanic waves have been
publicized and documented. These historical records include a 25.6 m wave that hit the
Draupner oil platform in the North Sea in 1995, two ships that suffered damage at 30 m
above sea level from a single wave in the South Atlantic in 2001, and the cruise liner
Norwegian Dawn that met a series of three 21-m waves off the coast of Georgia in 2005.
Such waves, known as freak ocean waves, or rogue waves, are of extreme height relative to
the typical wave in a given sea state. Satellite images taken in 2001 and analyzed as part of
the European MaxWave project [1] detected ten waves above 25 m in height, suggesting
that such waves commonly occur in the world’s oceans.

Freak waves have attracted much interest over the years, especially for quantitative
predictions for freak wave probability distributions. Commonly known approaches to
model freak waves include the Longuet–Higgins random sea model [2], the Nonlinear
Schrödinger Equation (NLS) and its extension in the Dys equation [3,4], and ray dynam-
ics in the work of White and Fornberg [5]. The Longuet–Higgins random sea model is
based on random linear superposition of many plane waves with different directions and
wavelengths, where (unlucky) constructive interference leads to an extreme event. By the
central limit theorem, in this model the sea surface height at any spatial location behaves
as a Gaussian random variable with some standard deviation σ. In the limit of a narrow
frequency spectrum, the crest height then follows a Rayleigh distribution: the probability
of crest height exceeding H is given by

PRayleigh(H) = e−H2/2σ2
. (1)

According to observational data [1], this purely stochastic Rayleigh model significantly
underestimates the actual probabilities of freak waves. There are also several alternative
theories of the freak wave phenomenon [6].

The NLS or the Dysthe equation works well to incorporate nonlinear effects in the
regime of small or moderate values of wave steepness kH, where k is the wave number.
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Since nonlinear effects scale as a power of the wave steepness, strong nonlinear evolution
is more likely to come from initial conditions with already unusually high waves. In other
words, the tail of the crest height distribution is likely to be influenced by linear triggering
mechanisms, even if subsequent nonlinear development is also significant.

One model that combines such a linear triggering mechanism with nonlinear evolution
is the focusing or refraction of incoming plane waves by random current eddies [5], the
study of which was motivated by the fact that many freak waves have been observed in
regions of strong currents. Whenever a focusing current is present, an incoming plane wave
evolves into caustics or singularities with infinite ray density, which—when smoothed due
to nonzero wavelength and/or nonzero spread in the initial angle or frequency—forms
a repeated and reproducible branched flow pattern. Consequently, freak waves appear
within the ’branches’ of enhanced intensity. Statistics regarding the distribution of crest
heights can be obtained by combining the stochastic random seas picture (given by a local
Rayleigh distribution) and the statistics of ray focusing in the presence of random currents.

Besides extreme waves in the ocean, extreme waves are known to occur in many
other physical systems, governed by different equations of motion, where the waves or
rays are scattered by a weak random potential. Examples of extreme waves and branched
flow have been reported on a wide range of length scales, including the branching of
electron flow [7–11]; amplification of tsunami waves [12–14]; branching of light traveling
through a soap film [15]; and freak waves in optical [16,17], acoustic [18,19], and microwave
propagation [20,21]. These systems share similarities in statistics and scaling relations,
suggesting that a universal theory of scattering in weak random potentials may describe
these different phenomena. Indeed, a search for universality in branched flows through
potentials with differing correlation structures has obtained success [22,23]. The theory
extends naturally to the case of an anisotropic scattering potential [24]. Very recently, a
one-parameter model was shown to describe the behavior of classical branched flow in
a time-dependent, one-dimensional random potential (equivalent to a time-independent
two-dimensional potential for weak scattering), and a two-parameter phase diagram was
shown to describe the corresponding quantum branched flow [25]. A recent overview of
the theory and applications of branched flow appeared in reference [26].

The starting point of our work is similar to the model employed by White and Forn-
berg [5], as developed further in reference [27], so here we begin with a brief review of
that model. The ray dynamics of deep-water surface gravity waves are governed by the
dispersion relation:

ω(�k,�r) =
√

g|�k|+�k · �U(�r) , (2)

where �U(�r) is the time-independent current velocity of root mean square strength u0 and
spatial correlation length ξ. An incoming wave field undergoes weak scattering when
u0 � v (wave speed�v = ∂ω/∂�k) and the scattering angle scales as u0/v after one correlation
length ξ in the forward direction. Eventually, singularities appear as local focusing of the
manifold of initial conditions. The first cusp singularities or ’hot spots’ will appear after a
median travel distance:

y = L ∼ ξ(u0/v)−2/3  ξ , (3)

and at that distance scale, the angular spread of trajectories due to scattering is characterized
by δθ ∼ (u0/v)2/3. The dimensionless ’freak index’ γ that describes the strength of
scattering is defined as γ = δθ/Δθ ∼ (u0/v)2/3/Δθ, where Δθ is the initial angular spread
of trajectories [28].

Ray dynamics is applicable for understanding wave behavior in the semiclassical
regime, kξ � 1, where the potential slowly varies on the scale of a wavelength. In that
regime, the wave-height distribution may be obtained as a convolution of the Rayleigh
distribution, Equation (1), with the distribution of classical ray densities, depending only
on the freak index γ [27].

In the following, we apply analogous methods to the study of Schrödinger evolution
in a two-dimensional random potential, where the ray limit is given by classical Newtonian
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mechanics. The choice of dispersion relation for weak scattering is not important, as the
locations of the first generation of hot spots follow a universal scaling law across various
dispersion relations. This will be further discussed in Ref. [29].

1.2. Density and Stretching Exponents

For ray dynamics in weak random disorder, the relationships between density dis-
tributions and the properties of the disorder have attracted much research interest, and
the location of extreme densities has been the major focus. However, while a random
superposition of waves as in the Longuet–Higgins model [2] corresponds to a swarm of
trajectories, properties of the ray density have not been directly connected to statistics
of the individual propagating ray trajectories. Therefore, we introduce the ’stretching
exponent’—which in the case of parallel ray bundles in one dimension coincides with the
rarefaction exponent introduced by Shaw and Heller [30]—as a way to quantify the degree
of exponential convergence or divergence among nearby ray trajectories, and demonstrate
a strong correlation between stretching exponents and the density. The region with the
highest density is shown to correspond to the strongest focusing as measured by the stretch-
ing exponent distribution, and the strong correlation that first appears in this region is
shown to persist everywhere further along the forward direction.

The strong negative correlation allows the density distribution to be studied from
the perspective of the distribution of stretching exponents. Furthermore, the stretching
exponents are directly connected with individual ray trajectories via the evolving mon-
odromy matrices. The evolving monodromy matrix of an individual ray trajectory can
be obtained from the second derivatives of the random disorder along the trajectory. The
detailed mathematics are discussed in Section 2.

A relationship between extreme ray densities and minimal stretching exponents is
consistent with intuitive expectations—indeed, if one considers the paraxial approximation
and the case where the density at a given point is generated solely by one neighborhood
of rays, then that density will simply be inversely proportional to the stretching factor.
However, in Section 3, we also show that in the region of initial hot spot formation,
the average stretching exponent becomes negative, and this is accompanied by a peak
in the stretching exponent variance, or scintillation index. For a chaotic system with
positive maximal Lyapunov exponent, a negative dip in the average stretching exponents
is quite surprising and demands further investigation. Possible explanations involve the
relationship between the statistics of the stretching exponent and the distribution of second
derivatives of the disorder, which is further discussed in Ref. [31]. In any case, the non-
monotonic behavior of the stretching-exponent statistics with distance greatly enhances the
appearance of hot spots and rogue waves on distance scales given by Equation (3), beyond
what would be expected based on the assumption of a simple exponential stretching
with time.

2. Materials and Methods

In the following study, we focus on a simple example of a Hamiltonian system and
establish a general connection between the ray-stretching exponents and intensity. Instead
of ocean waves refracted by random currents, our model is based on a single-particle
Schrödinger wave function (or, in the ray limit, a non-relativistic particle) scattered by
a random potential field. In the region of weak potential or weak currents, despite the
different dispersion relations, the statistics of the two models should resemble each other
closely [27,29].

A non-relativistic particle moving in a 2D potential follows classical Newtonian me-
chanics:

d�r
dt

=�k,
d�k
dt

= −∂�V(�r)
∂�r

, (4)

where energy E = 1
2 |�k|

2
+ V(�r) (without loss of generality, taking h̄ = m = 1) is conserved.

In the following analysis, V(�r) is considered to be a random time-independent potential
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with zero average value, variance σ2 = V(�r)2, and some two-point spatial correlation
function C(�r −�r′) characterized by correlation length ξ. In practice, the potential V(�r)
may be constructed by a convolution between the shape of one potential bump U(�r) and a
random noise g(�r):

V ∼ F−1[F [g] · F [U]] , (5)

and then normalized to have variance σ2. Here g(�r) = ∑i hiδ(�ri) (with hi random, indepen-
dent, and having zero mean), F represents a Fourier transform, and the bump shape is
related to the correlation function C as |F [U]|2 ∼ F [C] [29]. A sample random potential
constructed using (256)2 Gaussian bumps is shown in Figure 1a.

Figure 1. (a) A Gaussian random potential generated on a 256 by 256 grid with zero mean, standard
deviation σ = 0.1, and a Gaussian two-point correlation function with correlation length ξ = 5. The
potential is constructed by starting with (256)2 delta-shaped peaks on a square grid with spacing
unity, and then convolving with a Gaussian, as described in Equation (5). (b,c) The ray density and
stretching exponent of particles scattered in the random potential field shown in (a), but with x and y
rescaled to a 512 by 512 grid. Here (b) shows the particle density I(x, y), with intensity normalized
to unity before scattering, and (c) shows the normalized average stretching exponent α(x, y). The
correlation is clearly negative; i.e., higher densities in panel (b) are associated with a lower stretching
exponent in panel (c).

The initial particles of total energy E are distributed uniformly in the x direction at
y = y0, with initial angles θ0 relative to the y direction drawn from a Gaussian distribution
P(θ0) ∼ e−θ0

2/2(Δθ)2
, with a small but finite angular spread Δθ. (The choice of y as the

propagation coordinate is consistent with the convention adopted, for example, in Ref. [27]).
For the equations of motion (4), the scattering strength is determined by the dimensionless
quantity σ/E in place of u0/v. The particle trajectories will form a definite pattern of
particle density for a given realization of the random potential field. Some regions (’hot
spots’) will have above-average particle probability density, and others (’cold spots’) will
have below-average density. Intuitively, the hot spots are more likely to be associated with
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local focusing of nearby particle trajectories, and the defocusing of trajectories will tend to
produce cold spots.

To quantitatively monitor the degree of stretching or focusing, we define the stretching
exponent α as the logarithm of the stretching ratio between nearby trajectories in the x
direction, i.e., in the direction transverse to the main flow direction y:

α(t) = log
(∣∣∣∣ x1(t)− x2(t)

x1(0)− x2(0)

∣∣∣∣) = log
(∣∣∣∣ x1(t)− x2(t)

δx(0)

∣∣∣∣), (6)

where trajectories 1 and 2 are initially parallel but separated by infinitesimal δx(0) in
the x direction. The value of α(t) describes the cumulative divergence or convergence
up to time t, and its time derivative dα(t)/dt gives the rate of exponential divergence or
convergence at time t. The large-time limit of the stretching exponent in this 2D system is
also the maximal Lyapunov exponent. While the concept of Lyapunov exponents is well
established and studied in dynamical systems, the stretching exponent is employed here
to study the behavior of chaotic systems for short or intermediate time scales (on scales
around one Lyapunov time) and in a particular direction in phase space. For parallel ray
bundles in one dimension, α coincides with the rarefaction exponent introduced by Shaw
and Heller [30]. We are interested specifically in focusing or defocusing in the transverse
position coordinate, which is most relevant for fluctuations in the position space density.
Quantities of this type are widely applicable, for example, in semiclassical approximations,
e.g., in the Van Vleck or Gutzwiller semiclassical propagator [32].

Very generally, dynamics in an N-dimensional space are described by the evolution
of the phase-space vector: φ = (φ[1], φ[2], . . . , φ[2N]) = (r[1], r[2], . . . , r[N], k[1], k[2], . . . , k[N]);
and the continuous flow may be considered as the limit of a discrete-time map where the
time step approaches zero. The following analysis makes use of the discrete-time picture.
Consider a map F from time step n to the next step n + 1,

φn+1 = F(φn) . (7)

The iteration of the tangent space is given by the Jacobian matrix:

Kij(φn) =
∂Fi

∂φ(j)
|φ=φn , (8)

so that the shift δn in the phase vector φn is mapped to the next time step K(φn) as

δn+1 = K(φn)δn. (9)

Therefore, the initial perturbation δ0 evolves by a product of Jacobian matrices to δn at time
step n:

δn = Mnδ0 = [K(φn−1)K(φn−2) . . . K(φ0)]δ0, (10)

where Mn is the monodromy or stability matrix. Similarly, in the continuous-time limit,
dφ/dt = f (φ), the stability matrix M(t) is given by dM(t)/dt = J(φ(t))M(t) where
Jij = d fi/dφj|φ=φ(t) or dδ(t)/dt = J(φ(t))δ(t).

In the large-time limit, the 2N eigenvalues of M can be written in an exponential
form: {eλ1t, eλ2t, . . . , eλ2N t}, where the spectrum of Lyapunov exponents {λ1, λ2, . . . , λ2N}
is independent of time. The matrix M has several important properties. It generates a
linear, canonical transformation, and the effective dimension of the spectrum is reduced
from 2N to N, with a determinant equal to unity. Moreover, every independent constant of
motion causes one pair of eigenvalues to become unity or one pair of exponents to vanish.
Thus, in our 2D Hamiltonian model, with energy conserved, the eigenvalues of M are
{eλt, e−λt, 1, 1}, where a single Lyapunov exponent λ completely captures the large-time
behavior of the system.
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On the other hand, the stretching exponent α defined by Equation (6) can also be
viewed as

α(t) = log(|M11(t)|) , (11)

where φ =

⎛⎜⎜⎝
x
y
kx
ky

⎞⎟⎟⎠, and for large time periods, the exponent α(t) is expected to grow linearly

with time:
α(t) = λt (t → ∞) . (12)

However, the first generation of hot spots happens at intermediate time periods, t ∼ λ−1,
well before the stretching exponent α(t) begins to behave linearly. It is this intermediate
behavior of α(t) that is of greatest interest for explaining the formation mechanism of the
most extreme events.

The evolution of the displacement from time t to t + δt can be written out explicitly as

δ

⎛⎜⎜⎝
x
y
kx
ky

⎞⎟⎟⎠
t+δt

= K(t) · δ

⎛⎜⎜⎝
x
y
kx
ky

⎞⎟⎟⎠
t

=

⎡⎢⎢⎣
1 − Vxxδt2 −Vxyδt2 δt 0
−Vxyδt2 1 − Vyyδt2 0 δt
−Vxxδt −Vxyδt 1 0
−Vxyδt −Vyyδt 0 1

⎤⎥⎥⎦ · δ

⎛⎜⎜⎝
x
y
kx
ky

⎞⎟⎟⎠,

(13)

where Vxx = ∂2V
∂x2 , Vyy = ∂2V

∂y2 , and Vxy = ∂2V
∂x∂y are the second derivatives of the po-

tential field V(x, y). Then, Equation (10) gives the monodromy matrix M at time t as
M(t) = K(t − δt)K(t − 2δt) . . . K(δt)K(0). For a specific trajectory, computing M(t) re-
quires the positions of the particle at all the time points, which can only be obtained by
integrating the equations of motion. However, upon ensemble averaging over homoge-
neous random potentials for a given potential variance and given a two-point potential
correlation function, we can consider Vxx, Vyy, and Vxy to be (correlated) random numbers
drawn from appropriate distributions.

Moreover, when the initial angular spread Δθ in the forward y direction is small,
Δθ � 1 rad, the 2D model is analogous to a 1D model where the particle evolves in
phase space (x, k) via a time-dependent random potential line V(x, t) with correlation time
ξ/

√
2E. In the 1D model, the stretching exponent α is likewise defined via the exponential

divergence of two trajectories with neighboring initial positions x(0) and x(0) + δx(0).

3. Results and Discussion

For numerically computing particle trajectories and stretching exponents in the 2D
Hamiltonian model, we generated a Gaussian random potential V(�r) with Gaussian spatial
correlations:

V(�r)V(�r′) ∼ C(�r −�r′) = e−(�r−�r′)2/2ξ2
, (14)

by Fourier convolution, as in Equation (5), and normalized V(�r) to satisfy V(�r) = 0
and V2(�r) = σ2. The choice of a Gaussian-correlated random potential was made for
convenience. The above theoretical discussion does not depend on any specific choice of a
random ensemble, but only on the correlation length scale ξ and strength σ. The effect of
varying the correlation function C is addressed in detail in Ref. [29].

The evolution was performed on a potential field of size 512 by 512 (in arbitrary units),
with correlation length ξ = 10 and a periodic boundary condition in the transverse (x)
direction. A sample potential on a 256 by 256 grid, which was subsequently rescaled to
a 512 by 512 grid for performing trajectory evolution, is shown in Figure 1a. The specific
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value of ξ was arbitrary and served merely to set the scale for the simulation. Without loss
of generality, we set E = 1 (energy). The strength of scattering γ can be controlled either
by varying the potential strength, σ, or by controlling the angular spread, Δθ, in the initial
conditions. To avoid boundary effects, particles were launched from y0 = 40 inside the
potential field and uniformly distributed in the transverse x direction, with initial angles θ0.
The initial phase-space vector for each trajectory was (x, y0, v0 sin θ0, v0 cos θ0), for which

the initial velocity v0 was calculated based on its starting position v0 =
√

2(E−V(x,y0))
m =√

2(1 − V(x, y0)) so that energy was fixed (E = 1) for all trajectories.
Each trajectory was evolved by integrating the equations of motion, Equation (4),

using a fourth order Runge–Kutta integration method. Cubic interpolation was used for
the potential V(�r) when running trajectories. The trajectories were weighted by the angular
spread P(θ0) ∼ e−θ0

2/2(Δθ)2
, and then points along each trajectory were binned using

Gaussian-shaped windows of size ξ̃ to generate a ray density map I(x, y). Gaussian-shaped
binning eliminates any artificial discontinuity in the binned density and effectively smooths
the density data I(x, y) on the scale ξ̃, which must be chosen to be small compared to the
physical correlation scale ξ. A spacing of Δx = 2 in the initial trajectory positions x, an
increment of 1◦ in the initial angle θ0, and Gaussian intensity bins of width ξ̃ = 1 with
spacing 2 on the 512 by 512 grid were seen to be sufficient to achieve convergence in all
the density data. Using initial positions 0 ≤ x0 < 512 with spacing Δx = 2 and initial
angles −15◦ ≤ θ0 ≤ 15◦ with spacing Δθ = 1◦ requires 7936 trajectories; see Figure 1b. For
stronger scattering (larger γ), structures appear at a smaller scale so that the convergence
of the density data requires a greater number of trajectories.

A typical density map for initial angular spread Δθ = 5◦ with a potential of strength
σ = 0.1 is shown in Figure 1b, where the first generation of caustics forms around
80 < y < 160, and the corresponding freak index is γ = 2.5. Note that the particle
density I(x, y) is normalized to unity, I(x, y) = 1, before scattering.

Next, we demonstrate the connection between the density and the stretching exponent
α(t). For every original trajectory launched at (x, y0), we launched a ’twin’ trajectory
in the same potential at (x + δx(0), y0). Then, α(t) was computed for each trajectory
according to Equation (6); the trajectories were weighted by the initial angular spread
P(θ0) ∼ e−θ0

2/2(Δθ)2
; and the stretching exponents were eventually mapped into the same

grid that was used for density data I(x, y) to produce an average position-dependent
stretching rate α(x, y). Again, the binning was performed using a Gaussian window
function, with a width chosen appropriately for data smoothing. Due to the long-term
exponential stretching trend (Equation (12)), the initial separation δx(0) must be chosen
sufficiently small so that the separation between twin trajectories remains small during
the whole time evolution. In the following, we used δx(0) = 10−5. We have confirmed
that our results are independent of δx(0) as long as εm � δx(0) � ξ, where ξ = 10 is the
correlation scale of the potential and εm represents machine precision.

First, we notice the obvious connection between the density map Figure 1b and the
stretching exponent map Figure 1c. The correlation is clearly negative; i.e., higher densities
in Figure 1b are associated with a lower stretching exponent in Figure 1c. Indeed, every
major hot spot (maximum) of the density map corresponds visually to a minimum at the
same location in the stretching exponent map. This is consistent with our prediction that
extreme density events would occur where the trajectories focus most significantly. Indeed,
as noted above in Section 1.2, if we assume the paraxial approximation and further assume
that the density at any given point (x, y) is all coming from parallel rays originating in the
neighborhood of one initial point (x0, y0), then the proportionality I(x, y) ∼ 1/M = e−α

will hold exactly. Of course, in reality, chaotic dynamics leads at sufficient time scales to
caustics and folds in the time evolution, so that the density I(x, y) is given by a sum of
contributions originating at different initial points with different exponents α.

In Figure 2, we show scatter plots of the relationship between I(x, y) and α(x, y)
before (y = 50), during (y = 100 and y = 125), and after (y = 400) the region with the
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strongest density fluctuations. Clearly, the stretching exponent is negatively correlated with
density: The strong correlation grows as the rays encounter the first generation of caustics
and eventually dies off after a few Lyapunov lengths. In the region of the first caustics,
extremely high densities are always associated with most negative stretching exponents,
and the largest stretching exponents lead to the lowest density levels. More specifically, the
particle density scales as

I(x, y) ∼ e−bα(x,y), (15)

with constant coefficient b around the first caustics, as seen in Figure 2b,c. This relationship
relies only on ray dynamics, and apart from the coefficient b, it does not depend on any
specific dispersion relation. At larger time scales (t  λ−1), the stretching exponents
α grow linearly with time, as described by Equation (12), and the density probability
distribution gradually collapses to a Gaussian one. In this regime, the correlation between
the intensity and the stretching exponent declines and eventually disappears. The crossover
to the large-time regime is illustrated in Figure 2d. Nevertheless, in the regime of greatest
interest, i.e., in the first caustic region t ∼ λ−1 where the strongest hot spots are present,
the relationship is very robust.

Figure 2. Scatter plots of density vs. stretching exponent before, during, and after the first generation
of hot spots (around y = 80–130). (a–d) represent data for y = 50 (before), y = 100 (during), y = 125
(during), and y = 400 (after), respectively.

The distribution of the ray density is shown in Figure 3a, where all the density data
points in the region 60 < y < 500 from five realizations of the ensemble are included (while
the trajectories are launched at y = 40 and the computational area extends through y = 512,
a slightly smaller region was used for collecting statistics to avoid possible edge effects). As
mentioned earlier, the bulk of the distribution is close to a Gaussian distribution, whereas
the fatter tail represents events of extreme densities. Then, for Figure 3b, we averaged
the stretching exponents for all the spatial cells whose density values fall within each bin
in Figure 3a. Not only in the area of the first caustics but the density distribution I(x, y)
and stretching exponent distribution α(x, y) in general have a strong negative correlation;
the locations with smaller or more negative stretching exponents are very likely to exhibit
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higher ray densities. Note that the fluctuations after very modest ensemble averaging in
Figure 3b are remarkably small compared to fluctuations for one realization in Figure 2.

Figure 3. (a) Probability distribution of particle density I in the region 60 < y < 500. (b) Average
stretching exponent α in the same region, with each data point corresponding to one bin in panel (a).

To further investigate the relationship between stretching exponent and ray density,
we show in Figure 4 the average and variance of these two quantities as functions of
the forward distance y. Here, for each value of y, we collected data over all transverse
positions x and again used five different realizations of the random potential to reduce
statistical noise.

Figure 4. Evolution of intensity and stretching-exponent statistics as a function of forward travel
distance. (a) Average and variance of the density I(x, y) at forward travel distance y. (b) Average and
variance of the stretching exponent α(x, y) at forward travel distance y.

The average density I(y) increases with the factor (cos θ)−1 as required by probability
conservation of the ray dynamics, where θ is the angle measured from the forward y
direction. In the region of small angular spread, I(y) ∼ (cos θ)−1 ≈ 1 + θ2/2 = 1 +
(Δθ)2/2 + (δθ)2/2, where (Δθ)2 and (δθ)2 are the variances associated with the initial
angular spread and the scattering, respectively. As (δθ)2 increases linearly with forward
distance y, the average intensity grows linearly with the forward distance, as observed in
Figure 4a.

We now turn to the stretching exponent. In the regime of small-angle scattering in the
forward y direction, we have y ≈ v0t, and the stretching exponent α(y) averaged over the
transverse direction must grow linearly with the forward distance y at large distances, in
accordance with Equation (12), with slope λ/v0. Furthermore, at large time scales, we can
consider the process of focusing or defocusing in the transverse direction as a random walk
or diffusive process, which gives rise to fluctuations in the stretching exponent α around
its average value. Thus, the variance in the stretching exponents is also expected to grow
linearly at large distances. The linear growth in both the average stretching exponent and
its variance is observed in Figure 4b.
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Of greater interest, however, is the behavior on the scale of a Lyapunov length v0/λ,
corresponding to 100 < y < 150 in Figure 4b. The marked dip in the average exponent α(y)
at short time scales indicates substantial local focusing, which is consistent with the visual
evidence in Figure 1b. In this same region, we see in Figure 4b strong fluctuations in the
stretching exponent (as measured by the variance), and correspondingly, in Figure 4a, large
fluctuations in the ray density associated with the formation of the first and strongest hot
spots. Here, we note that the density variance is closely related to the scintillation index,
defined as Var(I(y))/(I(y))2, and in our case, I(y) ≈ 1 throughout. Subsequently, the
variance in the density and the scintillation index decline as the number of independent
trajectories contributing to the intensity at a given point grows exponentially when y is
larger than a Lyapunov length, gradually washing out the pattern of hot spots and cold
spots associated with extreme events.

The negativity of the average exponent α at short time scales is rather surprising. This
unexpected behavior can be confirmed analytically using perturbation theory over a small t,
where it turns out that α scales as t3, with a prefactor depending on the correlation function
of the random potential [29].

As the most significant fluctuations in both density and the stretching exponent were
detected in the same spatial region, we confirm that local focusing of trajectories is directly
correlated with the extreme high densities. Future work [29] extends the scaling relationship
of the form (3) based on the scaling of the stretching-exponent statistics.

4. Conclusions and Outlook

We have seen that scattering of non-relativistic particles in a random weak potential
field generates density patterns very similar to those observed for deep water ocean waves
in the work of White and Fornberg [5]. The similarity in the intensity distributions in
different physical contexts suggests the value of a universal perspective on the topic of
scattering or refraction in a weak random disorder. Consequently, we explored the general
connection between the density and stretching exponent in the context of non-relativistic
particle motion. We conclude that the stretching exponent directly correlates with the
density, and the negative correlation arises everywhere, including in the region of the
strongest density fluctuations, and also further along the forward direction. By explicitly
connecting these two quantities, we can treat the stretching exponent as a quantitative
mirror for the intensity.

We also note that particle dynamics in a 2D ray model is analogous to a 1D model
with a time-dependent potential in the regime of small angular spread. Whereas the full
4 by 4 monodromy matrix in the 2D model may be challenging for numerical evolution
and even more so when it comes to an analytical treatment, the 1D model may be simple
enough to obtain quantitative predictions for the distribution of the stretching exponent.
Therefore, we are able to further explore the mechanism and statistics of freak wave events
by studying monodromy matrix statistics in the 1D model [29].

Our calculations here are based on a model where nonlinear effects are absent. The
linear model may be regarded a starting point for a more sophisticated nonlinear anal-
ysis. Nevertheless, nonlinear wave effects become significant only where the intensity
produced by linear mechanisms is already large. It is therefore unlikely that nonlinear
effects would substantially change the strong negative correlation between the density and
stretching exponent.

While the long time behavior of the stretching exponent displays simple linear growth,
the behavior on the scale of the Lyapunov time is of greater interest due to the appearance of
the first generation of hot spots. A surprising minimum in the average stretching exponent
is seen to correspond to a peak in the intensity variance in this regime. Future work [29]
will investigate in much greater detail the statistics of the stretching exponent as a function
of system parameters and distance from the origin, and explore the robustness of the
stretching-exponent statistics with respect to changes in the equations of motion and the
correlation properties of the random scattering potential.
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Abstract: We study the mechanism of scarring of eigenstates in rectangular billiards with slightly
corrugated surfaces and show that it is very different from that known in Sinai and Bunimovich
billiards. We demonstrate that there are two sets of scar states. One set is related to the bouncing
ball trajectories in the configuration space of the corresponding classical billiard. A second set of
scar-like states emerges in the momentum space, which originated from the plane-wave states of
the unperturbed flat billiard. In the case of billiards with one rough surface, the numerical data
demonstrate the repulsion of eigenstates from this surface. When two horizontal rough surfaces
are considered, the repulsion effect is either enhanced or canceled depending on whether the rough
profiles are symmetric or antisymmetric. The effect of repulsion is quite strong and influences
the structure of all eigenstates, indicating that the symmetric properties of the rough profiles are
important for the problem of scattering of electromagnetic (or electron) waves through quasi-one-
dimensional waveguides. Our approach is based on the reduction of the model of one particle in the
billiard with corrugated surfaces to a model of two artificial particles in the billiard with flat surfaces,
however, with an effective interaction between these particles. As a result, the analysis is conducted
in terms of a two-particle basis, and the roughness of the billiard boundaries is absorbed by a quite
complicated potential.

Keywords: scars; localization effects; quantum billiards; rough billiards

1. Introduction

Recently, there has been a sharp increase in articles discussing the occurrence of
ergodicity in physical systems, both classical and quantum [1–8]. This interest is due to
the practical problem of statistical description of the behavior of a closed many-particle
system whose equations of motion are strictly deterministic, that is, do not contain any
random parameters. For a long time, this problem was considered fundamental for the
justification of statistical mechanics, and it was assumed that its solution is associated with
the so-called ergodicity of the motion of the system under consideration. The classical
trajectory of ergodic systems densely and uniformly covers the entire phase space of the
system, as a result of which the time average value of any observable is equal to the phase
space average as time tends to infinity.

As a result of numerous attempts to prove this property in general terms for real
physical systems, it was realized that the proof is possible only for special systems. The
most well-known of such systems are the so-called scattering billiards, in particular, Sinai
and Bunimovich billiards, in which the trajectory of a particle due to multiple elastic
reflections from the walls is unstable for any initial condition except for special values
whose measure is equal to zero. Thus, the behavior of the system is determined by a single
trajectory, which makes it possible to speak of an ergodic type of motion.

It should be noted that the instability of motion in such billiards is exponentially strong,
at which the distance between two close trajectories grows, on average, exponentially fast
with time. When trajectories are reflected from the walls of the billiard, the so-called

Entropy 2023, 25, 189. https://doi.org/10.3390/e25020189 https://www.mdpi.com/journal/entropy
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mixing occurs, as a result of which the motion becomes chaotic and indistinguishable from
random. Indeed, as already discussed by the Soviet physicist N. S. Krylov in his book [9],
the mixing is the main mechanism for the emergence of the most characteristic property
of the statistical behavior, namely, the relaxation of a system to statistical equilibrium.
Conversely, examples can be given when a given system is ergodic but its movement is
regular, meaning that the relaxation of the system occurs at infinite times, which does not
correspond to physical reality.

For quantum systems, the situation is much more complicated, since there is no rigor-
ous and generally accepted definition of quantum ergodicity. The only reliable situation
when one can speak of quantum ergodicity is for the systems that are fully ergodic in the
classical limit. Needless to say, there are just a few such systems. As an example of the “true”
quantum ergodicity, one can consider completely random matrices of large size for which
the theory is well developed. For such matrices, the components of the eigenfunctions are
Gaussian distributed, which is a property that is a consequence of the uniform distribution
of the eigenfunction vector over the surface of the N-dimensional sphere with N  1. It
can be seen that in this case, the eigenfunctions are not only ergodic but also maximally
chaotic (random), see e.g., [10].

However, for realistic physical systems, many-body matrix elements in a physically
chosen basis, as a rule, are not completely random and fill only a band of finite width
(determined by a finite radius of interaction in the energy space). Therefore, one can
speak of ergodic eigenfunctions occupying only some energy shell of finite size. Clearly,
determining the shape and size of this shell is extremely difficult [11]. In any case, at the
moment, there is no unified theory of quantum ergodicity of isolated systems which takes
into account the influence of the finiteness of the energy shell.

Returning to systems with a small number of particles (small number of degrees of
freedom), for example chaotic billiards for which classical ergodicity is rigorously proven,
after several years of their study, it was found that many of the eigenfunctions are non-
ergodic even for very high energies [12,13]. In principle, such non-ergodic states do not
contradict Shnirel’man’s theorem [14], according to which their number must decrease
with increasing energy. Numerical experiments with ergodic billiards have shown that
in many cases, these “scarring” states in the configuration space can be associated with
unstable periodic orbits, the number of which increases with energy. However, since these
trajectories are isolated, when averaged over infinite time, they do not contribute to the
mean values of the observables.

To date, there have been many papers that investigate the properties of many-particle
scarring states in various physical systems (see, for example, [15–21] and references therein).
The main interest is related to the mechanism for the emergence of such states immersed in
a set of ergodic states. In the case of quantum systems that do not have a corresponding
classical analogue, this issue becomes extremely complicated. It was found that the main
characteristic of such scars in the quantum description is a small number of components
of the corresponding eigenstates treated on some physically justified basis in comparison
with the large number of states that can be considered as ergodic. Thus, scars can be
defined as the localized states, associated with unstable periodic orbits when applicable,
and embedded into the set of the ergodic states. As a result of numerous studies of quantum
many-body systems, it became clear that the typical mechanism for scars is the presence of
local symmetries of the system, which can correspond to the presence of local integrals of
motion [20,21].

Our interest in this article is to study the mechanism for the emergence of scar states
in rectangular billiards with rough horizontal surfaces. In these billiards, it is relatively
easy to trace their emergence since such systems can be considered close to integrable,
despite the fact that they are seem to be rigorously ergodic even for any weak boundary
roughness. Such billiards of finite size were under close investigation in view of surface
scattering in quasi-one-dimensional waveguides. The conventional theory of scattering
in the waveguides with a weak roughness was developed long ago; however, recently,
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researchers found a new mechanism of surface scattering which is due to the so-called
square-gradient roughness [22–25]. This mechanism was neglected in previous studies;
however, it should be taken into account when the correlation length computed along the
scattering profiles is very small. In particular, it was analytically shown that the scattering
properties strongly depend on the correlations between upper and lower horizontal profiles.
Specifically, the scattering is very different whether the two random profiles are symmetric
or antisymmetric. Our study also shows a quite strong dependence of the degree of
localization of the scar states on the type of correlations between the scattering profiles.

In Section 2, we describe the model under study, giving exact expressions for the
matrix elements of an effective Hamiltonian in close correspondence with the model. In
Section 3, we explain how we measure the degree of localization of the eigenstates in the
energy basis corresponding to non-interacting artificial particles and therefore to the billiard
with flat horizontal surfaces. In this representation, one easily identifies one set of scar states
related to classical trajectories which are parallel to the rough boundaries of the billiard.
We also show what these eigenstates look like in the configuration representation for one
rough surface. In addition, we demonstrate that there is another set of scar states related
to bouncing ball classical trajectories which are perpendicular to the rough boundaries of
the billiard. These states consist of many “unperturbed eigenstates”, which is in contrast
with those from the first set. In Section 5, we analytically show how the number of strongly
localized states from the first set, which corresponds to classical plane waves with the
longest perpendicular wavelength, decreases with energy. In Section 6, we study billiards
with two horizontal rough profiles and show how the structure of localized eigenstates
depends on whether the profiles are symmetric or antisymmetric. The main attention
here is paid to the effect of the repulsion of eigenstates from the corrugated surfaces. In
Section 7, we draw our conclusions.

2. Model of Rough Billiards

We consider billiards that are periodic in the longitudinal coordinate x, with Dirichlet
boundary conditions on the upper f1 and lower f2 surfaces,

f1 = Ly + W1ξ1(x) ,

f2 = W2ξ2(x) . (1)

Here, Ly is the average width of the billiard and ξ1,2(x + Lx) = ξ1,2(x) with 〈ξ1,2(x)〉 = 0.
The angular brackets stand for the average over one period Lx or, in the case of a random
profile, over different realizations of ξ1,2(x).

This model has been thoroughly studied in refs. [26–35] for the specific case
ξ1(x) = cos(2πx/Lx) and ξ2(x) = 0, the so-called “cosine” or “ripple” billiard [36]. The
main interest was in the properties of the energy spectrum [26,28] and in the quantum–
classical correspondence for the shape of eigenstates (SE) and local density of states
(LDOS) [29–32]. It was shown that for highly excited states, the global properties of
the SES and LDOS in the quantum regime are similar to those described by the equations
of motion for a classical particle moving inside the billiard. On the other hand, quite strong
quantum effects have been revealed for individual eigenstates in a deep semiclassical
region [31,32].

In this paper, we address the case of billiards with rough surfaces,

ξ1,2(x) =
NT

∑
k=1

Ak cos
(

2πkx
Lx

)
, (2)

focusing on the structure of eigenstates, see also [22–25,37–39]. The surfaces are modeled
by a large sum of harmonics Ak drawn from a flat random distribution defined in the
interval [−A,A] (with A such that |ξ1,2(x)| ≤ 1). With the increase of NT , the degree
of complexity of ξ1,2(x) also increases, and for NT  1, the surfaces can be treated as
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random: see an example in Figure 1. In what follows, we focus on rough billiards with
NT = 100. For simplicity, we choose ξ1(x) = ξ2(x). In the first part of our paper, we review
the case of billiards with one flat boundary; that is W2 = 0, see, e.g., Figure 1. Below, in
Section 6, we consider the billiards with two antisymmetric, W1 = W2, and symmetric
surfaces, W1 = −W2.

0 L
x

0

L
y

y

x

f
1
(x)

Figure 1. Example geometry for the rough billiard. f1(x) = Ly + W1ξ1(x) and f2(x) = 0; see
Equation (1). Here, ξ1(x) is given by Equation (2) with NT = 30 and W1 = Ly/10. The harmonics
Ak used for ξ1(x) are drawn from a flat random distribution defined in the interval [−A, A] (with A
such that |ξ1(x)| ≤ 1).

Originally, the model is described by the Hamiltonian

Ĥ =
1

2m
(P̂2

x + P̂2
y ) = − h̄2

2m
(∂2

x + ∂2
y), (3)

for a free particle inside the billiard with rough boundaries (such that the corresponding
wave function Ψ(x, y) obeys Dirichlet boundary conditions, Ψ(x, y) = 0 at y = f1(x) and
y = f2(x)). However, in order to solve it numerically, it is useful to make a canonical
transformation to new variables in which the new Hamiltonian incorporates surface-
scattering effects into an effective interaction potential between artificial particles identified
with the two new degrees of freedom. This can be achieved by the transformation to new
canonical coordinates,

u = x ,

v =
f2(x)− y

f2(x)− f1(x)
. (4)

As a result, the boundary conditions for the new wave function are trivial: Ψ(u, v) = 0 at
v = 0 and v = 1.

The Schrödinger equation in new coordinates can be obtained from the covariant
expression for a particle moving (in the absence of potentials) in a Riemannian curved
space [40],

− h̄2

2m
ΔcovΨ(u, v) =

h̄2

2m
g−1/2∂αgαβg1/2∂βΨ(u, v) , (5)

where the quantum Hamiltonian in covariant form [41] is

Ĥ =
1

2m
g−1/4P̂αgαβg1/2P̂βg−1/4 , (6)

and the covariant momenta are

P̂α = −ih̄
[

∂α +
1
4

∂αln(g)
]
= −ih̄g−1/4∂αg1/4 . (7)

Here, α, β = u, v, the operator Δcov is the Laplace–Beltrami operator, g is the metric, and
gαβ is the metric tensor. The wave functions Ψ(u, v) are normalized as∫ Lx

0
du
∫ Ly

0
dv

√
gΨ†Ψ = 1 . (8)
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Even though (5) is still the kinetic energy, the resulting differential equation takes a
much more complicated form than the ordinal Laplacian. This is the price to pay when
transferring the effect of the boundaries onto the operator. Then, by substituting in (6) the
explicit expressions for the metric tensor

gαβ =

⎛⎜⎜⎜⎜⎝
1 − f ′1v + f ′2(1 − v)

f1 − f2

− f ′1v + f ′2(1 − v)
f1 − f2

1 + [ f ′1v + f ′2(1 − v)]2

( f1 − f2)2

⎞⎟⎟⎟⎟⎠ ,

where f ′1,2 ≡ ∂ f1,2(u)/∂u, and the metric

g = Det(gαβ) = ( f1 − f2)
2 , (9)

we obtain

Ĥ =
1

2m
g−1/4

{
P̂u( f1 − f2)P̂u + P̂v

1 + [ f ′1v + f ′2(1 − v)]2

( f1 − f2)2 P̂v

−
[
P̂u( f ′1v + f ′2(1 − v))P̂v + P̂v( f ′1v + f ′2(1 − v))P̂u

]}
g−1/4 . (10)

Note that the rough boundaries f1,2 and their derivatives f ′1,2 are fully incorporated into
the Hamiltonian operator.

We remark that this representation allows us to treat the original model of one free
particle in the rough billiard as a model of two interacting “particles” identified with the
two degrees of freedom u and v, where the Hamiltonian (10) is separated as

Ĥ = Ĥ0 + V̂(u, v, P̂u, P̂v) , (11)

with
Ĥ0 =

1
2m

(P̂2
u + P̂2

v ). (12)

Here, P̂u = −ih̄[∂u + (1/4)∂u ln(g)], P̂v = −ih̄∂v, and V̂ stands for an effective interaction
potential between the “particles” u and v. In the following, we treat Ĥ0 as the Hamiltonian
of two non-interacting particles. The eigenstates of Ĥ0 define the unperturbed basis in which
the eigenstates of the total Hamiltonian Ĥ(u, v, P̂u, P̂v) are expanded. Such a representation
turns out to be convenient for the study of the chaotic properties of the model, since one
can use the tools and concepts developed in the theory of interacting particles (see, for
example, [42,43]).

Now, we expand the αth eigenstate of energy Eα as

Ψα(u, v) = ∑
m

∑
n

Cα
mnφmn(u, v) , (13)

where φmn(u, v) = 〈u, v | m, n〉 are the eigenstates of the unperturbed Hamiltonian Ĥ0(u, v),
and the indexes n and m are the quantum numbers corresponding to the u and v coordinates,
respectively. The function φmn(u, v) has to satisfy the boundary conditions of the problem
in order to form a Galerkin basis [44]. The eigenstates of Ĥ0 are

φmn(u, v) =
1

π1/2g1/4 sin
(

mπv
Ly

)
exp
[

i
(

k +
2πn
Lx

)
u
]

, (14)

with eigenvalues

E0
mn(k) =

h̄2

2m

[(
k +

πn
Lx

)2
+

(
πm
Ly

)2
]

. (15)
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Here, formally, −∞ < n < ∞ and 1 ≤ m < ∞, but in practice, for the numerical computa-
tions, the unperturbed basis is truncated such that −Nmax < n < Nmax and 1 ≤ m < Mmax.
The factor π−1/2g−1/4 in (14) arises from the orthonormality condition (8).

Then, we can solve the eigenvalue problem by diagonalizing the Hamiltonian (10) on
the basis φmn(u, v):

∑
m′

∑
n′

Hmn,m′n′φm′n′(u, v) = Eφmn(u, v) , (16)

where the matrix elements are

Hmn,m′n′ ≡ 〈mn|Ĥ|m′n′〉

= − h̄2

2m

∫ Lx

0
du
∫ Ly

0
dv g1/2

[
φ†

mn

]
Δcov[φm′n′ ] = − h̄2

2m

∫ Lx

0
du
∫ Ly

0
dv ∂α

[
φ†

mn

]
g1/2gαβ∂β[φm′n′ ] .

Since the Hamiltonian (10) is periodic in u, its eigenstates are Bloch states. This allows
us to write the solution of the Schrödinger equation in the form Ψ(u, v) = exp(iku)Ψk(u, v),
with Ψk(u + Lx, v) = Ψk(u, v). Here, the Bloch wave vector k(E) is in the first Brillouin
zone, (−π/Lx ≤ k ≤ π/Lx). The statistical properties of eigenstates do not depend on a
specific value of the Bloch index k inside the band, except at k = 0 and k = ±π/Lx, so we
avoid these values of k in our numerical calculations.

Finally after some algebra, we obtain

Hmn,m′n′ =
h̄2

2m

{(
k +

πn
Lx

)2
δnn′δmm′ +

m2π2

Lx

[
J1 + J2 +

(
1
3
+

1
4m2π2

)
J3

]
δmm′

+ i
4mm′

(m2 − m′2)Lx

(
k +

π(n + n′)
Lx

)[
J4 − (−1)m+m′

J5

]
+

4mm′(m2 + m′2)
(m2 − m′2)2Lx

[
(−1)m+m′

J6 − J7

]}
(17)

where

J1 =
∫ Lx

0
dx exp

[
−i

2π

Lx
(n − n′)x

]
f ′1 f ′2

( f1 − f2)2 ,

J2 =
∫ Lx

0
dx exp

[
−i

2π

Lx
(n − n′)x

]
1

( f1 − f2)2 ,

J3 =
∫ Lx

0
dx exp

[
−i

2π

Lx
(n − n′)x

]
( f ′1 − f ′2)

2

( f1 − f2)2 ,

J4 =
∫ Lx

0
dx exp

[
−i

2π

Lx
(n − n′)x

]
f ′2

f1 − f2
,

J5 =
∫ Lx

0
dx exp

[
−i

2π

Lx
(n − n′)x

]
f ′1

f1 − f2
,

J6 =
∫ Lx

0
dx exp

[
−i

2π

Lx
(n − n′)x

]
( f ′1 − f ′2) f ′1
( f1 − f2)2 ,

J7 =
∫ Lx

0
dx exp

[
−i

2π

Lx
(n − n′)x

]
( f ′1 − f ′2) f ′2
( f1 − f2)2 .

Notice that depending on the billiard geometry, some of the integrals above may vanish.
For example, in the case W2 = 0 (i.e., for the billiard of Figure 1), we have J1 = J4 = J7 = 0.

3. Structure of the Hamiltonian Matrix

In order to study the structure of eigenstates of the total Hamiltonian Ĥ(u, v) one
needs, first, to choose a way of ordering the unperturbed basis in which we represent
the Hamiltonian matrix Hl,l′(k) = 〈l | Ĥ | l′〉k. Specifically, we have to assign an index l,
labeling the basis state | l〉k ≡| m, n〉k to each pair of indecies (m, n) (note that although
the energy spectra are independent of the assignment (m, n) → l, the structure of the
eigenstates is not). In addition, note that the size of the Hamiltonian matrix is determined
by the maximum values of n and m: −Nmax ≤ n ≤ Nmax and 1 ≤ m ≤ Mmax.
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A natural assignment is the following one [30]. Let us fix the lowest value of n (−Nmax)
and sweep all values of m (1 ≤ m ≤ Mmax). This gives l = 1, 2, . . . , Mmax. Then, do the
same for n = −Nmax + 1, which gives Mmax + 1 ≤ l ≤ 2Mmax, and so on, until finally,
we have 1 ≤ l ≤ Lmax, where Lmax = (2Nmax + 1)Mmax defines the Hamiltonian matrix
size, Lmax × Lmax. This rule results in a block structure of the Hamiltonian matrix with a
block size equal to Mmax. Figure 2 (left) shows the lower part of a 4030 × 4030 matrix with
(Nmax, Mmax) = (32, 62). Here, we can see a number of blocks of size 62× 62 corresponding
to n, n′ = −32, . . . , −17. In this representation, the matrix is clearly a block matrix.

The above way of ordering the unperturbed basis corresponds to the “channel repre-
sentation” (or momentum representation), since the index m labels a specific transverse
channel for the propagation of the wave through the billiard; see Equation (14). However,
for our purposes, it is essential to use the “energy representation”, according to which the
unperturbed basis is ordered in increasing energy, E0

lnew+1(k) ≥ E0
lnew

(k). This defines a new
rule l → lnew = lnew(n, m). In Figure 2 (right), we show the lower part of the Hamiltonian
matrix of Figure 2 (left) but now in the “energy representation”. Notice that in contrast
to the block structure of the Hamiltonian matrix in the “channel representation”, in the
“energy representation”, the Hamiltonian matrix shows a band-like structure.

Figure 2. (left) Lower part of the Hamiltonian matrix in the “channel representation” | Hl,l′ |.
(right) Lower part of the Hamiltonian matrix in the “energy representation” | Hlnew ,l′new

|. Lx = 2π,
Ly = 2π, W1 = 0.06Ly, k = 0.1, NT = 100, and (Nmax, Mmax) = (32, 62) were used. With this choice
of Nmax and Mmax, we obtain Lmax = 4030. Both matrices are shown in grayscale where darker
means higher amplitude of the matrix element.

In order to analyze the structure of the eigenstates of Ĥ(u, v) in detail, we diagonalize
Hamiltonian matrices in the “energy representation” and construct the “state matrices”
|Cα

lnew
|2. In Figure 3, we show the lower part of the state matrix corresponding to the

Hamiltonian matrix of Figure 2 (right). Here, Cα
lnew

are the amplitudes of the eigenstates in
the (energy-ordered) basis representation given by the index lnew. Namely, the index lnew
refers to unperturbed basis states that correspond to the unperturbed Hamiltonian Ĥ0. The
index α refers to a specific exact eigenstate. All eigenstates are ordered in increasing energy,
with α = 1 the ground state. Therefore, to understand how strongly localized/extended
the exact eigenstates in the unperturbed basis are, one should fix the value of α and explore
the dependence of |Cα

lnew
|2 on lnew.

A crucial point in our study is that the eigenstates of the Hamiltonian in the “energy
representation” have a very convenient form for the analysis. The advantage of the “energy
representation” over the “channel representation” (i.e., when the Hamiltonian matrix has a
block structure) is clearly seen in Figure 4 where an arbitrarily chosen eigenstate is given in
the two representations. One can see that in the “channel representation”, the eigenstate
has a kind of regular and extended structure, while in the “energy representation”, the
eigenstate is compressed. In the latter case, one may use a statistical approach to describe
the global properties of such eigenstates; see refs. [43,45]. Specifically, these eigenstates can
be characterized by introducing an envelope around which the components are expected
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to fluctuate in a pseudo-random way. We stress that by using this energy ordering, it
is possible to relate the global form of eigenstates in the energy representation with its
classical counterpart; see, e.g., refs. [29–32].

Figure 3. Lower part of the state matrix |Cα
lnew

|2 from the Hamiltonian matrix of Figure 2 (right); that
is, Lx = 2π, Ly = 2π, W1 = 0.06Ly, k = 0.1, NT = 100, and (Nmax, Mmax) = (32, 62) were used. The
matrix is shown in grayscale where darker means higher amplitude of the matrix element.
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Figure 4. Example of an eigenstate obtained from the Hamiltonian in (a) the “channel representation”
and (b) the “energy representation”. Lx = 2π, Ly = 2π, W1 = 0.06Ly, k = 0.1, and NT = 100 were
used. (a) The eigenstate α = 392 as a function of l and (b) the same eigenstate as a function of lnew.

4. Eigenstates in Energy Representation

In Figure 5, we present two typical pairs of consecutive eigenstates (α = 390 and 391
and α = 407 and 408). The difference between the eigenstates on the left panels (α = 390
and 407) and the other two is clearly qualitative. More specifically, while the states α = 390
and 407 are extended (in energy) eigenstates, constituted by practically all basis states within
the shown energy range, the eigenstates α = 391 and 408 are mostly unperturbed: they
are extremely localized in energy. Indeed, by neglecting all small amplitude components
surrounding the main component (see left panels of Figure 5), we can determine the basis
state lnew, defined by the pair (m, n), that most closely resembles the exact eigenstates. We
find that this always corresponds to the lowest values of the transversal mode m. This fact
can be understood by the following physical argument. Consider an eigenstate of the flat
billiard φm,n(X, Y, k = 0) ∝ sin(mπY/Ly) exp(iKxX) with energy E0 = (h̄2/2me)(K2

x +K2
y),

where Ky = mπ/Ly = 2π/Λy. Turning on the perturbation (flat to rough billiard) will
affect the high energy unperturbed states differently depending mainly on the value of
Λy. For example, for m = 1, the ratio Λy/W1 is 2Ly/W1 ≈ 33 (with W1 = 0.06Ly, the
value of W1 we use throughout this work), which is so large that the state cannot “see” the
roughness and thus will remain essentially unperturbed. In contrast, for unperturbed states
with the same (or about the same) energy but with large values of m (say, m = 62 = Mmax
and correspondingly small Kx), their Λy is sufficiently small compared to the amplitude
of the roughness (Λy/W1 ≈ 0.5), so that the rough boundary produces a strong mixing
of unperturbed levels. The resulting exact eigenstate will consist of many components
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extended over the energy. Note that we may treat strongly localized states in the channel
representation as a kind of scar state.
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Figure 5. Typical pairs of consecutive eigenstates (α = 390, 391, 407 and 408) in the energy represen-
tation for Lx = 2π, Ly = 2π, W1 = 0.06Ly, k = 0.1, and NT = 100.

The fact that the extremely localized (in energy) eigenstates can be identified with
the plane waves φm,n(x, y) with small m, proper of the flat billiard, makes us expect that
they will also be similar to plane waves when presented in configuration representation
|Ψα(x, y)|2. Then, in Figure 6 (right), the two localized (in energy) eigenstates of Figure 5
(right) are shown in configuration representation. It is quite unexpected that these eigen-
states are very different from the unperturbed ones, even though they are similar in energy
representation. Figure 6 (right) shows that the rough boundary “pushes” the probability
|Ψα(x, y)|2 away from it. Thus, the eigenstate α = 391, whose main component in energy
representation is identified with m = 1, differs importantly from the unperturbed mode
with m = 1 whose maximum is at the billiard center y = Ly/2 (as in the case of the
lowest eigenmode of a box of width Ly with hard walls). Similar repulsion occurs for
the eigenstate α = 408 identified with m = 2. We stress that this repulsion effect occurs
only for rough billiards and is stronger the more rough the billiard boundary is, see, e.g.,
ref. [39]. A detailed analysis of this repulsion effect will be performed in Section 6. Finally,
for comparison purposes, in Figure 6 (left), we also present the two extended (in energy)
eigenstates of Figure 5 (left).

In order to characterize quantitatively the eigenstates, we compute various localization
measures. The first one is the so-called entropy localization length lH ,

lH = exp [−(H−HGOE )] ≈ 2.08 exp (−H). (18)

Here, H stands for the Shannon entropy of an eigenstate in a given basis,

H =
N

∑
lnew=1

wα
lnew

ln wα
lnew

, (19)

and HGOE is the entropy of a completely chaotic state which is characterized by Gaussian
fluctuations (for N → ∞) of all components Cα

lnew
with the same variance 〈wα

lnew
〉 = 1/N,

where wα
lnew

= |Cα
lnew

|2. The latter property occurs for completely random matrices belong-
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ing to a Gaussian Orthogonal Ensemble (GOE). Defined in this way, the quantity lH gives
the measure of the effective number of components in an eigenstate. For example, the eigen-
states of Figure 5 have lH(α = 390) = 1189.7, lH(α = 391) = 5.75, lH(α = 407) = 1517.5,
and lH(α = 408) = 13.16; that is, extended eigenstates have large values of lH , while
localized eigenstates are characterized by small values of lH .

Figure 6. The eigenstates of Figure 5 in the configuration representation |Ψα(x, y)|2. The scale of the
color code on the right of the panels should be multiplied by 10−3.

The second quantity, lipr, which gives another measure of the effective number of
components in an eigenstate, is expressed via the inverse participation ratio P ,

lipr =

[PGOE
P

]
≈ 3

P (20)

with
P =

N

∑
l=1

(wα
lnew

)2. (21)

where PGOE ≈ 3 is chosen in order to obtain lipr = N in the GOE limit case. Corre-
spondingly, the eigenstates of Figure 5 have lipr(α = 390) = 1061.2, lipr(α = 391) = 6.32,
lipr(α = 407) = 1464.4, and lipr(α = 408) = 14.99, where a high correlation with lH can
be seen. The above two definitions of localization lengths are the most frequently used
when describing the global structure of eigenstates. One should note that these quantities
provide an estimate of the effective number of large components, independently on the
location of these components, in the unperturbed basis.

To obtain a complete panorama, in Figure 7a,b we plot these two measures, lH and
lipr, for the eigenstates |α〉 of the rough billiard. The strong fluctuations of the localization
measures are evident in these figures. We can see that neighboring high-energy eigenstates
may have drastically different localization measures, which is in agreement with the
discussion above about the existence of localized and extended eigenstates. Moreover,
these figures give us information about the relative number of each type (localized and
extended eigenstates) to be found in a given energy range.
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Figure 7. Localization measures for the eigenstates α of the rough billiard. (a) Entropy localization
length lH, (b) inverse participation ratio lipr, (c) mean square root lσ, and (d) centroid nc. Here,
Lx = 2π, Ly = 2π, W1 = 0.06Ly, k = 0.1, and NT = 100 were used.

Additional information about the structure of eigenstates can be obtained from the
“width” or mean square root lσ of an eigenstate, which is computed as

lσ =

[
N

∑
lnew=1

wα
lnew

[lnew − nc(α)]
2

]1/2

, (22)

where nc = ∑lnew lnew wα
lnew

determines the centroid of an eigenstate in the unperturbed
basis.

Comparison of the width lσ with lH and lipr gives the possibility of detecting the
so-called sparsity of eigenstates. Indeed, small values of the ratio lH/lσ (or lipr/lσ) indicate
that there are “holes” in the structure of the eigenstates; therefore, such eigenstates are sparse;
see Figure 7c. A detailed analysis shows the existence of sparsed eigenstates. As for the
centroid, nc > α observed in Figure 7d indicates that the interaction strength V̂ is relatively
strong compared to the unperturbed part Ĥ0.

The data of Figure 7a,b show the existence of a wide range of values of both localization
measures even at high energies; moreover, there are eigenstates with small localization
lengths (visible as clusters of points in the lower part of the plots) along the entire energy
range. This situation is also present for the same quantities computed for the local density
of states (LDOS): that is, for the basis eigenstates | lnew〉 expanded in the exact basis
| α〉; see Figure 8. Note that to compute the localizations lengths, as well as the centroid,
for the LDOS, one must interchange α ↔ lnew in expressions (19), (21) and (22). It is
relevant to stress that the localization lengths for the LDOS show well-defined patterns, see
Figure 8, which are not present for the exact eigenstates, see Figure 7. Inspection of
Figure 8a–d clearly demonstrates that there is a kind of regularity in the structure of the
LDOS: the same type of states appear repeatedly, almost periodically as a function of the
basis number lnew. These figures show the repetition of extremely localized states and of
states with different values of the localization measures. The physical origin of all these
types of states (localized, intermediate and extended) was explained above, and their
appearance can be decoded by examining the structure of the “channel representation” of
the Hamiltonian matrix; see Figure 2 (left). A detailed inspection of that matrix shows that
the coupling between unperturbed states depends strongly on the values of the index m,
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labeling the transversal modes of the flat billiard. An unperturbed state specified by a large
value of m (an m close to Mmax = 62) couples strongly to several other unperturbed states.
In contrast, the state with m = 1 has practically no coupling to other states. In particular,
the extremely localized states, corresponding to the first position on the left line of each
brach of Figure 8c occur because of the negligible coupling of the diagonal elements of the
Hl,l′ matrix with m = 1, the states on the second position of each branch occur for m = 3,
and so on with m odd. Similarly, the states on the right side of the branches result from
elements of the Hl,l′ matrix with even values of m.
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Figure 8. Localization measures for the LDOS, lnew, of the rough billiard. (a) lH, (b) lipr, (c) lσ, and
(d) nc. Lx = 2π, Ly = 2π, W1 = 0.06Ly, k = 0.1, and NT = 100 were used.

This structure is expected to prevail at all energy ranges, since in any sufficiently large
range of energies, there are unperturbed states with all values of m ∈ [1, Mmax]. Even
deep in the semiclassical regime, extremely localized and sparse states will appear but less
and less frequently since the energy differences between states of the same type increases
with energy.

5. Scar-Like States in Energy Space

In this section, we discuss the origin of the scar-like states emerging in the energy
representation; they seem to be generic for plane billiards with rough surfaces. The starting
point is the observation that for a weak roughness, these states can be associated with
those unperturbed states that have a small value of the index m, especially for m = 1.
Since the localized eigenstates identified above with m = 1 exist at all energies, the
important question is about the fraction of these states relative to the total number of
states N(E) ≡ ∑i{i|Ei ≤ E} as a function of energy. This question is important in view of
Shnirel’man’s theorem [14] stating that the eigenfunctions of a classically ergodic system are
equidistributed over the energy shell in the classical limit. In other words, we expect that

lim
E→∞

Nm=1(E)
N(E)

= 0, (23)

where Nm=1(E) is the number of m = 1 eigenstates up to some energy E:

Nm=1(E) ≡ ∑
i
{i|Ei ≤ E; Ψi

∼= φ1n(u, v)}. (24)
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Neither Shnirel’man’s theorem nor Equation (23) says anything about how the limit is
approached. Moreover, Shnirel’man’s theorem does not consider the possible existence of
parabolic fixed points. These occur in our billiard; they are the bouncing ball orbits or the
continuous set of all horizontal trajectories (Py = 0) which do not hit the two boundaries.
Quantum mechanically, there are no Py = 0 states, but the eigenstates of the flat channel
with a minimum value of Py are the m = 1 states. Thus, we have referred to the m = 1
eigenstates as “bouncing ball states” in [38].

For W1/Ly � 1, one can use the unperturbed spectra given by Equation (15) to obtain
a good estimate for Nm=1(E) and N(E). For large Nmax and Mmax, Equation (15) represents,
ignoring the k2 term, half of the ellipse

n2

2me

h̄2

(
Lx

2π

)2
E

+
m2

2me

h̄2

(
Ly

π

)2
E

= 1, (25)

in the n − m plane (recall that m ∈ [1, Mmax] and n ∈ [−Nmax, Nmax]); above E ≡ E(0)
n,m(k) ∼=

E(0)
n,m(0). In Figure 9, we show the n − m plane for the case of Nmax = 32 and Mmax = 62; there,

the dots represent basis states and the red ellipse is Equation (25) with E = 400(h̄2/2me) and
Lx = Ly = 2π. Then, for large E, the number N(E) equals the area of the half ellipse, and the
number Nm=1(E) of localized eigenstates equals twice the size or its minor axis:

N(E) =
(

2me

h̄2

)
σ

4π
E, (26)

Nm=1 =

(
2me

h̄2

)1/2 σ

π

√
E

Ly
; (27)

therefore,

Nm=1(E)
N(E)

=

(
h̄2

2me

)1/2
4Lx

σ
√

E
, (28)

where σ = LxLy is the area of one period of the billiard.
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Figure 9. The n − m plane for the case of Nmax = 32 and Mmax = 62. Dots represent basis states
| l〉 ≡| m, n〉 or | lnew〉 ≡| m, n〉. The red ellipse is Equation (25) with E = 400(h̄2/2me) and
Lx = Ly = 2π.

We see that Equation (26) is precisely the first term in the Weyl series for the integrated
density of states (see for example [46], Section 7). Equation (28) indicates that (i) for fixed
E and σ, the portion of m = 1 states, relative to the total number of states, is larger the
narrower the billiard is and (ii) the convergence of Nm=1(E)/N(E) to zero is rather slow; it
decreases as a power-law of E.
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It is important to stress that in the case of a rough billiard having a highly modulated
boundary composed of many harmonics, the expression for N(E) is not simply given
by (26), since now, the perimeter γ of the boundary, as well as its curvature, contribute
significantly to N(E) as [47]

N(E) =
(

2me

h̄2

)
σ

4π
E − γ

4π

(
2me

h̄2

)1/2√
E −

(
2me

h̄2

)1/2 √E
π

∞

∑
r=1

(−1)r

(r − 1/2)Er C2r+1. (29)

The coefficients C2r+1, r ≥ 1, in the sum of the Weyl series (29), depend on the curvature
(and its derivative) of the modulated boundary (see Table 3 of [47]). As is shown in [47],
the higher the index r of the Weyl coefficient C2r+1, the more complex the expansions for
Cr are, involving higher and higher powers of the curvature and its derivatives. Clearly,
the larger the number of harmonics NT , the more important the perimeter and curvature
terms become.

In addition, it is also instructive to look at the location of the eigenstates on the
n − m plane. Thus, in Figure 10, we present the eigenstates of Figure 5 also in energy
representation but now on the n − m plane. From this figure, we can observe that: (i) the
components of the energy-extended eigenstates of Figure 5 (left) are not equidistributed
on the n − m plane; instead, their main components are concentrated around the region
with n ∼ 0 and large m. That the components are concentrated around n ∼ 0 supports the
fact that these eigenstates are not extended over the x-axis when plotted in configuration
representation; see Figure 6 (left). (ii) The components of the energy-localized eigenstates
of Figure 5 (right) are also localized on the n − m plane; they are indeed characterized
by a single value of n and several but small values of m (a detailed decoding of this m
dependence will be performed in the next section).

Figure 10. The eigenstates α = 390, 391, 407 and 408 in energy representation (see Figure 5) on the
n − m plane.

6. Scars and Billiard Symmetries; Repulsion Effect

In this section, we study in detail the repulsion, in configuration representation, that
suffer the energy-localized eigenstates of rough billiards from the rough boundaries. This
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effect, already shown in Figure 6right panels, was first reported in [38,39] but also observed
in [24,48,49]. Moreover, in addition to the one-flat-boundary billiard of Figure 11a, we now
consider two additional billiard geometries: the antisymmetric billiard, Figure 11b, and the
symmetric billiard, Figure 11c; see also [24,25].

We start by presenting in Figure 12 few typical extremely energy-localized eigenstates
for the billiards of Figure 11 in three different energy regions. The main component of
all those eigenstates can be identified with an unperturbed state with m = 1 (see also
Figure 13) where we present again the eigenstates of Figure 12 but now in configuration
representation). Close inspection of Figure 12 shows that for the one-flat-boundary billiard
and the symmetric billiard, panels (a) and (c) of Figure 12, respectively, the localized
eigenstates have several components of appreciable magnitude. This is in contrast with
the eigenstates of the antisymmetric billiard, see panel (b) of Figure 12, which has only one
effective component with magnitude very close to unity.

The decoding of the main components of the energy-localized eigenstates of the one–
flat–boundary billiard, corresponding to panels (a) of Figure 12, shows that the second most
important component of each of the localized states corresponds to m = 2, the next one to
m = 3 and so on, all with the same value of n. That is, there is no mixing between different
values of n. Moreover, the amplitudes of these eigenstate components decay exponentially
as a function of m; see Figure 14 (left).

On the other hand, by decoding the main components of the energy-localized eigen-
states of the symmetric billiard, corresponding to panels (c) of Figure 12, we see that the
second most important component of each of the localized states corresponds to m = 3,
the next one to m = 5 and so on, all with the same value of n but with alternating signs.
Again, there is no mixing between different values of n. In addition, the amplitudes of
these eigenstate components show an exponential decay as a function of m, which is in this
case modulated by a sinus function; see Figure 14 (right).
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Figure 11. The rough billiards analyzed below: (a) a billiard with one flat boundary, W2 = 0; (b) an
antisymmetric billiard, W1 = W2; and (c) a symmetric billiard W1 = −W2. NT = 100, W1/Ly = 0.06,
Lx/Ly = 1, Lx = 2π, and ξ1(x) = ξ2(x).

Following the above observations, one can substitute in Equation (13) the following
expressions:

Cα
mn[a] ∼= Sa exp[−βa(m − 1)]δnnα , (30)

Cα
mn[b] ∼= δm,1δnnα , (31)

Cα
mn[c] ∼= Sc sin(mπ/2) exp[−βc(m − 1)]δnnα , (32)

for the energy-localized eigenstates of [a] the one–flat–boundary billiard, [b] the antisym-
metric billiard, and [c] the symmetric billiard, respectively. Here, nα corresponds to the
value of n characterizing all the main components of a given energy-localized eigenstate.
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Figure 12. Localized eigenstates in the energy representation Cα
lnew

for (a) a one-flat-boundary billiard,
(b) an antisymmetric billiard, and (c) a symmetric billiard; see Figure 11. Specifically, (a1) α = 391,
(a2) α = 705, (a3) α = 968, (b1) α = 170, (b2) α = 283, (b3) α = 401, (c1) α = 389, (c2) α = 704, and
(c3) α = 962. The main components of these localized eigenstates in energy representation correspond
to unperturbed states characterized by m = 1 and (a1) n = −18, (a2) n = −24, (a3) n = −28,
(b1) n = −18, (b2) n = −23, (b3) n = −27, (c1) n = −18, (c2) n = −24, and (c3) n = −28. NT = 100,
W1/Ly = 0.06, Lx/Ly = 1, Lx = 2π, k = 0.1, and ξ1(x) = ξ2(x) were used.

Figure 13. Localized eigenstates of Figure 12 in the configuration representation |Ψα(x, y)|2. Eigen-
states for (a1–a3) a one-flat-boundary billiard, (b1–b3) an antisymmetric billiard, and (c1–c3) a
symmetric billiard; same labeling as in Figure 12.
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The parameters Sa = 0.8, βa = 0.53, Sc = 0.9, and βc = 0.426 are obtained by fitting
the data to the dependence given by the expressions for Cα

mn above; see the fittings in
Figure 14. It is important to remark that for a fixed NT , all energy-localized states are
characterized by the same values of Sa,b and βa,b. Substituting the dependence of Cα

mn into
Equation (13) gives

Ψα
loc(u, v)[a] ∼= CaSa

exp[i(k + nα)u]
π1/2g1/4

∞

∑
m=1

sin
(

mπv
Ly

)
exp[−β(m − 1)] ,

Ψα
loc(u, v)[b] ∼= Cc

exp[i(k + nα)u]
π1/2g1/4 sin

(
πv
Ly

)
,

Ψα
loc(u, v)[c] ∼= CcSc

exp[i(k + nα)u]
π1/2g1/4

∞

∑
m=1

sin
(mπ

2

)
sin
(

mπv
Ly

)
exp[−β(m − 1)] ,

where Ca,b,c arise to satisfy the orthonormality condition in curvilinear coordinates,

∫ Ly

0

∫ Lx

0
dudv

√
gΨα ∗

loc Ψα
loc = 1 . (33)

Then, it follows that

| Ψα
loc(y) |2 [a] ∼= 1

π

(
∞

∑
m=1

exp[−2βa(m − 1)]

)−1[ ∞

∑
m=1

sin
(

mπy
Ly

)
exp[−βa(m − 1)]

]2

,

| Ψα
loc(y) |2 [b] ∼= 1

π
sin
(

πy
Ly

)
,

| Ψα
loc(y) |2 [c] ∼=

1
π

(
∞

∑
m=1

sin2
(mπ

2

)
exp[−2βc(m − 1)]

)−1[ ∞

∑
m=1

sin
(mπ

2

)
sin
(

mπy
Ly

)
exp[−βc(m − 1)]

]2

.

These latter expressions give the average shape of the localized eigenstates in the
configuration representation, projected onto the y− | Ψα |2 plane. In addition, note that
Ψα

loc(y) does not depend on the parameters Sa,c, so the relevant parameters are βa,b. To
obtain | Ψα

loc(y) |2 above, we have made the approximation v ≈ y and g ≈ 1 since
W1/Ly = 0.06 � 1.

Finally, after some algebra, we obtain

| Ψα
loc(y) |2 [a] ∼=

[exp(2βa)− 1] sin2(πy/Ly)

4π
[
cos(πy/Ly)− cosh(βa)

]2 , (34)

| Ψα
loc(y) |2 [b] ∼= 1

π
sin
(

πy
Ly

)
, (35)

| Ψα
loc(y) |2 [c] ∼=

sinh(2βc) sinh2(βc) sin2(πy/Ly)

2π
[
cosh2(βc)− sin2(πy/Ly)

]2 . (36)

Note that when βa,b → ∞, i.e., when the energy-localized eigenstates have only one single
component, | Ψα

loc(y) |2 [a] =| Ψα
loc(y) |2 [c] = (1/π) sin

(
πy/Ly

)
, as required.

In Figure 15, we plot Equations (34)–(36) together with the numerical data from the
eigenstates of Figure 13. From this figure, it is clear that (i) in the one-flat-boundary billiard,
the energy-localized eigenstates are repelled from the rough boundary toward the flat
boundary; see the curves labeled with (a), as already observed in Figure 6; (ii) in the sym-
metric billiard, the energy-localized eigenstates are repelled from both rough boundaries
toward the billiard center; see the curves labeled with (c); while (iii) in the antisymmetric
billiard, the repulsion effect is completely absent, so the eigenstates correspond to those
of the flat billiard; see the curves labeled with (b). A detailed study [24] revealed that the
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absence of repulsion in the antisymmetric billiard is due to the fact that in this billiard,
there is no square-gradient scattering between different modes or channels, in contrast to
the one-flat-boundary billiard and the symmetric billiard. Thus, one can conclude that the
main contribution to the repulsion is due to the intermode square-gradient scattering terms
of the Hamiltonian matrix (i.e., the integrals J3, J6, and J7 in Equation (17), which vanish
for the antisymmetric billiard). This conclusion supports the observation made above
according to which the effect of repulsion can be explained as due to a strong localization
in the channel space. This localization occurs due to a relatively strong interaction between
different conducting channels (or billiard modes).

0 5 10 15 20
m

0

0.2

0.4

0.6

0.8

C
α

0 5 10 15 20
m

-0.5

0

0.5

1

m
n

Figure 14. Main components Cα
mn as the functions of m from the localized eigenstates in the energy

representation of Figure 13a (right) and Figure 13c (left). Different symbols correspond to different
eigenstates. The thick dashed curves are the best fits to Equation (30) (right) and Equation (32) (left)
with Sa = 0.8 and βa = 0.53 and Sc = 0.9 and βc = 0.426, respectively.
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y

0

0.2
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|Ψ
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c(y
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(b)

α

Figure 15. Projection of the eigenstate profiles of Figure 13 (color curves) onto the y coordinate to-
gether with the analytical expressions for | Ψα

loc(y) |2 (thick dashed lines) given by Equations (34)–(36)
with βa = 0.53 and βc = 0.426. Profiles of eigenstates for (a) a one-flat-boundary billiard, (b) an
antisymmetric billiard, and (c) a symmetric billiard.

Note that since the parameters Sa,b and βa,b are the same for all m = 1 eigenstates for
a fixed NT , one can find Sa,b and βa,b for some low-energy eigenstate (so that the matrix
to be diagonalized is small) and with this one can infer the global shape of all m = 1
eigenstates. Conversely, knowing the shape of an m = 1 eigenstate within any energy
range, one may assess by looking at the amount of repulsion the degree of complexity,
presumably unknown, of the boundaries.

The excellent agreement between Equations (34)–(36) and the numerical data from
the eigenstates of Figure 13 indicates that for extremely localized eigenstates with m = 1,
there is no need to diagonalize the whole matrix since, there is no mixing between different
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values of n. In order to obtain a good approximation of these eigenstates, one only needs
to diagonalize the block of size Mmax × Mmax corresponding to the quantum number nα,
which is a good quantum number in the presence of perturbation.

Within this approach, it is also possible to study energy-localized eigenstates with
m > 1 using blocks of the Hamiltonian (17) of size Mmax × Mmax. So, in Figure 16, we
plot the 2nd, 3rd, and 4th lowest eigenstates in configuration representation of a block of
the Hamiltonian (17) of size 100 × 100 for the one-flat-boundary billiard (left panels), an
antisymmetric billiard (central panels), and the symmetric billiard (right panels). They
correspond to eigenstates characterized by m = 2, 3, and 4, respectively. As expected,
they have 2, 3, and 4 maxima in the transverse direction, respectively. As well as for the
eigenstates characterized by m = 1, see Figures 13 and 15, the eigenstates of Figure 16 suffer
repulsion from the rough boundaries in the one-flat-boundary billiard and the symmetric
billiard, while in the antisymmetric billiard, the repulsion is absent.

Figure 16. Left column: 2nd, 3rd, and 4rd lowest eigenstates in the configuration representation
|Ψα(x, y)|2 for a block of the Hamiltonian (17) of size Mmax × Mmax for the billiards of Figure 11a.
Middle and right column: the same but for the billiards of Figure 11b,c, respectively. NT = 100,
W1/Ly = 0.06, Lx/Ly = 1, Lx = 2π, ξ1(x) = ξ2(x), Mmax = 100, nα = 0, and k = 0 were used.

7. Conclusions

In this paper, we have studied the properties of rectangular billiards with one and
two rough boundaries. In the classical description, such billiards can be considered as
completely chaotic, although this has not been rigorously proven. Our interest was to
understand the typical structure of the eigenfunctions in the quantum description and to
discover the mechanism of occurrence of scar states. For numerical simulation, we have
chosen the method of reducing the original model with one particle moving inside the
billiard to a model of two artificial particles in a billiard with flat boundaries, however with
an effective interaction between the particles. Thus, the complexity of the rough boundary
is embedded into a quite complicated interaction potential. In this representation, the
Hamiltonian of the system can naturally be represented as the sum of two terms, one of
which corresponds to the motion of two particles in a billiard with flat walls, and the second
term describes the interaction between particles. As can be seen, such a scheme is similar to
that which is often used in physics when describing isolated systems with many interacting
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particles. Thus, the question arises about the correspondence between the properties of
eigenfunctions in a many-particle basis (in our case, a two-particle basis) and the properties
of eigenfunctions in the configuration space. As was found, this correspondence is not
simple, especially if we are interested in the degree of localization of the eigenfunctions
and, in particular, in the occurrence of scar states.

As a result of our study, we came to the conclusion that one can roughly speak of
three different types of eigenstates. The first type includes states whose density in the
configuration basis is concentrated in the vicinity of bouncing ball trajectories that are
perpendicular to two horizontal surfaces. Such highly localized functions (with some
degree of chaos) are analogous to well-studied scar states in stadium billiards. The second
type of eigenfunctions, which are strongly localized in the momentum space, can be
associated with the plane waves in the billiard with flat boundaries. To some extent, they
can also be termed as scar states because of their strong correspondence to unperturbed
eigenstates. There is a third type of eigenfunctions that consists of many components in
both the energy space of the Hamiltonian and in the configuration space. These eigenstates
are quite complicated and can be treated as partially chaotic. Thus, it can be assumed that
these eigenstates quickly become completely chaotic with increasing energy in comparison
with those functions that are strongly localized either in energy or in configuration space.

We have considered in detail how the number of eigenstates strongly localized in the
energy space decreases with increasing energy. This question is related to Shnirel’man’s
theorem, according to which, in the classical limit, the measure (number) of scar functions
decreases to zero. It is worth noting that this theorem does not predict at what rate (in
energy) all eigenfunctions become ergodic. In the general case of ergodic billiards, this
question remains open, but in our case, the estimate indicates that the number of scar states
(in the energy space) decreases rather slowly, namely, inversely proportional to the square
of the energy.

We were also interested in the “repulsion” effect, discovered in [22], according to
which for a billiard with one corrugated surface, some of the eigenstates suffer a shift of
the maximal density toward the surface, which is flat. Our numerical data showed that
this effect is highly pronounced for those eigenfunctions that are close to plane waves
traveling in the horizontal direction. For a subset of such eigenstates, we have derived an
approximate expression that clearly indicates an exponential localization in the momentum
space. Even more interesting was to compare the structure of this type of eigenstate for the
billiard with two corrugated surfaces. We have found that for symmetric rough surfaces,
the repulsion effect is strongly enhanced. On the other hand, for antisymmetric profiles,
the repulsion is absent. The origin of this phenomenon can be explained by analyzing
the structure of the Hamiltonian matrix, which is strongly influenced by the form of the
off-diagonal matrix elements that depend on the amplitude, first derivative, and the second
derivative of the billiard profiles. Apart from that, there are terms that describe the inter-
correlations between profiles. Our analysis explains both the repulsion enhancement and
the disappearance of repulsion. Due to this analysis, one can predict the impact of the type
of symmetry between the profiles on the scattering properties of quasi-one-dimensional
waveguides with corrugated surfaces.

This article is dedicated to Professor Giulio Casati on the occasion of his 80th birthday.
We wish him to be healthy and scientifically productive for the next 20 years.
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Abstract: Survival probability measures the probability that a system taken out of equilibrium has
not yet transitioned from its initial state. Inspired by the generalized entropies used to analyze
nonergodic states, we introduce a generalized version of the survival probability and discuss how it
can assist in studies of the structure of eigenstates and ergodicity.

Keywords: survival probability; spectral form factor; quench dynamics; many-body quantum chaos;
disordered spin model

1. Introduction

The square overlap between a given initial state |Ψ(0)〉 and its time-evolved counter-
part |Ψ(t)〉,

SP(t) = |〈Ψ(0)|Ψ(t)〉|2, (1)

indicates the probability of finding the system still in its initial state at time t. This quantity
is known as survival probability, return probability, or simply the fidelity between the
initial and the evolved state. This quantity has been extensively investigated since the early
decades of quantum mechanics, initially in the context of the uncertainty relation between
time and energy [1–3]. As stated by Fock in [3]:

[the time-energy uncertainty relation] may be viewed as a consequence of the
general theorem of Fock and Krylov on the connection between the decay law
and the energy distribution function.

The “connection” stated in the quote above refers to the fact that the survival probability
(decay law) is the absolute square of the Fourier transform of the energy distribution of
the initial state (energy distribution function). That is, for a state evolving according to
a Hamiltonian H, whose eigenvalues and eigenstates are given by Eα and |α〉, one has
|Ψ(t)〉 = ∑α C(0)

α e−iEαt|α〉, and the survival probability can be written as:

SP(t) =

∣∣∣∣∣∑α

|C(0)
α |2e−iEαt

∣∣∣∣∣
2

=

∣∣∣∣∫ ρ(E)e−iEtdE
∣∣∣∣2, (2)

where C(0)
α = 〈α|Ψ(0)〉, and

ρ(E) = ∑
α

|C(0)
α |2δ(E − Eα) (3)

is the energy distribution of the initial state. This distribution is also known as the local
density of states (LDoS) or strength function, and its mean and variance are [4]:

E(0) = ∑
α

|C(0)
α |2Eα and σ2 = ∑

α

|C(0)
α |2(Eα − E(0))2. (4)
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Both the survival probability and the LDoS are studied in a variety of different fields,
from quantum chaos and nuclear physics to localization and quantum information science.
These quantities received significant attention from previous researchers of the Budker
Institute in Novosibirsk, including those to whom we dedicated the present paper, namely
Professor Giulio Casati on the occasion of his 80th birthday in 2022, Professor Felix Izrailev
on the occasion of his 80th birthday in 2021, and Professor Vladimir Zelevinsky on the
occasion of his 85th birthday in 2022.

Despite the simplicity of Equation (1), the evolution of the survival probability in
many-body quantum systems is quite rich, with different behaviors emerging on different
time scales, which reveal details about the initial state, the spectrum, and the eigenstates of
the considered model. The Taylor expansion of the phase factor in Equation (2) shows that
the survival probability, at very short times, t � 1/σ, presents a quadratic and universal
behavior, SP(t) ≈ 1 − σ2t2, where σ is the width of the LDoS (see Equation (4)). Beyond
this point, but still at short times, t � 1/σ, the decay is dictated by the shape of the LDoS.
The shape of ρ(E) was investigated in [5,6] in the context of banded random matrices, while
in realistic models, the transition from a Lorentzian to a Gaussian form with the increase in
the perturbation strength was discussed, as in [7–23]. Depending on the initial state and
the model considered, skewed Gaussians and bimodal distributions can also emerge [24].
Beyond the characteristic time for the initial depletion of the initial state, t ∼ 1/σ, the
survival probability exhibits a power-law decay ∝ t−γ with an exponent γ that depends
on the level of ergodicity of |Ψ(0)〉 and |α〉. When the LDoS is filled ergodically, γ is
determined by the bounds of this energy distribution [25–33]. In contrast, when |Ψ(0)〉 and
|α〉 are non-chaotic states, then γ depends on the level of correlations and multifractality
between the states [34–39]. However, this is not yet the end of the story. In chaotic systems,
where the energy-level statistics are similar to those of random matrices, the survival
probability does not saturate after the algebraic decay. Instead, it reaches a value that is
smaller than its infinite-time average,

SP = ∑
α

|C(0)
α |4, (5)

and then grows in a ramp until it is finally saturated at SP. The infinite time average is the
last term in the equation below, which is obtained from Equation (2),

SP(t) = ∑
α �=β

|C(0)
α |2|C(0)

β |2e−i(Eα−Eβ)t + ∑
α

|C(0)
α |4. (6)

The interval in which SP(t) < SP is known as the correlation hole [39–56], and there have
been different methods proposed with which to measure it experimentally in systems
that are out of equilibrium (see [57] and references therein). The correlation hole is a
dynamic manifestation of spectral correlations and, as such, can be used to detect many-
body quantum chaos in experiments that do not have direct access to the spectrum, such as
experiments with cold atoms and ion traps.

In this work, motivated by generalized quantities such as Rényi entropies [58], the
inverse participation ratio [59–64], and other similar quantities [65] that play a prominent
role in studies of localization and multifractality, we introduce the generalized survival
probability, SPq(t), and its corresponding generalized LDoS, ρ

(0)
q (E) (see the definitions

below in Equations (10) and (12), respectively). We discuss how they can help to improve
our understanding of the structure of the eigenstates.

Using the one-dimensional (1D) disordered spin-1/2 model, which is often employed
in the analysis of many-body localization, we compare the results for the generalized
survival probability in the chaotic regime and far from it, where the duration of the power-
law decay of SPq(t) becomes dependent on the value of q. We also compare the behavior of
SPq(t) using the chaotic spin model with random matrices from the Gaussian orthogonal
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ensemble (GOE) and, in the latter case, provide an analytical expression for the entire
evolution of the generalized survival probability.

2. Models

Here, we study many-body quantum systems described by the Hamiltonian:

H = H0 + V, (7)

where a chosen eigenstate of H0 corresponds to the initial state, and V is a strong per-
turbation that takes the system far from equilibrium. We consider initial states that have
energies E(0) = 〈Ψ(0)|H|Ψ(0)〉 close to the middle of the spectrum. Two Hamiltonians H
are investigated, of which one is a random matrix from the GOE and the other describes a
1D disordered Heisenberg spin-1/2 model.

2.1. Gaussian Orthogonal Ensemble

The GOE is composed of real and symmetric D ×D matrices completely filled with
random entries from a Gaussian distribution, with the mean zero and variance given by:

〈
H2

jk

〉
=

{
1
2 , for j �= k;
1, for j = k.

(8)

We assume that the unperturbed Hamiltonian H0 is the diagonal part of H and V is
the off-diagonal part. The model is non-physical but allows for analytical derivations that
can serve as a reference for the study of realistic chaotic many-body quantum systems.

2.2. Disordered Spin-1/2 Model

As a physical model, we consider the 1D Heisenberg spin-1/2 model with onsite dis-
order, which has been used in studies of many-body localization [66–69]. The Hamiltonian
is given by:

H =
L

∑
k=1

hkSz
k + J

L

∑
k=1

(
Sx

k Sx
k+1 + Sy

k Sy
k+1 + Sz

kSz
k+1

)
, (9)

where Sx,y,z are the spin-1/2 operators, L is the system size, J = 1 is the coupling strength,
and hk refers to independent and uniformly distributed random variables in [−h, h], with h
being the onsite disorder strength. We assume periodic boundary conditions. The system
conserves the total magnetization in the z-direction, Ŝz

tot = ∑L
k=1 Ŝz

k. Throughout this paper,
we work in the largest subspace, with Ŝz

tot = 0 leading to D = L!/(L/2)!2. For finite sizes,
H shows level statistics comparable to the GOE random matrices when h ∼ 0.5, while the
level repulsion fades away for h > 1. We consider the unperturbed Hamiltonian to consist
of the terms in the z-direction, H0 = ∑L

k=1

(
hkSz

k + JSz
kSz

k+1

)
, and the perturbation to be the

flip-flop term, V = J ∑L
k=1

(
Sx

k Sx
k+1 + Sy

k Sy
k+1

)
.

3. Generalized Survival Probability

We define the generalized survival probability as:

SPq(t) =
1

N 2
q

∣∣∣∣∣ D
∑
α=1

|C(0)
α |qe−iEαt

∣∣∣∣∣
2

=

∣∣∣∣∫ ρq(E)e−iEαtdE
∣∣∣∣2, (10)

where Nq is a normalization constant given by:

Nq =
D
∑
α=1

|C(0)
α |q, (11)
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where the parameter q ≥ 0 is a positive real number, and

ρq(E) =
1
Nq

D
∑
α=1

|C(0)
α |qδ(Eα − E) (12)

is the generalized LDoS (gLDoS), with the mean and variance given, respectively, by:

E(0)
q =

1
Nq

D
∑
α=1

|C(0)
α |qEα and σ2

q =
1
Nq

D
∑
α=1

|C(0)
α |q(Eα − E(0)

q )2. (13)

The survival probability, as defined in Equation (2), and the mean and variance given
in Equation (4) are recovered when q = 2. For q = 0, Equation (10) coincides with the
spectral form factor [70], which is a quantity used to study level statistics in the time
domain. Contrary to the (generalized) survival probability, the spectral form factor is not a
dynamical quantity, since it does not depend on the initial state.

If one knows the generalized LDoS, we can obtain the generalized survival probability
by performing the Fourier transform in Equation (10). We therefore start our analysis by
examining the shape of ρq(E).

Generalized LDoS

Figure 1 depicts the generalized LDoS for a single random realization of a GOE matrix
and different values of q. We observe that the semicircular shape, typical of random matrices
in the limit of large D, and the length of the distribution are conserved independently of
the value of q. This is because all eigenstates of GOE matrices are random vectors, and so is
the initial state. That is, C(0)

α are random numbers from a Gaussian distribution satisfying
the constraint of normalization. Even though for q > 1, the larger components C(0)

α become
enhanced, leading to the spikes observed in Figure 1c,d, the width of the distribution is
not affected by q. This means that after averages over random realizations, one will not
notice the differences between the panels. One can then state that the robustness of the
generalized LDoS for different values of q is a sign of the ergodicity of the eigenstates of
the system.

0
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0.006

ρ
qG

O
E

-160 -80 0 80 160
E

0
0.001
0.002
0.003
0.004
0.005
0.006

ρ
qG

O
E

-160 -80 0 80 160
E

(a) (b)

(d)(c)

Figure 1. Generalized local density of states for GOE matrices for (a) q = 0.5, (b) q = 1.0, (c) q = 2.0,
and (d) q = 3.0. Shaded areas are numerical results and the solid curves represent the semicircle law
in Equation (14). A single disorder realization and a single initial state are considered. The matrix
size is D = 12,000.

Since the components |C(0)
α |q are uncorrelated random numbers fluctuating smoothly

around the average |C(0)
α |q = Nq/D, one can see that the gLDoS for the GOE matrices
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coincides with the normalized density of states PGOE(E) = D−1 ∑α δ(Eα − E). Therefore,
for GOE random matrices, we observe that:

ρGOE
q (E) = PGOE(E) =

1
πσq

√
1 −
(

E
2σq

)2
, (14)

where the standard deviation σq =
√
D/2. In Subfigure (a) in the third figure of this same

Section 3 we plot σq as a function of q and confirm that σq is, indeed, nearly constant for
GOE.

For physical many-body quantum systems with two-body interactions, the density of
states is Gaussian [71,72]. Thus, the expected shape of the LDoS for a system perturbed far
from equilibrium and an initial state in the middle of the spectrum, as considered here, is
also Gaussian, as seen in Figure 2c for q = 2 and h = 0.5.
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E
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Figure 2. Generalized local density of states for the disordered spin-1/2 model with h = 0.5 for
(a) q = 0.5, (b) q = 1.0, (c) q = 2.0, and (d) q = 3.0. Shaded areas are numerical results and the solid
curves represent the Gaussian expression in Equation (15). A single disorder realization is considered.
The system size is L = 16 with D = 12,870.

Despite the persistence of the Gaussian shape for different values of q,

ρ
Spin
q (E) =

1√
2πσ2

q

exp

⎡⎣− (Eα − E(0)
q )2

2σ2
q

⎤⎦. (15)

Figure 2 makes it clear that, in contrast to the GOE, the width σq depends on q. As q

increases and the participation of the larger |C(0)
α |q becomes amplified, the width of ρ

Spin
q (E)

becomes narrower than the density of states. This indicates that the contributions of the
components at the tails of the initial-state energy distribution, where chaotic states are
nonexistent, are erased.

The dependence of the width of the gLDoS on q reveals the limited degree of ergodicity
of physical systems, even those deep in the chaotic regime. The eigenstates of physical
systems are not random vectors, as in random matrices, and are not random superpositions
of plane waves, as stated by Berry’s conjecture [73]. The question of how to define chaotic
states in realistic systems is discussed in [10,11,74–78]. Our results add to these studies,
providing a way to quantify the level of ergodicity in comparison to random matrices.

In Figure 3, we compare the results for σq normalized by the width of the density of
states (DoS) as a function of q for the GOE model (Figure 3a) and the spin model (Figure 3b).
Each point in Figure 3 is obtained by performing an average over 10 random realizations
and a single initial state. The flat curve in Figure 3a indicates the presence of fully ergodic
states throughout the spectrum, while in Figure 3b, σ

Spin
q /σ

Spin
DOS clearly decays as q increases.

This occurs in the case of the chaotic model, with h = 0.5 (circles), where non-chaotic states
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are concentrated at the edges of the spectrum, and more abruptly in the case of h = 2
(squares), where non-chaotic states are also likely to be found away from the edges of the
spectrum.
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q
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0.8

1

σ
qSp
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~

(a) (b)

Figure 3. Width of the generalized LDoS normalized by the DoS for (a) GOE matrices, σ̃GOE
q =

σGOE
q /σGOE

DOS , and (b) the spin model, σ̃
Spin
q = σ

Spin
q /σ

Spin
DOS, with h = 0.5 (circles) and h = 2 (squares)

as a function of q. Each point is an average over 10 disorder realizations and a single initial state. The
dotted lines are guides for the eyes. D = 12,000 for GOE and D = 12,870 (L = 16) for the spin model.

The reason for the abrupt decay of σ
Spin
q with q for h = 2 becomes evident in Figure 4,

where we plot ρq(E) for different values of q. When q ≤ 1 (Figure 4a,b), the shape of the
LDoS is fragmented, while for q > 1 (Figure 4c,d), this structure is nearly erased, and ρq(E)
indicates a high degree of localization.
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Figure 4. Generalized local density of states for the disordered spin-1/2 model with h = 2.0 for
(a) q = 0.5, (b) q = 1.0, (c) q = 2.0, and (d) q = 3.0. Shaded areas are numerical results and solid
curves represent the Gaussian expression in Equation (15). A single disorder realization and a single
initial state are considered. The system size is L = 16 with D = 12,870.

For finite-size systems, several numerical studies have supported the notion that the
eigenstates of the disordered spin model should become multifractal in its transition to
the many-body localized phase [37,64,79–82], although this has not been confirmed in the
thermodynamic limit [83]. The patterns observed in Figure 4a,b also suggest fractality.

4. Evolution of the Generalized Survival Probability under the GOE Model:
Analytical Expression

According to Equation (10), the survival probability averaged over an ensemble of
initial states and random realization is written as:

〈
SPq(t)

〉
=

〈
1

N 2
q

∑
α �=β

|C(0)
α |q|C(0)

β |qe−i(Eα−Eβ)t

〉
+

〈
1

N 2
q

∑
α

|C(0)
α |2q

〉
, (16)
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where 〈. . . 〉 denotes the average. The second term on the right-hand side corresponds to
the infinite time average, SPq, of the generalized survival probability. For GOE random

matrices, where C(0)
α are random numbers from a Gaussian distribution,

SPq =
1

N 2
q

∑
α

|C(0)
α |2q =

√
πΓ
(

q + 1
2

)
DΓ
(

q+1
2

)2 . (17)

Since, for random matrices, the eigenvalues and the eigenstates are statistically in-
dependent, they can be factorized (see details in [84] and the appendix of [53]). Thus,
using 〈

e−i(Eα−Eβ)t
〉
=

1
D − 1

[
DJ 2

1 (2σt)
(σt)2 − b2

(
σt
2D

)]
, (18)

we observe that
1

N 2
q

∑
α �=β

|C(0)
α |q|C(0)

β |q = 1 − SPq, (19)

and due to the requirement that SPq(t = 0) = 1, we arrive at the analytical expression:

〈
SPq(t)

〉
=

1 −
〈
SPq
〉

D − 1

[
DJ 2

1 (2σt)
(σt)2 − b2

(
σt
2D

)]
+
〈
SPq
〉
. (20)

Above, we write σq = σ, because σq is constant for the GOE. The Fourier transform
of the semicircular gLDoS provides the first term on the right-hand side of Equation (20),
which involves the Bessel function of the first kind, J1. This first term describes the initial
decay of

〈
SPq(t)

〉
, as seen in Figure 5. It presents oscillations with the nth-zeros occurring

when the initial state dynamically identifies an orthogonal state at tn ∼ (πn +
√

2/2)/2σ
with n = 1, 2, . . . . The envelope of the oscillations decays as t−3. The second term on the
right-hand side of Equation (20), b2(t) = {t ln[(2t + 1)/(2t − 1)]− 1}Θ(t − 1) + [t ln(2t +
1)− 2t + 1]Θ(1 − t), is the so-called two-level form factor that takes

〈
SPq(t)

〉
on a ramp to

the saturation value
〈
SPq
〉
.
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Figure 5. Generalized survival probability evolving under the GOE model for different values of
q. Red curves are numerical results and the black lines correspond to the analytical expression in
Equation (20). From bottom to top, q = 0.5, 1.0, 2.0, and 3.0. Matrix size is D = 12,000. Averages over
104 samples.

In Figure 5, we compare the numerical results for
〈
SPq(t)

〉
with the analytical expres-

sion in Equation (20). The agreement is excellent. The fact that σq for the GOE model is
independent of q (see Figures 1 and 3) becomes evident, once again, in Figure 5, where the
curves for the different values of q coincide at short times, capturing the oscillations of the
Bessel function up to the minimum value of

〈
SPq(t)

〉
.
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To derive the time scale, tGOE
Th , where

〈
SPq(t)

〉
reaches the minimum of the correlation

hole, we must identify the point where the first and second terms in the square brackets of
Equation (20) cross. Following [53], we obtain the long-term expansion of the first term in
Equation (20) and expand the two-level form factor for the short times. Combining the two
in the derivative of

〈
SPq(t)

〉
, we obtain:

tGOE
Th =

(
3
π

)1/4 √D
σ

=

(
3
π

)1/4
. (21)

To obtain the minimum value of
〈
SPq(t)

〉
in the correlation hole, we evaluate Equation (20)

at tGOE
Th , which results in:

〈
SPq(t)

〉∣∣
t=tGOE

Th
≈ 1 −

〈
SPq
〉

D − 1

[
D

π(σtGOE
Th )3

−
(

1 − σ

D tGOE
Th

)]
+
〈
SPq
〉

≈ 1 −
〈
SPq
〉

D − 1
(−1) +

〈
SPq
〉
.

(22)

Finally, using Equation (17) for
〈
SPq
〉
, we arrive at:

〈
SPq(t)

〉∣∣
t=tGOE

Th
≈

√
πΓ
(

q + 1
2

)
− Γ
(

q+1
2

)2

DΓ
(

q+1
2

)2 . (23)

For the particular case of q = 2, Equation (23) leads to the value 2/D previously obtained
in [53].

5. Evolution of the Generalized Survival Probability under the Spin Model

In Figure 6, we compare the evolution of
〈
SPq(t)

〉
under the spin model for different

values of q. In both panels, Figure 6a for h = 0.5 and Figure 6b for h = 2, the initial decay
is determined by the envelope of the gLDoS, as seen in Equation (10). Since, according to
Figures 2 and 4, the shape of the distribution is Gaussian, one observes in Figure 6 that〈

SPq(t)
〉
= exp(−σ2

q t2) (24)

for t � σq. The dependence of σq on q is noticeable in Figure 6a and evident in Figure 6b.
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Figure 6. Generalized survival probability evolving under the disordered spin-1/2 model with
(a) h = 0.5 and (b) h = 2 for different values of q. From bottom to top, q = 0.5, 1.0, 1.5, 2.0, and 3.0.
The system size is L = 16. Averages over 3 × 104 samples.

Beyond the Gaussian behavior, a power-law decay emerges:〈
SPq(t)

〉
∝ t−γq . (25)
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In Figure 6a, where the system is chaotic, the power-law exponent should depend
on the bounds of the gLDoS. Since the gLDoS for the chaotic model in Figure 2 presents
Gaussian tails for any q, we expect the same power-law exponent for all the curves in
Figure 6a, which is, indeed, what the nearly parallel lines in the algebraic behavior suggest.
In contrast, in Figure 6b, it is clear that γq decreases as q increases, and the minimum of
the correlation hole takes longer to reach. In this case, the power-law behavior reflects the
correlations between the components of the initial state, which become enhanced for larger
values of q.

6. Discussion

We introduced the concepts of generalized survival probability, SPq(t), and the gen-
eralized local density of states, ρq(E). We showed that the width of the generalized local
density of states, σq, depends on q, even when the many-body quantum system is deep
in the chaotic regime, which stands in contrast with random matrices, where the width
is constant and equal to the width of the density of states. Therefore, σq may serve as a
tool that can be employed to analyze and quantify the level of ergodicity of the states of
physical systems with respect to random matrices.

We also showed that the power-law behavior that follows the Gaussian decay of the
generalized survival probability is strongly dependent on q when the system is away from
the chaotic regime. For a fixed value of the disorder strength, the power-law decay becomes
stretched as q increases and the power-law exponent γq decreases. This dependence of γq
on q indicates correlations between the eigenstates. In a future work, we plan to investigate
how σq and γq may be used to study multifractality.
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Abstract: We discuss the generalized quantum Lyapunov exponents Lq, defined from the growth
rate of the powers of the square commutator. They may be related to an appropriately defined
thermodynamic limit of the spectrum of the commutator, which plays the role of a large deviation
function, obtained from the exponents Lq via a Legendre transform. We show that such exponents
obey a generalized bound to chaos due to the fluctuation–dissipation theorem, as already discussed
in the literature. The bounds for larger q are actually stronger, placing a limit on the large deviations
of chaotic properties. Our findings at infinite temperature are exemplified by a numerical study of
the kicked top, a paradigmatic model of quantum chaos.

Keywords: quantum chaos; generalized Lyapunov exponents; quantum bound to chaos

1. Introduction

Classical chaos is well understood from the sensitivity of the dynamics to respect
small changes in the initial conditions, the so-called butterfly effect. This is quantified by
the Lyapunov exponent, the rate at which nearby trajectories separate exponentially in
time. In the past few years, there has been a lot of attention given to quantum chaos and
in particular, on the quantum Lyapunov exponent λL, defined from the intermediate-time
exponential growth of the following square-commutator:

〈|[A(t), B]|2〉 ∼ ε2eλLt , (1)

where ε is a small parameter [1]. The interest in this object comes from the fact that λL
obeys a bound:

λL ≤ 2π

βh̄
. (2)

This result, now known as the quantum bound to chaos, was proved within the high
energy community [2], driven to the topic because maximal chaos is attained by models
of black holes, including the Sachdev–Ye–Kitaev model (SYK) [3–5]. See also Refs. [6,7]
for alternative derivations. The interest in these issues has later spread over different
communities, from condensed matter to quantum information theory. Recently, the ex-
istence of the bound in Equation (2) was physically rationalized as a consequence of the
fluctuation–dissipation theorem (FDT) [8,9] since the out of time-order correlators (OTOC)
appearing in Equation (1) can be mapped into two-time correlation functions in a duplicated
Hilbert space.

Actually, both classically and quantum mechanically, the Lyapunov exponent is a
distributed quantity: different starting conditions—or different time intervals after the same
starting condition—yield different exponents, and they are peaked on a ‘typical’ value and
have large (and rare) deviations around, for example, when a classical trajectory grazes a
regular region. If the distribution is not a delta function, it is referred to as ‘multifractal’ [10].

A possibility to study the full distribution of Lyapunov exponents is to introduce the
generalized Lyapunov exponents (GLE) L2q, defined from the moments of the distribution
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(This may lead to confusion. The Lyapunov exponents are classified as first (maximal), second,
. . . according to whether they measure linear, area, and in general k-form expansions [11].
Each is also generalized according to the moment q considered. Here we are considering
expansions of linear lengths, and all moments q of the ‘first, maximum, Lyapunov exponent’,
thus L(k)

2q for all q and k = 1). It turns out that the quantum generalized exponents also
satisfy themselves a bound, stated in Ref. [8], that generalizes Equation (2). These bounds
are the subject of this paper. We have two motivations: Firstly, they put limitations on the
chaotic properties of rare protocols, favoring high and low chaoticity, and also allow us
to define a Lyapunov exponent for typical protocols, actually different from the usual one
considered in quantum mechanics. Secondly, a system that approaches the bounds for all
the L2q will turn out to be mono-fractal, i.e, the large deviation function becomes peaked on
a single value, a property we find intriguing.

The quantum generalized Lyapunov exponents are defined by considering the 2q-
th commutator between two operators at different times, and assuming that they scale
exponentially with time as

G2q(t) = 〈(i[A(t), B)])2q〉β ∼ ε2q eL(β)
2q t , (3)

where ε is a small parameter, two common examples are ε = h̄ (the semiclassical limit) or
ε = N−1 (as in the SYK model), the latter being more relevant here as we shall be interested
in thermodynamic models. The thermal average 〈•〉β at inverse temperature β may be
defined in various ways, as we shall see below.

The rate L(β)
2q now defines the quantum thermal generalized Lyapunov exponent of

order q. The usual (quenched) Lyapunov exponent thus is

λ
(β)
1 = lim

q→0

L(β)
2q

2q
(4)

On the other hand, the grow rate of the square commutator λL actually corresponds
to the GLE with q = 1: λL = L(β)

2 .
In the quantum realm, the exponential regime holds only at intermediate times, up

to the so-called Ehrenfest time tEhr ∼ ln ε−1. In actual fact, only when lim tEhr → ∞ is the
Lyapunov regime unambiguously defined.

Different q-Lyapunovs are dominated by initial conditions having different expansion
rates, with larger rates dominating the averages corresponding to larger q. Hence, one
must allow for the dependence on the Ehrenfest time itself:

t(2q)
Ehr =

2q
L2q

ln ε−1 such that G2q(t) ∼ eL(β)
2q (t−t(2q)

Ehr ) . (5)

A crucial assumption we shall make here is that

t(2q)
Ehr ≤ t(2q′)

Ehr for q > q′ (6)

Under these assumptions, we show that the following holds:

L(β)
2q

2q
≤ π

βh̄
. (7)

This bound was already stated in Ref. [8], without the identification of the rate L(β)
2q as

a quantum GLE and the relation to large deviations. We will also clarify some assumptions
on which the derivation [8].
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Because we are assuming that
L(β)

2q
2q does not decrease, the bounds for larger q (but al-

ways of order one with respect to N) are more stringent. The meaning of this, as the classical
discussion below will make clear, is that even rarely expanding conditions are bounded.

2. Classical Generalized Lyapunov Exponents

Let us briefly review the classical case [11]. Consider the infinitesimal separation |Δ(t)|
between two trajectories at time t, starting at a point x0 and x0 + Δ:

R(t) =
|Δ(t)|
|Δ(0)| ∼ eλ t . (8)

The rate λ is a function of the initial condition x0. This quantity grows in time according
to an asymptotic exponential law λt with (λ > 0) if the system is chaotic, where λ is a
function of time which reaches a finite limit at long times. A very long chaotic trajectory
will have explored most of the phase space, and the exponential expansion will be sampled
from all regions: the value λ then becomes essentially the same for all initial conditions.
This fact is encompassed in the Oseledec theorem [12].

The fact that ln R(t) is a cumulative process over stretches of time with uncorrelated
properties leads to the usual argument for the introduction of a large deviation principle,
in this case for the probability of a Lyapunov value given a random initial condition:

ln P(λ, t) ∼ −t S(λ) , (9)

where S is the large-deviation (Cramér) function. If the system is ergodic, the ensem-
ble of initial conditions may be substituted by the ensemble of initial times along the
same trajectory.

The typical Lyapunov exponent λ1 is given by

λ1 ≡ lim
t→∞

1
t
〈ln R(t)〉τ ≡ lim

t→∞

∫
dλ P(λ, t)λ (10)

(note that λ = λ(t)).
One can study the 2q-th moments which, for long enough times, shall grow exponentially as

R2q(t) = 〈R(t)2q〉 ∼ eL2qt, (11)

where
L2q = lim

t→∞

1
t

ln〈R(τ)2q〉 (12)

are called the generalized Lyapunov exponents (GLE) of order 2q, and characterize the fluc-
tuations of the dynamical system [10]; see also Ref. [13]. They are defined as
annealed averages:

L2q ≡ 1
t

ln lim
t→∞

∫
dλ P(λ, t) e2qλt ∼ max

λ
{−S(λ) + 2qλ} , (13)

where we have evaluated the integral over large t using saddle point. The typical Lyapunov
exponent is retrieved as the limit

λ1 = lim
q→0

L2q

2q
=

1
2

dL2q

dq

∣∣∣
q=0

. (14)

The GLE L2q is the Legendre transform of S(λ), via Equation (13). As such, also L2q is
a convex function of 2q. As a consequence, one has that L2q obeys two important properties:
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1. L2q/2q are an increasing function of the order q:

d
dq

(
L2q

2q

)
≥ 0 ; (15)

2. The GLEs are always bounded by the linear behavior:

L2q ≥ 2qλ1 . (16)

These equations are obtained via the property of convex differentiable functions f (x):
f (x) ≥ f (y) + f ′(y)(x − y). For x = 2q and y = 0, this yields Equation (16), while for
x = 0 and y = 2q, one has Equation (15).

The equality L2q = 2qλ1 in Equation (16) holds only if P(λ) = δ(λ − λ1), namely
if the Lyapunov exponent is the same and does not fluctuate, we have mono-fractality.
Interestingly, this characterizes also random matrices of dimension D without any structure
and with high connectivity, which satisfy L2q = 2qλ1 +O(1/D) [10]. Otherwise, the system
is characterized by multifractal behavior. The higher the moments, the more important the
contributions coming from the tales of the distribution. In particular, in the case of a
distribution P(λ) with a finite support, the limits

λmax/min = lim
q→±∞

L2q

2q
(17)

select the maximal and minimal expanding rates.

3. Quantum Generalized Lyapunov Exponents at Infinite Temperature

Our goal is to extend the definition of generalized Lyapunov exponents to the quantum
domain to discuss the bound in Equation (7). Systems with a few degrees of freedom do
not lend themselves to the implementation of bounds that depend on temperature, as the
canonical ensemble is not particularly useful for them. However, we may understand
some other features that are also valid in thermodynamic systems by studying infinite-
temperature systems of this kind. In this section, we define the quantum generalized
Lyapunov exponents at infinite temperature and discuss their “convexity” properties. We
will see that it is straightforward to interpret the quantum GLE as a probe of the spectral
properties of the square-commutator operator.

3.1. Properties of the Infinite Temperature Quantum GLE

Let us first analyze the infinite temperature 2q-th commutator Equation (3) at infinite
temperature:

G(0)
2q (t) =

(−1)q

Z
Tr
(
[A(t), B]2q

)
, (18)

where Z = Tr(I) = dim H is given by the Hilbert space dimension. This object generalizes
the infinite temperature square-commutator in Equation (1), which has been discussed in a
variety of models, and it is particularly relevant for dynamical protocols where energy is
not conserved (such as with periodic driving or in the open system’s scenario).

The infinite temperature quantum GLEs are then defined by the exponential growth
at intermediate times:

G(0)
2q (t) ∼ ε2qeL(0)

2q t . (19)

We now show that L(0)
2q obey the same properties as the classical ones (e.g.,

Equation (15)). Let us re-write Equation (18) as

G(0)
2q (t) =

1
Z ∑

i
(gi(t))2q , (20)
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where we defined gi(t) the eigenvalues of the square-commutator operator, i.e.,

− [A(t), B]2 = ∑
it

(gi(t))2|it〉〈it| . (21)

and we have made explicit a factor t so that λt may have a finite limit. Some properties of
this operator have been studied on specific models, see, for example, Refs. [14,15]. If the
expectation value of the square commutator grows exponentially (we consider only times
before tEhr), then it is convenient to write each eigenvalue as

gi(t) = eλi
t t . (22)

By using 1 =
∫

dλδ(λ − λi
t), we can re-write Equation (18) as

G(0)
2q (t) =

∫
dλ P(λ)e2qλt (23)

where we have defined the distribution of the quantum local Lyapunov exponents

P(λ) = ∑
i

δ(λit − λ) . (24)

Equations (23) and (24) shows that the G(0)
2q (t) are moments since they can be written

as an integral of times the powers of a function times a positive function P(λ). We can
associate to the latter a convex Cramér function tS(λ) ∼ ln P(λ) as in Equation (9), which
gives the Legendre transform of L(0)

2q . These relations imply the convexity of the quantum
GLE at an infinite temperature, which results in the following:

1. L(0)
2q /2q is an increasing function of q;

2. The following inequality holds:

L(0)
2q ≥ 2qλ

(0)
1 , (25)

where λ
(0)
1 = limq→0

L(0)
2q
2q .

The equality holds in the absence of fluctuations in the spectrum of the square-
commutator operator. Such mono-fractal behavior means that—for the appropriate time’s
range—the square-commutator operator is close to a constant times the identity matrix.

3.2. A Semi-Classical Example: The Quantum Kicked Top

As an illustrative example, we study a driven model: the quantum kicked top. Since
the energy is not conserved, this model is equivalent to a system at infinite temperature.
We thus show that L(0)

2q satisfies the properties of convexity and of large deviation theory.

(In this section, we denote L(0)
2q = L2q, for the sake of clarity.)

The model is described by the time-dependent Hamiltonian:

H = αSx +
J
N

S2
z

∞

∑
n=−∞

δ(t − nτ) , (26)

where Sx,y,z = 1
2 ∑N

i=1 σi
x,y,z are collective spin operators. Due to the collective nature of

the interactions, for large N, the classical limit is approached. One can define an effective
Planck constant:

h̄ =
1
S
=

2
N

(27)

421



Entropy 2023, 25, 246

that vanishes in the thermodynamic limit. The stroboscopic time-evolution operator
(namely, the time-evolution operator over one period) reads as

Û = ÛJÛα with Uα = e−iαSx , ÛJ = e−i J
N S2

z . (28)

We fix τ = 1 and α = π/2. Changing the value of the kicking strength J, this model
undergoes a transition between a regular regime and a chaotic one [16,17]. The dynamics
of the square commutator (1) have been extensively explored [18–22].

We consider the strongly chaotic limit by choosing J = 3.5, and we look at the infinite
temperature state with ρ = I/ dim H, with dim H = N + 1. We study the dynamics of the
G2q(t) via exact numerical calculations, specifically via exact diagonalization. We compute
the stroboscopic time-evolution of the 2q-th commutator (3) using Â = B̂ = Ŝz at times
t = nτ = 0, 1, 2, . . . .

In Figure 1, we show the dynamics of G2q(t) for different values of q = 1 ÷ 19. The
correlators are rescaled by h̄2q [with h̄ = 2/N] to emphasize the scaling of Equation (3).
Each commutator grows exponentially before the Ehrenfest times with a different rate
that corresponds to the quantum GLE L2q. The value of L2q is then fitted and plotted in
Figure 2a, where we display its behavior as a function of q. It is a convex function of
q that satisfies L2q > 2qλ1 [cf. Equation (25)], being therefore multifractal. The typical
Lyapunov exponent λ1 is computed as in Figure 2b, where L2q/2q is plotted as a function
of q. The extrapolation to q → 0 yields λ1 = 1.1(1), which corresponds to the maximum
Lyapunov exponent of the classical model in the chaotic phase λclass = 1.12, as computed
via the Benettin et al. algorithm [23,24]; see, for example, the appendix of Ref. [22]. We also
extract the maximal expanding rate λmax = 2.4(1) [cf. Equation (17)] from the limit q → ∞,
signaling that the distribution of Lyapunov has finite support.

Figure 1. Dynamics of G2q(t) in Equation (3) for different values of q = 1 ÷ 19 as a function of time
for N = 1600.

Figure 3 (shaded lines) shows the spectrum of the square commutator in Equation (21).
Most of the eigenvalues grow exponentially in time before saturation and thus define
some local Lyapunov exponents. We compare this behavior with the standard square-
commutator expectation G2(t) [cf. Equation (1)] (blue dots), which grows exponentially at
a rate L2 larger than the maximum Lyapunov λ1. The figure also shows that λmax as fitted
and extracted in Figure 2 (the dashed black line) corresponds to the maximal expanding
rate of the local Lyapunov exponents.
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Figure 2. Generalized Lyapunov exponents fitted from Figure 1. (Left) L2q as a function of q,
contrasted with the actual Lyapunov exponent λ1 and the maximal expanding rate λmax, obtained by
a fit of these data at large q. (Right) L2q/2q as a function of the moment q, from which we extract the
maximal Lyapunov exponent λ1.

Figure 3. Spectrum of the square commutator g2
i (t), compared with G2(t) and the exponential growth

with L2, with the maximal expansion rate λmax and with λ1 for N = 1600.

In Figure 4, we show that the local Lyapunov exponents are a large deviation. We
consider the coefficients λi

t = ln(gi)/2t from Figure 3 (we divide everything by a constant
factor). On the left, we plot their numerical distribution at different times t = 3, 4, 5, which
shows that it converges to a distribution at large t. On the right, we plot − ln P(λ)/t, which
shall correspond to the smooth convex “Cramer” function at large times; see Equation (9).
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Figure 4. Large deviation properties of the spectrum of the square-commutator for N = 1600. (Left)
Numerical distributions of λi

t = ln(gi(t))/2t with g2
i (t) the eigenvalues of Equation (20) at different

times t = 3, 4, 5. (Right) − ln P(λ)/t with P(λ) the empirical distribution.
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4. Thermal Quantum Generalized Exponents

It is useful to consider the different regularizations of the 2q-th commutator as

G(β)
2q (t) = Tr

((
ρ

1
4q i[A(t), B]ρ

1
4q

)2q
)

, (29)

G(β)
2q (t) = Tr

((
i[ρ

1
8q A(t)ρ

1
8q , ρ

1
8q Bρ

1
8q ]

)2q
)

. (30)

with
ρ = e−βH/Zβ and Zβ = Tre−βH (31)

Considering q = 1 in Equations (29) and (30), we retrieve the standard regularized
square commutators for which the bounds have been proved in Ref. [9]. In Section 4.2
below, we show that the multi-time correlation functions appearing in Equations (29) and
(30) can be mapped as two-times functions in a replicated Hilbert space of 2q copies. This
allows one to rationalize the use of such regularizations—that might seem an artificial
construction—as fixing the temperature of the different replicas to be the same.

These regularizations define the thermal average introduced in Equation (3), which
defines thermal GLE L(2q)

β . We consider the situation in which both of the q-th commutators
grow exponentially in time as

G(β)
2q (t) ∝ ε2qeL(β)

2q t , (32)

Ḡ(β)
2q (t) ∝ ε2qeL(β)

2q t , (33)

which is valid only for an intermediate time regime

td � t ≤ t(2q)
Ehr ≡

L(β)
2q

2q
ln ε−1 . (34)

4.1. From Commutators to OTOCS

Consider the quantities of Equations (29) and (30). Expanding the commutators, we
get a series of OTOC terms containing exactly k times:

G(β)
2q (t) =

2q

∑
k=1

dk [OTOC]k (35)

of the form
[OTOC]k = 〈A1(t)B1(0) . . . Ak(t)Bk(0)〉β + h.c. , (36)

where A1, B1, . . . are powers of A and B respectively and dk some coefficients. With these
notations, [OTOC]1 = 〈Aq(t)Bq(0)〉β + h.c. is a function of two times. Out-of-time-order
correlators between k operators are sometimes referred to as k-OTOC; see Refs. [25–28].
We are here interested in understanding their structure in time for exponential growth.
Following [2], we assume that there exists some dissipation time td, after which two-point
functions factorize as [OTOC]1 ∼ Cq.

Each [OTOC]2k may grow at most as fast as the corresponding Lyapunov behavior,
during the corresponding Ehrenfest time:

Ck − [OTOC]2k ∝ ε2keL2kt = eL2k(t−t(2k)
Ehr ) . (37)

If we evaluate this term at times corresponding to a finite but small fraction of the
corresponding Ehrenfest time t(2q)

Ehr , we conclude that all the terms with k < q are of lower
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or equal order, because of the ordering of Ehrenfest times [cf. Equation (6)]. We thus
conclude that

G(β)
2q (t) ∼ Cq − Re Tr

(
ρ

1
2q A(t)B ρ

1
2q A(t)B . . . ρ

1
2q A(t)B

)
, (38)

G(β)
2q (t) ∼ Cq − Tr

(
ρ

1
4q A(t)ρ

1
4q B ρ

1
4q A(t)ρ

1
4q B . . . ρ

1
4q A(t)ρ

1
4q B
)

, (39)

where the constants Cq, C̄q are different given the different regularizations.

4.2. Product Space, Fluctuation-Dissipation Theorem and Bound

In this section, we will show how the multi-time OTOC appearing in the generalized
2q-th commutators has a simple interpretation as two-time correlation functions in a 2q-
replicated space, see [25]. Focusing on q = 1, in Ref. [9] we have stressed that bringing an
OTOC into this representation for finite β allows one to write the corresponding fluctuation-
dissipation (FDT) relations as a usual KMS one. Here, we will demonstrate it for generic q.

Let us consider the following 4q point out of time order correlator:

S2q(t) =
1
Z β

Tr
(
(ρ

1
2q A(t)B )2q

)
= Tr

(
ρ

1
2q A(t)B ρ

1
2q A(t)B . . . ρ

1
2q A(t)B

)
. (40)

Now, we re-write it in terms of the spectral representation of the Hamiltonian H|n〉 =
En|n〉 as

S2q(t) =
1
Z β

∑
n1n2...n2q

e−
β
2q (En1+En2+...En2q ) × 〈n1|A(t)B|n2〉〈n2|A(t)B|n3〉 . . . 〈n2q|A(t)B|n1〉

=
1
Z β

∑
n1n2...n2q

e−
β
2q (En1+En2+...En2q ) × 〈n1n2 . . . n2q−1n2q|A(t)B|n2n3 . . . n2qn1〉 ,

where we introduced the operators that act in the 2q-th replicated Hilbert space:

A(t) = A(t)⊗ A(t) · · · ⊗ A(t) , B = B ⊗ B · · · ⊗ B , (41)

and the replicated Hamiltonian

H = H ⊗ 1 · · · ⊗ 1 + 1 ⊗ H · · · ⊗ 1 + · · ·+ 1 ⊗ 1 · · · ⊗ H. (42)

We also define the cyclic shift operator P that permutes cyclically states between the
Hilbert spaces as

P|n1n2 . . . n2q−1n2q〉 = |n2n3 . . . nqn1〉 with P
2q = 1 , (43)

P
†|n1n2 . . . n2q−1n2q〉 = |n2qn1n2 . . . n2q−1〉 . (44)

Notice that the operator P is non-Hermitian, but we can define P̃ = P+P†

2 that is. P̃
also commutes with A(t), B and H so that P̃B is Hermitian.

Let us re-write Equation (41) as

S2q(t) =
1
Z β

∑
n1n2...n2q

e−
β
2q (En1+En2+...En2q ) × 1

2

(
〈n1n2 . . . n2q−1n2q|A(t)B|n2n3 . . . nqn1〉

+ 〈n1n2 . . . n2q−1n2q|A(t)B|n2qn1 . . . nq−2n2q−1〉
)

,
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where in the second line, we simply used a different resolution of the identity and a
reshuffling of the matrix elements (We use

〈n1|A(t)B|n2q〉〈n2q|A(t)B|n2q−1〉 . . . 〈n3|A(t)B|n2〉〈n2|A(t)B|n1〉 =
〈n1|A(t)B|n2q〉〈n2|A(t)B|n1〉〈n3|A(t)B|n2〉 . . . 〈n2q|A(t)B|n2q−1〉 .

).
Therefore, we can re-write Equation (40) as

S2q(t) =
1
Z β

Tr
(

e−β2qH A(t)B P̃

)
(45)

which, besides a normalization, is a standard equilibrium expectation value of a two-time
function at inverse temperature β2q = β/2q. This result naturally generalizes the one for
four times OTOC, for which P = P† = P̃, as derived in Ref. [9].

4.2.1. Fluctuation–Dissipation in the Replicated Space

We may now write the extended KMS relations. We consider

C2q(t) =
1
2

1
Z

Tr
[
e−β2qH {A(t), B P̃}

]
, (46)

R2q(t) =
i
h̄

θ(t)
1
Z

Tr
[
e−β2qH [A(t), B P̃]

]
(47)

F2q(t) =
1
Z

Tr
[

e−
β2q

2 H
A(t)e−

β2q
2 H

B P̃

]
(48)

where C2q and R2q are defined as usual from real and imaginary parts of S2q(t) = C2q(t) +
h̄(R2q)

′′(t) and correspond to fluctuations and response functions, respectively. Instead,
the (Whiteman) correlation function F2q in the original space is

F2q(t) = Tr
(
(ρ1/4q A(t)ρ1/4qB)2q

)
. (49)

We remark that the Fourier transforms of the connected parts of F2q, known as free
cumulants, directly encode the energy shell correlations appearing in the eigenstate ther-
malization hypothesis [29,30].

The correlation functions defined in Equations (46)–(48) obey the FDT at a modified
temperature β2q [31]. In the frequency domain, the FDT reads

C2q(ω) = cosh(β2qh̄ω/2)F2q(ω) , (50)

h̄(R2q)
′′(ω) = sinh(β2qh̄ω/2)F2q(ω) , (51)

equivalent to the standard formulation h̄(R2q)
′′(ω) = tanh(β2qh̄ω/2)C2q(ω). We are inter-

ested in correlations in the time domain; hence, at the fluctuation–dissipation theorem for-
mulated in the time domain, the t-FDT [9]. In particular, we will use the following relations:

C2q(t) = cos
(

β2qh̄
2

d
dt

)
F2q(t) , (52)

h̄(R2q)
′′(t) = sin

(
β2qh̄

2
d
dt

)
F2q(t) . (53)
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4.2.2. The Bound

At times small but comparable with t(2q)
Ehr , the previous arguments showed that the

2q-OTOC are dominated by the regularized commutators [cf. Equations (38) and (39)]

Cq −C2q(t) ∼ G(β)
2q (t) , C̄q − F2q(t) ∼ Ḡ(β)

2q (t)

when the behavior is exponential as ∼ exp[L(β)
2q (t − t(2q)

Ehr )]. The t-FDT in Equation (52) implies

Cq −C2q(t)
C̄q − F2q(t)

= cos

⎛⎝ β2qh̄L(β)
2q

2

⎞⎠ (54)

The positivity of these coefficients—that follows from the fact that the 2q-th commuta-

tors are positive definite—requires that the GLE must be such that cos
(

β2q h̄
2 L(β)

2q

)
≥ 0. We

thus conclude
L(β)

2q

2q
≤ π

βh̄
. (55)

In the models where the Lyapunov depends on temperature [32–34], the cosine above
in Equation (54) starts from zero at large temperature and is always in the first quadrant.

The bound on the 2q-th OTOC rate was previously derived by Tsuji et al. in Ref. [8], by
taking Equations (38) and (39) as a working assumption. In Section 4.1 above, we justified
it using the ordering of the Ehrenfest times t(2q)

Ehr .

4.3. Distribution Functions

The generalized Lyapunov exponents are the moments of a Lyapunov distribution
function, as we have seen in the classical case and for the quantum GLE at an infinite
temperature. In the case of finite β, the structure is more complex. This is due to the
presence of q−dependent thermal matrices ρ in the definition of the regularized powers of
commutators in Equations (29) and (30).

Nevertheless, one may define the Legendre transform of the thermal GLE as

S(λ, β) = max
q

(2λq − L(β)
2q ) . (56)

In analogy with the previous cases, we may interpret it as the Cramèr function of an
associated large deviation function P(λ, β) ∼ exp(S(λ, β)t). As such, it shall obey similar
properties as discussed above. In particular, the convexity of S(λ, β) and L(β)

2q corresponds
with the ordering of the Ehrenfest times in Equation (6) assumed at the beginning. The
latter is equivalent to the conditions that

L(β)
2q

2q
increasing function of q. (57)

It is thus clear that the quantum bound (55) constrains the larger q that are related
with the rare large deviations.

5. Discussion and Conclusions

In this work, we studied the quantum generalized Lyapunov exponents that quantify
the large deviations of the spectrum of an appropriate operator. First, we discussed their
convexity properties at infinite temperatures, which we exemplified on the kicked top. At
finite temperatures, the quantum fluctuation–dissipation theorem (KMS) imposes a bound
on their value, thus generalizing the celebrated bound to chaos to multipoint correlations.
These bounds set a limit on the large deviations of chaotic properties.
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A fascinating point is the interpretation of saturating the bound (7) at every q, which
implies a form of mono-fractality:

L(β)
2q =

πh̄
β

2q . (58)

Classical examples of mono-fractal behavior, i.e., models for which every trajectory has the
same Lyapunov exponent, are the backer map [35] and the free dynamics on the pseudosphere
(the surface with constant negative curvature) [36]. What can we learn about the models
that saturate the quantum bound (58)? A natural expectation is that the SYK model would
lie in this class. In this case, it would be interesting to explore the meaning of such quantum
mono-fractality in connection to the distinct properties of the model.
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Abstract: A relevant problem in dynamics is to characterize how deterministic systems may exhibit
features typically associated with stochastic processes. A widely studied example is the study of
(normal or anomalous) transport properties for deterministic systems on non-compact phase space.
We consider here two examples of area-preserving maps: the Chirikov–Taylor standard map and
the Casati–Prosen triangle map, and we investigate transport properties, records statistics, and
occupation time statistics. Our results confirm and expand known results for the standard map: when
a chaotic sea is present, transport is diffusive, and records statistics and the fraction of occupation
time in the positive half-axis reproduce the laws for simple symmetric random walks. In the case of
the triangle map, we retrieve the previously observed anomalous transport, and we show that records
statistics exhibit similar anomalies. When we investigate occupation time statistics and persistence
probabilities, our numerical experiments are compatible with a generalized arcsine law and transient
behavior of the dynamics.
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1. Introduction

One of the most remarkable advances in modern dynamics lies in the recognition
that deterministic systems may exhibit statistical properties typical of purely stochastic
processes: for instance, such systems may display diffusion properties similar to random
walks [1–4]. Area-preserving maps (see, for instance, [1]) represent a prominent example of
Hamiltonian systems where subtle features of dynamics, such as integrability vs. chaotic
properties, may be studied. In this context, one of the most outstanding examples is
represented by the Chirikov–Taylor standard map (SM) (see [1,5] and references therein).
Even if we are only concerned with classical features, we recall that such a map played an
important role in the development of quantum chaos: in particular, early investigations
showed how quantum interference suppresses classical diffusion, a phenomenon called
quantum dynamical localization [6]. Though the SM has been extensively explored by
numerical simulations, very few rigorous results have been proven (see, for instance, the
introduction in [7]): however, it is generally believed that for large nonlinearity parameters,
this map typically exhibits good stochastic properties and sensitive dependence upon
initial conditions. Here a remark is due: such a map can be studied either on a 2-torus or
an (unbounded) cylinder: the latter representation is naturally adopted when transport
properties are concerned, and analogies with random walks are taken into account [1,3,8,9].
While particular nonlinear parameters in the standard map can be tuned to generate
strong anomalous diffusion [10] (see also [11–15]), here we will only deal with the case in
which diffusion is normal. Our findings will be compared with those obtained for another
area-preserving map, characterized by the lack of exponential instability: the so-called
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Casati–Prosen triangle map (TM) [16], introduced by considering, in an appropriate limit,
the Birkhoff dynamics of a triangular billiard: apart from its intrinsic interest, such a map is
an ideal benchmark to test whether stochasticity properties, exhibited by strongly chaotic
systems, are also showcased by systems lacking any exponential instability. It also turns
out that many features of the TM are still debated, starting from basic properties, such as
ergodicity and mixing (see, for instance, [17,18]). It is also worth mentioning that the TM
has been studied in the quantum setting to investigate which features of quantum chaos
are displayed in the absence of classical exponential instability [19,20].

In detail, we will compare different indicators for both maps on the cylinder: though,
in principle, further complications are added when one considers a non-compact phase
space [21,22], this is the appropriate scenario to discuss transport properties and record
statistics and to check whether tools from infinite ergodic theory may enrich our under-
standing of such systems.

Our main findings are that the SM, in its typical chaotic regime, displays all stochastic
properties of a purely stochastic system, while, as expected, results are far more complicated
for the TM; we believe that some new insight is provided by our analysis, in particular,
as regards persistence behavior, occupation time statistics, and the relationship between
transport properties and record statistics. When we compare the records statistics for the
SM and the TM, the latter exhibits an anomalous growth, which can be related to trans-
port properties. The difference is even more striking when we consider occupation time
statistics and survival probability: the SM again behaves like a simple random walk, while
the TM numerical experiments suggest transient behavior, coexisting with a generalized
arcsine law.

The paper is organized as follows. In Section 2, the Chirikov–Taylor standard map (1)
and the triangle map (3), our basic models, are presented, and we also mention the main
properties we analyze. Section 3 is dedicated to discussing transport properties, records
statistics, and occupation time statistics. We end with a discussion in Section 4.

2. The Basic Setting

We recall the definition of the SM

pn+1 = pn +
K

2π
sin(2πxn),

xn+1 = xn + pn+1 mod 1;
(1)

where x and p are canonical variables: (1) is the stroboscopic map generated by the time-
dependent Hamiltonian H(p, x, t) = p2/2 + K/(2π)2 cos(2πx)∑+∞

m=−∞ δ(t − m), describ-
ing a periodically kicked rotator, K being the nonlinear parameter: when K is sufficiently
big, no KAM invariant circles bound the motion, and one can study moments of the
diffusing variable p ∈ R:

〈|pn − p0|q〉 ∼ nqν(q). (2)

The typical behavior observed for the second moment in simulations is normal diffu-
sion ν(2) = 1/2 [23,24], while, for certain parameter values, the existence of stable running
orbits (accelerator modes) induces superdiffusion, ν(2) > 1/2) [11–15,25–27]. We point out
that a finer description of anomalous transport is obtained by considering the full spectrum
ν(q): if ν(q) = α · q, for some α �= 1/2 one speaks about weak anomalous diffusion, whereas
the case of a nontrivial ν(q) is dubbed strong anomalous diffusion [10]. As far as the SM is
concerned, we will consider the case where transport in the stochastic sea is normal, even if
the phase space exhibits a mixture of chaotic and elliptic components (see Figure 1). We
will come back to this point in the final discussion.
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Figure 1. Phase-space portrait for the standard map (1) on the 2-torus, for K = 2.6. Here 40 uniformly
distributed initial conditions were used for x, while maintaining p0 = 0 fixed: each initial condition
is iterated 104 times.

On the other side, the TM is defined (on the cylinder) as:

pn+1 = pn + 2(xn− � xn � −μ(−1)�xn�),
xn+1 = xn − 2pn+1 mod 2,

(3)

where � · · · � denotes the nearest integer. It was introduced in [16] (see also [28]) as an
approximate Birkhoff map of irrational triangular billiards: systems lacking exponential
instability, whose ergodic properties are subtly related to irrationality properties of the
angles [29–32]: in particular, the original derivation refers to an elongated triangular billiard,
with a very small angle: x and p are Birkhoff coordinates describing successive collisions
with the small side, and the parameter μ is associated with the asymmetry between the
two non-small angles. Figure 2 shows the function δp(x) = pn+1 − pn = 2(xn− � xn �
−μ(−1)�xn�). Since the derivative of δp(x) (apart from discontinuity points, where it does
not exist) is constant δ′(x) = 2, the jacobian of the map is

J(x, p) = J =

( −3 −2
2 1

)
. (4)

The determinant is 1 (the map is area-preserving, while the trace is −2, corresponding
to double degenerate eigenvalues λ = −1. This implies that the TM lacks any form of
exponential instability.

We remark that the polygonal billiards represent both a hard mathematical chal-
lenge [33–36] and a natural benchmark when trying to assess which microscopic dynamical
features lead to macroscopic transport laws [37–39] (see also [40,41]). In this respect, it is
worth mentioning that anomalous transport has been associated with scaling exponents
of the spectral measure [42] and that generalized triangle maps have been investigated
recently, both as connected to dynamical localization [43] and with respect to slow diffu-
sion [44]. A typical phase portrait (on the torus) of the TM is shown in Figure 3.

Before mentioning the numerical experiments we performed, a crucial observation is
in order. When looking at transport properties (and records statistics), considering maps
on the cylinder is quite natural, while from the ergodic point of view, this perspective is
somehow delicate since no normalizable invariant density exists [21,22], and the appropri-
ate setting is an infinite ergodic theory (we will not employ the full machinery of infinite
ergodic theory; however, the lack of an invariant probability measure is essential when
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properties such as occupation time statistics are examined). When polygonal channels
are considered, even establishing recurrent properties of the dynamics is a demanding
task [45].

−5.0
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0.0 2.0

δp

x

Figure 2. δp = pn+1 − pn as a function of x for the triangle map (3), for μ = 1+
√

5
2 (golden mean).

Figure 3. Phase-space dynamics for the triangle map (3), for μ = 1+
√

5
2 (golden mean). Here

100 randomly distributed initial conditions were used for x and p: each initial condition is iterated
5 × 104 times. Notice the typical filament structure in the phase space [30,31].

The first set of properties we investigated is more conventional, and a few results,
as we will mention in the next section, have already been considered, especially as far as
the SM is concerned. We will look at transport properties, in particular through the first
and the second moment of the diffusing variable. We will also study records statistics,
which recently have become very popular (see [46,47] and references therein). Then we will
scrutinize statistical properties, such as persistence probability and (generalized) arcsine
law [48,49]. While motion in the stochastic sea for the SM will exhibit typical properties of
a simple stochastic process like a random walk, our findings for the TM suggest both the
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existence of transient dynamics and anomalous scaling exponents for records statistics and
generalized arcsine law.

3. Results

We start by considering properties associated with the spreading of trajectories over
the phase space; then we will consider occupation time statistics.

3.1. Diffusion

This is a warm-up exercise since transport properties have been studied both for the
SM [1,23,24] and for the TM [32]. We observe normal transport for the case of the SM (see
panels (a) and (b) in Figure 4, where 〈(pn − p0)〉 ∼ n1/2 and 〈(pn − p0)

2〉 ∼ n, respectively),
while the TM results indicate a superdiffusion (see panels (a) and (b) in Figure 5), with

〈(pn − p0)
2〉 ∼ n1.86, (5)

in agreement with [32]. We remark that by looking at the power-law exponents of the
first two moments, we find that anomalous diffusion is possibly weak [10], namely if we
consider the full spectrum of moments’ asymptotics:

〈|pn − p0|q〉 ∼ nφ(q), (6)

we have a single scaling, in the sense that

φ(q) = α · q; (7)

where normal diffusion is recovered when α = 1/2. This is reasonable since weak anoma-
lous diffusion has been observed in polygonal billiards [50].
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Figure 4. (a) Average number of records, (b) variance, (c) first, and (b) second moments of variable
p for K = 2.6 in the standard map (1), as a function of time. These quantities were computed
for 106 initial conditions for x0, arbitrarily chosen in the chaotic sea along the line p0 = 0. Black-
continuous lines correspond to power-law asymptotics fit F(n) = anγ: the fitting parameters are, for
(a) a = 0.77(7), γ = 0.50(1), for (b) a = 0.02(1), γ = 0.99(1), for (c) a = 0.86(0), γ = 0.50(9), and for
(d) a = 0.50(7), γ = 1.00(3).
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Figure 5. (a) Average number of records, (b) variance, (c) first, and (b) second moments of variable p
for the golden mean μ = 1+

√
5

2 in the triangular map (3) as a function of time. These quantities were
computed for 106 initial conditions for x0, arbitrarily chosen in phase space along the line p0 = 0.
Black-continuous lines correspond to power-law asymptotics F(n) = anγ: the fitting parameters are,
for (a) a = 0.65(4), γ = 0.92(4), for (b) a = 0.67(6), γ = 1.86(0), for (c) a = 0.13(9), γ = 0.92(4), and
for (d) a = 0.04(0), γ = 1.84(9).

3.2. Average Number of Records

The statistics of records are very popular in the analysis of correlated and uncorrelated
stochastic time sequences [46,47]. Since this subject has not been explored thoroughly in
the deterministic setting (with the remarkable exception of [51,52]), we briefly review the
basic concepts.

First of all, let us recall the (straightforward) definition of a record: given a sequence
of real data x0, x1, . . . , xk, . . . the element xm is a record if

xm > xj j = 0, 1, . . . m − 1, (8)

(we consider x0 to be the first record). To the sequence of data points we associate the
binary string σ0, σ1, . . . , σk, . . . , where

σl =

{
1 if xl is a record
0 otherwise

(9)

The number of records up to time N is then

MN =
N

∑
j=0

σj. (10)

The properties of the average number of records, 〈MN〉, and the corresponding vari-
ance

Var(MN) = 〈M2
N〉 − 〈MN〉2 (11)
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are important tools to access the nature of the data sequence: as a matter of fact, if the
different xj are independent identically distributed random variables, then, for large N, we
have [53,54]:

〈MN〉 = ln N + γE +O(N−1), (12)

where γE = 0.5772 . . . is the Euler–Mascheroni constant, and

Var(MN) = σ2(N) = ln N + γE − π2

6
+O(N−1). (13)

We remark that both quantities are independent of the common distribution of the
random variables: this universality is an important feature of record statistics in differ-
ent contexts.

The results are quite different for a correlated sequence, as when xj denotes the position
of a random walker at time j:

xj+1 = xj + ξ j+1, (14)

where the jumps are taken from a common distribution ℘(ξ). In this case, the behavior
is [46,47]:

〈MN〉 ≈ 2√
π

√
N, (15)

and

Var(MN) ≈ 2
(

1 − 2
π

)
N, (16)

so that the standard deviation is of the same order of magnitude as the average. Again
this is a universal result, independent of the particular jump distribution ℘(ξ), as long as
the distribution is continuous and symmetric. The crucial ingredient of the proof is that
the process renews as soon as a new record is achieved and the appearance of the new
record is related to the survival probability for the process, which is universal in view of
the Sparre–Andersen theorem [49,55,56] (see also [57]).

Numerical results on records statistics are reported in Figure 4 (for the SM) and
Figure 5 (for the TM), panels (c) and (d) for the average number of records 〈M(n)〉 and
variance σ2(n), respectively. For the SM, our results plotted in Figure 4 are consistent with
early investigations [51,52] and with the asymptotic behavior of a random walk: our fits are
in excellent agreement with 〈M(n)〉 ∼ n1/2 and σ2(n) ∼ n, respectively. For the TM, we
observe anomalous scaling with regard to (15) and (16), as plotted in Figure 5: the behavior
is related to the transport properties in the sense that data are consistent with the growths.

〈MN〉 ∼ Nφ(1), Var(MN) ∼ Nφ(2). (17)

Similar behavior was observed in [51,52] for the SM in the presence of accelerator
modes. We remark that, though in the following we will fix our attention to a particular
parameter value for the TM, we checked that reported experiments do not depend on the
particular parameter choice, as exemplified in Figure 6, where the growth of the averaged
number of records is reported for three different parameters of the TM: μ =

√
7,

√
2/2, and

μ = (
√

5 + e)/12 plotted with dashed-dotted (green), dashed-dotted-dotted (magenta),
and dashed (red) lines. While the actual choice of μ parameter values is somehow arbitrary,
the only provision is to choose irrational values. Otherwise, the TM becomes pseudointe-
grable [32–34]. Figure 6 shows that the asymptotic power-law fitting parameters are almost
the same (a ∼ 0.15 and γ ∼ 0.9) for different irrational values of μ.

We also remark that the number of initial conditions and iteration time plays a role
as regards the simulations we will present later on: while our choices are gauged by the
stability of the plots upon variations in this parameter, survival probability simulations
require extremely large iteration times, as remarked in the caption of Figure 7.
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Figure 6. Average number of records for three additional parameters μ in the TM. These quantities
were computed for 5 × 105 initial conditions for x0, arbitrarily chosen in phase space along the line
p0 = 0. Black-continuous lines correspond to the power-law asymptotic fitting function F(n) =

anγ, with (a, γ) = [0.20(1), 0.91(8)] (magenta), (a, γ) = [0.16(2), 0.91(7)] (green), and (a, γ) =

[0.11(5), 0.92(4)] (red).
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Figure 7. Cumulative distribution function for the survival times obtained for variable p for (a) the
standard map (1) and (b) the triangle map (3) on a logarithmic scale. Data are obtained by simu-
lating 106 and 105 initial conditions, respectively. Continuous black lines correspond to power-law
asymptotic functions F(n) = a + bn−α: the fitting parameters are a = 0, b = 2.80(0), and α = 0.51(5)
in (a) and a = 0.021(0), b = 1.62(6), and α = 0.42(0) in (b). Notice that to observe the asymptotic
plateau for the TM, we have to go to very large iteration times.

While a general, quantitative relationship (if any) between transport exponents and
statistical properties of records has not been fully developed, to the best of our knowledge,
it is possible in some cases to connect φ(1) to the expected maximum of the walk [58,59],
that, for a random walk with unit jumps, coincides with the number of records. On the
other side, we mention that non-homogeneous random walks offer examples where such a
relationship does not hold [60–64].

3.3. Occupation Time Statistics

When we consider the evolution of the cylinder, both for the SM and the TM, we are
in the presence of infinitely ergodic systems [21,22]. Since, while the Lebesgue measure
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is preserved, due to area conservation, the (constant) phase space is unbounded, so the
invariant density cannot be normalized. This has a series of remarkable consequences,
which originally have been considered in the context of stochastic processes, and then
explored in the deterministic evolution framework.

One of the most striking properties that has been investigated is the generalized
arcsine law (see [48] for the standard formulation for stochastic processes): we briefly
recall the main result that lies at the basis of our analysis, namely Lamperti’s theorem [65].
The original formulation involves discrete stochastic processes, for which the infinite set
of possible states can be separated into two sets, A and B, separated by a single site x0,
such that a transition from one set to the other can only be achieved by passing through
x0, which can be taken as the starting site, and is supposed to be recurrent (namely the
probability of returning to it is 1). For instance, we can think of a one-dimensional random
walk on an integer lattice, with x0 = 0 and A (B) consisting of strictly positive (negative)
lattice sites. We are interested in the limiting distribution of N(n)/n, the fraction of time
spent in the positive semi-axis up to time n. The theorem states that such a distribution
exists in the n → ∞ limit, and it is characterized by two parameters α and η. η is related to
the symmetry properties of the process, being the expectation value of the fraction of time
spent in R+:

η = lim
n→∞

E

(
N(n)

n

)
: (18)

for a symmetric process η = 1/2, and from now on, we will only consider such a case.
The other parameter, α, is instead connected to the behavior of the generating function

of first return probabilities to the starting site: it can be shown [66] that it can be related to
the probability Pn of being at the starting site after n steps in the following way.

Pn ∼ H(n)
n1−α

, (19)

where H(n) is a slowly varying function, namely

lim
n→∞

H(yn)
n

= 1. (20)

Under such conditions, the density of ϕ = N(n)/n in the infinite time limit is given
by Lamperti distribution:

Gα(ϕ) =
sin(πα)

π

ϕ1−α(1 − ϕ)1−α

ϕ2α + 2ϕα(1 − ϕ)α cos(πα) + (1 − ϕ)2α
, (21)

which reproduces the usual arcsine law

P((Nn/n) ≤ ξ) =
2
π

arcsin
(√

ξ
)

(22)

when α = 1/2, in the universality class of the Sparre–Andersen theorem. Deviations from
standard arcsine law have been reported in several cases in the framework of deterministic
dynamics [67–74], mainly in the context of intermittent maps. Numerical experiments for
the SM confirm the validity of the arcsine law, α = 1/2, see panel (a) in Figure 8. To the
best of our knowledge, this is the first time such an indicator has been considered in the
analysis of area-preserving maps.

The results, as expected, are quite different for the TM, and they suggest novel features
exhibited by this map. In particular (see panel (b) in Figure 8), numerical results are well
fitted by a Lamperti distribution (with α ≈ 0.42) and thus are different from an ordinary
random walk), except for those that present enhanced peaks. Intuitively, such an additional
contribution might be due to a fraction of orbits never returning to the origin: this would
correspond, in stochastic language, to a transient random walk (we recall that according
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to Pólya’s theorem [75] a simple symmetric random walk is recurrent (so the return to the
starting site is sure) in one and two dimensions, and transient in higher dimensions). Such
a possibility is indeed not excluded for infinite polygonal channels [45].

Our last set of simulations concerns the survival probability [68]:

Pcum(n) = prob(pn ≥ 0 . . . p1 ≥ 0|p0 = 0). (23)

When considering recurrent random walks, the asymptotic behavior of the survival
probability is again ruled by the Lamperti exponent [65,66] (see also [76]):

Pcum(n) ∼ n−α. (24)

Once again, SM simulations (see panel (a) in Figure 7) agree with the expected behavior
for simple random walks (α = 1/2), while the situation is completely different for the TM,
where the survival probability seems to tend to a finite limit for large n, see panel (b) in
Figure 7. This is consistent with the transient nature of the TM, which we conjectured in
the analysis of generalized arcsine law.
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Figure 8. Distribution of the fraction of time spent in the positive axis for the momentum p in the
standard (1) (a) and triangle (3) (b) maps on a semi-logarithmic scale. To enhance the readability
of the border values, the transformation x → arccos(2x − 1) on the horizontal axis. The (light blue)
points represent the simulation results, and the (red) line is the Lamperti distribution (21). Data are
obtained by computing 106 initial conditions iterated 106 times for the standard map and 106 initial
conditions iterated 108 times for the triangle map. The fitting parameters are α = 0.49(9) for (a) and
α = 0.42(0) for (b). In the case of the TM, data suggest a superposition of a (rescaled) Lamperti
distribution and two Dirac’s δ centered on x = 0 and x = 1 (see text).

4. Discussion

We have performed a set of extensive numerical experiments on two paradigmatic area-
preserving maps, the SM and the TM, focusing on the case where such maps are considered
on a cylinder, namely a non-compact phase space. First, we reproduced known results
about normal diffusion for typical (chaotic) parameters of the SM and superdiffusion for
the TM. In particular, for the TM, we recover the anomalous spreading exponent reported
in [32]. Then we explored records statistics: numerical simulations again confirm that the
SM behaves like a simple random walk in accordance with simulations in [51,52], while
anomalous growth is exhibited by the TM. We remark that, in both cases, the exponent that
accounts for the growth of the number of records is quite close to the one that determines
the asymptotic behavior of the first moment of the transporting variable, see (17). This is
also consistent with the results reported in [51,52] for the SM in the presence of accelerator
modes. While we only considered the case for which the SM displays normal diffusion
(up to the time scale we were able to investigate), it might be possible that accelerator
modes (of the possibly very high period) appear for almost every nonlinear parameter
K (see the discussion in [12]). This is an issue of conceptual relevance since accelerator
modes might eventually determine the true asymptotic behavior, but, on the other side, the

440



Entropy 2023, 25, 269

time scale on which such behavior is exhibited might be beyond any possible numerical
simulation. The most interesting results arise in the analysis of occupation times, such
as generalized arcsine law and survival probability: to the best of our knowledge, such
properties are investigated here for the first time in the context of area-preserving maps. For
the SM, we recover the usual arcsine law and a survival probability in the Sparre–Andersen
universality class, while the TM displays different behaviors. In particular, the distribution
of occupation times in the positive half-axis (for the transporting variable) is well-fitted
by a superposition of a generalized Lamperti distribution (with a different exponent with
regard to the SM) and a sum of two δ peaks at the extreme values, which we ascribe
to transient orbits. We stress that the analysis of survival probabilities supports such a
conjecture since they seem to attain a non-zero limit for very long times. The development
of further tools to sustain such a picture is a line of research that we hope will be pursued
in further studies, which might also lead to new stochastic modeling of the TM [44]. From
a different perspective, it would also be important to consider classes of area-preserving
maps for which an analytic approach is feasible. A remarkable example in this respect is
provided by the Cerbelli–Giona map [77,78], where jumps in momentum are given by a tent
map. Such a map probes the effect of singularities (that are also present in the TM, though
without any exponential instability). In particular, in [78], an exact computation of the
diffusion coefficient is presented, which bears some similarities to analogous computations
for one-dimensional maps [79,80].
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Abstract: Classical statistical mechanics has long relied on assumptions such as the equipartition
theorem to understand the behavior of the complicated systems of many particles. The successes of
this approach are well known, but there are also many well-known issues with classical theories. For
some of these, the introduction of quantum mechanics is necessary, e.g., the ultraviolet catastrophe.
However, more recently, the validity of assumptions such as the equipartition of energy in classical
systems was called into question. For instance, a detailed analysis of a simplified model for blackbody
radiation was apparently able to deduce the Stefan–Boltzmann law using purely classical statistical
mechanics. This novel approach involved a careful analysis of a “metastable“ state which greatly
delays the approach to equilibrium. In this paper, we perform a broad analysis of such a metastable
state in the classical Fermi–Pasta–Ulam–Tsingou (FPUT) models. We treat both the α-FPUT and
β-FPUT models, exploring both quantitative and qualitative behavior. After introducing the models,
we validate our methodology by reproducing the well-known FPUT recurrences in both models
and confirming earlier results on how the strength of the recurrences depends on a single system
parameter. We establish that the metastable state in the FPUT models can be defined by using a single
degree-of-freedom measure—the spectral entropy (η)—and show that this measure has the power to
quantify the distance from equipartition. For the α-FPUT model, a comparison to the integrable Toda
lattice allows us to define rather clearly the lifetime of the metastable state for the standard initial
conditions. We next devise a method to measure the lifetime of the metastable state tm in the α-FPUT
model that reduces the sensitivity to the exact initial conditions. Our procedure involves averaging
over random initial phases in the plane of initial conditions, the P1-Q1 plane. Applying this procedure
gives us a power-law scaling for tm, with the important result that the power laws for different system
sizes collapse down to the same exponent as Eα2 → 0. We examine the energy spectrum E(k) over
time in the α-FPUT model and again compare the results to those of the Toda model. This analysis
tentatively supports a method for an irreversible energy dissipation process suggested by Onorato
et al.: four-wave and six-wave resonances as described by the “wave turbulence” theory. We next
apply a similar approach to the β-FPUT model. Here, we explore in particular the different behavior
for the two different signs of β. Finally, we describe a procedure for calculating tm in the β-FPUT
model, a very different task than for the α-FPUT model, because the β-FPUT model is not a truncation
of an integrable nonlinear model.

Keywords: metastability; classical statistical mechanics; advanced numerical methods; semiclassical
methods and results

1. Introduction

Statistical mechanics, broadly speaking, aims to draw conclusions about the behav-
ior of systems with large numbers of particles without needing to solve the even larger
number of equations that the system obeys. This approach was successful in explaining
everything from the temperature of a gas to the density of a neutron star, with many
stunning discoveries in between [1]. One of the central tenets of this subject is the equipar-
tition theorem [2], which assumes that over time, energy will be shared equally around
the system. This assumption has led to many successes, e.g., the ideal gas law, but also
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some failures, e.g., the ultraviolet catastrophe from the failure of the Rayleigh–Jeans law
to describe blackbody radiation [3]. Until recently, it was believed that the resolution of
the ultraviolet catastrophe required the quantization of the energy of light into photons.
However, more recently, an entirely classical resolution was proposed [4]. By avoiding the
assumption of the equipartition theorem, Wang et al. were able to find the Stefan–Boltzmann
law through purely classical mechanics, consistent with the results of quantum mechanics.
The key was the statistics of a quasi-stationary state in the model, which has the effect of
stalling the approach to equilibrium. While the impact of these new results on statistical me-
chanics and the approach to equilibrium remains to be seen, the suggestion that “metastable”
states may play a critical role in the interactions of many-body classical systems is very
intriguing and is something that we will study in detail in this paper.

As the background and motivation for our study, we recall that, in the early 1950s,
Enrico Fermi, John Pasta, Stanislaw Ulam and Mary Tsingou (FPUT) made the first detailed
computational study of the validity of the equipartition theorem. For the parameters used
in their studies, instead of equipartition, they observed a similar quasi-stationary state
consisting of “recurrences” to the initial state [5]. Their assumption was that adding even a
small nonlinear term to the linear couplings between harmonic oscillators would be enough
to allow the system to thermalize, i.e., reach a state of equipartition. However, they found
that for small enough energies, the system remained localized in the mode space for all
the times that were computationally possible to explore with their computer. Further, they
found that there were remarkable and entirely unexpected (near) recurrences to the initial
state. This discovery opened the door for many important advances in the field of nonlinear
dynamical systems: the discovery of solitons [6], q-breathers [7] and many more. Some of the
most significant implications of their results were summarized on its 50-year anniversary [8].
The dedicated reader is referred to these major reviews of the FPUT problem: [9–12].

Our interest here is to explore computationally what is referred to as the “metastable
state” [13] in the FPUT models. This is a quasi-stationary state which stalls the approach
to equipartition. In particular, we are interested in the lifetime of the metastable state,
because the system is not able to approach equilibrium until the metastable state has ended.
Understanding the lifetime of this state, especially any scaling laws that it exhibits, will
likely provide a basis for analyzing other systems with quasi-stationary states. Hence, we
will develop and explore some techniques which can standardize the study of metastable
states in non-integrable systems. It is our belief that the continued exploration of these
states in physical systems has the potential to unlock more equivalencies between quantum
mechanics and classical statistical mechanics, as was the case with blackbody radiation [4].

The structure of the remainder of this paper is as follows. First, in Section 2, we intro-
duce the systems we will explore. Then, in Section 3, we lay out the recurrence phenomenon
and give an intuitive picture of the metastable state. In Section 4, we explore the metastable
state in the α-FPUT model, the primary computational focus of our article. In the next section,
we explore the strength of the recurrences (Section 4.1), the lifetime of the metastable state
(Section 4.2) and the energy spectrum (Section 4.3). We conclude with a qualitative explo-
ration of the metastable state in the β-FPUT model, in Section 5. We examine a comparison
between the two signs of β (Section 5.1), and in Section 5.2, we discuss the possibility of
measuring the lifetime of the metastable state in the β model. Section 6 presents a summary
of our conclusions.

2. Methods

2.1. Models

The general Hamiltonian for the systems we will consider is that of a chain of oscillators
constrained to move in one dimension with nearest neighbor interactions given by a
potential V(r), i.e.,

H(q, p) =
N

∑
n=1

p2
n

2
+

N

∑
n=0

V(qn+1 − qn). (1)
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We will consider both the α-FPUT model, with a cubic potential,

Vα(r) =
r2

2
+

α

3
r3, (2)

and the β-FPUT model, with a quartic potential,

Vβ(r) =
r2

2
+

β

4
r4, (3)

with fixed boundary conditions q0 = qN+1 = 0 and p0 = pN+1 = 0 such that there are N
distinguishable oscillators. The β-FPUT model can be considered as a perturbation of a
linear chain of oscillators (with perturbation strength β), while the α-FPUT model behaves
as a truncation of the Toda lattice, which has potential energy:

VToda(r) = V0

(
eλr − 1 − λr

)
, (4)

and was shown to be completely integrable [14].
We define the normal modes through the canonical transformation:[

qn
pn

]
=

√
2

N + 1

N

∑
k=1

[
Qk
Pk

]
sin
(

nkπ

N + 1

)
. (5)

These normal modes have frequencies:

ωk = 2 sin
(

kπ

2(N + 1)

)
. (6)

This normal mode transformation diagonalizes the harmonic lattice (i.e., α = β =
0 only) but leaves off-diagonal terms in the Hamiltonians for the anharmonic models
(α, β �= 0). These terms lead to the transfer of energy among the modes.

After this normal mode transformation, the Hamiltonian for the α-FPUT model is

Hα(Q, P) =
N

∑
k=1

P2
k + ω2

k Q2
k

2
+

α

3

N

∑
k,j,l=1

Ak,j,lQkQjQl , (7)

while for the β-FPUT:

Hβ(Q, P) =
N

∑
k=1

P2
k + ω2

k Q2
k

2
+

β

4

N

∑
i,j,l=1

Bk,i,j,lQkQiQjQl , (8)

where the last (summed) terms in both equations couple the normal modes together,
allowing for energy sharing, with coupling constants given by [15,16]:

Ak,j,l =
ωkωjωl√
2(N + 1)

∑
±

[
δk,±j±l − δk±j±l,2(N+1)

]
, (9)

Bk,i,j,l =
ωkωiωjωl

2(N + 1) ∑
±

[
δk,±j±l±m − δk±j±l±m,±2(N+1)

]
, (10)

where δi,j is the Kronecker delta function and the sums ∑± are overall combination of plus
and minus signs in the equation.

The energy Ek of the k-th mode is

Ek =
1
2

(
P2

k + ω2
k Q2

k

)
. (11)

This definition is exact only for the harmonic lattice, but serves as a good approxima-
tion for weak nonlinearity, because any contributions to the energy coming from coupled
modes have a pre-factor of the nonlinear strength (α or β).
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Whenever a quantity is time-averaged, we place a line over its symbol (e.g., E). This
represents a time average from time t = 0 to t = T, i.e.,

E(T) =
1
T

∫ T

0
E(t) dt. (12)

2.2. Numerical Methods

For integrations involving the α-FPUT model and β-FPUT model with β < 0, which
were observed to be reasonably stable numerically [17], we use the SABA2C symplectic
integration scheme described in appendix 1 of [18]. This scheme has error O([dt]4). For
the integration of the Toda lattice, we use the SABA2 scheme, i.e., the same scheme but
without the corrector Hamiltonian term, giving error O([dt]2), which was determined to
provide sufficient accuracy for the range of parameters considered. For β > 0, the β-FPUT
model is known to exhibit exponential numerical instabilities related to instabilities of the
soliton solutions to the modified Korteweg–de Vries (mKdV) equation [19], because the
mKdV equation arises from the continuum limit of the β-FPUT model. To reduce the need
for extremely small time-step sizes, we implement the symplectic integrator SABA2Y8_D
described in [20] and in Table 2 of [21], which has error O([dt]8). In general, we use a
time step dt = 0.1 unless a failure of time reversal requires us to decrease dt to improve
the accuracy.

2.3. Spectral Entropy

We will use spectral entropy to quantify the FPUT system’s “distance” from equiparti-
tion at a given time. The spectral entropy is similar to Shannon information entropy [22]
and is defined as

S(t) = −
N

∑
k=1

ek(t)ln[ek(t)],

with: ek(t) =
Ek(t)

∑k Ek(t)
,

(13)

where ek(t) is the proportion of linear energy in mode k at time t. Spectral entropy ranges
from 0, when all the energy is in one mode, to Smax, when an equal amount of energy
is present in all modes. For the α-FPUT and Toda lattices, equal energy sharing corre-
sponds to ek = 1/N ∀ k; therefore, Smax = ln(N). However, the β-FPUT lattice remains
symmetric about its center for initially symmetric excitations, and therefore energy cannot
spread from an even-numbered mode number to an odd-numbered mode, or vice versa.
Because our initial conditions will include only an odd mode, energy can only be shared
among odd modes, so Smax = ln! N

2 ", where !" is the ceiling function, which rounds a
number up to the next highest integer. Because this definition of spectral entropy has a
different maximum value for different lattice sizes N, we can rescale it by defining the
rescaled spectral entropy (henceforth entropy for short):

η(t) =
S(t)− Smax

S(0)− Smax
. (14)

This is a convenient definition because η ranges from 1 at t = 0 to 0 when energy is
shared equally among all modes (equipartition), regardless of system size N.

3. Phenomena

3.1. FPUT Recurrences

One of the surprising features of the models first explored by FPUT [5] was the
presence of what have come to be known as “FPUT recurrences”. Indeed, Fermi himself
expressed the (understated) opinion that this behavior really constituted a “little discovery
in providing limitations that the prevalent beliefs in the universality of “mixing” and “ther-
malization” in nonlinear systems may not always be justified” [5]. The FPUT recurrences
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were discovered as follows: when all of the energy was initialized in the first normal mode,
this energy was first observed to diffuse to higher order modes, but then the energy began
to return to the first normal mode, eventually nearly fully returning at what is called the
“recurrence time” (tr). This phenomenon is shown in Figure 1, which shows the energy in
the lowest 5 allowed modes in the α-FPUT and β-FPUT models as a function of time. As
noted above, the β-FPUT lattice preserves the symmetry about its center so with the initial
energy only in mode 1, only odd modes are allowed. At t = tr, the systems have nearly
reproduced their initial conditions. tr is calculated for the α-FPUT model following [23]
and for the β-FPUT model following [24]. The timescale for this recurrent behavior is many
orders of magnitude shorter than the Poincaré recurrence time [25], and the recurrences
continue quasi-periodically for a long time; indeed, the initial conditions considered by
FPUT have yet to be driven to equipartition in any computer simulation. However, for
larger initial energy, the FPUT recurrences eventually breakdown, and the system is able
to thermalize. Clearly, when most of the energy is quasi-periodically returning near the
initial condition, which is extremely localized, the system remains localized while these
recurrences continue to occur.

(a) (b)

Figure 1. The energy in each normal mode in the α-FPUT and β-FPUT models as a function of time.
At t = tr, the first FPUT recurrence is observed, with nearly all energy returning to its initial condition,
the first normal mode. The lowest 5 allowed modes in each model are plotted. (a) α-FPUT model with
initial E1 = 10−4 and N = 127 (with α = 1). (b) β-FPUT model with initial E1 = 0.15 and N = 127
(with β = 1).

FPUT recurrences were used to study ultra-cold Bose gases [26], the nonlinear
Schrodinger equation [27] and electron–phonon interactions [28], to mention a few ap-
plications. Their study was also extended to higher-order recurrences, such as super-
recurrences [18,29]. Their existence was explained in various ways, most notably (1) by
using q-breathers [7,30,31] or (2) by the presence of solitons in the KdV (mKdV) equation,
which is the continuum limit of the α-FPUT (β-FPUT) model [6,24,32]. The importance of
FPUT recurrences is difficult to overstate, but in this paper, we focus primarily on their role
in delaying the approach to equipartition.

3.2. Metastable State

The recurrence phenomenon has the effect of stalling the approach to equilibrium by
keeping the system’s energy localized near its initial condition. This phenomenon was
interpreted, as early as 1982 [33], as the system having two distinct “regions” in time: in the
first region, the system relaxes into an intermediate quasi-stationary state, which persists
for some time, before it again relaxes, this time into its true equilibrium state defined by
equipartition, such that η = 〈η〉. The intermediate or “metastable” state was more recently
studied extensively by Giancarlo Benettin [13,34–36]. His work frames the phenomenon
as a cross-over between predominantly integrable dynamics to the true non-integrable
dynamics of the FPUT models.
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In terms of the spectral entropy η, the system is considered to be in equilibrium when
η = 〈η〉, where we calculate 〈η〉 following Danieli [37]:

〈η〉 = 1 − γ

Smax − S(0)
, (15)

where γ � 0.577 is the Euler–Mascheroni constant. We are interested in the time that the
metastable state persists, before its ultimate destruction, and the system’s approach to
equilibrium. We call this the lifetime tm of the metastable state. In Figure 2, we illustrate
the metastable state in the α-FPUT and β-FPUT models. We can see that their behaviors are
qualitatively quite different. While the α-FPUT model appears to be decreasing gradually
in η, the β-FPUT model exhibits a clear flat plateau for a long time before some mechanism
causes the metastable state to collapse fairly suddenly. The features of the metastable state
in the α-FPUT model, at first glance, make it difficult to define where the metastable state
ends and the approach to equilibrium begins, but we will show that we can separate these
two regions by comparing the α-FPUT model’s behavior to that of the Toda lattice and
considering the crossover time tm to be that time at which the behavior of the two systems
begins to differ substantially.

(a) (b)

Figure 2. The time-averaged entropy as a function of time in the α-FPUT and β-FPUT models.
The ensemble average 〈η〉 (from Equation (15)) is plotted and the agreement η = 〈η〉 appears to be
stalled by a metastable state. (a) α-FPUT model with Eα2 = 0.02 and N = 63. (b) β-FPUT model with
Eβ = 0.57 and N = 31.

To make this point more explicitly, we note that up to O(r4), the α-FPUT potential
(Equation (2)) can be thought of as a truncation of the Toda potential (Equation (4)), through
a convenient change in the parameters. By setting V0 = λ−2 and λ = 2α, and Taylor
expanding the Toda potential around r = 0, we obtain the following series expansion:

VToda(r) =
r2

2
+

α

3
r3 +

α2

6
r4 +

α3

15
r5 +O(r6) = Vα(r) +O(r4). (16)

Thus, the α-FPUT model’s metastable state can be analyzed by considering its behavior
to be similar to the integrable Toda lattice, before it breaks off and exhibits the expected
behavior of non-integrable systems [34]. Figure 3 demonstrates the similarity of the evo-
lution of η between the Toda model and the α-FPUT model up to a certain point in time,
after which the α-FPUT model falls to the expected equilibrium value of η: the ensemble
average 〈η〉. This comparison to the Toda lattice will allow us to define rather precisely tm
in the α-FPUT model.
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Figure 3. The time-averaged entropy η as a function of time (note logarithmic time scale) for both
the Toda model (red) and α-FPUT model (blue). Both have initial energy Eα2 = 0.02 and system size
N = 63.

4. α-FPUT Model

4.1. Strength of FPUT Recurrences

It was shown [23] that the time to the first FPUT recurrence (tr) in the α-FPUT model
scales as a function of an essential system parameter R, defined as:

R = (N + 1)3/2
√

Eα2. (17)

Specifically, as was shown in [23], by rescaling the FPUT recurrence time by (N + 1)3,
then for R ≥ 10:

tr

(N + 1)3 = R−1/2. (18)

We use this expected value of the first FPUT recurrence time and look in the region
0.5tr < t < 1.5tr for the maximum value of the energy in the first normal mode, and name
that E1(tr). We can then calculate the ratio of this energy to the initial energy and use this
as a measure of the relative “strength” of the FPUT recurrence for a given value of R and
N. The results are plotted in Figure 4a and demonstrate that the FPUT recurrence strength
drops off as R increases, nearly independent of system size N.

Although this discussion is similar in motivation to that describing the behavior of the
β-FPUT model (see Section 7 of [24]), the implications are quite different: for the β-FPUT
model, FPUT recurrences lose strength as a function of the parameter Eβ independent of
N—NOT the essential system parameter

S = Eβ(N + 1), (19)

which the FPUT recurrence time scales with. For the α-FPUT model, the strength of the
FPUT recurrences scales with R, independent of N, instead of the corresponding energy
parameter Eα2. It is also worth noting that while in [24] one had to define a parameter
called “shareable energy” to compare the quality of the FPUT recurrences between the
cases β > 0 and β < 0, Figure 4b shows that this is not necessary for the α-FPUT model.
This figure plots the quantity:

Emin
1
E

≡ min
0<t<tr

E1(t)
E

, (20)
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which quantifies how much energy leaves the first normal mode (the initial condition),
before most of it comes back at the recurrence time. Figure 4 demonstrates that for the
α-FPUT model, nearly all of the energy consistently leaves the first normal mode before
coming back for a recurrence. This appears to be true for all R and N, except in the harmonic
limit (Eα2 → 0). However, this sharing of energy is not the case for the β-FPUT model
with β < 0, where roughly 70% of the energy remains in the first normal mode before a
recurrence [24].

(a) (b)

Figure 4. Heatmaps as a function of R (Equation (17)) and system size N in the α-FPUT model.
Note that the gray region corresponds to initial conditions which blow up (potential V(r) → −∞)
before 1.5tr. (a) The “strength” of FPUT recurrences, represented by E1(tr)/E, the fraction of energy
returning to the initial condition at the first recurrence. (b) The quantity Emin

1 /E, which represents
the proportion of energy that leaves the 1st normal mode before the first recurrence.

Because Figure 4a seems to show that the strength of recurrences falls off as a function
of R, independent of N outside of regimes where blow-up is likely, it helps to look at systems
with the same N and plot the recurrence strength E1(tr)/E as a function of system parameter
R. This is performed in Figure 5, and a nearly exponential decay is found. This result holds
for all sufficiently large system sizes, and the results are presented for N = 502 to avoid
blow-up and other small N behavior [38] (following [39], we only work with systems such
that N + 1 is a power of 2 or prime). This exponential decay is again in contrast to the
β-FPUT model, where recurrence strength appears to be roughly consistent until a cut-off
energy Eβ where the recurrence strength falls precipitously [24].

Figure 5. The “strength” of recurrences in the α-FPUT model, E1(tr)/E as a function of system
parameter R at fixed N = 502. An exponential fit is added.
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4.2. Lifetime of Metastable State
4.2.1. Procedure

We endeavor to find a scaling for the lifetime of the metastable state through a direct
comparison to the Toda model, as motivated by Section 3.2. To define tm by comparing
the α-FPUT model’s behavior with that of the Toda lattice, the most natural approach is
to define some arbitrary tolerance and look for the last time which the α-FPUT model’s
entropy is within that tolerance of the entropy of the Toda model. Doing so, however,
reveals an interesting feature of the metastable state. The results of following this procedure
for N = 63 are shown in Figure 6. Even though a clear power-law scaling emerges, the data
are quite noisy around this scaling. This noisiness appears to be an inherent feature of the
chaotic nature of the α-FPUT model around the metastable state.

Figure 6. An attempt at defining tm in the α-FPUT model for N = 63 by defining an arbitrary tolerance
and waiting for a deviation from the Toda model beyond this tolerance. A power-law best fit is added.
Note the logarithmic scaling on the tm axis.

Note that because the Toda model is integrable, its dynamics can, in theory, be broken
down into actions that remain constant in time and angles that evolve periodically in time.
The picture of the metastable state of the α-FPUT model presented by Benettin et al. in [36]
is that there are two time scales in the system. In the first one, the actions of the Toda model
remain nearly constant even in the α-FPUT model, while the corresponding angles evolve on
tori, leading to a behavior very similar to that of the Toda model. Eventually, on a longer time
scale, the Toda-like actions in the α-FPUT model start to diffuse throughout the phase space,
eventually leading to ergodicity and equipartition. The shorter time scale where the Toda-
like actions remain nearly constant defines the metastable state. An important aspect of the
transition to diffusing actions is that this diffusion behaves chaotically, with positive definite
maximal Lyapunov exponents as described in [36]. This leads to an exponential sensitivity
to initial conditions when the diffusion of action variables dominates the dynamics, which
explains the noise in Figure 6. To quantify the effect of the initial conditions, we next conduct
bin averaging over the initial conditions.

Note that from Equation (11), the energy initially given to the first normal mode can be
distributed either in a canonical position or momentum. We define the “phase” θ between
our canonical coordinates as:

θ = tan−1
(

P1(t)
ω1Q1(t)

)
. (21)
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We can then initialize systems with the same condition E1(0) = E, i.e., the same point
in energy space, but slightly separated in the phase space by distributing along the oval
of the canonical coordinates defined by rotating θ. In the following, we take 100 random
phases for every choice of energy and bin them together to create 10 bins which are each
the average of 10 trials with different phases. This bin averaging is meant to calculate an
approximation to the ensemble average. An example of the results of this procedure is
shown in Figure 7, where each α-FPUT curve represents an average over 10 random phases.
Figure 7 demonstrates that each of the α-FPUT trials remains close to the Toda model, up
until some time where the entropy starts to decrease below the Toda model entropy (red
curve), and then the α-FPUT trajectories start to diverge, not only from the Toda trajectory
but also from each other.

Figure 7. The time-averaged entropy in the Toda model (red curve) compared to 10 bins of α-FPUT
trajectories, each made up of the average of 10 random phases. All systems are fixed at energy
Eα2 = 0.028 and system size N = 63.

We gain two advantages from binning in this manner: (1) we now have a natural
length to use as a tolerance cut-off to define the separation between the α-FPUT model and
Toda model that is not arbitrary: the standard deviation of each bin; and (2) averaging over
10 different bins again gives us an error bar on our measurement of tm for a given enerzgy.
Our procedure is now as follows: Take 10 trials for the α-FPUT model with random phases
and average their entropy together. Find the last time that the Toda model’s entropy was
within one standard deviation of this bin average. Repeat this for 10 total bins, and average
those times together to obtain a measurement of tm with an error bar.

Performing this operation reveals a surprising result, shown in Figure 8. If we look at
the bin standard deviation (σ), averaged over bins (σ), there is a feature similar to a phase
transition in the plot. The time at which this occurs happens to line up with the time t = tm
as defined in our above procedure. Because our procedure looks at when η in the α-FPUT
model is greater than σ outside of η in the Toda model, this means η is falling more quickly
than σ is rising in Figure 8, which is significant. This also further validates the point of view
that tm represents a transition from mostly integrable dynamics to chaotic, non-integrable
dynamics. The growth in σ for t > tm shows that initially nearby systems are deviating
in time, whereas for t < tm, σ is seen to be relatively bounded in time. This also serves to
validate our procedure to measure tm.
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Figure 8. The bin deviation, averaged over bins, again for Eα2 = 0.028 and N = 63 in the α-FPUT
model. The measure value for tm is marked as a vertical, dashed green line.

4.2.2. Analysis

We apply the procedure described in the previous section and iterate across a range of
energies, for N = 63, 127 and 255. We determined that system size N = 31 was too small and
gave erratic results incompatible with the thermodynamic limit. For a discussion of small
system size effects in the α-FPUT model, see [38]. We chose system sizes such that N + 1 is a
power of 2, to avoid resonances discussed in [39]. The results are shown in Figure 9a. The
length of each data point is the extent of its bin error. Each system size appears to follow
its own trend for high energies. However, for low energies, the data appear to overlap,
regardless of system size. In this regime, tm is seen to follow a power law, roughly consistent
with an exponent of −4.9, as shown by the red dashed line in Figure 9a. A few simulations
indicate that this overlap and scaling is consistent for larger system sizes as well. This result
is more significant than that presented in Figure 6, as it both considers the ensemble average
and appears to hold in the thermodynamic limit. In particular, this result has significant
implications for the Eα2 → 0 limit, which is that originally considered by FPUT.

(a) (b)

Figure 9. The lifetime of the metastable state as a function of Eα2 for N = 63, 127, and 255. Note
logarithmic scale on all axes. (a) The height of each data point represents its bin error. In the Eα2 → 0
limit, the data are seen to follow a power law, in dashed red. (b) Nearby energies are binned to obtain
an upper bound on the noise as a combination of phase and energy error.
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One interesting aspect of Figure 9a is that the error in the noise (shown by the scat-
tering of the data) seems to be larger than the error due to phase averaging and binning
(shown by the height of the data points). In order to account for these two possible sources
of chaotic noise, we bin data into groups of 20 consecutive energies to estimate the noise in
the energy. Then, we assume that the phase noise (σθ) and energy noise (σE) are independent
and add them together as

σ =
√

σ2
θ + σ2

E, (22)

to perform the error propagation and obtain an upper bound on the noise. The results are
presented in Figure 9b. This gives a better idea of the noise (inherent because the metastable
state signals the onset of chaos) in the lifetime of the metastable state.

4.3. Spectrum

Our use of spectral entropy as the single measure of the destruction of the metastable
states gives a qualitative picture, but by plotting the time-averaged energy in each normal
mode, at a given time, we have access to many more degrees of freedom than simply
looking at the entropy. Therefore, we can obtain a more complete picture. For short times,
we expect the spectra of the α-FPUT and Toda models to look essentially identical. This is
indeed the case. As time goes on, however, the Toda spectrum flattens out to an exponential
tail, which is the shape of the α-FPUT spectrum in the metastable state as well. Nonetheless,
some higher modes start to gain energy and spread this energy to the other nearby modes.
This process continues until most higher modes are excited and the system approaches
equipartition. This behavior is demonstrated in Figure 10. For more discussion on the
spectral picture of diffusion in the α-FPUT model compared to the Toda lattice, see [40].

(a) (b)

Figure 10. The spectra of the α-FPUT and Toda models for system parameter R = 75 and N = 127.
Spectra are compared at two different times. (a) Spectra for t = 105. (b) Spectra for t = 108.

Figure 10a is plotted at t = 105 and shows that the spectra of the α-FPUT model and
the Toda model largely agree at this time. Figure 10b is plotted at t = 108, and we can see
that resonances have caused local peaks in the α-FPUT spectrum, which diffuse the energy
into the modes around them. This has the effect of lifting the spectrum at each resonance,
a process which continues until the system reaches equipartition. In [41], Onorato et al.
showed that four-wave resonances in the thermodynamic limit of the α-FPUT model lead to
irreversible energy mixing. It was also shown that six-wave interactions are always possible
and lead to irreversible energy mixing. Despite the appealing possibility that the observed
peaks in the spectra might correspond to those predicted by the wave turbulence method
of Onorato et al., we have at present been unable to verify this possibility quantitatively.
It is possible that the two largest peaks in the spectra of the α-FPUT model (Figure 10b)
are actually made of two resonant modes each, so it is unclear if this is an example of
a four-wave or six-wave resonance. We are currently investigating this matter further.
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Another peculiarity in Figure 10b is the apparent high-k modes in the Toda model which lie
well above an exponential tail, even after a long time. The peaks around k/N � 0.8 do not
appear to be a numerical artifact, so there could possibly be resonances in the integrable
limit (which do not lead to irreversible energy mixing).

5. β-FPUT Model

5.1. Comparison between β > 0 and β < 0

A surprising difference between the FPUT recurrences in the β-FPUT model for
the different signs of β was noted in Section 7 of [24]. The difference is qualitatively
demonstrated in Figure 11a (β < 0) and 11b (β > 0), which show the proportion of the total
energy in each of the first 13 modes against time. The results are plotted for the first 50
FPUT recurrences, with the FPUT recurrence time tr calculated using the results from [24].
For a system with β > 0, the energy almost entirely leaves the first normal mode before
coming back at an FPUT recurrence (as demonstrated by Figure 1, which is essentially a
zoom into Figure 11b). When β < 0, nearly 70% of the energy always remains in the first
normal mode during the metastable state. Figure 12b shows that the first normal mode is
not isolated when β > 0 for the relatively small Eβ = 0.15, driving the magnitude of Eβ
higher for β < 0, as shown in Figure 12a for Eβ = −0.35, which leaves the first normal
mode still largely isolated. Figure 6 of [24] shows that this behavior is only a function of
the sign of Eβ, not its magnitude.

(a) (b)

Figure 11. The energy in the lowest 13 modes as a function of time for N = 127, and the two choices
of the sign of β, in the β-FPUT model when the initial energy is all in the first mode. Recall that in
the β model, this means that all even modes have zero energy. Energy in each mode is rescaled by
initial energy E and time is rescaled by the FPUT recurrence time tr. (a) Eβ = −0.35 (Note: β < 0).
(b) Eβ = 0.15 (Note: β > 0).

When the distribution of energy among all the normal modes (energy spectrum)
in the metastable state is considered, however, the two systems are relatively similar.
Figure 12a (β < 0) and Figure 12b (β > 0) plot the spectra of the two β-FPUT systems,
i.e., the time-averaged energy in each mode. The time averages are computed after 50
FPUT recurrences have occurred. Both spectra follow an exponential decay, with a few
peaks in the spectra raising further questions. In [41], Onorato et al. showed that six-wave
resonances lead to irreversible energy mixing; these peaks might correspond to those
resonances. This possibility is under further investigation.

Figure 12 shows that the differences noted in Figure 11 are only evident between
the 1st and 3rd normal modes, with all the other modes following a qualitatively similar
distribution. It is possible that for β < 0, the k = 1 mode engages in the energy-diffusing
resonance while k = 1 is not a resonant mode for β > 0. This would explain the lack of
energy mixing for β < 0 and the local peak at k = 1 in the spectrum (Figure 12a).
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(a) (b)

Figure 12. Time-averaged energies in each mode for N = 127, as a function of mode number k.
The average is taken after 50 FPUT recurrences have taken place. (a) Eβ = −0.35 (Note: β < 0).
(b) Eβ = 0.15 (Note: β > 0).

5.2. Lifetime of Metastable State

As depicted in Figure 2, the metastable state in the β-FPUT model ends much more
abruptly than that in the α-FPUT model. However, the α-FPUT model can be considered
a truncation of the integrable Toda lattice, so that the point at which the α-FPUT spectral
entropy begins to deviate substantially from that of the Toda model is well defined for any
set of parameters and can be considered as the end of the metastable state. We showed how
to make this even more precise by taking bin averages that effectively approximate an ensem-
ble average. We find that this is very well defined for all the ranges of parameters we have
studied in the α-FPUT model. In contrast, the β-FPUT model cannot be viewed as the trunca-
tion of any nonlinear integrable model but rather as a perturbation of the linear lattice. This
observation coupled with the fact that for β > 0, the β-FPUT model exhibits well-known ex-
ponential numerical instabilities related to the soliton solutions of the modified Korteweg–de
Vries (mKdV) equation [19], (see Section 2.2), results in significant convergence issues when
we try to adapt our “bin averaging” technique for the β-FPUT model. In particular, it requires
very accurate numerics to ensure that we are correctly following the true dynamics of a given
trajectory over time in the β-FPUT model, because there are no non-trivial integrable models
with which to compare. If we look again at Figure 2 in Section 3.2, these comments seem
counter-intuitive, because the α-FPUT model seems to “slide” down from the metastable
state to true equilibrium, whereas the β-FPUT model shows a sudden drop-off to the equi-
librium value of the spectral entropy. However, in the β-FPUT model, using the binning
procedure to establish the true lifetime of the metastable stage requires an enormous number
of runs of very high accuracy to ensure that we are not observing a numerical artifact, i.e.,
an inaccurate calculation of the true trajectory. To determine a fit for tm against Eα2, shown
in Figure 9 for the α-FPUT model, roughly 20,000 simulations were needed for each sys-
tem size. With the aforementioned computational difficulties in the β-FPUT model, this
computation is exceedingly expensive.

We will endeavor nonetheless to describe a possible procedure for calculating how tm
in the β-FPUT model scales as a function of Eβ, which can be undertaken in future works.
As in the α-FPUT model, we run 100 trials with random initial phases and bin them into
10 bins with 10 trials each. We then define η25, the time-averaged entropy after 25 FPUT
recurrence times, averaged across the 10 trials in a bin. The recurrence time is calculated
following [24]. The number 25 was chosen because this allows the system to relax into its
metastable state. After η25, then η tends to be nearly constant in time up until a critical
time where it starts relaxing to equilibrium. We can find this critical time, tm, by calculating
the deviation of η from η25 by more than the bin standard deviation of the 10 trials. This
procedure is visualized in Figure 13, where η25 is plotted in red, and the computed tm is
seen to line up with the end of the plateau in η. Finally, averaging this result over the
10 bins gives a measurement of tm with associated error bars.

458



Entropy 2023, 25, 300

Figure 13. The entropy of the β-FPUT system for N = 31, Eβ = 0.57. The calculated value of η in the
metastable state, η25, is shown starting at the time of the 25th recurrence as a red dashed line, and
the calculated metastable lifetime, tm, shown as a vertical green line. The ensemble average, 〈η〉, is
shown in orange.

6. Conclusions

In this article, we have investigated the metastable state in the α-FPUT and β-FPUT mod-
els, both qualitatively and quantitatively. We began with a visualization of the metastable
state using spectral entropy (η). This single-degree-of-freedom measure has the power
to quantify the distance from the equipartition. This approach allowed us to follow G.
Benettin [34] in viewing the α-FPUT model as a truncation of the integrable Toda model.

We next studied the strength of the recurrences in the α-FPUT model, following the
results from S. Pace [24] on the β-FPUT model. This yielded the surprising result that the
recurrence strength is a function only of the essential system parameter R = (N + 1)3/2√Eα2

in the α-FPUT model, whereas the strength of the recurrences in the β-FPUT model scale
with the energy Eβ and not the essential system parameter S = Eβ(N + 1). The strength of
the recurrences was shown to decay exponentially with R, independent of the system size N.

We devised a method to measure the lifetime of the metastable state tm in the α-FPUT
model. Our procedure involved averaging over the random initial phases in the P1-Q1
plane (at fixed energy E1 = 1

2
(

P2
1 + ω2

k Q2
1
)
). This bin average provided a relevant length

distance, the standard deviation, from which we could determine when the α-FPUT model
trajectories break off from the entropy of the Toda model. Applying this procedure yielded
Figure 9a, which shows tm as a function of Eα2 for different N. Surprisingly, as Eα2 → 0,
the data for the different N collapse onto the same power law with the exponent −4.9.

We also explored the spectrum of the α-FPUT model, compared to that of the Toda
model. We extended this analysis to relate to a method for an irreversible energy dissipation
process suggested by Onorato et al. [41] (four-wave and six-wave resonances in wave
turbulence theory). Our preliminary results confirm the presence of resonances in the
spectrum, but it is not clear these are those proposed by Oronato et al. [41]. Future work is
anticipated on this point.

Turning our attention to the β-FPUT model, we explored the two different signs of β,
something which is not interesting in the α-FPUT model because the α-FPUT Hamiltonian
is symmetric under α → −α. The spectra for the β-FPUT model suggestively point to
resonances leading to equipartition as well. We developed a procedure for calculating tm in
the β-FPUT model, a very different task than for the α-FPUT model because the β-FPUT
model is not the truncation of a non-trivial integrable model.
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Abstract: In this paper, a quantity that describes a response of a system’s eigenstates to a very
small perturbation of physical relevance is studied as a measure for characterizing crossover from
integrable to chaotic quantum systems. It is computed from the distribution of very small, rescaled
components of perturbed eigenfunctions on the unperturbed basis. Physically, it gives a relative
measure to prohibition of level transitions induced by the perturbation. Making use of this measure,
numerical simulations in the so-called Lipkin-Meshkov-Glick model show in a clear way that the
whole integrability-chaos transition region is divided into three subregions: a nearly integrable
regime, a nearly chaotic regime, and a crossover regime.

Keywords: integrability-chaos cross-over; quantum chaos; eigenstate statistics; transition probability;
Lipkin-Meshkov-Glick (LMG) model

1. Introduction

In the past near half century, a large number of topics have been studied in the field
of quantum chaos and a huge amount of knowledge about properties of quantum chaotic
systems has been accumulated (see, e.g., [1,2]). However, this field is far from being fully
explored. For example, although the spectral statistics of quantum chaotic systems have
been studied well [3–9], not so much is known about wave functions, particularly about
statistical properties of energy eigenfunctions (EFs) as expansions of energy eigenstates in
certain bases.

As is well known, in classical mechanics, chaos refers to trajectory sensitivity to initial
conditions, characterized by positive (maximum) Lyapunov exponents.The percentage
of phase space, which is occupied by chaotic trajectories, supplies a useful quantitative
measure in the study of crossover from integrability to chaos, at least for systems in a
two-dimensional configuration space. However, the story is much more complicated with
quantum systems and the route (from integrability) to quantum chaos is far from being
fully understood.

Quantitative characterization of crossover from quantum integrability to quantum
chaos is a topic that is of importance in many aspects. Indeed, without a deep understand-
ing of mechanisms that may lead to a break down of integrability, it is unimaginable that a
complete understanding of quantum chaos may be achieved; and, it is usually believed that
quantum chaos may play a crucial role in establishing a sound foundation for quantum
statistical mechanics and for understanding thermalization processes [10–16]. Many quanti-
ties have been studied for the characterization; loosely speaking, they may be classified into
three classes: spectral statistics (see, e.g., Refs. [2–4,17–21]), statistical properties of EFs (see,
e.g., Refs. [14,22–33]), and time evolution properties (see, e.g., Refs. [34–45]). Unfortunately,
none of them is as satisfactory as the above-mentioned measure in the classical case.

Regarding spectral statistics, the nearest-level-spacing distribution P(s) is often stud-
ied. Its shape is close to the Poison distribution e−s in generic integrable systems [17], while,
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is close to the Wigner-Dyson distribution PW(s) = π
2 s exp(−π

4 s2) in quantum chaotic
systems, the latter of which is almost identical to the prediction of random matrix theory
(RMT) (for systems with the time-reversal symmetry) [2–4]. Among possible interpolations
between Poison and Wigner-Dyson distributions [18–21], the most often studied one is the
so-called Brody distribution [18], characterized by a Brody parameter β, with β = 0 for
integrable systems and β = 1 for chaotic ones. Unfortunately, physical meaning of the
Brody parameter is still unclear; in other words, it is regarded merely as a fitting parameter.

Properties of EFs may also be used for characterizing the crossover from quantum
integrability to quantum chaos. To compute such properties, usually one needs to take a
specific basis, which may be chosen for some physical reason or based on some mathemati-
cal consideration [14,25–31]. Recently, two methods were proposed [32,33], which employ
intrinsic bases of the systems studied, namely, the eigenbases of their Hamiltonians. The
first method makes use of the so-called adiabatic gauge potential (AGP) [32], describing
the rate of deformation of eigenstates under infinitesimal perturbation. It was proposed
that scaling behavior of the norm of AGP with system size may be used as an indicator for
the integrability-chaos crossover. This indicator is basically qualitative and its validity is
not completely clear.

The second method also studies the response of eigenstates to small perturbation,
but, by making use of the distribution of rescaled components of perturbed states on the
unperturbed basis [33]. This distribution has a Gaussian form in quantum chaotic systems,
a phenomenon which may be traced back to the so-called Berry’s conjecture [22–24,30];
while, it deviates notably from the Gaussian form in quantum integrable systems. This
method uses the difference between the distribution of rescaled components and the
Gaussian distribution for the purpose of characterizing the integrability-chaos crossover.
It suffers from two shortcomings: (i) Although the above-mentioned difference gives a
quantitative measure to the distance to chaos, it is irrelevant to integrability; and, (ii) its
physical meaning is not directly clear.

In this paper, we go further along the direction of the second method discussed above
and make improvements. Specifically, we are to show that the value of the distribution of
rescaled components at the origin point is a good candidate, i.e., it is of physical relevance
and supplies a measure for characterizing the whole process from integrability to chaos.

The paper is organized as follows. A preliminary discussion is found in Section 2,
about the class of systems to be studied, requirements of the type of perturbation to be
employed, and some details of the two previous works mentioned above. The proposed
measure for integrability-chaos crossover is discussed in Section 3 and its illustration in a
model is given in Section 4. Finally, conclusions and discussions are given in Section 5.

2. Preliminary Discussions

In this section, we first discuss basic properties of the systems to be studied (Section 2.1),
and then discuss properties of the perturbation to be considered (Section 2.2). Finally, we
briefly recall basic contents of the two methods mentioned above, which use intrinsic bases
for characterizing crossover from integrable to chaotic quantum systems (Section 2.3).

2.1. Perturbed and Unperturbed Systems

We study the response of Hamiltonian eigenstates to small perturbation. The un-
perturbed Hamiltonian is denoted by H0(λ), with a running parameter λ, such that it is
integrable at λ = 0 and is chaotic at λ in some region around 1. We use |k(λ)〉 to indicate
eigenstates of H0(λ), with eigenenergies E0

k(λ) in the increasing energy order,

H0(λ)|k(λ)〉 = E0
k(λ)|k(λ)〉. (1)

Sometimes, when there is no risk of causing confusion, for brevity, the λ-dependence of H0

and of its eigenstates is not written explicitly.
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The perturbed Hamiltonian is written as

H = H0(λ) + εV, (2)

where λ-dependence is not written explicitly, where ε is a very small parameter and V
represents a perturbation operator. Eigenstates of H are denoted by |α〉,

H|α〉 = Eα|α〉, (3)

with the eigenenergies Eα also in the increasing energy order. Components of the EF of a
perturbed state |α〉 on the unperturbed basis are written as

Cαk = 〈k|α〉. (4)

We assume that the Hilbert space is sufficiently large for meaningful statistical analysis of
properties of EFs. For the simplicity in discussion, we consider only systems with the time-
reversal symmetry, such that the components Cαk are real numbers. (It is straightforward to
generalize results to be given below to the generic case without the time-reversal symmetry.)

We are to discuss properties of the distribution of rescaled Cαk, denoted by C̃αk,

C̃αk :=
Cαk√
〈|Cαk|2〉

, (5)

where 〈|Cαk|2〉 indicates the average shape of EFs. We indicate this distribution by g(C̃).
When computing 〈|Cαk|2〉, special attention should be paid to big components of the EFs.
For example, for a chaotic system H0(λ), at a sufficiently small parameter ε, usually each
perturbed state |α〉 has one big component of Cαk; its value is close to 1, while other
components of Cαk are much smaller, proportional to ε or smaller as predicted by the
perturbation theory. In this case, clearly, if the biggest component is included, it usually
makes 〈|Cαk|2〉 not smooth. Hence, in the computation of 〈|Cαk|2〉, the biggest components
of Cαk should not be included and, consistently, they are not included in the distribution
g(C̃), either.

Moreover, an average may be taken over those perturbed states that lie within a
narrow energy shell, denoted by Γα, which is centered at Eα and has a small width δe. To
summarize, we write

〈|Cαk|2〉 =
1

∑′
Eβ∈Γα

1 ∑
Eβ∈Γα

′|Cβk|2, (6)

where
Γα = [Eα − δe/2, Eα + δe/2] (7)

and the prime over ∑ means that big components are excluded. (see Section 3.2 for further
discussions on big components to be excluded in computations performed in integrable
systems)

2.2. Properties of the Perturbation V

Physically, a prominent difference between a quantum integrable system and a quan-
tum chaotic system lies in that the former has at least two independent good quantum
numbers, while, the latter has only one which is related to the Hamiltonian. Due to this
difference, at least to a certain type of perturbation, the response of an integrable system
should be different from that of a chaotic system. Hence, in principle, response to perturba-
tion may be used for the purpose of characterizing the integrability-chaos crossover. In this
section, we discuss a type of perturbation V that may be used for this purpose.

It may be useful to provide a little discussion, in comparison with a purely mathe-
matical viewpoint by which an operator V on an arbitrary basis is represented by a matrix
with only one restriction — hermiticity. In fact, as is known, if no further restriction is
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imposed to the form of the matrix of V, there may exist some matrix of V, for which the
components Cαk in an integrable system may show behaviors qualitatively similar to those
in a chaotic system (see, e.g., Ref. [46]). Hence, for the purpose of “detecting” the difference
between integrable and chaotic systems, a purely mathematical viewpoint is not enough. In
other words, physical considerations should be taken into account, which may give certain
restriction to the perturbation V.

To further analyze the above-discussed point, we discuss from the perspective of
dynamic groups underlying models studied. Here, a group is called a dynamic group
underlying a model, if the model Hamiltonian is a function of generators of the group. (A
dynamic group is not necessarily a symmetry group. In other words, it is unnecessary for
the model Hamiltonian to possess any symmetry related to the dynamic group.) We note
that most physical models of realistic interest have some underlying dynamic Lie groups.
Usually, generators of the dynamic group may take the form of raising and lowering
operators, which we indicate as K†

η and Kη , respectively, with a label η. For example, for an
oscillator in a one-dimensional configuration space, the so-called Weyl-Heisenberg group
is the underlying dynamic group, where generators as raising and lowering operators are
given by well-known combinations of the position x and momentum p.

On the integrable side of H0(λ) with λ = 0, two different cases should be treated
differently: interacting and noninteracting integrable systems. Let us first discuss a nonin-
teracting integrable system, whose Hamiltonian H0(0) depends separately on generators
of different degrees of freedom. Since there is no interplay between different degrees
of freedom, usually the integrable states |k(0)〉 may be obtained by multiplying raising
operators on certain “vacuum state” denoted by |0〉, i.e.,

|k(0)〉 = ∏
η

(
K†

η

)mη |0〉, (8)

where mη are nonnegative integers. Usually, the integers mη are, or are related to, good
quantum numbers in the state |k(0)〉. On the basis of {|k(0)〉}, elements of V are written as

〈k′(0)|V|k(0)〉 = ∏
ηη′

〈0|
(

Kη′
)m′

η′ V
(

K†
η

)mη |0〉. (9)

One useful observation is that, for many types of perturbation V of physical interest,
the matrix of V with elements given in Equation (9) has an interesting feature; i.e., it is
sparse in the sense of possessing many zero elements of 〈k′(0)|V|k(0)〉. As one example,
one may consider perturbations that are controllable and describable in laboratories. Such
a perturbation V is usually represented by some simple function of {K†

η , Kη} (at least not
a complicated function) and, as a result, Equation (9) predicts a sparse matrix of V. As
another example, one may consider a perturbation V, which may bring a limited change to
the good quantum numbers mη for most of the states |k(0)〉. In this case, one also finds a
sparse structure of the matrix of 〈k′(0)|V|k(0)〉.

Then, we discuss an interacting integrable system, for which generators of different
degrees of freedom interplay in the Hamiltonian H0(0). In such system, the states |k(0)〉
are superpositions of product terms as given on the right-hand side of Equation (8). In
this case, the simplicity of the function V(K†

η , Kη) does not guarantee a sparse structure
of the matrix of 〈k′(0)|V|k(0)〉. While, for a perturbation V, which may bring a limited
change to good quantum numbers of the states |k(0)〉 (usually not the integers mη), one
still finds a sparse structure of the matrix of 〈k′(0)|V|k(0)〉. (Mathematically, the simplest
example of this type of operator V is written as V = |k1(0)〉〈k2(0)|+ |k2(0)〉〈k1(0)| with
some fixed values of k1 and k2. Usually, to construct such an operator of physical interest is
a model-dependent matter.)

On the chaotic side of H0(λ) with λ around 1, one finds a different story. To be specific
in this discussion, let us consider a system that possesses a classical counterpart. To obtain
an estimate, one may make use of Berry’s conjecture as a semiclassical prediction [22–24,30].
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We first discuss H0(λ) of λ ∼ 1, with respect to a noninteracting integrable system
H0(0). Without loss of generality, we assume that the eigenstates |k(0)〉 in Equation (8) are
also eigenstates of action. According to a version of Berry’s conjecture given on an action
basis [30], the components 〈k(0)|k(λ)〉 have the following expression,

〈k(0)|k(λ)〉 ∝ Ωk(0)k(λ)Rk(0)k(λ), (10)

where Rk(0)k(λ) are Gaussian random variables (with mean zero and a normal distribution)
and Ωk(0)k(λ) indicates the so-called classical analog of the average shape of eigenfunctions,
which is given by the overlap of the classical energy surface of E0

k(λ) and a classical torus
corresponding to the action given by mη . On the basis of |k(λ)〉, elements of V are written as

〈k′(λ)|V|k(λ)〉
= ∑

k(0),k′(0)
〈k′(λ)|k′(0)〉〈k′(0)|V|k(0)〉〈k(0)|k(λ)〉 (11)

Making use of Equations (9) and (10), one finds that, at least for E0
k′(λ) not far from E0

k(λ),
the elements 〈k′(λ)|V|k(λ)〉 are typically nonzero. Hence, the matrix of V on the chaotic
basis {|k(λ)〉} has a structure, which is qualitatively different from the previously discussed
sparse structure of V on the integrable basis {|k(0)〉}.

Next, we discuss H0(λ) of λ ∼ 1, with respect to an interacting integrable system.
In this case, the integrable states |k(0)〉 are superpositions of the action states. As a con-
sequence, the components 〈k(0)|k(λ)〉 have an expression, which is more complicated
than the right-hand side of Equation (10) for the noninteracting case. This implies that the
elements 〈k′(λ)|V|k(λ)〉 should be also typically nonzero at least for E0

k′(λ) not far from
E0

k(λ). Moreover, this is also true, even for a perturbation V that brings a limited change
to good quantum numbers of the states |k(0)〉. Hence, as well, the matrix of V on the
chaotic basis {|k(λ)〉} has a structure, which is qualitatively different from the previously
discussed sparse structure of V on the integrable basis {|k(0)〉}.

To summarize, for a certain perturbation V, its matrix has a sparse structure on an
integrable basis, while it does not have a similar structure on a chaotic basis. In Section
3, we are to focus on this type of perturbation V and use it to propose a quantity for
characterizing integrability-chaos crossover.

2.3. Two Previously Studied Methods

In this section, we briefly recall basic contents of the two previously studied methods
mentioned in the introduction, in which intrinsic bases are employed for characterizing
integrability-chaos crossover.

The first method makes use of the AGP, which describes variation of eigenstates under
infinitesimal change of the parameter λ. More exactly, denoted by Aλ, the AGP generates
an adiabatic evolution of the eigenstates,

Aλ|k(λ)〉 = i∂λ|k(λ)〉. (12)

Its offdiagonal elements satisfy

〈k|Aλ|l〉 = − i
E0

k(λ)− E0
l (λ)

〈k|∂λ H0(λ)|l〉 (13)

with k �= l; while, its diagonal elements may be set zero due to the freedom in choosing
phases of the eigenstates, i.e., 〈k|Aλ|k〉 = 0 for all |k〉. (In Pandey et al. [32], to avoid a
problem that may be caused by degeneracy of the spectrum of H0(λ), on the right-hand

side of Equation (13), the term 1
E0

k−E0
l

is replaced by E0
k−E0

l
(E0

k−E0
l )

2+μ2 with some small energy

cutoff μ.) The Frobenius norm, also called Hilbert–Schmidt norm, of the AGP operator
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is written as (This norm is equal to the sum of the so-called fidelity susceptibility of the
eigenstates |k(λ)〉 [47,48].)

‖Aλ‖2 = ∑
k,l

|〈k|Aλ|l〉|2. (14)

It was proposed in Pandey et al. [32] that exponential scaling behavior of the AGP
norm with respect to the particle number N of a many-body quantum system may be
used as an indicator of quantum chaos, with polynomial behavior expected for integrable
systems. For systems satisfying the so-called eigenstate thermalization hypothesis (ETH)
(see Equation (24) to be given below), it is not difficult to check that the AGP norm indeed
scales exponentially with the system size. However, the reverse statement is not supported
by any analytical analysis and this makes the above proposal questionable as a criterion for
quantum chaos. In fact, according to numerical simulations given in Pandey et al. [32] in
an XXZ chain, the integrability-chaos crossover region predicted by the above-discussed
proposal is much lower than that obtained by an ordinary method of employing spectral
statistics, by at least one order of magnitude.

In the second method, the difference between the distribution g(C̃) and the Gaussian
distribution is used as a measure for the distance to quantum chaos [33]. Quantitatively,
the difference is written as ΔEF =

∫ ∣∣∣I(C̃)− IG(C̃)
∣∣∣dC̃, where I(C̃) is the cumulative distri-

bution of g(C̃) and IG is the cumulative distribution for the Gaussian distribution of

gG(C̃) =
1√
2π

exp(−C̃2/2). (15)

This difference is expected to be small in quantum chaotic systems, and large in
integrable systems (see the next section for detailed discussions).

Numerical simulations performed in a three-orbital Lipkin-Meshkov-Glick (LMG)
model [49] show that the quantity ΔEF behaves consistently with ΔW in the regime of
integrability-chaos crossover [33]. Here, ΔW indicates the difference between the nearest-
level-spacing distribution P(s) and the Wigner distribution PW(s), as a measure for the
distance to chaos; more precisely,

ΔW =
∫

|I(s)− IW(s)|ds, (16)

where “I” also indicate the corresponding cumulative distributions. It was found that
integrability is manifested by large values of ΔEF, which are due to high peaks of g(C̃) at
C̃ = 0.

Finally, let us give a brief comparison of the two methods discussed above. The physics
lying behind them are in fact related. This point is seen quite clearly, in the special case that
H0(λ) = H0(0) + λV. In this case, ∂λ H0(λ) = V and the AGP elements in Equation (13)
are directly related to the components Cαk divided by ε, which are predicted by a first-order
perturbation theory [see Equation (19) to be given below].

Meanwhile, the two methods have important differences. First, the second method in
fact employs the rescaled components C̃αk in Equation (5). Without the rescaling procedure,
the distribution of components would not be close to a Gaussian form in quantum chaotic
systems. Second, it is not the AGP norm itself that is employed as a measure for integrability-
chaos crossover, but it is the AGP scaling behavior with respect to system size. This implies
that the first method does not supply a measure for characterizing the whole crossover
region, though it might be used for detecting some “crossover point”, if in existence.

3. g(0) as a Crossover Measure

In this section, going further along the direction of the second method discussed
above, we propose that g(C̃ = 0) may be used as a measure for characterizing integrability-
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chaos crossover. Specifically, we discuss its physical meaning in Section 3.1 and discuss its
detailed properties in Section 3.2.

3.1. A Physical Meaning of g(0)

We first consider a generic case, in which the unperturbed Hamiltonian H0(λ) pos-
sesses a nondegenerate spectrum. In this case, under a sufficiently small ε, the perturbed
states |α〉 may be approximated by their first-order perturbation expansions. For a given
state |α〉, we use kα to indicate the label k for which E0

k is the closest to Eα. Clearly, Cαkα
� 1.

Then, one writes
|α〉 � |α(0)〉+ |α(1)〉, (17)

where |α(0)〉 = |kα〉 and

|α(1)〉 = ∑
k �=kα

εVkkα

E0
kα

− E0
k
|k〉. (18)

From Equation (18), one sees that

Cαk � εVkkα

E0
kα

− E0
k

for k �= kα. (19)

To see a physical meaning of g(0), let us discuss the probability of transition from an
arbitrary state |k0〉 (as an initial state |ψ(t = 0)〉) to an arbitrary state |k〉 (k �= k0) under a
perturbation εV, which is given by |〈k|ψ(t)〉|2. It is easy to find that

〈k|ψ(t)〉 = 〈k|e−iHt|k0〉 = ∑
α

Cαk0 Cαke−iEαt. (20)

Since Cαk � 1 for k = kα, one further obtains that

〈k|ψ(t)〉 � Cα1k0 e−iEα1 t + Cα2ke−iEα2 t, (21)

where α1 is determined by the relation of kα1 = k and α2 by the relation of kα2 = k0.
According to Equation (21), the smallness of the components Cα1k0 and Cα2k, if compared
with other unperturbed states, has a clear physical meaning; that is, it implies relative
prohibition of the quantum transition from |k0〉 to |k〉. However, a problem is met with
quantitative characterization for this, because all the components Cαk of k �= kα go to zero
in the limit of ε → 0.

To circumvent the above-discussed problem, instead, we consider the rescaled com-
ponents C̃αk in Equation (5), which remain finite in the limit of ε → 0. Making use of
perturbation theory, it is not difficult to find that the two components Cα1k0 and Cα2k, which
are related to the same unperturbed energy difference of (E0

k − E0
k0
), should have similar

absolute values on average, i.e., 〈|Cα1k0 |2〉 � 〈|Cα2k|2〉. Then, Equation (21) is written as

〈k|ψ(t)〉√
〈|Cα1k0 |2〉

� C̃α1k0 e−iEα1 t + C̃α2ke−iEα2 t. (22)

Thus, relative smallness of the rescaled components C̃α1k0 and C̃α2k implies relative small-
ness of the transition probability divided by the average shape of EFs.

From the above discussions, one sees that high population of small rescaled com-
ponents usually implies strong prohibition of quantum transition. Quantitatively, the
population is characterized by the value of the distribution g(C̃) at C̃ = 0, namely, by g(0).

Next, we discuss the special case, in which H0(λ) possesses a degenerate spectrum.
In this case, for a given unperturbed state |k〉, the components Cαk of those perturbed states
|α〉, whose energies Eα are close to E0

k , may be large. We use Sk to denote the set of the
indices α of these perturbed states. For a nondegenerate level E0

k , the set Sk in fact contains
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one label α only, such as in the case of nondegenerate spectrum discussed above; while,
for a degenerate level, the number of elements of Sk is usually equal to the degeneracy. In
most cases, k and k0 do not belong to a same degenerate level (Study of the case, in which k
and k0 belong to a same degenerate level, is hard and is beyond the scope of perturbative
analysis.) and Equation (20) gives that

〈k|ψ(t)〉 � ∑
α1∈Sk

Cα1k0 e−iEα1 t + ∑
α2∈Sk0

Cα2ke−iEα2 t. (23)

Again, relative smallness of Cα1k0 and Cα2k implies relative prohibition of the transition
of |k0〉 → |k〉. By definition, one may require that the average shape 〈|Cαk′ |2〉 should
change slowly (or remains a constant) within one degenerate subspace. Then, such as in the
nondegenerate case discussed above, one still finds that 〈|Cα1k0 |2〉 � 〈|Cα2k|2〉 and obtains
an equation similar to Equation (23).

When the unperturbed spectrum has a weak degeneracy such that each set Sk contains
a small number of elements, the effect induced by the degeneracy is small. Then, according
to discussions given above, still, relative smallness of the rescaled components usually
implies relative smallness of the transition probability divided by the average shape of EFs.
Furthermore, as a result, high population of small rescaled components is related to strong
prohibition of quantum transition.

In the rare case that the degeneracy is very high such that the set Sk contains a large
number of elements, the situation is more complicated in the quantitative aspect. In fact, the
perturbation is extremely strong within each degenerate subspace and this may suppress
the number of very small components C̃αk. Nevertheless, qualitatively, high population
of small rescaled components is still related to strong prohibition of quantum transition.
(Here, we do not discuss the very special case, in which the spectrum of H0(0) is completely
degenerate. In this case, it is unnecessary for g(C̃) to be extraordinarily large at C̃ = 0.)

Summarizing the above discussions, we obtain the following result, i.e., the value of
g(0) gives a relative measure to the extent of prohibition of quantum transition induced by
the perturbation εV. Usually, larger value of g(0) may be related to stronger prohibition;
while, this expectation may be valid only qualitatively for highly degenerate levels [50].
(As is known, certain elements of the AGP may also be related to transition probability
amplitudes. However, the norm of AGP does not show this feature in a direct way.)

3.2. g(0) in Systems from Integrable and Chaotic

In this section, we discuss properties of g(0) in chaotic and integrable systems.
First, we discuss H0(λ) as a quantum chaotic system, which satisfies the

ETH [13,24,51–56]. (see Ref. [57] for a semiclassical proof of ETH.) Technically, the ETH is
written as an ansatz for a special structure of the matrix of an observable O on the energy
basis, i.e.,

Okk′ = f (ek)δkk′ + g(ek, ek′)rkk′ , (24)

where f (e) and g(e, e′) are smooth functions of their variables, rkk′ = r∗k′k are independent
random variables with normal distribution (zero mean and unit variance), and g−2 scales
as the density of states ρdos with the system size. Under a perturbation V that satisfies the
ETH ansatz in Equation (24) and under a very small ε such that Equation (19) is valid, it is
easy to compute the average shape of EFs from Equation (19), obtaining that

〈|Cαk|2〉 � ε g(ek, ekα
)

|E0
kα

− E0
k |

. (25)

Then, noting the randomness of rkk′ , one sees that the distribution of these rescaled com-
ponents should have a Gaussian form, as illustrated numerically in Ref. [33]. Hence,
g(0) = 1/

√
2π ≈ 0.4 [cf. Equation (15)] in quantum chaotic systems.
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Next, we discuss the integrable case, namely H0(0). As discussed previously, we
consider only those perturbations V, whose matrix [Vkk′ ] in the integrable basis {|k(0)〉}
has a sparse structure, with many zero elements. To figure out properties of g(0) under
a very small ε, let us consider an arbitrary perturbed state |α〉. We need to discuss two
cases separately, as done below, depending on whether the unperturbed level, which is the
closest to Eα, is degenerate or not:

1. In the case that the level is nondegenerate, Equation (19) is valid. Then, clearly, the
sparse structure of [Vkk′ ] implies that the distribution g(C̃) should have a high peak at
C̃ = 0, with g(0)  1.

2. In the case of a degenerate level, let us use |kη
α〉 (with η = 1, 2, . . .) to indicate those

states |k〉 that correspond to this unperturbed level. It is straightforward to generalize
the perturbative treatment given in the above section and obtain an equation similar
to Equation (19), but, for k �= kη

α (∀η). Then, one reaches a similar conclusion that the
distribution g(C̃) should have a high peak at C̃ = 0, usually with g(0)  1.

It is useful to give further discussions on the computation of the average shape 〈|Cαk|2〉
in the degenerate case. There are two methods that may be adopted. The first method
is to exclude all the components Cαk for the degenerate subspace, i.e., for k = kη

α. This
method, though favorable analytically, may face the following subtle problem in numerical
simulations, which is induced by the fact that the parameter ε always has some lower
bound in numerical computations, i.e., there may exist nearly degenerate levels, which are
effectively degenerate in numerical simulations with a finite ε.

To avoid the above-discussed subtleness in numerical simulations, one may adopt
a second method, though it is not so attractive analytically. This method excludes only
those components that satisfy |Cαk|2 > Λb, where Λb is some (adjusting) parameter that is
introduced for obtaining a smooth average shape of EFs. (Meaningful results should be
insensitive to the exact value of Λb within a reasonable region. We checked this point in our
numerical simulations to be discussed later.) When the degeneracy is low, there is usually
only a small difference between the values of g(0) obtained by the two methods. While,
the difference may be large when the degeneracy is high, with the former value usually
being larger than the latter.

In fact, the above-discussed differences corresponding to different situations with
degeneracy is not crucial for our purpose here. What is of practical importance is that, in
all the cases, the distributions g(C̃) show high peaks at C̃ = 0, which is the characteristic
feature of integrability. Moreover, we recall that, as discussed in the above section, high
degeneracy may increase the difficulty in quantitative evaluation of g(0). For these reasons,
in characterizing integrability-chaos crossover, the quantity g−1(0) may be practically
better than g(0). In fact, most of the indefiniteness, if not all of them, are restrained in
g−1(0). The quantity g−1(0) is expected to satisfy g−1(0) �

√
2π for chaotic systems,

while, is small for integrable systems. (The exact value of the smallness of g−1(0) is not so
important in distinguishing between integrability and chaos, though it may be informative
for other purposes).

Based on the above discussions, loosely speaking, one may expect the following picture
for behaviors of the quantity g−1(0) in an integrability-chaos crossover. At λ = 0, one
expects that g−1(0) ≈ 0, except for the case of very high degeneracy. With λ increasing from
0, the EFs of |k(λ)〉 on the integrable basis {|k(0)〉} become more and more complicated.
As a consequence, some previously very small elements Vkk′ become nonnegligible and,
then, as predicted by Equation (19), more and more rescaled components may obtain
nonnegligible values. This implies that, with increasing λ, g−1(0) should increase, until it
reaches a saturation value of

√
2π, which corresponds to quantum chaos.

4. Numerical Simulations

In this section, we present numerical simulations that have been performed in a
three-orbital Lipkin-Meshkov-Glick (LMG) model [49,58], illustrating g(0) as a measure for
characterizing the integrability-chaos crossover.
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4.1. The model

The LMG model consists of Ω fermions, which may occupy three single-particle energy
states labeled by s = 0, 1, 2. We use ηs to denote the energy of the s-th single-particle state
and, for brevity, we set η0 = 0. In this paper, we are interested in the collective motion of
this model, for which the dimension of the Hilbert space is 1

2 (Ω + 1)(Ω + 2). The classical
counterpart of this collective motion has a two-dimensional configuration space.

The Hamiltonian of the model is constructed from the following operators Krs,

Krs =
Ω

∑
γ=1

a†
rγasγ, r, s = 0, 1, 2, (26)

where a†
rγ and arγ are fermionic creation and annihilation operators obeying the usual anti-

commutation relations. The operators Kss in fact represent the particle-number operators
for single-particle states s, while, Ksr with s �= r are level raising/lowering operators. The
Hamiltonian is written as

H0(λ) = η1K11 + η2K22 + λV, (27)

where

V =
4

∑
t=1

μtV(t). (28)

In Equation (28), μt are parameters and

V(1) = K10K10 + K01K01, (29a)

V(2) = K20K20 + K02K02, (29b)

V(3) = K21K20 + K02K12, (29c)

V(4) = K12K10 + K01K21. (29d)

For symmetric states in the collective motion, the operators Krs may be written in terms of
bosonic creation and annihilation operators denoted by b†

s and bs [59],

Krs = b†
r bs, (30a)

Kr0 = K†
0r = b†

r

√
Ω − b†

1b1 − b†
2b2, (30b)

for r, s = 1, 2.
The classical counterpart may be obtained by making use of the following transformation,

b†
s =

√
Ω
2
(qs − ips), bs =

√
Ω
2
(qs + ips). (31)

It is easy to verify that qr and ps obey the following commutation relation,

[qr, ps] =
i

Ω
δrs. (32)

Thus, 1/Ω plays the role of an effective Planck constant, h̄eff =
1
Ω , and the classical limit of

the model is obtained by letting Ω → ∞. In the classical Hamiltonian, parameters take the
form of ηcl

s = ηsΩ and μcl
t = μtΩ2. Quantum systems corresponding to the same values of

ηcl
s and μcl

t share a common classical counterpart.
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4.2. Numerical Results

As is well known, on the integrable side, a model may behave differently under
different winding numbers, particularly, at rational and irrational values. In the LMG
model, the winding number is given by the ratio of η1/η2. in our numerical simulations, we
have studied the crossovers starting from several integrable Hamiltonians, corresponding
to different values of η1 and η2. We have the freedom of keeping η1 and η2 in the order
of magnitude of 1. Specifically, we have studied two rational values of η1/η2 and two
irrational ones: (η1, η2) = (1, 2), (1, 3), (

√
3, 2) and (

√
5 − 1, 2).

On the chaotic side, parameters in V are chosen such that this observable has essentially
the same classical limit as that studied in Ref. [30]; specifically, μ1 = 0.0077625, μ2 =
0.008775, μ3 = 0.0095625, and μ4 = 0.0082125. Other parameters used in our simulations
are ε = 10−4 for small perturbation and the total particle number Ω = 200, for which
the dimension of the Hilbert space is 20301. Under these parameters, the mean value
of |εVkk′ | of nonzero elements of V in the integrable basis is about 2.6 × 10−3, obviously
smaller than the mean level spacing which is about 10−2, satisfying the requirement of
weak perturbation.

In the computation of the average shape 〈|Cαk|2〉 (Equation (6)), we adopted the second
method discussed previously, with Λb = 0.1; i.e., all big components with |Cαk|2 ≥ 0.1
were excluded. The width δe was adjusted such that each window Γα includes 16 levels.
In the computation of g(0), for each system H0(λ), 2000 perturbed states |α〉 lying in the
middle energy region were used, and for each |α〉, 2000 components C̃αk with E0

k around Eα

were used.
Numerical results are shown in Figures 1–4 for the four pairs of (η1, η2) mentioned

above, respectively. It is seen that the g−1(0)-plots in all the four figures show a same
pattern of behavior from integrability to chaos. Furthermore, this pattern is much simpler
than those of g(0), as explained previously due to the fact that the difference among big
values of g(0) is restrained in g−1(0). For the sake of comparison with standard spectral-
statistics analysis, we also plot the quantity ΔW in Equation (16) as a measure for the
distance to chaos. Furthermore, moreover, we plot the following quantity as a measure for
the distance to integrability, i.e.,

ΔP =
∫

|I(s)− e−s|ds, (33)

where e−s is the Poison distribution expected for the nearest-level-spacing distribution in
generic integrable systems.
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Figure 1. Variation of g−1(0) (upper panel), and g(0) (lower panel) versus λ (solid squares connected
by dashed lines) for η1 = 1, η2 = 2. Other parameters: μ1 = 0.0077625, μ2 = 0.008775, μ3 =

0.0095625, μ4 = 0.0082125, Ω = 200, and ε = 10−4. For comparison, variation of ΔW in Equation (16)
(empty circles connected by dotted line (red)) and of ΔP in Equation (33) (stars connected by dotted
line (blue)) are also plotted.

Figure 2. Similar to Figure 1, but for η1 = 1 and η2 = 3.
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Figure 3. Similar to Figure 1, but for η1 =
√

3 and η2 = 2.

Figure 4. Similar to Figure 1, but for η1 =
√

5 − 1 and η2 = 2.

As is known, the parameter region (0, 1) for a integrability-chaos crossover may
usually be divided into three subregions: a nearly integrable regime, a nearly chaotic
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regime, and a crossover regime. A merit of the quantity g−1(0) is that it shows this division
in a very clear way, the details of which we discuss below.

1. A nearly integrable regime, in which the value of g−1(0) is close to 0. In this regime,
the perturbation-induced transition is strongly prohibited between many of the un-
perturbed states.

2. A nearly chaotic regime, in which g−1(0) ≈
√

2π. In this regime, the perturbation-
induced transition is not prohibited in a statistical sense.

3. An intermediate (cross-over) regime, in which g−1(0) increases “rapidly”, approxi-
mately from 0 to 2.5.

Specifically, in the case of (η1, η2) = (1, 2), as seen in the upper panel of Figure 1, the
above-discussed three regimes occupy approximately the three subregions of
(0, 0.22), (0.5, 1) and (0.22, 0.5), respectively. In this figure, the point of λ = 0 looks quite
special, because the value of g−1(0) at λ = 0 is not small, but, about 0.5. (One should note
that, although the value of g(0) at λ = 0 in this figure is not very large, about 2, it is still
obviously larger than the value expected for chaotic systems, the latter of which is about
0.4.) This phenomenon is due to the high degeneracy of the spectrum of the integrable
system H0(0) with (η1, η2) = (1, 2). In fact, with Λb = 0.1, most of the components Cαk of
|k〉 lying in highly degenerated subspaces were included in the computation of g(0) and,
since the perturbation is effectively extremely strong within each degenerate subspace, the
number of very small components in them is not large. Please note that this phenomenon
disappears with a little increase of λ, which destroys the degeneracy, and as a result the
value of g−1(0) becomes quite small, as seen in the figure.

In Figure 2, with (η1, η2) = (1, 3), the three regimes are seen clearly, too, approximately
occupying (0, 0.46), (0.74, 1), and (0.46, 0.74), respectively. In this figure, the value of g−1(0)
at λ = 0 is not very small, either, about 0.18. This value is smaller than that in Figure 1,
because the degeneracy in the system with (η1, η2) = (1, 3) is not as high as that in the case
of (η1, η2) = (1, 2). Consistently, in Figures 3 and 4, the values of g−1(0) are already small
at λ = 0 for integrable systems H0(0) possessing nondegenerate spectra.

In the lower panels of the four figures, it is seen that the g(0)-plots show rich behaviors
in the nearly integrable regime. In the case with rational ratios η1/η2 (Figures 1 and 2),
g(0) is relatively small at λ = 0 (corresponding to the above-discussed relatively large
values of g−1(0)) and increases immediately with a little increase of λ. For irrational ratios
η1/η2 (Figures 3 and 4), although g(0) are already not small at λ = 0, they also undergo
immediate rapid increase with a little increase of λ.

Correspondingly, from the g(0)-plots, one also sees three subregions in each figure
— nearly integrable, intermediate (crossover), and nearly chaotic. In Figures 1, 2, and 4,
the intermediate subregions are close to those obtained from the level-statistics properties
(ΔW). However, notable differences between them are seen in Figures 3, showing the
information supplied by g(0) for the crossover is not always in quantitative agreement
with that obtained from the level statistics. We are not able to provide further discussion on
such a difference, nor on rich behaviors of g(0) on the integrable side, because as discussed
previously, further analytical study is needed for a deeper understanding of them.

5. Conclusions

In this paper, a measure has been proposed for characterizing integrability-chaos
crossover for a big class of quantum models of practical interest, which possess underlying
dynamic Lie groups. To compute this measure, a very small perturbation (εV) of physical
relevance is applied to the studied system and components of perturbed states on the
unperturbed basis are rescaled with respect to the average shape of eigenfunctions. The
measure is given by g(0), the value of the distribution of rescaled components at the
origin point, or, practically by g−1(0). In a relative sense, g(0) has the physical meaning of
describing the extent of prohibition of εV-induced transitions between unperturbed states.

As is known, the whole parameter region of integrability-chaos crossover may usually
be divided into three subregions: a nearly integrable regime, a nearly chaotic regime, and a
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crossover regime. Different measures employed usually give divisions with some differ-
ences. Numerical simulations performed in the LMG model, which possesses a classical
counterpart in a two-dimensional configuration space, show that the behavior of 1/g(0)
gives such a division in quite a clear way. The division is in qualitative consistency with
that obtained from spectral statistics, but not always quantitatively. Future investigations
are needed for analytical understanding of the difference.

In principle, the proposed measure may be used in both cases with a noninteracting
integrable system and with an interacting integrable system. In this paper, numerical
simulations are given only in a simple model of the former type. In future, it would be of
interest to see its application to models of the latter type, which might be more complicated
than the former type. Moreover, application of the proposed measure to many-body
systems, particularly on the nearly integrable side, may be an interesting topic for future
study, too.
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48. Sierant, P.; Maksymov, A.; Kuś, M.; Zakrzewski, J. Fidelity susceptibility in Gaussian random ensembles. Phys. Rev. E 2019, 99,

050102. [CrossRef]
49. Lipkin, H.J.; Meshkov, N.; Glick, A.J. Validity of many-body approximation methods for a solvable model: (I). Exact solutions and

perturbation theory. Nucl. Phys. 1965, 62, 188–198. [CrossRef]
50. Kolodrubetz, M.; Sels, D.; Mehta, P.; Polkovnikov, A. Geometry and non-adiabatic response in quantum and classical systems.

Phys. Rep. 2017, 697, 1–87. [CrossRef]
51. Srednicki, M. Thermal fluctuations in quantized chaotic systems. J. Phys. A: Math. Gen. 1996, 29, L75. [CrossRef]
52. Srednicki, M. The approach to thermal equilibrium in quantized chaotic systems. J. Phys. A: Math. Gen. 1999, 32, 1163. [CrossRef]
53. Deutsch, J.M. Quantum statistical mechanics in a closed system. Phys. Rev. A 1991, 43, 2046–2049. [CrossRef] [PubMed]
54. Rigol, M.; Srednicki, M. Alternatives to Eigenstate Thermalization. Phys. Rev. Lett. 2012, 108, 110601. [CrossRef] [PubMed]

478



Entropy 2023, 25, 366

55. De Palma, G.; Serafini, A.; Giovannetti, V.; Cramer, M. Necessity of Eigenstate Thermalization. Phys. Rev. Lett. 2015, 115, 220401.
[CrossRef]

56. Deutsch, J.M. Eigenstate thermalization hypothesis. Rep. Prog. Phys. 2018, 81, 082001. [CrossRef]
57. Wang, W. Semiclassical proof of the many-body eigenstate thermalization hypothesis. arXiv 2022, arXiv:2210.13183.
58. Wang, W.; Izrailev, F.M.; Casati, G. Structure of eigenstates and local spectral density of states: A three-orbital schematic shell

model. Phys. Rev. E 1998, 57, 323–339. [CrossRef]
59. Gong-ou, X.; Jiang-bin, G.; Wen-ge, W.; Ya-tian, Y.; De-ji, F. Development of quantum nonintegrability displayed in effective

Hamiltonians: A three-level Lipkin model. Phys. Rev. E 1995, 51, 1770–1779. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

479





Citation: Guhr, T. Statistical

Topology—Distribution and Density

Correlations of Winding Numbers in

Chiral Systems. Entropy 2023, 25, 383.

https://doi.org/10.3390/e25020383

Academic Editor: Marko Robnik

Received: 18 January 2023

Revised: 15 February 2023

Accepted: 16 February 2023

Published: 20 February 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Statistical Topology—Distribution and Density Correlations of
Winding Numbers in Chiral Systems

Thomas Guhr

Fakultät für Physik, Universtät Duisburg–Essen, 47048 Duisburg, Germany; thomas.guhr@uni-due.de

Abstract: Statistical Topology emerged as topological aspects continue to gain importance in many
areas of physics. It is most desirable to study topological invariants and their statistics in schematic
models that facilitate the identification of universalities. Here, the statistics of winding numbers
and of winding number densities are addressed. An introduction is given for readers with little
background knowledge. Results that my collaborators and I obtained in two recent works on proper
random matrix models for the chiral unitary and symplectic cases are reviewed, avoiding a technically
detailed discussion. There is a special focus on the mapping of topological problems to spectral ones
as well as on the first glimpse of universality.

Keywords: statistical topology; random matrices; chirality; winding numbers

1. Introductory Remarks

Statistical Topology aims at combining, in a generalizing form, topological questions
appearing in physics with the powerful concepts of Random Matrix Theory (RMT) which
is capable of describing spectral statistics in a huge number of systems, stemming from
different areas of physics and beyond. The focus in this work is exclusively on winding
numbers and associated statistical quantities studied in the framework of a random ma-
trix model; other topological invariants, such as the Chern numbers, which are also of
considerable interest, are not discussed. The long-term aim is to study the emergence of
universalities whose identification and usage is always, in all branches of statistical physics,
the most rewarding enterprise. I have two goals. First, I want to present an introduction to
Statistical Topology, restricted to statistical problems which are related to winding numbers,
for readers without a pertinent background. Neither physics expert jargon, nor heavy
mathematics and mathematical physics terminology are used. Second, I want to review
and summarize results that my collaborators and I obtained in two recent studies [1,2].
We calculated for a chiral unitary random matrix model correlators of winding number
densities and the winding number distribution. We also computed generators for these
correlators in a chiral unitary and a chiral symplectic random matrix model. Furthermore,
we made first steps towards finding universalities.

The paper is organized as follows: In Section 2, the salient features of winding num-
bers and chiral symmetry are presented. In Section 3, a schematic model with the necessary
mathematical setup is formulated. Results are reviewed in Section 4, discussion and conclu-
sions are given in Section 5.

2. Winding Numbers and Chirality

After briefly revisiting the occurrence of winding numbers in complex analysis in
Section 2.1, the Kitaev chain is discussed in Section 2.2 and the statistical ansatz is motivated
in Section 2.3. The research is placed in the framework of Quantum Chromodynamics
(QCD) and Condensed Matter Physics in Section 2.4, summarizing the corresponding
remarks in Refs. [1,2].

Entropy 2023, 25, 383. https://doi.org/10.3390/e25020383 https://www.mdpi.com/journal/entropy
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2.1. A Simple Topological Invariant in Complex Analysis

The winding number is a topological concept encountered in complex analysis. Before
discussing applications in physics, we briefly sketch the mathematical background. The
winding number W = W(zi) counts how many times a point zi in the complex plane C is
encircled by a closed contour γ, where counterclockwise or clockwise give a positive or a
negative contribution, respectively. An example is shown in Figure 1, we have W(z1) = 0,
W(z2) = 1 and W(z3) = 2. Obviously, the winding number W(zi) is a topological constant
or, in physics terminology, a quantum number. It is invariant under all deformations of γ
that do not cross the point zi in question. In particular, the winding number is always a
positive or negative integer, W ∈ Z. It may be written as the contour integral

W(zi) =
1

2πi

∮
γ

dζ

ζ − zi
. (1)

One easily establishes the link to Cauchy’s argument principle: Consider a meromorphic
function f (z) and a closed contour Γ, encircling some zeros and poles of f (z) in the complex
plane C as shown in the example in Figure 1. The integral along this contour Γ over the
logarithmic derivative of f (z) yields the difference of the number NZ of zeros and the
number NP of poles, hence

1
2πi

∮
Γ

f ′(z)
f (z)

dz = NZ − NP . (2)

The close relation to the winding number is found by making the change of variable
ζ = f (z) and in accordance with the contour, Γ → f (Γ),

NZ − NP =
1

2πi

∮
Γ

f ′(z)
f (z)

dz =
1

2πi

∮
f (Γ)

dζ

ζ
= W(0) . (3)

We conclude that NZ − NP is the winding number W(0) of the closed contour f (Γ) around
the origin z = 0. As, from now on, all winding numbers will refer to the origin, we drop
the argument and simply write W.

z

z

z
1

2

3

γ poles zeros

Γ

Figure 1. Left: Three points zi, i = 1, 2, 3 in the complex plane C and a closed contour γ. Right: A
closed contour Γ encircling zeros and poles of a meromorphic function f (z).

2.2. Kitaev Chain and Winding Numbers

To illustrate the occurrence of topological invariants in physics, we look at the Kitaev
chain [3,4] as a prominent example. It consists of spinless electrons with next-neighbor
hopping and superconductive pairing. The Hamiltonian reads, in a slightly simplified form
sufficient for the present discussion,
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Ĥ = ∑
n

(
t
(

ĉ†
nĉn+1 + ĉ†

n+1 ĉn

)
+ μĉ†

nĉn +
Δ
2

(
ĉ†

n+1 ĉ†
n + ĉnĉn+1

))
, (4)

where ĉn and ĉ†
n are annihilation and creation operators, respectively, at position n on

the chain. Moreover, μ and Δ are chemical and pairing potentials and t is the hopping
strength. The Hamiltonian may be reformulated in terms of Majorana fermions whose
number is twice that of the electrons. Remarkably, depending on the parameters, there are
two possibilities, as schematically depicted in Figure 2. Either all Majorana fermions are
paired or, at the ends of the chain, two of them are unpaired [5]. In the former case, the
chain is in a normal or trivial superconducting phase, in the latter, in a topological one.
This aspect deserves further discussion.

Figure 2. Kitaev chain, electrons as larger open circles (red), Majorana fermions as small dots (green)
with the pairing indicated by connecting lines (green). Top: All Majorana fermions are paired, normal
or trivial superconducting phase. Bottom: Unpaired Majorana fermions at the ends of the chain,
topological superconducting phase.

In Fourier space, the Kitaev chain corresponds to the Bloch–Bogolyubov–de Gennes
Hamiltonian matrix H(k). It is a crucial that this 2 × 2 matrix satisfies chiral symmetry,

{H(k), C} = 0 with C =

[
1 0
0 −1

]
. (5)

The matrix C is the chiral operator in its proper basis and { , } is the anticommutator. It is
then possible to write the Hamiltonian matrix in the form

H(k) = �d(k) ·�σ with �d(k) = (0, Δ sin k, μ + 2t cos k) . (6)

Hence, using the three-component vector �σ of the 2 × 2 Pauli matrices, H(k) is found
to be a scalar product with all physics encoded in the vector �d(k) that depends on the
wave number k and the three parameters μ, Δ and t. Importantly, the first component is
zero, dx = 0. This restriction to effectively only two dimensions can be shown to be a
consequence of chiral symmetry (5).

To see how topology enters, we notice that the vector �d(k) describes an ellipse with
parameter k on the curve, μ determines the position of its center, Δ and t determine its
shape. In Figure 3, we depict �d(k) for fixed values of μ = 1, Δ = 1 and three different values
t = 0.25, 0.5, 1 with the corresponding energy dispersion relation E(k). If the origin of the
(y, z) plane is included in the closed contour that the ellipse describes, its winding number
is one, W = 1. If not, the winding number is zero, W = 0. These are two topologically
separated scenarios, reflecting the distinctly different role of the Majorana fermions in the
top and bottom parts of Figure 2. For W = 0, the superconducting phase is the normal or
trivial one, while it is topological for W = 1. A special situation occurs if the ellipse just
touches the x axis, the band gap disappears, marking the phase transition point.
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Figure 3. Ellipses described by�d(k) (left) and corresponding dispersion relations E(k) (right).
Top: t = 0.25, normal superconducting phase, W = 0. Center: t = 0.5, phase transition point.
Bottom: t = 1, topological superconducting phase, W = 1. Courtesy of Nico Hahn.

2.3. Chirality, Random Winding Numbers and Modelling Aspects

When studying such topological invariants in statistical physics, the closed contour
might be a random quantity, for example, generated by a proper ensemble of Hamiltonians.
In the case of the Kitaev chain, this ensemble may be realized by choosing the parameters μ,
Δ and t from probability distributions. Hence, the contour can be different for a particular
choice, i.e., it becomes random, and the winding number W will be random as well. In
general, the dynamics of a system under consideration, described by the Hamiltonian,
and the distributions of its parameters will determine the distribution P(W). Are there
universalities when comparing different systems? If yes, in which quantities do these
universalities manifest? In the distributions P(W) on their original scales or on some scales
which make these systems comparable? These are the guiding questions for our research.

484



Entropy 2023, 25, 383

Universalities are best identified in random schematic systems that only contain the most
basic ingredients needed for the relevant physics, in the present case for the occurence of
winding numbers. Random Matrix Theory (RMT) [6,7] is known to be a powerful concept in
this spirit when studying universalities in spectral correlations as well as in the correlations
of parametric level motion [8,9]. The chiral symmetry (5) and, thus, the restriction to two
dimensions are essential for the interpretation of the two superconducting phases in the
Kitaev chain in terms of the winding number. Hence, when setting up a schematic random
matrix model, we need to employ chirality.

2.4. Connections to Quantum Chromodynamics and Condensed Matter Physics

In Quantum Chromodynamics, the chiral symmetry of the Dirac operator is broken
spontaneously as well as explicitly by the quark masses. The chiral condensate is the order
parameter of the phase transition that occurs at a high temperature and that restores chiral
symmetry, which is related to the confinement–deconfinement transition. To investigate
statistical properties of lattice gauge calculations, chiral RMT [10–17] is remarkably success-
ful. As in the original RMT, presence or absence of time-reversal invariance combined with
spin-rotation symmetries results in three classes of chiral random matrices: orthogonal, uni-
tary and symplectic. It was then shown that altogether ten RMT symmetry classes [18–22]
exist, referred to as the tenfold way. The three original and the three chiral ones comprise
six of these ten classes, the remaining four emerge when particle-hole symmetry is also
considered, see Refs. [23,24]. In condensed matter physics, chiral symmetry is realized by
sublattice symmetry (see early work in Ref. [25]) or as a combination of time reversal and
particle-hole symmetry [24].

In the terminology of condensed matter physics, the winding number comes in as
characterization of translationally invariant one-dimensional chiral systems that are gapped
at the centre of the spectrum. The winding number is the integer topological index with
respect to the bundle of negative-energy bands. A non-zero winding number W indicates
the topologically non-trivial situation with |W| modes at each boundary [26–29]. The
winding number differs for different realization of the disorder, i.e., it becomes random.
Our research on the winding number was inspired by studies of systems with energy bands
in two dimensions, allowing for a topological classification by the (first) Chern number. A
random matrix model [30,31] revealed a Gaussian distribution of Chern numbers with a
universal covariance.

Another intriguing direction might be the application of Statistical Topology to classical
wave phenomena such as microwaves or acoustics and, furthermore, to photonics where
topological issues are already in focus [32].

3. Formulation of the Problem and Mathematical Setup

After introducing chiral random matrix ensembles with a parameter dependence in
Section 3.1, the statistical quantities of interest are defined in Section 3.2. In Section 3.3, a cru-
cial step for all of our mathematical investigations is presented, namely, the mapping of the
topological problem addressed to a spectral one which greatly facilitates the computations.

3.1. Chiral Random Matrix Ensembles with Parametric Dependence

We derived results [1,2] for the chiral unitary and the chiral symplectic symmetry
classes labeled AIII and CII, respectively, see Ref. [18]. The latter case is mathematically
much more demanding than the former, but not as involved as the orthogonal case, labeled
BDI. Only very recently have we been able to solve it, this will be published elsewhere.
The cases BDI and CII describe time-reversal invariant systems, while this invariance
does not exist in the case AIII. We refer to the matrices as Hamiltonians H, as most of the
present application of winding numbers seem to stem from Condensed Matter Physics.
The matrices H are complex Hermitean or quaternion real, i.e., self-adjoint, with even
dimension βN × βN where we employ the Dyson indices β = 2 and β = 4 for AIII and CII.
Chiral symmetry manifests in the relation
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{C, H} = 0 (7)

where in the chiral basis

C =

[
11βN/2 0

0 −11βN/2

]
. (8)

The Hamiltonians thus take the block off-diagonal form

H =

[
0 K

K† 0

]
, (9)

where the βN/2 × βN/2 matrices K have no further symmetries. We draw the matrices
H from the chiral Gaussian Unitary, respectively, Symplectic Ensembles (chGUE, chGSE).
To study questions of topology, we give these random matrices a parametric dependence
K = K(p) and thus, H = H(p), where the real variable p lies on the unit circle. The winding
number corresponding to these Hamiltonians is then [33,34]

W =
1

2πi

2π∫
0

w(p) dp , (10)

with the winding number density

w(p) =
d

dp
ln det K(p) =

1
det K(p)

d
dp

det K(p) . (11)

Cauchy’s argument principle applies to the integral (10), provided det K is a non-zero
analytic function of p, see Section 2.1 and particularly, Equation (3).

To produce explicit results, we choose a particular realization of the parameter depen-
dence. With two smooth and 2π periodic scalar functions a(p) and b(p), we set

K(p) = a(p)K1 + b(p)K2 , (12)

where the matrices K1 and K2 have dimensions βN/2× βN/2. The associated Hamiltonians

H(p) = a(p)H1 + b(p)H2 with Hm =

[
0 Km

K†
m 0

]
, m = 1, 2 , (13)

define parametric combinations of either two chGUE’s or two chGSE’s. Averages over
these combined ensembles have to be performed. It is convenient to introduce the vector

v(p) = (a(p), b(p)) ∈ C
2 . (14)

Time-reversal invariance imposes the condition v∗(p) = v(−p) in the chiral symplectic
case CII.

3.2. Statistical Quantities Considered

Considering k different points pi, i = 1, . . . , k, on the unit circle, we are interested in
the k-point correlators of winding number densities

C(β,N)
k (p1, . . . , pk) = 〈w(p1) · · · w(pk)〉 (15)

The precise meaning of the angular brackets indicating the ensemble average will be
given later on. In the chiral unitary case AIII, we computed these correlators directly [1],
see Section 4.1. As, first, this approach becomes forbiddingly complicated in the chiral
symplectic case CII, and, second, results in cumbersome expressions for larger k, we
calculated the generators
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Z(β,N)
k|l (q, p) =

〈
∏l

j=1 det K(pj)

∏k
j=1 det K(qj)

〉
(16)

for two sets of variables p1, . . . , pl and q1, . . . , qk in Ref. [2], see Section 4.4. Only the case
k = l is needed, but the more general definition (16) for k and l being different has technical
advantages. We notice that k and l are the numbers of determinants in denominator and
numerator, respectively. The k-fold derivative

C(β,N)
k (p1, . . . , pk) =

∂k

∏k
j=1 ∂pj

Z(β,N)
k|k (q, p)

∣∣∣∣∣
q=p

(17)

of the generator (16) for k = l at q = p yields the correlator (15). Anticipating the later
discussion, we emphasize that the generators for both Dyson indices β = 2, 4 will exhibit
a remarkably clear structure [2] which is an important reason to address them here. It is
worth mentioning that the correlators (15) and the generators (16) are very different from
those for the parametric level motion considered in Refs. [8,9].

Furthermore, we also computed the distribution of winding numbers P(W) in the
chiral unitary case AIII [1], see Section 4.2.

3.3. Mapping a Topological to a Spectral Problem

At first sight, the computation of the correlators (15) and the generators (16) appears as
a formidable task, requiring the development of completely new techniques in RMT. Luckily,
one can establish a link between the topological problem set up above and spectral problems
in RMT for which a wealth of literature exists. This amounts to a tremendous simplification,
even though the calculations to be performed are still involved and quite demanding,
particularly in the chiral symplectic case. The key observation is that a combination of
the two matrices K1 and K2 in Equation (12) encodes all the statistical information needed.
Pulling out K1, say, one has

K(p) = a(p)K1 + b(p)K2 = b(p)K1

(
κ(p)11βN/2 + K−1

1 K2

)
(18)

with the ratio

κ(p) =
a(p)
b(p)

. (19)

Since the winding number density (11) is the derivative of the logarithm

ln det K(p) = ln det K1 + βN ln b(p) + ln det
(

κ(p) + K−1
1 K2

)
, (20)

the first term ln det K1 does not contribute and, remarkably, only the combination Y = K−1
1 K2

is relevant. Using Equation (18), the generators acquire the form

Z(β,N)
k|k (q, p) =

(
k

∏
j=1

b(pj)

b(qj)

)βN〈 k

∏
j=1

det(κ(pj)11βN/2 + Y)
det(κ(qj)11βN/2 + Y)

〉
, (21)

which as well only contains the matrix Y.
The task to be solved is the derivation of the probability density for the random

matrices Y = K−1
1 K2 from the independent Gaussian distributions for the random matrices

K1 and K2. Once again, luckily, the results are known as spherical [35,36] ensembles and
their probability densities read explicitly

G̃(β)(Y) =
1

πβN2/2

N

∏
j=1

(β(N + j)/2 − 1)!
(βj/2 − 1)!

1

det2N
(

11βN/2 + YY†
) . (22)
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These ensembles are referred to as complex spherical and quaternion spherical for β = 2, 4.
In the complex case, the probability density (22) can be reduced to a joint probability density
of the N complex eigenvalues z = diag (z1, . . . , zN) of Y and reads

G(2)(z) =
1

c(2)
|ΔN(z)|2

N

∏
j=1

1
(1 + |zj|2)N+1 (23)

with the the Vandermonde determinant

ΔN(z) = ∏
j<l

(zj − zl) . (24)

In the quaternion case, however, each eigenvalue zj of Y has a complex conjugate z∗j ,
which is also an eigenvalue. The corresponding joint probability density of the eigenvalues
z = diag (z1, z∗1, z2, z∗2, . . . , zN , z∗N) is given by

G(4)(z) =
1

c(4)
Δ2N(z)

N

∏
j=1

zj − z∗j
(1 + |zj|2)2N+2 . (25)

The normalization constants are

c(β) =

(
βπ

2

)N
N!

N

∏
j=1

B
(

βj
2

,
β(N + 1 − j)

2

)
, (26)

where B(x, y) is Euler’s Beta function. The question whether the integrals to be calculated
are well-defined for β = 4 arises, but the answer is affirmative [2]. Hence, the ensemble
average over a function f (z) to be performed amounts to carrying out the integral

〈 f (z)〉 =
∫
C

d[z1] · · ·
∫
C

d[zN ] G(β)(z) f (z) (27)

over all complex eigenvalues. Hence, by reducing the two chiral ensembles to a single
spherical one for either β, all information of the topological problem is contained in the
determinants det(κ(p)11βN/2 + Y) or their derivatives. Most advantageously, this is equiv-
alent to a spectral problem where Y and κ(p) formally play the roles of a (complex or
quaternion) “Hamiltonian” and of the corresponding “energy”, respectively.

4. Results

The correlators for the unitary case are addressed in Section 4.1, the distribution is
given in in Section 4.2. Aspects of universality are discussed in Section 4.3. The generators
in the chiral unitary and symplectic cases are presented in Section 4.4.

4.1. Winding Number Correlators in the Chiral Unitary Case

In Ref. [1], we calculated the winding number correlators C(2,N)
k (p1, . . . , pk) as defined

in Equation (15) in the unitary case directly. We chose

a(p) = cos p and b(p) = sin p . (28)

Using Equations (11) and (20) as well as the complex eigenvalues of Y, one has

w(p) = N cot p + y(p) with y(p) = − 1
sin2 p

N

∑
n=1

1
cot p + zn

. (29)

Only the k-fold products of y(p) have to be ensemble averaged with the joint probability
density (23), the presence of the inconvenient term N cot p implies that the correlator
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C(2,N)
k (p1, . . . , pk) of the k winding number densities w(pj) becomes a combinatorial sum

of the y(pj) correlators. Furthermore, the latter themselves turn out to be rather involved

combinatorial expressions. Eventually, C(2,N)
k (p1, . . . , pk) is found to be a combinatorial

sum of determinants with the entries

Lnml(ql) =
(−1)m−nπ

qm−n+1
l

B(m, N − m + 1)

{
um(N, q2

l ) m ≥ n
−vm(N, q2

l ) m < n
(30)

with the properly normalized incomplete Beta functions

um(N, q2
l ) =

2
B(m, N − m + 1)

ql∫
0

dρ
ρ2m−1

(1 + ρ2)N+1

vm(N, q2
l ) =

2
B(m, N − m + 1)

∞∫
ql

dρ
ρ2m−1

(1 + ρ2)N+1 (31)

that satisfy um(N, q2
l ) + vm(N, q2

l ) = 1. Even though B(m, N − m + 1) drops out in the
Lnml(ql), this normalization has advantages, see Ref. [1]. The first two correlators read

C(2,N)
1 (p1) = 0

C(2,N)
2 (p1, p2) = −1 − cos2N(p1 − p2)

1 − cos2(p1 − p2)
. (32)

The at-first-sight surprising vanishing of the averaged winding number density is actually
quite natural, as the winding number W must have a symmetric distribution with vanishing
first moment. The integral of C(2,N)

1 (p1) over p1 is this first moment.

4.2. Winding Number Distribution

In Ref. [1], we also computed the winding number distribution P(W) in the uni-
tary case for the choice (28). Using Cauchy’s argument principle, we derive the discrete
probability distribution

P(W) = r
(

W + N
2

)(
N

(W + N)/2

)
(33)

on the integers W between −N and +N for arbitrary, finite matrix dimension N. Here,
r(m) is the probability that m eigenvalues are inside the unit circle and the remaining ones
outside which may be written as

r(m) =
∫

|z1|<1

d[z1] · · ·
∫

|zm |<1

d[zm]
∫

|zm+1|>1

d[zm+1] · · ·
∫

|zN |>1

d[zN ] G(2)(z) . (34)

Calculating the integrals yields

r(m) =
1

N! ∑
ω∈SN

(
m

∏
i=1

uω(i)(N, 1)

)(
N

∏
i=m+1

vω(i)(N, 1)

)
, (35)

in terms of the functions (31). The combinatorial factor in Formula (33) takes into account
the permutation invariance of the eigenvalues inside, respectively, outside, the unit circle.
The sum runs over all permutations, SN is the permutation group.
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4.3. Aspects of Universality

The quest for universality is twofold, first, there is the question of whether the same
statistical effects, distributions or scalings, etc, can be identified in empirical or experimental
data of different physical systems. Second, there is the theoretical and mathematical side
concerned with often schematic models and their ability to describe or even predict the
results from data analysis. In the case of spectral correlations, universal statistics is found
on the local scale of the mean level spacing, i.e., universalities are revealed after a rescaling
of the energies, referred to as unfolding. The unfolded correlators of, on the one hand,
RMT for infinite level number and of, on the other hand, numerous physical systems of
very different nature with large number of levels coincide, see the discussion in Refs. [6,7].
The theoretical and mathematical challenge is non-trivial as it amounts to showing that a
most general class of probability densities for the random matrices yields after unfolding
the same statistical quantities. Put differently, it suffices to consider Gaussians because the
resulting statistics is, always after unfolding, universal.

In the case of statistical topology, universality is of equally high importance, but it
appears to be considerably more complicated. Already, on the theoretical and mathematical
side, there are several natural questions to be posed: First, is there an unfolding scale
comparable to the local mean level spacing and how is it related to the scale of the level
velocity as in the parametric correlations [8,9,37]? Second, which probability densities for
the random matrices yield in the model set up in Section 3.1 the same statistics? Third,
what are the conditions on the functions a(p) and b(p) or, more precisely, the combined
conditions on these functions and the probability densities that yield in the model universal
statistics? Fourth, is it possible to find universal statistics for models more general than the
one in Section 3.1?

In Ref. [1], we started addressing these issues in the unitary case for the choice (28). Of
course, this limits our discussion, a future fully fledged investigation ought to also consider
the impact of different choices for these functions. Guided by unfolding in spectral statistics,
we rescaled the arguments pi in the correlation functions C(2,N)

k (p1, . . . , pk) according to

ψi = Nα pi . (36)

The power α should be positive because we want to zoom into the parametric dependence
in the limit N → ∞. Consider the two-point function (32) and the limit

lim
N→∞

C(2,N)
2

(
ψ1

Nα
,

ψ2

Nα

)
dψ1

Nα

dψ2

Nα
= f (α)2 (ψ1, ψ2)dψ1dψ2 (37)

defining the function f (α)2 , if existing. A straightforward calculation yields

f (α)2 (ψ1, ψ2) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
− 1

(ψ1 − ψ2)
2 α < 1

2

−1 − exp(−(ψ1 − ψ2)
2)

(ψ1 − ψ2)
2 α = 1

2

0 α > 1
2

. (38)

We notice C(2,N)
2 (p1, p1) = −1, see Equation (32), implying that ψ1 �= ψ2 when taking the

limit for arbitrary α. The result (38) reveals different regimes, the one for α = 1/2 involves
the same scale as in Refs. [8,9]. Figure 4 shows results for two values of α and various
values of N, the unfolded two-point function approaches the limit (38) when N increases.
We conjectured that the function f (α)2 (ψ1, ψ2) is universal [1].
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Figure 4. Unfolded two-point function after the rescaling (36) for different values of N (blue). In
(a), we used N = 5, 10, 20, 50, 100, 150, 200, 300, 1000 and α = 1/6, in (b) N = 2, 5, 7, 10, 15, 20, 50, 100
and α = 1/2. For comparison, the limit (37) is presented (red). Taken from Ref. [1].

In Ref. [1], we also showed that the winding number distribution (33) becomes Gaus-
sian for large N. More precisely, its second moment behaves like 〈W2〉 ∼

√
N, suggesting

an unfolding of the form W/N1/4, i.e., different from the rescaling above. It then follows
that P(W) approaches a Gaussian with variance 2

√
N/π for large N.

4.4. Generators in the Chiral Unitary and Symplectic Cases

We computed the generators (16), respectively, (21) exactly for β = 2 and β = 4 in
Ref. [2]. To this end, we used the method proposed some years ago in Refs. [38,39]. It
identifies and employs, in ordinary space, supersymmetric structures deeply rooted in
the ensemble averages. As there is no mapping performed of the ensemble averages to
superspace, the method is often referred to, jokingly, but not deceptively, as “supersym-
metry without supersymmetry”. In the chiral unitary case β = 2, we found a ratio of
two determinants,

491



Entropy 2023, 25, 383

Z(2,N)
k|k (q, p) =

det

[
1

vT(qm)σ2v(pn)

(
v†(qm)v(pn)

v†(qm)v(qm)

)N]
1≤m,n≤k

det
[

1
vT(qm)σ2v(pn)

]
1≤m,n≤k

, (39)

where σ2 is the second 2 × 2 Pauli matrix and v(pn) is the vector defined in Equation (14).
In the chiral symplectic case β = 4, we arrived at a ratio of a Pfaffian and a determinant,

Z(4,N)
k|k (q, p) =

Pf
[

K̂1(pm, pn) K̂2(pm, qn)

−K̂2(pn, qm) K̂3(qm, qn)

]
1≤m,n≤k

det
[

1
ivT(qm)σ2v(pn)

]
1≤m,n≤k

. (40)

The three kernel functions K̂l(pm, pn) , l = 1, 2, 3 are quite complicated and can be found
explicitly in Ref. [2]. Considering the complexity of the problem and of its mathematical
structure, these are remarkably compact results, even in the chiral symplectic case. This
compactness is the reason why we present these results here. Their form is intimately
connected with the mapping of the topological to a spectral problem discussed in Section 3.3
because such determinant and Pfaffian expressions are ubiquitous for the generators in
spectral statistics. Importantly, this carries over, at least for the model considered, to the
generators for the correlators of winding number densities.

5. Discussion and Conclusions

Statistical Topology is an emerging branch in statistical physics, with connections
to various branches of mathematics. It is triggered by the identification of topological
questions in many areas of physics, ranging from quantum mechanics and quantum
field theory over semiclassics to QCD and Condendsed Matter Physics. First, I tried to
give an introduction to winding number statistics for newcomers who do not have any
background, avoiding usage of expert jargon and of burying the key ideas under the
adavanced terminology developed in mathematics and mathematical physics. Second, I
reviewed results that my collaborators and I obtained in two recent works. We studied
winding numbers and associated statistical quantities in a random matrix model. There
are, of course, also other topological invariants of considerable interest in physics, most
notably, the Chern numbers.

I presented our first, probably awkward, steps towards looking at universal behavior.
In my opinion, the most fascinating challenge for the future is the further study of universal-
ity in statistical topology, more precisely, of both of its aspects, the experimental–empirical
as well as the theoretical–mathematical one.
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Abbreviations

The following abbreviations are used in this manuscript:

RMT Random Matrix Theory
QCD Quantum Chromodynamics
chGUE chiral Gaussian Unitary Ensemble
chGSE chiral Gaussian Symplectic Ensemble
SN permutation group of N objects
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Abstract: We outline formal and physical similarities between the quantum dynamics of open systems
and the mesoscopic description of classical systems affected by weak noise. The main tool of our
interest is the dissipative Wigner equation, which, for suitable timescales, becomes analogous to the
Fokker–Planck equation describing classical advection and diffusion. This correspondence allows, in
principle, to surmise a finite resolution, other than the Planck scale, for the quantized state space of
the open system, particularly meaningful when the latter underlies chaotic classical dynamics. We
provide representative examples of the quantum-stochastic parallel with noisy Hopf cycles and Van
der Pol-type oscillators.

Keywords: quantum dissipation; stochasticity; nonlinearity; chaos; Wigner equation; Fokker–Planck
equation

1. Introduction

Efforts to reconcile classical and quantum mechanics are just about as old as quantum
mechanics itself. While the formulation in Hilbert space makes it difficult to establish a
direct correspondence between the two, a projection of the wave function to phase space
may reveal some formal affinities between the quantum evolution of probability density
and the traditional Liouville formalism of classical mechanics. The closest one can get
to relate the two is by projecting the Liouville–von Neumann equation onto a suitable
state space. For example, choosing the traditional phase space, we may obtain the so-
called Wigner representation, which shares similarities with the aforementioned classical
density evolution.

Yet, there are also notable differences, as it stands to reason. The Wigner function,
which is the projection of the density operator onto the phase space, may also take on
negative values; its evolution is governed by an equation plagued with an infinity of
derivatives, and, as an indirect consequence of that, it may attain scales smaller than
Planck’s constant [1]. This is especially true in systems whose underlying classical dynamics
exhibit chaotic behavior.

In reality, however, no system is perfectly and eternally isolated, and exchanges
of matter or energy with the surrounding environment are inevitable, whether due to
measurements, thermal interactions, or shot noise [2–4]. That brings dissipation into the
picture and, with that, decoherence.

The effect of the environment on the evolution of a density matrix in a phase-space
representation was first studied by Feynman and Vernon [5], who extended the path-
integral formalism to dissipative quantum dynamics. Later, Caldeira and Leggett [6]
derived an equivalent partial differential equation for the density matrix, which bears
diffusive and dissipative terms similar to the Fokker–Planck equation. The latter analogy
was then thought to hold in the semiclassical limit until a new wave of contributions [7–10]
reexamined the problem in a quantum chaotic setting. A most remarkable outcome of those
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works is the identification of a decoherence time, beyond which the Wigner equation is, in
all, a Fokker–Planck equation since the higher-order derivatives may be safely neglected,
and the quantized phase space may be resolved only up to a finite scale. Such resolution
does not depend on the Planck constant, but rather emerges from the balance of the
phase-space contraction rate (Lyapunov exponent) with the coupling of the system with an
Ohmic environment.

More recent contributions have focussed on the efficiency of Wigner evolution for
general types of dissipation [11], and on obtaining a Lindblad-based dissipative Wigner
equation to tackle quantum friction [12,13].

Once it is established that, under suitable conditions and after a sufficiently long time
of evolution, the Wigner equation has the form of a Fokker–Planck equation, the quantum
dissipative problem is cast into a classical stochastic process. Moreover, if the underlying
classical dynamics of the quantum system in exam are chaotic, the limiting resolution of
the phase space postulated in refs. [8,10] is not expected to be uniform, but will depend
on the local interplay of the stretching/contraction with the dissipation. In the equivalent
classical noisy problem, it is the ‘Brownian’ diffusion that plays the role of dissipation.

In the past decade, significant steps [14–18] were taken to determine the resolution of
a chaotic state space in the presence of weak noise and reduce the dynamics to a Markov
process of finite degrees of freedom in the form of a connectivity matrix. Low-dimensional
discrete-time dynamical systems such as logistic- or Hénon-type maps have been treated in
a non-Hamiltonian setting, whose quantum analogs are, in principle, difficult to identify.
The optimal resolution hypothesis should be extended to continuous time flows as well, and
the starting point of that roadmap is a thorough comprehension of the steady-state solutions
of the Fokker–Planck equation around the building blocks of chaos: periodic orbits.

Here, we intend to lay the foundation of that understanding, by solving the Fokker–
Planck equation of nonlinear paradigmatic dynamical systems, classical and with weak
noise. We examine two-dimensional flows featuring nonlinearities but not yet chaos,
where the competition between contraction and noise around a limit cycle results in a
stationary density, which characterizes the steady state, and, as shown at the very end of
the manuscript, shares common traits with the steady-state Wigner function of a case study
in quantum dissipative dynamics.

The article is structured as follows: in Section 2 we review the basic tools of the
phase-space representation of quantum dynamics, both in closed and open systems. We
follow up in Section 3 by discussing the main issues related to the evolution of the Wigner
function in a quantum chaotic setting, the effects of dissipation, and the correspondence
of the Wigner with the Fokker–Planck equation. In Section 4, a novel methodology is
introduced to evaluate the steady-state solution of the Fokker–Planck equation around a
periodic orbit, which casts the partial differential equation into an ordinary differential
equation for the covariance matrix, known as the Lyapunov equation. We first present a
proof of concept on the simplest limit cycle, of circular shape as from a Hopf bifurcation, to
be followed in Section 5 by the treatment of the nonlinear oscillators, which are the main
object of the current study. At the end of the section, the results on the Fokker–Planck
steady-state densities are paralleled to those obtained for the Wigner function in a recent
study of a quantum-dissipative model of the same oscillators. Summary and discussion
close the paper.

2. Density Matrix, Wigner Function, and Dissipation

Given a collection of physical systems, the ensemble average of an observable A is
given by

〈A〉 = ∑
i

ρi〈ψi|A|ψi〉 , (1)

or, using
ρ = ∑

i
ρi|ψi〉〈ψi| , (2)
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one can simply write
〈A〉 = Tr[ρ A] , (3)

so that, if the observable A is time-independent, knowing ρ at all times means solving
the problem of dynamics. That is the motivation for studying the density matrix ρ in the
first place.

2.1. Quantum Dynamics in the Phase Space

Now, the density ρ evolves according to the Liouville–von Neumann equation

ih̄ρt = [ρ, H] , (4)

the quantum analog of the well-known Liouville equation

ρt = {ρ, H} (5)

of classical dynamics, which we spell out in phase space:

∂tρ = − p
m

∂xρ +
(
∂xV(x)∂p

)
ρ , (6)

assuming a Hamiltonian of the form H = p2

2m + V(x).
In order to integrate the Liouville–von Neumann Equation (4), we need to project it

onto some basis, and several representations are already available to us, for instance, the P-
or the Q-representation (a.k.a. Husimi’s)

Q(α, α∗) =
1
π
〈α|ρ|α〉 , (7)

with |α〉 a coherent state. Studying quantum-to-classical correspondence, especially of
a system that exhibits chaotic behavior, is generally best achieved by using the Wigner
representation [19]

W(x, p) =
1

2πh̄

∫
e−ipy/h̄ψ

(
x +

y
2

)
ψ∗
(

x − y
2

)
dy , (8)

which can also be expressed in terms of the density matrix, as

W(x, p) =
1

2πh̄

∫
e−ipy/h̄〈x + y/2|ρ|x − y/2〉dy , (9)

the operation being called Weyl transform. An operator A may also be projected onto phase
space, by applying a Weyl transform:

Ã(x, p) =
1

2πh̄

∫
e−ipy/h̄〈x + y/2|A|x − y/2〉dy , (10)

which can prove handy in the evaluation of expectation values, that is

〈A〉 = Tr[ρ A] =
∫

W(x, p)Ã(x, p)dxdp , (11)

since, in general,

Tr[AB] =
∫

Ã(x, p)B̃(x, p)dxdp . (12)
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Thus, expectation values of observables are determined by means of phase-space averages,
and the problem of quantum mechanics boils down to that of the time evolution of the
Wigner function. It has been shown [19] that W(x, p) obeys the Wigner equation

∂tW(x, p) = − p
m

∂xW(x, p) +
∞

∑
s=0

cs(−h̄2)s∂2s+1
x V(x)∂2s+1

p W(x, p) , (13)

(with cs =
2−2s

(2s+1)! ) that, in general, bears an infinite number of terms. In reality, integrating
Equation (13) can already be impractical if there are just a few nontrivial terms in the
summation [20]. If the potential V(x) is at most quadratic, the Wigner equation reduces to
Liouville’s, as in (6). Otherwise, Equation (13) is still not easy to deal with, and, importantly,
it may not be truncated in the semiclassical limit since the terms ∂2s+1

p W(x, p) bring down
powers of h̄−1−2s, so that

h̄2s · 1
h̄2s+1 ∼ h̄−1 ,

and O
(

h̄−1
)

does grow in the limit h̄ → 0, making no terms in the Wigner equation
negligible, in principle.

2.2. Open Systems

On the other hand, let us suppose the system is connected to an environment, whose in-
teraction produces two additional terms on the right-hand side of the Wigner Equation (13),
that is [8]

2γ∂p[pW(x, p)] + D∂2
ppW(x, p) .

The first term produces relaxation, due to the exchange of energy with the environment,
and γ is the relaxation rate. The second term means diffusion, responsible for the so-called
decoherence process, where one sets D = 2γMkBT, with M mass of the system, and T
temperature of the environment. The dissipation and diffusion terms are obtained from a
path-integral formulation of the system-environment interaction, which traces back to the
works of Feynman and Vernon [5], and, later, of Caldeira and Leggett [6].

If the potential V(x) is, at most, quadratic, one recovers the Fokker–Planck equation,
which describes the classical evolution of the density of trajectories produced by a particle
subject to Brownian motion:

∂tW(x, p) = − p
m

∂xW(x, p) + ∂xV(x)∂pW(x, p) + 2γ∂p[pW(x, p)] + D∂2
ppW(x, p) . (14)

This equation is fully quantum mechanical, and W(x, p) may take on negative values,
unlike the classical phase-space density of a Brownian particle.

Yet, for a general potential V(x), the evolution of the dissipative system is ruled by
the full-fledged Wigner Equation (13) plus the terms (14) due to the environment:

∂tW(x, p) = − p
m

∂xW(x, p) +
∞

∑
s=0

cs(−h̄2)s∂2s+1
x V(x)∂2s+1

p W(x, p) +

+ 2γ∂p[pW(x, p)] + D∂2
ppW(x, p) . (15)

The resulting equation is still plagued with an infinite number of derivatives, and is thus
of impractical integration. In the next section, we discuss whether and how it is safe to
neglect the higher-order terms in Equation (15), in the context of quantum chaos.

3. Stretching, Contracting, and Zaslavsky’s Time

Let us examine some aspects of the evolution of the Wigner function, when the
underlying classical dynamics of the system is chaotic. By established knowledge [21], the
two main features of chaos are:
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1. Nearby trajectories diverge exponentially fast, meaning that, letting x = (x, p),

λ = lim
t→∞

ln
∣∣∣∣ δx(t)
δx(0)

∣∣∣∣ > 0 , (16)

in other words, the difference δx(t) between any two nearby trajectories grows ex-
ponentially fast for any initial condition. This feature is also described as extreme
sensitivity of the system to initial conditions.

2. The number M of qualitatively distinct orbits (‘configurations’, tagged by symbolic
sequences) scales exponentially with their length, so that the topological entropy
is positive:

S = lim
t→∞

1
t

ln M(t) > 0 . (17)

3.1. Chaos and the Wigner Function

Chaos is the result of a stretching and folding process mainly due to nonlinearities.
For a Hamiltonian system, volumes in the phase space are conserved (by Liouville’s
theorem), so that the amount of stretching (diverging trajectories) in some directions must
be compensated by an equal amount of contraction in others.

As a result, the inconvenient higher-order terms in the Wigner Equation (13) can be
estimated to evolve as

∂2s+1
p W(x, p) ∝

W(x, p)
δp2s+1(t)

∼ W(x, p)
δp(0) e−(2s+1)λt

, (18)

for smooth enough W(x, p). Thus, the inherent problem is, in principle, not with the
smoothness of the density, but rather with the fact that the phase space contracts at an
exponential rate, and therefore the contribution of higher-order derivatives in Equation (13)
is more and more important, as time proceeds. To better illustrate that, let us compare the
terms in the Poisson brackets of the Liouville Equation (6) (also present in the full-fledged
Wigner equation), with the higher-order terms in Equation (13):

∂xV(x)∂pW(x, p)

cs∂2s+1
x V(x)∂2s+1

p W(x, p)
∼ 1

cs

∂xV(x)
∂2s+1

x V(x)
δp2s ∼ 1

cs

∂xV(x)
∂2s+1

x V(x)
δp(0) e−2sλt  1 (19)

is a condition for the higher-order terms to be negligible with respect to the lower-order
‘Liouville’ terms. The above inequality can be inverted, and turned into a condition for the
time t:

t � 1
λ

ln

[
∂xV(x)

∂2s+1
x V(x)

δp(0)
cs

]−1/2s

. (20)

Identifying the quantity XV δp(0) = ∂xV(x)δp(0)
∂2s+1

x V(x)
with the typical action of the system, we

can now understand

t∗ ∼ 1
λ

ln
XV δp(0)

h̄
(21)

as the time scale within which the inconvenient higher-order terms (s ≥ 1) of the Wigner
Equation (13) may be neglected. Some literature refers to t∗ as Zaslavsky’s time [22]. Its
meaning is somehow related to the more commonly mentioned Ehrenfest time, as in fact, t∗

is longer the larger the ratio of the typical action to h̄, and longest in the semiclassical limit.
Still, the basic idea of this correspondence time does not relate directly with interference
or need ‘semiclassical’ dynamics, but rather implies a finite resolution for the quantized
phase space within a certain time scale, irrespective of the scale of the action. In general,
the smoother the potential V(x), the longer t∗, whereas the larger the Lyapunov exponent
λ, the shorter t∗.
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3.2. A Resolution for the Quantized Phase Space

In a simplified but physically meaningful description, that will then prove more accu-
rate as a local model, we may recognize and estimate the competing effects of dynamical
contraction on the one hand, and of dissipation-induced diffusion on the other hand, by
quantizing the Hamiltonian H = λxp. A wave packet of the form

W(x, p) ∼ e−x2/σ2−σ2 p2
(22)

evolves separately along the stretching x-direction, and the contracting p-direction. In
momentum space, we have the Schrödinger equation

∂tu(p, t) = λp∂pu(p, t) ⇒ u(p, t) = u0

(
peλt
)

, (23)

that maps the wave packet in the p-direction as

e−σ2 p2/2 → ee2λtσ2 p2/2 , (24)

and thus the width σ−2 shrinks by a factor of e−2λt after time t. Identifying σ−1 with the
uncertainty δp(t) of the momentum, we may say that

δp(t) ∼ δp(0)e−λt (25)

along the contracting direction. On the other hand, connecting the system to an environ-
ment brings about diffusion, and

∂tu(p, t) = D∂ppu(p, t) ⇒ u(p, t) ∼ e−p2/2(δp(0)+Dt) , (26)

whose variance evolves as
√

Dt:

δp(t) ∼ [δp(0) + Dt]1/2 . (27)

Then, intuitively, there must be some minimal scale in the contracting direction, set by

δpmin ∼
[

D
2λ

]1/2
. (28)

The full picture is called the Ornstein–Uhlenbeck problem [23]

∂tu(p, t) = D∂ppu(p, t)− λ∂pu(p, t) . (29)

In particular, the larger δpmin, the closer the evolution of the Wigner function to a stochastic
process. More precisely, the regime where we may neglect the higher-order derivatives in
the Wigner equation is deduced from Equation (19) as

XV δpmin

h̄
 1 , (30)

and that requires a relatively smooth potential, and the coefficient of the decoherence term
in Equation (14), D, to be comparable to the Lyapunov exponent λ. Now, if δpmin is an
‘equilibrium’ value as argued above, the chaotic contraction is no longer shrinking the scale
of phase-space probability exponentially and indefinitely as in the non-dissipative setting
(recall δp(t) ∼ δp(0)e−λt). Hence, in principle, there would be no Zaslavsky’s time t∗, but
rather, the quantum dissipative evolution may be well described by the Fokker–Planck
type of Equation (14) at all times, provided that the initial condition is smooth enough.
Importantly, the semiclassical limit is not required for this approximation to work.
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4. Contraction vs. Diffusion in Stochastic Dynamics

Equation (14) and the discussion from the previous section suggest that, under suitable
conditions, the problem of the dynamics of a quantum system connected to an environ-
ment may be cast into the classical evolution of a density according to a Fokker–Planck
equation. As a consequence, studying the interplay of stretching/contracting dynamics
with weak noise may also help shed light on quantum dissipation. Particularly interesting
scenarios arise when the deterministic dynamics exhibits chaotic behavior. It is, in fact,
well known that the phase space of a chaotic system has a self-similar (fractal) structure
of infinite resolution. However, in reality, every system experiences noise, coming from
experimental uncertainties, neglected degrees of freedom, or roundoff errors, for example.
No matter how weak, noise smooths out fractals, giving the system a finite resolution. The
consequences are dramatic for the computation of long-time dynamical averages, such
as diffusion coefficients or escape rates, since infinite-dimensional operators describing
the evolution of the system (such as Fokker–Planck) effectively become finite matrices.
With the aim of efficiently estimating long-time averages of observables for a chaotic dy-
namical system affected by background noise, a recent endeavor carried on over the past
decade has achieved a technique to partition the chaotic phase space up to its optimal
resolution, using unstable periodic orbits. The benchmark models already treated range
from one-dimensional discrete-time repellers [14], and general unimodal maps [15], to
two-dimensional chaotic attractors [17,18]. Most importantly, a finite resolution for the state
space of these models has effectively changed the dimensionality of the Fokker–Planck
operator from infinite to inherently finite. Consequently, computations of the desired long-
time averages become simpler and more efficient. On a more intuitive note, the present
results also bear physical significance because, even when the external noise is uncorrelated,
additive, isotropic, and homogenous, the interplay of noise and nonlinear dynamics always
results in a local stochastic neighborhood, whose covariance depends on both the past
and the future noise integrated and nonlinearly convolved with deterministic evolution
along the trajectory. In that sense, noise is effectively never ‘white’ in nonlinearity, and
thus, the optimal resolution varies from neighborhood to neighborhood and has to be
computed locally.

As stated in the introduction, here we attack continuous-time dynamical systems, and
begin by studying the evolution of noisy neighborhoods of periodic orbits. The simplest
yet meaningful models are two-dimensional limit cycles, that can serve as a testbed for
parsing the interaction of deterministic dynamics with noise.

4.1. The Lyapunov Equation around a Cycle

Consider the Fokker–Planck equation

∂tρ(x, t) = −∂x(v(x)ρ(x, t)) + Δ∂xxρ(x, t) , (31)

where Δ is the diffusion tensor, whose entries are the noise amplitudes along each direction
(Δ is diagonal with identical entries for isotropic noise). If we look at the dynamics in the
neighborhood of a particular deterministic trajectory, we may linearize the velocity field

v(x) locally, and replace it with Aa(x − xa), where Aa =
∂v(x)

∂x

∣∣∣
x=xa

is the so-called matrix

of variations. Moreover, we may switch to a co-moving reference frame in the desired
neighborhood, say za = x − xa.

Suppose we start off with an initial density of trajectories of Gaussian shape, that is
ρa(za) = 1

Ca
exp
(
−z#a

1
Qa

za

)
. The short-time solution to (31) can then be written in the

path-integral form

ρa+1(za+1) =
1

Ca

∫
[dza] e−

1
2 (za+1−(1+Aaδt)za)# 1

Δδt (za+1−(1+Aaδt)za)− 1
2 z#a

1
Qa za

=
1

Ca+1
e
− 1

2 z#a+1
1

(1+Aaδt)Qa(1+Aaδt)T+Δδt
za+1 . (32)
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One can then infer the relation between input and output quadratic forms in the exponential

Qa+1 = Δδt + (1 + Aaδt)Qa(1 + Aaδt)# , (33)

and, neglecting terms of order δt2, recover the time-dependent Lyapunov equation

Q̇ = A(t)Q + QA#(t) + Δ , Q(t0) = Q0 . (34)

Following the theory of time-dependent ordinary differential equations [24], we may
write the solution of (34) as

Q(t) = J(t, t0)

[
Q(t0) +

∫ t

t0

J−1(s, t0)Δ
(

J−1(s, t0)
)
#ds
]

J#(t, t0) . (35)

Here, J(t, t0) is the Jacobian along a flow x = x(t):

d
dt

J(t, t0) = A(x)J(t, t0), J(t0, t0) = 1 . (36)

One can verify this by just plugging the solution above into the equation. Alternatively,
one can write Equation (35) in the simpler form

Q(t) = J(t, t0)Q(t0)J#(t, t0) +
∫ t

t0

J(t, s)ΔJ#(t, s)ds , (37)

where the notation J(t, s) means that the Jacobian is computed following a trajectory that
starts at time s and ends at time t, consistently with Equation (36).

4.2. Noisy Circle

Next, consider one of the simplest two-dimensional dynamical systems, a pair of
ODEs with a circular limit cycle of radius rc, together with additive isotropic white noise of
strength 2D:

ẋ = λ(rc −
√

x2 + y2)x − ωy +
√

2Dξx

ẏ = λ(rc −
√

x2 + y2)y + ωx +
√

2Dξy (38)

where
< ξx(t)ξx(τ) >= δ(t − τ), < ξx(t)ξy(τ) >= 0. (39)

In polar coordinates, this is written

ṙ = λ(rc − r)r +
√

2Dξx cos θ +
√

2Dξy sin θ

θ̇ = ω −
√

2Dξx
sin θ

r
+

√
2Dξy

cos θ

r
(40)

This Langevin-type equation produces the drift and diffusion coefficients [23]

Dr = λ(rc − r)r +
2D
r

Dθ = ω

Drr = 2D

Dθθ =
2D
r2 (41)

which then determine the Fokker–Planck equation for the system:

∂tP +
1
r

∂r[λ(rc − r)rP] + ∂θωP − D
r

∂r(r∂rP)− D
r2 ∂θθ P = 0 (42)
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The limit cycle r = rc can be either stable (Figure 1) or unstable depending on the sign of λ.
Let us consider the stable case.

�1.0 �0.5 0.5 1.0 x

�1.0

�0.5

0.5

1.0

y

Figure 1. Solution of the numerically integrated Equation (38) without noise. Any initial condition
converges to the circular limit cycle.

The first thing to look for is a stationary solution to the asymptotic form of (42):

∂r[λ(rc − r)rP∞]− D∂r(r∂rP∞) = 0 (43)

A solution is
P∞(r) = Ce−

λ
2D (r−rc)2

, (44)

which implies that P∞ is a Gaussian of width 2
√

D/λ in the neighborhood of the limit cycle.
The general solution to (42) is [23]

P(r, θ, t) = e−
λ

2D (r−rc)2
∞

∑
n=0

∞

∑
ν=−∞

Aν
ne−sν

nt(r − rc)
|ν|L|ν|

n (r − rc)eiνθ (45)

where L|ν|
n (r − rc) are generalized Laguerre polynomials and both the eigenvalues sν

n and
the coefficients Aν

n can be found numerically.

Neighborhood and Coordinates

This problem has an obvious symmetry, which allows us to guess the right (nonlinear!)
change of coordinates, as well as the stationary solution, independent of the angular
coordinate. The result is that the noisy neighborhood of the limit cycle is determined by
the variance of the stationary solution (44). In general, however, we might not be so lucky,
and guessing a suitable, possibly nonlinear, change of coordinates is probably beyond our
reach. One way to identify a neighborhood for a periodic or any other orbit is to integrate
the time-dependent Lyapunov Equation (34) in the original (Cartesian) coordinates, but in
a co-moving frame defined by the local coordinates za = x − xa introduced in Section 4.1.

Figure 2 illustrates this second approach: the forward Lyapunov Equation (34) is
numerically solved along an orbit that converges to the circular limit cycle (here we take the

diffusion tensor Δ =

(
2D 0
0 2D

)
), and its solution (37) is sampled along the trajectory

and inverted to obtain Q−1(t), the covariance matrix of the Gaussian density, that produces
a tube (in the figure in light yellow) along the orbit. The eigenvalues of Q−1(t) are found
to converge to Λ1 = λ

2D , consistently with the result for the width of the stationary-state
solution (44) of the full-blown radial Fokker–Planck Equation (43): that determines the
width of the tube, σ =

√
1/2Λ1. The second eigenvalue of Q−1 is Λ2 = 0, as it appears
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from Figure 2b. The latter eigenvalue is to be read as follows: while the forward Lyapunov
equation converges to a finite limit in the stable (radial) direction, where noise balances
contracting dynamics, it diverges along the marginal (tangent) direction, and therefore its
inverse converges to zero, asymptotically.

(a)

�1.0 �0.5 0.5 1.0 x

�1.0

�0.5

0.5

1.0

y

(b) 0 5 10 15 20 25 30 t
0.2
0.4
0.6
0.8
1.0
Σ, �

(c) (d)

Figure 2. (a) Solution of the numerically integrated Equation (38), together with the eigenvectors
(arrows) of the covariant matrix Q−1, as given by the solution (37) of the forward Lyapunov equation,
for noise amplitude 2D = 0.1. The light yellow stripe is a pictorial representation of the Gaussian
tube along the limit cycle (plan view). (b) The eigenvalues Λ1 (blue dots), Λ2 (red dots) of Q−1, and
the width σ (solid line) of the evolved density versus time t. (c) The exact steady-state solution (44) to
the Fokker–Planck equation for a noisy circular limit cycle. (d) The approximation to the same steady
state, obtained by piecing together solutions (37) to the Lyapunov equation around the limit cycle.

As shown in Figure 2c,d, the exact solution (44) of the Fokker–Planck equation is
well reproduced by piecing together Gaussian tubes of covariance Q−1(t), each computed
around a definite point of the noiseless limit cycle (the spurious lines orthogonal to the
circle in Figure 2d are due to the finite sampling of the Gaussian tubes, that should ideally
be a continuum).

As we may mostly be interested in the solution of the Lyapunov equation near unstable
periodic orbits (like in a chaotic system), we then need to solve the same problem backwards
in time, otherwise said by studying adjoint evolution, or the adjoint Lyapunov equation.

4.3. Adjoint Lyapunov Equation

The backward evolution is described by the adjoint Fokker–Planck equation

∂tρ(x, t) = v(x)∂xρ(x, t) + Δ∂xxρ(x, t) . (46)
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Following the line of thought of Section 4.1, we can write the path-integral evolution of a
Gaussian density in the neighborhood of an orbit

ρa(za) =
1

Ca+1

∫
[dza+1] e

− 1
2 (za+1−(1+Aaδt)za)# 1

Δδt (za+1−(1+Aaδt)za)− 1
2 z#a+1

1
Qa+1

za+1

=
1

Ca
e−

1
2 z#a

1
Qa za , (47)

where
Qa = (1 + Aaδt)−1(Qa+1 + Δδt)

[
(1 + Aaδt)#

]−1
. (48)

Analogously to the forward evolution, we can take the limit of infinitesimal time intervals
and get the differential equation

Q̇ = Δ − A(t)Q − QA#(t) , (49)

the adjoint (or backward-) Lyapunov equation. Compared to the forward Lyapunov
Equation (34), the adjoint evolution (49) features the ‘time reversal’ operation A(t) →
−A(t), and therefore we can still use Equation (37) as a solution, as long as the Jacobian
along the orbit is computed as

d
dt

J(t, t0) = −A(x)J(t, t0), J(t0, t0) = 1 , (50)

and its computation follows the time reversed flow, that is the solution to the dynamical
system ẋ = −v(x).

5. Non-Circular Limit Cycles: Classical Noise vs. Quantum Dissipation

We now turn our attention to non-circular limit cycles with background noise, and
determine the steady-state density distribution yielded by the Fokker–Planck equation.
We do so by integrating the Lyapunov equation in the neighborhood of a trajectory that
eventually converges to the limit cycle.

The paradigmatic models of our choice both come from the nonlinear oscillator

ẍ + ω2
0x + μ g(x, ẋ) = 0 , (51)

with g, a nonlinear function of position and velocity. Equation (51) may be reduced to a
dynamical system as the Van der Pol oscillator, by taking g = (x2 − b)ẋ, or as the Rayleigh
model, by taking g = ẋ3

3 − bẋ in Equation (51). In what follows, we shall set b = 3, ω0 = 1,
and we will tweak μ. The Van der Pol oscillator takes the form

ẋ = y

ẏ = −μ
(

x2 − 3
)

y − x , (52)

while the Rayleigh model reads (it is conventional to swap x and y)

ẋ = y − μ

(
1
3

x3 − 3x
)

ẏ = −x . (53)

In both classical systems, the dynamics converges to a limit-cycle of non-circular
shape (Figure 3), which depends on the parameters, and it is characterized by fast and
slow motions. One, therefore, expects the interplay of noise with the inherent nonlinear
contraction to be non-uniform, unlike in the circular limit cycle examined in the previous
section, and to give rise to a stationary density distribution of varying covariance along the
cycle. We consider both models (52) and (53) for different values of the parameter μ, so as
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to gradually increase the eccentricity of the limit cycle, from a deformed circle (Figure 4a)
to a nearly rectangular orbit (Figure 5b), where the deterministic stretching/contraction
are most inhomogeneous along the cycle. The most notable feature is the oscillation of the
covariance of the Gaussian solution of the linearized Fokker–Planck equation along the
direction orthogonal to that of noiseless motion, denoted by σ in Figures 4c,d and 5c,d: the
more eccentric the limit cycle, the more widely and rapidly σ oscillates. That translates to a
Gaussian steady-state density featuring a width that increasingly depends on the position
along the orbit with the parameter μ, as we can see in the three-dimensional/density
plots of Figures 4e,f and 5e,f. As anticipated, these monodromic Gaussian distributions
computed by means of the Lyapunov equation and portrayed in the figures would be,
in a chaotic setting, the building blocks of a partition of the noisy phase space, whose
non-uniform resolution is determined by their overlaps.
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Figure 3. Solution of the numerically integrated (a) Equation (53), and (b) Equation (52), without
noise. Any initial condition converges to a limit cycle.

The Gaussian solutions of the Lyapunov equation computed and illustrated here
share common traits with the steady-state Wigner function of the two oscillators (52)
and (53), as obtained from a fully quantum mechanical computation that has recently
appeared in the literature [25]. In that work, the quantization is performed by means of
creation/annihilation operators

â =
1
2
(x̂ + iŷ) , (54)

and its adjoint â†, while dissipative terms are added to the Liouville–von Neumann
Equation (4), in the spirit of Lindblad’s formalism (in units of h̄):

ρt = −i
[
Ĥ, ρ
]
+ ∑

j
αjD
[

f j(â†, â)
]
ρ , (55)

where
D[ĉ]ρ = ĉρĉ† − 1

2
ĉ† ĉρ − 1

2
ρĉ† ĉ , (56)

while the coefficients αj are functions of the parameters ω0 and μ. The Hermitian Hamilto-
nian Ĥ has two distinct expressions for the Rayleigh and the Van der Pol oscillators, and,
like f j, it is a function of linear (e.g., â†), bilinear (â† â), and nonlinear (â2) terms involving
the creation/annihilation operators (see ref. [25] for details). The above Equation (55) was
numerically integrated, and the Wigner function was then found to eventually concentrate
around the classical limit cycles, that feature similar eccentricities to the ones considered in
the present work and plotted in Figures 4 and 5. In particular (Figure 6), the steady-state
Wigner distribution is enhanced along ‘tubes’ of varying width, as it can be noticed in the
more eccentric density plots of the Rayleigh model (Figure 6c,d). This feature is especially
apparent in Figure 6d, where the high-density region is narrower along the vertical seg-
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ments of the limit cycle (faster classical motion), and wider along its horizontal segments
(slower classical motion). It compares directly with the Gaussian solution of the Lyapunov
equation portrayed in Figure 5f.
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Figure 4. Top: solution of the numerically integrated Equation (52), together with the eigenvectors
(arrows) of the covariant matrix Q−1, as given by the solution (37) of the forward Lyapunov equation.
In Equation (52), we take (a,c,e) μ = 0.03, and (b,d,f) μ = 0.2, while the amplitude of the noise
is set to 2D = 0.1. The light yellow stripe represents the width σ of the Gaussian density around
the limit cycle. Middle: width σ of the Lyapunov tube, determined by the non-zero eigenvalue of
Q−1(t) vs. time t. The cycle period is tp ≈ 7 time units. Bottom: Gaussian solutions of the linearized
Fokker–Planck equation along the limit cycle.
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Figure 5. Top: solution of the numerically integrated Equation (53), together with the eigenvectors
(arrows) of the covariant matrix Q−1, as given by the solution (37) of the forward Lyapunov equation.
In Equation (53), we take (a,c,e) μ = 0.3, and (b,d,f) μ = 0.8, while the amplitude of the noise is
set to 2D = 0.1. The light yellow stripe represents the width σ of the Gaussian density around
the limit cycle. Middle: width σ of the Lyapunov tube, determined by the non-zero eigenvalue of
Q−1(t) vs. time t. The cycle period is tp ≈ 7 time units. Bottom: Gaussian solutions of the linearized
Fokker–Planck equation along the limit cycle.
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It is noted that in the cited work, the authors did not integrate the Wigner equation,
but the Lindblad equation with a full-fledged quantum-mechanical algorithm. In particular,
the localization of the Wigner function around the classical limit cycles is not to be taken for
granted, and it legitimates the parallel between their steady-state solutions and the local
Gaussian tubes obtained in the present work from the noisy classical system.

On the other hand, the numerical steady-state solutions to Equation (56) obtained
by the authors of [25] are clearly not Gaussians centered at the limit cycles (except in
Figure 6a, the case of least eccentricity), as demonstrated by their varying intensities along
the periodic orbits. In that sense, the Gaussian Ansatz that turns the Fokker–Planck into the
Lyapunov equation carries limited information on the phase-space density distributions at
equilibrium. Therefore, the analogy proposed here should be taken with a grain of salt, and
only considered as a hint for the noisy-classical to quantum-dissipative correspondence in
a particular system with nontrivial interplay of contraction and diffusion.

Finally, we would like to briefly comment on the difference between classical and
quantum dissipation in the present models featuring limit cycles. In the classical system
the dissipation produces damping, which is then balanced by the noise-induced diffu-
sion. Instead, the quantum dissipation, generated by the characteristic Lindblad terms in
Equation (55), is responsible for both the ‘friction’ that drives densities to localize along the
classical limit cycles, and the diffusion that spreads out the steady-state Wigner density
distribution in the same region of the attracting orbits. This is consistent with the more
general picture of Section 2.2, where the quantum dissipation brings about both a damping
and a diffusive term in the Wigner equation.

Figure 6. Quantum (a,b) Van der Pol and (c,d) Rayleigh oscillators from Reference [25]. The steady-
state Wigner function (density plot) localizes around limit cycles of increasing eccentricity (controlled
by the parameter μ in the classical models (52) and (53)). Courtesy of A. Chia.

6. Summary and Discussion

Having reviewed the parallels between the problem of dynamical evolution of a
quantum system subject to dissipation and that of a stochastic process ruled by the Fokker–
Planck equation, we have narrowed our attention down to chaos, and, in particular, to
the problem of an inherent scale resolution of the phase space. The issue is measuring the
conjugated variables down to a certain precision, which may be set by the balance of the
contraction rate of the classical chaos with the coupling to the environment, the source
of dissipation.

Using the analogy with the problem of classical chaotic dynamics with background
noise, we consider the Fokker–Planck equation, and study its local solutions in the neigh-
borhood of a periodic orbit, that effectively give the latter a finite width, in the phase space.
Solving the problem for two-dimensional limit cycles, as done here, is the starting point: in
a chaotic setting, a number of periodic tubes of finite width that proliferate exponentially
with their length must end up overlapping, and thus determine the finest resolution for
the noisy/quantized state space, that is expected to be non-uniform, as chaos interacts
differently with diffusion/dissipation everywhere, in general.

The analysis performed in this venue shows that the problem is tractable, and it
provides the basic technology to attack it. Complications and obstacles are ahead for higher-
dimensional systems, where stable, unstable, and marginal directions coexist along the
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same orbit, and where the solution to the adjoint Fokker–Planck operator introduced here
will almost certainly be instrumental to the method. Still, the progress already achieved by
periodic orbit theory in such complex models as the Kuramoto–Sivashinsky or the Navier–
Stokes equation gives us confidence in the feasibility of the optimal partition hypothesis in
higher-dimensional chaos.
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Abstract: We investigated a class of one-dimensional (1D) Hamiltonian N-particle lattices whose
binary interactions are quadratic and/or quartic in the potential. We also included on-site potential
terms, frequently considered in connection with localization phenomena, in this class. Applying
a sinusoidal perturbation at one end of the lattice and an absorbing boundary on the other, we
studied the phenomenon of supratransmission and its dependence on two ranges of interactions,
0 < α < ∞ and 0 < β < ∞, as the effect of the on-site potential terms of the Hamiltonian varied.
In previous works, we studied the critical amplitude As(α, Ω) at which supratransmission occurs,
for one range parameter α, and showed that there was a sharp threshold above which energy was
transmitted in the form of large-amplitude nonlinear modes, as long as the driving frequency Ω
lay in the forbidden band-gap of the system. In the absence of on-site potentials, it is known that
As(α, Ω) increases monotonically the longer the range of interactions is (i.e., as α −→ 0). However,
when on-site potential terms are taken into account, As(α, Ω) reaches a maximum at a low value of
α that depends on Ω, below which supratransmission thresholds decrease sharply to lower values.
In this work, we studied this phenomenon further, as the contribution of the on-site potential terms
varied, and we explored in detail their effect on the supratransmission thresholds.

Keywords: system with long-range interactions; on-site potential; supratransmission; Hamiltonian
lattices

MSC: 65M06; 65M12

1. Introduction

Supratransmission was first investigated in chains of coupled nonlinear oscillators [1],
when the first oscillator is forced sinusoidally at a frequency in the so-called forbidden band
gap, so that the excitation of linear normal modes is avoided. The theoretical prediction
of the critical driving amplitude, above which the boundary begins to transmit energy,
was first established experimentally, and later approximated analytically, using known
solutions of the sine-Gordon equation [2]. Further studies showed that this phenomenon
is also present in well-known nonlinear models, such as the classical Fermi–Pasta–Ulam–
Tsingou (FPUT) chain [3] and the Klein–Gordon and double sine-Gordon models [4].
Various investigations have led to the development of reliable computational techniques
to approximate the occurrence of this phenomenon [5,6]. In this direction, various works
have been devoted to the design and analysis of novel numerical methods using variational
properties, while new computational methodologies have been proposed based on these
approaches [7].

Entropy 2023, 25, 423. https://doi.org/10.3390/e25030423 https://www.mdpi.com/journal/entropy
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Initially, most studies focused on mathematical models with only nearest neighbor
interactions. However, more recently, new results have emerged focusing on global interac-
tions with a long range of applicability [8–10]. Indeed, globally interacting systems have led
to a better understanding of nonlinear problems in physics [11]. More generally, it is known
that systems with long-range interactions (LRIs) can be expressed as Riesz-type fractional
models in the continuous limit [12–14]. Such approaches provide a convenient bridge
between spatially discrete and continuous systems, and they lead to a better understanding
of globally interacting systems [15,16].

Regarding the study of supratransmission in globally interacting systems, its pres-
ence has been established in Riesz space fractional sine-Gordon equations [17], fractional
models of Josephson transmission lines [18] and in FPUT chains with different ranges of
interactions [19]. More recently, a general 1D Hamiltonian lattice consisting of quadratic
global interactions, which included an on-site potential (of the Klein–Gordon type), was
investigated in [20], where it was found that supratransmission was also present in that
system. However, the critical amplitude As(α) in that model exhibited a surprising non-
monotonic behavior: as expected, it occurred at higher amplitudes the longer the range of
interactions, but reached a maximum at a value α = αmax that depended on Ω!. Below
this value, supratransmission thresholds decreased sharply to values lower than the nearest
neighbor α = ∞ limit.

In [21], the authors considered a different Hamiltonian form of the model studied
in [20], in which on-site potentials were combined with LRIs of purely quartic order. One
of the reasons was to examine whether the presence of quadratic interactions and their
associated linear spectrum are needed for supratransmission, as suggested by the seminal
work in [1]. The conclusion in [21] was that this feature does not constitute a necessary
condition for supratransmission. However, as in the case of [20], the critical amplitudes
As(α) again exhibited the same behavior of reaching a maximum at α ≈ 2 that depended
on the value of Ω, and then as α −→ 0 fell to values even below their α = ∞ limit .

In this work, we investigated the dependence of critical supratransmission ampli-
tudes on two LRI scale parameters, α and β (of the quadratic and quartic interactions,
respectively), as well as the frequency of oscillations Ω. To this end, we employed a 1D
Hamiltonian lattice with both quadratic and quartic interactions, in which the on-site
potential terms were gradually switched off, as a multiplicative parameter c > 0 tended to
zero. The results were quite surprising and revealed the role of the driving frequency Ω
on the critical supratransmission amplitudes of these lattices as the on-site potential terms
were gradually switched off.

The paper is organized as follows. In Section 2, we introduce our Hamiltonian model
and its associated equations of motion in the form of an initial–boundary value problem.
Our Hamiltonian system, in its general form, describes globally interacting particles with
both quadratic and quartic interactions, as well as on-site terms of the sine-Gordon type.
Section 4 describes the fully discretized model we used to approximate the solutions of
the equations of motion and the Hamiltonian functional. In Section 5, we describe the
computational experiments we performed to study the occurrence of supratransmission in
three cases: Case I with both quartic and quadratic LRIs, Case II with only quartic LRIs and
Case III with only quadratic LRIs, in the limit where the on-site potentials vanish. Next, in
Section 6 we study the dependence of supratransmission amplitudes on different values of
α and β, determining ranges of interactions. Finally, in Section 7 we end our study with a
discussion of our results and concluding remarks.
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2. Mathematical Model

We consider N-particle one-dimensional Hamiltonian lattices, with N ∈ N sufficiently
large, whose N + 2 particles are governed by the Hamiltonian

H =
N

∑
n=1

(
1
2

p2
n + cV(xn)

)
+

a2

2M1

N

∑
n=0

N+1

∑
m=n+1

(xm − xn)2

(m − n)α

+
b2

4M2

N

∑
n=0

N+1

∑
m=n+1

(xm − xn)4

(m − n)β

(1)

where α and β are non-negative real numbers (including ∞) determining the range of pair
particle interactions, V : R → R is a continuously differentiable function representing
the on-site potential of the system and a, b, c ∈ R+ ∪ {0} are constants. We also use the
scaling factors

M1 =
1

N + 1

N

∑
n=0

N+1

∑
m=n+1

1
(m − n)α

, M2 =
1

N + 1

N

∑
n=0

N+1

∑
m=n+1

1
(m − n)β

, (2)

to ensure that all terms in our Hamiltonians are extensive, i.e., proportional to the number of
particles N, see [20] and references therein. The constants a ≥ 0, b ≥ 0 are fixed as follows:
in Case I, both a, b are nonzero; in Case II a = 0 and b �= 0; and in Case III a �= 0 b = 0. In
all cases, the parameter c ≥ 0 is taken to gradually tend to zero.

Each xn(t) : R → R is a function such that xn(t) ∈ C2(R), for each n ∈ {1, . . . , N},
and pn(t) is the time derivative of xn(t). In this context, we define, respectively, the kinetic
and potential energy of the nth particle by

Kn =
1
2

p2
n (3)

and

Pn = cV(xn) +
a2

2M1

N+1

∑
m=n+1

(xm − xn)2

(m − n)α
+

b2

4M2

N+1

∑
m=n+1

(xm − xn)4

(m − n)β
. (4)

The on-site potential function V(xn) is taken to be of the sine-Gordon type,
V(u) = 1 − cos(u). Alternatively, we can also use the Klein–Gordon potential

V(u) =
1
2!

u2 − 1
4!

u4 +
1
6!

u6. (5)

Clearly, the values of α = β = ∞ represent the case of nearest neighbor interactions.
If α, β ∈ [0, 1], the mutual particle interactions have comparable contributions and the
system is said to have long-range interactions (LRIs). The case where α, β ∈ (1, ∞), is said to
correspond to short-range interactions (SRIs).

Thus, the equations of motion associated with our Hamiltonian (1) are as follows:

ẍn =
a2

M1

N

∑
m=1
m �=n

xm − xn

|m − n|α +
b2

M2

N

∑
m=1
m �=n

(xm − xn)3

|m − n|β − cV′(xn)− γnẋn,

with b.c.

⎧⎨⎩
x0(t) = A sin(Ωt), ∀t ≥ 0,
xN+1(t) = xN(t), ∀t ≥ 0,
xn(0) = ẋn(0) = 0, ∀n ∈ {1, . . . , N + 1},

(6)
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where a “damping” term is added at each node (with coefficient γn > 0), simulating an
absorbing boundary at the right end of the system. This avoids the generation of returning
shock waves at the right end of the chain [22,23]. In fact, it is convenient to use

γn = 0.5
[

1 + tanh
(

2n − N0 + N
6

)]
, (7)

for each n ∈ {1, . . . , N + 1}, assuming that N0 < N.
A simpler form of this model was investigated in [20], which corresponds to (6)

with b = 0. An interesting question, therefore, arises as to whether supratransmission is
still present if the interaction terms in the potentials are quartic instead of quadratic (i.e.,
a = 0). As was shown in [21], supratransmission neither requires the presence of harmonic
interactions, nor the absence of on-site terms in the potential, but it is rather a generic
phenomenon present in this class of systems.

Regarding the role of the damping term in (6), we note that for relatively large N,
we let 1 � N0 � N. Thus, the form of (7) guarantees that the nodes before N − N0 will
have a damping coefficient that is approximately equal to zero. On the other hand, the
γn monotonically increase near the right end of the chain, thus ensuring that the waves
reflected back in the system are rapidly attenuated, see [24]. We have found empirically
that if N0 ≈ N/4 wave reflection at the right boundary is effectively negligible; thus, in all
our simulations we used N = 100 and N0 = 25.

3. Calculation of the Phonon Spectrum

It is important to determine the phonon (or forbidden) band of frequencies for our
system, so as to be able to interpret the results of our computations in later sections. To this
end, we considered the linear terms in the position variables on the right-hand side (RHS)
of (6) and obtained an N × N symmetric matrix, whose eigenvalues were difficult to obtain
analytically for general values of α and N.

Note, however, that in the limit α → 0 and large N, we have M1 = N/2, while
our symmetric matrix has a multiplicative factor 2a2/N, with diagonal terms equal to
−N(1 + c/2a2) + 1 and all off-diagonal terms equal to 1. Fortunately, this matrix can be
diagonalized and has the eigenvalues −c and −(c + 2a2) (multiplicity N − 1). Now, for
α > 0 (and small), all the terms that were unity in the matrix slightly decrease, which
suggests that the phonon frequencies become non-degenerate and lie within an interval
approximated by [

√
c,
√

c + 2a2].

4. Numerical Methodology

The solutions of system (6) will be approximated using an explicit finite difference
scheme, which possesses similar Hamiltonian properties as our mathematical model and
efficiently approximates the solutions of (6) over the time interval [0, T], for large T.

We first fix a uniform partition

0 = t0 < t1 < . . . < tj < . . . < tK = T (8)

of the interval [0, T], with τ sufficiently small. Next, we define the time step tj+ 1
2
= tj +

1
2 τ,

for each j ∈ {0, 1, . . . , K − 1}, set xj
n = xn(tj), for n ∈ {0, 1, . . . , N + 1} and j ∈ {0, 1, . . . , K},

and introduce the discrete linear operators

μtx
j
n =

1
2
(xj+1

n + xj
n), (9)

δ
(1)
t xj

n =
xj+1

n − xj
n

τ
, (10)
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δ
(2)
t xj

n =
xj+1

n − 2xj
n + xj−1

n

τ2 , (11)

and

δt,xV(xj
n) =

⎧⎪⎨⎪⎩
V(xj+1

n )− V(xj
n)

xj+1
n − xj

n
, if xj+1

n �= xj
n,

V′(xj+ 1
2

n ), if xj+1
n = xj

n.

(12)

Thus, the fully discretized form of (6) is given by the following system of equations:

μtδ
(2)
t xj

n =
a2

M1

N

∑
m=1
m �=n

μt(xj
m − xj

n)

|m − n|α +
b2

M2

N

∑
m=1
m �=n

μt(xj
m − xj

n)
3

|m − n|β − cδt,xV(xj
n)− γnδ

(1)
t xj

n,

such that

⎧⎪⎨⎪⎩
xj

0 = A sin(Ωtj), if 0 ≤ j ≤ K,
xj

N+1 = xj
N , if 0 ≤ j ≤ K,

x0
n = x1

n = x2
n = 0, if 1 ≤ n ≤ N.

(13)
It follows that the discrete form of the Hamiltonian functional is given by the following:

Hj =
N

∑
n=1

[
1
2
(δ

(1)
t xj

n)(δ
(1)
t xj−1

n ) + cV(xj
n)

]
+

a2

2M1

N

∑
n=0

N+1

∑
n=n+1

(xj
m − xj

n)
2

(x − n)α

+
b2

4M2

N

∑
n=0

N+1

∑
n=n+1

(xj
m − xj

n)
4

(x − n)β
,

(14)

for each j ∈ {1, . . . , K − 1}. Thus, the discrete kinetic and potential energies of the nth
particle at time tj are given, respectively, by

Kj
n =

1
2
(δ

(1)
t xj

n)(δ
(1)
t xj−1

n ), (15)

and

Pn = cV(xj
n) +

a2

2M1

N+1

∑
n=n+1

(xj
m − xj

n)
2

(x − n)α
+

b2

4M2

N+1

∑
n=n+1

(xj
m − xj

n)
4

(x − n)β
. (16)

This method is an adaptation of a four-step scheme that approximates the solu-
tions of Riesz space fractional hyperbolic partial differential equations with Hamiltonian
structures [25]. It uses spatial step sizes equal to 1 and is both stable and quadratically
convergent [23].

In the following sections, we describe how we conducted a series of computational
experiments to study the behavior of the critical amplitude As for supratransmission in
1D lattices governed by (6), for various values of a, b and range parameters α and β. For
comparison purposes, we employed the approach followed in [20] for 1D lattices consisting
of N = 100 particles. Regarding the absorbing boundary, we let N0 = 25 and set τ = 0.05
in all our simulations. Moreover, we used the sine-Gordon on-site potential, i.e.,

V(x) = 1 − cos x, ∀x ∈ R. (17)

5. Computational Results

The purpose of this section is to carry out simulations in order to study the behavior of
critical amplitudes for supratransmission as a function of the model parameters, particularly
c ≥ 0 measuring the contribution of the on-site potential terms. Throughout, we consider
N = 100 nodes and final time T = 100. The computation time step everywhere is τ = 0.05.
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5.1. Case I for Different Frequencies

As our first example, we considered the Case I parameters a = b = 1, with maximal
LRIs α = β = 0, and selected various values for the driving frequency Ω. Under these
circumstances, Figure 1 shows the graph of the total energy (6) (measured at the steady
state of the system) as a function of the driving amplitude A and the coefficient c, for the
following values of the frequencies: (a) Ω = 3.5, (b) Ω = 2.5, (c) Ω = 1.5 and (d) Ω = 0.9.

(a) (b)

(c) (d)

Figure 1. Graphs of the total energy of system (6) versus the driving amplitude A and c, for
(a) Ω = 3.5, (b) Ω = 2.5, (c) Ω = 1.5 and (d) Ω = 0.9. We used α = β = 0, fixed a = b = 1
and the time step size was equal to 0.05.

Let us first observe in this figure the presence of supratransmission in all cases, as ex-
emplified by the sudden, upward surge of the energy from the blue E = 0 level of inactivity
to the yellow/green “mountain ranges” at higher values of A. Note now in Figure 1a that,
as c decreased, the critical amplitude As(c) for supratransmission experienced a minimum
around c = 10 and then increased to a higher value as c tended to zero. A similar picture
also occurs in Figure 1b with the minimum of As located near c = 5.

According to the analysis in Section 3, the phonon band in this case was [
√

c,
√

c + 2],
which yielded [3.16, 3.46] for (a) and [2.23, 2.65] for (b), which are close to the driving
frequencies Ω = 3.5 and Ω = 2.5 respectively. A similar observation regarding the first
minimum also held for Figure 1c,d, where the phonon bands were [1.4, 2 and [1, 1.73],
respectively. Regarding the secondary minima in the last two figures, we suggest that they
correspond to higher order resonances. For example, the second minimum in Figure 1c
occurred at c ≈ 19, which would excite a

√
19 ≈ 4.5 = 3Ω resonance.
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5.2. Case II for Different Frequencies

We next examined a Hamiltonian (1) where the quadratic interactions were absent,
setting a = 0 and b = 1 and allowing the range parameters to vary from 0 < α = β up to
α = β = 9 and higher. Remarkably, the results obtained, for the same frequency values as
considered in Case I, led to figures that differed very little from Figure 1 (and hence are not
plotted here) provided we kept the same frequency values used in the plots of Figure 1.

Next, we proceeded to study, in Figure 2, the same Case II example with a = 0 and
b = 1, with all other parameters the same as in Figure 1. The important difference here
was that we chose driving frequencies smaller than 1 in the different plots: (a) Ω = 0.9,
(b) Ω = 0.8, (c) Ω = 0.7 and (d) Ω = 0.6.

The difference between the results of Figures 1 and 2 was striking: the energy land-
scapes for these frequencies were dramatically smoother, and the As values exhibited a
single minimum, 0 < cmin < 1, whose value diminished monotonically as Ω decreased.
Interestingly, since the only quadratic term in the potential was cx2

n, the minimum of
the As was smaller than 1 and decreased as Ω decreased. Below this minimum, As sig-
nificantly increased as c → 0, which meant that the lattice became more resilient against
supratransmission in the absence of on-site potential terms.

(a) (b)

(c) (d)

Figure 2. Graphs of the total energy of system (6) versus As and c, for (a) Ω = 0.9, (b) Ω = 0.8,
(c) Ω = 0.7 and (d) Ω = 0.6. We used α = β = 0, and fixed a = 0 and b = 1.

5.3. Case III: Absence of Quartic Terms

Next, we turn to an example of Case III, with a = 2 and b = 0, and examine in Figure 3
the behavior of critical amplitudes As as functions of the range parameter α, for diminishing
c = 1, 0.8, 0.4, 0.2. In all plots of this figure we used frequencies Ω < 1, and observed no
supratransmission whatsoever. One might think, therefore, that this was due to resonances
with the phonon band and would not occur if we used Ω > 1. However, when we did
apply higher driving frequencies, all we observed was harmonic waves traveling down
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the lattice, showing no sudden increase in their amplitudes. This suggested that quartic
interactions in the potential were crucial for the occurrence of supratransmission.

In the next section, where we discuss a case in which quartic interaction terms were
present, the plots of Figure 3 are similar to those of Figure 4a,c,e, for Ω < 1, and supra-
transmission was absent. However, when Ω > 1 in that system, as Figure 4b,d,f show,
resonances with the phonon band were avoided and supratransmission did occur!

(a) (b)
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Figure 3. Graphs of the supratransmission threshold As as a function of α, for various values of Ω
(see legends). We let a = 2, b = 0, N = 100, T = 200 and V(x) = 1 − cos x. Various values of C were
employed, namely (a) c = 1, (b) c = 0.8, (c) c = 0.4 and (d) c = 0.2.
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(c) (d)
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Figure 4. Graphs of the supratransmission threshold As as a function of the parameter β, using
various values of Ω. We let a = 0, b = 4, N = 100, T = 200 and V(x) = 1 − cos x. Decreasing values
of c were employed, namely c = 0.9 (top row), c = 0.4 (middle row) and c = 0.2 (bottom row). The
subfigures in (a–f) give the value of Ω that corresponds to the curve of the figure with the same color.
In the right column figures, all critical amplitudes As attained finite values at β = 0, which increased
linearly with Ω.

6. A Case II Study with Different β Parameters

Finally, we examined the dependence of critical amplitudes As on the range parameter
β, for different values of the driving frequency Ω. We did this for Case II of our study,
corresponding to a = 0, b = 4 and examined the behavior of the results as the value of c is
decreased, plotting the results of our computations in Figure 4.

Observe first the general behavior of As vs. β for Ω < 1 in Figure 4a,c,e: note the
presence of a local maximum in the graphs, which shifted to higher values of β as c
diminished from 0.9 (top row) to 0.4 (middle row) and 0.2 (bottom row). Clearly, for these
frequencies, the location of the maximum increased for higher β. Note first that, in all
these figures, all critical amplitudes increased as c decreased, in agreement with the results
of previous sections.

By contrast, in Figure 4b,d,f, the behavior of As vs. β monotonically increased as β
tended to zero, converging to constant values, which increased as c diminished. This was
very similar to what we already encountered in Figure 3b,d and was in agreement with the
results of Section 3, as there were no resonances with the phonon band in this case; hence,
supratransmission occurred in this case also, with the As values rising linearly with Ω as
β → 0.

7. Discussion and Conclusions

The process of supratransmission has become very popular in recent years since its
discovery nearly two decades ago. The main reason for this is due to its appeal as a mecha-
nism that allows one to transmit a large amount of energy through a nonlinear medium by
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simply driving one end of the medium by A sin(Ωt) at the appropriate frequencies and
amplitudes. Thus, it has inspired many authors due to its obvious applications in many
physical situations.

Almost all studies so far have concentrated on one-dimensional (1D) chains of non-
linear oscillators, as a first step towards understanding supratransmission in higher di-
mensions. An additional advantage of 1D systems is the fact that, at least under nearest
neighbor coupling, they have been extensively analyzed for more than 60 years, numeri-
cally as well as analytically. Thus, the first papers on supratrasmission focused on a number
of classical conservative 1D models, for which a continuum limit analysis yielded partial
differential equations that connected supratransmission to nonlinear wave solutions of the
systems and, thus, permitted the derivation of analytical formulas connecting As and Ω to
the emergence of such solutions.

More recently, a number of papers appeared verifying that supratransmission is also
ubiquitous in models that involve long-range interactions (LRIs) among the particles by
multiplying the interaction between the nth and mth particles by a factor of the form
1/(n − m)α, with 0 ≤ α ≤ ∞. In this context, 0 ≤ α ≤ 1 represents LRIs, while short
range interactions (SRIs) correspond to the α > 1 values, with α = ∞ being the nearest
neighbor case. The authors of the present paper and their collaborators analyzed in
detail the occurrence of supratransmission in 1D systems using the FPUT 1D lattice as an
example [9,19], and they later included in their studies the effect of on-site terms in the
potential [20].

In the absence of on-site potentials, one finds that As(α, Ω) grows monotonically the
longer the range of interactions (i.e., as α −→ 0). However, when on-site potential terms
are introduced, As(α, Ω) is seen to attain a maximum at low α values depending on Ω,
below which supratransmission thresholds sharply decrease. In this paper, we made a first
attempt to further explore these phenomena by introducing a parameter c > 0 before the
on-site potential, and letting c −→ 0.

We first examined the case where both quadratic and quartic global LRIs were present
and found that, the higher Ω > 1 is, the clearer it became that as c −→ 0, supratransmition
critical amplitudes increased significantly. This picture became even clearer when only
quartic terms were included in the potential. Next, we examined the dependence of critical
amplitudes on the range parameters, α and β, in a Case II and a Case III study for one set
of frequencies with Ω < 1 and one with Ω > 1, for decreasing values of c. When Ω < 1, in
both studies, As had a single maximum at a β value that increased as c decreased, hence
no supratransmission. However, for Ω > 1, in the case where quartic interaction terms
were present, supratransmission did occur, as there was no local maximum, and the As
monotonically increased at β = 0 values, which also grew steadily as c −→ 0.

These findings were explained by carrying out an analysis of the phonon band of our
system. This allowed us to explain the reason why supratransmission failed to occur, as the
range parameters α and β decreased, due to resonances of the driving frequency with the
phonons, while it did occur when Ω lay above the phonon band.

It would, of course, be desirable to connect analytically the occurrence of supratrans-
mission with the excitation of specific nonlinear solutions of the problem, as has been
conducted in a number of references, where it was possible to derive a PDE in the con-
tinuum limit, see, e.g., [3,4]. This was mainly accomplished in the continuum limit of 1D
lattices with nearest neighbor interactions, which appeared difficult to extend to the LRI
systems studied in this paper. Perhaps it could be conducted for cases where a fractional
PDE can be derived for our system, but this is a matter that we would prefer to address in
a future publication.

We also looked at snapshots of the energy distribution along the chain to guess the
type of nonlinear excitation activated at the supratransmission state. Interestingly, the
graphs we obtained strongly resembled a travelling breather, similar to what one finds in the
continuum limit of a lattice with only nearest neighbor interactions! It would thus be very
interesting, in a future publication, to attempt to find an analogous analytical solution and
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study its stability for a lattice that involves long range interactions, such as with the one
studied in the present paper.

In closing, we believe that the results we have described in this paper provide a
motivation to search for physical arguments to justify and perhaps explain our findings.
One main result is that the presence of on-site potentials often hinders the occurrence
of supratransmission. The relationships we have uncovered between the fundamental
parameters of our system and the phenomenon of supertransmission are interesting, and,
in our opinion, quite remarkable. They, therefore, merit further study before we can
say that we understand this phenomenon and we are ready to investigate it in higher
dimensional settings.
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Abstract: Quantum dynamical localization occurs when quantum interference stops the diffusion of
wave packets in momentum space. The expectation is that dynamical localization will occur when the
typical transport time of the momentum diffusion is greater than the Heisenberg time. The transport
time is typically computed from the corresponding classical dynamics. In this paper, we present an
alternative approach based purely on the study of spectral fluctuations of the quantum system. The
information about the transport times is encoded in the spectral form factor, which is the Fourier
transform of the two-point spectral autocorrelation function. We compute large samples of the energy
spectra (of the order of 106 levels) and spectral form factors of 22 stadium billiards with parameter
values across the transition between the localized and extended eigenstate regimes. The transport
time is obtained from the point when the spectral form factor transitions from the non-universal to
the universal regime predicted by random matrix theory. We study the dependence of the transport
time on the parameter value and show the level repulsion exponents, which are known to be a good
measure of dynamical localization, depend linearly on the transport times obtained in this way.

Keywords: quantum chaos; spectral form factor; dynamical localization; billiards; stadium

1. Introduction

One of the central areas of study in quantum chaos is that of the spectral statistics of
quantum chaotic systems and how they relate to classical chaos and random matrix theory
(RMT) [1,2]. The spectral form factor (SFF) is one of the most widely used spectral statistics
due to the stark contrast in behaviour between the chaotic and integrable regimes. However,
the SFF is not a self-averaging quantity [3], meaning that the typical value may be far from
the average value. Because of this, its numerical computation remains challenging, and
its practical evaluation requires some sort of smoothing procedure, either by computing
disorder averages (only possible when considering systems with disorder) or local time
averages. Nevertheless, the SFF has been used as the fundamental indicator of quantum
chaos in many of the central rigorous results. A heuristic proof of the quantum chaos
(Bohigas–Giannoni–Schmit) conjecture [4,5], which was initiated by Berry [6], developed by
Sieber and Richter [7], and later completed by Haake’s group [8–10], clearly relates random
matrix spectral correlations to correlations among classical unstable (hyperbolic) orbits by
computing the orbit contributions to the SFF. Recently, much attention has been given to
the SFF in many-body settings [11–16]. Rigorous proofs of quantum chaos by computing
the SFF have been preformed in kicked spin chains [17,18] and more generally in dual-
unitary circuits [19,20]. In the high-energy physics context, for example, studies of the SFF
have been performed in Sachdev–Ye–Kitaev-type models [21–24] and using hydrodynamic
theories [25]. Pioneering experimental studies of the SFF were carried out on excitation
spectra of molecules [26] and microwave billiards [27]. The SFF has recently been used to
probe the many-body localization (MBL) transition [28,29]. In this paper, we will adapt a
similar methodology to that in Ref. [28] to study the dynamical localization transition in
single-body systems on the example of stadium billiards. Even though quantum billiards
are ubiquitous in the field of quantum chaos, not many theoretical studies of the SFF in
chaotic billiards are to be found in the literature. Previous studies focus mainly on the
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(pseudo)integrable and closely related regime, such as rectangular billiards [30], including
perturbations [31], barrier billiards [32–34] and Veech triangular [35] billiards. Recently, the
SFF has also been computed in the case of generic triangular billiards [36], where it was
demonstrated that the spectral statistics follow RMT, thereby extending the quantum chaos
conjecture to strongly mixing systems without classical Lyapunov chaos.

The origin of the study of dynamical localization in the stadium billiards can be traced
to the pioneering work of Borgonovi, Casati and Li [37], later continued by Casati and
Prosen [38,39]. Quantum dynamical localization (DL) occurs when quantum interference
stops the diffusion of wave packets. The phenomenon is analogous to the famous An-
derson localization, but occurring in momentum space instead of the configuration space.
The two can be explicitly related in the example of the quantum kicked rotor system [40].
The following heuristic argument explains when dynamical localization may be expected.
The transition is governed by the ratio of two typical time scales, namely the transport
time tT , controlling the typical rate of diffusion, and the Heisenberg time tH , which is the
inverse of the mean level spacing. The discreetness of the quantum spectrum may only
be resolved on time scales greater than the Heisenberg time. If tT > tH , we expect the
interference will localize the wave packets in only part of the momentum space. On the
other hand, if tT < tH , we expect the wave packet to encompass the full extent of the mo-
mentum space before any interference effects might stop the diffusion. The transition from
the dynamically localized regime to the fully delocalized ergodic regime has been exten-
sively studied in the quantum kicked rotor system (see the review articles [41,42]), billiard
systems [37–39,43–48], Dicke model [49], etc. In particular, our previous studies of DL in
the stadium billiard [45] show the functional dependence of the localization measures and
level repulsion exponents on the ratio α = tH/tT . However, to ascertain the transport times,
a separate classical computation of the transport times was necessary. This also introduces
some ambiguity in defining the transport time because of the complex inhomogeneous
diffusion that occurs (see Ref. [50] for details). Furthermore, in generic billiards with
divided regular/chaotic phase space the diffusion process is even more complex because
of the hierarchical structures of islands of stability in the phase space and the stickiness
phenomenon (see Refs. [48,51–53] and references therein). In the present paper, we present
an alternative definition of the transport time based on the timescale of the onset of RMT
spectral statistics in the SFF. The definition is inspired by the methodology used to extract
the Thouless time of spin chains in Ref. [28]. We show the transport time extracted from
the spectral form factor can be used to describe the transition from the DL regime to the
ergodic regime.

2. Definitions and Methods

2.1. Quantum Billiards

Quantum billiards are archetypical models of both classical and quantum chaos. In
the quantum billiard problem, we consider a quantum particle trapped inside a region
B ⊂ R2 referred to as the billiard table. The eigenfunctions ψn are given by the solutions of
the Helmholtz equation (

∇2 + k2
n

)
ψn = 0, (1)

and Dirichlet b.c. ψn|∂B = 0, with eigenenergies En = k2
n, where kn is the wave number

of the n-th eigenstate. We use a system of units where h̄ = 1, and the mass of the particle
is m = 1/2. The very efficient scaling method, devised by Vergini and Saraceno [54] and
extensively studied by Barnett [55], allows us to compute very large spectra of the order of
106 states (the implementation is available as part of [56]). The spectral staircase function
counts the number of eigenstates (or modes) up to some energy N(E) := #{n|En < E}.
The asymptotic mean of the spectral staircase for billiards is given by the well known
generalized Weyl’s law [57]

NWeyl(E) = (AE −L
√

E)/4π + c (2)
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where A is the area of the billiard, L is the circumference, and c is a constant corner and
curvature correction. The asymptotic density of states is then

ρ(E) =
A
4π

− L
8π

√
E

. (3)

The Heisenberg time is defined as the inverse of the mean level spacing or

tH = 2πρ(E). (4)

To compare the universal statistical fluctuations it is convenient to unfold the spectra. This
is performed by inserting the numerically computed billiard spectrum into Weyl’s formula
en := NWeyl(En). The resulting unfolded spectrum en has a uniform mean level density
equal to one. In the unfolded spectrum tH = 2π.

One of the paradigmatic examples is the stadium billiard of Bunimovich [58,59]. The
stadium is constructed from two semicircles separated by a rectangular region. We fix the
radius of the semicircles to one. The family of stadium billiards is characterized by the
width of the separation ε. The stadium is classically chaotic for any value of ε. Because of
the two reflection symmetries, it is sufficient to consider the quarter stadium in the quantum
case, corresponding to the odd–odd symmetry sector of the full stadium. Two examples of
stadium eigenstates are shown in Figure 1. In panel (a), we show a typical dynamically
localized eigenstate in the ε = 0.02 stadium. The localization is evident in the distinctly
regular nodal patterns that are similar in appearance to very strong scarring. Although the
probability density function extends over all the configuration space, it is visibly depleted
in the inner part of the billiard near the origin (note the colour scale is logarithmic). In
(b), we show a typical eigenstate in the ε = 0.5 stadium. The state is practically uniformly
extended, with the typical chaotic nodal patterns of random superpositions of plane waves,
with some scarring visible around an unstable (bow-tie-shaped) periodic orbit.

Figure 1. Representativeeigenstates in the (quarter) stadium billiards. (a) Localized eigenstate at
k = 302.60195 and ε = 0.02. (b) Extended state at k = 302.6037 and ε = 0.5. We plot the probability
density in the logarithmic scale, log10(|ψ|2).

2.2. Spectral Form Factor

The SFF is loosely defined as the Fourier transform of the spectral two-point correlation
function and may be written as

K(τ) =

〈∣∣∣∣∣∑n
exp(2πienτ)

∣∣∣∣∣
2〉

, (5)
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where the sum goes over the unfolded energy levels. The time τ is measured in units of
Heisenberg time τH = 1. The SFF is not a self-averaging quantity [3], it exhibits erratic
fluctuations with time. This means a separate averaging must be performed, represented by
〈· · · 〉. This is commonly an average over different realizations when considering random
matrices or disordered systems. For clean single-body systems, we instead perform a
moving time average to smooth out the fluctuations [26,27]. This is achieved by convolving
the SFF with a Gaussian function in time,

K(τ) =
∫ ∞

0

∣∣∣∣∣∑n
exp(2πienτ)

∣∣∣∣∣
2

1√
2πσ2

exp(−1
2
(τ − t)2

σ2 )dt. (6)

This introduces an additional numerical parameter σ. It is further useful to decompose the
SFF into the connected and disconnected part K = Kconn + Kdisc. The disconnected part is
given by the diagonal terms from definition (5) and depends solely on the density of states
(see Ref. [25] for more details). It is also evident from definition (5) that the SFF behaves
as a delta distribution at t = 0. This narrow peak is produced by the disconnected part of
the SFF. The spectral fluctuations are encoded in the connected part of the SFF, which we
obtain by subtracting the disconnected part Kconn = K − Kdisc. Since we are only interested
in spectral fluctuations, we will only consider the connected part of the SFF in all further
instances.

The stadium billiards are classically chaotic systems with time-inversion symmetry.
Their universal spectral statistics are therefore expected to follow the Gaussian orthogonal
ensemble (GOE) of RMT [1,2]. In the infinite dimensional GOE case, the SFF has the
following analytical form,

KGOE(τ) =

{
2τ − τln(2τ + 1) τ < 1
2 − τln( 2τ+1

2τ−1 ) τ > 1
. (7)

This has the basic anatomy of a so-called “ramp” followed by a saturation regime after
reaching the Heisenberg time. This contrasts well with the integrable case, where an
immediate saturation is expected. Since all stadium billiards are ergodic chaotic systems,
we expect the SFF will follow the universal GOE prediction. However, when ε is small,
the transport times become very large and should even diverge as we approach the limit
ε → 0 (the limiting case is the integrable circle billiard, where the momentum becomes
a strictly conserved quantity). Classically, the fact that the system is ergodic becomes
apparent only after the transport time is reached, and the dynamics are able to explore
all the phase space. We expect the SFF of the stadia will follow the GOE prediction only
after the transport elapses. We will therefore define the quantum transport time τT as the
time at which the SFF of the numerically computed billiard spectrum begins to follow the
RMT prediction. The procedure that is used to extract τT is described in more detail in
Appendix A. The transport time may either be greater or smaller than τH = 1 (note that
by definition (5) we measure time in the SFF in units of Heisenberg time). Following the
argument from the introduction, this means we expect localization when τT > 1, and no
localization (extendedness) when τT < 1.

2.3. Dynamical Localization and Level Repulsion

We will measure the localization of the eigenstates indirectly by computing the level
of the repulsion exponent of the spectra. The level repulsion exponent is defined by using
the nearest-neighbour level spacing. An intuitive understanding of the connection between
level repulsion and localization may be gained from the following heuristic picture. The
eigenstates of chaotic systems in the non-localized regime are extended in the phase space,
and there is a great deal of overlap between them. In the extreme case of full extendedness,
the differences in the overlaps will stem purely from local fluctuations of the wave (or
Husimi) functions. This means strong couplings between the consecutive states are possible
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and indeed very probable, leading to a gap in the eigenenergies. For an extremely simplified
case, one may consider a two-level system, where the gap of the eigenenergies (avoided
crossing) may be computed directly. On the other hand, dynamically localized states only
occupy a smaller area of the phase space. If the consecutive states occupy different areas
of the phase space, there will be essentially no overlap between them, with the couplings
exponentially suppressed. This is more likely to happen if the eigenstates are more severely
localized, leading to a much weaker level repulsion. The connection between localization
and level repulsion has a strong foundation in our previous works and also related studies
in different systems. In particular, in Ref. [45] we showed that the level repulsion exponents
in the stadium billiards are proportional to the mean values of localization measures based
on the Husimi representation of the eigenstates (for a recent study of the localization
measures in more general divided phase space systems, see also [60]).

The level spacing is defined as the difference in energy between two consecutive levels
in the unfolded spectrum si = ei+1 − ei. The unfolding procedure guarantees that the mean
level spacing is in unity. We also studied the probability density distribution P(s). The
level repulsion is given by the behaviour of P(s) at small s, namely P(s) ∝ sβ, where β is
called the level repulsion exponent. Following the quantum chaos conjecture, the level
spacing distribution of chaotic quantum systems is well described by the Wigner surmise
obtained from RMT. In the GOE case, β = 1 indicates linear level repulsion. On the other
hand, integrable systems are expected to show Poissonian level statistics (Berry–Tabor
conjecture) and no level repulsion β = 0. In the localized regime, the distribution is not
known analytically. Empirically, the level repulsion exponent changes from 0 to 1 as we
transition from the severely localized to the delocalized chaotic regime. One of the most
popular ways of describing the level spacing distribution in the transition region is to use
the Brody distribution [61], which interpolates the two regimes

PB(S) = cSβ exp
(
−dSβ+1

)
, (8)

where the normalization constants are given by c = (β + 1)d, and d =
(

Γ
(

β+2
β+1

))β+1
.

Alternatively, another popular choice is the Izrailev distribution [41]; however, we opted
for the Brody distribution due to the simpler expression and empirically good description
of the numerical results in previous papers [43–46,62]. The level repulsion exponent β is
the indicator of dynamical localization, which we compare to τT across the transition.

3. Results

3.1. Transport Times

To compute the quantum transport times, we computed the spectra of the stadium
billiards at 22 values of ε ∈ (0.01, 0.07). Each spectrum contains around 106 levels with
kn ∈ (640, 4000). The lowest levels start at around the 104-th eigenstate. Because the
scaling method computes the eigenvalues in only small intervals, some levels are lost in
the computation due to numerical errors. By comparing with Weyl’s law, we estimate that
less than 0.1% are lost.Since the SFF is a linear spectral statistic, we expect this to have
a negligible effect on the result. Even with the great efficiency of the numerical method,
collecting the spectra and computing the SFF takes considerable computational effort due
to the large spectra required to obtain good results.

The connected SFF of the selected stadia are shown in Figure 2a. The numerical results
are compared with the GOE curve (7). We see the ε = 0.5 result, where the transport time
is expected to be very short, nicely follows the GOE curve from start to finish. When ε is
decreased, the numerical SFF detaches from the GOE curve at some point. This point is
by our definition the transport time. We see the transport time increases as ε is decreased,
eventually becoming longer than the Heisenberg time. We note the SFF still exhibits some
fluctuations, even though each of the spectra contains many levels—approximately 106.
The smoothing parameter in the presented case is σ = 0.01, which we find is the optimal
compromise between fine resolution and the intensity of fluctuations. We extract the
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transport times, including some error estimates (shown with the error bars), as described in
Appendix A. The result is presented in Figure 2b. In the inset, we show the same graph
in the decadic log–log scale. The transport times appear to roughly follow a power law
decay τT ∝ ε−γ, with a transition from γ = 1 to γ = 1/2 above εc ≈ 0.04. The caveat is that
the power laws should not be seen as a definitive result, since the range of the parameter
values is within one decade. In Ref. [50], we computed the classical transport times of the
stadia in the space of conjugated momenta and discrete time (the conjugated momenta
of the billiard mapping, describing the classical dynamics, are p = sin θ, where θ is the
angle of reflection when the particle hits the boundary). There, we found NT ∝ ε−γ with
a transition from γ = 5/2 to γ = 2 above εc ≈ 0.05; however, the transitional value is
not sharply defined. We note that considering the transport in the flow of the stadium
billiard (real time) instead of the billiard map (discrete time) might give different results,
because the slow decay of correlations in the classical stadium billiard is caused by special
types of bouncing ball and boundary glancing orbits [63]. The difference in the decay rates
indicates the quantum transport time extracted from the SFF is not directly proportional to
the discrete transport time in momentum space. However, both are monotonic functions
(within some fluctuations) of the parameter ε, and both seem to exhibit a transition in the
power law behaviour at roughly the same parameter range.

Figure 2. (a) Connected spectral form factors of stadium billiards in units of Heisenberg time. The
GOE curve, expected in chaotic systems, is shown with the black dashed line. (b) Dependence of
the quantum transport times (in units of Heisenberg time), extracted from the SFF, on the billiard
parameter ε. The error bars show the estimated errors due to the fluctuations in crossing the threshold
value. The inset shows the same plot in the decadic log–log scale.

3.2. Level Repulsion

To determine the level repulsion exponents β, we fit the level spacing distributions
of the computed spectra with the Brody distribution (8). In Figure 3a, we show some
examples of the fits. We see the level spacings are indeed described well by the Brody
distribution. In panel (b), we show β as a function of τT . We observe the transition from the
extended to the localized regime as the transport time increases, empirically confirming
the heuristic argument that the transition should happen when the transport time is close
to the Heisenberg time. Quantitatively, the mid-point of the transition β = 0.5 occurs
already at τT ≈ 0.8. The relation between the two quantities appears to be close to linear. In
Ref. [45], we found a nonlinear functional relation between β and the parameter α = tH/tT
(the denominator is the classical transport time) that would be analogous to 1/τT . This
indicates that the quantum transport times are not exactly analogous to the classical
transport times. Nevertheless, we clearly establish a functional relation between the level
repulsion exponent and the quantum transport times. Because the level repulsion exponents
are a linear function of localization measures (see Refs. [45,46]), this demonstrates the link to

528



Entropy 2023, 25, 451

dynamical localization and potentially also a more general relation (a similar non-universal
but characteristic behaviour) between level spacing distributions and spectral form factors
in other contexts.

Figure 3. (a) Representative examples of nearest-neighbour level spacing distributions (coloured
lines) fitted by the Brody distribution (black dashed lines). (b) Dependence of the level repulsion
exponent (Brody parameter) on the quantum transport times (in units of Heisenberg time).

4. Discussion

We have presented a numerical study of the spectral form factors of the stadium
billiards in relation to dynamical localization. The main result is the computation of the
connected spectral form factors and extraction of the quantum transport times τT (in units
of Heisenberg time) from the SFF. By relating τT to the level repulsion exponent β, we
show that the transition from the localized to the delocalized regime is governed by the
ratio between the transport time and the Heisenberg time. The novelty of the presented
approach compared with previous studies of the dynamical localization transition is that all
computations are based on the quantum spectral statistics alone. No classical computations
of the transport times are needed. This might be especially beneficial in cases where the
classical transport processes are very complex and the definition of the relevant transport
time might be ambiguous, such as, for instance, in systems with divided phase space and,
as already demonstrated in Ref. [28], in many-body systems without a classical limit. The
relationship between β and τT is close to linear. This is different from the nonlinear relation
with the analogous quantity α = tH/tT found in Ref. [45], where the transport times tT
were computed from the classical momentum diffusion in discrete time. Nevertheless, both
definitions of the transport time exhibit a power law regime change at roughly the same
value of ε. Since quantum billiards may be considered a generic example of Hamiltonian
systems, the results are widely applicable. Further research directions might include a
similar study of the SFF in systems with divided phase space, such as, for instance, the
limaçon billiards (see Refs. [46,64,65] and references therein).
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Abbreviations

The following abbreviations are used in this manuscript:

RMT Random matrix theory
SFF Spectral form factor
GOE Gaussian orthogonal ensemble
DL Dynamical localization

Appendix A. Extracting the Quantum Transport Times

The appendix describes the details of how we extract the quantum transport time
from the SFF data. We follow the procedure outlined in Ref. [28]. The objective is to find
the point in time when the connected SFF starts to follow the GOE curve (7). Let us define
the following quantity

g(τ) =
∣∣∣∣log10

(
K(τ)

KGOE(τ)

)∣∣∣∣. (A1)

This measures the ratio between the numerical data and the GOE curve, and the logarithm
gives the order of magnitude. When g → 0, the two quantities are exactly equal. To deter-
mine the quantum transport time, we select a threshold value g0 and define τT as the time at
which g(τ) < g0. Because the SFF fluctuates even after the smoothing procedure, pinpoint-
ing the exact value of τT remains challenging. A local fluctuation exactly at the threshold
may obscure the result. To estimate the errors incurred by the fluctuations, we vary g0
in a small interval and compute the mean and standard deviation of the obtained τT . In
Figure A1, we show g(τ) for a few different stadium billiards. The fluctuations of g(τ)
in the final stationary regime are of the order of 0.01, i.e., about 2% relative difference.
We therefore opted for g0 = 0.02, or about 5% relative difference, and varied it down
to g0 = 0.015 to obtain the error estimates. The final results are shown in Figure 2b in
Section 3.1.

Figure A1. Dependence of the quantity g(τ) for representative values of ε. The transport time is
determined by the point where the curve crosses the threshold for the first time.
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Abstract: We review the application of level dynamics to spectra of quantally chaotic systems. We
show that the statistical mechanics approach gives us predictions about level statistics intermediate
between integrable and chaotic dynamics. Then we discuss in detail different statistical measures
involving level dynamics, such as level avoided-crossing distributions, level slope distributions, or
level curvature distributions. We show both the aspects of universality in these distributions and
their limitations. We concentrate in some detail on measures imported from the quantum information
approach such as the fidelity susceptibility, and more generally, geometric tensor matrix elements.
The possible open problems are suggested.

Keywords: 80th birthday of Giulio Casati; quantum chaos; level dynamics

1. Introduction

It is a great pleasure to be able to contribute to the volume of Giulio Casati’s 80th
birthday. Since the very beginning of my encounter with quantum chaos, Giulio Casati was
one of those whose works inspired younger people. As an example, let me mention a con-
tribution of late Prot Pakoński with whom I had a pleasure to consider the Kepler map (one
of the toy models of Giulio), extending it to arbitrary polarization of the microwaves [1]. In
this review I will discuss, however, a different topic—the statistical measures related to level
dynamics in quantally chaotic systems. This is where we met scientifically, contributing to
a single paper I had an honour to coauthor with Giulio [2]. The subject of level dynamics
developed mainly in the 1980s and 1990s of the former millennium, yet it has recently
found interesting extensions and applications in the modern many-body physics.

Level dynamics, described in a pedagogical way in the books of late Fritz Haake [3]
and Hans-Jürgen Stöckmann [4], considers the motion of levels as a function of some
arbitrary scalar parameter λ which characterizes the Hamiltonian H(λ) of the system. It
may be viewed as the motion of interacting fictitious particles (represented by levels) with λ
being the effective time, as described originally by Pechukas [5] and followed by Yukawa [6]
who built a corresponding statistical mechanics picture. This was applied in different ways
to either justify the random matrix theory application to quantum chaotic spectra (this
aim has been, in fact, accomplished by a beautiful periodic orbit theory application by
the late Fritz Haake and collaborators—for a review see the Ref. [3]) or to define new
statistical measures of energy spectra and find their distributions. Without any claim for
completeness, some of these applications will be reviewed below.

We begin with defining the notation for level dynamics and the corresponding statisti-
cal mechanics picture in Section 2 showing how standard results from this approach provide
a prediction for level statistics in a chaotic integrable transition. The resulting distribution
seems to work surprisingly well for the data in many-body localization crossovers [7]. To
somehow complete the picture, we review in the next Section several other models for
the statistics in the transition, notably the banded matrix model, developed by Casati and
coworkers [8–12]. In Section 4 we review the universality conjecture in level dynamics [13]
showing how it is reflected in the so-called curvature distributions [14] in Section 5. We
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mention the velocity correlations in Section 6 and the avoided crossings statistics [15,16] in
Section 7. Applications of these measures are discussed, stressing their limitations in real
systems. Section 8 describes, on the other hand, very recent findings on the distribution
of fidelity susceptibility [17], while the extensions to many parameter dynamics with geo-
metric tensor matrix elements distributions are reviewed in Section 9. We mention briefly
the parametric measures in the transition to localized regimes in Section 10. We finish with
conclusions discussing future perspectives.

While the presentation that follows is only theoretical, we should mention that the
predictions concerning level dynamics were tested, to some extent, in experiments. As
typical for quantum chaos, those experiments were not carried out on eigenvalues of the
Schrödinger equation, but rather on related models of quasi-2D microwave cavities or
propagation of acoustic waves. We provide an incomplete list of references to beautiful
experiments [18–24] stressing the work of the Stöckmann group [18] where a rather com-
plete comparison of different measures with experimental microwave resonance data was
carried out.

2. Level Dynamics

Let us recall some basic details on level dynamics, to fix the notation. Let the Hamil-
tonian, H(λ) = H0 + λV, depend on some parameter λ for arbitrary H0 and V. The
eigenvalue equation

H(λ)|a(λ)〉 = E(λ)a|a(λ)〉, (1)

(where E(λ)a is the eigenvalue corresponding to eigenvector |a(λ)〉) upon differentiation
with respect to λ gives

d
dλ

Ea ≡ Ėa = 〈a|V|a〉 ≡ Vaa. (2)

Let us call pa ≡ Ėa a velocity of level Ea where λ becomes a fictitious time. Such a “motion”
for a set of levels {Ea(λ)} is visualized in Figure 1. A λ derivative (denoted by a dot over
the variable) of pa yields

ṗa = 2 ∑
b �=a

VabVba
Ea − Eb

= 2 ∑
b �=a

| fab|2
(Ea − Eb)3 , (3)

where we introduced fab = Vab(Ea − Eb). Following the procedure one step further, we
find equations for ˙fab:

ḟab = ∑
r �=a,b

far frb

[
1

(Ea − Er)2 − 1
(Eb − Er)2

]
. (4)

One notices that no new quantities appear, and the set of Equations (2)–(4) is closed. It is
sometimes called the Pechukas–Yukawa equations following original works [5,6]. This set
of nonlinear equations is integrable—this is not surprising as a problem is equivalent to a
diagonalization of the Hamiltonian matrix as noted in the Ref. [3].
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Figure 1. Levels of a model system as a function of the parameter λ. Each level may be visualized as
a particle with the position given by the energy, Ea(λ), the velocity given by the level slope dEa/dλ,
and acceleration (curvature of the level, d2Ea/dλ2.

The eigenvalues of H = H0 + λV are V-dominated for large λ and the dynamics
become trivial. Haake [3] introduces a different λ dependence (equivalent for small λ):
H(λ) =

√
f (H0 + λV) with f = (1 + λ2)−1 while we shall follow the “trigonometric

choice” [4,14,16]
H = H0 cos(λ) + V sin(λ). (5)

This results in an additional harmonic binding of eigenvalues which prevents them from
escaping to infinity. In effect, the equations of motion become:

Ėa = 〈a|Ḣ|a〉 = pa (6)

and

ṗa = −Ea + 2 ∑
b �=a

| fab|2
(Ea − Eb)3 (7)

with fab = 〈a|Ḣ|b〉(Ea − Eb).
Since the dynamics are integrable, the appropriate statistical description should in-

volve all possible constants of the motion. Such an approach would be a formidable task.
The Yukawa simplified way is just to consider the simplest integrals of motion, the total
energy H and the trace of the square of fab matrix, Q = 1

2 Tr(F2) [4] with

H =
1
2 ∑

n
(p2

n + E2
n) +

1
2 ∑

n,m

| fnm|2
(En − Em)2 . (8)

The phase space density, according to Gibbs, is:

ρ =
1
Z

exp(−αH − γQ). (9)

The reader may be surprised that we use α as an effective inverse temperature. The simple
reason is that, in order to follow the sacred quantum chaos notation, we reserve β for a
level repulsion parameter with β = 1, 2, 4 characterizing different universality classes of
Dyson and corresponding, for Gaussian ensembles to Gaussian Orthogonal, Unitary, and
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Symplectic Ensembles (denoted as GOE, GUE, and GSE, respectively). The density ρ may
be explicitly written out as

ρ =
1
Z

exp
(
−α

[
1
2 ∑

n
(p2

n + E2
n) +

1
2 ∑

n,m

| fnm|2
(En − Em)2

]
− γ

1
2 ∑

n,m

∣∣∣∣ fnm

∣∣∣∣2). (10)

By integrating out the variables pn and fnm, we can compute the joint probability distribu-
tion (JPD) of eigenvalues [4]

P(E1, E2, . . . . . . , En) ∼ ∏
n<m

∣∣∣∣ (En − Em)2

1 + γ
α (Em − En)2

∣∣∣∣β/2

exp
(

− α

2 ∑
n

E2
n

)
, (11)

with β = 1, 2, 4 corresponding to three universality classes. The β appears in (11) as the
structure of the integrated variables fnm depends on the universality class with F being
orthogonal, unitary or symplectic. The similar ensemble was considered by Gaud in the
Ref. [25], as well as Forrester [26] and Hasegawa and Ma [27]. They considered mainly
two point correlation functions for the unitary ensemble. We rather concentrate on the
time-reversal invariant case, as most commonly met in current many-body localization
studies.

Equation (11) is simplified in different limiting cases. The Poissonian distribution was
reached in the γ/α >> 1 limit. The distribution becomes

P(E1, E2, . . . . . . , En) ∼ exp
(
− α

2 ∑
n

E2
n
)
. (12)

On the other hand, for γ/α � 1 the distribution yields the Gaussian ensemble result. We
have

P(E1, E2, . . . . . . , En) ∼ ∏
n>m

∣∣∣∣En − Em

∣∣∣∣β exp
(
− α

2 ∑
n

E2
n
)
. (13)

Finally, to reach (GOE) in this limit, we fix β = 1, and we also fix, for simplicity, α = 1
(the latter choice affects the global energy scale only). We also denote γ/α = 10p. The
distribution (11) takes the final form

P(E1, E2, . . . . . . , En) ∼ ∏
n<m

∣∣∣∣ (En − Em)2

1 + 10p(Em − En)2

∣∣∣∣1/2

exp
(

− 1
2 ∑

n
E2

n

)
, (14)

where p = log10
γ
β is the single parameter interpolating between GOE (p → −∞) and

Poisson (p → ∞) limits. The first term in (14) represents the pairwise interaction between
the particles and the exponential term provides the harmonic binding of the eigenvalues.
The resulting distribution, obtained using Monte-Carlo sampling for different p, was shown
to faithfully reproduce statistics of eigenvalues on the transition between ergodic and many
body localized situations [7].

3. Other Interpolating Ensembles

It is interesting to review several interpolating statistics models proposed in the past.
An early work of Rosenzweig and Porter [28] is certainly worth mentioning. In this
model the variance of off-diagonal elements in random matrices is controlled by a matrix
dimension-dependent parameter. Its value interpolates between the Gaussian orthogonal
ensemble (GOE) value to vanishing values for the Poissonian case. The other approach was
proposed on the basis of a Wigner-inspired 2 × 2 matrix approach by Lenz and Haake [29].
Yet another was an ad hoc expression known as Brody distribution [30] which fit to
low-resolution experimental data surprisingly well. Berry and Robnik [31] proposed the
distribution based on sound physical assumption of the separation between “chaotic” wave
functions faithful to GOE and those localized in the regular part of the phase space. The
corresponding distribution was shown to work well in the so-called deep semiclassical
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limit [32]. Another proposition due to Seligman and coworkers [33] assumed that the
variance of off-diagonal elements aijshould scale as exp

[
−(i − j)2/σ2]. For σ → 0 one

recovers the Poisson case while σ → ∞ becomes GOE. Yet another well-known approach is
that of Guhr [34] who used supersymmetric techniques to express the two-level correlation
function in the Poisson-GOE ensemble in terms of a double integral. It is worth stressing
that another popular proposition was advocated by Giulio Casati and coworkers [8,9]. They
considered banded Gaussian random matrices as a useful tool in describing the transition,
where the corresponding parameter was y = b2/N with b being the matrix bandwidth and
N its rank.

While the (unfolded) level spacing statistics was the main object of quantum chaos
studies, in a many-body localization (MBL) context Huse and Oganesyan [35] intro-
duced a new measure, the gap ratio, defined as rn = min[δn, δn−1]/max[δn, δn−1], where
δn = En+1 − En is the energy gap between the consecutive energy levels. The dimensionless
gap ratio does not require unfolding. The MBL transition description was addressed by
Serbyn and Moore [36] who proposed two stages of the GOE–Poisson transition: (1) A
Short Range Plasma Model (SRPM) and (2) a semi-Poissonian level statistics [37,38]. Re-
cent efforts worth mentioning are a β-Gaussian (β − G) model [39]. A comparison of the
performance of different models was given in the Ref. [40], while the Ref. [41] proposes a
more complicated, two-parameter β − h model, where the pairwise interaction between
the levels is limited to a number h.

Comparison of some of these models with numerics for interacting disordered spin sys-
tems modelling ergodic to the MBL transition is given in the Ref. [7]. The interested reader
should consult the Ref. [7] for details, but it suffices to say here that the single-parameter
Yukawa-like model described above compared favorably with other single-parameter
models and quite faithfully reproduced the disordered spin data for the MBL–ergodic
crossover.

4. Universality of Parametric Dynamics

A simple inspection of Equation (10) shows that the velocities, pn, have, in this ap-
proach, a Gaussian distribution with the variance determined by the “inverse temperature”
α. This is the essence of level dynamics universality, as was determined and thoroughly
studied by Simons and Altschuler [13,42]. The level spacings have a single scale—the mean
level spacing, Δ. The unfolding then corresponds to rescaling the energy levels εi = Ei/Δ.
Level dynamics introduces a novel scale determining how fast the eigenvalues change
with the parameter λ. The original definition [13] involves the velocity–velocity correlation
function for unfolded levels

C(λ) = 〈pn(0)pn(λ)〉/Δ2 (15)

averaged over eigenstates n. Then C(0) yields the second, apart from the mean level
spacing, important scale. When the levels are unfolded using mean spacing, Δ, and the
parametric dependence is “unfolded” using C(0) as [13]

x =
√

C(0)λ (16)

the spectral properties of different systems should be similar. Clearly, C(0) in our notation
is directly related, modulo-unfolding to the “inverse temperature” α in the Gibbs ensemble.

There is a hidden assumption in the level dynamics universality as formulated by Si-
mons and Altschuler [13,42] and apparent in the Pechukas–Yukava statistical approach—the
parameter change is global in a sense that both H0 and V are of similar “strength” i.e.,
belong to the same ensemble. This does not have to be so, as nicely exemplified in the
Ref. [43] where it is shown that small local perturbation modifies strongly the velocity
distribution in the billiard example studied. Assuming random wavefunctions it is derived
that in such a case P(v) ∝ K0(A|v|) where A is a constant and K0(.) denotes a modified
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Bessel function. The distinction between local and global perturbations in the context of
unviersality were further studied in the Ref. [44].

It seems natural to review now the properties of velocity correlation function. For
the reasons that become obvious later, it is more convenient to consider first the second
derivatives of energy levels with respect to the parameter, the so-called curvatures.

5. Curvature Distributions

The curvatures of levels Kn = ṗn as derivatives of velocities should be called in the
dynamics language “level accelerations”. We stick to curvatures as this is a commonly used
name. Large curvatures appear in the vicinities of avoided crossings in the system. Then,
essentially only two levels are involved. Following this strategy [45] showed that the large
curvature tail behaves as |K|−(β+2) for all three universality classes.

The full analysis of curvature distributions, not limited to large curvature tail, was
carried out in the Ref. [14]. Large numerical data collected for all three ensembles suggested
the following simple and analytic form:

P(K) = Nβ
1(

1 + (K/γβ)2
) β+2

2

(17)

(with β = 1, 2, 4 for GOE, GUE and GSE, respectively) and

γβ = πβC(0)Δ (18)

where, recall, Δ is the mean level spacing (i.e., an inverse of the mean density of states).
Defining the dimensionless curvature, k, as

k =
K
γβ

(19)

we have explicitly

PO(K) =
1
2

1

(1 + k2)
3/2 (20)

PU(K) =
2
π

1

(1 + k2)
2 (21)

PS(K) =
8

3π

1

(1 + k2)
3 . (22)

These expressions, which could be claimed as being determined via Monte-Carlo integra-
tion and inspired guess, were soon proven analytically for all three ensembles of Gaussian
random matrices [46,47] and by an alternative technique in the Refs. [48,49].

Let us remark that the above definition of k differs from the form suggested by the
universality rule, (16), d2ε/dx2 by a multiplicative factor πβ which simplifies (20)–(22).

The distributions (20)–(22) appear to work well for circular ensembles as well as some
quantally chaotic systems such as kicked tops [14] or periodic band random matrices in the
metalic regime, as shown by Casati and coworkers [11]. The question remains, however, to
what extent these RMT predictions are universal and to what extend the particular quantally
chaotic systems are faithful to them. The first aspect was clarified by Li and Robnik [50]
who pointed out that a nonlinear transformation from λ to some other parameter μ(λ)
leads to a different curvature distribution as the transformation between curvatures is
nonlinear. It reads [50]:

kμ = kλ − pλ

πβ〈p2
λ〉

μ′′

μ′ . (23)
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In the expressions above kμ and kλ are normalized curvatures calculated with respect to
the corresponding parameters, pλ-the slope and prime denotes derivative with respect to λ.
As Li and Robnik [50] point out since velocities are Gaussian distributed (fast decaying)
the universality of curvatures may be restored for large curvatures but the nonlinearity of
the transformation (23) prevents universality at all scales, see also [51]. The same argument
shows, however, that for any “local” linear transformation the universality may hold. As
long as changes of H(λ) are linear in λ, as assumed in the derivation above, one might
expect the universality to hold.

There is, however, another origin for the lack of universality which gives us insight
into the physics involved. Already Takami and Hasegawa [52] suggested that the presence
of scarring, i.e., strong localization of eigenstates in the space where unstable periodic
orbits exist in the classical limit [53,54] may affect curvatures. Numerical studies of several
examples such as the hydrogen atom in a magnetic field or quantum billiard proved that
this is indeed the case [14]. While referring the reader to an original paper for numerical
details it suffices to say that strong scarring leads to a peculiar level dynamics with some
levels (scarred eigenstates) have quite different slope than the rest and interact with other
levels only locally in narrow avoided crossings. Those levels behave like solitons and may
be described as such [55,56]. Their behavior leads to an excess of small curvatures (outside
of these avoided crossings) as well as very large curvatures (at the centers of avoided
crossings).

It is worth stressing (which we just do with a single sentence) that the curvatures are
strongly linked with transport and conductance [11,57]. Particularly interesting for this
case are situations where the parameter breaks time reversal invariance as it happens for
twisted boundary conditions.

6. Velocity Correlations

Let us come back to the level slopes, i.e., velocity correlations. Simons and Altschuler [13,42]
in their analysis considered the autocorrelator of velocities at a some energy difference, ω,
c̃(x, ω) (note—this is a different object than C(x) which involves correlations for the same
level n) that involves all level velocities in a given interval studied. We refer the reader to
original papers for details [13,42]. The C(λ) or rather C(x) was studied numerically [58]
for all three unitary classes. A simple analytic approximation for C(x) was proposed in
terms of the plasma error function, see [58].

The large x limits was elegantly solved [13,42] yielding C(x) = −2/βπ2x2 for GUE.
Interesting information may be obtained from a small x limit when c̃(x, ω) (for ω = 0) and
C(x) behave similarly.

Application of Taylor series expansion of C(x) allows one to link the velocity correlator
to the variance of the rescales curvatures. Explicitly, one obtains [58]

C(x) = C(0)(1 − 1
2

β2π2x2〈k2〉). (24)

Defining normalized correlation c(x) = C(x)/C(0) one reproduces the results [42] for GUE:
cGUE(x) = 1 − 2π2x2 and gets cGSE(x) = 1 − 8

3 π2x2 + . . . for the symplectic ensemble [58].
Interestingly, for the most common orthogonal universality class one encounters the prob-
lem as the variance of curvatures, following (20), does not exist. This indicates that the
small x behavior may be singular and the Taylor expansion is questionable.

This issue has been studied further in the Ref. [2] where it was shown that in fact c(x)
reveals singularities around x = 0. Taking the parametric dependence (5) one may show
that Fourier components of the Fourier transform of c(x) have algebraic tails which directly
indicates singularities at x = 0 of the velocity correlator. Again we just quote the the final
result which shows that
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cGOE(x) ∼ 1 + b1x2| ln(x)|,
cGUE(x) ∼ 1 − 2π2x2 + b2|x3|, (25)

cGSE(x) ∼ 1 − 8
3

π2x2 + b3x4 + b5|x5|,

with bi being coefficients of the order of unity. One may observe that the singularity at
x = 0 becomes weaker with growing level repulsion β, being most severe for GOE. An
even more in depth analysis of singularities appears in the Ref. [59] where explicit values
for the parameters, bi are found.

As mentioned in Section 4 local (instead of global) perturbation affect strongly velocity
distributions [43,44]. This has also a pronounced effect on velocity correlations [43,44] as
further analysed in detail for the unitary ensemble [60].

7. Avoided Crossings Distributions

Another statistical property with interesting links to level spacings is the distribution
of avoided crossings, i.e., minima of distances between neighboring levels. The problem of
finding the corresponding distribution was formulated by Wilkinson [61] who has shown
that integrated distributions for small minimal distances D for GOE (GUE) show similar
repulsion as present in spacing distributions. Avoided crossings for billiard models were
numerically studied by Goldberg and Schweizer [62]. While in a general case the exact
distributions are not known in some analytic form, a well working approximations based
on two-levels approximation may be easily derived following the Wigner approach for level
spacings themselves [15]. For GOE case it is written down immediately as the two-level
Hamiltonian H = H0 + λV may be written in the eigenbasis of V as

H =

[
a d
d b

]
+ λ

[
v1 0
0 v2

]
. (26)

The minimal distance between levels is simply 2|d|. Since H0 is assumed to correspond to
GOE, d is Gaussian distributed, so we get the distribution (for D = 2|d|) normalized to unit
mean avoided crossing:

P(D) =
2
π

exp
[
−D2

π

]
, D > 0. (27)

Situation is only slightly more complicated for other ensembles. For GUE d in (26) should be
complex, d = d1 + id2, with independently Gaussian distributed (with the same variance)
di. A simple integral leads to a normalized distribution

P(D) =
πD

2
exp
[
−π

4
D2
]
, (28)

which is identical to the so-called Wigner surmise for spacings for GOE. We observe a simple
rule that the avoided crossings in two-level approximation share the same distribution as
the nearest neighbor spacings but the the repulsion parameter β reduced by unity. So for
GUE with β = 2 we get the Wigner formula corresponding to spacings for β = 1. This is in
full agreement with small D perturbative prediction of the Ref. [61]. Similarly, an explicit
calculus shows that for β = 4 GSE the avoided crossing distribution behaves as D3 for
small D.

Numerical tests (which have to be carefully done to correctly estimate and avoided
crossing values [16]) show excellent agreement between two-level approximate formulae
and numerical data for random matrices of larger sizes. The agreement is in fact better than
the spacings and the Wigner surmise. The reason is simple—the two-level approximation
works better for minimal distances between levels.
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8. Fidelity Susceptibility

Rapidly developing in the past 20 years, the quantum information field brought yet
another measure which may be related to level dynamics, the fidelity, F [63]. While
generally defined for mixed states, a pure-state definition [64] suffices for our purposes

F = |〈ψ(0)|ψ(λ)〉|. (29)

Here, ψ(λ) is an eigenstate at the value of the parameter equal to λ. Taylor expansion for
small λ leads to the definition of fidelity susceptibility, χ

F = 1 − 1
2

χλ2 + O(λ3). (30)

Fidelity susceptibility became an indicator of quantum phase transitions. At the transition
point, the ground state properties change, leading to the enhancement of χ [64–66]. Apart
from ground states, thermal states were also considered [67–69]). The fidelity statistics,
taking into account a set of eigenstates, was discussed for the first time in the Ref. [17]; note
that an attempt to identify many-body localization transition was due to the Ref. [70]. We
shall briefly review the results of the Ref. [17] that provide one of the rare situations when
exact analytic results are available for the arbitrary size of random matrices.

Consider H = H0 + λV with both H0, V belonging to GOE or GUE. Fidelity suscepti-
bility of state |n〉 with energy En of H0 is easily derived as

χn = ∑
m �=n

|Vnm|2
(En − Em)2 , (31)

showing some similarity to curvatures ṗn (3)—the difference is just a power in the denomi-
nator.

The probability distribution of the fidelity susceptibility at energy E reads:

P(χ, E) =
1

Nρ(E)

〈
N

∑
n=1

δ(χ − χn)δ(E − En),

〉
(32)

which we consider at the center of the spectrum E = 0. Following the technique developed
in the Refs. [48,71,72], one arrives [17] at, for the GOE case,

PO
N (χ) =

CO
N√
χ

(
χ

1 + χ

) N−2
2
(

1
1 + 2χ

) 1
2
[

1
1 + 2χ

+
1
2

(
1

1 + χ

)2
IO

N−2

]
,

where CO
N is a normalization constant and

IO
N =

{
N N+2

N+3/2 , N even,
N + 1/2, N odd.

(33)

Equation (33) is an exact result for an arbitrary rank N of the random matrix from GOE.
This is one of the rare situations when analytic formulae for arbitrary N and not only for
the N = 2 or N → ∞ limit are known.

The N → ∞ limit is interesting. As IO
N is asymptotically proportional to N, one can

define a scaled fidelity susceptibility y = χ/N. Its distribution, in the N → ∞ limit takes a
rather simple form

PO(y) =
1
6

1
y2

(
1 +

1
y

)
exp
(
− 1

2y

)
. (34)

As tested numerically, this expression works well for N ∼ 200 already.
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Similarly, see the Ref. [17] for the derivation, where one obtains an analytic, valid for
arbitrary N results, for GUE. We quote here just the N → ∞ limit for the scaled fidelity
susceptibility

PU(y) =
1

3
√

π

1
y5/2

(
3
4
+

1
y
+

1
y2

)
exp
(
−1

y

)
, (35)

while for a full expression for χ valid for arbitrary N as well as for a comparison with
numerical data, we refer to the Ref. [17].

The distributions (33) and (34) for GOE and GUE, respectively, are presented in
Figure 2. For large scaled fidelities y a power law decay is observed 1/y2 for GOE and
1/y5/2 for GUE.

Figure 2. Scaled fidelity susceptibility distributions in the linear (left) and logarithmic (right) scales
for GOE, Equation (33) (blue lines) and GUE, Equation (34). Observe a power law tail at large scaled
fidelities, y.

9. Generalization to More Parameters

A natural extension of parametric level dynamics occurs in the presence of more than
one parameter. One may define

H = H0 + ∑
i

λiVi (36)

where H0, Vi are statistically independent and drawn from the same (as in this review)
or different universality classes. Obviously, novel problems appear in that case which
we describe briefly only. Probably it was Michael Wilkinson and his student, Elisabeth
Austin, who addressed first such a situation in their study of density of degeneracies, for
example, diabolical points [73]. A three-parameter family was considered for Chern integer
fluctuations [59,74]. Steuwer and Simons [75] found the distribution of adiabatic curvature
(related to Berry phase) for GUE. The multiparameter dynamics was recently revisited
by Berry and Shukla who discussed Berry curvature deriving two-level and three-level
distributions [76–78]. They found the large curvature scaling, P(c) ∼ c−2 for the orthogonal
and P(c) ∼ c−5/2 for the unitary class, the result already present in the Ref. [75].

Importantly, however, Berry and Shukla [78] linked the problem with the quantum
information concept of geometric tensor and the distance between quantum states [79–81].
The Fubini–Study distance in the Hilbert space between states differing by a small change
of parameters form�λ ≡ (λ1, λ2, . . . , λn) to�λ + d�λ is

ds2 = 1 − |〈n(�λ)|n(�λ + d�λ)〉|2 = ∑
ij

Reg(n)ij (�λ)dλidλj, (37)
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where g(n)ij (�λ) is the so-called geometric tensor [79–81] which governs the quenches (in λ)
of the system. For (36)

g(n)ij = ∑
m( �=n)

〈n|Vi|m〉〈m|Vj|n〉
(En − Em)2 . (38)

Note that the distance between states is determined by the real part of the geometric
tensor only—(37). The imaginary part, Img(n)ij , gives the Berry curvature [78,82] related to
changes of two parameters λi, λj. For a single-parameter problem the geometric tensor
reduces to a scalar proportional to the fidelity susceptibility discussed in the previous
Section. Additionally, if Vi belongs to the same ensembles, then the distributions of gii are
equal. One may consider, therefore, the trace G = Trg(n)ij as an equivalent of the fidelity
susceptibility while the distribution of the imaginary part of the geometric tensor reduces
to the Berry curvature distribution.

The distribution of trace, G, is, therefore, given by (33) discussed above, valid for
arbitrary N [17] after taking into account the fact that, for equal diagonal elements the trace
is simply the matrix rank multiplying the diagonal element. The alternative derivation
using supersymmetric techniques is provided in the Ref. [82] for GUE in the N → ∞ limit.
The same authors obtained for the Berry curvature the result derived earlier by the Ref. [75].

10. Towards the Localization Limit

While in the introductory part we have considered the transition between an integrable
(localized) regime in the context of level spacings and the dynamics of Pechukas–Yukawa
gas, later we mainly described the results for the ergodic regime well-described by Gaussian
random ensembles. Here we shall briefly mention some of the results for level dynamics
measures that involve the transition.

Here the seminal contributions were provided by the Como group centered around
Giulio Casati [8–11]. The banded random matrix ensemble provided a natural tool to
study the transition from ergodic (metallic) to localized transition by varying the width of
the band. The team addressed also curvature distributions [2,11]. The analytic approach
to the problem was pursued by Yan Fyodorov, who, starting around 1994, considered
comprehensively level dynamics features close to the localization transition studying
velocity correlations [83,84] or curvature distributions [85]. In particular, the velocity
distribution for one-dimensional disordered wire is derived using the supersymmetric
approach to be

P(vs) =
π

sinh2(πvs)
{πvs coth(πvs)− 1}, (39)

for the scale velocity vs. The curvature distributions were more recently addressed in the
context of MBL studies [86,87]. The level dynamics across the many-body localization
transition for the paradigmatic XXZ spin model was considered in the Ref. [88]. Velocity,
curvature and fidelity susceptibility distributions were considered. Interestingly, while
velocities depended on the choice of the parameter (being the interaction strength or the
kinetic tunneling), curvature exhibited universal behavior in the delocalized regime. In
the localized regime, curvature distributions reveal system specific characteristics that
exemplify the presence of local integrals of motion in the localized phase. Large curvature
or large fidelity susceptibility tails change their slope when entering the localized regime.
Such behavior is well-understood qualitatively and linked to weaker level repulsion. One
may also mention here a proposition to use adiabatic eigenstate deformation as a probe of
entering the localized regime [89].

Recent studies address avoided crossing distributions and level dynamics on the local-
ized side of the MBL transition [90–92]. Such an analysis, however, has to face the problem
of assumed integrability which leads necessarily to exact crossing of levels associated with
different quantum numbers.
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11. Conclusions—Where Do We Stand

With this traipse through the last 40 years, starting with the Pechukas model [5], we
hope to have shown that many fascinating results have been obtained in the studies of level
dynamics of complex systems, but that there are still many open questions and unsolved
problems. There are at least two areas that await a more decisive attack and, hopefully,
solutions. One is the transition between different ensembles [93]. We have not, on purpose,
reviewed only a few studies in this domain for the reader to formulate their own problems.
A second related area with several white spots lies in multiparameter level dynamics. The
latter has been mostly limited to studies within unitary ensembles, notoriously easiest to
treat. We do not know the Berry curvature distribution for the orthogonal ensemble. We do
not know about the geometric tensor properties when different parameters induce different
transitions. Even the simplest questions remain unanswered. For example, simple analysis
shows that fidelity susceptibility of Berry curvature decays with reverse quadratic power
for GOE while the corresponding power is −5/2 for GUE. Can we say something when we
couple GOE and GUE ensembles by some parameter, such as weakly breaking the time
reversal invariance? Can we generalize the findings to the symplectic ensemble? What
about the ten-fold method [94]? It is my belief that we may expect in the future some very
interesting results coming from new people entering the subject. I already anticipate the
excitement.
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Abstract: We study the transition from integrability to chaos for the three-particle Fermi–Pasta–Ulam–
Tsingou (FPUT) model. We can show that both the quartic β-FPUT model (α = 0) and the cubic one
(β = 0) are integrable by introducing an appropriate Fourier representation to express the nonlinear
terms of the Hamiltonian. For generic values of α and β, the model is non-integrable and displays a
mixed phase space with both chaotic and regular trajectories. In the classical case, chaos is diagnosed
by the investigation of Poincaré sections. In the quantum case, the level spacing statistics in the
energy basis belongs to the Gaussian orthogonal ensemble in the chaotic regime, and crosses over to
Poissonian behavior in the quasi-integrable low-energy limit. In the chaotic part of the spectrum, two
generic observables obey the eigenstate thermalization hypothesis.

Keywords: integrable systems; chaotic Hamiltonian systems; quantum chaos; eigenstate thermalization
hypothesis

1. Introduction

The Fermi–Pasta–Ulam–Tsingou (FPUT) model [1] has widely been investigated with the
aim of understanding the approach to thermodynamic equilibrium in an isolated system [2,3].
Since the beginning of these studies, the relation with integrability in Hamiltonian mechanics
and the Kolmogorov–Arnold–Moser theorem [4–6] has been stressed [7]. More recently, the
“closeness” of the model to the integrable Toda lattice has carefully been examined [8].

Here, we take a different approach to integrability in the FPUT model, with the aim
of discussing its quantization. We study the N-particle model for periodic boundary
conditions and we introduce a specific Fourier transform, which allows us to conveniently
write the nonlinear interaction terms among the Fourier mode variables [9]. We then
consider the three-particle case N = 3 and prove that it is integrable when either the
cubic nonlinearity vanishes or the quartic nonlinearity does. Interestingly, the model with
only quartic nonlinearity, dubbed β-FPUT model, has an additional integral of the motion
besides energy and momentum. This integral, previously discovered in Ref. [10] using an
analogy with celestial mechanics, can be associated to a cylindrical symmetry, which is
only manifested in Fourier modes. Already for N = 4, this integral is no longer present,
and what remains for higher values of N, even in the thermodynamic limit, is the presence
of invariant subspaces in the Fourier mode space [9], whose stability has carefully been
examined by Chechin and coworkers (see Ref. [11] and Refs. therein). It should be here
mentioned that a study of the Einstein–Brillouin–Keller (EBK) quantization of the integrable
N = 3 Toda lattice was undertaken by Isola, Kantz and Livi [12]. The complete (α + β)-
FPUT model, with both non-zero cubic and quartic nonlinearity is non-integrable and
displays strong chaotic motion in an intermediate energy range, as we show numerically
by displaying Poincaré sections.
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The quantization of classical chaotic systems is still an extremely active field of research,
which has its roots in the discovery of the phenomenon of dynamical localization by Casati,
Chirikov, Ford and Izrailev [13] and in the pioneering investigation of level statistics
for Sinai billiards by Berry [14]. This latter topic was further investigated by Berry and
Tabor [15], who characterized specifically the Poisson statistics in the integrable limit. These
studies led to the famous universality hypothesis by Bohigas, Giannoni and Schmit [16],
who first suggested that the spectra of quantum chaotic systems are in agreement with
the predictions of random matrix theory (an early account of these developments can be
found in Tabor’s book [17]). The analysis of spectral statistics for smooth Hamiltonians
continued with the work of Seligman, Verbaarschot and Zirnbauer [18], who studied the
transition from regular to chaotic phase-space and fitted the levels with Poisson or Gaussian
orthogonal ensemble (GOE) statistics, respectively, for an even parity potential.

In this paper, we quantize the three-particle FPUT model in the formalism of first
quantization, and discuss its transition from integrability to chaos using methods from ran-
dom matrix theory. Moreover, we check the eigenstate thermalization hypothesis (ETH) [19,20]
for two relevant observables, kinetic energy and the additional integral of the motion. This
complements works about the bosonic FPUT model [21–23], and in particular a recent
study [24] investigating the localization transition in the thermodynamic limit.

The paper is organized as follows. In Section 2, we introduce the appropriate Fourier
mode variables and prove the integrability of both the α- and β- FPUT N = 3 model. In
Section 3, we quantize the three-particle FPUT model and study its level statistics. Section 4
is devoted to conclusions.

2. The FPUT Model and the Integrable Three-Particle Case

The Hamiltonian of the (α+ β)-Fermi–Pasta–Ulam–Tsingou coupled oscillator model is

H =
N

∑
i=1

[
p2

i
2

+
1
2
(qi+1 − qi)

2 +
α

3
(qi+1 − qi)

3 +
β

4
(qi+1 − qi)

4

]
= H0 + Hα + Hβ, (1)

where qi is the relative displacements of the i-th oscillator from its equilibrium position
and pi the conjugate momentum. We choose periodic boundary conditions qN+1 = q1,
pN+1 = p1. The unperturbed Hamiltonian can be written in quadratic form

H0 = H(α = 0, β = 0) =
1
2
[tpp +t qAq

]
, (2)

where t denotes the transposed of a column vector and A is the NxN symmetric matrix
whose elements are

Ai,j = −δi−1,j + 2δi,j − δi+1,j − δi,1δj,N − δi,Nδj,1. (3)

Due to the periodic boundary conditions, matrix A is degenerate. Its eigenvalues are
μk = ω2

k , where

ωk = 2 sin
(

πk
N

)
, k = 0, . . . , N − 1 (4)

are the harmonic frequencies of the linear oscillator chain. The normalized eigenvectors
are u0

n = 1/
√

N, for k = 0, uk
n =

√
2/N sin(2πkn/N + γ), for k = 1, . . . , [(N − 1)/2],

uN/2
n = (−1)n/

√
N, for k = N/2 (N even), uN−k

n =
√

2/N sin(2πkn/N + γ + π/2),
uN−k

n =
√

2/N sin(2πkn/N + γ + π/2), for k = �N/2 + 1, . . . , N − 1. Here, �• denotes
the integer part, the index n runs from 1 to N and the free parameter γ can be fixed
arbitrarily, due to the degeneracy of A. The NxN matrix S, which maps Fourier modes
Q0, . . . , QN−1 into q1, . . . , qN , is orthogonal, and its columns are given by the eigenvectors
of A. The momenta in the two dual spaces, P0, . . . , PN−1 and p1, . . . , pN , are related by
the same linear transformation S. Although the choice of γ does not affect the quadratic
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part of the Hamiltonian in Fourier modes, it does have consequences on the expression
of the nonlinear interaction terms among the Fourier modes. A particularly convenient
choice is γ = π/4, for which all columns of the transformation matrix S take the same
expression 1/

√
N[sin(2πkn/N) + cos(2πkn/N)], with n = 1, . . . , N as the row index and

k = 0, . . . , N − 1 as the column index, respectively. Using this transformation, the nonlinear
cubic term of the Hamiltonian is transformed into

Hα(Q) =
α

3

(
2
N

)3/2 N

∑
n=1

N−1

∑
k1,k2,k3=0

Uπ/4
n,k1

Uπ/4
n,k2

Uπ/4
n,k3

ωk1 ωk2 ωk3 Qk1 Qk2 Qk3 , (5)

where

Uγ
n,k = cos

(
πk(2n + 1)

N
+ γ

)
. (6)

The sum over n in Equation (5) can be explicitly performed using the properties of the
U′s (see Appendix A). The result is

Hα(Q) =
α

6

( √
2

N
√

N

)
N−1

∑
k1,k2,k3=0

Bk1,k2,k3 ωk1 ωk2 ωk3 Qk1 Qk2 Qk3 , (7)

where

Bk1,k2,k3 = −Δk1+k2+k3 + Δk1+k2−k3 + Δk1−k2+k3 + Δk1−k2−k3 , (8)

and Δr = (−1)m if r = mN and 0 otherwise, with m an integer. The Bk1,k2,k3 coupling
coefficients incorporate momentum conservation. The same procedure can be used to
derive the quartic term in the Hamiltonian, obtaining

Hβ(Q) =
β

8N

N−1

∑
k1,k2,k3,k4=0

Ck1,k2,k3,k4 ωk1 ωk2 ωk3 ωk4 Qk1 Qk2 Qk3 Qk4 , (9)

where

Ck1,k2,k3,k4 = −Δk1+k2+k3+k4 + Δk1+k2−k3−k4 + Δk1−k2+k3−k4 + Δk1−k2−k3+k4 (10)

again reflecting momentum conservation. This method is fully general and can be applied
to derive the Hamiltonian in Fourier modes Q for all values of N.

The first nontrivial value of N is N = 3, since the N = 2 case, being a two-body
problem, is totally integrable. For N = 3, we obtain the following potential:

V(Q1, Q2) =
3
2
(Q2

1 + Q2
2) +

α

2
(Q1 + Q2)

3 +
9β

8
(Q2

1 + Q2
2)

2 (11)

where, for convenience, the Hamiltonian is rewritten in slightly different variables where
Q1 is swapped with Q2 and, then, the sign of Q1 is changed, leaving the Hamiltonian
invariant. Therefore, we can represent the dynamics in Fourier space as the motion of a
particle in the two-dimensional potential (11).

Let us first discuss the potential (11) with α = 0 and β �= 0. The kinetic term of the
Hamiltonian is

K =
1
2
(P2

0 + P2
1 + P2

2 ) , (12)
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and hence, the center of mass motion is free, (P0 = const.). The potential is invariant under
rotations in the (Q1, Q2) plane; therefore, the pseudo-angular momentum

L0 = Q1P2 − Q2P1 (13)

is conserved. Going back to the original coordinates with an inverse Fourier transform, it
can be shown that

L0 =
1√
3
[p1(q3 − q2) + p2(q1 − q3) + p3(q2 − q1)] (14)

which was known to be a constant of motion, see [10]. In Fourier coordinates, this un-
expected constant of motion acquires an explicit physical meaning, by associating it to a
rotational symmetry. Thinking of the three coordinates (q1, q2, q3) as positions of a particle
in three dimensions, this symmetry corresponds to a cylindrical rotational symmetry of
the potential around the axis (u0

1, u0
2, u0

3) = (1, 1, 1)/
√

3, the first eigenvector of A. This
symmetry is related to the component of the angular momentum, L0, along this axis. The
two other constants of motion for this three-dimensional phase space are energy and the
momentum along the axis P0 = (p1 + p2 + p3)/

√
3.

The case α �= 0, β = 0 is also integrable. This can be shown by introducing the
variables s = Q1 + Q2 and d = Q1 − Q2. In terms of these variables, the potential is written
as V(s, d) = (3/4)(s2 + d2) + (α/2)s3 and is therefore separable along the directions s
and d. Along d, the motion is harmonic, while along s, the motion is the one of a cubic
oscillator. The motion in the full space is therefore a composition of free, harmonic and
cubic anharmonic motions along the three directions.

The intermediate case where both α �= 0 and β �= 0 is non-integrable. A typical
potential surface is displayed in Figure 1: it shows two valleys of different depths. If the
motion is within each valley, at low energy, it is quasi-regular and very weakly chaotic,
close to integrable. On the contrary, when the motion runs across the two valleys, at higher
energies, it is strongly chaotic, displaying intersections on the Poincaré plane that cover
an area, see Figures 2 and 3 with two different section planes (Q1, P1) and (Q1, Q2) (the
numerical integration algorithm is described in Appendix B). More precisely, the potential
minima have coordinates Q−

1 = Q−
2 = −1/(α −

√
α2 − 3β) and Q1 = Q2 = 0, while the

saddle point is located at Q+
1 = Q+

2 = −1/(α +
√

α2 − 3β) and the corresponding values
of the potential energy are

V(Q±
1 , Q±

2 ) =
4α
(

α ±
√

α2 − 3β
)
− 9β

2
(

α ±
√

α2 − 3β
)4 , V(0, 0) = 0 . (15)

Two valleys exist for weak to moderate quartic interactions (β < 3α2). The boundary
value of the potential separating motions within the valleys and above them is given by
Vb = V+. Notice that in the case of strong quartic interactions (β > 3α2), only one minimum
occurs, and the motion is again quasi-integrable.
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Figure 1. Effective potential surface V(Q1, Q2) = (3/2)(Q2
1 + Q2

2) + (α/2)(Q1 + Q2)
3 + (9β/8)

(Q2
1 + Q2

2)
2 for α =

√
2 and β = 0.5.

Figure 2. Poincaré maps (Q1(t∗), P1(t∗)) for the particle in the potential (11) at fixed times t∗ defined
by P2(t∗) = 0. The particle is initially at rest, and in the crater of the upper potential valley, i.e.,
Q1(0) > 0, Q2(0) = 0. (a) At low energies, the particle does not escape from the valley. The motion
describes a closed curve and it is hence quasi-integrable. (b,c) At higher energies, the particle visits
both potential valleys and a single orbit fills an area in the Poincaré section: the motion shows strong
chaotic behavior. (d–f) Zooms of (b). Parameters: α =

√
2 and β = 0.5 and 250,000 points in the

Poincare sections.
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Figure 3. Poincaré maps (Q1(t∗), Q2(t∗)) for fixed times t∗ defined by P2(t∗) = 0. Parameters are the
same as in Figure 2. (a) Integrable regime. (b,c) Chaotic regime. (d,e) Zooms of (b). (f) Zoom of (c).

Summarizing, this analysis shows that the FPUT three-particle model is integrable in
the two limits α → 0, β �= 0 and α �= 0, β → 0. Moreover, the model displays a strongly
chaotic behavior for intermediate values and α and β and for energies that are close to a
saddle in the two-dimensional phase-space of a fictitious particle, which represents the
motion in Fourier space. These results call for an analysis of the quantum behavior of such
a model, which is pursued in the following section.

3. The Quantum Three-Particle FPUT Model

In the remainder of the paper, we extend the study to a quantum mechanical version
of the three-particle FPUT model. To this end, we promote classical coordinates pj, qj to
quantum operators p̂j, q̂j, which satisfy canonical commutation relations [q̂i, p̂j] = iδi,j
(h̄ = 1). The quantum Hamiltonian of the three-particle FPUT model is then given by

H =
3

∑
i=1

[
p̂2

i
2

+
1
2
(q̂i+1 − q̂i)

2 +
α

3
(q̂i+1 − q̂i)

3 +
β

4
(q̂i+1 − q̂i)

4

]
. (16)

Analogously to the classical part, we can reduce the degrees of freedom by defining normal
modes Q̂0, Q̂1 and Q̂2. The mode Q̂0, corresponding to center of mass motion, decouples
from the other two, and we are thus left with the problem of obtaining the eigenvalues and
eigenstates for the relevant normal modes Q̂1 and Q̂2 of the potential

V̂ =
3
2
(Q̂2

1 + Q̂2
2) +

α

2
(Q̂1 + Q̂2)

3 +
9β

8
(Q̂2

1 + Q̂2
2)

2 . (17)

3.1. The Integrable Cases

As for the classical FPUT model, if α or β are equal to zero, the model is integrable. In
particular, if α = 0, as already discussed in Section 2, the model has a manifest cylindrical
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symmetry with respect to the Q0 axis. Therefore, it is convenient to pass to cylindrical
coordinates (r, φ, z) defined as ⎧⎪⎨⎪⎩

Q1 = r cos φ

Q2 = r sin φ

Q0 = z

. (18)

In terms of these new variables, the time-independent Schrödinger equation reads[
− 1

2r
∂

∂r

(
r

∂

r∂r

)
− 1

2r2
∂2

∂φ2 − 1
2

∂2

∂z2 +
3
2

r2 +
9
8

βr4
]

ψ = Eψ , (19)

where we introduced the wave function ψ = ψ(r, φ, z). Moreover, the Hamiltonian com-
mutes with the operators corresponding to the two integrals of motion P̂0 and
L̂0 = Q̂1P̂2 − Q̂2P̂1. As a consequence, the energy levels can be labeled by three quan-
tum numbers E = En,l0,p0 corresponding to the three commuting observables Ĥ, P̂0, L̂0, and
we can search for the solutions of the Schrödinger equation having the separable form

ψn,p0,l0(r, φ, z) =
eip0z
√

L
eil0φ

√
2π

fn,l0(r) . (20)

The normalized eigenfunctions of the P̂0 and L̂0 operators factorize, and fn,l0(r) is the
radial wave function which remains to be found. L is the size of the system along the axial
direction z. We notice that square modulus of the total wave function must be normalized
to unity by requiring that∫

drdφdzr2
∣∣∣ψn,p0,l0(r, φ, z)

∣∣∣2 =
∫

drr2∣∣ fn,l0(r)
∣∣2 = 1 . (21)

It is then convenient to introduce the new radial function un,l0(r) =
√

r fn,l0(r). Finally,
inserting this ansatz in Equation (19), we obtain the radial equation

−1
2

d2un,l0(r)
dr2 + Veff(r)un,l0(r) = En,l0 un,l0(r) , (22)

where En,l0 = En,l0,p0 − p2
0/2, and we introduced the effective potential

Veff(r) =
4l2

0 − 1
8r2 +

3
2

r2 +
9
8

βr4 , (23)

which, in addition to the interaction potential V(r) = (3/2)r2 + (9/8)βr4, also contains
a centrifugal barrier term. Summarizing, we mapped the problem into a single particle
moving in a one-dimensional potential. We are not aware of the exact analytical solutions of
Equation (22) with given boundary conditions, but the equation could be of course solved
numerically to determine the radial spectrum quantitatively. This concludes the proof of
the integrability of the quantum version of the three-particle β-FPUT model.

The quantum integrability of the α-FPUT model is even simpler because the corre-
sponding Schrödinger equation is separable in two independent one-dimensional
Schrödinger equations, describing a harmonic and an anharmonic oscillator, respectively.

3.2. The Non-Integrable (α+β)-FPUT Three-Particle Model

The rotational symmetry of potential (11) for α = 0, leading to integrability, is lost
when the general case α �= 0 is considered. In the classical case, we hence found chaotic
behavior, as shown by the Poincarè sections. Quantum mechanically, we should expect a
situation similar to the one studied in Ref. [18], where the Poisson level spacing statistics
was found in the integrable limit, while these statistics were seen to belong to the GOE
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universality class in the case of the mixed regular–chaotic phase space. In the quantum
FPUT model, we should therefore find the GOE statistics at intermediate energies and
Poisson statistics at both low and high energy.

We adopt a numerical diagonalization procedure of Hamiltonian Equation (16) [25].
We discretize the Hamiltonian on a two-dimensional square lattice with grid size [−L/2, L/2]2

and Ne grid points assuming open boundary conditions. The grid is carefully chosen such
that the minima of the potential are well resolved, and the boundaries of the grid are
completely dominated by the quartic term. Rescaled numerical spectra are presented in
Figure 4, with ascending order of energy levels. Eigenvalues stabilize as Ne is increased,
and we checked that the uncertainty in the numerical value of each eigenvalue is small
compared to the mean level spacing Δ.

0 5× 103 104

n

0

10

20

30

E
n

(a)

0.00 0.25 0.50 0.75 1.00
n/N

0

10

20

30

E
n

(b)

Ne = 1.6× 103

Ne = 3.6× 103

Ne = 6.4× 103

Ne = 104

Figure 4. Energy levels of the three-particle FPUT model for α =
√

2 and β = 1/2. In panel (a), the
levels are ordered in increasing value and for different grid points Ne of the lattice. In panel (b), we
scale the level order by the number of grid points, obtaining a perfect data collapse.

The central object in our analysis is the distribution function

P(s) = δ(s − δn) , (24)

which is obtained from consecutive level spacings

δn =
En+1 − En

Δ
. (25)

Here, Δ denotes the mean level spacing. The spectral statistics we present are in line with the
Gaussian orthogonal ensemble (GOE) of random matrices with distribution function [17,26,27]

PGOE(s) =
π

2
se−

π
4 s2

. (26)

This poses a clear signature of a chaotic quantum system with real, normally distributed
entries of the Hamiltonian. In contrast, integrability will be associated with an absence of
level repulsion and a Poissonian level distribution function

PP(s) = e−s . (27)

Another measure for chaos is given by the level-statistics ratio

r =
min(δn, δn+1)

max(δn, δn+1)
. (28)

Figure 5a shows the level distribution function P(s) for an energy window E ∈ [1.9, 2.2]
with n = 300 levels. With apparent level repulsion in place, level spacings are distributed
according to the GOE prediction, indicating chaotic behavior. This is contrasted with a
distribution obtained in an energy window E ∈ [7, 9] (n = 300 levels) in Figure 5b, with the
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Poissonian level statistic. The two discussed cases confirm the physical picture presented
above, though with noticeable fluctuations due to the number of considered levels.

0 1 2 3
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0.0
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π
2se

−π
4s

2

0 1 2 3
s

0.00

0.25

0.50

0.75

1.00

P
(s
)

(b)

e−s

Figure 5. Level spacing distribution of the energy spectrum of the FPUT model P(s) with α =
√

2,
β = 1/2. In panel (a) the distribution is well fitted with GOE statistics, while in panel (b) the statistics
is clearly Poissonian.

The level spacing statistics in different regions of the spectrum is strongly affected by
the shape of the potential. We will consider representative parameter values of α and β
for which the potential landscape has two non-equivalent minima separated by a barrier
of height Vb, see Figure 6. At very low energies, the wave function localizes in one of the
potential minima, which gives rise to harmonic levels En � ω(n+ 1

2 ). At very high energies,
the quartic term dominates over the cubic, effectively restoring rotational symmetry, and
therefore integrability. From a semi-classical point of view, we expect most of the chaos to
appear near the separatrix for levels at energies E � Vb.

The transition from Poissonian to GOE statistics as a function of energy is traced via
the level ratio r, see Figure 7. For this, we sweep the energy window with n eigenvalues cen-
tered around an energy E. At high energies (E  Vb), we find a level ratio consistent with
the Poisson distribution, r ≈ 0.38. At energies near to the barrier height but sufficiently high
so that it is not strongly affected by the presence of the potential minima (Vb ≤ E ≤ 20Vb),
the level ratio peaks at the GOE value r ≈ 0.52, signaling a transition to a fully quantum
chaotic behavior of the system. The transition between these two extremal cases occurs on
the same energy scale on which rotational symmetry is broken, and hence appears visible
in Figure 7. For low energies, the r-value decreases again but not fully to the Poissonian
value since the minima support harmonic oscillator eigenfunctions. This behavior should
be compared with the one of the integrable model (α = 0) shown in Figure 7b. In this case,
the level ratio is never compatible with chaotic statistics independently from the energy
interval considered.

Real-space wave functions support the picture of chaos in distinct regions of the
spectra, see Figure 6a–c. At low energies (E < Vb), back to the picture of quasi-integrability,
wave functions in the potential minimum attain the shape of two-dimensional orbitals
which can be labeled by radial and angular quantum numbers, Figure 6a. In contrast,
the chaotic behavior for states with intermediate energies (Vb < E < 20Vb) is reflected in
irregularly shaped wavefunctions with random direction of the nodal curves, Figure 6b. At
high energy (E  Vb), close to the other integrable limit, wavefunctions have a structure
similar to the one observed at low energy, Figure 6c.
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Figure 6. Representative wavefunctions at low E20 � −0.43 < Vb (panel (a)), Vb < E1600 � 2.0 < 20Vb
intermediate (panel (b)) and high E7500 � 7.7  Vb (panel (c)) energy.
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Figure 7. Window averaged level–statistic ratio (28) as a function of the window averaged energy
for α =

√
2, β = 0.5 (panel a) and α = 0, β = 0.5 (panel b). The GOE and the Poisson level statistics

values are shown by horizontal lines. The vertical light blue stripe indicates the region of average
energy Vb ≤ E ≤ 20Vb.

In fact, the nodal curves strongly repel each other, and do not cross, up to our numerical
resolution, see Figure 8b. This was predicted by Berry [14] and first verified for a free
particle in a stadium [28].
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Figure 8. Sign of the wavefunctions, showing nodal lines in different energy regions: low energy
(panel (a)), intermediate energy (panel (b)) and high energy (panel (c)).

3.3. Eigenstate Thermalization Hypothesis

According to the eigenstate thermalization hypothesis (ETH) of Deutsch [19] and Sred-
nicki [20] (see Ref. [29] for a review), if a quantum system is chaotic, the average of a
generic observable taken on the eigenstates of the energy is a smooth function of the energy
eigenvalue itself. In connection with ETH, and focusing on the relation between quantum
and classical systems (e.g., for the FPUT model), the adiabatic gauge potential is introduced
to characterize suppressed heating by a slow drive [30–32]. We checked the ETH property,
restricting to the stationary solutions of the Schrödinger equation, without any attempt
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to analyze the time evolution. Indeed, it is also guessed that the relaxation time to the
average is controlled by the size of the system, i.e., the number of particles. Therefore, we
cannot expect a fast relaxation in such a low-dimensional phase space as the one of the
three-particle FPUT model. The averages on the energy eigenstates of kinetic energy and
angular momentum are shown in Figures 9 and 10 as a function of energy in three different
regions of the spectrum. Both at low and at high energy, the kinetic energy and angular
momentum are irregularly scattered in a wide region of values, and change abruptly as the
energy is varied. It is only in the central chaotic region of the spectrum that they appear
to fluctuate stochastically around an average. We believe that this result is a particularly
transparent numerical verification of the ETH hypothesis.
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Figure 9. Average kinetic energy vs. energy for (a) the lower part of the spectrum (En < Vb), (b) the
central part of the spectrum where eigenstates are chaotic (En ≈ 10Vb), (c) upper part of the spectrum
(En > 50Vb).
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Figure 10. Average angular momentum vs. energy for (a) the lower part of the spectrum (En < Vb),
(b) the central part of the spectrum where eigenstates are chaotic (En ≈ 10Vb), (c) upper part of the
spectrum (En > 50Vb).

4. Conclusions

In this paper, we investigated the classical and quantum Fermi–Pasta–Ulam–Tsingou
model with three particles. Classically, the model is integrable in the two limits where
the cubic or the quartic term of the Hamiltonian vanishes. In the intermediate region, the
model shows a mixed phase space with both regular and chaotic trajectories, in agreement
with the picture suggested by the Kolmogorov–Arnold–Moser theorem. We computed
the energy spectrum and showed that, as expected from the Bohigas–Giannoni–Schmit
universality hypothesis, the level spacing satisfies the Gaussian orthogonal ensemble statistics
in the chaotic part of the spectrum. In the two integrable limits, the statistics become
Poissonian. We also showed how two generic observables obey the eigenstate thermalization
hypothesis of Deutsch and Srednicki in the chaotic part of the spectrum.
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Appendix A. Properties of the U Symbols

We here summarize some useful properties of the U symbols of Formula (6). It is
straightforward to prove that

Uφ
n,rUδ

n,s =
1
2

(
Uφ+δ

n,r+s + Uφ−δ
n,r−s

)
, (A1)

and

Uδ+π
n,r = −Uδ

n,r . (A2)

Using these properties, one derives the following identities when restricting to φ =
δ = π/4:

Uπ/4
n,k1

Uπ/4
n,k2

Uπ/4
n,k3

=
1
4

(
−U−π/4

n,k1+k2+k3
+ Uπ/4

n,k1+k2−k3
+ Uπ/4

n,k1−k2+k3
+ Uπ/4

n,k1−k2−k3

)
, (A3)

which is used for the derivation of the expression of the cubic term of the Hamiltonian of
the FPUT model in terms of Fourier modes. Moreover,

Uπ/4
n,k1

Uπ/4
n,k2

Uπ/4
n,k3

Uπ/4
n,k4

= (A4)

1
8
(−U0

n,k1+k2+k3+k4
+ U0

n,k1+k2−k3−k4
+ U0

n,k1−k2+k3−k4
+ U0

n,k1−k2−k3+k4
(A5)

+Uπ/2
n,k1+k2+k3−k4

+ Uπ/2
n,k1+k2−k3+k4

+ Uπ/2
n,k1−k2+k3+k4

− Uπ/2
n,k1−k2−k3−k4

) , (A6)

which is used in the derivation of the quartic term.

Appendix B. Details on Numerical Integration of the Classical Equations of Motion

We integrated the classical equations of motion for the effective two-dimensional
potential using a fourth-order Runge–Kutta scheme [33]. A stepsize Δt = 0.01 proved to be
stable and sufficiently accurate for the purposes of this paper. We monitored the relative
error in energy conservation of 10−8 for the longest simulation times reported. Our main
goal is of a qualitative nature, i.e., showing integrability and chaos in different regions of
phase space. We cross-checked some results with a velocity Verlet integrator.
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Abstract: We propose and discuss two variants of kinetic particle models—cellular automata in 1 + 1
dimensions—that have some appeal due to their simplicity and intriguing properties, which could
warrant further research and applications. The first model is a deterministic and reversible automaton
describing two species of quasiparticles: stable massless matter particles moving with velocity ±1 and
unstable standing (zero velocity) field particles. We discuss two distinct continuity equations for three
conserved charges of the model. While the first two charges and the corresponding currents have
support of three lattice sites and represent a lattice analogue of the conserved energy–momentum
tensor, we find an additional conserved charge and current with support of nine sites, implying
non-ergodic behaviour and potentially signalling integrability of the model with a highly nested
R-matrix structure. The second model represents a quantum (or stochastic) deformation of a recently
introduced and studied charged hardpoint lattice gas, where particles of different binary charge (±1)
and binary velocity (±1) can nontrivially mix upon elastic collisional scattering. We show that while
the unitary evolution rule of this model does not satisfy the full Yang–Baxter equation, it still satisfies
an intriguing related identity which gives birth to an infinite set of local conserved operators, the
so-called glider operators.

Keywords: cellular automata; interacting dynamics; ergodic theory; ergodicity breaking; integrability;
conservation laws

1. Introduction

This article is dedicated to my friend and mentor, Giulio Casati. For that reason I
will also take the liberty to write the paper from a very personal perspective. One of the
most important things that Giulio taught me, was to passionately appreciate extremely
simple models of dynamics. Constructing and solving simple models of (lately, most
often many-body) dynamics with carefully chosen physical properties has thus become
my personal obsession throughout my career. The other thing which I owe Giulio is a
pragmatic but deep appreciation of ergodic theory. Together we have been responsible for
a few endeavours in experimental mathematics, which sometimes aroused the attention
of experts. For instance, we pointed out intriguing ergodic properties of classical and
quantum polygonal billiards and related non-hyperbolic and non-integrable dynamical
systems [1–4].

Crudely speaking, ergodic theory [5] divides dynamical systems into ergodic and
non-ergodic ones. The former are characterized by the property that time averages of
(relevant) observables can be computed in terms of an ensemble average over the entire
space of states (phase space), while the latter exhibit memory of the initial condition in
typical (say, physically relevant) observables. Additionally, ergodic dynamics can have
various degrees of dynamical complexity or chaos, while non-ergodic ones can conform
to some algebraic tools of exact solvability, or integrability. However, it is not clear to
what extent the breaking of ergodicity is connected to any form of integrability, as it

Entropy 2023, 25, 739. https://doi.org/10.3390/e25050739 https://www.mdpi.com/journal/entropy
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can precisely be defined in terms of Lax pairs (in classical, deterministic systems) or the
Yang–Baxter equation (in a quantum or stochastic setting). In the physics literature, these
questions have been extensively discussed recently in the context of many-body dynamics,
where the mathematics of ergodic theory is much less developed, say on the lattice and
having local interactions, both in the classical and quantum realms (see, e.g., some recent
reviews [6–9]). Besides integrability, many different forms of ergodicity breaking have been
suggested, such as phase-space or Hilbert-space fragmentation, due to various forms of
kinetic constraints, the so-called many-body localization due to static disorder, many-body
scarring due to hidden weakly broken non-abelian symmetries, etc.

In this paper, we propose two very simple many-body locally interacting dynamical
systems defined on a discrete 1 + 1 space-time lattice. The first model, which we call a
matter–field automaton, for reasons that will hopefully appear clear to the reader, is an
example of a deterministic particle kinematics with two distinct types of degrees of free-
dom (matter and field), which is non-ergodic for a nontrivial reason: existence of a highly
nontrivial but local conserved charge. Inspired by brute-force empirical computer-algebra
calculations, we suggest that the model may be integrable, but if it is, the corresponding
R-matrix should be highly nontrivial. The second model, which is a quantum deforma-
tion of the previously studied charged hardpoint lattice gas [10–12], obeys a remarkable
reduced Yang–Baxter-like identity for a non-abelian spectral parameter. This again ensures
manifest ergodicity breaking in the model through an existence of an infinite set of local
translationally invariant conserved operators, the so-called gliders.

2. Matter–Field Automaton

2.1. Definition of the Automaton

Let us define a deterministic reversible cellular automaton on {0, 1}Z & s as follows.
Even lattice sites correspond to the matter variable s2x ∈ {0, 1}, while odd lattice sites
correspond to the field variable s2x+1 ∈ {0, 1}, x ∈ Z. The instantaneous system configura-
tion is thus specified by an infinite binary sequence s, on which we specify deterministic
dynamics.

The dynamics is defined in a staggered fashion, in even and odd time layers. Specifi-
cally, for so-called even time steps we update the matter–field–matter triples (s4x, s4x+1, s4x+2)
for all x ∈ Z with a deterministic, reversible rule (ss′s′′) −→ (rr′r′′), while for odd time-
steps, the triples (s4x−2, s4x−1, s4x), are updated by the same rule. The rule is specified
as

(000) ←→ (000),

(001) ←→ (100),

(011) ←→ (110), (1)

(101) ←→ (010),

(111) ←→ (111),

or, graphically and perhaps more intuitively, by the following diagrams

0 0 0 1 0 0 1 0 1 1 1 0 0 0 1 0 1 0 0 1 1 1 1 1

0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1

which indicate mappings of all eight lower matter–field–matter triples to corresponding
upper matter–field–matter triples, or vice versa due to time-reversal symmetry. The black
and red lines thus represent the worldlines of matter and field particles, respectively. In
Figure 1, we show an example of a piece of a many-body trajectory {st

x; x, t ∈ Z}, where
time t runs in the vertical direction (upwards). The construction of the trajectory can
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be understood as a checkerboard tiling of the rule’s yellow squares, which is uniquely
prescribed by the lowest two lines of tiles (the initial condition).

Figure 1. Example of an automaton’s trajectory (time runs in the vertical direction, say upwards).
Yellow squares denote application of the local rule, or equivalently, of the three-bit permutation gate
Y. Black/red lines denote the worldlines of matter/field quasiparticles.

Note that this dynamical system has a rich set of three independent Z2 symmetries,
specifically C, P, and T:

1. “Charge” conjugation C, s → 1 − s, i.e., if st
x is a valid trajectory, then 1 − st

x is a valid
trajectory,

2. Parity P, x → −x, i.e., if st
x is a valid trajectory, then st

−x is a valid trajectory,
3. Time reversal T, t → −t, i.e., if st

x is a valid trajectory, then s−t
x is a valid trajectory.

In Figures 2–6, we depict some interesting characteristic trajectories of the matter–field
automaton. In Figure 2, we prepare a maximum entropy initial state in a finite box of size
L, where both field and matter are sampled randomly and uniformly in the set {0, 1}, and
plot an emerging deterministic trajectory. Since the initial condition vanishes outside the
box, st=0

x = 0, for x < 0 or x > L, we see a slow ‘evaporation’ of matter particles from the
edges of the box. In Figure 3, we plot a similar trajectory, where initially we have only
matter (at maximum entropy) and no field, while in Figure 4 we plot the reverse situation,
where initially there is only the field at maximum entropy and no matter. The fact that
spatio-temporal patterns of these trajectories seem qualitatively distinct depending on the
initial conditions, and in particular the relative ratio of field versus matter drastically differs,
suggests that the dynamics may be non-ergodic. We shall establish this more precisely
below by constructing nontrivial algebraic conservation laws. While the previous plots
represent cartoons of equilibrium dynamics, we plot a typical trajectory representing far-
from-equilibrium dynamics in Figure 5: a head-on collision of two streams of matter (with
no field in the initial data), which experience a nontrivial scattering process via formation
of a complex field pattern, finally resulting in two oppositely moving scattered streams of
matter.

Finally, we demonstrate that the matter–field system can be understood as a very
general automaton which can also mimic the dynamics of the popular Rule 54 reversible
cellular automaton [13] for a dynamically closed (invariant) subset of initial configurations.
More generally, we can show it can simulate dynamics for classes of negative-length hard-
rod systems with commensurate initial data. For instance, if we take initial condition s
where only every sixth site can be occupied, i.e., sx ≡ 0 for x �= 0 (mod 6), then one can
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show that no field worldline can be crossed by another matter particle, and hence each
field particle decays at the immediate next time step (the field is maximally short-lived).
This means that scattering of matter particles always experiences a fixed phase-shift, which
makes the dynamics qualitatively similar (yet not precisely equivalent) to Rule 54 on a
certain reduced lattice (see Figure 6 for a demonstration). In Rule 54 dynamics, for instance,
the minimal distance between movers/kinks (=2) is twice the time-tag in kink-scattering
(=1), while in this case, the minimal distance between (left/right) movers (=6) is three times
the scattering time-lag (=2), i.e., free field lifetime. A similar commensurate negative-length
hard-rod dynamics is obtained for the subset of initial data {s} of the form sx′ ≡ 0, x′ �= 0
(mod 2(2k+ 1)), for any k = 1, 2 . . ., where the ratio between the minimal distance between
parallel kinks to scattering-lag is 2k + 1.

Figure 2. Example of a typical trajectory in a maximum entropy initial state, where st=0
x are sampled

randomly and uniformly in {0, 1}, for a section of 0 ≤ x ≤ 600 and duration tmax = 150, 0 ≤ t ≤ tmax.
Note the evaporation of matter particles from the sides, and reduction in the field intensity, which is
due to initial vacuum in the complement region, st=0

x′ = 0 for x′ < 0 or x′ > 600.

Figure 3. Example of a typical trajectory from the initial state where the matter is in a maximal
entropy state, i.e., s2x are sampled randomly and uniformly for 0 ≤ 2x ≤ 600, and there is no field,
i.e., s2x+1 ≡ 0, of duration tmax = 150, 0 ≤ t ≤ tmax.
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Figure 4. Example of a typical trajectory from the initial state where the field is in a maximal entropy
state, i.e., s2x+1 are sampled randomly and uniformly for 0 ≤ 2x + 1 ≤ 600, and there is no matter,
i.e., s2x ≡ 0, of duration tmax = 150, 0 ≤ t ≤ tmax.

Figure 5. Head-on collision of a random (maximum entropy) sample of left movers with a random
sample of right movers. The total width of each initial stream of left/right movers is 800 and the
duration is tmax = 600.

567



Entropy 2023, 25, 739

Figure 6. Trajectory starting from a random initial condition where only s6x (0 ≤ x ≤ 180) are chosen
at random, uniform in {0, 1}, while all other sx′ = 0. Such a trajectory features only maximally
short-lived field particles, which provide ‘unit’ phase shifts for left/right movers upon scattering,
and corresponds to dynamics of negative-length hard-rods, such as, e.g., in the Rule 54 system [13].

2.2. Time Evolution over Abelian Algebra of Local Observables

Let us now reinterpret the dynamics of the matter–field automaton in terms of an
abelian C∗-algebraic dynamical system, and then study its conservation laws. We begin by
defining a quasilocal algebra of observables, i.e., real functions over space of configurations
{0, 1}Z. For more details on a fully analogous but more detailed construction in a related
model of Rule 54 reversible cellular automaton, see ref. [14]. Let [0]2x, [1]2x define a local
basis of observables, checking if s2x = 0 (or 1) for the matter degrees of freedom, and
correspondingly [0]2x+1, [1]2x+1 for the field:

[r]x(s) = δr,sx . (2)

We have [0]x + [1]x = � (unit element in the algebra of observables), and denote [•]x =
[1]x − [0]x, for x either even or odd. We note that [0]x, [1]x (or �, [•]x) generate the entire
(quasi)local algebra under multiplication and addition (and closure). We denote local
observables with larger support as [s0, s1, . . . , sr]x = [s0]x[s1]x+1 · · · [sr]x+r.

The fundamental three site operator—local propagator—in the algebra of observables
implementing the rules

[000]2x ←→ [000]2x,

[001]2x ←→ [100]2x,

[011]2x ←→ [110]2x, (3)

[101]2x ←→ [010]2x,

[111]2x ←→ [111]2x,

is encoded in terms of the 8 × 8 permutation matrix

Y =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4)
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The full time step of dynamical automorphism on the algebra of observables at(s) ≡ a(s−t),

a2(t+1) = Ua2t, a2t+1 = Uea2t, a2t+2 = Uoa2t+1, (5)

is constructed as follows
U = UoUe , (6)

where even and odd time steps are generated as

Ue = ∏
x

Y4x,4x+1,4x+2, Uo = ∏
x

Y4x−2,4x−1,4x , (7)

where three indices denote the positions in the string, or in the tensor product of local
algebras (

⊗
x span{[0]x, [1]x}), where the three site operator (4) acts nontrivially.

2.3. Conservation Laws

Let a[x,y] be any local observable supported in the interval of sites [x, y] ⊂ Z. We define
a shift automorphism Π

Πa[x,y] = a[x+2,y+2] , (8)

which shifts an observable by ‘one lattice unit’, so that the identity of matter/field sites is
preserved. Note that

ΠUe = UoΠ, ΠUo = UeΠ, [Π2, Ue] = 0, [Π2, Uo] = 0. (9)

A local observable q is called a conserved charge if, together with an appropriate conserved
current p, it satisfies a conservation law (space–time discrete continuity equation):

Ueq − Uoq + Πp − Π−1 p = 0, (10)

where we note that
U2

o = U2
e = � , (11)

since Y2 = �. Then, extensive local observable is globally conserved

Q = ∑
x∈Z

qx, qx := Π2xq, UQ = Q. (12)

Importantly, it holds in general that if (q, p) is a local conservation law, then (Πq,−Πp)
is a conservation law as well. This can be proven by multiplying Equation (10) by Π and
using (9).

Limiting to local observables on clusters of five sites (beginning and ending with a
matter site), covering one ’unit cell’ (periodicity block of 4 sites) of the automaton, we find
(using exact computer algebra) exactly two inequivalent conservation laws

q(1)x = [•]4x − [•]4x+2, (13)

p(1)x =
1
2
[•]4x +

1
2
[•]4x+1 +

1
2
[•]4x+2 +

1
2
[•]4x[•]4x+1[•]4x+2, (14)

q(2)x = [•]4x+1 + [•]4x+2 + [•]4x+3, (15)

p(2)x = −[•]4x+2, (16)

with local densities and current supported on up to three consecutive sites. q(1)x can be
interpreted as the momentum density, while q(2)x is the analog of the energy density. Indeed,
writing P = Q(1) = ∑x q(1)x , E = Q(2) + ΠQ(2) = ∑x(q

(2)
x + Πq(2)x ) we have intuitive

expressions for the total momentum and total energy of a configuration:

P(s) = ∑
x
(−1)xs2x , E(s) = ∑

x
(s2x + 2s2x+1) , (17)
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meaning that the field particle carries no momentum and has an energy content (rest
energy) equal to the energy of two matter particles. Note that a pair (P, E) is equivalent to
a pair (Q(1), Q(2)), since ΠQ(1) = ∑x Πq(1)x = −P and Q(2) − ΠQ(2) = ∑x(q

(2)
x − Πq(2)x ) =

− ∑x q(1)x = −P.
If we then increase the support size to clusters of nine (2 × 4 + 1) consecutive sites, we

obtain precisely one new additional conservation law:
(using compact notation: [◦] ≡ �, [r0r1r2 . . .]4x ≡ [r0r1r2 . . .])

q(3) = 2[◦ ◦ ◦ ◦ ◦ ◦ • ◦ •]− 2[◦ ◦ ◦ ◦ ◦ ◦ • • ◦]− 4[◦ ◦ ◦ ◦ ◦ • ◦ ◦ •]− 2[◦ ◦ ◦ ◦ ◦ • • ◦ ◦]
+2[◦ ◦ ◦ ◦ ◦ • • • •]− 8[◦ ◦ ◦ ◦ • ◦ ◦ ◦ •]− 4[◦ ◦ ◦ ◦ • ◦ ◦ • ◦] + 2[◦ ◦ ◦ ◦ • ◦ • ◦ ◦]
−2[◦ ◦ ◦ ◦ • ◦ • • •] + 4[◦ ◦ ◦ ◦ • • ◦ • •]− 2[◦ ◦ ◦ ◦ • • • ◦ •] + 2[◦ ◦ ◦ ◦ • • • • ◦]
−2[◦ ◦ ◦ • ◦ ◦ ◦ ◦ •]− 2[◦ ◦ ◦ • ◦ ◦ ◦ • ◦] + 2[◦ ◦ ◦ • ◦ ◦ • ◦ ◦]− 2[◦ ◦ ◦ • ◦ ◦ • • •]
−4[◦ ◦ ◦ • ◦ • ◦ ◦ ◦] + 2[◦ ◦ ◦ • • • ◦ ◦ •] + 2[◦ ◦ ◦ • • • ◦ • ◦]− 2[◦ ◦ ◦ • • • • ◦ ◦]
+2[◦ ◦ ◦ • • • • • •] + [◦ ◦ • ◦ ◦ ◦ ◦ ◦ •] + [◦ ◦ • ◦ ◦ ◦ ◦ • ◦]− [◦ ◦ • ◦ ◦ ◦ • ◦ ◦]
+[◦ ◦ • ◦ ◦ ◦ • • •] + 2[◦ ◦ • ◦ ◦ • ◦ ◦ ◦]− [◦ ◦ • ◦ • • ◦ ◦ •]− [◦ ◦ • ◦ • • ◦ • ◦]
+[◦ ◦ • ◦ • • • ◦ ◦]− [◦ ◦ • ◦ • • • • •] + [◦ ◦ • • ◦ • ◦ ◦ •] + [◦ ◦ • • ◦ • ◦ • ◦]
−[◦ ◦ • • ◦ • • ◦ ◦] + [◦ ◦ • • ◦ • • • •]− [◦ ◦ • • • ◦ ◦ ◦ •]− [◦ ◦ • • • ◦ ◦ • ◦]
+[◦ ◦ • • • ◦ • ◦ ◦]− [◦ ◦ • • • ◦ • • •]− 2[◦ ◦ • • • • ◦ ◦ ◦]− [◦ • ◦ ◦ ◦ ◦ ◦ ◦ •]
−[◦ • ◦ ◦ ◦ ◦ ◦ • ◦] + [◦ • ◦ ◦ ◦ ◦ • ◦ ◦]− [◦ • ◦ ◦ ◦ ◦ • • •]− 2[◦ • ◦ ◦ ◦ • ◦ ◦ ◦]
+[◦ • ◦ ◦ • • ◦ ◦ •] + [◦ • ◦ ◦ • • ◦ • ◦]− [◦ • ◦ ◦ • • • ◦ ◦] + [◦ • ◦ ◦ • • • • •]
−[◦ • ◦ • ◦ • ◦ ◦ •]− [◦ • ◦ • ◦ • ◦ • ◦] + [◦ • ◦ • ◦ • • ◦ ◦]− [◦ • ◦ • ◦ • • • •]
+[◦ • ◦ • • ◦ ◦ ◦ •] + [◦ • ◦ • • ◦ ◦ • ◦]− [◦ • ◦ • • ◦ • ◦ ◦] + [◦ • ◦ • • ◦ • • •]
+2[◦ • ◦ • • • ◦ ◦ ◦]− [• ◦ ◦ ◦ ◦ ◦ ◦ ◦ •]− [• ◦ ◦ ◦ ◦ ◦ ◦ • ◦] + [• ◦ ◦ ◦ ◦ ◦ • ◦ ◦]
−[• ◦ ◦ ◦ ◦ ◦ • • •]− 2[• ◦ ◦ ◦ ◦ • ◦ ◦ ◦] + [• ◦ ◦ ◦ • • ◦ ◦ •] + [• ◦ ◦ ◦ • • ◦ • ◦]
−[• ◦ ◦ ◦ • • • ◦ ◦] + [• ◦ ◦ ◦ • • • • •]− [• ◦ ◦ • ◦ • ◦ ◦ •]− [• ◦ ◦ • ◦ • ◦ • ◦]
+[• ◦ ◦ • ◦ • • ◦ ◦]− [• ◦ ◦ • ◦ • • • •] + [• ◦ ◦ • • ◦ ◦ ◦ •] + [• ◦ ◦ • • ◦ ◦ • ◦]
−[• ◦ ◦ • • ◦ • ◦ ◦] + [• ◦ ◦ • • ◦ • • •] + 2[• ◦ ◦ • • • ◦ ◦ ◦]− [• • • ◦ ◦ ◦ ◦ ◦ •]
−[• • • ◦ ◦ ◦ ◦ • ◦] + [• • • ◦ ◦ ◦ • ◦ ◦]− [• • • ◦ ◦ ◦ • • •]− 2[• • • ◦ ◦ • ◦ ◦ ◦]
+[• • • ◦ • • ◦ ◦ •] + [• • • ◦ • • ◦ • ◦]− [• • • ◦ • • • ◦ ◦] + [• • • ◦ • • • • •]
−[• • • • ◦ • ◦ ◦ •]− [• • • • ◦ • ◦ • ◦] + [• • • • ◦ • • ◦ ◦]− [• • • • ◦ • • • •]
+[• • • • • ◦ ◦ ◦ •] + [• • • • • ◦ ◦ • ◦]− [• • • • • ◦ • ◦ ◦] + [• • • • • ◦ • • •]

+2[• • • • • • ◦ ◦ ◦] (18)
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with the current

p(3) = 2[◦ ◦ ◦ ◦ ◦ • • ◦ ◦]− 4[◦ ◦ ◦ ◦ • ◦ ◦ ◦ •]− 4[◦ ◦ ◦ ◦ • ◦ ◦ • ◦] + 2[◦ ◦ ◦ ◦ • ◦ • ◦ ◦]
−4[◦ ◦ ◦ ◦ • ◦ • • •]− 2[◦ ◦ ◦ • ◦ ◦ ◦ ◦ •]− 2[◦ ◦ ◦ • ◦ ◦ ◦ • ◦]− 2[◦ ◦ ◦ • ◦ ◦ • • •]
+2[◦ ◦ ◦ • • • ◦ ◦ •] + 2[◦ ◦ ◦ • • • ◦ • ◦] + 2[◦ ◦ ◦ • • • • • •] + [◦ ◦ • ◦ ◦ ◦ ◦ ◦ •]
+[◦ ◦ • ◦ ◦ ◦ ◦ • ◦] + [◦ ◦ • ◦ ◦ ◦ • • •]− [◦ ◦ • ◦ • • ◦ ◦ •]− [◦ ◦ • ◦ • • ◦ • ◦]
−[◦ ◦ • ◦ • • • • •] + [◦ ◦ • • ◦ • ◦ ◦ •] + [◦ ◦ • • ◦ • ◦ • ◦] + [◦ ◦ • • ◦ • • • •]
−[◦ ◦ • • • ◦ ◦ ◦ •]− [◦ ◦ • • • ◦ ◦ • ◦]− [◦ ◦ • • • ◦ • • •]− [◦ • ◦ ◦ ◦ ◦ ◦ ◦ •]
−[◦ • ◦ ◦ ◦ ◦ ◦ • ◦]− [◦ • ◦ ◦ ◦ ◦ • • •] + [◦ • ◦ ◦ • • ◦ ◦ •] + [◦ • ◦ ◦ • • ◦ • ◦]
+[◦ • ◦ ◦ • • • • •]− [◦ • ◦ • ◦ • ◦ ◦ •]− [◦ • ◦ • ◦ • ◦ • ◦]− [◦ • ◦ • ◦ • • • •]
+[◦ • ◦ • • ◦ ◦ ◦ •] + [◦ • ◦ • • ◦ ◦ • ◦] + [◦ • ◦ • • ◦ • • •]− [• ◦ ◦ ◦ ◦ ◦ ◦ ◦ •]
−[• ◦ ◦ ◦ ◦ ◦ ◦ • ◦]− [• ◦ ◦ ◦ ◦ ◦ • • •] + [• ◦ ◦ ◦ • • ◦ ◦ •] + [• ◦ ◦ ◦ • • ◦ • ◦]
+[• ◦ ◦ ◦ • • • • •]− [• ◦ ◦ • ◦ • ◦ ◦ •]− [• ◦ ◦ • ◦ • ◦ • ◦]− [• ◦ ◦ • ◦ • • • •]
+[• ◦ ◦ • • ◦ ◦ ◦ •] + [• ◦ ◦ • • ◦ ◦ • ◦] + [• ◦ ◦ • • ◦ • • •]− [• • • ◦ ◦ ◦ ◦ ◦ •]
−[• • • ◦ ◦ ◦ ◦ • ◦]− [• • • ◦ ◦ ◦ • • •] + [• • • ◦ • • ◦ ◦ •] + [• • • ◦ • • ◦ • ◦]
+[• • • ◦ • • • • •]− [• • • • ◦ • ◦ ◦ •]− [• • • • ◦ • ◦ • ◦]− [• • • • ◦ • • • •]

+[• • • • • ◦ ◦ ◦ •] + [• • • • • ◦ ◦ • ◦] + [• • • • • ◦ • • •]. (19)

If we furthermore increase this to a 3-cell cluster of 13 = 3 × 4 + 1 consecutive sites, we
obtain only one additional conservation law which, however, is trivially related to the
previous one:

q(4)x = Πq(3)x , p(4)x = −Πp(3)x . (20)

Scanning for the existence of higher conservation laws with densities supported over four
or more unit cells seems impossible with brute-force computer algebra.

Furthermore, note that the conservation law property (10) is invariant under local
space–time discrete gauge transformation, i.e., taking any local observable a

q −→ q + Πa − Π−1a, (21)

p −→ p − Uea + Uoa. (22)

In the explicit expressions listed above, the gauge has been fixed by right-alignment of the
densities.

One might expect that matter–field automaton hosts an infinite tower of local con-
served quantities of increasing support size, however, these may be very difficult to find
empirically. This hypothesis would suggest also that the matter–field automaton may be a
completely integrable system, in a similar spirit as Rule 54 [15], as it also displays similar
negative-length hard-rod dynamics for a class of initial data, but preliminary attempts to
find a Yang–Baxter or Lax structure failed. The other option is that the matter–field system
has only a few, perhaps finitely many (or an incomplete set) conserved local charges, and
would then represent a paradigmatic theory between integrable and ergodic dynamics.

Deterministic cellular automata on discrete phase space (space of configurations)
often admit continuous, single (or few) parameter modifications, which render the models
quantum or stochastic (depending on the type of deformation which turns a deterministic
evolution to a unitary or Markov map). For instance, in the definition of the matter–field
automaton, one may in each step allow for the triple (010) to remain (010) with probability
α and to map to (101) with probability 1 − α. Similarly, (101) remains in (101) with
probability β and maps to (010) with probability 1 − β. All the definitions of the previous
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section remain valid, except that the permutation matrix Y is now replaced by a stochastic
(Markov) matrix:

Ystoch =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 α 0 0 1 − β 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 1 − α 0 0 β 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (23)

Interestingly, the first two conservation laws, the momentum and energy (17), see also
(13), (14), survive the stochastic deformation, while, as indicated by computer algebra, the
third conservation law (q(3), p(3)) is broken. Hence, the deformation of the matter–field
automaton likely no longer posses nontrivial ergodicity breaking.

3. Deformed (Quantized) Hardpoint Lattice Gas

Nevertheless, we show briefly in this section how continuous deformations of some
other reversible deterministic cellular automata can lead to interesting non-ergodic dynam-
ics. For this purpose, we use the so-called charged hardpoint lattice gas [10] (also referred
to as XXC model in [16] since it is a deterministic limit of models introduced and studied
by Maassarani [17]).

In comparison to the matter–field automaton, the model has a richer local configuration
space, i.e., three states per site, and a simpler local interaction map, applying only to a
pair of neighbouring sites instead of three. In physical terms, the model describes the
dynamics of free point particles which move with speeds ±1, with initial positions placed
at commensurate (multiples of integer) coordinates, but which may carry an internal (say
binary) degree of freedom (charge). Denoting the three local states as s ∈ {0,+, −}, with
0 referred to as a vacancy, the local reversible and deterministic rule, which we apply
sequentially to pairs (2x, 2x + 1) and (2x + 1, 2x), reads

(00) ←→ (00) , (0α) ←→ (α0) , (αβ) ←→ (αβ) , α, β ∈ {+, −}. (24)

The model allows for a remarkable set of exact results on equilibrium and non-equilibrium
dynamics, ranging from dynamical correlations in equilibrium and the transport coeffi-
cients [10], to an analytic matrix-product-state description of time-dependent quenches and
non-equilibrium steady states in a boundary driven setup [11], to a recent exact solution of
full counting statistics [12]. One may wonder if the model still allows for some degree of
solvability, if hard-core collision is relaxed to a general stochastic, or unitary scattering

(+−) −→ u11(+−) + u12(−+), (−+) −→ u21(+−) + u22(−+), (25)

where u may be a 2 × 2 stochastic, or unitary matrix. In the latter case, we think of the
quantum lattice gas model and quantum superposition states as elaborated precisely below.
We note that this system is closely related to a semiclassically quantized sine-Gordon model,
recently studied in [18].

Consider a local Hilbert space H1 = C3, with states |s〉s=0,+,−. We refer to states |±〉
as charged particles and we denote them by the Greek index |α〉α=±, and to the state |0〉 as a
vacancy. Let us define a local propagator over H1 ⊗H1 as

U[u] = |00〉〈00|+ ∑
α∈{±}

(|0α〉〈α0|+ |α0〉〈0α|+ |αα〉〈αα|) + (26)

+ u11|+−〉〈+− |+ u12|+−〉〈−+ |+ u21| −+〉〈+− |+ u22| −+〉〈−+ |,

572



Entropy 2023, 25, 739

where u can be in principle any invertible matrix, u ∈ GL(2), for the properties that will be
discussed below, while for quantum physics applications we will think of u as a unitary
mixing matrix. Such U[u] satisfies two remarkable identities, valid for any u:

U12[u]U23[�]U12[u−1] = U23[u−1]U12[�]U23[u], (27)

U[u]U[u−1] = �, (28)

which can be checked by straightforward computation. Note that identity (27) bears some
similarity to the braid group form of the Yang–Baxter equation if u is considered as a
non-abelian spectral parameter. Specifically, U[�] obeys the braid relation—it constitutes
the so-called Yang–Baxter map—and provides a deterministic update rule for the charged
hardpoint lattice gas. However, U[u] does not have the full Yang–Baxter property, but ust
enough to render the existence of an infinite set of conserved local operators, as shown
below.

For simplicity we can now assume a finite system of an even number of sites L and
define its many-body Hilbert space as a tensor product H = H⊗L

1 . Then, we define a
locality-preserving discrete time dynamical system (a quantum cellular automaton) over it,
in terms of a brickwork circuit, i.e.,

U = UoUe, Ue =
L/2

∏
x=1

U2x−1,2x[u], Uo =
L/2

∏
x=1

U2x,2x+1[u], L + 1 ≡ 1, (29)

and write the evolution of observables as

a2t = Uea2t−1U−1
e , a2t+1 = Uoa2tU−1

o . (30)

Let us define the following pair of local operators (note periodic boundary conditions if
needed):

g(+)
x = Ux,x+1[u]Ux−1,xU[�]Ux,x+1[u−1], (31)

g(−)
x = Ux−1,x[u]Ux,x+1U[�]Ux−1,x[u−1].

Observing identities (27) and (28), we can straightforwardly derive a few remarkable
properties of these operators:

Ueg(+)
2x U−1

e = g(+)
2x+1, Uog(+)

2x−1U−1
o = g(+)

2x , (32)

Ueg(−)
2x U−1

e = g(−)
2x−1, Uog(−)

2x+1U−1
o = g(−)

2x , (33)

which justify the term glider operators [19] (see Figure 7 for a simple graphical proof of
the properties (32) and (33) in terms of quantum circuit representation). We note that our
gliders would be trivial g(±)

x = � for integrable trotterization [20] where U(�) = �.
These are particular kinds of quantum conservation laws, where the formal charge

and current densities are identical. Consequently, we can build products of such operators,
separated by at least two pairs of sites, which again behave in the same way

g(±)
x1,x2...xm =

m

∏
n=1

g(±)
2xn

, Ug(±)
x1,x2...xmU−1 = g(±)

x1±1,x2±1...xm±1 (34)

under constraints xj+1 − xj ≥ 2. We thus have a large set of extensive charges

Q(±)
r1,r2...rm =

L/2

∑
x=1

g(±)
x,x+r1...x+rm

, r1 ≥ 2, rm+1 − rm ≥ 2, Q(±)
r ≡ UQ(±)

r U−1. (35)
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These conserved operators concisely encapsulate the non-ergodic properties of the de-
formed hardpoint lattice gas. The non-ergodicity should not be considered surprising, as
the pattern of left and right movers is evolving regularly according to ballistic (free) dy-
namics. However, the internal (charge) degrees of freedom undergo interacting dynamics,
which is nontrivially constrained by conserving Q±

r .

u u

u u

u

u

u u

u u

u

u u

u

Figure 7. Diagrammatic proof of the glider property (32) in terms of equivalence of quantum circuits,
where gates U[u], U[ ], and U[u−1] are indicated by blue boxes. The proof of (33) is analogous (via
left–right reflection of the above diagrams).

The fact that the number of distinct glider charges Q(±)
r increases exponentially with

the size of support, say � such that all rj ≤ �, is reminiscent of superintegrable quantum
cellular automata [13,15,16], yet the absence of an exact Yang–Baxter property suggests that
the dynamical system is not completely integrable (i.e., there should be no Bethe ansatz!?).
We are thus suggesting a new class of non-ergodic many-body quantum dynamics.

4. Conclusions

The dynamical systems introduced and discussed in this short contribution have
been constructed for the sole amusement of the author. Yet, we hope these constructions
may at some point find some nontrivial applications in the context of non-equilibrium
statistical mechanics. Specifically, one of the long-standing key goals in the field is to derive
irreversible macroscopic transport laws, such as Fick’s law of diffusion or Fourier’s law of
heat transport, from microscopic reversible equations of motion. This question has also
been among the main research focuses of Giulio Casati [21], as well as stimulating the
beginning of my research career [22], and some of our joint work investigated Fourier’s
law in systems very similar to the models studied here: hardpoint colliding masses in one
dimension [23].

The coexistence of diffusive and ballistic transport has been rigorously demonstrated
in the Rule 54 automaton (reviewed in ref. [13], see also ref. [24]), and one may hope that
such results can be extended to the matter–field automaton, which seems richer and perhaps
more generic (for example, Rule 54 dynamics is superintegrable with an exponentially
growing number of conserved local charges, while the matter–field automaton is perhaps
at most integrable, as it has much rarer nontrivial local charges).
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Abstract: Electronic structure theory describes the properties of solids using Bloch states that cor-
respond to highly symmetrical nuclear configurations. However, nuclear thermal motion destroys
translation symmetry. Here, we describe two approaches relevant to the time evolution of elec-
tronic states in the presence of thermal fluctuations. On the one hand, the direct solution of the
time-dependent Schrodinger equation for a tight-binding model reveals the diabatic nature of time
evolution. On the other hand, because of random nuclear configurations, the electronic Hamiltonian
falls into the class of random matrices, which have universal features in their energy spectra. In
the end, we discuss combining two approaches to obtain new insights into the influence of thermal
fluctuations on electronic states.

Keywords: time evolution of quantum systems; structure of eigenstates and energy spectra; random
matrix theory; semiclassical methods and results; atomic, molecular and solid-state systems

1. Introduction

Bloch’s theorem and translational symmetry are two of the main bricks in the foun-
dation of solid state physics. Their use in crystal lattices makes an implicit assumption,
not emphasized in the texts we are aware of. Bloch’s theorem is mathematically correct of
course for a fixed, periodic potential, but real nuclei move under the influence of thermal
fluctuations, so that they have random configuration without translational symmetry at any
moment in time. This is clearest in the coherent state representation of the lattice, which
assigns a mean position and momentum to each atom [1].

The success of solid state theory suggests there should be a physical justification for
using electronic states corresponding to fixed highly symmetrical positions. Recently, it has
been found that for graphene π-bands, thermal fluctuations turn out to be too fast for the
adiabatic Born–Oppenheimer approximation (ABO) to be valid, so that the other limit—the
diabatic limit (DBO)—holds [2].

If we define the Born–Oppenheimer approximation as supposing that the electron
wavefunction returns to its starting form if the nuclei return to their starting positions
after an arbitrary journey, this leaves the possibility of adiabatic and diabatic motion of
the electron along the journey. We allow the caveat of possible Berry phases within the
Born–Oppenheimer realm.

During thermal fluctuations, atomic positions have a random component for any
arbitrary moment in time. The electronic Hamiltonian, which is a function of atomic
positions, acquires this random character. Properties of simple prototype random matrix
models are well studied in random matrix theory; some of them are universal and can
be extended to more general cases. Here, we are interested in ensembles of parameter-
dependent random matrices. In addition to level statistics, statistics of singularities in their
spectrum including degeneracies and avoided crossings is known. We believe these results
can be used to characterize electronic time evolution in the presence of phonons.

Entropy 2023, 25, 751. https://doi.org/10.3390/e25050751 https://www.mdpi.com/journal/entropy
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Indeed, the ABO breaks down when degeneracies occur; for the case of avoided
crossings, Landau and Zener found that the probability of adiabatic dynamics depends
on level spacing and sensitivity to perturbations. Random matrix theory combined with
Landau–Zener theory makes it possible to characterize the effects of thermal fluctuations
on electronic states.

The paper is organized as follows. In Section 2.1, we describe parameter-dependent
random matrices; in Sections 2.2 and 2.3, we discuss statistical properties of singularities
in their spectrum, namely, conical intersections and avoided crossings. In Section 3, we
describe results on graphene thermal fluctuations that suggest diabatic representation.
In Section 4, we sketch future directions for describing electronic dynamics in the presence
of phonons using random matrix theory.

2. Singularities in the Spectra of Random Matrices

2.1. Parameter-Dependent Random Matrices

Random matrices provide a pathway to universal behavior for complex quantum
systems [3]. One example of such a system is the chaotic dynamics of a kicked top [4,5].
In this paper, we consider only Gaussian ensembles, which are denoted by the Dyson index
β [3], where β = 1 for GOE, β = 2 for GUE, and β = 4 for GSE. Corresponding matrices
Hβ can be represented as a combination of symmetrical S and antisymmetrical A matrices,
whose elements are independent Gaussian distributed random variables with mean zero
and variance (1 ± δij)/β:

H1 = S, H2 = S + iA, H4 = Se0 + A1e1 + A2e2 + A3e3 (1)

where ei are 2 × 2 matrix representations of quaternion algebra bases:

e0 =

(
1 0
0 1

)
, e1 =

(
0 i
i 0

)
, e2 =

(
0 −1
1 0

)
, e3 =

(
i 0
0 −i

)
(2)

and the direct product is assumed for Anen.
We study the cases when a Hamiltonian Ĥ depends on a set of parameters, which,

in turn, depend on time. The idea of parameter-dependent random matrices first appears
in [6] to quantify the dissipation rate of a driven complex quantum system. We use the
following parametrization H(x1, x2, . . . , xn) suggested by Wilkinson and Austin [7]

H(x1, x2, . . . ) = cos x1H1 + sin x1H2 + cos x2H3 + sin x2H4 + . . . . (3)

where matrices H1, H2, . . . belong to the same ensemble and x = (x1, x2, . . . , xn). These
matrices may also belong to different ensembles to study symmetry-breaking perturbations
as Fritz Haake suggested [8–10].

This parametrization has a number of advantages. Distribution of matrix elements is
the same for all x, and matrices H and ∂H/∂xj are independent, therefore leading to rather
simple analytical averaging within the degenerate perturbation theory; the extension to the
cases when ∂H/∂X1 and ∂H/∂X2 have non-zero correlation was made by Wilkinson [11,12].
Equation (3) provides an ergodic property [13]—averaging over energy levels leads to the
same level spacing distribution as averaging over parameter space for a given pair of
levels—enabling, for example, geometrical considerations to determine scaling laws for the
density of avoided crossings [11].

An alternative to Equation (3) is the linear parametrization

H(x1, x2, . . . ) = H + H1x1 + H2x2 + . . . . (4)

However, now singularities in the spectrum happen only in the vicinity of x = 0, and the
distribution of eigenvalue curvatures ∂2εi/∂x2

j tends to zero for xj → ∞.
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2.2. Geometrical Properties of Conical Intersections

For a Hamiltonian Ĥ to have a doubly degenerate energy level, it is necessary to satisfy
two independent conditions. We reproduce here the argument of Teller [14]. Let us assume
that all but two of the Ĥ eigenstates have been found. Expressing Ĥ in the basis formed
by these eigenstates and two arbitrary states i and j, forming altogether a complete set of
functions, the condition for the degeneracy is

Hij = 0, Hii = Hjj. (5)

For ensemble β, it leads to a system of β+ 1 linear equations. In two-dimensional parameter
space, the levels are degenerate in isolated points called conical intersections.

The geometrical properties of conical intersections have been established in a number
of papers. Longuett-Higgins found that if a wavefunction changes sign when transported
adiabatically round a given loop in parameter space, then the state must become degenerate
with another one at some point within the loop [15]. This topological property is one
consequence of the Berry phase [16].

The distribution of conical intersections in the parameter space is characterized by
density D(ci)

n , which is the number of points, in which energy levels n and n + 1 are
degenerate, per unit area. Wilkinson and Austin proposed the idea for its analytical
derivation [11]. For a small element dA of the parameter space, the probability dp to find a
conical intersection is D(ci)

n dA. At the same time, dp is determined by the distribution P[R]
of the distances R from a random point to the nearest conical intersection

dp = P[R]dR = D(ci)
n dA. (6)

Hence, the problem is reduced to analytical calculation of P[R]. It is possible to express R
by using the degenerate perturbation theory. Averaging over the corresponding ensemble
leads to well-known integrals [17–19]. D(ci)

n depends on the density of states ρn = ρ(En)
and the variance of the off-diagonal matrix elements σ2 and has the general form Cβ(ρσ)β+1:

D(ci)
n =

π

3
ρ2

nσ2, D(ci)
n =

2
√

π

3
ρ3

nσ3, D(ci)
n =

16
√

2π3/2

45
ρ5

nσ5 (7)

for GOE [11], GUE, and GSE [20], respectively. We note that prefactors Cβ were found only
after corresponding scaling had been revealed in numerical calculations [21,22]. Such an
order of discoveries is typical in this field, for example, the exact distribution for energy
level curvatures for GUE was found only after numerical experiments [23–26].

By putting the Wigner semicircle distribution [3] in Equation (7) and integrating the
resulting expression over energy E, one gets the density of degeneracies summed over all
pairs of levels. Multiplied by the volume of the parameter space, this gives the total number
of degeneracies N . For M × M GOE matrices parametrized as Equation (3), Wilkinson and
Austin found [11]

N =
π

2
M2. (8)

For GOE-parametrized matrices, the potential energy surfaces En(x1, x2) and En+1(x1, x2)
form a cone near conical intersections. The corresponding energy level lines are ellipses.
Wilkinson and Austin [11] calculated the distribution of eccentricities and cone slopes.
We illustrate them in Figure 1, which is taken from their paper. We note that ellipses are
randomly oriented and mostly elongated in accordance with the distribution

P[e] =
( 2e

2 − e2

)3
(9)

coming from the joint probability distribution of slopes of the cone s and eccentricity e:

P[t, d] =
d

256σ6 e−t/8σ2
, (10)
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where d and t unambiguously determine e and s [11].

Figure 1. Energy level lines near the corresponding conical intersections between (a) the 1st and
2nd and (b) the 9th and the 10th energy levels for a 20 × 20 GOE-parametrized matrix. We note that
ellipses of nearby conical intersections are correlated but still degeneracies do not exhibit repulsion.
According to Equation (8), the total anticipated number of degeneracies is π

2 M2 = 628; in real
calculations [11], it is 564. (Adapted with permission from ref. [11]. Copyright 1993 American
Institute of Physics.)

One might expect that, similar to the spacings between adjacent energy levels, conical
intersections between the same pair of levels would tend to avoid each other. It turns out
that this is not the case for the GOE-parametrized model, Equation (3); there, degeneracies
can be considered as randomly distributed points [11]. However, as one can see on Figure 1,
their eccentricities and orientations are correlated.

2.3. Geometrical Properties of Avoided Crossings

Consider the case when the Hamiltonian depends on only one parameter x. This
is one of a wide range of systems with an arbitrary large number of time-dependent
parameters. The noncrossing rule follows from Equation (5) [27]; when x is varied, two
energy levels never cross. Still, they can approach each other with an arbitrary small
spacing. A local minimum in the distance between adjacent energy levels is called an
avoided crossing. We refer to the difference between energy levels at the minimum as a
gap. The distribution of crossing gaps is known for the GOE [28–30], GUE, and GSE [29,30].
Surprisingly, the ratio of mean crossing to mean spacing is not universal and varies from
0.42 to 0.52 for different realizations of the same ensemble β [30]. Furthermore, known as
level repulsion, the noncrossing rule has been generalized to non-hermitian Hamiltonians
that describe dissipative systems [31].

Energy profiles near an avoided crossing have the hyperbolic form

En,n+1 = B(x − x0)±
1
2

√
ε2 + A2(x − x0)2 (11)

which is a solution for the Hamiltonian

H(x) =
(
(B + A/2)(x − x0) ε/2

ε/2 (B − A/2)(x − x0)

)
. (12)

When the Hamiltonian depends on a set of time-dependent parameters, such avoided
crossings appear in the vicinity of degeneracies (the conical intersection geometry). Using
this property together with ergodicity, Wilkinson and Austin have shown in a simple
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manner that the number of avoided crossings with gaps less than Δ is proportional to Δ in
the limit Δ → 0 [11].

The density of avoided crossings D(ac)
n is the number of avoided crossings between

n and n + 1 energy levels per unit length as we traverse a line by varying x. The density
D(ac)

β (A, B, ε) of avoided crossings with gap ε and parameters A and B of the hyperbola
Equation (11) was found for β-parameterized models [6,20]

D(ac)
β (A, B, ε) = C(ac)

β

ρβ+1

σβ+1 Aβ+1εβ−1 exp
(
− βA2

8σ2

)
exp
(
− βB2

2σ2

) √β√
2πσ

dAdBdε (13)

with the prefactors [20]

C(ac)
1 =

π

24
, C(ac)

2 =
π3/2

12
, C(ac)

4 =
8π7/2

135
√

2
. (14)

3. Thermal Fluctuations in Solids

3.1. Born–Oppenheimer Approximation

All information about the properties of a system containing Nn nuclei and Ne electrons
is contained in the eigenstates of the many-body Hamiltonian

Ĥ =
Nn

∑
I=1

P2
I

2MI
+

Ne

∑
i=1

p2
i

2m
+

Nn

∑
1≤I<J

ZI ZJe2

|RI − RJ |
+

Ne

∑
1≤i<j

e2

|ri − rj|
−

Nn

∑
I=1

Ne

∑
i=1

ZIe2

|ri − RI |
, (15)

where m is the mass of an electron, e is the charge of an electron, ri and pi are the position
and the momentum of the i-th electron, respectively, MI is the mass of I-th nucleus, ZI
is the charge of I-th nucleus, and RI and PI are the position and the momentum of I-th
nucleus, respectively. The Hamiltonian describes kinetic energy of electrons and nuclei,
Coulomb interaction between nuclei, Coulomb interaction between electrons, and finally
Coulomb interaction between electrons and nuclei.

Eigenstates of Equation (15) can be found analytically only for the hydrogen atom.
Numerical solutions are possible for systems containing several atoms and electrons.
If there are M points in grids representing the positions of electrons and nuclei, M3(Nn+Ne)

real numbers would be required to store one state of the system. The exponential complexity
quickly hits the memory limits of modern machines, so approximations are necessary.

The Born–Oppenheimer approximation [32,33] is the first simplification of the problem.
It separates nuclear and electronic degrees of freedom. The separation is justified by
the fact that nuclei are much heavier than electrons, and as a result electrons adjust to
nuclear motion.

Within the Born–Oppenheimer approximation, atomic positions RI are fixed to give
the electronic Hamiltonian

Ĥe(R1, . . . , RNn) =
Ne

∑
i=1

p2
i

2m
+

Nn

∑
1≤I<J

ZI ZJe2

|RI − RJ |
+

Ne

∑
1≤i<j

e2

|ri − rj|
−

Nn

∑
I=1

Ne

∑
i=1

ZIe2

|ri − RI |
. (16)

The electronic Hamiltonian is then diagonalized to obtain eigenvalues

Ĥel(R1, . . . , RNn) |ψn〉 = En(R1, . . . , RNn) |ψn〉 , (17)

which are functions of nuclear positions. These functions are then regarded as potentials in
which nuclei move

Hn =
Nn

∑
I=1

P2
I

2MI
+ En(R1, . . . , RNn). (18)
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This Hamiltonian includes only nuclear degrees of freedom. It can be used to obtain
both quantum and classical solutions. In the classical treatment, the motion of a nuclei is
approximated as

MIR̈I = −∂En(R1, . . . , RNn)

RI
. (19)

In many cases, the collection of nuclei can be represented as classical harmonic oscilla-
tors, which is justified by the Schrodinger correspondence principle [34,35].

A more restrictive simplification is the clamped nuclei approximation [36], which as-
sumes that nuclei have fixed positions corresponding to the equilibrium structure. The orig-
inal problem is then reduced to finding the ground state of the electronic Hamiltonian
for a fixed set of parameters, Equation (16). This problem still has exponential complex-
ity, since M3Ne real numbers are required to store an electronic state. This complexity is
overcome by a single particle picture, in which an electron moves independently of all
other electrons. In this picture, the interaction of a single electron with other electrons is
represented as the interaction of an electron with some average external potential due to
the remaining electrons. Density functional theory provides the most accurate description
of electron–electron interactions in this way [37]. Another method commonly used to solve
the electronic Hamiltonian is the tight-binding method [38,39].

3.2. Supercell Technique

Within the Born–Oppenheimer approximation, clamped nuclei approximation, and
single-particle picture, the microscopic properties of a solid can be found by solving the
Schrodinger equation Ĥ |ψn〉 = En |ψn〉 for a single electron in the external potential set by
equilibrium atomic positions {RI}. The problem is still too complex, since solids consist of
an infinite number of atoms and electrons, making the electronic Hamiltonian a function
of an infinite number of parameters. The use of translational symmetry together with
periodic boundary conditions reduces the problem to a limited number of electrons inside a
primitive cell, and the Hamiltonian is hence a function of a finite set of parameters—vectors
that define the primitive unit cell and atomic coordinates inside the cell. Furthermore,
Bloch’s theorem gives eigenstates of the resulting Hamiltonian. Since atomic positions
are fixed in this description, this solution provides only the static properties of a solid.
A central property is the total energy of the system as a function of its structure. Minimizing
it, one can calculate equilibrium lattice constants, the bulk modulus, and the equation of
state E(V) or P(V), which is now a standard methodology in computational materials
science [37].

In real crystals, of course, atoms are constantly fluctuating around equilibrium po-
sitions. At an arbitrary moment of time, atomic positions are random and there is no
translational symmetry. Bloch’s theorem is no longer applicable. The problem becomes
intractable since the Hamiltonian is again a function of an infinite number of parameters.
In some cases, the complexity can still be harnessed by using the supercell technique [40,41].
In this technique, a supercell is constructed of N repeating primitive cells and the atoms
inside it are allowed to move freely. Periodic boundary conditions are then imposed on
this structure. It therefore becomes an infinite solid, where the supercell plays the role of a
primitive cell. Translational symmetry is restored and Bloch’s theorem can be applied. The
atomic motion inside the supercell allows access to dynamical properties such as phonons
or relaxation times. Strictly speaking, the thus calculated dynamical properties would
be different from those of the real solid; they would rather represent the properties of a
large “molecule” consisting of N primitive cells whose motion is repeated throughout
the space. However, upon an increase in N, the calculated properties would more closely
resemble those of the real solid; in other words, by increasing N, it is possible to achieve
numerical convergence.

Surprisingly, in many cases, the size of the supercell N necessary for numerical con-
vergence is not exceedingly high in terms of numerical calculations. Physically, this means
that in such cases interactions inside a solid quickly decay over distance. For example,
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for α-quartz, phononic dispersion can be accurately calculated by displacing atoms in a
supercell consisting of only 27 unit cells. The reason is that force constants between atoms
in the unit cells separated by more than three lattice spacings are weak [42]. In general,
of course, the value of N necessary for convergence depends both on the properties and the
solid, and it is possible that numerical convergence may not be achieved due to the limited
computational resources of modern computers.

The dynamical properties of solids calculated using the supercell technique also rely
on the assumption that electronic dynamics has a Born–Oppenheimer adiabatic character.
The electronic Hamiltonian for the supercell is set by positions of the atoms inside it.
Supposing the atoms are moving classically, the Hamiltonian becomes time dependent.
Therefore, to describe electronic dynamics |ψ(t)〉, it is necessary to solve the time-dependent
Schrodinger equation starting from the n-th eigenstate

ih̄
∂ |ψ(t)〉

∂t
= Ĥ(t) |φ(t)〉 , (20)

|ψ(0)〉 = |ψn(0)〉 . (21)

The time-dependent wavefunction |ψ(t)〉 often used in supercell calculations corre-
sponds to the n-th eigenstate of the Hamiltonian Ĥ(t) at time t

Ĥ(t) |ψn(t)〉 = En(t) |ψn(t)〉 , (22)

|ψ(t)〉 = |ψn(t)〉 . (23)

It is different from the wavefunction that one obtains by solving the time-dependent
Schrödinger equation, but according to the adiabatic theorem, they coincide if the Hamilto-
nian changes slowly enough (the adiabatic Born–Oppenheimer approximation (ABO)).

The adiabatic assumption can be checked by comparing the time-dependent solution
with the adiabatic one. Alternatively, the adiabatic assumption can be indirectly vali-
dated by the fact that calculated dynamical observables coincide with experimental values.
In most applications, there is no need for direct validation, since, for solids, theoretical
predictions turn out to correctly describe the experimental behavior.

The case of graphene is unique in this regard. Graphene is a two-dimensional honey-
comb structure of carbon atoms. Each carbon atom has four valence orbitals, three of which
hybridize to form strong in-plane σ-bonds between adjacent atoms. The fourth electron is
in a pz orbital perpendicular graphene’s plane. Out-of-plane pz electrons form π-bonds that
are significantly weaker than σ-bonds, and therefore their impact on atomic motion is weak.
Although atomic motion is primarily determined by σ-bonds, electrons in σ-bonds do not
contribute to electronic transport. Therefore, the fact that numerical calculations reproduce
experimental values for atomic vibrations confirms the validity of the adiabatic assumption
for σ-bonds only. One can check the validity of the adiabatic theorem for π-electrons by
directly comparing time-dependent electronic wavefunctions to the adiabatic ones. This
comparison was performed by Mohanty and Heller [2], which we describe below.

3.3. Simulating Graphene Thermal Fluctuations

To model the thermal fluctuations of graphene, the authors constructed a 4 × 4
supercell with 32 carbon atoms. To check that qualitative conclusions hold for larger sizes,
they repeated calculations for a 5 × 10 supercell. Within a supercell, atoms were allowed
to move freely under the harmonic σ-bonded force field, with atomic motion taken as a
superposition of graphene phonons that satisfied the periodic boundary conditions of a
given supercell. In turn, graphene phononic frequencies were computed by considering
only force constants between adjacent atoms, and the corresponding value was taken
from infrared spectroscopy of the C=C aromatic bond. The amplitude of each phonon
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corresponded to a temperature T = 300 K. Eventually, atomic positions were predetermined
for each moment of time according to

r(t) = ∑
n

√
2kBT
Mω2

n
qn cos ωnt, (24)

where qn is the normal mode for the n-th phonon with frequency ωn. π-electrons do not
directly influence this motion. This is a simplification, but it is expected that the qualitative
conclusions hold since the stiff σ-bonds contribute most to the force.

At each moment of time, atomic positions determine the nearest-neighbor tight-
binding Hamiltonian for π-electrons. The hopping integral between adjacent atomic
sites depends on the distance rij(t) between the atoms

H(t) = − ∑
〈ij〉

β exp[−αrij(t)](ĉ+i ĉj + H.c.), (25)

where 〈ij〉 stand for the indices of adjacent atoms.
The time-dependent Hamiltonian Ĥ(t) is used to obtain two types of wavefunction.

The first corresponds to the adiabatic solution |ψn(t)〉, Equation (22). Adiabatic diago-
nalization based on the instantaneous atomic positions provides the eigenenergies En(t).
The second type of wavefunction is the actual electronic wavefunction that is given by
Equation (20).

To study the validity of the ABO, the true wavefunction |ψ(t)〉 is compared with the
adiabatic solution |ψn(t)〉 by calculating the overlap between them

an(t) = | 〈ψn(t)|ψ(t)〉 |2, (26)

which is called the adiabatic correlation.
The adiabatic correlation reveals whether the adiabatic theorem, and consequently

the ABO, is valid for this process. However, it does not say how strong the changes in
the wavefunctions |ψn(t)〉 and |ψ(t)〉 are. For this, the overlap of the actual wavefunction
with the initial wavefunction was calculated. The corresponding quantity is called the
diabatic autocorrelation

d(t) = | 〈ψ(0)|ψ(t)〉 |2. (27)

3.4. Breakdown of the ABO for Thermally Fluctuating Graphene

Eigenenergies of the time-dependent Hamiltonian En(t) for a 4 × 4 supercell,
Equation (22), are shown in Figure 2a. Time is given in the units of the shortest vibrational
period, which is 191 h̄/Ry for the case of the 4 × 4 supercell. There are 32 eigenenergies
because the supercell accommodates 32 atoms; for any moment of time, eigenvalues are
not degenerate because atomic positions do not correspond to a highly symmetrical con-
figuration including the initial moment of time t = 0, Equation (24). Eigenenergies form
clusters that are separated from each other by gaps of several eV.

The time evolution of the eigenenergies of one of the clusters is seen to fluctuate
around the average values in Figure 2b. Adjacent levels constantly approach each other;
however, spacings between them never go to zero. If the dynamics were adiabatic, En(t)
would describe how the expected values of the time-dependent states evolve. To reveal
the character of the dynamics, adiabatic correlations and diabatic autocorrelations are
calculated for the states starting from the ground state and from the n = 18 state at t = 0.
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Figure 2. (a) Time-dependent energy spectrum at the Γ point. (b) Time evolution of the n = 18th to
the n = 25th bands. (Reprinted from ref. [2].)

For the ground state, the adiabatic correlation remains one a1(t) = 1 during the
simulation time equal to tens of the shortest vibrational period. The diabatic autocorrelation
remains one d(t) = 1 as well. Preservation of adiabatic correlation means that the solution
of Equation (20) |ψ(t)〉 and the solution of Equation (22) |ψ1(t)〉 coincide up to an arbitrary
phase, |ψ(t)〉 = |ψ1(t)〉; therefore, the adiabatic theorem and consequently the ABO hold
for time evolution of this particular state. Since the diabatic autocorrelation remains one
as well, we conclude that the thermal motion of atoms has no effect on the ground state,
and neither the adiabatic nor the true wavefunctions change.

The behavior of higher states that form the clusters is different. Figure 3a shows
adiabatic correlations for the state |ψ(t)〉, starting from the n = 18 eigenstate at t = 0.
In contrast to the ground state, the overlap probability with the corresponding adiabatic
state sharply decays to zero during the first vibrational period. For the first four vibrational
periods, it remains zero most of the time, occasionally sharply rising to a18 ≈ 0.5 and then
sharply decaying to zero again three times during the aforementioned time. In addition to
this, we can also observe the overlap probability with other adiabatic states in the Figure.
These states form a cluster of eigenenergies, Figure 2b. The overlap with each of these
states is constantly changing, rising from zero to a maximum value and then decaying back
to zero. The maximum value varies among states of the cluster and lies within the range
from a25 ≈ 0.25 for the n = 25 adiabatic eigenstate to a21 = 0.8 for the n = 21 adiabatic
eigenstate. For certain states, for example, n = 21, peaks in the adiabatic correlation merge,
while for the others, peaks in the adiabatic correlation stand separately.

The diabatic autocorrelation for the n = 18 state also has a different behavior to
the one of the ground state, Figure 3b. In contrast to the ground state case, it does not
remain one throughout the simulation. It gradually decays to zero within 60 periods of the
shortest vibration. The decay time of the diabatic correlation is several orders of magnitude
larger than the decay time of the adiabatic correlation. After dropping to zero, the diabatic
correlation function grows.

From the quick decay of the adiabatic correlations, it is clear that in the presence of
thermal fluctuations, the adiabatic theorem and the ABO do not hold for states that form
clusters. The adiabatic theorem and the ABO are still valid for the ground state that is
separated from all the others by gaps of the order of several eV. Such a sharp decay of
the adiabatic correlation can be attributed to the near degeneracy of the states, suffering
frequent avoided crossings. As we discuss in the next section, these avoided crossings
indeed have parameters that lead to the breakdown of the adiabatic theorem.
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Figure 3. (a) Adiabatic autocorrelation function for the band n = 18 and overlap probability between
the time-dependent solution starting from the n = 18th state at t = 0 and other adiabatic eigenstates.
(b) Diabatic autocorrelation function for the band n = 18. (Reprinted from ref. [2].)

Secondly, the fact that the diabatic autocorrelation decays on a timescale several orders
larger than adiabatic correlations means that during the very first oscillations, electronic
wavefunctions stay intact in the sense that the atomic orbital coefficients remain nearly
unchanged as they are carried around by their respective nuclei. Since adiabatic correlations
drop sharply to zero in the meantime, one can conclude that even the smallest changes
in atomic positions lead to enormous changes in the adiabatic wavefunctions |ψn(t)〉 that
form a cluster and that are solutions of Equation (22). This is in sharp contrast to the
ground state, where both adiabatic and diabatic wavefunctions did not change during the
whole simulation time. From the perspective of the zero-th order degenerate perturbation
theory, almost degenerate states form a complete basis set to describe changes in adiabatic
electronic wavefunctions induced by thermal motion of atoms. Quick decay of adiabatic
correlations and preservation of the initial wavefunction means that even slight atomic
displacements lead to strong mixing between initial adiabatic states. This is a characteristic
feature of states that form clusters.

Finally, the decay of the diabatic autocorrelation at much larger times than adiabatic
correlations means that electrons cannot adjust to nuclear motion. The ABO ansatz is based
on this assumption. Therefore, it is not optimal for description of such dynamical processes.
Qualitatively, one may rather say that electronic states are preserved during dynamics.
Since time evolution has diabatic character, then another ansatz, which the authors called
the diabatic Born–Oppenheimer approximation, would be more suitable than the ABO for
a description of such processes.

Qualitatively, the diabatic character is in accordance with experiments. Indeed, elec-
tronic structure theory and Bloch functions are built assuming atoms form perfect symmet-
rical structures. The success of electronic structure theory indicates that during thermal
fluctuations, electronic wavefunctions are preserved by obeying a diabatic solution near
avoided crossings. Therefore, there is an implicit diabatic assumption in electronic structure
theory, otherwise it would be impossible to exploit translational symmetry. The diabatic
representation is that the ABO solution for the highest symmetry is used no matter what
the actual positions of the nuclei are.

4. Discussion and Further Work

In this section, we suggest future directions in the study of time-dependent dynamics
of electrons in the presence of phonons. Mohanty and Heller [2] have established its
diabatic character by running time-dependent simulations. It is interesting, however, that
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the lowest frequency phonons have not been studied, owing to the the finite size of the
supercell. They are slow; thus, they may be again in the adiabatic realm. It would be very
constructive to determine this.

We now suggest a new perspective based on avoided crossings. We outline how one
can potentially come to the same conclusions by using Landau–Zener theory in tandem
with random matrix theory without running time-dependent calculations.

The idea of using Landau–Zener theory in tandem with random matrix theory belongs
to Wilkinson [6]. They considered a driven finite-sized system and calculated the rate of
increase in energy of the system using a distribution of gap sizes and the slopes of avoided
crossings, similar to Equation (13). It was noted in reference [6] that this idea could be
applied in the context of the Born–Oppenheimer approximation to characterize vibronic
coupling in complex molecules.

Diabatic preservation of electronic character suggests a breakdown of the adiabatic
approximation. Adiabaticity breaks down when the Hamiltonian changes too rapidly. One
can estimate a timescale of adiabatic motion by using Heisenberg’s uncertainty principle;
for a process with the minimal spacing between energy levels ΔE, adiabatic evolution can
take place only for time τ

τ ≥ h̄/ΔE. (28)

From Equation (28), it follows that avoided crossings or local minima in the distance
between adjacent levels determine the timescale for adiabatic motion. We have considered
their statistical properties in Section 2.3.

Figure 2b shows how energy levels vary over time for graphene thermal fluctuations.
Each state experiences several avoided crossings during one cycle of the shortest vibra-
tional mode. We conclude that the presence of multiple avoided crossings is an inherent
feature of this motion, and therefore should be explicitly incorporated into theoretical
treatment. Specifically, avoided crossings determine a characteristic energy gap, which
in turn determines a timescale for adiabatic evolution. This timescale is to be compared
with the vibrational period, which is primarily set by σ-bonds and only weakly depends
on pz-orbitals.

For the case [2], the shortest vibrational period is τ ≈ 191h̄/Ry, so the energy gap
should be at least ΔE = 1/191 ≈ 0.005 Ry. As one can see in Figure 2b, avoided crossings
have a much smaller gap, leaving no hope for adiabatic motion. Indeed, in Figure 3a, the
adiabatic autocorrelation of the 18th state drops to zero at t = 0.25, which is exactly the
first avoided crossing one can observe in Figure 2b.

Landau and Zener gave a more accurate estimation for adiabatic timescales [43]. They
considered a two-level system with the Hamiltonian in the form of Equation (12) for the
case B = 0, x0 = 0, and x ≡ t. The probability of adiabatic time evolution by the end of
the motion is

p = 1 − exp
(
− πε2

2Ah̄

)
. (29)

The estimation of adiabatic Aadia based on the exact solution Aadia = π
2 ε2/h̄ is close

to the one based on Heisenberg’s uncertainty principle, A = ε2/h̄. In the case of graphene
thermal fluctuations, the electronic structure of the pz orbitals determines ε, while the
temperature and σ-bonds determine A.

Thus, instead of explicitly calculating the time-dependent wavefunction, one can more
simply and more insightfully study the evolution of electronic character by finding avoided
crossings in the time-dependent electronic spectrum, extracting A and ε from the fit to
Equation (11) and putting these parameters into Equation (29).

The procedure we have just outlined still requires performing numerical calculations
to obtain a time-dependent electronic spectrum. Further analytical insights at much less
effort might have been obtained using the theoretical results from Section 2.3. As a result of
the randomness of thermal fluctuations, one can model the electronic Hamiltonian by a
random matrix. This theory allows determining the distribution of ε, A, and B for avoided
crossings, Equation (13). In tandem with Landau–Zener theory, it is possible to understand
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the diabatic character of time evolution even without running simulations. In order to
make random matrix theory applicable, it is necessary to adjust the density of states and the
sensitivity to perturbations by rescaling energy and time; this procedure has been described
by Wilkinson [22].

There is one caveat: Landau–Zener theory considers only two coupled states, whereas
all states that form a cluster turn out to be coupled. There is a close and suggestive analogy
with the Wigner surmise for the nearest neighbor level spacing distribution; a very accurate
result was obtained by Wigner using only an ensemble of 2 × 2 random matrices instead of
the full N × N case.

One can see a manifestation of the full N-state cluster coupling in Figure 3a for the
first avoided crossing of the 18th state; the state makes a transition to the 21st but not to the
adjacent 19th or 17th state. A general solution to the multi-level Landau–Zener problem is
necessary here, which has not been obtained yet [44–46].

We have suggested a new way to analyze electronic dynamics in the presence of phonons,
which enables to use random matrix theory and may shed new light on this problem.

5. Summary

The main purpose of this paper is to show that two seemingly distinct subjects,
random matrix theory and electronic dynamics in the presence of thermal fluctuations, can
be brought together through considering statistically known properties of the electronic
structure spectrum. This perspective can potentially give more information than just
the preservation of diabatic electronic character recently found in the time-dependent
simulations of graphene thermal fluctuations.

We first introduced parameter-dependent random matrices and the reasons for select-
ing a particular parametrization. Then, we considered singularities in their spectra, i.e.,
conical intersections and avoided crossings. We have described the geometrical proper-
ties of conical intersections, along with a typical workflow for calculating their statistical
distributions analytically. Qualitatively, analytical predictions were in agreement with the
illustrated numerical results. Then, we quoted the statistical distribution of fitting param-
eters for energy levels near an avoided crossing, which is important for the perspective
we suggest.

We next examined the time evolution of graphene π-band electronic states in the
presence of phonons. A direct solution of time-dependent Schrodinger equation shows
that a projection of the time-dependent state on an instantaneous adiabatic state drops
to zero during the very first vibrational cycle, whereas overlap with the initial electronic
state decays at a much longer timescale. Moreover, it tends to recover at an even larger
timescale. That indicates preservation of the electronic character and the diabatic nature of
time evolution.

Finally, we sketched a possible way to treat the dynamics of electrons in the presence
of phonons based on random matrix theory and avoided crossings. We started with the
observation that numerous avoided crossings arise in the supercell electronic bandstructure
because of nuclear motion. Overlap of the time-dependent wavefunction with the instanta-
neous adiabatic states suggests avoided crossings are responsible for the rapid decay of
the adiabatic states. A simple estimation based on the uncertainty principle confirms that
avoided crossings have gaps that are too small for the adiabatic theorem to be valid. We
then outlined a more sophisticated analytical treatment based on Landau–Zener theory. All
in all, the suggested perspective may enable the use of random matrix theory to characterize
the time evolution of electrons in the presence of phonons. This could be a powerful new
perspective in this important problem.
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Abstract: Rectangular billiards have two mirror symmetries with respect to perpendicular axes
and a twofold (fourfold) rotational symmetry for differing (equal) side lengths. The eigenstates of
rectangular neutrino billiards (NBs), which consist of a spin-1/2 particle confined through boundary
conditions to a planar domain, can be classified according to their transformation properties under
rotation by π (π/2) but not under reflection at mirror-symmetry axes. We analyze the properties
of these symmetry-projected eigenstates and of the corresponding symmetry-reduced NBs which
are obtained by cutting them along their diagonal, yielding right-triangle NBs. Independently of
the ratio of their side lengths, the spectral properties of the symmetry-projected eigenstates of the
rectangular NBs follow semi-Poisson statistics, whereas those of the complete eigenvalue sequence
exhibit Poissonian statistics. Thus, in distinction to their nonrelativistic counterpart, they behave
like typical quantum systems with an integrable classical limit whose eigenstates are non-degenerate
and have alternating symmetry properties with increasing state number. In addition, we found out
that for right triangles which exhibit semi-Poisson statistics in the nonrelativistic limit, the spectral
properties of the corresponding ultrarelativistic NB follow quarter-Poisson statistics. Furthermore,
we analyzed wave-function properties and discovered for the right-triangle NBs the same scarred
wave functions as for the nonrelativistic ones.

Keywords: quantum chaos; relativistic quantum chaos; quantum billiards; relativistic quantum
billiard

1. Introduction

This paper is a contribution to the special issue Quantum Chaos, which is dedicated
to the 80th birthday of Giulio Casati who is a leading expert in the fields of classical and
quantum chaos. He, actually, already expressed in [1] the conjecture that the spectral prop-
erties of quantum systems with a chaotic classical dynamics coincide with those of random
matrices from the Gaussian ensembles (GEs) of corresponding universality class [2], that is,
before Bohigas, Gianoni and Schmit formulated the famous BGS conjecture [3]. According
to the BGS conjecture, they are well described by random marix theory (RMT) [2,4–7],
where the appropriate GE for quantum systems with preserved and violated time-reversal
invariance are the Gaussian orthogonal ensemble (GOE) and the Gaussian unitary ensem-
ble (GUE), respectively. Criteria for its validity were identified in Ref. [8] based on the
semiclassical periodic orbit (PO) theory, which was pioneered by Gutzwiller [9,10]. Casati
considered a billiard with the shape of a stadium. Billiards provide a particularly suited
model for studies in the context of quantum chaos. The dynamics of classical billiards
(CBs), consisting of a point particle which moves freely inside a bounded two-dimensional
domain and is reflected specularly at the boundary, can be engineered through the choice of
their shape [11–13]. The eigenstates of the corresponding nonrelativistic quantum billiard
(QB) are determined by solving the Schrödinger equation for a free particle and imposing
the Dirichlet boundary condition (BC) on the resulting wave functions. Berry and Tabor
showed in [14] based on action-angle variables that the spectral properties of typical in-
tegrable systems [15] agree well with those of Poissonian random numbers. However,
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there are numerous examples for ’untypical’ integrable systems, a paradigm one being the
harmonic oscillator [16]. Another example is polygonal billiards [17–19], such as triangular
billiards, which have been investigated by Casati and his collaborators for nearly three
decades [20–23] and the rectangular billiard [24]. Billiards with the shapes of rational
polygonals of which the boundary comprises diffractive corners with angles αi =

ni
mi

π
where mi, ni are integers and ni �= 1 [17,25–32] are neither integrable nor chaotic. Therefore,
they are referred to as pseudointegrable systems. Their phase space trajectories propagate
on invariant surfaces that are topologically equivalent to multihandled, two-dimensional
tori with genus 2 ≤ g < ∞, implying that they are not ergodic in phase space. Yet, the
motion in such billiards has a chaotic component arising from the diffractive corners, which
are of measure zero in classical phase space. The spectral properties of the corresponding
QB differ considerably from those of typical integrable systems [26,28–31]. To be more
explicit, they exhibit features that are intermediate between those of Poissonian random
numbers and those of random matrices from the GOE in the sense that the levels repel
each other linearly like in chaotic systems, and their nearest-neighbor spacing distribution
decreases exponentially for large spacings, which is typical for integrable systems [33].
Depending on the choice of angles of a right-triangle QB, the properties are well described
by those of semi-Poissonian numbers, which are obtained by deleting every second one in
a sequence of Poissonian ones [23,34]. Such cases are considered in the present work.

We present results obtained for the spectral properties, momentum distributions [35]
and Husimi functions [36,37] of the rectangular and square-shaped relativistic neutrino
billiards (NBs) and their symmetry-projected eigenstates. These are obtained by separating
their eigenstates according to their transformation properties under rotation by π and
π/2, respectively. Neutrino billiards were introduced by Berry and Mondragon [38]. They
are governed by the Weyl equation [39] for a non-interacting, massless spin-1/2 particle—
commonly referred to as the Dirac equation in this context [38]—with the BC that the
outward current vanishes. In distinction to QBs, NBs and the relativistic quantum systems
considered in Ref. [40] do not have a well-defined classical counterpart. Insight into their
behavior in the semiclassical limit can be obtained based on a semiclassical approximation
for the fluctuating part of their spectral density in terms of a trace formula [41,42], which
is applicable from the ultrarelativistic limit for massless neutrinos to the nonrelativistic
limit of large mass m0 where the energy is close to the rest energy E0 = m0c2 [43]. The
trace formula is a sum over periodic orbits of the CB of corresponding shape, where in the
ultrarelativistic limit, those with an odd number of reflections at the boundary are missing.

An alternative type of billiards exhibiting relativistic features in part of their eigen-
value spectrum are graphene billiards, which are constructed by cutting a honeycomb
lattice out of their shape. They are used to model properties of artificial graphene flakes
based on a tight-binding model [44,45]. Finite-size sheets of graphene [46–49], referred to as
graphene quantum dots, have the advantage that they can be studied experimentally. The
first experiments were presented in [50–52]. In the vicinity of the corners of the hexagonal
Brillouin zone, where the conduction and valence band touch each other conically, the
energy excitations are governed by the Dirac equation for massless spin-1/2 particles [53].
The occurrence of the conical structure solely originates from the honeycomb structure
of graphene, which is formed by two interpenetrating triangular lattices. This led to the
realization of numerous experimental ’artificial-graphene’ realizations [54]. Boundary
conditions on the spinor components in a graphene billiard were formulated in [55–57].
We modeled rectangular, Africa-shaped and threefold-symmetric graphene billiards ex-
perimentally with flat superconducting microwave photonic crystals [58–62] and found
agreement with the spectral properties of massive neutrino billiards only beyond a certain
mass. In addition, theoretical studies of rectangular graphene quantum dots yielded devia-
tions from those of massless neutrino billiards [63]. Their origin is explained in Ref. [64] and
may be attributed to the presence of the boundary and differing BCs. The extraordinary
features presented in this work are only observed in the ultrarelativistic limit for massless
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neutrino billiards. Similar studies will be performed for graphene billiards for varying BCs
in a separate work.

The work was motivated by results obtained in [65] for the equilateral triangle and
in [66] for sectors of the circle and ellipse NB. The boundary of the equilateral triangle has
a C3v symmetry [67], that is, threefold rotational symmetry and mirror symmetries with re-
spect to its main axes: that of the circle belongs to the U(1) symmetry class, which comprises
all M-fold rotational symmetries with M ≥ 2, and that of the ellipse has mirror symmetries
with respect to its minor and major axes and a twofold rotational symmetry. Generally, the
eigenfunctions of a QB with a mirror symmetry are separated into eigenfunctions which
are either symmetric or antisymmetric with respect to the symmetry axes, and they fulfill
either Neumann or Dirichlet BCs along them. This is not possible for NBs. However, as will
be outlined in Section 2, the eigenstates of NBs whose boundary has a M-fold rotational
symmetry can be separated according to their transformation properties under rotation by
2π
M into symmetry-projected eigenstates. Sectors of NBs are constructed by cutting these
along the borders of a fundamental domain associated with a discrete rotational symmetry
and imposing the same boundary conditions along the cutlines as along the outer boundary,
that is, as for the full NB. These NBs are referred to as symmetry-reduced NBs in the
following. The circle and ellipse sector CBs have an integrable classical dynamic [68,69],
and the corresponding QBs exhibit Poissonian statistics. The symmetry-projected eigen-
states of the circle and ellipse NBs have been determined analytically in Refs. [38,41,65,70].
Their spectral properties also exhibit Poissonian statistics, that is, they agree with those of
the corresponding QB. The spinor components of the eigenfunctions of an NB are linked
through the BCs at the boundary [38]. Furthermore, for NBs with a discrete rotational sym-
metry, they transform differently under the associated rotation [65,71], implying that the
symmetry classes are intermingled when cutting an NB into symmetry-reduced NBs. We
demonstrated in [66] that consequently, the symmetry-reduced and full NBs cannot have
any common eigenstates and that the spectral properties of symmetry-reduced circle NBs
with an arbitrary inner angle smaller than 2π and the quarter-ellipse NBs with sufficiently
small eccentricity agree with GOE after extracting the contributions from librational modes.
This was also attributed to the discontinuity of the BC at the corners, where straight and
curved parts are connected.

In [65], we computed the eigenstates of massive equilateral triangle NBs and their
symmetry-projected eigenstates analytically and found that they coincide with those of the
corresponding QB. Their short-range correlations exhibit the nontypical behavior expected
for rectangular billiards whose side lengths are commensurable; however, otherwise, the
spectral properties agree with semi-Poisson statistics. In contrast, those of the massless
right-triangle NB, which is obtained by cutting the equilateral triangle NB along a mirror-
symmetry axis, agree with Poisson [66]. These results are in contrast to those for the ellipse
and circle NBs and corresponding sector NBs. They are attributed to the fact that the
equilateral triangle NB has no curved boundary parts. In the present work, we investigate
properties of the symmetry-projected and symmetry-reduced eigenstates of rectangular
billiards with commensurable and incommensurable side length. The central question was
whether the symmetry-projected eigenstates of rectangular NBs show a similar behavior as
those of the equilateral triangle.

2. Review of Characteristic Features of Neutrino Billiards

In the two-dimensional plane r = (x, y), the Dirac equation for a free spin-1/2 particle
with mass m0 and momentum p̂ = −ih̄∇ reads

ĤDψ =
(

cσ̂ · p̂ + m0c2σ̂z

)
ψ = Eψ, ψ =

(
ψ1
ψ2

)
. (1)

Here, ĤD denotes the Dirac Hamiltionian, σ̂ = (σ̂x, σ̂y), σ̂x,y,z are the Pauli matrices,
and E = h̄ckE = h̄ck

√
1 + β2 is the energy of the particle, where k is the free-space wave
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vector and β = m0c
h̄k is the ratio of the rest-energy momentum and free-space momentum.

The NB was introduced in Ref. [38] for the ultrarelativistic, i.e., massless case m0 = 0.
It is characterized by the way the particle is confined to the billiard domain Ω without
destroying the self-adjointness of the Hamiltonian. This is ensured by imposing along its
boundary ∂Ω on the solutions of Equation (1) the BC that the normal component of the local
current, which is given by the expectation value of the current operator û = ∇p ĤD = cσ̂,
u(r) = cψ†σ̂ψ, vanishes, yielding independently of the mass [38,42],

ψ2(t) = iμeiα(t)ψ1(t). (2)

Here, the boundary r(t) = [x(t), y(t)] or in the complex plane w(t) = x(t) + iy(t)
is parameterized in terms of t, and μ = ±1 determines the rotational direction of the
flow at the boundary, where it is unidirectional [38]. We chose μ = 1. The parameter
is defined for rectangular billiards with side lengths 2a and 2b in a coordinate system,
whose origin is at its center and with the x-axis parallel to the sides with lengths 2a
where w(t) = t ± ib, t ∈ [−a, a], while the y-axis is parallel to those with lengths 2b
where w(t) = ±a + it, t ∈ [−b, b]. Furthermore, α(t) is the angle of the outward-pointing
normal vector n(t) at r(t) with respect to the x-axis. Another choice of parameter which is
commonly used is the arc-length s ∈ [0, L] with L denoting the perimeter, which essentially
corresponds to t plus the sum of the lengths of the sides that have been passed when
moving along the boundary where we set s = 0 at r = (0,−b). In a local coordinate
system (n, s) which moves counterclockwise along the boundary (n = 0, s) and whose
coordinate axes are in the directions of the tangential vector t(s) to ∂Ω at r(s) and the
normal vector n(s), respectively, the combination of the Dirac Equation (1) at the boundary
and Equation (2) yields with (∂x ± i∂y) = e±iα(∂n ± i∂s) BCs in terms of separate equations
for the wave-function components [42],

(∂n + i∂s)ψ1(n, s)|n→0− = −kK−1ψ1(s), (3)

(∂n − i∂s)ψ2(n, s)|n→0− = kKψ2(s).

Here, K =

√
1−sin θβ

1+sin θβ
with sin θβ = β√

1+β2
. Note that when introducing

ψ =

⎛⎝√ 1+sin θβ

2 ψ̃1√
1−sin θβ

2 ψ̃2

⎞⎠, (4)

the Dirac equation Equation (1) takes the form of that for massless neutrinos with modified
BCs,

kψ̃(r) + iσ̂ ·∇ψ̃(r) = 0 (5)

Kψ̃2(s) = ieiα(s)ψ̃1(s). (6)

The nonrelativistic limit is reached when the energy is close to the rest energy, E � m0c2 [43],
that is, for sufficiently large β → ∞, corresponding to K � 1

2β → 0 and θβ → π/2.
Conversely, in the ultrarelativistic case m0 = 0, they equal K = 1 and θβ = 0. The BC
imposes a phase relation on the wave-function components ψ1,2(s) at ∂Ω and provides
a quantization condition whose solutions are the eigenstates of the Hamiltonian ĤNB
associated with the NB. Alternative BCs for the confinement of relativistic particles to a
bounded domain are proposed in [70,72] and based on the ‘MIT’ bag model [73].

Exact analytical solutions were derived for the equilateral triangle NB [65,70], the
circle NB [38] and the ellipse NB [41] based on plane wave expansions. In [74–78], the
eigenenergies of Dirac particles confined to a one- and a three-dimensional box were
computed based on a plane-wave ansatz employing the MIT bag model. However, even
though the BCs depend either on x or on y, a complete quantization of the rectangular NB
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with such an ansatz is not possible, because the x and y parts of the kinetic energy term do
not commute [38]. A plane wave expansion

ψ1(r) = ∑
j

aj(k)e
ikj ·r (7)

ψ2(r) = ∑
j

eiθj aj(k)e
ikj ·r (8)

with kj = k(cos θj, sin θj) and BC Equation (2) or, equivalently, Equation (3) yields only
one-dimensional solutions corresponding to eigenmodes propagating parallel to the x or
y axis, for which either θj = 0, π or θj =

π
2 , 3π

2 . Therefore, we employed an extension of
the boundary-integral equations (BIEs) derived in Ref. [38] for massless NBs to massive
ones [42,79].

The derivation is based on Green’s theorem, which provides exact integral equations
for the eigenvalues and the spinor components in the interior of the billiard in terms of those
on the boundary. An advantage of the boundary integral approach is that the eigenvalue
problem is reduced from a two-dimensional differential equation to a one-dimensional
boundary integral. The BIE is given by

(
1 − sin θβ

)
ψ̃∗

1 (φ
′) =

ik
4

 2π

0
|w′(φ)|dφQ1(φ

′, φ)ψ̃∗
1 (φ) (9)

where the integration variable φ is related to s by ds = |w′(φ)|dφ and

Q1(φ
′, φ) = cos θβ

[
ei(α(φ′)−α(φ)) − 1

]
H(1)

0 (kρ) (10)

+
{[

1 − sin θβ

]
ei(ξ(φ,φ′)−α(φ)) +

[
1 + sin θβ

]
e−i(ξ(φ,φ′)−α(φ′))

}
H(1)

1 (kρ),

with

eiξ(φ,φ′) =
w(φ)− w(φ′)
|w(φ)− w(φ′)| , ρ(φ, φ′) = |w(φ)− w(φ′)|. (11)

Here, H(1)
m (kρ) = Jm(kρ) + iYm(kρ) is the Hankel function of the first kind of order

m. At φ = φ′, i.e., ρ = 0, H(1)
0 (kρ) and H(1)

1 (kρ) have a logarithmic and a 1/ρ singularity.
The integral over these singularities leads to the sin θβ term on the left-hand side [79].
Accordingly, an interval [φ′ − δφ, φ′ + δφ], where δφ is arbitrarily small, is excluded from
the integration range on the right-hand side. The corresponding BIE for ψ̃∗

2 (φ
′) is obtained

by employing in Equation (10) the BC in Equation (6) and those for the spinor components
ψ1,2(φ) are obtained with Equation (4). In the nonrelativistic limit sin θβ → 1, the left-
hand side approaches zero, implying that the evaluation of the BIE becomes a numerical
challenge. We would like to note that for sin θβ � 1, the BIE in Equation (10) does not
provide a suitable quantization procedure since the spinor components decouple, ψ2(r)
becomes vanishingly small and the BC for ψ1(r) turns into Robin BCs, which become
Dirichlet BCs for sin θβ = 1. For that reason, the BIEs are replaced in the nonrelativistic
limit by one for its normal derivative [80].

We are interested in the spectral properties and properties of the wave functions
of the associated symmetry-projected eigenstates of rectangular NBs which have mirror
symmtries with respect to the x and y axes and a twofold rotational symmetry—for the
square NB, (a = b) even a fourfold symmetry. Yet, in this respect, there is a crucial difference
between QBs and NBs, which has its origin in the fact that the BCs for NBs connect the
spinor components ψ1(s) and ψ2(s) at ∂Ω and may lead to distinct spectral properties, as
outlined in [66,71,81]. The characteristics of NBs under a reflection or a rotation operator
can be summarized as follows.

Applying on the coordinate vector an orthogonal transformation, r′ = R̂r corresponds
to applying a unitary transformation Û to the Dirac Hamiltonian ĤD(r). If ψ̃(r) is a
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solution of the Dirac equation in Equation (1), then the eigenfunction of the transformed
Dirac Hamiltonian ĤD(r′) = Û†ĤDÛ is given by ψ̄(r′) = Û†

ψ̃(r). The unitary operators
for a mirror reflection R̂x = σ̂z at the x-axis or R̂y = −σ̂z at the y-axis are Ûx = σ̂x or
Ûy = iσ̂y, respectively. However, application of the reflection operator R̂X with X = x
or X = y on a spinor eigenfunction ψ̃(r) of ĤNB(r) does not yield an eigenfunction of
ĤNB(r′) [82], because ψ̄(r′ = R̂Xr) does not fulfill the BC in Equation (2).

The unitary operator Û M corresponding to a counterclockwise rotation by 2π
M ,

r′ = R̂Mr with

R̂M =

(
cos
( 2π

M
)

− sin
( 2π

M
)

sin
( 2π

M
)

cos
( 2π

M
) ), (12)

reads

Û M =

(
ei π

M 0
0 e−i π

M

)
. (13)

The eigenfunctions of the transformed Dirac Hamiltonian are ψ̄T
M(r′) = [e−i π

M ψ̃1(r),
ei π

M ψ̃2(r)]. For NBs whose boundary has an M-fold rotational symmetry w(s′) = ei 2π
M w(s)

and eiα(s′) = ei 2π
M eiα(s), the BC in Equation (2) is fulfilled for ψ̄(r′) if ψ̃(r) is an eigenfunction

of ĤNB. Thus, the Hamiltonian ĤNB(r) can be brought to a block diagonal form according
to the M one-dimensional irreducible representations labeled by l = 0, . . . , M − 1; that is,
its eigenstates can be grouped into M subspaces defined by their transformation properties
under a rotation by 2π

M [83–86], yielding the symmetry-projected eigenstates

ψ
(l)
1,2(R̂−λ

M r) = eiλ 2lπ
M ψ̃

(l)
1,2(r), λ = 0, . . . M − 1. (14)

The wave-function components corresponding to l = 0 are invariant under rotation
by 2π

M , whereas for l �= 0, a rotation by 2π is needed to recover the original ones. The Dirac
equation in Equation (1) and the BC in Equation (6) relate components of the spinor eigen-
function with different transformation properties under rotation by 2π

M [65,71]. Namely, if
the first component belongs to the subspace labeled by l,

ψ̃
(l)
1 (r′) = e−il 2π

M ψ̃
(l)
1 (r) (15)

where r′ = R̂Mr, then inserting this property into the Dirac equation yields for the second
one

ψ̃2(r′) = e−i(l−1) 2π
M ψ̃2(r) ≡ ψ̃

(l−1)
2 (r′), (16)

where l = −1 corresponds to l = M − 1. Similarly, using the M-fold symmetry of the
boundary of the NB, i.e., eiα(s′) = ei(α(s)+ 2π

M ) and inserting Equation (15) into the BC in
Equation (6) implies that [65,71]

ψ̃2(s′) = ieiα(s′)K−1ψ̃
(l)
1 (s′) = e−i(l−1) 2π

M ψ̃2(s) ≡ ψ̃
(l−1)
2 (s′).

Thus, the spinor components cannot be simultaneously rotationally invariant, imply-
ing that the spinor eigenfunctions cannot be rotationally invariant. This intermingling of
symmetry properties has its origin in the additional spin degree of freedom [65,71].

For a billiard whose boundary has an M-fold rotational symmetry, the corresponding
symmetry-reduced one is constructed by cutting it along the sides of a fundamental domain
into sectors with inner angle φ0 = 2π

M . The corresponding symmetry-reduced QB and NB
are obtained by imposing the same BCs along the cutlines as along the outer bondary, i.e.,
as for the full QB, respectively, NB. These are Dirichlet BCs for the QB. Accordingly, their
eigenstates coincide with rotationally invariant ones of the full QB. For the corresponding
symmetry-reduced NB, the BCs in Equation (2) are imposed along the cutlines on the
outgoing current, which is in the opposite direction to the current in the full NB at one
of the cutlines [66]. Thus, the intermingling of symmetries in Equations (15) and (16) of
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the wave-function components implies that the eigenstates of an NB with a rotationally
symmetric boundary cannot be eigenstates of the corresponding symmetry-reduced NB.
Accordingly, their spectral properties do not necessarily coincide as demonstrated for circle
and ellipse sectors in [66]. In the following, we will refer to the symmetry class of the spinor
component ψ̃

(l)
1 (r) when specifying the value for l.

We would like to remark that the symmetry-projected eigenfunctions of a QB with M-
fold rotational symmetry are complex for l �= 0, M/2, implying that they are not invariant
under application of the time-reversal operator T̂ [83]. Indeed, the eigenfunctions with
symmetry class l are transformed by T̂ into eigenstates with l̃ = M − l. Time-reversal
invariance of the QB implies that the corresponding eigenvalues are doubly degenerate. It
was demonstrated in [83] that the spectral properties of the states with l �= 0, M/2 typically
show GUE statistics, whereas those of the states with l = 0, M/2 are well described by the
GOE if the shape of the QB generates chaotic classical dynamics. On the other hand, the
Dirac Hamiltonian in Equation (1) itself does not commute with the time-reversal operator
T̂. Consequently, if the shape has no mirror symmetry, for all l, the eigenvalues of the
corresponding NB are not degenerate, and the spectral properties of massless NBs typically
coincide with those of the GUE.

In the present work, we investigate the spectral properties of symmetry-projected and
symmetry-reduced rectangular NBs. To compute the eigenstates, we applied the BIE. It can
be separated into individual BIEs for each symmetry class. To take into account the M-fold
symmetry of the boundary w(φ) of an NB, we use the periodicity properties

w
(

φ + λ
2π

M

)
= eiλ 2π

M w(φ), (17)

w′
(

φ + λ
2π

M

)
= eiλ 2π

M w′(φ), (18)

eiα(φ+λ 2π
M ) = eiλ 2π

M eiα(φ), (19)

with λ = 0, 1, 2, . . . , M − 1. Restricting the range of φ′ to one fundamental domain,
φ ∈ [0, 2π

M ), the BIEs are given as

ψ̃
(l)∗
1 (φ′) =

ˆ 2π
M

0
dφM̃(l)(k; φ, φ′)ψ̃(l)∗

1 (φ) (20)

with l = 0, 1, , 2, . . . , M − 1 and

M̃(l)
1 (k; φ, φ′) =

M−1

∑
λ=0

ei 2lπ
M λ M1,λ(k; φ, φ′), (21)

where

M1,λ(k; φ, φ′) = Q1

(
k; φ + λ

2π

M
, φ′
)

. (22)

3. Tools Employed for the Analysis of Properties of the Eigenstates

We analyzed the spectral properties in terms of the nearest-neighbor spacing distribu-
tion P(s), the integrated nearest-neighbor spacing distribution I(s), the number variance
Σ2(L) and the Dyson–Mehta statistic Δ3(L), which provides a measure for the rigidity
of a spectrum [2]. For this, the ordered eigenvalues km =

√
Em with k1 ≤ k2 ≤ . . .

were unfolded to mean spacing unity by replacing them with the smooth part of the inte-
grated spectral density, εm = Nsmooth(km), which is given for QBs by Weyl’s formula [87]
NWeyl(km) = A

4π k2
m − L

4π km + C0, with A denoting the area of the billiard, whereas for
massless NBs, the perimeter contribution cancels out [38]. Furthermore, we analyzed distri-
butions of the ratios [88,89] of consecutive spacings between nearest neighbors, rj =

εj+1−εj
εj−εj−1

,
which are dimensionless so that unfolding is not needed [88–90].
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We also computed Husimi functions which are defined in classical phase space [5,36].
The classical dynamics of a CB is determined by the shape of its boundary ∂Ω. Similarly, the
eigenstates of the corresponding QB or NB are obtained by employing the BIEs originating
from Green’s theorem and thus are fully determined by their values along ∂Ω. Therefore,
an appropriate choice of the Poincaré surface of section (PSOS) is obtained by restricting the
phase space to ∂Ω, which commonly is defined in terms of Poincaré–Birkhoff coordinates
(s, p), where p = sin χ(s) with χ(s) denoting the angle of the particle trajectory with
respect to the normal vector n(s). In Ref. [37], Poincaré–Husimi functions are defined
for nonrelativistic QBs as the projection of the normal derivative of the associated wave
function ψ(s) at the boundary onto a coherent state [37], which is localized at ∂Ω and
periodic with period L,

Hj(s, p) =
1

2πkj

1´ L
0 ds′|∂n′ψ(s′)|2

∣∣∣∣∣
ˆ L

0
ds′∂n′ψ(s′)Cδ

(s′ ,p)(s
′; kj)

∣∣∣∣∣
2

.

Here, n′ = n(s′) and

Cδ
(s,p)(s

′; kj) =

( kj

πδ2

)1/4 ∞

∑
m=−∞

exp
(

ipkj
(
s′ − s + mL

)
−

kj

2δ2

(
s′ − s + mL

)2
)

. (23)

The parameter δ controls the resolution of the Husimi plots. The Poincaré–Husimi
function provides a probability density of the eigenstates on the Poincaré surface of sec-
tion [37] and accordingly is commonly referred to as a quantum Poincaré surface of section.
We computed Husimi functions for the NB by replacing ψ(s) by the symmetry-projected
spinor eigenfunctions ψ

(l)
1,2(s), where we employed Equation (3) to determine their normal

derivatives.
We, furthermore, computed momentum distributions [35], i.e., the Fourier transform of

the spinor eigenfunctions ψn(r) from coordinate space (x, y) to momentum space (qx, qy),

ψn(q) =
¨

Ω
dreiqrψn(r). (24)

They are localized on the energy shell, that is, at values q =
√

q2
x + q2

y = kn, and
provide information on the directions of the plane waves that form the eigenmode, which
is especially useful when it is scarred along periodic orbits or localized.

4. Numerical Results for the Symmetry-Projected Eigenstates of Rectangular NBs

In this section, we present numerical results for the spectral properties and properties
of the wave functions, Husimi functions and momentum distributions of the symmetry-
projected eigenstates of rectangular NBs with different side-length ratios,

R1(T1) :
a
b
= 1

R2(T2) :
a
b
= 2

R3(T3) :
a
b
=

√
5 + 1
2

(25)

R4(T4) :
a
b
=

√
2 +

√
π

2

R5(T5) :
a
b
=

√
3

and their symmetry-reduced counterparts, namely triangles Ti, that are obtained by cut-
ting the corresponding rectangle Ri along its diagonal. The triangles T2, T3, T4 have in
common that their angles have the structure

{
α1π, α2π, π

2
}

with α1, α2 irrational numbers.
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Furthermore, in [66], we considered a triangle, named T5, which is obtained by cutting the
equilataral triangle with side lengths 2 along a mirror axis into two halves. Its inner angles
are
{

π
2 , π

3 , π
6
}

, implying that it is integrable like the R1 and T1 billiards. We computed
5000 eigenvalues for each symmetry class and NB. These studies were motivated by recent
results which we obtained in Ref. [66] for the semi-circle NB, the quarter-ellipse NB for
various values of its eccentricity, and the T5 triangle NB [65]. For an ellipse with semimajor
and semiminor axes lengths a = cosh μ0 and b = sinh μ0, respectively, the eccentricity is
ε = 1

cosh μ0
. The classical dynamics of a particle in an ellipse CB and the semi- and quarter-

ellipse CBs, which are obtained by cutting the ellipse along the semiminor and semimajor
axes, respectively, is integrable because the product of the angular momenta with respect
to the two focal points is a constant of motion. The eigenfunctions of the corresponding
QBs are given by products of the radial and the periodic Mathieu functions [69,91–94],
and the eigenvalues are the zeroes of the radial Mathieu function at the boundary. Their
spectral properties coincide with those of Poissonian random numbers. The orbits of the
ellipse CB and the eigenmodes of the ellipse QB can be separated into librational modes
and rotational modes. With decreasing ε, the ellipse turns into a circle, and the librational
modes turn into the diameter orbit, whereas with increasing eccentricity, the modes resem-
ble those in the rectangular billiard. The eigenfunctions of the ellipse NB are given in terms
of superpositions of products of the radial and periodic Mathieu functions [41]. It has a
twofold symmetry so that the spinor components ψ1 are either symmetric with respect to a
rotation by π and the associated second component ψ2 is antisymmetric, or vice versa.

We showed in [66] that the spectral properties of circle-sector NBs and quarter ellipse-
sector NBs with small eccentricity, i.e., nearly circular shape, are well described by the
GOE after the extraction of contributions from the diameter orbit in the former one and
librational modes in the latter one that bounce back and forth parallel to the semiminor axis
and have a vanishing support at the corners connecting straight and curved parts. This
behavior was attributed to the intermingling of the symmetry properties associated with the
rotational symmetry of the corresponding full NBs and the effects of these corners. Indeed,
for the T5 NB, the spectral properties are close to Poisson statistics [66], whereas we found
good agreement with semi-Poissonian statistics for the symmetry-projected eigenstates of
the equilateral triangle NB and QB [65].

In Figure 1, we present some results for the semi-ellipse NB for different eccentricities.
Shown are the spectral properties of the ellipse NB and its symmetry-projected eigenstates
for ε = 0.265 and for the semi-ellipse NBs with ε = 0.1, 0.5, 0.65. Those of the symmetry-
projected eigenstates are close to those of the semi-ellipse NB with ε = 0.65, which is close
to Poisson, whereas with decreasing ε, they approach semi-Poisson statistics, as is clearly
visible in the ratio distributions which are shown in the right part of Figure 1.

In Figure 2, we show results for the square NB (R1 in Equation (25)), its symmetry-
projected eigenstates labeled by l = 0, 1, 2, 3 and the 45◦ triangle (T1 in Equation (25)).

The spectral properties of the symmetry-projected eigenstates agree well with semi-
Poisson for the short-range correlations up to a certain number of mean spacings L for the
long-range correlations. The size of the deviations is similar to that of a QB with integrable
classical dynamics [20,24] for a similar number of eigenvalues, such as, e.g., the ellipse and
circle QBs and NBs [41,66]. The overshooting of those for the square NB with respect to
Poisson statistics originates from non-systematic, occasionally occurring degeneracies of
eigenvalues associated with different symmetry classes, which have also been observed for
the equilateral triangle NB in Ref. [65]. The ratio distribution of the R1 QB is shown together
with that of the R1 NB in the right part of Figure 2 in (c). It exhibits the nongeneric behavior
commonly observed for rectangular QBs with rational ratios of side lengths, whereas that
of the NB agrees well with Poisson statistics.
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Figure 1. (Left) Spectral properties of the symmetry-projected eigenstates of the ellipse NB with
ε = 0.65 (red histogram and circles: l = 0; green histogram and triangles: l = 1), and the semi-
ellipse NB with ε = 0.65 (violet histogram and diamonds), ε = 0.5 (orange histogram and plus) and
ε = 0.1 (turquoise histogram and stars). (Right) Ratio distributions for (a) the symmetry-projected
eigenstates of the ellipse NB with l = 0, (b) l = 1, (c) all eigenvalues of the ellipse NB (red) and the
corresponding ellipse QB (turquoise) and (d) the semi-ellipse NB for ε = 0.5 (green) and ε = 0.1 (red).
They are compared to the GOE (black solid line), Poisson (black dashed line) and semi-Poisson (black
dashed–dotted lines) statistics.

Figure 2. (Left) Spectral properties of the R1, i.e., square NB (violet histogram and diamonds)
and its symmetry-projected eigenstates (red histogram and circles: l = 0; green histogram and
triangles: l = 1; orange histogram and plus: l = 2; turquoise histogram and stars: l = 3). (Right)
Ratio distributions for (a) the symmetry-projected eigenstates of the R1 NB with l = 0 (red) and
l = 2 (green), (b) l = 1 (red) and l = 3 (green), (c) all eigenvalues of the square NB (red) and the
corresponding square QB (turquoise) and (d) the 45◦-triangle, i.e., T1 NB (red). They are compared to
the GOE (black solid line), Poisson (black dashed line) and semi-Poisson (black dashed–dotted lines)
statistics.

In the left part of Figure 3, we compare length spectra, that is, the modulus of the
Fourier transform |ρ̃ f luc(l)| of the fluctuating part of the spectral density, ρ f luc(k), from
wave number k to length l for the full square NB, the symmetry-projected ones and the
45◦ triangle NB. The length spectra of the QB and NB exhibit peaks at the lengths of its
periodic orbits. Generally, in the length spectra of NBs, peaks at lengths, which correspond
to periodic orbits with an odd number of reflections, are missing [42]. Such orbits are
absent in rectangular CBs. Those of the symmetry-projected eigenstates show additional
peaks at lengths which correspond to pseudo-orbits, that is, orbits that are periodic in the
fundamental domains but not in the full system [85,86].
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Figure 3. (Left) Comparison of the length spectra of, from bottom to top, the full square NB (black
line), for l = 0 (blue line), l = 1 (violet line), l = 2 (green), l = 3 (red), and the square QB (maroon).
(Right) Comparison of the length spectra of, from bottom to top, the rectangular R3 NB (black line),
for l = 0 (red line), l = 1 (green line), and the corresponding QB (blue).

In Figure 4, we show examples for the momentum distributions, real parts of the spinor
components ψ1(r) and ψ2(r), the local current |u(r)| ∝

∣∣(([ψ∗
1 (r)ψ2(r)], )[ψ∗

1 (r)ψ2(r)]
)∣∣

and Husimi functions for the symmetry-projected eigenstates of the R1 NB with l = 0 (a)
and l = 1 (b). The wave-function patterns are invariant under rotation by π

2 for ψ1(r) and
l = 0, and for ψ2(r) and l = 1. For the other components, they need to be rotated by 2π
to recover the original patterns. The momentum distributions are peaked around values
(qx, qy) = (±kx, ±ky) and (qx, qy) = (±ky, ±kx) along a circle, whose radius is defined by

the eigenwavenumber q =
√

q2
x + q2

y = kn corresponding to the eigenstate number n. For

n = 68 and l = 0 or for n = 75 and l = 1, it is peaked at (±kn, 0) and (0, ±kn) and exhibit
chessboard structures which resemble those of the square QB, except that their intensities
decrease with the distance from the center of the square. Otherwise, the wave-function
patterns are distinct and more complex. In addition, from the pattern structure of the local
currents, we may conclude that the eigenfunctions are not given by simple superpositions
of plane waves. Some of the Husimi functions are localized either in the upper or the
lower part of the PSOS, indicating that the corresponding eigenmodes propagate in a
preferred direction. This may be attributed to the fact that the BCs in Equation (2) lead to a
unidirectionality of the local current along the boundary. The wave-function patterns are
more complex than for the corresponding QB; however, they exhibit a regular structure, so
that the GOE-like behavior of the spectral properties is not expected.

Figure 4. (a) From left to right, the momentum distribution in the (qx, qy) plane, the real parts of
the spinor components ψ1(r) and ψ2(r) function in the (x, y) plane, the local current in the (x, y)
plane and the Husimi functions in the Birkhoff coordinate plane (s, p), where s = 0 at the center of
the lower horizontal side and increases in counterclockwise direction, for the symmetry-projected
eigenstates states of the square NB with l = 0 and, from top to bottom, numbers n = 49, 51, 68, 75.
(b) Same as left for l = 1.
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Similar results are obtained for the spectral properties of the rectangular R2 and R3
NBs and their symmetry-projected eigenstates, shown in the left and right part of Figure 5,
respectively, and in the right part of Figure 6. The gaps observed in the nearest-neighbor
spacing distribution of the R2 QB are typical for rectangular QBs whose ratios of side
lengths are no irrational numbers [95]. The long-range correlations, on the other hand,
approach Poisson statistics with an increasing number of eigenvalues [24,96]. The spectral
properties of the R2 NB exhibit Poisson statistics, whereas those of its symmetry-projected
eigenstates are well described by semi-Poisson statistics. In the right part of Figure 3, we
show length spectra for the R3 QB and NB and the symmetry-projected eigenstates of the
R3 NB. The length spectra of the QB and NB exhibit peaks at the same lengths, as there
are only periodic orbits with an even number of reflections. The length spectra of the
symmetry-projected eigenstates also exhibit peaks at the lengths of the classical periodic
orbits and a few additional ones at the lengths of peudo-orbits.

Figure 5. (Left) Spectral properties of the symmetry-projected eigenstates of the rectangular R2 NB
(red histogram and circles: l = 0; green histogram and triangles: l = 1), the R2 QB (violet histogram,
lines and dots), and the R2 NB (turquoise histogram and diamonds). (Right) Spectral properties of the
symmetry-projected eigenstates of the R3 NB (red histogram and circles: l = 0; green histogram and
triangles: l = 1), the R3 QB (violet histogram, lines and dots), the R3 NB (turquoise histogram and
diamonds) and the triangular T3 (magenta histogram and squares) and T4 NB (brown histogram and
dots). They are compared to the GOE (black solid line), Poisson (black dashed line) and semi-Poisson
(black dashed–dotted lines) statistics.

In the right part of Figure 5 and in Figure 6, we include the results for the trian-
gular T3 and T4 NBs which are constructed by cutting the rectangular R3 and R4 NBs
along the diagonals. Their spectral properties are close to GOE. We found out that they,
actually, agree well with those of a quarter-Poissonian sequence which is obtained by
taking from an ordered sequence of Possonian random numbers each fourth number or,
equivalently, every second one from a sequence of semi-Poisson numbers, such as those
of the corresponding symmetry-projected eigenvalue sequences. The spectral properties
of the T3 and T4 QBs agree well with semi-Poisson statistics [34]. This is illustrated in the
left part of Figure 6. Those of the T5 NB coincide with Poissonian statistics [66]. Right
triangles, that have only one angle which is rational with respect to π, have been stud-
ied in detail in Refs. [21,23,34,97,98]. It was shown that triangles, whose angles are all
irrational with respect to π, exhibit GOE-like spectral properties, whereas those of right
triangles are non-Poissonian but differ from GOE. Deviations from GOE were shown to
originate from the presence of wave functions that are scarred along bouncing-ball orbits
that exhibit a regular pattern, such as the periodic-orbit family consisting of orbits that are
reflected perpendicular to the tilted side of the triangle and form a periodic-orbit channel
(POC) whose maximum width extends from one diffractive corner to the other one (see
below) [19,99,100]. Their contributions, in fact, can be extracted for irrational triangles
by proceeding as, e.g., in [101], whereas for the T3 and T4 QBs and NBs, their number
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is too large. This explains the agreement with semi-Poisson statistics for the T3 and T4
QBs [34], which corresponds to a linear level repulsion and is a special case of intermediate
statistics for which analytical expressions exist. These are shown as dashed–dotted lines,
e.g., in Figure 6. For the corresponding NBs, the level repulsion is cubic [33]. After the
extraction of contributions from bouncing-ball orbits, the spectral properties of the T2 QB
are close to GOE behavior, whereas those of the T2 NB agree well with GUE statistics, as
illustrated in Figure 7, implying that the effect of scarred wave functions is stronger for
the QB than it is for the NB. Indeed, scarred wave functions occur more rarely for the T2
NB than for the T2 QB. The ratio distributions, shown in the right part of Figure 7, agree
well with GOE and GUE for the T2 QB and NB, respectively, even though contributions
from periodic orbits that lead to scarred wave functions were not extracted, implying that
it is insensitive to scarred states. Note that no unfolding is needed for the analysis of ratio
distributions. The left part of Figure 8 shows the fluctuating part of the spectral density
(black dots). The contributions from bouncing-ball orbits lead to slow oscillations. To
determine them, we used the procedure introduced in [101], that is, we computed the
Fourier transform of the fluctuating part of the spectral density, ρ̃ f luc(l), and then the
inverse Fourier transform over those parts that correspond to lengths of these orbits. The
associated peaks are plotted as orange and turquoise dashed lines for the NB and QB,
respectively, in the length spectrum shown in the right part of Figure 8. The resulting
oscillating part of N(k), Nosc(k), is shown as red dots connected by a red dashed line in
the left part of Figure 8. To extract the contributions of this part to the spectral properties,
the eigenvalues km were unfolded by replacing them with the sum of the smooth and
oscillating part of N(k), εm = Nsmooth(km) + Nosc(km) [102].

Figure 6. (Left) Spectral properties of the triangular T3 NB (red histogram and circles) and T3 QB
(green histogram and triangles) and the triangular T4 NB (orange histogram and dots) and T4 QB
(violet histogram and diamonds). They are compared to the GOE (black solid line), Poisson (black
dashed–dotted–dotted line), semi-Poisson (black dashed–dotted lines) and quarter-Poisson (blue
dashed lines) statistics. (Right) Ratio distributions for (a) the l = 0 states of the R2 (green histogram)
and R3 (red histogram) NBs, (b) same as (a) for the states with l = 1, (c) the rectangular R2 (green
histogram) and R3 (red histogram) NBs and for the rectangular R3 QB (turquoise histogram), (d) the
T5 (green histogram), T3 (red histogram) and T4 (brown histogram) NBs. They are compared to the
GOE (black solid line), Poisson (black dashed line), semi-Poisson (black dashed–dotted lines) and
quarter-Poisson (blue dashed lines) statistics.
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Figure 7. (Left) Spectral properties of the triangular T2 QB and NB before ((violet histogram and stars)
and (red histogram and dots)) and after extraction of contributions from orbits that lead to scarred
wave functions ((orange dashed-line histogram and crosses) and (green histogram and squares)). They
are compared to the GOE (black solid line), Poisson (black dashed–dotted–dotted line), semi-Poisson
(black dashed–dotted lines) and GUE (black dashed lines) statistics. (Right) Ratio distributions
P(r) (upper panels) and integrated ratio distributions I(r) (lower panels) for the T2 QB (a,c) and
NB (b,d). They are compared to the GOE (black solid line), Poisson (black dashed–dotted–dotted
line), semi-Poisson (black dashed–dotted lines) and GUE (black dashed lines) statistics.

Figure 8. (Left) Fluctuating part of the integrated spectral density (black) and the contributions of
bouncing-ball orbits that are extracted to obtain the results shown in Figure 7 (red) for the T2 NB.
(Right) Comparison of the length spectra of the T2 NB (upper part) and the T2 QB (lower part).

In Figure 9, we show momentum distributions, real parts of the spinor components
and Husimi functions for a few symmetry-projected eigenstates of the R3 NB ((a): l = 0;
(b): l = 1) and in Figure 10 for the corresponding right triangle T3 NB (a) and T3 QB (b).
The momentum distributions are peaked at values (qx, qy) = (±kx,±ky) along the circle

defined by the eigenwavenumbers kn =
√

q2
x + q2

y. In the example shown for l = 1 and

n = 57, q takes the values (qx, qy) = (±kn, 0). This case, in fact, can be derived based on a
plane-wave ansatz, since the propagation of the eigenmodes is one-dimensional [77]. The
wave-function patterns shown for l = 0 in the second row are similar to corresponding
ones in the R3 QB. In these examples, the Husimi functions are localized along the p = 0
axis. For the other cases, they again exhibit a preferred direction of propagation, but they
are distributed over the (s, p) plane. Scarred wave functions of the type presented in [23]
are observed in the corresponding symmetry-reduced billiard, i.e., the T3 QB and NB. The
examples shown in Figure 10 correspond to relatively low-lying states. Here, we chose
for the QB eigenstates for which the wave functions and Husimi functions exhibit similar
patterns to those of the NB. We show them because for higher excitations, the wave function
and local current patterns become complex and are no longer discernible. Still, some of
them exhibit scarred eigenstates, such as those shown in the third row. In Figure 11, we
show examples of scarred wave functions for higher-lying eigenstates of the T3 NB (upper
row) and similar ones for the T3 QB (lower row). They are scarred along bouncing ball
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orbits from the family of periodic orbits that hit the tilted side perpendicularly and are
reflected with constant angles from the sides to the left and right of the π

2 corner.

Figure 9. (a) Same as in Figure 4 for the symmetry-projected eigenstates of the rectangular R3 NB
with l = 0 and, from top to bottom, numbers n = 57–59. (b) Same as (a) for l = 1.

Figure 10. (a) Same as Figure 4 for the triangular T3 NB with, from top to bottom, numbers
n = 255, 288, 264. Here, the Borkhoff coordinates are chosen such that s = 0 at the left corner
of the triangle, and it increases in the counterclockwise direction. (b) From left to right, momentum
distributions, intensity distributions and Husimi functions for the corresponding QB with, from top
to bottom, numbers n = 266, 259, 267.

(a)

(d) (e)

(b) (c)

(f)

Figure 11. First row: Local current for the eigenstates of the T3 NB for, from left to right, numbers
n =1460 (a), 1453 (b), 1471 (c). Second row: intensity distribution for the eigenstates of the T3 QB for,
from left to right, numbers n =1459 (d), 1463 (e), 1469 (f).
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5. Conclusions

We analyzed the properties of symmetry-projected eigenstates of rectangular NBs
whose side lengths are either commensurable or incommensurable. Independently of
the choice of the ratio of the side lengths, we find very good agreement of the spectral
properties of the symmetry-projected eigenstates with semi-Poisson statistics. In distinction
to the eigenvalues of rectangular QBs, those of the corresponding NBs are non-degenerate
and exhibit Poisson statistics. The fact that the complete spectra of rectangular NBs ex-
hibit Poisson statistics—whereas after their separation into two (or four) sequences of
eigenvalues corresponding to the symmetry-projected eigenstates, the spectral properties
follow semi-Poisson statistics—indicates that rectangular NBs behave like typical quantum
systems with an integrable counterpart, whose eigenstates are non-degenerate and have
alternating symmetry properties with increasing state number. Note that this is not strictly
true, because when two eigenvalues come close to each other, then the ordering of the
symmetry classes may change. Generally, Poisson statistics is expected for the symmetry-
projected states if they are uncorrelated, as is the case for the corresponding nonrelativistic
QB; however, in the ultrarelativistic case, they are linked through the different symmetry
properties of the spinor components. Namely, if the first component belongs to class l, then
the second one belongs to class (l − 1). Furthermore, we found out that the eigenvalues of
triangular NBs, which are constructed by cutting the rectangular NB with incommensurable
side lengths along the diagonal and follow semi-Poisson statistics in the nonrelativistic
limit, exhibit a cubic-level repulsion and spectral properties that agree well with those of
random numbers. These random numbers are composed of every fourth number from
a Poisson sequence or every second one from a semi-Poisson one. That is, we observe a
hierarchy, induced by the variation of the BCs along the diagonal of the R3 and R4 NBs, in
the spectral properties in the sense that they follow Poisson statistics for the full rectangle
NB, semi-Poisson statistics for the symmetry-projected eigenstates and corresponding
triangle QB and quarter-Poisson statistics for the symmetry-reduced NB, which would
correspond to taking every second level from successive eigenvalue sequences. For the T2
QB and NB, we find good agreement with GOE and GUE statistics, respectively, after the
extraction of contributions from bouncing-ball orbits, that is, from eigenstates whose wave
functions are scarred along these orbits. An important difference between a QB and the
corresponding NB is that the associated Hamiltonian preserves and violates time-reversal
invariance, respectively. Thus, the results for the T2 NB are not surprising, and accord-
ingly, we may deduce from our results for the T3 and T4 QBs and NBs that when inducing
time-reversal invariance violation in a QB which exhibits semi-Poisson statistics, it will
yield quarter-Poisson statistics. We chose these triangles because their spectral properties
are particular and only considered the ultrarelativistic and the nonrelativistic limits. The
transition region was investigated in detail in Refs. [65,71] for the symmetry-projected
eigenstates of NBs whose boundaries have a threefold rotational symmetry. The results
confirm that, as was shown in [42], with increasing mass, the spectral properties approach
those of the nonrelativistic QB.
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Abstract: I study the scaling behavior in the physical parameters of dynamical entropies, classical
and quantum, in a specifically devised model of collision-induced decoherence in a chaotic system.
The treatment is fully canonical and no approximations are involved or infinite limits taken. I present
this model in a detailed way, in order to clarify my views in the debate about the nature, definition,
and relevance of quantum chaos.

Keywords: classical and quantum entropies; chaos; quantum to classical transition

1. Preface: Forty Years With Giulio Casati

Forty years ago, in December 1982, I defended my master’s thesis in Pavia under the
guidance of Italo Guarneri. He had introduced me to his coworker from the university of
Milano, Giulio Casati, who at the same time was turning forty. Ever since then, my scientific
career has been marked by this encounter, in repeated periods of proximity and elongation.
After a brief permanence in Milano, Giulio managed to place me in contact with Joe Ford,
with whom I was a postdoc in Atlanta for many years, before taking a three-year turn to
France with Daniel Bessis, a fourth important figure in my education.

However, now back to Giulio: while I was in Paris, using his unrivaled political ability,
he was setting up nothing less than a new university, in Como, where I later joined him
(Figure 1) and Italo Guarneri in what at the beginning was a heroic endeavor: we shared a
single office with a modem by which I connected to computers in Paris and Milano. We
worked hard to establish the course in physics—later also in mathematics—and we brought
an intense activity to the newly instituted Center for Non-linear and Complex Systems.
We organized conferences and workshops; we invited many visitors, hosting postdocs
and graduate students. The focus of this activity was chaos in classical and quantum
systems, and also orthogonal polynomials of singular measures and their relevance for the
phenomenon of quantum intermittency [1], on which I will not dwell here.

Figure 1. Como, early 1990s. Picture by Felix Izrailev.
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In this paper I will instead present a reflection on the problem of quantum chaos and
the quantum–classical correspondence. Notwithstanding the dedicatory goal, I will not
hide the differences between my views and those of Giulio [2–6], the extremist of the middle,
as Joe Ford jokingly called him, not without a hint of affection. The nickname implied
that such views, Giulio’s, were widely shared. Indeed, to the question Does chaos pose a
problem to quantum mechanics? few would answer in the positive, and many would quote
the notions of quantum chaology [7,8] (Berry) or quantum pseudo-chaos [9,10] (Chirikov).
Joe Ford was convinced of the contrary and with some differences I shared his views [11]
(but notice the differences between [12] and [13]). This celebration is now the occasion for
me to place on the record what I have learned in these years and what I believe is still to
be investigated.

2. Introduction and Summary of the Paper

As I mentioned, Giulio introduced me to Joe Ford, who had learned the basic tenets of
algorithmic complexity theory [14] from his colleague and friend Boris Chirikov (Figure 2)
from the Soviet Union, where this theory had flourished thanks to the school of Kolmogorov.
It leaves a sour taste to remember the many liaisons that ensued, in a moment when
we fear for many dear friends and colleagues. This theory quantifies the amount of
information contained in a sequence of symbols [15–18]. Now, symbolic dynamics is a tool
to translate motions into sequence of symbols, in such a way that one can equate chaotic
trajectories of a system to random symbolic sequences—roughly speaking, sequences that
cannot be significantly compressed without losing information. In this perspective, chaos
is the uninterrupted production of information by the motion of a dynamical system,
just in the same way as a stochastic process could act; hence, in Ford’s wording [19],
chaos is deterministic randomness. In a historical/theoretical introduction to classical chaos
coauthored with Giulio for the Journal of the Italian Physical Society [20], we adopted
this perspective: that instability of trajectories, transverse homoclinic intersections, and
horseshoes are the dynamical mechanisms by which chaos arises, but not its essence, which is
the algorithmic complexity of symbolic trajectories.

Figure 2. Joe Ford and Boris Chirikov. Como, early 1990s. Picture by Felix Izrailev.

Similarly, in quantum dynamics, a variety of indicators have been introduced to unveil
the mechanisms behind instability—or its lack. It is clearly not my aim here to list all
contributions, early or recent, to this research, but just to name a few, for the sake of
argument. Phase space representations, such as the Wigner function, have been employed
since long ago for comparison with classical dynamics, as in [21–23]. In [11], this analysis
was instrumental to find the eigenfunctions of the evolution operator and to expose the
exponential propagation of mode number in the classical Liouville evolution, which impairs
stability and practical reversibility, a technique later revisited by Benenti and Casati [2].
Quantum Lyapunov exponents have also been defined, see, e.g., [24,25], and more recently,
much attention has been devoted to the out-of-time autocorrelation functions; see the paper
by Kurchan in this volume [26] and references therein.

At a more general level than these mechanisms there is the study of the algorithmic
complexity of the quantum motion. Many years ago, Berry and Hannay quantized the
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Arnol’d cat map [27] via semiclassical means [28]. Ford, myself, and Ristow [11] developed
a fully Hamiltonian quantization and set out to estimate the algorithmic complexity of the
evolution, finding that it grows similar to the logarithm of the dimension of the Hilbert
space of the system plus the logarithm of the time–length of the evolution. Prior to
saturation of such upper bounds (see the description in Section 4), the quantum behavior
reproduces the classical, as it has been repeatedly reported using the other indicators
mentioned above. Yet, it was recognized that the scaling of the range of such correspondence
with the physical parameters is fully unsatisfactory to justify a sensible approach to the
classical limit (a sort of logarithmic catastrophe [12]).

As is well known, a possible solution to this problem was proposed at the end of the
last century [29–36] by considering that systems are coupled to an external environment. I
believe that this approach still need to be completed, or at least polished, in two respects.
Firstly, by casting it in a fully Hamiltonian approach, as I shall perform by introducing
a model system of collision-induced decoherence that avoids recurse to mean field ap-
proximations or infinite baths of oscillators, by which nondynamical randomness might
creep in uncontrolled. Secondly, by framing it into an information theoretical perspective,
employing the so-called Alicky–Fannes (AF) entropy [37–39], which offers computational
advantages and avoids some of the difficulties of algorithmic complexity. It must be noted
that quantum dynamical entropies generalizing the classical KS notion [40] were already
developed in the early days of “quantum chaos” [41–43].

The scheme of this paper is as follows: in the next section I briefly recall the notion of
dynamical entropy. Section 4 discusses the importance of dynamical entropies in the notion
of chaos and the fundamental problem that one encounters in taking the classical limit of
chaotic quantum systems. Section 5 gives a review of the quantum version of the classical
Arnol’d cat map [27], as the motion of a single kicked particle, so as to open the way to a
multiparticle generalization. The Alicki–Fannes entropy of such a single particle system
has been computed in a series of papers. The formalism is presented in Section 6, again in
view of its generalization to the multiparticle Arnol’d cat [44], described in Section 7. This
generalization aims at introducing in a fully controllable, dynamical way the concept of
decoherence induced by scattering by light particles, following the paradigm of Joos and
Zeh [45]. In a small aside, Section 8, I briefly describe recent results on the Von Neumann
entropy of the multiparticle Arnol’d cat [46], which confirm its suitability as a model of
quantum decoherence. In Section 9 I return to the AF entropy, of which in my view is
theoretically more relevant than Von Neumann’s, to the same degree as it is harder to treat
theoretically and compute numerically. I explain how a combined limit in the number of
particles and their mass could provide a physically sound means to understand the classical
limit. Final comments are presented in the conclusions.

3. Dynamical Entropy, Classical and Quantum

Consider a classical dynamical system [27,40] consisting of a phase-space X on which
a transformation φ acts in such a way to preserve a measure μ defined on a suitable sigma-
algebra of subsets of X: μ(φ−1(A)) = μ(A) for any A in the sigma-algebra. The map φ
generates the dynamics, that we assume to evolve in discrete time instants, denoted by the
symbol n throughout the paper. Consider a finite partition P of X by measurable subsets
Pl , l = 0, . . . , L − 1 ,

⋃
l Pl = X. The Shannon entropy of this partition, S(P), is defined as

S(P) = −
L−1

∑
l=0

μ(Pl) log μ(Pl). (1)

This value is the average amount of information obtained by determining the element
of the partition that contains a given point in phase space: this action can be physically
interpreted as the result of a measurement experiment.
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Next, consider the partition obtained by intersecting all elements of P and all their
preimages by the map φ: indicate this new partition by

P ∨ φ−1(P) = {P ∩ φ−1(Q), for P, Q ∈ P}, (2)

where obviously some of the intersections at right hand side may be empty. If we label sets
by the alphabet composed of the symbols 0 to L − 1, as in Equation (1), the elements of the
partition in Equation (2) are labeled as Plk = Pl ∩ φ−1(Pk). These sets comprise all points
that at time zero are located in Pl and at the successive time instant in Pk. Therefore, the
Shannon entropy of P ∨ φ−1(P) measures the average amount of information provided by
knowledge of the symbolic dynamics of a point over two time instants.

In the lore, a word is a sequence of symbols σ = σ0, σ1, . . . , σn−1 in the alphabet. We
use the notation |σ| for the length of a word. Let Σn be the set of all words of length n
in the alphabet. Clearly, the cardinality of this set is Ln. Every word defines a cylinder Pσ

in X: this is the set of all points x for which φi(x) ∈ Pσi , for i = 0, . . . , n − 1. The set of
cylinders associated with words of length n composes the partition ∨n−1

i=0 φ−i(P), whose
entropy is therefore

S(P , n) = S(∨n−1
i=0 φ−i(P)) = − ∑

σ∈Σn

μ(Pσ) log(μ(Pσ)). (3)

Consider the difference S(P , n + 1)− S(P , n). This quantifies the average amount of new
information obtained by observing the state of the motion at time n, on top of what is
already obtained by the observations at the previous n instants, from time 0 to time n − 1.
It could also be described as a surprise that the dynamical evolution of the system is capable
of producing at such time. It is then understandable that one can define as dynamical
entropy the asymptotic rate of information production as follows:

h(P) = lim
n→∞

S(P , n + 1)− S(P , n) = lim
n→∞

1
n

S(P , n). (4)

This leads to the definition of the Kolmogorov Sinai entropy of the dynamical system as a
supremum over partitions:

hKS(X, φ, μ, A) = sup{h(P), P finite measurable partition of X}. (5)

Chaotic classical dynamical systems are then properly defined as those having positive KS
entropy, and Brudno’s theorem [47] links this concept to positive algorithmic complexity.

Let us now turn to quantum dynamics for comparison. Robert Alicki and Mark
Fannes constructed a definition of entropy following the same steps as in the classical
construction [37,38,48]. A quantum dynamical system is composed of a Hilbert space H
and of a unitary evolution U that leaves an invariantdensity matrix ρ. The analogue of the
partition P is a finite family of orthogonal projection operators Pl , from l = 0 to L − 1, such
that ∑l Pl = I, with I being the identity. We use the same symbol Pl for both the classical
and the quantum case, since this highlights the analogy.

For illustration, suppose that ρ = |ψ><ψ|, even if generically this is not invariant.
The wave function |ψ> represents the initial state of the system. Projecting |ψ> by Pl is
the analogue of the classical measurement of the partition element which the dynamical
state belongs to. In quantum dynamics, the square modulus ‖Pl |ψ > ‖2 is the probability
that the result of this measurement yields the value l. Clearly, because of normalization,
∑l ‖Pl |ψ > ‖2 = 1. Following suit, the analogues of the elements of P ∨ φ−1(P) are
Pσ1UPσ0 |ψ >, which shows that the classical action of φ−1 is replaced by the quantum
unitary evolution operator U. This leads to defining the quantum dynamical partitions:

∨n−1
i=0 Ui(P) = {Pσn−1U ◦ Pσn−2U ◦ · · · ◦ Pσ1U ◦ Pσ0 , σ ∈ Σn} = {Pσ, σ ∈ Σn}. (6)

614



Entropy 2023, 25, 1004

We used the notation Pσ for the operators in the above set. Then, the quantum analogue of
μ(Pσ) takes the form of the trace of a product of operators:

μ(Pσ) = Tr(P†
σ ρPσ). (7)

Alas, it is not possible to use this quantity to define a dynamical entropy using Equation (3).
In fact, suppose again for simplicity that ρ = |ψ><ψ|. Then,

μ(Pσ) = ‖Pσ|ψ> ‖2. (8)

While it is true that ∑σ μ(Pσ) = 1, observe that Equation (8) can be rewritten as follows:

‖Pσ|ψ> ‖2 =<ψPσ|Pσψ> . (9)

The word σ appears twice in the above equation. Replace the first appearance with a
different word θ ∈ Σn, to obtain

<ψPθ |Pσψ>=<ψ|P†
θ Pσψ>=<ψ|P†

θ Pσn−1U ◦ · · · ◦ Pσ1U ◦ Pσ0 ψ>=

=<ψ|Pθ0 ◦ U−1Pθ1 ◦ · · · ◦ U−1Pθn−1 ◦ Pσn−1U ◦ · · · ◦ Pσ1U ◦ Pσ0 ψ> .

It helps intuition to read the last line from right to left: in sequence, the initial function |ψ>
is projected by Pσ0 , acted upon by U, projected by Pσ1 , acted upon by U, and so on until it
is projected by Pσn−1 . Then, the adjoint of Pθ operates by projecting by Pθn−1 , acting by the
inverse of U (that is, by reversing time), projecting by Pθn−2 , acting by U−1, and so on until
the projection by Pθ0 , and finally taking the scalar product with the initial function |ψ>.

Clearly, the result of this operation is null unless σn−1 = θn−1. In the classical case
where φ−1 takes the place of U, the result is also null unless the full word θ coincides with
σ. In fact, it is enlightening to consider the above process as a sequence of many-slits
experiments: a dynamical trajectory must pass through the slits σ0 to σn−1. Then, time is
reversed and it is required to pass from the slits θn−1 to θ0. Since trajectories in classical
dynamical systems are time-reversible, this is only possible if θ = σ. On the contrary, in
quantum dynamics, two different paths from σ0 = θ0 to σn−1 = θn−1, the end points being
fixed, may not be orthogonal because of quantum interference: <ψPθ |Pσψ>=<ψθ |ψσ > �= 0,
where we introduced the notation |ψσ >= Pσψ>.

If we now take for ρ an invariant density matrix (which in this paper will be the
normalized identity matrix I), we define the decoherence matrix D with entries Dθ,σ(n)

Dθ,σ(n) = Tr(P†
θ ρPσ) = Tr(P†

θ Pσ) =
1
N

N
∑
j=1

<ψ
j
θ |ψ

j
σ >, (10)

where N is the dimension of the Hilbert space and ψj > is an orthonormal basis of H.
In this paper I shall consider a notable example of such finite-dimensional Hilbert space.
The decoherence matrix is a fundamental object of the coherent histories formalism [49–54].
Observe that D(n) is an Ln × Ln square matrix, Hermitean, of unit-trace and is non-negative.
In the classical case, this matrix is diagonal. In the quantum case, one defines the partition
entropy as

S(H, U, P , n) = −Tr(D(n) log D(n)) (11)

and can therefore proceed to define the AF entropy operating as in Equations (4) and (5) [48].
To suit our purposes we do not take the infinite n limit or the supremum over partitions,
but, rather, consider the scaling behavior of the quantity S(H, U, P , n), concisely denoted
S(n), that we will call AF entropy for short (Shannon AF entropy at finite resolution and
time being a more precise term) for physically accessible partitions, ranges of time, and
physical parameters.
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4. Dynamical Entropy And Quantum Chaos

On the same theoretical basis as in classical dynamics, we shall consider as chaotic
a quantum system capable of producing new information at an inferiorly bounded rate
indefinitely in time when measured by a sufficiently refined partition P . For this, we
adopt the AF quantum entropy defined in the previous section. It helps to remark that
Benatti derived a quantum version of the classical Brudno theorem, linking AF entropy and
algorithmic complexity [55], so that the parallelism with classical dynamics is completed.

At a superficial inspection it may seem that there should be no limitation for the
entropy S(H, U,P , n) in Equation (11) to grow linearly with n: as mentioned, the matrix
D has size Ln × Ln. Yet, thanks to a result in [38] the spectrum of nonzero eigenvalues
of D coincides with that of a second matrix, Ω(n), of size N 2 × N 2 independent of n,
of unit trace and Hermitean. This matrix is the basis of a technique to numerically com-
pute Tr[D(n) log D(n)], combining the theory of orthogonal polynomials with a sampling
method from lattice gauge theory [56]. It appears to be the only method proposed so far
capable of attacking nontrivial Hilbert space and word lengths dimension. While this
technique is rather complicated, one consequence of its is immediate: S(H, U,P , n) is
the Shannon entropy of a probability distribution over N 2 discrete states, whose number
is independent of n. Therefore, it is bounded by 2 log N and the limit in Equation (4) is
forcefully null.

Why this is a serious problem can be easily understood: consider a classical dynamical
system that can be quantized via the standard procedure of replacing classical variables by
quantum operators. Further, assume that the resulting Hilbert space has finite dimension
N . Consider a classical partition P that corresponds to a quantum family of projectors. One
can compute the classical probabilities μ(Pσ) as well as the eigenvalues of the quantum
decoherence matrix D(n) and then compare the associated Shannon entropies at variable
duration n of the experiment. The correspondence principle leads us to expect the two results
to be comparable, in the classical limit. Yet, recall that the quantum system is endowed
with a finite information reservoir. In the initial instants of the evolution, the classical system
is outputting information and the quantum analogue follows suit, keeping pace with the
classical. Yet, this can last as long as the quantum system has not fully exhausted its
information reservoir.

Suppose now that the classical system is not chaotic, in the sense that S(P , n) grows less
than linearly, say logarithmically, with n. In this case, the value of n at which the quantum
dynamics can provide the same information output as the classical is roughly proportional
to N , and therefore is sufficiently large to justify a physical relevance of correspondence.
On the contrary, when the classical dynamics is chaotic, i.e., S(P , n) ∼ h(P) n, the finite
quantum information reservoir is eaten away at a rate sustainable only up to n ∼ log N ,
after which the two evolutions qualitatively and quantitatively differ. This is, in essence,
the logarithmic catastrophe in the correspondence principle mentioned before.

From a physical point of view, the last estimate corresponds to what has been defined
the Zaslavsky time scale [57] (also termed Ehrenfest time scale [58]) τ = log(I/h̄), where
I is a typical action of the system, a fact that yields the analogy N ∼ (I/h̄) and prompts
matter for thought. In this paper, h̄ will be constant, while the mass of a quantum particle
will determine N .

From a theoretical point of view, advocated by Berry, among others [7,8], it is clear
that dynamical entropies are properly defined only in the limit when n tends to infinity,
while the classical limit is I/h̄ → ∞ and the two limits do not commute. At the same time,
it is apparent that this attitude ignores the unphysically low value of the Zaslavsky time
for, e.g., the chaotic three-body problem. Moreover, as I first suggested in [12], rather than
considering the limit for n tending to infinity, one should study the scaling relations with
respect to the physical parameters of the information–theoretical quantities (4) and (11)
in realistic ranges of the physical variables. In other words: Will a sequence of physically
realizable experiments at finite precision be able to reveal a significant difference among
the two dynamics in the semiclassical region? A model of this situation is found in the
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dynamics of classical billiards [59]: a difference emerges clearly in the behavior of the
finite time algorithmic complexity of symbolic trajectories, when polygonal tables approach
chaotic or integrable curved billiards.

In the next section I briefly recap the details of a much-investigated system, the quan-
tum Arnol’d cat, where this situation emerges with clarity. This system is also particularly
useful to study the arguably most significant way to explain the emergence of classical
properties (among which chaos) in quantum dynamics: decoherence. In this approach,
a quantum system is not isolated, but coupled to an environment that is responsible for
the decay of the off-diagonal matrix elements of D. Yet, in the usual application of this
approach, the environment is mathematically represented by a random source, or an infinite
bath of oscillators: in any case, a system possessing an infinite amount of information, and
not, to the best of my knowledge, by a quantum system with finite dimensional Hilbert
space. In previous works [44], I proposed a scheme by which the environment is composed
of the tensor product of simple low-dimensional systems, so that the dimension of the full,
purely quantum, isolated system–environment pairgrows exponentially in the number of
the elements of the latter and can therefore provide a physically reasonable solution to
the logarithmic catastrophe described above. The multiparticle Arnol’d cat introduced in
this paper is a simple model to implement this scheme. Due to technical difficulties, both
theoretical and numerical, much is still to be understood on the information flow in this
system. But first, let us review the original quantum Arnol’d cat.

5. Short Review of the Quantum Arnol’d Cat

Despite the fact that this quantum system has now become classical (pun), it is in-
teresting to present a derivation that opens the way to its decoherent generalization. We
study a point particle of mass M free to rotate on a ring, without gravity. This ring is a
one-dimensional torus of length L and a position on it is X ∈ [0, L). Most of the time,
the particle evolves freely at constant velocity. At discrete times, it is subject to a periodic
impulsive force, of period T, the relative Hamiltonian being:

Hcat(X, Y, t) =
Y2

2M
− α

X2

2

∞

∑
j=−∞

δ(t/T − j). (12)

Y is the conjugate momentum to X and α is a coupling constant. According to Hamilton’s
equations, the effect of the force is to instantaneously change the particle’s momentum.

Let us show that Hcat is the Hamiltonian that yields the Arnol’d cat mapping. Consider
the classical period evolution of the dynamical variables observed at instants immediately
following the action of the impulsive force:{

X → X + T
M Y

Y → Y(1 + αT
M ) + αTX.

(13)

Introduce the rescaled momentum Ỹ := T
M Y, which has the dimensions of a length. The

period evolution operator in the new variables is{
X → X + Ỹ
Ỹ → αT2

M X + (1 + αT2

M )Ỹ.
(14)

We require that the rescaled momentum variable Ỹ also be periodic, of the same period L as
of X. Choosing L = 1 and αT2

M to be an integer fulfills this requirement. Finally, the Arnol’d
cat mapping on the unit two-dimensional torus is obtained by further imposing that

αT2

M
= 1. (15)
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A rigorous mathematical framework for the quantum dynamics of this map can be
found in [60]. I now follow the treatment in [11], with results in agreement with the original
work of Schwinger [61] on the quantum dynamics on a torus. Because of the X periodicity,
the wavefunction takes the form

ψ(X) = ∑
k

ckφk(X) = ∑
k

ckei2πkX/L. (16)

In the above, φk(X) := ei2πkX/L are momentum eigenfunctions and ck, with k integer, are
the expansion coefficients. Next, we consider periodicity in Y with period ML/T. The
momentum operator is Y = −ih̄∂X, so that Yφk(X) = kh

L φk(X); h is Planck’s constant,
therefore, periodicity in momentum implies that

ck = ck+N (17)

for any k, where N is an integer number:

ML2

T
= N h. (18)

One parameter can be freely chosen and we set L = 1, with no loss of generality. One
can explain the rationale behind Equation (18): to embed quantum dynamics in a two-
dimensional torus of unit periodicity in the X direction, the periodicity in Y must be an
integer multiple of the Planck constant. Finally, using ck = ck+N in Equation (16) implies
that ψ(X) takes the form of a periodic train of delta functions at the points Xj:

Xj =
j
N + s, j = 0, . . . , N − 1 (19)

where s is an arbitrary constant shift. We shall use the notation |j > for the delta at
such positions.

The Hilbert space of the system is so isomorphic to CN . In the position representation,
wavefunctions can be written as

ψ(Xj) =
1√
N

N−1

∑
k=0

ckφk(Xj) =
1√
N

N−1

∑
k=0

cke−i2πkj/N (20)

and the discrete Fourier transform maps the above to the momentum representation:

ck = ψ̂(Yk) =
1√
N

N−1

∑
j=0

ψ(Xj)ei2πkj/N , (21)

where Yk = kh.
An important remark at this point is the following: via Equation (18), the dimension

of the Hilbert space is directly proportional to the mass M of the particle. Therefore, we can
take the classical limit in its correct physical form, by keeping h̄ to its real physical value
and by considering a particle of larger and larger mass M.

Quantum motion induced by the Hamiltonian Equation (12) becomes a unitary opera-
tor in H = CN that was computed in [11]. In the position representation, where ψ is the
vector ψ(Xj), j = 0, . . . ,N , the unitary evolution U0 induced by the free rotation Y2

2M has
matrix elements

U0
kl =

1√
N

e−(πil2/N )e2πikl/N . (22)

The instantaneous change in momentum induced by the kick is rendered by the operator K
with matrix elements:

Kkl =
1√
N

eiπl2/N δk,l , (23)
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where δk,l is the Kronecker delta. To complete the review of the formulae in [11], the
quantum Arnol’d cat evolution operator is the product U = KU0.

6. The Alicki–Fannes Entropy of the Quantum Arnol’d Cat

The theory of the Alicki–Fannes entropy can be applied to the dynamics of the quan-
tum Arnol’d cat, using projections operators Pl measuring the position coordinate only:
letting |j > for j = 0, · · · ,N − 1 be the canonical basis vectors of CN and letting, for
convenience, N = 2q, Q = 2q−p with p and q positive integers, p < q, we define

Pl =
(1+l)Q−1

∑
j=lQ

|j >< j|, l = 0, . . . , 2p − 1. (24)

For illustration, P0 is the projection on the first Q = 2q−p basis states, which corresponds
to the classical projection on the phase-space set 0 ≤ X < 1/2p, that is, the leftmost 1/2p

section of the unit two-dimensional torus (notice that all values of Y are allowed).
Even though the adaptation of the formalism of Section 3 to the case of the quantum

Arnol’d cat is theoretically straightforward and physically transparent, its practical im-
plementation, in terms of numerical analysis, is particularly challenging. Details of the
sophisticated technique required for its implementation can be found in [56]. Following the
approach presented in [38], this technique permits to compute the entropy for arbitrarily
long times, avoiding the exponential increase of the dimension of the decoherence matrix.
In Figure 3, the quantity S(n) (shorthand notation for S(H, U, P , n)) is plotted versus n for
different values of q (recall, N = 2q) and p = 2. We see that the bound S(n) ≤ 2 log(N )
is approached at a rapid pace in n for any finite value of q. Before this saturation, which
happens when n is proportional to q, that is log(N ), there is a small interval when S(n)
increases linearly with a slope dictated by the classical Lyapunov exponent. After this brief
lapse of time, output of new information fades.

q

n

 1

 3

 5

 7

 9

 11

S(n)

 4

 5

 6

 7

 8

 3  4  5  6  7  8  9  10  11  12

S(n)

Figure 3. AF entropy S(n) as a function of n and q.

This is the logarithmic catastrophe described above. Indeed, to linearly increase the length
of this span of chaotic freedom, one has to exponentially increase the dimension of phase space,
i.e., the mass of the particle. It is clear that, while mathematically the classical complexity is
fully regained in the limit, this is quite unsatisfactory from a physical viewpoint.

A detailed analysis of the decoherence matrix yielding these results further reveals
their physical content. In the numerical experiments that follow, we fix p = 2, meaning that
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phase space and Hilbert space are partitioned in four sets (see Equation (24) and discussion)
and, consequently, the decoherence matrix is the direct sum of sixteen diagonal blocks, of
which we consider the block σ0 = θ0 = 0, σn−1 = θn−1 = 0, with the other blocks providing
similar results. In Figure 4, left panel, the matrix elements |Dσ,θ | are plotted as blue bars.
The word length is three, so that interference between the paths (0, σ1, 0) and (0, θ1, 0), as
in a four-slit experiment, is clearly evident. Because of this, the diagonal values compare
poorly with the classical probabilities μ(σ) (a shorthand notation for μ(Pσ)), plotted as
red bars on the diagonal. The forest of off-diagonal blue bars is even more evident when
considering words of length four (0, σ1, σ2, 0) (there are 16 of them), in the right panel
of Figure 4.
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Figure 4. Absolute value of the decoherence matrix elements Dσ,θ (blue bars) and classical word
probabilities μ(σ) (red bars, plotted on the diagonal for comparison), when q = 2 so that N = 2q = 4,
and p = 2. In the left panel |σ| = |θ| = 3, in the right panel |σ| = |θ| = 4. See text for further detail.

How, then, does the classical limit arise in this context? In Figure 5 the diagonal matrix
elements Dσ,σ are plotted versus q, and compared with the classical probabilities μ(σ).
Since the mass M is proportional to N = 2q, increasing q by one unit means doubling
the mass of the particle. Convergence to the classical values is observed as well as the
progressive quenching of off-diagonal matrix elements. In fact, in Figure 6, left panel, it is
seen that when q increases, the decay of the sum of the absolute values of the off-diagonal
matrix elements Dσ,θ , σ �= θ, trends in pair with convergence to the classical entropy Scl of
the diagonal entropy Sdiag = − ∑σ Dσ,σ log Dσ,σ and of the AF entropy SAF in Equation (11).
The fitting line in the figure reveals that these phenomena scale as a power law with the
mass M (proportional to 2q), with exponent between minus one and minus one half.

The right panel of Figure 6 reveals, in even clearer detail, the logarithmic catastrophe
alluded to before. The symbolic distance, dsymb = ∑σ |Dσ,σ − μ(σ)|, at fixed word length |σ|,
is plotted when both |σ| and q are varied. One observes that classical word probabilities
of fixed length |σ| are recovered when increasing the mass of the particle (i.e., q), while
quantum interference destroys this convergence when, at fixed mass, longer words are
considered. This is the well-known noncommutativity of the classical limit and the long-
time limit [7,8]. Yet, the graph shows that quantum effects spoil the correspondence at a word
length that is logarithmic in the mass of the particle. One so recovers from the entropic point
of view the results obtained via algorithmic complexity [11].
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Figure 5. Absolute value of the diagonal decoherence matrix elements Dσ,σ (blue bars) as function
of q, compared with the classical word probabilities μ(σ) (red bars, obviously independent of q and
plotted sideways for comparison). In the left panel |σ| = 3, in the right panel |σ| = 4. See text for
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absolute difference between classical entropy Scl and AF entropy SAF (green curves). Right panel:
symbolic distance dsymb = ∑σ |Dσ,σ − μ(σ)| versus word length |σ| and q. See text for further detail.

As mentioned, decoherence has been proposed as a way to overcome this impasse. It is
the purpose of the remaining part of this paper to study decoherence in a controlled setting,
with the aid of a model system.

7. Decoherence and the Multiparticle Arnol’d Cat

Decoherence, that is, the loss of quantum coherence of a system, is today principally
studied because it is a major obstacle in the performance of a quantum computer [62]. In
the 1990s of the XX century it was invoked for the explanation of the puzzling behavior
of quantum Schrödinger cats [63] and the emergence of classical properties in quantum
mechanics [29–33,45]. In actuality, as early as 1984, Guarneri [64] proved that a random
perturbation of the motion of a kicked rotor prevents quantum localization from setting
in. This induces a diffusive quantum motion, whose diffusion coefficient D was computed
by Ott et al. [65]. In the same perspective, Dittrich and Graham [66], Kolovsky [21,23],
and Sundaram et al. [67] considered systems (both classical and quantum) randomly
perturbed or coupled to an environment: the resulting motion is also diffusive. The
quantum dynamics of these systems were shown to be similar to the classical when

√
D/λ

is larger than h̄ times a dimensional constant (λ is the Lyapunov exponent). The heuristic
explanation of this inequality stems from the observation that since diffusion smears classical
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phase space to the finest discernable resolution of
√

D/λ, when this latter is larger than
h̄, the quantum smeariness, the two dynamics appear similar. To quote a famous musical,

“The way she sees and the way he looks is a perfect match”: the reader is asked to interpret the
analogy. We shall return to this point in the conclusions.

Let us now describe a system that I have introduced to model exactly the interaction of
a system with the environment, avoiding recourse to master equations, Lindblad operators,
or similar, with the goal of having a fully Hamiltonian system [44]. The model draws upon
the original view of decoherence by Joos and Zeh [45,68] as due to collisions of particles.

Consider adding I smaller particles of mass m in the ring that confines the particle
of mass M, freely rotating except for collisions with the large particle. Let xi and yi,
i = 1, . . . , I the coordinates and momenta of these particles, respectively. The Hamiltonian
of the classical system is, therefore,

H = Hcat(X, Y, t) +
I

∑
i=1

y2
i

2m
+ κ

I

∑
i=1

V(xi − X), (25)

where Hcat was introduced in Equation (12), κ is a coupling constant, and the potential
function V(·) will be described momentarily.

Let us first define the quantum kinematics. In addition to the L = 1 periodicity in the
variables xi, we also impose periodicity mL

T in the momenta yi. Therefore, performing a
similar analysis to the one presented above, we obtain

mL2

T
= νh, (26)

where ν is the dimension of the Hilbert space of a single small particle, an integer that we
also choose to be a power of two: ν = 2r. Therefore, the many-particle wavefunction reads

Ψ(X, x1, . . . , xI) = N−1/2ν−I/2
N−1

∑
k0=0

ν−1

∑
k1=0

· · ·
ν−1

∑
kI=0

ck0,k1,...,kI e
2πi(k0X+∑i kixi). (27)

In the same way as the position X is restricted to a lattice, so are the xis. We further require
that small particles’ positions xi, i = 1, . . . , I, be a subset of those of the large one:

xji
i = ji

1
ν
+ si

1
N , ji = 0, . . . , ν − 1. (28)

where si an integer ranging from zero to N/ν − 1. Introducing the multi-index j = j0, j1, . . . , jI ,
in which the label 0 refers to the large particle and i > 0 to the i-th small one, we let |j >
denote the delta function at the particles’ position given in Equations (19) and (28). A different
representation for the wave function is, therefore,

Ψ =
N−1

∑
j0=0

ν−1

∑
j1=0

· · ·
ν−1

∑
jI=0

dj0,j1,...,jI |j0, j1, . . . , jI > . (29)

The Hilbert space of the system H is the tensor product of the Hilbert spaces of the single
particles; therefore, it is isometric to a power of C:

H = Hbig ⊗HI
small = CN Iν

. (30)

The potential V must represent a short-range interaction occurring only when the large
particle and a small one occupy the same position. In the representation Equation (29), its
matrix elements are, therefore,

< j′|Vj >= Vj′0,j′1,...,j′I ;j0,j1,...,jI
=

I

∏
i=0

δj′i ,ji

I

∑
i=1

δj0, Nν ji+si
. (31)
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8. The Von Neumann Entropy

In a pair of papers I have investigated the dynamics of the quantum system introduced
in the previous section [44,46]. Treating the large, zeroth particle as the system and the
small particles as the environment, the reduced density matrix ρ̂ is defined by tracing over
the small particles degrees of freedom:

ρ̂j′0,j0 = ∑
j1,...,jI

ρj′0,j1,...,jI ;j0,j1,...,jI
(32)

Firstly, by choosing an initial density matrix as a pure state in a Schrödinger cat configu-
ration [63], I showed that as time progresses, interaction with small particles wipes out
the outdiagonal components of the reduced density matrix ρ̂, obtained by tracing over the
small particles degrees of freedom, exactly as in the experimental results. This dynamics is
shown in the position representation in Figure 7. Here, α = 0, that is, there is no cat kick.
These results show that the multiparticle cat is a bona fide model of decoherence.

Figure 7. Absolute value of the reduced density matrix, in the position representation, of a system
with q = 7, I = 2, ν = 1, κ = 50. Time snapshot ordered from left to right, top to bottom. The cat
particle has a positive velocity, so that peaks drift on the torus.

I then considered the Von Neumann entropy, −Tr ρ̂ log ρ̂. This entropy quantifies the
amount of information in the eigenvalues of the reduced density matrix. The analysis was
first performed for the free colliding particles case, given by the Hamiltonian (13), (25) with
α = 0. The initial increase of the Von Neumann entropy was observed to be logarithmic. On
the contrary, when αT2/M = 1, as in the Arnol’d cat map, the initial increase of entropy is
linear, with a slope that equals the Kolmogorov Sinai entropy provided the coupling constant
κ Equation (25) takes a specific value, which scales according to the physical parameters of
the system. Clearly, when κ is null there is no decoherence and the Von Neumann entropy
is null. For small values of κ, entropy increases linearly at a small rate before saturation,
while above the aforementioned value the rate is larger than the classical dynamical entropy.
This parameter dependence is in my view a caveat for the physical interpretation of similar
results in different systems. For details, the interested reader is referred to [46].

9. The AF Entropy of the Multiparticle Arnol’d Cat

Even though interestingly, results about the Von Neumann entropy lack the generality
and theoretical significance provided by the Alicki–Fannes entropy. In particular, the
former is bounded above by the logarithm of the dimension of the Hilbert space of the
reduced system, in this case log N , independently of the dimension of the full Hilbert space.
The latter, on the contrary is bound by 2 log N + 2I log(ν), which scales linearly with the
number of particles I and therefore might provide a physically reasonable classical limit.

Moreover, the decoherence matrix introduced in Section 3 permits us to compare
analytically, i.e., one by one, the classical probabilities μ(Pσ) with the diagonal elements
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Dσ,σ and to gauge the importance of nondiagonal matrix elements, which encode quantum
coherence. Observe that the projectors Pl in Equation (24) can be generalized to act on the
coordinate of the large particle only, labeled by the index zero:

Pl =
(1+l)Q−1

∑
j0=lQ

ν−1

∑
j1=0

· · ·
ν−1

∑
jI=0

|j0, j1, . . . , jI >< jI , . . . , j1, j0|, l = 0, . . . , 2p − 1. (33)

In so doing, we are observing the symbolic dynamics of the large particle only, in the
presence of the external environment provided by the other, smaller, particles.

9.1. The Decohering Effect of the Perturbation

Firstly, let us consider a system composed of a large particle, q = 4, coupled to two
small particles, r = 1 (mass ratio 1:8) and let us vary the coupling constant κ. In Figure 8
we plot, as before, the decoherence matrix entries for words of length 5, beginning and
ending with the symbol 0. In the left panel κ = 0 (that is, small particles do not interact
with the large one), while in the right panel κ = 10. Nondiagonal matrix elements are
clearly smaller in the second case, so that diagonal values become closer to the eigenvalues
of the decoherence matrix. Nonetheless, we do not expect them to approach in the limit
of very large κ the classical word probabilities, displayed as red bars in both panels. This
is evident in Figure 9 where the diagonal matrix elements Dσ,σ are plotted versus κ and
compared to μ(σ). The symbolic distance dsymb = ∑σ |Dσ,σ − μ(σ)| quantifies the agreement:
in the right panel of Figure 9 it is seen that dsymb does not significantly diminishes when
increasing κ, differently from the sum of the absolute values of the off-diagonal matrix
elements, ∑σ �=θ |Dσ,θ |.
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Figure 8. Absolute value of the decoherence matrix elements Dσ,θ (blue bars) and classical word
probabilities μ(σ) (red bars, plotted on the diagonal for comparison) when q = 4, r = 1, I = 2, and
p = 2. In the left and right panels, κ = 0 and κ = 10, respectively. See text for further detail.

I believe that these results are general, albeit obtained in a restricted range of param-
eters. Firstly, increasing κ reduces the off-diagonal matrix elements and therefore makes
the system less coherent, i.e., more classical. Secondly, observe that the sums ∑σ Dσ,σ and
∑σ μ(σ) over words of fixed length |σ| are constant and equal to the probabilities, quantum
and classical, of the sector σ0, σn−1, (0, 0 in the figures) so that changing the value of κ results
in a transfer of probability among all words of length n = |σ| while keeping their sum
approximately constant (because transfer of probability among different blocks σ0, σn−1
is small). Therefore, the fact that increasing κ at fixed |σ| does not reduce the symbolic
distance means that small particles are rendering the observation of the large one more clas-
sical, but at the same time are perturbing it too much. Finally, the increase of the symbolic
distance with |σ| (an evident proxy for time) at fixed κ shows, again, the rapidly emerging
difference between classical and quantum dynamics. Figure 10 confirms this conclusion:
we see that in the presence of decoherence (that is, low off-diagonal matrix elements), AF
and diagonal entropies approach each other, but differ from the classical value.
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Figure 9. Left panel: Parameters as in Figure 8. Diagonal matrix elements Dσ,σ (red bars) versus κ,
classical word probabilities μ(σ) (green bars), and sum of the absolute value of outdiagonal matrix
elements Dσ,θ (blue bars, rescaled by a factor to improve readability of the graph). Right panel: sum
of the absolute differences between diagonal matrix elements and classical probabilities (red), sum of
the absolute values of off-diagonal matrix elements (green, rescaled by a factor).
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Figure 10. Parameters as in Figure 8, wider range of the coupling constant κ ∈ [0, 40]. Left panel:
classical entropy Scl (red curves), diagonal entropy Sdiag (green curves), AF entropy SAF (blue curves).
Right panel: absolute difference |Scl − Sdiag| (red curves) and |Scl − SAF| (green curves).

9.2. The Limit of Large Mass with Decoherence

The previous results show that there exist two ways to induce decoherence, defined as
quenching of the off-diagonal entries of the matrix D: increasing the mass of the particle
(that is, the dimension of its Hilbert space), or coupling it to a larger, yet still purely
quantum, system. The former leads in the limit to the classical results, but is plagued by its
very slow, logarithmic convergence, which renders its application unphysical. The second
cannot provide by itself the hardly-sought classical limit, but it may feature an exponential
increase in Hilbert space dimension, simply augmenting the number of small particles. I
made this observation in [44], where I surmised that a combination of the two approaches
might yield scaling relations (in the number of small particles, coupling, and mass of the
large particle) by which complexity of the motion, as a linear increase of the Shannon
Alicki–Fannes entropy S(n), could be observed over physically significant time spans.

This investigation is subtle, both from the theoretical and the numerical viewpoint. In
this paper we can add a few experiments in this direction. In Figure 11, we consider two
families of systems, the former composed of a single particle, of increasing mass (different
values of q), already studied in Section 6; the second, composed again of such large particle,
but coupled to two small particles, with coupling constant κ that increases proportionally to
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the mass of the large one. We compute the AF entropies SAF of these systems and compare
them with the classical entropy. We observe that, while both converge to the last quantity,
the multiparticle case provides a better approximation for small values of q. Considering
that the mass M is proportional to the exponential of q, this is encouraging in the quest
outlined above.

To investigate this phenomenon, recall that, as described above, for any finite value of
n = |σ| and for any finite sector σ0, σn−1, (0, 0 in the figures) the AF, diagonal, and classical
entropies are the sum of Ln−1 contributions of the form sj = −ζ j log(ζ j), when ζ j is an
eigenvalue of the matrix D, or a diagonal entry of this matrix, or a classical word probability,
respectively. We can therefore compare different entropies by first sorting the values sj in
descending order, from the largest to the smallest, and then computing their integrated
distribution Si = ∑i

j=0 sj. These distributions are plotted in Figure 12, in the same case of
Figure 11. Different panels are related to increasing values of q, from 2 to 7. The horizontal
segments in the plots of the AF partial entropies are due to the Hilbert space dimensionality
bound, which imposes a maximum number of non-null eigenvalues of D. We can observe
that the effect of the small particles is to free the AF entropy from this bound, assuring a
faster convergence to the classical values.

 2
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Figure 11. Classical entropy Scl (red curves) compared with AF entropy SAF of systems with variable
q and I = 0 (green curves) and I = 2, r = 1, and κ = 0.125 × 2q (black curves).
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Figure 12. Increasing partial entropies Si, |σ| = 5, of systems with variable q, from 2 to 7, left to right
and top to bottom. The classical entropy Si is denoted by a red curve in all panels. In the case I = 0,
the green curve marks the AF partial entropy, and the blue curve the diagonal partial entropy. In the
case I = 2, r = 1, and κ = 0.125 × 2q, the AF partial entropy is marked in magenta and the diagonal
partial entropy in light blue.

10. Conclusions

The multiparticle Arnol’d cat is a model system particularly suited to investigate
the nature, definition and relevance of quantum chaos. In my works I have followed the
original suggestion of Chirikov and Ford that this problem should be considered within
the framework of information theory. Dynamical entropies provide a major tool for this
investigation and their formal aspects have been fully developed in the last years [48]. In
this respect, the model described herein permits to free dynamics, in a controlled, fully
canonical way, from the bound induced by the finite dimensionality of the Hilbert space.
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This bound is due, in this particular model, by the finiteness of the mass of a particle, and
therefore carries a deep physical significance.

I considered herein the classical limit as the limit of increasing mass of such particle,
while keeping the value of the Planck constant fixed. Chaotic behavior has been defined,
for a finite time span, as the production of information at an inferiorly bounded, positive
rate. Consideration of the decoherence matrix from the consistent histories formalism
has also permitted the comparison, word by word, of classical and quantum symbolic
dynamics. It came as no surprise that, as I presented in earlier works, in the single-particle
case, the length of agreement between the two, and consequently the length of the span of
the chaotic freedom of the quantum system, grows only logarithmically with the mass of
the particle.

As reviewed in this paper, coupling to an external system has been shown to provide
quantum motions (via the Wigner function, or similar phase space tools) that correspond to
a classical noisy evolution, within the finite phase-space resolution of this latter, for longer
times. In a discrete lattice model, mimicking the quantum cat Hamiltonian with noise [69],
we have observed information production over long time scales. Returning now to many
particles quantum systems, in [44], I proposed the hypothesis that a particular scaling of
parameters—number of particles, their mass, and the observational time interval—could
extend, in a physically reasonable range, the span of chaotic behavior. The results of this
paper are admittedly not conclusive, but suggest that this endeavor could be feasible. In
this view, the (fully quantum) environment is to be considered as a source of disorganized
information that, when input to a regular or chaotic quantum system, is organized by this
latter in such a way to agree, within observational limits, to the classical description. This
is, in essence, the program outlined in [69]: “For a long time, research in quantum chaos has
looked for quantum characteristics related to classical chaotic motion. The fact that none of these
could be properly called chaos led to the concept of pseudochaos and cast doubts on the very existence
of chaos in nature. [...] one might try to reverse this approach and consider classical dynamics
as an effective theory that, via truly chaotic deterministic dynamical systems, models a randomly
perturbed quantum motion under observational coarse graining.”
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Abstract: The propagation of electromagnetic waves in a closed domain with a reflecting boundary
amounts, in the eikonal approximation, to the propagation of rays in a billiard. If the inner medium is
uniform, then the symplectic reflection map provides the polygonal rays’ paths. The linear response
theory is used to analyze the stability of any trajectory. The Lyapunov and reversibility error invariant
indicators provide an estimate of the sensitivity to a small initial random deviation and to a small
random deviation at any reflection, respectively. A family of chaotic billiards is considered to test the
chaos detection effectiveness of the above indicators.

Keywords: Lyapunov error; reversibility error; Gibbs entropy; wave chaos

1. Introduction

Electromagnetic cavities exhibit wave chaos that can be predicted by a semi-classical
analysis and random matrix theory; see [1] for a two-dimensional open electromagnetic
cavity, ref. [2] for closed three-dimensional cavities and [3] for a review. These powerful
prediction tools hold true and can be extended to include coupling through antennas
and wave-guides, as well as interconnected cavities [4]. Furthermore, the semi-classical
treatment of electromagnetic cavities has been tackled extensively in [5,6]. The experi-
mental verification of wave chaos in microwave billiards has been addressed by several
international research groups over the last few decades. This extensive work led to the ob-
servation of a rich phenomenology originating from complex wave dynamics [7], including:
Wave-function scars [8], chaotic dynamics in superconducting billiards [9], time-reversal
symmetry breaking [10], nodal domains in rough billiards [11], time-invariance violation
at and around exceptional points [12] as well as electromagnetic reverberation [13]. Con-
cerning optical resonators, it has been shown that chaotic dynamics are a key mechanism
in asymmetric geometries [14–16]. This effect is important in the generation of lasers [17]
with directional emissions [18] of eccentric cavities. Chaotic cavities have been employed
in a plethora of electromagnetic engineering applications, including time reversal energy
focusing [19] and electromagnetic compatibility (EMC) testing [20]. The equations for
the propagation of acoustic and electromagnetic waves in resonant cavities are similar
and coincide when the medium within the cavity is uniform. Usually, the cavities have a
cylindrical or spherical symmetry and the resonant modes can be computed in a closed
mathematical form. When the eikonal approximation is applicable, for sufficiently short
wavelengths, the symplectic reflection map is integrable [21]. Deformations of the boundary
cause the loss of integrability and the emergence of chaotic behavior in the particles or rays
trajectories [22]. Even if the dynamics of integrable billiards are still an exciting research
topic that continuously unveils novel phenomena, a growing interest has been developing
within the scientific community for the properties of chaotic billiards [23–27].
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For a sphere, the trajectory of any ray develops in a plane, which is determined by the
initial ray position and velocity. The intersection of the sphere with the invariant plane is a
circle, where the 2D area preserving the reflection map is integrable.

The symplectic 4D reflection map on a sphere is no longer integrable if the sphere is
deformed. Thus, as opposed to a 4D flow, a first integral is no longer available and the 2D
Poincaré map cannot be computed, preventing the analysis of the dynamical structures in
phase plane portraits. For a cylinder, the trajectory of any ray develops in a plane, which
intersects it on an ellipse, where the 2D reflection map is integrable. When the cylinder is
deformed, the orbits no longer belong to a plane, the 4D symplectic map is not integrable
and the phase portraits of the reflection map cannot be drawn [28]. This is important also
in wave propagation within deformed cavities as the evolution of quantum states show
footprints of classical trajectories [29].

The Lyapunov error (En(x)) and the reversibility error (ER
n (x)) are dynamic indicators,

based on the linear response theory, and allow the testing of the sensitivity of the orbits to
small random deviations (see, for instance, [30]). For any fixed number of iterations, this
sensitivity can be compared on a set of initial conditions chosen in a phase plane (see, for
instance, [31]).

In Section 2, we present a brief introduction of the fast indicator used, their properties
and relations. In Appendix B, we provide the definition of Lyapunov and reversibility
errors. For a single orbit, the dependence on n can be investigated and the limit n → ∞,
limit of n−1 log En(x), provides the maximum Lyapunov exponent. ER

n (x) has been shown
to be very sensitive to multi-dimensional problems, such as chaos detection in planetary
systems (see, for instance, [32]) and in 2D and 3D waveguides (see [33]). In Section 3,
we present a numerical analysis of the 2D reflection map in a convex domain, given by a
deformed circle. We compare the phase portraits with the color plots of the Lyapunov and
reversibility errors computed in a regular grid of phase space.

The mathematical description of the convex billiard and its new parametrization are
presented in Appendix A.

To conclude, we consider the transport of particles and rays within the billiard. Given a
source of particles or rays within the billiard, the time evolution of the probability density of
particles or the energy density of rays is analyzed. Such a density can hardly be determined
analytically, even for integrable billiards, and a numerical strategy is presented.

The dynamic indicators could be evaluated at time t for the inner points of the billiard
after performing an average with respect to the initial ray or particle direction. A detailed
analysis of 2D and 3D billiards can be worked out by using the algorithms described here.

2. Lyapunov and Reversibility Error Indicators

The dynamic stability of the reflection map can be analyzed with the Lyapunov error
indicator (i.e., En(x)) or with the Reversibility error indicator (i.e., ER

n (x)). The former
measures the sensitivity of the initial conditions to small random deviations, and the
latter measures the sensitivity to small deviations at each reflection. To implement the
Reversibility error indicator, we iterate both the randomly perturbed and exact maps’ n
times, and compute the distance of the final point of the perturbed orbit with respect to the
one obtained from the exact orbit. Letting ε be the amplitude of the random perturbations,
we consider the linear response given by the ε → 0 limit. Given a symplectic or measure
preserving map M(x), defined as a compact manifold of R2d, we denote with DM(x) the
tangent map where (DM)ij(x) = ∂ Mi(x)/∂xj. The orbit xn is obtained by iterating n times
the map M. We introduce the matrix Ln obtained by taking the products of the tangent
map along the orbit:

xn = M(xn−1) x0 = x xn = M◦n(x)

Ln(x) = DM(xn−1) Ln−1(x) L0 = I Ln(x) = DM◦n(x)

(1)
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For the initial condition y = x + εξ, where ξ is a random vector with a zero mean and
unit covariance matrix 〈 ξ ξT 〉 = I, we compute the orbit yn = M(yn−1) where y0 = y.
We compare the perturbed and the reference orbit by defining the linear response Ξn
according to

Ξn(x) = lim
ε→0

yn − xn

ε
= lim

ε→0

M◦n(x + εξ)− M◦n(x)

ε
= DM◦n(x) ξ ≡ Ln(x) ξ (2)

The square of En(x) is defined as the trace of the covariance matrix Σ2
n(x) of the random

vector Ξn(x):

Σ2
n(x) = 〈Ξn(x)Ξ

T
n (x) 〉 = Ln(x) L

T
n (x) E2

n(x) = Tr (Σ2
n(x)) = Tr

(
LT

n (x)Ln(x)
)

(3)

The matrix Ln L
T
n has the same eigenvalues as the Lyapunov matrix LT

nLn but their eigen-
vectors are different. The invariants I(k)n (x) of the Lyapunov matrix are equal to the sum
of the (d

k) products of the eigenvalues and can be computed with the Faddeev–Leverrier
algorithm. From a geometrical viewpoint, the invariants are equal to the sum of the
squared volumes of the (d

k) parallelotopes whose edges are Ln(x)ej, and ej are any or-
thonormal base vectors.According to the Oseledec theorem, by writing the Lyapunov
matrix as LT

n (x)Ln(x) = Wn(x) e2n Λn(x) Wn(x), the diagonal matrix Λn(x) and the eigen-
vectors matrix Wn(x) have a limit, for n → ∞ is equal to Λ(x) and W(x), respectively. As a
consequence, letting Λ(x) = diag

(
λ1(x), . . . , λ2d(x)

)
, we have

lim
n→∞

1
2n

log I(k)n (x) = λ1(x) + λ2(x) + . . . + λk(x) (4)

If the map M is symplectic, the exponents are pairwise opposite λd+j = −λd−j+1. If the
map is integrable, then the first d eigenvalues of the Lyapunov matrix grow as n2, while
the last d decrease as n−2, so that all the Lyapunov exponents vanish. For a generic map,
the power law growth or exponential growth with n of the first d invariants guarantee
the classification of the phase space regions of regular and chaotic evolution. Below, we
briefly introduce the reversibility error. For a complete description of the indicators and
their properties, see Appendix B.

Reversibility Error

We consider the Backward–Forward process (BF) as one implementation of the Re-
versibility error indicator. In this case, we iterate n times the map with a random perturba-
tion of amplitude ε first, and then the inverse map. The recurrence is given by

yn′ = M(yn′−1) + εξn′ 1 ≤ n′ ≤ n yn′ = M−1(yn′−1) n + 1 ≤ n′ ≤ 2n (5)

and the linear response is defined by

ΞBF
2n (x) = lim

ε→0

y2n − x

ε
=

n

∑
k=1

L−1
k (x) ξk (6)

where L−1
k is the inverse of the matrix Lk defined by (1). In the absence of perturbation, we

are back to the initial condition y2n ≡ x2n = x. The covariance matrix of the random vector
ΞBF

2n is given by

Σ2
BF n(x) =

〈
ΞBF

2n (x)
(
ΞBF

2n

)T
〉

=
n

∑
n′=1

(
LT

n′(x)Ln′(x)
)−1

(7)

The square of the BF reversibility error EBF n is defined as the trace of Σ2
BF n. The asymptotic

limit of the invariants I(k)BF n(x) is the same as (4) for k ≤ d. The log of the last invariant
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I(2d)
BF n(x) is the Gibbs entropy of the process with the covariance matrix Σ2

BF n(x) and its
asymptotic behavior is the same as the Kolmogorov–Sinai entropy.

If the map is symplectic, then the matrices Ln′LT
n′ and LT

n′Ln′ are symplectic. Therefore,
the trace of LT

n′Ln′ and its inverse are equal. In this case, the BF reversibility error is simply
related to the Lyapunov error En as

E2
BF n(x) =

n

∑
n′=1

E2
n′(x) (8)

Previously, the BF process has been considered with the noise applied to both the B and F
iterations. The covariance matrix of the linear response in in this case is given by

Σ2
BF n(x) =

1

2

〈
ΞBF

2n (x)
(
ΞBF

2n

)〉
=

1

2
I+

n−1

∑
n′=1

(
LT

n′(x)Ln′(x)
)−1

+
1

2

(
LT

n (x)Ln(x)
)−1

(9)

and proof of (9) can be found in [3] Section 2.3. The asymptotic behavior of the invariants
of the reversibility error covariance matrix Σ2

nBF is determined by the positive Lyapunov

exponents. Indeed, the limit of (2t)−1 log(I(k)nBF) for t → ∞ is the sum of the positive

exponents among the first k. As a consequence, 1
2 log(I(2d)

nBF ), which corresponds to the

Gibbs entropy of the BF random process where I(2d)
nBF = det(Σ2

nBF), is the sum of all the
positive Lyapunov exponents (the first d for a symplectic map ), just as the Kolmogorov–
Sinai entropy. Notice that the difference with the previous definition and (7) is negligible
for a large n. Such a definition was initially proposed to compare the reversibility error due
to a small random displacement with respect to the reversibility error due to the round
off. The Reversibility Error indicator due to round off, denoted by REM, is a numerical
implementation of ER

n (x) and numerical equivalence has been proven for simple maps [34].
Denoting with Mε the map evaluated with round off and M−1

ε the inverse map
evaluated with the round off, the REM indicator is then

REMBF n(x) =
‖M◦ −n

ε ◦ M◦ n
ε (x)− x‖√

2 ε
(10)

The round off is a pseudo-random process in which just one realization is available. When
different values for n or x are used, it is evident that REMBF n exhibits significant fluctua-
tions with respect to EBF n, which is the result of an averaging process over the random
displacements. No higher invariants can be defined for the reversibility error due to
round off.

We can also consider the specular implementation, namely the Forward–Backward
REMFB, which consists of iterating n times first the perturbed inverse map M−1 and then
the map M. For an autonomous symplectic map however, all the invariants are the same
as for the BF process. Moreover, for a Hamiltonian flow, equivalence of the FB and BF
invariants is a consequence of the time reversal invariance.

The linear approximation given by yn = xn + εΞn can be considered; however, since
the remainder of order ε2 can generically be neglected only for a number of iterations, small
with respect to log(1/ε), it is of no practical use. The linear response being based on the
ε → 0 limit is valid for any number n of iterations.

3. Numerical Results for the 2D Billiard

In this section, we introduce numerical results for a 2D billiard; the reflection map for
a convex billiard defined by (A12) with f (x) = x2/3 is presented. The billiard analyzed
in this section has a closed boundary for ε ≤ 1/

√
3 ∼ 0.577 as one can easily show.

Indeed, letting V(x) = x2/2 + εx3/3, the maximum occurs for x = −1/ε and we require
V(−1/ε) = 1/(6ε2) ≥ 1/2 to have a closed boundary so that ε ≤ 1/

√
3. We have restricted

our analysis to ε ≤ /1/2, observing that for ε ≤ 0.1, the map is almost integrable; for
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ε = 0.2, the area of chaotic regions is significant and already for ε = 0.4, a large fraction of
the phase space is chaotic. We have used the coordinates (φ, p) in the phase space even
though the map preserves the measure but is not area preserving. We have compared
the phase portraits with the Lyapunov error En(x), the reversibility error EBF

n and the
round-off induced reversibility error REMBF

n , computed according to (A28), (A38) and
(A41), respectively. In Figure 1, we show the billiard for:

Figure 1. Left panel: billiard boundary defined by (A12) with f (x) = x2/3 and ε=0, 0.1, 0.2,
0.4, 0.5 (green, cyan, purple, grey, blue). Right panel: rays trajectory for ε = 0.5 and n = 10
(purple line) and the reversed ray trajectory (red line). At the initial point, the tangent and
inner normal vectors are shown (black lines).

We have analyzed the orbits for the billiard, comparing them with the color map of the
Lyapunov error En(x) , reversibility error EBF

n (x) and the round-off induced reversibility
error REMBF

n (x), where x = (φ, p)T is chosen on a regular grid of the Ng × Ng points.
A logarithmic color map is used to show the results. By defining the tangent vector
τ (s) = ∂r(s)/∂s and the ray velocity as ‖v(s)‖, then the range of the phase φ of the
position vector is [0, 2π], and the range of the momentum p = τ · v is [−1, 1]. Since the
orbits are symmetric, by changing p into −p, the chosen range for p is then in the range
[0, 1]. For a deeper discussion on the properties of the billiard, see Appendix A.

It is important to notice that the indicators give additional information with regard to
the phase portrait, since they provide a quantitative measurement of the chaos for an orbit.
Additionally, for 4D billiards Poincare’ sections are not available and the indicators are the
only methods to investigate the stability of the phase space.

In Figures 2, we compare the phase portrait against the En(x) for the billiard with
ε = 0.1. The correspondence between the phase portrait and En(x) color plot is good
and in both cases, a thin layer of chaotic orbits is seen at the boundary of the main chains
of islands. In the interior of the chains of islands, the error tends to be zero because the
de-tuning (derivative of the frequency with respect to the action) is low. By approaching the
separatrix, the de-tuning grows, diverging on the separatrix itself, where the error growth
with n, changing from a power law to an exponential one.

In Figure 3, ER
n (x) and REMBF

n (x) show a similar behavior. REM is similar to the error
induced by the small random displacements, but exhibits higher fluctuations because the
averaging over the random process is missing. It is worth noticing that

(
ER

n
)2 constitutes

the sum along the orbit of (En)
2, provided (s, p) are used as canonical coordinates. The

Lyaponov error oscillates with n in the regions of quasi-integrable motion and for fixed n,
oscillations are observed in phase space. These oscillations can be eliminated by using the
MEGNO average (see, for instance, Ref. [35]) and they disappear for ER

n (x).
In Figures 4 and 5, the Poincare section, ER

n (x), En(x) and REMBF
n (x) are shown for a

larger perturbation ε = 0.2. The larger deformation with respect to the integrable billiard
increases the area of the chaotic orbits. For ε = 0.3, almost one half of the unit phase space
area—in the (φ0/2pi, p0) initial coordinates used in the figures—is filled with chaotic orbits
and this fraction increases approaching 1, when ε tends to the limit value ε = 1/

√
3. For a
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2D map, the phase space portraits provide the required information on the orbits stability;
however, one advantage of the proposed indicators is that they provide a quantitative value
to discriminate between regular and chaotic orbits. To explore small details in the phase
space, one can analyze a smaller region and increase the number of iterations. Moreover,
the indicators become the unique stability analysis tool when the dimensionality of the
problem is increased. This is the case for the 3D billiard which leads to a 4D reflection map.
In this case, the 2D phase portraits are no longer available.

Figure 2. Left panel: phase portrait of the billiard with ε = 0.1. Each orbit is computed for
n = 1000 and the initial points of each orbit are the red dots. Right panel: Lyapunov error
En(x) where φ0/(2π) and p are chosen in a regular grid of the unit square with Ng × Ng

points and Ng = 200. The iterations number is n = 200 and the results are shown in a
logarithmic color scale.

Figure 3. Left panel: billiard with ε = 0.1 reversibility BF error EBF
n (x) where φ0/(2π) and

p are chosen in a regular grid of the unit square with Ng × Ng points and Ng = 200 and
the iterations number is n = 200. Right panel: round-off induced BF reversibility error
REMBF

n (x).
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Figure 4. Left panel: phase portrait of the billiard with ε = 0.2. Each orbit is computed for
n = 1000 and the initial points of each orbit are the red dots. Right panel: Lyapunov error
En(x) where φ0/(2π) and p are chosen in a regular grid of the unit square with Ng × Ng

points and Ng = 200. The iterations number is n = 200 and the results are shown in a
logarithmic color scale.

Figure 5. Left panel: billiard with ε = 0.2 reversibility BF error EBF
n (x) where φ0/(2π)

and p are chosen in a regular grid of the unit square with Ng × Ng points and Ng = 200
and the iterations number is n = 200. Right panel: round-off induced reversibility error
REMBF

n (x).

4. Conclusions

We have considered the motion of particles on a 2D billiard with a convex reflecting
boundary using a parametrization different from the one proposed by [36]. Our imple-
mentation can be easily extended to a 3D billiard. The computation of the arc length s on
the boundary requires a numerical integration, which can be avoided choosing the phase
φ of the position vector r rather then the curvilinear abscissa s, even though, in this case,
the map is only measure preserving. The stability of the orbits has been analyzed using
the Lyapunov and Reversibility error fast indicators. Both indicators are invariant with
respect to the choice of the initial deviation and of the orthogonal reference frame. We have
shown that the logarithm of the second reversibility error invariant is the Gibbs entropy
of the random vector defining the deviation from reversibility. The numerical results of
the Lyapunov and reversibility error indicators, presented for a selected family of billiards,
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confirm the reliability of the proposed methods to explore the sensitivity of ray propagation
to small random perturbations.
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The following abbreviations are used in this manuscript:

2D Two Dimensional
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BF Backward-Forward
REM Reversibility Error Method
RE Reversibility Error
LE Lyapunov Error
MEGNO Mean Exponential Growth Factor of Nearby Orbits

Appendix A. Convex Billiards

In this appendix, we consider a plane billiard with a convex boundary and the reflec-
tions map, which is area preserving. Letting s be the arc length of the boundary, whose
length is �, the boundary is parameterized by r = r(s), where r = (x, y)T and x(s), y(s) are
periodic functions of s with period � [37]. Choose two points r0 = r(s0) and r2 = r(s2) and
consider a ray starting at r0 = r(s0), hitting the boundary at r(s) and again at r2 = r(s2).
Since r0 and r2 are given, the intermediate point r is determined by the Maupertuis–Fermat
principle which requires the length H(s) of the trajectory to be a minimum

H(s) = h(s0, s) + h(s, s2) h(s, s0) = ‖r(s)− r(s0)‖ h(s2, s) = ‖r(s2)− r(s)‖ (A1)

At any point of the curve s, we define the tangent vector τ (s) = ∂r(s)/∂s and the inner
normal n(s) = τ (s)× ez. Denoting ẋ = dx/ds and ẏ = dy/ds, we have τ (s) = (ẋ, ẏ) and
n(s) = (ẏ, −ẋ). The ray velocity ‖v(s)‖ is constant and is chosen to be equal to 1. Denoting
with v(s) ≡ v(s + 0) the velocity of the outgoing ray at the point r(s), we have

v0 ≡ v(s0) =
r(s)− r0

h(s, s0)
v ≡ v(s) =

r2 − r(s)
h(s2, s)

(A2)

Letting ψ0 and ψ represent the angles that the ray forms at s0 and s with the tangents τ (s0)
and τ (s), the condition that H(s) is a minimum for s0 and s2 fixed then gives

dH(s)
ds

=
∂

∂s
h(s0, s) +

∂

∂s
h(s, s2)

=
r(s)− r(s0)

h
· ∂r(s)

∂s
− r(s2)− r(s)

h
· ∂r(s)

∂s
= v0 · τ − v · τ = cos ψ0 − cos ψ = 0

(A3)

The minimum condition is satisfied for s = s1, where ψ = ψ1 and setting v1 = v(s1) as
the reflection condition ψ1 = ψ0 is fulfilled. Indeed, the angles that the rays form with
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the normal are θ0 = π/2 − ψ0 and θ1 = π/2 − ψ1 and the standard condition θ1 = θ0 is
recovered. In order to determine the reflection map, we notice that p0 = cos ψ = v0 · τ0 and
p1 = cos ψ1 = v1 · τ1 are the momenta conjugated to s0 and s1. To this end, we consider
h(s0, s1) as the generating function of the map. The moments p0 and p1 conjugated to s0
and s1 are given by

p1 =
∂

∂s1
h(s0, s1) = v1 · τ1 = cos ψ1 p0 =

∂

∂s0
h(s0, s1) = −v0 · τ0 = − cos ψ0 (A4)

As a consequence, the map M from x0 = (s0, p0)
T to x1 = (s1, p1)

T generated by h(s0, s1) is
area preserving and s, p are canonical coordinates.

Appendix A.1. Berry’s Parametrization

A parametrization r = r(φ) which allows the analytical computation of the curvilinear
abscissa s = s(φ) was proposed in [36]. The basic idea is to use ρ = ρ(φ) to represent the
curve where ρ is the curvature radius and φ is the angle which the tangent forms with one
of the coordinates’ axes. We choose the origin on the curve at the point where x = x min

and we move clock-wise. In the case of a circle of radius R, we have s = Rφ and the tangent
and the inner normal are given by

r = (−cosφ, sin φ)T dr

ds
= τ = (sinφ, cos φ)T dτ

ds
=

1
R
(cosφ, − sin φ)T =

r

R
(A5)

Letting a generic closed curve parameterize according to r = r(φ), where φ is the angle
that the tangent forms with the y axis, and ρ(φ) the curvature radius, it follows, from the
standard formula dτ/ds = n/ρ, where n is the unit inner normal, that

τ =
dr

ds
= (sin φ, cos φ)T dτ

dφ
=

dτ
ds

ds
dφ

= n
1
ρ

ds
dφ

(A6)

Taking the norm of the last equation, where ||dτ/dφ|| = 1, we have

ds
dφ

= ρ(φ) r(φ)− r(0) =
∫ φ

0
τ (φ′)

ds
dφ′ dφ′ =

∫ φ

0
(sin φ′, cos φ′)T ρ(φ′) dφ′ (A7)

Figure A1. Angles and vectors defining the ray propagation.
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The functions r(φ) and ρ(φ) are periodic with period 2π and can be expanded in a
Fourier series. Since r(0) = r(2π), Equation (A7) implies that the integral of ρ cos φ and
ρ sin φ in [0, 2π] vanishes. The simplest deformation of the circle is given by

ρ(φ) = 1 + ε cos(2φ) (A8)

but any trigonometric polynomial in cos(kφ) and sin(kφ) with k ≥ 2 might be considered.
In this case, the curve parametrization becomes

s(φ) = φ +
ε

2
sin(2φ)

x(φ) = − cos φ +
ε

6
sin(3φ)− ε

2
sin φ

y(φ) = sin φ − ε

6
cos(3φ)− ε

2
cos φ

(A9)

In order to find the map, we first determine the phase φn+1 corresponding to the new
reflection at rn+1 = r(φn+1). To this end, we notice that the direction of the ray emerging at
rn is given by the vector vn, forming an angle ψn with τn which in turn forms an angle φn
with the y axis. As a consequence, vn forms an angle φn + ψn with the y axis. Recalling that
vn = (rn+1 − rn)/‖rn+1 − rn)‖, the ratio of the x and y components is given by

vx n

vy n
=

xn+1 − xn

yn+1 − yn
=

∫ φn+1
φn

ρ(φ′) sin φ dφ′∫ φn+1
φn

ρ(φ′) cos φ dφ′
= tan(φn + ψn) (A10)

This equation implicitly determines φn+1 as a function of φn and ψn. Next, we compute
sn+1 = s(φn+1) and rn+1 = r(φn+1) via (A9). The angles entering the reflections at rn and
rn+1 are shown in Figure A1. The last step is to determine ψn+1; to this end, we consider the
triangle whose vertices are Pn, Pn+1 and Cn where the half lines directed along the normals
nn and nn+1 intersect. Figure A1 shows the displacement vectors with respect to the origin
being rn, rn+1, rc. Taking into account the reflection condition, the angles of this triangle
are π/2 − ψn, π/2 − ψn+1 and φn+1 − φn from which we obtain

ψn+1 = φn+1 − φn − ψn pn+1 = cos ψn+1 (A11)

Appendix A.2. Alternative Parametrization and Reflection Map

We propose another equation for a deformed circle given by

F(r) =
y2

2
+

x2

2
+ ε f (x)− 1

2
= 0 f (x) = O(x3) (A12)

with ε > 0 and sufficiently small so that the billiard is convex. A parametrization r = r(φ)
can be easily obtained but requires the solution of an implicit equation. This parametrization
was already obtained in [38] and re-derived here. The advantage is that the present form
can be easily extended to a deformed sphere. Indeed, at a given point, the curvatures of a
surface depend on the two lines traced on it and therefore, on the corresponding tangents
which are usually not orthogonal. It is not trivial to represent the curves by assigning the
principal curvatures because this implies the knowledge of two families of curves that are
mutually orthogonal. The parametrization we propose for the billiard boundary, defined
by (A12), is the following:

r = r(φ) = r(φ)(− cos φ, sin φ)T r(φ) = ‖r(φ)‖ (A13)
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In this case, r(φ) is the distance from the origin and we denote by ρ(φ), the radius of
curvature. Setting ṙ = dr/dφ, the curvilinear abscissa s(φ) is given by

dx
dφ

= r sin φ − ṙ cos φ
dy
dφ

= r cos φ + ṙ sin φ

ds = (r2 + ṙ2)1/2dφ s(φ) =
∫ φ

0
(r2(φ′) + ṙ2(φ′))1/2 dφ′

(A14)

The tangent vector τ , the inner normal vector n, and the radius of curvature ρ are given by

τ (φ) =
dr

ds
=

dr

dφ

(
ds
dφ

)−1
=

(r sin φ − ṙ cos φ, r cos φ + ṙ sin φ)T(
r2(φ) + ṙ2(φ)

)1/2 (A15)

ρ(φ) =

(
ds
dφ

)2
∥∥∥∥∥ d2r

dφ2 − dr

dφ

d2s
dφ2

(
ds
dφ

)−1
∥∥∥∥∥
−1

n(φ) = (τy(φ), −τx(φ)) (A16)

The expressions of τ and n are still relatively simple, unlike the radius of curvature, which
never enters in the computation of the reflection map.

Notice that φ is no longer the phase of the vector τ with respect to the y axis. Denoting
with φτ the phase of τ , which we choose to be 0 when τ = (1, 0) and increasing clock-wise
as φ, we have

τ (φ) = (sin φτ , cos φτ)
T (A17)

As a consequence, given τ , its phase is given by

φτ = arccos
(
τy
)

if τx ≥ 0 φτ = 2π − arccos
(
τy
)

if τx < 0 (A18)

When the equation of the billiard boundary is given by (A13), we determine r = r(φ) and
ṙ = ṙ(φ) by solving the equations

r = (1 − 2ε f (−r cos φ))1/2 ṙ =
ε

r
f ′(−r cos φ)(ṙ cos φ − r sin φ) (A19)

iteratively staring with r = 1 and ṙ = 0. At first order, r(φ) = 1 − ε f (− cos φ) + O(ε2) .
The solution r = r(φ) is obtained iteratively and the convergence is very fast for ε << 1.
The iterations compute the fixed point stops when machine accuracy is reached. Then,
s = s(φ) is obtained by numerical integration according to (A14).

To compute the reflection map, we start from a point r0 with ray velocity v0. At the
point r0, the tangent and inner normal vectors are τ0 and n0. We define the phase of a
vector b with respect to a vector a as the angle between a and b counted clock-wise and
its range is [0, 2π]. To the initial position, we associate, according to (A13), the angle φ0
defined as the phase of −r0 with respect to the x axis. To the initial tangent vector, we
associate, according to (A18), the angle φτ 0 defined as the phase of τ0 with respect to the
y axis. If y0 = 0 and x0 < 0, we have φ0 = φτ 0 = 0. The phase of v0 with respect to τ0
is ψ0 and its range is [0, π] whereas the range of φ0 and φτ 0 is [0, 2π]. As a consequence,
the phase of v0 with respect to the y axis is φτ 0 + ψ0 mod 2π. The tangential component of
the velocity is p0 = v0 · τ0 ≡ cos ψ0 and if p0 > 0, the reflection is clock-wise; if p0 < 0, it
is counter clock-wise. Alternatively, we can start with (φ0, p0) and determine the vectors
r0, v0.

After n iterations, the point rn on the boundary is reached and the velocity of the
outgoing ray is vn. The angles φn, φτ n, ψn and the momentum pn = cos ψn are determined
and eventually the curvilinear abscissa sn is obtained with a numerical integration.
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To compute the reflection map, we determine first the unique intersection rn+1 of the
ray emerging from rn with the boundary. Letting r(t) = rn + tvn, we obtain the unique
positive solution of F(r(t)) = 0 by iteratively solving the equation

t = −2vn · rn − 2ε
f (xn + t vx n)− f (xn)

t
(A20)

As a consequence, we have rn+1 = rn + t∗vn. The phase φn+1 of −rn+1 with respect to the
x axis, according to (A13), is given by

φn+1 = arccos
(
− xn+1

rn+1

)
if yn ≥ 0

φn+1 = 2π − arccos
(
− xn+1

rn+1

)
if yn < 0

(A21)

We compute the tangent vector and inner normal vector τn+1 = τ (φn+1) and nn+1 =
n(φn+1) according to (A16). The direction of the emerging ray is computed using the
reflection condition:

vn+1 = vn − 2(vn · nn+1) nn+1 (A22)

pn+1 = vn+1 · τn+1 = vn · τn+1 (A23)

From the momentum pn+1 = vn · τn+1, we determine the phase ψn+1 = arccos(pn+1) of
vn+1 with respect to τn+1. Recalling that the phase of vn+1 with respect to the y axis is
φτ n+1 + ψn+1, we can check that

vn+1 =
(
sin(φτ n+1 + ψn+1), cos(φτ n+1 + ψn+1)

)T (A24)

We recall that the map (φn+1, pn+1) = M(φn, pn) is measure preserving.
The map (sn+1, pn+1) = M(sn, pn) is symplectic (i.e. area preserving) and can be ob-

tained from the previous map by computing the function s = s(φ) according to (A14). This
can be done through achieving machine accuracy by storing the results of an integration
on a sufficiently fine uniform grid by using Simpson or Gauss integration schemes in each
interval, and a linear interpolation.

Finally, the strategy is the following: given an initial value φ0 and p0, we determine
r0 and v0. Notice the component of v0 along the inner normal is positive (1 − p2

0)
1/2 so

that v0 always points towards an inner point of the billiard. As a consequence, the ray is
reflected at a point r1 on the boundary, the motion being clock-wise if p0 > 0 and counter
clock-wise if p0 < 0. After N reflections, the point rN is reached. The reversed trajectory r∗n
is obtained by choosing r∗0 = rN and v∗

0 = −vN−1. It is not difficult to show that r∗n = rN−n
and v∗

n = −vN−n−1. As a consequence, we have φ∗
n = φN−n and for the momentum,

p∗
n = v∗

n · τ ∗
n = −vN−n−1 · τN−n = −vN−n · τN−n−1 = −pN−n (A25)

These relations imply that φ∗
N = φ0 and p∗

N = −p0 and prove that the initial condition is
recovered after N iterations of the inverse map. If the map is slightly perturbed, then, after
N iterations of the map, the initial conditions are no longer recovered and the deviation
from reversibility is measured by

(
(φ∗

N − φ0)
2 + ((p∗

N + p0)
2)1/2.

Appendix B. Lyapunov and Reversibility Error Indicators

In this appendix, we derive the equivalence between the Lyapunov and reversibility
error indicators. Those indicators have been previously defined and used to analyze the
stability of other Hamiltonian systems (see, for instance, Ref. [34]). Those indicators
measure the growth of a small random perturbation induced on an initial condition or at
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each reflection. In the latter case, it is convenient to perturb the orbit during the first n
iterations and integrate the unperturbed inverse map.

These indicators are computed according to the linear response theory, namely when
the limit of the perturbation ε tends to 0. For this reason, the linear approximation is
valid only for a limited number of iterations n. The number n of iterations up to which
the linear approximation is valid depends on x and ε and uniform estimates are typically
n ∼ log(1/ε). The linear response is valid for any iteration number N since it involves the
limit to zero of the noise amplitude ε. Given a symplectic or measure preserving map M(x),
defined in R2d, or a compact manifold of dimension 2d, we denote with xn the point of the
orbit obtained by iterating the map n times, starting from an initial condition x, and by
Ln(x), its tangent map. Denoting the composition of the map with M◦2(x) = M ◦ M(x) ≡
M(M(x)) we have

xn+1 = M(xn−1) x0 = x xn = M◦n(x)

Ln+1(x) = DM(xn) Ln(x) L0 = I Ln(x) = DM◦n(x)

(DM)ij(x) =
∂

∂xj
Mi(x)

(A26)

Consider a nearby initial condition y = x + εξ where ξ is a random vector with a zero
mean and unit covariance matrix 〈 ξ ξT 〉 = I. The orbit yn = M(yn−1) is compared with
the unperturbed orbit xn = M(xn−1) and the linear response is given by a random vector
Ξn defined by

Ξn(x) = lim
ε→0

yn − xn

ε
= lim

ε→0

M◦n(x + εξ)− M◦n(x)

ε
= DM◦n(x) ξ ≡ Ln(x) ξ (A27)

The square of En(x) is defined as the trace of the covariance matrix:

Σ2
n(x) = 〈Ξn(x)Ξ

T
n (x) 〉 = Ln(x) L

T
n (x)

En(x)
2 = Tr (Σ2

n(x)) = Tr
(
LT

n (x)Ln(x)
) (A28)

The matrix Ln L
T
n has the same eigenvalues of the Lyapunov matrix LT

nLn but the eigenvec-
tors are different. The invariants I(k)n (x) of Ln L

T
n or LT

n Ln are the sum of the (d
k) products of

the eigenvalues. From a geometric viewpoint, the invariant I(k)n is the sum of the squared
volumes of the (d

k) parallelotopes, whose edges are all the k distinct choices among the
vectors Lne1, . . . , Lne2d, having denoted with ej the base vectors (ej)i = δij. From the polar
decomposition Ln = Rn en Λ(n) WT

n , where Rn and Wn are orthogonal matrices, and the fact
that Λ(n) is a real diagonal matrix whose elements are λ1(n) ≥ λ2(n) ≥ . . . ≥ λ2d(n) , is it
possible to show that

LT
nLn = Wn e2n Λ(n) WT

n I(k)n = ∑
j1<j2<...<jk

exp
(

2n
(
λj1(n) + . . . + λjk (n)

))
(A29)

If the matrix is symplectic, letting rT = (q, p) with q = (q1, . . . , qd) and p = (p1, . . . , pd),
we have λd+j(n) = −λd−j+1(n). The first invariant is I(1)n = Tr (LT

nLn) = En(x)2 and
the next invariants can be recursively computed with the Faddeev–Leverrier formula,
involving the traces of the powers of LT

nLn. The last invariant is given by the determinant.
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Since the eigenvalues λj(n) have a limit λj for n → ∞, the asymptotic limit of the invariants
is given by

lim
n→∞

1
2n

log I(k)n (x) = λ1(x) + λ2(x) + . . . + λk(x) (A30)

If a symplectic map M is integrable, the eigenvalues grow according to a power law

e2n λj(n) ∼ (1 + α2
j n2) e2n λd+j(n) ∼ 1

(1 + α2
d−j+1 n2)

1 ≤ j ≤ d (A31)

As a consequence, the invariants behave as I(k)(n) ∼ n2k for 1 ≤ k ≤ d. In the fully chaotic
regions, all the first d Lyapunov exponents are positive; in the regions of regular motion,
they vanish.

Appendix B.1. Reversibility Error

We consider the Backward–Forward process (BF), in which at each iteration of the
reflection map, we add a random perturbation of amplitude ε up to the iteration n and
then iterate n times with the inverse map. The linear response ΞBF

n for the BF process is
obtained by first computing the perturbed orbit:

yn′ = M(yn′−1) + εξn′ 1 ≤ n′ ≤ n

yn′ = M−1(yn′−1) n + 1 ≤ n′ ≤ 2n
(A32)

and observing that the unperturbed orbit, after 2n iterations, comes back to the initial
condition x2n = M◦−n ◦ M◦n(x) = x:

ΞBF
2n (x) = lim

ε→0

y2n − x

ε
=

n

∑
k=1

L−1
k (x) ξk (A33)

The proof of this relation can be easily obtained by observing that Ξn′ satisfies the following
linear recurrence equation

ΞBF
n′ (x) = lim

ε→0

M(xn′−1) + εξn′−1 − M(xn′−1)

ε
= DM(xn′−1)Ξ

BF
n′−1(x) + ξn′

Ξ0 = 0 1 ≤ n′ ≤ n
(A34)

for n′ ≤ n so that for n′ = n we obtain

ΞBF
n (x) = ξn +

n−1

∑
k=1

DM(xn−1)DM(xn−2) · · · DM(xk) ξk = ξn +
n−1

∑
k=1

Ln(x) L
−1
k (x) ξk (A35)

Since there is no perturbation when iterating with the inverse map M−1 for n+ 1 ≤ n′ ≤ 2n,
we have

ΞBF
2n (x) = lim

ε→0

M−n(yn)− M−n(xn)

ε
= DM−n(xn)Ξ

BF
n (x) = L−1

n (x)ΞBF
n (x) (A36)

Indeed, differentiating M−n ◦ Mn(x) = x, we obtain DM−n(xn) DMn(x) = I so that
DM−n(xn) = L−1

n (x). Replacing (A36) into (A34), the equation (A33) follows. The covari-
ance matrices for the BF processes are given by

ΣBF
n

2
(x) =

〈
ΞBF

2n (x)ΞBF
2n (x)

〉
=

n

∑
n′=1

L−1
n′ (x)

(
L−1

n′ (x)
)−T

=
n

∑
n′=1

(
LT

n′(x)Ln′(x)
)−1

(A37)
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The square of the ER
n (x) is defined as the first invariant, namely, the trace of the covariance

matrix ΣBF
n :

EBF
n

2
(x) = Tr

(
ΣBF

n
2
(x)
)
=

n

∑
n′=1

Tr
((

LT
n′(x)Ln′(x)

)−1 )
(A38)

The next invariants of ΣBF
n

2 can be computed. If the map is symplectic, then Ln′LT
n′ and

LT
n′Ln′ are symplectic matrices. Therefore, the traces of LT

n′Ln′ and its inverse are equal and
the RF reversibility error is given by a quadratic average of the En(x).

EBF
n

2
(x) =

n

∑
n′=1

E2
n(x) (A39)

Previously, the BF process has been considered with the noise applied to both the backward
and forward iterations. In this case, the covariance matrix is given by

ΣBF
n

2
(x) =

1

2

〈
ΞBF

2n (x)
(
ΞBF

2n

)〉
=

1

2
I+

n−1

∑
n′=1

(
LT

n′(x)Ln′(x)
)−1

+
1

2

(
LT

n (x)Ln(x)
)−1

(A40)

A proof of (A40) can be found in [3] Section 2.3. This definition, whose difference with the
previous one (A38) is negligible for large n, was initially proposed to compare ER

n (x), due
to a small random displacement, against REM. Denoting with Mε the map and with M−1

ε

its inverse, both computed by including the round-off, then the REM is defined by

REMBF
n (x) =

‖M◦ −n
ε ◦ M◦ n

ε (x)− x‖√
2 ε

(A41)

The round-off is a pseudo-random process of which just one realization is available. It is
evident that, as opposed to EBF

n (x), REMBF
n , it exhibits significant fluctuations when n or x

vary. No higher invariants can be defined for the reversibility error due to round-off.
The specular process FB, in which we first iterate n times the perturbed inverse map

M−1 and then the map M, can be considered. The previous formulae hold where Ln′(x) =

DMn′
(x) is replaced with L−n′(x) = DM−n′

(x) = DMn′
(M−n′

)) =
(
Ln′(x−n′)

)−1 and
therefore, the covariance matrix for the FB process is

ΣFB
n

2
(x) =

n

∑
n′=1

(
LT
−n′(x)L−n′(x)

)−1
=

n

∑
n′=1

Ln′(x−n′)LT
n′(x−n′) x−n′ = M−n′

(x) (A42)

This formula can be proved just as the formula (A40) for the BF covariance matrix. One
should take into account exchanging F and B amounts to change the map M with M−1 so
that LT

n′Ln′ is replaced by LT
−n′L−n′ since Ln′ = DM◦n′

and L−n′ = DM◦−n′ ≡ D(M−1)◦n′
.

For a symplectic map, the BF and FB covariance matrix are equivalent, provided that one
exchanges the sign on the momentum, whereas for a dissipative map, they are intrinsically
different. In this case, their different behavior reflects the break-up of the time reversal
invariance for the unperturbed system. As a consequence, for a symplectic map, the FB
reversibility error is related to the Lyapunov error by

EFB
n

2
(x) =

n

∑
n′=1

E2
n(x−n′) (A43)

The corresponding round-off induced reversibility error REM is defined by iterating n times
the inverse map M−1

ε first, and then the map Mε. If x belongs to an ergodic component, then
the asymptotic behavior of En(x) is the same for any x except for a subset of zero measure.
As a consequence, the asymptotic of EBF

n (x) and EFB
n (x) is the same almost everywhere.
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This is the reason why, for a symplectic map, we can ignore the FB error and consider just
the BF reversibility error, which we usually denoted with ER

n (x).
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